

jQuery UI 1.7
The User Interface Library for jQuery

Build highly interactive web applications with
ready-to-use widgets from the jQuery User
Interface library

Dan Wellman

 BIRMINGHAM - MUMBAI

jQuery UI 1.7
The User Interface Library for jQuery

Copyright © 2009 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: November 2009

Production Reference: 1021109

Published by Packt Publishing Ltd.
32 Lincoln Road
Olton
Birmingham, B27 6PA, UK.

ISBN 978-1-847199-72-0

www.packtpub.com

Cover Image by Vinayak Chittar (vinayak.chittar@gmail.com)

Credits

Author
Dan Wellman

Reviewers
Marc Grabanski

Akash Mehta

Jörn Zaefferer

Acquisition Editor
Douglas Paterson

Development Editor
Nikhil Bangera

Technical Editors
Vinodhan Nair

Gagandeep Singh

Indexer
Rekha Nair

Editorial Team Leader
Gagandeep Singh

Project Team Leader
Priya Mukherji

Proofreader
Claire Cresswell-Lane

Graphics
Nilesh Mohite

Production Coordinator
Shantanu Zagade

Cover Work
Shantanu Zagade

About the Author

Dan Wellman lives with his wife and three children in his home town
of Southampton on the south coast of England. By day his mild-mannered
alter-ego works for a small yet accomplished e-commerce production agency.
By night he battles the forces of darkness and fights for truth, justice, and less
intrusive JavaScript.

He has been writing computer-related articles, tutorials, and reviews for around
five years and is rarely very far from a keyboard of some description. This is his
third book.

I'd like to thank the Packt editorial team, all of the technical
reviewers and the jQuery UI team, without whom this book would
not have been possible. Special thanks go to Jörn Zaefferer who
provided essential feedback and was always happy to answer my
late-night, niggling questions.

Thanks also to my fantastic friends, in no particular order; Steve
Bishop, Eamon O' Donoghue, James Zabiela, Andrew Herman,
Aaron Matheson, Dan Goodall, Mike Woodford, Mike Newth, John
Adams, Jon Field and Vicky Hammond and all the rest of the guys
and girls.

About the Reviewers

Marc Grabanski got involved early on with jQuery by authoring what would
become the jQuery UI Datepicker. He works, arguably too much, building user
interfaces and web software all the day long with his company MJG International.

If I were to thank anyone it would be Jesus Christ for transforming
me from a video game addict into something useful to society and
the people around me.

Akash Mehta is a web application developer and technical author based in
Australia. His area of work covers e-learning solutions, information systems, and
developer training. He regularly writes web development articles for Adobe, CNet,
the APC Magazine, and other publications in print and online. He is a regular
speaker at IT conferences, user groups, and BarCamps. Currently, Akash provides
web development, technical writing, consulting, and training services through his
website, http://bitmeta.org/.

I would like to thank my parents, for their constant support and
encouragement, and Sophie, for her enduring patience and
amazing inspiration.

Jörn Zaefferer is a professional software developer from Cologne, Germany.
He creates application programming interfaces (APIs), graphical user interfaces
(GUIs), software architectures, and designs databases, for both web and
desktop applications.

His work focuses on the Java-platform, while clientside-scripting evolves around
jQuery. He started contributing to jQuery in mid-2006, and has since co-created
and maintained QUnit, jQuery's unit testing framework; released and maintained a
half-dozen of very popular jQuery plugins, and contributed to jQuery books as both
author and tech-reviewer. He also is a lead developer for jQuery UI.

This book is dedicated to my eternally patient and understanding wife Tammy and
my beautiful kids Bethany, Matthew, James, and Jessica. Shining supernovas that

light up my life.

Table of Contents
Preface	 1
Chapter 1: Introducing jQuery UI	 7

Downloading the library	 8
Setting up a development environment	 10
The structure of the library	 11
ThemeRoller	 12
Component categories	 16
Browser support	 17
Book examples	 18
Library licensing	 18
API introduction	 19

Events and callbacks	 21
Callback arguments	 22

Summary	 23
Chapter 2: The CSS Framework	 25

The files that make up the framework	 25
ui.all.css	 26
ui.base.css	 27
ui.core.css	 27
The individual component framework files	 28
ui.theme.css	 28
Linking to the required framework files	 29

Using the framework classes	 30
Containers	 30
Interactions	 32
Icons	 33
Interaction cues	 34

Table of Contents

Switching themes quickly and easily	 36
Overriding the theme	 37
Summary	 40

Chapter 3: Tabs	 41
A basic tab implementation	 42
Tab CSS framework classes	 44
Applying a custom theme to the tabs	 46
Configurable options	 47

Selecting a tab	 49
Disabling a tab	 50
Transition effects	 50
Collapsible tabs	 51

Tab events	 52
Binding to events	 54

Using tab methods	 55
Enabling and disabling tabs	 56
Adding and removing tabs	 57
Simulating clicks	 58
Creating a tab carousel	 59
Getting and setting options	 61

AJAX tabs	 62
Displaying data obtained via JSONP	 66
Summary	 69

Chapter 4: The Accordion Widget	 71
Accordion's structure	 72
Styling the accordion	 75
Configuring an accordion	 77

Changing the trigger event	 78
Changing the default active header	 78
Filling the height of its container	 80
Accordion animation	 81

Accordion events	 83
The changestart event	 84

Accordion navigation	 85
Accordion methods	 87

Destruction	 88
Header activation	 89

Accordion interoperability	 90
A del.icio.us accordion	 92
Summary	 96

Table of Contents

Chapter 5: The Dialog	 97
A basic dialog	 98
Dialog options	 100

Showing the dialog	 102
Positioning the dialog	 102
The title of the dialog	 104
Modality	 105
Adding buttons	 106
Enabling dialog animations	 108
Fixing IE6	 109
Configuring the dialog's dimensions	 110
Stacking	 111

Dialog's event model	 113
Controlling a dialog programmatically	 116

Toggling the dialog	 116
Getting data from the dialog	 117
Dialog interoperability	 119
A dynamic image-based dialog	 120
Summary	 126

Chapter 6: Slider	 127
Implementing a slider	 128
Custom styling	 129
Configurable options	 130

Creating a vertical slider	 130
Minimum and maximum values	 131
Slider steps	 132
Slider animation	 132
Setting the slider's value	 133
Using multiple handles	 133
The range element	 134

Using slider's event API	 134
Slider methods	 137
Future uses	 139
A color slider	 141
Summary	 144

Chapter 7: Datepicker	 145
The default datepicker	 146
Configurable options of the picker	 148

Basic Options	 149
Minimum and maximum dates	 151

Table of Contents

[iv]

Changing the datepicker UI	 152
Adding a trigger button	 154
Configuring alternative animations	 156
Multiple months	 158
Changing the date format	 159
Updating an additional input element	 162
Localization	 162
Callback properties	 166

Utility methods	 168
Date picking methods	 170

Selecting a date programmatically	 170
Showing the datepicker in a dialog	 171

An AJAX datepicker	 172
Summary	 176

Chapter 8: Progressbar	 177
The default progressbar implementation	 178
Using progressbar's configuration option	 179
Progressbar's event API	 180
Progressbar methods	 181
User initiated progress	 182
Rich uploads with progressbar	 189
Summary	 192

Chapter 9: Drag and Drop	 193
The deal with drag and droppables	 194
Draggables	 194

A basic drag implementation	 195
Configuring draggable options	 197

Using the configuration options	 199
Resetting dragged elements	 200
Drag handles	 201
Helper elements	 202
Constraining the drag	 205
Snapping	 206

Draggable event callbacks	 208
Using draggable's methods	 211
Droppables	 211
Configuring droppables	 214

Tolerance	 216
Droppable event callbacks	 218

Scope	 222

Table of Contents

Greedy	 224
Droppable methods	 228
A drag and drop game	 229
Summary	 234

Chapter 10: Resizing	 235
A basic resizable	 236
Resizable options	 238

Configuring resize handles	 239
Adding additional handle images	 240
Defining size limits	 241
Resize ghosts	 243
Containing the resize	 245
Handling the aspect ratio	 246
Resizable animations	 247
Simultaneous resizing	 248
Preventing unwanted resizes	 250

Resizable callbacks	 250
Resizable methods	 252
Resizable tabs	 252
Summary	 254

Chapter 11: Selecting	 255
Basic implementation	 256
Selectee class names	 258
Configurable options of the selectable component	 260

Filtering selectables	 260
Cancelling the selection	 262

Selectable callbacks	 262
Working with vast amounts of selectables	 266

Selectable methods	 268
A selectable image viewer	 270

Styling the image selector	 274
Summary	 276

Chapter 12: Sorting	 277
The default implementation	 278
Configuring sortable options	 281

Placeholders	 287
Sortable helpers	 289
Sortable items	 290
Connected lists	 292

Table of Contents

Reacting to sortable events	 295
Connected callbacks	 299
Sortable methods	 301
Widget compatibility	 304

Adding draggables	 306
Sortable page widgets	 310

The underlying page	 312
Styling the page	 313
The main script	 314
Building the content boxes	 317
Writing the cookie	 319
Making the boxes sortable	 319
Closing and restoring boxes	 320

Summary	 321
Chapter 13: UI Effects	 323

The core effects file	 324
Using color animations	 324
Using class transitions	 326
Advanced easing	 328

Highlighting specified elements	 328
Additional effect arguments	 331

Bouncing	 332
Shaking an element	 334
Transferring an element's outline	 335
Element scaling	 338
Element explosion	 341
The puff effect	 343
The pulsate effect	 345
Dropping elements onto the page	 347
Sliding elements open or closed	 349
The window-blind effect	 353
Clipping elements	 354
Folding elements	 356
Summary	 357

Index	 359

Preface
Modern web application user interface design requires rapid development and
proven results. jQuery UI, a trusted suite of official plugins for the jQuery JavaScript
library, gives you a solid platform on which to build rich and engaging interfaces
with maximum compatibility, stability, and a minimum of time and effort.

jQuery UI has a series of ready-made, great looking user interface widgets, and
a comprehensive set of core interaction helpers designed to be implemented in a
consistent and developer-friendly way. With all this, the amount of code that
you need to write personally to take a project from conception to completion is
drastically reduced.

Specially revised for version 1.7 of jQuery, this book has been written to maximize
your experience with the library by breaking down each component and walking
you through examples that progressively build upon your knowledge, taking you
from beginner to advanced usage in a series of easy-to-follow steps.

In this book, you'll learn how each component can be initialized in a basic default
implementation and then see how easy it is to customize its appearance and
configure its behavior to tailor it to the requirements of your application. You'll look
at the configuration options and the methods exposed by each component's API to
see how these can be used to bring out the best of the library.

Events play a key role in any modern web application if it is to meet the expected
minimum requirements of interactivity and responsiveness, and each chapter will
show you the custom events fired by the component covered and how these events
can be intercepted and acted upon.

Preface

What this book covers
Chapter 1, Introducing jQuery UI, gives a general overview and introduction to
jQuery UI. You find out exactly what the library is, where it can be downloaded
from, and where resources for it can be found. We look at the freedom the license
gives you to use the library and how the API has been simplified to give the
components a consistent and easy to use programming model.

In Chapter 2, The CSS Framework, we look in details at the extensive CSS framework
that provides a rich environment for integrated theming via ThemeRoller, or allows
developers to easily supply their own custom themes or skins.

In Chapter 3, Tabs, we look at the tabs component; a simple but effective means of
presenting structured content in an engaging and interactive widget.

Chapter 4, The Accordion Widget, looks at the accordion widget, another component
dedicated to the effective display of content. Highly engaging and interactive, the
accordion makes a valuable addition to any web page and its API is exposed in full
to show exactly how it can be used.

In Chapter 5, The Dialog, we focus on the dialog widget. The dialog behaves in the
same way as a standard browser alert, but it does so in a much less intrusive and
more visitor-friendly manner. We look at how it can be configured and controlled to
provide maximum benefit and appeal.

Chapter 6, Slider, looks at the slider widget that provides a less commonly used, but
no less valuable user interface tool for collecting input from your visitors. We look
closely at its API throughout this chapter to see the variety of ways that in which it
can be implemented.

In Chapter 7, Datepicker, we look at the datepicker. This component packs a huge
amount of functionality into an attractive and highly usable tool, allowing your
visitors to effortlessly select dates. We look at the wide range of configurations that
its API makes possible as well as seeing how easy common tasks such as skinning
and localization are made.

In Chapter 8, Progressbar, we look at the new progressbar widget; examining its
compact API and seeing a number of ways in which it can be put to good use in our
web applications.

In Chapter 9, Drag and Drop, we begin looking at the low-level interaction helpers,
tackling first the related drag-and-droppable components. We look at how they
can be implemented individually and how they can be used together for
maximum effect.

Preface

Chapter 10, Resizing, looks at the resizing component and how it is used with the
dialog widget from earlier in the book. We see how it can be applied to any element
on the page to allow it be resized in a smooth and attractive way.

In Chapter 11, Selecting, we look at the selectable component, which allows us add
behavior to elements on the page and allow them be selected individually or as a
group. We see that this is one component that really brings the desktop and the
browser together as application platforms.

Chapter 12, Sorting, looks at the final interaction helper—the sortable component.
This is an especially effective component that allows you to create lists on a page
that can be reordered by dragging items to a new position on the list. This is another
component that can really help you to add a high level of professionalism and
interactivity to your site with a minimum of effort.

Chapter 13, UI Effects, is dedicated solely to the special effects that are included with
the library. We look at an array of different effects that allow you to show, hide,
move, and jiggle elements in a variety of attractive and appealing animations.
There is no 'fun with' section at the end of this chapter; the whole chapter is a
'fun with' section.

What you need for this book
A copy of the latest jQuery UI full build (1.7.2 at the time of writing)
A code or text editor
A browser
The code download for the book

Who this book is for
This book is for developers who want to quickly and easily build engaging,
highly interactive interfaces for their web applications, or less commonly, for
embedded applications.

Nokia was the first mobile phone company to announce that they were adopting
jQuery to power parts of their cell phone operating system. I'm sure that by the time
this book is published there will be more companies adapting the library for their
own needs, and wherever jQuery goes, jQuery UI can follow.

People who are comfortable with HTML, JavaScript, and CSS along with having at
least some experience with jQuery itself will get the most benefit from what this book
has to offer. However, no prior knowledge of the UI library itself is required.

•

•

•

•

Preface

[�]

Consider the following code:

$("#myEl").click(function() {
 $("<p>").attr("id", "new").css({
 color:"#000000"
 }).appendTo("#target");
)};

If you cannot immediately see, and completely understand, what this simple code
snippet does, you would probably get more from this book after first learning about
jQuery itself. Consider reading Karl Swedberg and Jonathan Chaffer's excellent
Learning jQuery 1.3, also by Packt Publishing, or visit http://www.learningjquery.
com for an excellent foundation in jQuery, and then come back to this book.

Each jQuery UI specific method or property that we work with will be fully covered
in the explanatory text that accompanies each code example, and where it is
practical, some of the standard jQuery code will also be discussed. CSS and HTML
will take a back seat and be covered very briefly, if at all, unless it is completely
central to the discussion at hand.

Basic concepts of using jQuery itself won't be covered. Therefore, you should already
be familiar with advanced DOM traversal and manipulation, attribute and style
getting and setting, and making and handling AJAX calls. You should be comfortable
with the programming constructs exposed by jQuery such as method chaining, using
JavaScript objects, and working with callback functions.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: "We can include other contexts through the
use of the include directive."

A block of code is set as follows:

[default]
var pickerOpts = {
 changeMonth: true,
 changeYear: true,
 yearRange: "-25:+25"
};

Preface

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

[default]
var pickerOpts = {
 minDate: new Date(),
 maxDate: "+10"

};

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "clicking
the Next button moves you to the next screen".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply send an email to feedback@packtpub.com, and
mention the book title via the subject of your message.

If there is a book that you need and would like to see us publish, please
send us a note in the SUGGEST A TITLE form on www.packtpub.com or
email suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book on, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Preface

Downloading the example code for the book
Visit http://www.packtpub.com/files/code/9720_Code.zip to
directly download the example code.
The downloadable files contain instructions on how to use them.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you would report this to us. By doing so, you can save
other readers from frustration, and help us to improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/support, selecting your book, clicking on the let us know link, and entering the
details of your errata. Once your errata are verified, your submission will be accepted
and the errata added to any list of existing errata. Any existing errata can be viewed by
selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or web site name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

Introducing jQuery UI
Welcome to jQuery UI 1.7: The User Interface Library for jQuery. This resource
aims to take you from your first steps to an advanced usage of the JavaScript library
of UI widgets and interaction helpers built on top of the hugely popular and
easy-to-use jQuery.

jQuery UI extends the underlying jQuery library to provide a suite of rich and
interactive widgets along with code-saving interaction helpers, built to enhance the
user interfaces of your websites and web applications. It's the official UI library for
jQuery and although it is not the only library built on top of jQuery, in my opinion it
is without a doubt the best.

jQuery has quickly become one of the most popular JavaScript libraries in use today
and jQuery UI will definitely become the extension library of choice, thanks to its
ever-growing range of common UI widgets, high levels of configurability, and its
exceptional ease of implementation.

jQuery UI runs on top of jQuery and hence the syntax used to initialize, configure,
and manipulate the different components is in the same comfortable, easy-to-use
style as jQuery. We automatically get all of the great jQuery functionality at our
disposal as well. The library is also supported by a range of incredibly useful tools,
such as the CSS framework that provides a range of helper CSS classes, and the
excellent ThemeRoller application that allows us to visually create our own custom
themes for the widgets.

Over the course of this book we'll look at each of the existing components that make
up the library. We will also be looking at their configuration options and trying out
their methods in order to fully understand how they work and what they are capable
of. By the end of the book, you'll be an expert in its implementation.

We already have a basic working knowledge of the components when we add a
new component because of the consistency in how we implement the different
components that make up the library. Therefore, we only need to learn any
widget-specific functionality.

Introducing jQuery UI

This chapter will cover the following topics:

How to obtain a copy of the library
How to set up a development environment
The structure of the library
ThemeRoller
The format of the API
Browser support
How the library is licensed

Downloading the library
To obtain a copy of the library, we should visit the download builder at
http://jqueryui.com/download, which gives us a range of different options for
building a download package that is tailored for our particular implementational
requirements. The following screenshot shows the download builder:

•
•
•
•
•
•
•

Chapter 1

[�]

We can either download the complete current release of the library, or a complete
package of the legacy 1.6 version, or we can select the components that we want
and download a custom package.

This book is specifically tailored towards version 1.7 of jQuery
UI (at the time of writing the current stable release is 1.7.2) and is
not compatible with legacy versions of the library. jQuery UI 1.7
requires jQuery 1.3.

The page is laid out in a really friendly and easy-to-use way. It lists all of the
different components in their respective groupings (core, interaction helpers, and
widgets) and allows us to choose from one of 25 different predesigned themes along
with providing information about the package (including both its compressed and
uncompressed size).

We'll look at the different files found within the library in just a moment, but for
now we should download the complete library. It will contain everything we need,
including the JavaScript and CSS files, as well as any images from the current theme
that different components rely on. It even contains the latest version of jQuery itself,
so we don't need to worry about downloading this separately.

For now, just use the Current (stable) link at the top of the page. This will give us the
default theme that is called smoothness. We'll look at downloading and using other
themes in the next chapter.

Hosted Files
In reality, we don't even need to download the library in order to
implement it in a production web application. Both jQuery and jQuery
UI are hosted on Google's content delivery network (CDN), so we
can include <script> elements that link to these files instead of using
local versions. Only the complete library (not individual components) is
available, although there are a range of different releases.
On a live site that receives a lot of international traffic, using a CDN will
help ensure that the library files are downloaded to a visitor's computer
from a server that is geographically close to them. This helps in making
the response quicker for them and saving our own bandwidth. This is not
recommended for local development however.

Introducing jQuery UI

[10]

Setting up a development environment
We'll need a location to unpack the jQuery UI library in order to easily access the
different parts of it within our own files. We should first create a project folder,
into which all of our example files, as well as all of the library and other associated
resources can be saved.

Create a new directory on your C: drive, or in your home directory, and call it
jqueryui. This will be the root folder of our project and will be the location
where we store all of the example files from the code download.

To unpack the library, open it in a compression program, such as the open source
7zip, and choose the extract or unzip command. When prompted for a location to
unpack the archive to, choose the jqueryui folder that we just created.

The code examples that we'll be looking at use other resources, mostly images,
but occasionally some PHP files too. The accompanying code download available
on Packt's website contains all of the images that we'll be using. You should
download this now if you can, visit: http://www.packtpub.com/support/book/
user-interface-library-for-jquery. You'll need to create a new folder within
the jqueryui project folder and call it img, then unpack all of the subdirectories
within the img folder in the archive to this new folder.

The code download also contains all the examples files as well as the library itself.
It would be incredibly easy to unpack the entire code download to a local directory
and run each of the examples as they are.

These files are provided in the hope that they will be used for reference purposes
only! I'd urge you to follow the examples in the book on the fly, manually creating
each file as it is shown instead of just referring to the files in the code download.
The best way to learn code is to code.

This is all we need to do, no additional platforms or applications need to be installed
and nothing needs to be configured or set up. As long as you have a browser and
some kind of code or text editor then everything is in place to begin developing
with the library.

Chapter 1

[11]

The structure of the library
Let's take a moment to look at the structure of the unpacked library. This will give
us a feel for its composition and structure. Open up the jqueryui folder where we
unpacked the library. The contents of this folder should be as follows:

A css directory
A development-bundle directory
A js directory
An index file

The css folder is used to store the complete CSS framework that comes with the
library. Within this folder will be a directory that has the name of the theme we chose
when building the download package. Inside this is single file that contains all of the
CSS, and a folder that holds all the images used by the theme. We can also store the
CSS files we'll be creating in the css directory.

The js folder contains minified versions of jQuery and the complete jQuery UI
library, with all components rolled into this one file. In a live project, it is the js
and css folders that we'd want to drop into our site.

The index is an HTML file that gives a brief introduction to the library and displays
all of the widgets along with some of the CSS classes. If this is the first time you've
ever used the library, you can take a look to see some of the things that we'll be
working with throughout the course of this book.

The development-bundle directory contains a series of resources to help us develop
with the library and contains the following subdirectories:

A demos folder
A docs folder
An external folder
A themes folder
A ui folder

Also present in the directory are the license files, documents showing the version
of the library and its main contributors. An uncompressed version of jQuery is
also present.

The demos folder contains a series of basic examples showing all of the different
components in action. The docs folder contains API documents for each of the
different components.

•
•
•
•

•
•
•
•
•

Introducing jQuery UI

[12]

The external folder contains a set of tools that may be of use to developers. They
are as follows:

The bgiframe plugin
The cookie plugin
A JavaScript implementation of the diff algorithm jsDiff
The unit testing suite qunit
The simulate plugin

The bgiframe plugin is used to fix the issue in IE6 where <select> elements
appear above other content, regardless of z-index. This plugin is due to be removed
in release 1.8 of jQuery UI and replaced with the stackfix utility. The cookie plugin
makes it easy to use browser cookies. jsDiff is the JavaScript implementation of
an algorithm that can be used to compare two strings and show the differences
between them.

qunit is jQuery's unit testing suite and can be used to run unit tests on
widgets and plugins that we may create. For more information on QUnit visit:
http://docs.jquery.com/QUnit. The simulate plugin simulates mouse
and keyboard events and allows the functionality of widgets or plugins to be
tested automatically.

Other than the cookie plugin (which we use in Chapter 12), we won't be using any
of these tools in the examples we'll look at.

The themes folder contains two different themes—the first is the base theme that is
a neutral, minimal theme of grey tones. The second is the smoothness theme, which
we chose when building our download. It is very similar to the base theme.

The ui folder contains the individual, uncompressed source files of each of the
different components of the library.

ThemeRoller
ThemeRoller is a custom tool written with jQuery and PHP. It allows us to visually
produce our own custom jQuery UI theme and package it up in a convenient,
downloadable archive, which we can drop into our project with no further
coding (other than using the stylesheet in a HTML <link> element of course).

ThemeRoller was created by Filament Group, Inc. and makes use of a number
of jQuery plugins released into the open source community. It can be found at
http://ui.jquery.com/themeroller.

•

•

•

•

•

Chapter 1

[13]

ThemeRoller is certainly the most comprehensive tool available for creating your
own jQuery UI themes. We can very quickly and easily create an entire theme
comprised of all of the styles needed for targeting elements, including the images
we'll need.

If you looked at the index.html file a little earlier on then the ThemeRoller landing
page will instantly be familiar as it shows all of the UI widgets on the page, skinned
with the default smoothness theme.

The page features an interactive menu on the left that is used to work with
the application. Each item within the menu expands to give you access to the
available style settings for each part of the widget, such as the content and the
clickable elements.

Introducing jQuery UI

[14]

Here we can create our custom theme with ease and see the changes instantly as they
are applied to the different visible parts of each widget on the page:

Chapter 1

[15]

When you're not feeling particularly inspired while creating a theme, there is
also a gallery of preconfigured themes that you can instantly use to generate a
fully configured theme. Aside from this convenience, the best thing about these
preselected themes is that when you select one, it is loaded into the left menu.
Therefore, you can easily make little tweaks as required:

Without a doubt, this is the best way to create a visually appealing custom theme
that matches the UI widgets to your existing site, and is the recommended method
of creating custom skins.

Introducing jQuery UI

[16]

Installing and using the new theme is as easy as selecting or creating it. The
Download theme button in the above screenshot takes us back to the download
builder, which has the CSS and images for the new theme integrated into the
download package.

If it's just the new theme we want, we can deselect the actual components and just
download the theme. Once downloaded the css folder within the downloaded
archive will contain a folder that has the name of the theme. We can simply drag
this folder into our own local css folder, and then link to the stylesheet from our
own pages.

We won't be looking at this tool in much detail throughout the book. We'll be
focusing instead on the style rules that we need to manually override in our own
stylesheet to generate the desired look of the examples.

Component categories
There are two types of components found within the jQuery UI library—low-level
interaction helpers that are designed to work primarily with mouse events, and
there are the widgets that produce visible objects on the page, which are designed
to perform a specific function.

The interaction helpers category includes the following components:

Draggable
Droppable
Resizable
Selectable
Sortable

The higher-level widgets included (at the time of writing) are as follows:

Accordion
Datepicker
Dialog
Progressbar
Slider
Tabs

•

•

•

•

•

•

•

•

•

•

•

Chapter 1

[17]

The ui.core.js file that is required by all other library components, comes under
neither category, but could nevertheless be seen as the core component of the library.
This file sets up the construct that all widgets use to function and adds some core
functionality which is shared by all of the library components. This file isn't designed
to be used standalone, and exposes no functionality that can be used outside of
another component.

Apart from these components, there is also a series of UI effects that produce
different animations or transitions on targeted elements on the page. These
are excellent for adding flair and style to our pages, in addition to the strong
functionality of the components. We'll be looking at these effects in the final
chapter of the book.

I'd like to add here that the jQuery UI library is currently undergoing a rapid period
of expansion and development. It is also constantly growing and evolving with bug
fixes and feature enhancements continually being added. It would be impossible to
keep entirely up-to-date with this aggressive expansion and cover components that
are literally about to be released.

The great thing about jQuery UI's simplified API is that once you have learned to use
all of the existing components (as this book will show you), you'll be able to pick up
any new components very quickly. As this book is being written, there are already a
number of new components nearing release, with many more in the pipeline and all
of these components will automatically be ThemeRoller-ready.

Browser support
Like jQuery itself, jQuery UI supports all of the major browsers in use today
including the following:

IE6, IE7, and IE8
Firefox 2 and Firefox 3
Opera 9 and Opera 10
Safari 3 and Safari 4
Chrome 1, Chrome 2, and Chrome 3

This is by no means a comprehensive list, but I think that it includes the most
common browsers currently in use, making jQuery UI very well supported.

The widgets are built from semantically correct HTML elements generated as needed
by the components. Therefore, we won't see excessive or unnecessary elements being
created or used.

•

•

•

•

•

Introducing jQuery UI

[18]

Book examples
The library is as flexible as standard JavaScript, and by this I mean that there is often
more than one way of doing the same thing, or achieving the same end. For example,
the callback properties used in the configuration objects for different components,
can usually take either references to functions or inline anonymous functions, and
use them with equal ease and efficiency.

In practice, it is advisable to keep your code as minimal as possible (which
jQuery really helps with anyway). But to make the examples more readable and
understandable, we'll be separating as much of the code as possible into discrete
modules. Therefore, callback functions and configuration objects will be defined
separately from the code that calls or uses them.

To reduce the number of files that we have to create and work with, all of the
JavaScript will go into the host HTML page on which it runs, as opposed to in
separate files. Please keep in mind that this is not advisable for production websites.
I'd also just like to make it clear that the main aim throughout the course of this
book is to learn how to use the different components that make up jQuery UI. If an
example seems a little convoluted, it may simply be that this is the easiest way to
expose the functionality of a particular method or property, as opposed to a
situation that we would find ourselves coding for in regular implementations.

Library licensing
Like jQuery, the jQuery UI library is dual licensed under the MIT and GPL open
source licenses. These are both very unrestrictive licenses that allow the creators
of the library to take credit for its production and retain intellectual rights over it,
without preventing us as developers from using the library in any way that we like.

The MIT license explicitly states that users of the software (jQuery UI in this case) are
free to use, copy, merge, modify, publish, distribute, sublicense, and sell. This lets us
do pretty much whatever we want with the library.

The only requirement imposed by this license is that we must keep the original
copyright and warranty statements intact.

This is an important point to make. You can take the library and do whatever you
like with it. Build applications on top of the library and then sell those applications,
or give them away for free. Put the library in embedded systems like cell phone OSs
and sell those. But whatever you do, leave the original text file with John Resig's
name in it present. You may also duplicate it word for word in the help files or
documentation of your application.

Chapter 1

[19]

The MIT license is very lenient, but because it is not copyrighted itself, we are free to
change it. We could therefore demand that users of our software give attribution to
us instead of the jQuery team, or pass off the code as our own.

The GPL license is copyrighted, and offers an additional layer of protection for the
library's creators and the users of our software. jQuery is provided free and open
source and the GPL license ensures that it will always remain free and open source,
regardless of the environment it may end up in, and that the original creators of the
library are given the credit they deserve. Again, the original GPL license file must be
available within your application.

The licenses are not there to restrict us in any way and are not the same as the kind of
license that comes with software you might install on your computer. In most cases,
how the library is licensed will not be a consideration when using it.

API introduction
The version 1.5 release of jQuery UI was a milestone in the library's history. This was
the release in which the API for each component was significantly simplified, making
the library both easier to use and more powerful.

Once you've worked with one of the components from the library, you'll instantly
feel at home when working with any of the other components since the methods of
each component are called in exactly the same way.

The API for each component consists of a series of different methods. While these
are all technically methods, it may be useful to categorize them based on their
particular function.

The plugin method This method is used to initialize the component and is simply
the name of the component followed by parentheses. I will
refer to this throughout the book as the plugin method or
widget method.

Common methods The destroy method can be used with any of the components
to completely disable the widget being used and in most
cases returns the underlying HTML to its original state. The
option method is used by all components to get or set any
configuration option after initialization. The enable and
disable methods are used by most library components.

Specialized methods Each component has one or more methods unique to that
particular component that performs specialized functions.

Introducing jQuery UI

[20]

Methods are consistently called throughout each of the different components by
passing the method that we'd like to call as a simple string to the component's
plugin method, with any arguments that the method accepts passed as strings
after the method name.

For example, to call the destroy method of the accordion component, we would
simply do as follows:

$("#someElement").accordion("destroy");

See how easy that was? Every single method exposed by all of the different
components is called in this same simple way.

Some methods, like standard JavaScript functions, accept arguments that trigger
different behavior in the component. If we wanted to call the disable method
on a tab in the tabs widget for example, we would do the following:

$("#someElement").tabs("disable", 1);

The disable method, when used in conjunction with the tabs widget, accepts an
integer which refers to the index of the individual tab within the widget.

Similarly, to enable the tab again we would use the enable method:

$("#someElement").tabs("enable", 1);

Again we supply an argument to modify how the method is used. Sometimes the
arguments that are passed to the method vary between components. The accordion
widget for example does not enable or disable individual accordion panels, only the
whole widget, so no additional arguments following the method name are required.

The option method is slightly more complex than the other common methods, but
it's also more powerful and is just as easy to use. The method is used to either get or
set any configurable option after the component has been initialized.

To use the option method in getter mode to retrieve the current value of an option,
we could use the following code:

$("#someElement").accordion("option", "navigation");

This code would return the current value of the navigation option of the
accordion widget. So to trigger getter mode we just supply the option name
that we'd like to retrieve.

Chapter 1

[21]

In order to use the option method in setter mode instead, we can supply the option
name and the new value as arguments:

$("#someElement").accordion("option", "navigation", "true");

This code would set the value of the navigation option to true. As you can see,
although the option method gives us the power to both get and set configuration
options, it still retains the same easy to use format of the other methods.

Using jQuery UI feels just like using jQuery and having built up confidence coding
with jQuery, moving on to jQuery UI is the next logical step to take.

Events and callbacks
The API for each component also contains a rich event model that allows us to easily
react to different interactions. Each component exposes its own set of unique custom
events, yet the way in which these events are used is the same, regardless of which
event is used.

We have two ways of working with events in jQuery UI. Each component allows
us to add callback functions that are executed when the specified event is fired, as
values for configuration options. For example, to use the select event of the tabs
widget that is fired any time a tab is selected, we could use the following code:

var config = {
 select: function() {
 }
};

The name of the event is used as the option name and an anonymous function is
used as the option value. We'll look at all of the individual events that are used with
each component in later chapters.

The other way of working with events is to use jQuery's bind() method. To use
events in this way, we simply specify the name of the component followed by the
name of the event.

$("#someElement").bind("tabsselect", function() {
});

Usually, but not always, callback functions used with the bind() method are
executed after the event has been fired, while callbacks specified using configuration
options are executed directly before the event is fired.

Introducing jQuery UI

[22]

The callback functions are called in the context of the DOMElement that triggers
the event. For example, in a tabs widget with several tabs, the select event will
be fired from the actual tab that is clicked, not the tabs widget as a whole. This is
extremely useful to us as developers, because it allows us to associate the event
with a particular tab.

Some of the custom events fired by jQuery UI components are cancellable and if
stopped can be used to prevent certain actions taking place. The best example of this
(which we'll look at later in the book) is preventing a dialog widget from closing by
returning false in the callback function of the beforeclose event.

beforeclose: function() {
 if (readyToClose === false) {
 return false
 }	
}

If the arbitrary condition in this example was not met, false would be returned by
the callback function and the dialog would remain open. This is an excellent and
powerful feature that can give us fine-grained control over the widget's behavior.

Callback arguments
Any anonymous functions that we supply as callback functions to the different
events are automatically passed two objects, the original event object, and an object
containing useful information about the widget. The information contained with
the second object varies between components, we'll look at this in greater detail in
later chapters.

To use these two objects we just specify them as arguments to the function.

var config = {
 select: function(e, ui) {
 e.target

 ui.index
 }
};

Every single component will automatically supply these objects to any callback
functions we define.

Chapter 1

[23]

Summary
jQuery UI removes the difficulty of building engaging and effective user interfaces.
It provides a range of components that can quickly and easily be used out of the
box with little configuration. They each expose a comprehensive set of properties
and methods for integration with your pages or applications if a more complex
configuration is required.

Each component is designed to be efficient, lightweight, and semantically
correct along with making use of the latest object-oriented features of JavaScript.
When combined with jQuery, it provides an awesome addition to any web
developer's toolkit.

So far, we've seen how the library can be obtained, how your system can be set up to
utilize it, and how the library is structured. We've also looked at how the different
widgets can be themed or customized, how the API simply and consistently exposes
the library's functionality, and the different categories of component.

We've covered some important topics during the course of this chapter, but now,
thankfully, we can get on with using the components of jQuery UI and get down to
some proper coding!

The CSS Framework
Version 1.7 of jQuery UI (the latest release at the time of writing) was an exciting
release because it introduced the comprehensive new CSS framework. All widgets
are effectively and consistently themed by the framework. There are many helper
classes that we can use in our implementations, even if we aren't using any of the
library components.

In this chapter we'll be covering the following subjects:

The files that make up the framework
How to use the classes exposed by the framework
How to switch themes quickly and easily
Customizing the framework

The files that make up the framework
There are two locations within the library's structure where the CSS files that make
the framework reside. They are:

The css folder
This folder holds the complete CSS framework, including the theme that
was selected when the download package was built. All the necessary CSS
has been placed in a single, lean, and mean stylesheet to minimize HTTP
requests in production environments.
This version of the framework will contain styles for all the components that
were selected in the download builder, so its size will vary depending on
how much of the library is being used. The full version of each theme
weighs in at 26.7 Kb and is not compressed.

•

•

•

•

•

The CSS Framework

[26]

The themes folder
Another version of the framework exists within the development-bundle\
themes folder. Two themes are provided in this folder—the base theme and
whichever theme was selected when the library was downloaded. The base
theme is a grey, neutral theme identical to smoothness.

Within each of these theme folders are all the individual files that make up the
framework. Each of the different components of the framework are split into
their own respective files.

Component Use
ui.all.css All the required files for a theme can be linked by using this

file in development. It consists of @import directives that pull
in the ui.base.css and the ui.theme.css files.

ui.base.css This file is used by ui.all.css. It also contains @import
directives that pull in the ui.core.css file, as well as each of
the widget CSS files. However, it contains none of the theme
styles that control each widget's appearance.

ui.core.css This file provides core framework styles such as the
clear-fix helper and a generic overlay.

ui.accordion.css These files are the individual source files that control the layout
and basic appearance of each widget.ui.datepicker.css

ui.dialog.css

ui.progressbar.css

ui.resizable.css

ui.slider.css

ui.tabs.css

ui.theme.css This file contains the complete theme and targets of all the
visual elements that make up each widget in the library.

Let's take a look at each of these files in more detail.

ui.all.css
The all file makes use of CSS imports using the @import rule to read in two
files—the ui.base.css file and the ui.theme.css file. This is all that is present in
the file and all that is needed to implement the complete framework and the selected
theme. From the two directives found in this file, we can see the separation between
the part of the framework that makes the widgets function and the theme that gives
them their visual appearance.

•

Chapter 2

[27]

ui.base.css
This file also consists of only @import rules, and imports the ui.core.css file along
with each of the individual widget files. At this point I should mention that the
Resizable component has its own framework file, along with each of the widgets.

ui.core.css
The core file provides generic styles for the framework that are used by all
components. It contains the following classes:

Class Use
.ui-helper-hidden Hides elements with display:none.
.ui-helper-hidden-
accessible

Hides elements by positioning them offscreen so
that they are still accessible to assistive technology.

.ui-helper-reset This is the reset mechanism for jQuery UI (it doesn't
use a separate reset stylesheet), which neutralizes
the margins, padding, and other common default
styles applied to common elements by browsers.
For an introduction to see the importance of
resetting default browser styling, visit: http://
sixrevisions.com/css/css-tips/css-tip-
1-resetting-your-styles-with-css-reset/

.ui-helper-clearfix:after These classes provide a cross-browser solution for
automatically clearing floats. Whenever an element
is floated, this class is added to its parent container
to clear the float.

.ui-helper-clearfix

* html .ui-helper-clearfix

.ui-helper-clearfix

.ui-helper-zfix The .ui-helper-zfix class provides rules that
are applied to iframe elements in order to fix
z-index issues when overlays are used.

.ui-state-disabled This class sets the cursor to default for disabled
elements and uses the !important directive to
ensure that it is not overridden.

.ui-icon This rule is the library's method of replacing the
text content of an element with a background
image. The responsibility of setting the background
images for the different icons found in the library is
delegated to the ui.theme.css file and not here.

.ui-widget-overlay This class sets the basic style properties of the
overlay that is applied to the page when dialogs
and other modal pop ups are shown. As images are
used by the overlay, some styles for this class are
also found in the theme file.

The CSS Framework

[28]

The core file lays the ground for the rest of the framework. We can also give these
class names to our own elements to clear floats or hide elements whenever we use
the library.

The individual component framework files
Each widget in the library, as well as the Resizable interaction helper has a
framework file that controls the CSS, which makes the widget function correctly.
For example, the tab headings in the tabs widget must be floated left in order to
display them as tabs. These framework files set this rule. These styles will need
to be preserved when we are overriding the framework in a custom theme.

These files are brief, with each component using the smallest number of rules
possible for it to function correctly. Generally the files are compact (usually not more
than 20 style rules long). The dialog and datepicker source files are the exception,
with each requiring a large number of rules to function correctly as pop ups.

ui.theme.css
This file will be customized to the theme that was selected or created with
ThemeRoller and set's all of the visual properties (colors, images, and so on)
for the different elements that make up each widget.

Within the ui.reset.css file, there are many comments that contain descriptive
labels enclosed within curly braces. These are called placeholders and the CSS
styles that precede them are updated by ThemeRoller when the theme is created.

This is the file that will be generated for the complete theme and contains styles
for all the visible parts of each widget when creating or selecting a theme using
ThemeRoller. When overriding the framework to create a custom theme, it is
mostly rules in this file that will be overridden.

Each widget is constructed from a set of common elements. For example, the outer
container of each widget has the class name ui-widget, while any content within the
widget will be held in a container with the class name ui-widget-content. It is this
consistent layout and classing convention, which makes the framework so effective.

This is the biggest stylesheet used by the framework and contains too many classes
to list here in its entirety (but feel free to open it up at this point and take a look
through it). The following table lists the different categories of classes:

Chapter 2

[29]

Category Use
Containers Sets style properties for widget, heading, and content containers.
Interaction States These classes set the default, hover, and active states for any

clickable elements.
Interaction Cues This category applies visual cues to elements including highlight,

error, disabled, primary, and secondary styles.
States and images These classes set the images used for icons displayed in the content

and heading containers, as well as any clickable elements including
default, hover, active, highlight, focus, and error states.

Image positioning All of the icon images used by the theme are stored in a single
file (known as a sprite file), and are displayed individually by
manipulating the background-position properties of the
sprite file. This category sets the background-positions for all
individual icons.

Corner Radius CSS3 is used to give rounded corners to supporting browsers
(just Firefox 3+, Safari 3+ and Chrome 1+).

Overlays The image used for the generic overlay defined in the core CSS file
is set here, as is a class that implements a semi-transparent overlay
over specified elements.

The jQuery UI documentation features an extensive overview of the theming API at:
http://docs.jquery.com/UI/Theming/API

Linking to the required framework files
For rapid theming of all jQuery UI widgets in a development environment we can
just link to the ui.all.css file from our pages:

<link rel="stylesheet" type="text/css"
 href="development-bundle/themes/smoothness/ui.all.css">

To use each file individually, we would need to use the following <link> elements:

<link rel="stylesheet" type="text/css"
 href="development-bundle/themes/base/ui.core.css">
<link rel="stylesheet" type="text/css"
 href="development-bundle/themes/base/ui.tabs.css">
<link rel="stylesheet" type="text/css"
 href="development-bundle/themes/base/ui.theme.css">

The CSS Framework

[30]

The CSS resources, when linked to separately, should be added to the HTML page
in the following order—core.css, the widget's CSS file, and the theme.css file. In
a production environment of course, we'd use the super-efficient combined file to
minimize HTTP requests for CSS.

<link rel="stylesheet" type="text/css"
 href="css/smoothness/jquery-ui-1.7.1.custom.css">

For easier coding and convenience, we'll be linking to the ui.all.css file in our
examples, but it's useful to know what each of the different framework files do in
order to better understand how the framework files work together.

Using the framework classes
Along with using the framework while we're implementing official jQuery UI
widgets, we can also use it when we're deploying our own custom plugins or
widgets that we have written ourselves.

Containers
Containers are recommended because it means that widgets or plugins that we write
will be ThemeRoller ready and easier for end developers to theme and customize.
Let's look at how easy it is to use the framework. In your text editor create a new file
and add the following code:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
 "http://www.w3.org/TR/html4/strict.dtd">
<html lang="en">
 <head>
 <link rel="stylesheet" type="text/css"
 href="development-bundle/themes/base/ui.theme.css">
 <meta http-equiv="Content-Type"
 content="text/html; charset=utf-8">
 <title>CSS Framework - Containers</title>
 </head>
 <body>
 <div class="ui-widget">
 <div class="ui-widget-header ui-corner-top">
 <h2>This is a ui-widget-header container</h2></div>
 <div class="ui-widget-content ui-corner-bottom">
 <p>This is a ui-widget-content container</p></div>
 </div>
 </body>
</html>

Chapter 2

[31]

Save this page as containers.html within the jqueryui project folder that we
created in the last chapter when we unpacked the library. We're linking to the
ui.theme.css file from the base development theme in the library. If we were
building a more complex widget we'd probably want to link to the ui.core.css
file as well.

Working with this file when creating widgets or plugins is essential because it lets us
verify that the class names we give our containers will pick up appropriate styling
and reassures us that they will be ThemeRoller ready. Any style that we need to
apply ourselves would go into a separate stylesheet like each widget from the
library has their own custom stylesheets.

We use only a couple of elements in this example. Our outer container is given the
class name ui-widget. If we were making a custom widget, we'd also want to put
a custom class name on this element. For example, if we were making a content
scroller, we might add the class ui-widget-scroller or similar.

Within the outer container we have two other containers—one is the ui-widget-
heading container and one is the ui-widget-content container. We also give
these elements variants of the corner-rounding classes—ui-corner-top and
ui-corner-bottom respectively.

Inside the header and content containers we just have a couple of appropriate
elements that we might want to put in, such as <h2> in the header and <p> in
the content element. These elements will inherit some rules from their respective
containers but are not styled directly by the theme file.

When we view this basic page in a browser, we should see that our two container
elements pick up the styles from the theme file:

The CSS Framework

[32]

Interactions
Let's look at some more of the framework classes in action. Create the following
new page:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
 "http://www.w3.org/TR/html4/strict.dtd">
<html lang="en">
 <head>
 <link rel="stylesheet" type="text/css"
 href="development-bundle/themes/base/ui.theme.css">
 <meta http-equiv="Content-Type"
 content="text/html; charset=utf-8">
 <title>CSS Framework - Interaction states</title>
 </head>
 <body>
 <div class="ui-widget">
 <div class="ui-state-default ui-state-active ui-corner-all">
 I am clickable and selected</div>
 <div class="ui-state-default ui-corner-all">
 I am clickable but not selected</div>
 </div>
 </body>
</html>

Save this file as interactions.html in the jqueryui project folder. We've defined
two clickable elements in these examples, which are comprised of a container <div>
and an <a> element. Both containers are given the classes ui-state-default and
ui-corner-all, but the first is also given the selected state ui-state-active. This
will give our clickable elements the following appearance:

Chapter 2

[33]

Both our containers are styled according to the rules found in the theme file we're
linking to. The CSS framework doesn't provide styles on the :hover CSS pseudo-class,
instead it applies a set of styles using a class name, which is added using JavaScript.
To see this in action before the closing <body> tag, add the following code:

<script type="text/javascript"
 src="development-bundle/jquery-1.3.2.js"></script>
<script type="text/javascript">
 $(function() {
 $(".ui-state-default a").hover(function() {
 $(this).parent().addClass("ui-state-hover");
 }, function() {
 $(this).parent().removeClass("ui-state-hover");
 });
 });
</script>

This simple script adds the ui-state-hover class name to a clickable element
when the mouse pointer moves on to it, and then removes it when the mouse
pointer moves off it. When we run the page in a browser and hover over the
second clickable element, we should see the ui-state-hover styles:

Icons
The framework provides a series of images that we can use of as icons. Change the
contents of the ui-widget container in interactions.html so that it appears as
follows (new code is shown in bold):

 <div class="ui-widget">
 <div class="ui-state-default ui-state-active ui-corner-all">
 <div class="ui-icon ui-icon-circle-plus"></div>
 I am clickable and selected</div>

 <div class="ui-state-default ui-corner-all">
 <div class="ui-icon ui-icon-circle-plus"></div>
 I am clickable but not selected</div>

 </div>

The CSS Framework

[34]

Save this as icons.html in the jqueryui directory. In this example, our nested
<div> elements, which have the classes ui-icon and ui-icon-circle-plus are
given the correct icon from a sprite file.

As you can see, the ui-state-active icon differs slightly from the ui-state-
default icon. We haven't positioned the icons at all in this example because this
would necessitate the creation of a new stylesheet. The point of this example is to see
how the icons can be automatically added using the class names from the framework.

Interaction cues
Another set of classes we can use is the interaction cues. We will look at another
example using these; in a new page in your text editor, add the following code:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
 "http://www.w3.org/TR/html4/strict.dtd">
<html lang="en">
 <head>
 <link rel="stylesheet" type="text/css"
 href="development-bundle/themes/base/ui.core.css">
 <link rel="stylesheet" type="text/css"
 href="development-bundle/themes/base/ui.theme.css">
 <link rel="stylesheet" type="text/css"
 href="css/ui.form.css">
 <meta http-equiv="Content-Type"
 content="text/html; charset=utf-8">
 <title>CSS Framework - Interaction cues</title>
 </head>
 <body>
 <div class="ui-widget ui-form">
 <div class="ui-widget-header ui-corner-all">

Chapter 2

[35]

 <h2>Login Form</h2></div>
 <div class="ui-widget-content ui-corner-all">
 <form action="#" class="ui-helper-clearfix">
 <label class="ui-helper-reset">Username</label>
 <div class="ui-state-error ui-corner-all">
 <input type="text">
 <div class="ui-icon ui-icon-alert"></div>
 <p class="ui-helper-reset ui-state-error-text">Required field</p>
 </div>
 </form>
 </div>
 </div>
 </body>
</html>

Save this file as cues.html in the jqueryui folder. This time we link to the
ui.core.css file as well as the ui.theme.css file so that we can make use
of some of the helper classes from the core file. We also link to a custom file
ui.form.css that we'll create in a moment.

On the page we have the outer widget container, with the classes ui-form and
ui-widget. The ui-form class will be used to pick up our custom styles from the
ui.form.css stylesheet. Within the widget we have ui-widget-header and
ui-widget-content containers.

Within the content section we've got a <form> with a single row of elements, a
<label> element followed by a <div> element that has the ui-state-error and
ui-corner-all classes hardcoded to it.

Within this <div> we have a standard <input>, a <div> with the ui-icon, and ui-
icon-alert classes added along with a <p> element with the ui-state-error-text
class name added to it. Because the <form> has child elements that are floated, we
can make use of the ui-helper-clearfix class, which we add as a class name.

We should now create the custom ui.form.css stylesheet. In a new page in your
text editor, add the following code:

.ui-form { width:470px; margin:0 auto; }

.ui-form .ui-widget-header h2 { margin:10px 0 10px 20px; }

.ui-form .ui-widget-content { padding:20px; }

.ui-form label, .ui-form input, .ui-form .ui-state-error,

.ui-form .ui-icon, .ui-form .ui-state-error p { float:left; }

.ui-form label, .ui-state-error p {
 font-size:12px; padding:10px 10px 0 0;
}
.ui-form .ui-state-error { padding:4px; }

The CSS Framework

[36]

.ui-form .ui-state-error p {
 font-weight:bold; padding-top:5px;
}
.ui-form .ui-state-error .ui-icon { margin:5px 3px 0 4px; }

Within our jqueryui project folder, there is a folder called css that is used
(as I mentioned) to store the single-file production version of the framework.
All of the CSS files we create throughout the book will also be saved in here
for convenience. Save this file as ui.form.css in the css folder.

Imagine we have more form elements and a submit button. By adding the
ui-state-error class to the <div> element we can use the error classes for
form validation, which upon an unsuccessful submission would show the
icon and text. Here's how the page should look:

Switching themes quickly and easily
After developing a new widget using the base theme, we may decide that we
want to switch to a fancier theme or one that fits in better with our site when we
deploy it. People might want to use a different theme than the one we chose when
downloading the library if we wrote and released a new plugin. Thankfully, the
CSS framework makes switching themes a painless task. Looking at the previous
example, all we need to do to change the skin of the widget is choose a new theme
using ThemeRoller, and then download the new theme (we can download just the
new theme by deselecting all of the components in the download builder).

Chapter 2

[37]

Within the downloaded archive there would be a directory with the name of the
chosen theme, such as dot-luv. We drag the theme folder out of the archive and
into the development-bundle\themes folder and link the new theme file from
our page, giving our form a completely new look as shown in the following figure:

The theme I used to obtain the previous screenshot is Dot Luv. We'll be using the
smoothness theme or themes of our own creation for the remainder of the book.

Overriding the theme
Using the ThemeRoller gallery and customization tools we can generate an
extraordinary number of unique themes. But there may be times when we need a
deeper level of customization than we are able to reach using ThemeRoller; in this
situation we have two options.

We can either create a complete theme file from scratch by ourselves, or we can
create an additional stylesheet that overrides only those rules in the ui.theme.css
file that we need it to. The latter is probably the easiest method and results in having
to write less code.

We'll now take a look at this aspect of theming and resurrect our basic form example
one last time. Switch back to the base theme in the <head> of cues.html if you
changed it for the previous example. Save the page as cuesOverridden.html and
then create the following new stylesheet:

.ui-corner-all { -moz-border-radius:0; -webkit-border-radius:0; }

.ui-widget-header { font-family:Georgia; background:#534741;
border:1px solid #362f2d; color:#c7b299; }
.ui-form .ui-widget-header h2 { margin:0; border:1px solid #998675;
padding:10px; font-style:italic; font-weight:normal; }

The CSS Framework

[38]

.ui-form .ui-widget-content { background:#c7b299; border:1px solid
#362f2d; border-top:0; padding:0; }
.ui-widget-content form { padding:20px; border:1px solid #f3eadf; }
.ui-widget-content .ui-state-error { border:1px solid #e7cc17;
background:#fbf5cd; }
.ui-widget-content .ui-state-error-text { color:#e7cc17; padding-
left:10px; }
.ui-state-error .ui-icon { display:none; }

Save this as overrides.css in the css folder. In this stylesheet we're mostly
overriding rules from the ui.theme.css file. These are simple styles and we're just
changing colors, backgrounds, and borders. Link to this stylesheet by adding the
following line of code below the other stylesheets in cuesOverridden.html:

<link rel="stylesheet" type="text/css" href="css/overrides.css">

Our humble form should now appear as in the following screenshot:

As long as we match or exceed the specificity of the selectors used in the ui.theme.
css file, and as long as our stylesheet appears after the theme file, our rules will take
precedence. A long discussion on CSS selector weight is beyond the scope of this
book. However a brief explanation of specificity may be beneficial as it is the key
to overriding the selected theme.

CSS specificity refers to how specific a CSS selector is—the more specific it is,
the more weight it will have, and will subsequently override other rules that are
applied to the element being targeted by other selectors. For example, consider
the following selectors:

#myContainer .bodyText
.bodyText

Chapter 2

[39]

The first selector is more specific than the second selector because it not only uses
the class name of the element being targeted but also its parent container. It will
therefore override the second selector, regardless of whether the second selector
appears after it.

In this example, we have full control over the elements that we're skinning. But when
working with any widgets from the library or with plugins authored by third parties,
a lot of markup could be generated automatically, which we have no control over
(without hacking the actual library files themselves). Therefore, we may need to rely
on overriding styles in this way. All we need to do to find which styles to override is
to open up the ui.theme.css file in a text editor and take a look at the selectors used
there. Or failing to do that, we can use Firebug's CSS viewer to see the rules that we
need to override.

The CSS Framework

[40]

Summary
In this chapter we've seen how the CSS framework consistently styles each of the
library components. We've looked at the files that make it and how they work
together to provide the complete look and feel of the widgets. We also saw
how tightly integrated the ThemeRoller application is with the framework.

We saw how easy it is to install or change a theme using ThemeRoller. We also
looked at how we can override the theme file if we require a radical customization
of a widget that we cannot obtain with ThemeRoller alone.

The chapter also covered building our own widgets or plugins in a way that is
compatible with and can make use of the framework as well as to ensure that
our creations are ThemeRoller ready. We can also make use of the helper classes
provided by the framework, such as the ui-helper-clearfix class, to quickly
implement common CSS solutions.

Tabs
Now that we've been formally introduced to the jQuery UI library and the CSS
framework we can move on to begin looking at the components included in the
library. Over the next six chapters, we'll be looking at the widgets. These are a set
of visually engaging, highly configurable user interface widgets built on top of the
foundation provided by the low-level interaction helpers.

The UI tabs widget is used to toggle visibility across a set of different elements, each
element containing content that can be accessed by clicking on its heading which
appears as an individual tab.

The tabs are structured so that they line up next to each other, whereas the content
sections are layered on top of each other, with only the top one visible. Clicking a tab
will highlight the tab and bring its associated content panel to the top of the stack.
Only one content panel can be open at a time.

The following screenshot shows the different components of a set of UI tabs:

active tab inactive tab

tabs

tab content

Tab 1 Tab 2

Lorem ipsum dolor sit amet,
consectetur adipisicing elit, sed do...

tabs header

tabs container

In this chapter, we will look at the following topics:

The default implementation of the widget
How the CSS framework targets tab widgets
How to apply custom styles to a set of tabs

•
•
•

Tabs

[42]

Configuring tabs using their options
Built-in transition effects for content panel changes
Controlling tabs using their methods
Custom events defined by tabs
AJAX tabs

A basic tab implementation
The structure of the underlying HTML elements, on which tabs are based, is rigid
and widgets require a certain number of elements for them to work.

The tabs must be created from a list element (ordered or unordered) and each list
item must contain an <a> element. Each link will need to have a corresponding
element with a specified id that it is associated with the link's href attribute.
We'll clarify the exact structure of these elements after our first example.

In a new file in your text editor, create the following page:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
 "http://www.w3.org/TR/html4/strict.dtd">
<html lang="en">
 <head>
 <link rel="stylesheet" type="text/css"
 href="development-bundle/themes/smoothness/ui.all.css">
 <meta http-equiv="Content-Type"
 content="text/html; charset=utf-8">
 <title>jQuery UI Tabs Example 1</title>
 </head>
 <body>
 <div id="myTabs">

 Tab 1
 Tab 2

 <div id="a">This is the content panel linked to the first tab,
 it is shown by default.</div>
 <div id="b">This content is linked to the second tab and will
 be shown when its tab is clicked.</div>
 </div>
 <script type="text/javascript"
 src="development-bundle/jquery-1.3.2.js"></script>
 <script type="text/javascript"
 src="development-bundle/ui/ui.core.js"></script>
 <script type="text/javascript"

•
•
•
•
•

Chapter 3

[43]

 src="development-bundle/ui/ui.tabs.js"></script>
 <script type="text/javascript">
 $(function(){

 $("#myTabs").tabs();
 });
 </script>
 </body>
</html>

Save the code as tabs1.html in your jqueryui working folder. Let's review what
was used. The following script and CSS resources are needed for the default tab
widget instantiation:

ui.all.css

jquery-1.3.2.js

ui.core.js

ui.tabs.js

A tab widget consists of several standard HTML elements arranged in a specific
manner (these can be either hardcoded into the page, or added dynamically, or
can be a mixture of both depending on the requirements of your implementation).

An outer container element, which the tabs method is called on
A list element (or)
An <a> element for each tab
An element for the content of each tab

The first two elements within the outer container make the clickable tab headings,
which are used to show the content section that is associated with the tab. Each tab
should include a list item containing the link.

The href attribute of the link should be set as a fragment identifier, prefixed with
#. It should match the id attribute of the element that forms the content section,
with which it is associated. The content sections of each tab are created by the <div>
elements. The id attribute is required and will be targeted by its corresponding <a>
element. We've used <div> elements in this example as the content panels for each
tab, but other elements, such as elements can also be used.

The elements discussed so far, along with their required attributes, are the minimum
that are required from the underlying markup.

•

•

•

•

•
•
•
•

Tabs

[44]

We link to several <script> resources from the library at the bottom of the <body>
before its closing tag. Loading scripts last, after stylesheets and page elements is a
proven technique for improving performance. After linking first to jQuery, we link
to the ui.core.js file that is required by all components (except the effects, which
have their own core file). We then link to the component's source file that in this case
is ui.tabs.js.

After the three required script files from the library, we can turn to our custom
<script> element in which we add the code that creates the tabs. We simply use
the $(function(){}); shortcut to execute our code when the document is ready.
We then call the tabs() widget method on the jQuery object, representing our tabs
container element (the with an id of myTabs).

When we run this file in a browser, we should see the tabs as they appeared in the
first screenshot of this chapter (without the annotations of course).

Tab CSS framework classes
Using Firebug for Firefox (or another generic DOM explorer) we can see that a
variety of class names are added to the different underlying HTML elements that
the tabs widget is created from, as shown in the following screenshot:

Chapter 3

[45]

Let's review these briefly. To the outer container <div> the following class names
are added:

Class name Purpose
ui-tabs Allows tab-specific structural CSS to be applied.
ui-widget Sets generic font styles that are inherited by

nested elements.
ui-widget-content Provides theme-specific styles.
ui-corner-all Applies rounded corners to container.

The first element within the container is the element. This element receives the
following class names:

Class name Purpose
ui-tabs-nav Allows tab-specific structural CSS to be applied.
ui-helper-reset Neutralizes browser-specific styles applied to elements.
ui-helper-clearfix Applies the clear-fix as this element has children that

are floated.
ui-widget-header Provides theme-specific styles.
ui-corner-all Applies rounded corners.

The individual elements are given the following class names:

Class name Purpose
ui-state-default Applies theme-specific styles.
ui-corner-top Applies rounded corners to the top edges of the elements.
ui-tabs-selected This is only applied to the active tab. On page load of the

default implementation this will be the first tab. Selecting
another tab will remove this class from the currently selected
tab and apply it to the new tab.

ui-state-active Applies theme-specific styles to the currently selected tab.
This class name will be added to the tab that is currently
selected, just like the previous class name. The reason there
are two class names is that ui-tabs-selected provides
the functional CSS, while ui-state-active provides the
visual, decorative styles.

The <a> elements within each are not given any class names, but they still have
both structural and theme-specific styles applied to them by the framework.

Tabs

[46]

Finally, the elements that hold each tab's content are given the following class names:

Class name Purpose
ui-tabs-panel Applies structural CSS to the content panels.
ui-widget-content Applies theme-specific styles.
ui-corner-bottom Applied rounded corners to the bottom

edges of the
content panels.

All of these classes are added to the underlying elements automatically by the
library, we don't need to manually add them when coding the page.

As these tables illustrate, the CSS framework supplies the complete set of both
structural CSS styles that control how the tabs function and theme-specific styles
that control how the tabs appear, but not how they function. We can easily see which
selectors we'll need to override if we wish to tweak the appearance of the widget,
which is what we'll do in the following section.

Applying a custom theme to the tabs
In the next example, we can see how to change the tabs' basic appearance. We
can override any rules used purely for display purposes with our own style rules
for quick and easy customization without changing the rules related to the tab
functionality or structure.

In a new file in your text editor, create the following very small stylesheet.

#myTabs {
 border:1px solid #636363; width:400px;
 background:#c2c2c2 none; padding:5px;
}
.ui-widget-header {
 border:0; background:#c2c2c2 none; font-family:Georgia;
}
#myTabs .ui-widget-content {
 border:1px solid #aaaaaa; background:#ffffff none;
 font-size:80%;
}
.ui-state-default, .ui-widget-content .ui-state-default {
 background:#a2a2a2 none; border:1px solid #636363;
}
.ui-state-active, .ui-widget-content .ui-state-active {
 background:#ffffff none; border:1px solid #aaaaaa;
}

Chapter 3

[47]

This is all we need. Save the file as tabsTheme.css in your css folder. If you
compare the class names with the tables on the previous pages you'll see that we're
overriding the theme-specific styles. Because we're overriding the theme file, we
need to meet or exceed the specificity of the selectors in theme.css. This is why
we target multiple selectors sometimes.

In this example we override some of the rules in ui.tabs.css. We need to
use the ID selector of our container element along with the selector from
ui.theme.css (.ui-widget-content) in order to beat the double class selector
.ui-tabs .ui-tabs-panel.

Don't forget to link to the new stylesheet from the <head> of the underlying
HTML file, and make sure the custom stylesheet we just created appears after
the ui.tabs.css file:

<link rel="stylesheet" type="text/css" href="css/tabsTheme.css">

The rules that we are trying to override will be not overridden by our theme file
if the stylesheets are not linked to in the correct order. Save the altered file as
tabs2.html in the jqueryui folder and view it in a browser. It should look like
the following screenshot:

Our new theme isn't dramatically different from the default smoothness. However,
we can tweak its appearance to suit our own needs and preferences by adding just a
few additional styles.

Configurable options
Each of the different components in the library has a series of different options that
control which features of the widget are enabled by default. An object literal can be
passed in to the tabs widget method to configure these options.

Tabs

[48]

The available options to configure non-default behaviors when using the tabs widget
are shown in the following table:

Option Default value Usage
ajaxOptions {} When using AJAX tabs and importing remote

data into the tab panels, additional AJAX
options are supplied via this property. We can
use any of the options exposed by jQuery's
$.ajax method such as data, type, url,
and so on.

cache false Load remote tab content only once
(lazy-load).

collapsible false Allows an active tab to be unselected if it
is clicked.

cookie null Show active tab using cookie data on
page load.

disabled [] Disable specified tabs on page load. Supply an
array of index numbers to disable specific tabs.

event "click" The tab event that triggers the display
of content.

fx null Specify an animation effect when
changing tabs. Supply a literal object or an
array of animation effects.

idPrefix "ui-tabs-" Used to generate a unique ID and fragment
identifier when a remote tab's link element has
no title attribute.

panelTemplate "<div></div>" A string specifying the elements used for the
content section of a dynamically created
tab widget.

selected 0 The tab selected by default when the widget is
rendered (overrides the cookie property).

spinner "Loading&#B230" Specify the loading spinner for remote tabs.
tabTemplate <a href="#{

href}">#{
label}
</
li>

A string specifying the elements used when
creating new tabs dynamically. Notice that
both an <a> and a tag are created
when new tabs are added by the widget. The
#{href} and #{label} parts of the string
are used internally by the widget and are
replaced with actual values by the widget.

Chapter 3

[49]

Selecting a tab
Let's look at how these configurable properties can be used. For example, let's
configure the widget so that the second tab is displayed when the page loads.
Remove the <link> for tabsTheme.css in the <head> and change the final
<script> element so that it appears as follows:

<script type="text/javascript">
 $(function(){
 var tabOpts = {
 selected: 1
 };

 $("#myTabs").tabs(tabOpts);
 });
 </script>

Save this as tabs3.html. The different tabs and their associated content panels are
represented by a numerical index starting at zero, much like a standard JavaScript
array. Specifying a different tab to open by default is as easy as supplying its index
number as the value for the selected property. When the page loads, the second tab
should be selected.

We've switched to the default smoothness theme so that we can focus on how the
properties work. Along with changing which tab is selected we can also specify that
no tabs should be initially selected by supplying null as the value for this property.
This will cause the widget to appear as follows on page load:

Tabs

[50]

Disabling a tab
You may want a particular tab to be disabled until a certain condition is met. This
is easily achieved by manipulating the disabled property of the tabs. Change the
configuration object in tabs3.html to this:

var tabOpts = {
 disabled: [1]
};

Save this as tabs4.html in your jqueryui folder. In this example, we remove the
selected property and add the index of the second tab to the disabled array. We
could add the indices of other tabs to this array as well, separated by a comma, to
disable multiple tabs by default.

When the page is loaded in a browser, the second tab has the class name
ui-widget-disabled applied to it, and will pick up the disabled styles from
ui.theme.css. It will not respond to mouse interactions in any way as shown
in the following screenshot:

Transition effects
We can easily add attractive transition effects using the fx property. These are
displayed when tabs are open and close. This property is configured using another
object literal (or an array) inside our configuration object, which enables one or more
effects. Let's enable fading effects using the following configuration object:

var tabOpts = {
 fx: {
 opacity: "toggle",
 duration: "slow"
 }
};

Chapter 3

[51]

Save this file as tabs5.html in your jqueryui folder. The fx object that we created
has two properties. The first property is the animation. To use fading, we specify
opacity as this is what is adjusted. We would specify height as the property name
instead to use opening animations. Toggling the opacity simply reverses its current
setting. If it is currently visible, it is made invisible and vice-versa.

The second property, duration, specifies the speed at which the animation occurs.
The values for this property are slow, normal (default value), or fast. We can also
supply an integer representing the number of milliseconds the animation should
run for.

When we run the file we can see that the tab content slowly fades out as a tab
closes and fades in when a new tab opens. Both animations occur during a single
tab interaction. To only show the animation once, when a tab closes for example, we
would need to nest the fx object within an array. Change the configuration object
in tabs5.html so that it appears as follows:

var tabOpts = {
 fx: [{
 opacity: "toggle",
 duration: "slow"
 },
 null]
};

The closing effect of the currently open content panel is contained within an object in
the first item of the array, and the opening animation of the new tab is the second. By
specifying null as the second item in the array we disable the opening animations
when a new tab is selected.

We can also specify different animations and speeds for opening and closing
animations by adding another object as the second array item instead of null.
Save this as tabs6.html and view the results in a browser.

Collapsible tabs
By default when the currently active tab is clicked, nothing happens. But we can
change this so that the currently open content panel closes when its tab heading is
selected. Change the configuration object in tabs6.html so that it appears as follows:

var tabOpts = {
 collapsible: true
};

Tabs

[52]

Save this version as tabs7.html. This option allows all of the content panels to
be closed, much like when we supplied null to the selected property earlier on.
Clicking a deactivated tab will select the tab and show its associated content panel.
Clicking the same tab again will close it, shrinking the widget down so that only the
header and tabs are displayed).

Tab events
The tab widget defines a series of useful options that allow you to add callback
functions to perform different actions when certain events exposed by the widget are
detected. The following table lists the configuration options that are able to accept
executable functions on an event:

Option Usage
add Execute a function when a new tab is added.
disable Execute a function when a tab is disabled.
enable Execute a function when a tab is enabled.
load Execute a function when a tab's remote data has loaded.
remove Execute a function when a tab is removed.
select Execute a function when a tab is selected.
show Execute a function when the content section of a tab is shown.

Each component of the library has callback options (such as those in the previous
table), which are tuned to look for key moments in any visitor interaction. Any
function we use with these callbacks are usually executed before the change happens.
Therefore, you can return false from your callback and prevent the action
from occurring.

In our next example, we will look at how easy it is to react to a particular tab being
selected using the standard non-bind technique. Change the final <script> element
in tabs7.html so that it appears as follows:

<script type="text/javascript">
 $(function(){

 function handleSelect(event, tab) {
 $("<p>").text("The tab at index " + tab.index +
 " was selected").addClass("status-message ui-corner-all").
 appendTo($(".ui-tabs-nav", "#myTabs")).fadeOut(5000);
 }

Chapter 3

[53]

 var tabOpts = {
 select:handleSelect
 };

 $("#myTabs").tabs(tabOpts);
 });
</script>

Save this file as tabs8.html. We also need a little CSS to complete this example, in
the <head> of the page we just created add the following <link> element:

<link rel="stylesheet" type="text/css" href="css/tabSelect.css">

Then in a new page in your text editor add the following code:

.status-message {
 position:absolute; right:3px; top:4px; margin:0;
 padding:11px 8px 10px; font-size:11px;
 background-color:#ffffff; border:1px solid #aaaaaa;
}

Save this file as tabSelect.css in the css folder.

We made use of the select callback in this example, although the principle is the
same for any of the other custom events fired by tabs. The name of our callback
function is provided as the value of the select property in our configuration object.

Two arguments will be passed automatically to the function we define by the
widget when it is executed. These are the original event object and a custom object
containing useful properties from the tab which is in the function's execution context.

To find out which of the tabs was clicked, we can look at the index property of the
second object (remember these are zero-based indices). This is added, along with a
little explanatory text, to a paragraph element that we create on the fly and append
to the widget header.

Tabs

[54]

In this example, the callback function was defined outside the configuration object,
and was instead referenced by the object. We can also define these callback functions
inside our configuration object to make our code more efficient. For example, our
function and configuration object from the previous example could have been
defined like this:

var tabOpts = {
 select: function(event, tab) {
 $("<p>").text("The tab at index " + tab.index +
 " was selected").addClass("status-message ui-corner-all").
 appendTo($(".ui-tabs-nav", "#myTabs")).fadeOut(5000);
 }
}

Check tabs8inline.html in the code download for further clarification on this way
of using event callbacks. Whenever a tab is selected, you should see the paragraph
before it fades away. Note that the event is fired before the change occurs.

Binding to events
Using the event callbacks exposed by each component is the standard way of
handling interactions. However, in addition to the callbacks listed in the previous
table we can also hook into another set of events fired by each component at
different times.

We can use the standard jQuery bind() method to bind an event handler to a
custom event fired by the tabs widget in the same way that we could bind to a
standard DOM event, such as a click.

The following table lists the tab widget's custom binding events and their triggers:

Event Trigger
tabsselect A tab is selected.
tabsload A remote tab has loaded.
tabsshow A tab is shown.
tabsadd A tab has been added to the interface.
tabsremove A tab has been removed from the interface.
tabsdisable A tab has been disabled.
tabsenable A tab has been enabled.

The first three events are fired in succession in the order event in which they appear
in the table. If no tabs are remote then tabsselect and tabsshow are fired in that
order. These events are sometimes fired before and sometimes after the action has
occurred, depending on which event is used.

Chapter 3

[55]

Let's see this type of event usage in action, change the final <script> element in
tabs8.html to the following:

<script type="text/javascript">
 $(function() {

 $("#myTabs").tabs();
 $("#myTabs").bind("tabsselect", function(e, tab) {
 alert("The tab at index " + tab.index + " was selected");
 });
 });
</script>

Save this change as tabs9.html. Binding to the tabsselect in this way produces
the same result as the previous example using the select callback function. Like last
time, the alert should appear before the new tab is activated.

All the events exposed by all the widgets can be used with the bind() method, by
simply prefixing the name of the widget to the name of the event.

Using tab methods
The tabs widget contains many different methods, which means it has a rich set of
behaviors. It also supports the implementation of advanced functionality that allows
us to work with it programmatically. Let's take a look at the methods which are
listed in the following table:

Method Usage
abort Stops any animations or AJAX requests that are currently in progress.
add Add a new tab programmatically, specifying the URL of the tab's content,

a label, and optionally its index number as arguments.
destroy Completely remove the tabs widget.
disable Disable a tab based on index number.
enable Enable a disabled tab based on index number.
length Return the number of tabs in the widget.
load Reload an AJAX tab's content, specifying the index number of the tab.
option Get or set any property after the widget has been initialized.
remove Remove a tab programmatically, specifying the index of the tab to remove.
rotate Automatically changes the active tab after a specified number of

milliseconds have passed, either once or repeatedly.
select Select a tab programmatically, which has the same effect as when a visitor

clicks a tab, based on index number.
url Change the URL of content given to an AJAX tab. The method expects the

index number of the tab and the new URL. See also load (above).

Tabs

[56]

Enabling and disabling tabs
We can make use of the enable or disable methods to programmatically enable
or disable specific tabs. This will effectively switch on any tabs that were initially
disabled or disable those that are currently active. Let's use the enable method
to switch on a tab, which we disabled by default in an earlier example. Add the
following new <button> directly after the markup for the tabs widget in
tabs4.html:

<button id="enable">Enable!<
 /button><button id="disable">Disable!</button>

Next change the final <script> element so that it appears as follows:

<script type="text/javascript">
 $(function(){

 var tabOpts = {
 disabled:[1]
 };
 $("#myTabs").tabs(tabOpts);

 $("#enable").click(function() {

 $("#myTabs").tabs("enable", 1);
 });

 $("#disable").click(function() {

 $("#myTabs").tabs("disable", 1);
 });
 });
</script>

Save the changed file as tabs10.html. On the page we've added two new
<button> elements—one will be used to enable the disabled tab and the other
used to disable it again.

In the JavaScript, we use the click event of the Enable! button to call the tabs
constructor. This passes the string "enable", which specifies the enable method and
the index number of the tab we want to enable. The disable method is used in the
same way. Note that a tab cannot be disabled while it is active.

All methods exposed by each component are used in this same easy way which
you'll see more of as we progress through the book.

I mentioned in Chapter 1 that each widget has a set of common methods consisting
of enable, disable, and destroy. These methods are used in the same way across
each of the different components, so we won't be looking at these methods again.

Chapter 3

[57]

Adding and removing tabs
Along with enabling and disabling tabs programmatically, we can also remove them
or add completely new tabs dynamically. In tabs10.html add the following new
code directly after the underlying HTML of the widget:

<label>Enter a tab to remove:</label>
 <input id="indexNum"><button id="remove">Remove!</button>

<button id="add">Add a new tab!</button>
<div id="newTab" class="ui-helper-hidden"> This content was added
 after the widget was initialized!</div>

Then change the final <script> element to this:

<script type="text/javascript">
 $(function(){
 $("#myTabs").tabs();

 $("#remove").click(function() {

 var indexNumber = $("#indexNum").val();

 $("#myTabs").tabs("remove", indexNumber);
 });

 $("#add").click(function() {

 var newLabel = "A New Tab!"

 $("#myTabs").tabs("add", "#newTab", newLabel);
 });
 });

Save this as tabs11.html. On the page we've changed the <button> from the last
example and have added a new <label>, an <input>, and another <button>.
These new elements are used to add a new tab.

We have also added some new content on the page, which will be used as the basis
for each new tab that is added. We make use of the ui-helper-hidden framework
class to hide this content, so that it isn't available when the page loads,. Even though
this class name will remain on the element once it has been added to the tab widget,
it will still be visible when its tab is clicked. This is because the class name will be
overridden by classes within ui.tabs.css.

In the <script>, the first of our new functions handles removing a tab using the
remove method. This method requires one additional argument—the index number
of the tab to be removed. In this example, we get the value entered into the text box
and pass it to the method as the argument. If no index is passed to the method, the
first tab will be removed.

Tabs

[58]

The add method that adds a new tab to the widget, can be made to work in several
different ways. In this example, we've specified that content already existing on
the page (the <div> with an id of newTab) should be added to the tabs widget. In
addition to passing the string "add" and specifying a reference to the element we
wish to add to the tabs, we also specify a label for the new tab.

Optionally, we can also specify the index number where the new tab should be
inserted. If the index is not supplied, the new tab will be added as the last tab. We
can continue adding new tabs and each one will reuse the <div> for its content
because our content <div> will retain its id attribute after it has been added to
the widget. After adding and perhaps removing tabs, the page should appear
something like this:

Simulating clicks
There may be times when you want to programmatically select a particular tab
and show its content. This could happen as the result of some other interaction by
the visitor. We can use the select method to do this, which is completely analogous
with the action of clicking a tab. Alter the final <script> block in tabs11.html so
that it appears as follows:

<script type="text/javascript">
 $(function(){

 $("#myTabs").tabs();

 $("#remove").click(function() {

 var indexNumber = $("#indexNum").val() - 1;

 $("#myTabs").tabs("remove", indexNumber);
 });

 $("#add").click(function() {
 var newLabel = "A New Tab!"

Chapter 3

[59]

 $("#myTabs").tabs("add", "#newTab", newLabel);

 var newIndex = $("#myTabs").tabs("length") - 1;

 $("#myTabs").tabs("select", newIndex);

 });
 });
</script>

Save this as tabs12.html in your jqueryui folder. Now when a new tab is added, it
is automatically selected. The select method requires just one additional parameter,
which is the index number of the tab to select.

As any tab we add will be the last tab in the interface (in this example) and as the
tab indices are zero based, all we have to do is use the length method to return the
number of tabs and then subtract 1 from this figure to get the index. The result is
passed to the select method.

Creating a tab carousel
One method that creates quite an exciting result is the rotate method. The rotate
method will make all of the tabs (and their associated content panels) display one
after the other automatically.

It's a great visual effect and is useful for ensuring that all, or a lot, of the individual
tab's content panels get seen by the visitor. For an example of this kind of effect in
action, see the homepage of http://www.cnet.com. There is a tabs widget (not a
jQuery UI one) that shows blogs, podcasts, and videos.

Like the other methods we've seen, the rotate method is easy to use. Change the
final <script> element in tabs9.html to this:

<script type="text/javascript">
 $(function(){

 $("#myTabs").tabs().tabs("rotate", 1000, true);
 });
</script>

Save this file as tabs13.html. We've reverted back to a simplified page with no
additional elements other than the underlying structure of the widget. Although we
can't call the rotate method directly using the initial tabs method, we can chain it
to the end like we would with methods from the standard jQuery library.

Tabs

[60]

Chaining UI Methods
Chaining widget methods is possible because like the methods
found in the underlying jQuery library, they always return the
jQuery ($) object.

The rotate method is used with two additional parameters. The first parameter is
an integer, that specifies the number of milliseconds each tab should be displayed
before the next tab is shown. The second parameter is a Boolean that indicates
whether the cycle through the tabs should occur once or continuously.

The tab widget also contains a destroy method. This is a method common to all
the widgets found in jQuery UI. Let's see how it works. In tabs13.html, after the
widget add a new <button> as follows:

<button id="destroy">Destroy the tabs!</button>

Next change the final <script> element to this:

<script type="text/javascript">
 $(function(){

 $("#myTabs").tabs();

 $("#destroy").click(function() {

 $("#myTabs").tabs("destroy");				
 });	
 });
</script>

Save this file as tabs14.html. The destroy method that we invoke with a click on
the button, completely removes the tab widget, returning the underlying HTML to
its original state. After the button has been clicked, you should see a standard HTML
list element and the text from each tab, just like in the following screenshot:

Chapter 3

[61]

Once the tabs have been reduced to this state it would be common practice to
remove them using jQuery's remove() method. As I mentioned with the enable and
disable methods earlier, the destroy method is used in exactly the same way for all
widgets and therefore will not be discussed again.

Getting and setting options
Like the destroy method the option method is exposed by all the different
components found in the library. This method is used to work with the configurable
options and functions in both getter and setter modes. Let's look at a basic example,
add the following <button> after the tabs widget in tabs9.html:

<button id="show">Show Selected!</button>

Then change the final <script> element so that it is as follows:

<script type="text/javascript">
 $(function(){

 $("#myTabs").tabs();

 $("#show").click(function() {
 $("<p>").text("The tab at index " + $("#myTabs").
 tabs("option", "selected") + " is active").addClass(
 "status-message ui-corner-all").appendTo($(".ui-tabs-nav",
 "#myTabs")).fadeOut(5000);
 });
 });
</script>

Save this file as tabs15.html. The <button> on the page has been changed so that
it shows the currently active tab. All we do is add the index of the selected tab to a
status bar message as we did in the earlier example. We get the selected option by
passing the string selected as the second argument. Any option can be accessed in
this way.

To trigger setter mode instead, we can supply a third argument containing the
new value of the option that we'd like to set. Therefore, to change the value of the
selected option, we could use the following HTML to specify the tab to select:

<label>Enter a tab index to activate</label><input id="newIndex"
 type="text"><button id="set">Change Selected!</button>

Tabs

[62]

And the following click-handler:

<script type="text/javascript">
 $(function(){

$("#set").click(function() {
 $("#myTabs").tabs("option", "selected", parseInt($("#newIndex").
 val()));
});	

Save this as tabs16.html. The new page contains a <label> and an <input>,
as well as a <button> that is used to harvest the index number that the selected
option should be set to. When the button is clicked, our code will retrieve the
value of the <input> and use it to change the selected index. By supplying
the new value we put the method in setter mode.

When we run this page in our browser, we should see that we can switch to the
second tab by entering its index number and clicking the Changed Selected button.

AJAX tabs
We've looked at adding new tabs from already existing content on the page. In
addition to this we can also create AJAX tabs that load content from remote files or
URLs. Let's extend our previous example of adding tabs so that the new tab content
is loaded from an external file. In tabs16.html remove the <label> and the <input>
from the page and change the <button> so that it appears as follows:

<button id="add">Add a new tab!</button>

Then change the click-handler so that it appears as follows:

$("#add").click(function() {

 $("#myTabs").tabs("add", "tabContent.html", "A Remote Tab!");
});

Chapter 3

[63]

Save this as tabs17.html. This time, instead of specifying an element selector as
the second argument of the add method, we supply a relative file path. Instead of
generating the new tab from inline content, the tab becomes an AJAX tab and loads
the contents of the remote file.

The file used as the remote content in this example is basic and consists of just the
following code:

<div>This is some remote content!</div>

Save this as tabContent.html in the jqueryui folder. After the <button> has been
clicked, the page should appear like this:

Instead of using JavaScript to add the new tab, we can use plain HTML to specify
an AJAX tab as well. In this example, we want the tab that will display the remote
content to be available all the time, not just after clicking the button. Add the
following new <a> element to the underlying HTML for the widget in tabs17.html:

AJAX Tab

The final <script> element can be used to just call the tabs method:

$("#myTabs").tabs();

Save this as tabs18.html. All we're doing is specifying the path to the remote file
(the same one we created in the previous example) using the href attribute of an <a>
element in the underlying markup from which the tabs are created.

Unlike static tabs, we don't need a corresponding <div> element with an id that
matches the href of the link. The additional elements required for the tab content
will be generated automatically by the widget.

Tabs

[64]

If you use a DOM explorer, you can see that the file path we added to link to
the remote tab has been removed. Instead, a new fragment identifier has been
generated and set as the href. The new fragment is also added as the id of the
new tab (minus the # symbol of course).

There is no inherent cross-domain support built into the AJAX
functionality of tabs widget. Therefore, unless additional PHP or some
other server-scripting language is employed as a proxy, or you wish to
make use of JSON structured data and jQuery's JSONP functionality,
files and URLs should be under the same domain as the page running
the widget.

Along with loading data from external files, it can also be loaded from URLs. This is
great when retrieving content from a database using query strings or a web service.
Methods related to AJAX tabs include the load and url methods. The load method
is used to load and reload the contents of an AJAX tab, which could come in handy
for refreshing content that changes very frequently.

Chapter 3

[65]

The url method is used to change the URL that the AJAX tab retrieves its content
from. Let's look at a brief example of these two methods in action. There are also
a number of properties related to AJAX functionality. Add the following new
<select> element in tabs18.html:

<select id="fileChooser">
 <option>tabContent.html</option>
 <option>tabContent2.html</option>
</select>

Then change the final <script> element to this:

<script type="text/javascript">
 $(function(){
 $("#myTabs").tabs();

 $("#fileChooser").change(function() {

 this.selectedIndex == 0 ? loadFile1() : loadFile2();

 function loadFile1() {
 $("#myTabs").tabs("url", 2, "tabContent.html").tabs(
 "load", 2);
 }

 function loadFile2() {
 $("#myTabs").tabs("url", 2, "tabContent2.html").tabs(
 "load", 2);
 }
 });
 });
</script>

Save the new file as tabs19.html. We've added a simple <select> element to the
page that lets you choose the content to display in the AJAX tab. In the JavaScript,
we set a change handler for the <select> and specified an anonymous function to
be executed each time the event is detected.

This function checks the selectedIndex of the <select> element and calls either
the loadFile1 or loadFile2 function. The <select> element is in the execution
scope of the function, so we can refer to it using the this keyword.

These functions are where things get interesting. We first call the url method,
specifying two additional arguments, which are the index of the tab whose URL
we want to change followed by the new URL. We then call the load method that is
chained to the url method, specifying the index of the tab whose content we want
to load.

We'll need a second local content file, change the text on the page of
tabContent1.html and resave it as tabContent2.html.

Tabs

[66]

Run the new file in a browser and select a tab. Then use the dropdown <select> to
choose the second file and watch as the content of the tab is changed. You'll also see
that the tab content will be reloaded even if the AJAX tab isn't active when you use
the <select> element.

The slight flicker in the tab heading is the string value of the spinner option that by
default is set to Loading…. Although, we don't get a chance to see it in full as the tab
content is changed quickly when running it locally. Here's how the page should look
after selecting the remote page in the dropdown select and the third tab:

Displaying data obtained via JSONP
Let's pull in some external content for our final tabs example. If we use the tabs
widget, in conjunction with the standard jQuery library getJSON method, we can
bypass the cross-domain exclusion policy and pull in a feed from another domain to
display in a tab. In a new file in your text editor, create the following new page:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
"http://www.w3.org/TR/html4/strict.dtd">
<html lang="en">
 <head>
 <link rel="stylesheet" type="text/css"
 href="development-bundle/themes/smoothness/ui.all.css">
 <link rel="stylesheet" type="text/css"
 href="css/flickrTabTheme.css">
 <meta http-equiv="Content-Type"
 content="text/html; charset=utf-8">
 <title>jQuery UI AJAX Tabs Example</title>
 </head>
 <body>
 <div id="myTabs">

 Nebula Information
 Images

 <div id="a">

Chapter 3

[67]

 <p>A nebulae is an interstellar cloud of dust, hydrogen gas,
and plasma. It is the first stage of a star's cycle. In these regions
the formations of gas, dust, and other materials clump together to
form larger masses, which attract further matter, and eventually will
become big enough to form stars. The remaining materials are then
believed to form planets and other planetary system objects. Many
nebulae form from the gravitational collapse of diffused gas in the
interstellar medium or ISM. As the material collapses under its own
weight, massive stars may form in the center, and their ultraviolet
radiation ionizes the surrounding gas, making it visible at optical
wavelengths.</p>
 </div>
 <div id="flickr"></div>
 </div>
 <script type="text/javascript"
 src="development-bundle/jquery-1.3.2.js"></script>
 <script type="text/javascript"
 src="development-bundle/ui/ui.core.js"></script>
 <script type="text/javascript"
 src="development-bundle/ui/ui.tabs.js"></script>
 </body>
</html>

The HTML seen here is nothing new. It's basically the same as the previous examples
so I won't describe it in any detail. The only point worthy noting is that unlike the
previous AJAX tab examples, we have specified an empty <div> element that will be
used for the AJAX tab's content. Now, just before the </body> tag, add the following
script block:

<script type="text/javascript">
 $(function(){

 var tabOpts = {
 select: function(event, ui) {
 ui.tab.toString().indexOf("flickr") != -1 ? getData() : null ;
 function getData() {

 $("#flickr").empty();

 $.getJSON("http://api.flickr.com/services/feeds/photos_public.gne?
 tags=nebula&format=json&jsoncallback=?", function(data) {

 $.each(data.items, function(i,item){

 $("").attr("src",
 item.media.m).appendTo("#flickr").height(100).width(100);

 return (i == 5) ? false : null;
 });
 });
 }
 }

Tabs

[68]

 }

 $("#myTabs").tabs(tabOpts);
 });
</script>

Save the file as flickrTab.html in your jqueryui folder. Every time a tab is
selected, our select callback will check to see if it was the tab with an id of
flickr that was clicked. If it is, then the getData() function is invoked that
uses the standard jQuery getJSON method to retrieve an image feed from
http://www.flickr.com.

Once the data is returned, the anonymous callback function iterates over each
object within the feed and creates a new image. We also remove any preexisting
images from the content panel to prevent a buildup of images following multiple
tab selections.

Each new image has its src attribute set using the information from the current feed
object and is then added to the empty Flickr tab. Once iteration over six of the objects
in the feed has occurred, we exit jQuery's each method. It's that simple.

We also require a bit of CSS to make the example look right. In a new file in your text
editor add the following selectors and rules:

#myTabs { width:335px; }
#myTabs .ui-tabs-panel { padding:10px 0 0 7px; }
#myTabs p { margin:0 0 10px; font-size:75%; }
#myTabs img { border:1px solid #aaaaaa; margin:0 5px 5px 0; }

Save this as flickrTabTheme.css in your css folder. When you view the page and
select the Images tab, after a short delay you should see six new images, as seen in
the following screenshot:

Chapter 3

[69]

Summary
The tabs widget is an excellent way of saving space on your page by organizing
related (or even completely unrelated) sections of content that can be shown or
hidden, with simple click-input from your visitors. It also lends an air of interactivity
to your site that can help improve the overall functionality and appeal of the page on
which it is used.

Let's review what was covered in this chapter. We first looked at how, with just a
little underlying HTML and a single line of jQuery-flavored JavaScript code, we can
implement the default tabs widget.

We then saw how easy it is to add our own basic styling for the tabs widget so that
its appearance, but not its behavior, is altered. We already know that in addition
to this we can use a predesigned theme or create a completely new theme using
ThemeRoller.

We then moved on to look at the set of configurable options exposed by the tabs
API. With these, we can enable or disable different options that the widget supports,
such as whether tabs are selected by clicks or another event, whether certain tabs are
disabled when the widget is rendered, and so on.

We took some time to look at how we can use a range of predefined callback
options that allow us to execute arbitrary code when different events are detected.
We also saw that the jQuery bind() method can listen for the same events if it
becomes necessary.

Following the configurable options, we covered the range of methods that we can
use to programmatically make the tabs perform different actions, such as simulating
a click on a tab, enabling or disabling a tab, and adding or removing tabs.

We briefly looked at some of the more advanced functionality supported by the tabs
widget such as AJAX tabs and the tab carousel. Both these techniques are easy to use
and can add value to any implementation.

The Accordion Widget
The accordion widget is another UI widget that allows you to group content into
separate panels which can be opened or closed by visitor interaction. Therefore, most
of its content is initially hidden from view, much like tabs widget that we looked at
in the previous chapter.

Each container has a heading element associated with it that is used to open the
container and display the content. When you click on a heading its content will slide
into view below it. The currently visible content is hidden while the new content is
shown when you click on another heading.

The accordion widget is a robust and highly configurable widget that allows you
to save space on your web pages by displaying only a single panel of content at any
time. This is like a tabbed interface but positioned vertically instead of horizontally.
The following screenshot shows an example of an accordion widget:

header icon

activated content panel

Header 1

Header 2

Header 3

activated header

header over state

collapsed header

Lorem ipsum dolor sit amet, consectetuer
adiplscing elit. Aenean sollicitudin. Sed
interdum pulvinar justo. Nam iaculis volutpat
ligula. Integer vitae felis quis diam laoreet
ullamcorper.

It's easy to use for your visitors and easy to implement for us. It has a range of
configurable options that can be used to customize its appearance and behavior.
It also has a series of methods that allow you to control it programmatically.

The Accordion Widget

[72]

The height of the accordion's container element will be set automatically so that there
is room to show the tallest content panel in addition to the headers. Also, the size
of the widget will remain fixed so that it won't push other elements out of the way
when content panels open or close.

In this chapter, we are going to cover the following topics:

The structure of an accordion widget
The default implementation of an accordion
Adding custom styling
Using the configurable options to set different behaviors
Working with methods for controlling the accordion
The built-in types of animation
Custom accordion events

Accordion's structure
Let's take a moment to familiarize ourselves with the underlying markup that an
accordion is made of. Within the outer container is a series of links. These links are
the headings within the accordion and each heading will have a corresponding
content panel that opens when the header is clicked.

It's worth remembering that only one content panel can be open at any one time
when using the accordion widget. Let's implement a basic accordion now. In a
blank page in your text editor, create the following page:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
 "http://www.w3.org/TR/html4/strict.dtd">
<html lang="en">
 <head>
 <link rel="stylesheet" type="text/css"
 href="development-bundle/themes/smoothness/ui.all.css">
 <meta http-equiv="Content-Type"
 content="text/html; charset=utf-8">
 <title>jQuery UI Accordion Widget Example 1</title>
 </head>
 <body>
 <div id="myAccordion">
 <h2>Header 1</h2>
 <div>Lorem ipsum dolor sit amet, consectetuer adipiscing elit.
 Aenean sollicitudin. Sed interdum pulvinar justo. Nam iaculis
 volutpat ligula. Integer vitae felis quis diam laoreet
 ullamcorper.</div>
 <h2>Header 2</h2>
 <div>Etiam tincidunt est vitae est. Ut posuere, mauris at

•
•
•
•
•
•
•

Chapter 4

[73]

 sodales rutrum, turpis tellus fermentum metus,
 ut bibendum velit enim eu lectus. Suspendisse potenti.</div>
 <h2>Header 3</h2>
 <div>Donec at dolor ac metus pharetra aliquam. Suspendisse
 purus. Fusce tempor ultrices libero. Sed quis nunc.
 Pellentesque tincidunt viverra felis. Integer elit mauris,
 egestas ultricies, gravida vitae, feugiat a, tellus.</div>
 </div>
 <script type="text/javascript"
 src="development-bundle/jquery-1.3.2.js"></script>
 <script type="text/javascript"
 src="development-bundle/ui/ui.core.js"></script>
 <script type="text/javascript"
 src="development-bundle/ui/ui.accordion.js"></script>
 <script type="text/javascript">
 $(function() {
 $("#myAccordion").accordion();
 });
 </script>
 </body>
</html>

Save the file as accordion1.html in your jqueryui folder and try it out in a
browser. The widget should appear as it did in the screenshot at the start of the
chapter, fully skinned and ready for action.

Less coding is required for a basic working version of the accordion widget.
The following list shows the required dependencies of the widget:

ui.all.css

jquery-1.3.2.js

ui.core.js

ui.accordion.js

Each widget also has its own source file, and may depend on other components
as well. For example, we could include some effects files to use non-standard
animations on the opening accordion panels.

The order in which these files appear is important. The jQuery library must always
appear first, followed by the ui.core.js file. After these files, any other files that the
widget depends upon should appear before the widget's own script file. The library
components will not function as expected if files are not loaded in the correct order.

The underlying markup required for the accordion is flexible and the widget can
be constructed from a variety of different structures. In this example, the accordion
headings are formed from links wrapped in <h2> elements and the content panels
are simple <div> elements.

•

•

•

•

The Accordion Widget

[74]

For the accordion to function correctly, each content panel should appear directly
after its corresponding header. All of the elements for the widget are enclosed within
a container <div> that is targeted with the accordion() widget method.

After the required script dependencies from the library we use a custom <script>
block to transform the underlying markup into the accordion. We can use the jQuery
object shortcut $ to specify an anonymous function that will be executed as soon as
the document is ready.

Following this, we use the simple id selector $("#myAccordion") to specify
the element that contains the markup for the widget and then chain the
accordion()method after the selector to create the accordion.

In this example, we used an empty fragment (#) as the value of the href attribute in
our tab heading elements, such as:

<h2>Header 1</h2>

You should note that any URLs supplied for accordion headers will not be followed
when the header is clicked in the default implementation.

Similar to the tabs widget that we looked at in the last chapter, the underlying markup
that is transformed into the accordion has a series of class names added to it when the
widget is initialized. The following screenshot shows the widget in Firebug:

Chapter 4

[75]

As you can see from the previous screenshot, a number of different elements that
make up the widget are given role and aria- attributes. ARIA that stands for
Accessible Rich Internet Applications, is a W3C recommendation for ensuring
that rich Internet applications remain accessible to assisted technologies.

The accordion panels that are initially hidden from view are given the attribute
aria-expanded="false" to ensure that screen readers don't discard or cannot
access content that is hidden using display:none. This makes the accordion
widget highly accessible.

Styling the accordion
ThemeRoller is the recommended tool for choosing or creating the theme of the
accordion widget, but there may be times when we want to considerably change the
look and style of the widget beyond what is possible with ThemeRoller. In that case
we can just style our own accordion.

In a new page in your text editor add the following code:

#myAccordion {
 width:400px; border:1px solid #636363; padding-bottom:1px;
}
.ui-accordion-header {
 font-family:Georgia; background:#e2e2e2 none;
 border:1px solid #ffffff;
}
.ui-widget-content { font-size:70%; border:none; }
.ui-corner-bottom {
 -moz-border-radius-bottomleft:0;
 -moz-border-radius-bottomright:0;
 -webkit-border-bottom-left-radius:0;
 -webkit-border-bottom-right-radius:0;
}
.ui-corner-all {
 -moz-border-radius-topleft:0; -moz-border-radius-topright:0;
 -moz-border-radius-bottomleft:0;
 -moz-border-radius-bottomright:0;
 -webkit-border-top-left-radius:0;
 -webkit-border-top-right-radius:0;
 -webkit-border-bottom-left-radius:0;
 -webkit-border-bottom-right-radius:0;
}
.ui-accordion .ui-accordion-header { margin:0 0 -1px; }

The Accordion Widget

[76]

#myAccordion .ui-state-active, #myAccordion .ui-widget-content .ui-
state-active { background:#ffffff; }
.ui-state-hover, .ui-widget-content .ui-state-hover {
 background:#d2d2d2;
}

Save this file as accordionTheme.css in the css folder and link to it after the jQuery
UI stylesheet in the head of accordion1.html.

<link rel="stylesheet" type="text/css"
 href=" css/accordionTheme.css">

Save the new file as accordion2.html in the jqueryui folder and view it in a
browser. It should appear something like this:

As you can see from the previous screenshot, we've disabled the built-in rounded
corners that are added by the ui.theme.css file and have set alternative fonts,
background colors, and border colors.

We haven't changed the widget much, but we haven't used many style rules. It
would be easy to continue overriding rules in this way to build a much more
complex custom theme.

Chapter 4

[77]

Configuring an accordion
The accordion has a range of configurable options that allow us to change the default
behavior of the widget. The following table lists the available options, their default
value, and gives a brief description of their usage:

Option Default value Usage
active first child Sets the active heading on

page load.
animated "slide" Animate the opening of content

panels.
autoHeight true Automatically set height

according to the
biggest drawer.

clearStyle false Clear height and overflow styles
after a panel opens.

collapsible false Allows all of the content panels
to be closed.

event "click" The event on headers that
trigger drawers to open.

fillSpace false Allows the accordion to fill the
height of its container instead
of sizing itself according to the
content within it.

header "> li >:first-
child,> :not(li):even"

The selector for header elements.
Although it looks complex, this
is a standard jQuery selector
that simply targets the first-child
within every odd element.

icons 'header': 'ui-icon-
triangle-1-e',
'headerSelected': 'ui-
icon-triangle-1-s'

Sets the icons for the header
element and selected state.

navigation false Enables navigation for accordion.
navigationFilter location.href Changes the function used to

obtain the ID of the content
panel that should be open when
the widget is initialized.

The Accordion Widget

[78]

Changing the trigger event
Most of the options are self-explanatory, and the values they accept are usually
Booleans, strings, or element references. Let's put some of them to use so that
we can explore their functionality. Change the final <script> element in
accordion2.html so that it appears as follows:

<script type="text/javascript">
 $(function() {

 var accOpts = {
 event:"mouseover"
 }

 $("#myAccordion").accordion(accOpts);

 });
</script>

First, we create a new object literal called accOpts that contains one property key
and a value. We pass this object to the accordion() method as an argument and it
overrides the default options of the widget.

The string we specified for the value of the event option becomes the event that
triggers the selection of a header and the opening of its content panel, making this
a useful option. Save these changes as accordion3.html.

You should note that you can also set options using an inline object within
the widget's constructor method without creating a separate object
(see accordion3Inline.html). Using the following code would be
equally as effective, and would often be the preferred way of coding:

<script type="text/javascript">
 $(function() {

 $("#myAccordion").accordion({
 event:"mouseover"
 });
 });
</script>

Changing the default active header
By default the first header of the accordion will be selected when the widget is
rendered, with its content panel open. We can change which header is selected
on page load using the active option. Change the configuration object in
accordion3.html so that it appears as follows:

var accOpts = {
 active: 2
};

Chapter 4

[79]

We set the active option to the integer 2 to open the last content panel by default
and like the tab headers that we saw in the last chapter accordion's headers use a
zero-based index. Along with an integer this option also accepts a jQuery selector,
a raw HTML element, or a Boolean value.

We can use the Boolean value of false to configure the accordion so that none of
the content panels are open by default. Change the configuration object once again
to the following:

var accOpts = {
 active: false
};

Save this as accordion5.html. Now when the page loads all of the content panels
are hidden from view.

The widget will only remain closed until one of the headers is selected and then one
panel will remain open at all times. This behavior can be changed by employing the
collapsible option in the configuration object:

var accOpts = {
 active: false,
 collapsible: true
};

Save this as accordion6.html. Now, not only is the accordion closed when the page
loads, but clicking an active header will close its associated content panel as well. As
expected, when a closed header is clicked, it will show its content panel in the usual
way. For usability, it is best to avoid configuring both this and the mouseover event
option together in the same implementation.

The Accordion Widget

[80]

Filling the height of its container
If the fillSpace option is set, then it will override autoHeight and force the
accordion to take the full height of its container. In our examples so far, the container
of the accordion has been the body of the page, and the height of the body will only
be the height of its largest element. We'll need to use a new container element with a
fixed height to see this option in action.

In the <head> of accordion6.html add the following <style> element:

<style type="text/css">
 #container { height:600px; width:400px; }
</style>

Then wrap all of the underlying markup for the accordion in a new container element:

 <div id="container">
 <div id="myAccordion">
 <h2>Header 1</h2><div>Lorem ipsum dolor sit
 amet, consectetuer adipiscing elit. Aenean sollicitudin.
 Sed interdum pulvinar justo. Nam iaculis volutpat ligula.
 Integer vitae felis quis diam laoreet ullamcorper.</div>
 <h2>Header 2</h2><div>Etiam tincidunt est
 vitae est. Ut posuere, mauris at sodales rutrum, turpis
 tellus fermentum metus, ut bibendum velit enim eu lectus.
 Suspendisse potenti.</div>
 <h2>Header 3</h2><div>Donec at dolor ac metus
 pharetra aliquam. Suspendisse purus. Fusce tempor ultrices
 libero. Sed quis nunc. Pellentesque tincidunt viverra
 felis. Integer elit mauris, egestas ultricies, gravida
 vitae, feugiat a, tellus.</div>
 </div>
 </div>

Finally, change the configuration object to use the fillSpace option.

var accOpts = {
 fillSpace: true
};

Save the changes as accordion7.html. The new container is given a fixed height and
width using the CSS specified in the <head> of the page. Please note, this is not the
right way to style elements! But when we only have a single selector and two rules,
it seems excessive to create a new stylesheet.

Chapter 4

[81]

The fillSpace option forces the accordion to take the entire height of its container,
and restricting the width of the container naturally reduces the width of the widget
too. This page should appear as follows:

Accordion animation
The accordion widget comes with the built-in slide animation that is enabled by
default and has been present in all of our examples so far. Disabling this animation
is as easy as supplying false as the value of the animated option. Remove the
<style> tag from the <head> of the page and remove the additional container
<div>, then change the configuration object in accordion7.html so that it
appears as follows:

var accOpts = {
 animated: false
};

Save this as accordion8.html. This will cause each content panel to open
immediately instead of sliding open nicely whenever a header is clicked. An
alternative animation has also been built into the widget—the bounceslide
animation. However, to use this alternative animation we need to link to the
effects.core.js file. Directly after the link to ui.accordion.js at the
bottom of the <body> add the following line of code:

<script type="text/javascript"
 src="development-bundle/ui/effects.core.js"></script>

The Accordion Widget

[82]

Now change the configuration object in our custom <script> element so that it
appears like this:

var accOpts = {
 animated: "bounceslide"
};

Save these changes as accordion9.html. Although the accordion panels close in
exactly the same way as they did in previous examples when we run this variant in a
browser, when they open they bounce a few times at the end of the animation. It's a
great effect and as we saw in this example, easy to use.

In addition to these two animations, we can also use any of the different easing
effects defined within the effects.core.js file, including the following:

easeInQuad

easeInCubic

easeInQuart

easeInQuint

easeInSine

easeInExpo

easeInCirc

easeInElastic

easeInBack

easeInBounce

Each of these easing methods is complimented by easeOut and easeInOut
counterparts. For the complete list see the effects.core.js file, or refer to the
easing table in Chapter 13.

The easing effects don't change the underlying animation, which will still be based
on the slide animation. But they do change how the animation progresses. For
example, we can make the content panels bounce both on opening and closing
animations by using the easeOutBounce easing effect in our configuration object:

var accOpts = {
 animated: "easeOutBounce"

};

Save this file as accordion10.html and view it in a browser. Most of the easing
effects have opposites, so instead of making the content panels bounce at the end of
the animation, we can make them bounce at the start of the animation. This can be
done using the easeInBounce effect.

•

•

•

•

•

•

•

•

•

•

Chapter 4

[83]

Another option that has an effect on animations is the clearStyle property that
resets height and overflow styles after each animation. Remember that animations
are enabled by default, but this option isn't. Change the configuration object in
accordion10.html to the following:

var accOpts = {
 clearStyle: true,
 animated: "easeOutBounce"
};

Save this as accordion11.html. Now when the page is run the accordion will not
keep to a fixed size; it will grow or shrink depending on how much content is in each
panel. It doesn't make much of a difference in this example, but the property really
comes into its own when using dynamic content, when we may not always know
how much content will be within each panel.

Accordion events
The accordion exposes two custom events. The change event is triggered every time
the active header (and its associated content panel) is changed. It fires at the end
of the content panel's opening animation, or if animations are disabled it is fired
immediately. The other event is changestart that is fired as soon as the new
header is selected, that is before the opening animation.

Let's see how we can use these events in our accordion implementations. In
accordion11.html change the configuration object so that it appears as follows:

var accOpts = {
 change: function(e, ui) {
 $("<div>").addClass("
 notify ui-corner-all").text(ui.newHeader.find("a").text() +
 " was activated, " + ui.oldHeader.find("a").text() +
 " was closed").appendTo("body").fadeOut(5000,
 function(){ $(this).remove(); }); }
 };
$("#myAccordion").accordion(accOpts);
});

Save this as accordion12.html. In this example, we use the change configuration
property to specify an anonymous callback function that is executed every time the
event is triggered. This function will automatically receive two objects as arguments.
The first object is the event object that contains information about the event.

The second object contains useful information about the accordion widget, such
as the header element that was activated (ui.newHeader) and the header that was
deactivated (ui.oldHeader).

The Accordion Widget

[84]

These objects are jQuery objects, so we can call jQuery methods on them. In this
example we navigate down to the <a> element within the header and display its
text content in our alert. For reference, the ui object also provides information on
the content panels in the form of ui.newContent and ui.oldContent properties.
However, I find working with the header objects much more reliable.

Once a header has been activated and its content panel shown, the notification will
be generated.

The changestart event
The changestart event can be used in exactly the same way and any callback
function we specify using this event also receives the e and ui objects to use.
Change the configuration object from the last example to as follows:

var accOpts = {
 changestart: function(e, ui) {
 $("<div>").addClass("
 notify ui-corner-all").text(ui.newHeader.find("a").text() +
 " was activated, " + ui.oldHeader.find("a").text() +
 " was closed").appendTo("body").fadeOut(5000,
 function(){ $(this).remove(); });
 }
};

Save this as accordion13.html. All that's changed is the property that we're
targeting with our configuration object. When we run the page we should find that
everything is exactly as it was before, except that our notification is produced before
the content panel animation instead of after it.

Chapter 4

[85]

There are also events such as accordionchange and accordionchangestart for use
with the standard jQuery bind() method, so that we can specify a callback function
to execute outside of the accordion configuration.

Accordion navigation
Along with a standard content accordion, the widget can also be put to good use as
a navigation menu through the simple addition of some proper href attributes and
the navigation option. We'll need to create two new pages to fully appreciate the
effect of this option, in accordion13.html change the underlying markup for the
accordion to the following:

 <div id="container" class="ui-helper-clearfix">
 <div id="navCol">
 About Me
 <div>
 My Bio
 Contact
 Me
 My Resume
 </div>
 <a class="header" href="#js"
 title="JavaScript">JavaScript
 <div>
 <a href="accordion14a.html#js" title="JavaScript
 Tutorials">JavaScript Tutorials
 AJAX
 <a href="accordion14a.html#js" title="JavaScript
 Apps">JavaScript Apps
 </div>
 </div>
 <div id="contentCol">
 <h1>Page 1</h1>
 </div>
 </div>

Then change the configuration object so that it appears as follows:

 var accOpts = {
 fillSpace: true,
 header: ".header",
 navigation: true
 };

The Accordion Widget

[86]

Save this file as accordion14.html, then save it again as accordion14a.html to
give us the two pages we need for this example. In the <body> of the page we've
added a new outer container to hold all the page content and have added two inner
containers within this—one for the accordion widget that will appear as a navigation
menu, and the other for content. In this example, the two pages just have <h1>
elements denoting which page is open.

The underlying markup that the accordion is built from has also changed. We've
removed the <h2> elements wrapping the <a> elements that form the accordion
headings and have added class names and document fragment href attributes.
Both of these additions are critical to the functioning of the navigation accordion.

In the final <script> element we use the fillSpace property to give the navigation
accordion a consistent height and set both the header and navigation properties.
In a standard accordion, the <h2> elements were used automatically as the header
elements for the widget, but now that these have been removed (which is required
for navigation accordions) we need to tell the widget to use the <a> elements with
the class name header for the accordion headers instead.

The navigation option changes how the widget appears when the page is initially
loaded. Instead of activating the first header when the accordion is initialized, it
instead looks at the location.href property of the window. If the contents of the
location.href property matches the href attribute of one of the accordion headers,
that header will be activated.

When we run accordion14.html in a browser and select one of the links in the
second content panel, the page will navigate to accordion14a.html and the second
header will automatically be activated. The navigation property gives us a great way
of maintaining state between pages for the widget.

We also need some additional styles in order to make sure the accordion and the
page appear correctly. In a new page in your text editor create the following file:

#container { width:800px; margin:auto; }
#navCol { width:250px; height:400px; float:left; }
#contentCol { width:550px; height:400px; float:left; }
#contentCol h1 { text-indent:20px; font-family:Georgia; }
#navCol .ui-accordion-header {
 display:block; padding-left:40px;
}
.ui-accordion-content a {
 font-size:70%; text-decoration:none; display:block;
}
.ui-accordion-content a:hover { text-decoration:underline; }

Chapter 4

[87]

Save this in the css folder as accordionTheme2.css. We don't need many styles for
this example, we just need to arrange the containers and set some basic aesthetics for
the accordion and the links within it.

The following screenshot shows how the second page will appear on load when
navigating to it from the second content panel on the first page:

When going back to the first page from the second page, the first header should once
again be activated.

Accordion methods
The accordion includes a selection of methods that allow you to control and
manipulate the behavior of the widget programmatically. Some of the methods
are common to each component of the library, such as the destroy method that is
used by every widget. The following table lists the single unique method for the
accordion widget:

Method Use
activate Programmatically activate a header.

This is analogous to the header being
selected by the visitor.

Remember, in addition to the accordion-specific activate method, the destroy,
enable, disable, and option methods are also available. We looked at the enable
and disable methods in the last chapter, so we won't go over those again.

The Accordion Widget

[88]

Destruction
The destroy method is one of the common methods exposed by all library
components. This method removes the widget class names and returns the
underlying markup to its original state. We'll use the default options associated
with accordion instead of the ones we configured for the last example. In
accordion13.html add the following <button> to the page after the widget:

<button id="destroy">Destroy</button>

Then change the final <script> element so that it appears as follows:

<script type="text/javascript">
 $(function() {
 $("#myAccordion").accordion();
 $("#destroy").click(function() {
 $("#myAccordion").accordion("destroy");
 });
 });
 </script>

Save this file as accordion15.html. The <body> of the page contains our new
<button> element that can be used to destroy the accordion. The final <script>
block contains the new click handler and anonymous function.

We use the standard jQuery library's click() method to execute some code when
the targeted <button> element is clicked. We use the same accordian()method to
destroy it as we did to create it. But this time, we supply the string "destroy" as
an argument.

This causes the class names added by the library to be removed, the opening and
closing behavior of the headers to no longer be effective, and all of the previously
hidden content to be made visible. This is how the page will appear once the
button has been clicked:

Chapter 4

[89]

Header activation
The single unique method exposed by accordion is the activate method. This can
be used to programmatically show or hide different drawers. We can easily test this
method using a text box and a new button. In accordion15.html add the following
new markup in place of the <button> elements from the last example:

<label>Enter a header index to activate</label>
<input id="activateChoice" type="text">
<button id="activate">Activate</button>

Now change the final <script> element so that it appears as follows:

<script type="text/javascript">
 $(function() {
 $("#myAccordion").accordion();
 $("#activate").click(function() {
 $("#myAccordion").accordion("activate",
 parseInt($("#activateChoice").val()));
 });
 });
</script>

The Accordion Widget

[90]

Save the new file as accordion16.html. The activate method takes an additional
argument. It expects to receive the index (zero-based) number of the header element
to activate. In this example, we obtain the header to activate by returning the value
of the text input. We convert it to an integer using the parseInt() function of
JavaScript because the val() jQuery method returns a string.

If an index number that doesn't exist is specified then all of the content panels will
close (regardless of whether the collapsible property is set to true or false). The
first header will be activated if no index is specified,.

Accordion interoperability
Does the accordion widget play nicely with other widgets in the library? Let's take a
look and see whether the accordion can be combined with the widget from the last
chapter, the tabs widget. Create the following new page in your text editor:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/
TR/html4/strict.dtd">
<html lang="en">
 <head>
 <link rel="stylesheet" type="text/css"
 href="development-bundle/themes/smoothness/ui.all.css">
 <meta http-equiv="Content-Type"
 content="text/html; charset=utf-8">
 <title>jQuery UI Accordion Widget Example 17</title>
 </head>
 <body>
 <div id="myAccordion">
 <h2>Header 1</h2><div>Lorem ipsum dolor sit
 amet, consectetuer adipiscing elit. Aenean sollicitudin. Sed
 interdum pulvinar justo. Nam iaculis volutpat ligula. Integer
 vitae felis quis diam laoreet ullamcorper.</div>
 <h2>Header 2</h2><div>Etiam tincidunt est vitae
 est. Ut posuere, mauris at sodales rutrum, turpis tellus
 fermentum metus, ut bibendum velit enim eu lectus.
 Suspendisse potenti.</div>
 <h2>Header 3</h2>
 <div>
 <div id="myTabs">

 Tab 1
 Tab 2

 <div id="0">This is the content panel linked to the first
 tab, it is shown by default.</div>
 <div id="1">This content is linked to the second tab and
 will be shown when its tab is clicked.</div>

Chapter 4

[91]

 </div>
 </div>
 </div>
 <script type="text/javascript"
 src="development-bundle/jquery-1.3.2.js"></script>
 <script type="text/javascript"
 src="development-bundle/ui/ui.core.js"></script>
 <script type="text/javascript"
 src="development-bundle/ui/ui.accordion.js"></script>
 <script type="text/javascript"
 src="development-bundle/ui/ui.tabs.js"></script>
 <script type="text/javascript">
 $(function() {
 $("#myAccordion").accordion();
 $("#myTabs").tabs();
 });
 </script>
 </body>
</html>

Save this file as accordion17.html. All we've done with this file is to add a simple
tab structure to one of the accordion's content panels. In the <script> at the end
of the page we just call the accordion and tab's widget methods. No additional or
special configuration is required.

The page should appear like this when the third accordion heading is activated:

The Accordion Widget

[92]

The widgets are compatible the other way round, that is we can have an accordion
within one of the tab's content panels.

A del.icio.us accordion
Let's put a sample page together that will make the most of the accordion widget and
uses some of the options and methods that we've looked at so far in this chapter.

One thing we haven't looked at yet is dynamic content within an accordion's
content panel. Although no native methods or options are exposed by the accordion
API which relate directly to enabling this functionality, we can add this feature
manually ourselves.

The following screenshot shows the finished widget:

In a new page in your text editor, create the following HTML file:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/
TR/html4/strict.dtd">
<html lang="en">
 <head>

Chapter 4

[93]

 <link rel="stylesheet" type="text/css"
 href="development-bundle/themes/smoothness/ui.all.css">
 <link rel="stylesheet" type="text/css"
 href="css/ajaxAccordion.css">
 <meta http-equiv="Content-Type"
 content="text/html; charset=utf-8">
 <title>jQuery UI AJAX Accordion Widget Example</title>
 </head>
 <body>
 <div id="myAccordion">
 <h2>Recent del.icio.us bookmarks
 </h2><div>Use the headers
 below to look at some of my del.icio.us bookmarks</div>
 <h2>JavaScript</h2><div id="js">
 <p class="empty-message">No recent JavaScript
 bookmarks</p></div>
 <h2>jQuery</h2><div id="jquery">
 <p class="empty-message">No recent jQuery bookmarks</p></div>
 <h2>CSS</h2><div id="css">
 <p class="empty-message">No recent CSS bookmarks</p></div>
 </div>
 <script type="text/javascript"
 src="development-bundle/jquery-1.3.2.js"></script>
 <script type="text/javascript"
 src="development-bundle/ui/ui.core.js"></script>
 <script type="text/javascript"
 src="development-bundle/ui/ui.accordion.js"></script>
 <script type="text/javascript">
 $(function() {
 $.getJSON("http://feeds.delicious.com/v1/json/
 danwellman?callback=?", function(data){

 $.each(data, function(i) {

 ($(".empty-message", $("#" + data[i].t[0])).length > 0) ?
 $(".empty-message", $("#" + data[i].t[0])).
 remove() : null ;

 var list = $(""),
 li = $("").appendTo(list);
 $("<a>").text(data[i].d).attr("href",
 data[i].u).appendTo(li);

 list.appendTo("#" + data[i].t[0]);
 });
 });
 $("#myAccordion").accordion({ clearStyle: true });
 });
 </script>
 </body>
</html>

The Accordion Widget

[94]

Save this file as ajaxAccordion.html. In this example, the <body> of the page is
light as we'll be creating a lot of the elements we need dynamically, so most of our
accordion content sections are empty.

The main <script> revolves around getting a set of recent bookmarks from
Delicious' JSON feed (I've used my username for this example, feel free to use your
own). The object returned to us by Delicious contains an array, and each item in
the array is an object containing information about a single bookmark. This could
include the title, URL, and any tags associated with it, so we use jQuery's each()
method to iterate over each item in this array.

First we check whether the element with the class empty-message exists and remove
it if it does. We can use jQuery's selector context facility to target the accordion panel
that contains a <div> with an id matching the Delicious tag name property from
the current item in data array. Next, we create a new element and a new
element along with appending the immediately to the . We then create a
new <a> element—the inner text of the new link and its href attribute are both set
using properties from the Delicious data array.

Once the <a> has been created we can then append the list of links to the appropriate
accordion content panel. We again use the tag name property of the current data
item to append the new list to the content panel with a matching id. For example,
all bookmarks tagged with javascript will be appended to the #javascript
content panel.

Our final task is to call the accordion's widget method. Notice that we've set the
clearStyle option to true. Some of the content in our dynamic panels may be
hidden if we don't do this.

This is all the JavaScript we'll need, but in addition to this we'll also need a small
stylesheet. In another new file in your text editor add the following style rules:

h2.title {
 width:600px; margin:auto; position:relative; font-family:Georgia;
font-weight:normal;
 font-size:32px; font-style:italic;
}
#myAccordion { width:600px; margin:auto; }
#deliciousLogo {
 width:24px; height:24px; position:absolute; right:8px; top:8px;
 background:url(../img/accordion/delicious.png) no-repeat;
}

Chapter 4

[95]

#myAccordion .ui-accordion-content ul { margin:0; pading:0; }
#myAccordion .ui-accordion-content ul li {
 font-size:11px; list-style-type:none; padding-left:16px; margin-
bottom:8px;
 background:url(../img/accordion/delicious_small.png) no-repeat 0
1px;
}
#myAccordion .ui-accordion-content ul li a
{ text-decoration:none; padding:4px 16px 0 0; }
#myAccordion .ui-accordion-content ul li a:hover {
 background:url(../img/accordion/external.png) no-repeat 100% 4px;
}

Save this in the css folder as ajaxAccordion.css. We basically set the size of the
widget and added a few icons. This code (along with the images from the code
download) should give us a fully working AJAX accordion listing some of our
recent bookmarks:

The Accordion Widget

[96]

Summary
The accordion widget allows us to implement an object on the page that
will show and hide different blocks of content. This is a popular and much
sought-after effect, which is implemented by big players on the Web today,
such as Apple.

We then moved on to look at the configurable options that can be used with
accordion. We saw that we can use these options to change the behavior of the
widget, such as specifying an alternative heading to be open by default, whether the
widget should expand to fill the height of its container, or the event that triggers the
opening of a content drawer.

Along with configurable options, we saw that the accordion exposes several custom
events. Using them we can specify to callback functions during configuration, or
bind to after configuration to execute additional functionality in reaction to
different things happening to the widget.

We then looked at the accordion's default animation and how we can add simple
transition effects to the opening of content panels in the form of easing effects.
We saw that to make use of non-standard animations or easing effects, the
effects.core.js file needs to be included.

In addition to looking at these options, we also saw that there are a range of methods
which can be called on the accordion to make it do things programmatically. For
example, we can specify a header to activate, enable, and disable the widget,
or even completely destroy the widget and return the markup to its original state.

Like the tabs widget that we looked at in the previous chapter, the accordion is a
flexible and robust widget that provides essential functionality and interaction in
an aesthetically pleasing format.

The Dialog
Traditionally, the way to display a brief message or ask a visitor a question would've
been to use one of JavaScript's native dialog boxes (such as alert or confirm) or to
open a new web page with a predefined size, styled to look like a dialog box.

Unfortunately, as I'm sure you're aware, neither of these methods is particularly
flexible to us as developers, or particularly engaging for our visitors. For each
problem they solve, several new problems are usually introduced.

The dialog widget lets us display a message, supplemental content (such as images
or text), or even interactive content (like forms). It's also easy to add buttons, such as
simple ok and cancel buttons to the dialog and define callback functions for them in
order to react to their being clicked.

The following screenshot shows a dialog widget and the different elements that it is
made of:

The Dialog

[98]

In this chapter, we will cover the following topics:

Creating a basic dialog
Work with dialog options
Modality
Enabling the built-in animations
Adding buttons to the dialog
IE6 and the selectbox z-index bug
Working with dialog callbacks
Controlling the dialog programmatically

A basic dialog
A dialog has a lot of default behavior built-in, but few methods are needed to
control it programmatically, making this an easy to use widget that is also highly
configurable and powerful.

Generating the widget is simple and requires a minimal underlying markup
structure. The following page contains the minimum markup that's required to
implement the dialog widget:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/
TR/html4/strict.dtd">
<html lang="en">
 <head>
 <link rel="stylesheet" type="text/css"
 href="development-bundle/themes/smoothness/ui.all.css">
 <meta http-equiv="Content-Type"
 content="text/html; charset=utf-8">
 <title>jQuery UI Dialog Example 1</title>
 </head>
 <body>
 <div id="myDialog" title="This is the title!">
 Lorem ipsum dolor sit amet, consectetuer adipiscing elit.
 Aenean sollicitudin. Sed interdum pulvinar justo. Nam iaculis
 volutpat ligula. Integer vitae felis quis diam laoreet
 ullamcorper. Etiam tincidunt est vitae est.
 </div>
 <script type="text/javascript"
 src="development-bundle/jquery-1.3.2.js"></script>
 <script type="text/javascript"
 src="development-bundle/ui/ui.core.js"></script>
 <script type="text/javascript"
 src="development-bundle/ui/ui.dialog.js"></script>
 <script type="text/javascript">

•
•
•
•
•
•
•
•

Chapter 5

[99]

 $(function(){

 $("#myDialog").dialog();
 });
 </script>
 </body>
</html>

Save this file as dialog1.html in the jqueryui project folder. To use the dialog, the
following dependencies are required:

ui.all.css

jquery-1.3.2.js

ui.core.js

ui.dialog.js

The dialog widget is initialized in the same way as the other widgets we have
already looked at—by calling the widget's plugin method. When you run this page
in your browser, you should see the default dialog widget as shown in the screenshot
at the start of this chapter.

As with the previous widgets we've covered, a variety of class names from the
CSS framework are added to different elements within the widget to give them the
appropriate styling for their respective elements, and any additional elements that
are required are created on the fly. The following screenshot show these classes and
the structure of the widget as interpreted by Firebug:

•

•

•

•

The Dialog

[100]

The dialog in the first example is fixed both in size and position, and will remain in
the center of the viewport until it is closed. We can make the widget draggable, or
resizable, or both easily. All we need to do is include the draggable and resizable
component's source files with the other <script> resources at the end of the <body>.

It's not important that the draggable and resizable files are included in the page
before the dialog's source file, they can come before or after and the widget will still
inherit these behaviors. Any styling that is required, such as the resize indicator that
appears in the bottom-left of the dialog, will be picked up automatically from the
master CSS file.

Add the following two <script> elements directly before the closing </body> tag in
dialog1.html:

<script type="text/javascript"
 src="development-bundle/ui/ui.draggable.js"></script>
<script type="text/javascript"
 src="development-bundle/ui/ui.resizable.js"></script>

Save this as dialog2.html and view it in a browser. The dialog should now be
draggable and can be moved to any part of the viewport, but will not cause it to
scroll if the widget is moved to an edge.

The dialog should also be resizable—by clicking and holding the resize indicator the
widget can be made bigger or smaller. If the dialog is made bigger than the viewport
then it will cause the window to scroll.

Dialog options
An options object can be used in a dialog's widget method to configure various
dialog options. Let's look at the available options:

Options Default value Usage
autoOpen true Shows the dialog as soon as the dialog() method is

called when set to true.
bgiframe false Creates an <iframe> shim to prevent <select>

elements showing through the dialog in IE6 (at
present the bgiframe plugin is required). We'll look
at this option in more detail shortly. This plugin is due
to be retired in version 1.8 of the library and will be
replaced by the new stackfix component.

Chapter 5

[101]

Options Default value Usage
buttons {} Supplies an object containing buttons to be used

with the dialog. Each property name becomes the
text on the <button> element, and the value of each
property is a callback function, which is executed
when the button is clicked.

closeOnEscape true If set to true, the dialog will close when the Esc key
is pressed.

dialogClass "" Sets additional class names on the dialog for
theming purposes.

draggable true Makes the dialog draggable (use ui.draggable.js).
height "auto" Sets the starting height of the dialog.
hide null Sets an effect to be used when the dialog is closed.
maxHeight false Sets a maximum height for the dialog.
maxWidth false Sets a maximum width for the dialog.
minHeight 150 Sets a minimum height for the dialog.
minWidth 150 Sets a minimum width for the dialog.
modal false Enables modality while the dialog is open.
position "center" Sets the starting position of the dialog in the viewport.

Can accept a string, or an array of strings, or an array
containing exact coordinates of the dialog offset from
the top and left of the viewport.

resizable true Makes the dialog resizable (also requires
ui.resizable.js).

show null Sets an effect to be used when the dialog is opened.
stack true Causes the focused dialog to move to the front when

several dialogs are open.
title false Alternative to specifying the title attribute on the

widget's underlying container element.
width 300 Sets the starting width of the dialog.
zIndex 1000 Sets the starting CSS z-index of the widget. When

using multiple dialogs and the stack option is set to
true the z-index will change as each dialog is moved
to the front of the stack.

As you can see, we have a wide range of configurable options to work with when
implementing the dialog. Many of these options are Boolean, or numerical, or
string-based, making them easy to set and work with.

The Dialog

[102]

Showing the dialog
In our examples so far, the dialog has opened as soon as the page has loaded, or
when the dialog widget method is called, which is as soon as the page is ready
in this case.

We can change this so that the dialog is opened when something else occurs, like
a button being clicked, by setting the autoOpen option to false. Change the final
<script> element at the bottom of dialog2.html to the following:

<script type="text/javascript">

 $(function(){
 var dialogOpts = {
 autoOpen: false
 };

 $("#myDialog").dialog(dialogOpts);
 });
</script>

Save this as dialog3.html. The widget is still created; the underlying markup is
removed from the page, transformed into the widget, and then reappended to the
end of the <body>. It will remain hidden until the open method is called on it. We'll
come back to this option when we look at the open method a little later on.

Positioning the dialog
The position option controls where the dialog is rendered in the viewport when it
is opened and accepts either a string or an array value. The strings may be one of the
following values:

bottom

center

left

right

top

We can also supply different sensible combinations of these strings in an array,
there's no point supplying an array containing the strings top and bottom.
However, we can supply right and top for the widget to be positioned in the
top-right of the viewport.

•

•

•

•

•

Chapter 5

[103]

An array can also be used when you want to specify the exact coordinates, relative
to the top-left corner of the viewport where the dialog should appear. Change the
configuration object used in dialog3.html so that it appears as follows:

var dialogOpts = {
 position: ["left", "bottom"]
};

Save this as dialog4.html. When using a string-based array we need to supply the
values in a specific order—the value of the widget's position on the horizontal axis
should be specified first, followed by its position on the vertical axis.

The following screenshot shows where the dialog can be positioned on the page
using either a string or a string-based array:

The Dialog

[104]

When using integers in the position array we can specify any location on the page
in which to position the dialog. Change the configuration object in dialog4.html to
the following:

var dialogOpts = {
 position: [100, 100]
};

Save this version as dialog5.html. This time, the dialog should appear exactly 100
pixels from the top and 100 pixels from the left edges of the viewport. Note that the
axis order is the same as when using string values—horizontal followed by vertical.
If the dialog is outside the maximum width or height of the viewport then the page
will be scrolled.

The title of the dialog
The options table shows a title option. Although the title of the dialog
(the actual text in the header of the widget) can be set using the title attribute
of the underlying HTML container element, using the title configuration option
gives us more control over how the title (the text) is displayed on the widget.

By default, the title text (in the header) of the dialog will not be selectable and will
also not be displayed in the OSs default tooltip style. When using the title attribute
on the underlying element, the text will appear within a element, which
is inside a <div> with the class name ui-dialog-titlebar. These elements will
appear in the header of the widget.

If we want to inject additional elements into the DOM structure of the dialog
(for additional styling perhaps or different behavior), we could do it using the
title option. Change the configuration object in dialog5.html to the following:

var dialogOpts = {
 title: 'A link title!'
};

Chapter 5

[105]

Save this file as dialog6.html. The change in the widget should be apparent
immediately, the span element in the widget header will now contain our new
link element. The following screenshot shows our new title:

As a cautionary note, I should advise that the system will display
the default OS tooltip if a title attribute is specified on any new
elements we add to the widget in this way.

Modality
One of the dialog's greatest assets is modality. This feature creates an overlay when
the widget that sits above the page content but below the dialog is opened. The
overlay is removed as soon as the dialog is closed. None of the underlying page
content can be interacted with in any way while the dialog is open.

The benefit of this feature is that it ensures the dialog is closed before the underlying
page becomes interactive again, and gives a clear visual indicator to the visitor that
the dialog must be interacted with before they can proceed.

Change the configuration object in dialog6.html to this:

var dialogOpts = {
 modal: true
};

This file can be saved as dialog7.html. Only a single property is required
when adding modality and that is the modal option. When you view the page
in a browser, you'll see the modal effect immediately.

The Dialog

[106]

The repeated background image that is used to create the overlay is styled
completely by the CSS framework and is therefore fully themeable via ThemeRoller.
We can also use our own image if we need to. The class name ui-widget-overlay is
added to the overlay, so this is the selector to override if customization is required.

The following screenshot shows the modal effect (I've added some fake content to
the page so that the effect of the modal can be fully appreciated):

Adding buttons
The button option accepts an object literal that is used to specify the different
<button> elements that should be present on the dialog. Each property:value pair
represents a single button. Let's add a couple of <button> elements to our dialog.
Alter the final <script> element in dialog7.html so that it appears as follows:

<script type="text/javascript">
 $(function(){

 var execute = function() {
 }
 var cancel = function() {
 }
 var dialogOpts = {
 buttons: {
 "Ok": execute,
 "Cancel": cancel

Chapter 5

[107]

 }
 };

 $("#myDialog").dialog(dialogOpts);
 });
</script>

Save the file as dialog8.html. The key for each property in the buttons object is
the text that will form the <button> label, and the value is the name of the callback
function to execute when the button is clicked.

Each callback function is defined before the configuration object. If this is not done
an error will be thrown by the widget when the button is clicked. In this example the
functions don't do anything, we'll come back to this example shortly and populate
these functions.

The widget will add our new buttons to their own container at the foot of the
dialog, and if the dialog is resized then this container will retain its original
dimensions. The <button> elements are fully themeable and will be styled
according to the theme in use. The following screenshot shows how our new
<button> elements would appear:

The Dialog

[108]

Enabling dialog animations
The dialog provides us with a built-in effect that can be applied to the opening or
closing (or both) phases of the widget. There is only a single effect that we can use,
which is an implementation of the scale effect (we'll look at this in more detail in
Chapter 13). Change the final <script> element in dialog8.html to this:

<script type="text/javascript">
 $(function(){

 var dialogOpts = {
 show: true,

 hide: true

 };

 $("#myDialog").dialog(dialogOpts);
 });
</script>

Save this as dialog9.html. We set both the hide and show options to the Boolean
value true; this enables the built-in effect, which gradually reduces the dialog's size
and opacity until it gracefully disappears. The following screenshot shows an effect
in motion:

Chapter 5

[109]

Fixing IE6
I need not say much more than IE6 is anathema to web developers, and at the time of
writing is unfortunately still with us. A major problem with this browser (sometimes
referred to as the select box z-index bug), is the fact that <select> elements appear
above any other content on the page. This can cause issues with widgets like the
dialog that are supposed to float above any other page content. The following
screenshot shows this bug in action:

 Fortunately, the jQuery UI dialog comes with built-in protection in the form of the
bgiframe option that fixes the selectbox issue by inserting an <iframe> element into
the dialog, which blocks out any underlying <select> elements. In dialog9.html
add a new <select> element to the page, and then change the configuration object
so that it is like this:

var dialogOpts = {
 bgiframe: true
};

Don't forget to link to the bgiframe plugin that can be found in the external
directory, with the other <script> resources at the end of the <body>:

<script type="text/javascript"
 src="development-bundle/external/bgiframe/jquery.bgiframe.js">
</script>

The Dialog

[110]

Save the changed file as dialog10.html. Now in IE6, the widget will float above the
select box as it should:

The <iframe> element will only be added in IE6, no other browsers will need it. It
will receive all the attributes that it requires automatically, no further configuration
or styling is required.

Configuring the dialog's dimensions
There are several options related to the dialog's size, and the minimum and
maximum size that it can be resized to. We can add all of these options to the next
example as they're all related, to save looking at them individually. Remove the
<select> box and the link to the bgiframe plugin, and change the configuration
object in dialog10.html to the following:

var dialogOpts = {
 width: 300,

 height: 300,

 minWidth: 150,

 minHeight: 150,

 maxWidth: 450,

 maxHeight: 450

};

Chapter 5

[111]

Save this file as dialog11.html. The effect these options have on the widget is
simple; the width and height options define how big the dialog is when it is first
opened while the min- and max- options define how small or large the dialog can be
resized to respectively. Care should be taken that the minimum width and height
of the dialog do not cause the title to overflow or it may end up looking something
like this:

As an additional note, assistive technologies and keyboard users may find the
content difficult to navigate if the dialog is made too small. There is a usability tenant
that insists dialog boxes should always be non-resizable, whereas windows should
always be resizable.

While I don't think this a black-and-white rule, it may be wise to keep small,
informational, text-based dialogs at a fixed size, while allowing dialogs richer in
content, composed of both images and text to be resizable.

Stacking
The dialog is made so that it appears above any of the existing page content, and
even provides the zIndex option in case we need to raise it slightly to cover our
existing content. But what if we have two dialogs on the page? Do we need to
separately define the zIndex for each dialog? How is focus taken into consideration?

The Dialog

[112]

Let's see if we can answer these questions by looking at another example, change the
<body> of dialog11.html so that it has two dialog boxes on it:

 <div id="dialog1" title="Dialog 1">

 Lorem ipsum dolor sit amet, consectetuer adipiscing elit.
 Aenean sollicitudin. Sed interdum pulvinar justo. Nam iaculis
 volutpat ligula. Integer vitae felis quis diam laoreet
 ullamcorper. Etiam tincidunt est vitae est.
 </div>
 <div id="dialog2" title="Dialog 2">

 Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Aenean
 sollicitudin. Sed interdum pulvinar justo. Nam iaculis volutpat
 ligula. Integer vitae felis quis diam laoreet ullamcorper.
 Etiam tincidunt est vitae est.

 </div>

Now change the final <script> element so that it appears like this:

 <script type="text/javascript">
 $(function(){

 $("#dialog1").dialog();

 $("#dialog2").dialog();

 });
 </script>

Save this file as dialog12.html. We've added another dialog to the page, which is
basically just a clone of the original with a different id attribute. In the <script>
we simply call the widget method of both our underlying elements, we don't need a
configuration object.

Because the widget method is called on the second dialog last, this dialog will
automatically have a higher zIndex, so we don't need to worry about configuring
this separately. It doesn't matter the order in which the dialogs appear in the
underlying markup, it's the order of the widget methods that dictate each
dialog's zIndex.

Because neither dialog has its position explicitly set, only the second dialog will be
visible when our example page loads. However, both are draggable and we can align
them so that they overlap slightly by dragging the second dialog away. If we click on
the first dialog box its zIndex will automatically be increased to one higher than the
second dialog box.

Chapter 5

[113]

The stack option is set to true by default, so all of this behavior is automatically
available with no additional configuration from us. If for some reason this behavior
is not desired then we can disable it by supplying false as the value of the
stack option.

Dialog's event model
The dialog widget gives us a wide range of callback options that we can use to
execute arbitrary code at different points in any dialog interaction. The following
table lists the option available to us:

Option Fired when
beforeclose The dialog is about to be closed.
close The dialog is closed.
drag The dialog is being dragged.
dragStart The dialog starts being dragged.
dragStop The dialog stops being dragged.
focus The dialog receives focus.
open The dialog is opened.
resize The dialog is being resized.
resizeStart The dialog starts to be resized.
resizeStop The dialog stops being resized.

Some of these callbacks are only available in certain situations, such as the drag
and resize callbacks, which will only be available when the draggable and resizable
components are included. We won't be looking at these callback options in this
chapter as they'll be covered in detail later in the book.

Other callbacks such as the beforeClose, open, close, and focus callbacks will
be available in any implementation. Let's look at an example in which we make
use of some of these callback options. In a new page in your text editor, add the
following code:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
 "http://www.w3.org/TR/html4/strict.dtd">
<html lang="en">
 <head>
 <link rel="stylesheet" type="text/css"
 href="development-bundle/themes/smoothness/ui.all.css">
 <link rel="stylesheet" type="text/css" href="css/dialogTheme.css">
 <meta http-equiv="Content-Type" content="text/html; charset=utf-8">

The Dialog

[114]

 <title>jQuery UI Dialog Example 13</title>
 </head>
 <body>
 <div id="status" class="ui-widget">
 <div class="ui-widget-header">Dialog Status</div>
 <div class="ui-widget-content"></div>
 </div>
 <div id="myDialog" title="This is the title">Lorem ipsum dolor sit
 amet, consectetuer adipiscing elit. Aenean sollicitudin. Sed
 interdum pulvinar justo. Nam iaculis volutpat ligula. Integer
 vitae felis quis diam laoreet ullamcorper. Etiam tincidunt est
 vitae est.</div>
 <script type="text/javascript"
 src="development-bundle/jquery-1.3.2.js"></script>
 <script type="text/javascript"
 src="development-bundle/ui/ui.core.js"></script>
 <script type="text/javascript"
 src="development-bundle/ui/ui.dialog.js"></script>
 <script type="text/javascript"
 src="development-bundle/ui/ui.draggable.js"></script>
 <script type="text/javascript"
 src="development-bundle/ui/ui.resizable.js"></script>
 <script type="text/javascript">
 $(function(){

 var dialogOpts = {
 open: function() {

 $("#status").find(".ui-widget-content").text("The dialog
 is open");
 },
 close: function() {

 $("#status").find(".ui-widget-content").text("The dialog
 is closed");
 },
 beforeclose: function() {

 if (parseInt($(".ui-dialog").css("width")) == 300 ||
 parseInt($(".ui-dialog").css("height")) == 300) {
 return false
 }
 }
 };

 $("#myDialog").dialog(dialogOpts);
 });
 </script>
 </body>
</html>

Chapter 5

[115]

Save this as dialog13.html. The page contains a new status box which will be used
to report whether the dialog is open or closed. We've given the elements that make
up the status box several CSS framework classes to make it fit with the theme in use
and to cut down on the amount of styling we need to worry about.

Our configuration object uses the open, close, and beforeclose options to specify
simple callback functions. The open and close callbacks simply set the text of the
status box accordingly. The beforeclose callback that is fired after the close button
on the dialog has been clicked but before it is actually closed, is used to determine
whether or not to close the dialog.

We use a simple if statement to check the width and height of the dialog; if the
dialog has not been resized we return false from the callback and the dialog
remains open. This kind of behavior is of course a big no in terms of usability, but
it does serve to highlight how we can use the beforeclose callback to prevent the
dialog being closed.

We also use a custom stylesheet for this example. It's simple and contains the
following rules:

#status { width:200px; }
#status .ui-widget-header {
 font-family:Georgia; padding:5px;
}
#status .ui-widget-content { font-size:12px; padding:5px; }

Save this as dialogTheme.css in the css folder. When the page loads and the dialog
is opened (as it is by default), the open callback will be executed and the status box
should display a message as shown in the following screenshot:

The Dialog

[116]

One thing I should make clear is that the dialog widget only passes a single object
(the original event object) to the callback functions. It does not pass the second ui
object in version 1.7 (the current version at the time of writing). The second object
will be introduced in version 1.8 of the library.

Controlling a dialog programmatically
The dialog requires few methods in order to function. The full list of the methods we
can call on a dialog is as follows:

Method Used to
close Close or hide the dialog.
destroy Permanently disable the dialog. The destroy

method for a dialog works in a slightly different
way than it does for the other widgets we've seen
so far. Instead of just returning the underlying
HTML to its original state, the dialog's destroy
method also hides it.

disable Temporarily disable the dialog.
enable Enable the dialog if it has been disabled.
isOpen Determine whether a dialog is open or not.
moveToTop Move the specified dialog to the top of the stack.
open Open the dialog.
option Get or set any configurable option after the dialog

has been initialized.

Toggling the dialog
We first take a look at opening the widget, which can be achieved with the simple
use of the open method. Let's revisit dialog3.html in which the autoOpen option
was set to false, so the dialog did not open when the page was loaded. Add the
following <button> to the page:

<button id="toggle">Toggle dialog!</button>

Then add the following click-handler directly after the dialog's widget method:

$("#toggle").click(function() {
 ($("#myDialog").dialog("isOpen") == false) ?
 $("#myDialog").dialog("open") : $("#myDialog").dialog("close") ;
});

Chapter 5

[117]

Save this file as dialog14.html. To the page we've added a simple <button> that
can be used to either open or close the dialog depending on its current state. In
the <script> element, we've added a click handler for the <button> that uses the
JavaScript ternary conditional to check the return value of the isOpen method. If
it returns false, the dialog is not open so we call its open method else we call the
close method instead.

The open and close methods both trigger any applicable events, for example, the
close method fires first the beforeclose and then the close events. Calling the
close method is analogous to clicking the close button on the dialog.

Getting data from the dialog
Because the widget is a part of the underlying page, passing data to and from it is
simple. The dialog can be treated as any other standard element on the page. Let's
look at a basic example.

We looked at an example earlier in the chapter which added some <button>
elements to the dialog. The callback functions in that example didn't do anything, but
this example gives us the opportunity to use them. Add the following code above the
<script> tags in dialog14.html.

 <p>Please answer the opinion poll:</p>
 <div id="myDialog" title="Best Widget Library">
 <p>Is jQuery UI the greatest JavaScript widget library?</p>
 <label for="yes">Yes!</label><input type="radio" id="yes"
 value="yes" name="question" checked="checked">

 <label for="no">No!</label><input type="radio" id="no"
 value="no" name="question">
 </div>
 <script type="text/javascript" src="development-bundle/jquery-

1.3.2.js"></script>

Now change the final <script> element to as follows:

<script type="text/javascript">
 $(function(){

 var execute = function(){

 var answer;
 $("input").each(function(){
 (this.checked == true) ? answer = $(this).val() : null;	
 });
 $("<p>").text("Thanks for selecting " +
 answer).appendTo($("body"));
 $("#myDialog").dialog("close");

The Dialog

[118]

 }

 var cancel = function() {
 $("#myDialog").dialog("close");
 }

 var dialogOpts = {
 buttons: {
 "Ok": execute,
 "Cancel": cancel
 }
 };

 $("#myDialog").dialog(dialogOpts);
 });
</script>

Save this as dialog15.html. Our dialog widget now contains a set of radio buttons,
<label> elements, and some text. The purpose of the example is to get the result of
which radio is selected, and then do something with it when the dialog closes.

We start the <script> by filling out the execute function that will be attached as the
value of the Ok property in the buttons object later in the script. It will therefore be
executed each time the Ok button is clicked.

In this function we use jQuery's each() method to look at both of the radio buttons
and determine which one is selected. We set the value of the answer variable to the
radio button's value and then created a short message along with appending it to the
<body> of the page. The callback mapped to the Cancel button is simple, all we do is
close the dialog using the close method.

The following screenshot shows how the page should appear once a radio button has
been selected and the Ok button has been clicked:

Chapter 5

[119]

The point of this trivial example was to see that getting data from the dialog is as
simple as getting data from any other component on the page.

Dialog interoperability
In previous chapters we've combined several widgets so that we can see how well
they work together and this chapter will be no exception. We can easily place other
UI widgets into the dialog, such as the accordion widget that we looked at in the last
chapter. In a new file in your text editor create the following page:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/
TR/html4/strict.dtd">
<html lang="en">
 <head>
 <link rel="stylesheet" type="text/css"
 href="development-bundle/themes/smoothness/ui.all.css">
 <meta http-equiv="Content-Type" content="text/html;
 charset=utf-8">
 <title>jQuery UI Dialog Example 17</title>
 </head>
 <body>
 <div id="myDialog" title="An Accordion Dialog">
 <div id="myAccordion">
 <h2>Header 1</h2><div>Lorem ipsum dolor sit
 amet, consectetuer adipiscing elit. Aenean
 sollicitudin.</div>
 <h2>Header 2</h2><div>Etiam tincidunt est
 vitae est. Ut posuere, mauris at sodales rutrum,
 turpis.</div>
 <h2>Header 3</h2><div>Donec at dolor ac metus
 pharetra aliquam. Suspendisse purus.</div>
 </div>
 </div>
 <script type="text/javascript"
 src="development-bundle/jquery-1.3.2.js"></script>
 <script type="text/javascript"
 src="development-bundle/ui/ui.core.js"></script>
 <script type="text/javascript"
 src="development-bundle/ui/ui.dialog.js"></script>
 <script type="text/javascript"
 src="development-bundle/ui/ui.draggable.js"></script>
 <script type="text/javascript"
 src="development-bundle/ui/ui.resizable.js"></script>
 <script type="text/javascript"
 src="development-bundle/ui/ui.accordion.js"></script>
 <script type="text/javascript">
 $(function(){

The Dialog

[120]

 $("#myDialog").dialog();
 $("#myAccordion").accordion();
 });
 </script>
 </body>
</html>

Save this file as dialog16.html. The underlying markup for the accordion widget is
placed into the dialog's container element, and we just call each component's widget
method in the <script>. The combined widget should appear like this:

A dynamic image-based dialog
The class behind the dialog widget is compact and caters to a small range of
specialized behavior, much of which we have already looked at. We can still have
some fun with a dynamic dialog box, which loads different content depending on
which element triggers it. The following image shows the kind of page we'll end
up with:

Chapter 5

[121]

In a new page in your text editor add the following code:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/
TR/html4/strict.dtd">
<html lang="en">
 <head>
 <link rel="stylesheet" type="text/css"
 href="development-bundle/themes/smoothness/ui.all.css">
 <link rel="stylesheet" type="text/css" href="css/ajaxDialog.css">
 <meta http-equiv="Content-Type" content="text/html;

The Dialog

[122]

 charset=utf-8">
 <title>jQuery UI AJAX Dialog Example</title>
 </head>
 <body>
 <div id="thumbs">
 <div class="ui-widget-header">
 <h2>Some Common Flowers</h2>
 </div>
 <p>(click a thumbnail to view a full-size image)</p>
 <div class="thumb ui-helper-clearfix ui-widget-content">
 <a href="img/dialog/flowers/fullsize/helianthus_annuus.jpg"
 title="Helianthus annuus"><img
 src="img/dialog/flowers/thumbs/helianthus_annuus.jpg"
 alt="Helianthus annuus">
 <h3>Helianthus annuus</h3>
 <p>Sunflowers (Helianthus annuus) are annual plants native to
 the Americas, that possess a large flowering head</p>
 </div>
 <div class="thumb ui-helper-clearfix ui-widget-content">
 <a href="img/dialog/flowers/fullsize/lilium_columbianum.jpg"
 title="Lilium columbianum"><img
 src="img/dialog/flowers/thumbs/lilium_columbianum.jpg"
 alt="Lilium columbianum">
 <h3>Lilium columbianum</h3>
 <p>The Lilium columbianum is a lily native to western North
 America. It is also known as the Columbia Lily or Tiger
 Lily</p>
 </div>
 <div class="thumb ui-helper-clearfix ui-widget-content">
 <a
 href="img/dialog/flowers/fullsize/myosotis_scorpioides.jpg"
 title="Myosotis scorpioides"><img
 src="img/dialog/flowers/thumbs/myosotis_scorpioides.jpg"
 alt="Myosotis scorpioides">
 <h3>Myosotis scorpioides</h3>
 <p>The Myosotis scorpioides, or Forget-me-not, is a
 herbaceous perennial plant of the genus Myosotis.</p>
 </div>
 <div class="thumb ui-helper-clearfix ui-widget-content last">
 <a href="img/dialog/flowers/fullsize/nelumbo_nucifera.jpg"
 title="Nelumbo nucifera"><img
 src="img/dialog/flowers/thumbs/nelumbo_nucifera.jpg"
 alt="Nelumbo nucifera">
 <h3>Nelumbo nucifera</h3>
 <p>Nelumbo nucifera is known by a number of names including
 Indian lotus, sacred lotus, bean of India, or simply

Chapter 5

[123]

lotus.</p>
 </div>
 </div>
 <div id="ajaxDialog"></div>
 <script type="text/javascript"
 src="development-bundle/jquery-1.3.2.js"></script>
 <script type="text/javascript"
 src="development-bundle/ui/ui.core.js"></script>
 <script type="text/javascript"
 src="development-bundle/ui/ui.dialog.js"></script>
 <script type="text/javascript"
 src="development-bundle/ui/ui.draggable.js"></script>
 </body>
</html>

Save this file as ajaxDialog.html. The page is relatively straightforward—we've got
an outer container which encloses everything and an element which we've given the
class name ui-widget-header. We've used the latter in order to pick up some of the
default styling from the theme in use.

Following this we have some explanatory text followed by a series of containers.
Several class names are given to these container, some of which are so that we
can style them, and others (such as ui-helper-clearfix) in order to pick up
framework or theme styles.

Within each of these containers is an image wrapped in an anchor, a subheading,
and some descriptive text. After the outer container comes the empty <div> element,
which will form the basis of our dialog. We don't use the Resizable component in this
example as this behavior is not required.

Each of the thumbnail images is wrapped in a link in order for the page to function
even with JavaScript disabled. The dialog widget won't work in this situation but
the visitor will still be able to see a full-sized version of each image. Progressive
enhancement such as this is essential is this kind of application.

Now add the following <script> block directly before the closing </body> tag:

<script type="text/javascript">
 $(function(){

 var filename, titleText;

 var dialogOpts = {
 modal: true,
 width: 388,
 height: 470,
 autoOpen: false,

The Dialog

[124]

 open: function() {

 $("#ajaxDialog").empty();
 $("").attr("src", filename).appendTo("#ajaxDialog");

 $("#ajaxDialog").dialog("option", "title", titleText);
 }
 };

 $("#ajaxDialog").dialog(dialogOpts);

 $("#thumbs").find("a").click(function(e) {

 filename = $(this).attr("href");
 titleText = $(this).attr("title");

 $("#ajaxDialog").dialog("open");

 e.preventDefault();
 });
 });
</script>

The first thing we do is define two variables, which we'll use to add the path to the
full-sized image of whichever thumbnail was clicked to the dialog's inner content
area, and store the image title to use as the text for the widget's title. We then add
the configuration object for the dialog. We've seen all of these properties in action
already so I won't go over most of them in much detail.

The open callback, called directly before the dialog is opened, is where we add the
full-sized image to the dialog. We first create a new element and set its src
to the value of the filename variable. The new is then appended to the inner
content area of the dialog.

We then use the option method to set the title option to the value of the
titleText variable. Once the open callback has been defined we then call the
dialog's widget method as normal.

We can use the wrapper <a> elements as the triggers to open the dialog. Within our
click-handler, we set the contents of our two variables using the href and title
attributes. We then call the dialog's open method to display the dialog.

We'll also need a new stylesheet for this example. In a new page in your text editor,
add the following code:

#thumbs {
 width:342px; background-color:#eeeeee; border:1px solid
 #cccccc; padding:10px 0 10px 10px;
}
#thumbs p {
 font-family:Verdana; font-size:9px; width:330px;
 text-align:center;
}
.thumb {

Chapter 5

[125]

 width:310px; height:114px; border:1px solid #cccccc;
 border-bottom:none; padding:10px;
}
.last { border-bottom:1px solid #cccccc; }
.thumb img {
 float:left; margin-right:10px; cursor:pointer;
 border:1px solid #cccccc;
}
.thumb h3 { margin:0; float:left; width:198px; }
#thumbs .thumb p {
 margin:0; font-family:Verdana; font-size:13px;
 text-align:left; width:310px;
}
#thumbs .ui-widget-header { width:330px; text-align:center; }
.ui-dialog-titlebar { text-transform:capitalize; }

Many of these styles have been used in previous examples, but adding some new
rules for the other page elements lets us see the dialog in real-world context. Save
this as ajaxDialog.css in the css folder. This should now give us the page that we
saw in the previous screenshot and when a thumbnail is clicked, the full size version
of the same image will be displayed:

The Dialog

[126]

Summary
The dialog widget is specialized and caters to the display of a message or question
in a floating panel that sits above the page content. Advanced functionality such as
draggability and resizability, are directly built-in, and features such as the excellent
modality and overlay are easy to configure.

We started out by looking at the default implementation, which is as simple as it
is with the other widgets we have looked at so far. However, there are several
optional components that can also be used in conjunction with the dialog, such
as the draggables and resizable components.

We also examined the range of configurable options exposed by the dialog's API. We
can make use of them to enable or disable built-in behavior such as modality or set
the dimensions of the widget. It also gives us a wide range of callbacks that allow us
to hook into custom events fired by the widget during an interaction.

We then took a brief look at the built-in opening and closing effects that can be used
with the dialog, before moving on to see the basic methods we can invoke in order to
make the dialog do things, such as open or close.

Slider
The slider component allows us to implement an engaging and easy-to-use widget
that our visitors should find attractive and intuitive to use. Its basic function is
simple. The slider background represents a series of values that are selected by
dragging the thumb along the background.

Before we roll up our sleeves and begin creating a slider, let's look at the
different elements that it is made from. The following screenshot shows a
typical slider widget:

slider track slider handle

It's a simple widget, as you can see, comprised of just two main elements—the
slider handle, also called the thumb, and the slider background, also called the
track. In this chapter, we will cover the following topics:

The default slider implementation
Custom styling for sliders
Changing configuration options
Creating a vertical slider
Setting minimum, maximum, and default values
Enabling multiple handles and ranges
The slider's built-in event callbacks
Slider methods

•

•

•

•

•

•

•

•

Slider

[128]

Implementing a slider
Creating the default, basic slider takes no more code than any of the other widgets we
have looked at so far. The underlying HTML markup required is also minimal. Let's
create a basic one now. In a new page in your text editor, add the following code:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
 "http://www.w3.org/TR/html4/strict.dtd">
<html lang="en">
 <head>
 <link rel="stylesheet" type="text/css"
 href="development-bundle/themes/smoothness/ui.all.css">
 <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
 <title>jQuery UI Slider Example 1</title>
 </head>
 <body>
 <div id="mySlider"></div>
 <script type="text/javascript"
 src="development-bundle/jquery-1.3.2.js"></script>
 <script type="text/javascript"
 src="development-bundle/ui/ui.core.js"></script>
 <script type="text/javascript"
 src="development-bundle/ui/ui.slider.js"></script>
 <script type="text/javascript">
 $(function(){

 $("#mySlider").slider();
 });
 </script>
 </body>
</html>

Save this file as slider1.html and view it in your browser. On the page is a simple
container element; this will be transformed by the widget into the slider track. In
the <script> at the end of the <body> we select this element and call the slider
method on it. The <a> element that is used for the slider handle will be automatically
created by the widget.

When we run this page in a browser we should see something similar to the previous
screenshot. We've used several library resources for the default implementation,
including the following files:

ui.all.css

jquery-1.3.2.js
ui.core.js
ui.slider.js

•
•
•
•

Chapter 6

[129]

The default behavior of a basic slider is simple but effective. The thumb can be
moved horizontally along any pixel of the track on the x axis by dragging the
thumb with the mouse pointer, or using the left/down or right/up arrow keys of the
keyboard. Clicking anywhere on the track with the left or right mouse button will
instantly move the handle to that position.

Custom styling
Because of its simplicity, the slider widget is extremely easy to create a custom theme
for. Using ThemeRoller is the recommended method of theming, but to completely
change the look and feel of the widget we can easily create our own theme file; in
your text editor create the following stylesheet:

background-div {
 background:url(../img/slider/slider_outerbg.gif) no-repeat;
 height:50px; width:217px; padding:36px 0 0 24px;
}
#mySlider {
 background:url(../img/slider/slider_bg.gif) no-repeat;
 width:184px; height:23px; position:relative; left:4px;
 top:4px; border:none;
}
.ui-slider-handle {
 background:url(../img/slider/slider_handle.gif) no-repeat;
 width:14px; height:30px; top:-4px;
}

Save this file as sliderTheme.css in the css directory. Link to this file in the usual
way, after the link to ui.all.css then save the new page as slider2.html. With
a minimum of CSS and a few images (these can be found in the code download)
we can easily but considerably alter the widget's appearance, as shown in the
following screenshot:

Slider

[130]

Of course, this example is completely arbitrary and was intended purely to show
how to override the default theme.

Configurable options
Additional functionality, such as vertical sliders, multiple handles, and stepping,
can also be configured using an object literal passed into the widget method when
the slider is initialized. The options that can be used in conjunction with the slider
widget are listed in the following table:

Option Default value Usage
animate false Enables a smooth animation of the slider handle

when the track is clicked.
max 100 Sets the maximum value of the slider.
min 0 Sets the minimum value of the slider.
orientation "auto" Sets the axis that the slider thumb is moved along.

This can accept the strings vertical
or horizontal.

range false If two handles are in use this option creates a
styleable range element between them.

step 1 Sets the distance of the step the handle will take
along the track. The max value must be equally
divisible by the supplied number.

value 0 The current value of the slider thumb.
values null This option accepts an array of values, each supplied

integer will become the value of a slider handle.

Creating a vertical slider
To make a vertical slider, all we need to do is set the orientation option to true;
the widget will do the rest for us.

In slider2.html change the final <script> element so that it appears like this:

 <script type="text/javascript">
 $(function(){

 var sliderOpts = {
 orientation: "vertical"
 };	

 $("#mySlider").slider(sliderOpts);
 });
</script>

Chapter 6

[131]

Save the new file as slider3.html. We just need to set this single option to put
the slider into vertical mode. When we launch the page, we see that the slider
operates exactly as it did before, except that it now moves along the y axis, as
in the following screenshot:

The widget defaults to 100px in height if we don't provide our own CSS height rule
for the slider track.

Minimum and maximum values
By default the minimum value of the slider is 0 and the maximum value is 100,
but we can change these values easily using the min and max options. Change the
configuration object in slider3.html to this:

var sliderOpts = {
 min: -50,
 max: 50
};	

Save this as slider4.html. We simply specify the integers that we'd like set as the
starting and end values. Because the value option is set to 0 by default when we run
this file the slider thumb will start in the middle of the track:

These options affect the state of the slider handle as reported by some of the widget's
methods. For example, when the slider handle in this example is at the minimum
value, the value method (see the methods section) will return -50 as we
would expect.�

Slider

[132]

Slider steps
The step option refers to the number and position of steps along the track that the
slider's handle jumps when moving from the minimum to the maximum positions
on the track. The best way to understand how this option works is to see it in action,
so change the configuration object in slider4.html to the following:

var sliderOpts = {

 step: 25
};

Save this as slider5.html. We set the step option to 25 in this example; we
haven't set the min or max options, so they will take the default values of 0 and 100
respectively. Hence, by setting step to 25 we're saying that each step along the track
should be a quarter of the track's length because 100 (the maximum) divided by 25
(the step value) is 4. The thumb will therefore take four steps along the track from
beginning to end.

The max value of the slider should be equally divisible by whatever value we set
as the step option, other than that we're free to use whatever value we wish. This
is a useful option for confining the value selected by visitors to one of a set of
predefined values.

If we were to set the value of step option in this example to 27 instead of 25, the
slider would still work, but the points along the track that the handle stepped to
would not be equal.

Slider animation
The slider widget comes with a built-in animation that moves the slider handle
smoothly to a new position whenever the slider track is clicked. This animation is
switched off by default but we can easily enable it by setting the animate option to
true. Change the configuration object in slider5.html so that it is as follows:

var sliderOpts = {

 animate: true
}

Save this version as slider6.html. The difference this option makes to the overall
effect of the widget is extraordinary. Instead of the slider handle just moving
instantly to a new position when the track is clicked, it smoothly slides there.

If the step option is configured to a value other than one and the animate option is
enabled the thumb will slide to the nearest step mark on the track. This may mean
that the slider thumb moves past the point on the track that was clicked.�

Chapter 6

[133]

Setting the slider's value
The value option when set to true in a configuration object determines the starting
value for the slider thumb. Depending on what we want the slider to represent, the
starting value of the handle may not be 0. If we wanted to start at half way across the
track instead of at the beginning, we could use the following configuration object:

var sliderOpts = {

 value: 50
}

Save this file as slider7.html. When the file is loaded in a browser, we see that the
handle starts halfway along the track instead of at the beginning, exactly as it did
when we set the min and max options earlier on. We can also set this option after
initialization to programmatically select a new value.

Using multiple handles
I mentioned earlier that a slider may have multiple handles; adding additional
handles can be done using a single option—the values option. It accepts an array
where each item in the array is a starting point for a handle. We can specify as many
items as we wish up to the max value (taking step into account).

var sliderOpts = {

 values: [25, 75]
};

Save this variation as slider8.html. This is all we need to do; we don't need to
supply any additional underlying markup; the widget has created both new handles
for us and, as you'll see, they both function exactly as a standard single handle does.
The following screenshot shows our dual-handled slider:

Slider

[134]

The range element
When working with multiple handles, we can set the range option to true. This
adds a styled range element between two handles. In slider8.html supply the
following configuration object:

var sliderOpts = {
 values: [25, 75],
 range: true
};

Save this page as slider9.html. When the page loads we should see that a styled
<div> element now connects our two handles, as in the following screenshot:

A maximum of two handles can be used in conjunction with the range option, but
we can also enable it with a single handle as well; change the configuration object in
the previous example to this:

var sliderOpts = {
 range: "min"
};

Save this as slider10.html. As well as the Boolean value true, we can also supply
one of the string values "min" or "max", but only when a single handle is in use.

In this example, we set it to "min" so when we move the slider handle along the
track the range element will stretch from the start of the track to the slider handle.
If we set the option to "max" the range will stretch from the end of the track to
the handle.�

Using slider's event API
In addition to the options we saw earlier, there are an additional four options that
can be used to define functions which are executed at different times during a slider
interaction. Any callback functions we use are automatically passed the standard
event object and an object representing the slider. The following table lists the event
options we can use with slider:�

Chapter 6

[135]

Function Usage
change Called when the slider handle stops and its value has changed.
slide Called every time the slider handle moves.
start Called when the slider handle starts moving.
stop Called when the slider handle stops.

Hooking into these built-in callback functions is extremely easy. Let's put a basic
example together to see. Change the configuration object in slider10.html so that it
appears as follows:

var sliderOpts = {

 start: function() {
		
 $("#tip").fadeOut(function() {
 $(this).remove();
 });
 },
 change: function(e, ui) {
		
 $("<div>").attr("id", "tip").text(ui.value + "%").css({
 left: e.clientX - 35, top: -40 }).addClass(
 "ui-widget-header ui-corner-all").appendTo("#mySlider");
 }
};

Save this as slider11.html. We use two of the callback options in this
example—start and change. In the start function we select the tooltip element
if it exists and fade it out with jQuery's fadeOut() method. Once hidden from
view, it is removed from the page.

The change function will be executed each time the value of the slider handle
changes; when the function is called we create the tooltip and append it to the slider.
We position it so that it appears above the center of the slider handle and give it
some of the framework class names in order to style it with the theme in use.

In several places we use the second object pass to the callback function, the prepared
ui object that contains useful information from the slider. In this example we use the
value option of the object to obtain the new value of the slider handle.

Slider

[136]

We also need a very small custom stylesheet for this example; in a new page in your
text editor add the following code:

#mySlider { margin:60px auto 0; }
#tip {
 position:absolute; display:inline; padding:5px 0;
 width:50px; text-align:center; font:bold 11px Verdana;
}

Save this file as sliderTip.css in the css folder and link to it from the <head> of
slider11.html. When displayed, our tooltip should appear like this:

When all of the event options are used the callback will be executed in the
following order:

start

slide

stop

change

The slide callback can be quite an intensive event as it is fired on every mouse
move while the handle is selected, but it can also be used to prevent a slide in certain
situations by returning false from the callback function. When using the stop and
change callbacks together, the change callback may override the stop callback.

As with all library components each of these events can also be used with
jQuery's bind() method by prepending the word slider to the event name,
for example sliderstart.

•
•
•
•

Chapter 6

[137]

Slider methods
The slider is intuitive and easy-to-use, and like the other components in the library
it comes with a range of methods that are used to programmatically control the
widget after it has been initialized. The methods we can use are shown in the
following table.

Method Usage
value Set a single slider handle to a new value. This will move

the handle to the new position on the track automatically.
This method accepts a single argument which is an integer
representing the new value.

values Set the specified handle to move to a new value when multiple
handles are in use.This method is exactly the same as the value
method except that it takes two arguments—the index number of
the handle followed by the new value.

The methods destroy, disable, enable, and option are common to all components
and work in the same way with slider that we would expect them to.

The value and values methods are exclusive to the slider and are used to get or
set the value of single or multiple handles. Of course, we can also do this using the
option method so these two methods are merely shortcuts to cater for common
implementational requirements. Let's take a look at them in action. First of all let's
see how the value method can be used.

In slider11.html remove the <link> to sliderTip.css and add a new <button>
element to the page directly after the slider container:

<button id="setMax">Set to max value</button>

Now change the final <script> element so that it is as follows:

<script type="text/javascript">
 $(function(){

 $("#mySlider").slider();

 $("#setMax").click(function() {

 var maxVal = $("#mySlider").slider("option", "max");

 $("#mySlider").slider("value", maxVal);
 });		
 });
</script>

Slider

[138]

Save this file as slider12.html. We add a click handler for our new <button>;
whenever it is clicked this method will first determine what the maximum value for
the slider is by setting a variable to the result of the option method specifying max as
the option we'd like to get. We don't need a configuration object in this example.

Once we have the maximum value we then call the value method, passing in the
variable that holds the maximum value as the second argument; our variable will
be used as the new value. Whenever the button is clicked, the slider handle will
instantly move to the end of the track.

Working with multiple handles is just as easy but involves a slightly different
approach; remove the setMax button in slider12.html and add these two
buttons directly after the slider container:

<button class="preset" id="low">Preset 1 (low)</button>

<button class="preset" id="high">Preset 2 (high)</button>

Now change the final <script> element at the end of the <body> to this:

<script type="text/javascript">
 $(function(){

 var sliderOpts = {
 values: [25, 75]
 };

 $("#mySlider").slider(sliderOpts);

 $(".preset").click(function() {

 if ($(this).attr("id") === "low") {
 $("#mySlider").slider("values", 0, 0);
 $("#mySlider").slider("values", 1, 25);
 } else {
 $("#mySlider").slider("values", 0, 75);
 $("#mySlider").slider("values", 1, 100);
 }	
 });		
 });
</script>

Save this file as slider13.html. To trigger multiple handles we specify the values
of two handles in our configuration object. When either of the two <button>
elements on the page are clicked, we work out which button was clicked and
then set the handles to either low values or high values depending on which
button was clicked.

Chapter 6

[139]

The values method takes two arguments. The first argument is the index number of
the handle we'd like to change and the second argument is the value that we'd like
the handle to be set to. Notice that we have to set each handle individually and that
we can't chain the two methods together. This is because the method returns the new
value and not a jQuery object.

The following screenshot shows how the page should appear after the second button
is clicked:

Future uses
The next specification of HTML is looming before us, with newer browsers, such
as Firefox 3.5 beginning to implement more and more of the specification. One
new element that may lend itself particularly well to implementations of the slider
widget is the <audio> (and potentially the <video>) element. This element will
automatically add controls that enable the visitor to play, pause, and adjust the
volume of the media being played.

The default controls however, at this point anyway, do not appear to be style-able,
so if we wish to change their appearance, we need to create our own controls.
The slider widget would of course make an excellent substitution for the default
volume control.

This next example should be considered highly experimental, and will, at the time of
writing, work only in Firefox 3.5. Create the following new page in your text editor:

<!DOCTYPE HTML>
<html lang="en">
 <head>
 <link rel="stylesheet" type="text/css"
 href="development-bundle/themes/smoothness/ui.all.css">
 <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
 <title>jQuery UI Slider Example 14</title>
 </head>
 <body>

Slider

[140]

 <audio id="audio" src="http://upload.wikimedia.org/wikipedia/
 en/7/77/Jamiroquai_-_Snooze_You_Lose.ogg">
 Your browser does not support the <code>audio</code>
 element.
 </audio>
 <div id="volume"></div>
 <script type="text/javascript"
 src="development-bundle/jquery-1.3.2.js"></script>
 <script type="text/javascript"
 src="development-bundle/ui/ui.core.js"></script>
 <script type="text/javascript"
 src="development-bundle/ui/ui.slider.js"></script>
 <script type="text/javascript">
 $(function(){
		

 var audio = $("audio")[0];
		

 audio.volume = 0.5;
	 audio.play();
		

 var sliderOpts = {
 value: 5,
		 min: 0,
		 max: 10,
		 step: 1,
		 orientation: "vertical",
		 change: function() {
		

		 var vol = $(this).slider("value") / 10;
		

		 audio.volume = vol;
		 }
 };
		

 $("#volume").slider(sliderOpts);
 });
 </script>
 </body>
</html>

Save this as slider14.html. On the page we have the <audio> ������������������ tag which has its src
attribute set to a copyright-free audio clip hosted on Wikipedia. We also have the
empty container element for our volume control.

In the script we first select the <audio> �� element using the standard jQuery syntax.
Then we set the volume of the audio clip using the volume property and begin
playing the clip immediately with the play() �������method.

Chapter 6

[141]

Next we configure our slider; the volume range for the <audio> element is from 0.1
to 1 but we can't use these values in the slider so we instead we use the range 1 to 10.
We use the change method to alter the volume of the audio. Whenever the value of
the slider is changed we get the new value and convert it to the required format for
the volume option by dividing it by 10.

When we run this example in a supporting browser, the only thing visible on
the page will be the volume slider, but we should also be able to hear the audio
clip. Whenever the slider handle is moved, the volume of the clip should increase
or decrease.

In a proper real-world implementation of this example we would probably provide
a standard flash video solution for cases when browsers that don't support the
<audio> tag are used.

A color slider
A fun implementation of the slider widget, which could be very useful in certain
applications, is the color slider. Let's put what we've learned about this widget into
practice to produce a basic color choosing tool. The following screenshot shows the
page that we'll be making:

In a new file in your text editor, create the following page:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/
TR/html4/strict.dtd">
<html lang="en">
 <head>
 <link rel="stylesheet" type="text/css"
 href="development-bundle/themes/smoothness/ui.all.css">
 <link rel="stylesheet" type="text/css"
 href="css/colorSliderTheme.css">

Slider

[142]

 <meta http-equiv="Content-Type" content="text/html;
 charset=utf-8">
 <title>jQuery UI Color Slider Example</title>
 </head>
 <body>
 <div id="container" class="ui-corner-all ui-widget-content
 ui-helper-clearfix">
 <label>R:</label><div id="rSlider"></div>

 <label>G:</label><div id="gSlider"></div>

 <label>B:</label><div id="bSlider"></div>
 <div id="colorBox" class="ui-corner-all ui-widget-
 content"></div>
 <input id="output" type="text" value="rgb(255,255,255)">
 <label id="outputLabel">Color value:</label>
 </div>
 <script type="text/javascript"
 src="development-bundle/jquery-1.3.2.js"></script>
 <script type="text/javascript"
 src="development-bundle/ui/ui.core.js"></script>
 <script type="text/javascript"
 src="development-bundle/ui/ui.slider.js"></script>
 <script type="text/javascript">

 $(function(){

 var r = 255,
 g = 255,
 b = 255,
		 rgbString;

 var sliderOpts = {
		 min:0,
 max: 255,
		 value: 255,
 slide: function(e, ui) {

 r = $("#rSlider").slider("value");
 g = $("#gSlider").slider("value");
 b = $("#bSlider").slider("value");
 rgbString = "rgb(" + r + "," + g + "," + b + ")";

 $("#colorBox").css({ backgroundColor: rgbString });

 $("#output").val(rgbString);
 }
 };

 $("#rSlider, #gSlider, #bSlider").slider(sliderOpts);
 });
 </script>
 </body>
</html>

Chapter 6

[143]

Save this as colorSlider.html. The page itself is simple enough. We've got
some elements used primarily for displaying the different components of the color
slider, as well as the individual container elements which will be transformed into
slider widgets. We use three sliders for our color chooser, one for each RGB channel.

We give various elements, like the container and color box elements, class
names from the CSS framework so that we can take advantage of effects like the
rounded corners, and so that we can cut down on the amount of CSS we need to
write ourselves.

The JavaScript is as simple as the underlying markup. We set some variables equal to
the maximum value of each RGB channel and define the colorString variable here
as well. All of these variables will be updated when the widget is used.

As RGB color values range from 0 to 255, we set the max option to 255 in our
configuration object. The color box will have a white background when the page
loads so setting the value initially of each slider to 255 makes sense. We also set the
value option to 255 as well so that the widget handles start in the correct location.

The slide callback is where the action happens. Every time a handle is moved
we update each of the r, g, and b variables by using the value method in getter
mode, and then construct a new RGB string from the values of our variables. This is
necessary as we can't pass the variables directly into jQuery's css() method. We also
update the value in the <input> field.

We'll need some CSS as well to complete the overall appearance of our widget. In a
new page in your text editor, create the following stylesheet:

#container {
 width:426px; height:150px; position:relative;
 font:bold 13px Georgia; padding:20px 20px 0;
 background:#eeeeee;
}
#container label {
 float:left; text-align:right; margin:0 30px 26px 0;
 clear:left;
}
.ui-slider { width:240px; float:left; }
.ui-slider-handle { width:15px; height:27px; }
#colorBox {
 width:104px; height:94px; float:right; margin:-83px 0 0 0;
 background:#ffffff;
}
#container #outputLabel {
 float:right; margin:-14px 10px 0 0;

Slider

[144]

}
#output {
 width:100px; text-align:center; float:right; clear:both;
 margin-top:-17px;
}

Save this as colorSliderTheme.css in the css folder. When we run the example,
we should find that everything works as expected; as soon as we start moving any
of the slider handles the color box begins to change color and the <input> updates:

Summary
In this chapter, we looked at the slider widget and saw how quickly and easily it can
be put on the page. It requires minimal underlying markup and just a single line of
code to initialize.

We looked at the different options that we can set in order to control how the slider
behaves and how it is configured once it's initialized. It can be fine-tuned to suit a
range of implementations.

We also saw the rich event model that can easily be hooked into, and reacted to, with
up to four separate callback functions. This allows us to execute code at important
times during an interaction.

Finally, we looked at the range of methods that can be used to programmatically
interact with the slider, including methods for setting the value of the handle(s), or
getting and setting configuration options after initialization.

These options and methods turn the widget into a useful and highly functional
interface tool that adds an excellent level of interactivity to any page.

Datepicker
The jQuery UI datepicker widget is probably the most refined and documented
widget found in the library. It has the biggest API and probably provides the most
functionality out of all the widgets. It works completely out of the box but is also
highly configurable and robust.

Quite simply, the datepicker widget provides an interface that allows visitors to your
site or application to select dates. Wherever a form field is required that asks for a
date to be entered, the datepicker widget can be added. This means your visitors get
to use an attractive, engaging widget and you get dates in the format in which you
expect them. It's easy for everyone, and that's the attraction.

Additional functionality built into the datepicker includes automatic opening and
closing animations along with the ability to navigate the interface of the widget using
the keyboard. While holding down the Ctrl key (or Command key on the Mac), the
arrows on the keyboard can be used to choose a new day cell, which can then be
selected using the Return key.

While easy to create and configure, the datepicker is a complex widget made up of a
wide range of underlying elements, as the following screenshot shows:

Datepicker

[146]

Despite this complexity, we can implement the default datepicker with just a single
line of code, much like the other widgets in the library that we have covered so far.
In this section, we will look at the following topics:

The default datepicker implementation
Exploring the configurable options
Implementing a trigger button
Configuring alternative animations
The dateFormat option
Easy internationalization
Multiple month datepickers
Date range selection
Datepicker's methods
Using AJAX with the datepicker

The default datepicker
To create the default datepicker add the following code to a new page in your
text editor:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
 "http://www.w3.org/TR/html4/strict.dtd">
<html lang="en">
 <head>
 <link rel="stylesheet" type="text/css"
 href="development-bundle/themes/smoothness/ui.all.css">
 <meta http-equiv="Content-Type"
 content="text/html; charset=utf-8">
 <title>jQuery UI Datepicker Example 1</title>
 </head>
 <body>
 <label>Enter a date: </label><input id="date">
 <script type="text/javascript"
 src="development-bundle/jquery-1.3.2.js"></script>
 <script type="text/javascript"
 src="development-bundle/ui/ui.core.js"></script>
 <script type="text/javascript"
 src="development-bundle/ui/ui.datepicker.js"></script>
 <script type="text/javascript">
 $(function(){

 $("#date").datepicker();
 });
 </script>
 </body>
</html>

•
•
•
•
•
•
•
•
•
•

Chapter 7

[147]

Save this as datePicker1.html in the jqueryui project folder. All we have on the
page is a <label> and a standard text <input> element. We don't need to specify
any empty container elements for the datepicker widget to be rendered into. All of
the markup required to produce the widget is automatically added by the library.

The JavaScript required is equally simple. We use the $(function(){ }); jQuery
construct to execute some code when the page loads. The code that we execute is
the datepicker method, which is called on a jQuery object representing the
<input> field.

When you run the page in your browser and focus on the <input> element, the
default datepicker should appear below the input and will look like the screenshot at
the start of the chapter. Along with an <input>, the datepicker can also be attached
to a <div> element.

Apart from great looks, the default datepicker also comes with a lot of built-in
functionality. When the calendar opens, it is smoothly animated from zero to
full size, it will automatically be set to the present date, and selecting a date will
automatically add the date to the <input> and close the calendar (again with a
nice animation).

With no additional configuration, and a single line of code, we now have a perfectly
usable and attractive widget that makes date selection easy. If all you want is to let
people pick a date then this is all you need. The source files required for the default
datepicker implementation are:

jquery-1.3.2.js

ui.core.js

ui.datepicker.js

•

•

•

Datepicker

[148]

Configurable options of the picker
The datepicker has a large range of configurable options (currently thirty-nine to be
exact). The following table lists the basic options, their default values, and gives a
brief description of their usage.

Option Default value Usage
altField "" Specify a CSS selector for an alternative

<input> field to which the selected date
is also added.

altFormat "" Specify an alternative format for the date
added to the alternative <input>. See the
dateFormat option below for clarification
on the value this option takes.

appendText "" Add text after the datepicker <input> to
show the format of the selected date.

buttonImage "" Specify a path to the image to use for the
trigger <button>.

buttonImageOnly false Set to true to use an image instead of a
trigger button.

buttonText "..." Text to display on a trigger <button>
(if present).

changeMonth false Show the month change drop-down.
changeYear false Show the year change drop-down.
constrainInput true Constrains the <input> to the format of

the date specified by the widget.
dateFormat "mm/dd/yy" The format selected dates should appear

in the <input>.
defaultDate null Set the date that will be highlighted when

the datepicker opens and the <input>
is empty.

duration "normal" Set the speed at which the datepicker
opens.

gotoCurrent false Set the current day link to move the
datepicker to the currently selected date
instead of today.

hideIfNoPrevNext false Hide the prev/next links when not
needed instead of disabling them.

maxDate null Set the maximum date that can be
selected. Accepts a date object, a relative
number. Example: +7, or a string such
as "+6m".

Chapter 7

[149]

Option Default value Usage
minDate null Set the minimum date that can be

selected. Accepts a number, date object,
or string.

navigationAsDateFormat false Allows us to specify month names as the
Prev, Next, and Current links.

numberOfMonths 1 Set the number of months shown on a
single datepicker.

shortYearCutoff "+10" This is used to determine the current
century when using the y year
representation; numbers less than this are
deemed to be in the current century.

showAnim "show" Set the animation used when the
datepicker is displayed.

showButtonPanel false Shows a panel of buttons for the
datepicker consisting of Close and
Current links.

showCurrentAtPos 0 Set the position of the current month in
multiple-month datepickers.

showOn "focus" Set the event that triggers displaying the
datepicker.

showOptions {} An object literal containing options to
control the configured animation.

showOtherMonths false Show the last and first days of the
previous and next months.

stepMonths 1 Set how many months are navigated with
the previous and next links.

yearRange "-10:+10" Specify the range of years in the year
drop-down.

Basic Options
Change the final <script> element in datepicker1.html to this:

<script type="text/javascript">
 $(function(){

 var pickerOpts = {
 appendText: "mm/dd/yy",
 defaultDate: "+5",
 showOtherMonths: true
 };

 $("#date").datepicker(pickerOpts);
 });
</script>

Datepicker

[150]

Save this as datePicker2.html. The following image shows how the widget will
look after configuring these options:

We've used a number of options in this example because there are simply so many
options available—the appearance of the initial page, before the datepicker is even
shown, can be changed using the appendText option. This adds the specified text
string directly after the <input> field which is associated with the picker. This helps
visitors to clarify the format that will be used for the date.

For styling purposes, we can target this new string using the .ui-datepicker-
append selector in a stylesheet if necessary, as this is the class name that is given
automatically to the element containing the specified text.

The defaultDate option sets which date is highlighted in the datepicker when
it opens initially and the <input> is empty. We've used the relative +5 string in
this example so when the datepicker opens initially, the date five days from the
current date is selected. Pressing the Enter key on the keyboard will select the
highlighted date. Along with a relative string, we can also supply null as the
value of defaultDate to set it to the current date (today subjectively), or a
standard JavaScript date object.

As we can see in the previous screenshot, the styling of the datepicker date for the
current date is different from the styling used to show the default date. This will vary
between themes but for reference, the current date is shown in a light yellow color,
while the default date has a darker border than normal dates with the default theme.

Chapter 7

[151]

Once a date has been selected, subsequent openings of the datepicker will show the
selected date as the default date, which again has different styling (a preselected date
with the Smoothness theme will be white).

By setting the showOtherMonths option to true, we've added grayed-out
(non-selectable) dates from the previous and next months to the empty squares
that sit at the beginning and end of the date grid before and after the current
month. These are visible in the previous screenshot and are rendered a much
lighter color than selectable dates.

Minimum and maximum dates
By default, the datepicker will go forward or backward infinitely, there is no upper
or lower boundaries. If we want to restrict the selectable dates to a particular range
however we can do this easily using the minDate and maxDate options. Change the
configuration object in datePicker2.html to the following:

var pickerOpts = {
 minDate: new Date(),
 maxDate: "+10"
};

Save this as datePicker3.html. In this example we supply a standard, unmodified
JavaScript date object to the minDate option, which will default to the current date.
This will make any dates in the past unselectable.

For the maxDate option we use a relative text string of +10 that will make only the
current date and the next ten dates selectable. You can see how these options affect
the appearance of the widget in the following screenshot:

Datepicker

[152]

Changing the datepicker UI
The datepicker API exposes a number of options directly related to adding or
removing additional UI elements within the datepicker. To show <select> elements
that allow the visitor to choose the month and year we can use the changeMonth and
changeYear configuration options.

var pickerOpts = {
 changeMonth: true,
 changeYear: true
};

Save this as datePicker4.html. Using the month and year <select> elements
gives the user a much quicker way to navigate to dates that may be far in the past or
future. The following screenshot shows how the widget will appear with these two
options enabled:

Chapter 7

[153]

By default the year selectbox will include the previous and next ten years, covering a
total range of 20 years. We can navigate further than this using the prev/next arrow
links, but if we know beforehand that visitors may be choosing dates very far in the
past or future we can change the range of years using the yearRange option.

var pickerOpts = {
 changeMonth: true,
 changeYear: true,
 yearRange: "-25:+25"
};

Save this as datePicker5.html. This time when we run the page we should find
that the year range now covers 50 years in total.

Another change we can make to the UI of the datepicker is to enable the button
panel, which adds two buttons to the footer of the widget. Let's see it in action.
Change the configuration object in datepicker5.html so that it appears as follows:

var pickerOpts = {
 showButtonPanel: true
};

Datepicker

[154]

Save this as datePicker6.html. The buttons added to the foot of the widget appear
exactly as the buttons in a dialog widget, as you can see in the following screenshot:

The Today button will instantly navigate the datepicker back to the month showing
the current date, while the Done button will close the widget without selecting a
date. We can change the Today button so that it goes to the selected date instead of
the current date using the gotoCurrent option.

Adding a trigger button
By default, the datepicker is opened when the <input> element it is associated with
receives focus. However, we can change this very easily so the datepicker opens
when a button is clicked instead. The most basic type of <button> can be enabled
with just the showOn option. Change the configuration object in datePicker6.html
so that it is as follows:

var pickerOpts = {
 showOn: "button"
};

Chapter 7

[155]

Save this as datePicker7.html. Setting the showOn option to true in our
configuration object will automatically add a simple <button> element directly
after the associated <input> element. The datepicker will now open only when
the <button> is clicked, rather than when the <input> is focused. This option
also accepts the string value both, which opens the widget when the <input> is
focused and when the <button> is clicked. The new <button> is shown in the
following screenshot:

The default text shown on the <button> (an ellipsis) can easily be changed
by providing a new string as the value of the buttonText option; change the
previous configuration object to this:

var pickerOpts = {
 showOn: "button",
 buttonText: "Open datepicker"
};

Save this as datePicker8.html. Now the text on the <button> should match the
value we set as the buttonText option.

Instead of using text as the label of the <button> element, we can use an image
instead. This is configured using the buttonImage option.

var pickerOpts = {
 showOn: "button",
 buttonImage: "img/date-picker/cal.png",
 buttonText: "Open datepicker"
};

Datepicker

[156]

Save this as datePicker9.html. The value of the buttonImage option is a string
consisting of the path to the image that we'd like to use on the button. Notice that
we also set the buttonText option in this example too, the reason for this is that the
value of the buttonText option is automatically used as the title and alt attributes
of the element that is added to the <button>. Our trigger button should now
look as shown in the following screenshot:

We don't need to use a button at all if we don't want to, we can replace the <button>
element with an element instead. Change the configuration object in
datePicker9.html so that it appears as follows:

var pickerOpts = {
 showOn: "button",
 buttonImage: "img/date-picker/cal.png",
 buttonText: "Open datepicker",
 buttonImageOnly: true
};

Save this as datePicker10.html. This should give you a nice image-only button as
illustrated in the following screenshot:

Configuring alternative animations
The datepicker widget comes with an attractive built-in opening animation that
makes the widget appear to grow from nothing to full size. Its flexible API also
exposes several options related to animations. These are the duration, showAnim,
and showOptions configuration options.

Chapter 7

[157]

The simplest animation configuration we can set is the speed at which the widget
opens and closes. To do this, all we have to do is change the value of the duration
option. This option requires a simple string that can take a string value of either
slow, normal (default), or fast.

Change the configuration object in datePicker10.html to the following:

var pickerOpts = {
 duration: "fast"
};

Save this variation as datePicker11.html. When we run this page in a browser we
should find that the opening animation is visibly faster.

Along with changing the speed of the animation, we can also change the animation
itself using the showAnim option. The default animation used is a simple show
animation, but we can change this so that it uses any of the other show/hide effects
included with the library (refer Chapter 13). Change the configuration object from
the last example to this:

var pickerOpts = {
 showAnim: "drop",
 showOptions: { direction: "up" }
};

Save this as datePicker12.html. We also need to use two new <script> resources
to use alternative effects. These are the effects.core.js and the source file of
the effect we wish to use in this example, effects.drop.js. We'll look at both of
these effects in more detail in the last chapter, but they are essential for this example
to work. Make sure you add these to the file directly after the source file for the
datepicker.

<script type="text/javascript"
 src="development-bundle/ui/ui.datepicker.js"></script>
<script type="text/javascript"
 src="development-bundle/ui/effects.core.js"></script>

<script type="text/javascript"
 src="development-bundle/ui/effects.drop.js"></script>

Our simple configuration object configures the animation to drop using the showAnim
option, and sets the direction option of the effect using showOptions. When you
now run this example the datepicker should drop down into position instead of
opening. Other effects can be implemented in the same way.

Datepicker

[158]

Multiple months
So far all of our examples have looked at single-page datepickers, where at a time
only one month was shown. However, we can easily adjust this to show a different
number of months if we wish using a couple of configuration options. Remove the
effect source files before the configuration object in datePicker12.html and change
the configuration object so that it appears as follows:

var pickerOpts = {
 numberOfMonths: 3
};

Save this as datePicker13.html. The numberOfMonths option takes an integer
representing the number of months we would like displayed in the widget at any
point. Our datepicker should now appear like this:

There is no upper limit to the number of months that will be displayed, however, the
performance of the widget decreases with each additional month shown. There is
also a noticeable lag between focusing the <input> and the widget being displayed.
Note that in this format the widget doesn't become a calendar, its sole purpose is still
to provide an effective UI for selecting a date.

Also, the individual month panels are floated side by side and due to their size will
soon overflow the viewport causing a horizontal scrollbar to appear. However, as
soon as the scrollbar is used the datepicker will close, making any months that go
beyond the boundary of the screen unusable. For these reasons it's best to keep the
number of months displayed to a minimum.

Chapter 7

[159]

There are several other configuration options related to multiple-month datepickers.
The stepMonths option controls how many months are changed when the previous
or next links are used.

The default value of stepMonths is 1, so in our previous example the widget starts
with the current month displayed first and the next two months after it. Each time
the previous or next icons are clicked the panels move one space left or right. If we
set stepMonths to 3, the same as the number of months shown, each month will
move three spaces left or right when the previous or next links are clicked.

The showCurrentAtPos option specifies where the current month is shown when the
datepicker is displayed. In our previous example, the current month is shown as the
first month panel. Each month panel has a zero-based index number, so if we want
the current month to be in the middle of the widget, we would set this option to
1 instead.

Changing the date format
The dateFormat option is one of the localization options at our disposal for
advanced datepicker locale configuration. Setting this option allows you to quickly
and easily set the format of selected dates (as displayed in the <input>) using a
variety of short-hand references. The format of dates can be a combination of
any of the following characters (they are case-sensitive):

d – day of month (single digit where applicable)
dd – day of month (two digits)
m – month of year (single digit where applicable)
mm – month of year (two digits)
y – year (two digits)
yy – year (four digits)
D – short day name
DD – full day name
M – short month name
MM – long month name
'...' – any literal text string
@ - UNIX timestamp (milliseconds since 01/01/1970)

•

•

•

•

•

•

•

•

•

•

•

•

Datepicker

[160]

We can use these shorthand codes to quickly configure our preferred date format, as
in the following example. Change the configuration object in datePicker13.html to
the following:

var pickerOpts = {
 dateFormat:"d MM yy"
};

Save the new file as datePicker14.html. We use the dateFormat option to specify a
string containing the short-hand date code for our preferred date format. The format
we set is the day of the month (using a single digit if possible) with d, the full name
of the month with MM, and the full four-digit year with yy.

When dates are selected and added to the associated <input>, they will be in the
format specified in the configuration object, as in the following screenshot:

Note that dates returned programmatically via the getDate method (see Datepicking
methods section) are in the default GMT date and time standard. In order to change
the format of the date returned by the API, the $.datepicker.formatDate() utility
method should be used.

When using a string as the value of this option to configure dates we can also specify
whole strings of text. However, if we do and any letters in the string are those used
as short-hand, they will need to be escaped using single quotes.

For example, to add the string Selected: to the start of the date, you would need to
use the string Selecte'd': to avoid having the lowercase d picked up as the short
day of month format:

var pickerOpts = {
 dateFormat:"Selecte'd': d MM yy"
};

Save this change as datePicker15.html. Notice how we escape the lowercase d in
the string Selected by wrapping it in single quotes. Now when a date is selected,
our text string is prepended to the formatted date.

Chapter 7

[161]

There are also a number of built-in preconfigured date formats that correspond to
common standards or RFC notes. These formats are added to the components as
constants and can be accessed via the $.datepicker object. As an example, let's
format the date according to the ATOM standard:

var pickerOpts = {
 dateFormat: $.datepicker.ATOM
};

Save this as datePicker16.html. When a date is selected in this example, the value
entered into the <input> should be in the format shown in the following screenshot:

The complete set of predefined date formats is listed below.

Option value Date format
$.datepicker.ATOM "yy-mm-dd"

$.datepicker.COOKIE "D, dd M y"

$.datepicker.ISO_8601 "yy-mm-dd"

$.datepicker.RFC_822 "D, d M y"

$.datepicker.RFC_850 "DD, dd-M-y"

$.datepicker.RFC_1036 "D, d M y"

$.datepicker.RFC_1123 "D, d M yy"

$.datepicker.RFC_2822 "D, d M yy"

$.datepicker.RSS "D, d M y"

$.datepicker.TIMESTAMP @ (UNIX timestamp)

$.datepicker.W3C "yy-mm-dd"

Datepicker

[162]

Updating an additional input element
There may be times when we want to update two <input> elements with the
selected date, perhaps to show a different date format. The altField and altFormat
options can be used to cater for this requirement. Add a second <input> element to
the page in date-Picker16.html with an id attribute of alt, and then change the
configuration object to this:

var pickerOpts = {
 altField: "#alt",
 altFormat: $.datepicker.TIMESTAMP
};

Save this as datePicker17.html. The altField option accepts a standard jQuery
selector as its value and allows us to select the additional <input> element that is
updated when the main <input> is updated. The altFormat option can accept the
same formats as the dateFormat option. The next screenshot shows how the page
should appear once a date has been selected using the datepicker:

Localization
In addition to the options already listed, there is also a range of regionalization
options. They can be used easily to provide custom locale support in order to
easily display a datepicker with all the text shown in an alternative language.

Chapter 7

[163]

Those options that are used specifically for the localization are listed below:

Option Default Usage
closeText "Close" Text to display on the

Close button.
currentText "Current" Text to display on the

Current link.
dayNames ["Sunday",

"Monday", "Tuesday",
"Wednesday",
"Thursday", "Friday",
"Saturday"]

An array of names of days in
a week.

dayNamesMin ["Su", "Mo", "Tu",
"We", "Th", "Fr",
"Sa"]

An array of 2-letter names of
days in a week.

dayNamesShort "Sun", "Mon",
"Tue", "Wed", "Thu",
"Fri", "Sat"]

An array of abbreviated
names of days in a week.

firstDay 0 Specify the first column of
days in the datepicker.

isRTL false Set the calendar to right-to-left
format.

monthNames ["January",
"Febru-ary",
"March", "April",
"May", "June",
"July, "August",
"September",
"October",
"November",
"December"]

An array of month names.

monthNamesShort ["Jan", "Feb",
"Mar", "Apr", "May",
"Jun", "Jul", "Aug",
"Sep", "Oct", "Nov",
"Dec"]

An array of abbreviated
month names.

nextText "Next" Text to display on the
Next link.

prevText "Prev Text to display on the
Prev link.

showMonthAfterYear false Shows the month after
the year in the header of
the widget.

Datepicker

[164]

A wide range of different translations have already been provided and reside within
the i18n folder in the development-bundle/ui directory. Each language translation
has its own source file and to change the default language all we have to do is
include the source file of the alternative language.

In datePicker1.html, add the following new <script> element directly after the
link to ui.datepicker.js:

<script type="text/javascript"
 src="development-bundle/ui/i18n/ui.datepicker-fr.js"></script>

Save this as datePicker18.html and view the results in a browser.

With just a single link to one new resource we've changed all of the visible text
in the datepicker to an alternative language, and we don't even need to set any
configuration options. If we wanted to truly internationalize the datepicker, there is
even a roll-up file containing all of the alternative languages, which we can link to.

Custom localization is also very easy to implement. This can be done using a
standard configuration object containing the configured values for the options from
the previous table. In this way, any alternative language not included in the roll-up
file can be implemented.

Chapter 7

[165]

For example, to implement a Lolcat datepicker, change the configuration object of
datePicker6.html to the following:

var pickerOpts = {
 closeText: "Kthxbai",
 currentText: "Todai",
 nextText: "Fwd",
 prevText: "Bak",
 monthNames: ["January", "February", "March", "April", "Mai", "Jun",
 "July", "August", "Septembr", "Octobr", "Novembr", "Decembr"],
 monthNamesShort: ["Jan", "Feb", "Mar", "Apr", "Mai", "Jun", "Jul",
 "Aug", "Sep", "Oct", "Nov", "Dec"],
 dayNames: ["Sundai", "Mondai", "Tuesdai", "Wednesdai", "Thursdai",
 "Fridai", "Katurdai"],
 dayNamesShort: ["Sun", "Mon", "Tue", "Wed", "Thu", "Fri", "Kat"],
 dayNamesMin: ["Su", "Mo", "Tu", "We", "Th", "Fr", "Ka"],
 dateFormat: 'dd/mm/yy',
 firstDay: 1,
 isRTL: false,
 showButtonPanel: true
};

Save this change as datePicker19.html. Most of the options are used to provide
simple string substitutions. However, the monthNames, monthNamesShort, dayNames,
dayNamesShort, and dayNamesMin options require arrays.

Note that the dayNamesMin and other day-related arrays should begin with Sunday
(or the localized equivalent). We've set Monday to appear first in this example using
the firstDay option. Our datepicker should now appear like this:

Datepicker

[166]

Callback properties
The final set of configuration options are related to the event model exposed by the
widget. It consists of a series of callback functions we can use to specify code to be
executed at different points during an interaction with the datepicker. These are
listed below:

Option Usage
beforeShow Execute a function just before the datepicker is

displayed each time. Called once each time the
datepicker is opened.

beforeShowDay Similar to beforeShow except that this callback is
triggered for each day in the current month each
time the widget is displayed.

onChangeMonthYear Set a callback function to be executed when the
current month or year changes.

onClose Set a callback function for the close event.
onSelect Set a callback function for the select event.

To highlight how useful these callback properties are, we can extend the previous
internationalization example to create a page that allows visitors to choose any
available language found in the i18n roll-up file.

When using the roll-up file, the language displayed by the datepicker will be
whichever language happens to appear last in the source file, which at the time of
writing is Taiwanese. We can change this by setting the regional option of the
datepicker. In datePicker19.html, add a new <select> box to the page with the
following <option> elements:

<select id="language">
 <option id="en">English</option>
 <option id="ar">Arabic</option>
 <option id="bg">Bulgarian</option>
 <option id="ca">Catalan</option>
 <option id="cs">Czech</option>
 <option id="da">Danish</option>
 <option id="de">German</option>
 <option id="el">Greek</option>
 <option id="eo">Esperanto</option>
 <option id="es">Spanish</option>
 <option id="fa">Farsi</option>
 <option id="fi">Finnish</option>
 <option id="fr">French</option>
 <option id="he">Hebrew</option>
 <option id="hr">Croatian</option>

Chapter 7

[167]

 <option id="hu">Hungarian</option>
 <option id="hy">Armenian</option>
 <option id="id">Indonesian</option>
 <option id="is">Icelandic</option>
 <option id="it">Italian</option>
 <option id="ja">Japanese</option>
 <option id="ko">Korean</option>
 <option id="lt">Lithuanian</option>
 <option id="lv">Latvian</option>
 <option id="ms">Malaysian</option>
 <option id="nl">Dutch</option>
 <option id="no">Norwegian</option>
 <option id="pl">Polish</option>
 <option id="pt-BR">Brazillian</option>
 <option id="ro">Romanian</option>
 <option id="ru">Russian</option>
 <option id="sk">Slovakian</option>
 <option id="sl">Slovenian</option>
 <option id="sq">Albanian</option>
 <option id="sr-SR">Serbian</option>
 <option id="sv">Swedish</option>
 <option id="th">Thai</option>
 <option id="tr">Turkish</option>
 <option id="uk">Ukrainian</option>
 <option id="bg">Bulgarian</option>
 <option id="zh-CN">Chinese</option>
 <option id="zh-TW">Taiwanese</option>
</select>

 Next link to the i18n.js roll-up file as follows:

<script type="text/javascript"
 src="development-bundle/ui/i18n/jquery-ui-i18n.js"></script>

Now change the final <script> element so that it appears as follows:

<script type="text/javascript">
 $(function(){

 var pickerOpts = {
 beforeShow: function() {
 var lang = $(":selected", $("#language")).attr("id");
 $.datepicker.setDefaults($.datepicker.regional[lang]);
 }
 };
 $("#date").datepicker(pickerOpts);
 $.datepicker.setDefaults($.datepicker.regional['']);
 });
</script>

Datepicker

[168]

Save this file as datePicker20.html. We use the beforeShow callback to specify
a function that is executed each time the datepicker is displayed on the screen.
Within this function we obtain the id attribute of the selected <option> element
and then pass this to the $.datepicker.regional option. This option is set using
the $.datepicker.setDefaults() utility method.

When the page first loads the <select> element won't have a selected <option>
child, and because of the order of the i18n roll-up file, the datepicker will be set to
Taiwanese. In order to set it to default English, we can set the regional option to
an empty string after the datepicker has been initialized.

The following screenshot shows the datepicker after an alternative language has
been selected in the <select> element:

Utility methods
We used one of the utility methods available in a datepicker in the previous
example—setDefaults is used to set configuration options on all datepicker
instances. In addition to this there are several other utility methods that we
can use, these are shown in the following table.

Chapter 7

[169]

Utility Usage
formatDate This method transforms a date object into a string

in a specified format. When using the dateFormat
option dates are returned in this specified format using
the formatDate method. This method accepts three
arguments—the format to convert the date to (see
dateFormat in Configurable options of the picker), the date
object to convert, and an optional configuration object containing
additional settings. The following options can be provided:
dayNamesShort

dayNames

monthNamesShort

monthNames

iso8601Week This method returns the week number that a specified date
falls on according to the ISO 8601 date and time standard. This
method accepts a single argument—the date to show the week
number.

parseDate This method does the opposite of formatDate, converting a
formatted date string into a date object. It also accepts three
arguments—the expected format of the date to parse, the date
string to parse, and an optional settings object containing the
following options:
shortYearCutoff

dayNamesShort

dayNames

monthNamesShort

monthNames

setDefaults Set configuration options on all datepickers. This method accepts
an object literal containing the new configuration options.

All of these methods are called on the singleton instance of the $.datepicker
manager object which is created automatically by the widget on initialization and
used to interact with instances of the datepicker.

Datepicker

[170]

Date picking methods
Along with the wide range of configuration options at our disposal, there are also a
number of useful methods defined that make working with the datepicker a breeze.
The datepicker API exposes the following methods.

Method Usage
dialog Open the datepicker in a dialog widget.
getDate Get the currently selected date.
hide Programmatically close a datepicker.
isDisabled Determine whether a datepicker is disabled.
setDate Programmatically select a date.
show Programmatically show a datepicker.

Along with the common methods shared by all library components the
datepicker also provides a range of unique methods for working with the
widget programmatically including show, hide, getDate, setDate, isDisabled,
and dialog.

Selecting a date programmatically
There may be times when we want to be able to set a particular date from within
our program logic without the visitor using the datepicker widget in the usual way.
Let's look at a basic example. Remove the <option> tags in datePicker20.html and
directly after the <input> element add the following <button>:

<button id="select">Select +7 Days</button>

Now change the final <script> element so that it appears like this:

<script type="text/javascript">
 $(function(){
 $("#date").datepicker();

 $("#select").click(function() {

 $("#date").datepicker("setDate", "+7");

 });

 });
</script>

Chapter 7

[171]

Save this as datePicker21.html. The setDate function accepts a single argument,
which is the date to set. Like with the defaultDate configuration option, we can
supply a relative string (as we do in this example), or a date object.

Showing the datepicker in a dialog
The dialog method produces the same highly usable and effective datepicker
widget, but it displays it in a floating dialog box. The method is easy to use,
but makes some aspects of using the widget non-autonomous, as we shall see.
Remove the <button> from the page and change the final <script> element in
datePicker21.html to this:

<script type="text/javascript">
 $(function(){

 function updateDate(date) {
 $("#date").val(date);
 }
 var pickerOpts = {
 beforeShow: function() {
 $("#ui-datepicker-div").css("zIndex",
 1000).next().css("zIndex", 950);
 }
 };
 $("#date").focus(function() {
 $(this).datepicker("dialog", null, updateDate, pickerOpts);
 });
 });
</script>

Save this as datePicker22.html. First we define a function called updateDate.
This function will be called whenever a date is selected in the datepicker. All we do
within this function is assign the date that is selected, which will be passed to the
function automatically to our <input> element on the page.

We use a configuration object in this example and due to a minor bug we also use
the beforeShow callback option once again. This time, our callback function needs to
set the z-index of the datepicker and an <input> that is automatically generated by
the component.

The dialog method that is wrapped in a focus-handler callback function, takes
three arguments. The first can accept a string that is used to set the initial date of the
datepicker. In this example, we've supplied null, so the datepicker defaults to the
current date.

Datepicker

[172]

The second argument is a callback function to execute when a date is selected, which
is mapped to our updateDate function. The third argument is the configuration
object for the datepicker.

We can also supply a fourth argument, if we choose to, which controls the position of
the dialog containing the datepicker. By default it will render the dialog in the centre
of the screen.

An AJAX datepicker
For our final datepicker example, we'll work a little AJAX magic into the mix and
create a datepicker. This datepicker prior to opening, will communicate with a server
to see if there are any dates that cannot be selected. In a new page in your text editor,
begin with the following code:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
 "http://www.w3.org/TR/html4/strict.dtd">
<html lang="en">
 <head>
 <link rel="stylesheet" type="text/css"
 href="development-bundle/themes/smoothness/ui.all.css">
 <link rel="stylesheet" type="text/css"
 href="css/ajaxDatepicker.css">
 <meta http-equiv="Content-Type"
 content="text/html; charset=utf-8">
 <title>jQuery UI AJAX Datepicker</title>
 </head>
 <body>
 <div id="bookingForm" class="ui-widget ui-corner-all">
 <div class="ui-widget-header ui-corner-top">
 <h2>Booking Form</h2>
 </div>
 <div class="ui-widget-content ui-corner-bottom">
 <label>Appointment date:</label><input id="date">
 </div>
 </div>
 <script type="text/javascript"
 src="development-bundle/jquery-1.3.2.js"></script>
 <script type="text/javascript"
 src="development-bundle/ui/ui.core.js"></script>
 <script type="text/javascript"
 src="development-bundle/ui/ui.datepicker.js"></script>
 </script>
 </body>
</html>

Chapter 7

[173]

Save this as ajaxDatepicker.html. Our simple example form is made from a series
of container elements and a simple <input>. Each of the containers has class names
from the CSS framework, which allow us to take advantage of the styling offered by
the theme in use, helping the elements and the widget to appear consistent.

Now we can add the script that will configure and control the widget, this should go
directly before the </body> tag:

<script type="text/javascript">
 $(function(){

 var months = [], days = [];
 $.getJSON(
 "http://www.danwellman.co.uk/bookedDates.php?jsoncallback=?",
 function(data) {

 for (x = 0; x < data.dates.length; x++) {
 months.push(data.dates[x].month);
 days.push(data.dates[x].day);
 }
 });
 function addDates(date){

 if (date.getDay() == 0 || date.getDay() == 6) {
 return [false, ""];
 }

 for (x = 0; x < days.length; x++) {
 if (date.getMonth() == months[x] - 1 &&
 date.getDate() == days[x]) {
 return [false, "preBooked_class"];
 }
 }

 return [true, ""];
 }

 var pickerOpts = {
 beforeShowDay: addDates,
 minDate: "+1"
 };

 $("#date").datepicker(pickerOpts);
 });
</script>

The first part of our script initially declares two empty arrays, and then performs an
AJAX request to obtain the JSON object from a PHP file. The JSON object contains
a single option called dates. The value of this option is an array where each item is
also an object.

Datepicker

[174]

Each of these sub-objects contain month and day properties representing one date
that should be made unselectable. The months or days array are populated with the
values from the JSON object for use later in the script.

Next, we define the addDates callback function that is invoked on the
beforeShowDay event. This event occurs once for each of the 35 individual day
squares in the datepicker. Even the empty squares.

Our function is passed the current date and must return an array containing two
items. The first is a Boolean indicating whether the day is selectable, and optionally
a class name to give the date.

Our function first checks to see whether the day portion of the current date is equal
to either 0 (for Sunday) or 6 (for Saturday). If it is, we return false as the first item in
the array to make weekends unselectable.

There is a built-in function of the manager object, $.datepicker.
noWeekends()that automatically makes weekends unselectable.
This is specified as the value of the beforeShowDay option when
used, but we cannot use it in this example as we are providing our
own callback function.

We then loop through each item in our months and days arrays to see if any of the
dates passed to the callback function match the items in the arrays. If both the month
and day items match a date, the array returns with false and a custom class name as
its items. If the date does not match, we return an array containing true to indicate
that the day is selectable. This allows us to specify any number of dates that cannot
be selected in the datepicker.

Finally we define a configuration object for the datepicker. The properties of the
object are simply the callback function to make the dates specified in the JSON object
unselectable, and the minDate option will be set to the relative value +1 as we don't
want people to book dates in the past, or on the current day.

In addition to the HTML page, we'll also need a little custom styling. In a new page
in your editor, create the following stylesheet:

#bookingForm { width:503px; }
#bookingForm h2 { margin-left:20px; }
#bookingForm .ui-widget-content {
 padding:20px 0; border-top:none;
}
label {
 margin:4px 20px 0; font-family:Verdana; font-size:80%;
 float:left;

Chapter 7

[175]

}
#date { width:302px; }
.ui-datepicker .preBooked_class { background:none; }
.ui-datepicker .preBooked_class span {
 color:#ffffff;
 background:url(../img/date-picker/red_horizon.gif) no-repeat;
}

Save this as ajaxDatepicker.css in the css folder. We use PHP to provide the
JSON object in response to the AJAX request made by our page. If you don't want to
install and configure PHP on your web server, you can use the file that I have placed
at the URL specified in the example. For anyone that is interested, the PHP used is
as follows:

<?php

 header('Content-type: application/json');

 $dates = "({
 'dates':[
 {'month':12,'day':2},
 {'month':12,'day':3},
 etc...
]})";

 $response = $_GET["jsoncallback"] . $dates;

 echo $response;

?>

This can be saved as bookedDates.php in the main jqueryui project folder.
The pre-booked dates are just hardcoded into the PHP file. Again, in a proper
implementation, you'd probably need a more robust way of storing these dates,
such as in a database.

When we run the page in a browser and open the datepicker, the dates specified by
the PHP file should be styled according to our preBooked_class and should also be
completely non-responsive, as in the following screenshot:

Datepicker

[176]

Summary
We looked at the datepicker widget in this chapter that is supported by one of
the biggest APIs in the jQuery UI library. This gives us a huge number of options
to work with and methods to receive data from. We first looked at the default
implementation and how much behavior is added to the widget automatically.

We looked at the rich API exposed by the datepicker, which includes more
configurable options than any other component. We also saw how we can use
the utility functions that are unique to the datepicker manager object.

We saw how easy the widget makes implementing internationalization. We also saw
that there are thirty-four additional languages the widget has been translated into.
Each of these are packed into a module that is easy to use in conjunction with the
datepicker for adding support for alternative languages. We also saw how we create
our own custom language configuration.

We covered some of the events that are fired during a datepicker interaction, and
looked at the range of methods available for working with and controlling the
datepicker from our code.

Progressbar
The progressbar widget is used to show the percentage complete for any arbitrary
process. It's a simple and easy-to-use component with an extremely compact API,
which provides excellent visual feedback to visitors.

In the current version of the component, the progressbar is purely determinate so
we, or the system, must explicitly tell the widget the current amount of progress. An
indeterminate progressbar is planned for a future release.

The widget is made up of just two nested <div> elements—an outer container <div>
and an inner <div>, which is used to highlight the current progress. The following
screenshot shows a progressbar that is 50% complete:

Percentage of progress progressbar container

We'll look at the following aspects of the widget during this chapter:

The default implementation
The single configurable option
The event API exposed by the widget
The unique method exposed by the progressbar
Some real-world examples

•

•

•

•

•

Progressbar

[178]

The default progressbar implementation
Let's take a look at the most basic progressbar implementation. In a new file in your
text editor create the following file:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
 "http://www.w3.org/TR/html4/strict.dtd">
<html lang="en">
 <head>
 <link rel="stylesheet" type="text/css"
 href="development-bundle/themes/smoothness/ui.all.css">
 <meta http-equiv="Content-Type" content="text/html;
 charset=utf-8">
 <title>jQuery UI Progressbar Widget Example 1</title>
 </head>
 <body>
 <div id="progress"></div>
 <script type="text/javascript"
 src="development-bundle/jquery-1.3.2.js"></script>
 <script type="text/javascript"
 src="development-bundle/ui/ui.core.js"></script>
 <script type="text/javascript"
 src="development-bundle/ui/ui.progressbar.js"></script>
 <script type="text/javascript">
 $(function() {
	 $("#progress").progressbar();
 });
	 </script>
 </body>
</html>

Save this as progressbar1.html in the jqueryui project folder. With no
configuration the progressbar is of course empty. Our example should appear like
the first screenshot but without any progress displayed (the container is empty).

The progressbar depends on the following components:

ui.all.css

jquery-1.3.2.js

ui.core.js

ui.progressbar.js

•

•

•

•

Chapter 8

[179]

All we need on the page is a simple container element. In this case we've used a
<div> element, but other block-level elements, like a <p> for example, can also be
used. The widget will add a nested <div> element to the specified container element
at initialization which represents the value of the progressbar.

This widget, like some of the other widgets, such as the accordion for example, will
naturally fill the width of its container. Both the container and the inner <div> are
given a series of attributes and class names by the component. The class names pick
up styling from the theme file in use and the component is fully ThemeRoller ready.
The additional attributes are ARIA-compliant, making the widget fully accessible
to visitors using assisted technologies. The following screenshot shows these class
names and attributes as they appear in Firebug:

Using progressbar's configuration option
The progressbar has a single configuration option at the time of writing—the value
option. This option is used to set the value, or percentage complete, of the current
process. Setting the option at initialization is done using a standard configuration
object. Change the final <script> element in progressbar1.html so that it appears
like this:

<script type="text/javascript">
 $(function() {
	

 var progressOpts = {
 value: 50
 };
	

 $("#progress").progressbar(progressOpts);
 });
</script>

Progressbar

[180]

Save this as progressbar2.html. The value option takes an integer and sets the
width of the inner <div> of the widget to the corresponding percentage. This
change will make the widget appear as it did in the first screenshot in this chapter.

Progressbar's event API
The progressbar exposes a single event, the change event, which is fired by the
widget every time the value of the progressbar is changed. As with the other
widgets, we can supply an anonymous callback function as the value of this event in
a configuration object and the component will call the function for us automatically
each time the event fires.

To see this event in action, add the following <button> to the page in
progressbar2.html:

<button id="increase">Increase by 10%</button>

Next change the final <script> block to this:

<script type="text/javascript">
 $(function() {

 var progressOpts = {
 change: function(e, ui) {
	
 var val = $(this).progressbar("option", "value");

 if(val <= 100) {
 ($("#value").length === 0) ? $("").text(val + "%")
 .attr("id", "value").css({ float: "right", marginTop:
 -28, marginRight:10 }).appendTo("#progress") :
 $("#value").text(val + "%");
 } else {
 $("#increase").attr("disabled", "disabled");
 }
 }
 };

 $("#progress").progressbar(progressOpts);
		
 $("#increase").click(function() {
		
 var currentval = $("#progress").progressbar("option", "value"),
 newval = currentval + 10;
		
 $("#progress").progressbar("option", "value", newval);
 });		
 });
</script>

Chapter 8

[181]

Save this file as progressbar3.html. Within our callback function, specified as
the value of the change option, we first obtain the current value of the progressbar
which will correspond to the value after its last update.

Provided the value is less than or equal to 100 (percent) we check whether the value
is already being displayed. If it isn't, we create a new element and set its text
content to the current value. We also give it an id attribute and position it so that it
appears inside the progressbar. If the element already exists we just update its text to
the new value. If the current value is greater than 100 we simply disable the �������button
to prevent further clicks.

We also add a click-handler for the �� button ����������������������������������� we added to the page. Whenever the
button is clicked we first get the current value of the progressbar by using the option
method in getter mode to get the current value. We then add 10 to the value before
using the option method in setter mode to increase the value of the inner <div> ���by
10 percent.

After clicking the button the page should appear like this:

In this example, we set the value of the progressbar manually whenever the ���������� button ���is
clicked; we use the standard option method, common to all UI library components
to retrieve information about the current state of the progressbar.

Don't forget that like the other library components, this event can be used with
jQuery's bind() method by prefixing the name of the widget on to the event name,
progressbarchange in this case.

Progressbar methods
In addition to the common API methods that are exposed by all library components,
such as destroy, disable, enable, ����and option, the slider API also exposes the
value method which is a shortcut for using the option ������������������ method to set the value of
the progressbar.

Progressbar

[182]

For example, we can do exactly the same as we did in the last example, but
with less code using the value method. Change the final <script> ����������� element in
progressbar3.html so that it is as follows:

<script type="text/javascript">
 $(function() {

 $("#progress").progressbar();

 $("#increase").click(function() {

 var currentval = $("#progress").progressbar("option", "value"),
 newval = currentval + 10;

 (newval > 90) ? $(this).attr("disabled", "disabled") : null;

 if(currentval < 100) {
 $("#progress").progressbar("value", newval);
 ($("#value").length === 0) ? $("").text(
 newval + "%").attr("id", "value").css({ float: "right",
 marginTop: -28, marginRight:10 }).appendTo("#progress") :
 $("#value").text(newval + "%");
 }
 });		
 });
</script>

Save this as progressbar4.html. We lose the configuration object in this example
as it isn't required. All of the logic for determining the current value, increasing the
value using the value method, and disabling the ������������������������������� button������������������������� has been moved into the
click handler for the <button> element. After increasing the value to the maximum,
the page should appear as shown in the following screenshot:

User initiated progress
At its most basic level, we can manually update the progressbar in response to
user interaction. For example, we could specify a wizard-style ���������������� form������������ , which has
several steps to complete. In this example, we'll create a ��������������������� form����������������� as shown in the
following screenshot:

Chapter 8

[183]

During each step we can increment the progressbar manually to let the user know
how far through the process they are. In a new file in your text editor add the
following code:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
 "http://www.w3.org/TR/html4/strict.dtd">
<html lang="en">
 <head>
 <link rel="stylesheet" type="text/css"
 href="development-bundle/themes/smoothness/ui.all.css">
 <link rel="stylesheet" type="text/css"
 href="css/progressForm.css">
 <meta http-equiv="Content-Type" content="text/html;
 charset=utf-8">
 <title>jQuery UI Progressbar Widget Example 5</title>
 </head>
 <body>
 <div class="form-container ui-helper-clearfix ui-corner-all">
 <h1>Registration Form</h1>
 <p>Progress:</p>
 <div id="progress"></div><label id="amount">0%</label>

Progressbar

[184]

 <form action="serverScript.php">
 <div id="panel1" class="form-panel">
 <h2>Personal Details</h2>
 <fieldset class="ui-corner-all">
 <label>Name:</label><input type="text">
 <label>D.O.B:</label><input type="text">
 <label>Choose password:</label><input type="password">
 <label>Confirm password:</label><input type="password">
 </fieldset>
 </div>
 <div id="panel2" class="form-panel ui-helper-hidden">
 <h2>Contact Details</h2>
 <fieldset class="ui-corner-all">
 <label>Email:</label><input type="text">
 <label>Telephone:</label><input type="text">
 <label>Address:</label><textarea rows="3"
 cols="25"></textarea>
 </fieldset>
 </div>
 <div id="thanks" class="form-panel ui-helper-hidden">
 <h2>Registration Complete</h2>
 <fieldset class="ui-corner-all">
 <p>Thanks for registering!</p>
 </fieldset>
 </div>
 <button id="next">Next »</button><button id="back"
 disabled="disabled">« Back</button>
 </form>
 </div>
 <script type="text/javascript"
 src="development-bundle/jquery-1.3.2.js"></script>
 <script type="text/javascript"
 src="development-bundle/ui/ui.core.js"></script>
 <script type="text/javascript"
 src="development-bundle/ui/ui.progressbar.js"></script>
 <script type="text/javascript">

 </script>
 </body>
</html>

Save this as progressbar5.html. In the <head> section we link to the framework
theme files as we have done with the other examples in this chapter, and a custom
stylesheet that we'll add in a moment.

Chapter 8

[185]

The <body> of the page contains a few layout elements and some text nodes, but the
main elements are the container for the progressbar and the <form>. The <form> is
separated into several different sections using <div> and <fieldset> elements. The
reason for this is so that we can hide part of the form to make it appear as if it spans
several pages.

We've added a paragraph and a label next to the progressbar. We'll position these so
that they appear inside the widget. The paragraph contains a simple text string. The
label will be used to show the current progress value.

The outer container is given several class names; the first is so that we can apply
some custom styling to the element, but the next two are to target different features
of the CSS framework. The ui-helper-clearfix class is used to automatically
clear floated elements and is a great way of reducing the clutter of additional and
unnecessary <div> elements. Don't forget to make explicit use of this and other
framework classes when creating your own widgets.

The ui-corner-all class is used to give the container element (as well as the
progressbar itself which has them automatically, and our <fieldset> elements)
rounded corners using several proprietary style rules. These are only supported by
Gecko and Webkit-based browsers, but in the nature of progressive enhancement
it is perfectly acceptable to use them.

We use another class from the CSS framework within the form. Several panels
need to be hidden when the page first loads, we can therefore make use of the
ui-helper-hidden class to ensure that they are set to display:none, when we
want to show them, all we have to do is remove this class name.

Now let's add the JavaScript. In the empty <script> element at the bottom of the
page add the following code:

$(function() {

 var progressOpts = {
 change: function() {

 $("#amount").text($("#progress").progressbar("option", "value")
 + "%");
 }
 }

 var prog = $("#progress");

 prog.progressbar(progressOpts);

 $("#next").click(function(e) {

 e.preventDefault();

 $(".form-panel").each(function() {

Progressbar

[186]

 var thePanel = $(this);

 (thePanel.attr("id") != "panel1") ? null :
 $("#back").attr("disabled", "");

 (thePanel.hasClass("ui-helper-hidden")) ? null :
 thePanel.fadeOut("fast", function() {

 thePanel.addClass("ui-helper-hidden").next().fadeIn(
 "fast", function() {

 ($(this).attr("id") != "thanks") ? null :
 $("#next").attr("disabled", "disabled");

 $(this).removeClass("ui-helper-hidden");

 prog.progressbar("option", "value",
 prog.progressbar("option", "value") + 50);
 });
 });
 });
});

We first define our configuration object, making use of the change event to specify
an anonymous callback function. Each time the event is fired we'll grab the current
value of the progressbar using the option method and set it as the text of the label.
The event is fired after the change takes place, so the value we obtain will always be
the new value.

Following this we have a click handler for the Next button. When this button
is clicked it will result in the form of the current page changing, via a series of
animations, and the value of the progressbar updating. We also need to do a few
other things. The default behavior of a <button> inside a form is to submit the form,
which we don't want to do at this stage so the first thing our click handler does is
prevent the form being submitted using the preventDefault() JavaScript function.
This is called on the event object (e), which is automatically passed to the event
callback function.

We then look through each of the separate panels in the form to determine the
current panel. The first thing we do is check that the current panel is not the first
panel and if it isn't, we enable the Back button, which is disabled by default. Only
one panel will be displayed at one time, so we find the panel that doesn't have
the ui-helper-hidden class and fade it out. We specify an anonymous callback
function to execute once the fade finishes.

Within this second function we select the next element and show it. If the next
element is the final panel, which has an id of thanks, we disable the Next button.
Although we don't worry about actual submission of the form in this example, this is
where we could send the data gathered from the form to the server. We remove the
ui-helper-hidden class as the panel is now visible.

Chapter 8

[187]

Finally we use the option method once again, this time in setter mode, to set the new
value of the progressbar. The new value, that we pass to the method as the second
parameter is simply the current value plus 50, as there are just two parts of the form.
This last part will then trigger the function which updates the label.

Next we need to add a very similar click handler for the Back button. The only real
differences are that we show the previous panel, and take 50 away from the value:

 $("#back").click(function(e) {
				

 e.preventDefault();
				

 $(".form-panel").each(function() {
				

 var thePanel = $(this);

 (thePanel.attr("id") != "thanks") ? null :
 $("#next").attr("disabled", "");
				

 (thePanel.hasClass("ui-helper-hidden")) ? null :
 thePanel.fadeOut("fast", function() {
				

 thePanel.addClass("ui-helper-hidden").prev().fadeIn(
 "fast", function() {
				

 ($(this).attr("id") != "panel1") ? null :
 $("#back").attr("disabled", "disabled");
				

 $(this).removeClass("ui-helper-hidden");
				

 prog.progressbar("option", "value",
 prog.progressbar("option", "value") - 50);
 });
 });
 });
 });
});

This is now all of the code that we'll need, all we have to do now is add some basic
CSS to lay the example out; in a new file in your text editor add the following code:

h1, h2 { font-family:Georgia; font-size:140%; margin-top:0; }
h2 { font-size:100%; margin:20px 0 10px; text-align:left; }
.form-container {
 width:400px; margin:0 auto; position:relative; font-family:Verdana;
 font-size:80%; padding:20px; background-color:#e0e3e2;
 border:3px solid #abadac;
}
.form-panel { width:400px; height:241px; }
.form-panel fieldset {
 width:397px; height:170px; margin:0 auto; padding:22px 0 0;
 border:1px solid #abadac; background-color:#ffffff;
}
.form-panel label {
 width:146px; display:block; float:left; text-align:right;
 padding-top:2px; margin-right:10px;

Progressbar

[188]

}
.form-panel input, .form-panel textarea {
 float:left; width:200px; margin-bottom:13px;
}
.form-container button { float:right; }
p {
 margin:0; font-size:75%; position:absolute; left:30px; top:60px;
 font-weight:bold;
}
#amount {
 position:absolute; right:30px; top:60px; font-size:80%;
 font-weight:bold;
}
#thanks { text-align:center; }
#thanks p {
 margin-top:48px; font-size:160%; position:relative; left:0; top:0;
}

Save this as progressForm.css in the css directory. We should now have a working
page with a wired up progressbar. When we run the page we should find that
we can navigate through each panel of the form, and the progressbar will update
itself accordingly:

We're still relying on user interaction to set the value of the progressbar in this
example, which is driven by the visitor navigating through each of the panels.

Chapter 8

[189]

Rich uploads with progressbar
Instead of relying on user interaction to increase the value of the progressbar and
therefore the completion of the specified task, we can instead rely on the system
to update it; deterministic means simply that something must be able to update
it accurately.

In our final progressbar example we can incorporate the brand-new HTML5 file API
in order to upload a file asynchronously, and can use Firefox's propriety onprogress
event to update the progressbar while the file is uploading. This example will only
work in Firefox 3+ at the time of writing, although hopefully more browsers will
make use of both the file API and the onprogress event in the future.

This example will also only work correctly using a full web server with PHP installed
and configured. We won't be looking at the server side of the upload process in this
example, we're not interested in what happens to the file once it's been uploaded,
only in updating the progressbar based on feedback received from the system.

Begin with the following new HTML page:

<!DOCTYPE HTML>
<html lang="en">
 <head>
 <link rel="stylesheet" type="text/css"
 href="development-bundle/themes/smoothness/ui.all.css">
 <link rel="stylesheet" type="text/css"
 href="css/progressUpload.css">
 <meta http-equiv="Content-Type" content="text/html;
 charset=utf-8">
 <title>jQuery UI Progressbar Widget Example 6</title>
 </head>
 <body>
 <h2>AJAX File Upload</h2>
 <input type="file" id="file" />
 <div id="progress"></div>
 <script type="text/javascript"
 src="development-bundle/jquery-1.3.2.js"></script>
 <script type="text/javascript"
 src="development-bundle/ui/ui.core.js"></script>
 <script type="text/javascript"
 src="development-bundle/ui/ui.progressbar.js"></script>
 <script type="text/javascript">
 </script>
 </body>
</html>

Progressbar

[190]

Save this as progressbar6.html. We use the HTML5 DOCTYPE in this example and
on the page we have an <input> of the type file followed by the container for the
progressbar. Next let's add the script, in the empty <script> element at the end of
the <body> add the following code:

$(function() {

 $("#progress").progressbar();

 $("#file").change(function() {
 var files = $("#file").attr("files"),
 file = files[0],
 xhr = new XMLHttpRequest();

 xhr.upload.onprogress = function updateProgress(e) {
 var loaded = (e.loaded / e.total);
 $("#progress").progressbar("value", Math.round(loaded * 100));
 }

$("").addClass("filename").text(file.fileName).insertAfter(
 "#progress");

 xhr.open("POST", "progressUpload.php");
 xhr.sendAsBinary(file.getAsBinary());
 });
});

First of all we initialize the progressbar in the usual way. Next we add an
anonymous function that hooks into the change event of the <input> which
will be triggered when a file is selected (after clicking the Browse button that is
automatically added next to the <input>).

Within this callback we first need to get the file that has been selected, which will be
available via the files attribute of the <input>. Multiple files can be selected, but
this example doesn't cover that so we just get the first file from the files collection.

Next we create a new XMLHttpRequest object and then set an anonymous callback
function as the value of the onprogress property. The function will be executed each
time the event is fired. Within this function, we calculate the percentage of upload by
dividing the amount uploaded so far by the total amount to upload. These details are
available through the event object (e) which is automatically passed to the function.

Once we've established what the percentage of upload is, we can update the value
of the progressbar using the value method. The value stored in the loaded variable
will be a number between 0 and 1 so we need to times it by 100 to get the correct
percentage. We can also round the number to the nearest decimal point using
JavaSript's Math.round method.

Chapter 8

[191]

Next we display the filename of the file being uploaded next to the progressbar. We
don't need to do this but it's a good example of how the file object can to used to
obtain information about the selected file before the upload has even taken place.
Finally we can open a POST connection to the server and send the file to the server.
Using the file API we can send the file as a binary file using the getAsBinary and
sendAsBinary methods.

We also need a tiny bit of CSS for this example; in a new file add the following code:

#file { float:left; }
#progress.ui-progressbar {
 height:1em; width:221px; margin-top:5px; float:left;
 clear:left;
}
.filename {
 float:left; margin:7px 0 0 10px; font-family:Verdana;
 font-size:12px;
}

This can be saved in the css folder as progressUpload.css. Mostly the styles just
position the different elements and set the width of the progressbar.

We link to a PHP file in this example, although this isn't strictly necessary. Even an
empty PHP file will prevent 404 errors once he file has been uploaded.

When we run this file in Firefox, we should see that once a file has been selected, it
will automatically begin to upload and the progressbar will begin to fill up. If testing
locally, it will be pretty quick so it's best tested with reasonably large files. The next
screenshot shows the upload in progress.

Progressbar

[192]

Summary
Despite its compact API, the progressbar widget makes a great addition to the
library, providing essential visitor feedback when processes are in progress. The
component is useful in any situation where the percentage complete of the process
can reliably be updated by the system.

After looking at the default implementation we moved on to take a look at the value
option and how it can be used; we can set the value prior to initialization using a
configuration object, and we can set it after initialisation using the option method.

Next we looked at the change event, which is fired by the widget whenever its value
is changed. Using the standard way of hooking into the event with an anonymous
callback function within our configuration object we can easily react to the amount
of progress changing.

We saw that in addition to the standard API methods such as destroy, the widget
also exposes the value method, which can be used as a shortcut to setting the value
using the option method.

Although the current version of this widget is purely deterministic, a future release
will include support for an indeterminate progress indicator for use when the
current status of the process cannot be accurately determined. This is currently quite
a young widget compared to some of the other components so its API is sure to
mature and grow in forthcoming releases.

This now brings us to the end of the section about the widgets of the library. We've
now looked at each of the widgets in turn and worked with their APIs to familiarise
ourselves with their configuration options, methods, and events. We're now going to
move on to look at the interaction helpers.

Drag and Drop
So far in this book, we've covered the complete range of fully released interface
widgets and over the next four chapters we're going to shift our focus to the core
interaction helpers. These components of the library differ from those that we've
already looked at in that they are not physical objects or widgets that exist on the page.

Instead, they give an object a set of generic behaviors to suit common
implementational requirements for dynamic and engaging websites. You don't
actually see these components on the page, but the effects that they add to different
elements, and how they cause them to behave can be easily seen. These are low-level
components as opposed to the high-level widgets that we looked at in the first part
of this book. There are currently five different interaction helpers, each catering for a
specific interaction.

They help the elements used on your pages to be more engaging and interactive
for your visitors, which adds value to your site and can help make your web
applications appear more professional. They also help to blur the distinction
between the browser and the desktop as application platforms.

In this chapter, we'll be covering two very closely related components—draggables
and droppables. The draggables API transforms any specified element into
something that your visitors can pick up with the mouse pointer and drag around
the page. Methods are exposed that allow you to restrict the draggables movement,
make it return to its starting point after being dropped, and much more.

The droppables API allows you to define a region of the page, or a container of
some kind, for people to drop the draggables on to in order to make something else
happen. For example, to define a choice that is made or add a product to a shopping
basket. A rich set of events are fired by the droppable that lets us react to the most
interesting moments of any drag interaction.

Drag and Drop

[194]

The full range of topics we'll be covering in this chapter are:

How to make elements draggable
The options available for configuring draggable objects
How to make an element return to its starting point once the drag ends
How to use event callbacks at different points in an interaction
The role of a drag helper
Containing draggables
How to control draggability with the component's methods
Turning an element into a drop target
Defining accepted draggables
Working with droppable class names
Defining drop tolerance
Reacting to interactions between draggables and droppables

The deal with drag and droppables
Dragging and dropping, as behaviors, go hand-in-hand with each other. Where one
is found, the other is invariably close by. Dragging an element around a web page is
all very well, but if there's nowhere for that element to be dragged to, then the whole
exercise is usually pointless.

You can use the draggable class independently from the droppable class as pure
dragging for the sake of dragging can have its uses, such as with the dialog
component. However, you can't use the droppable class without the draggable.
You don't need to make use of any of draggable's methods of course, but using
droppables without having anything to drop onto them is of no value whatsoever.

Like with the widgets, it is possible however to combine some of the interaction
helpers, draggables and droppables go together obviously. But draggables can
also be used with sortables, as we'll see in Chapter 12.

Draggables
The draggables component is used to make any specified element or collection of
elements draggable, so that they can be 'picked up' and moved around the page by
a visitor. Draggability is a great effect, and is a feature that can be used in numerous
ways to improve the interface of our web pages.

•

•

•

•

•

•

•

•

•

•

•

•

Chapter 9

[195]

Using jQuery UI means that we don't have to worry about all of the tricky
differences between browsers that originally made draggable elements on
web pages a nightmare to implement and maintain.

A basic drag implementation
Let's look at the default implementation by first making a simple <div> element
draggable. We won't do any additional configuration. Therefore, all this code will
allow you to do is 'pick up' the element with the mouse pointer and drag it around
the viewport.

In a new file in your text editor, add the following code:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
 "http://www.w3.org/TR/html4/strict.dtd">
<html lang="en">
 <head>
 <link rel="stylesheet" type="text/css" href="css/draggable.css">
 <meta http-equiv="Content-Type"
 content="text/html; charset=utf-8">
 <title>jQuery UI Draggable Example 1</title>
 </head>
 <body>
 <div id="drag"></div>
 <script type="text/javascript"
 src="development-bundle/jquery-1.3.2.js"></script>
 <script type="text/javascript"
 src="development-bundle/ui/ui.core.js"></script>
 <script type="text/javascript"
 src="development-bundle/ui/ui.draggable.js"></script>
 <script type="text/javascript">
 $(function() {
 $("#drag").draggable();
 });
 </script>
 </body>
</html>

Save this as draggable1.html in your jqueryui folder. As with the widget-based
components of jQuery UI, the draggable component can be enabled using a single
line of code. This invokes the draggable's constructor method draggable and turns
the specified element into a drag object.

Drag and Drop

[196]

We need the following files from the library to enable draggability:

jquery-1.3.2.js

ui.core.js

ui.draggable.js

We're using a plain <div> with a background image specified in the CSS file that
we're linking to in the <head> of the page. Use the following stylesheet for the
drag element:

#drag {
 background:url(../img/drag-drop/draggable.png) no-repeat;
 width:114px;
 height:114px;
 cursor:move;
}

Save this as draggable.css in the css folder. When you view the page in a browser,
you'll see that the image can be moved around to your heart's content, as shown in
the following screenshot:

•

•

•

Chapter 9

[197]

Configuring draggable options
The draggable component has a wide range of configurable options, giving you a
very fine degree of control over the behavior that it adds. The following table lists the
options that we can manipulate to configure and control our drag elements.

Option Default Usage
addClasses true Adds the ui-draggable class to the drag object.

Set to false to prevent this class being added.
appendTo "parent" Specifies a container element for drag objects with

a helper attached.
axis false Constrains drag objects to one axis of motion.

Accepts the strings x and y as values, or the
Boolean false.

cancel ":input,
option"

Prevents certain elements from being dragged if
they match the specified element selector.

connectToSortable false Allows the drag object to be dropped on to a
sortable list and become one of the sort elements.
Accepts a jQuery selector that matches a
sortable list.

containment false Prevents drag objects from being dragged out of
the bounds of its parent element.

cursor "auto" Specifies a CSS cursor to be used while the
pointer is over the drag object.

cursorAt false Specifies a default position at which the cursor
appears relative to the drag object while it is being
dragged.

delay 0 Specifies a time in milliseconds that the start of the
drag interaction should be delayed.

distance 1 Specifies the distance in pixels that the pointer
should move with the mouse button held down on
the drag object before the drag begins.

grid false Makes the drag object snap to an imaginary grid
on the page. Accepts an array containing x and y
pixel values of the grid.

handle false Defines a specific area of the drag object that is
used to hold the pointer on in order to drag.

helper "original" Defines a pseudo-drag element that is dragged
in place of the drag object. Can accept the string
values original, or clone, or can accept a
function that returns the helper element.

Drag and Drop

[198]

Option Default Usage
iframeFix false Applies a shim to all <iframe> elements on

the page to prevent them from capturing mouse
events while a drag is in progress. Can also accept
a selector, in which case only matching <iframe>
elements will have the shim applied.

opacity false Sets the opacity of the helper element.
refreshPositions false Calculates the positions of all drop objects while

the drag is in progress. Can impact performance.
revert false Makes the drag object return to its start position

once the drag ends when set to true. Can also
accept the strings valid and invalid where
revert only applies if the drag object is dropped on
a drop object or vice-versa respectively.

revertDuration 500 Sets the number of milliseconds it takes for the
drag object to return to its starting position.

scope "default" Sets the scope of the drag object with respect to the
drop objects that are valid for it. Supply a selector
to set the scope.

scroll true Makes the viewport automatically scroll when
the drag object is moved within the threshold
of the viewport's edge.

scrollSensitivity 20 Defines how close in pixels the drag object
should get to the edge of the viewport before
scrolling begins.

scrollSpeed 20 Sets the speed at which the viewport scrolls.
snap false Causes drag objects to snap to the edges of

specified elements.
snapMode "both" Can be set to either inside, outside, or both,

and refers to the edges of the element to which the
drag object will snap.

snapTolerance 20 The distance from snapping elements that drag
objects should reach before snapping occurs.

stack false When set ensures the current drag object is always
on top of other drag objects in the same group.
Accepts an object containing group and/or
min options.

zIndex false Sets the zIndex of the helper element.

Chapter 9

[199]

Using the configuration options
Let's put some of these options to use. They can be configured in exactly the same
way as the options exposed by the widgets that we looked at in previous chapters,
and also usually have both getter and setter modes.

In the first example a moment ago, we used CSS to specify that the move cursor
should be used when the pointer hovers over our draggable <div>. Let's change
this and use the cursor option of the draggables component instead.

Remove cursor:move from draggable.css and resave it as draggableNoCursor.
css. Also change the <link> tag in draggable1.html to the following:

<link rel="stylesheet" type="text/css"
 href="css/draggableNoCursor.css">

Then change the final <script> element to the following:

<script type="text/javascript">
 $(function() {
 var dragOpts = {
 cursor: "move"
 };
 $("#drag").draggable(dragOpts);
 });
</script>

Save this as draggable2.html and try it out in your browser. An important point to
note about this option is that the move cursor we have specified is not applied until
we actually start the drag. When using this option in place of simple CSS, we should
perhaps provide some other visual cue that the element is draggable on mouseover.

Let's look at a few more of draggable's many properties. Change the configuration
object in draggable2.html to the following:

var dragOpts = {
 cursor: "move",
 axis: "y",
 distance: "30",
 cursorAt: {
 top: 0,
 left: 0
 }
};

Drag and Drop

[200]

This can be saved as draggable3.html. The first new option that we've configured is
the axis option, which has restricted the draggable to moving only up or down the
page, but not side-to-side.

Next, we've specified 30 as the value of the distance option. This means that the
cursor will have to travel 30 pixels across the drag object, with the mouse button
held down, before the drag will begin.

The final option, cursorAt, is configured using an object literal whose properties
can be top, right, bottom, or left. The values supplied to the properties we choose
to use are the values relative to the drag object that the cursor will assume when a
drag occurs.

However, you'll notice in this example that the value for the left option seems to
be ignored. The reason for this is that we have configured the axis option. When
we begin the drag, the drag object will automatically move so that the cursor is at 0
pixels from the top of the element, but it will not move so that the cursor is 0 pixels
from the left edge as we have specified because the drag object cannot move left.

 Let's look at some more of draggable's options in action. Change draggable3.html
so that the configuration object appears as follows:

var dragOpts = {
 delay: "1000",
 grid: [100,100]
};

Save the file as draggable4.html. The delay option that takes a value in
milliseconds, configures the time that the mouse button must be held down
with the cursor over the drag object before the drag will begin.

The grid option is similar in usage to the steps option of the slider widget. It is
configured using an array of two values representing the number of pixels along
each axis the drag element should jump when it is dragged. This option can be used
safely in conjunction with the axis option.

Resetting dragged elements
It is very easy to configure drag objects to return to their original starting position on
the page once they've been dropped, and there are several options that can be used
with this behavior. Change the configuration object we used with draggable4.html
so that it appears as follows:

var dragOpts = {
 revert: true
};

Chapter 9

[201]

Save this as draggable5.html. By supplying true as the value of the revert option,
we've caused the drag object to return to its starting position at the end of any drag
interaction. However, you'll notice that the drag element doesn't just pop back to its
starting position instantly. Rather, it's smoothly animated back with no additional
configuration required.

Another revert-related option is the revertDuration option, which we can use
to control the speed of the revert animation. Change the configuration object in
draggable5.html so that it appears as follows:

var dragOpts = {
 revert: true,
 revertDuration: 100
};

Save this as draggable6.html. The default value for the revertDuration is
500 milliseconds, so by lowering it to 100, the relative speed of the animation is
considerably increased.

The actual speed of the animation will always be determined on the fly, based on
the distance from the drop point to the starting point. The revertDuration option
simply defines a target for the animation length.

Drag handles
The handle option allows us to define a region of the drag object that can be used to
drag the object. All other areas cannot be used to drag the object. A simple analogy is
the dialog widget. You can drag the dialog around only if you click and hold on the
title bar. The title bar is the drag handle.

In the following example, we'll add a simple drag handle to our drag object. Put a
new empty <div> element inside the drag element.

<div id="drag"><div id="handle"></div></div>

Then change the configuration object to this:

var dragOpts = {
 handle: "#handle"
};

Save this as draggable7.html. We've given the new <div> an id attribute. We have
then specified this id as the value of the handle option in our configuration object.

Drag and Drop

[202]

The handle is styled with a few simple style rules. Create a new stylesheet and add to
it the following code:

#drag {
 background:url(../img/drag-drop/draggable.png) no-repeat;
 width:114px; height:114px;
}
#handle {
 border-bottom:2px solid #ff0000;
 border-left:2px solid #ff0000;
 position:absolute;
 right:10px; top:10px;
 width:30px; height:30px;
 cursor:move;
}

Save this as dragHandle.css in the css folder. When we run the page in a browser,
we see that the original drag object is still draggable, but only when the handle is
selected with the pointer as seen in the following figure:

Helper elements
Several configuration options are directly related to drag helpers. A helper is a
substitute element that is used to show where the object is on screen while the
drag is in progress, instead of moving the actual draggable.

Chapter 9

[203]

A helper can be used with a very simple object in place of the actual drag object. This
can help cut down on the intensity of the drag operation, lessening the load on the
visitor's computer. Once the drag has completed, the actual element can be moved
to the new location.

Let's look at how helpers can be used in the following example. Change the
configuration object in draggable7.html to the following:

var dragOpts = {
 helper: "clone"
};

Save this file as draggable8.html. The value clone for the helper option causes
an exact copy of the original drag object to be created and used as the draggable.
Therefore, the original object stays in its starting position at all times. Don't forget
to remove the <div> element we added as the handle in the previous example.

This also causes the clone object to revert back to its starting position, an effect which
cannot be changed, even by supplying false as the value of the revert option. The
following screenshot shows the clone option in action:

Using the clone value will not help reduce the intensity of the drag operation, but
it does have other uses. For example, the drag object may be a product that can be
dragged into a shopping basket. The visitor may want several instances of the same
product, so using clone means that we don't have to create a new drag object each
time a product is added to the basket.

In addition to the clone string and the default string value of original, we can also
use a function as the value of this option. This allows us to specify our own custom
element to use as the helper. Change the final <script> element in draggable8.
html to the following:

<script type="text/javascript">
 $(function() {
 function helperMaker() {

Drag and Drop

[204]

 return $("<div>").css({
 border: "4px solid #cccccc",
 opacity: "0.5",
 height: "110px",
 width: "120px"
 });
 }

 var dragOpts = {
 helper:helperMaker
 };
 $("#drag").draggable(dragOpts);
 });
</script>

Save this file as draggable9.html. Our helperMaker() function creates a new
<div> element using standard jQuery functionality, and then sets some CSS
properties on it to define its physical appearance. It then, importantly, returns the
new element. When supplying a function as the value of the helper option, the
function must return an element.

Now, when the drag begins, it is our custom helper that becomes the drag object.
Because our custom element is much simpler than the original drag object, it can
help improve the responsiveness and performance of the application it is used in.
The following screenshot shows our custom helper:

Chapter 9

[205]

Helper opacity
We used the css jQuery method in this example during the creation of the
custom helper. However, we can also use the opacity option of the drag
object to set the opacity of helper elements as a cross-platform solution.

Constraining the drag
Another aspect of drag scenarios is that of containment. In our examples so far, the
<body> of the page has been the container of the drag object. There are also options
that we can configure to specify how the drag object behaves with regard to another
container element.

We'll look at these in the following examples, starting with the container option
which allows us to specify a container element for the drag object. In the <head> of
draggable9.html add a link to the stylesheet we'll be using in this example.

<link rel="stylesheet" type="text/css"
 href="css/draggableContainer.css">

Then wrap the drag element within a container <div> as follows:

<div id="container"><div id="drag"></div></div>

Then change the configuration object to the following:

var dragOpts = {
 containment: "parent"
};

Save this variant as draggable10.html. On the page, we've added a new <div>
element as the parent of the existing drag element. In the code, we've used the value
parent for the containment option, so the element that is the direct parent of the
drag object (the <div> with the id of container in this example) will be used as
the container.

The parent <div> needs some basic styling to give it dimensions and so it can be seen
on the page. Add the following line of code to draggable.css and resave the file as
draggableContainer.css.

#container {
 height:250px; width:250px;
 border:2px solid #ff0000;
}

Drag and Drop

[206]

When you run the page in your browser, you'll see that the drag object cannot exceed
the boundary of its container.

Along with the string parent that we used in this example, we could also specify a
selector, like the following:

var dragOpts = {	
 containment: "#container"
};

There are three additional options related to drag objects within containers and these
are all related to scrolling. However, you should note that these are only applicable
when the document is the container.

The default value of the scroll option is true, but when we drag the <div> to
the edge of the container, it does not scroll. You may have noticed in previous
examples, where the drag object was not within a specified container, the viewport
automatically scrolled. We can fix this by setting the CSS overflow option to auto in
a stylesheet if necessary.

Snapping
Drag elements can be given an almost magnetic quality by configuring snapping.
This feature causes dragged elements to align themselves to specified elements while
they are being dragged. There are three options related to snapping. They are:

snap

snapMode

snapTolerance

•

•

•

Chapter 9

[207]

In the next example, we'll look at the effects that these options have on the behavior
of the drag object when they are configured. Get rid of the container we added in
the previous example, and add a new empty <div> element directly after the drag
element like as follows:

<div id="drag"></div>
<div id="snapper"></div>

Then change the configuration object so that it appears as follows:
var dragOpts = {
 snap: "#snapper",
 snapMode: "inner",
 snapTolerance: 50
};

Save this as draggable11.html. We've supplied the selector #snapper as the value
of the snap option, and have added a <div> element with a matching id to the page.
Therefore, our drag object will snap to this element on the page while the object is
being dragged.

We also set the snapMode option to inner (the other possible values are outer and
both), so snapping will occur on the inside edges of our snapper element. If you
drag the element towards the outer edge of the snapper element and get within the
tolerance range, the element will snap to the inner edge.

Finally, we've set the snapTolerance to 50, which is the maximum distance
(in pixels) the drag object will need to get to the snapper element before snapping
will occur. As soon as a drag object is within this range it will snap to the element.

Now, when you drag the image within 50 pixels of an edge of the snapper
element, the drag object will automatically align itself to that edge, as shown
in the following screenshot:

Drag and Drop

[208]

Draggable event callbacks
In addition to the options that we have already looked at, there are three more
that can be used as callback functions to execute code after specific custom events,
defined by the draggables component, occur. These events are listed below.

Option Triggered
drag When the mouse is moved while dragging.
start When dragging starts.
stop When dragging stops.

When defining callback functions to make use of these events, the functions will
always receive two arguments automatically. The original event object as the first
argument and a second object containing the following properties:

Option Usage
helper A jQuery object representing the helper element.
position A nested object with properties top and left

of the helper element relative to the original
drag element.

absolutePosition A nested object with properties top and left of
the helper element relative to the page.

Using the callbacks, and the two objects that are passed as arguments, is extremely
easy. We can look at a brief example to highlight their usage. Remove the snapper
<div> in draggable11.html and change the final <script> element to as follows:

<script type="text/javascript">
 $(function() {

 function setShadow() {
 $("#drag").css({ background:
 "url(img/drag-drop/draggable_on.png)",
 width:"120px", height:"121px" });
 }
 function unsetShadow() {
 $("#drag").css({ background:
 "url(img/drag-drop/draggable.png)",
 width:"114px", height:"114px" });
 }
 var dragOpts = {
 start: setShadow,
 stop: unsetShadow
 };

 $("#drag").draggable(dragOpts);
 });
</script>

Chapter 9

[209]

Save this as draggable12.html. In this example, our configuration object contains
just two options—the start and stop callbacks. We set these values to our callback
function names.

All the functions do in this example are simple image swaps. When the start
callback is invoked, the background image of the drag object is switched for one
containing a drop shadow. When the stop callback is invoked, the image is
swapped back to the original image with no shadow. The following screenshot
shows the drop shadow:

Using the callbacks in this way is just one example of how the usability of the
drag object is improved with a visual cue that indicates the object is currently
in a draggable state.

Let's move on to a slightly more complex example where we can make use of the
second object passed to our callbacks. We need a couple of new elements on the
page, change the <body> of the page so that it appears as follows:

<div id="container">
 <div id="drag"></div>
</div>
<div id="results"></div>
 <script type="text/javascript">
 $(function() {
 var dragOpts = {
 stop: getNewPos
 };
 function getNewPos(e, ui) {
 e.stopPropagation();

Drag and Drop

[210]

 var relativeP = $("<p>").attr("id", "test").text("The
 helper was moved to " + ui.position.top + "px down, and "
 + ui.position.left + "px to the left of its original
 position.");
 var offset = $("<p>").attr("id", "test").text("The helper
 was moved to " + ui.offset.top + "px from the top, and "
 + ui.offset.left + "px to the left relative to the
 viewport.");
 $("#results").empty().append(relativeP).append(offset);
 }
 $("#drag").draggable(dragOpts);
 });
 </script>
 </body>
</html>

Save this as draggable13.html. We've defined the getNewPos callback function as
the value of the stop option, so it will be executed each time a drag interaction stops.

Our callback function receives an object e that is the event object (which we don't
need but must specify in order to access the second object), and ui for the jQuery UI
object containing useful information about the drag object.

All our callback function does is create two new paragraphs, concatenating
the values found in the object passed to the function as the second argument-
ui.position.top, ui.position.left, ui.offset.top, and ui.offset.left.
It then inserts the new <p> elements into the results <div>.

This examples requires the following simple stylesheet:

#container {
 width:450px; height:250px;
 position:relative; top:50px; left:50px;
 border:1px solid #ff0000;
}
#drag {
 width:114px; height:114px; cursor:move;
 background:url(../img/drag-drop/draggable.png) no-repeat;
}
#results { position:relative; top:50px; left:50px; }
p { font-size:80%; }

This should be saved as draggableIndented.css in the styles folder. We've
positioned the drag objects container away from the edge of the page to highlight
the differences between the position and offset properties of the ui object. Here's
how it should look after dragging to the bounds of the container.

Chapter 9

[211]

Using draggable's methods
Draggable uses only the four common API methods:

destroy

disable

enable

option

These methods are used in the same way as the methods for the widgets that we've
already used, for clarification of how these methods work, see Chapter 1.

Droppables
In a nutshell, the droppables component of jQuery UI gives you a place for drag
objects to be dropped. A region of the page is defined as a droppable and when a
drag object is dropped onto that region, something else is triggered. You can react to
drops on a valid target very easily using the extensive event model.

•

•

•

•

Drag and Drop

[212]

Let's start with the default droppable implementation. In a new file in your text
editor, add the following page:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
 "http://www.w3.org/TR/html4/strict.dtd">
<html lang="en">
 <head>

 <link rel="stylesheet" type="text/css" href="css/droppable.css">
 <meta http-equiv="Content-Type" content="text/html;
 charset=utf-8">
 <title>jQuery UI Droppable Example 1</title>
 </head>
 <body>
 <div id="drag"></div>
 <div id="target"></div>
 <script type="text/javascript"
 src="development-bundle/jquery-1.3.2.js"></script>
 <script type="text/javascript"
 src="development-bundle/ui/ui.core.js"></script>
 <script type="text/javascript"
 src="development-bundle/ui/ui.draggable.js"></script>
 <script type="text/javascript"
 src="development-bundle/ui/ui.droppable.js"></script>
 <script type="text/javascript">
 $(function() {
 $("#drag").draggable();
 $("#target").droppable();
 });
 </script>
 </body>
</html>

Save this as droppable1.html. The extremely basic stylesheet that is linked to in this
example is simply an updated version of draggable.css and appears as follows:

#drag {
 background:url(../img/drag-drop/draggable.png) no-repeat;
 width:114px; height:114px;
 cursor:move; margin-bottom:5px;
 z-index:2;
}
#target {
 width:200px; height:200px;
 border:3px solid #000;
 position:absolute;
 right:20px; top:20px;
 z-index:1;
}

Chapter 9

[213]

Save this as droppable.css in the css folder. When run the page in a browser, the
page should look like the following screenshot:

In this example, the droppable is created (we can see this with the class name
ui-droppable that is added to the specified element when the page loads).

Even though we haven't added any additional logic to our script, events are firing
throughout the interaction on both the drag object and the drop target. A little later
in the chapter we'll look at these events in more detail to see how we can hook into
them to react to successful drops.

The files we used for this basic droppable implementation are:

jquery-1.3.2.js

ui.core.js

ui.draggable.js

ui.droppable.js

As you can see, the droppables component is an extension of draggables, rather than
a completely independent component. Therefore, it requires the ui.draggable.js
file in addition to its own source file. The reason our droppable does nothing is that
we haven't configured it, so let's do that next.

•

•

•

•

Drag and Drop

[214]

Configuring droppables
The droppable class is considerably smaller than the draggables class and there are
less configurable options for us to play with. The following table lists those options
available to us:

Option Default Usage
accept '*' Sets the element(s) that the droppable will accept.
activeClass false The class that is applied to the droppable while an

accepted drag object is being dragged.
addClasses true Adds the ui-droppable class to the droppable.
greedy false Used to stop drop events from bubbling when a

drag object is dropped onto nested droppables.
hoverClass false The class that is applied to the droppable while

an accepted drag object is within the boundary
of the droppable.

scope 'default' Defines sets of drag objects and drop targets.
tolerance intersect Sets the mode that triggers an accepted drag object

being considered over a droppable.

In order to get a visible result from configuring the droppable, we're going to use
a couple of these options together in the following example that will highlight the
drag object that is accepted by the droppable. Change the elements on the page in
droppable1.html so that they appear as follows:

<div class="drag" id="drag1"></div>
<div class="drag" id="drag2"></div>
<div id="target"></div>

Next change the final <script> element to this:

<script type="text/javascript">
 $(function() {
 $(".drag").draggable();
 var dropOpts = {
 accept: "#drag1",
 activeClass: "activated"
 };
 $("#target").droppable(dropOpts);
 });
</script>

Save this as droppable2.html. The accept option takes a selector. In this example,
we've specified that only the drag object that has an id of drag1 should be accepted
by the droppable.

Chapter 9

[215]

We've also specified the class name activated as the value of the activeClass
option. This class name will be applied to the droppable when the accepted drag
object starts to be dragged. The hoverClass option can be used in exactly the same
way to add styles when an accepted drag object is over a droppable.

We need a new stylesheet for this example, modify droppable.css so that it appears
as follows:

#drag, .drag {
 width:114px; height:114px;
 background:url(../img/drag-drop/draggable.png) no-repeat;
 cursor:move; margin-bottom:5px; z-index:2;
}
#target {
 width:200px; height:200px; border:3px solid #000;
 position:absolute; right:20px; top:20px; z-index:1;
}
.activated {
 border:3px solid #339900; background-color:#ccffcc;
}

Save this in the css folder as droppableActive.css and link to it in the <head> of
the page.

<link rel="stylesheet" type="text/css"
 href="css/droppableActive.css">

When we view this page in a browser, we should find that as we move the first drag
object that is defined as accepted, the droppable picks up the activated class and
turns green. However, when the second drag object is moved, the drop target does
not respond. The following screenshot shows how the page should look whilst the
first drag object is being dragged:

Drag and Drop

[216]

In addition to a string value, the accept option can also take the name of a function
as its value. This function will be executed once for every drag object that is on
the page. The function must return either true, to indicate that the drag object is
accepted, or false to indicate that it's not.

To see the function value of the accept option in action change the final <script>
element in droppable2.html to the following:

<script type="text/javascript">
 $(function() {
 $(".drag").draggable();

 function dragEnrol(el) {
 return (el.attr("id") == "drop1") ? true : false;
 }
 var dropOpts = {
 accept: dragEnrol,
 activeClass: "activated"
 };
 $("#target").droppable(dropOpts);
 });
</script>

Save this variation as droppable3.html. On the surface, the page works exactly
the same as it did in the previous example. But this time, acceptability is being
determined by the JavaScript ternary statement within the dragEnrol function,
instead of a simple selector.

Note that the function is automatically passed an object containing useful data about
the drag object as an argumental. This makes it is easy to obtain information about it,
like its id as in this example. This callback can be extremely useful when advanced
filtering, beyond a simple selector, is required.

Tolerance
Drop tolerance refers to the way a droppable detects whether a drag object is over it
or not. The default value is intersect. The following table lists the modes that this
option may be configured with:

Chapter 9

[217]

Mode Implementation
fit The drag object must be completely within the boundary of the

droppable for it to be considered over it.
intersect At least 25% of the drag object must be within the boundary of the

droppable before it is considered over it.
pointer The mouse pointer must touch the droppable boundary before the

drag object is considered over the droppable.
touch The drag object is over the droppable as soon as an edge of the drag

object touches an edge of the droppable.

So far, all of our droppable examples have used intersect, the default value of the
tolerance option. Let's see what difference the other values for this option make to
an implementation of the component. Revert back to the drag and target elements
from droppable1.html and then use the following configuration object:

var dropOpts = {
 hoverClass: "activated",
 tolerance: "pointer"
};

Save this as droppable4.html and don't forget to link to the droppableActive.
css stylesheet that we used in the previous two examples. This time we use the
hoverClass option to specify the class name that is added to the droppable. We then
use the tolerance option to specify which tolerance mode is used (see previous table).

The part of the drag object that is over the droppable is irrelevant in this example, it
is the mouse pointer that must cross the boundary of the droppable while a drag is in
progress for our over class to be activated.

Drag and Drop

[218]

For good measure, the following screenshot shows how the touch mode works.
Here, the drag element itself need only to touch the edge of the droppable before
triggering our over class:

Droppable event callbacks
The options that we've looked at so far configure various operational features of the
droppable. In addition to these, there are almost as many callback options so that we
can define functions that react to different things occurring to the droppable and its
accepted drag objects. These options are listed below.

Callback option Invoked
activate When an accepted drag object begins dragging.
deactivate When an accepted drag object stops being dragged.
drop When an accepted drag object is dropped onto a droppable.
out When an accepted drag object is moved out of the bounds

(including the tolerance) of the droppable.
over When an accepted drag object is moved within the bounds

(including the tolerance) of the droppable.

Chapter 9

[219]

Let's put together a basic example that makes use of these callback options. We'll add
a status bar to our droppable that reports the status of different interactions between
the drag object and the droppable. In droppable4.html add the following new
element directly after the target element.

<div id="status"></div>

Then change the final <script> element to this:

<script type="text/javascript">
 $(function() {
 $("#drag").draggable();
 var eventMessages = {
 dropactivate: "A draggable is active",
 dropdeactivate: "A draggable is no longer active",
 drop: "An accepted draggable was dropped on the droppable",
 dropout: "An accepted draggable has been moved out of the
 droppable",
 dropover: "An accepted draggable is over the droppable"
 };
 function eventCallback(e) {
 var message = $("<p>").attr("id",
 "message").text(eventMessages[e.type]);
 $("#status").empty().append(message);
 }

 var dropOpts = {
 accept: "#drag",
 activate: eventCallback,
 deactivate: eventCallback,
 drop: eventCallback,
 out: eventCallback,
 over: eventCallback
 };
 $("#target").droppable(dropOpts);
 });
</script>

Save this file as droppable5.html. The <body> of the page contains, along with the
droppable, a new status bar, which in this case is a simple <div> element.

Next we define an object literal in which the key for each property is set to one of the
event types that may be triggered. The value of each property is the message that we
want to display for any given event.

We then define our callback function. Like other components, the callback functions
used in the droppables component are automatically passed two objects—the event
object and an object representing the drag element.

Drag and Drop

[220]

We use the type property of the event object to retrieve the appropriate message
from the eventMessages object. This is the same way we would access an associative
array. We then use standard jQuery element creation and manipulation methods to
add the message to the status bar.

Our configuration object has all of the callback options defined, and for efficiency,
they all point to the same function.

We also need some new styles for this example. Create a new stylesheet in your text
editor and add the following selectors and rules:

#drag {
 background:url(../img/drag-drop/draggable.png) no-repeat;
 width:114px; height:114px;
 cursor:move;
 margin-bottom:5px;
 z-index:2;
}
#target {
 width:250px; height:200px;
 border:3px solid #000;
 position:absolute;
 right:20px; top:20px;
 z-index:1;
}
#status {
 width:230px;
 border:3px solid #000;
 position:absolute;
 top:223px; right:20px;
 color:#000;
 padding:10px;
}
#message {
 margin:0px;
 font-size:80%;
}

Chapter 9

[221]

Here's how the status bar should look like following an interaction:

After playing around with the page for some time, we see that one of our messages
does not appear to be working. When the drag object is dropped onto the droppable,
our drop message does not appear.

Actually, the message does appear, but because the deactivate event is fired
immediately after the drop event, the drop message is overwritten right away. There
are a number of ways we could work around this, the simplest would be not to
define the deactivate option.

Although we only make use of the event object in this example, a second object is
also passed automatically to our callback functions. This object contains information
relevant to the droppable such as:

Option Value
ui.draggable The current drag object.
ui.helper The current drag helper.
ui.position The current relative position of the helper.
ui.offset The current absolute position of the helper.

Drag and Drop

[222]

Scope
Both the draggables and droppables feature the scope configuration option that
allows us to easily define groups of drag objects and drop targets. In this next example
we can look at how these options can be configured and the effect that configuring
them has. We'll link to another new stylesheet in this example, so in the <head> of
droppable5.html add the following code:

<link rel="stylesheet" type="text/css" href="css/droppableScope.css">

We need a number of new elements for this example. Change the <body> of the page
in droppable5.html so that it contains the following elements:

<div id="target_a">A</div>
<div id="target_b">B</div>
<div id="group_a">
 <p>A</p>
 <div id="a1" class="group_a">a1</div>
 <div id="a2" class="group_a">a2</div>
 <div id="a3" class="group_a">a3</div>
</div>
<div id="group_b">
 <p>B</p>
 <div id="b1" class="group_b">b1</div>
 <div id="b2" class="group_b">b2</div>
 <div id="b3" class="group_b">b3</div>
</div>

To make these elements behave correctly change the final <script> element to
the following:

 <script type="text/javascript">
 $(function() {
 var dragOpts_a = {
 scope: "a"
 }
 var dragOpts_b = {
 scope: "b"
 }
 $(".group_a").draggable(dragOpts_a);
 $(".group_b").draggable(dragOpts_b);
 var dropOpts_a = {
 hoverClass: "over",
 scope: "a"
 }
 var dropOpts_b = {
 hoverClass: "over",
 scope: "b"
 }
 $("#target_a").droppable(dropOpts_a);

Chapter 9

[223]

 $("#target_b").droppable(dropOpts_b);
 });
 </script>
 </body>
</html>

Save this file as droppable6.html. The page has two drop targets and two groups
of three drag objects, all of which are labeled to show the group they belong to. In
the script we define two configuration objects for the two groups of draggables,
and two configuration objects for the drop targets. Within each object we set the
scope option.

The values we set for the scope of each drop target matches the scopes of each drag
object. Therefore, if we want to use scope, it must be defined for both the drag object
and drop target. If we try to set the scope of a droppable but don't give at least one
drag object the same scope an error is thrown.

Setting the scope gives us another technique for defining which drag objects are
accepted by which drop targets, but it is provided as an alternative to the accept
option—the two options should not be used together. Next we need to create the
CSS file, so in a new page in your text editor add the following code:

#target_a, #target_b, #group_a, #group_b {
 width:150px; height:150px; float:left;
 border:2px solid black; margin:0 20px 20px 0;
 font-family:Georgia; font-size:100px; color:red;
 padding:50px; text-align:center;
}
#group_a, #group_b {
 width:518px; height:115px; margin-bottom:20px; clear:both;
 padding:5px 0 5px 5px;
}
p { float:left; margin:0 20px 0; }
.group_a, .group_b {
 width:94px; height:94px;
 background:url(../img/drag-drop/draggable.png) no-repeat;
 float:left; margin-right:20px; font-family:arial;
 font-size:14px; color:red; text-align:left;
 padding:20px 0 0 20px;
}
.over { background-color:#ccffcc; }

Save this as droppableScope.css in the css folder.

Drag and Drop

[224]

The following screenshot shows how the page should appear:

Greedy
The final option that we are going to look at in connection with the droppable
component is the greedy option. This option can be useful in situations where there
is a droppable nested within another droppable. If we don't use this option, both
droppables will fire events during certain interactions.

Chapter 9

[225]

The greedy option is an easy way to avoid event-bubbling problems in an efficient
and cross-browser manner. Let's take a closer look at this option with an example.
Create a new page in your text editor and add the following code to it:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/
TR/html4/strict.dtd">
<html lang="en">
 <head>
 <link rel="stylesheet" type="text/css"
 href="css/droppableNesting.css">
 <meta http-equiv="Content-Type" content="text/html;
 charset=utf-8">
 <title>jQuery UI Droppable Example 6</title>
 </head>
 <body>
 <div id="drag"></div>
 <div class="target" id="outer">
 <div class="target" id="inner"></div>
 </div>
 <div id="status"></div>
 <script type="text/javascript"
 src="development-bundle/jquery-1.3.2.js"></script>
 <script type="text/javascript"
 src="development-bundle/ui/ui.core.js"></script>
 <script type="text/javascript"
 src="development-bundle/ui/ui.draggable.js"></script>
 <script type="text/javascript"
 src="development-bundle/ui/ui.droppable.js"></script>
 <script type="text/javascript">
 $(function() {

 $(".target").css({ opacity:"0.5" });
 var dragOpts = {
 zIndex: 3
 };
 $("#drag").draggable(dragOpts);

 function dropCallback(e) {
 var message = $("<p>").attr("id", "message").text("The
 firing droppable was " + e.target.id);
 $("#status").append(message);
 }
 var dropOpts = {
 drop:dropCallback,
 greedy:true
 };

 $(".target").droppable(dropOpts);
 });
 </script>
 </body>
</html>

Drag and Drop

[226]

Save this example as droppable7.html. In this example, we have a smaller
droppable nested in the center of a larger droppable. Their opacity is set using the
standard jQuery library's css() method. In this example, this is necessary because if
we alter the zIndex of the elements, so that the drag object appears above the nested
droppables, the target element is not reported correctly.

We didn't get to see the zIndex option of the draggables component in the first part
of this chapter, but we can see it in action in this example instead. The drag object
will have the specified zIndex applied to it whilst it is being dragged. Once it has
been dropped, it will appear to be under the droppables.

The dropCallback function is used to add a simple message to the status bar
notifying us which droppable was the target of the drop.

Our droppables configuration object uses the drop option to wire up our callback
function. However, the key option is the greedy option that makes whichever target
the draggable is dropped on to stop the event from escaping into other targets.

The CSS for this example is simple and builds on the CSS of previous examples.

#drag {
 background:url(../img/drag-drop/draggable.png) no-repeat;
 width:114px; height:114px;
 cursor:move;
 margin-bottom:5px;
}
#outer {
 width:300px; height:300px;
 border:3px solid #000;
 position:absolute;
 right:20px; top:20px;
 background-color:#99FF99;
}
#inner {
 width:100px; height:100px;
 border:3px solid #000;
 position:relative;
 top:100px; left:100px;
 background-color:#FFFF99;
}
#status {
 width:280px;
 border:3px solid #000;
 position:absolute;
 top:323px; right:20px;
 color:#000;

Chapter 9

[227]

 padding:10px;
}
#message {
 margin:0px;
 font-size:80%;
}

Save this as droppableNesting.css in the css folder. If you run the page, and drop
the drag object onto one of the droppables, you should see something as shown in
the following screenshot:

Drag and Drop

[228]

The net effect of setting the greedy option to true is that the inner droppable
prevents the event from propagating into the outer droppable and firing again.
If you comment out the greedy option and drop the draggable onto the inner
droppable, the status message will be inserted twice, once by the inner droppable
and once by the outer droppable. Without this option set, the page would look like
this following a drop on the inner target:

Droppable methods
Like the draggable component, droppable has only the common API methods shared
by all library components. This is another component that is primarily option-driven.
The methods available to us are the same ones exposed by draggable:

destroy

disable

enable

option

•

•

•

•

Chapter 9

[229]

They function, and are used in exactly the same way as the methods exposed by
draggables. We can temporarily disable the droppable using the disable method,
re-enable the droppable with enable, and permanently remove (at least for the
duration of the session) functionality with destroy. The option method is again
used to get or set any option after initialization.

A drag and drop game
We've now reached the point where we can have a little fun by putting what we've
learned about these two components into a fully working example. In our final drag
and drop example, we're going to combine both of these components to create a
simple maze game. The game will consist of a draggable marker that will need to
be navigated through a simple maze to a specified droppable at the other end of the
maze. We can make things a little more challenging, so that if any of the maze walls
are touched by the marker it will return to the starting position.

The following screenshot shows what we're going to build:

Drag and Drop

[230]

Let's start with the markup. In a new page in your text editor, add the
following code:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
 "http://www.w3.org/TR/html4/strict.dtd">
<html lang="en">
 <head>
 <link rel="stylesheet" type="text/css"
 href="css/dragMaze.css">
 <meta http-equiv="Content-Type" content="text/html;
 charset=utf-8">
 <title>jQuery UI Draggable Maze Game</title>
 </head>
 <body>
 <div id="maze">
 <div id="drag"></div>
 <div id="start"></div>
 <div id="end"></div>
 </div>
 <script type="text/javascript"
 src="development-bundle/jquery-1.3.2.js"></script>
 <script type="text/javascript"
 src="development-bundle/ui/ui.core.js"></script>
 <script type="text/javascript"
 src="development-bundle/ui/ui.draggable.js"></script>
 <script type="text/javascript"
 src="development-bundle/ui/ui.droppable.js"></script>
 <script type="text/javascript">

 </script>
 </body>
</html>

Save this file as dragMaze.html. On the page we have our outer container that we've
given an id of maze. We have <div> elements for the starting and ending positions
as well as for the drag marker. Our map will need walls. Rather than handcoding the
46 required walls for the map pattern that we're going to use, I thought we could use
jQuery to do this for us instead.

We left an empty <script> element at the bottom of our page. Let's fill that up next
with the following code:

$(function() {

 for (var x = 1; x < 47; x++) {
 $("<div>").attr({
 id: "a" + x,

Chapter 9

[231]

 class: "wall"
 }).appendTo("#maze");
 }

 var dragOpts = {
 containment: "#maze"
 };
 $("#drag").draggable(dragOpts);

 var dropOpts = {
 tolerance: "touch",
 over: function(e, ui) {

 $("#drag").draggable("destroy").remove();

 $("<div>").attr("id", "drag").css({ left:0,
 top:0 }).appendTo("#maze");

 $("#drag").draggable(dragOpts);
 }
 };

 var endOpts = {
 over: function(e, ui) {

 $("#drag").draggable("destroy").remove();

 alert("Woo!, you did it!");
 }
 };
 $(".wall").droppable(dropOpts);

 $("#end").droppable(endOpts);

});

Let's review what the new code does. First, we use a simple for loop to add the walls
to our maze. We use the plain-vanilla for loop in conjunction with standard jQuery
to create 46 <div> elements and add id and class attributes to each one before
appending them to the maze container.

We then define a simple configuration object for the drag object. The only option
we need to configure is the container option that constrains the draggable marker
element within the maze. We can then go ahead and create the draggable behavior
with the draggable constructor method.

Drag and Drop

[232]

Next, we can define the configuration object for the walls. Each wall is treated as
a droppable. We specify touch as the value of the tolerance option and add a
callback function to the over option. Therefore, whenever the drag object touches a
wall, the function will be executed.

All we do in this function is destroy the current drag object and remove it from the
page. We then create a new drag object back at the starting position and make it
draggable once more. There is no cancelDrag method that causes the drag object
to act as if it had been dropped and revert to its starting position, but we can easily
replicate this behavior ourselves.

We then add another droppable configuration object that configures the ending point
of the maze. All we configure for this droppable is a function to execute when the
draggable is over this droppable. In this function, we remove the drag object again
and present the user with an alert congratulating them.

Finally, we make the walls and the end target droppables. So far, this is probably
the simplest JavaScript game ever written, but we also need to add some CSS for
the maze and the draggable along with the start and end points.

We also need to style up the walls of the maze, but we can't use any simple
JavaScript pattern for this. Unfortunately, we have to hardcode them. In another
new file in your text editor, add the following selectors and rules:

#maze {
 width:441px; height:441px; border:10px solid #000000;
 background-color:#ffffff; position:relative;
}
#drag {
 width:10px; height:10px;
 background-color:#0000FF; z-index:1;
}
#start {
 width:44px; height:10px; background-color:#00CC00;
 position:absolute; top:0; left:0; z-index:0;
}
#end {
 width:44px; height:10px; background-color:#FF0000;
 position:absolute; top:0; right:130px;
}
.wall { background-color:#000000; position:absolute; }
#a1 { width:10px; height:133px; left:44px; top:0; }
#a2 { width:44px; height:10px; left:0; top:167px; }
#a3 { width:44px; height:10px; left:44px; top:220px; }
#a4 { width:89px; height:10px; left:0; bottom:176px; }

Chapter 9

[233]

#a5 { width:94px; height:10px; left:0; bottom:88px; }
#a6 { width:10px; height:41px; left:40px; bottom:0; }
#a7 { width:10px; height:48px; left:88px; top:44px; }
#a8 { width:78px; height:10px; left:54px; top:123px; }
#a9 { width:10px; height:97px; left:88px; top:133px }
#a10 { width:10px; height:45px; left:40px; bottom:98px; }
#a11 { width:88px; height:10px; left:89px; bottom:132px; }
#a12 { width:10px; height:97px; left:132px; bottom:35px; }
#a13 { width:10px; height:44px; left:89px; bottom:142px; }
#a14 { width:92px; height:10px; left:40px; bottom:35px; }
#a15 { width:89px; height:10px; left:88px; top:34px; }
#a16 { width:10px; height:145px; left:132px; top:76px; }
#a17 { width:44px; height:10px; left:132px; top:220px; }
#a18 { width:133px; height:10px; left:132px; bottom:175px; }
#a19 { width:10px; height:107px; left:176px; bottom:35px; }
#a20 { width:10px; height:150px; left:176px; top:34px; }
#a21 { width:35px; height:10px; left:186px; top:174px }
#a22 { width:35px; height:10px; left:186px; bottom:88px; }
#a23 { width:122px; height:10px; left:186px; top:88px; }
#a24 { width:10px; height:44px; left:220px; top:0px; }
#a25 { width:10px; height:55px; left:220px; top:174px; }
#a26 { width:10px; height:45px; left:220px; bottom:130px; }
#a27 { width:133px; height:10px; right:88px; top:44px; }
#a28 { width:10px; height:168px; right:166px; top:98px; }
#a29 { width:44px; height:10px; right:176px; top:130px; }
#a30 { width:10px; height:98px; right:166px; bottom:35px; }
#a31 { width:133px; height:10px; right:88px; bottom:35px; }
#a32 { width:10px; height:133px; right:78px; top:44px; }
#a33 { width:44px; height:10px; right:88px; top:128px; }
#a34 { width:131px; height:10px; right:35px; top:171px; }
#a35 { width:43px; height:10px; right:123px; top:220px; }
#a36 { width:10px; height:91px; right:123px; bottom:85px; }
#a37 { width:131px; height:10px; right:35px; bottom:123px; }
#a38 { width:10px; height:55px; right:79px; top:220px; }
#a39 { width:44px; height:10px; right:0; top:122px; }
#a40 { width:10px; height:54px; right:79px; bottom:35px; }
#a41 { width:79px; height:10px; right:0; bottom:79px; }
#a42 { width:10px; height:45px; right:35px; top:44px; }
#a43 { width:43px; height:10px; right:35px; top:88px; }
#a44 { width:79px; height:10px; right:0; top:220px; }
#a45 { width:10px; height:44px; right:35px; bottom:132px; }
#a46 { width:10px; height:50px; right:35px; bottom:0; }

Drag and Drop

[234]

Save this file as dragMaze.css in the css folder. These two new files now form our
simple game. It's limited, but you can see how well the drag and drop components
work in this particular scenario.

We can now attempt to navigate the marker from the starting point to the finish by
dragging it through the maze walls. If any wall is touched, the marker will return
to the starting point. We could make it harder (by adding additional obstacles to
navigate, and so on), but for the purpose of having fun with jQuery UI draggables
and droppables, our work here is complete.

Summary
We looked at two very useful library components in this chapter—the draggable
and droppable components. Draggables and droppables, as we saw, are very closely
related and have been designed to be used with each other, allowing us to create
advanced and highly-interactive interfaces.

We've covered a lot of material in this chapter, so let's recap on what we have
learned. We saw that the draggable behavior can be added to any element on
the page with zero configuration. There may be implementations where this is
acceptable, but usually we'll want to use one or more of the component's extensive
range of configurable options.

In the second part of this chapter, we saw that the droppables class allows us to
easily define areas on the page that draggables can be dropped onto, and can react
to things being dropped on them. We can also make use of a smaller range of
configurable droppable options to implement more advanced droppable behavior.

Both components feature an effective event model for hooking into the interesting
moments of any drag and drop interaction. We also saw that each component has
a simple set of methods for enabling or disabling drag or drop, and also a destroy
method for removing the functionality (but not the underlying elements) from
the page.

Our final example showed how both the draggables and droppables components can
be used together to create a fun and interactive game. Although the game was very
basic by modern gaming standards, it nevertheless provides a sound base that we
can easily build upon to add additional features.

Resizing
We have already seen resizables in action briefly when we looked at the dialog
widget earlier in the book. This time, we're going to focus directly on this utility
instead of looking at it incidentally. However, the dialog is a perfect example of
how useful the resizable component can be in a real-world implementation.

The resizable is a flexible component that can be used with a wide range of different
elements. For example, <textarea> elements that may have different amounts of
user-entered text in them could be styled so the <textarea> would be quite small
initially. Users could then resize it as they saw fit depending on how much text they
entered into it.

Throughout the examples in this chapter, we'll mostly be using simple <div>
elements so that the focus remains on the component and not on the underlying
HTML. We will also look at some brief examples using and <textarea>
elements towards the end of the chapter.

In this chapter, we'll be looking at the following aspects of the component:

Implementing basic resizability
The configurable options available for use
Specifying which resize handles to add
Managing the resizable's minimum and maximum sizes
The role of resize helpers and ghosts
A look at the built-in resize animations
How to react to resize events

The resizables component works well with other components and is very often used
in conjunction with draggables. However, while you can easily make draggable
components resizable (think dialog), the two classes are in no way related.

•
•
•
•
•
•
•

Resizing

[236]

A basic resizable
Let's implement the basic resizable so we can see just how easy making elements
resizable is when you use jQuery UI as the driving force behind your pages. In a
new file in your text editor add the following code:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
 "http://www.w3.org/TR/html4/strict.dtd">
<html lang="en">
 <head>
 <link rel="stylesheet" type="text/css"
 href="development-bundle/themes/smoothness/ui.all.css">
 <link rel="stylesheet" type="text/css"
 href="css/resize.css">
 <meta http-equiv="Content-Type" content="text/html;
 charset=utf-8">
 <title>jQuery UI Resizable Example 1</title>
 </head>
 <body>
 <div id="resize"></div>
 <script type="text/javascript"
 src="development-bundle/jquery-1.3.2.js"></script>
 <script type="text/javascript"
 src="development-bundle/ui/ui.core.js"></script>
 <script type="text/javascript"
 src="development-bundle/ui/ui.resizable.js"></script>
 <script type="text/javascript">
 $(function() {
 $("#resize").resizable();
 });
 </script>
 </body>
</html>

Save this as resizable1.html. The basic widget method, used with no arguments
for the default implementation, uses the same simplified syntax as the rest of the
library. This requires just one line of specific code for the example to work.

Chapter 10

[237]

Along with the CSS framework files that we need for any resizables implementation,
we also use a custom stylesheet to add basic dimension and borders to our <div>.
Use the following CSS in a new file in your text editor:

#resize {
 width:200px; height:200px; margin:30px 0 0 30px;
 border:1px solid #7a7a7a;
}

Save this file as resize.css in the css folder. We've given the resizable element
dimensions in our CSS because without them the <div> will stretch the width
of the screen. We've also specified a border to clearly define it as the default
implementation only adds a single resize handle to the bottom-right corner of the
targeted element. The following screenshot shows how our basic page should look
after the <div> has been resized:

The library files we use in this example are as follows:

ui.all.css

jquery-1.3.2.js

ui.core.js

ui.resizable.js

•

•

•

•

Resizing

[238]

The component automatically adds the three required elements for the drag handles.
Although the only visible resize handle is the one in the bottom-right corner, both
the bottom and right edges also allow for resizing.

Resizable options
The following table lists the configurable options we have at our disposal when
working with the resizable component:

Option Default value Usage
alsoResize false Automatically resizes specified elements

in sync with the resizable.
animate false Animates the resizable element to its

new size.
animateDuration slow Sets the speed of the animation. Values

can be integers specifying the number of
milliseconds, or one of the string values
slow, normal, or fast.

animateEasing swing Adds easing effects to the resize
animation.

aspectRatio false Maintains the aspect ratio of the element.
Accepts numerical custom aspect ratios in
addition to Boolean values.

autoHide false Hides the resize handles until the
resizable is hovered over with the mouse
pointer.

cancel ':input,option' Stops specified elements from being
resizable.

containment false Constrains the resizable within the
boundary of the specified container
element.

delay 0 Sets a delay in milliseconds from when
the pointer is clicked on a resizable
handle to when the resizing begins.

distance 1 Sets the number of pixels the mouse
pointer must move with the mouse button
held down before resizing begins.

ghost false Shows a semi-transparent helper element
while the resizing is taking place.

Chapter 10

[239]

Option Default value Usage
grid false Accepts an object specifying x and y

coordinates to snap the resize to while
resizing is taking place.

handles 'e, se, s' Defines which handles to use for resizing.
Accepts a string containing any of the
following values: n, ne, e, se, s, sw, w,
nw, or all. The string could also be an
object where the properties are any of the
above and the values are jQuery selectors
matching the elements to use as handles.

helper false Used to add a class name to the helper
element that is applied during resizing.

maxHeight null Sets the maximum height the resizable
may be changed to.

maxWidth null Sets the maximum width the resizable
may be set to.

minHeight null Sets the minimum height the resizable
may be changed to.

minWidth null Sets the minimum width the resizable
may be set to.

Configuring resize handles
Thanks to the handles configuration option, specifying which handles we would
like to add to our target element is exceptionally easy. In resizable1.html change
the final <script> element so that it appears as follows:

<script type="text/javascript">
 $(function() {

 var resizeOpts = {

 handles: "all"

 }

 $("#resize").resizable(resizeOpts);

 });
</script>

Resizing

[240]

Save this as resizable2.html. When you run the example in a browser, you'll see
that although the component looks exactly as it did before, we can now use any edge
or corner to resize the div, as shown in the following screenshot:

Adding additional handle images
One thing you'll notice straight away is that although the element is resizable
along any axis, there's no visual cue to make this obvious; the component will
automatically add the resize stripes to the bottom-right corner, but it's up to us
to add the rest.

There are several different ways to do this. Although the method doesn't add images
to the other three corners, it does insert DOM elements with class names, so we can
easily target these with CSS and provide our own images. In a new page in your text
editor, add the following style rules:

#resize { width:200px; height:200px; margin:30px 0 0 30px; border:1px
solid #7a7a7a; }

.ui-resizable-sw, .ui-resizable-nw, .ui-resizable-ne {
 background:url(../img/resizable/handles.png) no-repeat 0 0;
 width:12px; height:12px;
}
.ui-resizable-sw { left:0; bottom:0; }
.ui-resizable-nw {
 left:0; top:0; background-position:0 -12px;
}
.ui-resizable-ne {
 right:0; top:0; background-position:0 -24px;
}

Chapter 10

[241]

Save this file in the css folder as resizeHandles.css. We provide our own image
for this example, which is a sprite file containing copies of the standard bottom-right
image flipped and reversed (this can be found in the code download).

Our selectors target the class names that are automatically added to the handle
elements by the control. Link to the new stylesheet in the <head> of resizable2.
html and resave it as resizable3.html. The new stylesheet should give our
element the following appearance:

Another configuration option related to resize handles and how they are displayed is
autoHide. Let's take a quick look at this option next. Change the configuration object
in resizable3.html to the following:

var resizeOpts = {
 handles: "all",
 autoHide: true
}

Save this version as resizable4.html. We've added the autoHide option and set its
value to true in this example. Configuring this option hides all of the resize handles
until the mouse pointer moves onto the resizable element. This is great for a minimal
intrusion of the additional DOM elements when there is pictorial content inside the
resizable element.

Defining size limits
Restricting the minimum or maximum sizes that the target element can be resized
to is made exceptionally easy with four configurable options, which we will see
in action in the next example. It's better to have some content in the container for
this example, so add some layout text in a <p> element within our resizable in
resizable4.html:

<p>Lorem ipsum…</p>

Resizing

[242]

Change the configuration object we used in resizable4.html to as follows:

var resizeOpts = {
 maxWidth: 500,
 maxHeight: 500,
 minWidth: 100,
 minHeight: 100
};

Save this as resizable5.html. This time, the configuration object uses the
dimension-boundary options to specify minimum and maximum heights and widths
that the resizable may be adjusted to. These options take simple integers as their
values, which are then converted to pixels by the component.

As we can see when we run this example, the resizable now adheres to the sizes we
have specified, whereas in previous examples, the resizable element's minimum size
was the combined size of its resize handles and it had no maximum.

So far our resizable has been an empty <div> and you may be wondering
how the resizable handles minimum and maximum sizes when there is content
within the target element. The restrictions are maintained, but we'll need to add
overflow:hidden; to the CSS. Otherwise the content may overflow the resizable
if there is too much for the minimum size to handle.

Chapter 10

[243]

Of course, we can also use scroll:auto as well to add a scrollbar when there is too
much content, which would sometimes be the desired behavior, such as when used
with a <textarea> element.

Resize ghosts
Ghost elements are very similar to the proxy element we used when we looked at
the draggables component in the previous chapter. A ghost element can be enabled
with the configuration of just one option. Let's see how this is done.

Change the configuration object we used in resizable5.html to this:

var resizeOpts = {
 ghost: true
};

Save this file as resizable6.html. All that is needed to enable a resize ghost is to
set the ghost option to true. The effect of the resizable ghost is very subtle. It is
basically a clone of the existing resizable element but is only a quarter of the
opacity. This is why we've left the layout text from the previous example within
the resizable element.

We're also linking to a new stylesheet in this example, which is exactly the same as
resize.css with a background-color specified.

#resize {
 width:200px; height:200px; margin:30px 0 0 30px;
 border:1px solid #7a7a7a; overflow:hidden;
 background-color:#999999;

}

Resizing

[244]

Save this as resizeGhosts.css in the css folder. The next screenshot shows how
the resizable ghost will appear while it is visible.

Note that in some versions of Internet Explorer ghost elements may cause
issues when transparent PNGs are within the resizable.

The ghost element is just a helper element that has been made transparent. If this
is not suitable and further control over the appearance of the helper element is
required, we can use the helper option to specify a class name to be added to the
helper element, which we can then use to style it. Change the configuration object
in resizable6.html so that it appears as follows:

var resizeOpts = {
 helper: "my-ui-helper"
};

Save this revision as resizable7.html. We've simply specified the class name that
we'd like added as the value of the helper option. We can target the new class name
from a CSS file, open resize.css and add the following code to it:

.my-ui-helper { background-color:#FFFF99; }

Chapter 10

[245]

Save the new stylesheet as resizeHelper.css and don't forget to link to it at the
top of resizable7.html. The only thing we do in this example is give the helper a
simple background-color. This is how it looks when the new page is run.

Containing the resize
The resizable component makes it easy to ensure that a resized element is
contained within its parent element. This is great if we have other content
on the page that we don't want moving around all over the page during a resize
interaction. In resizable7.html change the <link> in the <head> of the page
from resizeHelper.css to a new stylesheet.

<link rel="stylesheet" type="text/css" href="css/resizeContainer.css">

Then change the elements on the page to as follows:

<div class="container">

</div>

Finally, change the configuration object to use the containment option:

var resizeOpts = {
 containment: ".container"
};

Save this as resizable8.html. On the page we've added a container element for the
resizable and have switched from using a <div> to an image as the resizable element.

Resizing

[246]

Once again, we need some slightly different CSS for this example, in a new file in
your text editor add the following code:

.container {
 width:600px; height:600px; border:1px solid #7a7a7a;
 padding:1px 0 0 1px;
}
#resize { width:300px; height:300px; }

Save this as resizeContainer.css in the css folder. The containment option
allows us to specify a container for the resizable, which will limit how large the
resizable can be made, forcing it to stay within its boundaries. We specify a jQuery
selector as the value of this option. When we view the page, we should see that the
image cannot be resized to larger than its container.

Handling the aspect ratio
The 1.7 release of jQuery UI gives us not only the ability to maintain the aspect ratio
of the resizable element, but also to define it. Let's see what control over the resize
interaction this gives us. Change the configuration object used in resizable8.html
to the following:

var resizeOpts = {
 containment: ".container",
 aspectRatio: true
};

Save this file as resizable9.html. Setting the aspectRatio option to true ensures
our image will maintain its original aspect ratio, so in this example, the image will
always be a perfect square:

Chapter 10

[247]

For a greater degree of control, we can also specify the actual aspect ratio that the
resizable should maintain:

var resizeOpts = {
 containment: ".container",
 aspectRatio: 0.5
};

By specifying the floating-point value of 0.5 we're saying that when the image is
resized, the x axis of the image should be exactly half of the y axis.

Care should be taken when deviating from the aspect ratio of
any images.

Resizable animations
The resizable API exposes three configuration options related to animations—
animate, animateDuration, and animateEasing. By default, animations are
switched off in resizable implementations. However, we can easily enable them to
see how they enhance this component. Also change the markup from the previous
example so that the resizable element goes back to a plain <div>:

<div id="resize"></div>

Resizing

[248]

Now change the configuration object to use the following options:

var resizeOpts = {
 ghost: true,
 animate: true,
 animateDuration: "fast"
};

Save this as resizable10.html. The configuration object we use in this example
starts with the ghost option. When using animations, the resizable element is not
resized until after the interaction has ended, so it's useful to show the ghost as a
visual cue that the element will be resized.

All we need to do to enable animation is set the animate option to true. That's it, no
further configuration is required. Another option we can change is the speed of the
animation, which we have done in this example, by setting the animateDuration
option. This can either be an integer to represent the number of milliseconds the
animation should last for, or using one of the strings slow, normal, or fast.

The code for the new stylesheet used in this example is as follows:
#resize {
 width:400px; height:200px; display:block; position:relative;
 border:2px solid #000000;
}

Save this file in the css folder as resizeAnimate.css.

Simultaneous resizing
We can easily make several elements on the same page resizable by individually
passing references to them, to the resizable constructor. But, as well as doing this,
 we can also make use of the alsoResize property to specify additional elements
that are to be resized whenever the actual resizable element is resized. Let's see
how. First we'll need to reference to a different stylesheet once again.

<link rel="stylesheet" type="text/css"
 href="css/resizeSimultaneous.css">

 Next we'll need to change the elements in the <body> of the page to as follows:

<div id="mainResize">
 <p>I am the main resizable!</p>
</div>
<div id="simultaneousResize">
 <p>I will also be resized when the main resizable is resized!</p>
</div>

Chapter 10

[249]

Then change the configuration object to this:
var resizeOpts = {
 alsoResize: "#simultaneousResize"
};

The id of our resizable element has also changed in this example, so be sure to
update the selector accordingly:

$("#mainResize").resizabl(resizeOpts);

Save this file as resizable11.html. We provide a selector as the value of the
alsoResize option in order to target the second <div> element. The secondary
element will automatically pick up the resizable attributes of the actual resizable,
so if we limit the resizable to having just an e handle, the secondary element will
also only resize in this direction. We also need a little bit of CSS, so create the
following stylesheet:

#mainResize {
 width:100px; height:100px; margin:0 0 30px;
 border:2px solid #7a7a7a; text-align:center;
}
#simultaneousResize {
 width:150px; height:150px; border:2px solid #7a7a7a;
 text-align:center;
}
p { font-family:arial; font-size:15px; }

Save this file as resizeSimultaneous.css in the css folder. When we run the file,
we should see that the second <div> element is resized along with the first.

Resizing

[250]

Preventing unwanted resizes
There may be times when we'd like to make an element resizable, but it also has
other functionality, perhaps it listens for click events too. In this situation it may be
desirable to prevent the resize unless it is definitely required, enabling us to easily
differentiate between clicks and true drags. We can use two options to achieve this,
in resizable11.html revert back to the original stylesheet resize.css.

<link rel="stylesheet" type="text/css" href="css/resize.css">

We can also return to the simple empty resizable <div>.

<div id="resize"></div>

Then change the configuration object to this:

 var resizeOpts = {
 delay: 1000
 };

Save this version as resizable12.html. The delay option accepts an integer that
represents the number of milliseconds that need to pass while the mouse button is
held down after clicking on a resize handle.

We've used 1000 as the value in this example that is equal to one second. Try it out
and you'll see that if you click on a resize handle and release the mouse button too
soon, the resize won't take place.

Along with delaying the resize, we could also use the distance option instead to
specify that the mouse pointer must move a certain number of pixels, with the button
held down after clicking on a resize handle, before the resize occurs. Change the
configuration object in resizable12.html so that it appears as follows:

var resizeOpts = {
 distance: 30
};

Save this as resizable13.html. Now when the page is run, instead of having to
wait with the mouse button held down the mouse pointer will need to travel 30
pixels with the mouse button held down before the resize occurs.

Resizable callbacks
Like other components of the library, resizable defines a selection of custom events
and allows us to easily execute functions when these events occur. This makes the
most of interactions between your visitors and the elements on your pages. Resizable
defines the following callback options:

Chapter 10

[251]

Option Triggered
resize When the resizable is in the process of being resized
start When the resize interaction begins.
stop When the resize interaction ends.

Hooking into these custom methods is just as easy for resizables as it has been for
the other components of the library we have looked at. Let's explore a basic example
to highlight this fact. In resizable13.html change the second <link> to point to a
new stylesheet as follows:

<link rel="stylesheet" type="text/css" href="css/resizeStop.css">

Then change the final <script> element so that it appears as follows:

<script type="text/javascript">
 $(function() {

 function reportNewSize() {

 function goAway() {

 setTimeout("$('.tip').fadeOut('slow')", 2000);

 }

 $("<div>").addClass("tip").text("The resizable is now " +
 $(this).height() + " pixels high, and " + $(this).width() +
 "pixels wide").width($(this).width()).appendTo(
 "body").fadeIn("slow", goAway);

 var resizeOpts = {
 stop: reportNewSize

 };

 $("#resize").resizable(resizeOpts);

 });
</script>

Save this as resizable14.html. We have an outer function called reportNewSize,
a reference to this function is then passed to the stop callback option, so the function
will be executed each time an interaction ends.

Within this function we first define another function called goAway, which is used
to fade the tooltip out after a specified length of time. We then create a new <div>
element that will act as a tooltip, which appears below the resizable. We give it a
class name and set its inner text to report the current size of the resizable. We set its
width to equal the resizable's width and then append it to the <body> of the page.

Resizing

[252]

Once appended we fade it in using jQuery's fadeIn method and specify our goAway
function as a callback to be executed once the animation finishes, which will fade the
tip from view.

We also need to style the tooltip as well, in resize.css add the following selector
and rules:

.tip {
 border:1px solid #7a7a7a; fontSize:80%; font-weight:bold;
 text-align:center; position:absolute; left:38px;
 display:none; margin-top:5px;
}

Save this as resizeStop.css in the css folder. The following screenshot shows how
our page looks before the <div> fades away:

Resizable methods
This component comes with the four basic methods found with all of the interaction
components of the library, namely the destroy, disable, enable, and option
methods. Unlike most of the other components, the resizables component has no
custom methods unique to it. For clarification on these basic API methods, see the
API introduction section in Chapter 1.

Resizable tabs
In our final resizable example let's look at combining this component with one of
the widgets that we looked at earlier. This will help us see how compatible it is with
the rest of the library. We'll be working with the tabs component in the following
example. The following screenshot shows the page we will end up with:

Chapter 10

[253]

In your text editor, add the following code:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
 "http://www.w3.org/TR/html4/strict.dtd">
<html lang="en">
 <head>
 <link rel="stylesheet" type="text/css"
 href="development-bundle/themes/smoothness/ui.all.css">
 <link rel="stylesheet" type="text/css"
 href="css/resizableTabsTheme.css">
 <meta http-equiv="Content-Type" content="text/html;
 charset=utf-8">
 <title>jQuery UI Resizable Tabs Example</title>
 </head>
 <body>
 <div id="myTabs">

 Tab 1
 Tab 2

 <div class="tab" id="0">This is the content panel linked to the
 first tab, it is shown by default.</div>
 <div class="tab" id="1">This content is linked to the second
 tab and will be shown when its tab is clicked.</div>
 </div>
 <script type="text/javascript"
 src="development-bundle/jquery-1.3.2.js"></script>
 <script type="text/javascript"
 src="development-bundle/ui/ui.core.js"></script>
 <script type="text/javascript"
 src="development-bundle/ui/ui.resizable.js"></script>
 <script type="text/javascript"
 src="development-bundle/ui/ui.tabs.js"></script>
 <script type="text/javascript">

Resizing

[254]

 $(function(){

 var tabs = $("#myTabs").tabs();
 var resizeOpts = {
 autoHide: true,
 minHeight: 170,
 minWidth: 400
 };
 tabs.resizable(resizeOpts);
 });
 </script>
 </body>
</html>

Save this as resizableTabs.html. We also link to a new stylesheet for this example.
It's extremely simple and just contains the following selector:

#myTabs { width:400px; height:170px; }

This can be saved as resizableTabsTheme.css in the css folder. Making the tabs
widget resizable is extremely easy and only requires calling the resizable method
on tab's underlying .

We're using a single configuration object in this example. The tabs component can be
initialized with zero configuration. Apart from setting the autoHide option for the
resizable in our configuration object, we also define minWidth and minHeight values
for usability purposes.

Summary
In this chapter we covered resizables. This is a component that allows us to easily
resize any onscreen element. It dynamically adds resize handles to the specified sides
of the target element and handles all of the tricky DHTML resizing for us, neatly
encapsulating the behavior into a compact, easy-to-use class.

We then looked at some of the configurable options we can use with the widget, such
as how to specify which handles to add to the resizable, and how the minimum and
maximum sizes of the element can be limited.

We briefly looked at how to maintain an image's aspect ratio, or how to work with
custom ratios, while it is being resized. We also explored how to use ghosts, helpers,
and animations to improve the usability and appearance of the resizable component.

We looked at the event model exposed by the component's API and how we can
react to elements being resized in an easy and effective way. Our final example
explored resizable's compatibility with another component of the library.

Selecting
The selectables component allows you to define a series of elements that can be
'chosen' by dragging a selection square around them or by clicking them, as if they
were files on the desktop. In this way, elements on the page can be treated as file-like
objects, allowing either single or groups of them to be selected.

A selection square has been a standard part of modern operating systems for a long
time. For example, if you wanted to select some of the icons on your desktop, you
could hold the mouse button down on a blank part of the desktop and drag a square
around the icons you wanted to select.

The selectables interaction helper adds this same functionality to our web pages,
which allows us to build more user-friendly interfaces without needing to use external
environments like Flash or Silverlight. This is yet another example of how the Web is
increasingly becoming less distinct from the desktop as an application platform.

Topics that will be covered in this section include:

Creating the default implementation
How selectable class names reflect the state of selectables
Filtering selectable elements
Working with selectable's built-in callback functions
A look at selectable's methods

•

•

•

•

•

Selecting

[256]

Basic implementation
A demonstration that you can play with will tell you more about the functionality
provided by this library component than merely reading about it. The first thing
we should do is invoke the default implementation to get a glimpse of the basic
functionality provided by this component. In a new file in your text editor, add
the following code:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
 "http://www.w3.org/TR/html4/strict.dtd">
<html lang="en">
 <head>
 <meta http-equiv="Content-Type" content="text/html;
 charset=utf-8">
 <title>jQuery UI Selectable Example 1</title>
 </head>
 <body>
 <ul id="selectables">
 This list item can be selected
 This list item can be selected
 This list item can be selected
 This list item can be selected
 This list item can be selected

 <script type="text/javascript"
 src="development-bundle/jquery-1.3.2.js"></script>
 <script type="text/javascript"
 src="development-bundle/ui/ui.core.js"></script>
 <script type="text/javascript"
 src="development-bundle/ui/ui.selectable.js"></script>
 <script type="text/javascript">
 $(function() {
 $("#selectables").selectable();
 });
 </script>
 </body>
</html>

Save this as selectable1.html in the jqueryui folder. We simply call the
selectable widget method on the parent list element and then all of its child
elements are made selectable. This allows selection by clicking on them or using the
selection square (like you would on your desktop).

Chapter 11

[257]

Note that there is no styling associated with the selectables component. Default
behavior includes clicking on individual elements, causing them only to be selected
and clicking outside of the selected elements will deselect them. Holding down the
Ctrl key will enable multi-select. The following screenshot shows the selection square
enclosing the list items:

The minimum set of library files we need for a selectable implementation is:

jquery-1.3.2.js

ui.core.js

ui.selectable.js

Along with building selectables from list items, we can also build them from other
elements, such as a collection of <div> elements. Add the following link to the
<head> of the selectable1.html:

<link rel="stylesheet" type="text/css"
 href="css/selectable.css ">

Also replace the list elements in selectable1.html with the following code.

<div id="selectables">
 <div>This div can be selected</div>
 <div>This div can be selected</div>
 <div>This div can be selected</div>
 <div>This div can be selected</div>
 <div>This div can be selected</div>
</div>

•

•

•

Selecting

[258]

Save this as selectable2.html. Everything is essentially the same as before.
We're just basing the example on different elements. However, due to the nature of
these elements, we should add a little basic styling so that we can see what we're
working with.

In a new file in your text editor, add the following code:

#selectables div {
 width:160px; height:25px;
 padding:5px 0 0 10px; margin:10px 0 0 10px;
 border:1px solid #000;
}

Save this as selectable.css in the css folder. It's not much, but it helps to clarify
the individual selectables in the example, as shown in the following screenshot:

Selectee class names
The elements that are made selectable are all initially given the class ui-selectee,
and the parent element that contains the selectables is given the class ui-
selectable. While elements are selected they are given the class ui-selected.

While the selecting square is around selectable elements, they are given the class
ui-selecting, and for a brief moment, when an element is deselected it is given the
class ui-unselecting. These class names are added purely for our benefit, so that
we can highlight different states that the selectable may be in.

Chapter 11

[259]

This extensive class system makes it very easy to add custom styling to show when
elements are either in the process of being selected or have been selected. Let's
add some additional styling now to reflect the selecting and selected states. Add the
following new selectors and rules to selectable.css:

#selectables div.ui-selecting {
 border:1px solid #66CC00;
}
#selectables div.ui-selected {
 background:#66CC00; color:#000000;
}

Save this selectableVisual.css in the css folder and link to it from the <head>
of selectable2.html, then save this file as selectable3.html. With the addition
of this very simple CSS, we can add visual cues to elements which are part of the
current selection, both during and following a select interaction. The following
screenshot shows some elements that have been selected:

Selecting

[260]

Configurable options of the selectable
component
The selectable class is quite compact, with relatively few configurable options
compared to some of the other components that we've looked at. The following
options are available for configuration:

Option Default value Usage
autoRefresh true Automatically refreshes the size and position of

each selectable at the start of a select interaction.
cancel ":input,option" Prevents the specified elements from being selected

with a click. The default string contains the
:input jQuery filter, which matches all <input>,
<textarea>, <select>, and <button> elements
along with the standard option element selector.

delay 0 Sets the delay in milliseconds before the element
is selected. The mouse button must be held down
on the element for this length of time before the
selection will begin.

distance 0 Sets the distance the mouse pointer must travel,
with the mouse button held down, before selection
will begin.

filter "*" Used to specify child elements to make selectable.
tolerance "touch" Sets the tolerance of the selection square. Possible

values are touch or fit. If fit is specified the
element must be completely within the selection
square before the element will be selected.

Filtering selectables
There may be situations when we don't want to allow all of the elements within the
targeted container to be made selectable. In this situation, we can easily make use
of the filter option to nominate specific elements, based on a CSS selector, that
we want selecting to be enabled on. In selectable3.html change the collection of
<div> elements so that it appears as follows:

<div id="selectables">
 <div class="unselectable">This div can't be selected</div>
 <div class="selectable">This div can be selected</div>
 <div class="selectable">This div can be selected</div>
 <div class="selectable">This div can be selected</div>
 <div class="selectable">This div can be selected</div>
</div>

Chapter 11

[261]

Then change the final <script> element to this:

<script type="text/javascript">
 $(function() {

 var selectableOpts = {
 filter: ".selectable"
 }

 $("#selectables").selectable(selectableOpts);
 });
</script>

Save this version as selectable4.html. In the underlying markup, we have given a
different class name to the first element. In the JavaScript, we define a configuration
object containing the filter option. The value of this option is the class selector
of the elements that we want to be selectable, elements without this class name are
filtered out.

We also used a new stylesheet in this example to give the unselectable element
its own styling. This new stylesheet is the same as the selectableVisual.css
stylesheet with the addition of the following selector and rules:

.unselectable { background-color:#999999; color:#666666; }

The new stylesheet is saved as selectableFiltered.css. The following screenshot
shows what the page should look like:

Selecting

[262]

As you can see in this screenshot, the selection square is over the unselectable
element, but it's not picking up the ui-selecting class like the others. The
component completely ignores the filtered selectable and it does not become
part of the selection.

Cancelling the selection
Along with indirectly making elements unselectable using the filter option, we
can also directly make elements unselectable using the cancel option. This
option was also exposed by the interaction helper we looked at in the last chapter,
Resizable, although we didn't look at it in any detail. Now is the perfect opportunity
to have a play with it.

Change the configuration object from the last example so that it uses the
cancel option.

var selectableOpts = {
 cancel: ".unselectable"

}

Save this as selectable5.html. Instead of passing the class name of the selectable
elements to the configuration object, we pass the class name of the unselectable
element to it. But as we see when we run the example, it is only unselectable in
certain situations.

The first element, with the class name unselectable, is still given the class
ui-selectee. However, it is only selectable with the selection square, it cannot
be selected by clicking, even with the Ctrl key held down.

Selectable callbacks
In addition to the standard configurable options of the selectable API, there are
also a series of event callback options that can be used to specify functions that
are executed at specific points during a select interaction. These options are as
listed below.

Chapter 11

[263]

Option Triggered when
selected The select interaction ends and each element added to the selection

triggers the callback.
selecting Each selected element triggers the callback during the select interaction.
start A select interaction begins.
stop This is fired once, regardless of the number of items selected, as the

select interaction ends.
unselected Any elements that are part of the selectable but are not selected during

the interaction will fire this callback.
unselecting Unselected elements will fire this during the select interaction.

Selecting really only becomes useful when something happens to the elements once
they have been selected, which is where this event model comes into play. Let's put
some of these callbacks to work so that we can appreciate their use. Add a reference
to the default theme file (smoothness in this example) to the <head> of the page.

<link rel="stylesheet" type="text/css"
 href="css/smoothness/jquery-ui-1.7.1.custom.css">

Then change the underlying markup for the selectables to as follows:

<div id="selectables">
 <div id="selectabl1" class="selectable">This div can be
 selected</div>

 <div id="selectabl2" class="selectable">This div can be
 selected</div>

 <div id="selectabl3" class="selectable">This div can be
 selected</div>

 <div id="selectabl4" class="selectable">This div can be
 selected</div>

 <div id="selectabl5" class="selectable">This div can be
 selected</div>

</div>

Next change the final <script> element so that it contains the following code:

<script type="text/javascript">
 $(function() {

 var selectableOpts = {
 selected: function(e, ui) {

 $("#" + ui.selected.id).text("I have been selected!");

 },

 unselected: function(e, ui) {

Selecting

[264]

 $("#" + ui.unselected.id).text("This div was selected");

 },

 start: function(e) {

 if ($("#tip").length == 0) {

 $("<div>").addClass("
 ui-corner-all ui-widget ui-widget-header").attr("id",
 "tip").text("Drag the lasso around elements, or click to
 select").css({

 position: "absolute",

 padding: 10,

 left: e.pageX,

 top: e.pageY - 30,

 display: "none"

 }).appendTo($("body")).fadeIn();

 }

 },

 stop: function() {

 $("#tip").fadeOut("slow", function() {

 $(this).remove();

 });

 }

 }

 $("#selectables").selectable(selectableOpts);

 });
</script>

Save this as selectable6.html. To the HTML elements, we've added id attributes
so that we can easily target specific elements. In the <script>, we've added
functions to the selected, unselected, start, and stop options. These will be
executed at the appropriate times during an interaction.

As with other components, these functions are automatically passed two objects. The
first is the original browser event object and the other is an object containing useful
properties of the selected element. However, not all callbacks can successfully work
with the second object—start and stop for example.

When a <div> is selected, we change its inner text to reflect the selection using the
selected event callback. We are able to get the id of the element that has been
selected using the selected.id property of the second object that is passed to our
function. When an element is unselected, we set the text back to its original value
using the same technique. We can also alter the inner text of any selectable that was
previously selected using the unselected function.

Chapter 11

[265]

At the start of any interaction, we create a little tool tip that is appended to the
<body> of the page, slightly offset from the mouse pointer, using the start
anonymous function. We use a basic conditional to check that the tool tip does
not already exist to prevent duplicate tips. We're linking to the theme stylesheet,
so we can make use of the framework classes ui-corner-all, ui-widget, and
ui-widget-header to do most of the styling for us. The few styles we require that
are not provided by the theme are added using the css() method.

We can get the pointer coordinates using the e (event) object, which is passed as the
first argument to our callbacks, in order to position the tool tip. At the end of the
selection, we remove the tool tip using the stop property. The following screenshot
shows the results of different interactions:

The selecting and unselecting callbacks work in exactly the same way as
those we just looked at but are fired as elements that are added and removed
to the selection. To see them in action change the final <script> element in
selectable6.html so that it appears as follows:

<script type="text/javascript">
 $(function() {
 var selectableOpts = {
 selecting: function(e, ui) {
 $("#" + ui.selecting.id).text("I am part of the selection");
 },
 unselecting: function(e, ui) {
 $("#" + ui.unselecting.id).text("I was part of the
 selection");
 }
 }
 $("#selectables").selectable(selectableOpts);
 });
</script>

Selecting

[266]

Also remove the <link> that we added to selectable6.html. Save this as
selectable7.html. This time we use the selecting and unselecting properties
to specify callback functions, which again change the inner text of the elements at
certain times during an interaction.

We repeat the procedure, using the same techniques as well. This time, we're just
using different callbacks and properties of the objects passed to them. The effects
of these callbacks are shown in the following screenshot:

The second object passed to any of the selectable callbacks contains a property
relating to the type of custom event. For example, the selected callback receives an
object with a selected property, which can be used to gain information about the
element that was added to the selection. All callbacks have a matching property that
can be used in this way.

Working with vast amounts of selectables
The jQuery UI library, like jQuery itself, is already extremely efficient. It uses the
ultra effective Sizzle selector engine (via jQuery) and each component has been
optimized as much as possible.

However, there is only so much that the creators of the library can do. In our
examples so far, we've used a maximum of five selectable elements, which isn't really
many at all. What if we were to use 500 instead?

Chapter 11

[267]

When working with great numbers of selectables there is still something we can
do to make sure select interactions are as efficient as possible. The autoRefresh
option is set to true by default, which causes the sizes and positions of all selectable
elements on the page to be recalculated at the beginning of every interaction.

This can cause delays on pages with many selectable elements on it, so the
autoRefresh option can be set to false. We can also use the refresh method to
manually refresh the selectables at appropriate times in order to improve the speed
and responsiveness of the interactions. On most pages we would not need to worry
about configuring this option and can leave it enabled.

Let's take a look, in the <head> of the page add a link to the following theme files:
<link rel="stylesheet" type="text/css"
 href="css/smoothness/jquery-ui-1.7.1.custom.css">
<link rel="stylesheet" type="text/css"
 href="css/selectable.css ">

Then change the selectables container element so that it appears as follows:
<div id="selectables" class="ui-helper-clearfix">
 <div class="selectable">Selectable</div>
 <!—- 199 more selectables! -->
</div>

Then change the configuration object as follows:
<script type="text/javascript">
 $(function() {

 var selectOpts = {
 autoRefresh: false
 }

 $("#selectables").selectable(selectOpts);

 });
</script>

Save this as selectable8.html. Our page should now contain 200 individual
selectables within the selectables container. We're using the default smoothness
theme file in this example, specifically so that we can make use of the ui-helper-
clearfix class to clear the floated selectables. We can't use the selection square
in this example if the parent does not clear the float properly. We also need a new
stylesheet in this example that consists of the following code:

#selectables div {
 width:70px; height:25px; padding:5px 0 0 10px; border:1px solid #000;
 margin:10px 0 0 10px; float:left;
}
.ui-selected { background-color:#00FF66; }

Selecting

[268]

Save this in the css folder as selectableMany.css. It's purely for layout purposes
and isn't important in this discussion.

We can use Firebug to profile a selection of all 200 selectables with and without the
autoRefresh option enabled (remember, it's enabled by default, so our example will
disable it). The following screenshot shows the results of a few selections with and
without the option enabled:

The results will probably vary between tests, but you should find that the profile
(in both milliseconds and the number of calls) is consistently lower with
autoRefresh set to disabled.

Selectable methods
The methods that we can use to control the selectables component from our code
are similar to the methods found in other interaction helpers and follow the same
pattern of usage. The only unique method exposed by the selectables component is
listed below:

Method Usage
refresh Manually refreshes the positions and sizes of all selectables.

Should be used when autoRefresh is set to false.

Setting the autoRefresh property to false can yield performance gains when there
are many selectables on the page, especially in IE. However, there will still be times
when you will need to refresh the size and positions of the selectables, such as when
this component is combined with the draggables component.

Let's take a look at the refresh method as it leads on perfectly from the last example.
Add the following new <button> element directly after the selectables container:

<button id="refresh">Refresh</button>

Chapter 11

[269]

We'll also need to link to the draggable source file for this example.
<script type="text/javascript"
 src="development-bundle/ui/ui.draggable.js"></script>

Then change the configuration object as follows:
$(function() {
 $("#selectables div").draggable();

Finally we can add the following new click handler directly after the call to the
selectable() method:

$("#refresh").click(function() {
 $("#selectables").selectable("refresh");
});

Save this as selectable9.html. We've added a new button to the page and we now
link to the draggable source file as well as selectable's. Each of the 200 elements are
made draggable and selectable.

Our click handler that is attached to the <button> will simply call the refresh method
manually on the selectables container. When we run the page in a browser we should
first make a selection of a group, but not all, of the selectable. We should then deselect
the elements and move some of them around. We can maybe move other elements that
weren't selected into the selection group as well. Really shuffle them up!

When we try to select the same group again, we find that the wrong elements are
somehow being selected:

Selecting

[270]

The component hasn't refreshed the positions of the selectables, so it still thinks that
all of the selectables are in the same place they were when the first selection was
made. If we now click the refresh <button> and make a third selection, the correct
elements will be selected.

A selectable image viewer
In our final selectable example, we're going to make a basic image viewer. Images
can be chosen for viewing by selecting the appropriate thumbnail. Although this
sounds like a relatively easy achievement, in addition to the actual mechanics of
displaying the selected image, we'll also need to consider how to handle multiple
selections. The following screenshot shows an example of what we'll end up with:

The images used in this example are provided in the code download because they
need to be the correct size for this example to look right. There should be eight of
both the large and thumbnail versions of each image, and the sizes of each are 110
by 110 pixels for the thumbnails and 400 by 400 pixels for the large versions.

Chapter 11

[271]

Create a new directory called selectable within our img directory, then create a
new folder called image-selector inside this. Next create two new folders inside
the previous one called large and thumbs. You should place the thumbnail images
from the code download, or an equivalent number of equally sized images, in the
thumbs folder and the full-sized images from the code download, or larger versions
of your own thumbnails, into the large folder.

Let's get started with the code. In a fresh page in your text editor, add the
following page:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
 "http://www.w3.org/TR/html4/strict.dtd">
<html lang="en">
 <head>
 <link rel="stylesheet" type="text/css"
 href="development-bundle/themes/base/ui.core.css">
	 <link rel="stylesheet" type="text/css"
 href="development-bundle/themes/base/ui.theme.css">
 <link rel="stylesheet" type="text/css"
 href="development-bundle/themes/base/ui.tabs.css">
 <link rel="stylesheet" type="text/css"
 href="css/imageSelector.css">
 <meta http-equiv="Content-Type" content="text/html;
 charset=utf-8">
 <title>jQuery UI Image Selector Example</title>
 </head>
 <body>
 <div id="status" class="ui-widget-header ui-corner-all">Crab</div>
 <div id="viewer"><img
 src="img/selectable/image-selector/large/crab.jpg"></div>
 <div id="thumbs">
 <img class="ui-selected" id="crab"
 src="img/selectable/image-selector/thumbs/crab.jpg">
 <img class="right" id="orion"
 src="img/selectable/image-selector/thumbs/orion.jpg">
 <img id="omega"
 src="img/selectable/image-selector/thumbs/omega.jpg">
 <img class="right" id="egg"
 src="img/selectable/image-selector/thumbs/egg.jpg">
 <img id="triangulum"
 src="img/selectable/image-selector/thumbs/triangulum.jpg">
 <img class="right" id="rosette"
 src="img/selectable/image-selector/thumbs/rosette.jpg">
 <img id="ring"
 src="img/selectable/image-selector/thumbs/ring.jpg">
 <img class="right" id="boomerang"

Selecting

[272]

 src="img/selectable/image-selector/thumbs/boomerang.jpg">
 </div>
 </div>
 <script type="text/javascript"
 src="development-bundle/jquery-1.3.2.js"></script>
 <script type="text/javascript"
 src="development-bundle/ui/ui.core.js"></script>
 <script type="text/javascript"
 src="development-bundle/ui/ui.selectable.js"></script>
 <script type="text/javascript"
 src="development-bundle/ui/ui.tabs.js"></script>
 </body>
</html>

Save this as imageSelector.html. On the page we have a parent <div> with an id
of imageSelector into which all of our other elements go.

Within the parent, we have a <div> that will act as a status bar and display the
names of individually selected images, and a <div> that will act as the viewing panel
and will display the full-sized version of the image. Finally, we have our thumbnail
images, which will be made selectable.

Next we need to add the script that make the image selector work, so directly after
the final <script> element add the following code:

<script type="text/javascript">
 $(function() {

 function singleSelect() {

 var id = $(".ui-selected", "#thumbs").attr("id");
 $("<div>").attr("id", "status").text(id).addClass("
 ui-widget-header ui-corner-all").insertBefore("#viewer")

 $("").attr({src: "img/selectable/image-selector/large/" +
 id + ".jpg", id: id }).appendTo("#viewer");
 }

 function multiSelect() {

 $("<div>").attr("id", "tabs").insertBefore("#viewer");

 var tabList = $("").attr("id",
 "tabList").appendTo("#tabs");

 $(".ui-selected", "#thumbs").each(function() {

 var id = $(this).attr("id"),
 tabItem = $("").appendTo(tabList),
 tabLink = $("<a />").text(id).attr("href", "#tabpanel_" +
 id).appendTo(tabItem),

Chapter 11

[273]

 panel = $("<div>").attr("id", "tabpanel_" +
 id).appendTo("#viewer");

 $("").attr({ src: "img/selectable/image-selector/large/"
 + id + ".jpg", id: id }).appendTo(panel);

 });

 $("#viewer").css("left", -1).appendTo("#tabs");

 $("#tabs").tabs();
 }

 var selectOpts = {
 stop: function(e, ui) {
 $("#imageSelector").children().not("#thumbs").remove();

 $("<div>").attr("id", "viewer").insertBefore("#thumbs");

 ($(".ui-selected", "#thumbs").length == 1) ? singleSelect() :
 multiSelect();
 }
 };

 $("#thumbs").selectable(selectOpts);
 });
</script>

The first thing we do in our document.ready function ($(function(){) is define
the two functions singleSelect() and multiSelect(). One of these functions will
be invoked every time a selection is made. If a single thumbnail image is selected
the first function is called, if more than one of the elements are selected the second
function will be called.

In the singleSelect() function we first cache the id of the selected element; we'll
be referring to this several times so it's more efficient to store it in a variable. Next
we create a new status bar and set its innerText to the id value that was cached
a moment ago; remember this will be the id attribute of whichever thumbnail
is selected. We give the new element some of the framework classes to style the
element and then insert it into the image selector container.

The last thing we do in this function is create the full-sized version of the thumbnail.
To do this we create a new image, set its src attribute to match the large version
of the thumbnail that was selected (both the large and thumbnail versions of each
image have the same filename). The full-size image is then inserted into the
viewer container.

Selecting

[274]

Next we define the multiSelect() function. This time we start by creating a
new <div> element, give it an id of tabs and append it to the viewer container.
Following this we create a new element as this is a required component of the
tabs widget (that we looked at in Chapter 3). This element is appended to the tabs
container we created a moment ago.

We then use jQuery's each() method to iterate over each of the thumbnails that were
selected. For each item we create a series of variables, which will hold the different
elements that make up the tab headings. We cache the id attribute of each image,
create a new and a new <a> element. The link will make the clickable tab
heading and is given the id of the thumbnail as its innerText.

We then create the new tab panel that will match the tab heading that we just
created. Notice that we create a unique id for the content panel based on the
thumbnail's id attribute and some hardcoded text. Note that the id will precisely
match the href attribute that we set on the <a> element. Each new image is created
in the same way as in the singleSelect() function.

After the each() method, we set a CSS property on the viewer container to tidy up
its appearance and then append it to the tabs container. Finally the tabs() method
is called on the tabs container, transforming it into the tabs widget.

Next we define the configuration object for the selectables. We use the stop callback
function to do some prep work such as removing the contents of the image selector
container (except for the thumbnails) and creating an empty viewer container. We
then use the JavaScript ternary conditional to call either the singleSelect() or
multiSelect() functions. Lastly the thumbnails are made selectable.

Styling the image selector
Our example is also heavily reliant on CSS to provide its overall appearance. In a
new file in your text editor, create the following stylesheet:

#imageSelector {
 width:684px; height:497px; position:relative; margin:0 auto;
 background-color:#dfdede; border:1px solid #adadad;
}
#status {
 width:380px; height:21px; position:absolute; left:17px;
 top:17px; padding:7px 0 0; font-size:19px;
 text-align:center; background-color:#adadad; padding:10px;
 border:1px solid #adadad; text-transform:capitalize;
}
#viewer {
 width:400px; height:400px; position:absolute; left:17px;

Chapter 11

[275]

 top:78px; border:1px solid #ffffff;
}
#thumbs {
 width:231px; height:460px; position:absolute; right:17px;
 top:17px;
}
#thumbs img {
 float:left; margin:0 5px 5px 0; cursor:pointer; border:1px solid
#ffffff;
}
#thumbs img.right { margin-right:0; }
#thumbs img.ui-selected { border:1px solid #99ff99; }
#tabs {
 position:absolute; left:17px; background:none; border:none;
 padding:0;
}
#tabs .ui-tabs-panel { padding:0; }
#tabs .ui-tabs-nav {
 padding:0; border:none; background:none; top:54px;
}
#tabs .ui-tabs-nav li { margin:0; }
#tabs .ui-tabs-nav li a {
 padding:5px 4px; font-size:50%; text-transform:capitalize;
}
#tabs .ui-tabs-nav li.ui-tabs-selected a,
#tabs .ui-tabs-nav li.ui-state-disabled a,
#tabs .ui-tabs-nav li.ui-state-processing a {
 font-weight:bold;
}

Save this in the css folder as imageSelector.css. Most of the styles are arbitrary
and are required purely for layout or very basic styling such as fonts, and
background-colors. We're using some of the framework classes in our markup in
order to add the rounded corners so the amount of CSS we need to write is minimal.
The last few selectors are required in order to override some of the tab widget's
default styling.

Selecting

[276]

When we run the example in a browser, we should see something like what is shown
in the previous screenshot. When a single thumbnail is selected the full-size version
of the image will be displayed. When multiple images have been selected, tabs are
created at the top of the viewer, which allow all of the selected images to be shown.

Summary
The selectables component provides a powerful set of behaviors for related
items. This enables us to easily provide users with a better means of selecting
and manipulating sets of objects.

We first looked at the default implementation and then moved on to look at the two
standard properties, along with the numerous callback properties, which can be used
to perform different actions at different points in an interaction.

Finally, we looked at the methods exposed by this component's API. We saw that it
had the usual range of methods for enabling, disabling, and removing functionality.
It also contains a toggle method, which reduces the amount of code by allowing us
to do one of two things based on the current state of the component.

Sorting
The final interaction helper that we're going to look at is the sortables component.
This component allows us to define one or more lists of elements (not necessarily
actual or elements) where the individual items in the list(s) can be
reordered by dragging.

The sortables component is like a specialized implementation of drag-and-drop,
with a very specific role. It has an extensive API which caters for a wide range of
behaviors. We'll be looking at the following aspects of the component in this chapter:

The default sortable implementation
Basic configurable properties
Working with placeholders
Sortable helpers
Sortable items
Connected sortables
Sortable's wide range of built-in event handlers
A look at sortable's methods
Submitting the sorted result to a server
Adding drag elements to a sortable

•
•
•
•
•
•
•
•
•
•

Sorting

[278]

The default implementation
A basic sortable list can be enabled with no additional configuration. Let's do this
first so you can get an idea of the behavior enabled by this component. In a new file
in your text editor, add the following code:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
 "http://www.w3.org/TR/html4/strict.dtd">
<html lang="en">
 <head>
 <meta http-equiv="Content-Type" content="text/html;
 charset=utf-8">
 <title>jQuery UI Sortable Example 1</title>
 </head>
 <body>
 <p>Put these DJ's in order of your preference:</p>
 <ul id="sortables">
 BT
 James Zabiela
 Sasha
 John Digweed
 Pete Tong

 <script type="text/javascript"
 src="development-bundle/jquery-1.3.2.js"></script>
 <script type="text/javascript"
 src="development-bundle/ui/ui.core.js"></script>
 <script type="text/javascript"
 src="development-bundle/ui/ui.sortable.js"></script>
 <script type="text/javascript">
 $(function() {

 $("#sortables").sortable();
 });
 </script>
 </body>
</html>

Save this as sortable1.html. On the page, we have a simple unordered list with
five list items. There is no default styling associated with this component, so we don't
need to link to any stylesheets in this basic example.

Code-wise, the default implementation is the same as it has been for each of the other
components. We simply call the sortable constructor method on the parent
element of the list items we want to make sortable.

Chapter 12

[279]

Thanks to the sortables component, we should find that the individual list items can
be dragged to different positions in the list, as in the following screenshot:

A lot of behaviors are added to the page to accommodate this functionality. As we
drag one of the list items up or down in the list, the other items automatically move out
of the way creating a slot for the item that is currently being sorted to be dropped on.

Additionally, when a sortable item is dropped, it will slide quickly but smoothly
into its new position in the list. The library files that were needed for the basic
implementation are as follows:

jquery-1.3.2.js

ui.core.js

ui.sortable.js

As I mentioned earlier, the sortables component is a flexible addition to the library
that can be applied to many different types of elements. For example, instead of
using a list, we could use a series of <div> elements as the sortable list items in
place of the element in the previous example.

<div id="sortables">
 <div>BT</div>
 <div>James Zabiela</div>
 <div>Sasha</div>
 <div>John Digweed</div>
 <div>Pete Tong</div>
</div>

•

•

•

Sorting

[280]

This can be saved as sortable2.html. As you can see, the behavior exhibited by
this version is exactly the same as it was before. All that's changed is the underlying
markup. We can also easily improve its appearance with some basic CSS. In a new
file in your text editor, add the following code:

#container {
 width:272px; height:322px;
 background:url(../img/sortable/sortable_bg.gif) no-repeat;
 position:relative;
}
#container p {
 font-family:Arial; font-size:11px; position:absolute;
 width:100%; text-align:center; margin-top:20px;
}
#sortables { position:relative; top:45px; height:255px; }
#sortables div {
 height:35px; width:120px; margin-left:80px;
 padding-top:16px;
}

Save this in the css folder as sortable.css. Link to the CSS file in the <head> of
sortable2.html and wrap the existing markup for the sortables in a new container
as follows:

<div id="container">

 <p>Put these DJs in order of your preference:</p>
 <div id="sortables">
 <div>BT</div>
 <div>James Zabiela</div>
 <div>Sasha</div>
 <div>John Digweed</div>
 <div>Pete Tong</div>
 </div>
</div>

Save the change as sortable3.html. The underlying HTML and the JavaScript that
drives it are identical, but with just a few CSS selectors and rules we can dramatically
change the appearance of our example, as shown in the following screenshot:

Chapter 12

[281]

In this example we use a simple background image on top of which the sortable
elements are positioned.

Configuring sortable options
The sortables component has a huge range of configurable options, much more than
any of the other interaction components (but not as many as some of the widgets).
The table below illustrates the range of options at our disposal.

Option Default value Usage
appendTo "parent" Sets the element that helpers are

appended to during a sort.
axis false Constrains sortables to one axis of

movement. Possible values are
the strings x or y.

cancel ":input,
button"

Specifies elements that cannot be sorted
if they are the elements
being sorted.

connectWith false Accepts the selector of another
list of sortables to enable one-way
sorting from the current list to the
specified list.

Sorting

[282]

Option Default value Usage
containment false Constrains sortables to their container

while they are being dragged. Values
can be the strings parent, window,
or document, or can be a jQuery
selector, or element node.

cursor "auto" Defines the CSS cursor to apply while
dragging a sortable element.

cursorAt false Accepts an object specifying the
coordinates that the mouse pointer
should be at while a sort is taking
place. The keys in the object may be
top, right, bottom, or left and the
values should be integers.

delay 0 Sets the time delay in milliseconds
before the sort begins once a sortable
item has been clicked (with the mouse
button held down).

distance 1 Sets how far in pixels the mouse pointer
should move while the left button is
held down before the
sort begins.

dropOnEmpty true Allows linked items from linked
sortables to be dropped onto
empty slots.

forceHelperSize false Forces the helper to have a size when
set to true.

forcePlaceholderSize false Forces the placeholder to have a size
if set to true. The placeholder is the
empty space that a sortable can be
dropped on to.

grid false Sets sortables to snap to a grid while
being dragged. Accepts an array with
two items—the x and y distances
between gridlines.

handle false Specifies an element to be used as the
drag handle on sortable items. Can be
a selector or an element node.

Chapter 12

[283]

Option Default value Usage
helper "original" Specifies a helper element that will

be used as a proxy element while the
element is being sorted. Can accept a
function that returns an element.

items ">*" Specifies the items that should be
made sortable. The default makes all
children sortable.

opacity false Specifies the CSS opacity of the
element being sorted. Value should
be an integer from 0.01 to 1 with 1
being fully opaque.

placeholder false Specifies a CSS class to be added to
empty slots.

revert false Enables animation when moving
sortables into their new slots once they
have been dropped.

scroll true Enables page scrolling when a sortable
is moved to the edge of the viewport.

scrollSensitivity 20 Sets how close a sortable must get,
in pixels, to the edge of the viewport
before scrolling should begin.

scrollSpeed 20 Sets the distance in pixels that the
viewport should scroll when a sortable
is dragged within the sensitivity range.

tolerance "intersect" Controls how much of the element
being sorted must overlap other
elements before the placeholder is
moved. Other possible value is the
string pointer.

zIndex 1000 The CSS z-index of the sortable/
helper while being dragged.

Let's work some of these properties into our previous example to get a feel for the
effect they have on the behavior of the component.

Sorting

[284]

Change the final <script> element in sortable3.html so that it appears as follows:

<script type="text/javascript">
 $(function() {

 var sortOpts = {
 axis: "y",
 containment: "#container",
 cursor: "move",
 distance: 30
 };

 $("#sortables").sortable(sortOpts);
 });
</script>

Save this as sortable4.html. We use four options in our configuration object; the
axis option is set to y to constrain the motion of the sortable currently being dragged
to just up and down.

The containment option specifies the element that the sortables should be contained
within. Care should be taken with this option. If we had specified #sortables as
the container, we would have not been able to move items into the top or bottom
positions. This is because the first sortable element is flush against the top of the
container and the last element is flush against the bottom. In order to be able to push
a sortable element out of the way, there must be some space above or below it.

We also specify the cursor option that automatically adds the CSS move icon. Like
with the draggable component that we looked at in Chapter 9, the CSS move icon is
not actually displayed until the sort begins.

Finally, we configure the distance option with a value of 30, which specifies that
the mouse pointer should move 30 pixels before the sort begins. The distance
option works in the same way with sortables as it did with draggables and is great
for preventing unwanted sorts, but in practice we'd probably use a much lower
threshold than 30 pixels.

Chapter 12

[285]

The effects of these options can easily be seen when the page is run in a browser.

Note that Google Chrome can have problems displaying the correct
cursor when the cursor option is used, although this doesn't prevent the
interaction from working. We could set the cursor using CSS instead, but
then Chrome will only display the move cursor while the pointer hovers
over the sortables, not while a sort is actually taking place.

Let's look at some more options. Change the underlying <div> elements in
sortable4.html so that they appear as follows:

<div id="sortables">
 <div>BT<div class="handle"></div></div>

 <div>James Zabiela<div class="handle"></div></div>

 <div>Sasha<div class="handle"></div></div>

 <div>John Digweed<div class="handle"></div></div>

 <div>Pete Tong<div class="handle"></div></div>

</div>

Sorting

[286]

Then change the configuration object to as follows:

var sortOpts = {
 revert: "slow",

 handle: ".handle",

 delay: 1000,

 opacity: 0.5

};

Save this as sortable5.html. We've made a slight change to the page. Within each
sortable element is a new element that will be used as the sort handle.

The revert option has a default value of true, but can also take one of the speed
string values (slow, normal, or fast) that we've seen in other animation options in
other components.

The delay option accepts a value in milliseconds that the component should wait
before allowing the sort to begin. If the mouse pointer is moved away from the
handle while the left-button is held down the sort will still occur after the specified
time. If the mouse-button is let go of however, the sort will be cancelled.

The value of the opacity option is used to specify the CSS opacity of the element
that is being sorted while the sort takes place. The value should be a floating-point
number between 0 and 1, with 1 corresponding to full opacity and 0 specifying no
opacity. Note that the opacity property can affect the way that IE renders text.

One of the properties we've used is the handle option that allows us to define a
region within the sortable, which must be used to initiate the sort. Dragging on
other parts of the sortable will not cause the sort to begin.

The handles have been styled with some CSS, so we'll need to update sortable.css
as well. We need to add position:relative to the #sortables div selector, and
then add the highlighted new selector and rules to the end of the file:

#container {
 width:272px; height:322px;
 background:url(../img/sortable/sortable_bg.gif) no-repeat;
 position:relative;
}
#container p {
 font-family:Arial; font-size:11px; position:absolute;
 width:100%; text-align:center; margin-top:20px;
}
#sortables { position:relative; top:45px; height:255px; }
#sortables div {
 height:35px; width:120px; margin-left:80px;

Chapter 12

[287]

 padding-top:16px;
 position:relative;

}

#sortables div.handle {

 border:1px solid #003399; position:absolute; top:20px;

 margin-left:20px; width:7px; height:7px; background-color:#66FF66;

}

Save the changes as sortableHandle.css in the css folder. You can see how the
handle will appear in the following screenshot:

Note that Opera positions any sortables that have been moved incorrectly due to the
relative positioning of the sortable elements.

Placeholders
A placeholder defines the empty space or slot, that is left while one of the sortables
is in the process of being moved to its new position. The placeholder isn't rigidly
positioned, it will dynamically move to whichever sortable has been displaced by
the movement of the sortable that is being sorted.

There are two options that are specifically concerned with placeholders—the very
aptly named placeholder option and the forcePlaceholderSize property.

The placeholder option allows you to define a CSS class that should be added to
the placeholder while it is empty. This is a useful property that we can use often in
our implementations.

Sorting

[288]

The forcePlaceholderSize option, set to false by default, is an option that we'll
probably use less often. The placeholder will automatically assume the size of the
sortable item while a sort is in progress, which in most cases is fine.

Let's take a look at the placeholder option, remove the elements from the
sortable <div> elements in sortable5.html and then change the configuration
object so that it appears as follows:

var sortOpts = {
 placeholder: "empty"
};

Save this as sortable6.html. We've specified the name of the class that we want
to add to the placeholder. Remember this is a class name, not a class selector, so no
period is used at the start of the string.

Next, we should add the selector and rules to our CSS file. The CSS file we use is
exactly the same as our base CSS file (not the one from the previous example) with
the following code added to the end:

.empty { background-color:#cdfdcd; }

Save this as sortablePlaceholder.css in the css folder. When we run the new
HTML file in a browser, we should be able to see the specified styles applied to the
placeholder while the sort is taking place.

Chapter 12

[289]

Sortable helpers
We looked at helper/proxy elements back when we looked at the draggables
component earlier in the book. Helpers can also be defined for sortables that function
in a similar way to those of the draggable component, although there are some subtle
differences in this implementation.

With sortables, the original sortable is hidden when the sort interaction begins and
a clone of the original element is dragged instead. So with sortables, helpers are an
inherent feature.

Like with draggables, the helper option of sortables may take a function as its value.
The function, when used, will automatically receive the event object and an object
containing useful properties from the sortable element as arguments.

The function must return the element to use as the helper. Although it's very
similar to the draggable helper example, let's take a quick look at it when used in
conjunction with sortables. In sortable6.html, change the last <script> block so
that it appears as follows:

<script type="text/javascript">
 $(function() {

 function helperMaker(e, ui) {

 return $("<div>").text($(ui).text()).css({
 opacity: 0.5,
 border: "4px solid #cccccc",
 textAlign: "center"
 });
 }

 var sortOpts = {
 helper: helperMaker
 };

 $("#sortables").sortable(sortOpts);
 });
</script>

Save this file as sortable7.html. We have our helperMaker function that creates
and returns the element to be used as the helper while the sort is in progress. We can
set some basic CSS properties on the new element so that we don't need to provide
additional rules in the stylesheet (additionally you may want to switch back to
sortable.css).

Sorting

[290]

The following screenshot shows how the helper will appear while a sort is
taking place:

Sortable items
By default, all children of the element that the sortable method is called on are
turned into sortables. While this is a useful feature of the component, there may
be times when we don't necessarily want all child elements to become sortable.

The items option controls which child elements of the specified element should be
made sortable. It makes all child elements sortable using the string >* as its default
value, but we can alter this to specify only the elements we want. Change the
sortable <div> elements in sortable7.html so that they appear as follows:

<div id="sortables">
 <div>BT</div>
 <div>James Zabiela</div>
 <div>Sasha</div>
 <div>John Digweed</div>
 <div class="unsortable">Pete Tong</div>
</div>

Chapter 12

[291]

Then change the configuration object to make use of the items option.

$(function() {
 var sortOpts = {
 items: ">:not(.unsortable)"

 };

Save this as sortable8.html. We've added a class name of unsortable to the last
sortable element in the underlying markup.

In our <script>, we've specified the selector ">:not(.unsortable)" as the value
of the items option, so our last <div> element with the class name unsortable will
not be made sortable, while the rest of the <div> elements will.

The new CSS used to style the unsortable element can be as simple as the following
selector and rules, which should be added to sortable.css.

#sortables div.unsortable {
 border:1px solid #000; background-color:#CCCCCC;
 height:26px; padding:4px 0 0 5px; margin-top:8px;
 color:#adabab;
}

Save this as sortableItems.css in the css folder. Try the new page out, the
following screenshot shows what you should see:

Sorting

[292]

Connected lists
So far, the examples that we have looked at have all centered on a single list of
sortable items. What happens when we want to have two lists of sortable items,
and more importantly, can we move items from one list to another?

Having two sortable lists is of course extremely easy and involves simply defining
two containers and their child elements, and then passing each container to the
sortable() method.

Allowing separate lists of sortables to exchange and share sortables is also extremely
easy. This is thanks to the connectWith option that allows us to define an array of
sortable containers whose sortables can move between the specified lists. Let's look
at this in action. In a new file in your text editor, add the following page:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
 "http://www.w3.org/TR/html4/strict.dtd">
<html lang="en">
 <head>
 <link rel="stylesheet" type="text/css"
 href="css/sortableConnected.css">
 <meta http-equiv="Content-Type" content="text/html;
 charset=utf-8">
 <title>jQuery UI Sortable Example 9</title>
 </head>
 <body>
 <p>Tell us what music you like and don't like:</p>
 <div id="likes">
 <p>Likes</p>
 <div>House</div>
 <div>Hip Hop</div>
 <div>Breaks</div>
 <div>Drum and Bass</div>
 <div>Rock</div>
 </div>
 <div id="dislikes">
 <p>Dislikes</p>
 <div>Folk</div>
 <div>Country</div>
 <div>Pop</div>
 <div>Classical</div>
 <div>Opera</div>
 </div>
 <script type="text/javascript"
 src="development-bundle/jquery-1.3.2.js"></script>
 <script type="text/javascript"
 src="development-bundle/ui/ui.core.js"></script>
 <script type="text/javascript"
 src="development-bundle/ui/ui.sortable.js"></script>

Chapter 12

[293]

 <script type="text/javascript">
 $(function() {

 var sortOpts = {
 items: "div",
 connectWith: ["#likes", "#dislikes"]
 };

 $("#likes, #dislikes").sortable(sortOpts);
 });
 </script>
 </body>
</html>

Save this as sortable9.html. Everything on the page is pretty similar to what we
have worked with before. There are just two simple collections of nested <div>
elements with some explanatory text instead of one. However, within our final
<script> tag we have some new, although still very simple, code.

We still define a single configuration object, which can be shared between both sets
of sortable elements. We're using the items option once again to ensure that the
<p> elements that form the box headings within our sortable containers aren't
sortable themselves.

The connectWith option is able to accept multiple selectors if they are passed in as
an array and it's this option that allows us to share individual sortables between the
two sortable containers.

This configuration option only provides a one-way transmission of sortables, so if
we were to only use the configuration object in the likes sortable and specify just
the id of the dislikes sortable, we would only be able to move items from likes to
dislikes, not the other way.

Specifying both sortables' id attributes in the option and selecting both of the
containers when calling the sortable() method allows us to move items between
both elements, and allows us to cut down on coding. Note that we could also have
used the following <script> to achieve the same result:

<script type="text/javascript">
 $(function() {

 var sortOpts = {
 items: "div",
 connectWith: "#dislikes"
 };
 var sortOpts2 = {
 items: "div",
 connectWith: "#likes"
 };

Sorting

[294]

 $("#likes, #dislikes").sortable(sortOpts);
 });
</script>

Our example code will work completely as it is with no styling whatsoever, but for
aesthetic purposes, we may use any arbitrary CSS to make things look as we wish.
The following CSS for example is more than adequate in giving an impression of
how the two sets could look:

p { position:relative; left:10px; }
#likes, #dislikes {
 width:180px;
 border:1px solid #000;
 float:left;
 margin-left:10px; padding-bottom:5px;
}
#likes p, #dislikes p {
 margin:0px 0 5px;
 text-align:center; font-weight:bold;
 border-bottom:1px solid #000;
 color:#fff;
 left:0px;
}
#likes p { background-color:#66CC66; }
#dislikes p { background-color:#FF0000; }
#likes div, #dislikes div { margin-left:10px; }

Save this as sortableConnected.css in the css folder. When you run the page in
your browser, you should find that not only can the individual items be sorted in
their respective elements, but that items can also be moved between elements, as
shown in the following screenshot:

Chapter 12

[295]

Reacting to sortable events
In addition to the already large list of configurable options defined in the sortables
class, there are also a whole lot more in the form of event callbacks, which can be
passed functions to execute at different points during a sortable interaction. These
are listed in the following table:

Callback Fired
activate When sorting starts on a connected list.
beforeStop When the sort has stopped but the original slot is still available.
change During a sort, when the DOM position of the sortable has changed.
deactivate When sorting stops on a connected list.
out When a sortable is moved away from a connected list.
over When a sortable is over a connected list. This is great for providing

visual feedback while a sort is taking place.
receive When a sortable is received from a connected list.
remove When a sortable is moved from a connected list.
sort When a sort is taking place.
start When the sort starts.
stop When the sort ends.
update When the sort has ended and the DOM position has changed.

Event handlers such as these are important because they allow us as the
programmers to react with code to specific things occurring. Each of the components
that we've looked at in the preceding chapters has defined their own suite of custom
events and the sortables component is certainly no exception.

Many of these events will fire during any single sort interaction. The following list
shows the order in which they will fire:

start

sort

change

beforeStop

stop

update

As soon as one of the sortables is 'picked up', the start event is triggered.
Following this, on every single mouse move the sort event will fire, making
this event very intensive.

•

•

•

•

•

•

Sorting

[296]

As soon as another item is displaced by the current sortable, the change event is
fired. Once the sortable is 'dropped', the beforeStop and stop events fire and if
the sortable is now at a different position, the update event is fired last of all.

For the next few examples, we'll work some of these event handling options
into the previous example, starting with the start and stop events. Change
the configuration object in sortable9.html so that it appears as follows:

var sortOpts = {
 items: "div",
 connectWith: ["#likes", "#dislikes"],
 start: function(e, ui) {
 $("<p>").text("The active sort item is " +
 ui.helper.text()).css({clear:"both"}).attr("id",
 "message").appendTo("body");
 },
 stop: function() {
 $("#message").remove();
 }
};

Save this as sortable10.html. Our event usage in this example is minimal. When
the sort starts, we simply create a new paragraph element and add some text to it,
including the text content of the element that is being sorted. The text message is then
duly appended to the <body> of the page. When the sort stops, we remove the text.

Using the second object passed to the callback function is very easy as you can see.
The object itself refers to the parent sortables container, and the helper property
refers to the actual item being sorted (or its helper). As this is a jQuery object, we
can call jQuery methods, like text, on it.

When we run the page, the message should appear briefly until the sort ends, at
which point it's removed.

Chapter 12

[297]

Let's look at one more of these simple callbacks before we move on to look at the
additional callbacks used with connected sortables. Change the final <script>
element in sortable10.html to this:

<script type="text/javascript">
 $(function() {

 var places = [
 "1st",
 "2nd",
 "3rd",
 "4th",
 "5th",
 "6th",
 "7th",
 "8th",
 "9th",
 "10th"
];

 var getPlaces = function(e, ui) {
 $("#message").remove();	
 $(this).children().not("p").each(function(x, item) {
 if ($(item).text() === ui.item.text()) {
 $("<p>").text(ui.item.text() + " is now at " + places[x] +
 " place in the " + $(item).parent().find("p").text() +
 " list").css({clear: "both"}).attr("id",
 "message").appendTo("body");
 }
 });
 };

 var sortOpts = {
 items: "div",
 connectWith: ["#likes, #dislikes"],
 beforeStop: getPlaces,
 receive: getPlaces
 };

 $("#likes, #dislikes").sortable(sortOpts);
 });
</script>

Save this as sortable11.html. In this example, we work with the receive and
beforeStop callbacks to provide a message indicating the position within the list
that any sortable is moved to as well as which list it is in. We also make use of the
ui.item property from the object, which is automatically passed to any callback
functions used by the events.

Sorting

[298]

We start by defining an array where each item is a string specifying any of the
positions that any sortable may occupy. We then define our callback function
getPlaces(); within this function. We first remove any message that may exist
from previous sort operations.

We then cycle through each child in the active sortable (except for the heading
paragraphs) and compare the text content of the current child to the text content of
the element that was sorted. Note that $(this) is mapped to the list that the sorted
element belongs to, not the element itself.

If they match then we know programmatically which item was sorted and can get
the appropriate place label from our array using the first argument passed to the
each function. We can then display a brief message indicating the new position of
the sorted element.

In our configuration object, we specify that just the <div> elements should be
sortable with the items option and connect the two lists using the connectWith
option. We make use of both the receive and beforeStop options, which both
point to our getPlaces function.

The receive event is fired whenever a sortable container receives a new sortable
element from a connected list. The beforeStop event is fired just before the sort
interaction ends. In terms of event order in this example the beforeStop event is
fired first followed by the receive event.

The reason we need to hook into both events is for when a sortable is moved from
one sortable to another. If we didn't use the receive callback as well, when the
beforeStop event is fired, the sortable will not be part of the new sortable yet.
Therefore, its text won't match any of the sortables in the new list, so the message
will not be created.

The receive event will only be fired if a sortable element moves to a new sortable
container. The following screenshot shows how the page should look following a
sort interaction:

Chapter 12

[299]

Connected callbacks
Six of the available callbacks can be used in conjunction with connected sortables.
These events fire at different times during an interaction alongside the events that
we have already looked at.

Like the standard unconnected events, not all of the connected events will fire in any
single interaction. Some events, such as over, off, remove, and receive will only
fire if a sort item moves to a new list.

Other events, such as the activate and deactivate events, will fire in all executions,
whether any sort items change lists or not. Additionally, some connected events, such
as activate and deactivate, will fire for each connected list on the page.

Provided at least one item is moved between lists, events will fire in the
following order:

start

activate

sort

change

•

•

•

•

Sorting

[300]

beforeStop

stop

remove

update

receive

deactivate

Let's now see some of these connected events in action. Change the configuration
object in sortable11.html so that it appears as follows:

var sortOpts = {
 items: "div",
 connectWith: ["#likes", "#dislikes"],
 activate: function() {
 $("<p>").text($(this).attr("id") + " has been
 activated").css({clear:"both"}).appendTo("body");
 },
 deactivate: function() {
 $("<p>").text($(this).attr("id") + " has been
 deactivated").css({clear:"both"}).appendTo("body");
 },
 receive: function(e, ui) {
 $("<p>").text(ui.item.text() + " was moved out of " +
 ui.sender.attr("id") + " and into " +
 $(this).attr("id")).css({clear: "both"}).appendTo("body");
 }
};

Save this as sortable12.html. The activate and deactivate events are fired for
each connected list at the start of any sort interaction. As these events are executed
in the context of each sortable, we can again use $(this) to refer to each sortable
container instead of using the second object that is automatically passed to each of
our functions.

When we run the page in a browser we see that as soon as a sort begins, both of
the sortables are activated, and when the sort ends, both of them are deactivated.
If an item is moved between lists, the message generated by the receive callback
is shown.

•

•

•

•

•

•

Chapter 12

[301]

We can easily determine which sortable the item originated in using the sender
property of the second object passed to our function. The following screenshot
shows how the page should appear when an item is moved between sortables:

Sortable methods
The sortables component exposes the usual set of methods for making the
component 'do things', and like the selectables component that we looked at before.
It also defines a couple of unique methods not seen in any of the other components.
The following table lists sortable's full unique methods:

Method Use
cancel Cancels the sort and causes elements to return to

their original positions.
refresh Triggers the reloading of the set of sortables.
refreshPositions Triggers the cached refresh of the set of sortables.
serialize Constructs a URL-appendable string for sending

new sort order to the server.
toArray Serializes the sortables into an array of strings.

Sorting

[302]

The serialize and toArray methods are great for doing something useful with the
resulting post-sort sortables, such as sending the list to a server app. Let's see this in
action. In a new file in your text editor, create the following page:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
 "http://www.w3.org/TR/html4/strict.dtd">
<html lang="en">
 <head>
 <link rel="stylesheet" type="text/css"
 href="css/sortableConnected.css">
 <meta http-equiv="Content-Type" content="text/html;
 charset=utf-8">
 <title>jQuery UI Sortable Example 13</title>
 </head>
 <body>
 <p>Put these in ascending order of your preference</p>
 <div id="likes">
 <p>Likes</p>
 <div id="likes_house">House</div>
 <div id="likes_hiphop">Hip Hop</div>
 <div id="likes_breaks">Breaks</div>
 <div id="likes_drumandbass">Drum and Bass</div>
 <div id="likes_rock">Rock</div>
 </div>
 <button id="serialize">Serialize it!</button>
 <script type="text/javascript"
 src="development-bundle/jquery-1.3.2.js"></script>
 <script type="text/javascript"
 src="development-bundle/ui/ui.core.js"></script>
 <script type="text/javascript"
 src="development-bundle/ui/ui.sortable.js"></script>
 <script type="text/javascript">
 $(function() {

 var sortOpts = {
 items: "div"
 };

 $("#likes").sortable(sortOpts);

 $("#serialize").click(function() {
 var serialized = $("#likes").sortable("serialize",
 { key:"likes"});
 $("#string").remove();
 $("<p>").attr("id",
 "string").text(serialized).appendTo("body");
 });
 });
 </script>
 </body>
</html>

Chapter 12

[303]

Save this as sortable13.html. We've dropped the second set of sortables for this
example and added a button to the page that triggers the serialization. We've also
added id attributes to each of the sortable items in the format of the name of the
parent sortable (likes) and the individual items, separated by an underscore.

The click handling function simply serializes the sortable elements by calling the
serialize method and then removes any previous message that may exist on the
page. Finally the serialized string is added to the page so that we can see the format
it takes.

We use the key configuration property of the serialize method to set the list id as
the first part of each item in the serialized string.

The following screenshot shows what you should see when you run the page in your
browser and click the Serialize it! button (and, optionally perform an actual sort):

As you can see, the format of the serialized string is quite straight-forward. The
sortable items appear in the order that the items appear on the page and are
separated by an ampersand. Each serialized item is made up of two parts—the name
of the sortable to which they belong and the individual item, separated (by default,
but can be changed) by the = character.

If serialization is a term you've never come across before, and as no native
serialization methods exist within JavaScript, this would be no surprise. Don't worry
as you've probably used it before (or at least its opposite deserialization) without
even realizing.

Sorting

[304]

When data is converted into JSON so that you can download it and process it
directly in the browser, it is serialized into a format suitable for transportation across
the Internet. When you process the JSON object on the client-side to extract the data
within it, you are in effect deserializing, or parsing it.

You might be wondering why the method doesn't serialize the sortable into a JSON
object to pass back to the server. The main reason is because the output of the
serialize method is in the format that backend code, such as PHP will most likely
be expecting.

In the previous example, all we do is display the serialized string on the page, but
the string is in the perfect format for use with jQuery's ajax method, or to append to
a URL to pass the resulting string to a server for further processing.

The component uses a regular expression to read the id attributes of each sortable
item and split them into the set name and item name format found in the outputted
string. It is possible to supply an alternative expression using a literal configuration
object passed to the serialize method. It is also possible to use an alternative
attribute than id to build the serialized string.

The options available for use with this method are listed in the following table:

Option Default value Usage
attribute id Specifies the id to use as the item name in the

parsed string.
connected false If set to true serialization will include all

connected lists.
expression "(.+)[-=_](.+)" The expression used to parse the specified

attribute of each sortable item.
key The first result of

expression
Specifies the key to be used as the property of
each item in the serialized output.

The toArray method works in a similar way to serialize, except that with toArray
the output is not a string but an array of strings. This gives us an object that can
easily be passed to other widgets on the page.

Widget compatibility
In the previous chapter, we saw that both the resizables and the selectables
component worked well with the tabs widget (and we already know how well the
dialog and resizables components go together). The sortable component is also
highly compatible with other widgets. Let's look at a basic example. In a new page in
your text editor, add the following code:

Chapter 12

[305]

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
 "http://www.w3.org/TR/html4/strict.dtd">
<html lang="en">
 <head>
 <link rel="stylesheet" type="text/css"
 href="development-bundle/themes/base/ui.core.css">
 <link rel="stylesheet" type="text/css"
 href="development-bundle/themes/base/ui.theme.css">
 <link rel="stylesheet" type="text/css"
 href="development-bundle/themes/base/ui.tabs.css">
 <link rel="stylesheet" type="text/css"
 href="css/sortableTabs.css">
 <meta http-equiv="Content-Type" content="text/html;
 charset=utf-8">
 <title>jQuery UI Sortable Tabs Example</title>
 </head>
 <body>
 <div id="tabs">

 Sort Tab 1
 Sort Tab 2
 Sort Tab 3

 <div id="0">The first tab panel</div>
 <div id="1">The second tab panel</div>
 <div id="2">The third tab panel</div>
 </div>
 <script type="text/javascript"
 src="development-bundle/jquery-1.3.2.js"></script>
 <script type="text/javascript"
 src="development-bundle/ui/ui.core.js"></script>
 <script type="text/javascript"
 src="development-bundle/ui/ui.tabs.js"></script>
 <script type="text/javascript"
 src="development-bundle/ui/ui.sortable.js"></script>
 <script type="text/javascript">
 $(function() {

 $("#tabs").tabs();

 var sortOpts = {
 axis: "x",
 items: "li"
 };

 $("#tabs").sortable(sortOpts);
 });
 </script>
 </body>
</html>

Sorting

[306]

Save this page as sortableTabs.html. There is nothing in the code that we haven't
seen before, so we won't go into any great detail about it. Note that only the tabs()
and sortable() methods are called on the same element—the outer container
containing <div> element. We also need a little bit of CSS, so in another new file in
your text editor add the following selectors and rules:

#tabs .ui-sortable-helper, #tabs .ui-sortable-placeholder {
 height:42px !important;
}
.ui-tabs .ui-tabs-nav li.ui-sortable-helper a {
 padding:10px 0 0 15px;
}

Save this file in the css folder as sortableTabs.css. The first rule overrides a fixed
height that is given to the tab headings while a sort is in progress. The fixed height
is added to the element directly as part of the style attribute, which is why we need
to use the !important flag. The second rule is used to prevent the text in the tab
heading overflowing on to the next line.

When we run the page in a browser, we should find that the components work in
exactly the way that we want them to. The tabs can be sorted horizontally to any
order, but as the tabs are linked to their panel by href, they will still refer to the
correct panel.

Sorting the tabs works on the mousedown event and selecting the tabs works on the
mouseup event, so there are no event collisions and no situations arising where you
want to select a tab but end up sorting it. The next screenshot shows how the tabs
may appear after sorting.

Adding draggables
When we looked at draggables and droppables earlier in the book, we saw that there
was a configuration option for draggables called connectToSortable. Let's take
a look at that option now that we've been introduced to the fundamentals of the
sortables component. In this example we'll create a sortable task list that can have
new tasks dragged into it. The resulting page will appear as follows:

Chapter 12

[307]

In a new file in your text editor add the following code:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
 "http://www.w3.org/TR/html4/strict.dtd">
<html lang="en">
 <head>
 <link rel="stylesheet" type="text/css"
 href="css/sortableDrag.css">
 <meta http-equiv="Content-Type" content="text/html;
 charset=utf-8">
 <title>jQuery UI Sortable Example 14</title>
 </head>
 <body>
 <ul id="drag">
 Click to write new task...

 <div id="taskList">
 <ul id="tasks">

Sorting

[308]

 Design new site
 Call client
 Order pizza

 </div>
 <script type="text/javascript"
 src="development-bundle/jquery-1.3.2.js"></script>
 <script type="text/javascript"
 src="development-bundle/ui/ui.core.js"></script>
 <script type="text/javascript"
 src="development-bundle/ui/ui.sortable.js"></script>
 <script type="text/javascript"
 src="development-bundle/ui/ui.draggable.js"></script>
 <script type="text/javascript">
 $(function() {
 var dragOpts = {
 connectToSortable: "#tasks",
 helper: "clone"
 };
 $("#drag li").draggable(dragOpts);

 var sortOpts = {
 stop: function() {
 $("#add").css("display", "none");
 $("#drag li").text("Click to write new task...");
 }
 };
 $("#tasks").sortable(sortOpts);
 $("#drag li").click(function() {
 if ($("#tasks").children().length > 7) {
 alert("too many tasks already!");
 } else {
 var input = $("<input>").attr("id", "newTask");
 $(this).text("").append(input);
 input.focus();

 $("#add").removeClass("down").css("display",
 "block").insertAfter("#drag");
 }
 });
 $("#add").live("click", function(e) {
 e.preventDefault();
 $("#drag li").text($("#newTask").val());
 $("#drag input").remove();
 $("#add").addClass("down").attr("title", "drag new task
 into the list");
 });
 });
 </script>
 </body>
</html>

Chapter 12

[309]

Save this as sortable14.html. We first define the draggable configuration object,
setting the connectToSortable to the id selector for the parent sortables container,
and the helper option to clone. The draggables() method is then called on the
draggable's container.

We then define the configuration object for the sortables, specifying a callback
function for the stop event that resets the text that we enter into the draggable
later in the script. Once this has been defined we simply add the constructor for
the sortables.

Next we add a click handler to the draggable element, which when clicked, will
show an input field and an add button. The visitor can enter a new task and make
the new task draggable. The text-box and icon will appear like this:

We also add a click handler for the add button that we create. This function gets the
text that has been entered into the text field, removes the text field, and adds the text
to a draggable element. The new task can then be dragged into the list.

Sorting

[310]

We also use a new stylesheet for this example. Add the following code to a new page
in your text editor:

#drag { margin:0; padding:0 0 0 56px; float:left; }
#drag li { font-style:italic; color:#999999; }
#taskList {
 width:250px; height:400px;
 background:url(../img/sortable/tasks/paper.jpg) no-repeat;
 clear:both;
}
#tasks {
 margin:0; padding:89px 0 0; width:170px; float:right;
}
#tasks li, #drag li {
 height:28px; padding-top:5px; list-style-type:none;
}
#add { width:24px; height:24px;
 background:url(../img/sortable/tasks/add.png) no-repeat;
 position:absolute; left:218px; top:13px; display:none;
}
#add.down {
 background:url(../img/sortable/tasks/down.png) no-repeat;
}

Save this as sortableDrag.css in the css folder. Mostly this is just decorative,
superficial stuff for the purposes of the example.

Sortable page widgets
It's time for our final sortable example. We're going to put the component to good
use by creating a page with content boxes on it that can be sorted into various
positions to suit the visitor's personal preference, a little like iGoogle. The following
screenshot shows what we're aiming for:

Chapter 12

[311]

The markup for the page is minimal as most of the content will be added
dynamically from various remote sources. You don't need to worry about having a
full web server set up to complete this example. The code that returns the data makes
use of JSON, which as you know can be interpreted directly in the browser (when
used in conjunction with JSONP callbacks). We'll also be making use of cookies,
which again can be used purely with JavaScript.

Sorting

[312]

The underlying page
To begin, create the following basic HTML page:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
 "http://www.w3.org/TR/html4/strict.dtd">
<html lang="en">
 <head>
 <link rel="stylesheet" type="text/css"
 href="css/smoothness/jquery-ui-1.7.1.custom.css">
 <link rel="stylesheet" type="text/css" href="css/jPage.css">
 <meta http-equiv="Content-Type" content="text/html;
 charset=utf-8">
 <title>jQuery UI Customizable Home Page Example</title>
 </head>
 <body>
 <div class="page">
 <h1>Customizable Home Page Example</h1>
 <p>Move the boxes around or close them completely. Your choices
 will be saved and the page will appear as it was when you
 left it.<p>
 <a id="restore" href="#"
 title="Restore Deleted Boxes">Restore Deleted Boxes
 <div id="sortGrid" class="ui-helper-clearfix">
 <div id="col1" class="col"></div>
 <div id="col2" class="col"></div>
 <div id="col3" class="col"></div>
 <div id="hidden"></div>

 </div>
 </div>

 <script type="text/javascript"
 src="development-bundle/jquery-1.3.2.js"></script>
 <script type="text/javascript"
 src="development-bundle/ui/ui.core.js"></script>
 <script type="text/javascript"
 src="development-bundle/ui/ui.sortable.js"></script>
 <script type="text/javascript"
 src="development-bundle/external/cookie/jquery.cookie.js">
 </script>
 </body>
</html>

Save this as jPage.html. I said it would be simple, but let's just look at what the
page contains. At the top, we've got a header, some explanatory text, and a link
which will be used to reopen boxes that may have been closed.

Chapter 12

[313]

The main part of the page contains three <div> elements that will be styled to float
next to each other to represent columns, plus a hidden column that will be used to
store closed boxes. That's it, the rest of the elements are the <script> resources that
we'll be using for this example.

Working with cookies
The jQuery cookie plug-in by Klaus Hartl really helps us to avoid relying
on backend PHP (or other generic server-side environment) to process the
desired state of the boxes. It also makes working with cookies much less
cumbersome and saves us a good deal of code.

Styling the page
Next, we can add the CSS that is needed to make the page work. Some of the
selectors in our stylesheet will be matching elements that don't yet exist, but we'll
add the styling for them now anyway so that we don't have to come back to the
stylesheet later on. In a new page in your text editor, add the following code:

.page { width:936px; margin:auto; text-align:center; }
p {
 font-family:Verdana, Arial, Helvetica, sans-serif;
 font-size:0.8em;
}
#sortGrid { width:960px; padding:20px 0; }
a#restore {
 font-family:Arial, Helvetica, sans-serif; float:right;
 font-size:0.7em; color:#000;
}
.col {
 float:left; width:312px; min-height:700px;
 height:auto !important; height:700px;
}
.box {
 width:290px; margin:0 0 10px 10px; position:relative;
 border:1px solid #999999; text-align:left;
 padding:25px 5px 5px 5px; font-size:0.7em; overflow:hidden;
 background-color:#fff;
}
.title {
 width:100%; position:absolute; top:0; left:0; padding:4px 0;
 font-size:1.1em; cursor:move; border:0;
 border-bottom:1px solid #aaa; text-indent:10px;
}
.close {

Sorting

[314]

 position:absolute; right:3px; top:3px; cursor:pointer;
}
#hidden { display:none; }
.ui-widget-content { border:none; padding:5px; }
.box a {
 text-decoration:none; font-weight:bold; color:#0000ee;
}
#video span, #video a { width:137px; display:block; }
.box img { border:none; }

Save this as jPage.css in the css folder. We'll just skim over the CSS as there are
only a couple of points worth raising here.

One of the most salient points is the fact that we're using min-height on our
columns. The reason for this is that if we don't set some kind of height on our
columns they will collapse down to nothing if all of the content boxes are moved
out of them.

Using min-height prevents this from happening and allows the columns to grow if
a large box is moved into them. IE6 of course doesn't support min-height, hence the
crafty hack.

Minimum Height
We're using Dustin Diaz's celebrated Min-Height Fast Hack in our CSS
for this example to improve the quality of the resulting page. For more
information, visit Dustin's blog at http://www.dustindiaz.com/
min-height-fast-hack/

Other than this, the CSS merely lays out the page in the way we want. We'll be
making use of a few of the CSS framework classes in the example, so we will be
able to use a lot of the automatic styling provided by the library, which can save
the amount of CSS we need to write ourselves.

The main script
To bring the page to life, we now need to focus on the JavaScript required to turn this
collection of elements into a usable interface. There's a good deal of code to cover.
This is probably the biggest example in the book, so instead of looking at the whole
script at once, we'll break it down and look at the different sections of code that cover
each aspect of behavior. The page is pretty empty at the moment, so our first task
is to get the data. Directly after the last <script> element in jPage.html add the
following code:

Chapter 12

[315]

<script type="text/javascript">
 $(function() {
 var processData = {
 twitter: {
 title: "Recent Tweets",
 defaultCol: 1,
 parser: $.getJSON("http://pipes.yahoo.com/danwellman/
 tweetstream?_render=JSON&_callback=?", function(data) {
 $.each(data.value.items, function(i, item) {
 $("<a />").attr("href", "http://twitter.com/" +
 item.user.screen_name).text("@" +
 item.user.screen_name).appendTo("#twitterContent");
$("<p>").text(item.text).appendTo("#twitterContent");
 });
 })},
 flickr: {
 title: "Latest Flickr Image",
 defaultCol: 1,
 parser: $.getJSON("http://api.flickr.com/services/feeds/
 photos_public.gne?format=json&jsoncallback=?",
 function(data){
 $("<a />").attr({"href": data.items[0].link,"id":
 "imgLink"}).appendTo($("#flickrTitle").parent());
 $("").attr("src",
 data.items[0].media.m).appendTo("#imgLink");
 $("<p>").text("Image name: " +
 data.items[0].title).appendTo($(
 "#flickrTitle").parent());
 $("<p>").text("Author: " +
 data.items[0].author.split("(")[1].replace(")",
 "")).appendTo("#flickrContent");
 })},
 youtube: {
 title: "Today's Most Viewed YouTube Video",
 defaultCol: 2,
 parser: $.getJSON("http://pipes.yahoo.com/danwellman/
 mostpopularyoutube?_render=JSON&_callback=?", function(data) {
 $("<div>").attr("id",
 "video").html(data.value.items[0].description).appendTo("
 #youtubeContent");
 })},
 jquery: {
 title: "Latest Stories on Learning jQuery",
 defaultCol: 2,
 parser: $.getJSON("http://pipes.yahoo.com/danwellman/
 learningjquery?_render=JSON&_callback=?", function(data) {
 $.each(data.value.items, function(i, item) {
 $("<a />").attr({"id": "articleLink", "href":
 item.link}).text(item.title).appendTo("#jqueryContent");

Sorting

[316]

 $("<p>").text(item.description.split("<")[0]).appendTo(
 "#jqueryContent");
 return (i > 3) ? false : null;
 });
 })},
 news: {
 title: "Current UK Headlines from BBC News",
 defaultCol: 3,
 parser: $.getJSON("http://pipes.yahoo.com/danwellman/
 ukbbcnews?_render=JSON&_callback=?", function(data) {
 $.each(data.value.items, function(i, item) {
 $("<div>").addClass("headline").attr("id", "headline" +
 i).appendTo("#newsContent");
 ("<a />").attr("href",
 item.link).text(item.title).appendTo("#headline" + i);
 $("<p>").text(item.description).appendTo("#headline" +
 i);
 return (i > 3) ? false : null;
 });
 })},
 weather: {
 title: "Today's Weather for Southampton, UK",
 defaultCol: 3,
 parser: $.getJSON("http://pipes.yahoo.com/danwellman/
 southamptonweather?_render=JSON&_callback=?", function(data) {
 $("<div>").attr("id", "weatherData")
 .html(data.value.items[0].description)
 .appendTo ("#weatherContent");
 $("#weatherData img").remove();
 $("#weatherData br:first").remove();
 })}
 };
 });
</script>

We've defined an outer object literal in the variable processData. As the variable
name indicates we'll be storing information to help us process the remote data within
this object. Inside this object are six properties that represent the six content boxes
that we'll create. Each of these properties has a key name that dictates which box it
belongs to.

The value of each of these properties is another literal object. These inner objects each
contain three properties, which are a text string to use as the title of the content box,
an integer specifying which column the box belongs in by default, and a function
that retrieves the actual content of the box.

Chapter 12

[317]

Even though we're using Yahoo! Pipes to return most of the data in a format that can
be used with jQuery's getJSON() method, the way that we need to create the content
for the boxes still differs between each box.

For example, the news pipe returns lots of results, over twenty, which is way too
many for our page. Therefore, we use jQuery's each() utility method to loop
through the first five results and then discard the rest. Sometimes we don't need to
use the loop and can just work with the first result like with the Youtube Function.

Building the content boxes
Next, we need to build the content boxes and insert them into the page. As I
mentioned, the page uses cookies to store the state of each box—it's position, the
column it's in, and whether it's open or hidden, therefore, we need to check for the
presence of the cookie and do different things depending on whether it exists or not.
Directly after our processData object add the following code:

 $("#weatherData br:first").remove();
 })}
};

if (!$.cookie("columnOrder")) {

 $.each(processData, function(i, item) {
 $("<div>").addClass("box ui-widget ui-corner-all").attr("id",
 "col" + processData[i].defaultCol + "_" + i).appendTo("#col" +
 processData[i].defaultCol);
 $("<div>").addClass("title ui-widget-header
 ui-corner-top").attr("id", i +
 "Title").text(processData[i].title).appendTo("#col" +
 processData[i].defaultCol + "_" + i);
 $("<div>").addClass("close ui-icon ui-icon-close").attr("title",
 "Close").appendTo("#" + i + "Title");
 $("<div>").addClass("ui-widget-content").attr("id", i +
 "Content").appendTo("#col" + processData[i].defaultCol + "_"
 + i);
 });

 $("#hidden").empty();

} else {

 var cols = $.cookie("columnOrder").split("&");

 $.each(cols, function(i, item) {
 if(item != "") {
 var col = item.split("=")[0],
 box = item.split("=")[1];

 $("<div>").addClass("box ui-widget ui-corner-all").attr("id",
 col + "_" + box).appendTo("#" + col);
 $("<div>").addClass("title ui-widget-header
 ui-corner-top").attr("id", box +

Sorting

[318]

 "Title").text(processData[box].title).appendTo("#" + col +
 "_" + box);
 $("<div>").addClass("close ui-icon
 ui-icon-close").attr("title", "Close").appendTo("#" + box +
 "Title");
 $("<div>").addClass("ui-widget-content").attr("id", box +
 "Content").appendTo("#" + col + "_" + box);
 }
 });
}

Our cookie will have the title columnOrder, so if this doesn't exist we know that a
cookie has not been saved and we should use the default layout. The first branch of
the if statement deals with this scenario.

We use jQuery's each() utility method to iterate over our processData object and
on each of the (six) properties within it we execute a function. Within this function
we create four <div> elements with each element making part of each content
box—the outer container, the title, the close button, and the inner content container.

We use the different inner objects from each of the six properties to add the data to
the content box. Each box is given an id based on the key or the current property,
which is passed to our function as the i argument. We also use the defaultCol
property from our object to append the content box to the correct column.

Each of these elements is given some custom class names, so that we can provide any
styles not provided by the library, and some of the framework class names to pick
up styling from the CSS framework. Using the framework classes like this is great
because it means that our content boxes will be styled the same as any additional
widgets we may decide to use on the page.

The last thing we do is empty the hidden column from any elements that may be
inside it. There shouldn't be, but to be sure we call jQuery's empty() method on it.

The second branch of the if statement processes the cookie and uses the information
from it to build the IDs of the boxes and append them to their respective columns.
Note that we still use the processData object to obtain the title's of each box. Storing
this information in the cookie as well as the column order would push up the size of
the cookie and different browsers put different restrictions on cookie size. Therefore,
it's best to keep it as minimal as possible.

We first split the cookie based on the & character, which is the separator we'll use
when building the cookie (we'll come to that next). We then use jQuery's each()
method once more to iterate over the items in the array created when we split
the cookie.

Chapter 12

[319]

We check that each item in the array does not equal an empty string, and provided it
doesn't we split the array item again using the = character. The format of each item in
the cols array will be in the format columnName=boxId , so we can get both the
id of the column to append the box to and the id to give the box by splitting each
array item.

Writing the cookie
Next we need to add a function that can write the current state of the page to a
cookie when requested. Directly after the processData object add the following
new function:

function cookieWriter() {

 var colOrders = $("#col1").sortable("serialize",
 {key:"col1"}) + "&" + $("#col2").sortable("serialize",
 {key:"col2"}) + "&" + $("#col3").sortable("serialize",
 {key:"col3"}) + "&" + $("#hidden").sortable("serialize",
 {key:"hidden"});

 $.cookie("columnOrder", colOrders, { path:"/", expires:365 });
}

All we do is build a text string containing the ID's of the boxes that appear in each
column (including the hidden column) using the column name as the serialization
key, and the order that the boxes appear in. The resulting string will look something
like: col1=twitter&col1=youtube&col2=news...

We then call the cookie() method of the cookie plugin and pass in the title of the
cookie, columnOrder, our serialized text string as the cookie data, and the path and
expires properties that are required when the cookie is created.

Making the boxes sortable
Next we need to make the boxes sortable, which we can do with the following code:

var sortOpts = {
 handle: ".title",
 containment: "#sortGrid",
 dropOnEmpty: true,
 connectWith: ["#col1", "#col2", "#col3"],
 stop: cookieWriter
};

$("#col1, #col2, #col3").sortable(sortOpts);
$("#hidden").sortable();

Sorting

[320]

We've seen each of these configuration options before so I won't go into too much
detail in this section. The title option is used to ensure that boxes are only sorted
when the title element is used. The boxes are confined to the sortGrid container to
keep things tidy and the dropOnEmpty option ensures that empty columns can accept
new boxes that may be sorted into them.

Each of the three visible lists is connected, so that the content boxes can be moved
freely between them. We don't need to connect the hidden column because boxes
won't be sorted into it—they can be moved there when closed by other means. The
cookieWriter function we defined a moment ago is passed to the stop option, so a
new cookie will be written each time a box is moved.

Closing and restoring boxes
Our final task is to deal with the close button in each box being clicked, and wiring
up the link to restore closed boxes. Directly after the code we just looked at add the
following two functions:

$(".close", "#sortGrid").click(function() {
 $(this).parent().parent().appendTo("#hidden");

 cookieWriter();
});

$("#restore").click(function() {

 $("#hidden").children().each(function() {

 var col = "",
 box = $(this);

 $(".col", "#sortGrid").each(function() {
 ($(this).children().length < 2) ? col = $(this).attr("id") :
 null ;
 });

 var boxId = box.attr("id").split("_")[1];
 box.attr("id", col + "_" + boxId).appendTo("#" + col);
 cookieWriter();
 });
});

Closing the boxes is easy. When a close button is clicked we move its box to the
hidden column and as the state of the page has changed, we call our cookie writing
function once more. That's all we need to do in our click handler.

Chapter 12

[321]

We also use a click handler to restore closed boxes. We cycle through each box inside
the hidden column and create a col variable and a box variable. The col variable
will be used to determine which column to insert the box into when it is restored
and the box variable is a cached reference to the current content box. We determine
which column has the space to hold a new box which will be the first column the
script encounters that has less than two boxes in it.

Boxes moved to the hidden column will automatically be renamed when the page
loads so that they have the id hidden_sortableName. We need to change this so that
the box's id is columnName_sortableName instead.

We then add the box to a column that has space, setting its id in the process, before
finally serializing the new column order and calling the cookieWriter function once
more. This brings us to the end of the example.

We should find when we run the page that we can move the boxes around, close the
browser, run the page again and see the boxes retain the order and positions that we
gave them.

Please note that the example does not run correctly in Opera and exhibits
the same unusual placement of sorted items that occurred in some of the
earlier examples in the chapter. Also, Chrome does not seem to like the
use of cookies in this example, which may or may not be related to the
size restrictions that I mentioned earlier.

Summary
We've finished our tour of the interaction components of the library by looking at the
sortables component. Like the other modules that we looked at before, it has a wide
range of properties and methods that allow us to configure and control its behavior
and appearance in both simple and more complex implementations.

We started off the chapter with a look at a simple, default implementation with no
configuration to see the most basic level of functionality added by the component.
We looked at some of the different elements that can be made sortable and added
some basic styling to the page.

Sorting

[322]

Following this, we looked at the range of configurable options that are exposed by
the sortable API. The list is extensive and provides a wide range of functionality that
can be enabled or disabled with ease.

We moved on to look at the extensive event model used by this component that gives
us the ability to react to different events as they occur in any sort operation initiated
by the visitor.

Connected lists offer the ability to be able to exchange sortable items between lists
or collections of sortables. We saw the additional options and events that are used
specifically with connected sortable lists.

In the last part of the chapter, we looked at the methods available for use with the
sortables component and focused on the highly useful serialize method, and also
had a quick look at its compatibility with other members of the jQuery UI library in
the form of the sortable tabs example.

UI Effects
We've so far looked at a range of incredibly useful widgets and interaction helpers.
All are easy to use but at the same time powerful and highly configurable. Some
have had their subtle nuances which have required consideration and thought
during their implementation.

The effects provided by the library on the other hand are for the most part, extremely
compact, with very few options to learn and no methods at all. We can use these
effects quickly and easily, with minimum configuration.

The effects that we'll be looking at in this chapter are listed below:

blind
bounce
clip
drop
explode
fold
highlight
pulsate
scale
shake
slide
transfer

•
•
•
•
•
•
•
•
•
•
•
•

UI Effects

[324]

The core effects file
Like the individual components themselves, the effects require the services of a
separate core file. It provides essential functionality to the effects, such as creating
wrapper elements and controlling the animations. Most, but not all, of the effects
have their own source files, which build on the core foundation to add functionality
specific to the effect.

All we need to do to use an effect is include the core file (effects.core.js) in
the page before the effect's source file. Unlike the ui.core.js file however, the
effects.core.js file has been designed to be used, in part, completely standalone.

When using the core effect file on its own we can take advantage of color animations.
This includes changing the background color of an element into another color (and
not just a snap change but a smooth morphing of one color into another), class
transitions, and advanced easing animations.

Using color animations
Let's look at creating color animations. First; create the following new page:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
 "http://www.w3.org/TR/html4/strict.dtd">
<html lang="en">
 <head>
 <link rel="stylesheet" type="text/css"
 href="css/effectColor.css">
 <meta http-equiv="Content-Type" content="text/html;
 charset=utf-8">
 <title>jQuery UI Color Animation Example</title>
 </head>
 <body>
 <form action="#">
 <div><label>Name: </label><input type="text"></div>
 <div><label>Age: </label><input type="text"></div>
 <div><label>Email: </label><input type="text"></div>
 <button type="submit">Submit</button>
 </form>
 <script type="text/javascript"
 src="development-bundle/jquery-1.3.2.js"></script>
 <script type="text/javascript"
 src="development-bundle/ui/effects.core.js"></script>
 <script type="text/javascript">
 $(function() {

 $("form").submit(function() {

Chapter 13

[325]

 $("input").each(function() {

 ($(this).val().length == 0) ? $(this).animate({
 backgroundColor:"#ff9999",
 borderTopColor: "#ff0000",
 borderRightColor: "#ff0000",
 borderBottomColor: "#ff0000",
 borderLeftColor: "#ff0000"
 }) : $(this).animate({
 backgroundColor:"#ccffcc",
 borderTopColor: "#00ff00",
 borderRightColor: "#00ff00",
 borderBottomColor: "#00ff00",
 borderLeftColor: "#00ff00"
 });
 });
 });
 });
 </script>
 </body>
</html>

Save the page as effectColor.html. As you can see, all we need are jQuery and the
effects.core.js file to create attractive color transitions. On the page we have a
simple <form> element enclosing three container elements and three sets of <label>
and <input> elements. The animate method is part of jQuery rather than jQuery
UI specifically, but the effects.core.js file extends jQuery's animate method by
allowing it to specifically work with colors and classes.

When the Submit button is clicked, we simply use the animate method to apply a
series of new CSS properties to the target elements based on whether the text inputs
have been filled out or not. If they have been completed we color them green, if not
we color them red. We also use a basic stylesheet in this example. In another new
page in your text editor, add the following basic selectors and rules:

div { margin-bottom:5px; }
label { display:block; width:100px; float:left; }
input { border:1px solid #000000; }

Save this as effectColor.css in the css folder. When we view this page in our
browser, we should see that any fields left blank smoothly turn red when the Submit
button is clicked, while fields that are not empty smoothly turn green. The most
attractive however is when a field changes from red to green.

UI Effects

[326]

The following screenshot shows the page once the Submit button has been clicked:

The style attributes that color animations can be used on are:

backgroundColor

borderTopColor

borderRightColor

borderBottomColor

borderLeftColor

color

outlineColor

Colors may be specified using either RGB, hexadecimal (in the format #000000), or
even standard color names. Although there can be cross-browser issues when using
color names, so these are best avoided in most cases.

Using class transitions
In addition to animating individual color attributes, effects.core.js also gives
us the powerful ability to animate between entire classes. This allows us to switch
styles smoothly and seamlessly without sudden, jarring changes. Let's look at this
aspect of the file's use in the following example. Change the <link> in the <head> of
effectColor.html to point to a new stylesheet:

 <link rel="stylesheet" type="text/css"
 href="css/effectClass.css">

•

•

•

•

•

•

•

Chapter 13

[327]

Then change the final <script> element so that it appears like this:

<script type="text/javascript">
 $(function() {

 $("form").submit(function(e) {
 e.preventDefault();

 $("input").each(function() {

 if ($(this).hasClass("error")) {

 ($(this).val().length == 0) ? null :
 $(this).switchClass("error", "pass", 2000);

 } else if ($(this).hasClass("pass")) {

 ($(this).val().length != 0) ? null :
 $(this).switchClass("pass", "error", 2000);

 } else {

 ($(this).val().length == 0) ? $(this).addClass("error",
 2000) : $(this).addClass("pass", 2000);
 }
 });
 });
 });
</script>

Save this as effectClass.html. The effects.core.js file extends the jQuery class
API by allowing us to specify a duration over which the new class name should be
applied instead of just switching it instantly. We can also specify an easing effect.

The switchClass method of the effects.core.js file is used when the fields
already have one of the class names and need to change to a different class name.
The switchClass method requires several arguments, we specify the class name
to remove, followed by the class name to add. We also specify a duration as the
third argument.

Essentially, the page functions as it did before, although using this type of class
transition allows us to use non-color-based style rules as well, so we can adjust
widths, heights, or many other style properties if we wanted. Note that background
images cannot be transitioned in this way.

As in the previous example, we have a stylesheet attached. This is essentially the
same as in the previous example except with some styles for our two new classes.
Add the following selectors and rules to the bottom of effectColor.css:

.error { border:1px solid #ff0000; background-color:#ff9999; }

.pass { border:1px solid #00ff00; background-color:#ccffcc; }

UI Effects

[328]

Save the updated file as effectClass.css in the css folder. In the next screenshot,
we see the page after it has been interacted with:

Please note that at the time of writing, this example does not work
correctly in IE. It will only apply the class to one of the <input> elements
per click and it will throw errors as well. As of jQuery UI 1.8 the class
transitions will work in Webkit-based browsers such as Safari or Chrome.

Advanced easing
The animate method found in standard jQuery has some basic easing capabilities
built-in, but for more advanced easing, you have to include an additional easing
plugin (ported to jQuery by GSGD).

However, the effect.core.js file has all of these advanced easing options built
right in, so there is no need to include additional plugins. We won't be looking at
them in any real detail in this section, however, we will be using them in some of
the examples later on in the chapter.

Highlighting specified elements
The highlight effect temporarily applies a light yellow coloring to any element that
it's called on. Let's put a simple example together so we can see the effect in action.
In effectClass.html change the link to the stylesheet in the <head> of the page
as follows:

<link rel="stylesheet" type="text/css"
 href="css/effectHighlight.css">

Chapter 13

[329]

The <script> element that refers to the effect's source file so that it uses the
effect.highlight.js file:

<script type="text/javascript"
 src="development-bundle/ui/effects.highlight.js"></script>

Then remove the <form> from the <body> of the page and replace it with the
following markup:

<h1>Choose the correct download below:</h1>
<div id="win" class="download-link">
 <a title="Download windows installer"
 href="#">Windows
</div>
<div id="mac" class="download-link">
 Mac
</div>
<div id="linux" class="download-link">
 Linux
</div>
<button id="hint">Hint</button>

Lastly, change the final <script> element so that ends up like this:

<script type="text/javascript">
 $(function() {
 $("#hint").click(function() {

 $("#win").effect("highlight");
 });
 });
</script>

Save this page as effectHighlight.html. The code that invokes the highlight effect
takes the same familiar form as other library components. The effect method is
called and the actual effect is specified as a string argument to the method. We also
need to create the new stylesheet, in a new page in your text editor add the following
selectors and rules:

.download-link {
 float:left; border:1px solid #000; width:120px;
 height:120px; position:relative; margin:0 10px 10px 0;
}
.download-link a {
 display:block; width:100%; height:100%; position:aboslute;
 left:0; top:0;
}
.download-link a span {

UI Effects

[330]

 display:block; width:100%; position:absolute; bottom:0;
 text-align:center;
}
#win {
 background:url(../img/effects/windows.jpg) no-repeat 50% 0;
}
#mac {
 background:url(../img/effects/osx.jpg) no-repeat 50% 0;
}
#linux {
 background:url(../img/effects/linux.jpg) no-repeat 50% 0;
}
button { display:block; clear:both; }

Save this file as effectHighlight.css in the css folder.

View the example and click the Hint button. The first <div> should be highlighted:

The library files we needed for this example are listed below:

jquery-1.3.2.js

effects.core.js

effects.highlight.js

While our example may seem a little contrived, it is easy to see the potential for this
effect as an assistance tool on the frontend. Whenever there is a sequence of actions
that needs to be completed in a specific order, the highlight effect can instantly give
the visitor a visual cue as to the step that needs to be completed next.

•

•

•

Chapter 13

[331]

Additional effect arguments
Each of the effect methods, as well as the argument that dictates which effect is
actually applied, can take up three additional arguments, which control how the
effect functions. All are optional, and consist of the following (in the listed order):

An object containing additional configuration options
An integer representing in milliseconds, the duration of the effect, or a string
specifying one of slow, normal, or fast
A callback function that is executed when the effect ends

The highlight effect has only one configurable option that can be used in the object
passed as the second argument and that is the highlight color.

Let's add these additional arguments into our highlight example to clarify their
usage. Change the final <script> element in effectHighlight.html so that it
appears as follows:

<script type="text/javascript">
 $(function() {

 $("#hint").click(function() {

 $("#win").effect("highlight", {}, 2000, function() {
 $("<p>").text("That was the
 highlight").appendTo("body");
 });
 });
 });
</script>

Save this as effectHighlightParameter.html. Perhaps the most striking feature of
our new code is the empty object passed as the second argument. In this example, we
don't use any additional configurable options, but we still need to pass in the empty
object in order to access the third and fourth arguments.

The animation should now proceed much slower as we have set the duration to
2000 milliseconds (2 seconds). Note that this third argument may also take a string
representing the speed of the animation.

Our callback function, passed as the fourth and final argument, is perhaps the least
useful callback in the history of JavaScript, but it does serve to illustrate how easy it
is to arrange additional post-animation code execution.

•

•

•

UI Effects

[332]

Bouncing
Another simple effect we can use with little configuration is the bounce effect. To see
this effect in action create the following page:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
 "http://www.w3.org/TR/html4/strict.dtd">
<html lang="en">
 <head>
 <link rel="stylesheet" type="text/css"
 href="css/effectBounce.css">
 <meta http-equiv="Content-Type" content="text/html;
 charset=utf-8">
 <title>jQuery UI Bounce Effect</title>
 </head>
 <body>
 <div id="ball"></div>
 <script type="text/javascript"
 src="development-bundle/jquery-1.3.2.js"></script>
 <script type="text/javascript"
 src="development-bundle/ui/effects.core.js"></script>
 <script type="text/javascript"
 src="development-bundle/ui/effects.bounce.js"></script>
 <script type="text/javascript">
 $(function() {

 $("#ball").click(function() {
 $(this).effect("bounce", { distance: 140 });
 });
 });
 </script>
 </body>
</html>

Save this as effectBounce.html. Using the bounce effect in this example shows
how easy it is to add this simple but attractive effect. We configure the distance
option to set how far the element travels. Other options that can be configured are
listed below:

Option Default Usage
direction up Sets the direction of the bounce.
distance 20 Sets the distance in pixels of the first bounce.
times 5 Sets the number of times the element

should bounce.

Chapter 13

[333]

You'll notice when you run the example that the bounce effect has an ease-out easing
feature built into it, so the distance of the bounce will automatically decrease as the
animation transpires. We also need a little CSS for this example. Add the following
styles in a new page:

#ball {
 width:48px; height:48px;
 background:url(../img/effects/ball.png) no-repeat;
 position:relative; top:200px;
}

Save this as effectBounce.css in the css folder. Here's how the page should look:

One thing to note is that with most of the different effects, including the bounce
effect (but not the highlight effect we just looked at), the effect is not actually applied
to the specified element. Instead a wrapper element is created and the element
targeted by the effect is appended to the inside of the wrapper. The actual effect is
then applied to the wrapper.

This is an important detail to be aware of because if you need to manipulate the
element that has the effect applied to it in mid-animation, the wrapper will need
to be targeted instead of the original element. Once the effect's animation has
completed, the wrapper is removed.

UI Effects

[334]

Shaking an element
The shake effect is very similar to the bounce effect but with the crucial difference of
not having any built-in easing. So, the targeted element will shake the same distance
for the specified number of times instead of lessening each time (although it will
come to a smooth stop at the end of the animation).

Let's change the previous example so that it uses the shake effect instead of the
bounce effect. Change effectBounce.html so that it uses the shake source file
instead of the bounce source file:

<script type="text/javascript"
 src="development-bundle/ui/effects.shake.js"></script>

Then change the final <script> appears like this:

<script type="text/javascript">
 $(function() {

 $("#ball").click(function() {
 $(this).effect("shake", {direction:"up"}, 100);

 });
 });
</script>

Save this as effectShake.html. This time, as well as changing the effect, we've also
made use of one of the configuration options, direction. This option controls the
direction of the shake. This is to override the default setting for this option which
is left.

This effect shares the same options as the bounce effect, although the defaults are set
slightly differently. The options are listed in the following table:

Option Default Usage
direction left Sets the direction of the shake.
distance 20 Sets the distance of the shake in pixels.
times 3 Sets the number of times the element should shake.

Chapter 13

[335]

Transferring an element's outline
The transfer effect is different from others in that it doesn't directly affect the targeted
element. Instead, it transfers the outline of a specified element to another specified
element. To see this effect in action, create the following page:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
 "http://www.w3.org/TR/html4/strict.dtd">
<html lang="en">
 <head>
 <link rel="stylesheet" type="text/css"
 href="css/effectTransfer.css">
 <meta http-equiv="Content-Type" content="text/html;
 charset=utf-8">
 <title>jQuery UI Transfer Effect</title>
 </head>
 <body>
 <div id="container">
 <div id="productContainer">

 <p>BFG GTX 280 OC 1GB GDDR3 Dual DVI HDTV Out PCI-E
 Graphics Card</p><p id="price">Cost: $350</p>
 <div id="purchase"><button id="buy">Buy</button></div>
 </div>
 <div id="basketContainer">
 <div id="basket"></div>
 <p>Basket total: 0</p>
 </div>
 </div>
 <script type="text/javascript"
 src="development-bundle/jquery-1.3.2.js"></script>
 <script type="text/javascript"
 src="development-bundle/ui/effects.core.js"></script>
 <script type="text/javascript"
 src="development-bundle/ui/effects.transfer.js"></script>
 <script type="text/javascript">
 $(function() {

 $("#buy").click(function() {
 $("#productContainer img").effect("transfer",
 { to:"#basket" }, 750, function() {
 var currentTotal = $("#total").text();
 numeric = parseInt(currentTotal);
 $("#total").text(numeric + 1);
 });
 });
 });
 </script>
 </body>
</html>

UI Effects

[336]

Save this as effectTransfer.html. We've created a basic product listing for an
imaginary hardware retailer. When the Buy button is clicked, the transfer effect
will give the impression of the product being moved into the basket.

Of course, a proper shopping cart application would be exponentially more complex
than this, but we do get to see the transfer effect in all its glory. We also get to use
the built-in callback function to do a little post-animation processing, so the exercise
should still be beneficial.

We also need some CSS for this example, so create the following new stylesheet:

#container { width:607px; margin:0 auto; }
#productContainer img {
 width:92px; height:60px;
 border:2px solid #000000;
 float:left; position:relative;
}
#productContainer p {
 width:340px; height:50px;
 font-family:Verdana; font-size:11px; font-weight:bold;
 float:left;
 margin:0; padding:5px;
 border-top:2px solid #000000;
 border-right:2px solid #000000;
 border-bottom:2px solid #000000;
}
p#price {
 height:35px; width:70px;
 padding-top:20px; float:left;
}
#purchase {
 height:44px; width:75px;
 border-top:2px solid #000000;
 border-right:2px solid #000000;
 border-bottom:2px solid #000000;
 padding-top:16px; float:left;
 text-align:center;
}
#basketContainer {
 float:right; width:90px; margin-top:100px;
}
#basket {
 width:65px; height:31px;
 position:relative; left:13px;
 background:url(../img/effects/basket.gif) no-repeat;
}
.ui-effects-transfer { border:2px solid #66ff66; }

Chapter 13

[337]

Save this as effectTransfer.css in the css folder. The key rule in our stylesheet is
the one that targets the element which has a class of ui-effects-transfer. This
element is created by the effect and together with our styling produces the green
outline that is transferred from the product to the basket.

Run the file in your browser. I think you'll agree that it's a nice effect which would
add value to any page that it was used on. Here's how it should look while the
transfer is occurring.

The transfer effect has just two configurable options, one of which is required and
that we have already seen. For reference, both are listed in the following table:

Option Default Usage
className ui-effects-transfer A new class to apply to effect helper element.
to none Sets the element the effect will be transferred

to. This property is mandatory.

The four effects that we've looked at so far all have one thing in common—they can
only be used with the effect method. The remaining effects can be used not only
with the effect method, but also with the toggle and the show/hide methods. Let's
take a look.

UI Effects

[338]

Element scaling
The next effect that we'll look at is scaling, which allows us to shrink or grow any
specified element. At the end of the last chapter, we created a page that had a series
of boxes on it that could be reordered or closed. When they were closed, they simply
vanished instantly from the page.

Let's use the scale effect to make them gracefully shrink to nothing instead. First
add the required <script> elements for the effect directly after the <script>
element for the cookie plugin:

<script type="text/javascript"
 src="development-bundle/ui/effects.core.js"></script>
<script type="text/javascript"
 src="development-bundle/ui/effects.scale.js"></script>

Next change the click handler for the close buttons so that it appears as follows:

$(".close", "#sortGrid").click(function() {
 $(this).parent().parent().effect("scale", { percent:0 }, "slow",
 function() {
 $(this).appendTo("#hidden").height("").width("").css({
 fontSize:"", borderWidth: "", padding: "" }).find("img").
 height("").width("");
 cookieWriter();
 });
});

Save this file as effectScaling.html. The percent option indicates the ending
size of the element the effect is applied to. We need to tidy up the element after the
effect has been applied to it as the style attributes that are manipulated to produce
the effect (a wrapper is not used with this effect) remain on the element. Our content
boxes should smoothly disappear when the close button is clicked as shown in the
following screenshot (part way through the closing animation):

Chapter 13

[339]

There are several more options that can be used with scale, which are as follows:

Option Default Usage
direction both Sets the direction to scale the element in. May

be a string specifying either both, vertical,
or horizontal.

from {} Sets the starting height and width of the
element to be scaled.

origin ["middle","center"] Sets the vanishing point, used with
show/hide animations.

percent 0 Sets the end size of the scaled element.

UI Effects

[340]

I mentioned a little while ago that the effects that we're looking at now can be used
with other methods. The file in our previous example could be reconstructed to use
the hide method instead of the effect method:

$(".close").click(function() {
 $(this).parent().parent().hide("scale", { }, "slow",
 function() {

 $(this).appendTo("#hidden").height("").width("").css({
 fontSize:"", borderWidth: "", padding: "" }).find("img").
 height("").width("");
 cookieWriter();
 });
});

Save this variation as effectScalingHide.html. We've gotten away with a
slightly lighter method as we don't have to configure the percent option in our
configuration object, but other than this, the effects are very similar code-wise.
Visually, the only difference in the execution of this version of the file is that the
boxes now vanish to the center instead of the top-left:

Chapter 13

[341]

One thing to note with this example is that the elements within whichever box we
apply the effect to (by closing it) will have various properties (such as their widths,
heights, and their borders) set to 0. Therefore, when we add the box we closed back
again by clicking the restore link, the contents of the box is not visible. We would
need to cycle through each child element and reset the style properties.

Element explosion
The explosion effect is truly awesome. The targeted element is literally exploded
into a specified number of pieces before disappearing completely. It's an easy effect
to use and has few configuration properties, but the visual impact of this effect is
huge, giving you a lot of effect in return for very little code. Let's see a basic example.
Create the following new page:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
 "http://www.w3.org/TR/html4/strict.dtd">
<html lang="en">
 <head>
 <link rel="stylesheet" type="text/css"
 href="css/effectExplode.css">
 <meta http-equiv="Content-Type" content="text/html;
 charset=utf-8">
 <title>jQuery UI Explode Effect</title>
 </head>
 <body>
 <p>Click the grenade to pull the pin!</p>
 <div id="theBomb"></div>
 <script type="text/javascript"
 src="development-bundle/jquery-1.3.2.js"></script>
 <script type="text/javascript"
 src="development-bundle/ui/effects.core.js"></script>
 <script type="text/javascript"
 src="development-bundle/ui/effects.explode.js"></script>
 <script type="text/javascript">
 $(function() {

 $("#theBomb").click(function() {
 $(this).effect("explode");
 });
 });
 </script>
 </body>
</html>

UI Effects

[342]

Save this as effectExplode.html. We also need a little CSS, so create the
following stylesheet:

#theBomb {
 width:69px; height:100px;
 background:url(../img/effects/nade.jpg) no-repeat;
 position:absolute;
 top:50px; left:50px;
}

Save this as effectExplode.css in the css folder. As you can see, the code is
extremely simple and can be used completely out of the box with no additional
configuration. This effect has only one configurable property, which is the pieces
property and determines how many pieces the element is exploded into. The
default is 9.

Once the specified element has been exploded it will be hidden from view by having
its style attribute set to display:none. This is the default behavior. However, it will
still remain in the DOM of the page.

As our example shows, the effect can be used with either simple CSS properties like
colored backgrounds and borders, or more complex implementations involving
proper images.

Physicists sometimes speculate as to why the arrow of time seems to only point
forwards. They invariably ask themselves philosophical questions like ‘why do we
not see grenades spontaneously forming from a large cloud of debris?' (actually the
object is usually an egg but I don't think an egg-based example would have had quite
the same impact!)

Chapter 13

[343]

jQuery UI cannot help our understanding of entropy, but it can show us what a
grenade spontaneously reassembling might look like. Change the click-handler in
the previous function so that it appears as follows:

$("#detonate").click(function() {
 $("#theBomb").show("explode");

});

Save this variant as effectExplodeShow.html. This time we use the show method
instead of the effect method to trigger the animation. The animation is the same
except that it is shown in reverse and this time, the grenade is not hidden from view
once the animation ends. Like the other effects, explode can also make use of specific
timings and callback functions.

The puff effect
Similar to the explode effect but slightly more subtle is the puff effect, which
causes an element to grow slightly before fading away. Like explode, there are
few configuration options to concern ourselves with.

Consider a page that has AJAX operations occurring on it. It's useful to provide a
loading image that shows the visitor that something is happening. Instead of just
hiding an image like this when the operation has completed, we can puff it out of
existence instead. Create the following page:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
 "http://www.w3.org/TR/html4/strict.dtd">
<html lang="en">
 <head>
 <link rel="stylesheet" type="text/css"
 href="css/effectPuff.css">
 <meta http-equiv="Content-Type" content="text/html;
 charset=utf-8">
 <title>jQuery UI Puff Effect</title>
 </head>
 <body>

 <script type="text/javascript"
 src="development-bundle/jquery-1.3.2.js"></script>
 <script type="text/javascript"
 src="development-bundle/ui/effects.core.js"></script>
 <script type="text/javascript"
 src="development-bundle/ui/effects.scale.js"></script>
 <script type="text/javascript">
 $(function() {

UI Effects

[344]

 $("#loading").click(function() {
 $(this).hide("puff");
 });
 });
 </script>
 </body>
</html>

Save this as effectPuff.html. The stylesheet used in this example is purely to
position the image slightly so that we can see the full effect of the, well, the effect.
For reference, it is comprised of the following styles:

#loading { position:relative; top:100px; left:100px; }

Save this as effectPuff.css in the css folder. We're actually not detecting whether
a given process has finished loading in this example. It would require much too
much work just to see the effect we're looking at. Instead we tie the execution of the
effect into a simple click-handler as we did with several examples earlier on.

You'll notice that we used the effect.scale.js source file for this effect. The puff
effect is the only effect that does not have its own source file and is instead part of the
very closely related scaling effect's source file.

Like the explode effect that we looked at in the last section, this effect has just one
configuration option that can be passed in an object as the second argument of the
effect constructor. This is the percent option and controls how big the image is
scaled up to. The default value is 150%. Like the explode effect, the target element is
hidden from view once the animation ends.

The effect stretches the targeted element (and its children), while at the same time
reducing its opacity. It works well on proper images, background colors, and borders,
but you should note that it does not work so well with background images specified
by CSS. Nevertheless, it's a great effect. The following screenshot shows it in action:

Chapter 13

[345]

The pulsate effect
The pulsate effect is another effect that works with the opacity of a specified element.
This effect reduces the opacity temporarily a specified number of times, making the
element appear to pulsate.

In the following basic example, we'll create a simple countdown time that
counts down from 15. When the display reaches 10 seconds, it will begin to
flash red. In effectPuff.html change the link in the <head> of the page to
point to a new stylesheet:

<link rel="stylesheet" type="text/css"
 href="css/effectPulsate.css">

Then remove the loading from the page and add the following element in
its place:

<div id="countdown">15</div>

Next change the source file of the effect so that the effects.pulsate.js file is used:

<script type="text/javascript"
 src="development-bundle/ui/effects.pulsate.js"></script>

Finally, change the final <script> element so that it appears as follows:

<script type="text/javascript">
 $(function() {

 var age = 15;

 adjustAge = function() {

 $("#countdown").text(age - 1);

 (age < 11) ? $(
 "#countdown").css({backgroundColor:"#ff0000"}).effect("
 pulsate", { times:1 }) : null ;

 (age == 1) ? clearInterval(timer) : age -= 1;
 }

 timer = setInterval("adjustAge()", 1000);
 });
</script>

Save this as effectPulsate.html. Both the page and the script for this example are
simple, but the goal is to show off the effect after all. The page itself contains just a
simple <div> element with the number (as a text string) 15 inside it.

UI Effects

[346]

The code first sets a variable equal to the text within the <div>. It then defines the
global adjustAge() function. Unfortunately, this function must be global so that it is
visible to the setInterval method, which is automatically executed in the context of
the browser window.

This function first changes the text content of the specified element to one less than
the current age variable. It then checks whether age has reached 10 yet and if so,
applies a background color of red to the element and starts the pulsate effect. It then
checks whether the age variable has reached 1 yet. If it has, it clears the interval so
that it doesn't keep counting down past 0.

We use the times property to specify how many times the element should pulsate.
As we'll be executing the method once every second, we can set this to just pulsate
once on each call.

After our adjustAge function, we start the interval using JavaScript's setInterval
function. This function will repetitively execute the specified function after the
specified interval, which in this example is 1000 milliseconds, or 1 second.

So every second the number in the countdown <div> will decrement by 1 until it
gets to 10 when the pulsate effect kicks in. Once the timer reaches 0, the pulsating
stops. The new stylesheet is very simple and consists of the following code:

#countdown {
 width:100px; font-size:60px; margin:10px auto 0;
 border:1px solid #000000; text-align:center;
}

Save this in the css folder as effectPulsate.css. The following screenshot shows
how the page should appear once the countdown has crossed the 10 second barrier:

Chapter 13

[347]

Dropping elements onto the page
The drop effect is simple. Elements appear to drop off of (or onto) the page, which is
simulated by adjusting the element's height and opacity. There are many situations
in which this would be useful but one that instantly springs to mind is when creating
custom tooltips.

We can easily create a tooltip that appears when an element is hovered over, but
instead of just showing the tooltip after a specified period of time has elapsed, we
can drop it on to the page instead. Add a link to the CSS framework file and change
the stylesheet link in the <head> of effectPulsate.html:

<link rel="stylesheet" type="text/css"
 href="development-bundle/themes/smoothness/ui.all.css">
<link rel="stylesheet" type="text/css" href="css/effectDrop.css">

Remove the countdown <div> from the page and add the following markup instead:

<div id="container" class="ui-widget-content" >
 <p>Lorem ipsum
 dolor sit amet, consectetuer adipiscing elit. Sed dapibus libero
 non lacus. Morbi <a id="link2" href="#" title="This is another
 link">sagittis ante vitae tortor. Quisque quis neque vel
 augue laoreet consectetuer. Vestibulum tempor. Morbi non
 justo.
 Aliquam ullamcorper, enim sed ultricies accumsan, ipsum mauris
 eleifend urna, in ullamcorper nisl urna at erat.</p>
</div>

Now we need to change the effect's source file.

<script type="text/javascript"
 src=" development-bundle/ui/effects.drop.js"></script>

Lastly change the final <script> element so that it appears as follows:

<script type="text/javascript">
 $(function() {

 $("#container a").mouseover(function(e) {

 $("<div>").text($(this).attr("title")).addClass("tooltip
 ui-widget-header ui-corner-all").css({left:e.pageX,
 top:(e.pageY - 40)}).appendTo($("body"));

 tip = setTimeout("$(‘.tooltip').show(‘drop', { direction:'up'
 }); ", 750);

 $(this).attr("title", "");

 });

UI Effects

[348]

 $("#container a").mousemove(function(e) {
 $(".tooltip").css({‘left':e.pageX, ‘top':e.pageY - 35});
 });

 $("#container a").mouseout(function(e) {

 clearTimeout(tip);

 $("#" + e.target.id).attr("title", $(".tooltip").text());

 $(".tooltip").remove();
 });
 });
</script>

Save this as effectDrop.html. The page itself is simple. We've got a container <div>
and a paragraph with three links inside it. The links are the elements that will trigger
our tooltips.

Within our outer document.ready function, we have three distinct anonymous
functions. The first is executed when one of the trigger elements fires the
mouseover event, another is executed on mousemove, and the last works with
the mouseout event.

In the first function, a new <div> element is created and its contents are set to the
contents of the title attribute of the element that fired the mouseover event. The
new element is given a class of tooltip and has its left and top style properties set
to 35 pixels above the mouse pointer at the time of the event.

Next, a timer is started using JavaScript's setTimeout method, which will show
the new tooltip using the drop effect after 750 milliseconds have passed. The title
attribute of the element that was hovered over is then set to an empty string to
prevent the OS default tooltip from appearing.

Our next anonymous function is attached to the mousemove event of whichever
element fired the initial mouseover. Every time the mouse pointer moves our tooltip,
<div> will be repositioned. This means that if the pointer is moved before the tooltip
is shown, the tooltip will still appear in the correct location, and while the tooltip is
open, it will follow the mouse pointer.

The final function basically tidies up after the tooltip. It clears the timeout (if it is
still present) and retrieves the text content of the tooltip to put back as the element's
title attribute. Finally, it removes the tooltip and the effect wrapper from the DOM,
putting everything back as it was.

Chapter 13

[349]

There is also some minimal CSS required for this example in addition to the
styles provided by the CSS framework, mostly to style the new tooltip. Create the
following stylesheet:

#container {
 width:500px; margin:20px auto; padding:0 20px;
 font-family:Verdana; font-size:14px;
}
.tooltip {
 font-family:Georgia; font-weight:bold; font-size:16px;
 position:absolute; padding:2px 5px 3px; display:none;
 z-index:1000;
}

Save this in the css folder as effectDrop.css. When you run the file in your browser,
you should see how the drop effect shows our tooltip, as in the following screenshot:

Sliding elements open or closed
The remaining effects of the jQuery UI library all work by showing and hiding
elements in different ways rather than using opacity like most of the effects we
have already looked at.

The slide effect is no exception and shows (or hides) an element by sliding it into
(or out of) view. It is similar to the drop effect that we just looked. Its main difference
is that it does not use opacity. This is a very common effect on things like login forms
that slide out from the headers of websites.

UI Effects

[350]

For our next example, we can create exactly this kind of functionality. In
effectDrop.html add a link to the CSS framework file and change the link
to effectDrop.css to effectSlide.css:

<link rel="stylesheet" type="text/css"
 href="development-bundle/themes/smoothness/ui.all.css">
<link rel="stylesheet" type="text/css" href="css/effectSlide.css">

Then remove the container <div> from the <body> of the page and add the following
HTML in its place:

<div id="loginBar" class="ui-corner-bottom">
 <form id="login" action="#"
 class="ui-corner-bottom ui-helper-clearfix">
 <label for="user">Username:</label><input type="text" id="user">
 <label for="pass">Password:</label><input type="text" id="pass">
 <button type="submit">Submit</button>
 <button id="cancel">Cancel</button>
 </form>
 <a href="#" id="showForm" title="Show login form"
 class="ui-corner-bottom">Login
</div>

Don't forget to change the <script> element for the effect's source file to use
effects.slide.js:

<script type="text/javascript"
 src="development-bundle/ui/effects.slide.js"></script>

The f﻿﻿inal <script> element will need to be changed to the following code:

<script type="text/javascript">
 $(function() {

 $("#showForm").click(function() {
 $(this).hide();
 $("#login").toggle("slide", { direction:"up" }, 1000,
 function() {
 $("#loginBar").removeClass("ui-corner-bottom").addClass(
 "ui-corner-bl");
 });
 });

 $("#cancel").click(function(e) {
 e.preventDefault();
 $("#login").toggle("slide", { direction:"up" }, 1000,
 function() {

Chapter 13

[351]

 $("#loginBar").removeClass("ui-corner-bl").addClass(
 "ui-corner-bottom").find("a").show();
 });
 });
 });
</script>

Save this as slide.html. The page contains an outer container <div> element with
a <form> element and a hyperlink inside it. The form contains a couple of labels, a
couple of text inputs and a couple of buttons. The Cancel button will be used to close
the login form, while the link in the container will be used to open it.

In the JavaScript, we have two event handling functions—the first catches the click
event of the link and second hides the link along with executing the slide effect on
the form using the toggle method. The default value for the direction option is
left, so we override this and specify up as the value instead. Unintuitively, this will
cause the form to slide down.

We use a callback function as the third argument to the slide method. Within this
function we remove the class name that gives rounded edges to the bottom of the
container element, and add the class name to give just the bottom-left corner a
radius. This is to tidy up the appearance of the container with the form open.

The next function catches the click event of the Cancel button. Some browsers (IE)
treat any button inside a form as a Submit button. So, to smooth out the closing
animation in a cross-browser way we can use the preventDefault() method on
the event object that is passed to our callback automatically.

We call the toggle method once again to slide the form back up and use the
same arguments that we did in the first function. In the callback function for the
effect we swap the class names back again so that both bottom corners of the
container element are rounded. We also show the hyperlink again so that the
form can be reopened.

We also use a little CSS in this example. Create the following stylesheet:

#loginBar {
 width:600px; height:20px; margin:auto;
 border:2px solid #aaa; background-color:#eee;
 position:relative;
}
#loginBar form {
 display:none; width:300px; background-color:#eee;
 border:2px solid #aaa; border-top:none; position:relative;
 left:298px; top:20px;
}

UI Effects

[352]

#loginBar form label {
 float:left; width:70px; margin:0 12px; padding-top:3px;
 color:#000; font-family:Verdana; font-size:12px;
 font-weight:bold;
}
#loginBar form input {
 float:left; width:190px; color:#000; margin-bottom:12px;
}
#loginBar form button { float:right; margin:0 12px 12px 0; }
#loginBar a {
 position:relative; left:520px; top:20px;
 padding:2px 10px 6px; color:#000; border:2px solid #aaa;
 border-top:none; background-color:#eee;
 text-decoration:none; text-align:center;
 font-family:Verdana; font-size:14px; font-weight:bold;
}

Save this as effectSlide.css in the css folder. The effect in progress should appear
as in the following screenshot:

I said earlier that the effects.core.js file had the built-in ability to seamlessly
use easing with the effects. Let's see how easy this is to achieve. Change the last
<script> element in slide.html so that it appears as follows (new code shown
in bold):

$(function() {

 $("#showForm").click(function() {
 $(this).hide();
 $("#login").toggle("slide", { direction:"up",
 easing: "easeOutBounce" }, 1000, function() {
 $("#loginBar").removeClass("ui-corner-bottom").addClass(
 "ui-corner-bl");
 });
 });

Chapter 13

[353]

 $("#cancel").click(function(e) {
 e.preventDefault();
 $("#login").toggle("slide", { direction:"up",
 easing: "easeOutQuad" }, 1000, function() {
 $("#loginBar").removeClass("ui-corner-bl").addClass(
 "ui-corner-bottom").find("a").show();
 });
 });
});

Save this as slideEasing.html. See how easy that was. All we need to do is add the
easing option within the effect's configuration object and define one, or more, of the
easing methods as the option value. In this example, we specify a different easing
method for each toggle state. When the form slides down, it bounces slightly at the
end of the animation. When it slides back up, it will gradually slow down over the
course of the animation.

The full range of easing methods we can make use of with the effects are as follows:

swing

linear

easeInQuad

easeOutQuad

easeInOutQuad

easeInCubic

easeOutCubic

easeInOutCubic

easeInQuart

easeOutQuart

easeInOutQuart

easeInQuint

easeOutQuint

easeInOutQuint

easeInSine

easeOutSine

easeInOutSine

easeInExpo

easeOutExpo

easeInOutExpo

easeInCirc

easeOutCirc

easeInOutCirc

easeInElastic

easeOutElastic

easeInOutElastic

easeInBack

easeOutBack

easeInOutBack

easeInBounce

easeOutBounce

easeInOutBounce

The window-blind effect
The blind effect is practically the same as the slide effect. Visually the element
appears to do the same thing, and the two effects' code files are also extremely
similar. The main difference between the two effects that we need worry about is
that with this effect we can only specify the axis of the effect, not the actual direction.

UI Effects

[354]

The direction option that this effect uses for configuration only accepts the values
horizontal or vertical. We'll build on the last example to see the blind effect in
action. Add the <script> resource for the blind effect directly after the <script>
that refers to the effects.slide.js file:

<script type="text/javascript"
 src="development-bundle/ui/effects.blind.js"></script>

Now change the handler function attached to the Cancel button, so that it appears
as follows:

$("#cancel").click(function(e) {
 e.preventDefault();
 $("#login").effect("blind", { direction:"vertical" }, 1000,
 function() {

 $("#loginBar").removeClass("ui-corner-bl").addClass(
 "ui-corner-bottom").find("a").show();
 });
});

Save this as effectBlind.html. Literally, all we've changed is the string specifying
the effect, in this case to blind, and the value of the direction property from up to
vertical. Notice the subtle difference when we view the file between sliding the
element and blinding it up?

When the login form slides up, the bottom of the element remains visible at all times,
as if the whole form is moving up into the login bar. With blinding however, the
element is hidden from view starting with the bottom first.

Clipping elements
The clip effect is very similar to the slide effect. The main difference is that instead of
moving one edge of the targeted element towards the other, to give the effect of the
element sliding out of view, the clip effect moves both edges of the targeted element
in towards the center.

At the end of Chapter 5, we created an AJAX dialog example that showed a full-size
image in a dialog when a thumbnail image was clicked. When the close button on
the dialog was pressed, the dialog was simply removed from the page instantly. We
could easily use the clip effect to close our dialog instead. In ajaxDialog.html, add
the source files for the clip effect:

<script type="text/javascript"
 src="development-bundle/ui/effects.core.js"></script>
<script type="text/javascript"
 src="development-bundle/ui/effects.clip.js"></script>

Chapter 13

[355]

Then change the dialog configuration object so that it appears as follows:

var dialogOpts = {
 modal: true,
 width: 388,
 height: 470,
 autoOpen: false,
 open: function() {

 $("#ajaxDialog").empty();
 $("").attr("src", filename).appendTo("#ajaxDialog");

 $("#ajaxDialog").dialog("option", "title", titleText);
 },
 close: function() {
 $(this).parent().hide("clip");
 }
};

Save this as effectClip.html. In this simple addition to the existing file, we use
the clip effect in conjunction with the close event callback to hide the dialog from
view. The default configuration value of vertical for the direction option and the
default speed of normal are both fine, so we just call the hide method specifying
clip with no additional arguments.

The next screenshot shows the dialog being clipped:

UI Effects

[356]

The clip effect also has just a single native configuration property. This is the
direction property that we already saw in the drop and slide effects, but this time
the property may take just one of two values, instead of four. The values that the clip
effect's direction property accepts are horizontal or vertical, with vertical
being the default.

Folding elements
Folding is a neat effect that gives the appearance that the element it's applied to is
being folded up like a piece of paper. It achieves this by moving the bottom edge
of the specified element up to 15 pixels from the top, then moving the right edge
completely over towards the left edge.

The distance from the top that the element is shrunk to in the first part of this effect
is exposed as a configurable property by the effect's API. So, this is something that
we can adjust to suit the needs of our implementation. This property is an integer.
We can see this in action by modifying our last example. In ajaxDialog.html once
again, link to the fold source file:

<script type="text/javascript"
 src="development-bundle/ui/effects.fold.js"></script>

Then change the close event callback to this:

close: function() {
 $(this).parent().hide("fold", { size:200 }, 1000);
}

Save this as effectFold.html. This time we make use of the size configuration
option to make the effect stop the first fold 200 pixels before the top of the dialog. We
also slow the animation down a little by setting the duration to 1000 milliseconds. It's
a really nice effect, the following screenshot shows the second part of the animation:

Chapter 13

[357]

Summary
In this chapter, we've covered the complete range of UI effects available in the jQuery
UI library. We've seen how easy it is to use the effects.core.js base component to
construct attractive color animations and smooth class transitions.

We also saw that the following effects can be used in conjunction with the simple
effect API:

bounce
highlight
shake
transfer

An important point is that most of the individual effects can be used not only
with the effect API but can also make use of show/hide and toggle logic, making
them incredibly flexible and robust. The following effects can be used with this
advanced API:

blind
clip
drop
explode
fold
puff
pulsate
scale
slide

This now brings us to not only the end of this chapter, but also the end of the book.
There is a saying, I'm sure that almost all of you will have heard it before. It's the
"give a man a fish..." saying. I hope that during the course of this book, I've taught
you how to fish instead of just giving you a fish.

The aim of the examples that we've worked through over the chapters has not been
just to show you how to use the library, but also to show you that it is powerful
enough and flexible enough to be limited only by your imagination. The world
class interfaces of tomorrow are made possible today with jQuery UI.

•

•

•

•

•

•

•

•

•

•

•

•

•

Index
Symbols
$(function(){})\; 44
<a> element, tab CSS framework

ui-corner-bottom 46
ui-tabs-panel 46
ui-widget-content 46

<div> element, tab CSS framework
ui-corner-all 45
ui-tabs 45
ui-widget 45
ui-widget-content 45

 element, tab CSS framework
ui-corner-all 45
ui-corner-top 45
ui-helper-clearfix 45
ui-helper-reset 45
ui-state-active 45
ui-state-default 45
ui-tabs-nav 45
ui-tabs-selected 45
ui-widget-header 45

A
Accessible Rich Internet Applications. See

ARIA
accordion interoperability 90-92
accordion methodology

accordion widget, removing 88
activate method, testing 89
destroy method 88

accordion methods
about 87
activate method 89, 90
active method 87

destroy method 87-89
disable method 87
enable method 87
option method 87
widget, removing 88

accordion navigation 85-87
accordion widget

about 71
accordion methods 87
active property 77
animated property 77
animation 81-83
autoHeight property 77
clearStyle property 77
collapsible property 77
configuring 77
configuring, properties 77
default header, changing 78, 79
dependencies 73
event property 77
events 83, 84
example 71
fillSpace property 77, 80
header property 77
icons property 77
implementing 72-74
interoperability 90-92
navigation 85
navigationFilter property 77
navigation property 77
structure 72, 75
styling, ThemeRoller used 75, 76
trigger event, changing 78

activate method 98, 90
addClasses property 197

[360]

AJAX magic
creating 172-175

AJAX tabs, UI tabs widgets
about 62, 63
creating 64

alsoResize property 238
animateDuration property 238
animateEasing property 238
animate method 325, 328
animate option 138, 238
animation property, resizable

animateDuration property 247
animateEasing property 247
animate property 247

API
beforeclose event 22
callback functions 22
common methods 19
destroy method 20
disable method 20
events 21
option method 20
plugin method 19
select event 21
specialized methods 19

API methods, data picker widget
date, selecting programmatically 170, 171
dialog 170
getDate 170
hide 170
isDisabled 170
setDate 170
show 170

API methods, draggables
destroy 211
disable 211
enable 211
option 211
using 211

appendText option 150
appendTo property 197, 281
ARIA 75
aspectRatio property 238
autoRefresh property 260
autoHide property 238

autoOpen property
showing 102

axis property 197, 200, 281

B
beforeclose option 113
beforeShow property 16
bind() method

using 136
bounce effect

about 332, 333
direction option 332
distance option 332
times option 332

buttonImage option 155, 156
button property 101, 106, 107

C
callback options

beforeclose 113
close 113
drag 113
dragStart 113
dragStop 113
focus 113
open 113
resize 113
resizeStart 113
resizeStop 113
uses 113-116

call back properties, data picker widget
about 167, 168
beforeShow option 166
beforeShowDay 166
OnChangeMonth Year 166
OnClose 166
OnSelect 166

callback properties, draggables
about 208
absolutePosition property 208
draggable functions 209, 210
drag property 208
functions 208-210
helper property 208

[361]

position property 208
start property 208
stop property 208

callback properties, droppables
about 218
activate property 218
deactivate property 218
drop property 218
event objects 221
functions 219-224
out property 218
over property 218
scope option 222

callback properties, resizable
about 251
resize 251
start 251
stop 251

callback properties, selectables
selected 263
selecting 263
start 263
stop 263
unselected 263
unselecting 263
vast amounts, working with 268
working 263-266

cancel method 301
cancel option 262
cancel property 197, 238, 281
CDN 9
change function 135
changeMonth option 152
changestart event 84
changeYear option 152
clearStyle property 83
clip effect 354, 355
close method 116
closeOnEscape property

about 101
showOtherMonths option 151

close option 113
configurable options, droppables

accept 214, 216
activeClass 214, 215
addClasses 214

greedy property 224
hoverClass 214, 215
scope 214
tolerance 214-217

configurable properties, data picker widget
about 148
appendText 150
basic options 149-151
buttonImage 155, 156
buttonText 155
call back properties 167, 168
changeMonth option 152
changeYear option 152
datapicker UI, changing 152-154
dateFormat 159-161
defaultDate 150
duration 157
maxDate 151
minDate 151
numberOfMonths 158
regionalization options 164, 165
showAnim option 157
showCurrentAtPos option 159
showOptions 157
showOtherMonths option 151
stepMonths option 159
yearRange option 153

configuration option, progressbar widget
using 179, 180

connected callbacks
about 299
in action 300, 301

connectTo-Sortable property 197
connectToSortable option 306
connectWith property 281
container property 205
containment property 197, 238, 282
content delivery network. See CDN
core effects file

about 324
advanced easing 328
class transitions 326-328
color animations 324
color animations, creating 324-326
color animations, implementing 324, 325
style attributes, color animations 326

[362]

CSS framework
css folder 25
individual component files 28
required files, linking 29, 30
themes folder 26
ui.accordion.css 26
ui.all.css 26
ui.base.css 26, 27
ui.core.css 26, 27
ui.datepicker.css 26
ui.dialog.css 26
ui.progressbar.css 26
ui.resizable.css 26
ui.slider.css 26
ui.tabs.css 26
ui.theme.css 26, 28

CSS framework, classes
containers 30, 31
icons 33
interaction cues 34, 36
interactions 32, 33

cursorAt property 197, 200, 282
cursor property 197, 199, 282

D
data picker widget

about 145, 166
AJAX magic 172-175
alternative animations, configuring 156
API methods 170
configurable properties 148
default data picker, creating 146, 147
elements 145, 166
localizing 164, 165
putting, in dialog 171
trigger button, adding 154-156
utility methods 169

dateFormat option 159-161
datepicker method 147
date picker widget

modifying 174
putting in a dialog 171

default data picker
creating 146, 147
source files 148

defaultDate option 150

default implementation, progressbar widget
about 178, 179
jquery-1.3.2.js 178
ui.all.css 178
ui.core.js 178
ui.progressbar.js 179

del.icio.us accordion 92-95
delay property 197, 200, 238, 282
destroy method 88, 116
development-bundle directory, jqueryui

folder,
demos folder 11
docs folder 12
external folder 12
external folder, bigframe plugin 12
external folder, cookie plugin 12
external folder, jsDiff 12
external folder, qunit 12
external folder, simulate plugin 12
themes folder 12
ui folder 12

dialogClass property 101
dialog method 170
dialog widget 120

AJAX dialog, creating 120-125
animation 108
autoOpen property 100
basic dialog, creating 98-100
bgiframe property 100
button property 101, 106, 107
callback options 113
closeOnEscape property 101
controlling programmatically 116
data, obtaining 117-119
dialogClass property 101
draggable property 101
elements 97
height property 101
hide property 101
IE6, fixing 109, 111
interoperability 119, 120
jQuery UI AJAX dialog example 120-125
maxHeight property 101
maxWidth property 101
methods 116
modality 105, 106

[363]

modal property 101
positioning 102-104
position property 101
properties 100, 101
resizable property 101
showing 102
show property 101
stacking 111, 112
stack property 101
title property 101
tittle 104, 105
toggling 116, 117
width property 101

disable method 116
distance property 197, 238, 282
drag and drop example 229-234
draggable property 101
draggables

about 193-195
addClasses property 197
API methods, using 211
appendTo property 197
axis property 197, 200
basic implementation 195
callback functions 208
cancel property 197
clone property 203
connectTo-Sortable property 197
containment property 197, 205
cursorAt property 197, 200
cursor property 197, 199
delay property 197, 200
distance property 197, 200
drag, constraining 205, 206
dragged elements, resetting 200, 201
grid property 197, 200
handle, dragging 201, 202
handle property 197, 201, 202
handles, dragging 201
helper elements 203
helper elements, dragging 202-204
helper property 197
iframeFix property 198
left property 200
library files 196
opacity property 198, 205
properties 197, 198

properties, configuring 197
properties, using 199, 200
refreshPosition property 198
revertDuration property 198
revert property 198, 203
scope property 198
scroll property 198, 206
scrollSensitivity property 198
scrollSpeed property 198
snapMode property 198
snapping 206, 207
snapping, configuring 206, 207
snapping, snapMode option 206
snapping, snap property 206
snapping, snapTolerance option 207
snap property 198
snapTolerance property 198
stack property 198
steps property 200
zIndex property 198

draggables API 193
drag option 113
dragStart option 113
dragStop option 113
drop effect 347-351
dropOnEmpty property 282
droppables

about 193, 194
callback properties 218
configuring 214
implementing 212, 213
methods 228
properties, configuring 214

droppables API 193

E
effect method 330
enable method 116
event API, progressbar widget 180, 181
event callbacks, sortables

about 295
activate 295
beforeStop 295, 297, 298
change 295
deactivate 295
firing order 295

[364]

functions 295-298
out 295
over 295
receive 295-298
remove 295
sort 295
start 295
stop 295
update 295

events
about 83
accordionchange 85
accordionchangestar 85
changestart 84
using, in implementations 83

explosion effect 341, 342

F
fillSpace property 80
focus option 113
fold effect 356
forceHelperSize property 282
forcePlaceholderSize property 282

G
getDate method 170
ghost property 238
greedy property, droppables

about 225
dropCallback function, using 226
example 225-228

grid property 197, 200, 239, 282

H
handle property 197, 282
handles property 239
height property 101
helper property 197, 239, 283
helpers, sortables 289
hide method 170
hide property 101

I
iframeFix property 198
iGoogle 310
image viewer

creating 270-274
styling 274-276

implementation, UI tabs widget
<href>element, HTML elements 43
HTML elements, used 42
list element, HTML elements 43

implementation, UI tabs widgets
<a> element, HTML element 43
 element, HTML element 43
HTML elements, using 42
list element, HTML element 43

isDisabled method 170
iso8601Week 169
isOpen method 116
items property 283

J
jQuery UI

about 7, 9
API 19
book examples 18
browsers 17
component categories 16, 17
draggables 193
droppables 193
hosted files 9
library, downloading 8, 9
simplified API 19
ThemeRoller 12-16
theme roller 12, 15
ui.core.js file 17
UI effects 323

jQuery UI 1.7
about 25
CSS framework 25
each() method 118

jQuery UI customisable home page example
boxes, closing 320, 321
boxes, making sortable 319, 320

[365]

boxes, restoring 320, 321
content boxes, building 317-319
cookie, writing 319
creating 312
main script 316, 317
styling 313, 314

jqueryui folder
CSS directory 11
development bundle directory 11
js directory 11
index file 11

jQuery UI library
accordion widget 71
data picker widget 145, 166
development environment, setting up 10
downloading 8, 9
higher-level widgets 16
license 18, 19
low-level interaction 16
selectables 255, 268
slider widget 127
sortables 277
structure 11
UI tabs widget , 41

jQuery UI library license
GPL license 19
MIT license 18

L
left property 200
library files, draggables

jquery-1.2.6.js 196
jquery-1.3.2.js 196
ui.core.js 196
ui.draggable.js 196

library files, droppables
jquery-1.2.6.js 213
jquery-1.3.2.js 213
ui.core.js 213
ui.draggable.js 213
ui.droppable.js 213

library files, resizable
jquery-1.3.2.js 237
ui.core.js 237

ui.resizable.css 237
ui.resizable.js 238

library files, selectables
jquery-1.3.2.js 257
ui.core.js 257
ui.selectable.js 257

library files, sortables
jquery-1.3.2.js 279
ui.core.js 279
ui.sortable.js 279

M
maxDate option 151
maxHeight property 101
max option 130
maxWidth property 101, 239
methods, dialog widget

dialog 171
close 116
destroy 116
disable 116
enable 116
isOpen 116
moveToTop 116
open 116
option 116

methods, droppables
destroy method 228
disable method 228
enable method 228
function 229
option method 229

methods, progressbar
option method 182
value method 182

methods, slider widget
about 137-139
moveTo 137
value 137
value method 137
values method 137

methods, UI tabs widget
add method 55
destroy method 55

[366]

disable method 55, 56
enable method 55, 56
length method 55
load method 55
remove method 55
rotate method 55
select method 55
url method 55

methods, UI tabs widgets
add method 55, 57
destroy method 55, 60
disable method 55, 56
enable method 55, 56
length method 55, 59
load method 55
option method 61
options, getting 61, 62
options, setting 61, 62
options method 55
remove method 55, 57
rotate method 55, 59
select method 55, 58
url method 55

minDate option 151
minHeight property 101, 239
min option 130
minWidth property 101, 239
modal property 101
moveToTop method 116
multiSelect() function

about 273
defining 274

N
numberOfMonths option 158

O
onprogress property 190
opacity option 283
opacity property 198, 205
open method 116
open option 113
option method 116
orientation option 130

P
parseDate method 169
placeholder property 283
placeholders 28
position option 102
position property 101
preventDefault() method

using 351
progressbar

incrementing, manually 183-188
methods 182
rich uploads 189-191
ui-corner-all class 185
ui-helper-clearfix class 185
ui-helper-hidden class 185
updating, manually 182

progressbar widget
<div> elements 177
<div> elements, inner <div> 177
<div> elements, outer container <div> 177
about 177
configuration option, using 179
default implementation 178
event API 180, 181

properties, draggables
axis property 200
clone property 203
container property 205
containment property 205
cursorAt property 200
cursor property 199
delay property 200
distance property 200
grid property 200
handle property 201
helper property 203
left property 200
opacity property 205
revert property 203
scroll property 206
snapMode property 206
snap property 206
snapTolerance property 206
steps property 200

properties, droppables
accept property 214, 215

[367]

greedy property 214
hoverClass property 214, 215
modes, tolerance property 216
tolerance property 214, 216
uses 214-216

properties, resizable
animateDuration property 247
animateEasing property 247
animate property 247
containment property 246
ghost property 243
handles property 239
helper property 248
knobHandles property 241

puff effect 343, 344
pulsate effect 345, 346

R
range option 130
refresh method 301
refreshPositions method 301
refreshPositions property 198
resizable

about 235
alsoResize property 238
animateDuration property 238
animateEasing property 238
animate property 238
animations 247-251
aspect ratio, handling 246, 247
aspectRatio property 238
autoHide property 238
basic resizable, implementing 236-238
callback properties 250-252
cancel property 238
containment property 238
delay property 238
distance property 238
ghost elements, resizing 243, 244
ghost property 238
grid property 239
handle images, handling 240, 241
handles property 239
helper property 239
jQuery UI resizable tabs example 254
library files 237

maxHeight property 239
maxWidth property 239
methods 252
minHeight property 239
minWidth property 239
properties 238, 239, 251
resized elements, constraining 245
resized elements, containing 245
resize handle, configuring 239
resize handles, configuring 239, 240
simultaneous resizing 248, 249, 251
size limits, defining 241, 242, 243
tabs 253
unwanted resizes, preventing 250, 251

resizable property 101
resizable tabs 252-254
resize handle, configuring 239
resize option 113
resize property 251
resizeStart option 113
resizeStop option 113
revertDuration property 198
revert property 198, 283

S
scale effect

about 338-341
direction option 339
from option 339
origin option 339
percent option 339

scope option, droppables
about 222
setting 223

scope property 198
scroll property 198, 283
scrollSensitivity property 198, 283
scrollSpeed property 198
selectable class

about 258, 259
configurable properties 260

selectables
about 255, 268
basic image viewer, creating 270-275
basic implementation 256
callbacks properties 262

[368]

configurable options 260
default implementation, creating 256-258
filtering 260-262
jQuery UI selection example 270-275
library files 257
methods 268
selectee class names 258, 259
selection, cancelling 262

selectables methods
about 268, 270
autoRefresh property, setting 268

selected property 263
selectee class names 258, 259
selecting property 263
serialize method 301
setDate method 170
setDefaults method 169
shake effect

about 334
direction option 334
distance option 334
times option 334

showAnim option 157
showButtonPanel option 140
showCurrentAtPos option 159
showMonthAfterYear option 163
show method 170
showOptions 158
show property 101
singleSelect() function 283, 274
slide effect 349-351
slide function 135
slider widget

about 127
animation 132, 133
callback functions, using 134
configurable properties 130
creating 128, 129
default theme, overriding 129, 130
elements 127
elements, slider background (track) 127
elements, slider handle (thumb) 127
future uses 139, 140
implementing 128, 129
maximum values 131, 132
minimum values 131, 132

multiple handles, implementing 134
multiple handles, using 133
range element 134
slider background, elements 127
slider handle, elements 127
callback function, using 134-136
callback functions, using 135
color slide example 141-144
methods 137-139
moveTo method, using 138
step option 132
stepping property 132, 133
steps property 133
value, setting 133
vertical slider, creating 130, 131

smoothness theme 9
snapMode property 198, 207
snap property 198, 206
snapTolerance property 198, 207
sortable methods

cancel 301
functions 302, 303
properties used 304
refresh 301
refreshPositions 301
serialize 301
toArray 301
using 302

sortables
about 277
appendTo property 281
axis property 281
basic implementation 278-281
callback properties 295
cancel property 281
connected callbacks 299
connected lists 292-294
connectWith property 281, 292-294
containment property 282
cursorAt property 282
cursor property 282, 284
delay property 282, 286
distance property 282, 284
dropOnEmpty property 282
event callbacks 295

[369]

forceHelperSize property 282
forcePlaceholderSize property 282, 287
functions 285-287
grid property 282
handle property 282
helper property 283, 289, 290
helpers 289
items property 283, 290, 291
jQuery UI customisable home page

example 311
library files 279
methods 301
opacity property 283, 286
page widget 310
placeholder property 283, 287
placeholders 287
properties 281-283
properties, configuring 281-284
revert property 283, 286
scroll property 283
scrollSensitivity property 283
scrollSpeed property 283
tolerance property 283
widget compatibility 304
zIndex property 283

sortables helpers 289, 290
sortables items 290, 291
sprite file 29
stack option

using 113
stack property 198, 101
start function 135
start property 251, 263
stepMonths option 159
step option 130
steps property 200
stop function 135
stop property 251, 263
structure, jQuery UI library

jqueryui1.6rc2 folder 11
jqueryui folder, contents 11, 12
jqueryui folder, css folder 11
jqueryui folder, development-bundle

directory 11
jqueryui folder, index 11
jqueryui folder, js folder 11

T
tab CSS framework

<div> element 45
 element 45
classes 44, 45

tab events, UI tabs widgets
about 52, 54
example 52
jQuerybind() method 54
properties 52

tabs widgets
custom theme, applying 47

ThemeRoller
about 12-16
using 75, 76

themes
overriding 37, 39
switching 36
ThemeRoller gallery , using 37

title property 101
toArray method 301, 304
toggle method

calling 351
tolerance option 283
tolerance property, droppables

about 216, 217
fit mode 217
intersect mode 217
modes 216
pointer mode 217
touch mode 217, 218

transfer effect
about 335-337
className option 337
to option 337

U
ui.core.css, CSS framework

* html .ui-helper-clearfix class 27
.ui-helper-clearfix:after class 27
.ui-helper-clearfix class 27
.ui-helper-hidden-accessible class 27
.ui-helper-hidden class 27
.ui-helper-reset class 27
.ui-helper-zfix class 27

[370]

.ui-icon class 27

.ui-state-disabled class 27

.ui-widget-overlay class 27
about 26, 27

ui.theme.css, CSS framework
containers category 29
Corner Radius category 29
image positioning category 29
Interaction Cues category 29
Interaction States category 29
Overlays category 29
States and images category 29

UI effects
about 323
additional effect parameter, highlight effect

331, 332
additional effect parameters,

highlight effect 331
blind effect 353
bounce effect 332, 333
clip effect 354, 355
core effects file 324
drop effect 347-351
explosion effect 341, 342
fold effect 356
highlight effect 328-331
highlight effect, library files used 330
list 323
properties, scale effect 339, 340
properties, shake effect 334
properties, transfer effect 337
puff effect 343, 344
pulsate effect 345, 346
scale effect 338-341
shake effect 334
slide effect 349-352
transfer effect 335-337
window-blind effect 353, 354

UI tabs widget
about 41
ajaxOptions property, configuring 48
AJAX tabs 62, 63
cache property, configuring 48
collapsible property, configuring 48
collapsible tabs 51
components 41

configured properties, using 48-50
cookie property, configuring 48
configured properties, using 49, 50
custom events 54
disabled property, configuring 48
disabling 50
event handler, binding with customer

events 54, 55
event property, configuring 48
fx property, configuring 48
idPrefix property, configuring 48
in conjunction with, jQuery library getJSON

method 66-68
event handler, binding with custom event

54
jQuerybind() method 54
methods 55
panelTemplate selected property,

configuring 48
properties 52
selecting 49
spinner property, configuring 48
tab, implementing 42
tab events 52
tab carousel, creating 59
tab implementation 42
tab implementation, underlying HTML

elements used 42
tab implementation example 42
tab properties, configuring 48
tabs, adding 57, 58
tabs, configuring 47
tabs, disabling 56
tabs, enabling 56
tabs, removing 57
tabs methods, using 55
tabTemplate property, configuring 48
transition effects, enabling 50, 51

unselected property 263
unselecting property 263
utility methods

formatDate method 169
iso8601Week method 169
parseDate method 169
setDefaults method 169

[371]

V
value option 130
values option 130

W
widget compatibility

draggables, adding 306-310
example 304, 306

width property 101
window-blind effect

about 353, 354
direction option 354

Y
Yahoo! Pipes

using 317
yearRange option 153

Z
zIndex option

using 111
zIndex property 198, 283

Thank you for buying
jQuery UI 1.7: The User
Interface Library for jQuery

Packt Open Source Project Royalties
When we sell a book written on an Open Source project, we pay a royalty directly to that
project. Therefore by purchasing jQuery UI 1.7: The User Interface Library for jQuery, Packt
will have given some of the money received to the jQuery UI project.
In the long term, we see ourselves and you—customers and readers of our books—as part of
the Open Source ecosystem, providing sustainable revenue for the projects we publish on.
Our aim at Packt is to establish publishing royalties as an essential part of the service and
support a business model that sustains Open Source.
If you're working with an Open Source project that you would like us to publish on, and
subsequently pay royalties to, please get in touch with us.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.PacktPub.com.

Learning jQuery 1.3
ISBN: 978-1-847196-70-5 Paperback: 444 pages

Better Interaction Design and Web Development with
Simple JavaScript Techniques

1.	 An introduction to jQuery that requires
minimal programming experience

2.	 Detailed solutions to specific client-side
problems

3.	 For web designers to create interactive elements
for their designs

4.	 For developers to create the best user interface
for their web applications

5.	 Packed with great examples, code, and clear
explanations

jQuery Reference Guide
ISBN: 978-1-847193-81-0 Paperback: 268 pages

A Comprehensive Exploration of the Popular
JavaScript Library

1.	 Organized menu to every method, function,
and selector in the jQuery library

2.	 Quickly look up features of the jQuery library

3.	 Understand the anatomy of a jQuery script

4.	 Extend jQuery's built-in capabilities with
plug-ins, and even write your own

Please check www.PacktPub.com for information on our titles

Object-Oriented JavaScript
ISBN: 978-1-847194-14-5 Paperback: 356 pages

Create scalable, reusable high-quality JavaScript
applications and libraries

1.	 Learn to think in JavaScript, the language of the
web browser

2.	 Object-oriented programming made accessible
and understandable to web developers

3.	 Do it yourself: experiment with examples that
can be used in your own scripts

4.	 Write better, more maintainable JavaScript code

Learning Ext JS
ISBN: 978-1-847195-14-2 Paperback: 324 pages

Build dynamic, desktop-style user interfaces for your
data-driven web applications

1.	 Learn to build consistent, attractive web
interfaces with the framework components

2.	 Integrate your existing data and web services
with Ext JS data support

3.	 Enhance your JavaScript skills by using Ext's
DOM and AJAX helpers

4.	 Extend Ext JS through custom components

Please check www.PacktPub.com for information on our titles

	Packt - jQuery UI 1.7 The User Interface Library for jQuery (11-2009) (ATTiCA)
	Copyright
	Credits
	About the Author
	About the Reviewers
	Table of Contents
	Preface
	Chapter 1: Introducing jQuery UI
	Downloading the library
	Setting up a development environment
	The structure of the library
	ThemeRoller
	Component categories
	Browser support
	Book examples
	Library licensing
	API introduction
	Events and callbacks
	Callback arguments

	Summary

	Chapter 2: The CSS Framework
	The files that make up the framework
	ui.all.css
	ui.base.css
	ui.core.css
	The individual component framework files
	ui.theme.css
	Linking to the required framework files

	Using the framework classes
	Containers
	Interactions
	Icons
	Interaction cues

	Switching themes quickly and easily
	Overriding the theme
	Summary

	Chapter 3: Tabs
	A basic tab implementation
	Tab CSS framework classes
	Applying a custom theme to the tabs
	Configurable options
	Selecting a tab
	Disabling a tab
	Transition effects
	Collapsible tabs

	Tab events
	Binding to events

	Using tab methods
	Enabling and disabling tabs
	Adding and removing tabs
	Simulating clicks
	Creating a tab carousel
	Getting and setting options

	AJAX tabs
	Displaying data obtained via JSONP
	Summary

	Chapter 4: The Accordion Widget
	Accordion's structure
	Styling the accordion
	Configuring an accordion
	Changing the trigger event
	Changing the default active header
	Filling the height of its container
	Accordion animation

	Accordion events
	The changestart event

	Accordion navigation
	Accordion methods
	Destruction
	Header activation

	Accordion interoperability
	A del.icio.us accordion
	Summary

	Chapter 5: The Dialog
	A basic dialog
	Dialog options
	Showing the dialog
	Positioning the dialog
	The title of the dialog
	Modality
	Adding buttons
	Enabling dialog animations
	Fixing IE6
	Configuring the dialog's dimensions
	Stacking

	Dialog's event model
	Controlling a dialog programmatically
	Toggling the dialog

	Getting data from the dialog
	Dialog interoperability
	A dynamic image-based dialog
	Summary

	Chapter 6: Slider
	Implementing a slider
	Custom styling
	Configurable options
	Creating a vertical slider
	Minimum and maximum values
	Slider steps
	Slider animation
	Setting the slider's value
	Using multiple handles
	The range element

	Using slider's event API
	Slider methods
	Future uses
	A color slider
	Summary

	Chapter 7: Datepicker
	The default datepicker
	Configurable options of the picker
	Basic Options
	Minimum and maximum dates
	Changing the datepicker UI
	Adding a trigger button
	Configuring alternative animations
	Multiple months
	Changing the date format
	Updating an additional input element
	Localization
	Callback properties

	Utility methods
	Date picking methods
	Selecting a date programmatically
	Showing the datepicker in a dialog

	An AJAX datepicker
	Summary

	Chapter 8: Progressbar
	The default progressbar implementation
	Using progressbar's configuration option
	Progressbar's event API
	Progressbar methods
	User initiated progress
	Rich uploads with progressbar
	Summary

	Chapter 9: Drag and Drop
	The deal with drag and droppables
	Draggables
	A basic drag implementation

	Configuring draggable options
	Using the configuration options
	Resetting dragged elements
	Drag handles
	Helper elements
	Constraining the drag
	Snapping

	Draggable event callbacks
	Using draggable's methods
	Droppables
	Configuring droppables
	Tolerance

	Droppable event callbacks
	Scope
	Greedy

	Droppable methods
	A drag and drop game
	Summary

	Chapter 10: Resizing
	A basic resizable
	Resizable options
	Configuring resize handles
	Adding additional handle images
	Defining size limits
	Resize ghosts
	Containing the resize
	Handling the aspect ratio
	Resizable animations
	Simultaneous resizing
	Preventing unwanted resizes

	Resizable callbacks
	Resizable methods
	Resizable tabs
	Summary

	Chapter 11: Selecting
	Basic implementation
	Selectee class names
	Configurable options of the selectable component
	Filtering selectables
	Cancelling the selection

	Selectable callbacks
	Working with vast amounts of selectables

	Selectable methods
	A selectable image viewer
	Styling the image selector

	Summary

	Chapter 12: Sorting
	The default implementation
	Configuring sortable options
	Placeholders
	Sortable helpers
	Sortable items
	Connected lists

	Reacting to sortable events
	Connected callbacks
	Sortable methods
	Widget compatibility
	Adding draggables

	Sortable page widgets
	The underlying page
	Styling the page
	The main script
	Building the content boxes
	Writing the cookie
	Making the boxes sortable
	Closing and restoring boxes

	Summary

	Chapter 13: UI Effects
	The core effects file
	Using color animations
	Using class transitions
	Advanced easing

	Highlighting specified elements
	Additional effect arguments

	Bouncing
	Shaking an element
	Transferring an element's outline
	Element scaling
	Element explosion
	The puff effect
	The pulsate effect
	Dropping elements onto the page
	Sliding elements open or closed
	The window-blind effect
	Clipping elements
	Folding elements
	Summary

	Index

