Building Better JavaScript Applications

Developing

Backbone.is

O’REILLY® Addy Osmani

www.it-ebooks.info


http://www.it-ebooks.info/

www.it-ebooks.info


http://www.it-ebooks.info/

Developing Backbone.js
Applications

Addy Osmani

O’REILLY"

Beijing - Cambridge - Farnham - Kéln - Sebastopol - Tokyo

www.it-ebooks.info


http://www.it-ebooks.info/

Developing Backbone.js Applications
by Addy Osmani

Copyright © 2013 Adnan Osmani. All rights reserved.
Printed in the United States of America.
Published by O’'Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://my.safaribooksonline.com). For more information, contact our corporate/
institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editor: Mary Treseler Indexer: Ellen Troutman Zaig
Production Editor: Melanie Yarbrough Cover Designer: Randy Comer

Copyeditor: Rachel Monaghan Interior Designer: David Futato
Proofreader: Rachel Leach lllustrator: Rebecca Demarest

May 2013: First Edition

Revision History for the First Edition:

2013-05-08:  First release
See http://oreilly.com/catalog/errata.csp?isbn=9781449328252 for release details.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of O'Reilly
Media, Inc. Developing Backbone.js Applications, the image of an Australasian snapper, and related trade
dress are trademarks of O'Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O'Reilly Media, Inc., was aware of a trade-
mark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and author assume no
responsibility for errors or omissions, or for damages resulting from the use of the information contained
herein.

ISBN: 978-1-449-32825-2
[LSI]

www.it-ebooks.info


http://my.safaribooksonline.com/?portal=oreilly
mailto:corporate@oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781449328252
http://www.it-ebooks.info/

Table of Contents

Preface. ..o Xi
T INtroduction. ..o 1
What Is MVC? 2
What Is Backbone.js? 2
When Do I Need a JavaScript MVC Framework? 3
Why Consider Backbone.js? 4
Setting Expectations 5

2. Fundamentals. ...t 9
MVC 9
Smalltalk-80 MVC 9
MVC Applied to the Web 10
Client-Side MVC and Single-Page Apps 13
Client-Side MVC: Backbone Style 15
Implementation Specifics 18
What Does MVC Give Us? 21
Delving Deeper into MVC 21
Summary 22
Further Reading 22

Fast Facts 22
Backbone.js 22
Used by 23

3. Backbone Basics............uuiiiiiiiiiiiii 27
Getting Set Up 27
Models 28
Initialization 29
Getters and Setters 30

www.it-ebooks.info


http://www.it-ebooks.info/

Listening for Changes to Your Model
Validation

Views
Creating New Views
What Is el?

Collections
Adding and Removing Models
Retrieving Models
Listening for Events
Resetting/Refreshing Collections
Underscore Utility Functions
Chainable API

RESTful Persistence
Fetching Models from the Server
Saving Models to the Server
Deleting Models from the Server
Options

Events
on(), off(), and trigger()
listenTo() and stopListening()
Events and Views

Routers
Backbone.history

Backbone’s Sync API
Overriding Backbone.sync

Dependencies

Summary

Exercise 1: Todos—Your First Backbone.js App. ..........ccvunee...

Static HTML
Header and Scripts
Application HTML
Templates
Todo Model
Todo Collection
Application View
Individual TodoView
Startup
In Action
Completing and Deleting Todos
Todo Routing

32
34
35
36
36
42
42
43
44
46
48
52
53
53
53
54
55
55
56
59
60
61
64
66
68
70
70

73
74
74
75
76
77
78
79
85
87
87
89
92

iv

| Table of Contents

www.it-ebooks.info


http://www.it-ebooks.info/

Summary

. Exercise 2: Book Library—Your First RESTful Backbone.js App..................

Setting Up
Creating the Model, Collection, Views, and App
Wiring in the Interface
Adding Models
Removing Models
Creating the Backend
Install Node.js, npm, and MongoDB
Install Node Modules
Create a Simple Web Server
Connect to the Database
Talking to the Server
Summary

. Backbone EXtensions. . ...c.vuvrvnitiit ittt

Marionette]S (Backbone.Marionette)
Boilerplate Rendering Code
Reducing Boilerplate with Marionette.ItemView
Memory Management
Region Management
Marionette Todo App
Is the Marionette Implementation of the Todo App More Maintainable?
Marionette and Flexibility
And So Much More
Thorax
Hello World
Embedding Child Views
View Helpers
collection Helper
Custom HTML Data Attributes
Thorax Resources
Summary

. Common Problems and SOIUtioNS. ....oovvrvrenii it iiiiiiiienenennes

Working with Nested Views
Problem
Solution 1
Solution 2
Solution 3
Solution 4

100
103
103
105
106
106
106
107
109
116
123

125
125
127
128
128
132
133
143
144
145
145
146
146
147
148
149
151
151

153
153
153
153
154
155
155

Table of Contents

www.it-ebooks.info

| v


http://www.it-ebooks.info/

Managing Models in Nested Views 157

Problem 157
Solution 157
Rendering a Parent View from a Child View 158
Problem 158
Solution 158
Disposing View Hierarchies 159
Problem 159
Solution 159
Rendering View Hierarchies 160
Problem 160
Solution 160
Working with Nested Models or Collections 161
Problem 161
Solution 161
Better Model Property Validation 162
Problem 162
Solution 162
Backbone.validateAll 164
Backbone.Validation 166
Form-Specific Validation Classes 167
Avoiding Conflicts with Multiple Backbone Versions 167
Problem 167
Solution 167
Building Model and View Hierarchies 168
Problem 168
Solution 168
Calling Overridden Methods 169
Backbone-Super 171
Event Aggregators and Mediators 171
Problem 171
Solution 171
Event Aggregator 172
Mediator 173
Similarities and Differences 174
Relationships: When to Use Which 175
Event Aggregator and Mediator Together 176
Pattern Language: Semantics 177

8. ModularDevelopment...........ciiuiiiiiiiiiiiiiiiii it ieeiierieanas 179
Organizing Modules with Require]S and AMD 179
Maintainability Problems with Multiple Script Files 180

vi | Tableof Contents

www.it-ebooks.info


http://www.it-ebooks.info/

Need for Better Dependency Management 180

Asynchronous Module Definition (AMD) 181
Writing AMD Modules with RequireJS 181
Getting Started with Require]S 183
Require.js and Backbone Examples 185

Keeping Your Templates External Using Require]S and the Text Plug-in 189
Optimizing Backbone Apps for Production with the Require]S Optimizer 190

Summary 193
9. Exercise 3: Your First Modular Backbone and RequireJSApp........coovvvvnentt 195
Overview 195
Markup 196
Configuration Options 197
Modularizing Our Models, Views, and Collections 198
Route-Based Module Loading 203
JSON-Based Module Configuration 203
Module Loader Router 204
Using Node]S to Handle pushState 205
An Asset Package Alternative for Dependency Management 206
10. Paginating Backbone.js Requests and Collections................ccevvevvnnn.n. 207
Backbone.Paginator 208
Live Examples 209
Paginator.requestPager 209
Convenience Methods 212
Paginator.clientPager 213
Convenience Methods 216
Implementation Notes 218
Plug-ins 220
Bootstrapping 221
Styling 221
Summary 223
11. Backbone Boilerplateand Grunt-BBB. .............c.ccoviiiiiiiiiiiiiiiiinnn, 225
Getting Started 227
Creating a New Project 227
index.html 228
config.js 229
main.js 231
app.js 232
Creating Backbone Boilerplate Modules 234
router.js 236
Table of Contents |  vii

www.it-ebooks.info


http://www.it-ebooks.info/

12.

13.

14.

Other Useful Tools and Projects
Yeoman
Backbone DevTools
Summary

Backbone and jQuery Mobile..........cciiiiiiiiiiiii

Mobile App Development with jQuery Mobile
The Principle of Progressive Widget Enhancement by jQMobile
Understanding jQuery Mobile Navigation
Basic Backbone App Setup for jQuery Mobile
Workflow with Backbone and jQueryMobile
Routing to a Concrete View Page, Inheriting from BasicView
Management of Mobile Page Templates
DOM Management and $.mobile.changePage
Applying Advanced jQM Techniques to Backbone
Dynamic DOM Scripting
Intercepting jQuery Mobile Events
Performance
Clever Multiplatform Support Management

T 1111 =3

Behavior-Driven Development
Suites, Specs, and Spies
beforeEach() and afterEach()
Shared Scope
Getting Set Up
TDD with Backbone
Models
Collections
Views
View Testing
Exercise
Further Reading
Summary

Getting Set Up

Sample HTML with QUnit-Compatible Markup
Assertions

Basic Test Case Using test( name, callback )

Comparing the Actual Output of a Function Against the Expected Output

Adding Structure to Assertions

237
238
239
240

241
241
242
243
245
248
249
250
252
256
256
257
258
259

265
265
267
271
273
274
275
275
277
279
280
287
288
288

289
289
290
292
293
293
294

viii

| Table of Contents

www.it-ebooks.info


http://www.it-ebooks.info/

Basic QUnit Modules 294
Using setup() and teardown() 294
Using setup() and teardown() for Instantiation and Clean Up 295
Assertion Examples 296
Fixtures 297
Fixtures Example 298
Asynchronous Code 300
LT 11101 303
What Is Sinon]S? 303
Basic Spies 304
Spying on Existing Functions 304
Inspection Interface 304
Stubs and Mocks 306
Stubs 306
Mocks 308
Exercise 308
Models 309
Collections 310
Views 311

App 313
Further Reading and Resources 314

T T T 11T 3 315
A. FurtherLearning. .......ovvuiiiuiieiiniiinriinrenneenneennesennsenneennnss 319
B. ROSOUICES. .ottt ettt ittt it ittt ittt ie e eaeaaes 337
1T 339
Table of Contents | ix

www.it-ebooks.info


http://www.it-ebooks.info/

www.it-ebooks.info


http://www.it-ebooks.info/

Preface

Not so long ago, data-rich web application was an oxymoron. Today, these applications
are everywhere, and you need to know how to build them.

Traditionally, web applications left the heavy lifting of data to servers that pushed HTML
to the browser in complete page loads. The use of client-side JavaScript was limited to
improving the user experience. Now this relationship has been inverted—client appli-
cations pull raw data from the server and render it into the browser when and where it
is needed.

Think of the Ajax shopping cart, which doesn’t require a refresh on the page when you
add an item to your basket. Initially, jQuery was the go-to library for this paradigm. Its
nature was to make Ajax requests, then update text on the page and so on. However,
this pattern with jQuery revealed that we have implicit model data on the client side.

The rise of arbitrary code on the client side that can talk to the server however it sees
fit has meant an increase in client-side complexity. Good architecture on the client side
has gone from an afterthought to essential—you can’t just hack together some jQuery
code and expect it to scale as your application grows. Most likely, you would end up
with a nightmarish tangle of UI callbacks entwined with business logic, destined to be
discarded by the poor soul who inherits your code.

Xi

www.it-ebooks.info


http://www.it-ebooks.info/

Thankfully, there are a growing number of JavaScript libraries that can help improve
the structure and maintainability of your code, making it easier for you to build ambi-
tious interfaces without a great deal of effort. Backbone.js has quickly become one of
the most popular open source solutions to these issues, and in this book I will walk you
through it in depth.

We'll begin with the fundamentals, work our way through the exercises, and learn how
to build an application that is both cleanly organized and maintainable. If you are a
developer looking to write code that can be more easily read, structured, and extended,
this guide can help you.

Improving developer education is important to me, which is why this book is released
under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported
license. This means you can purchase or grab a copy of the book for free or help to
further improve it. Corrections to existing material are always welcome, and I hope that
together we can provide the community with an up-to-date resource that is of help.

My extended thanks go out to Jeremy Ashkenas and DocumentCloud for creating
Backbone.js and several members of the community for their assistance making this
project far better than I could have imagined.

Target Audience

This book is targeted at novice to intermediate developers wishing to learn how to better
structure their client-side code. An understanding of JavaScript fundamentals is re-
quired to get the most out of it; however, I have tried to provide a basic description of
these concepts where possible.

Credits

None of this work would have been possible without the time and effort invested by the
other developers and authors in the community who helped contribute to it. I would
like to extend my thanks to:

e Marc Friedman
o Derick Bailey
 Ryan Eastridge
e Jack Franklin

o David Amend
o Mike Ball

o Ugis Ozols

xii | Preface

www.it-ebooks.info


http://documentcloud.github.com/backbone/
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://addyosmani.github.com/backbone-fundamentals/
https://github.com/addyosmani/backbone-fundamentals/
https://github.com/jashkenas
https://www.documentcloud.org
https://github.com/addyosmani/backbone-fundamentals/contributors
https://github.com/dcmaf
https://github.com/derickbailey
https://github.com/eastridge
https://github.com/jackfranklin
https://github.com/raDiesle
https://github.com/mdb
https://github.com/ugisozols
http://www.it-ebooks.info/

o Bjorn Ekengren

as well as our other excellent contributors who made this project possible.

Reading

I assume your level of knowledge about JavaScript goes beyond the basics; thus, certain
topics, such as object literals, are skipped. If you need to learn more about the language,
I am happy to suggest:

o Eloquent JavaScript

o JavaScript: The Definitive Guide by David Flanagan (O’Reilly)

o Effective JavaScript by David Herman (Pearson)

o JavaScript: The Good Parts by Douglas Crockford (O'Reilly)

o Object-Oriented JavaScript by Stoyan Stefanov (Packt Publishing)

Conventions Used in This Book

The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width
Used for program listings, as well as within paragraphs to refer to program elements
such as variable or function names, databases, data types, environment variables,
statements, and keywords.

Constant width bold
Shows commands or other text that should be typed literally by the user.

Constant width italic
Shows text that should be replaced with user-supplied values or by values deter-
mined by context.

W N
A ‘* P . . . .
¢ This icon signifies a tip, suggestion, or general note.
X
N B
MIEN

This icon indicates a warning or caution.

Preface | xiii

www.it-ebooks.info


https://github.com/Ekengren
http://bit.ly/11KCLYp
http://eloquentjavascript.net/
http://shop.oreilly.com/product/9780596805531.do
http://www.informit.com/store/effective-javascript-68-specific-ways-to-harness-the-9780321812186
http://shop.oreilly.com/product/9780596517748.do
http://www.amazon.com/Object-Oriented-Javascript-Stoyan-Stefanov/dp/1847194141
http://www.it-ebooks.info/

Using Code Examples

This book is here to help you get your job done. In general, if this book includes code
examples, you may use the code in your programs and documentation. You do not need
to contact us for permission unless you're reproducing a significant portion of the code.
For example, writing a program that uses several chunks of code from this book does
not require permission. Selling or distributing a CD-ROM of examples from O’Reilly
books does require permission. Answering a question by citing this book and quoting
example code does not require permission. Incorporating a significant amount of ex-
ample code from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “Developing Backbone.js Applications by
Adnan Osmani (O’Reilly). Copyright 2013 Addy Osmani, 978-1-449-32825-2”

If you feel your use of code examples falls outside fair use or the permission given above,
feel free to contact us at permissions@oreilly.com.

Safari® Books Online

Safari Books Online (www.safaribooksonline.com) is an on-demand
Safa rL digital library that delivers expert content in both book and video
BooksOntine form from the world’s leading authors in technology and business.

Technology professionals, software developers, web designers, and business and crea-
tive professionals use Safari Books Online as their primary resource for research, prob-
lem solving, learning, and certification training.

Safari Books Online offers a range of product mixes and pricing programs for organi-
zations, government agencies, and individuals. Subscribers have access to thousands of
books, training videos, and prepublication manuscripts in one fully searchable database
from publishers like O'Reilly Media, Prentice Hall Professional, Addison-Wesley Pro-
fessional, Microsoft Press, Sams, Que, Peachpit Press, Focal Press, Cisco Press, John
Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe Press, FT
Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, Course
Technology, and dozens more. For more information about Safari Books Online, please
visit us online.

How to Contact Us

Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472

xiv | Preface

www.it-ebooks.info


mailto:permissions@oreilly.com
http://my.safaribooksonline.com/?portal=oreilly
http://www.safaribooksonline.com/content
http://www.safaribooksonline.com/subscriptions
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/government
http://www.safaribooksonline.com/individuals
http://www.safaribooksonline.com/publishers
http://www.safaribooksonline.com/
http://www.it-ebooks.info/

800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://oreil.ly/dev_backbone_js_apps.

To comment or ask technical questions about this book, send email to
bookquestions@oreilly.com.

For more information about our books, courses, conferences, and news, see our website
at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly
Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Preface | xv

www.it-ebooks.info


http://oreil.ly/dev_backbone_js_apps
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia
http://www.it-ebooks.info/

Acknowledgments

Iam indebted to the technical reviewers whose fantastic work helped improve this book.
Their knowledge, energy, and passion have helped shape it into a better learning re-
source, and they continue to serve as a source of inspiration. Thanks go out to:

o Derick and Marc (once again)
o Jeremy Ashkenas

« Samuel Clay

o Mat Scales

o Alex Graul

 Dusan Gledovic

 Sindre Sorhus

I'would also like to thank my loving family for their patience and support while I worked
on this book, as well as my brilliant editor, Mary Treseler.

xvi | Preface

www.it-ebooks.info


https://github.com/jashkenas
https://github.com/samuelclay
http://github.com/wibblymat
https://github.com/alexgraul
https://github.com/g6scheme
https://github.com/sindresorhus
http://www.it-ebooks.info/

CHAPTER 1
Introduction

Frank Lloyd Wright once said, “You can’t make an architect. But you can open the doors
and windows toward the light as you see it In this book, I hope to shed some light on
how to improve the structure of your web applications, opening doors to what will
hopefully be more maintainable, readable applications in your future.

The goal of all architecture is to build something well—in our case, to craft code that is
enduring and delights both us and the developers who will maintain our code long after
we are gone. We all want our architecture to be simple, yet beautiful.

Modern JavaScript frameworks and libraries can bring structure and organization to
your projects, establishing a maintainable foundation right from the start. They build
on the trials and tribulations of developers who have had to work around callback chaos
similar to that which you are facing now or may face in the near future.

When you are developing applications using just jQuery, the missing piece is a way to
structure and organize your code. It’s very easy to create a JavaScript app that ends up
a tangled mess of jQuery selectors and callbacks, all desperately trying to keep data in
sync between the HTML for your U], the logic in your JavaScript, and calls to your API
for data.

Without something to help tame the mess, you're likely to string together a set of in-
dependent plug-ins and libraries to make up the functionality or build everything from
scratch and have to maintain it yourself. Backbone solves this problem for you, pro-
viding a way to cleanly organize code and separating responsibilities into recognizable
pieces that are easy to maintain.

In Developing Backbone.js Applications, I and several other experienced authors will
show you how to improve your web application structure using version 1.0 of the pop-
ular JavaScript library Backbone.js.

www.it-ebooks.info


http://www.it-ebooks.info/

What Is MV(?

A number of modern JavaScript frameworks provide developers an easy path to or-
ganizing their code using variations of a pattern known as MVC (Model-View-
Controller). MVC separates the concerns in an application into three parts:

o Models represent the domain-specific knowledge and data in an application. Think
of this as being a type of data you can model—like a user, photo, or todo note.
Models can notify observers when their state changes.

 Views typically constitute the user interface in an application (such as markup and
templates), but don’t have to. They observe models, but don't directly communicate
with them.

o Controllers handle input (clicks or user actions) and update models.

Thus, in an MVC application, user input is acted upon by controllers, which update
models. Views observe models and update the user interface when changes occur.

JavaScript MVC frameworks don’t always strictly follow this pattern, however. Some
solutions (including Backbone.js) merge the responsibility of the controller into the
view, while other approaches insert additional components into the mix.

For this reason we refer to such frameworks as following the MV* pattern—that is,
you're likely to have a model and a view, but a distinct controller might not be present
and other components may come into play.

What Is Backbone.js?

Backbone.js (Figure 1-1) is a lightweight JavaScript library that adds structure to your
client-side code. It makes it easy to manage and decouple concerns in your application,
leaving you with code that is more maintainable in the long term.

Developers commonly use libraries like Backbone.js to create single-page applications
(SPAs). SPAs are web applications that load into the browser and then react to data
changes on the client side without requiring complete page refreshes from the server.

Backbone is mature and popular, sporting both a vibrant developer community and a
wealth of available plug-ins and extensions that build upon it. It has been used to create
nontrivial applications by companies such as Disqus, Walmart, SoundCloud, and
LinkedIn.

2 | Chapter1:Introduction

www.it-ebooks.info


http://www.it-ebooks.info/

© O 0/ pgrackbone s

€ [} backbonejs.org

Backbone.js (1.0.0)

» GitHub Repository
» Annotated Source

Introduction
Uparading

Events

-on

- off

- trigger

- once

- listenTo

- stoplListening

- listenToOnce

- Catalog of Built-in Events

Maodel

- extend

- constructor / initialize
- get

- set

B BACKBONE S

Backbone.js gives structure to web applications by providing models with key-value
binding and custom events, collections with a rich API of enumerable functions,
views with declarative event handling, and cennects it all to your existing API over a
RESTIul JSON interface.

The project is hosted on GitHub, and the annotated source code is available, as well

as an online test suite, an example application, a list of tutorials and a long list of real-

world projects that use Backbone. Backbone is available for use under the MIT
software license.

You can report bugs and discuss features on the GitHub issues page, on Freenode
IRC inthe #documentcloud channel, post questions to the Google Group, add pages
10 the wiki of send tweets to @documentcloud.

- escape
- has

B is an ope. of Dx tCloud,
- unset

- clear
-id
- idattribute
- cid

b

Downloads & Dependencies mign-cick, and use ‘save as")

Figure 1-1. The Backbone.js home page

Backbone focuses on giving you helpful methods for querying and manipulating your
data rather than reinventing the JavaScript object model. It’s a library, rather than a
framework, that scales well and plays well with others, from embedded widgets to large-
scale applications.

And because Backbone is small, there is also less your users have to download on mobile
or slower connections. The entire Backbone source can be read and understood in just
a few hours.

When Do | Need a JavaScript MVC Framework?

When building a single-page application using JavaScript, whether it involves a complex
user interface or simply trying to reduce the number of HTTP requests required for
new views, you will likely find yourself inventing many of the pieces that make up an
MV* framework.

At the outset, it isn’t terribly difficult to write your own application framework that
offers some opinionated way to avoid spaghetti code; however, to say that it is equally
as trivial to write something as robust as Backbone would be a grossly incorrect
assumption.

There’s a lot more that goes into structuring an application than tying together a DOM
manipulation library, templating, and routing. Mature MV* frameworks typically in-
clude not only the pieces you would find yourself writing, but also solutions to problems

When Do | Need a JavaScript MVC Framework? | 3

www.it-ebooks.info


http://www.it-ebooks.info/

you'll find yourself running into down the road. This is a time-saver whose value you
shouldn’t underestimate.

So, where will you likely need an MV* framework and where won’t you?

If you're writing an application where much of the heavy lifting for view rendering and
data manipulation will be occurring in the browser, you may find a JavaScript MV*
framework useful. Examples of applications that fall into this category are Gmail, News-
Blur, and the LinkedIn mobile app.

These types of applications typically download a single payload containing all the scripts,
stylesheets, and markup users need for common tasks and then perform a lot of addi-
tional behavior in the background. For instance, it’s trivial to switch between reading
an email or document to writing one without sending a new page request to the server.

If, however, you're building an application that still relies on the server for most of the
heavy lifting of page/view rendering and you're just using a little JavaScript or jQuery
to make things more interactive, an MV* framework may be overkill. There certainly
are complex web applications where the partial rendering of views can be coupled with
a single-page application effectively, but for everything else, you may be better off stick-
ing to a simpler setup.

Maturity in software (framework) development isn’t simply about how long a frame-
work has been around; it’s about how solid the framework is and, more importantly,
how well it’s evolved to fill its role. Has it become more effective at solving common
problems? Does it continue to improve as developers build larger and more complex
applications with it?

Why Consider Backbone.js?

Backbone provides a minimal set of data-structuring (models, collections) and user
interface (views, URLs) primitives that are helpful when you’re building dynamic ap-
plications using JavaScript. It’s not opinionated, meaning you have the freedom and
flexibility to build the best experience for your web application however you see fit. You
can either use the prescribed architecture it offers out of the box or extend it to meet
your requirements.

The library doesn't focus on widgets or replacing the way you structure objects—it just
supplies you with utilities for manipulating and querying data in your application. It
also doesn’t prescribe a specific template engine; while you are free to use the micro-
templating offered by Underscore.js (one of its dependencies), views can bind to HTML
constructed via your templating solution of choice.

When we look at the large number of applications built with Backbone, it’s clear that it
scales well. Backbone also works quite well with other libraries, meaning you can embed

4 | Chapter 1: Introduction

www.it-ebooks.info


http://backbonejs.org/#examples
http://www.it-ebooks.info/

Backbone widgets in an application written with Angular]S, use it with TypeScript, or
just use an individual class (like models) as a data backer for simpler apps.

There are no performance drawbacks to using Backbone to structure your application.
It avoids run loops, two-way binding, and constant polling of your data structures for
updates, and it tries to keep things simple where possible. That said, should you wish
to go against the grain, you can, of course, implement such things on top of it. Backbone
won't stop you.

With a vibrant community of plug-in and extension authors, it’s likely that if you're
looking to achieve some behavior Backbone is lacking, there’s a complementary project
that works well with it. In addition, Backbone offers literate documentation of its source
code, allowing anyone an opportunity to easily understand what is going on behind the
scenes.

Having been refined over two and a half years of development, Backbone is a mature
library that will continue to offer a minimalist solution for building better web appli-
cations. I regularly use it and hope that you find it as useful an addition to your toolbelt
as I have.

Setting Expectations

The goal of this book is to create an authoritative and centralized repository of infor-
mation that can help those developing real-world apps with Backbone. If you come
across a section or topic that you think could be improved or expanded, please feel free
to submit an issue (or better yet, a pull-request) on the book’s GitHub site. It won't take
long, and you'll be helping other developers avoid the problems you ran into.

Topics will include MVC theory and how to build applications using Backbone’s models,
views, collections, and routers. I'll also be taking you through advanced topics like
modular development with Backbone.js and AMD (via Require]S), solutions to com-
mon problems like nested views, how to solve routing problems with Backbone and
jQuery Mobile, and much more.

Here is a peek at what you will be learning in each chapter:

Chapter 2, Fundamentals
Traces the history of the MVC design pattern and introduces how it is implemented
by Backbone.js and other JavaScript frameworks.

Chapter 3, Backbone Basics
Covers the major features of Backbone.js and the technologies and techniques you
will need to know in order to use it effectively.

Chapter 4, Exercise 1: Todos—Your First Backbone.js App
Takes you step by step through development of a simple client-side todo list
application.

Setting Expectations | 5

www.it-ebooks.info


https://github.com/addyosmani/backbone-fundamentals
http://www.it-ebooks.info/

Chapter 5, Exercise 2: Book Library—Your First RESTful Backbone.js App
Walks you through development of abook library application that persists its model
to a server using a REST APIL

Chapter 6, Backbone Extensions
Describes Backbone.Marionette and Thorax, two extension frameworks that add
features to Backbone.js that are useful for developing large-scale applications.

Chapter 7, Common Problems and Solutions
Reviews common issues you may encounter when using Backbone.js and ways to
address them.

Chapter 8, Modular Development
Looks at how AMD modules and Require]JS can be used to modularize your code.

Chapter 9, Exercise 3: Your First Modular Backbone and Require]S App
Takes you through rewriting the app created in Exercise 1 to be more modular, with
the help of Require]S.

Chapter 10, Paginating Backbone.js Requests and Collections
Walks through how to use the Backbone.Paginator plug-in to paginate data for your
collections.

Chapter 11, Backbone Boilerplate and Grunt-BBB
Introduces powerful tools you can use to bootstrap a new Backbone.js application
with boilerplate code.

Chapter 12, Backbone and jQuery Mobile
Addresses the issues that arise when you are using Backbone with jQuery Mobile.

Chapter 13, Jasmine
Covers how to unit-test Backbone code using the Jasmine test framework.

Chapter 14, QUnit
Discusses how to use the QUnit for unit testing.

Chapter 15, SinonJS
Discusses how to use Sinon]JS to unit-text your Backbone apps.

Appendix B
Provides references to additional Backbone-related resources.

6 | Chapter1:Introduction

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 16, Conclusions
Wraps up our tour through the world of Backbone.js development.

Appendix A
Returns to our design pattern discussion by contrasting MVC with the Model-

View-Presenter (MVP) pattern and examines how Backbone.js relates to both. Also
includes a walkthrough of writing a Backbone-like library from scratch and covers
other topics.

Setting Expectations | 7

www.it-ebooks.info


http://www.it-ebooks.info/

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 2
Fundamentals

Design patterns are proven solutions to common development problems that can help
us improve the organization and structure of our applications. By using patterns, we
benefit from the collective experience of skilled developers who have repeatedly solved
similar problems.

Historically, developers creating desktop and server-class applications have had a wealth
of design patterns available for them to lean on, but it’s only been in the last few years
that such patterns have been applied to client-side development.

In this chapter, were going to explore the evolution of the Model-View-Controller
(MVC) design pattern and get our first look at how Backbone.js allows us to apply this
pattern to client-side development.

MV(C

MVC is an architectural design pattern that encourages improved application organi-
zation through a separation of concerns. It enforces the isolation of business data (mod-
els) from user interfaces (views), with a third component (controllers) traditionally
managing logic, user input, and coordination of models and views. The pattern was
originally designed by Trygve Reenskaug while he was working on Smalltalk-80 (1979),
where it was initially called Model-View-Controller-Editor. MVC was described in
depth in the Gang of Four’s 1994 book Design Patterns: Elements of Reusable Object-
Oriented Software, which played a role in popularizing its use.

Smalltalk-80 MVC

Its important to understand the issues that the original MVC pattern was aiming
to solve, as it has changed quite heavily since the days of its origin. Back in the 70s,
graphical user interfaces were few and far between. An approach known as separated

www.it-ebooks.info


http://en.wikipedia.org/wiki/Trygve_Reenskaug
http://amzn.com/0201633612
http://amzn.com/0201633612
http://martinfowler.com/eaaDev/SeparatedPresentation.html
http://www.it-ebooks.info/

presentation began to be used to make a clear division between domain objects, which
modeled concepts in the real world (such as a photo, a person), and the presentation
objects that were rendered to the user’s screen.

The Smalltalk-80 implementation of MVC took this concept further and had the ob-
jective of separating out the application logic from the user interface. The idea was that
decoupling these parts of the application would also allow the reuse of models for other
interfaces in the application. There are some interesting points worth noting about
Smalltalk-80’s MVC architecture:

o A domain element was known as a model and was ignorant of the user interface
(views and controllers).

o Presentation was taken care of by the view and the controller, but there wasn't just
a single view and controller—a view-controller pair was required for each element
being displayed on the screen, so there was no true separation between them.

o The controller’s role in this pair was handling user input (such as keypresses and
click events) and doing something sensible with them.

o The Observer pattern was used to update the view whenever the model changed.

Developers are sometimes surprised when they learn that the Observer pattern (nowa-
days commonly implemented as a publish/subscribe system) was included as a part of
MVC’s architecture decades ago. In Smalltalk-80’s MVC, the view and controller both
observe the model: anytime the model changes, the views react. A simple example of
this is an application backed by stock market data: for the application to show real-time
information, any change to the data in its model should result in the view being refreshed
instantly.

Martin Fowler has done an excellent job of writing about MVC’s origins, so if you are
interested in further historical information about Smalltalk-80’s MVC, I recommend
reading his work.

MVCApplied to the Web

The Web relies heavily on the HTTP protocol, which is stateless. This means that there
is not a constantly open connection between the browser and server; each request in-
stantiates a new communication channel between the two. Once the request initiator
(such as a browser) gets a response, the connection is closed. This fact creates a com-
pletely different context when compared to the one of the operating systems on which
many of the original MVC ideas were developed. The MVC implementation has to
conform to the web context.

An example of a server-side web application framework that tries to apply MVC to the
web context is Ruby on Rails, shown in Figure 2-1.

10 | Chapter2: Fundamentals

www.it-ebooks.info


http://martinfowler.com/eaaDev/SeparatedPresentation.html
http://martinfowler.com/eaaDev/uiArchs.html
http://guides.rubyonrails.org/
http://www.it-ebooks.info/

[users
Rails router
\ 4
@users User.all Data source
View > Controller > Model >
g N "|e.g., database, AP, etc.
HTML g )
v
Browser

Figure 2-1. The Ruby on Rails framework

Atits core are the three MVC components we would expect: the Model-View-Controller
architecture. In Rails:

o Models represent the data in an application and are typically used to manage rules
for interacting with a specific database table. You generally have one table corre-
sponding to one model with much of your application’s business logic living within
these models.

 Views represent your user interface, often taking the form of HTML that will be
sent down to the browser. Theyre used to present application data to anything
making requests from your application.

o Controllers offer the glue between models and views. Their responsibility is to pro-
cess requests from the browser, ask your models for data, and then supply this data
to views so that they may be presented to the browser.

Although there’s a clear separation of concerns that is MVC-like in Rails, it is actually
using a different pattern called Model2. Justifications for this include that Rails does not
notify views from the model, and controllers just pass model data directly to the view.

That said, even for the server-side workflow of receiving a request from a URL, baking
outan HTML page as a response and separating your business logic from your interface
has many benefits. In the same way that keeping your UI cleanly separate from your
database records is useful in server-side frameworks, it's equally useful to keep your UI
cleanly separated from your data models in JavaScript (as we will read more about
shortly).

MvC |1

www.it-ebooks.info


http://en.wikipedia.org/wiki/Model2
http://www.it-ebooks.info/

Other server-side implementations of MVC, such as the PHP Zend framework, also
implement the Front Controller design pattern. This pattern layers an MVC stack be-
hind a single point of entry. This single point of entry means that all HTTP requests
(for example, http://www.example.com, http://www.example.com/whichever -
page/, and so on) are routed by the server’s configuration to the same handler, inde-
pendent of the URI.

When the Front Controller receives an HT'TP request, it analyzes it and decides which
class (controller) and method (action) to invoke. The selected controller action takes
over and interacts with the appropriate model to fulfill the request. The controller re-
ceives data back from the model, loads an appropriate view, injects the model data into
it, and returns the response to the browser.

For example, let’s say we have our blog on www.example.com and we want to edit an
article (with 1d=43) and request http://www.example.com/article/edit/43.

On the server side, the Front Controller would analyze the URL and invoke the article
controller (corresponding to the /article/ part of the URI) and its edit action (corre-
sponding to the /edit/ part of the URI). Within the action there would be a call to, let’s
say, the articles model and its Articles: :getEntry(43) method (43 corresponding to
the /43 at the end of the URI). This would return the blog article data from the database
for edit. The article controller would then load the (article/edit) view, which would
include logic for injecting the article’s data into a form suitable for editing its content,
title, and other (meta) data. Finally, the resulting HTML response would be returned to
the browser.

Asyou can imagine, a similar flow is necessary with POST requests after we click a save
button in a form. The POST action URI would looklike /article/save/43. The request
would go through the same controller, but this time the save action would be invoked
(due to the /save/ URI chunk), the articles model would save the edited article to the
database with Articles::saveEntry(43), and the browser would be redirected to
the /article/edit/43 URI for further editing.

Finally, if the user requested http://www.example.com/ the Front Controller would
invoke the default controller and action (for example, the index controller and its index
action). Within index action there would be a call to the articles model and its Arti
cles::getlLastEntries(10) method, which would return the last 10 blog posts. The
controller would load the blog/index view, which would have basic logic for listing the
blog posts.

Figure 2-2 shows this typical HTTP request/response lifecycle for server-side MVC.

12 | Chapter2: Fundamentals

www.it-ebooks.info


http://zend.com
http://en.wikipedia.org/wiki/Front_Controller_pattern
http://www.it-ebooks.info/

Entry point
HTTP request Front Controller
(does routing)

A 4

Data source

Model e.g., database, API, etc.)

A 4

Controller <

HTTP response View

Figure 2-2. The HTTP request/response lifecycle for server-side MVC

\ 4

The server receives an HT TP request and routes it through a single entry point. At that
entry point, the Front Controller analyzes the request and invokes an action of the
appropriate controller. This process is called routing. The action model is asked to return
and/or save submitted data. The model communicates with the data source (for exam-
ple, database or API). Once the model completes its work it returns data to the controller,
which then loads the appropriate view. The view executes presentation logic (loops
through articles and prints titles, content, etc.) using the supplied data. In the end, an
HTTP response is returned to the browser.

Client-Side MVC and Single-Page Apps

Several studies have confirmed that improvements to latency can have a positive impact
on the usage and user engagement of sites and apps. This is at odds with the traditional
approach to web app development, which is very server-centric, requiring a complete
page reload to move from one page to the next. Even with heavy caching in place, the
browser still has to parse the CSS, JavaScript, and HTML and render the interface to the
screen.

In addition to resulting in a great deal of duplicated content being served back to the
user, this approach affects both latency and the general responsiveness of the user ex-
perience. A trend to improve perceived latency in the past few years has been to move
toward building single-page applications (SPAs)—apps that after an initial page load,
are able to handle subsequent navigations and requests for data without the need for a
complete reload.

When a user navigates to a new view, the application requests additional content re-
quired for the view using an XHR (XMLHttpRequest), typically communicating with a
server-side REST API or endpoint. Ajax, short for Asynchronous JavaScript and
XML), makes communication with the server asynchronous so that data is transferred

mve | 13

www.it-ebooks.info


http://radar.oreilly.com/2009/07/velocity-making-your-site-fast.html
https://en.wikipedia.org/wiki/Ajax_(programming)
https://en.wikipedia.org/wiki/Ajax_(programming)
http://www.it-ebooks.info/

and processed in the background, allowing the user to work on other parts of a page
without interaction. This improves usability and responsiveness.

SPAs can also take advantage of browser features like the History API to update the
address shown in the location bar when moving from one view to another. These URLs
also make it possible for users to bookmark and share a particular application state,
without the need to navigate to completely new pages.

The typical SPA consists of smaller pieces of interface representing logical entities, all
of which have their own UI, business logic, and data. A good example is a basket in a
shopping web application that can have items added to it. This basket might be presented
to the user in a box in the top-right corner of the page (see Figure 2-3).

Header |

Item 39 |Addto basketl Basket

[tem 40 | _| ltem1 35.00
Add to basket tem2 13.50

ftem 1 [agdobisket | | Total 4850

Item 42 | Add to basket I

Footer |

Figure 2-3. A shopping basket forming a region of a single-page application

The basket and its data are presented in HTML. The data and its associated View in
HTML change over time. There was a time when we used jQuery (or a similar DOM
manipulation library) and a bunch of Ajax calls and callbacks to keep the two in sync.
That often produced code that was not well structured or easy to maintain. Bugs were
frequent and perhaps even unavoidable.

The need for fast, complex, and responsive Ajax-powered web applications demands
replication of a lot of this logic on the client side, dramatically increasing the size and
complexity of the code residing there. Eventually this has brought us to the point where
we need MVC (or a similar architecture) implemented on the client side to better struc-
ture the code and make it easier to maintain and further extend during the application
lifecycle.

Through evolution and trial and error, JavaScript developers have harnessed the power
of the traditional MVC pattern, leading to the development of several MVC-inspired
JavaScript frameworks, such as Backbone.js.

14 | Chapter2: Fundamentals

www.it-ebooks.info


http://diveintohtml5.info/history.html
http://www.it-ebooks.info/

Client-Side MVC: Backbone Style

Let’s take our first look at how Backbone.js brings the benefits of MVC to client-side
development using a todo application as our example. We will build on this example in
the coming chapters when we explore Backbone’s features, but for now we will just focus
on the core components’ relationships to MVC.

Our example will need a div element to which we can attach a list of todos. It will also
need an HTML template containing a placeholder for a todo item title and a completion
checkbox that can be instantiated for todo item instances. These are provided by the
following HTML:

<!doctype html>
<html lang="en">
<head>
<meta charset="utf-8">
<title></title>
<meta name="description" content="">
</head>
<body>
<div id="todo">
</div>
<script type="text/template" id="item-template"s>
<div>
<input id="todo_complete" type="checkbox" <%= completed ?
'checked="checked"' : '' %>>
<%- title %>
</div>
</script>
<script src="jquery.js"s</script>
<script src="underscore.js"></script>
<script src="backbone.js"></script>
<script src="demo.js"></script>
</body>
</html>

In our Todo application (demo.js), Backbone model instances are used to hold the data
for each todo item:

// Define a Todo model
var Todo = Backbone.Model.extend({
// Default todo attribute values
defaults: {
title: "',
completed: false
}
b

// Instantiate the Todo model with a title, allowing completed attribute
// to default to false
var myTodo = new Todo({

e | 15

www.it-ebooks.info


http://www.it-ebooks.info/

title: 'Check attributes property of the logged models in the console.'
b

Our Todo model extends Backbone.Model and simply defines default values for two
data attributes. As you will discover in the upcoming chapters, Backbone models pro-
vide many more features, but this simple model illustrates that first and foremost a
model is a data container.

Each todo instance will be rendered on the page by a TodoView:

var TodoView = Backbone.View.extend({
tagName: 'li',

// Cache the template function for a single 1item.
todoTpl: _.template( $('#item-template').html() ),

events: {
'dblclick label': 'edit',
'keypress .edit': 'updateOnEnter',
'blur .edit': 'close’

IS

// Called when the view is first created

initialize: function () {
this.$el = $('#todo');
// Later we'll look at:
// this.listenTo(someCollection, 'all', this.render);
// but you can actually run this example right now by
// calling TodoView.render();

},

// Rerender the titles of the todo item.

render: function() {
this.$el.html( this.todoTpl( this.model.toJSON() ) );
// Sel here is a reference to the jQuery element
// associated with the view, todoTpl is a reference
// to an Underscore template and toJSON() returns an
// object containing the model's attributes
// Altogether, the statement i1s replacing the HTML of
// a DOM element with the result of instantiating a
// template with the model's attributes.
this.input = this.$('.edit');
return this;

},

edit: function() {
// executed when todo label is double-clicked
},

close: function() {
// executed when todo loses focus

16 | Chapter2: Fundamentals

www.it-ebooks.info


http://www.it-ebooks.info/

3

updateOnEnter: function( e ) {
// executed on each keypress when in todo edit mode,
// but we'll wait for enter to get in action
}
H;

// create a view for a todo
var todoView = new TodoView({model: myTodo});

We define TodoView by extending Backbone.View and instantiate it with an associated
model. In our example, the render () method uses a template to construct the HTML
for the todo item, which is placed inside a 11 element. Each call to render () will replace
the content of the 11 element using the current model data. Thus, a view instance renders
the content of a DOM element using the attributes of an associated model. Later we will
see how a view can bind its render () method to model change events, causing the view
to rerender whenever the model changes.

So far, we have seen that Backbone.Model implements the model aspect of MVC and
Backbone.View implements the view. However, as we noted earlier, Backbone departs
from traditional MVC when it comes to controllers—there is noBackbone.Controller!

Instead, the controller responsibility is addressed within the view. Recall that controllers
respond to requests and perform appropriate actions, which may result in changes to
the model and updates to the view. In an SPA, rather than having requests in the tradi-
tional sense, we have events. Events can be traditional browser DOM events (such as
clicks) or internal application events (such as model changes).

In our TodoView, the events attribute fulfills the role of the controller configuration,
defining how events occurring within the view’s DOM element are to be routed to event-
handling methods defined in the View.

While in this instance events help us relate Backbone to the MVC pattern, we will see
them playing a much larger role in our SPA applications. Backbone.Event is a
fundamental Backbone component that is mixed into both Backbone.Model and Back
bone.View, providing them with rich event management capabilities. Note that the
traditional view role (Smalltalk-80-style) is performed by the template, not by the Back
bone.View.

This completes our first encounter with Backbone.js. The remainder of this book will
explore the many features of the framework that build on these simple constructs. Before
moving on, let’s take a look at common features of JavaScript MV* frameworks.

mve | 17

www.it-ebooks.info


http://www.it-ebooks.info/

Implementation Specifics

An SPA is loaded into the browser through a normal HT TP request and response. The
page may simply be an HTML file, as in the preceding example, or it could be a view
constructed by a server-side MVC implementation.

Once the SPA is loaded, a client-side router intercepts URLs and invokes client-side
logic in place of sending a new request to the server. Figure 2-4 shows typical request
handling for client-side MVC as implemented by Backbone.

HTTP request Router

DOM updates v model updates syncs
R - AR . R Data source
DOM <+ View <> C(ollection of models Ple.q. database, AP, etc)
DOM events model events

Figure 2-4. Backbone’s approach to request handling

URL routing, DOM events (such as mouse clicks), and model events (such as attribute
changes) all trigger handling logic in the view. The handlers update the DOM and
models, which may trigger additional events. Models are synced with data sources,
which may involve communicating with backend servers.

Models

o The built-in capabilities of models vary across frameworks; however, it's common
for them to support validation of attributes, where attributes represent the prop-
erties of the model, such as a model identifier.

o When using models in real-world applications we generally also need a way of
persisting models. Persistence allows us to edit and update models with the knowl-
edge that their most recent states will be saved somewhere—for example, in a web
browser’s localStorage datastore or synchronized with a database.

o A model may have multiple views observing it for changes. By observing, I mean
that a view has registered an interest in being informed whenever an update is made
to the model. This allows the view to ensure that what is displayed on screen is kept
in sync with the data contained in the model. Depending on your requirements,
you might create a single view displaying all model attributes, or create separate
views displaying different attributes. The important point is that the model doesn't
care how these views are organized; it simply announces updates to its data as
necessary through the framework’s event system.

18 | Chapter2: Fundamentals

www.it-ebooks.info


http://www.it-ebooks.info/

o It is not uncommon for modern MVC/MV* frameworks to provide a means of
grouping models together. In Backbone, these groups are called collections. Man-
aging models in groups allows us to write application logic based on notifications
from the group when a model within the group changes. This avoids the need to
manually observe individual model instances. We'll see this in action later in the
book. Collections are also useful for performing any aggregate computations across
more than one model.

Views

o Users interact with views, which usually means reading and editing model data. For
example, in our Todo application, Todo model viewing happens in the user interface
in the list of all todo items. Within it, each todo is rendered with its title and com-
pleted checkbox. Model editing is done through an edit view, where a user who has
selected a specific todo edits its title in a form.

o We define within our view a render () utility, which is responsible for rendering
the contents of the Model using a JavaScript templating engine (provided by
Underscore.js) and updating the contents of our view, referenced by this.el.

o We then add our render () callback as a model subscriber, so the view can be trig-
gered to update when the model changes.

» You may wonder where user interaction comes into play here. When users click on
a todo element within the view, it's not the view’s responsibility to know what to do
next. A controller makes this decision. In Backbone, we achieve this by adding an

event listener to the todo’s element, which delegates handling of the click to an event
handler.

Templating

In the context of JavaScript frameworks that support MVC/MV*, it is worth looking
more closely at JavaScript templating and its relationship to views.

It has long been considered bad practice (and computationally expensive) to manually
create large blocks of HTML markup in-memory through string concatenation. De-
velopers using this technique often find themselves iterating through their data, wrap-
ping it in nested divs and using outdated techniques such as document.write to inject
the template into the DOM. This approach often means keeping scripted markup inline
with standard markup, which can quickly become difficult to read and maintain, espe-
cially when you’re building large applications.

JavaScript templating libraries (such as Mustache or Handlebars.js) are often used to
define templates for views as HTML markup containing template variables. These tem-
plate blocks can be either stored externally or within <script> tags with a custom type

MvC | 19

www.it-ebooks.info


http://www.it-ebooks.info/

(such as text/template). Variables are delimited through a variable syntax (for example,
<%= title %> for Underscore and {{title}} for Handlebars).

JavaScript template libraries typically accept data in a number of formats, including
JSON, a serialization format that is always a string. The grunt work of populating tem-
plates with data is generally taken care of by the framework itself. This has several
benefits, particularly when you opt to store templates externally, which enables appli-
cations to load templates dynamically on an as-needed basis.

Let’s compare two examples of HTML templates. One is implemented using the popular
Handlebars.js library, and the other uses Underscore’s microtemplates.

Handlebars.js

<div class="view">
<input class="toggle" type="checkbox" {{#if completed}} "checked" {{/if}}>
<label>{{title}}</label>
<button class="destroy"></button>

</div>

<input class="edit" value="{{title}}">

Underscore.js microtemplates

<div class="view">
<input class="toggle" type="checkbox" <%= completed ? 'checked' :
<label><%- title %></label>
<button class="destroy"></button>

</div>

<input class="edit" value="<%= title %>">

%>

It is also worth noting that in classical web development, navigating

. between independent views required the use of a page refresh. In single-

063" page JavaScript applications, however, once data is fetched from a server

via Ajax, it can be dynamically rendered in a new view within the same

page. Since this doesn’t automatically update the URL, the role of nav-

igation thus falls to a router, which assists in managing application state

(e.g., allowing users to bookmark a particular view they have navigated

to). As routers are neither a part of MVC nor present in every MVC-

like framework, I will not be going into them in greater detail in this
section.

aqs
[0

N

Controllers

In our Todo application, a controller would be responsible for handling changes the
user made in the edit view for a particular todo, updating a specific todo model when a
user had finished editing.

20 | Chapter2: Fundamentals

www.it-ebooks.info


http://www.it-ebooks.info/

It’s with controllers that most JavaScript MVC frameworks depart from the traditional
interpretation of the MVC pattern. The reasons for this vary, but in my opinion, Java-
Script framework authors likely initially looked at server-side interpretations of MVC
(such as Ruby on Rails), realized that the approach didn’t translate 1:1 on the client side,
and so reinterpreted the C in MVC to solve their state management problem. This was
a clever approach, but it can make it hard for developers coming to MVC for the first
time to understand both the classical MVC pattern and the proper role of controllers
in other JavaScript frameworks.

So does Backbone.js have controllers? Not really. Backbone’s views typically contain
controller logic, and routers are used to help manage application state, but neither are
true controllers according to classical MVC.

In this respect, contrary to what might be mentioned in the official documentation or
in blog posts, Backbone isn't truly an MVC framework. It’s in fact better to view it a
member of the MV* family that approaches architecture in its own way. There is, of
course, nothing wrong with this, but it is important to distinguish between classical
MVC and MV* should you be relying on discussions of MVC to help with your Back-
bone projects.

What Does MVC Give Us?

To summarize, the MVC pattern helps you keep your application logic separate from
your user interface, making it easier to change and maintain both. Thanks to this sep-
aration of logic, it is more clear where changes to your data, interface, or business logic
need to be made and for what your unit tests should be written.

Delving Deeper into MVC

Right now, you likely have a basic understanding of what the MVC pattern provides,
but for the curious, we’ll explore it a little further.

The GoF (Gang of Four) do not refer to MVC as a design pattern, but rather consider
it a set of classes to build a user interface. In their view, it’s actually a variation of three
other classical design patterns: the Observer (publish/subscribe), Strategy, and Com-
posite patterns. Depending on how MVC has been implemented in a framework, it may
also use the Factory and Decorator patterns. I've covered some of these patterns in my
other book, JavaScript Design Patterns for Beginners, if you would like to read about
them further.

Aswe've discussed, models represent application data, while views handle what the user
is presented with on screen. As such, MVC relies on publish/subscribe for some of its
core communication (something that surprisingly isn't covered in many articles about
the MVC pattern). When a model is changed, it publishes to the rest of the application
that it has been updated. The subscriber, generally a controller, then updates the view

What Does MVCGive Us? | 21

www.it-ebooks.info


http://addyosmani.com/resources/essentialjsdesignpatterns/book/
http://www.it-ebooks.info/

accordingly. The observer-viewer nature of this relationship is what facilitates multiple
views being attached to the same model.

For developers interested in knowing more about the decoupled nature of MVC (once
again, depending on the implementation), one of the goals of the pattern is to help define
one-to-many relationships between a topic and its observers. When a topic changes, its
observers are updated. Views and controllers have a slightly different relationship. Con-
trollers facilitate views” responses to different user input and are an example of the
Strategy pattern.

Summary

Having reviewed the classical MVC pattern, you should now understand how it allows
developers to cleanly separate concerns in an application. You should also now appre-
ciate how JavaScript MVC frameworks may differ in their interpretation of MVC, and
how they share some of the fundamental concepts of the original pattern.

When reviewing a new JavaScript MVC/MV* framework, remember that it can be useful
to step back and consider how it’s opted to approach models, views, controllers, or other
alternatives, as this can better help you understand how the framework is intended to
be used.

Further Reading

If you are interested in learning more about the variation of MVC that Backbone.js uses,
please see “MVP” on page 324.

Fast Facts

Backbone.js

« Contains these core components: model, view, collection, router. Enforces its own
flavor of MV*.

o Supports event-driven communication between views and models. As we'll see, it’s
relatively straightforward to add event listeners to any attribute in a model, giving
developers fine-grained control over what changes in the view.

o Supports data bindings through manual events or a separate Key-value observing
(KVO) library.

o Offers support for RESTful interfaces out of the box, so models can be easily tied
to a backend.

o Possesses an extensive eventing system. It’s trivial to add support for Publish/
Subscribe in Backbone.

22 | Chapter2: Fundamentals

www.it-ebooks.info


http://bit.ly/11eUlKq
http://www.it-ebooks.info/

« Instantiates prototypes with the new keyword, which some developers prefer.

o Is agnostic about templating frameworks; however, Underscore’s microtemplating
is available by default.

o Provides clear and flexible conventions for structuring applications. Backbone
doesn’t force usage of all of its components and can work with only those needed.

Used by

Disqus
Disqus chose Backbone.js to power the latest version of its commenting widget
(shown in Figure 2-5). It felt it was the right choice for its distributed web app, given
Backbone’s small footprint and ease of extensibility.

DISGQUS

Elevating the discussion, anywhere
on the web.

Gt this on your site

3 comments * azsun | -

‘ Pt s6ma BatDont 1 your comment)..

Diussicn = Community My Dincpen o-

Wisthon Churenl - 2 mrutes o

Kok o wob Pt @ P VISSEr Amanget Us. Poay SYARgH,
WRATS your name 2 what ane you doing heeo?

e v - Ragly e

72 Martyn Monwo - 3 s i
WISt st Naggerba? Whibie re wo SeywayT
Wa v gty - o

D O ey e s - pwen
|k YU Medn Whan are weT
Y y - Srar

Figure 2-5. The Disqus discussion widget

Khan Academy
Offering a web app that aims to provide free world-class education to anyone any-
where, Khan uses Backbone to keep its frontend code both modular and organized
(Figure 2-6).

FastFacts | 23

www.it-ebooks.info


http://www.it-ebooks.info/

Eaarcine Dasbbourd | Kha

* © wwwknanatasemy.cg enercs " ey
I KHANACADEMY WARCH-  PRACTICE COMH VOUNTERR  ABOUT

Map

Il do it

Figure 2-6. The Khan Academy Knowledge Map

MetaLab
Metalab created Flow, a task management app for teams using Backbone
(Figure 2-7). Its workspace uses Backbone to create task views, activities, accounts,
tags, and more.

ann Flow > Tasks

Figure 2-7. The Flow online task management application

24 | Chapter 2: Fundamentals

www.it-ebooks.info


http://www.it-ebooks.info/

Walmart Mobile
Walmart chose Backbone to power its mobile web applications (Figure 2-8), cre-
ating two new extension frameworks in the process: Thorax and Lumbar. We'll be
discussing both of these later in the book.

Figure 2-8. Walmart Mobile

Airbnb
Airbnb (Figure 2-9) developed its mobile web app using Backbone and now uses it
across many of its products.

FastFacts | 25

www.it-ebooks.info


http://www.it-ebooks.info/

800 NYC Vatatian Rentals And Rocams Fos Rend - Arbob. |

Aealil remnws sowu o B e T Sucont - ) Eaghen - (D USD - | Listyour space.

Figure 2-9. The Airbnb home page

Code School
Code School’s course challenge app (Figure 2-10) was built from the ground up
using Backbone, taking advantage of all the pieces it has to offer: routers, collections,
models, and complex event handling.

CXeXe) Code Schodl - CofferScript |
ot
Fanctions ITT ertfuSrt
Given the code below, change the greet function so that ﬁ
it accopts two arguments instead of just one. It should
S ~alert both arguments, separated by a single white space. 0

((comeesarmn | [weis ) (1)
ICSIIERE e renane
s i e o

2. When caling functions Hhat Lake arguments, you can omi the parens

RematckVide @

Sherleats @
Demnbiad Stdes 6
Drwnboad lideo

Figure 2-10. The Code School learning environment

26 | Chapter2: Fundamentals

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 3
Backbone Basics

Inthis section, you'll learn the essentials of Backbone’s models, views, collections, events,
and routers. This isn’t by any means a replacement for the official documentation, but
it will help you understand many of the core concepts behind Backbone before you start
building applications using it.

Getting Set Up

Before we dive into more code examples, let’s define some boilerplate markup you can
use to specify the dependencies Backbone requires. This boilerplate can be reused in
many ways with little to no alteration and will allow you to run code from examples
with ease.

You can paste the following into your text editor of choice, replacing the commented
line between the <script> tags with the JavaScript from any given example:

<!DOCTYPE HTML>
<html>
<head>
<meta charset="UTF-8">
<titlesTitle</title>
</head>
<body>

<script src="https://ajax.googleapis.com/ajax/1libs/jquery/1.9.1/jquery.min.js">
</script>
<script src="http://documentcloud.github.com/underscore/underscore-min.js">
</script>
<script src="http://documentcloud.github.com/backbone/backbone-min.js">
</script>
<script>

// Your code goes here
</script>

27

www.it-ebooks.info


http://www.it-ebooks.info/

</body>

</html>
You can then save and run the file in your browser of choice, such as Chrome or Firefox.
Alternatively, if you prefer working with an online code editor, jsFiddle and jsBin ver-
sions of this boilerplate are also available.

Most examples can also be run directly from within the console in your browser’s de-
veloper tools, assuming you've loaded the boilerplate HTML page so that Backbone and
its dependencies are available for use.

For Chrome, you can open up the DevTools via the Chrome menu in the top-right
corner: select Tools—>Developer Tools or alternatively use the Ctrl+Shift+I shortcut on
Windows/Linux or #-Alt-I on Mac. See Figure 3-1.

*  Elements Resources Network Sources Timeline Profiles Audits | Console |

» var Meal = Backbone.Model.extend({
defaults: {
“appetizer': "caesar salad",
"entree": "hamburger",
"dessert": ""cheesecake"
}
12l

var Lunch = new Meal({ appetizer: “soup", entree: “pizza"});
Lunch
¥ child {cid: "c1", attributes: Object, _changing: false, _previousAttributes: Object, changed: Object..}
_changing: false
_pending: false
» _previousAttributes: Object
» attributes: Object
» changed: Object
cid: "c1"

> o__: Surrogate

el
u‘ = Q @ <topframe> ¥ <page context> v () | Errors Warnings Legs Debug -3

Figure 3-1. The Chrome DevTools console

Next, switch to the Console tab, from which you can enter and run any piece of JavaScript
code by pressing the return key. You can also use the Console as a multiline editor using
the Shift+Enter shortcut on Windows, or Ctrl-Enter shortcut on Mac, to move from the
end of one line to the start of another.

Models

Backbone models contain data for an application as well as the logic around this data.
For example, we can use a model to represent the concept of a todo item, including its
attributes like title (todo content) and completed (current state of the todo).

We can create models by extending Backbone .Model as follows:

var Todo = Backbone.Model.extend({});

// We can then create our own concrete instance of a (Todo) model
// with no values at all:
var todol = new Todo();

28 | Chapter3:Backbone Basics

www.it-ebooks.info


http://bit.ly/18ZzHvy
http://bit.ly/11TjCoC
http://www.it-ebooks.info/

// Following logs: {}
console.log(JSON.stringify(todol));

// or with some arbitrary data:

var todo2 = new Todo({
title: 'Check the attributes of both model instances in the console.',
completed: true

s

// Following logs: {"title":"Check the attributes of both model

// instances in the console.", "completed":true}
console.log(JSON.stringify(todo2));

Initialization

The initialize() method is called when a new instance of a model is created. Its use
is optional; however, here you'll see why it’s good practice to use it.

var Todo = Backbone.Model.extend({
initialize: function(){
console.log('This model has been initialized.');
}
H;

var myTodo = new Todo();
// Logs: This model has been initialized.

Default values

There are times when you want your model to have a set of default values (e.g., in a
scenario where a complete set of data isn’t provided by the user). You can set these using
a property called defaults in your model.

var Todo = Backbone.Model.extend({
// Default todo attribute values
defaults: {
title: '',
completed: false
}
H;

// Now we can create our concrete instance of the model
// with default values as follows:
var todol = new Todo();

// Following logs: {"title":"", "completed":false}
console.log(JSON.stringify(todol));

// Or we could instantiate it with some of the attributes (e.g., with
// custom title):
var todo2 = new Todo({

title: 'Check attributes of the logged models in the console.'

Models | 29

www.it-ebooks.info


http://www.it-ebooks.info/

s

// Following logs: {"title":"Check attributes of the logged models

// in the console.", "completed": false}
console.log(JSON.stringify(todo2));

// Or override all of the default attributes:

var todo3 = new Todo({
title: 'This todo is done, so take no action on this one.',
completed: true

s

// Following logs: {"title":"This todo is done, so take no action on
// this one.","completed":true}
console.log(JSON.stringify(todo3));

Getters and Setters

Model.get()
Model.get() provides easy access to a model’s attributes.

var Todo = Backbone.Model.extend({
// Default todo attribute values
defaults: {
title: "',
completed: false
}
b

var todol = new Todo();
console.log(todol.get('title')); // empty string
console.log(todol.get('completed')); // false

var todo2 = new Todo({
title: "Retrieved with model's get() method.",
completed: true

H;
console.log(todo2.get('title')); // Retrieved with model's get() method.

console.log(todo2.get('completed')); // true

If you need to read or clone all of a model’s data attributes, use its toJSON() method.
This method returns a copy of the attributes as an object (not a JSON string, despite its
name). (When JSON.stringify() is passed an object with a toJSON() method, it
stringifies the return value of toJSON() instead of the original object. The examples in
the previous section took advantage of this feature when they called JSON.stringi
fy() to log model instances.)

var Todo = Backbone.Model.extend({

// Default todo attribute values
defaults: {

30 | Chapter3:Backbone Basics

www.it-ebooks.info


http://www.it-ebooks.info/

title: '',
completed: false
}
b

var todol = new Todo();

var todolAttributes = todol.toJSON();

// Following logs: {"title":"", "completed":false}
console.log(todolAttributes);

var todo2 = new Todo({
title: "Try these examples and check results in console.",
completed: true

s

// logs: {"title":"Try these examples and check results in console.",
// "completed":true}
console.log(todo2.toJSON());

Model.set()

Model.set() sets a hash containing one or more attributes on the model. When any of
these attributes alter the state of the model, a change event is triggered on it. Change
events for each attribute are also triggered and can be bound to the model (such as
change:name, change:age).

var Todo = Backbone.Model.extend({
// Default todo attribute values
defaults: {
title: "',
completed: false
}
b

// Setting the value of attributes via instantiation
var myTodo = new Todo({

title: "Set through instantiation."
b
console.log('Todo title: ' + myTodo.get('title'));
// Todo title: Set through instantiation.
console.log('Completed: ' + myTodo.get('completed'));
// Completed: false

// Set single attribute value at a time through Model.set():
myTodo.set("title", "Title attribute set through Model.set().");
console.log('Todo title: ' + myTodo.get('title'));

// Todo title: Title attribute set through Model.set().
console.log('Completed: ' + myTodo.get('completed'));

// Completed: false

// Set map of attributes through Model.set():
myTodo.set({

Models | 31

www.it-ebooks.info


http://www.it-ebooks.info/

title: "Both attributes set through Model.set().",
completed: true
H;
console.log('Todo title: ' + myTodo.get('title'));
// Todo title: Both attributes set through Model.set().
console.log('Completed: ' + myTodo.get('completed'));
// Completed: true

Direct access

Models expose an . attributes attribute, which represents an internal hash containing
the state of that model. This is generally in the form of a JSON object similar to the
model data you might find on the server, but it can take other forms.

Setting values through the .attributes attribute on a model bypasses triggers bound
to the model.

Passing {silent:true} on change doesn't delay individual "change:attr" events; in-
stead, they are silenced entirely:

var Person = new Backbone.Model();
Person.set({name: 'Jeremy'}, {silent: true});

console.log(!Person.hasChanged(0));
// true

console.log(!Person.hasChanged('"'));

// true

Remember, where possible it is best practice to use Model. set(), or direct instantiation
as explained earlier.

Listening for Changes to Your Model

If you want to receive a notification when a Backbone model changes, you can bind a
listener to the model for its change event. A convenient place to add listeners is in the
initialize() function, as shown here:

var Todo = Backbone.Model.extend({
// Default todo attribute values
defaults: {
title: "',
completed: false
1,
initialize: function(){
console.log('This model has been initialized.');
this.on('change', function(){
console.log('- Values for this model have changed.');
b;
}
b

32 | Chapter3:Backbone Basics

www.it-ebooks.info


http://www.it-ebooks.info/

var myTodo = new Todo();

myTodo.set('title', 'The listener is triggered whenever an attribute
// value changes.');
console.log('Title has changed: ' + myTodo.get('title'));

myTodo.set('completed', true);
console.log('Completed has changed:

+ myTodo.get('completed'));

myTodo.set({

title: 'Changing more than one attribute at the same time only triggers
// the listener once.',

completed: true

s

// Above logs:

// This model has been initialized.

// - Values for this model have changed.

// Title has changed: The listener is triggered when an attribute value changes.
// - Values for this model have changed.

// Completed has changed: true

// - Values for this model have changed.

You can also listen for changes to individual attributes in a Backbone model. In the
following example, we log a message whenever a specific attribute (the title of our Todo
model) is altered.

var Todo = Backbone.Model.extend({
// Default todo attribute values
defaults: {
title: '',
completed: false

1

initialize: function(){
console.log('This model has been initialized.');
this.on('change:title', function(){
console.log('Title value for this model has changed.');
b;
},

setTitle: function(newTitle){
this.set({ title: newTitle });
}
b

var myTodo = new Todo();
// Both of the following changes trigger the listener:

myTodo.set('title', 'Check what\'s logged.');
myTodo.setTitle('Go fishing on Sunday.');

Models | 33

www.it-ebooks.info


http://www.it-ebooks.info/

// But this change type is not observed, so no listener is triggered:
myTodo.set('completed', true);
console.log('Todo set as completed: ' + myTodo.get('completed'));

// Above logs:

// This model has been initialized.

// Title value for this model has changed.
// Title value for this model has changed.
// Todo set as completed: true

Validation

Backbone supports model validation through model.validate(), which allows check-
ing the attribute values for a model prior to setting them. By default, validation occurs
when the model is persisted via the save() method or when set() is called if {valti
date:true} is passed as an argument.

var Person = new Backbone.Model({name: 'Jeremy'});

// Validate the model name
Person.validate = function(attrs) {
if (!attrs.name) {
return 'I need your name';
}
b

// Change the name
Person.set({name: 'Samuel'});
console.log(Person.get('name'));
// 'Samuel'’

// Remove the name attribute, force validation
Person.unset('name', {validate: true});

// false

We also make use of the unset() method, which removes an attribute by deleting it
from the internal model attribute’s hash.

Validation functions can be as simple or complex as necessary. If the attributes provided
are valid, nothing should be returned from .validate(). If they are invalid, an error
value should be returned instead.

Should an error be returned:
« An invalid event will be triggered, setting the validationError property on the

model with the value that is returned by this method.

o .save() will not continue and the attributes of the model will not be modified on
the server.

34 | Chapter3:Backbone Basics

www.it-ebooks.info


http://www.it-ebooks.info/

Here is a more complete validation example:

var Todo = Backbone.Model.extend({
defaults: {
completed: false
1

validate: function(attribs){
if(attribs.title === undefined){
return "Remember to set a title for your todo.";
}
}s

initialize: function(){
console.log('This model has been initialized.');
this.on("invalid", function(model, error){
console.log(error);
H;
}
H;

var myTodo = new Todo();

myTodo.set('completed', true, {validate: true});

// logs: Remember to set a title for your todo.

console.log('completed: ' + myTodo.get('completed')); // completed: false

)
3 The attributes object passed to the validate function represents what
.‘.: . the attributes would be after the current set() or save() completes.
¢i%" This object is distinct from the current attributes of the model and from

the parameters passed to the operation. Since it is created by shallow
copy, it is not possible to change any Number, String, or Boolean at-
tribute of the input within the function, but it is possible to change
attributes in nested objects.

An example of this (by @fivetanley) is available at http://jsfiddle.net/2NdDY/7/.

Views

Views in Backbone don’t contain the HTML markup for your application; they contain
the logic behind the presentation of the model’s data to the user. They achieve this using
JavaScript templating (for example, Underscore microtemplates, Mustache, jQuery-
tmpl, and so on). A view’s render () method can be bound to a model’s change() event,
enabling the view to instantly reflect model changes without requiring a full page refresh.

Views | 35

www.it-ebooks.info


http://jsfiddle.net/2NdDY/7/
http://www.it-ebooks.info/

Creating New Views

Creating a new view is relatively straightforward and similar to creating new models.
To create a new view, simply extend Backbone.View. We introduced the following sam-
ple TodoView in the previous chapter; now let’s take a closer look at how it works.

var TodoView = Backbone.View.extend({
tagName: 'li',

// Cache the template function for a single item.
todoTpl: _.template( "An example template" ),

events: {
'dblclick label': 'edit',
'keypress .edit': 'updateOnEnter',
'blur .edit': 'close’

3

// Rerender the titles of the todo 1item.

render: function() {
this.$el.html( this.todoTpl( this.model.toJSON() ) );
this.input = this.$('.edit');
return this;

I3

edit: function() {
// executed when todo label is double-clicked

I3

close: function() {
// executed when todo loses focus

I3

updateOnEnter: function( e ) {
// executed on each keypress when in todo edit mode,
// but we'll wait for enter to get in action
}
b

var todoView = new TodoView();

// log reference to a DOM element that corresponds to the view instance
console.log(todoView.el); // logs <li></li>

What s el?

The central property of a view is el (the value logged in the last statement of the exam-
ple). What is el and how is it defined?

36 | Chapter3:Backbone Basics

www.it-ebooks.info


http://www.it-ebooks.info/

el is basically a reference to a DOM element, and all views must have one. Views can
use el to compose their element’s content and then insert it into the DOM all at once,
which makes for faster rendering because the browser performs the minimum required
number of reflows and repaints.

There are two ways to associate a DOM element with a view: a new element can be
created for the view and subsequently added to the DOM, or a reference can be made
to an element that already exists in the page.

If you want to create a new element for your view, set any combination of the following
properties on the view: tagName, id, and className. The framework will create a new
element for you, and a reference to it will be available at the el property. If nothing is
specified, tagName defaults to div.

In the preceding example, tagName is set to 11, resulting in the creation of a 11 element.
The following example creates a ul element with id and class attributes:

var TodosView = Backbone.View.extend({

tagName: 'ul', // required, but defaults to 'div' if not set

className: 'container', // optional, you can assign multiple classes to
// this property like so: 'container homepage'

id: 'todos', // optional
H;

var todosView = new TodosView();
console.log(todosView.el); // logs <ul id="todos" class="container"></ul>

The preceding code creates the following DOM element but doesn’t append it to the
DOM.

<ul id="todos" class="container"s</ul>

If the element already exists in the page, you can set el as a CSS selector that matches
the element.

el: '#footer'
Alternatively, you can set el to an existing element when creating the view:

var todosView = new TodosView({el: $('#footer')});

W S
= When declaring a view, you can define options, el, tagName, id, and
t‘;‘.‘ . ClassName as functions, if you want their values to be determined at
0" runtime.
Seland $()

View logic often needs to invoke jQuery or Zepto functions on the el element and
elements nested within it. Backbone makes it easy to do so by defining the $el property

Views | 37

www.it-ebooks.info


http://www.it-ebooks.info/

and $() function. The view.$el property is equivalent to $(view.el), and view.$
(selector) isequivalentto $(view.el).find(selector).In our TodosView example’s
render method, we see this.$el used to set the HTML of the element and this.$()
used to find subelements of class edit.

setElement

If you need to apply an existing Backbone view to a different DOM element, you can
use setElement. Overriding this.el needs to both change the DOM reference and
rebind events to the new element (and unbind from the old).

setElement will create a cached $el reference for you, moving the delegated events for
a view from the old element to the new one.

// We create two DOM elements representing buttons
// which could easily be containers or something else
var buttonl = $('<button></button>');

var button2 = $('<button></button>');

// Define a new view
var View = Backbone.View.extend({
events: {
click: function(e) {
console.log(view.el === e.target);
}
}
s

// Create a new instance of the view, applying it
// to buttoni
var view = new View({el: buttoni});

// Apply the view to button2 using setElement
view.setElement(button2);

buttonl.trigger('click');
button2.trigger('click'); // returns true

The el property represents the markup portion of the view that will be rendered; to get
the view to actually render to the page, you need to add it as a new element or append
it to an existing element.

// We can also provide raw markup to setElement

// as follows (just to demonstrate it can be done):
var view = new Backbone.View;
view.setElement('<p><a><b>test</b></a></p>"');
view.$('a b').html(); // outputs "test"

38

|  Chapter 3: Backbone Basics

www.it-ebooks.info


http://www.it-ebooks.info/

Understanding render()

render () is an optional function that defines the logic for rendering a template. We’ll
use Underscore’s microtemplating in these examples, but remember you can use other
templating frameworks if you prefer. Our example will reference the following HTML
markup:

<!doctype html>
<html lang="en">
<head>
<meta charset="utf-8">
<title></title>
<meta name="description" content="">
</head>
<body>
<div id="todo">
</div>
<script type="text/template" id="item-template"s>
<div>
<input id="todo_complete" type="checkbox" <%= completed ?
'checked="checked"' : '' %>>
<%= title %>
</div>
</script>
<script src="underscore-min.js"></script>
<script src="backbone-min.js"></script>
<script src="jquery-min.js"></script>
<script src="example.js"></script>
</body>
</html>

The _.template method in Underscore compiles JavaScript templates into functions
that can be evaluated for rendering. In the TodoView, I'm passing the markup from the

template with an id of item-template to _.template() to be compiled and stored in
the todoTpl property when the view is created.

The render () method uses this template by passing it the toJSON() encoding of the
attributes of the model associated with the view. The template returns its markup after
using the model’s title and completed flag to evaluate the expressions containing them.
I then set this markup as the HTML content of the el DOM element using the $el

property.
Presto! This populates the template, giving you a data-complete set of markup in just a
few short lines of code.

Views | 39

www.it-ebooks.info


http://www.it-ebooks.info/

A common Backbone convention is to return this at the end of render (). This is useful
for a number of reasons, including:

» Making views easily reusable in other parent views

o Creating a list of elements without rendering and painting each of them individu-
ally, only to be drawn once the entire list is populated

Let’s try to implement the latter of these. The render method of a simple ListView that
doesn’t use an ItemView for each item could be written as follows:

var ListView = Backbone.View.extend({
render: function(){
this.Sel.html(this.model.toJSON());
}
b

Simple enough. Let’s now assume we've decided to construct the items using an Item
View to provide enhanced behavior to our list. The ItemView could be written like so:

var ItemView = Backbone.View.extend({
events: {},
render: function(){
this.$el.html(this.model.toJSON());
return this;
}
b

Note the usage of return this; at the end of render. This common pattern enables us
toreuse the view as a subview. We can also use it to prerender the view prior to rendering.
Doing so requires that we make a change to our ListViews render method as follows:

var ListView = Backbone.View.extend({
render: function(){

// Assume our model exposes the items we will
// display in our list
var items = this.model.get('items');

// Loop through each of our items using the Underscore
// _.each 1iterator
_.each(items, function(item){

// Create a new instance of the ItemView, passing
// it a specific model item
var itemView = new ItemView({ model: item });
// The itemView's DOM element is appended after it
// has been rendered. Here, the 'return this' is helpful
// as the itemView renders its model. Later, we ask for
// its output ("el")
this.$el.append( itemView.render().el );
}, this);

40 | Chapter3:Backbone Basics

www.it-ebooks.info


http://www.it-ebooks.info/

}
19K

The events hash

The Backbone events hash allows us to attach event listeners to either el-relative cus-
tom selectors, or directly to el if no selector is provided. An event takes the form of a
key-value pair 'eventName selector': 'callbackFunction',andanumber of DOM
event types are supported, including click, submit, mouseover, dblclick, and more.

// A sample view
var TodoView = Backbone.View.extend({
tagName: '11',

// with an events hash containing DOM events
// specific to an item:
events: {
'click .toggle': 'toggleCompleted',
'dblclick label': 'edit',
'click .destroy': 'clear',
'blur .edit': 'close'

3

What isn’t instantly obvious is that while Backbone uses jQuery’s .delegate() under-
neath, it goes further by extending it so that this always refers to the current view object
within callback functions. The only thing to really keep in mind is that any string callback
supplied to the events attribute must have a corresponding function with the same
name within the scope of your view.

The declarative, delegated jQuery events means that you don’t have to worry about
whether a particular element has been rendered to the DOM yet or not. Usually with
jQuery you have to worry about presence or absence in the DOM all the time when
binding events.

In our TodoView example, the edit callback is invoked when the user double-clicks a
label element within the el element, updateOnEnter is called for each keypress in an
element with class edit, and close executes when an element with class edit loses
focus. Each of these callback functions can use this to refer to the TodoView object.

Note that you can also bind methods yourself using _.bind(this.viewEvent, this),
which is effectively what the value in each event’s key-value pair is doing. Here we use
_.bind to rerender our view when a model changes:

var TodoView = Backbone.View.extend({
initialize: function() {
this.model.bind('change', _.bind(this.render, this));
}
H;

Views | 41

www.it-ebooks.info


http://www.it-ebooks.info/

_.bind works on only one method at a time, but it supports currying; because it returns
the bound function, you can use _.bind on an anonymous function.

Collections

Collectionsare sets of models, and you create them by extending Backbone . Collection.

Normally, when creating a collection you'll also want to define a property specifying the
type of model that your collection will contain, along with any instance properties
required.

In the following example, we create a TodoCollection that will contain our Todo
models:

var Todo = Backbone.Model.extend({
defaults: {
title: "',
completed: false
}
s

var TodosCollection = Backbone.Collection.extend({
model: Todo

s
var myTodo = new Todo({title:'Read the whole book', id: 2});

// pass array of models on collection instantiation
var todos = new TodosCollection([myTodo]);
console.log("Collection size: " + todos.length); // Collection size: 1

Adding and Removing Models

The preceding example populated the collection using an array of models when it was
instantiated. After a collection has been created, you can add and remove models using
the add() and remove() methods:

var Todo = Backbone.Model.extend({
defaults: {
title: "',
completed: false
}
H;

var TodosCollection = Backbone.Collection.extend({
model: Todo,

s

var a = new Todo({ title: 'Go to Jamaica.'}),
new Todo({ title: 'Go to China.'}),

o
I

42 | Chapter3:Backbone Basics

www.it-ebooks.info


http://www.it-ebooks.info/

c = new Todo({ title: 'Go to Disneyland.'});

var todos = new TodosCollection([a,b]);
console.log("Collection size: " + todos.length);
// Logs: Collection size: 2

todos.add(c);
console.log("Collection size: " + todos.length);
// Logs: Collection size: 3

todos.remove([a,b]);
console.log("Collection size:
// Logs: Collection size: 1

+ todos.length);

todos.remove(c);
console.log("Collection size: " + todos.length);
// Logs: Collection size: 0

Note that add() and remove() accept both individual models and lists of models.

Also note that when you are using add() on a collection, passing {merge: true} causes
duplicate models to have their attributes merged into the existing models, instead of
being ignored.

var items = new Backbone.Collection;

items.add([{ id : 1, name: "Dog" , age: 3}, { id : 2, name: "cat" , age: 2}]);

items.add([{ id : 1, name: "Bear" }], {merge: true });

items.add([{ id : 2, name: "lion" }]); // merge: false

console.log(JSON.stringify(items.toJSON()));
// [{"id":1, "name": "Bear", "age":3},{"id":2, "name": "cat", "age":2}]

Retrieving Models

There are a few different ways to retrieve a model from a collection. The most straight-
forward is to use Collection.get(), which accepts a single id as follows:

var myTodo = new Todo({title:'Read the whole book', id: 2});

// pass array of models on collection instantiation
var todos = new TodosCollection([myTodo]);

var todo2 = todos.get(2);

// Models, as objects, are passed by reference
console.log(todo2 === myTodo); // true

In client-server applications, collections contain models obtained from the server. Any-
time youre exchanging data between the client and a server, you will need a way to
uniquely identify models. In Backbone, you do so using the id, cid, and idAttribute
properties.

Collections | 43

www.it-ebooks.info


http://www.it-ebooks.info/

Each model in Backbone has an 1d, which is a unique identifier that is either an integer
or string (for example, a UUID). Models also have a cid (client ID) which is
automatically generated by Backbone when the model is created. Either identifier can
be used to retrieve a model from a collection.

The main difference between them is that the cid is generated by Backbone, which is
helpful when you don’t have a true id; this may be the case if your model has yet to be
saved to the server or you aren’t saving it to a database.

The 1dAttribute is the identifying attribute of the model returned from the server (i.e.,
the 1d in your database). This tells Backbone which data field from the server should
be used to populate the id property (think of it as a mapper). By default, it assumes
id, but this can be customized as needed. For instance, if your server sets a unique
attribute on your model named userId, then you would set idAttribute to userIdin
your model definition.

The value of a model’s idAttribute should be set by the server when the model is saved.
After this point, you shouldn’t need to set it manually, unless further control is required.

Internally, Backbone.Collection contains an array of models enumerated by their id
property, if the model instances happen to have one. When collection.get(id) is
called, this array is checked for the existence of the model instance with the corre-
sponding id.

// extends the previous example

var todoCid = todos.get(todo2.cid);

// As mentioned in previous example,
// models are passed by reference
console.log(todoCid === myTodo); // true

Listening for Events

Because collections represent a group of items, we can listen for add and remove events,
which occur when models are added to or removed from a collection. Here’s an example:

var TodosCollection = new Backbone.Collection();

TodosCollection.on("add", function(todo) {
console.log("I should " + todo.get("title") + ". Have I done it before? "
+ (todo.get("completed") ? 'Yeah!': 'No.' ));

b

TodosCollection.add([
{ title: 'go to Jamaica', completed: false },
{ title: 'go to China', completed: false },
{ title: 'go to Disneyland', completed: true }
D;

44 | Chapter 3: Backbone Basics

www.it-ebooks.info


http://www.it-ebooks.info/

// The above logs:

// I should go to Jamaica. Have I done it before? No.

// I should go to China. Have I done it before? No.

// I should go to Disneyland. Have I done it before? Yeah!

In addition, we’re also able to bind to a change event to listen for changes to any of the
models in the collection.

var TodosCollection = new Backbone.Collection();

// log a message if a model in the collection changes
TodosCollection.on("change:title", function(model) {
console.log("Changed my mind! I should " + model.get('title'));

K

TodosCollection.add([
{ title: 'go to Jamaica.', completed: false, id: 3 },

s
var myTodo = TodosCollection.get(3);

myTodo.set('title', 'go fishing');
// Logs: Changed my mind! I should go fishing

jQuery-style event maps of the form obj.on({click: action}) canalso beused. These
can be clearer than using three separate calls to .on, and should align better with the
events hash used in views:

var Todo = Backbone.Model.extend({
defaults: {
title: "',
completed: false
}
H;

var myTodo = new Todo();
myTodo.set({title: 'Buy some cookies', completed: true});

myTodo.on({
'change:title' : titleChanged,
'change:completed' : stateChanged
b;

function titleChanged(){
console.log('The title was changed!');

}

function stateChanged(){
console.log('The state was changed!');

}

Collections | 45

www.it-ebooks.info


http://www.it-ebooks.info/

myTodo.set({title: 'Get the groceries'});
// The title was changed!

Backbone events also support a once() method, which ensures that a callback fires only
one time when a notification arrives. It is similar to Node’s once, or jQuery’s one. This
is particularly useful for when you want to say, “The next time something happens, do
this”

// Define an object with two counters

var TodoCounter = { counterA: 0, counterB: 0 };
// Mix in Backbone Events
_.extend(TodoCounter, Backbone.Events);

// Increment counterA, triggering an event

var incrA = function(){
TodoCounter.counterA += 1;
TodoCounter.trigger('event');

b

// Increment counterB
var incrB = function(){
TodoCounter.counterB += 1;

1

// Use once rather than having to explicitly unbind
// our event listener

TodoCounter.once('event', incrA);
TodoCounter.once('event', incrB);

// Trigger the event once again
TodoCounter.trigger('event');

// Check our output
console.log(TodoCounter.counterA === 1); // true
console.log(TodoCounter.counterB === 1); // true

counterA and counterB should have been incremented only once.

Resetting/Refreshing Collections

Rather than adding or removing models individually, you might want to update an entire
collection at once. Collection.set() takes an array of models and performs the nec-
essary add, remove, and change operations required to update the collection.

var TodosCollection = new Backbone.Collection();

TodosCollection.add([
{ id: 1, title: 'go to Jamaica.', completed: false },
{ id: 2, title: 'go to China.', completed: false },
{ id: 3, title: 'go to Disneyland.', completed: true }
IDH

46 | Chapter3:Backbone Basics

www.it-ebooks.info


http://backbonejs.org/#Events-once
http://nodejs.org/api/events.html#events_emitter_once_event_listener
http://api.jquery.com/one/
http://www.it-ebooks.info/

// we can listen for add/change/remove events
TodosCollection.on("add", function(model) {

console.log("Added " + model.get('title'));
b

TodosCollection.on("remove", function(model) {
console.log("Removed " + model.get('title'));

s

TodosCollection.on("change:completed", function(model) {
console.log("Completed " + model.get('title'));
b

TodosCollection.set([
{ id: 1, title: 'go to Jamaica.', completed: true },
{ id: 2, title: 'go to China.', completed: false },
{ 1d: 4, title: 'go to Disney World.', completed: false }

D;

// Above logs:

// Removed go to Disneyland.
// Completed go to Jamaica.
// Added go to Disney World.

If you need to simply replace the entire content of the collection, then you can use
Collection.reset() as follows:

var TodosCollection = new Backbone.Collection();

// we can listen for reset events
TodosCollection.on("reset", function() {
console.log("Collection reset.");

K

TodosCollection.add([
{ title: 'go to Jamaica.', completed: false },
{ title: 'go to China.', completed: false },
{ title: 'go to Disneyland.', completed: true }

D;
console.log('Collection size: ' + TodosCollection.length); // Collection size: 3

TodosCollection.reset([
{ title: 'go to Cuba.', completed: false }

s
// Above logs 'Collection reset.'

console.log('Collection size: ' + TodosCollection.length); // Collection size: 1

Collections | 47

www.it-ebooks.info


http://www.it-ebooks.info/

Another useful tip is to use reset with no arguments to clear out a collection completely.
This is handy when youre dynamically loading a new page of results where you want
to blank out the current page of results.

myCollection.reset();

Note that using Collection.reset() doesn't fire any add or remove events. A reset
event is fired instead, as shown in the previous example. The reason you might want to
use this is to perform super-optimized rendering in extreme cases where individual
events are too expensive.

Also note that when you're listening to a reset event, the list of previous models is
available in options.previousModels, for convenience.

var Todo = new Backbone.Model();

var Todos = new Backbone.Collection([Todo])

.on('reset', function(Todos, options) {
console.log(options.previousModels);
console.log([Todo]);
console.log(options.previousModels[0] === Todo); // true

s

Todos.reset([]);
An update() method is available for collections (and is also available as an option to
fetch) for smart updating of sets of models. This method attempts to perform smart
updating of a collection using a specified list of models. When a model in this list isn’t
present in the collection, it is added. If it is present, its attributes will be merged. Models
that are present in the collection but not in the list are removed.

var theBeatles = new Collection(['john', 'paul', 'george', 'ringo']);
theBeatles.update(['john', 'paul', 'george', 'pete']);

// Fires a ‘remove' event for 'ringo', and an ‘add’ event for 'pete'.
// Updates any of john, paul, and george's attributes that may have
// changed over the years.

Underscore Utility Functions

Backbone takes full advantage of its hard dependency on Underscore by making many
of its utilities directly available on collections.

forEach: Iterate over collections

var Todos = new Backbone.Collection();

Todos.add([
{ title: 'go to Belgium.', completed: false },
{ title: 'go to China.', completed: false },
{ title: 'go to Austria.', completed: true }
D;

48 | Chapter3:Backbone Basics

www.it-ebooks.info


http://backbonejs.org/#Collection-reset
http://www.it-ebooks.info/

// iterate over models in the collection

Todos. forEach(function(model){
console.log(model.get('title'));

H;

// Above logs:

// go to Belgium.

// go to China.

// go to Austria.

sortBy(): Sort a collection on a specific attribute

// sort collection
var sortedByAlphabet = Todos.sortBy(function (todo) {
return todo.get("title").toLowerCase();

;s
console.log("- Now sorted: ");

sortedByAlphabet.forEach(function(model){
console.log(model.get('title'));

H;

// Above logs:

// go to Austria.

// go to Belgium.

// go to China.

map(): Create a new collection by mapping each value in a list through a
transformation function

var count = 1;
console.log(Todos.map(function(model){
return count++ + ". " + model.get('title');
1)K
// Above logs:
//1. go to Belgium.
//2. go to China.
//3. go to Austria.

min()/max(): Retrieve item with the min or max value of an attribute

Todos.max(function(model){
return model.id;
}).1id;

Todos.min(function(model){
return model.id;
1.id;

pluck(): Extract a specific attribute

var captions = Todos.pluck('caption');
// returns list of captions

Collections | 49

www.it-ebooks.info


http://www.it-ebooks.info/

filter(): Filter a collection
Filter by an array of model IDs.

var Todos = Backbone.Collection.extend({
model: Todo,
filterById: function(ids){
return this.models.filter(
function(c) {
return _.contains(ids, c.id);
D
}
b;

indexO0f(): Return the item at a particular index within a collection

var People = new Backbone.Collection;

People.comparator = function(a, b) {
return a.get('name') < b.get('name') ? -1 : 1;

};

var tom = new Backbone.Model({name: 'Tom'});
var rob = new Backbone.Model({name: 'Rob'});
var tim = new Backbone.Model({name: 'Tim'});

People.add(tom);
People.add(rob);
People.add(tim);

console.log(People.index0f(rob) === 0); // true
console.log(People.indexOf(tim) === 1); // true
console.log(People.index0f(tom) === 2); // true

any() : Confirm if any of the values in a collection pass an iterator truth test

Todos.any(function(model){

return model.id === 100;
H;
// or
Todos. some(function(model){
return model.id === 100;
b

size(): Return the size of a collection

Todos.size();

// equivalent to
Todos.length;

50 | Chapter3:Backbone Basics

www.it-ebooks.info


http://www.it-ebooks.info/

isEmpty(): Determine whether a collection is empty

var isEmpty = Todos.isEmpty();

groupBy(): Group a collection into groups like items

var Todos = new Backbone.Collection();

Todos.add([
{ title: 'go to Belgium.', completed: false },
{ title: 'go to China.', completed: false },
{ title: 'go to Austria.', completed: true }

D;

// create groups of completed and incomplete models

var byCompleted = Todos.groupBy('completed');

var completed = new Backbone.Collection(byCompleted[true]);
console.log(completed.pluck('title'));

// logs: ["go to Austria."]

In addition, several of the Underscore operations on objects are available as methods
on models.

pick(): Extract a set of attributes from a model

var Todo = Backbone.Model.extend({
defaults: {
title: "',
completed: false
}
H;

var todo = new Todo({title: 'go to Austria.'});
console.log(todo.pick('title'));
// logs {title: "go to Austria"}

omit(): Extract all attributes from a model except those listed

var todo = new Todo({title: 'go to Austria.'});
console.log(todo.omit('title'));
// logs {completed: false}

keys() and values(): Get lists of attribute names and values

var todo = new Todo({title: 'go to Austria.'});
console.log(todo.keys());
// logs: ["title", "completed"]

console.log(todo.values());
//logs: ["go to Austria.", false]

Collections | 51

www.it-ebooks.info


http://www.it-ebooks.info/

pairs(): Get list of attributes as [key, value] pairs

var todo = new Todo({title: 'go to Austria.'});
var pairs = todo.pairs();

console.log(pairs[0]);

// logs: ["title", "go to Austria."]
console.log(pairs[1]);

// logs: ["completed", false]

invert(): Create object in which the values are keys and the attributes are values

var todo = new Todo({title: 'go to Austria.'});
console.log(todo.invert());

// logs: {go to Austria.: "title", false: "completed"}

You can find the complete list of what Underscore can do in its official docs.

Chainable API

Speaking of utility methods, another bit of sugar in Backbone is its support for Under-
score’s chain() method. Chaining is a common idiom in object-oriented languages; a
chain is a sequence of method calls on the same object that are performed in a single
statement. While Backbone makes Underscore’s array manipulation operations avail-
able as methods of collection objects, they cannot be directly chained since they return
arrays rather than the original collection.

Fortunately, the inclusion of Underscore’s chain() method enables you to chain calls
to these methods on collections.

The chain() method returns an object that has all of the Underscore array operations
attached as methods that return that object. The chain ends with a call to the value()
method, which simply returns the resulting array value. In case you haven’t seen it
before, the chainable API looks like this:

var collection = new Backbone.Collection([
{ name: 'Tim', age: 5 },
{ name: 'Ida', age: 26 },
{ name: 'Rob', age: 55 }

s

var filteredNames = collection.chain()
// start chain, returns wrapper around collection's models
.filter(function(item) { return item.get('age') > 10; })
// returns wrapped array excluding Tim
.map(function(item) { return item.get('name'); })
// returns wrapped array containing remaining names
.value(); // terminates the chain and returns the resulting array

console.log(filteredNames); // logs: ['Ida', 'Rob']

52 | Chapter3:Backbone Basics

www.it-ebooks.info


http://documentcloud.github.com/underscore/
http://www.it-ebooks.info/

Some of the Backbone-specific methods do return this, which means they can be
chained as well:

var collection = new Backbone.Collection();

collection
.add({ name: 'John', age: 23 })
.add({ name: 'Harry', age: 33 })
.add({ name: 'Steve', age: 41 });

var names = collection.pluck('name');

console.log(names); // logs: ['John', 'Harry', 'Steve']

RESTful Persistence

Thus far, all of our example data has been created in the browser. For most single-page
applications, the models are derived from a data set residing on a server. This is an area
in which Backbone dramatically simplifies the code you need to write to perform
RESTful synchronization with a server through a simple API on its models and
collections.

Fetching Models from the Server

Collections.fetch() retrieves a set of models from the server in the form of a JSON
array by sending an HTTP GET request to the URL specified by the collection’s url
property (which may be a function). When this data is received, a set () will be executed
to update the collection.

var Todo = Backbone.Model.extend({
defaults: {
title: '',
completed: false
}
H;

var TodosCollection = Backbone.Collection.extend({
model: Todo,
url: '/todos'

s

var todos = new TodosCollection();
todos.fetch(); // sends HTTP GET to /todos

Saving Models to the Server

While Backbone can retrieve an entire collection of models from the server at once,
updates to models are performed individually via the model’s save() method. When

RESTful Persistence | 53

www.it-ebooks.info


http://www.it-ebooks.info/

save() is called on a model that was fetched from the server, it constructs a URL by
appending the model’s id to the collection’s URL and sends an HTTP PUT to the server.
If the model is a new instance that was created in the browser (it doesn’t have an id),
then an HTTP POST is sent to the collection’s URL. Collections.create() can be used
to create a new model, add it to the collection, and send it to the server in a single
method call.

var Todo = Backbone.Model.extend({
defaults: {
title: '',
completed: false
}
b

var TodosCollection = Backbone.Collection.extend({
model: Todo,
url: '/todos'

b;

var todos = new TodosCollection();
todos.fetch();

var todo2 = todos.get(2);
todo2.set('title', 'go fishing');
todo2.save(); // sends HTTP PUT to /todos/2

todos.create({title: 'Try out code samples'});
// sends HTTP POST to /todos and adds to collection

As mentioned earlier, a model’s validate() method is called automatically by save()
and will trigger an invalid event on the model if validation fails.

Deleting Models from the Server

You can remove a model from the containing collection and the server by calling its
destroy() method. Unlike Collection.remove(), which only removes a model from
a collection, Model.destroy() will also send an HTTP DELETE to the collection’s URL.

var Todo = Backbone.Model.extend({
defaults: {
title: "',
completed: false
}
b

var TodosCollection = Backbone.Collection.extend({
model: Todo,
url: '/todos'

b;

var todos = new TodosCollection();

54 | Chapter3:Backbone Basics

www.it-ebooks.info


http://www.it-ebooks.info/

todos.fetch();

var todo2 = todos.get(2);
todo2.destroy(); // sends HTTP DELETE to /todos/2 and removes from collection

Calling destroy on a model will return false if the model isNew:

var Todo = new Backbone.Model();
console.log(Todo.destroy());
// false

Options

Each RESTful API method accepts a variety of options. Most importantly, all methods
accept success and error callbacks that can be used to customize the handling of server
responses.

Specifying the {patch: true} option to Model.save() will cause it to use HTTP
PATCH to send only the changed attributes (such as partial updates) to the server instead
of the entire model—that is model.save(attrs, {patch: true}):

// Save partial using PATCH

model.clear().set({id: 1, a: 1, b: 2, c: 3, d: 4});
model.save();

model.save({b: 2, d: 4}, {patch: true});
console.log(this.syncArgs.method);

// 'patch’

Similarly, passing the {reset: true} option to Collection.fetch() will result in the
collection being updated using reset() rather than set().

See the Backbone.js documentation for full descriptions of the supported options.

Events

Events are a basic inversion of control. Instead of having one function call another by
name, the second function is registered as a handler to be called when a specific event
occurs.

The part of your application that has to know how to call the other part of your app has
been inverted. This is the core component that makes it possible for your business logic
to not have to know about how your user interface works, and the most powerful thing
about the Backbone events system.

Mastering events is one of the quickest ways to become more productive with Backbone,
so let’s take a closer look at Backbone’s event model.

Backbone.Events is mixed into the other Backbone classes, including:

e Backbone

Events | 55

www.it-ebooks.info


http://www.it-ebooks.info/

o Backbone.Model

o Backbone.Collection
o Backbone.Router

e Backbone.History

¢ Backbone.View

Note that Backbone. Events is mixed into the Backbone object. Since Backbone is glob-
ally visible, it can be used as a simple event bus:

Backbone.on('event', function() {
console.log('Handled Backbone event');

19K

on(), off(), and trigger()

Backbone.Events can give any object the ability to bind and trigger custom events. We
can mix this module into any object easily, and there isn’t a requirement for events to
be declared before being bound to a callback handler. For example:

var ourObject = {};

// Mixin
_.extend(ourObject, Backbone.Events);

// Add a custom event
ourObject.on('dance', function(msg){
console.log('We triggered ' + msg);

s

// Trigger the custom event
ourObject.trigger('dance', 'our event');

If you're familiar with jQuery custom events or the concept of publish/subscribe, Back
bone.Events provides a very similar system, with on being analogous to subscribe and
trigger being similar to publish.

on binds a callback function to an object, as we’ve done with dance in the preceding
example. The callback is invoked whenever the event is triggered.

The official Backbone.js documentation recommends namespacing event names using
colons if you end up having quite a few of these on your page. For example:

var ourObject = {};

// Mixin
_.extend(ourObject, Backbone.Events);

function dancing (msg) { console.log("We started " + msg); }

56 | Chapter3:Backbone Basics

www.it-ebooks.info


http://www.it-ebooks.info/

// Add namespaced custom events
ourObject.on("dance:tap", dancing);
ourObject.on("dance:break", dancing);

// Trigger the custom events
ourObject.trigger("dance:tap", "tap dancing. Yeah!");
ourObject.trigger("dance:break", "break dancing. Yeah!");

// This one triggers nothing as no listener listens for it
ourObject.trigger("dance", "break dancing. Yeah!");

A special all event is made available in case you would like notifications for every event
that occurs on the object (for example, if you would like to screen events in a single
location). The all event can be used as follows:

var ourObject = {};

// Mixin
_.extend(ourObject, Backbone.Events);

function dancing (msg) { console.log("We started " + msg); }
ourObject.on("all", function(eventName){

console.log("The name of the event passed was

s

+ eventName);

// This time each event will be caught with a catch 'all' event listener
ourObject.trigger("dance:tap", "tap dancing. Yeah!");
ourObject.trigger("dance:break", "break dancing. Yeah!");
ourObject.trigger("dance", "break dancing. Yeah!");

of f removes callback functions that were previously bound to an object. Going back to
our publish/subscribe comparison, think of it as an unsubscribe for custom events.

To remove the dance event we previously bound to ourObject, we would simply do:

var ourObject = {};

// Mixin
_.extend(ourObject, Backbone.Events);

function dancing (msg) { console.log("We " + msg); }
// Add namespaced custom events
ourObject.on("dance:tap", dancing);
ourObject.on("dance:break", dancing);

// Trigger the custom events. Each will be caught and acted upon.
ourObject.trigger("dance:tap", "started tap dancing. Yeah!");
ourObject.trigger("dance:break", "started break dancing. Yeah!");

// Removes event bound to the object
ourObject.off("dance:tap");

Events | 57

www.it-ebooks.info


http://www.it-ebooks.info/

// Trigger the custom events again, but one is logged.
ourObject.trigger("dance:tap", "stopped tap dancing.");
// won't be logged as it's not listened for
ourObject.trigger("dance:break", "break dancing. Yeah!");

To remove all callbacks for the event, we pass an event name (such as move) to the of f()
method on the object the event is bound to. If we wish to remove a specific callback, we
can pass that callback as the second parameter:

var ourObject = {};
// Mixin
_.extend(ourObject, Backbone.Events);

function dancing (msg) { console.log("We are dancing.
function jumping (msg) { console.log("We are jumping.

+ msg); }
+ msg); }

// Add two listeners to the same event
ourObject.on("move", dancing);
ourObject.on("move", jumping);

// Trigger the events. Both listeners are called.
ourObject.trigger("move", "Yeah!");

// Removes specified listener
ourObject.off("move", dancing);

// Trigger the events again. One listener left.
ourObject.trigger("move", "Yeah, jump, jump!");

Finally, as we have seen in our previous examples, trigger triggers a callback for a
specified event (or a space-separated list of events). For example:

var ourObject = {};

// Mixin
_.extend(ourObject, Backbone.Events);

function doAction (msg) { console.log('We are " + msg); }

// Add event listeners

ourObject.on("dance", doAction);
ourObject.on("jump", doAction);
ourObject.on("skip", doAction);

// Single event
ourObject.trigger("dance", 'just dancing.');

// Multiple events
ourObject.trigger("dance jump skip", 'very tired from so much action.');

trigger can pass multiple arguments to the callback function:

58 | Chapter3:Backbone Basics

www.it-ebooks.info


http://www.it-ebooks.info/

var ourObject = {};

// Mixin
_.extend(ourObject, Backbone.Events);

function doAction (action, duration) {
console.log("We are " + action + ' for

}

+ duration );

// Add event listeners

ourObject.on("dance", doAction);
ourObject.on("jump", doAction);
ourObject.on("skip", doAction);

// Passing multiple arguments to single event
ourObject.trigger("dance", 'dancing', "5 minutes");

// Passing multiple arguments to multiple events
ourObject.trigger("dance jump skip", 'on fire', "15 minutes");

listenTo() and stopListening()

While on() and of f() add callbacks directly to an observed object, listenTo() tells an
object to listen for events on another object, allowing the listener to keep track of the
events for which it is listening. stopListening() can subsequently be called on the
listener to tell it to stop listening for events:

var a = _.extend({}, Backbone.Events);
var b = _.extend({}, Backbone.Events);
var ¢ = _.extend({}, Backbone.Events);

// add listeners to A for events on B and C

a.listenTo(b, 'anything', function(event){
console.log("anything happened"); 1});

a.listenTo(c, 'everything', function(event){
console.log("everything happened"); });

// trigger an event
b.trigger('anything'); // logs: anything happened

// stop listening
a.stopListening();

// A does not receive these events

b.trigger('anything');

c.trigger('everything');
stopListening() can also be used to selectively stop listening based on the event,
model, or callback handler.

Events | 59

www.it-ebooks.info


http://www.it-ebooks.info/

If you use on and of f and remove views and their corresponding models at the same
time, there are generally no problems. But a problem arises when you remove a view
that had registered to be notified about events on a model, but you don’t remove the
model or call of f to remove the view’s event handler. Since the model has a reference
to the view’s callback function, the JavaScript garbage collector cannot remove the view
from memory. This is called a ghost view and is a common form of memory leak since
the models generally tend to outlive the corresponding views during an application’s
lifecycle. For details on the topic and a solution, check out this excellent article by Derick
Bailey.

Practically, every on called on an object also requires an of f to be called in order for the
garbage collector to do its job. listenTo() changes that, allowing views to bind to model
notifications and unbind from all of them with just one call: stopListening().

The default implementation of View.remove() makes a call to stopListening(), en-
suring that any listeners bound via listenTo() are unbound before the view is
destroyed.

var view = new Backbone.View();
var b = _.extend({}, Backbone.Events);

view.listenTo(b, 'all', function(){ console.log(true); });
b.trigger ('anything'); // logs: true

view.listenTo(b, 'all', function(){ console.log(false); });
view.remove(); // stoplListening() implicitly called
b.trigger('anything');

// does not log anything

Events and Views

Within a view, there are two types of events you can listen for: DOM events and events
triggered using the Event API. Itis important to understand the differences in how views
bind to these events and the context in which their callbacks are invoked.

You can bind DOM events using the view’s events property or using jQuery.on().
Within callbacks bound using the events property, this refers to the view object; any
callbacks bound directly using jQuery, however, will have this set to the handling DOM
element by jQuery. All DOM event callbacks are passed an event object by jQuery. See
delegateEvents() in the Backbone documentation for additional details.

Event API events are bound as described in this section. If you bind the event using
on() on the observed object, you can pass a context parameter as the third argument.
If you bind the event using listenTo(), then within the callback this refers to the
listener. The arguments passed to Event API callbacks depend on the type of event. See
the Catalog of Events in the Backbone documentation for details.

The following example illustrates these differences:

60 | Chapter3:Backbone Basics

www.it-ebooks.info


http://bit.ly/ZN0Sci
http://bit.ly/ZN0Sci
http://www.it-ebooks.info/

<div id="todo">

<input type='checkbox' />

</div>

var View = Backbone.View.extend({

s

el: '#todo',

// bind to DOM event using events property
events: {

'click [type="checkbox"]': 'clicked',
1,

initialize: function () {
// bind to DOM event using jQuery
this.$el.click(this.jqueryClicked);

// bind to API event
this.on('apiEvent', this.callback);
1,

// 'this' is view

clicked: function(event) {
console.log("events handler for " + this.el.outerHTML);
this.trigger('apiEvent', event.type);

1,

// 'this' is handling DOM element
jqueryClicked: function(event) {
console.log("jQuery handler for " + this.outerHTML);

I8

callback: function(eventType) {
console.log("event type was

+ eventType);

}

var view = new View();

Routers

In Backbone, routers provide a way for you to connect URLs (either hash fragments, or
real) to parts of your application. Any piece of your application that you want to be
bookmarkable, shareable, and back-button-able needs a URL.

Here are some examples of routes using the hash mark:

http://example.com/#about
http://example.com/#search/seasonal-horns/page2

Routers | 61

www.it-ebooks.info


http://www.it-ebooks.info/

An application will usually have at least one route mapping a URL route to a function
that determines what happens when a user reaches that route. This relationship is de-
fined as follows:

'route' : 'mappedFunction’

Let’s define our first router by extending Backbone.Router. For the purposes of this
guide, we're going to continue pretending we're creating a complex todo application
(something like a personal organizer/planner) that requires a complex TodoRouter.

Note the inline comments in the following code example, as they continue our lesson
on routers.

var TodoRouter = Backbone.Router.extend({
/* define the route and function maps for this router */
routes: {
"about" : "showAbout",
/* Sample usage: http://example.com/#about */

"todo/:1d" : "getTodo",

/* This is an example of using a ":param" variable, which allows us to
match any of the components between two URL slashes */

/* Sample usage: http://example.com/#todo/5 */

"search/:query" : "searchTodos",

/* We can also define multiple routes that are bound to the same map
function, in this case searchTodos(). Note below how we're optionally
passing in a reference to a page number if one is supplied */

/* Sample usage: http://example.com/#search/job */

"search/:query/p:page" : "searchTodos",
/* As we can see, URLs may contain as many ":param"s as we wish */
/* Sample usage: http://example.com/#search/job/pl1 */

"todos/:1d/download/*documentPath" : "downloadDocument",

/* This is an example of using a *splat. Splats are able to match

any number of URL components and can be combined with ":param"s*/

/* Sample usage: http://example.com/#todos/5/download/todos.doc */

/* If you wish to use splats for anything beyond default routing,
it's probably a good idea to leave them at the end of a URL;
otherwise, you may need to apply regular expression parsing

on your fragment */

"*other" : "defaultRoute"

/* This is a default route that also uses a *splat. Consider the
default route a wildcard for URLs that are either not matched or where
the user has incorrectly typed in a route path manually */

/* Sample usage: http://example.com/# <anything> */,

"optional(/:1tem)": "optionalItem",
"named/optional/(y:z)": "namedOptionalItem"

62 | Chapter3:Backbone Basics

www.it-ebooks.info


http://www.it-ebooks.info/

/* Router URLs also support optional parts via parentheses, without
having to use a regex. */

1

showAbout: function(){
}’

getTodo: function(id){
/*
Note that the id matched in the above route will be passed to this
function */
console.log("You are trying to reach todo " + id);

1

searchTodos: function(query, page){
var page_number = page || 1;
console.log("Page number: "
containing the word: "

+ page_number + " of the results for todos

+ query);

1

downloadDocument: function(id, path){

}’

defaultRoute: function(other){
console.log('Invalid. You attempted to reach:' + other);
}
H;

/* Now that we have a router setup, we need to instantiate it */

var myTodoRouter = new TodoRouter();

Backbone offers an opt-in for HTML5 pushState support via window.history.push
State. This permits you to define routes such as http://backbonejs.org/just/an/exam-
ple. This will be supported with automatic degradation when a user’s browser doesn’t
support pushState. Note that it is vastly preferred if you're capable of also supporting
pushState on the server side, although it is a little more difficult to implement.

You might be wondering if there’s a limit to the number of routers you
_ should be using. Andrew de Andrade has pointed out that Document-
¢i%" Cloud, the creator of Backbone, usually only uses a single router in most
of its applications. You're very likely to not require more than one or
two routers in your own projects; the majority of your application rout-
ing can be kept organized in a single router without it getting unwieldy.

Routers | 63

www.it-ebooks.info


http://www.it-ebooks.info/

Backbone.history

Next, we need to initialize Backbone.history, as it handles hashchange events in our
application. This will automatically handle routes that have been defined and trigger
callbacks when they’ve been accessed.

TheBackbone.history.start() method will simply tell Backbone that it's OK to begin
monitoring all hashchange events as follows:

var TodoRouter = Backbone.Router.extend({
/* define the route and function maps for this router */

routes: {
"about" : "showAbout",
"search/:query" : "searchTodos",
"search/:query/p:page" : "searchTodos"
})

showAbout: function(){},

searchTodos: function(query, page){
var page_number = page || 1;
console.log("Page number: " + page_number + " of the results for todos
containing the word: " + query);
}
b

var myTodoRouter = new TodoRouter();
Backbone.history.start();

// Go to and check console:

// http://localhost/#search/job/p3  logs: Page number: 3 of the results for
// todos containing the word: job

// http://localhost/#search/job logs: Page number: 1 of the results for
// todos containing the word: job

// etc.

A
To run the preceding example, you'll need to create alocal development
. environment and test project, which we will cover in Chapter 4.

If you would like to update the URL to reflect the application state at a particular point,
you can use the router’s .navigate() method. By default, it simply updates your URL
fragment without triggering the hashchange event:

// Let's imagine we would like a specific fragment
// (edit) once a user opens a single todo
var TodoRouter = Backbone.Router.extend({

routes: {

64 | Chapter3:Backbone Basics

www.it-ebooks.info


http://www.it-ebooks.info/

"todo/:1d": "viewTodo",
"todo/:1d/edit": "editTodo"
// ... other routes

1

viewTodo: function(id){

console.log("View todo requested.");

this.navigate("todo/" + id + '/edit');

// updates the fragment for us, but doesn't trigger the route
1

editTodo: function(id) {
console.log("Edit todo opened.");
}
H;

var myTodoRouter = new TodoRouter();
Backbone.history.start();

// Go to: http://localhost/#todo/4

//
// URL is updated to: http://localhost/#todo/4/edit

// but editTodo() function is not invoked even though location we end up
// 1s mapped to it

//
// logs: View todo requested.

It is also possible for Router.navigate() to trigger the route along with updating the

URL fragment by passing the trigger:true option.

A

]

This usage is discouraged. The recommended usage is the one previ-
. ously described that creates a bookmarkable URL when your applica-
01 tion transitions to a specific state.

var TodoRouter = Backbone.Router.extend({
routes: {
"todo/:1d": "viewTodo",
"todo/:1d/edit": "editTodo"
// ... other routes
1.

viewTodo: function(id){
console.log("View todo requested.");
this.navigate("todo/" + id + '/edit', {trigger: true});
// updates the fragment and triggers the route as well

I3

editTodo: function(id) {
console.log("Edit todo opened.");

Routers

www.it-ebooks.info

65


http://www.it-ebooks.info/

}
19K

var myTodoRouter = new TodoRouter();
Backbone.history.start();

// Go to: http://localhost/#todo/4

//

// URL 1s updated to: http://localhost/#todo/4/edit
// and this time editTodo() function is invoked.

//

// logs:

// View todo requested.

// Edit todo opened.

A route event is also triggered on the router in addition to being fired on Back
bone.history.

Backbone.history.on('route', onRoute);

// Trigger 'route' event on router instance."
router.on('route', function(name, args) {
console.log(name === 'routeEvent');

s

location.replace('http://example.com#route-event/x');
Backbone.history.checkUrl();

Backbone’s Sync API

We previously discussed how Backbone supports RESTful persistence via the fetch(),
save(), and destroy() methods on models, and the fetch() and create() methods
on collections. Now we are going to take a closer look at Backbone’s sync method, which
underlies these operations.

The Backbone. sync method is an integral part of Backbone.js. It assumes a jQuery-like
$.ajax() method, so HTTP parameters are organized based on jQuery’s API. Since
some legacy servers may not support JSON-formatted requests and HTTP PUT and
DELETE operations, we can configure Backbone to emulate these capabilities using the
two configuration variables shown here with their default values:

Backbone.emulateHTTP = false;

// set to true if server cannot handle HTTP PUT or HTTP DELETE
Backbone.emulateJSON = false;

// set to true if server cannot handle application/json requests

The inline Backbone.emulateHTTP option should be set to true if extended HTTP
methods are not supported by the server. The Backbone.emulateJSON option should
be set to true if the server does not understand the MIME type for JSON.

66 | Chapter3:Backbone Basics

www.it-ebooks.info


http://www.it-ebooks.info/

// Create a new library collection

var Library = Backbone.Collection.extend({
url : function() { return '/library'; }

b

// Define attributes for our model
var attrs = {

title : "The Tempest",
author : "Bill Shakespeare",
length : 123

b

// Create a new library instance
var library = new Library;

// Create a new instance of a model within our collection
library.create(attrs, {wait: false});

// Update with just emulateHTTP
library.first().save({id: '2-the-tempest', author: 'Tim Shakespeare'}, {
emulateHTTP: true

b

// Check the ajaxSettings being used for our request
console.log(this.ajaxSettings.url === '/library/2-the-tempest');
// true

console.log(this.ajaxSettings.type === 'POST'); // true
console.log(this.ajaxSettings.contentType === 'application/json');
// true

// Parse the data for the request to confirm it is as expected
var data = JSON.parse(this.ajaxSettings.data);

console.log(data.id === '2-the-tempest'); // true
console.log(data.author === 'Tim Shakespeare'); // true
console.log(data.length === 123); // true

Similarly, we could just update using emulateJSON:

library.first().save({id: '2-the-tempest', author: 'Tim Shakespeare'}, {
emulate]SON: true

H;
console.log(this.ajaxSettings.url === '/library/2-the-tempest'); // true
console.log(this.ajaxSettings.type === 'PUT'); // true

console.log(this.ajaxSettings.contentType ===
'application/x-www-form-urlencoded'); // true

var data = JSON.parse(this.ajaxSettings.data.model);

console.log(data.id === '2-the-tempest');
console.log(data.author ==='Tim Shakespeare');
console.log(data.length === 123);

Backbone’s SyncAPl | 67

www.it-ebooks.info


http://www.it-ebooks.info/

Backbone.sync is called every time Backbone tries to read, save, or delete models. It
uses jQuery or Zepto's $.ajax() implementations to make these RESTful requests, but
you can override this as per your needs.

Overriding Backbone.sync

You can override the sync method globally as Backbone. sync, or at a finer-grained level,
by adding a sync function to a Backbone collection or to an individual model.

Since all persistence is handled by the Backbone . sync function, we can use an alternative
persistence layer by simply overriding Backbone. sync with a function that has the same
signature:

Backbone.sync = function(method, model, options) {

¥
The following methodMap is used by the standard sync implementation to map the
method parameter to an HTTP operation and illustrates the type of action required by
each method argument:

var methodMap = {

'create': 'POST',
'update': 'PUT',

'patch': '"PATCH',
'delete': 'DELETE',
'read': 'GET'

b

If we wanted to replace the standard sync implementation with one that simply logged
the calls to sync, we could do this:

var id_counter = 1;

Backbone.sync = function(method, model) {
console.log("I've been passed " + method + " with " + JSON.stringify(model));
if(method === 'create'){ model.set('id', id_counter++); }

3

Note that we assign a unique id to any created models.

The Backbone. sync method is intended to be overridden to support other persistence
backends. The built-in method is tailored to a certain breed of RESTful JSON APIs—
Backbone was originally extracted from a Ruby on Rails application, which uses HTTP
methods like PUT in the same way.

The sync method is called with three parameters:
method
One of create, update, patch, delete, or read

model
The Backbone model object

68 | Chapter3:Backbone Basics

www.it-ebooks.info


http://www.it-ebooks.info/

options
May include success and error methods

We can implement a new sync method using the following pattern:

Backbone.sync = function(method, model, options) {

function success(result) {
// Handle successful results from MyAPI
if (options.success) {
options.success(result);
}
}

function error(result) {
// Handle error results from MyAPI
if (options.error) {
options.error(result);
}
}

options || (options = {});

switch (method) {
case 'create':
return MyAPI.create(model, success, error);

case 'update':
return MyAPI.update(model, success, error);

case 'patch':
return MyAPI.patch(model, success, error);

case 'delete':
return MyAPI.destroy(model, success, error);

case 'read':

if (model.attributes[model.idAttribute]) {
return MyAPI.find(model, success, error);

} else {
return MyAPI.findAll(model, success, error);

}

}
};

This pattern delegates API calls to a new object (MyAPI), which could be a Backbone-
style class that supports events. This can be safely tested separately, and potentially used
with libraries other than Backbone.

There are quite a few sync implementations out there. The following examples are all
available on GitHub:

Backbone’s SyncAPl | 69

www.it-ebooks.info


http://www.it-ebooks.info/

Backbone localStorage
Persists to the browser’s localStorage

Backbone offline
Supports working offline

Backbone Redis
Uses Redis key-value store

backbone-parse
Integrates Backbone with Parse.com

backbone-websql
Stores data to WebSQL

Backbone Caching Sync
Uses localStorage as cache for other sync implementations

Dependencies

The official Backbone.js documentation states:

Backbone’s only hard dependency is either Underscore.js ( >= 1.4.3) or Lo-Dash. For
RESTful persistence, history support via Backbone.Router and DOM manipulation with
Backbone.View, include json2.js, and either jQuery ( >=1.7.0) or Zepto.

What this translates to is that if you require working with anything beyond models, you
will need to include a DOM manipulation library such as jQuery or Zepto. Underscore
is primarily used for its utility methods (which Backbone relies upon heavily) and

json2.js for legacy browser JSON support if Backbone.sync is used.

Summary

In this chapter I have introduced you to the components you will be using to build
applications with Backbone: models, views, collections, and routers. We've explored the
Events mixin that Backbone uses to enhance all components with publish-subscribe
capabilities and seen how it can be used with arbitrary objects. Finally, we saw how
Backbone leverages the Underscore.js and jQuery/Zepto APIs to add rich manipulation

and persistence features to Backbone collections and models.

70 | Chapter3:Backbone Basics

www.it-ebooks.info


http://backbonejs.org/
http://www.it-ebooks.info/

Backbone has many operations and options beyond those we have covered here and is
always evolving, so be sure to visit the official documentation for more details and the
latest features. In the next chapter, you will start to get your hands dirty as we walk
through the implementation of your first Backbone application.

Summary | 71

www.it-ebooks.info


http://backbonejs.org/
http://www.it-ebooks.info/

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 4

Exercise 1: Todos—Your First
Backbone.js App

Now that we've covered fundamentals, let’s write our first Backbone.js application. We’ll
build the Backbone Todo List application exhibited on TodoMVC.com. Building a todo
listis a great way to learn Backbone’s conventions (see Figure 4-1). It’s a relatively simple
application, yet technical challenges surrounding binding, persisting model data, rout-
ing, and template rendering provide opportunities to illustrate some core Backbone
features.

Let’s consider the application’s architecture at a high level. We’ll need:

o A Todo model to describe individual todo items
o A TodoList collection to store and persist todos
o+ A way of creating todos

A way to display a listing of todos

o A way to edit existing todos

A way to mark a todo as completed

o A way to delete todos

o A way to filter the items that have been completed or are remaining

73

www.it-ebooks.info


http://todomvc.com
http://www.it-ebooks.info/

© 00 /[ sackbone.s « TodoMve

-
& > C A | [ todomvc.com/architecture-examples/backbone /#/ A SoNL - By SV I

What needs to be done?

Write my first app

v toeokateoflections
v Read-about-views

v Studyrouters

1item left All Active Completed Clear completad (4)

Figure 4-1. A todo list—the first Backbone.js application we will be writing

Essentially, these features are classic CRUD (create, read, update, delete) methods. Let’s
get started!

Static HTML

We'll place all of our HTML in a single file named index.html.

Header and Scripts

First, we'll set up the header and the basic application dependencies: jQuery, Under-
score, Backbone.js, and the Backbone localStorage adapter.

<!doctype html>

<html lang="en">

<head>
<meta charset="utf-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge,chrome=1">
<title>Backbone.js ¢ TodoMVC</title>
<link rel="stylesheet" href="assets/base.css">

</head>

<body>
<script type="text/template" id="item-template"s</script>
<script type="text/template" id="stats-template"s></script>
<script src="js/lib/jquery.min.js"></script>
<script src="js/lib/underscore-min.js"></script>

74 | Chapter4: Exercise 1: Todos—Your First Backbone.js App

www.it-ebooks.info


http://bit.ly/YrWE99
http://jquery.com
http://underscorejs.org
http://underscorejs.org
http://bit.ly/16dX4op
http://www.it-ebooks.info/

<script src="js/lib/backbone-min.js"></script>
<script src="js/lib/backbone.localStorage.js"></script>
<script src="js/models/todo.js"></script>
<script src="js/collections/todos. js"></script>
<script src="js/views/todos.js"></script>
<script src="js/views/app.js"></script>
<script src="js/routers/router.js"></script>
<script src="js/app.js"></script>
</body>
</html>

In addition to the aforementioned dependencies, note that a few other application-
specific files are also loaded. These are organized into folders representing their appli-

cation responsibilities: models, views, collections, and routers. An app.js file houses
central initialization code.

If you want to follow along, create a directory structure as demonstrated in index.html:

1. Place the index.html in a top-level directory.

2. Download jQuery, Underscore, Backbone, and Backbone localStorage from their
respective websites and place them under js/lib.

3. Create the directories js/models, js/collections, js/views, and js/routers.

You will also need base.css and bg.png, which should live in an assets directory. And
remember that you can see a demo of the final application at TodoMVC.com.

We will be creating the application JavaScript files during the tutorial. Don’t worry about
the two text/template script elements—we will replace those soon!

Application HTML

Now let’s populate the body of index.html. We'll need an <input> for creating new todos,
a<ul id="todo-1list" /> for listing the actual todos, and a footer where we can later
insert statistics and links for performing operations such as clearing completed todos.
We'll add the following markup immediately inside our <body> tag before the script
elements:

<section id="todoapp">
<header id="header">
<h1>todos</h1>
<input id="new-todo" placeholder="What needs to be done?" autofocus>
</header>
<section id="main"s>
<input id="toggle-all" type="checkbox">
<label for="toggle-all"sMark all as complete</label>
<ul id="todo-list"></ul>
</section>
<footer id="footer"></footer>
</section>

StaticHTML | 75

www.it-ebooks.info


http://bit.ly/YePkgQ
http://bit.ly/11YarU3
http://todomvc.com
http://www.it-ebooks.info/

<div id="info">
<p>Double-click to edit a todo</p>
<p>Written by <a href="https://github.com/addyosmani">Addy Osmani</a></p>
<p>Part of <a href="http://todomvc.com">TodoMVC</a></p>

</div>

Templates

To complete index.html, we need to add the templates, which we will use to dynamically
create HTML by injecting model data into their placeholders. One way of including
templates in the page is by using custom <script> tags. These don't get evaluated by
the browser, which just interprets them as plain text. Underscore microtemplating can
then access the templates, rendering fragments of HTML.

We'll start by filling in the #item-template, which will be used to display individual
todo items.

<!-- index.html -->

<script type="text/template" id="item-template"s>
<div class="view">
<input class="toggle" type="checkbox" <%= completed ? 'checked' : '' %>>
<label><%- title %></label>
<button class="destroy"></button>
</div>
<input class="edit" value="<%- title %>">
</script>

The template tags in the preceding markup, such as <%= and <%-, are specific to
Underscore.js and are documented on the Underscore site. In your own applications,
you have a choice of template libraries, such as Mustache or Handlebars. Use whichever
you prefer; Backbone doesn’t mind.

We also need to define the #stats-template, which we will use to populate the footer.

<!-- index.html -->

<script type="text/template" id="stats-template"s
<span id="todo-count"><strong><%= remaining %></strong>
<%= remaining === 1 ? 'item' : 'items' %> left</span>
<ul id="filters">
<1li>
<a class="selected" href="#/">All</a>
</11>
<li>
<a href="#/active">Active</a>
</1i>
<1li>
<a href="#/completed">Completed</a>
</11>
</ul>

76 | Chapter4: Exercise 1: Todos—Your First Backbone.js App

www.it-ebooks.info


http://www.it-ebooks.info/

<% if (completed) { %>
<button id="clear-completed">Clear completed (<%= completed %>)</button>
<% } %>

</script>

The#stats- template displays the number of remaining incomplete items and contains
a list of hyperlinks that will be used to perform actions when we implement our router.
It also contains a button that can be used to clear all of the completed items.

Now that we have all the HTML that we will need, we’ll start implementing our appli-
cation by returning to the fundamentals: a Todo model.

Todo Model

The Todo model is remarkably straightforward. First, a todo has two attributes: a title
stores a todo itemss title, and a completed status indicates whether it's complete. These
attributes are passed as defaults, as shown here:

// js/models/todo. js

var app = app || {};

// Todo Model
J) e

// Our basic **Todo** model has 'title', 'order', and 'completed' attributes.
app.Todo = Backbone.Model.extend({

// Default attributes ensure that each todo created has ‘title' and
// ‘completed’ keys.
defaults: {
title: "',
completed: false
1,

// Toggle the ‘completed’ state of this todo item.
toggle: function() {
this.save({
completed: !this.get('completed"')
s
}

s

Second, the Todo model hasa toggle() method through which a todo item’s completion
status can be set and simultaneously persisted.

TodoModel | 77

www.it-ebooks.info


http://www.it-ebooks.info/

Todo Collection

Next, a TodoList collection is used to group our models. The collection uses the
localStorage adapter to override Backbone’s default sync() operation with one that will
persist our todo records to HTML5 localStorage. Through localStorage, they’re saved
between page requests.

// Jjs/collections/todos. js

var app = app || {};

// Todo Collection
J) weemeeeeneae

// The collection of todos is backed by *localStorage* instead of a remote
// server.
var TodoList = Backbone.Collection.extend({

// Reference to this collection's model.
model: app.Todo,

// Save all of the todo items under the '"todos-backbone"' namespace.
// Note that you will need to have the Backbone localStorage plug-in
// loaded inside your page in order for this to work. If testing

// in the console without this present, comment out the next line

// to avoid running into an exception.

localStorage: new Backbone.LocalStorage('todos-backbone'),

// Filter down the list of all todo items that are finished.
completed: function() {
return this.filter(function( todo ) {
return todo.get('completed');
IOH
1

// Filter down the list to only todo items that are still not finished.

remaining: function() {

// apply allowsus to define the context of this within our function scope
return this.without.apply( this, this.completed() );

1,

// We keep the Todos in sequential order, despite being saved by unordered
// GUID in the database. This generates the next order number for new items.
nextOrder: function() {

if ( !this.length ) {

return 1;

}

return this.last().get('order') + 1;
1,

// Todos are sorted by their original insertion order.

78 | Chapter4: Exercise 1: Todos—Your First Backbone.js App

www.it-ebooks.info


http://www.it-ebooks.info/

comparator: function( todo ) {
return todo.get('order');
}
s

// Create our global collection of **Todos**.
app.Todos = new TodoList();

The collection’s completed() and remaining() methods return an array of finished and
unfinished todos, respectively.

A nextOrder () method implements a sequence generator while a comparator() sorts
items by their insertion order.

this.filter, this.without, and this.last are Underscore methods
. that are mixed in to Backbone.Collection so that the reader knows
0% how to find out more about them.

Application View

Let’s examine the core application logic that resides in the views. Each view supports
functionality such as edit-in-place, and therefore contains a fair amount of logic. To
help organize this logic, we’ll use the element controller pattern. The element controller
pattern consists of two views: one controls a collection of items, while the other deals
with each individual item.

In our case, an AppView will handle the creation of new todos and rendering of the initial
todo list. Instances of TodoView will be associated with each individual todo record.
Todo instances can handle editing, updating, and destroying their associated todo.

To keep things short and simple, we won’t be implementing all of the application’s fea-
tures in this tutorial; we’ll just cover enough to get you started. Even so, there is a lot
for us to cover in AppView, so we'll split our discussion into two sections.

// Jjs/views/app.js
var app = app || {};

// The Application
J/ZZLSCEEREEERREEEE

// Our overall **AppView** is the top-level piece of UI.
app.AppView = Backbone.View.extend({

// Instead of generating a new element, bind to the existing skeleton of
// the app already present in the HTML.
el: '#todoapp',

Application View | 79

www.it-ebooks.info


http://www.it-ebooks.info/

// Our template for the line of statistics at the bottom of the app.
statsTemplate: _.template( $('#stats-template').html() ),

// At initialization we bind to the relevant events on the ‘Todos'
// collection, when items are added or changed.
initialize: function() {

this.allCheckbox = this.$('#toggle-all')[0];

this.$input = this.$('#new-todo');

this.$footer = this.$('#footer');

this.$main = this.$('#main');

this.listenTo(app.Todos, 'add', this.addOne);
this.listenTo(app.Todos, 'reset', this.addAll);
}’

// Add a single todo item to the list by creating a view for it, and
// appending its element to the ‘<ul>".
addOne: function( todo ) {
var view = new app.TodoView({ model: todo });
S$('#todo-1list').append( view.render().el );
1,

// Add all items in the **Todos** collection at once.
addAll: function() {
this.$('#todo-1ist').html('");
app.Todos.each(this.addOne, this);
}

s

There are a few notable features in our initial version of AppView, including a statsTem
plate,an initialize method that’s implicitly called on instantiation, and several view-
specific methods.

An el (element) property stores a selector targeting the DOM element with an id of
todoapp. In the case of our application, el refers to the matching <section id="to
doapp" /> element in index.html.

The call to _. template uses Underscore’s microtemplating to construct a statsTem
plate object from our #stats- template. We will use this template later when we render
our view.

Now let’s take a look at the initialize function. First, it's using jQuery to cache the
elements it will be using into local properties (recall that this.$() finds elements rel-
ative to this.$el). Then it’s binding to two events on the Todos collection: add and
reset. Since we're delegating handling of updates and deletes to the TodoView view, we
don’t need to worry about those here. The two pieces of logic are:

80 | Chapter4:Exercise 1: Todos—Your First Backbone.js App

www.it-ebooks.info


http://www.it-ebooks.info/

o When an add event is fired, the addOne() method is called and passed the new
model. addOne() creates an instance of the TodoView view, renders it, and appends
the resulting element to our todo list.

o When a reset event occurs (we update the collection in bulk as happens when the
todos are loaded from localStorage), addA11() is called and iterates over all of the
todos currently in our collection, firing addOne() for each item.

Note that we were able to use this within addA11() to refer to the view because 1is
tenTo() implicitly set the callback’s context to the view when it created the binding.

Now, let’s add some more logic to complete our AppView:
// Jjs/views/app.js
var app = app || {};

// The Application
[/ e

// Our overall **AppView** is the top-level piece of UI.
app.AppView = Backbone.View.extend({

// Instead of generating a new element, bind to the existing skeleton of
// the app already present in the HTML.
el: '#todoapp',

// Our template for the line of statistics at the bottom of the app.
statsTemplate: _.template( $('#stats-template').html() ),

// New
// Delegated events for creating new items, and clearing completed ones.
events: {

'keypress #new-todo': 'createOnEnter',

'click #clear-completed': 'clearCompleted',

'click #toggle-all': 'toggleAllComplete'

1

// At initialization we bind to the relevant events on the ‘Todos"
// collection, when items are added or changed. Kick things off by
// loading any preexisting todos that might be saved in *localStorage*.
initialize: function() {
this.allCheckbox = this.$('#toggle-all')[0];
this.$input = this.$('#new-todo');
this.$footer = this.$('#footer');
this.$main = this.$('#main');

this.listenTo(app.Todos, 'add', this.addOne);
this.listenTo(app.Todos, 'reset', this.addAll);

// New

Application View | 81

www.it-ebooks.info


http://www.it-ebooks.info/

this.listenTo(app.Todos, 'change:completed', this.filterOne);
this.listenTo(app.Todos, 'filter', this.filterAll);
this.listenTo(app.Todos, 'all', this.render);

app.Todos.fetch();
}’

// New

// Rerendering the app just means refreshing the statistics -- the rest
// of the app doesn't change.
render: function() {

var completed = app.Todos.completed().length;

var remaining = app.Todos.remaining().length;

if ( app.Todos.length ) {
this.$main.show();
this.$footer.show();

this.$footer.html(this.statsTemplate({
completed: completed,
remaining: remaining

DK

this.S('#filters 11 a')
.removeClass('selected')

filter('[href="#/" + ( app.TodoFilter [| '" ) + '"]')
.addClass('selected");
} else {

this.Smain.hide();
this.$footer.hide();
}

this.allCheckbox.checked = !remaining;

}’

// Add a single todo item to the list by creating a view for it, and
// appending its element to the ‘<ul>".
addOne: function( todo ) {
var view = new app.TodoView({ model: todo });
S$('#todo-1list').append( view.render().el );
1,

// Add all items in the **Todos** collection at once.
addAll: function() {
this.$('#todo-1ist').html('");
app.Todos.each(this.addOne, this);
1,

// New
filterOne : function (todo) {
todo.trigger('visible');

}’

Chapter 4: Exercise 1: Todos—Your First Backbone.js App

www.it-ebooks.info


http://www.it-ebooks.info/

// New
filterAll : function () {
app.Todos.each(this.filterOne, this);

1

// New
// Generate the attributes for a new todo itenm.
newAttributes: function() {
return {
title: this.S$input.val().trim(),
order: app.Todos.nextOrder(),
completed: false
1
}’

// New
// If you hit return in the main input field, create new Todo model,
// persisting it to localStorage.
createOnEnter: function( event ) {
if ( event.which !== ENTER_KEY || !this.$input.val().trim() ) {
return;

}

app.Todos.create( this.newAttributes() );
this.$input.val('');
}’

// New
// Clear all completed todo items, destroying their models.
clearCompleted: function() {
_.1invoke(app.Todos.completed(), 'destroy');
return false;

1

// New
toggleAllComplete: function() {
var completed = this.allCheckbox.checked;

app.Todos.each(function( todo ) {
todo.save({
'completed': completed
b
s
}
s

We have added the logic for creating new todos, editing them, and filtering them based
on their completed status.

Application View | 83

www.it-ebooks.info


http://www.it-ebooks.info/

We've defined an events hash containing declarative callbacks for our DOM events. It
binds those events to the following methods:

createOnEnter()
Creates a new Todo model and persists it in localStorage when a user presses Enter
inside the <input/> field. Also resets the main <input/> field value to prepare it
for the next entry. The model is populated by newAttributes(), which returns an
object literal composed of the title, order, and completed state of the new item. Note
that this is referring to the view and not the DOM element since the callback was
bound using the events hash.

clearCompleted()
Removes the items in the todo list that have been marked as completed when the
user clicks the clear-completed checkbox (this checkbox will be in the footer popu-
lated by the #stats-template).

toggleAllComplete()
Allows a user to mark all of the items in the todo list as completed by clicking the
toggle-all checkbox.
initialize()
We've bound callbacks to several additional events:
o We'vebounda filterOne() callback on the Todos collection for a change:com
pleted event. This listens for changes to the completed flag for any model in

the collection. The affected todo is passed to the callback, which triggers a
custom visible event on the model.

o We've bound a filterAll() callback for a filter event, which works a little
like addOne () and addA11(). Its responsibility is to toggle which todo items are
visible based on the filter currently selected in the UI (all, completed, or re-
maining) via calls to filterOne().

o We've used the special all event to bind any event triggered on the Todos
collection to the view’s render method (discussed momentarily).

The initialize() method completes by fetching the previously saved todos from
localStorage.

Several things are happening in our render () method:
1. The #main and #footer sections are displayed or hidden depending on whether

there are any todos in the collection.

2. The footer is populated with the HTML produced by instantiating the statsTem
plate with the number of completed and remaining todo items.

84 | Chapter4: Exercise 1: Todos—Your First Backbone.js App

www.it-ebooks.info


http://www.it-ebooks.info/

3. The HTML produced by the preceding step contains a list of filter links. The value
of app.TodoFilter, which will be set by our router, is being used to apply the class
selected to the link corresponding to the currently selected filter. This will result in
conditional CSS styling being applied to that filter.

4. The allCheckbox is updated based on whether there are remaining todos.

Individual TodoView

Now let’s look at the TodoView view. This will be in charge of individual todo records,
making sure the view updates when the todo does. To enable this functionality, we will
add event listeners to the view that listen for events on an individual todos HTML
representation.

// Js/views/todos.js
var app = app || {};

// Todo Item View
R

// The DOM element for a todo itenm...
app.TodoView = Backbone.View.extend({

//... is a list tag.
tagName: '1i',

// Cache the template function for a single iten.
template: _.template( $('#item-template').html() ),

// The DOM events specific to an itenm.
events: {
'dblclick label': 'edit',
'keypress .edit': 'updateOnEnter',
'blur .edit': 'close'

IS

// The TodoView listens for changes to its model, rerendering. Since there's
// a one-to-one correspondence between a **Todo** and a **TodoView** in this
// app, we set a direct reference on the model for convenience.
initialize: function() {

this.listenTo(this.model, 'change', this.render);

:}’

// Rerenders the titles of the todo itenm.

render: function() {
this.$el.html( this.template( this.model.toJSON() ) );
this.$input = this.$('.edit');
return this;

Individual TodoView | 85

www.it-ebooks.info


http://www.it-ebooks.info/

1

// Switch this view into '"editing"' mode, displaying the input field.
edit: function() {

this.$el.addClass('editing');

this.$input.focus();
1,

// Close the '"editing"' mode, saving changes to the todo.
close: function() {
var value = this.S$input.val().trim();

if ( value ) {
this.model.save({ title: value });
}

this.$el.removeClass('editing');

}’

// If you hit ‘enter', we're through editing the item.
updateOnEnter: function( e ) {
if ( e.which === ENTER_KEY ) {
this.close();
}
}
b

In the initialize() constructor, we set up a listener that monitors a Todo model’s
change event. As a result, when the todo gets updated, the application will rerender the
view and visually reflect its changes. Note that the model passed in the arguments hash
by our AppView is automatically available to us as this.model.

In the render() method, we render our Underscore.js #item-template, which was
previously compiled into this.template using Underscore’s _.template() method.
This returns an HTML fragment that replaces the content of the view’s element (an 11
element was implicitly created for us based on the tagName property). In other words,
the rendered template is now present under this.el and can be appended to the todo
list in the user interface. render() finishes by caching the input element within the
instantiated template into this.input.

Our events hash includes three callbacks:

edit()
Changes the current view into editing mode when a user double-clicks an existing
item in the todo list. This allows the user to change the existing value of the item’s
title attribute.

updateOnEnter()
Checks that the user has pressed the Return/Enter key and executes the close()
function.

86 | Chapter4:Exercise 1: Todos—Your First Backbone.js App

www.it-ebooks.info


http://www.it-ebooks.info/

close()
Trims the value of the current text in our <input/> field, ensuring that we don’t
process it further if it does not contain any text (for example, °). If a valid value has
been provided, we save the changes to the current Todo model and close editing
mode by removing the corresponding CSS class.

Startup

So now we have two views: AppView and TodoView. The former needs to be instantiated
on page load so its code gets executed. We can accomplish this through jQuery’s ready()
utility, which will execute a function when the DOM is loaded.

// Js/app.Jjs

var app = app || {};
var ENTER_KEY = 13;

$(function() {

// Kick things off by creating the **App**.
new app.AppView();

s

In Action

Let’s pause and ensure that the work we’ve done so far functions as intended.

If you are following along, open file://*path*/index.html in your browser and
monitor its console. If all is well, you shouldn't see any JavaScript errors other than
regarding the router.js file that we haven’t created yet. The todo list should be blank as
we haven't yet created any todos. Plus, there is some additional work we’ll need to do
before the user interface fully functions.

However, a few things can be tested through the JavaScript console.

In the console, add a new todo item: window.app.Todos.create({ title: 'My first
Todo items'}); and press return (see Figure 4-2).

Startup | 87

www.it-ebooks.info


http://www.it-ebooks.info/

O OO [ gackbones s TodoMVC % | ®
o imaiicd —_

€& - C A [ todomvc.com/architecture-examples/b... 77| de & & A U deE

N
M

() Elements Resources Network Sources Timeline Profiles  Audits | Consele |

» window.app.Todos.create({title: 'My first Todo items'});

O = Q @& <topframe>¥ <page context> v (I} | Errors Warnings Logs &

Figure 4-2. Adding a new todo item via the JavaScript console

If all is functioning properly, this should log the new todo we’ve just added to the Todos
collection. The newly created todo is also saved to localStorage and will be available on
page refresh.

window.app.Todos.create() executes a collection method, Collection.create(at
tributes, [optilons]), that instantiates a new model item of the type passed into the
collection definition—in our case, app.Todo:

// from our js/collections/todos.js
var TodoList = Backbone.Collection.extend({

model: app.Todo // the model type used by collection.create() to
// instantiate new model in the collection

N
Run the following in the console to check it out:

var secondTodo = window.app.Todos.create({ title: 'My second Todo item'});
secondTodo instanceof app.Todo // returns true

Now refresh the page; we should be able to see the fruits of our labor.

88 | Chapter4: Exercise 1: Todos—Your First Backbone.js App

www.it-ebooks.info


http://www.it-ebooks.info/

The todos added through the console should still appear in the list since they are popu-
lated from the localStorage. Also, we should be able to create a new todo by typing a
title and pressing Enter (Figure 4-3).

© 00 /[ sackbone s « Todomve  x \__| 2 ‘\2

« C # | [) todomvc.com/architecture-examples /backbone/#/ “e® O 1Ol E

My first Todo item

My second Todo item

2items left All Active Gompleted

Figure 4-3. Adding new todo items

Excellent—we’re making great progress, but what about completing and deleting todos?

Completing and Deleting Todos

The next part of our tutorial is going to cover completing and deleting todos. These two
actions are specific to each todo item, so we need to add this functionality to the Todo
View view. We will do so by adding togglecompleted() and clear() methods along
with corresponding entries in the events hash.

// js/views/todos.js
var app = app || {};

// Todo Item View
A

// The DOM element for a todo itenm...
app.TodoView = Backbone.View.extend({

//... is a list tag.
tagName: '11',

Completing and Deleting Todos | 89

www.it-ebooks.info


http://www.it-ebooks.info/

// Cache the template function for a single item.
template: _.template( $('#item-template').html() ),

// The DOM events specific to an iten.
events: {
'click .toggle': 'togglecompleted', // NEW
'dblclick label': 'edit',

'click .destroy': 'clear', // NEW
'keypress .edit': 'updateOnEnter',
'blur .edit': 'close'

I8

// The TodoView listens for changes to its model, rerendering. Since there's
// a one-to-one correspondence between a **Todo** and a **TodoView** in this
// app, we set a direct reference on the model for convenience.
initialize: function() {
this.listenTo(this.model, 'change', this.render);
this.listenTo(this.model, 'destroy', this.remove); // NEW
this.listenTo(this.model, 'visible', this.toggleVisible); // NEW
1,

// Rerender the titles of the todo item.
render: function() {
this.$el.html( this.template( this.model.toJSON() ) );

this.$el.toggleClass( 'completed', this.model.get('completed') ); // NEW
this.toggleVisible(); // NEW

this.$input = this.$('.edit');
return this;

I3

// NEW - Toggles visibility of item
toggleVisible : function () {

this.$%el.toggleClass( 'hidden', this.isHidden());
1,

// NEW - Determines if item should be hidden
isHidden : function () {
var isCompleted = this.model.get('completed');
return ( // hidden cases only
(!isCompleted && app.TodoFilter === 'completed')
|| (isCompleted && app.TodoFilter === 'active')
);
1

// NEW - Toggle the ‘"completed"' state of the model.
togglecompleted: function() {

this.model.toggle();
1,

90 | Chapter4:Exercise 1: Todos—Your First Backbone.js App

www.it-ebooks.info


http://www.it-ebooks.info/

// Switch this view into '"editing"' mode, displaying the input field.
edit: function() {

this.$el.addClass('editing');

this.$input.focus();
1,

// Close the '"editing"' mode, saving changes to the todo.
close: function() {
var value = this.S$input.val().trim();

if ( value ) {

this.model.save({ title: value });
} else {

this.clear(); // NEW
}

this.$el.removeClass('editing');

}’

// If you hit ‘enter', we're through editing the item.
updateOnEnter: function( e ) {
if ( e.which === ENTER_KEY ) {
this.close();
}
1,

// NEW - Remove the item, destroy the model from
// *localStorage* and delete its view.
clear: function() {
this.model.destroy();
}
s

The key part of this is the two event handlers we've added, a togglecompleted event on
the todo’s checkbox, and a click event on the todos <button class="destroy" />
button.

Let’s look at the events that occur when we click the checkbox for a todo item:

1. The togglecompleted() function is invoked, which calls toggle() on the Todo
model.

2. toggle() toggles the completed status of the todo and calls save() on the model.

3. The save generates a change event on the model that is bound to our TodoView’s
render () method. We've added a statement in render () that toggles the completed
class on the element depending on the model’s completed state. The associated CSS
changes the color of the title text and strikes a line through it when the todo is
completed.

Completing and Deleting Todos | 91

www.it-ebooks.info


http://www.it-ebooks.info/

4. The save also results in a change: completed event on the model, which is handled

by the AppView’s filterOne() method. If we look back at the AppView, we see that
filteroOne() will trigger a visible event on the model. This is used in conjunction
with the filtering in our routes and collections so that we display an item only if its
completed state falls in line with the current filter. In our update to the TodoView,
we bound the model’s visible event to the toggleVisible() method. This method
uses the new isHidden() method to determine if the todo should be visible and
updates it accordingly.

Now let’s look at what happens when we click on a todo’s destroy button:

. The clear() method is invoked, which calls destroy() on the Todo model.
. The todo is deleted from localStorage and a destroy event is triggered.

. In our update to the TodoView, we bound the model’s destroy event to the view’s

inherited remove() method. This method deletes the view and automatically re-
moves the associated element from the DOM. Since we used listenTo() to bind
the view’s listeners to its model, remove() also unbinds the listening callbacks from
the model, ensuring that a memory leak does not occur.

. destroy() also removes the model from the Todos collection, which triggers a

remove event on the collection.

. Since the AppView has its render() method bound to all events on the Todos

collection, that view is rendered and the stats in the footer are updated.

That’s all there is to it!

If you want to see an example of those, see the complete source.

Todo Routing

Finally, we move on to routing, which will allow us to easily filter the list of items that
are active as well as those that have been completed (shown in Figure 4-4). We'll be
supporting the following routes:

#/ (all - default)
#/active
#/completed

92

Chapter 4: Exercise 1: Todos—Your First Backbone.js App

www.it-ebooks.info


http://bit.ly/11eV9ir
http://www.it-ebooks.info/

ey —
O O O /[ packbone.js « TodoMve  x ||\ [ Q
s/ =

&« - C A [} todomvc.com/architectur fbackbone/#/c N ) OBME =

What needs to be done?

v  lLearnabout-models
v Lookatcollections
v | Read-about-views

v Studyrouters

1 item left All Active Completed Clear completsd (4]

Doublediick to edit afodo

Figure 4-4. A filtered list of completed todo items

When the route changes, the todo list will be filtered on a model level and the selected
class on the filter links in the footer will be toggled as just described. When an item is
updated while a filter is active it will be updated accordingly (e.g., if the filter is active
and the item is checked, it will be hidden). The active filter is persisted on reload.

// js/routers/router.js

// Todo Router
J/ZAREEEErees

var Workspace = Backbone.Router.extend({
routes:{
"*filter': 'setFilter'
1

setFilter: function( param ) {
// Set the current filter to be used

// Trigger a collection filter event, causing hiding/unhiding
// of Todo view items
window.app.Todos.trigger('filter');
}
s

app.TodoRouter = new Workspace();
Backbone.history.start();

TodoRouting | 93

www.it-ebooks.info


http://www.it-ebooks.info/

Our router uses a *splat to set up a default route that passes the string after #/ in the
URL to setFilter(), which sets window.app.TodoFilter to that string.

As we can see in the line window.app.Todos.trigger('filter'), once the filter has
been set, we simply trigger filter on our Todos collection to toggle which items are visible
and which are hidden. Recall that our AppView’s filterAll() method is bound to the
collection’s filter event and that any event on the collection will cause the AppView to
rerender.

Finally, we create an instance of our router and call Backbone . history.start() toroute
the initial URL during page load.

Summary

We've now built our first complete Backbone.js application. You can view the latest
version of the full app online at any time, and the sources are readily available via
TodoMVC.

In Chapter 8, we'll learn how to further modularize this application using Require]JS,
swap out our persistence layer to a database backend, and finally unit-test the application
with a few different testing frameworks.

94 | Chapter4: Exercise 1: Todos—Your First Backbone.js App

www.it-ebooks.info


http://www.todomvc.com
http://www.it-ebooks.info/

CHAPTER 5

Exercise 2: Book Library—Your First
RESTful Backbone.js App

While our first application gave us a good taste of how Backbone.js applications are
made, most real-world applications will want to communicate with a backend of some
sort. Let’s reinforce what we have already learned with another example, but this time
we will also create a RESTful API for our application to talk to.

In this exercise we will build a library application for managing digital books using
Backbone. For each book we will store the title, author, date of release, and some key-
words. We'll also show a picture of the cover.

Setting Up

First we need to create a folder structure for our project. To keep the frontend and
backend separate, we will create a folder called site for our client in the project root.
Within it we will create css, img, and js directories.

As with the last example, we will split our JavaScript files by their function, so under
the js directory create folders named [ib, models, collections, and views. Your directory
hierarchy should look like this:

site/

css/

img/

is/
collections/
1ib/
models/
views/

95

www.it-ebooks.info


http://www.it-ebooks.info/

Download the Backbone, Underscore, and jQuery libraries and copy them to your js/lib
folder. We need a placeholder image for the book covers. Save this image, shown in
Figure 5-1, to your site/img folder.

Figure 5-1. Eloquent JavaScript—our placeholder image for book covers

Just like before, we need to load all of our dependencies in the site/index.html file:

<!DOCTYPE html>
<html lang="en">
<head>

<meta charset="UTF-8"/>
<title>Backbone. js Library</title>

<link rel='

</head>
<body>

'stylesheet" href="css/screen.css"s

<script src="js/lib/jquery.min.js"></script>
<script src="js/lib/underscore-min.js"></script>
<script src="js/lib/backbone-min.js"></script>
<script src="js/models/book.js"></script>

<script src="js/collections/library.js"></script>
<script src="js/views/book.js"></script>

<script src="js/views/library.js"></script>
<script src="js/app.js"></script>

</body>
</html>

We should also add in the HTML for the user interface. We’ll want a form for adding a
new book, so add the following immediately inside the body element:

<div id="books">

<form i1d="addBook" action="#">

<div>
<label
<input
<label
<label
<label
<input
<label
<input

for="coverImage">CoverImage: </label>

id="coverImage" type="file" [>

for="title">Title: </label><input id="title" type="text" [>
for="author">Author: </labels<input id="author" type="text" />
for="releaseDate">Release date: </label>

id="releaseDate" type="text" />

for="keywords">Keywords: </label>

id="keywords" type="text" />

<button id="add">Add</button>

</div>
</form>
</div>

96 | Chapter5: Exercise 2: Book Library—Your First RESTful Backbone.js App

www.it-ebooks.info


http://www.it-ebooks.info/

We'll also need a template for displaying each book, which should be placed before the
<script> tags:

<script id="bookTemplate" type="text/template"s
<img src="<%= coverImage %>"/>
<ul>
<li><%= title %></1i>
<li><%= author %></1i>
<li><%= releaseDate %></l1>
<li><%= keywords %></1i>
</ul>

<button class="delete">Delete</button>
</script>

To see what this will look like with some data in it, go ahead and add a manually filled-
in book to the books div.

<div class="bookContainer"s>

<img src="img/placeholder.png"/>

<ul>
<li>Title</li>
<li>Author</1li>
<li>Release Date</1li>
<li>Keywords</1li>

</ul>

<button class="delete">Delete</button>
</div>

When you open this file in a browser, it should look something like Figure 5-2.

SettingUp | 97

www.it-ebooks.info


http://www.it-ebooks.info/

Backbone.js Library - Google Chrome

| | Backbone.js Library

@ [ file:///home/mat/Dropbox/Projects/exercise-2/from-scratch/site/index.html 5’7 {' -S|

Coverlmage: | Choose File | No file chosen Title: | Author: |

Release date: I Keywords: Add

Title

Author
Release Date
Keywords

Delete

. o s @

Figure 5-2. The initial application layout

Not so great. This is not a CSS tutorial, but we still need to do some formatting. Create
a file named screen.css in your site/css folder:

body {
background-color: #eee;

}

.bookContatiner {
outline: 1px solid #aaa;
width: 350px;
height: 130px;
background-color: #fff;
float: left;
margin: 5px;

}

.bookContainer img {
float: left;
margin: 10px;

}

.bookContatiner ul {
list-style-type: none;

98 | Chapter5: Exercise 2: Book Library—Your First RESTful Backbone.js App

www.it-ebooks.info


http://www.it-ebooks.info/

margin-bottom: 0;

}

.bookContainer button {
float: right;
margin: 10px;

}

#addBook label {
width: 100px;
margin-right: 10px;
text-align: right;
line-height: 25px;
}

#addBook label, #addBook input {
display: block;
margin-bottom: 10px;
float: left;

}

#addBook label[for="title"], #addBook label[for="releaseDate"] {
clear: both;

}

#addBook button {
display: block;
margin: 5px 20px 10px 10px;
float: right;
clear: both;

}

#addBook div {
width: 550px;

}

#addBook div:after {
content: "";
display: block;
height: 0;

visibility: hidden;
clear: both;
font-size: 0;
line-height: 0;

}

Now it looks a bit better, as you can see in Figure 5-3.

SettingUp | 99

www.it-ebooks.info


http://www.it-ebooks.info/

Backbone.js Library - Google Chrome

| | Backbone.js Library

@ [ file:///home/mat/Dropbox/Projects/exercise-2/from-scratch/site/index.html 5’7 ’El =2 |
Coverlmage: | cnoose File | No file chesen

Title: Author: I
Release date: Keywords: I

| Ada.
dopentlontapt Title
Gl Author
Release Date
3& Keywords

Delete

Figure 5-3. An improved user interface for our application

So this is what we want the final result to look like, but with more books. Go ahead and
copy the bookContainer div a few more times if you would like to see what it looks like.
Now we are ready to start developing the actual application.

Creating the Model, Collection, Views, and App

First, we'll need a model of a book and a collection to hold the list. These are both very
simple, with the model only declaring some defaults:

// site/js/models/book.js
var app = app || {};

app.Book = Backbone.Model.extend({
defaults: {
coverImage: 'img/placeholder.png',
title: 'No title',
author: 'Unknown',
releaseDate: 'Unknown',
keywords: 'None'
}
s

100 | Chapter5: Exercise 2: Book Library—Your First RESTful Backbone.js App

www.it-ebooks.info



http://www.it-ebooks.info/

// site/js/collections/library.js
var app = app || {};

app.Library = Backbone.Collection.extend({
model: app.Book
H;

Next, in order to display books we’ll need a view:

// site/js/views/book.js
var app = app || {};

app.BookView = Backbone.View.extend({
tagName: 'div',
className: 'bookContainer',
template: _.template( $('#bookTemplate').html() ),

render: function() {
// tmpl is a function that takes a JSON object and returns html

// this.el is what we defined in tagName. use Sel to get access
// to jQuery html() function
this.Sel.html( this.template( this.model.toJSON() ));

return this;

}
s

We'll also need a view for the list itself:

// site/js/views/library.js
var app = app || {};

app.LibraryView = Backbone.View.extend({
el: '#books',

initialize: function( initialBooks ) {
this.collection = new app.Library( initialBooks );
this.render();

IS

// render library by rendering each book in its collection
render: function() {
this.collection.each(function( item ) {
this.renderBook( item );
}, this );
1,

// render a book by creating a BookView and appending the
// element it renders to the library's element
renderBook: function( item ) {

SettingUp | 101

www.it-ebooks.info


http://www.it-ebooks.info/

}
19K

Note that in the initialize function we accept an array of data that we pass to the
app.Library constructor. We'll use this to populate our collection with some sample
data so that we can see everything is working correctly. Finally, we have the entry point

var bookView = new app.BookView({
model: item

H;
this.$el.append( bookView.render().el );

for our code, along with the sample data:

// site/js/app.Jjs

var app = app || {};

$(function() {
var books = [

1;

{ title: 'JavaScript: The Good Parts', author: 'Douglas Crockford',
releaseDate: '2008', keywords: 'JavaScript Programming' },

{ title: 'The Little Book on CoffeeScript', author: 'Alex MacCaw',
releaseDate: '2012', keywords: 'CoffeeScript Programming' },

{ title: 'Scala for the Impatient', author: 'Cay S. Horstmann',
releaseDate: '2012', keywords: 'Scala Programming' },

{ title: 'American Psycho', author: 'Bret Easton Ellis',
releaseDate: '1991', keywords: 'Novel Splatter' },

{ title: 'Eloquent JavaScript', author: 'Marijn Haverbeke',
releaseDate: '2011', keywords: 'JavaScript Programming' }

new app.LibraryView( books );

s

Our app just passes the sample data to a new instance of app. LibraryView that it creates.
Since the initialize() constructor in LibraryView invokes the view’s render()
method, all the books in the library will be displayed. Since we are passing our entry
point as a callback to jQuery (in the form of its $ alias), the function will execute when

the DOM is ready.

If you view index.html in a browser, you should see something like Figure 5-4.

102 | Chapter5: Exercise 2: Book Library—Your First RESTful Backbone.js App

www.it-ebooks.info


http://www.it-ebooks.info/

Backbone.js Library - Google Chrome

| | Backbone.js Library

@ [ file:///home/mat/Dropbox/Projects/exercise-2/from-scratch/site/index.html 5’7 ’El g =

Coverlmage: | cnoose File | No file chesen

Title: Author: I
Release date: Keywords: I

LAdd

gopentiontt  JavaScript: The Good Parts gowentionsupt  The Little Book on CoffeeScript
e Douglas Crockford e Alex MacCaw

2008 2012

JavaScript Programming ; CoffeeScript Programming
= Delete s | Delete
Boenloutapt - Scala for the Impatient Boentlowiapt  American Psycho
e Cay S. Horstmann e Bret Easton Ellis

2012 1991

Scala Programming . Novel Splatter
— Deiete —— Delete
Boertowsei | Eloquent JavaScript
el Marijn Haverbeke

J 20n S

Figure 5-4. Populating our Backbone application with some sample data

This is a complete Backbone application, though it doesn’t yet do anything interesting.

Wiring in the Interface

Now we’ll add some functionality to the useless form at the top and the delete buttons
on each book.

Adding Models

When the user clicks the add button, we want to take the data in the form and use it to
create a new model. In the LibraryView we need to add an event handler for the click
event:

Wiring in the Interface | 103

www.it-ebooks.info


http://www.it-ebooks.info/

events:{
'click #add':'addBook'

1

addBook: function( e ) {
e.preventDefault();

var formData = {};

$( '#addBook div' ).children( 'input' ).each( function( i, el ) {
if( $SC el ).val() != """ ){
formData[ el.id ] = $( el ).val();
}
s

this.collection.add( new app.Book( formData ) );
1
We select all the input elements of the form that have a value and iterate over them using
jQuery’s each. Since we used the same names for ids in our form as the keys on our
Book model, we can simply store them directly in the formData object. We then create
a new book from the data and add it to the collection. We skip fields without a value so
that the defaults will be applied.

Backbone passes an event object as a parameter to the event-handling function. This is
useful for us in this case since we don’t want the form to actually submit and reload the
page. Adding a call to preventDefault on the event in the addBook function takes care
of this for us.

Now we just need to make the view render again when a new model is added
(Figure 5-5). To do this, we put the following in the initialize function of Library
View:

this.listenTo( this.collection, 'add', this.renderBook );

Now you should be ready to take the application for a spin.

104 | Chapter5: Exercise 2: Book Library—Your First RESTful Backbone.js App

www.it-ebooks.info


http://www.it-ebooks.info/

Backbone.js Library - Google Chrome
| | Backbone.js Library S
4 @ [ file:///home/mat/Dropbox/Projects/exercise-2/from-scratch/site/index.html 5’7 ’B =2 ]
Coverlmage: | Choose File | No file chosen =
Title: |Developing Backbone.js / Author: F\ddy Osmani
Release date: 513 Keywords: IBackbone JavaScript MV
lhaddy
BoquentJowSoit JavaScript: The Good Parts BoquentJowSeipt - The Little Book on CoffeeScript
e Douglas Crockford e Alex MacCaw
2008 2012
JavaScript Programming . CoffeeScript Programming
S Delete B Delete
Boqurtowset | Scala for the Impatient Boerthowset | American Psycho
el Cay S. Horstmann e Bret Easton Ellis
2012 1991
Scala Programming . Novel Splatter
Delete e | Delste
Bopentlontet  Eloquent JavaScript dowentionsapt - Developing Backbone.js Applications
ey ) Marijn Haverbeke ey ) Addy Osmani
2 2
Lz jOl l_ ~ = :OI.B. o -

Figure 5-5. The view rendering when a new model is added to the collection

You may notice that the file input for the cover image isn't working, but that is left as an
exercise to the reader.

Removing Models

Next, we need to wire up the delete button. Set up the event handler in the BookView:

events: {
'click .delete': 'deleteBook'
1,

deleteBook: function() {
// Delete model
this.model.destroy();

// Delete view
this.remove();

}

You should now be able to add and remove books from the library.

Wiring in the Interface | 105

www.it-ebooks.info


http://www.it-ebooks.info/

Creating the Backend

Now we need to make a small detour and set up a server with a REST API (application
programming interface). Since this is a JavaScript book, we will use JavaScript to create
the server using Node.js. If you are more comfortable in setting up a REST server in
another language, this is the API you need to conform to:

url HTTP Method Operation

/api/books GET Get an array of all books

/api/books/:id GET Get the book with id of :id

/api/books POST Add new book, return the book with id attribute added
/api/books/:id PUT Update the book with id of :id

/api/books/:1d DELETE Delete the book with id of :id

The outline for this section looks like this:

o Install Node.js, npm, and MongoDB
o Install node modules

o Create a simple web server
 Connect to the database

o Create the REST API

Install Node.js, npm, and MongoDB

Download and install Node.js from Nodejs.org. The node package manager (npm) will
be installed as well.

Download and install MongoDB from mongodb.org. There are detailed installation
guides on the website.

Install Node Modules

Create a file called package.json in the root of your project. It should look like the
following:

{
"name": "backbone-library",
"version": "0.0.1",
"description": "A simple library application using Backbone",
"dependencies": {
"express": "~3.1.0",
"path": "~0.4.9",
"mongoose": "~3.5.5"

106 | Chapter5: Exercise 2: Book Library—Your First RESTful Backbone.js App

www.it-ebooks.info


http://docs.mongodb.org/manual/installation/
http://www.it-ebooks.info/

Among other things, this file tells npm what the dependencies are for our project. On
the command line, from the root of your project, type:

npm install

You should see npm fetch the dependencies that we listed in our package.json file and
save them within a folder called node_modules.

Your folder structure should look something like this:

node_modules/
.bin/
express/
mongoose/
path/
site/
css/
img/
s/
index.html
package.json

Create a Simple Web Server

In the project root, create a file named server.js containing the following code:

// Module dependencies.

var application_root = __dirname,
express = require( 'express' ), //Web framework
path = require( 'path' ), //Utilities for dealing with file paths
mongoose = require( 'mongoose' ); //MongoDB integration

//Create server
var app = express();

// Configure server

app.configure( function() {
//parses request body and populates request.body
app.use( express.bodyParser() );

//checks request.body for HTTP method overrides
app.use( express.methodOverride() );

//perform route lookup based on URL and HTTP method
app.use( app.router );

//Where to serve static content
app.use( express.static( path.join( application_root, 'site') ) );

//Show all errors in development
app.use( express.errorHandler({ dumpExceptions: true, showStack: true }));

19K

Creating the Backend | 107

www.it-ebooks.info


http://www.it-ebooks.info/

//Start server

var port = 4711;

app.listen( port, function() {
console.log( 'Express server listening on port %d in %s mode',
port, app.settings.env );

19K

We start off by loading the modules required for this project: Express for creating the
HTTP server, Path for dealing with file paths, and mongoose for connecting with the
database. We then create an Express server and configure it using an anonymous func-
tion. This is a pretty standard configuration, and for our application we don’t actually
need the methodOverride part. It is used for issuing PUT and DELETE HT TP requests
directly from a form, since forms normally only support GET and POST. Finally, we
start the server by running the listen function. The port number used—in this case,
4711—could be any free port on your system. I simply used 4711 since it is unlikely to
have been used by anything else. We are now ready to run our first server:

node server.js

If you open a browser on http://localhost:4711, you should see something like Figure 5-6.

Backbone.js Library - Google Chrome

| | Backbone js Library x

€ @ [ localhost

Coverlmage: | choose File | No file chosen

Title: Author: |
Release date: Keywords: |

ety
Boentloatap  JavaScript: The Good Parts Bopentlosiapt The Little Book on CoffeeScript
S Douglas Crockford e Alex MacCaw
2008 2012
3& JavaScript Programming 3‘% CoffeeScript Programming
== Delete == | Delete
Boertowset | Scala for the Impatient BoerthowSet | American Psycho
i Cay S. Horstmann el Bret Easton Ellis
2012 1991
&ﬁ Scala Programming 3‘61 Novel Splatter
= Delete = | Delete

gopentiontu  Eloquent JavaScript
e Marijn Haverbeke
J oon

Figure 5-6. Our Backbone application served via Express

108 | Chapter5: Exercise 2: Book Library—Your First RESTful Backbone.js App

www.it-ebooks.info


http://www.it-ebooks.info/

We are now running on a server instead of directly from the files. Great job! We can
now start defining routes (URLs) that the server should react to. This will be our REST
API. We define routes by using app followed by one of the HTTP verbs get, put, post,
and delete, which correspond to create, read, update, and delete, respectively. Let’s go
back to server.js and define a simple route:

// Routes
app.get( '/api', function( request, response ) {
response.send( 'Library API is running' );

s

The get function takes a URL as the first parameter and a function as the second. The
function will be called with request and response objects. Now you can restart Node
and go to our specified URL, as shown in Figure 5-7.

localhost:4711/api - Google Chrome

|7 localhost:4711 /api x

rl

€ € [ localhost

Library AP is running

Figure 5-7. An initial response returned from our RESTful API

Connect to the Database

Fantastic. Now, since we want to store our data in MongoDB, we need to define a schema.
Add this to server.js:

Creating the Backend | 109

www.it-ebooks.info


http://www.it-ebooks.info/

//Connect to database
mongoose.connect( 'mongodb://localhost/library_database' );

//Schemas

var Book = new mongoose.Schema({
title: String,
author: String,
releaseDate: Date

s

//Models
var BookModel = mongoose.model( 'Book', Book );

As you can see, schema definitions are quite straightforward. They can be more ad-
vanced, but this will do for us. I also extracted a model (BookModel) from Mongo. This
is what we will be working with. Next up, we define a GET operation for the REST API
that will return all books:

//Get a list of all books
app.get( '/api/books', function( request, response ) {
return BookModel.find( function( err, books ) {
if( lerr ) {
return response.send( books );
} else {
return console.log( err );
}
Hs
b

The find function of BookModel is defined like this: function find (conditions,
fields, options, callback), but since we want a function that returns all books we
need only the callback parameter. The callback will be called with an error object and
an array of found objects. If there was no error, we return the array of objects to the
client using the send function of the response object; otherwise, we log the error to the
console.

To test our API, we need to do a little typing in a JavaScript console. Restart Node and
go to localhost:4711 in your browser. Open up the JavaScript console. If you are using
Google Chrome, go to View—Developer—JavaScript Console. If you are using Firefox,
install Firebug and go to View—>Firebug. Most other browsers will have a similar con-
sole. In the console, type the following:

jQuery.get( '/api/books/', function( data, textStatus, jgXHR ) {
console.log( 'Get response:' );
console.dir( data );
console.log( textStatus );
console.dir( jgXHR );
H;

and press Enter. You should see something like Figure 5-8.

110 | Chapter5: Exercise 2: Book Library—Your First RESTful Backbone.js App

www.it-ebooks.info


http://www.it-ebooks.info/

Developer Tools - http://localhost:4711/

Elements Resources Network Sources Timeline Profies Audits | Console | Tincr

» jQuery.get{ '/Japi/books/', function{ data, textStatus, jgXHR ) {
le.log{ 'Get response:' };
le.dir{ data ):
console.log{ textStatus );
console.dir{ jgXHR };
T
» Object {readyState: 1, getResponseHeader: function, getAllResponseHeaders:
function, setRequestHeader: function, overrideMimeType: function..}
Get response:
» Array[0]
success
» Object

B, = o & <topfrn ¥ <page text> v (0 | Emors  Warnings £

]

Figure 5-8. Making a call to our REST API using jQuery

Here I used jQuery to make the call to our REST API, since it was already loaded on the
page. The returned array is obviously empty, since we have not put anything into the
database yet. Let’s go ahead and create a POST route that enables adding new items in
server.js:

//Insert a new book
app.post( '/api/books', function( request, response ) {
var book = new BookModel({
title: request.body.title,
author: request.body.author,
releaseDate: request.body.releaseDate
H;
book.save( function( err ) {
if( lerr ) {
return console.log( 'created' );
} else {
return console.log( err );
}
b;
return response.send( book );

s

We start by creating a new BookModel, passing an object with title, author, and
releaseDate attributes. The data is collected from request.body. This means that any-
one calling this operation in the API needs to supply a JSON object containing the title,
author, and releaseDate attributes. Actually, the caller can omit any or all attributes
since we have not made any of them mandatory.

Creating the Backend | 111

www.it-ebooks.info


http://www.it-ebooks.info/

We then call the save function on the BookModel, passing in a callback in the same way
as with the previous get route. Finally, we return the saved BookModel. The reason we
return the BookModel and not just success or a similar string is that when the BookMo
del is saved it will get an _1d attribute from MongoDB, which the client needs when
updating or deleting a specific book. Let’s try it out again. Restart Node and go back to
the console and type:

jQuery.post( '/api/books', {

"title': 'JavaScript the good parts',

'author': 'Douglas Crockford',

'releaseDate': new Date( 2008, 4, 1 ).getTime()
}, function(data, textStatus, jgXHR) {

console.log( 'Post response:' );

console.dir( data );

console.log( textStatus );

console.dir( jgXHR );

s
and then:

jQuery.get( '/api/books/', function( data, textStatus, jgXHR ) {
console.log( 'Get response:' );
console.dir( data );
console.log( textStatus );
console.dir( jgXHR );
H;

You should now get a one-element array back from our server. You may wonder about
this line:

'releaseDate': new Date(2008, 4, 1).getTime()

MongoDB expects dates in UNIX time format (milliseconds from the start of January
1, 1970 UTC), so we have to convert dates before posting. The object we get back,
however, contains a JavaScript Date object. Also note the _1id attribute of the returned
object, shown in Figure 5-9.

112 | Chapter5: Exercise 2: Book Library—Your First RESTful Backbone.js App

www.it-ebooks.info


http://www.it-ebooks.info/

Developer Tools - http://localhost:4711/

Elements Resources Metwork Sources Timeline Profiles Audits | Console | Tincr

> jOue

{ '/api/books/', funct
log{ 'Get response:' )
{ data ):

leog{ textStatus );

jaxHR );

{ data, textStatus, jgXHR ) { ‘

I3 H
» Object {readyState: 1, getResponseHeader: function, getAllResponseHeaders: function, setRequestHeader:
function, overrideMimeType: function..}
Get response:
vArray[1]
Y0: Object
vi @
id: "511ccl7f895116achcODOBOL"
author: "Douglas Crockford"
releaseDate: "2008-04-30T23:00:00.000Z"
title: "JavaScript the good parts"

»  proto : Object
length: 1
b proto i Arrayl[@]
SuUccess
» Object
> |
n‘ = Q@ @ <topframe> ¥ <page context> LAR Al ‘ Errors Warnings Logs Debug &

Figure 5-9. Visualizing the structure of our returned BookModel

Let’s move on to creating a GET request that retrieves a single book in server.js:

//Get a single book by id
app.get( '/api/books/:id', function( request, response ) {
return BookModel.findById( request.params.id, function( err, book ) {
if( lerr ) {
return response.send( book );
} else {
return console.log( err );
}
b;
b

Here we use colon notation (:1d) to tell Express that this part of the route is dynamic.
We also use the findById function on BookModel to get a single result. If you restart
Node, you can get a single book by adding the id previously returned to the URL like
this:
jQuery.get( '/api/books/4f95a8cb1baa9b8a1b000006 ",
function( data, textStatus, jgXHR ) {
console.log( 'Get response:' );

console.dir( data );
console.log( textStatus );

Creating the Backend | 113

www.it-ebooks.info


http://www.it-ebooks.info/

console.dir( jgXHR );
s

Let’s create the PUT (update) function next:

//Update a book
app.put( '/api/books/:id', function( request, response ) {
console.log( 'Updating book ' + request.body.title );
return BookModel.findById( request.params.id, function( err, book ) {
book.title = request.body.title;
book.author = request.body.author;
book.releaseDate = request.body.releaseDate;

return book.save( function( err ) {
if( lerr ) {
console.log( 'book updated' );
} else {
console.log( err );
}
return response.send( book );
b
s
H;

This example is a little larger than previous ones, but is also pretty straightforward: we
find a book by 1id, update its properties, save it, and send it back to the client.

To test this, we need to use the more general jQuery ajax function. Again, in these
examples you will need to replace the id property with one that matches an item in your
own database:

jQuery.ajax({
url: '/api/books/4f95a8cb1baa9b8a1b000006 ",
type: 'PUT',
data: {
"title': 'JavaScript The good parts',
'author': 'The Legendary Douglas Crockford',
'releaseDate': new Date( 2008, 4, 1 ).getTime()
1,
success: function( data, textStatus, jgXHR ) {
console.log( 'Post response:' );
console.dir( data );
console.log( textStatus );
console.dir( jgXHR );
}
b

Finally, we create the delete route:

//Delete a book
app.delete( '/api/books/:id', function( request, response ) {
console.log( 'Deleting book with id: ' + request.params.id );
return BookModel.findById( request.params.id, function( err, book ) {
return book.remove( function( err ) {

114 | Chapter5: Exercise 2: Book Library—Your First RESTful Backbone.js App

www.it-ebooks.info


http://www.it-ebooks.info/

if( lerr ) {
console.log( 'Book removed' );

return response.send( '' );

} else {
console.log( err );

}

b;
s
H;
and try it out:

jQuery.ajax({
url: '/api/books/4f95a5251baa9b8a1b000001",
type: 'DELETE',
success: function( data, textStatus, jgXHR ) {
console.log( 'Post response:' );
console.dir( data );
console.log( textStatus );
console.dir( jgXHR );
}
s

So now our REST API is complete—we have support for all four HTTP verbs. What’s
next? Well, until now I have left out the keywords part of our books. This is a bit more
complicated since a book could have several keywords and we don’t want to represent
them as a string, but rather as an array of strings. To do that, we need another schema.
Add a Keywords schema right above our Book schema:

//Schemas

var Keywords = new mongoose.Schema({
keyword: String

s

To add a subschema to an existing schema, we use brackets notation like so:

var Book = new mongoose.Schema({

title: String,

author: String,

releaseDate: Date,

keywords: [ Keywords ] // NEW
b

Also update POST and PUT:

//Insert a new book
app.post( '/api/books', function( request, response ) {
var book = new BookModel({
title: request.body.title,
author: request.body.author,
releaseDate: request.body.releaseDate,
keywords: request.body.keywords // NEW
b;

book.save( function( err ) {

Creating the Backend | 115

www.it-ebooks.info


http://www.it-ebooks.info/

if( lerr ) {
return console.log( 'created' );
} else {
return console.log( err );
}
s
return response.send( book );

s

//Update a book
app.put( '/api/books/:id', function( request, response ) {
console.log( 'Updating book ' + request.body.title );
return BookModel.findById( request.params.id, function( err, book ) {
book.title = request.body.title;
book.author = request.body.author;
book.releaseDate = request.body.releaseDate;
book.keywords = request.body.keywords; // NEW

return book.save( function( err ) {
if( lerr ) {
console.log( 'book updated' );
} else {
console.log( err );
}
return response.send( book );
b;
H;
s

There we are—that should be all we need. Now we can try it out in the console:

jQuery.post( '/api/books', {

'title': 'Secrets of the JavaScript Ninja',
'author': 'John Resig',
'releaseDate': new Date( 2008, 3, 12 ).getTime(),
'keywords': [

{ 'keyword': 'JavaScript' },

{ 'keyword': 'Reference' }
1

}, function( data, textStatus, jgXHR ) {
console.log( 'Post response:' );
console.dir( data );
console.log( textStatus );
console.dir( jgXHR );

H;

You now have a fully functional REST server that we can hook into from our frontend.

Talking to the Server

In this section, we will cover connecting our Backbone application to the server through
the REST API.

116 | Chapter5: Exercise 2: Book Library—Your First RESTful Backbone.js App

www.it-ebooks.info


http://www.it-ebooks.info/

As I mentioned in Chapter 3, we can retrieve models from a server using collec
tion.fetch() by setting collection.url to be the URL of the API endpoint. Let’s
update the Library collection to do that now:

var app = app || {};

app.Library = Backbone.Collection.extend({
model: app.Book,
url: '/api/books' // NEW

b

This results in the default implementation of Backbone.sync, assuming that the API
looks like this:

url HTTP Method Operation

/api/books GET Get an array of all books

/api/books/:id GET Get the book with id of :id

/api/books POST Add new book, return book with id attribute added
/api/books/:id PUT Update the book with id of :id

/api/books/:1d DELETE Delete the book with id of :id

To have our application retrieve the Book models from the server on page load, we need
to update the LibraryVview. The Backbone documentation recommends inserting all
models when the page is generated on the server side, rather than fetching them from
the client side once the page is loaded. Since this chapter is trying to give you a more
complete picture of how to communicate with a server, we will ignore that recommen-
dation. Go to the LibraryView declaration and update the initialize function as
follows:

initialize: function() {
this.collection = new app.Library();
this.collection.fetch({reset: true}); // NEW
this.render();

this.listenTo( this.collection, 'add', this.renderBook );
this.listenTo( this.collection, 'reset', this.render ); // NEW
1,

Now that we are populating our library from the database using this.collec
tion.fetch(), the initialize() function no longer takes a set of sample data as an
argument and doesn’t pass anything to the app.Library constructor. You can now re-
move the sample data from site/js/app.js, which should reduce it to a single statement
that creates the LibraryView:

// site/js/app.js
var app = app || {};

$(function() {
new app.Libraryview();

s

Talking to the Server | 117

www.it-ebooks.info


http://www.it-ebooks.info/

We have also added a listener on the reset event. We need to do this since the models
are fetched asynchronously after the page is rendered. When the fetch completes, Back-
bone fires the reset event, as requested by the reset: true option, and our listener
rerenders the view. If you reload the page now, you should see all books that are stored
on the server, as shown in Figure 5-10.

Backbone.js Library - Google Chrome

| | Backbone js Library x

PEEEY

€ 2 © [ localhost

Coverlmage: | Choose File | No file chosen

Title: Author: |
Release date: Keywords: |
[ Add |
BoquentloSeit~ Secrets of the JavaScript Ninja

e John Resig
2008-04-11T23:00:00.000Z
3& [object Object],[object Object]
o Delete

Figure 5-10. Reloading the page displays books stored on the server

As you can see, the date and keywords look a bit weird. The date delivered from the
server is converted into a JavaScript Date object, and when applied to the underscore
template it will use the toString() function to display it. There isn't very good support
for formatting dates in JavaScript, so we will use the dateFormat jQuery plug-in to fix
this. Go ahead and download it and put it in your site/js/lib folder. Update the book
template so that the date is displayed with the following:

<li><%= $.format.date( new Date( releaseDate ), 'MMMM yyyy' ) %></li>
Add a script element for the plug-in:
<script src="js/lib/jquery-dateFormat-1.0.js"></script>

Now the date on the page should look a bit better. How about the keywords? Since we
are receiving the keywords in an array, we need to execute some code that generates a

118 | Chapter5: Exercise 2: Book Library—Your First RESTful Backbone.js App

www.it-ebooks.info


http://github.com/phstc/jquery-dateFormat
http://www.it-ebooks.info/

string of separated keywords. To do that we can omit the equals character in the template
tag, which will let us execute code that doesn’t display anything:

<li><% _.each( keywords, function( keyobj ) {%>
<%= keyobj.keyword %><% 1} ); %></li>

Here I iterate over the keywords array using the Underscore each function and print
out every single keyword. Note that I display the keyword using Underscore micro-
templating syntax. This will display the keywords with spaces between them.

Reloading the page again should result in some visible improvements, as you can see in
Figure 5-11.

Backbone.js Library - Google Chrome

|7 Backbone js Library x

N

€ » @ [ localhost

Coverlmage: | Choose File | No file chosen
Title: I— Author: I—
Release date: I— Keywords: I—
[ Add |

Boquent JowiSeit~ Secrets of the JavaScript Ninja
== John Resig
) April 2008
3_& JavaScript Reference

Delete

Figure 5-11. Improved date formatting

Now go ahead and delete a book and then reload the page: ta da! the deleted book is
back! Not cool; why is this? This happens because when we get the BookModels from
the server they have an _1d attribute (notice the underscore), but Backbone expects an
id attribute (no underscore). Since no id attribute is present, Backbone sees this model
as new, and deleting a new model doesn’t need any synchronization.

Talking to the Server | 119

www.it-ebooks.info


http://www.it-ebooks.info/

To fix this, we can use the parse function of Backbone.Model. The parse function lets
you edit the server response before it is passed to the Model constructor. Add a parse
function to the BookModel:

parse: function( response ) {
response.id = response._id;
return response;

}

Simply copy the value of _id to the needed id attribute. If you reload the page, you will
see that models are actually deleted on the server when you press the delete button.

Another, simpler way of making Backbone recognize _id as its unique identifier is to
set the idAttribute of the model to _id.

If you now try to add a new book using the form, you’ll notice that it is a similar story
to delete—models won't get persisted on the server. This is because Backbone.Collec
tion.add doesn’t automatically sync, but it is easy to fix. In the LibraryView we find in
views/library.js, change the line reading:

this.collection.add( new Book( formData ) );
to:
this.collection.create( formData );

Now newly created books will get persisted. Actually, they probably won't if you enter
adate. The server expects a date in UNIX timestamp format (milliseconds since January
1,1970). Also, any keywords you enter won't be stored since the server expects an array
of objects with the attribute keyword.

We'll start by fixing the date issue. We don't really want users to manually enter a date
in a specific format, so we'll use the standard datepicker from jQuery Ul Go ahead
and create a custom jQuery UI download containing datepicker. Add the css theme
to site/css/ and the JavaScript to site/js/lib. Link to them in index.html:

<link rel="stylesheet" href="css/cupertino/jquery-ui-1.10.0.custom.css">
(cupertino is the name of the style I chose when downloading jQuery UL)
The JavaScript file must be loaded after jQuery.

<script src="js/lib/jquery.min.js"></script>
<script src="js/lib/jquery-ui-1.10.0.custom.min.js"></script>

Now, in app.js, bind a datepicker to our releaseDate field:
var app = app || {};

$(function() {
$( '#releaseDate' ).datepicker();
new app.LibraryView();

s

120 | Chapter5: Exercise 2: Book Library—Your First RESTful Backbone.js App

www.it-ebooks.info


http://jqueryui.com/download/
http://www.it-ebooks.info/

You should now be able to pick a date when clicking in the releaseDate field, as
Figure 5-12 shows.

Backbone.js Library - Google Chrome

| | Backbone js Library *

PR

€ 2 © [ localhost:47

Coverlmage: | cnoose File | No file chesen

Title: |Developing Backbone. s # Author: I;ddy Osmani
Release date: :] Keywords: IBackbone JavaScript MV

[ February 2013 o | Ada

Su Mo Tu We Th Fr Sa

{
i

t&é}‘
-
L
L
!
}
L

1 2

8 9

= 10 11 12 13 14 15 16
7| 18 19 20 21 22 23
24 25 26 27 28

Figure 5-12. Date selection from the releaseDate field in our application

Finally, we have to make sure that the form input is properly transformed into our
storage format. Change the addBook function in LibraryView to:

addBook: function( e ) {
e.preventDefault();

var formData = {3};

$( '#addBook div' ).children( 'input' ).each( function( i, el ) {
if( $C el ).val() '= '" )
{
if( el.id === 'keywords' ) {
formData[ el.id ] = [];
_.each( $( el ).val().split( ' ' ), function( keyword ) {
formData[ el.id ].push({ 'keyword': keyword });

19N
} else if( el.id === 'releaseDate' ) {

formData[ el.id ] = $( '#releaseDate' ).datepicker( 'getDate' ).getTime();
} else {

Talking to the Server | 121

www.it-ebooks.info


http://www.it-ebooks.info/

formData[ el.id ] = $( el ).val();
}
}
// Clear input field value
$C el ).val(''");
s

this.collection.create( formData );

1

Our change adds two checks to the form input fields. First, we're checking if the current
element is the keywords input field, in which case we’re splitting the string on each space

and creating an array of keyword objects.

Then we're checking if the current element is the releaseDate input field, in which case
we're calling datePicker("getDate"), which returns a Date object. We then use the

getTime function on that to get the time in milliseconds.

Now you should be able to add new books with both a release date and keywords! See

Figure 5-13.

Backbone.js Library - Google Chrome

[ Backbone s Library

§ % € |[ localhost:

Coverlmage: | Choose File | No file chosen

Title: |Developing Backbone.js / Author: Eddy Osmani

Release date: |55/m 12013 Keywords: |[Backbone JavaScript MV
[Add |
Soquntioasapt  Secrets of the JavaSeript Ninja Bt o Developing Backbone.js Applicati
= John Resig = Addy Osmani
April 2008 May 2013
3& JavaScript Reference pgi Backbone JavaScript MV*
== Delete e Delete

Figure 5-13. Adding new book entries, displaying both a release date and keywords

122 | Chapter5: Exercise 2: Book Library—Your First RESTful Backbone.js App

www.it-ebooks.info


http://www.it-ebooks.info/

Summary

In this chapter we made our application persistent by binding it to a server using a REST
API. We also looked at some problems that might occur when you are serializing and
deserializing data, and their solutions. We looked at the dateFormat and the datepick
er jQuery plug-ins and how to do some more advanced things in our Underscore tem-
plates. The code is available from my GitHub page.

Summary | 123

www.it-ebooks.info


http://bit.ly/12C56nH
http://www.it-ebooks.info/

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 6
Backbone Extensions

Backbone is flexible, simple, and powerful. However, you may find that the complexity
of the application you are working on requires more than what it provides out of the
box. There are certain concerns that it just doesn’t address directly, as one of its goals is
to be minimalist.

Take, for example, views, which provide a default render method that does nothing and
produces no real results when called, despite most implementations using it to generate
the HTML that the view manages. Also, models and collections have no built-in way of
handling nested hierarchies—if you require this functionality, you need to write it
yourself or use a plug-in.

In these cases, there are many existing Backbone plug-ins that can provide advanced
solutions for large-scale Backbone apps. You can find a fairly complete list of the avail-
able plug-ins and frameworks on the Backbone wiki. With these add-ons, there is
enough for applications of most sizes to be completed successfully.

In this section of the book, we will look at two popular Backbone add-ons: Marionette]S
and Thorax.

MarionettelJS (Backbone.Marionette)
By Derick Bailey and Addy Osmani

As we've seen, Backbone provides a great set of building blocks for our JavaScript ap-
plications. It gives us the core constructs that we need to build small to midsize apps,
organize jQuery DOM events, or create single-page apps that support mobile devices
and large-scale enterprise needs. But Backbone is not a complete framework. It’s a set
of building blocks that leaves much of the application design, architecture, and scala-
bility to the developer, including memory management, view management, and more.

125

www.it-ebooks.info


https://github.com/documentcloud/backbone/wiki/Extensions%2C-Plugins%2C-Resources
http://www.it-ebooks.info/

Marionette]JS, also known as Backbone.Marionette, provides many of the features that
the nontrivial application developer needs, above what Backbone itself provides. It is a
composite application library that aims to simplify the construction of large-scale ap-
plications. It does this by providing a collection of common design and implementation
patterns found in the applications that the creator, Derick Bailey, and many other con-
tributors have been using to build Backbone apps.

Marionette’s key benefits include:

 Allows you to scale applications out with modular, event-driven architecture

o Provides sensible defaults, such as Underscore templates for view rendering

o Can be easily modified to work with your application’s specific needs

« Reduces boilerplate for views, with specialized view types

o Builds on a modular architecture with an application and modules that attach to it
« Allows you to compose your application’s visuals at runtime, with region and layout
o Provides nested views and layouts within visual regions

o Includes built-in memory management and zombie killing in views, regions, and
layouts

o Provides built-in event cleanup with the EventBinder
o Incorporates event-driven architecture with the EventAggregator

o Offers a flexible, as-needed architecture that allows you to pick and choose what
you need

Marionette follows a similar philosophy to Backbone in that it provides a suite of com-
ponents that can be used independently of one another, or used together to create sig-
nificant advantages for developers. But it steps above the structural components of

Backbone and provides an application layer, with more than a dozen components and
building blocks.

Marionette’s components range greatly in the features they provide, but they all work
together to create a composite application layer that can both reduce boilerplate code
and provide a much-needed application structure. Its core components include various
and specialized view types that take the boilerplate out of rendering common Back
bone.Model and Backbone.Collection scenarios; an Application object and Module
architecture to scale applications across subapplications, features, and files; integration
of a command pattern, event aggregator, and request/response mechanism; and many
more object types that can be extended in myriad ways to create an architecture that
facilitates an application’s specific needs.

In spite of the large number of constructs that Marionette provides, though, you’re not
required to use all of it just because you want to use some of it. As with Backbone itself,

126 | Chapter 6: Backbone Extensions

www.it-ebooks.info


http://marionettejs.com
http://lostechies.com/derickbailey/
http://bit.ly/11PYUWL
http://bit.ly/11PYUWL
http://www.it-ebooks.info/

you can pick and choose which features you want to use and when. This allows you to
work with other Backbone frameworks and plug-ins very easily. It also means that you
are not required to engage in an all-or-nothing migration to begin using Marionette.

Boilerplate Rendering Code

Consider the code that it typically requires to render a view with Backbone and an
Underscore template. We need a template to render, which can be placed in the DOM
directly, and we need the JavaScript that defines a view that uses the template and pop-
ulates it with data from a model.

<script type="text/html" id="my-view-template"s>
<div class="row">
<label>First Name:</label>
<span><%= firstName %></span>
</div>
<div class="row">
<label>Last Name:</label>
<span><%= lastName %></span>
</div>
<div class="row">
<label>Email:</label>
<span><%= email %></span>
</div>
</script>

var MyView = Backbone.View.extend({
template: S$('#my-view-template').html(),

render: function(){

// compile the Underscore.js template
var compiledTemplate = _.template(this.template);

// render the template with the model data
var data = this.model.toJSON();
var html = compiledTemplate(data);

// populate the view with the rendered html
this.$el.html(html);
}
H;

Once this is in place, you need to create an instance of your view and pass your model
into it. Then you can take the view’s el and append it to the DOM in order to display
the view.

var Derick = new Person({
firstName: 'Derick',
lastName: 'Bailey’,
email: 'derickbailey@example.com'

MarionetteJ$ (Backbone.Marionette) | 127

www.it-ebooks.info


http://www.it-ebooks.info/

s

var myView = new MyView({
model: Derick

b
myView.render();

$('#content').html(myView.el)

This is a standard setup for defining, building, rendering, and displaying a view with
Backbone. This is also what we call boilerplate code—code that is repeated across every
project and every implementation with the same functionality. It gets to be tedious and
repetitious very quickly.

Enter Marionette’s I temView—a simple way to reduce the boilerplate of defining a view.

Reducing Boilerplate with Marionette.ltemView

All of Marionette’s view types—with the exception of Marionette.View—include a
built-in render method that handles the core rendering logic for you. We can take
advantage of this by changing the MyView instance to inherit from one of these rather
than Backbone.View. Instead of having to provide our own render method for the view,
we can let Marionette render it for us. We'll still use the same Underscore.js template
and rendering mechanism, but its implementation is hidden behind the scenes. Thus,
we can reduce the amount of code needed for this view.

var MyView = Marionette.ItemView.extend({
template: '#my-view-template'

s
And that’s it—that’s all you need to get the exact same behavior as the previous view
implementation. Just replace Backbone.View.extend with Marionette.ItemView.ex
tend, then get rid of the render method. You can still create the view instance with a
model, call the render method on the view instance, and display the view in the DOM
the same way that we did before. But the view definition has been reduced to a single
line of configuration for the template.

Memory Management

In addition to reducing code needed to define a view, Marionette includes some ad-
vanced memory management in all of its views, making the job of cleaning up a view
instance and its event handlers easy.

Consider the following view implementation:

var ZombieView = Backbone.View.extend({
template: '#my-view-template',

128 | Chapter 6: Backbone Extensions

www.it-ebooks.info


http://www.it-ebooks.info/

initialize: function(){

// bind the model change to rerender this view
this.model.on('change', this.render, this);

1
render: function(){

// This alert is going to demonstrate a problem
alert('We're rendering the view');

}
s

If we create two instances of this view using the same variable name for both instances,
and then change a value in the model, how many times will we see the alert box?

var Person = Backbone.Model.extend({

defaults: {
"firstName": "Jeremy",
"lastName": "Ashkenas",
"email": "jeremy@example.com"
}
b;

var Derick = new Person({
firstName: 'Derick',
lastName: 'Bailey',
email: 'derick@example.com'

s

// create the first view instance
var zombieView = new ZombieView({
model: Derick

s

// create a second view instance, reusing
// the same variable name to store it
zombieView = new ZombieView({

model: Derick

b;
Derick.set('email', 'derickbailey@example.com');

Since were reusing the same zombieView variable for both instances, the first instance
of the view will fall out of scope immediately after the second is created. This allows the
JavaScript garbage collector to come along and clean it up, which should mean the first
view instance is no longer active and no longer going to respond to the model’s change
event.

MarionetteJ$ (Backbone.Marionette) | 129

www.it-ebooks.info


http://www.it-ebooks.info/

But when we run this code, we end up with the alert box showing up twice!

The problem is caused by the model event binding in the view’s initialize method.
Whenever we pass this.render as the callback method to the model’s on event binding,
the model itself is being given a direct reference to the view instance. Since the model
is now holding a reference to the view instance, replacing the zombieView variable with
a new view instance is not going to let the original view fall out of scope. The model still
has a reference; therefore, the view is still in scope.

Since the original view is still in scope, and the second view instance is also in scope,
changing data on the model will cause both view instances to respond.

Fixing this is easy, though. You just need to call stopListening when the view is done
with its work and ready to be closed. To do this, add a close method to the view.

var ZombieView = Backbone.View.extend({
template: '#my-view-template',

initialize: function(){
// bind the model change to rerender this view
this.listenTo(this.model, 'change', this.render);

3

close: function(){
// unbind the events that this view is listening to
this.stopListening();

1,

render: function(){

// This alert is going to demonstrate a problem
alert('We’'re rendering the view');

}
s

Then call close on the first instance when it is no longer needed, and only one view
instance will remain alive. For more information about the listenTo and stopListen
ing functions, see Chapter 3 and DericK’s post “Managing Events As Relationships, Not
Just References”.

var Jeremy = new Person({
firstName: 'Jeremy',
lastName: 'Ashkenas',
email: 'jeremy@example.com'

s

// create the first view instance
var zombieView = new ZombieView({
model: Person

b

130 | Chapter 6: Backbone Extensions

www.it-ebooks.info


http://lostechies.com/derickbailey/2013/02/06/managing-events-as-relationships-not-just-references/
http://lostechies.com/derickbailey/2013/02/06/managing-events-as-relationships-not-just-references/
http://www.it-ebooks.info/

zombieView.close(); // double-tap the zombie

// create a second view instance, reusing
// the same variable name to store it
zombieView = new ZombieView({

model: Person

b

Person.set('email', 'jeremyashkenas@example.com');
Now we see only one alert box when this code runs.

Rather than having to manually remove these event handlers, though, we can let Mar-
ionette do it for us.

var ZombieView = Marionette.ItemView.extend({
template: '#my-view-template',

initialize: function(){

// bind the model change to rerender this view
this.listenTo(this.model, 'change', this.render);

1.
render: function(){

// This alert is going to demonstrate a problem
alert('We're rendering the view');

}
s
Notice in this case we are using a method called 1istenTo. This method comes from
Backbone.Events, and is available in all objects that mix in Backbone . Events—includ-
ing most Marionette objects. The 1istenTo method signature is similar to that of the
on method, with the exception of passing the object that triggers the event as the first
parameter.

Marionette’s views also provide a close event, in which the event bindings that are set
up with the listenTo are automatically removed. This means we no longer need to
define a close method directly, and when we use the l1istenTo method, we know that
our events will be removed and our views will not turn into zombies.

But how do we automate the call to close on a view, in the real application? When and
where do we call that? Enter the Marionette.Region—an object that manages the life-
cycle of an individual view.

MarionetteJ$ (Backbone.Marionette) | 131

www.it-ebooks.info


http://www.it-ebooks.info/

Region Management

After a view is created, it typically needs to be placed in the DOM so that it becomes
visible. We usually do this with a jQuery selector and by setting the html() of the re-
sulting object:
var Joe = new Person({
firstName: 'Joe',
lastName: 'Bob',
email: 'joebob@example.com'

B

var myView = new MyView({
model: Joe

H
myView.render();

// show the view in the DOM
$('#content').html(myView.el)

This, again, is boilerplate code. We shouldn’t have to manually call render and manually
select the DOM elements to show the view. Furthermore, this code doesn’t lend itself to
closing any previous view instance that might be attached to the DOM element we want
to populate. And we’ve seen the danger of zombie views already.

To solve these problems, Marionette provides a Region object—an object that manages
the lifecycle of individual views, displayed in a particular DOM element.

// create a region instance, telling it which DOM element to manage
var myRegion = new Marionette.Region({
el: '#content'

s

// show a view in the region
var viewl = new MyView({ /* ... */ });
myRegion.show(viewl);

// somewhere else in the code,

// show a different view

var view2 = new MyView({ /* ... */ });

myRegion.show(view2);
There are several things to note here. First, we're telling the region what DOM element
to manage by specifying an el in the region instance. Second, we’re no longer calling
the render method on our views. And lastly, we're not calling close on our view, either,
though this is getting called for us.

When we use a region to manage the lifecycle of our views, and display the views in the
DOM, the region itself handles these concerns. When we pass a view instance into the

132 | Chapter 6: Backbone Extensions

www.it-ebooks.info


http://www.it-ebooks.info/

show method of the region, the region will call the render method on the view for us.
It will then take the resulting el of the view and populate the DOM element.

The next time we call the show method of the region, the region remembers that it is
currently displaying a view. The region calls the close method on the view, removes it
from the DOM, and then proceeds to run the render and display code for the new view
that was passed in.

Since the region handles calling close for us, and we’re using the 1istenTo event binder
in our view instance, we no longer have to worry about zombie views in our application.

Regions are not limited to just Marionette views, though. Any valid Backbone . View can
be managed by a Marionette.Region. If your view happens to have a close method, it
will be called when the view is closed. If not, the Backbone.View built-in method re
move will be called instead.

Marionette Todo App

Having learned about Marionette’s high-level concepts, let's now explore refactoring the
Todo application we created in our first exercise to use it. You can find the complete
code for this application in Derick’s TodoMVC fork.

Our final implementation will be visually and functionally equivalent to the original
app, as shown in Figure 6-1.

Write an app

1 items left All Active Completed Clear completed

Figure 6-1. The Marionette Todo application we will be authoring

First, we define an application object representing our base TodoMVC app. This will
contain initialization code and define the default layout regions for our app.

MarionetteJ$ (Backbone.Marionette) | 133

www.it-ebooks.info


http://bit.ly/16dXF9x
http://www.it-ebooks.info/

TodoMVCjs

var TodoMVC = new Marionette.Application();

TodoMVC.addRegions({

header : '#header',

main : '#main',

footer : '#footer'
H;

TodoMVC.on('initialize:after', function(){
Backbone.history.start();
H;

Regions are used to manage the content that’s displayed within specific elements, and
the addrRegions method on the TodoMVC object is just a shortcut for creating Region
objects. We supply a jQuery selector for each region to manage (e.g., #header, #main,
and #footer) and then tell the region to show various Backbone views within that
region.

Once the application object has been initialized, we call Backbone.history.start() to
route the initial URL.

Next, we define our layouts. A layout is a specialized type of view that directly extends
Marionette.ItemView. This meansit’s intended to render a single template and may or
may not have a model (or item) associated with the template.

One of the main differences between alayout and an I temViewis that the layout contains
regions. When defining a layout, we supply it with both a template and the regions that
the template contains. After rendering the layout, we can display other views within the
layout using the regions that were defined.

In our TodoMVC layout module, we define layouts for:

Header
Where we can create new todos

Footer
Where we summarize how many todos are remaining or have been completed

This captures some of the view logic that was previously in our AppView and TodoView.

Note that Marionette modules (such as the following) offer a simple module system that
is used to create privacy and encapsulation in Marionette apps. These certainly don’t
have to be used, however, and in “Marionette and Flexibility” on page 144, we’ll provide
links to alternative implementations using Require]S + AMD (asynchronous module
definition) instead.

134 | Chapter 6: Backbone Extensions

www.it-ebooks.info


http://www.it-ebooks.info/

TodoMVC.Layout.js

TodoMVC.module( 'Layout', function(Layout, App, Backbone, Marionette, $, _){

// Layout Header View

R

Layout.Header = Marionette.ItemView.extend({
template : '#template-header',

// UI bindings create cached attributes that
// point to jQuery selected objects

ut @ {
input : '#new-todo'
1
events : {
'keypress #new-todo': 'onInputKeypress'
1

onInputKeypress : function(evt) {
var ENTER_KEY = 13;
var todoText = this.ui.input.val().trim();

if ( evt.which === ENTER_KEY && todoText ) {
this.collection.create({
title : todoText
b;
this.ui.input.val('');
}
}
s

// Layout Footer View
A

Layout.Footer = Marionette.Layout.extend({
template : '#template-footer',

// UI bindings create cached attributes that
// point to jQuery selected objects

ut @ {
count : '#todo-count strong',
filters : '#filters a'
1,
events : {
'click #clear-completed' : 'onClearClick'
1,

initialize : function() {
this.listenTo(App.vent, 'todoList:filter', this.updateFilterSelection);

MarionetteJ$ (Backbone.Marionette) | 135

www.it-ebooks.info


http://www.it-ebooks.info/

this.listenTo(this.collection, 'all', this.updateCount);
}’

onRender : function() {
this.updateCount();
}’

updateCount : function() {
var count = this.collection.getActive().length;
this.ui.count.html(count);

if (count === 0) {
this.$el.parent().hide();
} else {
this.$el.parent().show();
}
1,

updateFilterSelection : function(filter) {
this.ui.filters
.removeClass('selected')
filter('[href="#"' + filter + '"]")
.addClass('selected');
}’

onClearClick : function() {
var completed = this.collection.getCompleted();
completed. forEach(function destroy(todo) {
todo.destroy();
b
}
b

19K

Next, we tackle application routing and workflow, such as controlling layouts in the
page that can be shown or hidden.

Recall how Backbone routes trigger methods within the router, as shown here in our
original workspace router from our first exercise:

var Workspace = Backbone.Router.extend({
routes:{
"*filter': 'setFilter'
}’

setFilter: function( param ) {
// Set the current filter to be used
if (param){ param = param.trim()

}
app.TodoFilter = param ||";

// Trigger a collection filter event, causing hiding/unhiding

136 | Chapter 6: Backbone Extensions

www.it-ebooks.info


http://www.it-ebooks.info/

// of Todo view items
app.Todos.trigger('filter');

}
s

Marionette uses the concept of an AppRouter to simplify routing. This reduces the
boilerplate for handling route events and allows routers to be configured to call methods
on an object directly. We configure our AppRouter using appRoutes, which replaces the
"*filter': 'setFilter' route defined in our original router and invokes a method
on our controller.

The TodoList controller, also found in this next code block, handles some of the re-
maining visibility logic originally found in AppView and TodoView, albeit using very
readable layouts.

TodoMVC.TodoList.js

TodoMVC.module('TodoList', function(TodoList, App, Backbone, Marionette, $, _){

// TodolList Router
A
//

// Handle routes to show the active versus complete todo items

TodoList.Router = Marionette.AppRouter.extend({
appRoutes : {
"*f{lter': 'filterItems'
}
s

// TodolList Controller (Mediator)

[/ e

//

// Control the workflow and logic that exists at the application
// level, above the implementation detail of views and models

TodoList.Controller = function(){
this.todolList = new App.Todos.TodoList();
1

_.extend(TodoList.Controller.prototype, {

// Start the app by showing the appropriate views

// and fetching the list of todo items, if there are any

start: function(){
this.showHeader (this.todoList);
this.showFooter(this.todolList);
this.showTodoList(this.todoList);

this.todoList.fetch();
1,

MarionetteJ$ (Backbone.Marionette) | 137

www.it-ebooks.info


http://www.it-ebooks.info/

showHeader: function(todoList){
var header = new App.Layout.Header({
collection: todoList
s
App.header.show(header);
1,

showFooter: function(todoList){
var footer = new App.Layout.Footer({
collection: todoList
b
App.footer.show(footer);
}’

showTodoList: function(todoList){
App.main.show(new TodoList.Views.ListView({
collection : todolList
130N
}’

// Set the filter to show complete or all items
filterItems: function(filter){
App.vent.trigger('todoList:filter', filter.trim() || "');
}
b

// TodolList Initializer
e

//
// Get the TodoList up and running by initializing the mediator

// when the application is started, pulling in all of the
// existing todo items and displaying then.

TodoList.addInitializer(function(){
var controller = new TodoList.Controller();
new TodoList.Router({
controller: controller
s
controller.start();

s
19K

Controllers

In this particular app, note that controllers don't add a great deal to the overall workflow.
In general, Marionette’s philosophy on routers is that they should be an afterthought in
the implementation of applications. Quite often, we’ve seen developers abuse Backbone’s

Chapter 6: Backbone Extensions

www.it-ebooks.info


http://www.it-ebooks.info/

routing system by making it the sole controller of the entire application workflow and
logic.

This inevitably leads to mashing every possible combination of code into the router
methods—view creation, model loading, coordinating different parts of the app, and so
on. Developers such as Derick view this as a violation of the single-responsibility prin-
ciple, or SRP, and separation of concerns.

Backbone’s router and history exist to deal with a specificaspect of browsers—managing
the forward and back buttons. Marionette’s philosophy is that it should be limited to
that, with the code that gets executed by the navigation being somewhere else. This
allows the application to be used with or without a router. We can call a controller’s show
method from a button click, from an application event handler, or from a router, and
we will end up with the same application state no matter how we called that method.

Derick has written extensively about his thoughts on this topic, which you can read
more about on his blog, Lostechies:

o The Responsibilities Of The Various Pieces Of Backbone.js
 Reducing Backbone Routers To Nothing More Than Configuration
o 3 Stages Of A Backbone Application’s Startup

CompositeView

Our next task is defining the actual views for individual todo items and lists of items in
our TodoMVC application. For this, we make use of Marionette’s CompositeViews. The
idea behind a CompositeView is that it represents a visualization of a composite or
hierarchical structure of leaves (or nodes) and branches.

Think of these views as being a hierarchy of parent-child models, and recursive by
default. The same CompositeView type will be used to render each item in a collection
that is handled by the composite view. For nonrecursive hierarchies, we are able to
override the item view by defining an itemView attribute.

For our todo list item view, we define it as an ItemView; then, our todo list view is a
CompositeView where we override the itemview setting and tell it to use the todo list
item view for each item in the collection.

TodoMVC.TodoList.Views.js

TodoMVC.module('TodoList.Views', function
(Views, App, Backbone, Marionette, $, _){

// Todo List Item View

J) e
//

MarionetteJ$ (Backbone.Marionette) | 139

www.it-ebooks.info


http://bit.ly/15y3IpT
http://bit.ly/15y3IpT
http://bit.ly/11VHN7p
http://bit.ly/16o8Egn
http://bit.ly/130cGbS
http://www.it-ebooks.info/

// Display an individual todo item, and respond to changes
// that are made to the item, including marking completed.

Views.ItemView = Marionette.ItemView.extend({
tagName : '11',
template : '#template-todoltemView',

ut @ {
edit : '.edit'
1,

events : {
'click .destroy' : 'destroy',
'dblclick label' : 'onEditClick',
'keypress .edit' : 'onEditKeypress',
'click .toggle' : 'toggle'

}

initialize : function() {
this.listenTo(this.model, 'change', this.render);

3

onRender : function() {
this.Sel.removeClass('active completed');
if (this.model.get('completed')) this.S$el.addClass('completed');
else this.S$el.addClass('active');

s

destroy : function() {
this.model.destroy();
1,

toggle : function() {
this.model.toggle().save();
s

onEditClick : function() {
this.S$el.addClass('editing');
this.ui.edit.focus();

1

onEditKeypress : function(evt) {
var ENTER_KEY = 13;
var todoText = this.ui.edit.val().trim();

if ( evt.which === ENTER_KEY && todoText ) {
this.model.set('title', todoText).save();
this.$el.removeClass('editing');
}
}
s

140

Chapter 6: Backbone Extensions

www.it-ebooks.info


http://www.it-ebooks.info/

// Item List View

J) e

//

// Controls the rendering of the list of items, including the
// filtering of active versus completed items for display.

Views.ListView = Marionette.CompositeView.extend({
template : '#template-todoListCompositeView',
itemView : Views.ItemView,

itemViewContainer : '#todo-list',
ut @ {
toggle : '#toggle-all'
1,
events : {
'click #toggle-all' : 'onToggleAllClick'
1,

initialize : function() {
this.listenTo(this.collection, 'all', this.update);
1

onRender : function() {
this.update();

1

update : function() {
function reduceCompleted(left, right)
{ return left && right.get('completed'); }
var allCompleted = this.collection.reduce(reduceCompleted,true);
this.ui.toggle.prop('checked', allCompleted);

if (this.collection.length === 0) {
this.$el.parent().hide();
} else {
this.$el.parent().show();
}
s

onToggleAllClick : function(evt) {
var isChecked = evt.currentTarget.checked;
this.collection.each(function(todo){
todo.save({'completed': isChecked});
b
}
s

// Application Event Handlers
[/ e

//
// Handler for filtering the list of items by showing and

MarionetteJ$ (Backbone.Marionette) | 141

www.it-ebooks.info


http://www.it-ebooks.info/

// hiding through the use of various CSS classes

App.vent.on('todoList:filter',function(filter) {

filter = filter || 'all';
$('#todoapp').attr('class', 'filter-' + filter);
b

19K

At the end of the last code block, you will also notice an event handler using vent. This
is an event aggregator that allows us to handle filterItem triggers from our TodoList
controller.

Finally, we define the model and collection for representing our todo items. These are
semantically not very different from the original versions we used in our first exercise
and have been rewritten to better fit in with Derick’s preferred style of coding.

Todos.js

TodoMVC.module('Todos', function(Todos, App, Backbone, Marionette, $, _){

// Todo Model
[/ e

Todos.Todo = Backbone.Model.extend({
localStorage: new Backbone.LocalStorage('todos-backbone'),

defaults: {
title Y,
completed : false,
created : 0

1,

initialize : function() {
if (this.isNew()) this.set('created', Date.now());

I8

toggle : function() {
return this.set('completed', !this.isCompleted());

I8

isCompleted: function() {
return this.get('completed');
}
s

// Todo Collection
A

Todos.TodoList = Backbone.Collection.extend({
model: Todos.Todo,

142 | Chapter 6: Backbone Extensions

www.it-ebooks.info


http://www.it-ebooks.info/

localStorage: new Backbone.LocalStorage('todos-backbone'),

getCompleted: function() {
return this.filter(this._isCompleted);
1,

getActive: function() {
return this.reject(this._isCompleted);

1

comparator: function( todo ) {
return todo.get('created');

1

_isCompleted: function(todo){
return todo.isCompleted();
}
b

s

We finally kick everything off in our application index file by calling start on our main
application object. Initialization is as follows:

$(function(){
// Start the TodoMVC app (defined in js/TodoMVC.js)
TodoMVC.start();

s
And that’s it!

Is the Marionette Implementation of the Todo App More
Maintainable?

Derick feels that maintainability largely comes down to modularity, separating respon-
sibilities (single responsibility principle and separation of concerns) by using patterns
to keep concerns from being mixed together. It can, however, be difficult to simply
extract things into separate modules for the sake of extraction, abstraction, or dividing
the concept down into its simplest parts.

The SRP tells us quite the opposite—that we need to understand the context in which
things change. What parts always change together, in this system? What parts can change
independently? Without knowing this, we won't know what pieces should be broken
out into separate components and modules versus put together into the same module
or object.

The way Derick organizes his apps into modules is by creating a breakdown of concepts
at each level. A higher level module is a higher level of concern—an aggregation of
responsibilities. Each responsibility is broken down into an expressive API set that is
implemented by lower level modules (this is known as the dependency inversion

MarionetteJ$ (Backbone.Marionette) | 143

www.it-ebooks.info


http://www.it-ebooks.info/

principle). These are coordinated through a mediator, which he typically refers to as the
controller in a module.

The way Derick organizes his files also plays directly into maintainability. He has written
posts about the importance of keeping a sane application folder structure that I recom-
mend reading:

o JavaScript File & Folder Structures: Just Pick One

« How to organize and structure the files and folders of Hilo]S

Marionette and Flexibility

Marionette is a flexible framework, much like Backbone itself. It offers a wide variety
of tools to help you create and organize an application architecture on top of Backbone,
but like Backbone itself, it doesn’t dictate that you have to use all of its pieces in order
to use any of them.

You'll find the flexibility and versatility in Marionette easiest to understand by exam-
ining three variations of TodoMVC implemented with it that have been created for
comparison purposes:

Simple, by Jarrod Overson
This version of TodoMVC shows some raw use of Marionette’s various view types,
an application object, and the event aggregator. The objects that are created are
added directly to the global namespace and are fairly straightforward. This is a great
example of how you can use Marionette to augment existing code without having
to rewrite everything around Marionette.

Require]S, also by Jarrod
Using Marionette with Require]S helps to create a modularized application archi-
tecture—a tremendously important concept in scaling JavaScript applications. Re-
quireJS provides a powerful set of tools that can be leveraged to great advantage,
making Marionette even more flexible than it already is.

Marionette modules, by Derick Bailey
Require]JS isn’t the only way to create a modularized application architecture. For
those who wish to build applications in modules and namespaces, Marionette pro-
vides a built-in module and namespacing structure. This example application takes
the simple version of the application and rewrites it into a namespaced application
architecture, with an application controller (mediator/workflow object) that brings
all of the pieces together.

Marionette certainly provides its share of opinions on how a Backbone application
should be architected. The combination of modules, view types, event aggregator,

144 | Chapter 6: Backbone Extensions

www.it-ebooks.info


http://bit.ly/ZVp25q
http://bit.ly/18pzBwN
http://bit.ly/15mNsIq
http://bit.ly/11eW1DT
http://bit.ly/16dXF9x
http://www.it-ebooks.info/

application objects, and more can be used to create a very powerful and flexible
architecture based on these opinions.

But as you can see, Marionette isn't a completely rigid, “my way or the highway”
framework. It provides many elements of an application foundation that you can
mix and match with other architectural styles, such as AMD or namespacing, or
you can use it to augment existing projects by reducing boilerplate code for ren-
dering views.

This flexibility creates a much greater opportunity for Marionette to provide value
to you and your projects, as it allows you to scale the use of Marionette with your
application’s needs.

And So Much More

This is just the tip of the proverbial iceberg for Marionette, even for the ItemView and
Region objects that we’ve explored. There is far more functionality, more features, and
more flexibility and customizability that can be put to use in both of these objects. Then
we have the other dozen or so components that Marionette provides, each with its own
set of behaviors built in, customization and extension points, and more.

To learn more about Marionette’s components, the features they provide, and how to
use them, check out the Marionette documentation, links to the wiki, links to the source
code, the project core contributors, and much more at http://marionettejs.com.

Thorax
By Ryan Eastridge and Addy Osmani

Part of Backbone’s appeal is that it provides structure but is generally unopinionated,
in particular when it comes to views. Thorax makes an opinionated decision to use
Handlebars as its templating solution. Some of the patterns found in Marionette are
found in Thorax as well. Marionette exposes most of these patterns as JavaScript APIs,
whereas in Thorax they are often exposed as template helpers. This chapter assumes the
reader has knowledge of Handlebars.

Ryan Eastridge and Kevin Decker developed Thorax to create Walmart’s mobile web
application. This chapter is limited to Thorax’s templating features and patterns imple-
mented in it that you can utilize in your application regardless of whether you choose
to adopt Thorax. To learn more about other features implemented in Thorax and to
download boilerplate projects, visit the Thorax website.

Thorax | 145

www.it-ebooks.info


http://marionettejs.com
http://thoraxjs.org
http://www.it-ebooks.info/

Hello World

In Backbone, when you create a new view, options passed are merged into any default
options already present on a view and are exposed via this.options for later reference.

Thorax.View differs from Backbone.View in that there is no options object. All argu-
ments passed to the constructor become properties of the view, which in turn become
available to the template:

var view = new Thorax.View({
greeting: 'Hello',
template: Handlebars.compile('{{greeting}} World!")
s
view.appendTo( 'body');
In most examples in this chapter, a template property will be specified. In larger projects
—including the boilerplate projects provided on the Thorax website—a name property
would instead be used and a template of the same filename in your project would au-
tomatically be assigned to the view.

If a model is set on a view, its attributes also become available to the template:

var view = new Thorax.View({
model: new Thorax.Model({key: 'value'}),
template: Handlebars.compile('{{key}}")
H;

Embedding Child Views

The view helper allows you to embed other views within a view. Child views can be
specified as properties of the view:

var parent = new Thorax.View({

child: new Thorax.View(...),

template: Handlebars.compile('{{view child}}")
H;

Or the name of a child view to initialize as well as any optional properties you wish to
pass. In this case, the child view must have previously been created with extend and
given a name property:
var Childview = Thorax.View.extend({
name: 'child',

template: ...
b;

var parent = new Thorax.View({
template: Handlebars.compile('{{view "child" key="value"}}")
b;

The view helper may also be used as a block helper, in which case the block will be
assigned as the template property of the child view:

146 | Chapter 6: Backbone Extensions

www.it-ebooks.info


http://www.it-ebooks.info/

{{#view child}}
child will have this block
set as its template property

{{/view}}

Handlebars is string-based, while Backbone.View instances have a DOM el. Since we
are mixing metaphors, the embedding of views works via a placeholder mechanism
where the view helper in this case adds the view passed to the helper to a hash of
children, then injects placeholder HTML into the template, such as:

<div data-view-placeholder-cid="view2"></div>

Then, once the parent view is rendered, we walk the DOM in search of all the place-
holders we created, replacing them with the child views’ els:

this.$el.find('[data-view-placeholder-cid]").forEach(function(el) {
var cid = el.getAttribute('data-view-placeholder-cid'),
view = this.children[cid];
view.render();
S(el).replaceWith(view.el);
}, this);

View Helpers

One of the most useful constructs in Thorax is Handlebars.registerViewHelper (not
to be confused with Handlebars.registerHelper). This method will register a new
block helper that will create and embed a HelperView instance with its template prop-
erty set to the captured block. A HelperView instance is different from that of a regular
child view in that its context will be that of the parent’s in the template. Like other child
views, it will have a parent property set to that of the declaring view. Many of the built-
in helpers in Thorax, including the collection helper, are created in this manner.

A simple example would be an on helper that rerendered the generated HelperView
instance each time an event was triggered on the declaring/parent view:

Handlebars.registerViewHelper('on', function(eventName, helperView) {
helperView.parent.on(eventName, function() {
helperView.render();

s
I9H

An example use of this would be to have a counter that would increment each time a
button was clicked. This example makes use of Thorax’s button helper, which simply
makes a button that calls a method when clicked:

{{#on "incremented"}}{{1}}{/on}}
{{#button trigger="1incremented"}}Add{{/button}}

And the corresponding view class:

new Thorax.View({
events: {

Thorax | 147

www.it-ebooks.info


http://www.it-ebooks.info/

incremented: function() {
++this.i;

}

}’

initialize: function() {
this.i1 = 0;

1,

template: ...

s

collection Helper

The collection helper creates and embeds a CollectionViewinstance, creating a view
for each item in a collection, and updating when items are added, removed, or changed
in the collection. The simplest usage of the helper would look like:

{{#collection kittens}}
<li>{{name}}</11>
{{/collection}}

And the corresponding view:

new Thorax.View({
kittens: new Thorax.Collection(...),
template: ...

b;

The block in this case will be assigned as the template for each item view created, and
the context will be the attributes of the given model. This helper accepts options that
can be arbitrary HTML attributes, a tag option to specify the type of tag containing the
collection, or any of the following:

item-template
A template to display for each model. If a block is specified, it will become the i1tem-
template.

item-view
A view class to use when each item view is created.

empty-template
A template to display when the collection is empty. If an inverse/else block is
specified, it will become the empty-template.

empty-view
A view to display when the collection is empty.

Options and blocks can be used in combination, in this case creating a KittenView class
with a template set to the captured block for each kitten in the collection:

{{#collection kittens item-view="KittenView" tag="ul"}}
<li>{{name}}</11>
{{else}}

148 | Chapter 6: Backbone Extensions

www.it-ebooks.info


http://www.it-ebooks.info/

<li>No kittens!</li>
{{/collection}}

Note that multiple collections can be used per view, and collections can be nested. This
is useful when there are models that contain collections that contain models that contain:

{{#collection kittens}}
<h2>{{name}}</h2>
<p>Kills:</p>
{{#collection miceKilled tag="ul"}}
<li>{{name}}</1i>
{{/collection}}
{{/collection}}

Custom HTML Data Attributes

Thorax makes heavy use of custom HTML data attributes to operate. While some make
sense only within the context of Thorax, several are quite useful to have in any Backbone
project for writing other functions against, or for general debugging. To add some to
your views in non-Thorax projects, override the setElement method in your base view
class:

MyApplication.View = Backbone.View.extend({
setElement: function() {
var response = Backbone.View.prototype.setElement.apply(this, arguments);
this.name && this.Sel.attr('data-view-name', this.name);
this.S$el.attr('data-view-cid', this.cid);
this.collection && this.$el.attr('data-collection-cid',
this.collection.cid);
this.model && this.$el.attr('data-model-cid', this.model.cid);
return response;
}
IO

In addition to making your application more immediately comprehensible in the in-
spector, it’s now possible to extend jQuery/Zepto with functions to look up the closest
view, model, or collection to a given element. To make it work, you have to save refer-
ences to each view created in your base view class by overriding the _configure method:

MyApplication.View = Backbone.View.extend({

_configure: function() {
Backbone.View.prototype._configure.apply(this, arguments);
Thorax._viewsIndexedByCid[this.cid] = this;

1,

dispose: function() {
Backbone.View.prototype.dispose.apply(this, arguments);
delete Thorax._viewsIndexedByCid[this.cid];

s

Thorax | 149

www.it-ebooks.info


http://www.it-ebooks.info/

Then we can extend jQuery/Zepto:

$.fn.view = function() {
var el = $(this).closest('[data-view-cid]');
return el && Thorax._viewsIndexedByCid[el.attr('data-view-cid')];

}

$.fn.model = function(view) {
var $this = $(this),
modelElement = $this.closest('[data-model-cid]'),
modelCid = modelElement && modelElement.attr('[data-model-cid]');
if (modelCid) {
var view = S$this.view();
return view && view.model;

}

return false;

};

Now instead of storing references to models randomly throughout your application to
look up when a given DOM event occurs, you can use $(element) .model(). In Thorax,
this can be particularly useful in conjunction with the collection helper, which gen-
erates a view class (with a model property) for each model in the collection. Here’s an
example template:

{{#collection kittens tag="ul"}}
<li>{{name}}</11>
{{/collection}}

And the corresponding view class:

Thorax.View.extend({
events: {
'click 1i': function(event) {
var kitten = $(event.target).model();
console.log('Clicked on ' + kitten.get('name'));
}
1,
kittens: new Thorax.Collection(...),
template: ...
b;

A common antipattern in Backbone applications is to assign a className to a single
view class. Consider using the data-view-name attribute asa CSS selector instead, saving
CSS classes for things that will be used multiple times:

[data-view-name="child"] {

}

150 | Chapter 6: Backbone Extensions

www.it-ebooks.info


http://www.it-ebooks.info/

Thorax Resources

No Backbone-related tutorial would be complete without a Todo application. A Thorax
implementation of TodoMVC is available, in addition to this far simpler example com-
posed of this single Handlebars template:

{{#collection todos tag="ul"}}
<li{{#if done}} class="done"{{/if}}>
<input type="checkbox" name="done"{{#1f done}} checked="checked"{{/if}}>
<span>{{item}}</span>
</1i>
{{/collection}}
<form>
<input type="text">
<input type="submit" value="Add">
</form>

Here is the corresponding JavaScript:

var todosView = Thorax.View({
todos: new Thorax.Collection(),
events: {
'change input[type="checkbox"]': function(event) {
var target = $(event.target);
target.model().set({done: !!target.attr('checked')});
}’
'submit form': function(event) {
event.preventDefault();
var input = this.$('input[type="text"]");
this.todos.add({item: input.val()});
input.val('');
}
}s
template: '

s
todosView.appendTo( 'body');

To see Thorax in action on a large-scale website, visit walmart.com on any Android or
iOS device. For a complete list of resources, visit the Thorax website.

Summary

While Backbone is a popular choice for building modern client-side applications, some
projects require more decisions made right out of the box. Thorax provides a Rails-like
development experience for working with Backbone, tackling many of these decisions
for you. Thorax answers questions such as “What should a Backbone project look like?”,
“What kind of directory structure should you use?”, and “How do you build your client-
side app into deployable pieces for each platform you're targeting?” While Thorax may
not be for everyone, it offers some nice sugar for those looking to build more complex
applications.

Summary | 151

www.it-ebooks.info


http://bit.ly/10g3paK
http://bit.ly/10g3paK
http://thoraxjs.org
http://www.it-ebooks.info/

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 7
Common Problems and Solutions

In this section, we will review a number of common problems developers often expe-
rience once they’ve started to work on relatively nontrivial projects using Backbone.js,
as well as present potential solutions.

Perhaps the most frequent of these questions surround how to do more with views. If
you are interested in discovering how to work with nested views, and learn about view
disposal and inheritance, this section will hopefully have you covered.

Working with Nested Views

Problem

What is the best approach for rendering and appending nested views (or subviews) in
Backbone.js?

Solution 1

Since pages are composed of nested elements and Backbone views correspond to ele-
ments within the page, nesting views is an intuitive approach to managing a hierarchy
of elements.

The best way to combine views is simply using:
this.$('.someContainer').append(innerView.el);

which just relies on jQuery. We could use this in a real example as follows:
initialize : function () {

/...
}J

153

www.it-ebooks.info


http://www.it-ebooks.info/

render : function () {
this.$el.empty();

this.innerViewl = new Subview({options});
this.innerView2 = new Subview({options});

this.$('.inner-view-container"')
.append(this.innerViewl.el)
.append(this.innerView2.el);

}

Solution 2

Beginners sometimes also try using setElement to solve this problem; however, keep
in mind that using this method is an easy way to shoot yourself in the foot. Avoid using
this approach when the first solution is a viable option:

// Where we have previously defined a View, SubView
// in a parent View we could do:

initialize : function () {

this.innerViewl = new Subview({options});
this.innerView2 = new Subview({options});

1
render : function () {
this.Sel.html(this.template());

this.innerViewl.setElement('.some-elementl').render();
this.innerView2.setElement('.some-element2').render();

}

Here we are creating subviews in the parent view’s initialize() method and rendering
the subviews in the parent’s render () method. The elements managed by the subviews
exist in the parent’s template, and the View.setElement() method is used to reassign
the element associated with each subview.

setElement() changes a view’s element, including redelegating event handlers by re-
moving them from the old element and binding them to the new element. Note that
setElement() returns the view, allowing us to chain the call to render ().

This works and has some positive qualities: you don’t need to worry about maintaining
the order of your DOM elements when appending, views are initialized early, and the
render () method doesn't need to take on too many responsibilities at once.

Unfortunately, downsides are that you can't set the tagName property of subviews and
events need to be redelegated. The first solution doesn’t suffer from this problem.

154 | Chapter7: Common Problems and Solutions

www.it-ebooks.info


http://www.it-ebooks.info/

Solution 3

One more possible solution to this problem could be written:

var OuterView = Backbone.View.extend({
initialize: function() {
this.inner = new InnerView();

}’

render: function() {
this.$el.html(template); // or this.Sel.empty() if you have no template
this.Sel.append(this.inner.Sel);
this.inner.render();
}
H;

var InnerView = Backbone.View.extend({
render: function() {
this.Sel.html(template);
this.delegateEvents();
}
s

This tackles a few specific design decisions:

o The order in which you append the subelements matters.

o The OuterView doesn’t contain the HTML elements to be set in the InnerView(s),
meaning that we can still specify tagName in the InnerView.

o render() is called after the InnerView element has been placed into the DOM. This
is useful if your InnerView’s render () method is sizing itself on the page based on
the dimensions of another element. This is a common use case.

Note that InnerView needs to call View.delegateEvents() to bind its event handlers
to its new DOM since it is replacing the content of its element.

Solution 4

A better solution, which is cleaner but has the potential to affect performance, is:

var OuterView = Backbone.View.extend({
initialize: function() {
this.render();

}’

render: function() {
this.$el.html(template); // or this.Sel.empty() if you have no template
this.inner = new InnerView();
this.$el.append(this.inner.%el);

s

Working with Nested Views | 155

www.it-ebooks.info


http://www.it-ebooks.info/

var InnerView = Backbone.View.extend({
initialize: function() {
this.render();

1

render: function() {
this.Sel.html(template);
}
b

If multiple views need to be nested at particular locations in a template, you should
create a hash of child views indexed by client IDs (cids). In the template, use a custom
HTML attribute named data-view-cid to create placeholder elements for each view to
embed. Once the template has been rendered and its output appended to the parent
view’s $el, each placeholder can be queried for and replaced with the child view’s el.

A sample implementation containing a single child view could be written as:

var OuterView = Backbone.View.extend({
initialize: function() {
this.children = {};
this.child = new Backbone.View();
this.children[this.child.cid] = this.child;
1

render: function() {
this.Sel.html('<div data-view-cid="' + this.child.cid + '"></div>");
_.each(this.children, function(view, cid) {
this.$('[data-view-cid="" + cid + '"]').replaceWith(view.el);
}, this);

};

The inclusion of cids here is useful because it illustrates separating a model and its views
by having views referenced by their instances and not their attributes. It’s quite common
to ask for all views that satisfy an attribute on their models, but if you have recursive
subviews or repeated views (a common occurrence), you can't simply ask for views by
attributes—that is, unless you specify additional attributes that separate duplicates. Us-
ing cids solves this problem as it allows for direct references to views.

Generally speaking, more developers opt for Solution 1 or 5 because:
o The majority of their views may already rely on being in the DOM in their ren

der() method

o When the OuterView is rerendered, views don’t have to be reinitialized where re-
initialization has the potential to cause memory leaks and issues with existing
bindings

156 | Chapter7: Common Problems and Solutions

www.it-ebooks.info


http://www.it-ebooks.info/

The Backbone extensions Marionette and Thorax provide logic for nesting views, and
rendering collections where each item has an associated view. Marionette provides APIs
in JavaScript, while Thorax provides APIs via Handlebars template helpers.

Thanks to Lukas and Ian Taylor for these tips.

Managing Models in Nested Views

Problem

What is the best way to manage models in nested views?

Solution

In order to reach attributes on related models in a nested setup, models require some
prior knowledge of each other, something that Backbone doesn’t implicitly handle out
of the box.

One approach is to make sure each child model has a parent attribute. This way, you
can traverse the nesting first up to the parent and then down to any siblings that you
know of. So, assuming we have models modelA, modelB, and modelC:

// When initializing modelA, I would suggest setting a link to the parent
// model when doing this, like this:

ModelA = Backbone.Model.extend({

initialize: function(){
this.modelB = new modelB();
this.modelB.parent = this;
this.modelC = new modelC();
this.modelC.parent = this;

}

This allows you to reach the parent model in any child model function through
this.parent.

Now, we have already discussed a few options for how to construct nested views using
Backbone. For the sake of simplicity, let us imagine that we are creating a new child view
ViewB from within the initialize() method of ViewA below. ViewB can reach out over
the ViewA model and listen for changes on any of its nested models.

See inline for comments on exactly what each step is enabling:

// Define View A
ViewA = Backbone.View.extend({

initialize: function(){

Managing Models in Nested Views | 157

www.it-ebooks.info


http://bit.ly/10mhg06
http://bit.ly/YCvyOL
http://www.it-ebooks.info/

// Create an instance of View B
this.viewB = new ViewB();

// Create a reference back to this (parent) view
this.viewB.parentView = this;

// Append ViewB to ViewA
$(this.el).append(this.viewB.el);

}
s

// Define View B
ViewB = Backbone.View.extend({

/s

initialize: function(){
// Listen for changes to the nested models in our parent ViewA
this.listenTo(this.model.parent.modelB, "change", this.render);
this.listenTo(this.model.parent.modelC, "change", this.render);

// We can also call any method on our parent view if it is defined
// S(this.parentView.el).shake();

19K

// Create an instance of ViewA with ModelA

// viewA will create its own instance of ViewB
// from inside the initialize() method

var viewA = new ViewA({ model: ModelA });

Rendering a Parent View from a Child View

Problem

How would one render a parent view from one of its children?

Solution

In a scenario where you have a view containing another view, such as a photo gallery
containing a larger view model, you may find that you need to render or rerender the
parent view from the child. The good news is that solving this problem is quite
straightforward.

The simplest solution is to just use this.parentView.render();.

If, however, inversion of control is desired, events may be used to provide an equally
valid solution.

158 | Chapter7: Common Problems and Solutions

www.it-ebooks.info


http://www.it-ebooks.info/

Say we wish to begin rendering when a particular event has occurred. For the sake of
example, let us call this event somethingHappened. The parent view can bind notifica-
tions on the child view to know when the event has occurred. It can then render itself.

In the parent view:

// Parent initialize
this.listenTo(this.childView, 'somethingHappened', this.render);

// Parent removal
this.stopListening(this.childView, 'somethingHappened');

In the child view:

// After the event has occurred
this.trigger('somethingHappened');

The child will trigger a somethingHappened event and the parent’s render function will
be called.

Thanks to Tal Bereznitskey for this tip.
Disposing View Hierarchies

Problem

Where your application is set up with multiple parent and child views, you'll probably
want to remove any DOM elements associated with such views as well as unbind any
event handlers tied to child elements when you no longer require them.

Solution

The solution in the last question should be enough to handle this use case, but if you
require a more explicit example that handles children, you can see one here:

Backbone.View.prototype.close = function() {
if (this.onClose) {
this.onClose();
}
this.remove();

b

NewView = Backbone.View.extend({
initialize: function() {
this.childviews = [];
1,
renderChildren: function(item) {
var itemView = new NewChildView({ model: item 1});
S(this.el).prepend(itemView.render());
this.childviews.push(itemView);

Disposing View Hierarchies | 159

www.it-ebooks.info


http://bit.ly/12PdwVl
http://www.it-ebooks.info/

1,
onClose: function() {
_(this.childViews).each(function(view) {
view.close();
s
}
H;

NewChildView = Backbone.View.extend({
tagName: '1i',
render: function() {
}
s
Here, we implement a close() method for views that disposes of a view when it is no
longer needed or needs to be reset.

In most cases, the view removal should not affect any associated models. For example,
if you are working on a blogging application and you remove a view with comments,
perhaps another view in your app shows a selection of comments and resetting the
collection would affect those views as well.

Thanks to dira for this tip.

=5 You may also be interested in reading about the Marionette composite
& 4. views in Chapter 6.

Rendering View Hierarchies

Problem

Say you have a collection, where each item in the collection could itself be a collection.
You can render each item in the collection, and indeed can render any items that them-
selves are collections. The problem you might have is how to render HTML that reflects
the hierarchical nature of the data structure.

Solution

The most straightforward way to approach this problem is to use a framework like
Derick Bailey’s Backbone .Marionette. This framework contains a type of view called a
CompositeView.

The basic idea of a CompositeView is that it can render a model and a collection within
the same view. It can render a single model with a template. It can also take a collection
from that model and for each model in that collection, render a view. By default it uses

160 | Chapter7: Common Problems and Solutions

www.it-ebooks.info


http://bit.ly/YCvvm8
http://bit.ly/17zlpCV
http://www.it-ebooks.info/

the same composite view type that you've defined to render each of the models in the
collection. All you have to do is tell the view instance where the collection is, via the
initialize method, and you'll get a recursive hierarchy rendered.

There is a working demo of this in action available online.

And you can also get the source code and documentation for Marionette.

Working with Nested Models or Collections

Problem

Backbone doesn’t include support for nested models or collections out of the box, fa-
voring the use of good patterns for modeling your structured data on the client side.
How do we work around this?

Solution

As we've seen, it's common to create collections representing groups of models using
Backbone. It’s also common, however, to wish to nest collections within models, de-
pending on the type of application you are working on.

Take, for example, a Building model that contains many Room models that could sit in
a Rooms collection.

You could expose a this.rooms collection for each building, allowing you to lazy-load
rooms once a building has been opened.

var Building = Backbone.Model.extend({

initialize: function(){
this.rooms = new Rooms;
this.rooms.url = '/building/' + this.id + '/rooms';
this.rooms.on("reset", this.updateCounts);

1,
/) ...
s

// Create a new building model
var townHall = new Building;

// once opened, lazy-load the rooms
townHall.rooms.fetch({reset: true});

There are also a number of Backbone plug-ins that can help with nested data structures,
such as Backbone Relational. This plug-in handles one-to-one, one-to-many, and many-
to-one relations between models for Backbone and has some excellent documentation.

Working with Nested Models or Collections | 161

www.it-ebooks.info


http://bit.ly/YCvEWF
http://bit.ly/17zlpCV
http://bit.ly/15FQOVY
http://backbonerelational.org/
http://www.it-ebooks.info/

Better Model Property Validation

Problem

As we learned earlier in the book, the validate method on a model is called by set
(when the validate option is set) and save. It is passed the model attributes updated
with the values passed to these methods.

By default, when we define a custom validate method, Backbone passes all of a model’s
attributes through this validation each time, regardless of which model attributes are
being set.

This means that it can be a challenge to determine which specific fields are being set or
validated without being concerned about the others that aren't being set at the same
time.

Solution

To illustrate this problem better, let’s look at a typical registration form use case that:

o Validates form fields using the blur event

o Validates each field regardless of whether other model attributes (i.e., other form
data) are valid or not

Here is one example of a desired use case: say we have a form where a user focuses and
blurs first name, last name, and email HTML input boxes without entering any data. A
“This field is required” message should be presented next to each form field.

HTML:

<!doctype html>
<html>
<head>
<meta charset=utf-8>
<title>Form Validation - Model#validate</title>
<script src='http://code.jquery.com/jquery.js's</script>
<script src='http://underscorejs.org/underscore. js'></script>
<script src='http://backbonejs.org/backbone.js's></script>
</head>
<body>
<form>
<label>First Name</label>
<input name='firstname's
<span data-msg='firstname's</span>
<br>
<labelsLast Name</labels>
<input name='lastname's>
<span data-msg='lastname's></span>

162 | Chapter7: Common Problems and Solutions

www.it-ebooks.info


http://www.it-ebooks.info/

<br>
<label>Email</label>
<input name='email's
<span data-msg='email'></span>
</form>
</body>
</html>

You could write basic validation using the current Backbone validate method to work
with this form and implement it using something like:

validate: function(attrs) {

if(!attrs.firstname) return 'first name is empty';
if(!attrs.lastname) return 'last name is empty';
if(!attrs.email) return 'email is empty';

}

Unfortunately, this method would trigger a firstname error each time any of the fields
were blurred, and the error message would appear only next to the first name field.

One potential solution to the problem is to validate all fields and return all of the errors:

validate: function(attrs) {
var errors = {};

if (!attrs.firstname) errors.firstname = 'first name is empty';
if (!attrs.lastname) errors.lastname = 'last name is empty';
if (!attrs.emaill) errors.email = 'email is empty';

if (!_.isEmpty(errors)) return errors;

}

We can adapt this into a solution that defines a Field model for each input in our form
and works within the parameters of our use case as follows:

$(function($) {

var User = Backbone.Model.extend({
validate: function(attrs) {
var errors = this.errors = {};

if (l!attrs.firstname) errors.firstname = 'firstname is required';
if (!attrs.lastname) errors.lastname = 'lastname is required';
if (!attrs.email) errors.email = 'emaill is required';

if (!_.isEmpty(errors)) return errors;
}
b

var Field = Backbone.View.extend({
events: {blur: 'validate'},
initialize: function() {

Better Model Property Validation | 163

www.it-ebooks.info


http://www.it-ebooks.info/

this.name = this.$el.attr('name');
this.Smsg = $('[data-msg=' + this.name + ']');
1,
validate: function() {
this.model.set(this.name, this.Sel.val(), {validate:true});
this.Smsg.text(this.model.errors[this.name] || '');

}
I9H

var user = new User;

S('input').each(function() {
new Field({el: this, model: user});

13N
19K

This works fine, as the solution checks the validation for each attribute individually and
sets the message for the correct blurred field. A demo of the preceding example by
@braddunbar is available at http://jsbin.com/afetez/2/edit.

Unfortunately, this solution does perform validation on all fields every time, even
though we are displaying errors only for the field that has changed. If we have multiple
client-side validation methods, we may not want to have to call each validation method
on every attribute every time, so this solution might not be ideal for everyone.

Backbone.validateAll

A potentially better alternative to the preceding scenario is to use the Backbone.valti
dateAll plug-in from @gfranko, which was created to validate specific model properties
(or form fields) without worrying about the validation of any other model properties
(or form fields).

Here is how we would set up a partial user model and validate method using this plug-
in for our use case:

// Create a new User Model
var User = Backbone.Model.extend({

// RegEx Patterns
patterns: {

specialCharacters: '[7a-zA-Z 0-9]+',
digits: '[0-9]',

email: '~[a-zA-Z0-9._-]+@[a-zA-Z0-9][a-zA-20-9.-]1*[.]{1}[a-zA-Z2]{2,6}S"
}s

// Validators
validators: {

164 | Chapter7: Common Problems and Solutions

www.it-ebooks.info


http://github.com/braddunbar
http://jsbin.com/afetez/2/edit
https://github.com/gfranko/Backbone.validateAll
https://github.com/gfranko/Backbone.validateAll
http://github.com/gfranko
http://www.it-ebooks.info/

minLength: function(value, minLength) {
return value.length >= minLength;

1

maxLength: function(value, maxLength) {
return value.length <= maxLength;

}’

isEmail: function(value) {
return User.prototype.validators.pattern(value,
User.prototype.patterns.email);

}’

hasSpecialCharacter: function(value) {
return User.prototype.validators.pattern(value,
User.prototype.patterns.specialCharacters);

}’

// We can determine which properties are getting validated by
// checking to see if properties are equal to null

validate: function(attrs) {
var errors = this.errors = {};

if(attrs.firstname != null) {
if (!attrs.firstname) {
errors.firstname = 'firstname is required';
console.log('first name isEmpty validation called');

}

else if(!this.validators.minLength(attrs.firstname, 2))
errors.firstname = 'firstname is too short';

else if(!this.validators.maxLength(attrs.firstname, 15))
errors.firstname = 'firstname is too large';

else if(this.validators.hasSpecialCharacter(attrs.firstname))
errors.firstname = 'firstname cannot contain special characters';

}
if(attrs.lastname != null) {
if (!attrs.lastname) {

errors.lastname = 'lastname is required';
console.log('last name isEmpty validation called');

Better Model Property Validation | 165

www.it-ebooks.info


http://www.it-ebooks.info/

else if(!this.validators.minLength(attrs.lastname, 2))
errors.lastname = 'lastname is too short';

else if(!this.validators.maxLength(attrs.lastname, 15))
errors.lastname = 'lastname is too large';

else if(this.validators.hasSpecialCharacter(attrs.lastname))
errors.lastname = 'lastname cannot contain special characters';

}

This allows the logic inside of our validate methods to determine which form fields
are currently being set/validated, and ignore the model properties that are not being set.

It’s fairly straightforward to use as well. We can simply define a new model instance and
then set the data on our model via the validateAll option to use the behavior defined
by the plug-in:

var user = new User();
user.set({ 'firstname': 'Greg' }, {validate: true, validateAll: false});

That’s it. The Backbone.validateAll logic doesn’t override the default Backbone logic
by default, so it’s perfectly capable of being used for scenarios where you might care
more about field-validation performance as well as those where you don’t. Both solu-
tions presented in this section should work fine, however.

Backbone.Validation

As we've seen, the validate method Backbone offers is undefined by default, and you
need to override it with your own custom validation logic to get model validation in
place. Often developers run into the issue of implementing this validation as nested
ifs and elses, which can become unmaintainable when things get complicated.

Another helpful plug-in for Backbone called Backbone.Validation attempts to solve
this problem by offering an extensible way to declare validation rules on the model and
overrides the validate method behind the scenes.

One of the useful methods this plug-in includes is (pseudo) live validation via a preva
lidate method. This can be used to check on keypress whether the input for a model
is valid without changing the model itself. You can run any validators for a model
attribute by calling the preValidate method, passing it the name of the attribute along
with the value you would like validated.

// If the value of the attribute is invalid, a truthy error message is returned
// if not, it returns a falsy value

var errorMsg = user.preValidate('firstname', 'Greg');

166 | Chapter7: Common Problems and Solutions

www.it-ebooks.info


http://jsperf.com/backbone-validateall
http://bit.ly/12P0JCu
http://www.it-ebooks.info/

Form-Specific Validation Classes

That said, the most optimal solution to this problem may not be to stick validation in
your model attributes. Instead, you could have a function specifically designed for val-
idating a specific form, and there are many good JavaScript form validation libraries
out there that can help with this.

If you want to stick it on your model, you can also make it a class function:

User.validate = function(formElement) {
/).
};
For more information on validation plug-ins available for Backbone, see the Backbone
wiki.

Avoiding Conflicts with Multiple Backbone Versions

Problem

In instances out of your control, you may have to work around having more than one
version of Backbone in the same page. How do you work around this without causing
conflicts?

Solution

Like most client-side projects, Backbone’s code is wrapped in an immediately invoked
function expression:

(function(){
// Backbone. js
}).call(this);

Several things happen during this configuration stage. A Backbone namespace is created,
and multiple versions of Backbone on the same page are supported through the
noConflict mode:

var root = this;
var previousBackbone = root.Backbone;

Backbone.noConflict = function() {
root.Backbone = previousBackbone;
return this;

b

You can use multiple versions of Backbone on the same page by calling noConflict like
this:

var Backbonel19 = Backbone.noConflict();
// Backbonel9 refers to the most recently loaded version,

Avoiding Conflicts with Multiple Backbone Versions | 167

www.it-ebooks.info


http://bit.ly/12r6feb
http://bit.ly/12r6feb
http://www.it-ebooks.info/

// and ‘window.Backbone' will be restored to the previously
// loaded version

Building Model and View Hierarchies

Problem

How does inheritance work with Backbone? How can we share code between similar
models and views? How can we call methods that have been overridden?

Solution

For its inheritance, Backbone internally uses an inherits function inspired by goog. in
herits, Google’s implementation from the Closure library. It’s basically a function to
correctly set up the prototype chain.

var inherits = function(parent, protoProps, staticProps) {

The only major difference here is that Backbone’s API accepts two objects containing
instance and static methods.

Following on from this, for inheritance purposes all of Backbone’s objects contain an
extend method as follows:

Model.extend = Collection.extend = Router.extend = View.extend = extend;

Most development with Backbone is based around inheriting from these objects, and
they’re designed to mimic a classical object-oriented implementation.

The preceding isn't quite the same as ECMAScript 5’ Object.create, as it’s actually
copying properties (methods and values) from one object to another. As thisisn’t enough
to support Backbone’s inheritance and class model, the following steps are performed:

1. The instance methods are checked to see if there’s a constructor property. If so, the
class’s constructor is used; otherwise, the parent’s constructor is used (such as Back
bone.Model).

2. Underscore’s extend method is called to add the parent class’s methods to the new
child class.

3. The prototype property of a blank constructor function is assigned with the par-
ent’s prototype, and a new instance of this is set to the child’s prototype property.

4. Underscore’s extend method is called twice to add the static and instance methods
to the child class.

5. The child’s prototype’s constructor and a __super__ property are assigned.

168 | Chapter7: Common Problems and Solutions

www.it-ebooks.info


http://www.it-ebooks.info/

6. This pattern is also used for classes in CoffeeScript, so Backbone classes are com-
patible with CoffeeScript classes.

extend can be used for a great deal more, and developers who are fans of mixins will
like that it can be used for this too. You can define functionality on any custom object,
and then quite literally copy and paste all of the methods and attributes from that object
to a Backbone one:

For example:

var MyMixin = {

foo: 'bar',

sayFoo: function(){alert(this.foo);}
b

var MyView = Backbone.View.extend({
// ...
H;

_.extend(MyView.prototype, MyMixin);

var myView = new MyView();
myView.sayFoo(); //=> 'bar'

We can take this further and also apply it to view inheritance. The following is an ex-
ample of how to extend one view using another:

var Panel = Backbone.View.extend({

19K

var PanelAdvanced = Panel.extend({

s

Calling Overridden Methods

However, if you have an initialize() method in Panel, then it won't be called if you
also have an initialize() method in PanelAdvanced, so you would have to call Panel’s
initialize method explicitly:

var Panel = Backbone.View.extend({
initialize: function(options){
console.log('Panel initialized');
this.foo = 'bar';
}
H;

var PanelAdvanced = Panel.extend({
initialize: function(options){
Panel.prototype.initialize.call(this, [options]);
console.log( 'PanelAdvanced initialized');
console.log(this.foo); // Log: bar

Building Model and View Hierarchies | 169

www.it-ebooks.info


http://www.it-ebooks.info/

}
19K

// We can also inherit PanelAdvaned if needed
var PanelAdvancedExtra = PanelAdvanced.extend({
initialize: function(options){
PanelAdvanced.prototype.initialize.call(this, [options]);
console.log( 'PanelAdvancedExtra initialized');
}
s

new Panel();
new PanelAdvanced();
new PanelAdvancedExtra();

This isn’t the most elegant of solutions because if you have a lot of views that inherit
from Panel, then you’ll have to remember to call Panel’s initialize from all of them.

It’s worth noting that if Panel doesn’t have an initialize method now but you choose to
add it in the future, then you’ll need to go to all of the inherited classes in the future and
make sure they call Panel’s initialize.

So here’s an alternative way to define Panel so that your inherited views don’t need to
call Panel’s initialize method:

var Panel = function (options) {
// put all of Panel's initialization code here
console.log( 'Panel initialized');
this.foo = 'bar';

Backbone.View.apply(this, [options]);
b

_.extend(Panel.prototype, Backbone.View.prototype, {
// put all of Panel's methods here. For example:
sayHi: function () {

console.log('hello from Panel');
}
b

Panel.extend = Backbone.View.extend;

// other classes then inherit from Panel like this:
var PanelAdvanced = Panel.extend({
initialize: function (options) {
console.log( 'PanelAdvanced initialized');
console.log(this.foo);
}
b

var panelAdvanced = new PanelAdvanced();

170 | Chapter 7: Common Problems and Solutions

www.it-ebooks.info


http://www.it-ebooks.info/

// Logs: Panel initialized, PanelAdvanced initialized, bar
panelAdvanced.sayHi(); // Logs: hello from Panel

When used appropriately, Underscore’s extend method can save you a great deal of time
and effort writing redundant code.

Thanks to Alex Young, Derick Bailey, and JohnnyO for the heads up about these tips.

Backbone-Super

Backbone-Super by Lukas Olson adds a _super method to Backbone.Model using John
Resig’s Inheritance script. Rather than using Backbone.Model.prototype.set.call as
per the Backbone.js documentation, _super can be called instead:

// This is how we normally do it
var OldFashionedNote = Backbone.Model.extend({
set: function(attributes, options) {
// Call parent's method
Backbone.Model.prototype.set.call(this, attributes, options);
// some custom code here
// ...
}
H;

After including this plug-in, you can do the same thing with the following syntax:

// This is how we can do it after using the Backbone-super plug-in
var Note = Backbone.Model.extend({
set: function(attributes, options) {
// Call parent's method
this._super(attributes, options);
// some custom code here
Y/
}
H;

Event Aggregators and Mediators

Problem

How do we channel multiple event sources through a single object?

Solution

Using an event aggregator. It's common for developers to think of mediators when faced
with this problem, so let’s explore what an event aggregator is, what a mediator is, and
how they differ.

Design patterns often differ only in semantics and intent—that is, the language used to
describe the pattern is what sets it apart, more than an implementation of that specific

Event Aggregators and Mediators | 171

www.it-ebooks.info


http://dailyjs.com
http://bit.ly/15y70t6
http://bit.ly/12PecKA
http://bit.ly/15mOdRT
http://bit.ly/ZN2nr2
http://bit.ly/ZN2nr2
http://www.it-ebooks.info/

pattern. It often comes down to squares versus rectangles versus polygons. You can
create the same end result with all three, given the constraints of a square are still met,
or you can use polygons to create an infinitely larger and more complex set of things.

When it comes to the mediator and event aggregator patterns, there are some times
where it may look like the patterns are interchangeable due to implementation simi-
larities. However, the semantics and intent of these patterns are very different. And even
if the implementations both use some of the same core constructs, I believe there is a
distinct difference between them. I also believe they should not be interchanged or
confused in communication because of the differences.

Event Aggregator

The core idea of the event aggregator, according to Martin Fowler, is to channel multiple
event sources through a single object so that other objects needing to subscribe to the
events don’t need to know about every event source.

Backbone’s event aggregator

The easiest event aggregator to show is that of Backbone.js—it’s built into the Backbone
object directly.

var Viewl = Backbone.View.extend({

/...

events: {
"click .foo": "doIt"
1

doIt: function(){
// trigger an event through the event aggregator
Backbone.trigger("some:event");
}
b

var View2 = Backbone.View.extend({

// ...

initialize: function(){
// subscribe to the event aggregator's event
Backbone.on("some:event", this.doStuff, this);

1

doStuff: function(){
/) ...
}
b

In this example, the first view is triggering an event when a DOM element is clicked.
The event is triggered through Backbone’s built-in event aggregator—the Backbone

172 | Chapter7: Common Problems and Solutions

www.it-ebooks.info


http://www.it-ebooks.info/

object. Of course, it’s trivial to create your own event aggregator in Backbone, and there
are some key things that we need to keep in mind when using an event aggregator, to
keep our code simple.

jQuery’s event aggregator

Did you know that jQuery has a built-in event aggregator? jQuery doesn't call it this,
but it’s in there and it’s scoped to DOM events. It also happens to look like Backbone’s
event aggregator:

S("#mainArticle").on("click", function(e){
// handle click event on any element underneath our #mainArticle element

s

This code sets up an event handler function that waits for an unknown number of event
sources to trigger a click event, and it allows any number of listeners to attach to the
events of those event publishers. jQuery just happens to scope this event aggregator to
the DOM.

Mediator

A mediator is an object that coordinates interactions (logic and behavior) between
multiple objects. It makes decisions on when to call which objects, based on the actions
(or inaction) of other objects and input.

A mediator for Backbone

Backbone doesn't have the idea of a mediator built into it like a lot of other MV* frame-
works do. But that doesn’t mean you can’t write one using a single line of code:

var mediator = {};

Yes, of course this is just an object literal in JavaScript. Once again, were talking about
semantics here. The purpose of the mediator is to control the workflow between objects,
and we really don’t need anything more than an object literal to do this.

var orgChart = {
addNewEmployee: function(){

// getEmployeeDetail provides a view that users interact with
var employeeDetaill = this.getEmployeeDetail();

// when the employee detail is complete, the mediator (the 'orgchart' object)
// decides what should happen next

employeeDetail.on("complete", function(employee){

// set up additional objects that have additional events, which are used

Event Aggregators and Mediators | 173

www.it-ebooks.info


http://www.it-ebooks.info/

// by the mediator to do additional things

var managerSelector = this.selectManager(employee);

managerSelector.on("save", function(employee){
employee.save();

s

s
}J

// ...
}

This example shows a very basic implementation of a mediator object with Backbone-
based objects that can trigger and subscribe to events. I've often referred to this type of
object as a workflow object in the past, but the truth is that it is a mediator. It is an object
that handles the workflow between many other objects, aggregating the responsibility
of that workflow knowledge into a single object. The result is a workflow that is easier
to understand and maintain.

Similarities and Differences

There are, without a doubt, similarities between the event aggregator and mediator
examples that I've shown here. The similarities boil down to two primary items: events
and third-party objects. These differences are superficial at best, though. When we dig
into the intent of the pattern and see that the implementations can be dramatically
different, the nature of the patterns becomes more apparent.

Events

Both the event aggregator and mediator use events in the previous examples. An event
aggregator obviously deals with events; it’s in the name, after all. The mediator only uses
events because it makes life easy when dealing with Backbone, though. There is nothing
that says a mediator must be built with events. You can build a mediator with callback
methods, by handing the mediator reference to the child object, or by any of a number
of other means.

The difference, then, is why these two patterns are both using events. The event aggre-
gator, as a pattern, is designed to deal with events. The mediator, though, only uses them
because it’s convenient.

Third-party objects

Both the event aggregator and mediator, by design, use a third party object to facilitate
things. The event aggregator itself is a third party to the event publisher and the event
subscriber. It acts as a central hub for events to pass through. The mediator is also a third
party to other objects, though. So where is the difference? Why don't we call an event

174 | Chapter7: Common Problems and Solutions

www.it-ebooks.info


http://www.it-ebooks.info/

aggregator a mediator? The answer largely comes down to where the application logic
and workflow are coded.

In the case of an event aggregator, the third-party object is there only to facilitate the
pass-through of events from an unknown number of sources to an unknown number
of handlers. All workflow and business logic that needs to be kicked off is put directly
into the object that triggers the events and the objects that handle the events.

In the case of the mediator, though, the business logic and workflow are aggregated into
the mediator itself. The mediator decides when an object should have its methods called
and attributes updated based on factors that the mediator knows about. It encapsulates
the workflow and process, coordinating multiple objects to produce the desired system
behavior. The individual objects involved in this workflow each know how to perform
their own task. But it’s the mediator that tells the objects when to perform the tasks by
making decisions at a higher level than the individual objects.

An event aggregator facilitates a fire-and-forget model of communication. The object
triggering the event doesn’t care if there are any subscribers. It just fires the event and
moves on. A mediator, though, might use events to make decisions, but it is definitely
not fire and forget. A mediator pays attention to a known set of input or activities so
that it can facilitate and coordinate additional behavior with a known set of actors
(objects).

Relationships: When to Use Which

Understanding the similarities and differences between an event aggregator and medi-
ator is important for semantic reasons. It’s equally important to understand when to use
which pattern, though. The basic semantics and intent of the patterns does inform the
question of when, but actual experience in using the patterns will help you understand
the more subtle points and nuanced decisions that have to be made.

Event aggregator use

In general, an event aggregator is used when you either have too many objects to listen
to directly, or you have objects that are entirely unrelated.

When two objects have a direct relationship already—say, a parent view and child view
—then there might be little benefit in using an event aggregator. Have the child view
trigger an event and the parent view can handle the event. This is most commonly seen
in Backbone’s collection and model, where all model events are bubbled up to and
through its parent collection. A collection often uses model events to modify the state
of itself or other models. Handling selected items in a collection is a good example of
this.

jQuery’s on method as an event aggregator is a great example of too many objects to
listen to. If you have 10, 20, or 200 DOM elements that can trigger a click event, it might

Event Aggregators and Mediators | 175

www.it-ebooks.info


http://www.it-ebooks.info/

beabadideato setup alistener on all of them individually. This could quickly deteriorate
performance of the application and user experience. Instead, using jQuery’s on method
allows us to aggregate all of the events and reduce the overhead of 10, 20, or 200 event
handlers down to 1.

Indirect relationships are also a great time to use event aggregators. In Backbone ap-
plications, it is very common to have multiple view objects that need to communicate,
but have no direct relationship. For example, a menu system might have a view that
handles the menu item clicks. But we don’t want the menu to be directly tied to the
content views that show all of the details and information when a menu item is clicked.
Having the content and menu coupled together would make the code very difficult to
maintain, in the long run. Instead, we can use an event aggregator to trigger
menu:click:foo events, and have a foo object handle the click event to show its content
on the screen.

Mediator use

A mediator is best applied when two or more objects have an indirect working rela-
tionship, and business logic or workflow needs to dictate the interactions and coordi-
nation of these objects.

A wizard interface is a good example of this, as shown with the orgChart example, in
“Mediator” on page 173. There are multiple views that facilitate the entire workflow of
the wizard. Rather than tightly coupling the view together by having them reference
each other directly, we can decouple them and more explicitly model the workflow
between them by introducing a mediator.

The mediator extracts the workflow from the implementation details and creates a more
natural abstraction at a higher level, showing us much more quickly what that workflow
is. We no longer have to dig into the details of each view in the workflow to see what
the workflow actually is.

Event Aggregator and Mediator Together

The crux of the difference between an event aggregator and a mediator, and why these
pattern names should not be interchanged, is illustrated best by a demonstration of how
they can be used together. The menu example for an event aggregator is the perfect place
to introduce a mediator as well.

Clicking a menu item may trigger a series of changes throughout an application. Some
of these changes will be independent of others, and using an event aggregator for this
makes sense. Some of these changes may be internally related to each other, though, and
may use a mediator to enact those changes. A mediator, then, could be set up to listen
to the event aggregator. It could run its logic and process to facilitate and coordinate
many objects that are related to each other, but unrelated to the original event source.

176 | Chapter7: Common Problems and Solutions

www.it-ebooks.info


http://www.it-ebooks.info/

var Menultem = Backbone.View.extend({

events: {
"click .thatThing": "clickedIt"
}s

clickedIt: function(e){
e.preventDefault();

// assume this triggers "menu:click:foo"
Backbone.trigger("menu:click:" + this.model.get("name"));

}
s

// ... somewhere else in the app

var MyWorkflow = function(){
Backbone.on("menu:click:foo", this.doStuff, this);

};

MyWorkflow.prototype.doStuff = function(){
// instantiate multiple objects here.
// set up event handlers for those objects.
// coordinate all of the objects into a meaningful workflow.

IH
In this example, when the MenuItem with the right model is clicked, the
"menu:click:foo" event will be triggered. An instance of the MyWorkflow object, as-
suming one is already instantiated, will handle this specific event and will coordinate
all of the objects that it knows about, to create the desired user experience and workflow.

An event aggregator and a mediator have been combined to create a much more mean-
ingful experience in both the code and the application itself. We now have a clean sep-
aration between the menu and the workflow through an event aggregator, and we are
still keeping the workflow itself clean and maintainable through the use of a mediator.

Pattern Language: Semantics

There is one overriding point to make in all of this discussion: semantics. Communi-
cating intent and semantics through the use of named patterns is viable and valid only
when all parties in a communication medium understand the language in the same way.

Event Aggregators and Mediators | 177

www.it-ebooks.info


http://www.it-ebooks.info/

If I say “apple,” what am I talking about? Am I talking about a fruit? Or am I talking
about a technology and consumer products company? As Sharon Cichelli says, “Se-
mantics will continue to be important until we learn how to communicate in something
other than language”

178 | Chapter7: Common Problems and Solutions

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 8
Modular Development

When we say an application is modular, we generally mean it's composed of a set of
highly decoupled, distinct pieces of functionality stored in modules. As you probably
know, loose coupling facilitates easier maintainability of apps by removing dependen-
cies where possible. When this is implemented efficiently, it's quite easy to see how
changes to one part of a system may affect another.

Unlike some more traditional programming languages, the current iteration of Java-
Script (ECMA-262) doesn’t provide developers with the means to import such modules
of code in a clean, organized manner.

Instead, developers are left to fall back on variations of the module or object literal
patterns combined with <script> tags or a script loader. With many of these, module
scripts are strung together in the DOM with namespaces being described by a single
global object where it’s still possible to have name collisions. There’s also no clean way
to handle dependency management without some manual effort or third-party tools.

Whilst native solutions to these problems may be arriving via the ES6 (the next version
of the official JavaScript specification) modules proposal, the good news is that writing
modular JavaScript has never been easier and you can start doing it today.

In this next part of the book, we’re going to look at how to use AMD (asynchronous
module definition) modules and Require]S to cleanly wrap units of code in your appli-
cation into manageable modules. We'll also cover an alternate approach called Lumbar,
which uses routes to determine when modules are loaded.

Organizing Modules with RequireJS and AMD
Partly contributed by Jack Franklin

Require]JS is a popular script loader written by James Burke, a developer who has been
quite instrumental in helping shape the AMD module format, which we’ll discuss

179

www.it-ebooks.info


https://github.com/jackfranklin
http://bit.ly/10utREz
http://bit.ly/11yzZHc
http://requirejs.org
http://www.it-ebooks.info/

shortly. Among other things, RequireJS helps you to load multiple script files, define
modules with or without dependencies, and load in nonscript dependencies such as
text files.

Maintainability Problems with Multiple Script Files

You might be thinking that there is little benefit to RequireJS. After all, you can simply
load in your JavaScript files through multiple <script> tags, which is very straightfor-
ward. However, doing it that way has a lot of drawbacks, including increasing the HT TP
overhead.

Every time the browser loads in a file you've referenced in a <script> tag, it makes an
HTTP request to load the file’s contents. It has to make a new HTTP request for each
file you want to load, which causes problems.

o Browsers are limited in how many parallel requests they can make, so often it’s slow
to load multiple files, as it can only do a certain number at a time. This number
depends on the user’s settings and browser, but is usually around four to eight.
When youre working on Backbone applications, it's good to split your app into
multiple JS files, so it’s easy to hit that limit quickly. This can be negated by minifying
your code into one file as part of a build process, but does not help with the next
point.

o Scriptsareloaded synchronously. This means that the browser cannot continue page
rendering while the script is loading.

What tools like Require]S do is load scripts asynchronously. This means we have to
adjust our code slightly—you can't just swap out <script> elements for a small piece
of RequireJS code—but the benefits are very worthwhile:

o Loading the scripts asynchronously means the load process is nonblocking. The
browser can continue to render the rest of the page as the scripts are being loaded,
speeding up the initial load time.

+ We can load modules in more intelligently, having more control over when they are
loaded and ensuring that modules with dependencies are loaded in the right order.

Need for Better Dependency Management

Dependency management is a challenging subject, in particular when you're writing
JavaScript in the browser. The closest thing we have to dependency management by
default is simply making sure we order our <script> tags such that code that depends
on code in another file is loaded after the file it depends on. This is not a good approach.
As T've already discussed, loading multiple files in that way is bad for performance;
needing them to be loaded in a certain order is very brittle.

180 | Chapter 8: Modular Development

www.it-ebooks.info


http://www.it-ebooks.info/

Being able to load code on an as-needed basis is something Require]JS is very good at.
Rather than load all our JavaScript code in during initial page load, a better approach
is to dynamically load modules when that code is required. This avoids loading all the
code when the user first hits your application, consequently speeding up initial load
times.

Think about the Gmail web client for a moment. When a user initially loads the page
on the first visit, Google can simply hide widgets such as the chat module until the user
indicates (by clicking expand) the desire to use it. Through dynamic dependency load-
ing, Google could load up the chat module at that time, rather than forcing all users to
load it when the page first initializes. This can improve performance and load times and
can definitely prove useful when you’re building larger applications. As the codebase
for an application grows, this becomes even more important.

The important thing to note here is that while it’s absolutely fine to develop applications
without a script loader, there are significant benefits to utilizing tools like Require]S in
your application.

Asynchronous Module Definition (AMD)

RequireJS implements the AMD Specification, which defines a method for writing
modular code and managing dependencies. The Require]S website also has a section
documenting the reasons behind implementing AMD:

The AMD format comes from wanting a module format that was better than today’s
“write a bunch of <script> tags with implicit dependencies that you have to manually
order” and something that was easy to use directly in the browser. Something with good
debugging characteristics that did not require server-specific tooling to get started.

Writing AMD Modules with RequireJ$

As previously discussed, the overall goal for the AMD format is to provide a solution
for modular JavaScript that developers can use today. The two key concepts you need
to be aware of when using it with a script loader are the define() method for defining
modules and the require() method for loading dependencies. define() is used to
define named or unnamed modules using the following signature:

define(
module_1id /*optional*/,
[dependencies] /*optional*/,
definition function /*function for instantiating the module or object*/

);

As you can tell by the inline comments, the module_1d is an optional argument that is
typically only required when non-AMD concatenation tools are being used (there may
be some other edge cases where it’s useful, too). When this argument is left out, we call

Organizing Modules with Require)Sand AMD | 181

www.it-ebooks.info


https://github.com/amdjs/amdjs-api/wiki/AMD
http://requirejs.org/docs/whyamd.html
http://www.it-ebooks.info/

the module anonymous. When working with anonymous modules, Require]S will use
amodule’s filepath as its module id, so you should apply the adage Don't Repeat Yourself
(DRY) by omitting the module id in the define() invocation.

The dependencies argument is an array representing all of the other modules that this
module depends on, and the third argument is a factory that can either be a function
that should be executed to instantiate the module or an object.

We could define a barebones module (compatible with Require]S) using define() as
follows:

// A module ID has been omitted here to make the module anonymous

define(['foo', 'bar'],
// module definition function
// dependencies (foo and bar) are mapped to function parameters
function ( foo, bar ) {
// return a value that defines the module export
// (i.e the functionality we want to expose for consumption)

// create your module here
var myModule = {
doStuff:function(){
console.log('Yay! Stuff');
}
}

return myModule;

Require]S is intelligent enough to automatically infer the .js extension
. toyour script filenames. Thus, you generally omit this extension when
0k specifying dependencies.

Alternate syntax

There is also a sugared version of define() available that allows you to declare your
dependencies as local variables using require(). This will feel familiar to anyone who’s
used Node, and can be easier to add or remove dependencies. Here is the previous
snippet using the alternate syntax:

// A module ID has been omitted here to make the module anonymous

define(function(require){
// module definition function
// dependencies (foo and bar) are defined as local vars
var foo = require('foo'),
bar = require('bar');

182 | Chapter 8: Modular Development

www.it-ebooks.info


http://requirejs.org/docs/whyamd.html#sugar
http://www.it-ebooks.info/

// return a value that defines the module export
// (i.e., the functionality we want to expose for consumption)

// create your module here
var myModule = {
doStuff:function(){
console.log('Yay! Stuff');
}
}

return myModule;

19K

The require() method is typically used to load code in a top-level JavaScript file or
within a module should you wish to dynamically fetch dependencies. Here’s an example
of its usage:

// Consider 'foo' and 'bar' are two external modules

// In this example, the 'exports' from the two modules loaded are passed as
// function arguments to the callback (foo and bar)

// so that they can similarly be accessed

require( ['foo', 'bar'], function ( foo, bar ) {
// rest of your code here
foo.doSomething();

H;

My post “Writing Modular JS” covers the AMD specification in much more detail.
Defining and using modules will be covered in this book shortly when we look at more
structured examples of using Require]S.

Getting Started with RequireJS

Before using Require]S and Backbone, we will first set up a very basic Require]JS project
to demonstrate how it works. The first thing to do is to download RequireJS. When you
load in the Require]S script in your HTML file, you need to also tell it where your main
JavaScript file is located. (Typically this will be called something like app.js, and is the
main entry point for your application.) You do this by adding in a data-main attribute
to the <script> tag:

<script data-main="app.js" src="lib/require.js"></script>

Now, Require]S will automatically load app.js for you.

RequireJS configuration

In the main JavaScript file that you load with the data-matin attribute you can configure
how Require]S loads the rest of your application. You do so by calling require.con
fig, and passing in an object:

Organizing Modules with RequireJSand AMD | 183

www.it-ebooks.info


http://addyosmani.com/writing-modular-js/
http://requirejs.org/docs/download.html#requirejs
http://www.it-ebooks.info/

require.config({
// your configuration key/values here
baseurl: "app",
// generally the same directory as the script used in a data-main attribute
// for the top level script

paths: {3},
// set up custom paths to libraries, or paths to RequireJS plug-ins

shim: {3}, // used for setting up all Shims (see below for more detail)
H;

The main reason you'd want to configure Require]S is to add shims, which we’ll cover
next. To see other configuration options available to you, I recommend checking out
the RequireJS documentation.

RequireJ$ Shims. Ideally, each library that we use with Require]S will come with AMD
support—that is, it uses the define method to define the library as a module. However,
some libraries—including Backbone and one of its dependencies, Underscore—don’t
do this. Fortunately, Require]S comes with a way to work around this.

To demonstrate this, first let's shim Underscore, and then we’ll shim Backbone too.
Shims are very simple to implement:

require.config({
shim: {
'"lib/underscore': {
exports: '_'
}
}
b

Note that when specifying paths for Require]S, you should omit the . js from the end
of script names.

The important line here is exports: '_'. This line tells Require]S that the script in
'lib/underscore.js' creates a global variable called _ instead of defining a module.
Now when we list Underscore as a dependency, Require]S will know to give us the
_ global variable as though it were the module defined by that script. We can set up a
shim for Backbone too:

require.config({
shim: {
'lib/underscore': {
exports: '_'

1

'"lib/backbone': {
deps: ['lib/underscore', 'jquery'],
exports: 'Backbone'

s

184 | Chapter 8: Modular Development

www.it-ebooks.info


http://requirejs.org/docs/api.html#config
http://www.it-ebooks.info/

Again, that configuration tells Require]S to return the global Backbone variable that
Backbone exports, but this time you'll notice that Backbone’s dependencies are defined.
This means whenever the following code is run, it will first make sure the dependencies
are met, and then pass the global Backbone object into the callback function:

require( 'lib/backbone', function( Backbone ) {...} );

You don’t need to do this with every library, only the ones that don’t support AMD. For
example, jQuery does support it, as of jQuery 1.7.

If you'd like to read more about general Require]S usage, the Require]S API docs are
incredibly thorough and easy to read.

Custom paths

Typing long paths to filenames like lib/backbone can get tedious. Require]S lets us set
up custom paths in our configuration object. Here, whenever I refer to underscore,
Require]S will look for the file lib/underscore.js:

require.config({
paths: {
'underscore': 'lib/underscore’
}
b

Of course, this can be combined with a shim:

require.config({
paths: {
'underscore': 'lib/underscore’
1
shim: {
'underscore': {
exports: '_'
}
}
H;

Just make sure that you refer to the custom path in your shim settings, too. Now you
can do the following the shim Underscore but still use a custom path:

require( ['underscore'], function(_) {
// code here
b

Require.js and Backbone Examples

Now that we've taken a look at how to define AMD modules, let’s review how to go
about wrapping components like views and collections so that they can also be easily
loaded as dependencies for any parts of your application that require them. At its
simplest, a Backbone model may just require Backbone and Underscore.js. These are

Organizing Modules with RequireJSand AMD | 185

www.it-ebooks.info


http://requirejs.org/docs/api.html
http://www.it-ebooks.info/

dependencies, so we can define those when defining the new modules. Note that the
following examples presume you have configured RequireJS to shim Backbone and
Underscore, as discussed previously.

Wrapping models, views, and other components with AMD
For example, here is how a model is defined:

define(['underscore', 'backbone'], function(_, Backbone) {
var myModel = Backbone.Model.extend({

// Default attributes
defaults: {
content: 'hello world',

1

// A dummy initialization method
initialize: function() {

1

clear: function() {
this.destroy();
this.view.remove();

}
s

return myModel;

s

Note how we alias Underscore.js’s instance to _ and Backbone to just Backbone, making
it very trivial to convert non-AMD code over to using this module format. For a view
that might require other dependencies such as jQuery, we can do this similarly as follows:

define([
"jquery’,
'underscore',
'backbone’',
'collections/mycollection’,
'views/myview'
], function($, _, Backbone, myCollection, myView){

var AppView = Backbone.View.extend({

Aliasing to the dollar sign ($) once again makes it very easy to encapsulate any part of
an application you wish using AMD.

Doing it this way makes it easy to organize your Backbone application as you like. It’s
recommended to separate modules into folders—for example, individual folders for
models, collections, views, and so on. Require]S doesn’t care about what folder structure

186 | Chapter 8: Modular Development

www.it-ebooks.info


http://www.it-ebooks.info/

you use; as long as you use the correct path when using require, it will happily pull in
the file.

As part of this chapter I've made a very simple Backbone application with Require]S
that you can find on GitHub. It is a stock application for a manager of a shop. The
manager can add new items and filter down the items based on price, but nothing more.
Because it’s so simple, it’s easier to focus purely on the Require]S part of the implemen-
tation, rather than deal with complex JavaScript and Backbone logic, too.

At the base of this application is the Item model, which describes a single item in the
stock. Its implementation is very straightforward:

define( ["lib/backbone"], function ( Backbone ) {
var Item = Backbone.Model.extend({
defaults: {
price: 35,
photo: "http://www.placedog.com/160/100"
}
bs

return Item;

s

Converting an individual model, collection, view, or similar into an AMD, Require]S-
compliant one is typically very straightforward. Usually all that’s needed is the first line,
calling define, and to make sure that once you've defined your object—in this case, the
Item model—you return it.

Let’s now set up a view for that individual item:

define( ["lib/backbone"], function ( Backbone ) {
var ItemView = Backbone.View.extend({
tagName: "div",
className: "item-wrap",
template: _.template(S("#itemTemplate").html()),

render: function() {
this.Sel.html(this.template(this.model.toJSON()));
return this;
}
b

return ItemView;

s

This view doesn’t actually depend on the model it will be used with, so again the only
dependency is Backbone. Other than that, it’s just a regular Backbone view. There’s
nothing special going on here, other than returning the object and using define so
Require]JS can pick it up. Now let’s make a collection to view a list of items. This time
we will need to reference the I'tem model, so we add it as a dependency:

define(["lib/backbone", "models/item"], function(Backbone, Item) {
var Cart = Backbone.Collection.extend({

Organizing Modules with RequireJSand AMD | 187

www.it-ebooks.info


http://bit.ly/17elTOK
http://www.it-ebooks.info/

model: Item,
initialize: function() {
this.on("add", this.updateSet, this);
}’
updateSet: function() {
items = this.models;
}
s
return Cart;

19K

I've called this collection Cart, as it’s a group of items. As the I'tem model is the second
dependency, I can bind the variable I'tem to it by declaring it as the second argument to
the callback function. I can then refer to this within my collection implementation.

Finally, let’s have a look at the view for this collection. (This file is much bigger in the
application, but I've taken some bits out so it’s easier to examine.)

define(["lib/backbone", "models/item", "views/itemview"],
function(Backbone, Item, ItemView) {
var ItemCollectionView = Backbone.View.extend({
el: '#yourcart',
initialize: function(collection) {
this.collection = collection;
this.render();
this.collection.on("reset", this.render, this);
1,
render: function() {
this.Sel.html("");
this.collection.each(function(item) {
this.renderItem(item);
}, this);
1,
renderItem: function(item) {
var itemView = new ItemView({model: item});
this.$el.append(itemView.render().el);
1,
// more methods here removed
s
return ItemCollectionView;

s

There really is nothing to it once you've got the general pattern. Define each object (a
model, view, collection, router, or otherwise) through Require]JS, and then specify them
as dependencies to other objects that need them. Again, you can find this entire appli-
cation on GitHub.

If you'd like to take a look at how others do it, Pete Hawkins' Backbone Stack reposito-
ry is a good example of structuring a Backbone application using Require]S. Greg
Franko has also written an overview of how he uses Backbone and Require, and Jeremy

188 | Chapter 8: Modular Development

www.it-ebooks.info


http://bit.ly/17elTOK
http://bit.ly/ZiDaFu
http://bit.ly/ZiDaFu
http://bit.ly/105SLUN
http://bit.ly/ZBD8Id
http://www.it-ebooks.info/

Kahn’s post neatly describes his approach. For a look at a full sample application, the
Backbone and Require version of the TodoMVC application is a good starting point.

Keeping Your Templates External Using RequireJ$ and
the Text Plug-in

Moving your templates to external files is actually quite straightforward, whether they
are Underscore, Mustache, Handlebars, or any other text-based template format. Let’s
look at how we do that with Require]S.

Require]S has a special plug-in called text.js, which is used to load in text file depen-
dencies. To use the text plug-in, follow these steps:

1. Download the plug-in and place it in either the same directory as your application’s
main JS file or a suitable subdirectory.

2. Next, include the text.js plug-in in your initial Require]S configuration options. In
the following code snippet, we assume that Require]JS is being included in our page
prior to this code snippet being executed.

require.config( {
paths: {
"text': 'libs/require/text',
1,
baseUrl: 'app
s

3. When the text! prefix is used for a dependency, Require]S will automatically load
the text plug-in and treat the dependency as a text resource. A typical example of
this in action may look like:

require(['js/app', 'text!templates/mainView.html'],
function( app, mainView ) {
// the contents of the mainView file will be
// loaded into mainView for usage.

}
)s

4. Finally, we can use the text resource that’s been loaded for templating purposes.
You're probably used to storing your HTML templates inline using a script with a
specific identifier.

With Underscore.js’s microtemplating (and jQuery), this would typically be:

« HTML

<script type="text/template" id="mainViewTemplate"s
<% _.each( person, function( person_item ){ %>
<li><%= person_item.get('name') %></1i>

Organizing Modules with RequireJSand AMD | 189

www.it-ebooks.info


http://bit.ly/ZBD8Id
http://bit.ly/105SVvs
http://requirejs.org/docs/download.html#text
http://www.it-ebooks.info/

<% 1); %
</script>
e JS
var compiled_template = _.template( $('#mainViewTemplate').html() );

With Require]S and the text plug-in, however, it’s as simple as saving the same template
into an external text file (say, mainView.html) and doing the following:
require(['js/app', 'text!templates/mainView.html'],
function(app, mainView){
var compiled_template = _.template( mainView );

}
);

That’s it! Now you can apply your template to a view in Backbone with something like:
collection.someview.S$el.html( compiled_template
( { results: collection.models } ) );
All templating solutions will have their own custom methods for handling template

compilation, but if you understand the preceding, substituting Underscore’s micro-
templating for any other solution should be fairly trivial.

Optimizing Backbone Apps for Production with the
RequireJS Optimizer

Once you've written your application, the next important step is to prepare it for de-
ployment to production. The majority of nontrivial apps are likely to consist of several
scripts and so optimizing, minimizing, and concatenating your scripts prior to pushing
can reduce the number of scripts your users need to download.

A command-line optimization tool for Require]S projects called r.js is available to help
with this workflow. It offers a number of capabilities, including:

 Concatenating specific scripts and minifying them using external tools such as
Uglify]S (which is used by default) or Google’s Closure Compiler for optimal
browser delivery, while preserving the ability to dynamically load modules

« Optimizing CSS and stylesheets by inlining CSS files imported using @import,
stripping out comments, and so on

o The ability to run AMD projects in both Node and Rhino (more on this later)

If you find yourself wanting to ship a single file with all dependencies included, r.js can
help with this too. While Require]S does support lazy loading, your application may be
small enough that reducing HTTP requests to a single script file is feasible.

You'll notice that I used the word specific in the first bullet point. The Require]S opti-
mizer concatenates only module scripts that have been specified as string literals in

190 | Chapter8: Modular Development

www.it-ebooks.info


http://www.it-ebooks.info/

require and define calls (which you've probably used). As clarified by the optimizer
docs, this means that Backbone modules defined like the following will combine fine:

define(['jquery', 'backbone', 'underscore', 'collections/sample', 'views/test'],
function($, Backbone, _, Sample, Test){
Y/
b

However, dynamic dependencies such as the following code will be ignored:

var models = someCondition ? ['models/ab', 'models/ac'] :

['models/ba', 'models/bc'];

define(['jquery', 'backbone', 'underscore'].concat(models),
function($, Backbone, _, firstModel, secondModel){

Y/
s

This is by design, as it ensures that dynamic dependency/module loading can still take
place even after optimization.

Although the Require]S optimizer works fine in both Node and Java environments, it’s
strongly recommended to run it under Node because it executes significantly faster
there.

To get started with r.js, grab it from the Require]S download page or through NPM. To
begin getting our project to build with r.js, we will need to create a new build profile.

Assuming the code for our application and external dependencies is in app/libs, our
build.js build profile could simply be:

{

baseUrl: 'app',

out: 'dist/main.js',
The preceding paths are relative to the baseUr1 for our project, and in our case it would
make sense to make this the app folder. The out parameter informs r.js that we want to
concatenate everything into a single file called main.js under the dist/ directory. Note
that here we do need to add the .js extension to the filename. Earlier, we saw that when
referencing modules by filenames, you don’t need to use the .js extension; however, this
is one case in which you do.

Alternatively, we can specify dir, which will ensure the contents of our app directory
are copied into this directory. For example:

¢
baseurl: 'app',
dir: 'release',
out: 'dist/main.js'

Additional options that can be specified, such asmodules and appDir, are not compatible
with out, but let’s briefly discuss them in case you do wish to use them.

Organizing Modules with Require)Sand AMD | 191

www.it-ebooks.info


http://requirejs.org/docs/optimization.html
http://requirejs.org/docs/optimization.html
http://bit.ly/11ysb9J
http://bit.ly/12EXscc
http://www.it-ebooks.info/

modules is an array where we can explicitly specify the module names we would like to
have optimized.

modules: [

{
name: 'app',
exclude: [
// If you prefer not to include certain
// libs exclude them here

}

When appDir is specified, our baseUr1 is relative to this parameter. If appDir is not
defined, baseUr1 is simply relative to the build.js file.

appDir: './',

Back to our build profile, the main parameter is used to specify our main module; we
are making use of include here as we're going to take advantage of Almond, a stripped-
down loader for Require]S modules that is useful should you not need to load modules
in dynamically.

include: ['libs/almond', 'main'],

wrap: true,
include is another array that specifies the modules we want to include in the build.
When we specify main, r.js will trace over all modules main depends on and will include
them. wrap wraps modules that Require]S needs into a closure so that only what we
export is included in the global environment.

paths: { backbone: 'libs/backbone', underscore: 'libs/underscore’,
jquery: 'libs/jquery', text: 'libs/text' } })

The remainder of the build.js file would be a regular paths configuration object. We can
compile our project into a target file by running:

node r.js -o build.js
which should place our compiled project into dist/main.js.

The build profile is usually placed inside the scripts or js directory of your project. As
per the docs, however, this file can exist anywhere you wish, but you’ll need to edit the
contents of your build profile accordingly.

That’s it. As long as you have UglifyJS/Closure tools set up correctly, r.js should be able
to easily optimize your entire Backbone project in just a few keystrokes.

If you would like to learn more about build profiles, James Burke has a heavily com-
mented sample file with all the possible options available.

192 | Chapter8: Modular Development

www.it-ebooks.info


https://github.com/jrburke/almond
http://bit.ly/132iVMq
http://www.it-ebooks.info/

Summary

Dependency management in JavaScript can be challenging. Once you start thinking
about modularity, if you break down your application into several files, you still need
to keep track of what each file’s dependencies are and ensure they are loaded in the
correct order. Without strong namespacing conventions, it is also fairly easy to pollute
the global namespace with your own custom objects. AMD (and Require]S) eases this
process, providing syntactic sugar for defining reusable modules and their dependencies
without polluting the global namespace. Though AMD may not be for everyone, it can
certainly assist with code structure, cleanly modularizing groups of models, views, and
collections forming up regions of your page. Be sure to evaluate whether the AMD
module style works for you. If it does, you should get some good mileage with it.

Summary | 193

www.it-ebooks.info


http://www.it-ebooks.info/

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER9

Exercise 3: Your First Modular Backbone
and RequireJS App

In this chapter, we’ll look at our first practical Backbone and Require]S project—how
to build a modular Todo application. Similar to Exercise 1 in Chapter 4, the application
will allow us to add new todos, edit new todos, and clear todo items that have been
marked as completed. For a more advanced practical, see Chapter 12.

You can find the complete code for the application in the practicals/modular-todo-app
folder of this repo (thanks to Thomas Davis and Jérome Gravel-Niquet). Alternatively,
grab a copy of my side project TodoMVC, which contains the sources to both AMD and
non-AMD versions.

Overview

Writing a modular Backbone application can be a straightforward process. There are,
however, some key conceptual differences to be aware of if youre opting to use AMD
as your module format of choice:

o As AMD isn’t a standard native to JavaScript or the browser, you must use a script
loader (such as Require]S or curl.js) in order to support defining components and
modules using this module format. As we’ve already reviewed, there are a number
of advantages to using the AMD as well as Require]JS to assist here.

« Models, views, controllers, and routers need to be encapsulated using the AMD
format. This allows each component of our Backbone application to cleanly manage
dependencies (for example, collections required by a view) in the same way that
AMD allows non-Backbone modules to.

» Non-Backbone components/modules (such as utilities or application helpers) can
also be encapsulated using AMD. I encourage you to try developing these modules

195

www.it-ebooks.info


https://github.com/addyosmani/todomvc
http://www.it-ebooks.info/

in such a way that they can both be used and tested independent of your Backbone
code, as this will increase reuseability elsewhere.

Now that we’ve reviewed the basics, let’s take a look at developing our application. For
reference, the structure of our app is as follows:

index.html
...js/
main.js
.../models
todo. js
.../views
app.js
todos. js
.../collections
todos. js
.../templates
stats.html
todos.html
../libs
.../backbone
.../jquery
.../underscore
.../require
require.js
text.js
...css/

Markup

The markup for the application is relatively simple and consists of three primary parts:
an input section for entering new todo items (create-todo); a list section to display
existing items, which can also be edited in place (todo-1ist); and finally, a section
summarizing how many items are left to be completed (todo-stats).

<div id="todoapp">
<div class="content">

<div 1d="create-todo">
<input id="new-todo" placeholder="What needs to be done?"
type="text" />
<span class="uil-tooltip-top">Press Enter to save this task</span>
</div>

<div 1d="todos">
<ul id="todo-list"></ul>

</div>

<div 1d="todo-stats"></div>

196 | Chapter9: Exercise 3: Your First Modular Backbone and RequireS App

www.it-ebooks.info


http://www.it-ebooks.info/

</div>
</div>

The rest of the tutorial will now focus on the JavaScript side of the practical.

Configuration Options

If you've read the earlier chapter on AMD, you may have noticed that explicitly needing
to define each dependency that a Backbone module (view, collection, or other module)
may require with it can get a little tedious. This can, however, be improved.

To simplify referencing common paths the modules in our application may use, we use
a Require]S configuration object, which is typically defined as a top-level script file.
Configuration objects have a number of useful capabilities, the most useful being mode
name mapping. Name maps are basically a key/value pair, where the key defines the alias
you wish to use for a path and the value represents the true location of the path.

In the following code sample, main.js, you can see some typical examples of common
name maps, including backbone, underscore, jquery, and depending on your choice,
the RequireJS text plug-in, which assists with loading text assets like templates.

require.config({
baseurl:'../',
paths: {
jquery: 'libs/jquery/jquery-min',
underscore: 'libs/underscore/underscore-min',
backbone: 'libs/backbone/backbone-optamd3-min',
text: 'libs/require/text’
}
b

require(['views/app'], function(AppView){
var app_view = new AppView;

s

The require() atthe end of our main.jsfile is simply there so we can load and instantiate
the primary view for our application (views/app.js). You'll commonly see both this and
the configuration object included in most top-level script files for a project.

In addition to offering name mapping, the configuration object can be used to define
additional properties such as waitSeconds (the number of seconds to wait before script
loading times out) and locale (should you wish to load up i18n bundles for custom
languages). The baseUr1 is simply the path to use for module lookups.

For more information on configuration objects, please feel free to check out the excellent
guide to them in the Require]S docs.

Configuration Options | 197

www.it-ebooks.info


http://requirejs.org/docs/api.html#config
http://requirejs.org/docs/api.html#config
http://www.it-ebooks.info/

Modularizing Our Models, Views, and Collections

Before we dive into AMD-wrapped versions of our Backbone components, let’s review
a sample of a non-AMD view. The following view listens for changes to its model (a

todo item) and rerenders if a user edits the value of the item.

var TodoView = Backbone.View.extend({

//... 1s a list tag.
tagName: 'li',

// Cache the template function for a single item.
template: _.template(S$('#item-template').html()),

// The DOM events specific to an itenm.

events: {
'click .check' : 'toggleDone',
'dblclick div.todo-content' : 'edit',
'click span.todo-destroy' : 'clear’',
'keypress .todo-input' : 'updateOnEnter'
1,

// The TodoView listens for changes to its model, rerendering. Since there's
// a one-to-one correspondence between a **Todo** and a **TodoView** in this

// app, we set a direct reference on the model for convenience.
initialize: function() {

this.model.on('change', this.render, this);

this.model.view = this;

1

Note how for templating we use the common practice of referencing a script by an id
(or other selector) and obtaining its value. This, of course, requires that the template
being accessed is implicitly defined in our markup. The following is the embedded

version of the template we just referenced:

<script type="text/template" id="item-template">
<div class="todo <%= done ? 'done' : '' %>">
<div class="display">
<input class="check" type="checkbox" <%= done ?
'checked="checked"' : "' %> />
<div class="todo-content"></div>
<span class="todo-destroy"></span>
</div>
<div class="edit">
<input class="todo-input" type="text" value="" />
</div>
</div>
</script>

198 | Chapter9: Exercise 3: Your First Modular Backbone and RequireJS App

www.it-ebooks.info


http://www.it-ebooks.info/

Though there is nothing wrong with the template itself, once we begin to develop larger
applications requiring multiple templates, including them all in our markup on page
load can quickly become unmanageable and negatively impact performance. We’ll look
at solving this problem in a minute.

Let’s now take a look at the AMD version of our view, views/todo.js. As discussed earlier,
the module is wrapped using AMD’s define(), which allows us to specify the depen-
dencies our view requires. Using the mapped paths simplifies referencing common de-
pendencies, and instances of dependencies are themselves mapped to local variables
that we can access (for example, jquery is mapped to $).

define([
"jquery’,
'underscore’',
'backbone’,
"text!templates/todos.html'
], function($, _, Backbone, todosTemplate){
var TodoView = Backbone.View.extend({

//... 1s a list tag.
tagName: 'li',

// Cache the template function for a single item.
template: _.template(todosTemplate),

// The DOM events specific to an iten.

events: {
'click .check' : 'toggleDone',
'dblclick div.todo-content' : 'edit',
'click span.todo-destroy' : 'clear’,
'keypress .todo-input' . 'updateOnEnter'
1,

// The TodoView listens for changes to its model, rerendering. Since there's
// a one-to-one correspondence between a **Todo** and a **TodoView** in this
// app, we set a direct reference on the model for convenience.
initialize: function() {

this.model.on('change', this.render, this);

this.model.view = this;

1

// Rerender the contents of the todo itenm.

render: function() {
this.$el.html(this.template(this.model.toJSON()));
this.setContent();
return this;

I8

// Use ‘jQuery.text' to set the contents of the todo 1item.
setContent: function() {
var content = this.model.get('content');

Modularizing Our Models, Views, and Collections | 199

www.it-ebooks.info


http://www.it-ebooks.info/

this.$('.todo-content').text(content);
this.input = this.$('.todo-input');
this.input.on('blur', this.close);
this.input.val(content);

1

From a maintenance perspective, there’s nothing logically different in this version of
our view, except for how we approach templating.

Using the Require]S text plug-in (the dependency marked text), we can actually store
all of the contents for the template we looked at earlier in an external file (templates/
todos.html).

<div class="todo <%= done ? 'done' : '' %>">
<div class="display">
<input class="check" type="checkbox" <%= done ?
'checked="checked"' : "' %> />
<div class="todo-content"></div>
<span class="todo-destroy"></span>

</div>
<div class="edit">
<input class="todo-input" type="text" value="" [>
</div>
</div>

We no longer need to be concerned with ids for the template, as we can map its contents
to a local variable (in this case, todosTemplate). We then simply pass this to the Un-
derscore.js templating function _. template() the same way we normally would have
the value of our template script.

Next, let’s look at how to define models as dependencies which can be pulled into col-
lections. The following, models/todo.js, is an AMD-compatible model module, which
has two default values: a content attribute for the content of a todo item, and a Boolean
done state that allows us to trigger whether the item has been completed or not.

define(['underscore', 'backbone'], function(_, Backbone) {
var TodoModel = Backbone.Model.extend({

// Default attributes for the todo.

defaults: {
// Ensure that each todo created has ‘content".
content: 'empty todo...',
done: false

I8

initialize: function() {

1

// Toggle the “done’ state of this todo item.
toggle: function() {
this.save({done: !this.get('done')});

200 | Chapter9: Exercise 3: Your First Modular Backbone and RequireJS App

www.it-ebooks.info


http://www.it-ebooks.info/

1

// Remove this Todo from *localStorage* and delete its view.
clear: function() {

this.destroy();

this.view.remove();

}
s

return TodoModel;

s

As per other types of dependencies, we can easily map our model module to a local
variable (in this case, Todo) so it can be referenced as the model to use for our Todo
sCollection. This collection, collections/todos.js, also supports a simple done() filter
for narrowing down todo items that have been completed and a remaining() filter for
those that are still outstanding.

define([
'underscore',
'backbone’,
'"libs/backbone/localstorage’,
'models/todo’
], function(_, Backbone, Store, Todo){

var TodosCollection = Backbone.Collection.extend({

// Reference to this collection's model.
model: Todo,

// Save all of the todo items under the ‘todos' namespace.
localStorage: new Store('todos'),

// Filter down the list of all todo items that are finished.
done: function() {

return this.filter(function(todo){ return todo.get('done'); });
1,

// Filter down the list to only todo items that are still not finished.
remaining: function() {

return this.without.apply(this, this.done());
1

In addition to allowing users to add new todo items from views (which we then insert
as models in a collection), we ideally also want to be able to display how many items
have been completed and how many are remaining. We've already defined filters that
can provide us this information in the preceding collection, so let’s use them in our main
application view, views/app.js.

define([
"jquery',

Modularizing Our Models, Views, and Collections | 201

www.it-ebooks.info


http://www.it-ebooks.info/

'underscore',

'backbone’',

'collections/todos',

'views/todo',

"text!templates/stats.html'

], function($, _, Backbone, Todos, TodoView, statsTemplate){

var AppView = Backbone.View.extend({

// Instead of generating a new element, bind to the existing skeleton of
// the app already present in the HTML.
el: $('#todoapp'),

// Our template for the line of statistics at the bottom of the app.
statsTemplate: _.template(statsTemplate),

// ...events, initialize() etc. can be seen in the complete file

// Rerendering the app just means refreshing the statistics—the rest
// of the app doesn't change.
render: function() {
var done = Todos.done().length;
this.$('#todo-stats').html(this.statsTemplate({

total: Todos.length,

done: Todos.done().length,

remaining: Todos.remaining().length
D)

}’

Here, we map the second template for this project, templates/stats.html, to statsTem
plate, which is used for rendering the overall done and remaining states. This works
by simply passing our template the length of our overall Todos collection (Todos . length
—the number of todo items created so far) and similarly the length (counts) for items
that have been completed (Todos.done().length) or are remaining (Todos.remain
ing().length).

Following are the contents of our statsTemplate. It's nothing too complicated, but does
use ternary conditions to evaluate whether we should state that there’s one item or two
items in a particular state.

<% if (total) { %>
<span class="todo-count">
<span class="number"><%= remaining %></span>
<span class="word"><%= remaining == 1 ? 'item' : 'items' %>
</span> left.
</span>
<% } %>
<% if (done) { %>
<span class="todo-clear"s>
<a href="#">

202 | Chapter9: Exercise 3: Your First Modular Backbone and RequireJS App

www.it-ebooks.info


http://www.it-ebooks.info/

Clear <span class="number-done"><%= done %></span>

completed <span class="word-done"><%= done == 1 ?
'item' : 'items' %></span>
</a>
</span>
<% } %>

The rest of the source for the Todo app mainly consists of code for handling user and
application events, but that wraps up most of the core concepts for this practical.

To see how everything ties together, feel free to grab the source by cloning this repo or
browsing it online to learn more. I hope you find it helpful.

Route-Based Module Loading

This section will discuss a route-based approach to module loading as implemented in
Lumbar by Kevin Decker. Like RequireJS, Lumbar is also a modular build system, but
the pattern it implements for loading routes may be used with any build system.

The specifics of the Lumbar build tool are not discussed in this book. For a complete
Lumbar-based project with the loader and build system, see Thorax, which provides
boilerplate projects for various environments including Lumbar.

JSON-Based Module Configuration

RequireJS defines dependencies per file, while Lumbar defines a list of files for each
module in a central JSON configuration file, outputting a single JavaScript file for each
defined module. Lumbar requires that each module (except the base module) define a
single router and a list of routes. An example file might look like:

{
"modules": {
"base": {

"scripts": [
"js/1lib/underscore.js",
"js/1ib/backbone. js",
"etc"

]

1,
"pages": {

"scripts": [
"js/routers/pages.js",
"js/views/pages/index.js",

routes": {
"": "{ndex",
"contact": "contact"

Route-Based Module Loading | 203

www.it-ebooks.info


http://bit.ly/17UyuYC
http://walmartlabs.github.com/lumbar
http://thoraxjs.org
http://www.it-ebooks.info/

}

Every JavaScript file defined in a module will have a module object in scope that contains
the name and routes for the module. In js/routers/pages.js, we could define a Backbone
router for our pages module like so:

new (Backbone.Router.extend({
routes: module.routes,
index: function() {3},
contact: function() {}

)

Module Loader Router

A little-used feature of Backbone.Router is its ability to create multiple routers that
listen to the same set of routes. Lumbar uses this feature to create a router that listens
to all routes in the application. When a route is matched, this master router checks to
see if the needed module is loaded. If the module is already loaded, then the master
router takes no action and the router defined by the module will handle the route. If
the needed module has not yet been loaded, it will be loaded, and then Backbone.his
tory.loadurl will be called. This reloads the route, causes the master router to take no
further action, and prompts the router defined in the freshly loaded module to respond.

A sample implementation is provided next. The config object would need to contain
the data from our previously mentioned sample configuration JSON file, and the load
er object would need to implement isLoaded and loadModule methods. Note that
Lumbar provides all of these implementations; these examples will help you create your
own implementation.

// Create an object that will be used as the prototype
// for our master router
var handlers = {

routes: {}

b

_.each(config.modules, function(module, moduleName) {
if (module.routes) {
// Generate a loading callback for the module
var callbackName = "loader_" moduleName;
handlers[callbackName] = function() {
if (loader.isLoaded(moduleName)) {
// Do nothing if the module is loaded
return;
} else {
//the module needs to be loaded
loader.loadModule(moduleName, function() {
// Module is loaded, reloading the route
// will trigger callback in the module's
// router

204 | Chapter9: Exercise 3: Your First Modular Backbone and RequireJS App

www.it-ebooks.info


http://www.it-ebooks.info/

Backbone.history.loadurl();
s
}
1
// Each route in the module should trigger the
// loading callback
_.each(module.routes, function(methodName, route) {
handlers.routes[route] = callbackName;
H;
}
H;

// Create the master router
new (Backbone.Router.extend(handlers));

Using NodeJS to Handle pushState

window.history.pushState support (serving Backbone routes without a hash mark)
requires that the server be aware of what URLs your Backbone application will handle,
since the user should be able to enter the app at any of those routes (or press reload after
navigating to a pushState URL).

Another advantage to defining all routes in a single location is that the same JSON
configuration file provided previously could be loaded by the server, listening to each
route. A sample implementation in Node.js and Express:

var fs = require('fs'),
_ = require('underscore'),
express = require('express'),
server = express(),
config = JSON.parse(fs.readFileSync('path/to/config.json'));

_.each(config.modules, function(module, moduleName) {
if (module.routes) {
_.each(module.routes, function(methodName, route) {
server.get(route, function(reqg, res) {
res.sendFile('public/index.html");
b
b
}
H;

This assumes that index.html will be serving out your Backbone application. The Back
bone.History object can handle the rest of the routing logic as long as a root option is

specified. A sample configuration for a simple application that lives at the root might
look like this:

Route-Based Module Loading | 205

www.it-ebooks.info


http://www.it-ebooks.info/

Backbone.history || (Backbone.history = new Backbone.History());
Backbone.history.start({

pushState: true,

root: '/'

s

An Asset Package Alternative for Dependency
Management

For more than trivial views, DocumentCloud has a home-built asset packager called
Jammit, which is easily integrated with Underscore.js templates and can also be used
for dependency management.

Jammit expects your JavaScript templates (JST) to live alongside any ERB templates
you're using in the form of .jst files. It packages the templates into a global JST object
that can be used to render templates into strings. Making Jammit aware of your templates
is straightforward—just add an entry for something like views/**/*.jst to your app
package in assets.yml.

To provide Jammit dependencies, you simply write out an assets.yml file that either lists
the dependencies in order or uses a combination of free capture directories (for exam-
ple, //.js, templates/.js, and specific files).

A template using Jammit can derive its data from the collection object passed to it:

this.$el.html(IST.myTemplate({ collection: this.collection }));

206 | Chapter9: Exercise 3: Your First Modular Backbone and RequireJS App

www.it-ebooks.info


https://github.com/documentcloud/jammit
http://www.it-ebooks.info/

CHAPTER 10

Paginating Backbone.js Requests
and Collections

Pagination is a ubiquitous problem we often find ourselves needing to solve on the Web
—perhaps most predominantly when we’re working with service APIs and JavaScript-
heavy clients that consume them. It’s also a problem that is often underrefined because
most of us consider pagination relatively easy to get right. This isn't, however, always
the case, as pagination tends to get trickier than it initially seems.

Before we dive into solutions for paginating data for your Backbone applications, let’s
define exactly what we consider pagination to be.

Pagination is a control system allowing users to browse through pages of search results
or any type of content that is continued. Search results are the canonical example, but
pagination today is found on news sites, blogs, and discussion boards, often in the form
of Previous and Next links. More complete pagination systems offer granular control
of the specific pages you can navigate to, giving users more power to find what they are
looking for.

It isn’t a problem limited to pages requiring some visual controls for pagination either
—sites like Facebook, Pinterest, and Twitter have demonstrated that there are many
contexts where infinite paging is also useful. Infinite paging is, of course, when we
prefetch (or appear to prefetch) content from a subsequent page and add it directly to
the user’s current page, making the experience feel infinite.

Pagination is very context-specific and depends on the content being displayed. In the
Google search results, pagination is important because Google wants to offer you the
most relevant set of results in the first one or two pages. After that, you might be a little
more selective (or random) with the page you choose to navigate to. This differs from
cases where you’ll want to cycle through consecutive pages (for example, for a news
article or blog post).

207

www.it-ebooks.info


http://www.it-ebooks.info/

Pagination is almost certainly content and context-specific, but as Faruk Ates has pre-
viously pointed out, the principles of good pagination apply no matter what the content
or context is. As with everything extensible when it comes to Backbone, you can write
your own pagination to address many of these content-specific types of pagination
problems. That said, you’ll probably spend quite a bit of time on this, and sometimes
you want to use a tried-and-true solution that just works.

On this topic, we’re going to go through a set of pagination components that I and a
group of contributors wrote for Backbone.js, which should hopefully come in handy if
you’re working on applications that need to page Backbone collections. These compo-
nents are part of an extension called Backbone.Paginator.

Backbone.Paginator

When working with data on the client side, we are most likely to run into three types
of pagination:

Requests to a service layer (API)
For example, query for results containing the term Paul—if 5,000 results are avail-
able, display only 20 results per page (leaving us with 250 possible result pages that
can be navigated to).

This problem actually has quite a great deal more to it, such as maintaining per-
sistence of other URL parameters (such as sort, query, order) that can change based
on a user’s search configuration in a UL You also have to think of a clean way to
hook up views to this pagination so you can easily navigate between pages (for
example, First, Last, Next, Previous, 1, 2, 3), manage the number of results displayed
per page, and so on.

Further client-side pagination of data returned
For example, we’ve been returned a JSON response containing 100 results. Rather
than displaying all 100 to the user, we display only 20 of these results within a
navigable Ul in the browser.

Similar to the request problem, client pagination has its own challenges, like navi-
gation once again (Next, Previous, 1, 2, 3), sorting, order, switching the number of
results to display per page, and so on.

Infinite results
With services such as Facebook, the concept of numeric pagination is instead re-
placed with a Load More or View More button. Triggering this normally fetches
the next page of N results, but rather than replacing entirely the previous set of
results loaded, we simply append to them instead.

A request pager, which simply appends results in a view rather than replacing on
each new fetch, is effectively an infinite pager.

208 | Chapter 10: Paginating Backbone.js Requests and Collections

www.it-ebooks.info


https://gist.github.com/mislav/622561
https://gist.github.com/mislav/622561
http://bit.ly/10uKEQH
http://bit.ly/18fe6BF
http://www.it-ebooks.info/

Let’s now take a look at exactly what we’re getting out of the box.

Backbone.Paginator, shown in Figure 10-1, is a set of opinionated components for pag-
inating collections of data using Backbone.js. It aims to provide both solutions for as-
sisting with pagination of requests to a server (such as an API) as well as pagination of
single loads of data, where we may wish to further paginate a collection of N results into
M pages within a view.

1234567 Next Last / Show 3|9[12 / 1 -3 of 30 shown Select a field to sort on + | Sortiasc) | Sort{Desc)

Select a field to filter on = Filter

Figure 10-1. Backbone.Paginator demonstrating how to visually style the components
provided by the project

Backbone.Paginator supports two main pagination components:

Backbone.Paginator.requestPager
For pagination of requests between a client and a server-side API

Backbone.Paginator.clientPager
For pagination of data returned from a server that you would like to further paginate
within the UI (for example, 60 results are returned, paginate into three pages of 20)

Live Examples

If you would like to look at examples built using the components included in the project,
links to official demos are included here and use the Netflix API so that you can see
them working with an actual data source:

o Backbone.Paginator.requestPager()
o Backbone.Paginator.clientPager()
o Infinite pagination (Backbone.Paginator.requestPager())

e Diacritic plug-in

Paginator.requestPager

In this section were going to walk through using the requestPager (shown in
Figure 10-2). You would use this component when working with a service API that itself
supports pagination. This component allows users to control the pagination settings for
requests to this API (for example, navigate to the next, previous, N pages) via the client
side.

Paginator.requestPager | 209

www.it-ebooks.info


http://bit.ly/11J0ZCm
http://bit.ly/Zimkpv
http://bit.ly/YKl4b4
http://bit.ly/10aXFyw
http://www.it-ebooks.info/

The idea is that pagination, searching, and filtering of data can all be done from your
Backbone application without the need for a page reload.

Paginator.requestPager()

NetFlix movies starring Nicole Kidman

BMX Bandits
Meta-data: Runtime: 90 mins, Released: 1983, Rating: PG

z Nicole Kidman makes her fim debut as a plucky teen who
helps her two best pals, both bike-fiding hotshots, tum the
tables on 2 gang of bank robbers.

Nightmaster
Meta-data: Runtime: 91 mins, Released: 1986, Rating: R
T Students Robbie and Amy take part in a compeitive
% Y simulated war game but soon discover that their teacher has
tumed them into killing machines.

Dead Calm

Meta-data: Runtime: 96 mins, Released: 1989, Rating: R
The Ingrams set off for a sailing trip after their young son dies
tragically in a car crash. When they come across another
seafarer feverishly paddling away from a sinking schooner,
they bring him aboard — and realize he's a murderous
sociopath.

12345678910111213 1415161718 / Previous NextLast / Show 3|9 | 12 perpage / Page: 1 of 18shown / | Sortby:

Select a field to sort on

Figure 10-2. Using the requestPager component to request paginated results from the
Netflix API

1. Create a new Paginated collection.

First, we define a new Paginated collection using Backbone.Paginator.request
Pager() as follows:

var PaginatedCollection = Backbone.Paginator.requestPager.extend({
2. Set the model for the collection as normal.

Within our collection, we then (as normal) specify the model to be used with this
collection followed by the URL (or base URL) for the service providing our data
(such as the Netflix API).

model: model,
3. Configure the base URL and the type of request.

We need to set a base URL. The type of the request is GET by default, and the
dataType is jsonp in order to enable cross-domain requests.
paginator_core: {

// the type of the request (GET by default)
type: 'GET',

// the type of reply (jsonp by default)
dataType: 'jsonp',

210 | Chapter 10: Paginating Backbone.js Requests and Collections

www.it-ebooks.info


http://www.it-ebooks.info/

// the URL (or base URL) for the service

// i1f you want to have a more dynamic URL, you can make this

// a function that returns a string

url: 'http://odata.netflix.com/Catalog/People(49446)/TitlesActedIn?’

If you use dataType not jsonp, please remove the callback custom

1,
@ parameter inside the server_api configuration.

4. Configure how the library will show the results.

We need to tell the library how many items per page we would like to display, what
the current page is, what the range of pages should be, and so on.

paginator_ui: {
// the lowest page index your API allows to be accessed
firstPage: 0,

// which page should the paginator start from
// (also, the actual page the paginator is on)
currentPage: 0,

// how many items per page should be shown
perPage: 3,

// a default number of total pages to query in case the API or
// service you are using does not support providing the total
// number of pages for us.
// 10 as a default in case your service doesn't return the total
totalPages: 10

1,

5. Configure the parameters we want to send to the server.

The base URL won’t be enough for most cases, so you can pass more parameters to
the server. Note how you can use functions instead of hardcoded values, and you
can also refer to the values you specified in paginator_uti.

server_api: {

// the query field in the request
'$filter': "',

// number of items to return per request/page
'Stop': function() { return this.perPage },

// how many results the request should skip ahead to

// customize as needed. For the Netflix API, skipping ahead based on
// page * number of results per page was necessary.

'$skip': function() { return this.currentPage * this.perPage },

Paginator.requestPager | 211

www.it-ebooks.info


http://www.it-ebooks.info/

// field to sort by
'Sorderby': 'ReleaseYear',

// what format would you like to request results in?
'$format': 'json',

// custom parameters

'$Sinlinecount': 'allpages',
'Scallback': 'callback'

If you use $callback, please ensure that you did use jsonp as a

}’
“’@ dataType inside your paginator_core configuration.

6. Finally, configure Collection.parse(), and we're done.

The last thing we need to do is configure our collection’s parse() method. We want
to ensure we're returning the correct part of our JSON response containing the data
our collection will be populated with, which in the following is response.d.re
sults (for the Netflix API).

parse: function (response) {
// Be sure to change this based on how your results
// are structured (e.g., d.results i1s Netflix-specific)
var tags = response.d.results;
//Normally this.totalPages would equal response.d.__count
//but as this particular NetFlix request only returns a
//total count of items for the search, we divide.
this.totalPages = Math.ceil(response.d.__count / this.perPage);
return tags;

}

b;

s

You might also notice that we’re setting this.totalPages to the total page count
returned by the API. This allows us to define the maximum number of (result)
pages available for the current/last request so that we can clearly display this in the
UL It also allows us to influence whether clicking, say, a Next button should proceed
with a request or not.

Convenience Methods

For your convenience, the following methods are made available for use in your views
to interact with the requestPager:

Collection.goTo( n, options)
Go to a specific page

212 | Chapter 10: Paginating Backbone.js Requests and Collections

www.it-ebooks.info


http://www.it-ebooks.info/

Collection.nextPage( options )
Go to the next page

Collection.prevPage( options )
Go to the previous page

Collection.howManyPer( n)
Set the number of items to display per page

The requestPager collection’s methods .goTo(), .nextPage(), and .prevPage() are
all extensions of the original Backbone Collection.fetch() methods. As such, they
all can take the same option object as a parameter.

This option object can use success and error parameters to pass a function to be
executed after server answers.

Collection.goTo(n, {
success: function( collection, response ) {
// called if server request success
1
error: function( collection, response ) {
// called if server request fail
}
b

To manage callback, you could also use the jgXHR returned by these methods.

Collection
.requestNextPage()
.done(function( data, textStatus, jgXHR ) {
// called if server request success

b
.fail(function( data, textStatus, jgXHR ) {
// called if server request fail

1))
.always(function( data, textStatus, jgXHR ) {
// do something after server request is complete
b
H;

If you'd like to add the incoming models to the current collection, instead of replacing
the collection’s contents, pass {update: true, remove: false} as options to these
methods.

Collection.prevPage({ update: true, remove: false });

Paginator.clientPager

The clientPager (Figure 10-3) is used to further paginate data that has already been
returned by the service API. Say you've requested 100 results from the service and wish

Paginator.dientPager | 213

www.it-ebooks.info


http://bit.ly/151ku0k
http://bit.ly/12rJmrc
http://www.it-ebooks.info/

to split this into five pages of paginated results, each containing 20 results at a client
level—the clientPager makes it trivial to do this.

Paginator.clientPager()

NetFlix movies

Natural Wonders of America
Meta-data: Runtime: 210 mins, Released: 1998, Rating: NR

An American Affair
Meta-data: Runtime: 92 mins, Released: 1997, Rating: NR

RN A lust for political power — and best friends Barbara and
Genevieve — leads overly ambitious District Attomey Sam
Brady down a perilous path in this taut psychological thriller
helmed by Sebastian Shah.

Runtime: 96 mins, Released: 1999, Rating: UR

B This smash-hit comedy follows four high school seniors s
they strive for the mast eagerly anticipated rite of adulthood:
losing ane's virginity.

1234567 NextLast / Show3|9|12 / 1-30f 30 shown / | Select a field to sort on 4| Sotasq) || Sot(Desc)

Select a field to filter on : Fitor

Figure 10-3. Using the clientPager component to further paginate results returned from
the Netflix API

Use the clientPager when you prefer to get results in a single load and thus avoid
making additional network requests each time your users want to fetch the next page
of items. As the results have all already been requested, it’s just a matter of switching
between the ranges of data actually presented to the user.

1. Create a new paginated collection with a model and URL.

As with requestPager, let’s first create a new paginated Backbone.Paginator.cli
entPager collection, with a model:

var PaginatedCollection = Backbone.Paginator.clientPager.extend({

model: model,
2. Configure the base URL and the type of request.

We need to set a base URL. The type of the request is GET by default, and the
dataType is jsonp in order to enable cross-domain requests.

paginator_core: {
// the type of the request (GET by default)
type: 'GET',

// the type of reply (jsonp by default)

214 | Chapter 10: Paginating Backbone.js Requests and Collections

www.it-ebooks.info


http://www.it-ebooks.info/

dataType: 'jsonp',

// the URL (or base URL) for the service
url: 'http://odata.netflix.com/v2/Catalog/Titles?&"'
1,

3. Configure how the library will show the results.

We need to tell the library how many items per page we would like to display, what
the current page is, what the range of pages should be, and so on.

paginator_ui: {
// the lowest page index your API allows to be accessed
firstPage: 1,

// which page should the paginator start from
// (also, the actual page the paginator is on)
currentPage: 1,

// how many items per page should be shown
perPage: 3,

// a default number of total pages to query in case the API or
// service you are using does not support providing the total
// number of pages for us.

// 10 as a default in case your service doesn't return the total
totalPages: 10,

// The total number of pages to be shown as a pagination
// list is calculated by (pagesInRange * 2) + 1.
pagesInRange: 4

1

4. Configure the parameters we want to send to the server.

The base URL alone won’t be enough for most cases, so you can pass more param-
eters to the server. Note how you can use functions instead of hardcoded values,
and you can also refer to the values you specified in paginator_uti.

server_api: {

// the query field in the request
'Sfilter': 'substringof(\'america\',Name)',

// number of items to return per request/page
'Stop': function() { return this.perPage },

// how many results the request should skip ahead to

// customize as needed. For the Netflix API, skipping ahead based on
// page * number of results per page was necessary.

'$skip': function() { return this.currentPage * this.perPage },

// field to sort by
'Sorderby': 'ReleaseYear',

Paginator.dientPager | 215

www.it-ebooks.info


http://www.it-ebooks.info/

// what format would you like to request results in?
'Sformat': 'json',

// custom parameters
'$inlinecount': 'allpages',
'Scallback': 'callback'

1,

5. Finally, configure Collection.parse(), and were done.

And finally we have our parse() method, which in this case isn’t concerned with
the total number of result pages available on the server, as we have our own total
count of pages for the paginated data in the UL

parse: function (response) {

var tags = response.d.results;
return tags;

s

Convenience Methods

As mentioned, your views can hook into a number of convenience methods to navigate
around Ul-paginated data. For clientPager, these include:

Collection.goTo( n, options )
Go to a specific page.

Collection.prevPage( options)
Go to the previous page.

Collection.nextPage( options )
Go to the next page.

Collection.howManyPer( n)
Set how many items to display per page.

Collection.setSort( sortBy, sortDirection)
Update sort on the current view. Sorting will automatically detect if you're trying
to sort numbers (even if they’re stored as strings) and will do the right thing.

Collection.setFilter( filterFields, filterWords )
Filter the current view. Filtering supports multiple words without any specific order,
so you'll basically get a full-text search ability. Also, you can pass it only one field
from the model, or you can pass an array with fields and all of them will get filtered.
The last option is to pass it an object containing a comparison method and rules.
Currently, only the Levenshtein method is available. The Levenshtein distance is

216 | Chapter 10: Paginating Backbone.js Requests and Collections

www.it-ebooks.info


http://www.it-ebooks.info/

the difference between two strings and is effectively the minimum number of
changes required to change one word into another.

The goTo(), prevPage(), and nextPage() functions do not require the options param
since they will be executed synchronously. However, when specified, the success callback
will be invoked before the function returns. For example:

nextPage(); // this works just fine!
nextPage({success: function() { }}); // this will call the success function

The options param exists to preserve (some) interface unification between the
requestPaginator and clientPaginator so that they may be used interchangeably in
your Backbone.Views.

this.collection.setFilter(
{'Name': {cmp_method: 'levenshtein', max_distance: 7}}
, "American P" // Note the switched 'r' and 'e', and the 'P' from 'Pie’
);
Also note that the Levenshtein plug-in should be loaded and enabled via the useLe
venshteinPlugin variable. Last but not less important: performing Levenshtein com-
parison returns the distance between two strings. It won't let you search lengthy text.
The distance between two strings means the number of characters that should be added,
removed, or moved to the left or to the right so the strings get equal. That means that
comparing “Something” in “This is a test that could show something” will return 32,
which is bigger than comparing “Something” and “ABCDEFG (9)” Use Levenshtein
only for short texts (titles, names, and so on).

Collection.doFakeFilter( filterFields, filterWords)
Returns the models count after fake-applying a call to Collection.setFilter.

Collection.setFieldFilter( rules)

Filter each value of each model according to rules that you pass as an argument.
Say you have a collection of books with release year and author. You can filter only
the books that were released between 1999 and 2003. And then you can add another
rule that will filter those books only to authors whose name starts with A. Possible
rules: function, required, min, max, range, minLength, maxLength, rangelLength,
one0f, equalTo, containsAll0f, pattern. Passing this an empty rules set will re-
move any FleldFilter rules applied.

my_collection.setFieldFilter([

{field: 'release_year', type: 'range', value:

{min: '1999', max: '2003'}},

{field: 'author', type: 'pattern', value: new RegExp('A*', 'igm')}
D;

//Rules:
//

//var my_var = 'green';

//

Paginator.dientPager | 217

www.it-ebooks.info


http://www.it-ebooks.info/

//{field: 'color', type: 'equalTo', value: my_var}
//{field: 'color', type: 'function', value: function(field value){
return field_value == my_var; } }
//{field: 'color', type: 'required'}
//{field: 'number_of colors', type: 'min', value: '2'}
//{field: 'number_of colors', type: 'max', value: '4'}
//{field: 'number_of colors', type: 'range', value: {min: '2', max: '4'} }
//{field: 'color_name', type: 'minLength’, value: '4'}
//{field: 'color_name', type: 'maxLength', value: '6'}
//{field: 'color_name', type: 'rangeLength', value: {min: '4', max: '6'}}
//{field: 'color_name', type: 'oneOf', value: ['green', 'yellow']}
//{field: 'color_name', type: 'pattern', value: new RegExp('gre*', 'ig')}
//{field: 'color_name', type: 'containsAllOf', value:
['green', 'yellow', 'blue']}
Collection.doFakeFieldFilter( rules)
Returns the models count after fake-applying a call to Collection

.setFieldFilter.

Implementation Notes

You can use some variables in your view to represent the actual state of the paginator.

totalUnfilteredRecords
Contains the number of records, including all records filtered in any way (available
only in clientPager).

totalRecords
Contains the number of records.

currentPage
The actual page where the paginator is located.

perPage
The number of records the paginator will show per page.

totalPages
The number of total pages.

startRecord
The position of the first record shown in the current page—for example, 41 to 50
from 2,000 records (available only in clientPager).

endRecord
The position of the last record shown in the current page—for example, 41 to 50
from 2,000 records (available only in clientPager).

218 | Chapter 10: Paginating Backbone.js Requests and Collections

www.it-ebooks.info


http://www.it-ebooks.info/

pagesInRange

The number of pages to be drawn on each side of the current page. So, if pagesIn
Range is 3 and currentPage is 13, you will get the numbers 10, 11, 12, 13 (selected),

14, 15, 16.

<!-- sample template for pagination UI -->
<script type="text/html" id="tmpServerPagination"s>

<div class="row-fluid">

<div class="pagination span8">
<ul>
<% _.each (pageSet, function (p) { %>
<% if (currentPage == p) { %>
<li class="active"><span><%= p %></span></1i>
<% } else { %>
<li><a href="#" class="page"><%= p %></a></1li>
<% } %>
<% 3); %>
</ul>
</div>

<div class="pagination span4">
<ul>
<% i1f (currentPage > firstPage) { %>
<li><a href="#" class="serverprevious">Previous</a></1i>
<% }else{ %>
<li><span>Previous</span></1i>
<% }%>
<% if (currentPage < totalPages) { %>
<li><a href="#" class="servernext">Next</a></11>
<% } else { %>
<li><span>Next</span></11i>
<% } %>
<% if (firstPage != currentPage) { %>
<li><a href="#" class="serverfirst">First</a></1i>
<% } else { %>
<li><span>First</span></1i>
<% } %>
<% if (totalPages != currentPage) { %>
<li><a href="#" class="serverlast">Last</a></11>
<% } else { %>
<li><span>Last</span></1i>
<% } %>
</ul>
</div>

</div>
<span class="cell serverhowmany"> Show <a href="#"

class="selected">18</a> | <a href="#" class="">9</a> |
<a href="#" class="">12</a> per page

Paginator.clientPager

www.it-ebooks.info

219


http://www.it-ebooks.info/

</span>

<span class="divider">/</span>

<span class="cell first records">
Page: <span class="label"><%= currentPage %></span> of
<span class="label"><%= totalPages %></span> shown

</span>

</script>

Plug-ins

Diacritic.js is a plug-in for Backbone.Paginator that replaces diacritic characters (°, “,
°, ~ and so on) with characters that match them most closely, as shown in
Figure 10-4. This is particularly useful for filtering.

L’“ﬂms pageisin | Finnish 3 | Would you like to translate it? | Nope | | Translate | | Options  ~

Paginator.clientPager()

Miten kirjoitetaan aksenttimerkkeja? : Brother
Aksenttimerkkejs kirjitetaan seuraavasti: Kifoita aksentin alle tuleva kirjain.
Paina aksenttinappéinté Key tkunnes naytton tulee haluttu aksenttimericd.
JulkiTerhikki - Valvira.fi

Ulkomaisissa nimissé on usein etulitteité ja erikoismerkkeja, esimerkiksi
heittomerkkea ('), tai aksenttimerkkejé (). Voit kirjoittaa nimet kokonaan
ilman riits.

Oikeudenkéyntiavustaja-luettelo - om.fi

Hakusanoissa ei voi kiiyttaa niin kutsuttuja jokerimerkkejé (esimerkiksi *). Jos
nimessa on erikoismerkkejd, esimerkiksi heittomerkkejé (), tai
aksenttimerkkeja ...

Pitkénpuoleinen johdanto LATEX2e:n kayttssn

(esim. aksenttimerkkej&), joita suomen Kielen tavutus ei tunne. Akksset
kuitenkin tavuttuvat oikein jos Kéytetién Babelin suomen kielen tukea ja. T1-
koodausta ...

Nokia 6210 Navigator -kéyttSopas

Palveluntarjoaja voi veloittaa tallaisista viesteists niiden mairén mukaan.
Merkit, joissa on aksenttimerkkei tai muita erikoismerkkejé, vievit tavalista
enemman ...

12Next Last / Show 39|12 / 1-5of 8shown / | Select a field to filter on E Fiter

Figure 10-4. The Diacritics plug-in being used to correctly render special characters
with the clientPager

To enable the plug-in, set this.useDiacriticsPluginto true, as shown in this example:

Paginator.clientPager = Backbone.Collection.extend({

// Default values used when sorting and/or filtering.
initialize: function(){

this.useDiacriticsPlugin = true; // use diacritics plug-in if available

220 | Chapter 10: Paginating Backbone.js Requests and Collections

www.it-ebooks.info


http://www.it-ebooks.info/

Bootstrapping

By default, both the clientPager and requestPager will make an initial request to the
server in order to populate their internal paging data. To avoid this additional request,
you may find it beneficial to bootstrap your Backbone.Paginator instance from data that
already exists in the DOM, as shown here in Backbone.Paginator.clientPager.

// Extend the Backbone.Paginator.clientPager with your own configuration options
var MyClientPager = Backbone.Paginator.clientPager.extend({paginator_ui: {}});
// Create an instance of your class and populate with the models of your

// entire collection

var aClientPager = new MyClientPager([{id: 1, title: 'foo'},

{id: 2, title: 'bar'}]);

// Invoke the bootstrap function

aClientPager.bootstrap();

)
S If you intend to bootstrap a clientPager, there is no need to specify a
.‘.: . Paginator_core object in your configuration (since you should have
013" already populated the clientPager with the entirety of its necessary

data), as shown here in Backbone.Paginator.requestPager.

// Extend the Backbone.Paginator.requestPager with your own configuration options
var MyRequestPager = Backbone.Paginator.requestPager.extend({paginator_ui: {}});
// Create an instance of your class with the first page of data

var aRequestPager = new MyRequestPager([{id: 1, title: 'foo'},

{id: 2, title: 'bar'}]);

// Invoke the bootstrap function and configure requestPager with 'totalRecords'
aRequestPager.bootstrap({totalRecords: 50});

A
Both the clientPager and requestPager bootstrap function will
.‘3 . accept an options parameter that will be extended by your Back-

053" bone.Paginator instance. However, the totalRecords property will be

set implicitly by the clientPager.

For more on Backbone bootstrapping, see Rico Sta Cruz’s website.

Styling

You're free, of course, to customize the overall look and feel of the paginators as much
as you wish. By default, all sample applications make use of the Twitter Bootstrap for
styling links, buttons, and drop-downs.

CSS classes are available to style record counts, filters, sorting, and more, as shown in
Figure 10-5.

Paginator.dientPager | 221

www.it-ebooks.info


http://bit.ly/ZiqY6T
http://twitter.github.com/bootstrap
http://www.it-ebooks.info/

1234567 Next Last / Show 3|9|12 / [ISIGIS0ER6WH Select a field to sort on 4  Sort(Asc) | Sort{Desc)

span.cell.first.records 1@6px x 15px
Select a field to filter on : = Pl

| Elements | Resources Network Sources Timeline  Profiles  Audits  Console
TI>NETF [IX Movies</hi>

»<ul id="content's.e/ul> » Computed Style ([ Show inherited
T<ul ig="pagination”> ¥ Styles + O A
Teasides element.style {
¥<div class="breadcrunb">
b <span class="cell lsst pages"></span> 3

<span class="divider">/</span>

b <span class="cell howmany"».</span>
<span class="divider">/</span>

> <span class="cell first records">.</span>
<span class="divider"=/</span> }

»<select id

Inherited from ul#pagination
ut { bootstrap.min.ess:B9
list-style:»disc;

tByOption">.</select> ol, ul { bootstrap.min.css:d
cell sort">.</span>

++ monet
<span class="divider"»/</span> T
b <select id="filterByOption">.</select>
b <span class="cell sort"=.</span> h1, h2, h3, h4, h5, h6, bootstrap.min.ess:?
</div> p, blockquote, pre, a, abbr, acronym,
</aside> address, cite, code, del, dfn, em, img, q,
P 5. samn. small. strike. stronn. suh. sun.

10, >= Q html  body | div.container  ulépagination | aside  div.breadcrumb [EEELESHREEEEN C

Figure 10-5. Inspecting the Paginator using the Chrome DevTool console provides in-
sights into some of the classes’ support for styling

Classes are also available for styling more granular elements like page counts within
breadcrumb > pages (for example, .page, .page selected), as shown in Figure 10-6.

1234567 NextLast / Show 3|9|12 / 1 -3 of 30 shown
span.page.selected 7px = 15px|

TETECT & erd 10 TeT OrT v

| Elements | Resources Network  Sources  Timeline Profiles  Aud
=M3=NetF [1x movies=/h3=
F<=ul id="content"=.=/ul=>
¥<=ul id="pagination"=
¥easide=
¥adiv class="breadcrumb"=
¥espan class="cell last pages"=
<a href= class="page"=2</a>
<a href="#" class="page">3</a>
<a href="#" class="page">4</a>
<a href="#" class="page">5</a>
<a href="#" class="page">6</a>
<a href="#" class="page">7</a>
=a href="#" class="next"=Next=/a=
<a href="#" class="last"=Last=/a>
=/span=>

Figure 10-6. A demonstration of how pagination can be styled using a Twitter Boot-
strap breadcrumb

There’s a tremendous amount of flexibility available for styling, and as you're in control
of templating too, your paginators can be made to look as visually simple or complex
as needed.

222 | Chapter 10: Paginating Backbone.js Requests and Collections

www.it-ebooks.info


http://www.it-ebooks.info/

Summary

Although it’s certainly possible to write your own custom pagination classes to work
with Backbone collections, Backbone.Paginator tries to take care of much of this for
you.

It’s highly configurable, preventing you from having to write your own paging when
working with collections of data sourced from your database or API. Use the plug-in to
help tame large lists of data into more manageable, easily navigatable, paginated lists.

Additionally, if you have any questions about Backbone.Paginator (or would like to help
improve it), feel free to post to the project issues list.

Paginator.dientPager | 223

www.it-ebooks.info


https://github.com/addyosmani/backbone.paginator
http://www.it-ebooks.info/

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 11
Backbone Boilerplate and Grunt-BBB

Boilerplates provide us a starting point for working on projects. Theyre a base for
building upon using the minimum required code to get something functional put to-
gether. When youre working on a new Backbone application, a new model typically
takes only a few lines of code to get working.

That alone probably isn’t enough, however, as you’ll need a collection to group those
models, a view to render them, and perhaps a router if you're looking to make specific
views of your collection data bookmarkable. If you're starting on a completely fresh
project, you may also need a build process in place to produce an optimized version of
your app that can be pushed to production.

This is where boilerplate solutions are useful. Rather than having to manually write out
the initial code for each piece of your Backbone app, a boilerplate could do this for you,
also ideally taking care of the build process.

Backbone Boilerplate—or just BB—does exactly this. It is an excellent set of best prac-
tices and utilities for building Backbone.js applications, created by Backbone contrib-
utor Tim Branyen. He took the gotchas, pitfalls, and common tasks he ran into while
heavily using Backbone to build apps and crafted BB as a result of his experience.

Grunt-BBB or Boilerplate Build Buddy is the companion tool to BB, which offers scaf-
folding, file watcher, and build capabilities. Used together with BB, it provides an ex-
cellent base for quickly starting new Backbone applications. See Figure 11-1.

225

www.it-ebooks.info


http://bit.ly/11EOXeu
https://github.com/tbranyen
http://bit.ly/106aStC
http://www.it-ebooks.info/

enon 2. /Users/addyo (bash)
addyo addyo-macbookair3 ~/projects

Boilerplate Build Buddy
Version - @.2.0-alpha-5

Usage: bbb <task_name>

clean
concat
copy

debug
handlebars

requirejs
server
styles
stylus
‘targethtml
test
watch

Figure 11-1. The Grunt-BBB authoring tool running at the command line

Out of the box, BB and Grunt-BBB provide us with:

Backbone; Lo-Dash, an Underscore.js alternative; and jQuery with an HTML5
Boilerplate foundation.

Boilerplate and scaffolding support, allowing us to spend minimal time writing
boilerplate for modules, collections, and so on.

A build tool for template precompilation, concatenation and minification of all our
libraries, application code, and stylesheets.

A lightweight Node.js web server.

Notes on build tool steps:

o Template precompilation: using a template library such as Underscore microtem-

plating or Handlebars.js generally involves three steps: (1) reading a raw template,
(2) compiling it into a JavaScript function, and (3) running the compiled template
with your desired data. Precompiling eliminates the second step from runtime by
moving this process into a build step.

Concatenation is the process of combining multiple assets (in our case, script files)
into a fewer number of files (or a single file) to reduce the number of HT TP requests
required to obtain them.

226

| Chapter 11: Backbone Boilerplate and Grunt-BBB

www.it-ebooks.info


https://github.com/bestiejs/lodash
http://underscorejs.org/
http://jquery.com
http://html5boilerplate.com
http://html5boilerplate.com
http://www.it-ebooks.info/

 Minification is the process of removing unnecessary characters (such as whitespace,
new lines, comments) from code and compressing it to reduce the overall size of
the scripts being served.

Getting Started

To get started we're going to install Grunt-BBB, which will include Backbone Boilerplate
and any third-party dependencies it might need such as the Grunt build tool.

We can install Grunt-BBB via npm by running:
npm install -g bbb
That’s it. We should now be good to go.

Here’s a typical workflow for using Grunt-BBB, which we will use later:

Initialize a new project (bbb init).

Add new modules and templates (bbb init:module).
Preview changes using the built-in server (bbb server.)
Run the build tool (bbb build).

Link JavaScript, compile templates, build your application using r.js, and minify
CSS and JavaScript (using bbb release).

M O

Creating a New Project

Let’s create a new directory for our projectand run bbb inittokick things off. A number
of project subdirectories and files will be stubbed out for us, as shown here:

$ bbb init

Running "init" task

This task will create one or more files in the current directory, based on the
environment and the answers to a few questions. Note that answering "?" to any
question will show question-specific help and answering "none" to most questions
will leave its value blank.

"bbb" template notes:

This tool will help you install, configure, build, and maintain your Backbone
Boilerplate project.

Writing app/app.js...0K

Writing app/config.js...0K

Writing app/main.js...0K

Writing app/router.js...0K

Writing app/styles/index.css...0K

Writing favicon.ico...OK

Writing grunt.js...OK

Getting Started | 227

www.it-ebooks.info


http://www.it-ebooks.info/

Writing index.html...OK

Writing package.json...0K

Writing readme.md...OK

Writing test/jasmine/index.html...0K

Writing test/jasmine/spec/example.js...0K

Writing test/jasmine/vendor/jasmine-html.js...0K
Writing test/jasmine/vendor/jasmine.css...OK

Writing test/jasmine/vendor/jasmine.js...0K

Writing test/jasmine/vendor/jasmine_favicon.png...0K
Writing test/jasmine/vendor/MIT.LICENSE...OK

Writing test/qunit/index.html...OK

Writing test/qunit/tests/example.js...0K

Writing test/qunit/vendor/qunit.css...0K

Writing test/qunit/vendor/qunit.js...0K

Writing vendor/h5bp/css/main.css...0K

Writing vendor/h5bp/css/normalize.css...0K

Writing vendor/jam/backbone/backbone.js...0K

Writing vendor/jam/backbone/package. json...0K

Writing vendor/jam/backbone.layoutmanager/backbone.layoutmanager.js...0K
Writing vendor/jam/backbone.layoutmanager/package.json...0K
Writing vendor/jam/jquery/jquery.js...0K

Writing vendor/jam/jquery/package.json...0K

Writing vendor/jam/lodash/lodash.js...0K

Writing vendor/jam/lodash/lodash.min.js...0K

Writing vendor/jam/lodash/lodash.underscore.min.js...0K
Writing vendor/jam/lodash/package.json...0K

Writing vendor/jam/require.config.js...0K

Writing vendor/jam/require.js...0K

Writing vendor/js/libs/almond.js...0K

Writing vendor/js/libs/require.js...0K

Initialized from template "bbb".

Done, without errors.

Let’s review what has been generated.

index.html

This is a fairly standard stripped-down HTMLS5 boilerplate foundation with the notable
exception of including Require]S at the bottom of the page.

<!doctype html>

<html lang="en">

<head>
<meta charset="utf-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge,chrome=1">
<meta name="viewport" content="width=device-width,initial-scale=1">

<title>Backbone Boilerplate</title>

<!-- Application styles. -->

228 | Chapter 11: Backbone Boilerplate and Grunt-BBB

www.it-ebooks.info


http://requirejs.org
http://www.it-ebooks.info/

<!--(if target dummy)><!-->
<link rel="stylesheet" href="/app/styles/index.css">
<!--<Il(endif)-->
</head>
<body>
<!-- Application container. -->
<main role="main" id="main"s></main>

<!-- Application source. -->

<!--(if target dummy)><!-->

<script data-main="/app/config" src="/vendor/js/libs/require.js"></script>
<!--<!(endif)-->

</body>
</html>

Require]S—the AMD module and script loader—will assist us with managing the mod-
ules in our application. We've already covered it in Chapter 10, but let’s recap what this
particular block does in terms of the boilerplate:

<script data-main="/app/config" src="/vendor/js/libs/require.js"></script>

The data-matin attribute is used to inform Require]S to load app/config.js (a configu-
ration object) after it has finished loading itself. You'll notice that we’ve omitted the .js
extension here because Require]JS can automatically add it for us; however, it will respect
your paths if we do choose to include it regardless. Let’s now look at the config file being
referenced.

config.js

A Require]S configuration object allows us to specify aliases and paths for dependencies
we're likely to reference often (e.g., jQuery), bootstrap properties like our base appli-
cation URL, and shim libraries that don’t support AMD natively. This is what the config
file in Backbone Boilerplate looks like:

// Set the require.js configuration for your application.
require.config({

// Initialize the application with the main application file and the JamJjS
// generated configuration file.
deps: ["../vendor/jam/require.config", "main"],

paths: {
// Put paths here.
}s

shim: {
// Put shims here.
}

s

Creating a New Project | 229

www.it-ebooks.info


http://bit.ly/Yp9ozD
http://www.it-ebooks.info/

The first option defined in the preceding config is deps: ["../vendor/jam/
require.config", "mailn"]. This informs Require]JS to load up additional Require]S
configuration as well as a main.js file, which is considered the entry point for our
application.

You may notice that we haven’t specified any other path information for main. Require
will infer the default baseUrl using the path from our data-main attribute in in-
dex.html. In other words, our baseUr1 is app/, and any scripts we require will be loaded
relative to this location. We could use the baseUr1 option to override this default if we
wanted to use a different location.

The next block is paths, which we can use to specify paths relative to the baseUr1 as
well as the paths/aliases to dependencies we’re likely to regularly reference.

After this comes shim, an important part of our Require]S configuration that allows us
to load libraries that are not AMD-compliant. The basic idea here is that rather than
requiring all libraries to implement support for AMD, the shim takes care of the hard
work for us.

Going back to deps, the contents of our require.config file are as follows:

var jam = {

"packages": [
{
"name": "backbone",
"location": "../vendor/jam/backbone",
"main": "backbone.js"
1,
{
"name": "backbone.layoutmanager",
"location": "../vendor/jam/backbone.layoutmanager",
"main": "backbone.layoutmanager.js"
}’
{
"name": "jquery",
"location": "../vendor/jam/jquery",
"main": "jquery.js"
1,
{
"name": "lodash",
"location": "../vendor/jam/lodash",
"main": "./lodash.js"
}
1,
"version": "0.2.11",
"shim": {
"backbone": {
"deps": [
"jquery",
"lodash"
])

230 | Chapter 11: Backbone Boilerplate and Grunt-BBB

www.it-ebooks.info


http://www.it-ebooks.info/

"exports": "Backbone"

}’
"backbone.layoutmanager": {
"deps": [
"jquery",
"backbone",
"lodash"
]J
"exports": "Backbone.lLayoutManager"
}

};

The jam object is to support configuration of Jam, a package manager for the frontend
that helps install, upgrade, and configure the dependencies used by your project. It is
currently the package manager of choice for Backbone Boilerplate.

Under the packages array, a number of dependencies are specified for inclusion, such
as Backbone, the Backbone. LayoutManager plug-in, jQuery, and Lo-Dash.

For those curious about Backbone.LayoutManager, it's a Backbone plug-in that provides
a foundation for assembling layouts and views within Backbone.

Additional packages you install using Jam will have a corresponding entry added to
packages.

main.js

Next, we have main.js, which defines the entry point for our application. We use a global
require() method to load an array containing any other scripts needed, such as our
application app.js and our main router router.js. Note that most of the time, we will use
require() only for bootstrapping an application and a similar method called de
fine() for all other purposes.

The function defined after our array of dependencies is a callback that doesn’t fire until
these scripts have loaded. Notice how were able to locally alias references to app and
router as app and Router for convenience.

require([
// Application.

// Main Router.
"router"

1,
function(app, Router) {

// Define your master router on the application namespace and trigger all
// navigation from this instance.

Creating a New Project | 231

www.it-ebooks.info


http://jamjs.org/
http://bit.ly/14MJw3n
http://www.it-ebooks.info/

app.router = new Router();

// Trigger the initial route and enable HTML5 History API support, set the
// root folder to '/' by default. Change in app.js.
Backbone.history.start({ pushState: true, root: app.root });

// All navigation that is relative should be passed through the navigate
// method, to be processed by the router. If the link has a ‘data-bypass’
// attribute, bypass the delegation completely.
$(document).on("click", "a[href]:not([data-bypass])", function(evt) {
// Get the absolute anchor href.
var href = { prop: $(this).prop("href"), attr: $(this).attr("href") };
// Get the absolute root.
var root = location.protocol + "//" + location.host + app.root;

// Ensure the root is part of the anchor href, meaning it's relative.

if (href.prop.slice(0, root.length) === root) {
// Stop the default event to ensure the link will not cause a page
// refresh.

evt.preventDefault();

// ‘Backbone.history.navigate' is sufficient for all Routers and will
// trigger the correct events. The Router's internal ‘navigate' method
// calls this anyways. The fragment is sliced from the root.
Backbone.history.navigate(href.attr, true);

}
s

s

Inline, Backbone Boilerplate includes boilerplate code for initializing our router with
HTML5 History API support and handling other navigation scenarios, so we don’t
have to.

app.Js
Let us now look at our app.js module. Typically, in non-Backbone Boilerplate applica-
tions, an app.js file may contain the core logic or module references needed to kick start

an app.

In this case, however, this file is used to define templating and layout configuration
options as well as utilities for consuming layouts. To a beginner, this might look like a
lot of code to comprehend, but the good news is that for basic apps, you're unlikely to
need to heavily modify this. Instead, you’ll be more concerned with modules for your
app, which we’ll look at next.

define([
"backbone.layoutmanager"
1, function() {

// Provide a global location to place configuration settings and module

232 | Chapter 11: Backbone Boilerplate and Grunt-BBB

www.it-ebooks.info


http://www.it-ebooks.info/

// creation.

var app = {
// The root path to run the application.
root: "/"

1

// Localize or create a new JavaScript Template object.
var JST = window.JST = window.JST || {};

// Configure LayoutManager with Backbone Boilerplate defaults.
Backbone.LayoutManager.configure({
// Allow LayoutManager to augment Backbone.View.prototype.
manage: true,

prefix: "app/templates/",

fetch: function(path) {
// Concatenate the file extension.
path = path + ".html";

// If cached, use the compiled template.
if (3ST[path]) {

return JST[path];
}

// Put fetch into ‘async-mode’.
var done = this.async();

// Seek out the template asynchronously.
$.get(app.root + path, function(contents) {
done(JST[path] = _.template(contents));
s
}
s

// Mix Backbone.Events, modules, and layout management into the app object.
return _.extend(app, {
// Create a custom object with a nested Views object.
module: function(additionalProps) {
return _.extend({ Views: {} }, additionalProps);

1

// Helper for using layouts.
useLayout: function(name, options) {
// Enable variable arity by allowing the first argument to be the options
// object and omitting the name argument.
if (_.isObject(name)) {
options = name;

}

// Ensure options is an object.
options = options || {};

Creating a New Project | 233

www.it-ebooks.info


http://www.it-ebooks.info/

// If a name property was specified use that as the template.
if (_.isString(name)) {
options.template = name;

}

// Create a new Layout with options.

var layout = new Backbone.Layout(_.extend({
el: "#main"

}, options));

// Cache the refererence.
return this.layout = layout;

}

}, Backbone.Events);

s

N
& JST stands for JavaScript templates and generally refers to templates
t‘;‘.‘ . that have been (or will be) precompiled as part of a build step. When
"4k you're running bbb release or bbb debug, Underscore/Lo-dash tem-

plates will be precompiled to avoid the need to compile them at runtime
within the browser.

Creating Backbone Boilerplate Modules

Not to be confused with simply being an AMD module, a Backbone Boilerplate module
is a script composed of a:

o Model

o Collection

o Views (optional)

We can easily create a new Boilerplate module with grunt-bbb, once again using init:

# Create a new module
$ bbb init:module

# Grunt prompt

Please answer the following:

[?] Module Name foo

[?] Do you need to make any changes to the above before continuing? (y/N)

Writing app/modules/foo.js...0K
Writing app/styles/foo.styl...0K
Writing app/templates/foo.html...0K

Initialized from template "module".

234 | Chapter 11: Backbone Boilerplate and Grunt-BBB

www.it-ebooks.info


http://www.it-ebooks.info/

Done, without errors.
This will generate a module foo.js as follows:

// Foo module
define([
// Application.
"app"
1,

// Map dependencies from above array.
function(app) {

// Create a new module.
var Foo = app.module();

// Default Model.
Foo.Model = Backbone.Model.extend({

s

// Default Collection.

Foo.Collection = Backbone.Collection.extend({
model: Foo.Model

b

// Default View.
Foo.Views.Layout = Backbone.Layout.extend({
template: "foo"

s

// Return the module for AMD compliance.
return Foo;

19K

Notice how boilerplate code for a model, collection, and view have been scaffolded out
for us.

Optionally, we may also wish to include references to plug-ins such as the Backbone
localStorage or Offline adapters. One clean way of including a plug-in in the preceding
boilerplate could be:

// Foo module
define([
// Application.

// Plug-ins
'plugins/backbone-localstorage’

1

// Map dependencies from above array.

Creating a New Project | 235

www.it-ebooks.info


http://www.it-ebooks.info/

function(app) {

// Create a new module.
var Foo = app.module();

// Default Model.
Foo.Model = Backbone.Model.extend({

// Save all of the items under the ‘"foo"' namespace.
localStorage: new Store('foo-backbone'),
s

// Default Collection.
Foo.Collection = Backbone.Collection.extend({
model: Foo.Model

s

// Default View.
Foo.Views.Layout = Backbone.Layout.extend({
template: "foo"

s

// Return the module for AMD compliance.
return Foo;

s

router.js

Finally, let’s look at our application router, which is used for handling navigation. The
default router Backbone Boilerplate generates for us includes sane defaults out of the
box and can be easily extended.

define([
// Application.
"app"

1,

function(app) {

// Defining the application router, you can attach subrouters here.
var Router = Backbone.Router.extend({
routes: {
"": "{ndex"

}’

index: function() {

}
s

return Router;

236 | Chapter 11: Backbone Boilerplate and Grunt-BBB

www.it-ebooks.info


http://www.it-ebooks.info/

19K

If, however, we would like to execute some module-specific logic, when the page loads
(such as when a user hits the default route), we can pull in a module as a dependency
and optionally use the Backbone LayoutManager to attach views to our layout as follows:

define([
// Application.
‘app',

// Modules
'modules/foo’

1,
function(app, Foo) {

// Defining the application router, you can attach subrouters here.
var Router = Backbone.Router.extend({
routes: {
"' 'index'

}’

index: function() {
// Create a new Collection
var collection = new Foo.Collection();

// Use and configure a 'main' layout
app.uselayout('main').setViews({
// Attach the bar View into the content View
'.bar': new Foo.Views.Bar({
collection: collection

H
}).render();

}
I9H

// Fetch data (e.g., from localStorage)
collection.fetch();

return Router;

s

Other Useful Tools and Projects

When working with Backbone, you usually need to write a number of different classes
and files for your application. Scaffolding tools such as Grunt-BBB can help automate
this process by generating basic boilerplates for the files you need.

Other Useful Tools and Projects | 237

www.it-ebooks.info


http://www.it-ebooks.info/

Yeoman

If you appreciated Grunt-BBB but would like to explore a tool for assisting with your
broader development workflow, 'm happy to recommend a tool I helped create called
Yeoman. See Figure 11-2.

enon 2. [Users/addyo (bash) "
app/scripts/vendor/jquery.min. js
app/scripts/vendor/lodash.min. js
app/styles/main.css
Gruntfile.js
package.json
test/index. html
test/1lib/chai.js
test/lib/expect.js
test/1ib/mocha-1.2.2/mocha.css
test/lib/mocha-1.2.2/mocha. js
test/runner/mocha. js
invoke backbone: router: backbone
app/scripts/routes/application-router.js
invoke backbone : view:backbone
app/scripts/views/application-view. js
app/scripts/templates/application.ejs
invoke backbone :model : backbone
app/scripts/models/application-model.js
invoke backbone: collection:backbone
app/scripts/collections/application-collection.js
addyo addyo-macbookair3 ~/projects/backbone-app

Figure 11-2. The Yeoman ‘yo’ scaffolding tool being used to scaffold a new Backbone
application

Yeoman is a workflow comprising a collection of tools and best practices for helping
you develop more efficiently. It's composed of yo, a scaffolding tool shown in Figure 11-2;
Grunt, a build tool; and Bower, a client-side package manager shown in Figure 11-3.

Where Grunt-BBB focuses on offering an opinionated start for Backbone projects, Yeo-
man allows you to scaffold apps using Backbone (or other frameworks); get Backbone
plug-ins directly from the command line; and compile your CoffeeScript, Sass, or other
abstractions without additional effort.

238 | Chapter 11: Backbone Boilerplate and Grunt-BBB

www.it-ebooks.info


http://yeoman.io
http://gruntjs.com
http://bower.io
http://www.it-ebooks.info/

enon 2. {Users/addyo (bash) "y
addyo-macbookair3 ~/prajects/backbone-app
bower search backbone
Search results:

backbone

lidation
1Storage

tor
kbone
odel

Figure 11-3. A list of Backbone plug-ins and extensions available via the Bower package
manager

You may also be interested in Brunch, a similar project that uses skeleton boilerplates
to generate new applications.

Backbone DevTools

When you’re building an application with Backbone, there’s some additional tooling
available for your day-to-day debugging workflow.

For example, Backbone DevTools is a Chrome DevTools extension that allows you to
inspect events, syncs, View-DOM bindings, and what objects have been instantiated
(see Figure 11-4).

A useful view hierarchy is displayed in the Elements panel. Also, when you inspect a
DOM element, the closest view will be exposed via $view in the console.

Other Useful Tools and Projects | 239

www.it-ebooks.info


http://brunch.io/
http://www.it-ebooks.info/

Get some milk

1item left All Active Completed

58 mements (| Resources (@) Newwork Vg Sources (R mimelne {7 profies (O Audits 7] Console ¢ Coffeconsole %5 ember | B Backvone | (Y Anguians § Grune
General Timestamp  Object Event I
_ 1364207544176  Model.c3 sync
Syncs 1364208271033 Collection visible
View-DOM Binding 1364208271034  Model.c3 visible
Instantiated Objects 1364208271036  Collection filter
1364208271036  Router route:setfilter
1364208271037 Router route
1364208271535 Collection visible
1364208271535 odel:c3 visicle

1364208271536 Collection filter

o= a #

Figure 11-4. The Backbone DevTools extension being used to debug the Todo applica-
tion we created earlier in the book

At the time of writing, the project is available on GitHub.

Summary

In this section we reviewed Backbone Boilerplate and learned how to use the bbb tool
to help us scaffold out our application.

If you would like to learn more about how this project helps structure your app, BBB
includes some built-in boilerplate sample apps that you can easily generate for review.

These include a boilerplate tutorial project (bbb init:tutorial) and an implementa-
tion of my TodoMVC project (bbb init:todomvc). I recommend checking these out,
as they’ll provide you with a more complete picture of how Backbone Boilerplate and
its templates fit into the overall setup for a web app.

For more about Grunt-BBB, remember to take a look at the official project repository.
There is also a related slidedeck available for those interested in reading more.

240 | Chapter 11: Backbone Boilerplate and Grunt-BBB

www.it-ebooks.info


http://bit.ly/18ffNPA
http://todomvc.com
http://bit.ly/106aStC
http://bit.ly/10b73lU
http://www.it-ebooks.info/

CHAPTER 12
Backbone and jQuery Mobile

Mobile App Development with jQuery Mobile

The mobile web is huge and it is continuing to grow at an impressive rate. Along with
its massive growth comes a striking diversity of devices and browsers. As a result, mak-
ing your applications cross-platform and mobile-ready is both important and chal-
lenging. Creating native apps is expensive. Itis very costly in terms of time, and it usually
requires varied experiences in programming languages like Objective C, C#, Java, and
JavaScript to support multiple runtime environments.

HTML, CSS, and JavaScript enable you to build a single application targetinga common
runtime environment: the browser. This approach supports a broad range of mobile
devices such as tablets, smartphones, and notebooks along with traditional PCs.

The challenging task is not only to adapt contents like text and pictures properly to
various screen resolutions, but also to offer the same user experience across native apps
under different operating systems. Like jQueryUI, jQuery Mobile (or jQMobile) is a
user interface framework based on jQuery that works across all popular phone, tablet,
eReader, and desktop platforms. It is built with accessibility and universal access in
mind.

The main idea of the framework is to enable anyone to create a mobile app using only
HTML. Knowledge of a programming language is not required and there is no need to
write complex, device-specific CSS. For this reason, jQMobile follows two main prin-
ciples we first need to understand in order to integrate the framework to Backbone:
progressive enhancement and responsive web design.

241

www.it-ebooks.info


http://www.it-ebooks.info/

The Principle of Progressive Widget Enhancement by jQMobile

jQuery Mobile follows progressive enhancement' and responsive web design princi-
ples? using HTML5 markup-driven definitions and configurations.

A page in jQuery Mobile consists of an element with a data-role="page" attribute.
Within the page container, any valid HTML markup can be used, but for typical pages
in jQM, the immediate children are divs with data-role="header", data-
role="content",and data-role="footer". The baseline requirement for a page is only
a page wrapper to support the navigation system; the rest is optional.

An initial HTML page looks like this:

<!DOCTYPE html>
<html>
<head>
<title>Page Title</title>

<meta name="viewport" content="width=device-width, initial-scale=1">

<link rel="stylesheet"
href="http://code.jquery.com/mobile/1.3.0/jquery.mobile-1.3.0.min.css" [>
<script src="http://code.jquery.com/jquery-1.9.1.min.js"></script>
<script src="http://code.jquery.com/mobile/1.3.0/jquery.mobile-1.3.0.min.js">
</script>
</head>
<body>

<div data-role="page">
<div data-role="header"s>
<h1>Page Title</h1>
</div>
<div data-role="content">
<p>Page content goes here.</p>
<form>
<label for="slider-1">Slider with tooltip:</label>
<input type="range" name="slider-1" id="slider-1" min="0"
max="100" value="50"
data-popup-enabled="true">
</form>
</div>
<div data-role="footer">
<h4>Page Footer</h4>

1. Progressive enhancement uses web platform features in a layered manner, allowing access to the basic content
and functionality of a page, even if JavaScript is turned off or a user is not on a modern browser. An enhanced
experience is offered to those with JavaScript turned on or who have a more capable recent browser.

2. Responsive web design (RWD) is an approach to designing pages that adapt the layout of the page to the
viewing environment in order to offer a more optimal viewing experience. CSS media queries are often
employed to achieve this goal.

242 | Chapter 12: Backbone and jQuery Mobile

www.it-ebooks.info


http://www.it-ebooks.info/

</div>

</div>

</body>

</html>
jQuery Mobile will transform the written HTML definition to the rendered HTML and
CSS using its Progressive Widget Enhancement API. It also executes JavaScript that is
conditioned by configurations, attribute properties, and runtime-specific settings. You
can see the result in Figure 12-1.

This implies that whenever HTML content is added or changed, it needs to be handled
by the progressive widget enhancement of jQuery Mobile.

R Page Title
Page Title

Page content goes here.
Page content goes here.

Slider with tooltip:

Slider with tooltip: U Y
Page Footer Page Footer
Default HTML rendering Enhanced HTML definition

Figure 12-1. Comparison of the user interface of the default HTML to the jQuery
Mobile—enhanced version

Understanding jQuery Mobile Navigation

The jQuery Mobile navigation system controls its application’s lifecycle by automatically
hijacking standard links and form submissions and turning them into AJAX requests.
Whenever alink is clicked or a form is submitted, that event is automatically intercepted
and used to issue an AJAX request based on the href or form action instead of reloading
the page.

When the page document is requested, jQuery Mobile searches the document for all
elements with the data-role="page" attribute, parses its contents, and inserts that code
into the DOM of the original page. Once the new page is prepared, jQuery Mobile’s
JavaScript triggers a transition that shows the new page and hides the HTML of the
previous page in the DOM.

Next, any widgets in the incoming page are enhanced to apply all the styles and behavior.
The rest of the incoming page is discarded so any scripts, stylesheets, or other infor-
mation will not be included.

Mobile App Development with jQuery Mobile | 243

www.it-ebooks.info


http://www.it-ebooks.info/

Via the multipage templating feature, you can add as many pages as you want to the
same HTML file within the <body> tag by defining divs with data-role="page" or
data-role="dilalog" attributes along with an id that can be used in links (preceded by
a hashbang):

<html>
<heads. ..</head>
<body>

<div data-role="page" id="firstpage">

<div data-role="content">
<a href="#secondpage">go to secondpage</a>
</div>
</div>
<div data-role="page" id="secondpage">

<div data-role="content" >
<a href="#firstdialog" data-rel="dialog" >open a page as a dialog</a>
</div>
</div>
<div data-role="dialog" id="firstdialog">

<div data-role="content">
<a href="#firstpage">leave dialog and go to first page</a>
</div>
</div>
</body>
</html>
To, for example, navigate to secondpage and have it appear in a modal dialog using a
fade-transition, you would just add the data-rel="dialog", data-
transition="fade", and href="1index.html#secondpage" attributes to an anchor tag.

Roughly speaking, having its own event cycle, jQuery Mobile is a tiny MVC framework
that includes features like progressive widget enhancement, prefetching, caching, and
multipage templating by HTML configurations innately. In general, a Backbone.js de-
veloper does not need to know about its internal event workflow, but will need to know
how to apply HTML-based configurations that will take action within the event phase.
The Intercepting jQuery Mobile Events section goes into detail regarding how to handle
special scenarios when fine-grained JavaScript adaptions need to be applied.

For further introduction and explanations about jQuery Mobile, visit:
o http://view.jquerymobile.com/1.3.0/docs/intro/

o http://view.jquerymobile.com/1.3.0/docs/widgets/pages/
o http://view.jquerymobile.com/1.3.0/docs/intro/rwd.php

244 | Chapter 12: Backbone and jQuery Mobile

www.it-ebooks.info


http://view.jquerymobile.com/1.3.0/docs/intro/
http://view.jquerymobile.com/1.3.0/docs/widgets/pages/
http://view.jquerymobile.com/1.3.0/docs/intro/rwd.php
http://www.it-ebooks.info/

Basic Backbone App Setup for jQuery Mobile

The first major hurdle developers typically run into when building applications with
jQuery Mobile and an MV* framework is that both frameworks want to handle appli-
cation navigation.

To combine Backbone and jQuery Mobile, we first need to disable jQuery Mobile’s
navigation system and progressive enhancement. The second step will then be to make
use of jQM’s custom API to apply configurations and enhance components during
Backbone’s application lifecycle instead.

The mobile app in Figure 12-2 is based on the existing codebase of the TodoMVC
Backbone-Require.js example, which was discussed in Chapter 8, and is enhanced to
support jQuery Mobile.

-

All
Todo household
) cookin
1item All Active Completed €3 Clear completed (1)

Figure 12-2. The TodoMVC app with jQuery Mobile

This implementation makes use of Grunt-BBB as well as Handlebars.js. Additional util-
ities useful for mobile applications will be provided, which can be easily combined and
extended, as shown in Figure 12-3. (See Chapters 6 and 11.)

Basic Backbone App Setup for jQuery Mobile | 245

www.it-ebooks.info


http://www.it-ebooks.info/

E- B todoMVC_backbone_jqm-app

& = [

H—]— = modules

& B view
= abstract
L [&] BasicView.js
[& EditTodoPagejs
[& SingleTodoView.js
[& TodosView.js

— [& TodoModeljs

— [& TodosCollection,js

- 7 templates

H—]— = abstract

— @I:lasic_page_simple.template

— basic_pupup.template

- = todos

— @ editTodoView.template_partial

— @singleTudo.template

— tu:udosPage.tempIate_partial

— @tu:ndDsStatistic;AndEuIkFDDter.tempIate_partial
— welcame.template_partial

— [& common,js

— [ config.js

— [& handlebars_helpers.js
— [& initialize.config.js

— [& jquerymebile.config.js
L [& main.s

E- £ assets
- 3 dist
E
E

+ [ node_modules
+ [ test

— B .gitignore

— B .project

— B compile

— favicon.ico

— [& gruntjs

— [ index.html

— B npm-debug.log

Figure 12-3. Workspace of the TodoMVC app with jQueryMobile and Backbone

246 | Chapter 12: Backbone and jQuery Mobile

www.it-ebooks.info


http://www.it-ebooks.info/

The order of the files loaded by Require.js is as follows:

. jQuery

. Underscore/Lo-Dash

. handlebars.compiled

. TodoRouter (instantiates specific views)
. jQueryMobile

. jQueryMobileCustomInitConfig

NN Gk W

. Instantiation of the Backbone router

When you open the console in the project directory and then run the Grunt-Backbone
command grunt handlebars or grunt watch, all template files will be combined and
compiled to dist/debug/handlebars_packaged. To start the application, run grunt
server.

The files instantiated, when redirected from the Backbone router, are:

BasicView.js and basic_page_simple.template
The BasicView is responsible for the Handlebars multipage-template processing.
Its implementation of render calls the jQuery Mobile API $.mobile.changePage
to handle page navigation and progressive widget enhancement.

Concrete view with its template partial—for example, EditTodoPage. js and editTodo
View.template_partial
The head section of index.html needs to load the jquerymobile.css as well as the
base.css, which is used by all Todo-MVC apps, and the index.css for some project-
specific custom CSS.

<html>

<head>
<meta charset="utf-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge,chrome=1">
<meta name="viewport" content="width=device-width,initial-scale=1">

<title>TodoMVC Jquery Mobile</title>

<!-- widget and responsive design styles -->

<link rel="stylesheet" href="/assets/css/jquerymobile.css">
<!-- used by all TodoMVC apps -->

<link rel="stylesheet" href="/assets/css/base.css">

<!-- custom css -->

<link rel="stylesheet" href="/assets/css/index.css">
</head>
<body>

<script data-main="/app/config" src="/assets/js/libs/require.js"></script>

Basic Backbone App Setup for jQuery Mobile | 247

www.it-ebooks.info


http://www.it-ebooks.info/

</body>
</html>

Workflow with Backbone and jQueryMobile

By delegating the routing and navigation functions of the jQuery Mobile Framework
to Backbone, we can profit from its clear separation of application structure to later
easily share application logic between a desktop web page, tablets, and mobile apps.

We now need to contend with the different ways in which Backbone and jQuery Mobile
handle requests. Backbone.Router offers an explicit way to define custom navigation
routes, while jQuery Mobile uses URL hash fragments to reference separate pages or
views in the same document.

Some of the ideas that have been previously proposed to work around this problem
include manually patching Backbone and jQuery Mobile. The solution demonstrated
next will not only simplify the handling of the jQuery Mobile component initialization
event cycle, but also enable use of existing Backbone Router handlers.

To adapt the navigation control from jQuery Mobile to Backbone, we first need to apply
some specific settings to the mobileinit event, which occurs after the framework has
loaded in order to let the Backbone Router decide which page to load.

This configuration, jquerymobile.config.js, will get QM to delegate navigation to Back-
bone and will also enable manual widget creation triggering:

$(document).bind("mobileinit", function(){

// Disable jQM routing and component creation events
// disable hash-routing
$.mobile.hashListeningEnabled = false;
// disable anchor-control
$.mobile.linkBindingEnabled = false;
// can cause calling object creation twice and back button issues are solved
$.mobile.ajaxEnabled = false;
// Otherwise after mobileinit, it tries to load a landing page
$.mobile.autoInitializePage = false;
// we want to handle caching and cleaning the DOM ourselves
$.mobile.page.prototype.options.domCache = false;

// consider due to compatibility issues
// not supported by all browsers
$.mobile.pushStateEnabled = false;
// Solves phonegap issues with the back-button
$.mobile.phonegapNavigationEnabled = true;
//no native datepicker will conflict with the jQM component
$.mobile.page.prototype.options.degradelnputs.date = true;

s

248 | Chapter 12: Backbone and jQuery Mobile

www.it-ebooks.info


http://www.it-ebooks.info/

The behavior and usage of the new workflow is explained next, grouped by its
functionalities:

1. Routing to a concrete view page

2. Management of mobile page templates
3. DOM management

4. $.mobile.changePage

In the following discussion, steps 1-11 in the text refer to the new workflow diagram
of the mobile application in Figure 12-4.

Specific to routed view code | | BasicView located logic |

Hash has changed

Router )
?ro utes to

(ender
init TodoView triggered Remove previous
extends BasicView page from DOM
| ‘!read template values o—
Generate HTML h

|l load template and insert {10ad basic_page_simple.template
concrete_view_id.temptlate_partial in DOM —Page_simple.temp
.

A
|
Later DOM changes ]

rcﬂeT

@

$.mobile.changePage(“pagelD”);

\

1
1
)
1
E v 0 v v

~

. 1
AU T IO Ee! i Enhance JOM components } View new page

1

e 5 | S

Figure 12-4. Workflow of TodoMVC, with Backbone and jQueryMobile

Routing to a Concrete View Page, Inheriting from BasicView

When the hash URL changes (for example, a link is clicked), the configuration just
shown prevents jQM from triggering its events. Instead, the Backbone router listens to
the hash changes and decides which view to request.

Experience has shown that, for mobile pages, it is a good practice to create basic pro-
totypes for jQM components such as basic pages, pop ups, and dialogs, as well as for

Workflow with Backbone and jQueryMobile | 249

www.it-ebooks.info


http://www.it-ebooks.info/

using the jQuery validation plug-in. This makes it much easier to exchange device-
specific view logic at runtime and adopt general strategies. This will also help to add
syntax and to support multichaining of prototype inheritance with JavaScript and
Backbone.

By creating a BasicView superclass, we enable all inheriting view pages to share a com-
mon way of handling jQM along with common usage of a template engine and specific
view handling.

When building with Grunt/Yeoman, the semantic templates are compiled by Handle-
bar.js and the AMDs template files are combined into a single file. By merging all page
definitions into a single-file app, we make it offline capable, which is important for
mobile app.

Management of Mobile Page Templates

Within a concrete view page, you can override properties for static values and functions
to return dynamic values of the superclass BasicView. These values will be processed
later by the BasicView to construct the HTML of a jQuery Mobile page with the help
of Handlebars.

Additional dynamic template parameters (such as Backbone model information) will
be taken from the specific view and merged with the ones from the BasicView.

A concrete view might look like this (EditTodoPage.js):

define([
"backbone", "modules/view/abstract/BasicView"],
function (Backbone, BasicView) {
return BasicView.extend({

id : "editTodoview",

getHeaderTitle : function () {
return "Edit Todo";

}I

getSpecificTemplateValues : function () {
return this.model.toJSON();

})

events : function () {
// merged events of BasicView, to add an older fix for
// back button functionality
return _.extend({

'click #saveDescription' : 'saveDescription'

}, this.constructor.__super__.events);

}I

saveDescription : function (clickEvent) {
this.model.save({

title : $("#todoDescription", this.el).val()

b

return true;

250 | Chapter 12: Backbone and jQuery Mobile

www.it-ebooks.info


http://www.it-ebooks.info/

9N
19K

By default, the BasicView uses basic_page_simple.template as the Handlebars template.
If you need to use a custom template or want to introduce a new Super abstract view
with an alternate template, override the getTemplateID function:

getTemplateID : function(){
return "custom_page_template";

}

By convention, the id attribute will be taken as the ID of the jQM page as well as the
filename of the corresponding template file to be inserted as a partial in basic_page_sim-
ple.template. In the case of the EditTodoPage view, the name of the file will be editTo-
doPage.template_partial.

Every concrete page is meant to be a partial, which will be inserted in the data-
role="content" element, where the parameter templatePartialPagelD is located.

Later on, the result of the getHeaderTitle function from EditTodoPage will replace
the headerTitle in the abstract template (basic_page_simple.template).

<div data-role="header">
{{whatils "Specific loaded Handlebars parameters:"}}
{{whatis this}}
<h2>{{headerTitle}}</h2>
<a id="backButton" href="href="javascript:history.go(-1);"
data-icon="star" data-rel="back" >back</a>
</div>
<div data-role="content">
{{whatis "Template page trying to load:"}}
{{whatils templatePartialPageID}}
{{> templatePartialPagelID}}
</div>
<div data-role="footer">
{{footerContent}}
</div>

R
Puy)

The whatis Handlebars view helper does simple logging of parameters.

All the additional parameters being returned by getSpecificTemplateValues will be
inserted into the concrete template editTodoPage.template_partial.

Because footerContent is expected to be used rarely, its content is returned by
getSpecificTemplateValues.

Workflow with Backbone and jQueryMobile | 251

www.it-ebooks.info


http://www.it-ebooks.info/

In the case of the EditTodoPage view, all the model information is being returned and
title is used in the concrete partial page:

<div data-role="fieldcontain">
<label for="todoDescription"s>Todo Description</label>
<input type="text" name="todoDescription" id="todoDescription"
value="{{title}}" />
</div>
<a id="saveDescription" href="#" data-role="button" data-mini="true">Save</a>

When render is triggered, the basic_page_simple.template and editTodoView.tem-
plate_partial templates will be loaded, and the parameters from EditTodoPage and
BasicView will be combined and generated by Handlebars to generate:

<div data-role="header">
<h2>Edit Todo</h2>
<a id="backButton" href="href="javascript:history.go(-1);"
data-icon="star" data-rel="back" s>back</a>
</div>
<div data-role="content">
<div data-role="fieldcontain">
<label for="todoDescription"sTodo Description</label>
<input type="text" name="todoDescription" id="todoDescription"
value="Cooking" />
</div>
<a id="saveDescription" href="#" data-role="button" data-mini="true">Save
</a>
</div>
<div data-role="footer">
Footer
</div>

The next section explains how the template parameters are collected by the Basic
View class and the HTML definition is loaded.

DOM Management and $.mobile.changePage

When render is executed (line 29 is the source code listing in the upcoming example),
BasicView first cleans up the DOM by removing the previous page (line 70). To delete
the elements from the DOM, $. remove cannot be used, but $previousEl.detach() can
be since detach does not remove the element’s attached events and data.

Thisisimportant, because jQuery Mobile still needs information (for example, to trigger
transition effects when switching to another page). Keep in mind that the DOM data
and events should be cleared later on as well to avoid possible performance issues.

Other strategies than the one used in the function cleanupPossiblePageDuplicatio
nInDOM to clean up the DOM are viable. Removing only the old page having the same
id as the current from the DOM, when it was already requested before, would also be
a working strategy for preventing DOM duplication. Depending on what best fits your

252 | Chapter 12: Backbone and jQuery Mobile

www.it-ebooks.info


http://www.it-ebooks.info/

application needs, itis also possibly a one-banana problem to exchange it using a caching
mechanism.

Next, BasicView collects all template parameters from the concrete view implementa-
tion and inserts the HTML of the requested page into the body. This is done in steps 4,
5, 6, and 7 in Figure 12-4 (between lines 23 and 51 in the source listing).

Additionally, the data-role will be set on the jQuery Mobile page. Commonly used
attribute values are page, dialog, or popup.

As you can see in BasicView.js, (starting at line 74), the goBackInHistory function
contains a manual implementation to handle the back button’s action. In certain sce-
narios, the back button navigation functionality of jQuery Mobile was not working with
older versions and disabled jQMobile’s navigation system.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

define([
"lodash",
"backbone",
"handlebars",
"handlebars_helpers"
1,

function (_, Backbone, Handlebars) {
var BasicView = Backbone.View.extend({
initialize: function () {
_.bindAll();

this.render();
1
events: {

"click #backButton": "goBackInHistory"
1,

role: "page",

attributes: function () {
return {

"data-role": this.role

b

1,

getHeaderTitle: function () {
return this.getSpecificTemplateValues().headerTitle;

1

getTemplateID: function () {
return "basic_page_simple";

1,

render: function () {
this.cleanupPossiblePageDuplicationInDOM();
S(this.el).html(this.getBasicPageTemplateResult());
this.addPageToDOMANdRenderJQM();
this.enhanceJQMComponentsAPI();

1,

// Generate HTML using the Handlebars templates

getTemplateResult: function (templateDefinitionID, templateValues) {

Workflow with Backbone and jQueryMobile

www.it-ebooks.info

253


http://www.it-ebooks.info/

37 return window.JST[templateDefinitionID](templateValues);
38 1,

39 // Collect all template parameters and merge them

40 getBasicPageTemplateResult: function () {

41 var templateValues = {

42 templatePartialPagelID: this.id,

43 headerTitle: this.getHeaderTitle()

44 };

45 var specific = this.getSpecificTemplateValues();

46 S.extend(templateValues, this.getSpecificTemplateValues());

47 return this.getTemplateResult(this.getTemplateID(),
templateValues);

48 1,

49 getRequestedPageTemplateResult: function () {

50 this.getBasicPageTemplateResult();

51 1,

52 enhanceJQMComponentsAPI: function () {

53 // changePage

54 $.mobile.changePage("#" + this.id, {

55 changeHash: false,

56 role: this.role

57 s

58 1,

59 // Add page to DOM

60 addPageToDOMANdRenderJQM: function () {

61 $("body").append($(this.el));

62 $("#" + this.id).page();

63 }s

64 // Cleanup DOM strategy

65 cleanupPossiblePageDuplicationInDOM: function () {

66 // Can also be moved to the event "pagehide": or "onPageHide"

67 var Sprevioustl = $("#" + this.id);

68 var alreadyInDom = $previousEl.length >= 0;

69 if (alreadyInDom) {

70 SpreviousEl.detach();

71 }

72 1,

73 // Strategy to always support back button with disabled navigation

74 goBackInHistory: function (clickEvent) {

75 history.go(-1);

76 return false;

77 }

78 H;

79

80 return BasicView;

81 1);

After the dynamic HTML is added to the DOM, $ . mobile. changePage has to be applied
at step 8 (code line 54).

This is the most important APT call, because it triggers the jQuery Mobile component
creation for the current page.

254 | Chapter 12: Backbone and jQuery Mobile

www.it-ebooks.info


http://www.it-ebooks.info/

Next, the page will be displayed to the user at step 9 (see Figure 12-5).

<a data-mini="true" data-role="button" href="#" id="saveDescription"
data-corners="true"
data-shadow="true" data-iconshadow="true" data-wrapperels="span" data-theme="c"
class="ui-btn ui-shadow ui-btn-corner-all ui-mini ui-btn-up-c">

<span class="uil-btn-inner">

<span class="uil-btn-text">Save</span>

</span>

</a>

Todo Description
Save

Todo Description
Cooking

Save

Default rendering of the written HTML Enhanced Ul by jQM of the same HTML

Figure 12-5. Look and feel of the written HTML code and the jQuery Mobile—enhanced
todo description page

Ul enhancement is done in the enhanceJQMComponentsAPI function in line 52:

$.mobile.changePage("#" + this.id, {
changeHash: false,
role: this.role

s

To retain control of hash routing, we must set changeHash to false and provide the
proper role parameter to guarantee proper page appearance. Finally, changePage will
show the new page with its defined transition to the user.

For the basic use cases, it is advised to have one view per page, and always render the
complete page again by calling $.mobile.changePage when you need to do widget
enhancement.

To progress component enrichment of a newly added HTML fragment into the DOM,
you need to apply advanced techniques to guarantee correct appearance of the mobile
components. You also need to be very careful when creating partial HTML code and
updating values on UI elements. The next section will explain how to handle these
situations.

Workflow with Backbone and jQueryMobile | 255

www.it-ebooks.info


http://www.it-ebooks.info/

Applying Advanced jQM Techniques to Backbone
Dynamic DOM Scripting

The solution previously described solves the issues of handling routing with Backbone
by calling $.mobile.changePage('pageID'). Additionally, it guarantees that the
HTML page will be completely enhanced by the markup for jQuery Mobile.

The second tricky part with jQuery Mobile is to dynamically manipulate specific DOM
contents (for example, after loading in content with Ajax). I suggest you use this tech-
nique only if there is evidence for an appreciable performance gain.

With the current version (1.3), jQM provides three ways, documented and explained
in the official API, on forums, and in blogs.

$(pageld).trigger(pagecreate)
Creates markup of header content as well as footer

S(anyElement).trigger(create)
Creates markup of the element as well as all children:

e S(myListElement).listview(refresh)
e $S([type=radio]).checkboxradio()
S([type=text]).textinput()

e S([type=button]).button()
$([data-role=navbar]).navbar()

e S([type=range]).slider()

o $(select).selectmenu()

\

-5 Every component of jQM offers plug-ins methods that can be invoked
w . toupdate the state of specific UI elements.
"

Q'
'

Sometimes, when creating a component from scratch, you might see the following error:
“Cannot call methods on ListView prior to initialization” You can avoid this, with com-
ponent initialization prior to markup enhancement, by calling it in the following way:

S('#mylist').listview().listview( 'refresh')

256 | Chapter 12: Backbone and jQuery Mobile

www.it-ebooks.info


http://www.it-ebooks.info/

To see more details and enhancements for further scripting pages of JQM, read its API
and follow the release notes frequently:

o jQuery Mobile: Page Scripting
 jQuery Mobile: Document Ready vs. Page Events
o StackOverflow: Markup Enhancement of Dynamically Added Content

If you consider using a Model-Binding Plugin, you will need to come up with an
automated mechanism to enrich single components.

Now that you know more about dynamic DOM scripting, it might not be acceptable to
completely recreate a component (such as a Listview) that takes a longer time to load
and to reduce the complexity of event delegation. Instead, we should use the component-
specific plug-ins, which will only update the needed parts of the HTML and CSS.

In the case of a ListView, you would need to call the following function to update the
list of added, edited, or removed entries:

S('#mylist').listview()

You need to come up with a means of detecting the component type in order to decide
which plug-in method needs to be called. The jQuery Mobile Angular.js Adapter pro-
vides such a strategy and solution as well.

See an example of model binding with jQuery Mobile at GitHub.

Intercepting jQuery Mobile Events

In special situations, you will need to take action on a triggered jQuery Mobile event,
which you can do as follows:

$('#myPage').live( 'pagebeforecreate', function(event){
console.log(page was inserted into the DOM');

// run your own enhancement scripting here...
// prevent the page plug-in from making its manipulations
return false;

s

S('#myPage').live( 'pagecreate', function(event){
console.log( ‘page was enhanced by jQM');
H;

In such scenarios, it is important to know when the jQuery Mobile events occur.
Figure 12-6 depicts the event cycle (page A is the outgoing page and page B is the
incoming page).

Applying Advanced jQM Techniques to Backbone | 257

www.it-ebooks.info


http://bit.ly/11AJsOp
http://bit.ly/ZMzkix
http://bit.ly/XTNfHa
http://bit.ly/YrZ2wu
http://www.it-ebooks.info/

Hash
changed

Render
components

PageBeforeHide

PageRemove
Clean up
resources

Figure 12-6. jQuery Mobile event cycle

An alternative is the jQuery Mobile Router project, which you might use to replace the
Backbone router. With the help of the jQM Router project, you have a powerful way to
intercept and route one of the various jQM events. It is an extension to jQuery Mobile,
which can be used independently.

Be aware that jJQM Router misses some features of Backbone.Router and is tightly cou-
pled with the jQuery Mobile framework. For these reasons, we did not use it for the
TodoMVC app. If you intend to use it, consider using a Backbone.js custom build to
exclude the router code. This might save around 25% relative to the max compressed
size of 17.1 KB.

Check out Backbone’s custom builder.

Performance

Performance is an important topic on mobile devices. jQuery Mobile provides various
tools that create performance logs, which can give you a good overview of the actual
time spent in routing logic, component enhancement, and visual effects.

Depending on the device, the time spent on transitions can take up to 90% of the load
time. To disable all transitions, you can either pass the transition none to $.mo
bile.changePage(), in the configuration code block:

258 | Chapter 12: Backbone and jQuery Mobile

www.it-ebooks.info


http://gregfranko.com/backbone/customBuild/
http://www.it-ebooks.info/

$(document).bind("mobileinit", function(){

// Otherwise, depending on takes up to 90% of loadtime

$.mobile.defaultPageTransition = "none";

$.mobile.defaultDialogTransition = "none";
b;

b

or consider adding device-specific settings; for example:

$(document).bind("mobileinit", function(){

var iosDevice =((navigator.userAgent.match(/iPhone/1))
|| (navigator.userAgent.match(/iPod/1))) ? true : false;

S.extend( $.mobile , {

slideText : (losDevice) ? "slide" : "none",

slideUpText : (ilosDevice) ? "slideup" : "none",

defaultPageTransition:(iosDevice) ? "slide" : "none",

defaultDialogTransition:(iosDevice) ? "slide" : "none"
s

Also, consider doing your own precaching of enhanced jQuery Mobile pages.

The jQuery Mobile API is frequently enhanced with regards to this topic in each new
release. We suggest you take a look at the latest updated API to determine an optimal
caching strategy with dynamic scripting that best fits your needs.

For further information on performance, see the following:

+ jQuery Mobile profiling tools
o Device-specific jQuery Mobile configurations
¢ jQuery Mobile debugging tools

o jQuery Mobile precaching functionalities

Clever Multiplatform Support Management

Nowadays, a company typically has an existing web page and management decides to
provide an additional mobile app to customers. The code of the web page and the code
of the mobile app become independent of each other, and the time required for content
or feature changes becomes much longer than for the web page alone.

As the trend is toward offering an increasing number of mobile platforms and dimen-
sions, the effort required to support them is only increasing as well. Ultimately, creating
per-device experiences is not always viable. However, it is essential that content is avail-
able to all users, regardless of their browser and platform. You must keep this principle
in mind during the design phase.

Applying Advanced jQM Techniques to Backbone | 259

www.it-ebooks.info


http://bit.ly/YKNm50
http://bit.ly/ZMzTZT
http://bit.ly/17UMba2
http://bit.ly/17NGCaz
http://www.it-ebooks.info/

Responsive design and mobile-first approaches address these challenges.

The mobile app architecture presented in this chapter takes care of a lot of the actual
heavy lifting required, as it supports responsive layouts out of the box and even supports
browsers that cannot handle media queries. It might not be obvious that jQM is a Ul
framework not dissimilar to jQuery Ul jQuery Mobile is using the widget factory and
can be used for more than just mobile environments.

To support multiplatform browsers using jQuery Mobile and Backbone, you can have,
in order of increasing time and effort:

1.
2.

Ideally, one code project, where only CSS differs for different devices.

Same code project, and at runtime different HTML templates and superclasses are
exchanged per device type.

. Same code project, and the Responsive Design API and most widgets of jQuery

Mobile will be reused. For the desktop browser, some components will be added by
another widget framework (such as jQueryUI or Twitter Bootstrap), say, controlled
by the HTML templating.

. Same code project, and at runtime, jQuery Mobile will be completely replaced by

another widget framework (such as jQueryUI or Twitter Boostrap). Superclasses
and configurations, as well as concrete Backbone.View code snippets, need to be
replaced.

. Different code projects, but common modules are reused.

A completely separate code project for the desktop app. Reasons might be the usage
of completely different programming languages and/or frameworks, lack of re-
sponsive design knowledge, or legacy of pollution.

The ideal solution—to build a nice-looking desktop application with only one mobile
framework—sounds crazy, but is feasible.

If you have a look at the jQuery Mobile API page in a desktop browser, it does not look
anything like a mobile application (Figure 12-7).

260

| Chapter 12: Backbone and jQuery Mobile

www.it-ebooks.info


http://www.lukew.com/ff/entry.asp?933
http://www.abookapart.com/products/mobile-first
http://www.it-ebooks.info/

o jQuery

Figure 12-7. Desktop view of the jQuery Mobile API and Docs application

The same goes for the jQuery Mobile design examples, where jQuery Mobile intends
to add further user interface experiences (Figure 12-8).

The accordions, datepickers, sliders—everything in the desktop UI—is reusing what
jQM would be providing users on mobile devices. By way of example, adding the at-
tributedata-mini="true" on components will lose the clumsiness of the mobile widgets
on a desktop browser.

See jQuery Mobile for more on mini-widgets for desktop applications.

Thanks to some media queries, the desktop UI can make optimal use of whitespace,
expanding component blocks out and providing alternative layouts while still making
use of jQM as the component framework.

Applying Advanced jQM Techniques to Backbone | 261

www.it-ebooks.info


http://view.jquerymobile.com/1.3.0/
http://bit.ly/151DdJa
http://www.it-ebooks.info/

Dialogs

Data Entry Dialog

v Section (<] July 2010 = ©

100 1 2 3

4| 5 6 7| 8| 910
July 15, 2010

) uly & 1 |12 13 | 14 E 16 17
18 19 | 20 21 22 23 24

v Section 25 26 27 28 29 30 31
T Choosa file... Browse... Today cancel ("Done
FILE INPUT @ weekly-report-june.xls Browse..
FILE INPUT G 44%

Message Dialog with Tabs % Close

Tab A Tab B Tab C Tab D

This is a simple connected tab that sets the on tab to the content clock
to visually connect them and is best for grouping content inside a panel
or page. This is a simple connected tab that sets the on tab to the
content clock to visually connect them and is best for grouping content
inside a panel or page.

This is a simple connected tab that sets the on tab to the content clock
to visually connect them and is best for groupin® S ’
or page. How about seeing a shiny new tooltpi  I'm a tooltip.
| can have HTML formatting too

Tree

> mul Parent node
> Wl Parent node

&¥ Parent node
Delete This Message? il Child node

> [l Child node
Once deleted, a message can be recovered v law Parent node
from the Trash folder within the next 90 days. >l Child node

> |l Child node

cancel ) (L > [l Parent node

Figure 12-8. Design examples of jQuery Mobile for desktop environments

262 | Chapter 12: Backbone and jQuery Mobile

www.it-ebooks.info


http://jquerymobile.com/designs/#desktop
http://www.it-ebooks.info/

The benefit of this is that you don’t need to pull in another widget framework (for
example, jQuery UI) separately to be able to take advantage of these features. Thanks
to the ThemeRoller, the components can look pretty much exactly how you would like
them to and users of the app can get a jJQM UI for lower resolutions and a jQM-ish UI
for everything else.

The takeaway here is just to remember that if you are not already going through the
hassle of conditional script/style loading based on screen resolution (using matchMe-
dia.js, and so on), there are simpler approaches you can take to cross-device component
theming. At least the Responsive Design API of jQuery Mobile, which was added since
version 1.3.0, is always reasonable because it will work for mobile as well as for desktop.
In summary, you can manage jQuery Mobile components to give users a typical desktop
appearance, and they will not realize a difference.

For more on responsive design with jQuery Mobile, see http://view.jquerymobile.com/
1.3.0/docs/intro/rwd.php.

Also, if you hit your limits of CSS styling and configurations of your jQuery Mobile
application for desktop browsers, the additional effort to use jQuery Mobile and Twitter
Bootstrap together can be minimal. In the case that a desktop browser requests the page
and Twitter Bootstrap has been loaded, the mobile TodoMVC app would need condi-
tional code to not trigger the jQM widget processive enhancement plug-ins API
(demonstrated in “Dynamic DOM Scripting” on page 256) in the Backbone.View im-
plementation. Therefore, as explained in the previous sections, we recommend trig-
gering widget enhancements by $.mobile.changePage only once to load the complete

page.
Figure 12-9 shows an example of such widget hybrid usage.

al
Uses
Em
Pas: d
Remember me?
, =
Create user ©
Fargot your password? [}
Login with Google Account ©

i English )

Twitter Boostrap version jQuery Mobile version

Figure 12-9. App Engine boilerplate, desktop, and mobile appearance

Applying Advanced jQM Techniques to Backbone | 263

www.it-ebooks.info


http://view.jquerymobile.com/1.3.0/docs/intro/rwd.php
http://view.jquerymobile.com/1.3.0/docs/intro/rwd.php
http://www.it-ebooks.info/

Although this is using server-side technologies for templating using the programming
language Python, the principle of triggering progressive enhancement at page load is
the same as $mobile.changePage.

Asyou can see, the JavaScript and even the CSS stays the same. The only device-specific
conditions and differences in implementations are for selecting the appropriate frame-
work imports, which are located in the HTML template:

{% if is_mobile %}

<link rel="stylesheet" href="/mobile/jquery.mobile-1.1.0.min.css" />
{% else %}

<link rel="apple-touch-icon" href="/apple-touch-icon.png" />

<link rel="stylesheet" href="/css/style.css" [>

<link rel="stylesheet" href="/css/bootstrap.min.css"s

<link rel="stylesheet" href="/css/bootstrap-responsive.min.css"s>
{% endif %}

<link rel="stylesheet" href="/css/main.css" [>

{% block mediaCSS %}{% endblock %}

{% if is_mobile %}
<script src="/mobile/jquery.mobile-1.1.0.min.Jjs"></script>
{% else %}
<script src="/js/libs/bootstrap.min.js"></script>
{% endif %}

264 | Chapter 12: Backbone and jQuery Mobile

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 13
Jasmine

One definition of unit testing is the process of taking the smallest piece of testable code
in an application, isolating it from the remainder of your codebase, and determining if
it behaves exactly as expected.

For an application to be considered well tested, each function should ideally have its
own separate unit tests where it’s tested against the different conditions you expect it to
handle. All tests must pass before functionality is considered complete. This allows
developers to modify a unit of code and its dependencies with a level of confidence
about whether these changes have caused any breakage.

A basic example of unit testing is where a developer asserts that passing specific values
to a sum function results in the correct value being returned. For an example more
relevant to this book, we may wish to assert that adding a new todo item to alist correctly
adds a model of a specific type to a Todos collection.

When you are building modern web applications, it’s typically considered a best practice
toinclude automated unit testing as a part of your development process. In the following
chapters, we are going to look at three different solutions for unit-testing your Back-
bone.js apps: Jasmine, QUnit, and Sinon]S.

Behavior-Driven Development

In this chapter, we’ll be taking a look at how to unit-test Backbone applications using a
popular JavaScript testing framework called Jasmine from Pivotal Labs.

Jasmine describes itself as a behavior-driven development, or BDD, framework for test-
ing JavaScript code. Before we jump into how the framework works, it’s useful to
understand exactly what BDD is.

BDD is a second-generation testing approach first described by Dan North, the au-
thority on BDD, that attempts to test the behavior of software. It's considered

265

www.it-ebooks.info


http://bit.ly/18uX5Rm
http://bit.ly/1217r9F
http://dannorth.net/introducing-bdd/
http://www.it-ebooks.info/

second-generation because it came out of merging ideas from domain-driven design
(DDD) and lean software development. BDD helps teams deliver high-quality software
by answering many of the more confusing questions early on in the agile process. Such
questions commonly include those concerning documentation and testing.

If you were to read a book on BDD, it’s likely that it would be described as being outside-
in and pull-based. The reason for this is that it borrows the idea of pulling features from
lean manufacturing, which effectively ensures that the right software solutions are being
written by:

« Focusing on the expected outputs of the system

o Ensuring these outputs are achieved

BDD recognizes that there are usually multiple stakeholders in a project and not a single
amorphous user of the system. These different groups will be affected by the software
being written in differing ways and will have varying opinions of what quality in the
system means to them. It’s for this reason that it’s important to understand whom the
software will be bringing value to and exactly what in it will be valuable to them.

Finally, BDD relies on automation. Once you've defined the quality expected, your team
will want to check on the functionality of the solution being built regularly and compare
it to the results they expect. In order to facilitate this efficiently, the process has to be
automated. BDD relies heavily on the automation of specification testing, and Jasmine
is a tool that can assist with this.

BDD helps both developers and nontechnical stakeholders:

o Better understand and represent the models of the problems being solved
o Explain supported test cases in a language that nondevelopers can read

« Focus on minimizing translation of the technical code being written and the domain
language spoken by the business

What this means is that developers should be able to show Jasmine unit tests to a project
stakeholder and (at a high level, thanks to a common vocabulary being used) that person
will ideally be able to understand what the code supports.

Developers often implement BDD in unison with another testing paradigm known as
test-driven development, or TDD. The main idea behind TDD is using the following
development process:

1. Write unit tests that describe the functionality you would like your code to support.
2. Watch these tests fail (as the code to support them hasn't yet been written).
3. Write code to make the tests pass.

266 | Chapter 13:Jasmine

www.it-ebooks.info


http://bit.ly/10YXfTw
http://www.it-ebooks.info/

4. Rinse, repeat, and refactor.

In this chapter we're going to use BDD (with TDD) to write unit tests for a Backbone
application.

W8
\

I've seen alot of developers also opt for writing tests to validate behavior
. of their code after having written it. While this is fine, note that it can
o3 come with pitfalls such as only testing for behavior your code currently
supports, rather than the behavior needed to fully solve the problem.

Suites, Specs, and Spies

When using Jasmine, you'll be writing suites and specifications (specs). Suites basically
describe scenarios, while specs describe what can be done in these scenarios.

Each specis a JavaScript function, described with a call to 1t () using a description string
and a function. The description should describe the behavior the particular unit of code
should exhibit and, keeping in mind BDD, should ideally be meaningful. Here’s an
example of a basic spec:

it('should be incrementing in value', function(){
var counter = 0;
counter++;

s

On its own, a spec isn’t particularly useful until expectations are set about the behavior
of the code. You define expectations in specs using the expect() function and an ex-
pectation matcher—for example, toEqual(), toBeTruthy(), toContain(). A revised
example using an expectation matcher would look like:

it('should be incrementing in value', function(){
var counter = 0;
counter++;
expect(counter).toEqual(l);

b

The preceding code passes our behavioral expectation as counter equals 1. Notice how
easy it was to read the expectation on the last line (you probably grokked it without any
explanation).

Specs are grouped into suites that we describe using Jasmine’s describe() function,
again passing a string as a description and a function as we did for i1t(). The name/
description for your suite is typically that of the component or module you're testing.

Jasmine will use the description as the group name when it reports the results of the
specs you've asked it to run. A simple suite containing our sample spec could look like:

Suites, Specs, and Spies | 267

www.it-ebooks.info


http://bit.ly/100yWTt
http://bit.ly/100yWTt
http://www.it-ebooks.info/

describe('Stats', function(){
it('can increment a number', function(){

19K

it('can subtract a number', function(){

N
s

Suites also share a functional scope, so it’s possible to declare variables and functions
inside a describe block that are accessible within specs:

describe('Stats', function(){
var counter = 1;

it('can increment a number', function(){
// the counter was = 1
counter = counter + 1;
expect(counter).toEqual(2);

b;

it('can subtract a number', function(){
// the counter was = 2
counter = counter - 1;
expect(counter).toEqual(l);
b;
b

A
Suites are executed in the order in which they are described, which can
. beuseful to know if you would prefer to see test results for specific parts

0% of your application reported first.

qs
[N

AN

Jasmine also supports spies—a way to mock, spy, and fake behavior in our unit tests.
Spies replace the function they’re spying on, allowing us to simulate behavior we would
like to mock (i.e., test without using the actual implementation).

In this example, we're spying on the setComplete method of a dummy Todo function
to test that arguments can be passed to it as expected.

var Todo = function(){

b

Todo.prototype.setComplete = function (arg){
return arg;

}

describe('a simple spy', function(){
it('should spy on an instance method of a Todo', function(){
var myTodo = new Todo();

268 | Chapter 13:Jasmine

www.it-ebooks.info


http://www.it-ebooks.info/

spyOn(myTodo, 'setComplete');
myTodo.setComplete('foo bar');

expect(myTodo.setComplete).toHaveBeenCalledWith('foo bar');

var myTodo2 = new Todo();
spyOn(myTodo2, 'setComplete');

expect(myTodo2.setComplete).not.toHaveBeenCalled();

I9H
19K

You are more likely to use spies for testing asynchronous behavior in your application
such as AJAX requests. Jasmine supports:

o Writing tests that can mock AJAX requests using spies. This allows us to test both
the code that initiates the AJAX request and the code executed upon its completion.
It’s also possible to mock/fake the server responses. The benefit of this type of testing
is that it’s faster as no real calls are being made to a server. The ability to simulate
any response from the server is also of great benefit.

 Asynchronous tests that don’t rely on spies.

This example of the first kind of test shows how to fake an AJAX request and verify that
the request was both calling the correct URL and executed a callback where one was
provided.

it('the callback should be executed on success', function () {

// ‘andCallFake()' calls a passed function when a spy

// has been called

spyOn($, 'ajax').andCallFake(function(options) {
options.success();

s

// Create a new spy
var callback = jasmine.createSpy();

// Execute the spy callback if the
// request for Todo 15 is successful
getTodo(15, callback);

// Verify that the URL of the most recent call
// matches our expected Todo item.
expect($.ajax.mostRecentCall.args[0]['url']).toEqual('/todos/15");

// ‘expect(x).toHaveBeenCalled()' will pass if 'x° is a
// spy and was called.
expect(callback).toHaveBeenCalled();

b

Suites, Specs, and Spies | 269

www.it-ebooks.info


http://bit.ly/13PySEx
http://www.it-ebooks.info/

function getTodo(id, callback) {
$.ajax({
type: 'GET',
url: '/todos/'' + id,
dataType: 'json',
success: callback
b;
}

All of these are spy-specific matchers and are documented on the Jasmine wiki.

For the second type of test (asynchronous tests), we can take the preceding further by
taking advantage of three other methods Jasmine supports (as documented by GitHub ):

wailts( timeout )
A native timeout before the next block is run.

wailtsFor( function, optional message, optional timeout )
A way to pause specs until some other work has completed. Jasmine waits until the
supplied function returns true here before it moves on to the next block.

runs( function)
A block that runs as if it were directly called. It exists so that we can test asynchro-
nous processes.

it('should make an actual AJAX request to a server', function () {

// Create a new spy
var callback = jasmine.createSpy();

// Execute the spy callback if the
// request for Todo 16 is successful
getTodo(16, callback);

// Pause the spec until the callback count is
// greater than 0
wattsFor(function() {

return callback.callCount > 0;

s

// Once the wait is complete, our runs() block

// will check to ensure our spy callback has been

// called

runs(function() {
expect(callback).toHaveBeenCalled();

b;
b
function getTodo(id, callback) {
$.ajax({
type: 'GET',

270 | Chapter 13:Jasmine

www.it-ebooks.info


http://bit.ly/17zGddr
http://bit.ly/ZC0FbX
http://www.it-ebooks.info/

url: 'todos.json',
dataType: 'json',
success: callback

19K

It’s useful to remember that making real requests to a web server in your
unit tests has the potential to massively slow down the speed at which
0% tests run (due to many factors, including server latency). As this also
introduces an external dependency that can (and should) be minimized
in your unit testing, it is strongly reccommended that you opt for spies
to remove the dependency on a web server.

S

beforeEach() and afterEach()

Jasmine also supports specifying code that can be run before each (beforeEach()) and
after each (afterEach()) test. This is useful for enforcing consistent conditions (such
as resetting variables that may be required by specs). In the following example, be
foreEach() is used to create a new sample Todo model that specs can use for testing
attributes.

beforekach(function(){
this.todo = new Backbone.Model({
text: 'Buy some more groceries',
done: false

s
I9H

it('should contain a text value if not the default value', function(){
expect(this.todo.get('text')).toEqual('Buy some more groceries');

K

Each nested describe() in your tests can have its own beforeEach() and after
Each() methods that support including setup and teardown methods relevant to a par-
ticular suite.

You can use beforeEach() and afterEach() together to write tests verifying that our
Backbone routes are being correctly triggered when we navigate to the URL. We can
start with the index action:

describe('Todo routes', function(){
beforeEach(function(){

// Create a new router
this.router = new App.TodoRouter();

// Create a new spy

beforeEach() and afterfach() | 271

www.it-ebooks.info


http://www.it-ebooks.info/

this.routerSpy = jasmine.spy();

// Begin monitoring hashchange events
try{
Backbone.history.start({
silent:true,
pushState: true
b
}catch(e){
/] ...
}

// Navigate to a URL
this.router.navigate('/js/spec/SpecRunner.html');

s
afterEach(function(){

// Navigate back to the URL
this.router.navigate('/js/spec/SpecRunner.html');

// Disable Backbone.history temporarily.
// Note that this is not really useful in real apps but is
// good for testing routers
Backbone.history.stop();
b

it('should call the index route correctly', function(){
this.router.bind('route:index', this.routerSpy, this);
this.router.navigate('', {trigger: true});

// If everything in our beforetach() and afterEach()
// calls has been correctly executed, the following
// should now pass.
expect(this.routerSpy).toHaveBeenCalledOnce();
expect(this.routerSpy).toHaveBeenCalledWith();

H;

H;
The actual TodoRouter for that would make the preceding test pass look like:

var App = App || {};
App.TodoRouter = Backbone.Router.extend({
routes:{
"'": 'index'
1
index: function(){
/).
}
H;

272 | Chapter 13: Jasmine

www.it-ebooks.info


http://www.it-ebooks.info/

Shared Scope

Let’s imagine we have a suite where we wish to check for the existence of a new todo
item instance. We could do this by duplicating the spec as follows:

describe("Todo tests", function(){

// Spec

it("Should be defined when we create it", function(){
// A Todo item we are testing
var todo = new Todo("Get the milk", "Tuesday");
expect(todo).toBeDefined();

B

it("Should have the correct title", function(){
// Where we introduce code duplication
var todo = new Todo("Get the milk", "Tuesday");
expect(todo.title).toBe("Get the milk");

H;

s

As you can see, we've introduced duplication that should ideally be refactored into
something cleaner. We can do this using Jasmine’s suite (shared) functional scope.

All of the specs within the same suite share the same functional scope, meaning that
variables declared within the suite itself are available to all of the specs in that suite. This
gives us a way to work around our duplication problem by moving the creation of our
todo objects into the common functional scope:

describe("Todo tests", function(){

// The instance of Todo, the object we wish to test
// is now in the shared functional scope
var todo = new Todo("Get the milk", "Tuesday");

// Spec
it("should be correctly defined", function(){
expect(todo).toBeDefined();

s

it("should have the correct title", function(){
expect(todo.title).toBe("Get the milk");
b

s

In the previous section you may have noticed that we initially declared this. todo within
the scope of our beforeEach() call and were then able to continue using this reference
in afterEach().

Shared Scope | 273

www.it-ebooks.info


http://www.it-ebooks.info/

This is again down to shared function scope, which allows such declarations to be com-
mon to all blocks (including runs()).

Variables declared outside of the shared scope (within the local scope var todo=...)
will not be shared.

Getting Set Up

Now that we've reviewed some fundamentals, let’s go through downloading Jasmine
and getting everything set up to write tests.

You can download a standalone release of Jasmine from the official release page.

You'll need a file called SpecRunner.html in addition to the release. You can download
from GitHub or as part of a download of the complete Jasmine repo. Alternatively, you
can git clone the main Jasmine repository from GitHub.

Let’s review SpecRunner.html.jst.

It first includes both Jasmine and the necessary CSS required for reporting:

<link rel="stylesheet" type="text/css"

href="1ib/jasmine-<%= jasmineVersion %>/jasmine.css">
<script src="1lib/jasmine-<%= jasmineVersion %>/jasmine.js"></script>
<script src="1lib/jasmine-<%= jasmineVersion %>/jasmine-html.js"></script>
<script src="1lib/jasmine-<%= jasmineVersion %>/boot.js"></script>

Next come the sources being tested:

<!-- include source files here... -->
<script src="src/Player.js"></script>
<script src="src/Song.js"></script>

Finally, some sample tests are included:

<!-- include spec files here... -->
<script src="spec/SpecHelper.js"s</script>
<script src="spec/PlayerSpec. js"></script>

Following this section of SpecRunner is code responsible for running
. theactual tests.

Given that we won't be covering modifying this code, 'm going to skip reviewing it. I
do, however, encourage you to take a look through PlayerSpec.js and SpecHelper.js.
They’re useful basic examples that go through how a minimal set of tests might work.

274 | Chapter 13: Jasmine

www.it-ebooks.info


http://bit.ly/ZXXHOr
http://bit.ly/Y1MttO
http://bit.ly/16tRVbx
http://bit.ly/ZC14v4
http://bit.ly/YrZ8EA
http://bit.ly/131HS9V
http://bit.ly/ZpFOoE
http://www.it-ebooks.info/

Also note that for the purposes of introduction, some of the examples in this chapter
will be testing aspects of Backbone.js itself, just to give you a feel for how Jasmine works.
You generally will not need to write tests ensuring a framework is working as expected.

TDD with Backbone

When developing applications with Backbone, you might have to test both individual
modules of code as well as models, views, collections, and routers. Taking a TDD ap-
proach to testing, let’s review some specs for testing these Backbone components using
the popular Backbone Todo application.

Models

The complexity of Backbone models can vary greatly depending on what your appli-
cation is trying to achieve. In the following example, we’re going to test default values,
attributes, state changes, and validation rules.

First, we begin our suite for model testing using describe():
describe('Tests for Todo', function() {

Models should ideally have default values for attributes. This helps ensure that when
instances are created without a value set for any specific attribute, a default one (e.g., an
empty string) is used instead. The idea here is to allow your application to interact with
models without any unexpected behavior.

In the following spec, we create a new todo without any attributes passed and then check
to find out what the value of the text attribute is. As no value has been set, we expect
a default value of ' ' to be returned.

it('Can be created with default values for its attributes.', function() {
var todo = new Todo();
expect(todo.get('text')).toBe('");

b

If you are testing this spec before your models have been written, you'll incur a failing
test, as expected. What’s required for the spec to pass is a default value for the attribute
text. We can set this and some other useful defaults (which we’ll be using shortly) in
our Todo model as follows:

window.Todo = Backbone.Model.extend({

defaults: {
text: '',
done: false,
order: 0

}

TDD with Backbone | 275

www.it-ebooks.info


http://bit.ly/12OZbs8
http://www.it-ebooks.info/

Next, itis common to include validation logic in your models to ensure that input passed
from users or other modules in the application is valid.

A Todo app may wish to validate the text input supplied in case it contains rude words.
Similarly, if we're storing the done state of a todo item using Booleans, we need to validate
that truthy/falsy values are passed and not just any arbitrary string.

In the following spec, we take advantage of the fact that validations that fail model.val
idate() trigger an invalid event. This allows us to test if validations are correctly failing
when invalid input is supplied.

We create an errorCallback spy using Jasmine’s built-in createSpy () method, which
allows us to spy on the invalid event as follows:

it('Can contain custom validation rules, and will trigger an invalid event on
failed validation.', function() {

var errorCallback = jasmine.createSpy('-invalid event callback-');
var todo = new Todo();
todo.on('invalid', errorCallback);

// What would you need to set on the todo properties to
// cause validation to fail?

todo.set({done:'a non-boolean value'});
var errorArgs = errorCallback.mostRecentCall.args;

expect(errorArgs).toBeDefined();
expect(errorArgs[0]).toBe(todo);
expect(errorArgs[1]).toBe('Todo.done must be a boolean value.');

s

The code to make the preceding failing test support validation is relatively simple. In
our model, we override the validate() method (as recommended in the Backbone
docs), checking to make sure a model has a done property and that its value is a valid
Boolean before allowing it to pass.

validate: function(attrs) {
if (attrs.hasOwnProperty('done') && !_.isBoolean(attrs.done)) {
return 'Todo.done must be a boolean value.';
}
}

If you would like to review the final code for our Todo model, here it is:

window.Todo = Backbone.Model.extend({

defaults: {
text: '',

276 | Chapter 13:Jasmine

www.it-ebooks.info


http://www.it-ebooks.info/

done: false,
order: 0

1

initialize: function() {
this.set({text: this.get('text')}, {silent: true});
1,

validate: function(attrs) {
if (attrs.hasOwnProperty('done') && !_.isBoolean(attrs.done)) {
return 'Todo.done must be a boolean value.';

}
1

toggle: function() {
this.save({done: !this.get('done')});
}

s

Collections

We now need to define specs to test a Backbone collection of Todo models (a Todo
List). Collections are responsible for a number of list tasks, including managing order
and filtering.

Here are a few specific specs that come to mind when we’re working with collections:

o Making sure we can add new Todo models as both objects and arrays

o Attribute testing to make sure attributes such as the base URL of the collection are
values we expect

o Purposefully adding items with a status of done:true and checking against how
many items the collection thinks have been completed versus those that are
remaining

In this section were going to cover the first two of these with the third left as an extended
exercise you can try on your own.

Testing that Todo models can be added to a collection as objects or arrays is relatively
trivial. First, we initialize a new TodoL1ist collection and check to make sure its length
(such as the number of Todo models it contains) is 0. Next, we add new todos, both as
objects and arrays, checking the length property of the collection at each stage to ensure
the overall count is what we expect:

describe('Tests for TodoList', function() {

it('Can add Model instances as objects and arrays.', function() {
var todos = new TodoList();

Collections | 277

www.it-ebooks.info


http://www.it-ebooks.info/

expect(todos.length).toBe(0);
todos.add({ text: 'Clean the kitchen' });

// how many todos have been added so far?
expect(todos.length).toBe(1);

todos.add([
{ text: 'Do the laundry', done: true },
{ text: 'Go to the gym'}

D;

// how many are there in total now?
expect(todos.length).toBe(3);
s

Similar to model attributes, it’s also quite straightforward to test attributes in collections.
Here we have a spec that ensures the collection URL (the URL reference to the collec-
tion’s location on the server) is what we expect it to be:

it('Can have a url property to define the basic url structure for all contained
models.', function() {
var todos = new TodoList();

// what has been specified as the url base in our model?
expect(todos.url).toBe('/todos/");
b;

For the third spec (which you will write as an exercise), note that the implementation
for our collection will have methods for filtering how many todo items are done and
how many are remaining; we’ll call these done() and remaining(). Consider writing a
spec that creates a new collection and adds one new model that has a preset done state
of true and two others that have the default done state of false. Testing the length of
what’s returned using done() and remaining() will tell us whether the state manage-
ment in our application is working or needs a little tweaking.

The final implementation for our TodoL1ist collection is as follows:
window.TodoList = Backbone.Collection.extend({
model: Todo,
url: '/todos/',

done: function() {
return this.filter(function(todo) { return todo.get('done'); });

I8

remaining: function() {
return this.without.apply(this, this.done());

278 | Chapter 13: Jasmine

www.it-ebooks.info


http://www.it-ebooks.info/

}!

nextOrder: function() {
if (!this.length) {
return 1;

}

return this.last().get('order') + 1;
}!

comparator: function(todo) {
return todo.get('order');

}
s

Views

Before we take a look at testing Backbone views, let’s briefly review a jQuery plug-in
that can assist with writing Jasmine specs for them.

As we know our Todo application will be using jQuery for DOM manipulation, there’s
a useful jQuery plug-in called jasmine-jquery that will help us simplify BDD testing of
the rendering performed by our views.

The plug-in provides a number of additional Jasmine matchers to help test jQuery-
wrapped sets such as:

toBe(jQuerySelector)
For example, expect($('<div id="some-1d"></div>")).toBe( 'div#tsome-id")

toBeChecked()
For example, expect($('<input type="checkbox" checked="checked"/
>')).toBeChecked()

toBeSelected()
For example, expect($('<option selected="selected"></option>')).toBeSe
lected()

and many others. The complete list of matchers supported can be found on the project
home page. It’s useful to know that similar to the standard Jasmine matchers, you can
invert the custom matchers just listed using the .not prefix (for example, ex
pect(x).not.toBe(y)):

expect($('<div>I am an example</div>')).not.toHaveText(/other/)

jasmine-jquery also includes a fixtures module that can be used to load arbitrary HTML
content we wish to use in our tests.

Include some HTML in an external fixtures file, some.fixture.html:

Views | 279

www.it-ebooks.info


http://bit.ly/18fo6e7
http://bit.ly/100yWTt
https://github.com/velesin/jasmine-jquery
http://www.it-ebooks.info/

<div id="sample-fixture">some HTML content</div>
Then, inside our actual test we would load it as follows:

loadFixtures('some.fixture.html")
$('some-fixture').myTestedPlugin();
expect($('#some-fixture')).to<the rest of your matcher would go here>

The jasmine-jquery plug-in loads fixtures from a directory named spec/javascripts/
fixtures by default. If you wish to configure this path, you can do so by initially setting
jasmine.getFixtures().fixturesPath = 'your custom path’.

Finally, jasmine-jquery includes support for spying on jQuery events without the need

for any extra plumbing work. You can do this using the spyOnEvent() and assert(even

tName) . toHaveBeenTriggered(selector) functions. For example:
spyOnEvent($('#el'), 'click');

S('#el').click();
expect('click').toHaveBeenTriggeredOn($('#el'));

View Testing

In this section we will review the three dimensions of specs writing for Backbone views:
initial setup, view rendering, and templating. The latter two of these are the most com-
monly tested, but we’ll see shortly why writing specs for the initialization of your views
can also be beneficial.

Initial setup

At their most basic, specs for Backbone views should validate that they are being cor-
rectly tied to specific DOM elements and are backed by valid data models. The reason
for this is that these specs can identify issues that will trip up more complex tests later
on. Also, they're fairly simple to write given the overall value offered.

To help ensure a consistent testing setup for our specs, we use beforeEach() to append
both an empty <ul> (#todoList) to the DOM and initialize a new instance of a Todo
View using an empty Todo model. afterEach() is used to remove the previous #todo
List <ul> as well as the previous instance of the view.

describe('Tests for TodoView', function() {

beforeEach(function() {
S('body').append('<ul id="todoList"></ul>');
this.todoView = new TodoView({ model: new Todo() });

s

280 | Chapter 13:Jasmine

www.it-ebooks.info


http://www.it-ebooks.info/

afterEach(function() {
this.todoView.remove();
S('#todoList').remove();
H;

The first spec useful to write is a check that the TodoView we've created is using the
correct tagName (element or class name). The purpose of this test is to make sure it was
correctly tied to a DOM element when it was created.

Backbone views typically create empty DOM elements once initialized; however, these
elements are not attached to the visible DOM in order to allow them to be constructed
without an impact on rendering performance.

it('Should be tied to a DOM element when created, based off the property
provided.', function() {
//what html element tag name represents this view?
expect(todoView.el.tagName.toLowerCase()).toBe('li');

b;

Once again, if the TodoView has not already been written, we will experience failing
specs. Thankfully, solving this is as simple as creating a new Backbone.View with a
specific tagName.

var todoView = Backbone.View.extend({

tagName: '11'

s
If instead of testing against the tagName you would prefer to use a className instead,
you can take advantage of jasmine-jquery’s toHaveClass() matcher:

it('Should have a class of "todos"'), function(){

expect(this.view.$el).toHaveClass('todos');

s
The toHaveClass() matcher operates on jQuery objects and if the plug-in hadn’t been
used, an exception would have been thrown. It is also possible to test for the class
Name by accessing el.className if you don’t use jasmine-jquery.

You may have noticed that in beforeEach(), we passed our view an initial (albeit un-
filled) Todo model. Views should be backed by a model instance that provides data. As
this is quite important to our view’s ability to function, we can write a spec to ensure a
model is defined (using the toBeDefined() matcher) and then test attributes of the
model to ensure defaults both exist and are the values we expect them to be.

it('Is backed by a model instance, which provides the data.', function() {
expect(todoView.model).toBeDefined();

// what's the value for Todo.get('done') here?

Views | 281

www.it-ebooks.info


http://www.it-ebooks.info/

expect(todoView.model.get('done')).toBe(false); // or toBeFalsy()
b

View rendering

Next we’re going to take a look at writing specs for view rendering. Specifically, we want
to test that our TodoView elements are actually rendering as expected.

In smaller applications, those new to BDD might argue that visual confirmation of view
rendering could replace unit testing of views. The reality is that when you’re dealing
with applications that might grow to alarge number of views, it makes sense to automate
this process as much as possible from the get-go. There are also aspects of rendering
that require verification beyond what is visually presented on screen (which we’ll see
very shortly).

We're going to begin testing views by writing two specs. The first spec will check that
the view’s render () method is correctly returning the view instance, which is necessary
for chaining. Our second spec will check that the HTML produced is exactly what we
expect based on the properties of the model instance that’s been associated with our
TodoView.

Unlike some of the previous specs we've covered, this section will make greater use of
beforeEach() to both demonstrate how to use nested suites and also ensure a consistent
set of conditions for our specs. In our first example we’re simply going to create a sample
model (based on Todo) and instantiate a TodoView with it.

describe('TodoView', function() {

beforeEach(function() {
this.model = new Backbone.Model({
text: 'My Todo',
order: 1,
done: false
b;
this.view = new TodoView({model:this.model});

s
describe('Rendering', function() {

it('returns the view object', function() {
expect(this.view.render()).toEqual(this.view);

s

it('produces the correct HTML', function() {
this.view.render();

// let's use jasmine-jquery's toContain() to avoid
// testing for the complete content of a todo's markup
expect(this.view.el.innerHTML)

.toContain('<label class="todo-content">My Todo</label>');

282 | Chapter 13: Jasmine

www.it-ebooks.info


http://www.it-ebooks.info/

s
s
s

When these specs are run, only the second one (produces the correct HTML) fails. Our
first spec (returns the view object), which is testing that the TodoView instance is re-
turned from render (), passes since this is Backbone’s default behavior and we haven't
overwritten the render () method with our own version yet.

R
o)

For the purposes of maintaining readability, all template examples in this sec-
. tion will use a minimal version of the following todo view template. As it’s
0% relatively trivial to expand this, please feel free to refer to this sample if needed:

<div class="todo <%= done ? 'done' : '' %>">
<div class="display">
<input class="check" type="checkbox" <%= done ?
'checked="checked""' : "' %> />
<label class="todo-content"s<%= text %></label>
<span class="todo-destroy"></span>
</div>
<div class="edit">
<input class="todo-input" type="text" value="<%= content %>" [>
</div>
</div>

The second spec fails with the following message:
Expected '' to contain '<label class="todo-content">My Todo</label>'.

The reason for this is that the default behavior for render () doesn’t create any markup.
Let’s write a replacement for render () that fixes this:

render: function() {
var template = '<label class="todo-content">+++PLACEHOLDER+++</label>";
var output = template
.replace('+++PLACEHOLDER+++', this.model.get('text'));
this.Sel.html(output);
return this;

}

The previous code specifies an inline string template and replaces fields found in the
template within the +++PLACEHOLDER+++ blocks with their corresponding values from
the associated model. As we’re also returning the TodoView instance from the method,
the first spec will still pass.

It would be impossible to discuss unit testing without mentioning fixtures. Fixtures
typically contain test data (such as HTML) that is loaded in when needed (either locally
or from an external file) for unit testing. So far we've been establishing jQuery

Views | 283

www.it-ebooks.info


http://www.it-ebooks.info/

expectations based on the view’s el property. This works for a number of cases; however,
there are instances where it may be necessary to render markup into the document. The
optimal way to handle this within specs is through using fixtures (another feature
brought to us by the jasmine-jquery plug-in).

Rewriting the last spec to use fixtures would look as follows:

describe('TodoView', function() {
beforeEach(function() {

setFixtures('<ul class="todos"></ul>");

s

describe('Template', function() {

beforeEach(function() {
$('.todos").append(this.view.render().el);
b;

1t('has the correct text content', function() {
expect($('.todos').find("'.todo-content'))
.toHaveText('My Todo');
b;

s
s

What we’re now doing in this spec is appending the rendered todo item into the fixture.
We then set expectations against the fixture, which may be desirable when a view is set
up against an element that already exists in the DOM. We’d have to provide both the
fixture and test the el property, correctly picking up the expected element when the
view is instantiated.

Rendering with a templating system

When a user marks a todo item as complete (done), we may wish to provide visual
feedback (such as a line through the text) to differentiate the item from those that are
remaining. We can do this by attaching a new class to the item. Let’s begin by writing a
test:

describe('When a todo is done', function() {

beforeEach(function() {
this.model.set({done: true}, {silent: true});
$('.todos").append(this.view.render().el);
s

284 | Chapter 13: Jasmine

www.it-ebooks.info


http://www.it-ebooks.info/

it('has a done class', function() {
expect($('.todos .todo-content:first-child'))
.toHaveClass('done');

s
19K

This will fail with the following message:
Expected '<label class="todo-content">My Todo</label>' to have class 'done'.
which we can fix in the existing render () method as follows:

render: function() {

var template = '<label class="todo-content">' +
'<%= text %></label>';

var output = template
.replace('<%= text %>', this.model.get('text'));

this.Sel.html(output);

if (this.model.get('done')) {
this.$('.todo-content').addClass('done');

}

return this;

}

However, this can get unwieldy fairly quickly. As the level of complexity and logic in
our templates increases, so do the challenges associated with testing them. We can ease
this process by taking advantage of modern templating libraries, many of which have
already been demonstrated to work well with testing solutions such as Jasmine.

JavaScript templating systems—such as Handlebars, Mustache, and Underscore’s own
microtemplating—support conditional logic in template strings. What this effectively
means is that we can add if/else/ternery expressions inline that can then be evaluated
as needed, allowing us to build even more powerful templates.

In our case, we are going to use the microtemplating found in Underscore.js, as no
additional files are required to use it and we can easily modify our existing specs to use
it without a great deal of effort.

Assuming our template is defined using a <script> tag of ID myTemplate:

<script type="text/template" id="myTemplate">
<div class="todo <%= done ? 'done' : '' %>">

<div class="display">
<input class="check" type="checkbox"
<%= done ? 'checked="checked"' : '' %> />
<label class="todo-content"><%= text %></label>
<span class="todo-destroy"></span>

</div>

<div class="edit">
<input class="todo-input" type="text" value="<%= content %>" />

</div>

Views | 285

www.it-ebooks.info


http://handlebarsjs.com/
http://mustache.github.com/
http://underscorejs.org/#template
http://www.it-ebooks.info/

</div>
</script>

Our TodoView can be modified to use Underscore templating as follows:

var TodoView = Backbone.View.extend({

tagName: 'li',
template: _.template($('#myTemplate').html()),

initialize: function(options) {
Y/
1,

render: function() {
this.$el.html(this.template(this.model.toJSON()));
return this;

1

s

So, what’s going on here? We're first defining our template in a <script> tag with a
custom script type (for example, type=text/template). As this isn’t a script type any
browser understands, it’s simply ignored; however, referencing the script by an id at-
tribute allows the template to be kept separate from other parts of the page.

In our view, were the using the Underscore _. template() method to compile our tem-
plate into a function that we can easily pass model data to later. In the line this.mod
el.toJSON() we are simply returning a copy of the model’s attributes for JSON stringi-
fication to the template method, creating a block of HTML that can now be appended
to the DOM.

Note that, ideally, all of your template logic should exist outside of your specs, either in
individual template files or embedded via <script> tags within your SpecRunner. This
is generally more maintainable.

If you are working with much smaller templates and are not doing this, there is, however,
a useful trick that can be applied to automatically create or extend templates in the
Jasmine shared functional scope for each test.

By creating a new directory (say, templates) in the spec folder and including a new script
file with the following contents into SpecRunner.html, we can manually add custom
attributes representing smaller templates we wish to use:

beforekach(function() {
this.templates = _.extend(this.templates || {3}, {
todo: '<label class="todo-content">' +
'<%= text %>' +
'</label>'

286 | Chapter 13:Jasmine

www.it-ebooks.info


http://www.it-ebooks.info/

i9H
19K

To finish this off, we simply update our existing spec to reference the template when
instantiating the TodoView:

describe('TodoView', function() {
beforeEach(function() {

this.view = new TodoView({
model: this.model,
template: this.templates.todo

19K
s

s

The existing specs we've looked at would continue to pass using this approach, leaving
us free to adjust the template with some additional conditional logic for todos with a
status of done:

beforekach(function() {

this.templates = _.extend(this.templates || {3}, {
todo: '<label class="todo-content <%= done ? 'done' : '' %>"' +
'<%= text %>' +
'</label>'
s
b

This will now also pass without any issues; however, as mentioned, this last approach
probably only makes sense if youre working with smaller, highly dynamic templates.

Exercise

As an exercise, I recommend looking at the Jasmine Koans in practicals\jasmine-
koans and trying to fix some of the purposefully failing tests it has to offer. This is an
excellent way of learning how Jasmine specs and suites work, and working through the
examples (without peeking back) will put your Backbone skills to the test too.

Exercise | 287

www.it-ebooks.info


http://www.it-ebooks.info/

Further Reading

o “Testing Backbone Apps with SinonJS” by James Newbery
o “Jasmine Backbone.js Revisited” by Chris Strom

 “Phantom.js and Backbone.js (and require.js)” by Chris Strom

Summary

We have now covered how to write Jasmine tests for Backbone.js models, collections,
and views. While testing routing can at times be desirable, some developers feel it can
be optimal to leave this to third-party tools such as Selenium.

288 | Chapter 13: Jasmine

www.it-ebooks.info


http://bit.ly/13WgsG7
http://bit.ly/11hHphF
http://bit.ly/ZmkeWt
http://www.it-ebooks.info/

CHAPTER 14
QUnit

QUnit is a powerful JavaScript test suite written by jQuery team member Jérn Zaeffer-
er and used by many large open source projects (such as jQuery and Backbone.js) to
test their code. It’s capable of testing both standard JavaScript code in the browser and
code on the server side (where supported environments include Rhino, V8, and
SpiderMonkey). This makes it a robust solution for a large number of use cases.

Quite a few Backbone.js contributors feel that QUnit is a better introductory framework
for testing if you don’t wish to start off with Jasmine and BDD right away. As we'll see
later on in this chapter, QUnit can also be combined with third-party solutions such as
Sinon]JS to produce an even more powerful testing solution supporting spies and mocks,
which some say is preferable over Jasmine.

My personal recommendation is that it's worth comparing both frameworks and opting
for the solution that you feel the most comfortable with.

Getting Set Up

Luckily, getting QUnit set up is a fairly straightforward process that will take less than
five minutes.

We first set up a testing environment composed of three files:

o An HTML structure for displaying test results
o The qunit.js file composing the testing framework

o The qunit.css file for styling test results

The latter two of these can be downloaded from the QUnit website.

If you would prefer, you can use a hosted version of the QUnit source files for testing
purposes. The hosted URLSs can be found at https://github.com/jquery/qunit/.

289

www.it-ebooks.info


http://bassistance.de/
http://bassistance.de/
http://qunitjs.com
https://github.com/jquery/qunit/
http://www.it-ebooks.info/

Sample HTML with QUnit-Compatible Markup

<!DOCTYPE html>
<html>
<head>
<title>QUnit Test Suite</title>

<link rel="stylesheet" href="qunit.css">
<script src="qunit.js"></script>

<!-- Your application -->
<script src="app.]js"></script>

<!-- Your tests -->

<script src="tests.js"></script>
</head>
<body>

<h1 id="qunit-header"s>QUnit Test Suite</hi>
<h2 id="qunit-banner"></h2>
<div id="qunit-testrunner-toolbar"s</div>
<h2 id="qunit-userAgent"s</h2>
<ol id="qunit-tests">test markup, hidden.</ol>
</body>
</html>

Lets go through the elements with QUnit mentioned in their ID. When QUnit is
running:

e qunit-header shows the name of the test suite.

 qunit-banner shows up as red if a test fails and green if all tests pass.

o qunit-testrunner-toolbar contains additional options for configuring the dis-
play of tests.

o qunit-userAgent displays the navigator.userAgent property.

e qunit-tests is a container for our test results.

When running correctly, the preceding test runner looks as shown in Figure 14-1.

290 | Chapter 14: QUnit

www.it-ebooks.info


http://www.it-ebooks.info/

QUnit Test Suite = s

[ Hide passed tests

Mozilla/5.0 (Macintosh; Intel Mac OS X 10_7_3) AppleWebKit/535.1 (KHTML, like Gecka)

Chrome/14.0.824.0 Safari/535.1

Tests completed in 49 miliseconds.
34 tests of 34 passed, 0 failed.

1. About Backb Events: Can extend j ipt objects to support t ts. (0, 3, 3)

2. About Backb Events: Alk us to bind and trigger custom named events on an object. (0, 1,
1)

3. About Backb Events: Also p along any arg ts to the callback when an event is

triggered. (0, 1, 1)

4. About Backbone.Events: Can also bind the passed context to the event callback. (0, 1, 1)

Figure 14-1. The QUnit test runner executing Backbone unit tests in the browser

The numbers of the form (a, b, ¢) after each test name correspond to a) failed asserts,
b) passed asserts, and c) total asserts. Clicking on a test name expands it to display all
of the assertions for that test case. Assertions in green have successfully passed (see
Figure 14-2).

QUnit Test Suite = [

[JHide passed tests

Mozilla/5.0 (Macintosh; Intel Mac OS X 10_7_3) AppleWebKit/535.1 (KHTML, like Gecko)

Chrome/14.0.824.0 Safari/535.1

Tests completed in 59 miliseconds.
34 tests of 34 passed, O failed.

1. About Backbone.Events: Can extend javascript objects to support custom events. (0, 3,
3)

2. About Backbone.Events: Allows us to bind and trigger custom named events on an object. (0, 1,
1)

—_— 1. okay

3. About Backbone.Events: Also passes along any arguments to the callback when an event is
triggered. (0, 1, 1)

Figure 14-2. Assertions that have successfully passed are displayed with a green marker

If any tests fail, however, the test gets highlighted (and the QUnit banner at the top
switches to red, as shown in Figure 14-3).

GettingSetUp | 291

www.it-ebooks.info


http://www.it-ebooks.info/

QUnit Test Suite = .

[JJHide passed tests

Mozilla/5.0 (Macintosh; Intel Mac OS X 10_7_3) AppleWebKit/535.1 (KHTML, like Gecko)

Chrome/14.0.824.0 Safari/535.1

Tests completed in 60 miliseconds.
33 tests of 34 passed, 1 failed.

1. About Backbone.Events: Can extend javascript objects to support custom events. (0, 3, 3)

1. failed

3. About Backbone.Events: Also passes along any arguments to the callback when an event is
triggered. (0, 1, 1)

Figure 14-3. Failed tests in the QUnit test runner are highlighted in red

Assertions

QUnit supports a number of basic assertions, which are used in tests to verify that the
result being returned by our code is what we expect. If an assertion fails, we know that
a bug exists. Similar to Jasmine, QUnit can be used to easily test for regressions. Specif-
ically, when a bug is found one can write an assertion to test the existence of the bug,
write a patch, and then commit both. If subsequent changes to the code break the test,
you'll know what was responsible and be able to address it more easily.

Some of the supported QUnit assertions we're going to look at first are:

ok ( state, message )
Passes if the first argument is truthy

equal ( actual, expected, message )
A simple comparison assertion with type coercion

notEqual ( actual, expected, message )
The opposite of equal()

expect( amount )
The number of assertions expected to run within each test

strictEqual( actual, expected, message)
Offers a much stricter comparison than equal() and is considered the preferred
method of checking equality, as it avoids stumbling on subtle coercion bugs

292 | Chapter 14: QUnit

www.it-ebooks.info


http://www.it-ebooks.info/

deepEqual( actual, expected, message )
Similar to strictEqual, comparing the contents (with ===) of the given objects,
arrays, and primitives

Basic Test Case Using test( name, callback )

Creating new test cases with QUnit is relatively straightforward and can be done via
test(), which constructs a test where the first argument is the name of the test to be
displayed in our results and the second is a callback function containing all of our
assertions. This is called as soon as QUnit is running.

var myString = 'Hello Backbone.js';
test( 'Our first QUnit test - asserting results', function(){

// ok( boolean, message )
ok( true, 'the test succeeds');
ok( false, 'the test fails');

// equal( actualValue, expectedValue, message )
equal( myString, 'Hello Backbone.js', 'Expected value: Hello Backbone.js!');
b

What were doing here is defining a variable with a specific value and then testing to
ensure the value was what we expected it to be. We did so using the comparison assertion
equal(), which expects its first argument to be a value being tested and the second
argument to be the expected value. We also used ok(), which allows us to easily test
against functions or variables that evaluate to Booleans.

R
o)

Optionally in our test case, we could have passed an expected value to
. test() defining the number of assertions we expect to run. This takes
0% the form: test( name, [expected], test ); or by manually setting
the expectation at the top of the test function, like so: expect( 1 ).I
recommend you make a habit of always defining how many assertions
you expect. More on this later.

Comparing the Actual Output of a Function Against the
Expected Output

As testing a simple static variable is fairly trivial, we can take this further to test actual
functions. In the following example, we test the output of a function that reverses a
string to ensure that the output is correct using equal() and notEqual():

function reverseString( str ){
return str.split('').reverse().join('");

}

Assertions | 293

www.it-ebooks.info


http://www.it-ebooks.info/

test( 'reverseString()', function() {
expect( 5 );
equal( reverseString('hello'), 'olleh', 'The value expected was olleh' );
equal( reverseString('foobar'), 'raboof', 'The value expected was raboof' );
equal( reverseString('world'), 'dlrow', 'The value expected was dlrow' );
notEqual( reverseString('world'), 'dlroo', 'The value was expected to not
be dlroo' );
equal( reverseString('bubble'), 'double', 'The value expected was elbbub' );
b

Running these tests in the QUnit test runner (which you would see when your HTML
test page was loaded), we would find that four of the assertions pass while the last one
does not. Thereason the testagainst 'double' fails is because it was purposefully written
incorrectly. In your own projects, if a test fails to pass and your assertions are correct,
you've probably just found a bug!

Adding Structure to Assertions

Housing all of our assertions in one test case can quickly become difficult to maintain,
but luckily QUnit supports structuring blocks of assertions more cleanly. This can be
done using module(), a method that allows us to easily group tests together. A typical
approach to grouping might be keeping multiple tests for a specific method as part of
the same group (module).

Basic QUnit Modules

module( 'Module One' );
test( 'first test', function() {} );
test( 'another test', function() {} );

module( 'Module Two' );
test( 'second test', function() {} );
test( 'another test', function() {} );

module( 'Module Three' );
test( 'third test', function() {} );
test( 'another test', function() {} );

We can take this further by introducing setup() and teardown() callbacks to our mod-
ules, where setup() is run before each test and teardown() is run after each test.

Using setup() and teardown()

module( 'Module One', {
setup: function() {
// run before
1,

teardown: function() {

294 | Chapter 14: QUnit

www.it-ebooks.info


http://www.it-ebooks.info/

// run after
}
b;

test('first test', function() {
// run the first test
H;

These callbacks can be used to define (or clear) any components we wish to instantiate
for use in one or more of our tests. As we'll see shortly, this is ideal for defining new
instances of views, collections, models, or routers from a project that we can then ref-
erence across multiple tests.

Using setup() and teardown() for Instantiation and Clean Up

// Define a simple model and collection modeling a store and
// list of stores

var Store = Backbone.Model.extend({});

var StorelList = Backbone.Collection.extend({
model: Store,
comparator: function( Store ) { return Store.get('name') }

19K

// Define a group for our tests
module( 'StorelList sanity check', {
setup: function() {
this.list = new Storelist;
this.list.add(new Store({ name: 'Costcutter' }));
this.list.add(new Store({ name: 'Target' }));
this.list.add(new Store({ name: 'Walmart' }));
this.list.add(new Store({ name: 'Barnes & Noble' }));
}’
teardown: function() {
window.errors = null;
}
b

// Test the order of items added
test( 'test ordering', function() {
expect( 1 );
var expected = ['Barnes & Noble', 'Costcutter', 'Target', 'Walmart'];
var actual = this.list.pluck('name');
deepEqual( actual, expected, 'is maintained by comparator' );

19K

Here, a list of stores is created and stored on setup(). A teardown() callback is used to
simply clear alist of errors we might be storing within the window scope, but is otherwise
not needed.

Adding Structure to Assertions | 295

www.it-ebooks.info


http://www.it-ebooks.info/

Assertion Examples

Before we continue any further, let’s review some more examples of how QUnit’s various
assertions can be correctly used when writing tests:

equal
A comparison assertion. It passes if actual == expected.

test( 'equal', 2, function() {
var actual = 6 - 5;
equal( actual, true, 'passes as 1 == true' );
equal( actual, 1, 'passes as 1 == 1' );

s

notEqual
A comparison assertion. It passes if actual != expected.

test( 'notEqual', 2, function() {
var actual = 6 - 5;
notEqual( actual, false, 'passes as 1 != false' );
notEqual( actual, 0, 'passes as 1 !=0' );

s

strictEqual
A comparison assertion. It passes if actual === expected.

test( 'strictEqual', 2, function() {
var actual = 6 - 5;
strictEqual( actual, true, 'fails as 1 !== true' );
strictEqual( actual, 1, 'passes as 1 === 1" );

s

notStrictEqual
A comparison assertion. It passes if actual !== expected.

test('notStrictEqual', 2, function() {
var actual = 6 - 5;
notStrictEqual( actual, true, ‘'passes as 1 !== true' );
notStrictEqual( actual, 1, 'fails as 1 === 1" );

b;

deepEqual
A recursive comparison assertion. Unlike strictEqual(), it works on objects, ar-
rays, and primitives.

test('deepEqual', 4, function() {
var actual = {q: 'foo', t: 'bar'};
var el = $('div');
var children = $('div').children();

equal( actual, {q: 'foo', t: 'bar'}, 'fails - objects are not equal
using equal()' );
deepEqual( actual, {q: 'foo', t: 'bar'},

296 | Chapter 14: QUnit

www.it-ebooks.info


http://www.it-ebooks.info/

'passes - objects are equal' );
equal( el, children, 'fails - jQuery objects are not the same' );
deepEqual(el, children, 'fails - objects not equivalent' );

s

notDeepEqual
A comparison assertion. This returns the opposite of deepEqual.

test('notDeepEqual', 2, function() {
var actual = {q: 'foo', t: 'bar'};
notEqual( actual, {q: 'foo', t: 'bar'}, 'passes - objects are not equal' );
notDeepEqual( actual, {q: 'foo', t: 'bar'}, 'fails - objects are
equivalent' );

s

raises
An assertion that tests if a callback throws any exceptions.

test('raises', 1, function() {
raises(function() {
throw new Error( 'Oh no! It's an error!' );
}, 'passes - an error was thrown inside our callback');

H;

Fixtures

From time to time, we may need to write tests that modify the DOM. Managing the
cleanup of such operations between tests can be a genuine pain, but thankfully QUnit
has a solution to this problem in the form of the #qunit-fixture:

<!DOCTYPE html>
<html>
<head>
<title>QUnit Test</title>
<link rel="stylesheet" href="qunit.css">
<script src="qunit.js"></script>
<script src="app.]js"></script>
<script src="tests.js"></script>
</head>
<body>
<h1 id="qunit-header"s>QUnit Test</h1>
<h2 id="qunit-banner"s></h2>
<div id="qunit-testrunner-toolbar"s></div>
<h2 id="qunit-userAgent"></h2>
<ol id="qunit-tests"></ol>
<div id="qunit-fixture"s</div>
</body>
</html>

We can either opt to place static markup in the fixture or just insert/append any DOM
elements we may need to it. QUnit will automatically reset the innerHTML of the fixture

Fixtures | 297

www.it-ebooks.info


http://www.it-ebooks.info/

after each test to its original value. In case you're using jQuery, it’s useful to know that
QUnit checks for its availability and will opt to use $(el).html() instead, which will
clean up any jQuery event handlers too.

Fixtures Example

Now let’s go through a more complete example of using fixtures. One thing that most
of us are used to doing in jQuery is working with lists—they’re often used to define the
markup for menus, grids, and anumber of other components. You may have used jQuery
plug-ins before that manipulated a given list in a particular way, and it can be useful to
test that the final (manipulated) output of the plug-in is what was expected.

For the purposes of our next example, we're going to use Ben Alman’s $.enumerate()
plug-in, which can prepend each item in a list by its index, optionally allowing us to set
what the first number in the list is. The code snippet for the plug-in can be found here,
followed by an example of the output it generates:

$.fn.enumerate = function( start ) {
if ( typeof start !== 'undefined' ) {
// Since ‘start’ value was provided, enumerate and return
// the initial jQuery object to allow chaining.

return this.each(function(i){
$(this).prepend( '<b>' + ( 1 + start ) + '</b> "' );
b

} else {
// Since no ‘start’ value was provided, function as a
// getter, returning the appropriate value from the first
// selected element.

var val = this.eq( 0 ).children( 'b' ).eq( 0 ).text();
return Number( val );
}
b

/*
<ul>
<li>1. hello</li>
<li>2. world</li>
<li>3. i</li>
<li>4. am</li>
<li>5. foo</li>
</ul>
*/

Let’s now write some tests for the plug-in. First, we define the markup for a list con-
taining some sample items inside our qunit-fixture element:

298 | Chapter 14: QUnit

www.it-ebooks.info


http://www.it-ebooks.info/

<div id="qunit-fixture"s
<ul>
<li>hello</1i>
<li>world</1i>
<li>i</li>
<lisam</1i>
<li>foo</1i>
</ul>
</div>

Next, we need to think about what should be tested. $.enumerate() supports a few
different use cases, including:

No arguments passed
S(el).enumerate()

0 passed as an argument
$(el).enumerate(0)

1 passed as an argument
$(el).enumerate(1)

As the text value for each list item is of the form n. item-text and we require this only
to test against the expected output, we can simply access the content using $(el) .eq(in
dex).text(). (For more information on .eq(), see http://api.jquery.com/eq/.)

Finally, here are our test cases:

module( ' jQuery#enumerate');

test( 'No arguments passed', 5, function() {
var items = $('#qunit-fixture 1i').enumerate(); // 0
equal( items.eq(0).text(), '0. hello', 'first item should have index 0' );
equal( items.eq(1).text(), '1. world', 'second item should have index 1' );
equal( items.eq(2).text(), '2. i', 'third item should have index 2' );
equal( items.eq(3).text(), '3. am', 'fourth item should have index 3' );
equal( items.eq(4).text(), '4. foo', 'fifth item should have index 4' );

s

test( 'O passed as an argument', 5, function() {
var items = $('#qunit-fixture 1i').enumerate( 0 );
equal( items.eq(0).text(), '0. hello', 'first item should have index 0' );
equal( items.eq(1l).text(), '1. world', 'second item should have index 1' );
equal( items.eq(2).text(), '2. i', 'third item should have index 2' );
equal( items.eq(3).text(), '3. am', 'fourth item should have index 3' );
equal( items.eq(4).text(), '4. foo', 'fifth item should have index 4' );
b

test( 'l passed as an argument', 3, function() {
var items = $('#qunit-fixture 1i').enumerate( 1 );
equal( items.eq(0).text(), '1. hello', 'first item should have index 1' );
equal( items.eq(1).text(), '2. world', 'second item should have index 2' );
equal( items.eq(2).text(), '3. i', 'third item should have index 3' );

Fixtures | 299

www.it-ebooks.info


http://api.jquery.com/eq/
http://www.it-ebooks.info/

equal( items.eq(3).text(), '4. am', 'fourth item should have index 4' );
equal( items.eq(4).text(), '5. foo', 'fifth item should have index 5' );
H;

Asynchronous Code

As with Jasmine, the effort required to run synchronous tests with QUnit is fairly min-
imal. That said, what about tests that require asynchronous callbacks (such as expensive
processes, Ajax requests, and so on)? When we’re dealing with asynchronous code,
rather than letting QUnit control when the next test runs, we can tell it that we need it
to stop running and wait until it’s OK to continue once again.

Remember: running asynchronous code without any special considerations can cause
incorrect assertions to appear in other tests, so we want to make sure we get it right.

Writing QUnit tests for asynchronous code is made possible via the start() and stop()
methods, which programmatically set the start and stop points during such tests. Here’s
a simple example:

test('An async test', function(){
stop();
expect( 1 );
$.ajax({
url: '/test',
dataType: 'json',
success: function( data ){
deepEqual(data, {
topic: 'hello',
message: 'hi there!''
s
ok(true, 'Asynchronous test passed!');
start();
}
b;
H;

A jQuery $.ajax() request is used to connect to a test resource and assert that the data
returned is correct. deepEqual() is used here because it allows us to compare different
data types (for example, objects, arrays) and ensures that what is returned is exactly
what were expecting. We know that our Ajax request is asynchronous, so we first call
stop(), then run the code making the request, and finally, at the very end of our callback,
inform QUnit that it is OK to continue running other tests.

300 | Chapter 14: QUnit

www.it-ebooks.info


http://www.it-ebooks.info/

Rather than including stop(), we can simply exclude it and substitute
. test() with asyncTest() if we prefer. This improves readability when
%' you're dealing with a mixture of asynchronous and synchronous tests
in your suite. While this setup should work fine for many use cases,
there is no guarantee that the callback in our $.ajax() request will
actually get called. To factor this into our tests, we can use expect()
once again to define how many assertions we expect to see within our
test. This is a healthy safety blanket, as it ensures that if a test completes
with an insufficient number of assertions, we know something went
wrong and can fix it.

Asynchronous Code | 301

www.it-ebooks.info


http://www.it-ebooks.info/

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 15
SinonJS

Similar to the section on testing Backbone.js apps using the Jasmine BDD framework,
we're nearly ready to take what we've learned and write a number of QUnit tests for our
Todo application.

Before we start, though, you may have noticed that QUnit doesn’t support test spies.
Test spies are functions that record arguments, exceptions, and return values for any of
their calls. They’re typically used to test callbacks and how functions may be used in the
application being tested. In testing frameworks, spies usually are anonymous functions
or wrappers around functions that already exist.

What Is SinonJS?

In order for us to substitute support for spies in QUnit, we will be taking advantage of
a mocking framework called SinonJS by Christian Johansen. We will also be using the
SinonJS-QUnit adapter, which provides seamless integration with QUnit (meaning set-
up is minimal). Sinon]JS is completely test-framework—agnostic and should be easy to
use with any testing framework, so it’s ideal for our needs.

The framework supports three features we’ll be taking advantage of for unit testing our
application:

« Anonymous spies

o Spying on existing methods

o A rich inspection interface

303

www.it-ebooks.info


http://sinonjs.org/
http://sinonjs.org/qunit/
http://www.it-ebooks.info/

Basic Spies

Using this.spy() without any arguments creates an anonymous spy. This is compa-
rable to jasmine.createSpy(). We can observe basic usage of a Sinon]JS spy in the
following example:

test('should call all subscribers for a message exactly once', function () {

var message = getUniqueString();
var spy = this.spy();

PubSub.subscribe( message, spy );
PubSub.publishSync( message, 'Hello World' );

ok( spy.calledOnce, 'the subscriber was called once' );

19K

Spying on Existing Functions

We can also use this.spy() to spy on existing functions (like jQuery’s $.ajax) in the
example that follows. When we are spying on a function that already exists, the function
behaves normally, but we get access to data about its calls, which can be very useful for
testing purposes.

test( 'should inspect the jQuery.get]SON usage of jQuery.ajax', function () {
this.spy( jQuery, 'ajax' );

jQuery.getJSON( '/todos/completed' );

ok( jQuery.ajax.calledOnce );
equals( jQuery.ajax.getCall(0).args[0].url, '/todos/completed' );
equals( jQuery.ajax.getCall(0).args[0].dataType, 'json' );

H;

Inspection Interface

SinonJS comes with a rich spy interface that allows us to test whether a spy was called
with a specific argument, determine if it was called a specific number of times, and test
against the values of arguments. You can find a complete list of features supported in
the interface on SinonJS.org, but let’s take a look at some examples demonstrating some
of the most commonly used ones.

Matching arguments: Test that a spy was called with a specific set of arguments

test( 'Should call a subscriber with standard matching': function () {
var spy = sinon.spy();

PubSub.subscribe( 'message', spy );
PubSub.publishSync( 'message', { id: 45 } );

304 | Chapter 15:SinonJS

www.it-ebooks.info


http://sinonjs.org/docs/
http://www.it-ebooks.info/

assertTrue( spy.calledWith( { id: 45 } ) );
b

Stricter argument matching: Test that a spy was called at least once with specific arguments
and no others

test( 'Should call a subscriber with strict matching': function () {
var spy = sinon.spy();

PubSub.subscribe( 'message', spy );
PubSub.publishSync( 'message', 'many', 'arguments' );
PubSub.publishSync( 'message', 12, 34 );

// This passes
assertTrue( spy.calledWith('many') );

// This however, fails
assertTrue( spy.calledWithExactly( 'many' ) );
b;

Testing call order: Test that a spy was called before or after another spy

test( 'Should call a subscriber and maintain call order': function () {
var a = sinon.spy();
var b = sinon.spy();

PubSub.subscribe( 'message', a );
PubSub.subscribe( 'event', b );

PubSub.publishSync( 'message', { id: 45 } );
PubSub.publishSync( 'event', [1, 2, 3] );

assertTrue( a.calledBefore(b) );
assertTrue( b.calledAfter(a) );
H;

Match execution counts: Test that a spy was called a specific number of times

test( 'Should call a subscriber and check call counts', function () {
var message = getUniqueString();
var spy = this.spy();

PubSub.subscribe( message, spy );
PubSub.publishSync( message, 'some payload' );
// Passes if spy was called once and only once.

ok( spy.calledOnce ); // calledTwice and calledThrice are also supported

// The number of recorded calls.
equal( spy.callCount, 1 );

// Directly checking the arguments of the call

What s SinonJS? | 305

www.it-ebooks.info


http://www.it-ebooks.info/

equals( spy.getCall(0).args[0], message );
s

Stubs and Mocks

Sinon]S also supports two other powerful features: stubs and mocks. Both stubs and
mocks implement all of the features of the spy API, but have some added functionality.

Stubs

A stub allows us to replace any existing behavior for a specific method with something
else. Stubs can be very useful for simulating exceptions and are most often used to write
test cases when certain dependencies of your codebase may not yet be written.

Let us briefly re-explore our Backbone Todo application, which contained a Todo model
and a TodoL1ist collection. For the purpose of this walkthrough, we want to isolate our
TodoList collection and fake the Todo model to test how adding new models might
behave.

We can pretend that the models have yet to be written just to demonstrate how stubbing
might be carried out. A shell collection containing only a reference to the model to be
used might look like this:

var TodolList = Backbone.Collection.extend({
model: Todo

s

// Let's assume our instance of this collection is
this.todolList;

Assuming our collection is instantiating new models itself, it’s necessary for us to stub
the model’s constructor function for the test. We can do this by creating a simple stub
as follows:

this.todoStub = sinon.stub( window, 'Todo' );

The preceding creates a stub of the Todo method on the window object. When stubbing
a persistent object, we must restore it to its original state. We can do this in a tear
down() as follows:

this.todoStub.restore();

After this, we need to alter what the constructor returns, which we can do efficiently
using a plain Backbone.Model constructor. While this isn't a Todo model, it does still
provide us an actual Backbone model.

setup: function() {
this.model = new Backbone.Model({
id: 2,
title: 'Hello world'

306 | Chapter 15: SinonJS

www.it-ebooks.info


http://www.it-ebooks.info/

H;
this.todoStub.returns( this.model );

s

The expectation here might be that this snippet would ensure our TodoList collection
always instantiates a stubbed Todo model, but because a reference to the model in the
collection is already present, we need to reset the model property of our collection as
follows:

this.todoList.model = Todo;

The result of this is that when our TodoList collection instantiates new Todo models,
it will return our plain Backbone model instance as desired. This allows us to write a
test for the addition of new model literals as follows:

module( 'Should function when instantiated with model literals', {
setup:function() {

this.todoStub = sinon.stub(window, 'Todo');
this.model = new Backbone.Model({

id: 2,

title: 'Hello world'
b

this.todoStub.returns(this.model);
this.todos = new TodolList();

// Let's reset the relationship to use a stub
this.todos.model = Todo;

// add a model
this.todos.add({
id: 2,
title: 'Hello world'
b;
}s

teardown: function() {
this.todoStub.restore();
}

s

test('should add a model', function() {
equal( this.todos.length, 1 );
bs;

test('should find a model by id', function() {
equal( this.todos.get(5).get('id'), 5 );
s
b

Stubsand Mocks | 307

www.it-ebooks.info


http://www.it-ebooks.info/

Mocks

Mocks are effectively the same as stubs, but they mock a complete API and have some
built-in expectations for how they should be used. The difference between a mock and
a spy is that the expectations for mocks’ use are predefined and the test will fail if any
of these are not met.

Here’s a snippet with sample usage of a mock based on PubSub]S. Here, we have a
clearTodo() method as a callback and use mocks to verify its behavior.

test('should call all subscribers when exceptions', function () {
var myAPI = { clearTodo: function () {} };

var spy = this.spy();
var mock = this.mock( myAPI );
mock.expects( 'clearTodo' ).once().throws();

PubSub.subscribe( 'message', myAPI.clearTodo );
PubSub.subscribe( 'message', spy );
PubSub.publishSync( 'message', undefined );

mock.verify();
ok( spy.calledOnce );
H;

Exercise

We can now begin writing tests for our Todo application, which are listed and separated
by component (for example, models, collections, and so on). It’s useful to pay attention
to the name of the test, the logic being tested, and most importantly the assertions being
made, as this will give you some insight into how what we’ve learned can be applied to
a complete application.

To get the most out of this section, I recommend looking at the QUnit Koans included
in the practicals/qunit-koans folder—this is a port of the Backbone.js Jasmine Koans
over to QUnit.

W 8
& In case you haven't had a chance to try out one of the Koans kits yet,
t‘;‘.‘ . they are a set of unit tests using a specific testing framework that both
0% demonstrate how a set of tests for an application may be written, but

also leave some tests unfilled so that you can complete them as an
exercise.

308 | Chapter 15: SinonJS

www.it-ebooks.info


http://www.it-ebooks.info/

Models

For our models, we want to at minimum test that:

« New instances can be created with the expected default values.
o Attributes can be set and retrieved correctly.
« Changes to state correctly fire off custom events where needed.

« Validation rules are correctly enforced.
module( 'About Backbone.Model');

test('Can be created with default values for its attributes.', function() {
expect( 3 );

var todo = new Todo();

equal( todo.get('text'), '' );

equal( todo.get('done'), false );

equal( todo.get('order'), 0 );
s

test('Will set attributes on the model instance when created.', function() {
expect( 1 );

var todo = new Todo( { text: 'Get oil change for car.' } );
equal( todo.get('text'), 'Get oil change for car.' );

s

test('Will call a custom initialize function on the model instance when
created.', function() {
expect( 1 );

var toot = new Todo

({ text: 'Stop monkeys from throwing their own crap!' });
equal( toot.get('text'),

'Stop monkeys from throwing their own rainbows!' );

s

test('Fires a custom event when the state changes.', function() {
expect( 1 );

var spy = this.spy();
var todo = new Todo();

todo.on( 'change', spy );
// Change the model state
todo.set( { text: 'new text' } );

ok( spy.calledOnce, 'A change event callback was correctly triggered' );

Exercise | 309

www.it-ebooks.info


http://www.it-ebooks.info/

s

test('Can contain custom validation rules, and will trigger an invalid
event on failed validation.', function() {
expect( 3 );

var errorCallback = this.spy();
var todo = new Todo();

todo.on('invalid', errorCallback);
// Change the model state in such a way that validation will fail
todo.set( { done: 'not a boolean' } );

ok( errorCallback.called, 'A failed validation correctly triggered an
error' );

notEqual( errorCallback.getCall(®), undefined );

equal( errorCallback.getCall(0).args[1], 'Todo.done must be a boolean
value.' );

s

Collections

For our collection we’ll want to test that:

o The collection has a Todo model.
o Uses localStorage for syncing.
o That done(), remaining(), and clear() work as expected.

o The order for todos is numerically correct.
describe('Test Collection', function() {
beforeEach(function() {

// Define new todos

this.todoOne = new Todo;

this.todoTwo = new Todo({
title: "Buy some milk"

s

// Create a new collection of todos for testing
return this.todos = new TodoList([this.todoOne, this.todoTwo]);

s

it('Has the Todo model', function() {
return expect(this.todos.model).toBe(Todo);
b

it('Uses localStorage', function() {

310 | Chapter 15: SinonJS

www.it-ebooks.info


http://www.it-ebooks.info/

return expect(this.todos.localStorage).toEqual(new Store
('todos-backbone'));
H;

describe('done', function() {
return it('returns an array of the todos that are done', function() {
this.todoTwo.done = true;
return expect(this.todos.done()).toEqual([this.todoTwo]);

b

s

describe('remaining', function() {
return it('returns an array of the todos that are not done', function() {
this.todoTwo.done = true;
return expect(this.todos.remaining()).toEqual([this.todoOne]);

b

H;

describe('clear', function() {
return it('destroys the current todo from localStorage', function() {
expect(this.todos.models).toEqual([this.todoOne, this.todoTwo]);
this.todos.clear(this.todoOne);
return expect(this.todos.models).toEqual([this.todoTwo]);

s

H;

return describe('Order sets the order on todos ascending numerically',
function() {
it('defaults to one when there arent any items in the collection',
function() {
this.emptyTodos = new TodoApp.Collections.TodoList;
return expect(this.emptyTodos.order()).toEqual(0);
b

return it('Increments the order by one each time', function() {
expect(this.todos.order(this.todoOne)).toEqual(l);
return expect(this.todos.order(this.todoTwo)).toEqual(2);

b

H;

s
Views
For our views, we want to ensure:

o They are being correctly tied to a DOM element when created
o They can render, after which the DOM representation of the view should be visible
o They support wiring up view methods to DOM elements

Exercise | 311

www.it-ebooks.info


http://www.it-ebooks.info/

One could also take this further and test that user interactions with the view correctly
result in any models that need to be changed being updated correctly.

module( 'About Backbone.View', {
setup: function() {
$('body').append('<ul id="todoList"></ul>');
this.todoView = new TodoView({ model: new Todo() });
1,
teardown: function() {
this.todoView.remove();
S('#todoList').remove();
}
b

test('Should be tied to a DOM element when created, based off the property
provided.', function() {

expect( 1 );

equal( this.todoView.el.tagName.toLowerCase(), 'li' );

s

test('Is backed by a model instance, which provides the data.', function() {
expect( 2 );
notEqual( this.todoView.model, undefined );
equal( this.todoView.model.get('done'), false );

b

test('Can render, after which the DOM representation of the view will be
visible.', function() {
this.todoView.render();

// Append the DOM representation of the view to ul#todolList
$('ul#todoList').append(this.todoView.el);

// Check the number of li items rendered to the list
equal($('#todoList').find('11").length, 1);
H;

asyncTest('Can wire up view methods to DOM elements.', function() {
expect( 2 );
var viewElt;

$('#todoList').append( this.todoView.render().el );

setTimeout(function() {
viewElt = $('#todoList 11 input.check').filter(':first');

equal(viewElt.length > 0, true);
// Ensure QUnit knows we can continue

start();
}, 1000, 'Expected DOM Elt to exist');

312 | Chapter 15: SinonJS

www.it-ebooks.info


http://www.it-ebooks.info/

// Trigger the view to toggle the 'done' status on an item or items
$('#todoList 11 input.check').click();

// Check the done status for the model is true
equal( this.todoView.model.get('done'), true );
b

App

It can also be useful to write tests for any application bootstrap you may have in place.
For the following module, our setup instantiates and appends to a TodoApp view, and
we can test anything from local instances of views being correctly defined to application
interactions correctly resulting in changes to instances of local collections.

module( 'About Backbone Applications' , {
setup: function() {
Backbone.localStorageDB = new Store('testTodos');
S('#qunit-fixture').append('<div id="app"></div>');
this.App = new TodoApp({ appendTo: $('#app') });
1,

teardown: function() {
this.App.todos.reset();
S('#app').remove();
}
H;

test('Should bootstrap the application by initializing the Collection.',
function() {
expect( 2 );

// The todos collection should not be undefined
notEqual( this.App.todos, undefined );

// The initial length of our todos should however be zero
equal( this.App.todos.length, 0 );
bs

test( 'Should bind Collection events to View creation.' , function() {

// Set the value of a brand new todo within the input box
$('#new-todo').val( 'Buy some milk' );

// Trigger the enter (return) key to be pressed inside #new-todo
// causing the new item to be added to the todos collection
S('#new-todo').trigger(new S.Event( 'keypress', { keyCode: 13 } ));

// The length of our collection should now be 1
equal( this.App.todos.length, 1 );
b;

Exercise | 313

www.it-ebooks.info


http://www.it-ebooks.info/

Further Reading and Resources

That’s it for this section on testing applications with QUnit and Sinon]S. I encourage
you to try out the QUnit Backbone.js Koans and see if you can extend some of the
examples. For further reading, consider looking at some of these additional resources:

o Test-Driven JavaScript Development (book)
o Sinon]JS/QUnit adapter

o Using Sinon.JS with QUnit

o Automating JavaScript Testing with QUnit
o Unit Testing with QUnit

o Another QUnit/Backbone.js demo project

o Sinon]S helpers for Backbone

314 | Chapter 15: SinonJS

www.it-ebooks.info


https://github.com/addyosmani/backbone-koans-qunit
http://tddjs.com/
http://sinonjs.org/qunit/
http://bit.ly/16tTGWl
http://bit.ly/11YzmrQ
http://bit.ly/18v2dFc
http://bit.ly/12s5cuK
http://bit.ly/17zHDF3
http://www.it-ebooks.info/

CHAPTER 16
Conclusions

I hope that you've found this introduction to Backbone.js of value. What you’ve hope-
fully learned is that while building a JavaScript-heavy application using nothing more
than a DOM manipulation library (such as jQuery) is certainly a possible feat, it is
difficult to build anything nontrivial without any formal structure in place. Your nested
pile of jQuery callbacks and DOM elements is unlikely to scale and can be very difficult
to maintain as your application grows.

The beauty of Backbone.js is its simplicity. It's very small given the functionality and
flexibility it provides, which is evident if you begin to study the Backbone.js source. In
the words of Jeremy Ashkenas: “The essential premise at the heart of Backbone has
always been to try and discover the minimal set of data-structuring (Models and Col-
lections) and user interface (Views and URLSs) primitives that are useful when building
web applications with JavaScript” It just helps you improve the structure of your ap-
plications, helping you better separate concerns. There isn't anything more to it than
that.

Backbone offers models with key/value bindings and events, collections with an API of
rich enumerable methods, declarative views with event handling, and a simple way to
connect an existing API to your client-side application over a RESTful JSON interface.
Use it, and you can abstract away data into sane models and your DOM manipulation
into views, binding them together using nothing more than events.

Almost any developer working on JavaScript applications for a while will ultimately
create a similar solution if that individual values architecture and maintainability. The
alternative to using it or something similar is rolling your own—often a process that
involves gluing together a diverse set of libraries that weren't built to work together. You
might use jQuery BBQ for history management and Handlebars for templating, while
writing abstracts for organizing and testing code by yourself.

315

www.it-ebooks.info


http://www.it-ebooks.info/

Contrast this with Backbone, which has literate documentation of the source code, a
thriving community of both users and hackers, and a large number of questions about
it asked and answered daily on sites like Stack Overflow. Rather than reinventing the
wheel, you can reap the many advantages to structuring your application using a solu-
tion based on the collective knowledge and experience of an entire community.

In addition to helping provide sane structure to your applications, Backbone is highly
extensible, supporting more custom architecture should you require more than what is
prescribed out of the box. This is evident by the number of extensions and plug-ins that
have been released for it over the past year, including some we have touched upon (such
as MarionetteJS and Thorax).

These days, Backbone.js powers many complex web applications, ranging from the
LinkedIn mobile app to popular RSS readers such as NewsBlur through to social com-
mentary widgets such as Disqus. This small library of simple but sane abstractions has
helped to create a new generation of rich web applications, and I and my collaborators
hope that in time it can help you too.

If youre wondering whether it is worth using Backbone on a project, ask yourself
whether what you are building is complex enough to merit using it. Are you hitting the
limits of your ability to organize your code? Will your application have regular changes
to what is displayed in the UI without a trip back to the server for new pages? Would
you benefit from a separation of concerns? If so, a solution like Backbone may be able
to help.

Google’s Gmail is often cited as an example of a well-built single-page app. If you've
used it, you might have noticed that it requests a large initial chunk, representing much
of the JavaScript, CSS, and HTML most users will need, and everything extra needed
after that occurs in the background. Gmail can easily switch between your inbox to your
spam folder without having to rerender the whole page. Libraries like Backbone make
it easier for web developers to create experiences like this.

That said, Backbone won't be able to help if you're planning to build something that
isn’t worth the learning curve associated with a library. If your application or site will
still be using the server to do the heavy lifting of constructing and serving complete
pages to the browser, you may find just using plain JavaScript or jQuery for simple effects
or interactions to be more appropriate. Spend time assessing how suitable Backbone
might be for you, and make the right choice on a per-project basis.

Backbone is neither difficult to learn nor use; however, the time and effort you spend
learning how to structure applications using it will be well worth it. While reading this
book will equip you with the fundamentals you need to understand the library, the best
way to learn is to try building your own real-world applications. You will hopefully find
that the end product is cleaner, better organized, and more maintainable code.

316 | Chapter 16: Conclusions

www.it-ebooks.info


http://en.wikipedia.org/wiki/Literate_programming
http://backbonejs.org/docs/backbone.html
http://stackoverflow.com/search?q=backbone
http://touch.www.linkedin.com/mobile.html
http://newsblur.com
http://disqus.com/
http://www.it-ebooks.info/

With that, I wish you the very best with your onward journey into the world of Backbone
and will leave you with a quote from American writer Henry Miller: “One’s destination
is never a place, but a new way of seeing things”

Conclusions | 317

www.it-ebooks.info


http://en.wikipedia.org/wiki/Henry_Miller
http://www.it-ebooks.info/

www.it-ebooks.info


http://www.it-ebooks.info/

APPENDIX A
Further Learning

A Simple JavaScript MVC Implementation

A comprehensive discussion of Backbone’s implementation is beyond the scope of this
book. I can, however, present a simple MVC library—which we will call Cranium.js—
that illustrates how frameworks such as Backbone implement the MVC pattern.

Like Backbone, we will rely on Underscore for inheritance and templating.

Event System

At the heart of our JavaScript MVC implementation is an Event system (object) based
on the publisher-subscriber pattern, which makes it possible for MVC components to
communicate in an elegant, decoupled manner. Subscribers listen for specific events of
interest and react when publishers broadcast these events.

Event is mixed into both the view and model components so that instances of either of
these components can publish events of interest.

// cranium.js - Cranium.Events
var Cranium = Cranium || {};

// Set DOM selection utility
var $ = document.querySelector.bind(document) || this.jQuery || this.Zepto;

// Mix in to any object in order to provide it with custom events.
var Events = Cranium.Events = {

// Keeps list of events and associated listeners

channels: {3},

// Counter
eventNumber: 0,

319

www.it-ebooks.info


http://underscorejs.org
http://www.it-ebooks.info/

// Announce events and passes data to the listeners;
trigger: function (events, data) {

for (var topic in Cranium.Events.channels){

if (Cranium.Events.channels.hasOwnProperty(topic)) {
if (topic.split("-")[0] == events){
Cranium.Events.channels[topic](data) !== false ||
delete Cranium.Events.channels[topic];
}
}

}
}s
// Registers an event type and its listener
on: function (events, callback) {

Cranium.Events.channels[events + --Cranium.Events.eventNumber] = callback;
}s
// Unregisters an event type and its listener
off: function(topic) {

delete Cranium.Events.channels[topic];
}

b

The Event system makes it possible for:

o Aview to notify its subscribers of user interaction (such as clicks or input in a form),
to update/rerender its presentation, etc.

o A model whose data has changed to notify its subscribers to update themselves (for
example, view to rerender to show accurate/updated data) and so on.

Models

Models manage the (domain-specific) data for an application. They are concerned with
neither the user interface nor presentation layers, but instead represent structured data
that an application may require. When a model changes (such as when it is updated),
it will typically notify its observers (subscribers) that a change has occurred so that they
may react accordingly.

Let’s see a simple implementation of the model:

// cranium.js - Cranium.Model

// Attributes represents data, model's properties.
// These are to be passed at Model instantiation.
// Also we are creating id for each Model instance
// so that it can identify itself (e.g., on chage
// announcements)
var Model = Cranium.Model = function (attributes) {
this.id = _.uniqueId('model');
this.attributes = attributes || {};
b

320 | Appendix A: Further Learning

www.it-ebooks.info


http://www.it-ebooks.info/

// Getter (accessor) method;

// returns named data item

Cranium.Model.prototype.get = function(attrName) {
return this.attributes[attrName];

};

// Setter (mutator) method;
// Set/mix in into model mapped data (e.g.{name: "John"})
// and publishes the change event
Cranium.Model.prototype.set = function(attrs){
if (_.isObject(attrs)) {
_.extend(this.attributes, attrs);
this.change(this.attributes);
}
return this;

b

// Returns clone of the Models data object

// (used for view template rendering)

Cranium.Model.prototype.toJSON = function(options) {
return _.clone(this.attributes);

b

// Helper function that announces changes to the Model

// and passes the new data

Cranium.Model.prototype.change = function(attrs){
this.trigger(this.id + 'update', attrs);

IH

// Mix in Event system
_.extend(Cranium.Model.prototype, Cranium.Events);

Views

Let’s explore views a little further using a simple JavaScript example:

// DOM View

var View = Cranium.View = function (options) {
// Mix in options object (e.g., extending functionality)
_.extend(this, options);
this.id = _.unilqueId('view');

};

Views are a visual representation of models that present a filtered view of their current
state. A view typically observes a model and is notified when the model changes, al-
lowing the view to update itself accordingly. Design pattern literature commonly refers
to views as dumb, given that their knowledge of models and controllers in an application
is limited.

A Simple JavaScript MVC Implementation

www.it-ebooks.info

321


http://www.it-ebooks.info/

// Mix in Event system
_.extend(Cranium.View.prototype, Cranium.Events);

Controllers

Controllers are an intermediary between models and views and are classically respon-
sible for two tasks:

« Updating the view when the model changes

 Updating the model when the user manipulates the view
// cranium.js - Cranium.Controller

// Controller tying together a model and view

var Controller = Cranium.Controller = function(options){
// Mix in options object (e.g extending functionality)
_.extend(this, options);
this.id = _.unilqueId('controller');
var parts, selector, eventType;

// Parses Events object passed during the definition of the
// controller and maps it to the defined method to handle it;
if(this.events){
_.each(this.events, function(method, eventName){
parts = eventName.split('.');
selector = parts[0];
eventType = parts[1];
S(selector)['on' + eventType] = this[method];
}.bind(this));
}
IH

Practical Usage
Here is the HTML template for the primer that follows:

<!doctype html>
<html lang="en">
<head>
<meta charset="utf-8">
<title></title>
<meta name="description" content="">
</head>
<body>
<div id="todo">
</div>
<script type="text/template" class="todo-template"s>
<div>
<input id="todo_complete" type="checkbox" <%= completed %>>
<%= title %>
</div>

322 | Appendix A: Further Learning

www.it-ebooks.info


http://www.it-ebooks.info/

</script>
<script src="underscore-min.js"></script>
<script src="cranium.js"></script>
<script src="example.js"></script>
</body>
</html>

Cranium.js usage:

// example.js - usage of Cranium MVC

// And todo instance

var todol = new Cranium.Model({
title: "",
completed:

s

console.log("First todo title - nothing set: " + todol.get('title'));
todol.set({title: "Do something"});
console.log("Its changed now: " + todol.get('title'));
// View instance
var todoView = new Cranium.View({
// DOM element selector
el: '#todo',

// Todo template; Underscore templating used
template: _.template($('.todo-template').innerHTML),

init: function (model) {
this.render( model.toJSON() );

this.on(model.id + 'update', this.render.bind(this));
1.
render: function (data) {
console.log("View about to render.");
$(this.el).innerHTML = this.template( data );
}
H;

var todoController = new Cranium.Controller({
// Specify the model to update
model: todoil,

// and the view to observe this model
view: todoView,

events: {
"#todo.click" : "toggleComplete"
1,

// Initialize everything
initialize: function () {

A Simple JavaScript MVC Implementation | 323

www.it-ebooks.info


http://www.it-ebooks.info/

this.view.init(this.model);
return this;

}s

// Toggles the value of the todo in the Model

toggleComplete: function () {
var completed = todoController.model.get('completed');
console.log("Todo old 'completed' value?", completed);
todoController.model.set({ completed: (!completed) ? 'checked': '' });
console.log("Todo new 'completed' value?",
todoController.model.get('completed'));
return this;

}

H;

// Let's start things off
todoController.initialize();

todol.set({ title: "Due to this change Model will notify View and
it will rerender"});

Samuel Clay, one of the authors of the first version of Backbone.js, says of Cranium.js:
“Unsurprisingly, [it] looks a whole lot like the beginnings of Backbone. Views are dumb,
so they get very little boilerplate and setup. Models are responsible for their attributes
and announcing changes to those models.”

I hope you've found this implementation helpful in explaining how you would go about
writing your own library like Backbone from scratch, but more so that it encourages
you to take advantage of mature existing solutions where possible but never be afraid
to explore deeper down into what makes them tick.

MVP

Model-View-Presenter (MVP) is a derivative of the MVC design pattern that focuses
on improving presentation logic. It originated at a company named Taligent in the early
1990s while the company was working on a model for a C++ CommonPoint environ-
ment. While both MVC and MVP target the separation of concerns across multiple
components, there are some fundamental differences between them.

For the purposes of this summary, we will focus on the version of MVP most suitable
for web-based architectures.

Models, Views, and Presenters

The P in MVP stands for presenter. It's a component that contains the user interface
business logic for the view. Unlike MVC, invocations from the view are delegated to the
presenter, which are decoupled from the view and instead talk to it through an interface.
This allows for all kinds of useful things such as being able to mock views in unit tests.

324 | Appendix A: Further Learning

www.it-ebooks.info


http://en.wikipedia.org/wiki/Taligent
http://www.it-ebooks.info/

The most common implementation of MVP is one that uses a passive view (a view that,
for all intents and purposes, is dumb), containing little to no logic. MVP models are
almost identical to MVC models and handle application data. The presenter acts as a
mediator that talks to both the view and model; however, the view and model are isolated
from each other. Presenters effectively bind models to views, a responsibility held by
controllers in MVC. Presenters are at the heart of the MVP pattern, and as you can
guess, incorporate the presentation logic behind views.

Solicited by a view, presenters perform any work having to do with user requests and
pass data back to them. In this respect, they retrieve data, manipulate it, and determine
how the data should be displayed in the view. In some implementations, the presenter
also interacts with a service layer to persist data (models). Models may trigger events
but it’s the presenter’s role to subscribe to them so that the presenter can update the
view. In this passive architecture, we have no concept of direct data binding. Views
expose setters that presenters can use to set data.

The benefit of this change from MVC is that it increases the testability of your appli-
cation and provides a cleaner separation between the view and the model. This isn’t
without its costs, as the lack of data binding support in the pattern can often mean
having to take care of this task separately.

Although a common implementation of a passive view is for the view to implement an
interface, there are variations on it, including the use of events that can decouple the
view from the presenter a little more. As we don’t have the interface construct in Java-
Script, we're using it more and more as a protocol than an explicit interface here. It’s
technically still an API, and it’s probably fair for us to refer to it as an interface from that
perspective.

There is also a supervising controller variation of MVP, which is closer to the MVC and
MVVM—Model-View-ViewModel—patterns, as it provides data binding from the
model directly from the view. Key/value observing (KVO) plug-ins (such as Derick
Bailey’sBackbone .Mode1Binding plug-in) introduce this idea of a supervising controller
to Backbone.

MVP or MV(?

MVP is generally used most often in enterprise-level applications where it’s necessary
to reuse as much presentation logic as possible. Applications with very complex views
and a great deal of user interaction may find that MVC doesn’t quite fit the bill here, as
solving this problem may mean heavily relying on multiple controllers. In MVP, all of
this complex logic can be encapsulated in a presenter, which can simplify maintenance
greatly.

Because MVP views are defined through an interface and the interface is technically the
only point of contact between the system and the view (other than a presenter), this

MVPorMVC? | 325

www.it-ebooks.info


http://bit.ly/132Ez3b
http://bit.ly/12s5PUZ
http://bit.ly/12s5Lol
http://www.it-ebooks.info/

pattern also allows developers to write presentation logic without needing to wait for
designers to produce layouts and graphics for the application.

Depending on the implementation, MVP may be more easy to automatically unit-test
than MVC. The reason often cited for this is that the presenter can be used as a complete
mock of the user interface and so it can be unit-tested independent of other components.
In my experience, this really depends on the languages in which you are implementing
MVP (there’s quite a difference between opting for MVP for a JavaScript project over
one for, say, ASPNET).

At the end of the day, the underlying concerns you may have with MVC will likely hold
true for MVP given that the differences between them are mainly semantic. As long as
you are cleanly separating concerns into models, views, and controllers (or presenters),
you should be achieving most of the same benefits regardless of the pattern you opt for.

MVC, MVP, and Backbone.js

There are very few, if any, architectural JavaScript frameworks that claim to implement
the MVC or MVP patterns in their classical form, as many JavaScript developers don’t
view MVC and MVP as being mutually exclusive (we are actually more likely to see
MVP strictly implemented when looking at web frameworks suchas ASPNET or GWT).
This is because it’s possible to have additional presenter/view logic in your application
and yet still consider it a flavor of MVC.

Backbone contributor Irene Ros subscribes to this way of thinking, as when she separates
Backbone views out into their own distinct components, she needs something to actually
assemble them for her. This could either be a controller route (such as a Backbone.Rout
er) or a callback in response to data being fetched.

That said, some developers do feel that Backbone.js better fits the description of MVP
than it does MVC . Their view is that:

o The presenter in MVP better describes the Backbone.View (the layer between view
templates and the data bound to it) than a controller does.

o The model fits Backbone.Model (it isn’t that different from the classical MVC
model).

o The views best represent templates (such as Handlebars/Mustache markup
templates).

A response to this could be that the view can also just be a view (as per MVC) because
Backbone is flexible enough to let it be used for multiple purposes. The V in MVC and
the P in MVP can both be accomplished by Backbone.View because theyre able to
achieve two purposes: both rendering atomic components and assembling those com-
ponents rendered by other views.

326 | Appendix A: Further Learning

www.it-ebooks.info


http://ireneros.com/
http://www.it-ebooks.info/

We've also seen that in Backbone the responsibility of a controller is shared with both
the Backbone.ViewandBackbone.Router, and in the following example we can actually
see that aspects of that are certainly true.

Here, our Backbone TodoView uses the Observer pattern to subscribe to changes to a
view’s model in the line this.model.on('change',...). It also handles templating in
the render () method, but unlike some other implementations, user interaction is also
handled in the view (see events).

// The DOM element for a todo itenm...
app.TodoView = Backbone.View.extend({

//... 1s a list tag.
tagName: 'li',

// Pass the contents of the todo template through a templating
// function, cache it for a single todo
template: _.template( $('#item-template').html() ),

// The DOM events specific to an 1iten.
events: {

'click .toggle': 'togglecompleted'
1

// The TodoView listens for changes to its model, rerendering. Since there's
// a one-to-one correspondence between a **Todo** and a **TodoView** in this
// app, we set a direct reference on the model for convenience.
initialize: function() {

this.model.on( 'change', this.render, this );

this.model.on( 'destroy', this.remove, this );

1

// Rerender the titles of the todo 1item.

render: function() {
this.Sel.html( this.template( this.model.toJSON() ) );
return this;

1

// Toggle the ‘"completed"® state of the model.
togglecompleted: function() {
this.model.toggle();
}s
b
Another (quite different) opinion is that Backbone more closely resembles Smalltalk-80
MVC, which we covered earlier.

As Marionette]S author Derick Bailey has written, it’s ultimately best not to force Back-
bone to fit any specific design patterns. Design patterns should be considered flexible
guides to how applications may be structured, and in this respect, Backbone doesn’t fit
either MVC nor MVP perfectly. Instead, it borrows some of the best concepts from

MVC, MVP, and Backbonejs | 327

www.it-ebooks.info


http://bit.ly/151NYLr
http://bit.ly/151NYLr
http://bit.ly/131ML2y
http://www.it-ebooks.info/

multiple architectural patterns and creates a flexible framework that just works well.
Call it the Backbone way, MV*, or whatever helps reference its flavor of application
architecture.

It is, however, worth understanding where and why these concepts originated, so I hope
that my explanations of MVC and MVP have been of help. Most structural JavaScript
frameworks will adopt their own take on classical patterns, either intentionally or by
accident, but the important thing is that they help us develop applications that are or-
ganized, clean, and easy to maintain.

Namespacing

When learning how to use Backbone, you’ll find that an important and commonly
overlooked area by tutorials is namespacing. It you already have experience with
namespacing in JavaScript, the following section will provide some advice on how to
specifically apply concepts you know to Backbone; however, I will also be covering
explanations for beginners to ensure that everyone is on the same page.

What Is Namespacing?

Namespacing is a way to avoid collisions with other objects or variables in the global
namespace. Using namespacing reduces the potential of your code breaking because
another script on the page is using the same variable names that you are. As a good
citizen of the global namespace, you must do your best to minimize the possibility of
your code breaking another developer’s scripts.

JavaScript doesn’t really have built-in support for namespaces like other languages, but
it does have closures, which can be used to achieve a similar effect.

In this section we’ll be taking a look at some examples of how you can namespace your
models, views, routers, and other components. The patterns we’ll be examining are:

« Single global variables

o Object literals

+ Nested namespacing

Single global variables

One popular pattern for namespacing in JavaScript is opting for a single global variable
as your primary object of reference. Here’s a skeleton implementation of this, where we
return an object with functions and properties:

var myApplication = (function(){
function(){
/) ...

328 | Appendix A: Further Learning

www.it-ebooks.info


http://www.it-ebooks.info/

1

return {

/] ...
}
bHO;

You've probably seen this technique before. A Backbone-specific example might look
like this:

var myViews = (function(){
return {
TodoView: Backbone.View.extend({ .. }),
TodosView: Backbone.View.extend({ .. }),
AboutView: Backbone.View.extend({ .. });
//etc.
IH
HO;
Here we can return a set of views, but the same technique could return an entire col-
lection of models, views, and routers depending on how you decide to structure your
application. Although this works for certain situations, the biggest challenge with the
single global variable pattern is ensuring that no one else has used the same global
variable name as you have in the page.

One solution to this problem, as mentioned by Peter Michaux, is to use prefix name-
spacing. It’s a simple concept at heart, but the idea is that you select a common prefix
name (in this example, myApplication_) and then define any methods, variables, or
other objects after the prefix.

var myApplication_todoView = Backbone.View.extend({}),
myApplication_todosView = Backbone.View.extend({});

This is effective from the perspective of trying to lower the chances of a particular
variable existing in the global scope, but remember that a uniquely named object can

have the same effect. This aside, the biggest issue with the pattern is that it can result in
a large number of global objects once your application starts to grow.

For more on Peter’s views about the single global variable pattern, read his excellent
post on them.

=5 There are several other variations on the single global variable pattern
.‘S . outin the wild; however, having reviewed quite a few, I felt the prefixing
06 approach applied best to Backbone.

Object literals

Object literals have the advantage of not polluting the global namespace but assist in
organizing code and parameters logically. They’re beneficial if you wish to create easily

Namespacing | 329

www.it-ebooks.info


http://bit.ly/18v4osf
http://bit.ly/18v4osf
http://www.it-ebooks.info/

readable structures that can be expanded to support deep nesting. Unlike simple global
variables, object literals often also take into account tests for the existence of a variable
by the same name, which helps reduce the chances of collision.

This example demonstrates two ways you can check to see if a namespace already exists
before defining it. I commonly use option 2.

/* Doesn't check for existence of myApplication */
var myApplication = {};

/*

Does check for existence. If already defined, we use that instance.

Option 1:  if(!myApplication) myApplication = {};

Option 2: var myApplication = myApplication []| {};

We can then populate our object literal to support models, views, and collections
(or any data, really):

*/

var myApplication = {
models : {3},
views : {
pages : {}
1,

collections : {}

b

You can also opt for adding properties directly to the namespace (such as your views,
in the following example):

var myTodosViews = myTodosViews || {};
myTodosViews.todoView = Backbone.View.extend({});
myTodosViews.todosView = Backbone.View.extend({});

The benefit of this pattern is that you're able to easily encapsulate all of your models,
views, routers, and so on in a way that clearly separates them and provides a solid
foundation for extending your code.

This pattern has a number of benefits. It’s often a good idea to decouple the default
configuration for your application into a single area that can be easily modified without
the need to search through your entire codebase just to alter it. Here’s an example of a
hypothetical object literal that stores application configuration settings:

var myConfig = {
language: 'english',
defaults: {
enableDelegation: true,
maxTodos: 40
1.
theme: {
skin: 'a',
toolbars: {
index: 'ui-navigation-toolbar',

330 | Appendix A: Further Learning

www.it-ebooks.info


http://www.it-ebooks.info/

pages: 'ui-custom-toolbar'
}
}
}

Note that there are really only minor syntactical differences between the object literal
pattern and a standard JSON data set. If, for any reason, you wish to use JSON for storing
your configurations instead (for example, for simpler storage when sending to the
backend), feel free to.

For more on the object literal pattern, I reccommend reading Rebecca Murphey’s excel-
lent article on the topic.

Nested namespacing

An extension of the object literal pattern is nested namespacing. It’s another commonly
used pattern that offers a lower risk of collision due to the fact that even if a top-level
namespace already exists, it’s unlikely the same nested children do. For example, Yahoo’s
YUT uses the nested object namespacing pattern extensively:

YAHOO.util.Dom.getElementsByClassName('test');

Even DocumentCloud (the creators of Backbone) uses the nested namespacing pattern
in its main applications. A sample implementation of nested namespacing with Back-
bone may look like this:

var todoApp = todoApp || {3};

// perform similar check for nested children
todoApp.routers = todoApp.routers || {};
todoApp.model = todoApp.model || {};
todoApp.model.special = todoApp.model.special || {};

// routers
todoApp.routers.Workspace = Backbone.Router.extend({});
todoApp.routers.TodoSearch = Backbone.Router.extend({});

// models
todoApp.model.Todo = Backbone.Model.extend({});
todoApp.model.Notes = Backbone.Model.extend({});

// special models
todoApp.model.special.Admin = Backbone.Model.extend({});

This is readable, clearly organized, and a relatively safe way of namespacing your Back-
bone application. The only real caveat is that it requires your browser’s JavaScript engine
to firstlocate the todoApp object, then dig down until it gets to the function you're calling.
However, developers such as Juriy Zaytsev (kangax) have tested and found the perfor-
mance differences between single object namespacing and the nested approach to be
quite negligible.

Namespacing | 331

www.it-ebooks.info


http://bit.ly/13PCIO6
http://bit.ly/13PCIO6
http://www.it-ebooks.info/

What Does DocumentCloud Use?

In case you were wondering, here is the original DocumentCloud (remember those guys
who created Backbone?) workspace that uses namespacing in a necessary way. This
approach makes sense, as the company’s documents (and annotations and document
lists) are embedded on third-party news sites.

// Provide top-level namespaces for our javascript.
(function() {

window.dc = {};

dc.controllers = {};

dc.model = {};

dc.app = {};
dc.ui = {3};
Ho:;

As you can see, DocumentCloud opts for declaring a top-level namespace on the win
dow called dc, a short-form name of the app, followed by nested namespaces for the
controllers, models, UL, and other pieces of the application.

Recommendation

Of the preceding namespace patterns, the option that I prefer when writing Backbone
applications is nested object namespacing with the object literal pattern.

Single global variables may work fine for applications that are relatively trivial. However,
larger codebases requiring both namespaces and deep subnamespaces require a succinct
solution that’s both readable and scalable. I feel this pattern achieves both of these ob-
jectives and is a good choice for most Backbone development.

Backbone Dependency Details

The following sections provide insight into how Backbone uses jQuery/Zepto and
Underscore.js.

DOM Manipulation

Although most developers won't need it, Backbone does support setting a custom DOM
library to be used instead of these options. From the source:
/] For Backbone's purposes, jQuery, Zepto, Ender, or My Library (kidding) owns

// the *$° variable.
Backbone.$ = root.jQuery || root.Zepto || root.ender || root.S$;

So, setting Backbone.$ = myLibrary; will allow you to use any custom DOM-
manipulation library in place of the jQuery default.

332 | Appendix A: Further Learning

www.it-ebooks.info


http://www.it-ebooks.info/

Utilities
Underscore.js is heavily used in Backbone behind the scenes for everything from object
extension to event binding. As the entire library is generally included, we get free access

to a number of useful utilities we can use on collections, such as filtering _.filter(),
sorting _.sortBy(), mapping _.map(), and so on.

From the source:

// Underscore methods that we want to implement on the Collection.

// 90% of the core usefulness of Backbone Collections is actually implemented
// right here:

var methods = ['forEach', 'each', 'map', 'collect', 'reduce', 'foldl',
'inject', 'reduceRight', 'foldr', 'find', 'detect', 'filter', 'select',
'reject', 'every', 'all', 'some', 'any', 'include', 'contains', 'invoke',
'max', 'min', 'toArray', 'size', 'first', 'head', 'take', 'initial', 'rest’',
"tail', 'drop', 'last', 'without', 'indexOf', 'shuffle', 'lastIndexOf',
'{sEmpty', 'chain'];

// Mix in each Underscore method as a proxy to ‘Collection#models'.
_.each(methods, function(method) {
Collection.prototype[method] = function() {
var args = slice.call(arguments);
args.unshift(this.models);
return _[method].apply(_, args);
b
H;

However, for a complete linked list of methods supported, see the official documenta-
tion.

RESTful Persistence

We can sync models and collections in Backbone with the server using the fetch,
save, and destroy methods. All of these methods delegate back to the Back
bone. sync function, which actually wraps jQuery/Zeptos $ . ajax function, calling GET,
POST, and DELETE for the respective persistence methods on Backbone models.

From the source for Backbone.sync:

var methodMap = {
'create': 'POST',
'update': 'PUT',

'patch': 'PATCH',
'delete': 'DELETE',
'read': "GET'

b

Backbone.sync = function(method, model, options) {
var type = methodMap[method];

Backbone Dependency Details | 333

www.it-ebooks.info


http://bit.ly/13PCNkN
http://bit.ly/13PCNkN
http://www.it-ebooks.info/

// ... Followed by lots of Backbone.js configuration, then..

// Make the request, allowing the user to override any Ajax options.
var xhr = options.xhr = Backbone.ajax(_.extend(params, options));
model.trigger('request', model, xhr, options);

return xhr;

Routing

Calls to Backbone.History.start rely on jQuery/Zepto binding popState or hash
change event listeners back to the window object.

From the source for Backbone.history.start:

// Depending on whether we're using pushState or hashes, and whether
// 'onhashchange' is supported, determine how we check the URL state.
if (this._hasPushState) {
Backbone.$(window)
.on('popstate', this.checkurl);
} else if (this._wantsHashChange && ('onhashchange' in window) && !oldIE) {
Backbone.$(window)
.on( 'hashchange', this.checkurl);
} else if (this._wantsHashChange) {
this._checkUrlInterval = setInterval(this.checkUrl, this.interval);
}

Backbone.History.stop similarly uses your DOM manipulation library to unbind
these event listeners.

Backbone Versus Other Libraries and Frameworks

Backbone is just one of many different solutions available for structuring your appli-
cation, and we’re by no means advocating it as the be-all and end-all. It’s served the
contributors to this book well in building many simple and complex web applications,
and I hope that it can serve you equally well. The answer to the question “Is Backbone
better than X?” generally has a lot more to do with what kind of application youre
building.

Angular]S and Ember.js are examples of powerful alternatives but differ from Backbone
in that they are more opinionated. For some projects, this can be useful; for others,
perhaps not. The important thing to remember is that there is no library or framework
that’s going to be the best solution for every use case, so it’s important to learn about the
tools at your disposal and decide which one is best on a project-by-project basis.

Choose the right tool for the right job. This is why I recommend spending some time
doing a little due diligence. Consider productivity, ease of use, testability, community,
and documentation. If youre looking for more concrete comparisons between frame-
works, read:

334 | Appendix A: Further Learning

www.it-ebooks.info


http://www.it-ebooks.info/

« “Journey Through the JavaScript MVC Jungle”

o “Rich JavaScript Applications—The Seven Frameworks”

The authors behind Backbone.js, Angular]S, and Ember have also discussed some of
the strengths and weaknesses of their solutions on Quora, StackOverflow, and so on:

« Jeremy Ashkenas on why Backbone
o Tom Dale on Ember.js versus Angular]S

o Brian Ford and Jeremy Ashkenas on Backbone versus Angular (discussion)

The solution you opt for may need to support building nontrivial features and could
end up being used to maintain the app for years to come, so think about things like:

What is the library/framework really capable of?

Spend time reviewing both the source code of the framework and official list of
features to see how well they fit with your requirements. There will be projects that
may require modifying or extending the underlying source, so make sure that if
this might be the case, you've performed due diligence on the code. Has the frame-
work been proven in production? Have developers actually built and deployed large
applications with it that are publicly accessible? Backbone has a strong portfolio of
these (SoundCloud, LinkedIn, Walmart), but not all frameworks do. Ember is used
in a number of large apps, including the new version of ZenDesk. Angular]S has
been used to build the YouTube app for PS3, among other places. It’s not only im-
portant to know that a framework works in production, but also to be able to look
at real-world code and be inspired by what can be built with it.

Is the framework mature?

I generally recommend that developers don’t simply pick one and go with it. New
projects often come with a lot of buzz surrounding their releases, but remember to
take care when selecting them for use on a production-level app. You don’t want to
risk the project being canned, going through major periods of refactoring, or other
breaking changes that tend to be more carefully planned out when a framework is
mature. Mature projects also tend to have more detailed documentation available,
either as a part of their official or community-driven docs.

Is the framework flexible or opinionated?
Know what flavor you're after, because there are plenty of frameworks available that
provide one or the other. Opinionated frameworks lock you into doing things in a
specific way (theirs). By design they are limiting, but place less emphasis on devel-
opers having to figure out how things should work on their own. Have you really
played with the framework?

Write a small application without using frameworks and then attempt to refactor
your code with a framework to confirm whether it’s easy to work with or not. As

Backbone Versus Other Libraries and Frameworks | 335

www.it-ebooks.info


http://bit.ly/ZC3eL4
http://bit.ly/18v52pw
http://bit.ly/ZC3gmm
http://b.qr.ae/10uU1Q7
http://bit.ly/162VGVD
http://www.it-ebooks.info/

much asresearchingand reading up on code will influence your decision, it's equally
important to write actual code using the framework to make sure you're comfortable
with the concepts it enforces.

Does the framework have a comprehensive set of documentation?

Although demo applications can be useful for reference, you’ll almost always find
yourself consulting the official framework docs to find out what its API supports,
how common tasks or components can be created with it, and what the gotchas
worth noting are. Any framework worth its salt should have a detailed set of doc-
umentation that will help guide developers using it. Without this, you can find
yourself heavily relying on IRC channels, groups, and self-discovery, which can be
fine, but are often overly time-consuming when compared to a great set of docs
provided upfront.

What is the total size of the framework, factoring in minification, gzipping, and any
modular building that it supports?
What dependencies does the framework have? Frameworks tend to list only the
total file size of the base library itself, not the sizes of the library’s dependencies.
This can mean the difference between opting for a library that initially looks quite
small, but could be relatively large if it, say, depends on jQuery and other libraries.

Have you reviewed the community around the framework?
Is there an active community of project contributors and users who would be able
to assist if you run into issues? Have enough developers been using the framework
that there are existing reference applications, tutorials, and maybe even screencasts
that you can use to learn more about it?

336 | Appendix A: Further Learning

www.it-ebooks.info


http://www.it-ebooks.info/

APPENDIX B

Resources

Books and Courses

o Prosthetics and Orthotics

o PeepCode: Backbone.js Basics

o Prosthetics and Orthotics—a recommended follow-up to this title
o CodeSchool: Anatomy of Backbone

o Recipes with Backbone

« Backbone Patterns

e Backbone on Rails

o Derick Bailey’s Resources for Learning Backbone

o Learn Backbone.js Completely

o Backbone.js on Rails

Extensions/Libraries

¢ Marionette]S

» Backbone Layout Manager
o Aura]S

o Thorax

o Lumbar

 Backbone Boilerplate

o Backbone Forms

337

www.it-ebooks.info


https://leanpub.com/building-backbone-plugins
https://peepcode.com/products/backbone-js
https://leanpub.com/building-backbone-plugins
http://www.codeschool.com/courses/anatomy-of-backbonejs
http://recipeswithbackbone.com/
http://ricostacruz.com/backbone-patterns/
https://learn.thoughtbot.com/products/1-backbone-js-on-rails
http://lostechies.com/derickbailey
http://javascriptissexy.com/learn-backbone-js-completely/
https://learn.thoughtbot.com/products/1-backbone-js-on-rails
http://marionettejs.com/
http://bit.ly/14MJw3n
http://bit.ly/13Wzr3k
http://thoraxjs.org
http://bit.ly/13sFBUA
http://bit.ly/YCoQs5
https://github.com/powmedia/backbone-forms
http://www.it-ebooks.info/

Backbone-Nested

Backbone.Validation

Backbone.Offline

Backbone-relational

Backgrid

Backbone.ModelBinder

Backbone Relational—for model relationships
Backbone CouchDB
Backbone.Validation—HTML5-inspired validations

338

|  Appendix B: Resources

www.it-ebooks.info


http://afeld.github.com/backbone-nested/
http://github.com/thedersen/backbone.validation
https://github.com/Ask11/backbone.offline
https://github.com/PaulUithol/Backbone-relational
https://github.com/wyuenho/backgrid
http://bit.ly/14MJp7S
http://bit.ly/15FQOVY
http://bit.ly/YLix04
http://bit.ly/12P0JCu
http://www.it-ebooks.info/

Symbols

# (hash mark), routes using, 61
$ () function, 38
$ (dollar sign)
aliasing to, in AMD encapsulation, 186
$.ajax( ) method, 66
$.enumerate( ) plug-in, 298-300
$.mobile.changePage, 247
DOM management and, 252-255
triggering widget enhancements, 263
$el property, 38
$previousEl.detach( ), 252
.attributes attribute
Backbone.Model, 32
<%= and <%- template tags in Underscore, 76
_ global variable, 184

A

afterBach( ) and beforeEach( ) methods, 271-
273,280

Ajax, 14

Ajax requests
testing mocking, using spies, 269

Ajax requests, jQuery Mobile, 243

all event, 57

Alman, Ben, 298

AMD (asynchronous model definition)
model module, AMD-compatible, 200

Index

AMD (asynchronous module definition), 179,
181-183
Require]S shims for libraries not supporting,
184
Todo application (example), 195
using as module format in modular Back-
bone app, 195
view wrapped in AMD, 199
wrapping models, views, and other compo-
nents with, 186-189
writing AMD modules with Require]S, 181
anonymous modules, 182
anonymous spies, 304
any( ) function
using with collections, 50
app.js file, 232
app.js file, loading, 231
application bootstrapping
Sinon]S test for, 313
application examples
Backbone and Require]S applications, 189
book library, RESTful Backbone.js app, 95—
123
modular Backbone and Require]S app, 195-
206
Todo List, 73-94
AppRouter object, 137
arguments
matching for spies, 304

We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.

339

www.it-ebooks.info



http://www.it-ebooks.info/

assertions, 292-294
adding structure to, 294
modules, 294
using setup( ) and teardown( ), 294
basic test case using test( ), 293
comparing actual function output against
expected output, 293
examples of, 296-297
failed, 291
successful, 291
asset package, alternative for dependency man-
agement, 206
asynchronous code
QUnit tests for, 300
Asynchronous JavaScript and XML (see Ajax)
asynchronous loading of scripts, 180
asynchronous module definition (see AMD)
asynchronous tests, 270

B

back button navigation of jQuery Mobile, 253
Backbone
getting set up for, 27
Backbone Boilerplate (see boilerplate and
Grunt-BBB)
Backbone DevTools, 239
Backbone Relational plug-in, 161
Backbone-Super plug-in, 171
Backbone.Collection
set( ) method, 46
Backbone.Collection class, 42
add( ) and remove( ) methods, 42
convenience methods for clientPager, 216
convenience methods for views interacting
with requestPager, 212
fetch( ) method, 117, 213
get( ) method, 43
parse( ) method
configuring for clientPager, 216
configuring for paginated collection, 212
reset( ) method, 47
url property, 117
Backbone.Collection.create( ) method, 88
Backbone.emulateHT TP option, 66
Backbone.emulateJ]SON option, 66
Backbone.Event class, 17
Backbone.Events module, 55
listenTo( ) method, 131
mixing with other Backbone classes, 55

on( ), off( ), and trigger( ), 56-59
Backbone.history, 64-66
start( ) method, 94, 134
Backbone.History class
pushState and, 205
Backbone.js
avoiding conflicts with multiple versions,
167
client-side MVC, 15
defined, 2
extensions, 125-151
Marionette]JS, 125-145
Thorax, 145-151
optimizing Backbone apps for production
with Require]S optimizer, 190-192
plug-ins and extensions available from Bow-
er package manager, 238
plug-ins for nested data structures, 161
reasons to consider using, 4
Require.js and Backbone examples, 186-189
Require]S shim for, 185
versus other libraries and frameworks, 334
Backbone.LayoutManager plug-in, 231
attaching view to layout, 237
Backbone.Marionette (see Marionette]S)
Backbone.Model class, 16
adding _super method to, 171
extend( ) method, 28
initialize( ) method, 29
parse( ) function, 119
Backbone.Paginator class, 209
clientPager, 209, 214-223
examples built using requestPager and cli-
entPager, 209
requestPager, 209, 209-214
Backbone.Router class, 62
creating multiple routers that listen to same
set of routes, 204
navigate( ) method, 64
Backbone.sync( ) method, 66-70, 117
overriding, 68-70
Backbone.validateAll plug-in, 164
Backbone.Validation plug-in, 166
Backbone.View class, 17
delegateEvents( ) method, 155
extend( ) method, 36
remove( ) method, 133
call to stopListening( ), 60
setElement( ) method, 154

340 | Index

www.it-ebooks.info


http://www.it-ebooks.info/

Bailey, Derick, 126, 139, 328
base application URL, 230
BasicView class, 250
BasicView.js file, 247
basic_page_simple.template as Handlebars
template, 251
collection of all template parameters, 253
BasicView.js file, 247
BB (Backbone Boilerplate) (see boilerplate and
Grunt-BBB)
beforeEach( ) and afterEach( ) methods, 271-
273,280
behavior-driven development (BDD), 265
_.bind() function, 41
boilerplate and Grunt-BB
components and features, 226
boilerplate and Grunt-BBB, 225-240
creating a new project, 227-237
app.js file, 232
application router (router.js), 236-237
config.js file, 229
creating Backbone Boilerplate modules,
234-236
index.html file, 228
main.js file, 231
installing Grunt-BBB, 227
Boilerplate Build Buddy (see Grunt-BBB)
boilerplate code, defined, 128
book library RESTful Backbone.js app (exam-
ple), 95-123
creating model, collection, views, and app,
100-103
creating the backend, 106-116
connecting to database, 109-116
creating simple web server, 107
installing Node.js, npm, and MongoDB,
106
setting up, 95-100
talking to the server, 116-123
writing the interface, 103
bootstrap( ) function, Backbone.Paginator, 221
bootstrapping applications
Sinon]S test for, 313
using require( ) method, 231
Bower package manager, 238
browsers
managing forward and back buttons, 139
multiplatform, using jQuery Mobile and
Backbone, support of, 260

running Backbone examples from, 28
script files loaded with <script> tags, 180
build tool, 226
running bbb init, 227
Burke, James, 180

C

chain( ) method, 52
chain, defined, 52
Chrome
Developer Tools console, 28
DevTools
Backbone DevTools extension, 239
cid property
Backbone models, 43
cids (client IDs)
using with nested views, 156
className property
views, 37
className, testing against, 281
client-side MVC
and single-page applications (SPAs), 13
Backbone style, 15
request handling as implemented by Back-
bone, 18-21
clientPager, 214-223
bootstrapping, 221
implementation notes, 218
plug-ins, 220
styling, 221
close( ) method
adding to views, 130
called by region on views, 133
disposing of a view, 160
Closure Compiler, 190
CoffeeScript classes, 169
collection helper, 147, 148
collections, 42-53
adding and removing models, 42
Backbone.Events mixed with, 55
book library application (example), 100
adding models to, 103
chaining calls to methods on, 52
convenience methods for views interacting
with clientPager, 216
converting to AMD, Require]S compliance,
187
creating in Backbone, 42

Index | 341

www.it-ebooks.info



http://www.it-ebooks.info/

creating paginated clientPager collection,
214
creating paginated collection, 210
generating boilerplate code for, 235
listening for events in, 44
Marionette Todo application (example)
Todos.js, 142
model events bubbling up to and through
parent collection, 175
modular TodosCollection, 201
requestPager collection convenience meth-
ods, 212
resetting and refreshing, 46
REST(ul persistence, 53-55
fetching models from the server, 53
saving models to the server, 54
retrieving models from a server, 117
testing using TDD and Jasmine BDD, 277-
279
Todo List application (example)
instantiating new model, 88
TodoList collection (example), 78
Underscore utility functions for, 48-52
working with nested collections, 161
writing Sinon]S tests for, 310-311
CollectionView object, 148
common problems and solutions (see problems
and solutions)
CompositeView object, 139, 160
concatenation, 226
concrete view page, 247, 249
collection of all template parameters by Ba-
sicView, 253
example of, 250
config object, 204
config.js file, 229
configuration object (Require]S), 197
controllers, 2, 10
(see also MVC)
in Backbone applications, 17
in simple JavaScript MVC implementation,
322
JavaScript MVC frameworks and, 20
Marionette Todo application (example), 139

formatting for book library application (ex-
ample), 98

styling of jQuery Mobile application for
desktop browsers, 263

D

data-role attribute, 253
dateFormat jQuery plug-in, 118
dates
date selection from releaseDate field in book
library application, 120
datepicker from jQuery UI, 120
formatting, 118
dates in UNIX time format, 112
DDD (domain-driven design), 266
debugging, using Backbone DevTools, 239
Decker, Kevin, 145, 203
deepEqual( ) assertion, 296
default values
Backbone model, 29
define( ) method, 181, 231
converting individual Backbone component
to AMD, RequireJS-compliance, 187
declaring dependencies as local variables us-
ing require( ), 182
defining barebones module compatible with
Require]S, 182
using to define library as a module, 184
dependencies, 70
Backbone dependency details, 332-334
dependencies argument, define( ) method,
182
dynamic dependencies and rjs optimizer,
191
loading for book library application (exam-
ple), 96
specifying aliases and paths for, with Requir-
eJS configuration object, 229
Todo List application (example), 74
dependency management
asset package alternative for, 206
module scripts and, 179
need for better approach, 180
describe( ) function, 267

Cranium.js (
usage of MVC application, 323 design patterns
CSS MVC and, 21
files loaded for jQuery Mobile and Backbone Design Patterns: Elements of Reusable Object-
app, 247 Oriented Software, 9
342 | Index

www.it-ebooks.info


http://www.it-ebooks.info/

desktop application, building with jQuery Mo-
bile, 260-264
destroy( ) method, models in Backbone, 54
Todo List application (example), 92
Diacritic.js plug-in for Backbone.Paginator, 220
Disqus, 316
documentation
Backbone’s literate documentation, 315
DocumentCloud, 332
DOM (Document Object Model)
$.mobile.changePage and DOM manage-
ment, 252-255
associating DOM element with views, 37
dynamic DOM scripting with jQuery Mo-
bile, 256
events in views, 60
jQuery of custom DOM-manipulation li-
brary, 332
placement of views in so they are visible, 132
removal of elements associated with view hi-
erarchies, 159
testing views in Sinon]S, 311-313
tests modifying, QUnit fixtures, 297-300
DOM events, 18
domain-driven design (DDD), 266

E

Eastridge, Ryan, 145
ECMAScript 5, Object.create method, 168
editors, 27
el property
specifying in region instance, 132
el property of views, 36-42
$el property and $ () function, 38
events hash and, 41
setElement( ), applying existing view to dif-
ferent DOM element, 38
understanding render( ), 39
emulateHT TP option, 66
emulate]SON option, 66
$.enumerate( ) plug-in, 298-300
equal( ) assertion, 296
equal( ) function, 293
event aggregators and mediators, 171-178
Backbone’s event aggregator, 172
event mediators, 173
for Backbone, 173
jQuery’s event aggregator, 173
relationships, when to use which, 175

similarities and differences in, 174
using together, 176
events, 17, 55-61
adding event handler for click event in Li-
braryView (example), 103
and views, 60
binding listener to model for change event,
32
close event in Marionette views, 131
event system in JavaScript MVC implemen-
tation, 319
in client-side MVC request handling by
Backbone, 18
in subviews, 154
InnerView object, 155
intercepting jQuery Mobile events, 257-258
listening for changes to attributes in Back-
bone model, 33
listening for, in Backbone collections, 44
once( ) method, 46
reset events, 48
using jQuery-style event maps of form
obj.on( ), 45
listenTo( ) and stopListening( ) methods, 59
models event binding in view’s initialize( )
method, 129
namespacing event names using colons, 56
on( ), off( ), and trigger( ) methods, 56-59
unbinding in view hierarchies, 159
use by event aggregators and event media-
tors, 174
using to render parent view from a child
view, 158
events hash, 41
Todo List application (example), individual
ToDoView, 86
adding todo completion and deletion, 91
Todo List application view (example), 84
events property, views, 60
expectation matchers, 267
expectations, defining in specs, 267
Express, 108, 205
extend( ) method, 168
calling overridden methods, 171
extensions available from Bower package man-
ager, 238

F

fetch( ) method, collections, 53, 117

Index | 343

www.it-ebooks.info



http://www.it-ebooks.info/

filter( ) function
using with collections, 50
find( ) function
BookModel (example), 110
findByld( ) function, using on BookModel (ex-
ample), 113
fixtures, 297-300
example of, 298
fixtures module (jasmine-jquery), 279
forEach( ) function
iterating over collections, 48
forms
validating, 162-167
Front Controller design pattern, 12
functions
comparing actual output with expected out-
put, 293
spying on existing functions, 304

G

GET requests
creating to retrieve single book from web
server, 113
getters and setters
Model.get( ), 30
Model.set( ) method, 31
setting values for models with .attributes at-
tribute, 32
ghost views, 60
GitHub
Backbone application with Require]S, 187
Jasmine, 274
sync implementations, 69
GitHub site for this book, 5
global variable, single, 328
Gmail, 316
groupBy( ) function
using with collections, 51
Grunt-BBB, 225
(see also boilerplate and Grunt-BBB)
installing, 227
jQuery Mobile and Backbone Todo app, 245
Grunt-Backbone commands, 247
typical workflow for using, 227

H

Handlebar.js
HTML template, 20

Handlebars
jQuery Mobile and Backbone Todo app, 245
mobile page templates, 250-252
multipage-template processing, 247
registerViewHelper( ) method, 147
templating solution in Thorax, 145
Todo template, 151
HelperView object, 147
history
Backbone.history, 64-66
History API of browsers, 14
HTML
book library application (example) user in-
terface, 96
custom HTML data attributes in Thorax,
149
loading content for tests with jasmine-jquery
fixtures, 279
pages in jQuery Mobile, 242
comparison of default to enhanced ver-
sion, 243
sample HTML with QUnit-compatible
markup, 289
templates for views, 19
Todo List application static HTML, 74-77
application HTML, 75
header and scripts, 74
templates, 76
html( ) method, 132
HTMLS, 242
HTMLS5 Boilerplate foundation (jQuery), 226
HTTP
Backbone.emulateHTTP option, 66
request/response lifecycle for server-side
MVC, 12
verbs, 109
HTTP request response cycle
requests made when browsers load scripts
with <script> tags, 180
HTTP request/reply cycle
DELETE method, 54
HTTP request/response cycle
Backbone’s approach to request handling, 18
in server-side MVC, 12

id attribute, 119
_id attribute, 119

344 | Index

www.it-ebooks.info


http://www.it-ebooks.info/

id property
Backbone models, 43
id property, views, 37
idAttribute property
Backbone models, 43
index.html file, 228
indexOf( ) function
using with collections, 50
inheritance, 168
inherits( ) function, 168
initialization
Backbone models, 29
with default values, 29
initialize( ) function
binding listener to model for its change
event, 32
LibraryView (example), 104
updating to retrieve models from server,
117
initialize( ) method
parent view, creating subviews in, 154
Todo List application view (example), 84
views, model’s event binding in, 129
InnerView object, 155
instance methods, 168
invert( ) function
using with models in Backbone collections,
52
isEmpty( ) function
using with collections, 51
ItemView object, render( ) method, 40

J

Jam package manager, 231
Jammit, 206
Jasmine, 265-288
beforeEach( ) and afterEach( ) methods,
271-273
behavior-driven development (BDD), 265
downloading and setting up, 274
exercise, fixing tests in Jasmine Koans, 287
resources for more information, 288
shared scope, 273
suites, specs, and spies, 267-271
TDD with Backbone, 275
collections, 277-279
models, 275-277
views, 279-287

JavaScript
modular development and, 179
JavaScript Design Patterns for Beginners, 21
jgXHR returned by requestPager collection’s
methods, 213
jQuery, 1, 226
$.ajax( ) method, 66
AMD support, 185
dateFormat plug-in, 118
DOM manipulation, 332
event aggregator, 173, 176
event maps of form obj.on( ), 45
extending with functions to look up closest
view, model, or collection to a given ele-
ment, 149
jasmine-jquery plug-in, 279
making call to REST APIL, 110
using with Backbone, 70
jQuery Mobile (jQMobile)
resources for more information, 244
jQuery Mobile (jQMobile), Backbone and, 241-
264
applying advanced jQM techniques to Back-
bone, 256-264
dynamic DOM scripting, 256
intercepting jQuery Mobile events, 257
258
multiplatform support management,
259-264
performance, 258
basic Backbone app setup for jQuery Mobile,
245-248
jQuery Mobile navigation, 243
progressive enhancement by jQMobile, 242
workflow, 248-255
diagram of, 249
DOM management and $.mo-
bile.changePage, 252-255
management of mobile page templates,
250-252
routing to concrete view page, inheriting
from BasicView, 249
jQuery UI datepicker, 120
jQuery.ajax( ) function, 114
jQuery.delegate( ) function, 41
jQuery.on( ) function, 60
jquerymobile.config js file, 248
jsBin editor, 28
jsFiddle editor, 28

Index | 345

www.it-ebooks.info



http://www.it-ebooks.info/

JSON, 20
Backbone.emulateJ]SON option, 66
module configuration based on, 203
response containing data for paginated col-
lection, 212
JSON.stringify( ) method, 30
jsonp data type for requestPager return, 210
JST (JavaScript templates), 234

K

keys( ) function
using with models in Backbone collections,
51

L

LayoutManager plug-in, 231
attaching views to layout, 237
layouts
defining in app.js file, 232
defining in TodoMVC.Layout.js (example),
134
Levenshtein plug-in, 217
libraries
use of Backbone with other, 5
LinkedIn mobile app, 316
listenTo( ) method, 59, 131
binding Todo List application view’s listeners
to its model, 92
ListView object, render( ) method, 40
Lo-Dash, 226
loader object, 204
Lumbar, 203

M

main.js file, 231
maintainability, 143
map( )/max( ) functions
using with collections, 49
Marionette]JS, 125-145
CompositeView object, 160
further information about, 145
key benefits of, 126
memory management, 128-131
reducing boilerplate with Marionette.Item-

Todo application (example), 133-145
CompositeView, 139
controllers, 139
flexibility of Marionette, 144
maintainability of, 143
TodoMVC.js, 133
TodoMVC.Layout.js, 134
TodoMVC.TodoList.js, 137
TodoMVC.TodoList.Viewsjs, 139
Todos.js, 142
markup
Todo modular app using Backbone and Re-
quire]S, 196
memory management in Marionette]S views,
128-131
menu systems
event aggregator and mediator together, 176
event aggregators for views, 176
Miller, Henry, 316
min( )/max( ) functions
using with collections, 49
mini-widgets for desktop applications, 261
minification, 226
mobile devices
applications for, 241
mobile-first approach, 260
mocks, 308
model
events, 18
Model-Binding plug-in, 257
Model-View-Controller (see MVC)
Model-View-Presenter (see MVP)
Model2 pattern, 11
models, 2, 10
(see also MVC)
AMD-compatible model module for Todo
app, 200
Backbone, 28-35
Backbone.Events mixed with, 55
getters and setters, 30-32
initialization, 29
listening for changes to the model, 32
validation, 34
Backbone.Model implementation, 16
book library application (example), 100
adding models when users add books,

View, 128 103
region management with Marionette.Re- extracted from Mongo, BookModel, 110
gion, 132 removing, 105
346 | Index

www.it-ebooks.info


http://www.it-ebooks.info/

structure of returned BookModel, 112

building model hierarchies, 168-171
using Backbone-Super plug-in, 171

converting to ADM, RequireJS compliance,
187

event binding in view’s initialize( ) method,
129

events bubbled up to and through its parent
collection, 175

generating boilerplate code for, 235

in Backbone implementation of client-side
MVC request handling, 18

in MVP, 325

in simple JavaScript MVC implementation,
320

looking up closest model to a given element,
150

managing in nested views, 157-158

Marionette Todo application (example)
Todos.js, 142

property validation, better, 162-167
using Backbone.validateAll, 164
using Backbone.Validation, 166
using form-specific validation classes,

167

retrieving from server, 117

set on Thorax views, 146

setting for paginated collection, 210

testing using Sinon]S stub, 306

testing using TDD and Jasmine BDD, 275-
277

Todo application (example), 77

Todo List application (example), individual
ToDoView, 91

working with nested models, 161

wrapping with AMD, 186

writing Sinon]S tests for, 309-310

writing spec to ensure model is defined, 281

modular development, 179-193

Backbone and Require]S modular app, 195-
206
configuration options, 197
markup, 196
modularizing models, views, and collec-

tions, 198-203

overview, 195

organizing modules with RequireJS and
AMD, 180-192
AMD (asynchronous module definition),
181-183
AMD (asynchronous module definition)/
writing AMD modules with Requir-
eJS, 181
external templates with RequireJS and
text plug-in, 189
optimizing Backbone apps with Requir-
eJS optimizer, 190-192
RequireJS and Backbone examples, 186-
189
Require]S, getting started with, 183-186
modularity, 143
Marionette modules, 144
module loading, route-based, 203-206
JSON-based module configuration, 203
module loader router, 204
module object, 204
module( ) method, 294
modules
creating Backbone Boilerplate modules,
234-236
module_id, define( ) method and, 182
MongoDB
connecting to, 109-116
installing, 106
_id attribute for BookModel, 112
multipage templating feature, jQuery Mobile,
244
multiplatform support management, jQuery
Mobile, 259-264
MVC (Model-View-Controller), 2
applied to the Web, 10
Backbone models, 28-35
Todo model, 77
choosing between MVP and, 325
client-side MVC and single-page apps, 13
client-side MVC, Backbone style, 15
implementation specifics, 18-21
defined, 9
delving deeper into, 21
jQuery Mobile as tiny MVC framework, 244
models in Backbone
RESTful persistence, 53
models in Backbone collections, 42
adding or removing models, 42
retrieving models, 43

Index | 347

www.it-ebooks.info



http://www.it-ebooks.info/

Todo List app (example), 88
Underscore functions for, 51

MVC, MVP, and Backbone.js, 326-328

simple JavaScript implementation of, 319-
324

Smalltalk-80 MVC, 10

views in Backbone, 35-42

when to use JavaScript MV* framework, 3

MVP (Model-View-Presenter), 324

choosing between MVC and, 325

models, views, and presenters, 324

MVC, MVP, and Backbone.js, 326-328

N

name mapping, 197
namespaces
module scripts and, 179
namespacing, 328-332
defined, 328
DocumentCloud’s use of, 332
nested, 331
object literals, 330
recommendation for, 332
single global variable, 328
navigate( ) method, routers, 64
navigation
jQuery Mobile, 243
jQuery Mobile delegating navigation to
Backbone, 248
Netflix API
clientPager paginating results returned from,
214
requestPager requesting paginated results
from, 209
NewsBlur, 316
noConflict mode for Backbone, 167
Node.js
installing, 106
lightweight web server, 226
using to create REST server, 106
using to handle pushState, 205
notDeepEqual( ) assertion, 297
notEqual( ) assertion, 296
notEqual( ) function, 293
notStrictEqual( ) assertion, 296
npm (node package manager)
installing, 106

0

object literals, 330
Observer pattern, 327
off method, 57
Olson, Lukas, 171
omit function
using with models in Backbone collections,
51
on( ) method, 56-59
on( ) method as event aggregator, 176
once( ) method
Backbone events, 46
online code editors, 28
OuterView object, 155
outside-in and pull-based (BDD), 266
overridden methods, calling, 169

P

pages in jQuery Mobile, 242
pagination, 207-223
Backbone.Paginator, 209
Backbone.Paginator.clientPager, 214-223
Backbone.Paginator.requestPager, 209-214
types encountered with client-side data, 208
pairs( ) function
using with models in Backbone collections,
52
parse( ) function, Backbone models, 119
passive views, 325
paths, custom, for Require]S, 185
pattern language, semantics, 177
performance
jQuery Mobile, 258
PHP
Zend framework, 12
pick( ) function
using with models in Backbone collections,
51
pluck( ) function
using with collections, 49
plug-ins
Backbone plug-ins available from Bower
package manager, 238
including in boilerplate module code, 235
POST requests
POST route for web server, 111
updating POST after adding keywords sche-
ma, 115

348 | Index

www.it-ebooks.info


http://www.it-ebooks.info/

prefix namespacing, 329
presenters, 324
preValidate( ) method, 166
problems and solutions, 153-178
avoiding conflicts with multiple versions of
Backbone, 167
better model property validation, 162-167
building model and view hierarchies, 168
171
disposal of view hierarchies, 159
event aggregators and mediators, 171-178
managing models in nested views, 157-158
rendering parent from a child view, 158
rendering view hierarchies, 160
working with nested models and solutions,
161
working with nested views, 153-157
Progressive Widget Enhancement by jQuery
Mobile (jQMobile), 242
enhanced todo description page, 255
prototype property, 168
PubSubJS
mock based on, 308
pull-based (BDD), 266
pushState
handling using NodeJS, 205
pushState, support by Backbone, 63
PUT requests
creating put( ) function for book library ap-
plication (example), 114
updating PUT after adding keywords sche-
ma, 115

Q

QUnit, 289-301
assertions, 292-294
adding structure to, 294-295
asynchronous code tests, 300
examples of assertions, 296-297
fixtures, 297-300
example, 298
resources for more information, 314
setting up testing environment, 289
failed assertions, 291
sample HTML with QUnit-compatible
markup, 289
successful assertions, 291
test runner executing unit tests, 290

R

raises( ) assertion, 297
Reenskaug, Trygve, 9
region management in MarionetteJS, 132
Region object, 132
TodoMVC.js application (example), 134
relationships
and when to use event aggregator or event
mediator, 175
remove( ) method
Todo List application (example), individual
view, 92
remove( ) method, Backbone.View, 133
render( ) function
rendering a template in views, 39-41
render( ) method
Backbone view in Todo application (exam-
ple), 17
called by region on views, 133
calling so views will be visible in DOM, 132
InnerView object, 155
parent view, rendering subviews in, 154
Todo List application (example), individual
ToDoView, 86
Todo List application view (example), 84, 92
rendering
boilerplate rendering code for views, 127
parent view from a child view, 158
reducing boilerplate with Marionette.Item-
View, 128
testing view rendering, 282-284
view hierarchies, 160
with a templating system, testing, 284-287
requestPager, 209-214
bootstrapping, 221
convenience methods to use in views inter-
acting with, 212
require( ) method, 181
example of typical usage, 183
use in main.js, 231
using in define( ) to declare dependencies as
local variables, 182
Require]S, 144, 180
and Backbone examples, 186-189
getting started with, 183-186
configuration, 183
custom paths, 185
shims, 184
implementation of AMD Specification, 181

Index | 349

www.it-ebooks.info



http://www.it-ebooks.info/

keeping templates external using RequireJS
and text plug-in, 189-190
modular Backbone and Require]S app, 195-
206
AMD as module format, 195
application structure, 196
configuration options, 197
markup, 196
modularizing models, view, and collec-
tions, 198-203
optimizing Backbone apps for production
with optimizer, 190-192
Require]S API docs, 185
shims, 230
using with boilerplate to load config file, 229
writing AMD modules with, 181-183
responsive design with jQuery Mobile, 260, 263
responsive web design (RWD), 242
REST API, 109
connecting Backbone application to server
through, 116
creating backend for book library applica-
tion (example), 106-116
defining GET operation to return all books,
110
initial response returned from, 109
making call to, using jQuery, 110
RESTful persistence, 53-55
Backbone support of, 66
deleting models from the server, 54
dependencies in Backbone, 333
fetching models from the server, 53
options to methods, 55
saving models to the server, 54
rjs optimization tool, 190
routers, 61-66
Backbone. history, 64-66
creating, 62
number used in an application, 63
routing, 13
abuse of Backbone system, making it sole
controller, 139
beforeEach( ) and afterEach( ) tests for, 271
book library application (example)
creating delete route, 114
defining routes for web server, 109
GET request on web server, 113
POST route for web server, 111
dependencies in Backbone, 334

jQuery Mobile and Backbone app, 249, 249
jQuery Mobile Router project, 258
loading main router (router.js), 231
Marionette Todo application (example), 136
route-based module loading, 203-206
JSON-based module configuration, 203
module loader router, 204
using Node]JS to handle pushState, 205
router.js file, generated as Backbone Boiler-
plate, 236-237
executing module-specific logic on page
load, 237
Todo List application (example), 92-94
RSS readers, 316
Ruby on Rails, 10
MVC components, 11
RWD (see responsive web design)

S

scaffolding support, 226
Yeoman tool, 237
schemas
adding subschema to existing MongoDB
schema, 115
defining for MongoDB database, 109
script files
maintainability problems with multiple files,
180
<script> tags, loading script files with, 180
semantics, 177
separated presentation, 10
separation of concerns, 139, 143
server-side implementations of MVC, 10
HTTP request/response lifecycle, 12
setElement( ) method, views, 38
working with nested views, 154
setup( ) and teardown( ) functions, 294
using for instantiation and clean up, 295
shims (Require]S), 184, 230
custom path in shim settings, 185
shopping basket, region of a single-page appli-
cation, 14
Simple (TodoMVC version), 144
single global variable, 328
single-page applications (see SPAs)
single-responsibility principle (SRP), 139, 143
Sinon]S, 303-314
basic spies, 304
defined, 303

350 | Index

www.it-ebooks.info


http://www.it-ebooks.info/

inspection interface, 304-306
match execution count, 305
matching arguments, 304
stricter argument matching, 305
testing call order, 305
mocks, 308
resources for more information, 314
spying on existing functions, 304
stubs, 306-308
writing test for Todo application, 308
collections, 310-311
models, 309-310
views, 311-313
size( ) function
using with collections, 50
Smalltalk-80 MVC, 10
social commentary widgets, 316
sortBy( ) function
sorting collection on specific attribute, 49
SPAs (single-page applications), 2
client-side MVC and, 13
Gmail as good example, 316
specifications (specs), 267
for collections, 277
for views
initial setup, 280
templating system, rendering with, 284-
287
view rendering, 282-284
jasmine-jquery plug-in to assist in writing
for views, 279
model validations failing, 276
shared scope with suites, 273
SpecRunner, 274
spies, 268
creating errorCallback spy for model valida-
tion, 276

jasmine-jquery support for spying on jQuery

events, 280
mocking Ajax request and testing it, 269
no support in QUnit, 303
Sinon]JS (see Sinon]S)
testing asynchronous behavior in applica-
tions, 269
using Sinon]S for support in QUnit, 303
SRP (single-responsibility principle), 139, 143
Stack Overflow, 315
static methods, 168

stopListening( ) method, 59
calling on view when it’s ready to be closed,
130
strictEqual( ) assertion, 296
stubs, 306-308
subviews
creating and rendering, 154
suites, 267
containing specs, 267
shared scope with specs, 273
_super method, for Backbone.Model, 171
__super__ property, 168
sync( ) method, 66-70, 117
overriding Backbone.sync( ), 68-70
synchronous loading of scripts, 180

T

tagName property, views, 37
subviews, 154
tags
template tags in Underscore, 76
teardown( ) function, 294
using for clean up, 295
_.template( ) method, 39, 86
templates
book library application (example), 97
in boilerplate rendering code, 127
JST (JavaScript templates), precompilation,
234
keeping external with Require]S and text
plug-in, 189, 200
management of mobile page templates, 250
252
name property for, 146
precompilation, 226
statsTemplate for modular Todo app, 202
Todo List application (example), individual
ToDoView, 86
templating
configuration, defining in app.js file, 232
embedded version of template referencing
script by id, 198
Handlebars multipage-template processing,
247
Handlebars, use in Thorax, 145
JavaScript templating for views, 35
multipage templating feature, jQuery Mo-
bile, 244

Index | 351

www.it-ebooks.info



http://www.it-ebooks.info/

rendering with a templating system, testing,
284-287
templates for Todo List application (exam-
ple), 76
using Jammit asset packager, 206
using Underscore templates with Backbone
views, 39
views and, 19
test( ) function, 293
test-driven development (TDD), 266
combining with Jasmine BDD
testing collections, 277-279
testing models, 275-277
testing views, 279-287
with Backbone, 275
testing
using QUnit (see QUnit)
text.js plug-in for Require]S, 189-190
name maps, 197
storing Todo templates externally, 200
third-party objects
use by event aggregators and mediators, 175
this.parent, 157
this.parentView.render( ), 158
Thorax, 145
collection helper, 148
custom HTML data attributes, 149
embedding child views, 146
Lumbar-based project, 203
Todo application, 151
view helpers, 147
toBeDefined( ) matcher, 281
Todo List application (example)
application view, 79-85
Backbone DevTools extension used to de-
bug, 239
completing and deleting todos, 89
in action, 87
adding new todo items via JavaScript
console, 87-89
individual todo records, TodoView, 85-87
modular Backbone and Require]S app, 195-
206
configuration options, 197
markup, 196
modularizing models, views, and collec-
tions, 198-203
overview, 195

refactoring in Marionette, 133-145
CompositeView, 139
flexibility of Marionette, variations of To-
doMVC, 144
maintainability of Marionette Todo, 143
TodoMVC.js, 133
TodoMVC.Layout.js, 134
TodoMVC.TodoList.js, 137
TodoMVC.TodoList.Views.js, 139
Todos.js, 142
routing, 92-94
startup, 87
static HTML, 74-77
Thorax implementation of TodoMVC, 151
Todo model, 77
TodoList collection, 78
TodoMVC app with jQuery Mobile, 245-248
Todo List application (exercise), 73-94
application architecture, 73
toHaveClass( ) matcher, 281
toJSON( ) method
cloning all of model’s data attributes, 30
transitions, jQuery Mobile performance and,
258
trigger( ) method, 56-59
Backbone Todo List application (example),
136
triggering filter on Todos collection (exam-
ple), 94
Twitter Bootstrap
using with jQuery Mobile, 263
Twitter Bootstrap for styling paginators, 221

U
Uglify]S, 190
Underscore
chain( ) method, support in Backbone, 52
extend( ) method, 168
Require]S shim for, 184
storing templates in external file using Re-
quire]S and text plug-in, 190
storing templates inline, 189
templates for Todo List application (exam-
ple), 76
using templating in Backbone views, 39
utilities, 333
utility functions for collections, 48-52
Underscore.js microtemplates, 20

352 | Index

www.it-ebooks.info


http://www.it-ebooks.info/

unset( ) method
removing attribute from Backbone model,
34
update( ) method
collections, 48
URLs
connecting to application using routers, 61
user interfaces
views in MVC design pattern, 10
UTC, 112
utilities, 333

)

validate( ) method
validating form fields, 163
validateAll plug-in, 164
validation
Backbone models, 54
better model property validation, 162-167
using Backbone.validateAll, 164
using Backbone.Validation, 166
using form-specific validation classes,
167
models in Backbone, 34
values( ) function
using with models in Backbone collections,
51
versions of Backbone, avoiding conflict with,
167
view
Backbone
creating new views, 36
views, 2, 10
(see also MVC)
adding custom HTML data attributes in
non-Thorax projects, 149
application view in Todo List app (example),
79-85
asset package for dependency management,
206
Backbone, 35
el property, 36
Backbone.Events mixed with, 55
Backbone.View implementation, 17
boilerplate rendering code, 127
book library application (example), 101
addBook function of LibraryView, 121
event handler for delete button, 105

event handler for users adding books,
103
rendering when new model is added to
collection, 104
updating LibraryView initialize( ), 117
building model and view hierarchies, 168-
171
calling overridden methods, 169
extending one view with another, 169
CollectionView in Thorax, 148
controller responsibility addressed within,
17
displayed in a DOM element, managing life-
cycle of, 132
disposing view hierarchies, 159
embedding child views in Thorax, 146
events and, 60
generated by collection helper in Thorax,
150
generating boilerplate code for, 235
ghost views, 60
in Backbone implementation of client-side
MVC request handling, 19
in MVP, 324
in simple JavaScript MVC implementation,
321
interacting with clientPager, convenience
methods for, 216
interacting with clientPager, variables to rep-
resent state of paginator, 218
interacting with requestPager, convenience
methods for, 212
JavaScript templating in frameworks sup-
porting MVC/MV*, 19
jQuery Mobile and Backbone app
concrete view page inheriting from Ba-
sicView, 249
layout, extending Marionette.ItemView, 134
Marionette Todo application (example)
TodoMVC.TodoList.Views.js, 139
Marionette’s CompositeView type, 139
memory management in Marionette]S, 128-
131
modular Todo application (example), dis-
playing completed and remaining items,
201
nested
managing models in, 157-158
rendering and appending, 153-157

Index | 353

www.it-ebooks.info



http://www.it-ebooks.info/

W

reducing boilerplate with Marionette.Item-
View, 128

rendering parent view from a child view, 158

rendering view hierarchies, 160

testing using TDD and Jasmine BDD, 279-
287

Thorax.View, 146

Todo List application (example)
individual TodoView, 85-87

Todo List application (example), individual
ToDoView
completing and deleting todos, 89

Todo List application view (example)
instantiation on page load, 87

TodoView, modularized (AMD) version, 199

TodoView, non-modular version, 198

use of event aggregators with, 176

view helpers in Thorax, 147

wrapping with AMD, 186

writing Sinon]S tests for, 311-313

window.history.pushState, 63

wizard interfaces, event mediator use, 176

X

XHR (XmlHttpRequest), 14

Y

Yeoman, 237

z

Zaefferer, Jorn, 289
Zend framework (PHP), 12
Zepto, 70
extending with functions to look up closest
view, model, or collection to a given ele-
ment, 150
RESTful persistence, 333

354

| Index

www.it-ebooks.info


http://www.it-ebooks.info/

About the Author

Addy Osmani, a Developer Programs Engineer on the Chrome team at Google, has a
passion for JavaScript application architecture. He’s an engineer on the Yeoman team,
has created popular projects like TodoMVC, and contributed to other open source
projects such as Modernizr and jQuery. A prolific blogger, Addy’s articles are frequently
featured in JavaScript Weekly, Smashing Magazine, and many other publications.

Colophon

The animal on the cover of Developing Backbone.js Applications is an Australasian
snapper (Pagrus auratus), which is primarily found off the coast of Indonesia, China,
the Philippines, Taiwan, New Zealand, Australia, and Japan. This fish goes by many
names, depending on the region in which it’s found, but it is a prized eating fish every-
where.

Australasian snapper spawn inshore and live in rocky areas and reefs. During spawning,
they turn a metallic green, an indicator of highly concentrated acid building up in their
scales. Their growth patterns vary based on region, but they can live up to 40 years.

The cover image is from Meyers Klein Lexicon. The cover font is Adobe ITC Garamond.
The text font is Adobe Minion Pro; the heading font is Adobe Myriad Condensed; and
the code font is Dalton Maag’s Ubuntu Mono.

www.it-ebooks.info


http://addyosmani.com/blog
http://www.it-ebooks.info/

	Copyright
	Table of Contents
	Preface
	Target Audience
	Credits
	Reading
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us
	Acknowledgments

	Chapter 1. Introduction
	What Is MVC?
	What Is Backbone.js?
	When Do I Need a JavaScript MVC Framework?
	Why Consider Backbone.js?
	Setting Expectations

	Chapter 2. Fundamentals
	MVC
	Smalltalk-80 MVC
	MVC Applied to the Web
	Client-Side MVC and Single-Page Apps
	Client-Side MVC: Backbone Style
	Implementation Specifics

	What Does MVC Give Us?
	Delving Deeper into MVC
	Summary
	Further Reading

	Fast Facts
	Backbone.js
	Used by


	Chapter 3. Backbone Basics
	Getting Set Up
	Models
	Initialization
	Getters and Setters
	Listening for Changes to Your Model
	Validation

	Views
	Creating New Views
	What Is el?

	Collections
	Adding and Removing Models
	Retrieving Models
	Listening for Events
	Resetting/Refreshing Collections
	Underscore Utility Functions
	Chainable API

	RESTful Persistence
	Fetching Models from the Server
	Saving Models to the Server
	Deleting Models from the Server
	Options

	Events
	on(), off(), and trigger()
	listenTo() and stopListening()
	Events and Views

	Routers
	Backbone.history

	Backbone’s Sync API
	Overriding Backbone.sync

	Dependencies
	Summary

	Chapter 4. Exercise 1: Todos—Your First Backbone.js App
	Static HTML
	Header and Scripts
	Application HTML
	Templates

	Todo Model
	Todo Collection
	Application View
	Individual TodoView
	Startup
	In Action
	Completing and Deleting Todos
	Todo Routing
	Summary

	Chapter 5. Exercise 2: Book Library—Your First RESTful Backbone.js App
	Setting Up
	Creating the Model, Collection, Views, and App

	Wiring in the Interface
	Adding Models
	Removing Models

	Creating the Backend
	Install Node.js, npm, and MongoDB
	Install Node Modules
	Create a Simple Web Server
	Connect to the Database

	Talking to the Server
	Summary

	Chapter 6. Backbone Extensions
	MarionetteJS (Backbone.Marionette)
	Boilerplate Rendering Code
	Reducing Boilerplate with Marionette.ItemView
	Memory Management
	Region Management
	Marionette Todo App
	Is the Marionette Implementation of the Todo App More
      Maintainable?
	Marionette and Flexibility
	And So Much More

	Thorax
	Hello World
	Embedding Child Views
	View Helpers
	collection Helper
	Custom HTML Data Attributes
	Thorax Resources

	Summary

	Chapter 7. Common Problems and Solutions
	Working with Nested Views
	Problem
	Solution 1
	Solution 2
	Solution 3
	Solution 4

	Managing Models in Nested Views
	Problem
	Solution

	Rendering a Parent View from a Child View
	Problem
	Solution

	Disposing View Hierarchies
	Problem
	Solution

	Rendering View Hierarchies
	Problem
	Solution

	Working with Nested Models or Collections
	Problem
	Solution

	Better Model Property Validation
	Problem
	Solution
	Backbone.validateAll
	Backbone.Validation
	Form-Specific Validation Classes

	Avoiding Conflicts with Multiple Backbone Versions
	Problem
	Solution

	Building Model and View Hierarchies
	Problem
	Solution
	Calling Overridden Methods
	Backbone-Super

	Event Aggregators and Mediators
	Problem
	Solution
	Event Aggregator
	Mediator
	Similarities and Differences
	Relationships: When to Use Which
	Event Aggregator and Mediator Together
	Pattern Language: Semantics


	Chapter 8. Modular Development
	Organizing Modules with RequireJS and AMD
	Maintainability Problems with Multiple Script Files
	Need for Better Dependency Management
	Asynchronous Module Definition (AMD)
	Writing AMD Modules with RequireJS
	Getting Started with RequireJS
	Require.js and Backbone Examples
	Keeping Your Templates External Using RequireJS and the Text Plug-in
	Optimizing Backbone Apps for Production with the RequireJS Optimizer

	Summary

	Chapter 9. Exercise 3: Your First Modular Backbone and RequireJS App
	Overview
	Markup
	Configuration Options
	Modularizing Our Models, Views, and Collections
	Route-Based Module Loading
	JSON-Based Module Configuration
	Module Loader Router
	Using NodeJS to Handle pushState

	An Asset Package Alternative for Dependency Management

	Chapter 10. Paginating Backbone.js Requests and Collections
	Backbone.Paginator
	Live Examples

	Paginator.requestPager
	Convenience Methods

	Paginator.clientPager
	Convenience Methods
	Implementation Notes
	Plug-ins
	Bootstrapping
	Styling
	Summary


	Chapter 11. Backbone Boilerplate and Grunt-BBB
	Getting Started
	Creating a New Project
	index.html
	config.js
	main.js
	app.js
	Creating Backbone Boilerplate Modules
	router.js

	Other Useful Tools and Projects
	Yeoman
	Backbone DevTools

	Summary

	Chapter 12. Backbone and jQuery Mobile
	Mobile App Development with jQuery Mobile
	The Principle of Progressive Widget Enhancement by
      jQMobile
	Understanding jQuery Mobile Navigation

	Basic Backbone App Setup for jQuery Mobile
	Workflow with Backbone and jQueryMobile
	Routing to a Concrete View Page, Inheriting from
      BasicView
	Management of Mobile Page Templates
	DOM Management and $.mobile.changePage

	Applying Advanced jQM Techniques to Backbone
	Dynamic DOM Scripting
	Intercepting jQuery Mobile Events
	Performance
	Clever Multiplatform Support Management


	Chapter 13. Jasmine
	Behavior-Driven Development
	Suites, Specs, and Spies
	beforeEach() and afterEach()
	Shared Scope
	Getting Set Up
	TDD with Backbone
	Models
	Collections
	Views
	View Testing

	Exercise
	Further Reading
	Summary

	Chapter 14. QUnit
	Getting Set Up
	Sample HTML with QUnit-Compatible Markup

	Assertions
	Basic Test Case Using test( name, callback )
	Comparing the Actual Output of a Function Against the Expected Output

	Adding Structure to Assertions
	Basic QUnit Modules
	Using setup() and teardown()
	Using setup() and teardown() for Instantiation and Clean
      Up

	Assertion Examples
	Fixtures
	Fixtures Example

	Asynchronous Code

	Chapter 15. SinonJS
	What Is SinonJS?
	Basic Spies
	Spying on Existing Functions
	Inspection Interface

	Stubs and Mocks
	Stubs
	Mocks

	Exercise
	Models
	Collections
	Views
	App

	Further Reading and Resources

	Chapter 16. Conclusions
	Appendix A. Further Learning
	A Simple JavaScript MVC Implementation
	Event System
	Models
	Views
	Controllers
	Practical Usage

	MVP
	Models, Views, and Presenters

	MVP or MVC?
	MVC, MVP, and Backbone.js
	Namespacing
	What Is Namespacing?
	What Does DocumentCloud Use?
	Recommendation

	Backbone Dependency Details
	DOM Manipulation
	Utilities
	RESTful Persistence
	Routing

	Backbone Versus Other Libraries and Frameworks

	Appendix B. Resources
	Books and Courses
	Extensions/Libraries

	Index
	About the Author

