
www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Patrick Mulder

Full Stack Web Development with
Backbone.js

www.it-ebooks.info

http://www.it-ebooks.info/

Full Stack Web Development with Backbone.js
by Patrick Mulder

Copyright © 2014 Patrick Mulder. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://my.safaribooksonline.com). For more information, contact our corporate/
institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editors: Simon St. Laurent and Brian MacDonald
Production Editor: Kara Ebrahim
Copyeditor: Jasmine Kwityn
Proofreader: Amanda Kersey

Indexer: Judy McConville
Cover Designer: Randy Comer
Interior Designer: David Futato
Illustrator: Rebecca Demarest

June 2014: First Edition

Revision History for the First Edition:

2014-06-09: First release

See http://oreilly.com/catalog/errata.csp?isbn=9781449370985 for release details.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of O’Reilly
Media, Inc. Developing Web Applications with Backbone.js, the image of a pipe fish, and related trade dress
are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc. was aware of a trademark
claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and author assume no
responsibility for errors or omissions, or for damages resulting from the use of the information contained
herein.

ISBN: 978-1-449-37098-5

[LSI]

www.it-ebooks.info

http://my.safaribooksonline.com/?portal=oreilly
mailto:corporate@oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781449370985
http://www.it-ebooks.info/

Table of Contents

Preface. vii

1. The Bigger Picture. 1
Before You Get Started 1
Backbonify Your Stack 2

Using npm 2
Local Backbone.js 4
Backbone.js via Content Delivery Networks 5

Modules, Packages, and Servers 6
CommonJS Modules 8
Beyond index.html 9
Browserify 10
Combining Express.js and Stitch 13

When Things Go Wrong 15
Conclusion 16

2. Kick-Starting Application Development. 17
Creating a Wireframe 18
Decoupling State from the UI 19

Models and Collections 21
Views 22
Backbone.js and MVC 22

Preparing a Click Dummy 24
Basic HTML and Style 24
Building a Data Layer 26
Basic Events 31

Conclusion 34

3. Building the User Interface. 35

iii

www.it-ebooks.info

http://www.it-ebooks.info/

Referencing jQuery 35
Interfacing the DOM 36

Basic Rendering 37
Bindings to Data Changes 39
Basic View Templates 41
Rendering a Collection 42

Handling UI Events 43
DRYer Views and ViewModels 46
Conclusion 47

4. Router Basics. 49
Addressing State 49

Preparing 50
Defining Routes 51
Navigating 54

Orchestrating Views 55
Preparing for a Layout View 55
Parent and Child Views 56

Conclusion 60

5. Transforming Collections. 61
Functional Enhancements 61

Sorting 62
Filtering 66

Backbone.Obscura 68
Conclusion 71

6. Advanced View Templates. 73
Views and Templates 73

JST 74
ECO 75
Handlebars 76
React and Others 76

Build Automation 77
Grunt 77

Conclusion 82

7. Synchronizing State. 83
Fetching Remote Movies 84

RESTful Web Services 84
Mocking an API 85

Basic Sync and Fetch 87

iv | Table of Contents

www.it-ebooks.info

http://www.it-ebooks.info/

Asynchronous Effects 92
Firebase 94

Conclusion 95

8. Basic API Concerns. 97
Backend Services 98

Proxies 98
Building a Movies Service 100

Wrapping a Data Store 101
Persistence 108

Conclusion 111

9. Authentication. 113
Security in Browsers 113
Cookies 114

Signup 116
Managing Sessions 118

Sessions with Backbone 123
A Navbar View 123
A Modal View for Sign Up 125
The Login Dialog 129

The Session Logic 131
A New Session 131
State of a Session 131
Logout 132

Conclusion 132

10. Automated Workflows. 135
Improving Productivity 135
Dependencies with Bower 136
Say Hello to Yeoman 138
RequireJS 140

Main.js 141
Adding Modules 142

Scaffolding Components 143
Conclusion 143

11. From Backbone To Thorax. 145
The Role of Frameworks 145
Getting Started 147

Prepare Mock Data 149
Initializing the Application 150

Table of Contents | v

www.it-ebooks.info

http://www.it-ebooks.info/

A Router Setup 152
Thorax.Collection 152
Rendering 154
Conclusion 156

A. Developing with JavaScript. 157

Index. 165

vi | Table of Contents

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

Web users demand intuitive and responsive interfaces for tracking their finances and
browsing catalogs. Unlike desktop or system applications, where interfaces are mostly
built with flavors of C, C++, or Java, today’s web browsers only run JavaScript natively.
But the same patterns that make graphical user interfaces successful on different plat‐
forms apply to JavaScript as well.

Many communities have formed around experimenting and developing ideas for the
model-view-controller (MVC) pattern with JavaScript. It seems like every day there is
a new idea about how MVC in web browsers should look and why other ideas won’t
work for you.

In these turbulent times, the Backbone.js library stands out like a lighthouse. Unlike
other approaches to JavaScript MVC, Backbone.js is very small and flexible. However,
the main difference of Backbone.js compared to its peers is the Backbone “ecosystem.”
Backbone’s philosophy of staying small gave birth to many plug-ins and a multitude of
different, and some unique, use cases.

This rich ecosystem makes learning and understanding Backbone hard. If you are new
to JavaScript, or if you have only built server-side web applications, you are faced with
a number of problems. How do you combine views and the data layer with JavaScript?
How do you abstract away JavaScript dependencies, such as Backbone plug-ins? How
do you best serve and deploy JavaScript assets? But also, where is the “controller” in
Backbone, or when are they used?

Answering these questions is one goal of this book. But Backbone.js really starts to shine
when you learn to explore and engage with its rich ecosystem. First, there are many
plug-ins for Backbone.js that can help you solve advanced UI problems. Second, build
tools can help you to be more productive and also enable you to reuse ideas on both the
client and server. This is my second goal: I want to show how a full-stack JavaScript
application with Backbone.js can be built with the help of JavaScript modules, workflow
automation, and the use Backbone plug-ins. For the backend, you will learn about basic
API design ideas as well as perspectives on authentication.

vii

www.it-ebooks.info

http://www.it-ebooks.info/

Maybe you will be intimated by the variety of tools that you can use to develop Back‐
bone.js web applications. The Backbone.js ecosystem is quite large, so not all choices of
tools will work for you. However, I hope this book will help you to decide which tools
will work best for the particular app you are working on.

If your JavaScript programming skills are a bit rusty, entering client-side application
development can be a daunting adventure. I hope to provide a sort of basecamp from
where you can explore different directions to build interactions within browsers and
help you to understand the benefits of separating interface from application state.

In summary, we’ll cover:

• How to quickly get started with a Backbone.js sandbox
• How to manage data and state with Backbone.js models and collections
• How to work with advanced view templates and Handlebars
• How to use Backbone.js to browse data sources from an API
• How to authenticate and authorize client-side interactions
• How to improve productivity of a team with workflow automation and Backbone

frameworks

Who This Book Is For
This book is written for readers coming from one of these backgrounds:

• You are a backend developer with some experience in rendering web pages on the
server. You are maybe impressed by the fast feedback from browser applications,
or you want to build advanced browser interfaces for navigating and editing data
in the browser.

• You are a frontend developer with interests in single-page web applications or in‐
teractive widgets in web browsers. You maybe found jQuery not meeting your goals
anymore and are looking to learn what Backbone.js is about.

• You are a product manager or team lead that is responsible for making technology
choices. If you want to understand where Backbone.js and JavaScript fit in your
technolgoy stack, this book is for you.

Building single-page web applications involves more than just questions around inter‐
faces, so this book also discusses basics of JavaScript modules, build approaches, and
API backends. When scanning the table of contents this book, you might discover that
JavaScript offers a number of interesting options.

viii | Preface

www.it-ebooks.info

http://www.it-ebooks.info/

Hopefully this book can show paths to structure web applications in a new way, toward
friendlier and more scalable web applications. This book will be especially interesting
to developers who want to learn approaches for using a user interfaces as a service, where
frontend and backend services can be maintained and deployed independently.

Who This Book Is Not For
With Backbone.js, you have a lot of freedom to control interactions with documents
based on JavaScript. The scope of the book is not avoiding JavaScript in the first place.

Other frameworks to build interactive documents such as Angular.js or Ember provide
more abstractions and a high amount of “sugar” to build interfaces. However, the phi‐
losophy of this book is to pull in abstractions and dependencies when needed, and not
start with those in the first place. This book should provide Backbone’s viewpoint on
when and why certain abstractions are useful.

Related to maintainable and scalable application design is testing. Testing JavaScript
applications with, for example, Jasmine or command-line tools is discussed in other
specialized books and will be mentioned where appropriate.

Although the ideas from Backbone.js have quickly diffused into very interesting realms,
such as highly interactive maps, system applications, browser extension, and hybrid
applications for mobile phones, it is not possible to discuss all of these.

You will work mainly with the browser, a text editor, and the command line. If you prefer
integrated development environments (IDEs), any one with support for JavaScript will
do, such as Webstorms from Jetbrains or a version of Visual Studio with Node plug-ins.
Also, Netbeans and Eclipse should support basic web development with JavaScript and
HTML.

If you are on a Windows machine that does not support a Unix command line, you
might want to install Cygwin or a virtual machine (VM) running Unix so that you can
better follow along with the examples.

What This Book Will Do for You
The first goal of this book is to help you understand the different use cases of Back‐
bone.js. Since its first release in 2010, Backbone.js has built up a good reputation for
improving the development of client-side web applications. There are a number of in‐
teresting projects and companies that use Backbone.js. For example, Walmart uses
Backbone.js as the core library of its mobile shopping cart. Airbnb uses Backbone.js to
let users and search engines browse available travel accomodations. DocumentCloud
has built a document screening service with Backbone.js. There are many more exam‐
ples, and you can find an interesting overview in the Examples section of the Backbone.js
documentation.

Preface | ix

www.it-ebooks.info

http://backbonejs.org/#examples
http://backbonejs.org/#examples
http://www.it-ebooks.info/

Second, this book should help you climb the learning curve for getting things done on
the client side. Many books target JavaScript frontend developers and leave out those
having built server-side web applications. Other books stop the discussion when Back‐
bone.js can be put to practical use in real applications.

Hopefully this book can provide a bridge from client-side to server-side concepts and
help you understand the advantages of the Backbone ecosystem. You can then adopt a
mind-set for JavaScript applications in general, on the client or in combination with
server-side JavaScript.

Why I Wrote This Book
Working as a Ruby on Rails developer, I observed the JavaScript and NodeJS develop‐
ments with some skepticism. After all, Ruby land created a lot of innovations that con‐
tribute to the happiness and productivity of developers and businesses.

But as with any other framework or maturing application, code bases become harder
to maintain, and it is difficult to redesign applications toward mobile clients and main‐
tain smooth interactions with data. It is here where the JavaScript community is heavily
experimenting and solutions for building scalable architectures for mobile web appli‐
cations emerge.

However, the user interface is just a layer in a larger application stack, and the design
of interactions takes more than just patching existing web applications. JavaScript is a
good choice to drive an application stack for web interactions, but it also brings new
demands on concepts and data schemas. The goal of this book is to show how client-
side applications can evolve from basic interaction ideas, and how more modular and
maintainable web applications can be built.

Other Resources
To understand the perspectives in this book, you need a sound knowledge of JavaScript,
browsers, and DOM manipulation, as well as a basic knowledge of web applications.
Also, there are a number of resources available to go deeper into single-page application
development.

The JavaScript Language
To learn JavaScript, there are a number of good resources available:
JavaScript Garden

This is an open source resource on programming in JavaScript. This online guide
is a good place to turn to for improving your understanding of quirky aspects of
the language without consulting a book.

x | Preface

www.it-ebooks.info

http://bonsaiden.github.io/JavaScript-Garden/
http://www.it-ebooks.info/

JavaScript: The Good Parts by Douglas Crockford (O’Reilly/Yahoo! Press, 2008)
This book is a gentle introduction to the grammar and semantics of the JavaScript
language. It can be read quite quickly and is referenced from many other sources
too. So, if you are new to JavaScript, this book might be good to have.

JavaScript: The Definitive Guide, 6th Edition, by David Flanagan (O’Reilly, 2011)
Considered a bible for JavaScript development, this book discusses in detail the
roles JavaScript plays in browsers and for server-side applications.

Speaking JavaScript: An In-Depth Guide for Programmers by Axel Rauschmayer
(O’Reilly, 2014)

This book provides a complete introduction to JavaScript, as well as a good overview
on its evolution and best practices for using it.

For readers who want to look further into JavaScript, there are a number of other in‐
teresting books. For example, JavaScript Patterns by Stoyan Stefanov (O’Reilly, 2010),
Learning JavaScript Design Patterns by Addy Osmani (O’Reilly, 2012), and JavaScript
Cookbook by Shelley Powers (O’Reilly, 2010) contain a lot of helpful patterns that can
help you to be a better JavaScript developer.

jQuery and the DOM
For readers who need to grasp the basics for working with jQuery and the DOM,
JavaScript and jQuery: The Missing Manual by David Sawyer McFarland (O’Reilly, 2011)
will be helpful.

For readers who want to explore further advanced effects with DOM nodes, Super‐
charged JavaScript Graphics by Raffaele Cecco (O’Reilly, 2011) will be a very interesting
read. This book discusses a lot of nice details on rendering and animation of DOM
nodes in the browser.

Other Backbone.js Resources
If you want to consult additional resources that discuss Backbone.js specifically, the
following list should get you started:
Developing Backbone.js Applications (O’Reilly, 2013)

With this book (also sometimes listed as Backbone Fundamentals), Addy Osmani
has written one of the first books on Backbone.js. His book starts with an in-depth
discussion of the MVC pattern and continues with a number of different Backbone
examples, such as an editor of Todo lists and a small library editor. Addy’s book
might be a good companion to this book, because it serves as more of a reference
book, unlike this book’s more specialized approach that focuses on one particular
application. Addy concentrates more on frontend development, while this book
also includes ideas and concepts for backend development.

Preface | xi

www.it-ebooks.info

http://shop.oreilly.com/product/9780596517748.do
http://shop.oreilly.com/product/9780596805531.do
http://shop.oreilly.com/product/0636920029564.do
http://shop.oreilly.com/product/9783897215986.do
http://shop.oreilly.com/product/0636920025832.do
http://shop.oreilly.com/product/9780596806149.do
http://shop.oreilly.com/product/9780596806149.do
http://shop.oreilly.com/product/0636920015048.do
http://shop.oreilly.com/product/0636920013044.do
http://shop.oreilly.com/product/0636920013044.do
http://shop.oreilly.com/product/0636920025344.do
http://www.it-ebooks.info/

Thoughtbot’s Backbone.js on Rails
This self-published book is great from a Ruby on Rails perspective, because it in‐
cludes a lot of Ruby code examples that are necessary to drive a Backbone.js frontend
in Rails. It also does a nice job in discussing Jasmine and Capybara for frontend
testing.

Building Backbone Plugins
Consult this book written by Derick Bailey and Jerome Gravel-Niquet if you want
to delve more into writing Backbone plug-ins and reusable code in general. Also,
with the Pragmatic Bookshelf ’s Hands-on Backbone.js, Derick has published a
number of screencasts that might help more audio-visual inclined learners.

BackboneRails.com
Brian Mann’s screencasts provide a great discussion of concepts and examples for
developing client-side applications together with Ruby on Rails.

Last but not least, the source code of Backbone itself and of many Backbone plug-ins
are good places to improve your understanding of Backbone details. The Backbone
annotated source code is at http://backbonejs.org/docs/backbone.html, and Backbone
plug-ins can be found via http://backplug.io/ and http://backboneindex.com/.

API References
Additionally, the documentation of JavaScript and the APIs will be helpful:

• JavaScript general documentation
• Documentation of jQuery
• Underscore
• Backbone

Conventions Used in This Book
The following typographical conventions are used in this book:
Italic

Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program elements
such as variable or function names, databases, data types, environment variables,
statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

xii | Preface

www.it-ebooks.info

https://learn.thoughtbot.com/products/1-backbone-js-on-rails
https://leanpub.com/building-backbone-plugins
http://pragprog.com/screencasts/v-dback/hands-on-backbone-js
http://www.backbonerails.com/
http://backbonejs.org/docs/backbone.html
http://backplug.io/
http://backboneindex.com/
https://developer.mozilla.org/en/docs/Web/JavaScript
http://api.jquery.com/
http://underscorejs.org/
http://backbonejs.org/
http://www.it-ebooks.info/

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

This element signifies a tip or suggestion.

This element signifies a general note.

This element indicates a warning or caution.

Feedback and Code Examples
As Backbone.js has its roots in open source software development, feedback and dis‐
cussion about the presented material is highly appreciated.

The book website will collect all libraries that are mentioned in this book. Also, there
will be references to interesting blog posts about the topics from the book.

As the book examples will be hosted on GitHub, you can either leave an issue on GitHub
under https://github.com/pipefishbook/pipefishbook.github.io, or send an email to in
fo@pipefishbook.com.

Using Code Examples
As just noted, supplemental material (code examples, exercises, etc.) is available for
download at https://github.com/pipefishbook.

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not need
to contact us for permission unless you’re reproducing a significant portion of the code.
For example, writing a program that uses several chunks of code from this book does
not require permission. Selling or distributing a CD-ROM of examples from O’Reilly
books does require permission. Answering a question by citing this book and quoting

Preface | xiii

www.it-ebooks.info

http://pipefishbook.com
https://github.com/pipefishbook/pipefishbook.github.io
mailto:info@pipefishbook.com
mailto:info@pipefishbook.com
https://github.com/pipefishbook
http://www.it-ebooks.info/

example code does not require permission. Incorporating a significant amount of ex‐
ample code from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “Developing Web Applications with Back‐
bone.js by Patrick Mulder (O’Reilly). Copyright 2014 Patrick Mulder,
978-1-449-37098-5.”

If you feel your use of code examples falls outside fair use or the permission given above,
feel free to contact us at permissions@oreilly.com.

Safari® Books Online
Safari Books Online is an on-demand digital library that
delivers expert content in both book and video form from
the world’s leading authors in technology and business.

Technology professionals, software developers, web designers, and business and crea‐
tive professionals use Safari Books Online as their primary resource for research, prob‐
lem solving, learning, and certification training.

Safari Books Online offers a range of product mixes and pricing programs for organi‐
zations, government agencies, and individuals. Subscribers have access to thousands of
books, training videos, and prepublication manuscripts in one fully searchable database
from publishers like O’Reilly Media, Prentice Hall Professional, Addison-Wesley Pro‐
fessional, Microsoft Press, Sams, Que, Peachpit Press, Focal Press, Cisco Press, John
Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe Press, FT
Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, Course Technol‐
ogy, and dozens more. For more information about Safari Books Online, please visit us
online.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://bit.ly/dwa-backbone.

xiv | Preface

www.it-ebooks.info

mailto:permissions@oreilly.com
http://my.safaribooksonline.com/?portal=oreilly
http://www.safaribooksonline.com/content
http://www.safaribooksonline.com/subscriptions
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/government
http://www.safaribooksonline.com/individuals
http://www.safaribooksonline.com/publishers
http://www.safaribooksonline.com/
http://bit.ly/dwa-backbone
http://www.it-ebooks.info/

To comment or ask technical questions about this book, send email to bookques
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our website
at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments
This book wouldn’t have been possible without the help of many hands. First, there were
the JavaScript pair programming sessions I did with Béla Varga, who is involved in a
number of communities for JavaScript development (MunichJS, Coding Dojo), and
helped me a lot changing my Ruby-developer biased view on JavaScript.

I want to thank Andrea Notari, Daniele Bertella, and Aurélie Mercier for investing time
in a side project that led to experimenting with Backbone.js in the first place. We are
trying to make digital work more accessible and transparent.

Thanks for valuable feedback and discussion from Lucas Dohmen, Michael Hackstein,
Mathias Lafeldt, Radoslav Stankov, Colin Megill, Eric Trom, Ryan Eastridge, Mike
Dvorkin, Martin Gausby, Jeremy Morrell, Jean Carlos Menino, Axel Rauschmayer, Phi‐
lip Fehre, Roman Sladeczek, Laust Rud Jacobson, Yi Cao, Dave Cadwallader, Nikhilesh
Katakam, Patrick Dubroy, Ted Han, Jeremy Ashkenas, Jason Crawford, Peter de Croos,
Adam Krebs, Tim Griesser, Sara Robinson, Kevin Sweeney, Petka Antonov, and Gorgi
Kosev.

Thanks to Dominik Oslizlo for sharing helpful feedback on interface design.

I want to thank my colleagues at Fidor and the people I met at meetups and user groups
for supporting me during the project, asking questions or providing helpful directions.

I want to thank my friends and family, who let me write and experiment with JavaScript
while I could have been enjoying their company.

If the essence of writing is rewriting, I want to thank my reviewers and editors for helping
me during that process of improving the manuscript. A special thanks to my technical
reviewers Manuela Mitterdorfer, Garrett Allen, Josh Habdas, Will Mruzek, Sam Sac‐
cone, and Jake Buob of MojoTech. Your feedback raised many interesting questions,
and I hope that you like the final outcome.

Special thanks to my editor Brian MacDonald at O’Reilly. Your patience and feedback
during the writing process were greatly appreciated.

Preface | xv

www.it-ebooks.info

mailto:bookquestions@oreilly.com
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia
http://www.it-ebooks.info/

Also, I want to thank Simon St. Laurent and Meg Blanchette for the initial supporting
work for this book at O’Reilly. For providing great support in the last stages, I want to
thank Jasmine Kwityn and Kara Ebrahim.

Last, I want to thank Béatrice for her love and sense for aesthetics outside of the digital
world.

xvi | Preface

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1

The Bigger Picture

The goal of this first chapter is to provide an introduction to the Backbone.js application
environment. It focuses mainly on packages of JavaScript, how to fetch these from the
command line, and how to bundle many JavaScript files into one single file.

To learn about the ideas behind Backbone.js, you want to manage as few abstractions
as possible. This is why we’ll use Node and the command line as our main working
environment for the first few chapters. Later in this book, you will meet Yeoman, Re‐
quireJS, and Grunt, which automate workflow for JavaScript projects.

If you prefer to skip the command-line ideas for now, and you want to get started with
the browser and UX topics directly, you might want to read Chapter 2 first. However,
you should return to this chapter afterward so that you can learn more about JavaScript
modules and bundling JavaScript for the browser.

In sum, the goal in this chapter is to enter development with JavaScript modules, and
we will touch on the following:

• Getting Backbone.js via npm, via a content delivery network (CDN) or from the
project site

• Basic bundling of JavaScript applications with Browserify and Stitch
• Common use cases for the CommonJS module format

Before You Get Started
Before you can build Backbone.js applications, it is very important that you know some
basic abstractions to work with multiple JavaScript files at once.

There are two reasons:

1

www.it-ebooks.info

http://www.it-ebooks.info/

• You will need to fetch a number of JavaScript dependencies to get going with Back‐
bone.js web applications.

• The view and data layer in Backbone.js applications are generally broken up into
separate JavaScript modules.

Bundling JavaScript for the browser is an important topic with many options. A related
question is this: how can you organize your JavaScript dependencies and share your
projects with others? To follow the answers of this book, you will need a working Node.js
setup.

If you don’t yet feel comfortable with JavaScript or haven’t set up Node.js, you might
want to look at the JavaScript refresher in Appendix A; you will find some instructions
to set up Node.js.

Backbonify Your Stack
Like Lego, the philosophy of Backbone.js is centered on combining small building blocks
that do one thing well. As an introduction, you’ll see some of the simplest ways to work
with Backbone.js in this chapter.

Besides Backbone.js, you need to fetch two additional libraries to get started. Under‐
score.js is a fixed dependency for Backbone.js and will help you with filtering and sorting
data, as well as working with arrays and functions.

Second, you need a library for manipulating the Document Object Model (DOM). One
of the most popular libraries for DOM manipulation is jQuery, but there is also Zepto.js
for mobile use cases or Cheerio for server-side DOM manipulation.

So, how can we import these libraries into the web application? There are several ways:

• Fetching local copies by using a package manager, such as npm
• Working with remote references, or CDN networks
• Fetching local copies by downloading the libraries manually

Using npm
If you want to use Node.js, and we will be using it a lot in this book, you can fetch
Backbone.js with Node’s package manager, or npm.

npm is one of the most important command-line tools in Node. With npm, you can quickly
access more than 60,000 JavaScript modules. Although npm has its roots on the server
side, you can use it for developing browser web applications, too, as we will see later in
this chapter.

2 | Chapter 1: The Bigger Picture

www.it-ebooks.info

http://npmjs.org
http://www.it-ebooks.info/

First, if you start work on a new project, it makes sense to initialize the project directory
as follows:

$ npm init

You’ll get asked a number of questions about your project. You can leave most parts
empty for new projects, if you are unsure of the answers when you’re first starting out.
The important point is that you obtain a package.json file, which should contain the
following:

{
 "name": "sandbox",
 "version": "0.0.0",
 "description": "",
 "main": "index.js",
 "author": "Patrick",
 "dependencies": {
 }
}

Next, we fetch Backbone and its dependencies. You can fetch Backbone with npm as
follows:

$ npm install backbone --save
npm http GET https://registry.npmjs.org/backbone
npm http 304 https://registry.npmjs.org/backbone
npm http GET https://registry.npmjs.org/underscore
npm http 304 https://registry.npmjs.org/underscore
backbone@1.1.2 node_modules/backbone
└── underscore@1.6.0

We use the --save argument to save Backbone as a fixed depenency for the project. It
is also possible to save a dependency only for development with --save-dev.

After you run the command, you should have a node_modules directory that contains
Backbone and its dependency Underscore.js. We also need the jQuery library for DOM
manipulation, which we can add as follows:

$ npm install jquery --save
npm http GET https://registry.npmjs.org/jquery
npm http 304 https://registry.npmjs.org/jquery
jquery@2.1.0 node_modules/jquery

We now have the libraries as Node modules that support the so-called CommonJS for‐
mat. What this is, and how we package these modules for the browser, will be discussed
in the following sections.

For now, take away that npm can create a project manifest and can manage your JavaScript
dependencies from the command line. Once Backbone.js is a dependency there, it will
allow others to run npm install on your project and easily get a working environment.

Backbonify Your Stack | 3

www.it-ebooks.info

http://www.it-ebooks.info/

There are a number of solutions to manage JavaScript dependen‐
cies. For example, we will meet Bower in Chapter 10, when we look
at automated workflows for frontend web development with Grunt.
There is also volo, which is preferred by some developers.

Local Backbone.js
If you are rather new to JavaScript and Node.js, you may want to experiment first with
Backbone.js without using Node. In this case, you can visit http://backbonejs.org.

There you can fetch a copy of Backbone.js and store it as a local copy on your machine.
Local copies might also be handy if you work with server-side web frameworks, such
as Ruby on Rails, that have their own JavaScript build process. Last, fetching a local copy
might be interesting when you want to play with the newest version of Backbone.js.

To download Backbone.js from the project site, you can scroll down until you see the
project download area, as shown in Figure 1-1. In most cases, you want to download
the development version. Then you must download the Backbone.js dependencies
jQuery and Underscore.js.

Figure 1-1. The project page offers a simple approach for downloading Backbone.js

It’s a good idea to occasionally visit the home page of the Backbone.js project so that
you can stay informed about changes in the project. You should also regularly check the
project repository at GitHub: by looking at the latest commits and new issue discussions,
you can expand your knowledge of JavaScript and open source development.

4 | Chapter 1: The Bigger Picture

www.it-ebooks.info

https://github.com/volojs/volo
http://backbonejs.org
http://jquery.com/download/
http://underscorejs.org/
http://www.it-ebooks.info/

Backbone.js via Content Delivery Networks
When you want to share examples online, a good option to load Backbone.js is to fetch
the libraries from a content delivery network (CDN).

Loading Backbone.js and its dependencies from a CDN is necessary
when working with services such as JSFiddle, JSBin, or Codepen.io.
These online sandboxes can help you with sharing problems or pub‐
lishing work.

There are a number of CDNs that host a version of Backbone.js, but a very good CDN
network is provided by Cloudflare. If you want to use Backbone.js with a CDN, you can
use the following <script> tags:

<script src="https://cdnjs.cloudflare.com/ajax/libs/jquery/2.0.3/jquery.js">
</script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/underscore.js/1.5.2/
 underscore-min.js">
</script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/backbone.js/1.1.0/
 backbone-min.js">
</script>

To test this, we create a simple HTML file:

<html>
 <head>
 <!--- insert CDN scripts here -->
 <script>
 $(document).ready(function() {
 console.log(Backbone);
 });
 </script>
 </head>
<body>
</body>
</html>

Let’s check this page in the browser. If all goes well, we should see a Backbone object
printed in the console of the browser, similar to Figure 1-2. However, you might expe‐
rience problems without network access or WiFi. We will see in a moment how to fetch
local copies of the libraries to work in offline mode, too.

Backbonify Your Stack | 5

www.it-ebooks.info

http://cdnjs.com/
http://www.it-ebooks.info/

Figure 1-2. The <script> tags in the index.html fetch Backbone.js and its dependencies
from a CDN; when the browser triggers the document’s “ready” event, Backbone.js
should be ready for business

Modules, Packages, and Servers
At this point, you’ve tackled the first hurdle for building web applications with Back‐
bone.js. You can manage some JavaScript dependencies with npm, and you can manually
download a version of Backbone.js.

But how do we bundle multiple JavaScript files so that we only have to worry about a
single JavaScript file in the browser? This question becomes especially important when
you’re working with 10–20 JavaScript files, because setting each <script> tag manually
in the HTML would be tedious. In this book, we look first at approaches to bundle
CommonJS modules, and in later chapters at working with RequireJS.

To understand where we are heading and why there are a number of approaches to
bundling assets, let’s take a look at the distributed application design in Figure 1-3.

6 | Chapter 1: The Bigger Picture

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 1-3. For web application development with Backbone.js, we want to manage
both frontend assets as well as data coming from an API; Backbone.js is just one layer
in a larger application stack and influences how we set up environments for develop‐
ment and production

Your application stack might change, depending on the requirements that evolve from
users. If your primary goal is to deliver a mobile web application, we might want to tune
every line of JavaScript that we send to the client. An example stack for mobile web
applications is given by Walmart’s mobile shopping cart, and we will discuss this stack
based on RequireJS and Thorax in later chapters.

If it is important that search engines can crawl your application, rendering of templates
should be done on the server to provide links for search engine optimization and a fast
first page load. Backbone.js integrates well with so-called isomorphic JavaScript appli‐
cations, where parts of an application can run on both the client and server. Airbnb’s
Rendr.js library shows how client- and server-side rendering can be combined for this
use case with Browserify and CommonJS modules.

In other cases, a Backbone.js application is just part of a larger server-side web appli‐
cation. Some server-side approaches, such as Browserify and Express with Stitch, sup‐
port bundling JavaScript files with the CommonJS module format. Other server-side
approaches support RequireJS-based workflows and JavaScript modules in the so-called
AMD format.

Modules, Packages, and Servers | 7

www.it-ebooks.info

http://www.it-ebooks.info/

Don’t worry too much about what is best for you now. The important point here is to
experiment with the idea of “modular” JavaScript and observe the influence this has on
your use cases and application stack.

CommonJS Modules
When JavaScript was first specified, <script> tags were the main constructs to run
JavaScript. When Node.js arose, there was a new need to reuse JavaScript dependencies
as modules across projects. The Node.js community proposed the CommonJS module
format. But, should you “require” Backbone as a CommonJS module in the browser
too? Well, it depends.

What is the best module format? Opinions vary. Besides the CommonJS module format,
there is the RequireJS format. RequireJS has been developed specifically for the browser
environment. Yet, as with many software development considerations, the right tool
depends on your job.

As the CommonJS format is the default server-side approach, you can have an option
to run the same code on the server that runs in the browser, or vice versa. This can be
interesting for certain kinds of applications, as we can share the same logic to render
views or validate models on the server as in the browser. The Rendr library from Airbnb,
for example, follows this approach.

Also, because npm uses the CommonJS format by default, it can be nice to build quick
prototypes and to experiment for learning purposes as we are doing here. We will discuss
RequireJS in the second half of this book, when we are looking at static web pages,
without backend integration.

The general syntax to “require” Backbone as a CommonJS module looks like this:

var Backbone = require('backbone');

How does this require work? In a Node environment, the JavaScript runtime would
search the local node_modules paths for the Backbone module. If it can’t find the module
there, Node would search the global node_modules folder. At the browser, we don’t have
these paths, and a browser does not natively know about CommonJS modules. To fix
this, we need to wrap JavaScript modules with tools such as Browserify and Stitch to
resolve dependencies. We will discuss this in a moment.

First, let’s look closer at the syntax to define a CommonJS module. Say you want to wrap
a function to print “Hello, World” in CommonJS. For doing this, we “export” some
JavaScript code that we later can “require.”

So, we could define a module in a file greeting.js:
module.exports = function() {
 console.log("Hello, World!");
};

8 | Chapter 1: The Bigger Picture

www.it-ebooks.info

http://www.it-ebooks.info/

1. There will be new ways to load JavaScript modules with the upcoming ECMAScript 6 specifiaction, but it
will take some time before these are widely used.

In the Node console, you can now require this module with the following:

> var greeting = require('greeting');
> greeting();
Hello, World!

The same module can be executed in the browser. But first we need to package it as a
module for the browser.

Beyond index.html
Now that you’ve learned some basics about JavaScript modules, let’s look at ways to
“require” these modules in the browser. In a browser, all we have is HTML and <script>
tags.1

Loading an index.html in the browser with references to a Backbone.js app with
<script> tags only works for small projects. Putting too much JavaScript in HTML can
easily evolve into hard-to-maintain code. The index.html file is a good entry point when
spiking out ideas, but it is good to have JavaScript code in separate files from the start.

To set up a JavaScript project, we first create two directories: one directory to put the
JavaScript files of the application, and another for the bundled JavaScript assets that are
delivered to the browser.

Let’s set up these directories. First, we create a directory for the JavaScript sources:

$ mkdir app

Then, we create a directory for the bundles files (you can later reference this directory
from index.html):

$ mkdir static

Finally, we need some simple HTML. This code can be placed in the project root:

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="utf-8">
 <title>PAGE TITLE</title>
 <!-- scripts -->
</head>
<body>
</body>
</html>

Now, back to the main question of this section: what <script> tags should you use to
load Backbone.js and the web application? In the previous section, we covered the basics

Modules, Packages, and Servers | 9

www.it-ebooks.info

http://www.it-ebooks.info/

of CommonJS modules. And, as is often the case with JavaScript, you have different
options to prepare CommonJS for the browser.

Browserify
As already mentioned, npm gives us access to the repository of Node modules. Also, the
CommonJS module syntax is rather simple and allows us to maintain a simple boiler‐
plate for a JavaScript project. However, how can we run CommonJS modules in the
browser? The missing piece in the puzzle is Browserify.

Browserify walks through the dependencies of an application and assembles multiple
files into one. In “Using npm” on page 2, you used npm already to install Backbone and
its dependencies. In addition to app and static, you should have a directory node_mod
ules at this point, and your project directory tree should look like this:

|-app
|-node_modules
|---backbone
|-----node_modules
|-------underscore
|---jquery
|-static

To bundle the JavaScript for the browser, let’s first make a module that loads the Back‐
bone module. In app/main.js, we insert the following:

var Backbone = require('backbone');
module.exports = function() { return Backbone };

Node can be used to test that this is a valid module. If you enter the console with node,
you can now import the module as follows:

$ node
> require("./app/main")
[Function]
> require("./app/main")()
{ VERSION: '1.1.2', ...]

This is fine, you might think, but what does this result from the Node console have to
do with a web browser? For some use cases, being able to run JavaScript on both the
server and the browser virtual machine (VM) allows you to better reuse ideas for ren‐
dering or validating data, for example. This is less obvious from this small example, but
it’s a big deal when you want to build an online shop or social network that needs both
fast processing times on a server as well as responsive interfaces on the client.

Also, because Node and Node modules are supported from the command line, we can
quickly spike out new ideas. Now, how can we see the same result from the Node console
in the web browser? The magic comes from Browserify. We can use the following
browserify command to bundle a module and its dependencies:

10 | Chapter 1: The Bigger Picture

www.it-ebooks.info

https://github.com/substack/node-browserify
http://www.it-ebooks.info/

$ browserify -r ./app/main:app > static/bundle.js

What does this command do? A number of things:

• Browserify supports different modes to bundle JavaScript. To bundle the file app/
main.js as module, you can use the -r directive.

• To map the local module ./app/main.js to a better module target name, you can use
the colon. See browserify --help for more options.

• Because browserify just provides a plain text file output, you can use a > to save
the command’s output into a file static/bundle.js.

Then, if you look in the resulting file static/bundle.js, you’ll see that the output of
Browserify resulted in two things.

First, Browserify output starts with a wrapper function that implicitly defines what and
how to “require” code from this file:

require=(function e(t,n,r){function s(o,u){if(!n[o]){if(!t[o]){var a=typeof
require=="function"
&&require;if(!u&&a)return a(o,!0);if(i)return i(o,!0);throw new Error("Cannot
find module '"
+o+"'")}var f=n[o]={exports:{}};t[o][0].call(f.exports,function(e){var
n=t[o][1][e];return
s(n?n:e)},f,f.exports,e,t,n,r)}return n[o].exports}var i=typeof
require=="function"&&
require;for(var o=0;o<r.length;o++)s(r[o]);return s})
({1:[function(require,module,exports){
var Backbone = require('backbone');
module.exports = function() { return Backbone };

Second, Browserify bundled up all JavaScript dependencies in this file, such as jQuery,
Underscore, and Backbone. Generally, you don’t want to work in this large output file,
but you want to use the original JavaScript files. The Browserify command can then be
repeated as often as you like to create new static files.

To save you from typing browserify every time a file changes, you
can use the watchify tool, which automates builds as soon as an input
file changes. However, to keep the code examples consistent, the book
examples only show the browserify command.

To run the bundled code in the browser, let’s add a line to load the file static/bundle.js
from our index.html. In index.html, we add:

<script src="static/bundle.js"></script>

If you now load the index.html from the browser, you can run require("app")() in
the browser console, and you should see output similar to Figure 1-4.

Modules, Packages, and Servers | 11

www.it-ebooks.info

https://github.com/substack/watchify
http://www.it-ebooks.info/

Figure 1-4. With Browserify, we can package CommonJS modules and run these in the
browser

If you want to learn more on combining client- and server-side ren‐
dering (e.g., in the context of an ecommerce project), you can look at
the Rendr library from Airbnb or read up on isomorphic JavaScript
web applications.

A slightly more difficult use case is to require modules as local application dependencies,
such as custom Backbone views or Backbone collections from a directory (e.g., ./app/
views or ./app/collections). Don’t worry about the specifics of views and collections at
this point—we will discuss them in more depth in the next chapter.

The important point right now is devising a way to require local modules from an
application directory. First, you create directories for views and collections:

$ mkdir app/views
$ mkdir app/collections

Browserify follows the Node convention for looking up modules in directories. So, you
need to create a node_modules directory inside the app directory, to follow the
convention:

$ mkdir app/node_modules
$ cd app/node_modules
$ ln -sf ../views
$ ln -sf ../collections

Based on symbolic links to the ./app/node_modules path, Browserify can find your local
modules and you can easily require a module in your application like this:

require('views/movie');

With this setup, you can leave out any relative paths for your require() statements.

12 | Chapter 1: The Bigger Picture

www.it-ebooks.info

http://www.it-ebooks.info/

Combining Express.js and Stitch
Browserify is not the only way to run CommonJS modules in the browser. While
Browserify is a nice tool to bundle modules from the command line, some developers
prefer to maintain a project manifest that explicitly lists a project’s dependencies. How
manifest files look depends on your application stack, but the general goal, as with
Browserify, is to bundle many files into one file.

For some application stacks (e.g., when you work with a web server similar to Express.js),
CommonJS modules, or CommonJS like require of modules, can be done with some
simple configurations. For web servers based on Node.js, there are the package managers
Stitch and Mincer, which are somewhat similar to the Sprockets asset manager for web
servers in Ruby.

If you come from Ruby on Rails, you probably have used Sprockets,
the asset pipeline in Ruby on Rails. Sprockets is very similar to Stitch
but supports its own require syntax. If you like that syntax, you might
want to check out Mincer, a port of Sprockets to Node.js.

To illustrate some ideas behind using a package manager and a manifest file, let’s walk
through an example with Express.js and Stitch. The role of the web server is to deliver
HTML, CSS, and JavaScript to the client. Stitch helps us to package the frontend Java‐
Script project.

An Express.js server is very simple to set up. Similar to the approach taken earlier, we
can use npm to fetch the Express.js module:

$ npm install express

Express.js provides a nice language to manage HTTP requests and responses on the
server. Let’s create a directory for a server next:

$ mkdir server

To get a basic server going, you can create a server/app.js file that serves a simple in‐
dex.html page first. For this, we insert the following code in server/app.js:

// First, we require Express.js as dependency
var express = require('express');
var logger = require('morgan');

// a helper to resolve relative paths
var path = require('path');

// Then we initialize the application...
var app = express();

app.use(logger({ immediate: true, format: 'dev' }));

Modules, Packages, and Servers | 13

www.it-ebooks.info

https://github.com/clarkdave/connect-mincer
http://www.it-ebooks.info/

// We add a basic route that serves an index.html
// ... let's use the same as above
app.get('/', function(req, res) {
 var html = path.resolve(__dirname + '/../index.html');
 res.sendfile(html);
});

// Let's listen on port 5000
app.listen(5000);
console.log("Server is running.");

And, if we insert the preceding HTML, we can start the server with:

$ node server/app.js

We can check that our new server speaks HTTP from the command line with curl:

$ curl 0.0.0.0:5000

And this should return the HTML from server/app.js, which we can check in a browser,
too.

So far, the server-side Express.js application just transports HTML. Let’s look next at
how to wrap JavaScript “modules” with Stitch.

Similar to how we installed Express.js, we can install Stitch with:

$ npm install stitch

Sitch assembles multiples files into one file via configurations of paths. In the previous
file server/app.js we now add:

var express = require('express'),
 path = require('path'),
 stitch = require('stitch');

// To "stitch" the client-side modules together
// we create a package
var package = stitch.createPackage({
 paths: [__dirname + '/../app'],
 dependencies: [
 __dirname + '/../libs/jquery.js',
 __dirname + '/../libs/underscore.js',
 __dirname + '/../libs/backbone.js',
]
});

var app = express();

app.use(express.static(__dirname + '/public'));

// Whenever a request goes to the client, we deliver the modules as client.js
app.get('/static/bundle.js', package.createServer());

app.get('/', function(req, res) {
 console.log("--> /");
 var html = path.resolve(__dirname + '/../index.html');

14 | Chapter 1: The Bigger Picture

www.it-ebooks.info

http://www.it-ebooks.info/

 res.sendfile(html);
});
app.listen(5000);
console.log("Server is running.");

With this set up, Stitch manages and serves the client-side application whenever we
request /client.js. Stitch resolves the modules in the dependency tree of the client-side
application. Let’s check this.

First, we create a directory for the client-side application:

$ mkdir app

and a app/init.js file where we insert:

console.log("hello, world");

Now, we can look at what Stitch does with:

$ curl 0.0.0.0:5000/static/bundle.js

Inspecting the file, we see some code that was added by Stitch, and at the bottom some
code from our init.js file:

//....
{"main": function(exports, require, module) {console.log("hello, world"); }

We now can use the main.js file as a CommonJS module (i.e., with require("main")
in the browser console). The following sections show how to work with those to build
the Backbone application.

Stitch has less power in resolving dependencies than Browserify, but Stitch will do fine
for most examples in this book. Instead of manually configuring and setting up Un‐
derscore, Backbone, and Stitch, you can also declare Backbone in the global scope or
load Backbone from CDN networks.

When Things Go Wrong
Working with a web browser for development can be unusual for backend developers.
However, a browsers’ development console is a great playground, as is Node’s read-eval-
print-loop (REPL). Many problems with Backbone.js relate to not using the correct
JavaScript syntax or idiom, and for many problems, typing some code into the REPL is
a good start.

Problems with rendering and the DOM can often be debugged with breakpoints in the
browser (for example, by adding the debugger statement in your source code). With
breakpoints, you can understand why a variable has (not) the expected value, or why a
rendering snippet is not reached. The Mozilla documentation on Debugging Java‐
Script offers good advice on using the debugger in browsers.

On the server-side and on the command line, you might find the following tools helpful:

When Things Go Wrong | 15

www.it-ebooks.info

https://developer.mozilla.org/en/docs/Web/JavaScript
https://developer.mozilla.org/en/docs/Web/JavaScript
http://www.it-ebooks.info/

JSLint/JSHint
These tools allow you to debug the syntax of JavaScript. This is especially helpful
for finding missing brackets, parentheses, or semicolons. Looking at the output of
JSLint, you can also improve your coding style. The rules that get applied in JSLint
originate from Douglas Crockford’s JavaScript: The Good Parts.

Console output
Often, it helps to place a line of console.log("-→ debug"); in your code and see
when some output is printed in the browser console. Sometimes code can return
unexpectedly and never reaches the functions you expect.

JSON beautifiers
Working with JSON, you will often find it helpful to format some data with the
jshon tool, or a similar browser plug-in. By using the jshon beautifier, you can
inspect data from the command line with curl or wget and compare the data values
with what you expect.

Conclusion
This chapter provided a first glance of the development of a web application stack. We
used npm and some Node modules to set up a basic Backbone.js application stack.

At this stage, you want to keep abstractions for an application stack at the bare minimum,
such that the application is easy to read and feels nice to play with. As the book pro‐
gresses, you will be introduced to other options and trade-offs that might be better for
deploying an application for your particular use case.

An application with Backbone.js lives partly on the server and partly in the browser, so
you should be familiar with the core application libraries and how to set up some basic
directories to organize your project files.

You should have played a bit with Browserify or with a JavaScript package manager that
bundles multiple JavaScript files into one file. The widely popular RequireJS and Java‐
Script AMD module format will be discussed later in the book.

For the next chapters, we’ll stay in the web browser. You will learn about the basic
abstractions that Backbone.js provides, and we will discuss Munich Cinema, the main
example application of the book.

16 | Chapter 1: The Bigger Picture

www.it-ebooks.info

http://shop.oreilly.com/product/9780596517748.do
http://www.it-ebooks.info/

CHAPTER 2

Kick-Starting Application Development

Don’t make me think is mentioned by Steve Krug as the most important principle in
designing user interfaces. When you browse a list of movies, for example, it is nice to
initially see just the film posters and for the movie details to be visible only upon request.
In a web browser, the user experience of browsing movies results involves processing
events that result from input devices such as a mouse or keyboard.

Backbone.js can be used for many different uses cases, but browsing items in a search
result set is a common one. This chapter introduces Munich Cinema, an imaginary
cinema that wants to provide a new search page. The requirements of Munich Cinema
are layout first. Before coding, it is advisable to start with a sketch of an interface on
paper. This can help you to structure your software later. We’ll use a basic wireframe for
interaction ideas, and we’ll learn how to model the interface with Backbone components.

We explore the basic contexts for Backbone views and Backbone models. We also touch
on the topic of the model-view-controller (MVC) pattern in Backbone.js. Because
Backbone.js has no controller, Backbone’s “MV*” pattern will be explained.

The examples in this chapter walk you through the basics of rendering a view, triggering
state changes with events, and notifying views to re-render. We build on top of the
CommonJS module format from the previous chapter.

The following topics will be discussed:

• Exploring a UI concept with a wireframe
• The separation of data and user interface
• The basics of Backbone.Events
• Rendering a collection of movies
• Viewing updates from events

17

www.it-ebooks.info

http://www.it-ebooks.info/

Creating a Wireframe
Let’s imagine that we’ve been approached by Munich Cinema, a small, fictional cinema,
for help in improving the user experience of its online movie schedule. Figure 2-1
roughly illustrates the cinema’s current web page—a rather standard HTML page ren‐
dered in a server-side web application.

From the perspective of Mary, a regular patron at Munich Cinema, the main information
on the page includes the film titles and showtimes. When she visits the page of Munich
Cinema, she is accustomed to seeing the weekly movie program, which is just a list of
movies. If she scrolls further down, the showtimes appear. Last, there are some details
about how to make a reservation or locate the cinema.

Figure 2-1. The basic Munich Cinema web page

As Munich Cinema sometimes takes part in movie festivals and events from young
cineasts, the goal is to improve search options for movies, as well as to capture feedback
from customers.

To start, we sit down with our designer and sketch out what the browsing experience
could become. The movies are the most important entities on the website, so we want
to preserve the context to quickly switch from one movie to another. Therefore, we want
to combine a list view of the movies with details views. There also needs to be an easy
way to navigate back and forth between the movies.

18 | Chapter 2: Kick-Starting Application Development

www.it-ebooks.info

http://www.it-ebooks.info/

During our conversation with the designer, we decided that patrons like Mary would
be interested to interact with Munich Cinema as follows:

• It would be useful for them to be able to filter and search movies (e.g., by the same
director or in the same genre) so that they can decide which movie to go see. So a
search box with some way to filter movies would be nice.

• After having seen a movie, they might want to share their experience by adding a
rating. Similarly, they might be interested in how other cinemagoers liked the movie.

• They might want to know which friends have already watched a movie or want to
go out to the cinema.

The folks at Munich Cinema agree that these features are worthwhile. But first, they
want to see a prototype of an application with Backbone.js so that they can better un‐
derstand what Ajax web applications are about.

After this discussion, we create a preliminary mock-up of how the user experience for
browsing movies should look (Figure 2-2). On the lefthand side, there will be a list of
available movies. With this list, the movie program can be filtered, and a single movie
can be selected. For the selected film, details such as showtimes and director and actor
information are shown. Finally, the movies program can also be browsed with Previous
and Next buttons.

Decoupling State from the UI
We easily can imagine the wireframe working for different movies (or even different
cinemas). The goal of a wireframe prototype is to learn about the important elements
on a page early on. An equally important outcome is that you can get a sense of what
makes users enjoy and play with your information.

Once the requirements of an interface are layed out, you can translate these into HTML.
Subsequently, a browser makes HTML elements accessible with the Document Object
Model (DOM). But many problems around advanced web interfaces arise from having
users and servers both accessing the DOM.

To understand why, let’s look at some HTML tags that represent movies. Without using
JavaScript, an interface would be purely defined through the behavior of HTML tags.
For example, an anchor tag can mention “The Artist” to reference a possible browser
state /movies/1:

The Artist

Decoupling State from the UI | 19

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 2-2. A mock-up for the Ajax-based browsing experience for Munich Cinema—
with mock-ups like these, you can quickly identify some DOM elements that you need
and establish basic collections and controls; during the course of developing a project,
the ideas for the interface might change multiple times, so good abstractions on present‐
ing and managing information is important

When that link is clicked, the browser triggers a GET request to /movies/1. At the same
moment that HTML is received, you would lose your previous application state. This
“statelessness” that works so well for the Web is contrary to how user interfaces work
outside the browser.

For most user interfaces on desktops, it is common to “track” state. For example, a click
event does not necessarily mean a complete state change of the visible screen. Rather, a
user might find a partial view update helpful, while staying in the context of the current
page.

This is the typical use case for filtering and sorting visible data. But also the other way
around—a server might want to partially update views without waiting for the user to
fetch the next page.

Let’s look at another example to see the role of state in the browser:

 The Artist
 Taxi Driver

20 | Chapter 2: Kick-Starting Application Development

www.it-ebooks.info

http://www.it-ebooks.info/

 La Dolce Vita

With JavaScript, you can easily modify what a user sees or in what order. You can even
render the movies differently, while the abstract representation of a movie having a title,
director, and rating is controlled at the server.

It is here where libraries and frameworks such as Backbone.js come into play. With
Backbone.js, you can actively control the state of an application and prevent awkward-
looking HTTP requests and responses for tiny DOM updates. With the model-view-
controller (MVC) on the client, you can reuse visual structures with different data and
only fetch or store data on the server when needed.

Armed with these concepts on state and views, you are now ready to read about the
purpose of Backbone.js, as defined on the project website:

Backbone.js gives structure to web applications by providing models with key-value
binding and custom events, collections with a rich API of enumerable functions, views
with declarative event handling, and connects it all to your existing API over a RESTful
JSON interface.

Don’t worry if you don’t completely understand this definition at first. It is the goal of
this and the following chapters to help you grasp the various meanings. Let’s start with
tracking state with “key-value bindings and custom events.”

Models and Collections
Although users are only concerned with the data itself and how to interact with it (in
our example, the movies and filters for finding them), you should think about models
of your data first. The easiest way to represent data is with key-value pairs.

For example, the data of a movie at Munich Cinema might look as follows:

var movie = {id: 1, title: "The Artist", genres: ["Comedy", "Romance", "Drama"]}

While key-value pairs are very readable, they lack an important property: events.
Without events, it is hard to know if and what data pairs have changed or how outside
observers could be notified about data changes. Events can result from mouse clicks or
key presses in the web browser but also come from the network (e.g., sockets) or from
URL changes.

Besides models, Backbone.js introduces a special abstraction to represent multiple
models. For example, for our movie program example, we want to track the actions of
users on the movies collection, such as applying filters or observing the number of mov‐
ies in a collection. For doing this, Backbone.js provides some enumerable helpers on
the collection.

Summarizing, the abstractions for application state can be seen in these Backbone.js
components for data:

Decoupling State from the UI | 21

www.it-ebooks.info

http://www.it-ebooks.info/

Models
By enhancing key-value pairs with events, it is possible for other Backbone com‐
ponents to hook into state changes. Additionally, a model can help to synchronize
application state between client and server, as will be discussed in later chapters.
Models can also help in the validation of data.

Collections
To filter and sort models, a Backbone.Collection provides a basic enumeration API.
It does not matter if movies are added or removed by a user or the server.

As the data layer of Backbone.js applications are built around events, the user interface
can listen to data changes and re-render. The main component of the UI are Backbone
views, the topic of the next section.

Views
Users will interact and change application state with shells around the data layer. This
is what Backbone views are for. On the one hand, we are interested in events from the
DOM, such as mouse clicks or key presses. On the other hand, views can update DOM
nodes with new content.

From this discussion, we can see one of the main ideas from Backbone.js in
Figure 2-3: Backbone views deal with the DOM, while the data layer tracks state changes
and provides data to the views.

Decoupling the DOM from state changes makes a development pro‐
cess more flexible, too. As requirements change during a software
project, the data layer can generally be reused in many different
Backbone views.

For rendering DOM elements, Backbone views are generally based on view templates.
Backbone is compatible with many engines that can render templates, and you will
encounter a number of different options during the book.

Backbone.js and MVC
Most human interaction in software systems follow some variation of the model-view-
controller (MVC) pattern. This pattern was first developed in the 1970s and 1980s in
the context of user interfaces for large work stations. In the 1990s, the pattern became
widely popular on desktop software systems with the advent of graphical user interfaces.
In parallel, MVC was adopted via the NeXTSTEP operating system in Apple’s Cocoa
API and became an important concept for smartphone applications.

22 | Chapter 2: Kick-Starting Application Development

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 2-3. While Backbone views manage events and updates of the DOM, state is
tracked with Backbone models and collections—to make an interface work, you must
bind views to events from models and collections; if a user wants to filter the movie pro‐
gram, the views re-render when the movies collection triggers events for filtering

Also, many server-side web frameworks follow some flavor of MVC. But in contrast to
server-side web frameworks, where controllers and views connect HTTP requests and
responses, browser MVC leans much closer to the “classical” MVC concepts on man‐
aging interface state over time.

To explain the MVC pattern of Backbone.js, let’s look at the example of Munich Cinema.
Models, views, and controller can be mapped to the following ideas:

• Normally, a model is a representation of a “real” thing. For example, for Munich
Cinema, a Movie model contains a title, director, and a list of genres. The movie
program contains many Movie models. However, models can sometimes be used
to track special attributes of views, like a “selected” attribute. If models are used to
store special view attributes, models can also be called “view model.”

• A view manages how certain aspects of the data are displayed. Views also capture
events coming from users. Views are based on view templates that provide layouts
for rendering. Views are bound to data changes, too. You will later see views for
rendering a collection of movies and views to control filters and pages.

• A controller manages multiple views. The controller concept in Backbone.js is not
so easy to locate. There is a Backbone router that might act as a controller; in other
cases, Backbone views can act as a controller, too. In this book, you won’t see much
of controllers, but with some imagination, you can see a LayoutView as having

Decoupling State from the UI | 23

www.it-ebooks.info

http://www.it-ebooks.info/

controller-like responsibilities. Some frameworks on top of Backbone.js (e.g.,
Chaplin or Rendr) provide a controller layer themselves.

Which variation of the MVC pattern Backbone.js follows is often discussed. When you
use special view models, your Backbone application might lean more toward MVVM
(model-view-view-model) and less toward MVC. That Backbone.js is often described
as “MV*” might be confusing in the beginning, especially if you come from server-side
web development.

Preparing a Click Dummy
After this overview on Backbone.js, let’s continue with the Munich Cinema example
application. We expect the design of our user interface to change a couple of times. On
the other hand, the structure of data and state transitions are less prone to change. That
is why we, and many other Backbone.js developers, take a look at the data first. Once
we have data representations, we can start building the user interface on top.

Based on our setup from Chapter 1, Backbone.js will help us to introduce abstractions
for browsing movies. At the first stage, we are targeting a setup with a simple data layer
and a basic UI, such as the server-less TodoMVC application that is a well-known demo
for client-side web applications.

TodoMVC is one of the main examples that ships with Backbone.js.
You can see a live demo. There are many derivatives of this demo, and
there is a comprehensive overview on different demos.

Basic HTML and Style
To develop the new interactions with movies, we need to write some HTML, a bit of
CSS, and an empty JavaScript application.

First, let’s set up an HTML and JavaScript application boilerplate. It is easiest if you
define some basic HTML in index.html as follows:

<!DOCTYPE html>
<html>
<head>
 <link rel="stylesheet" href="static/style.css" type="text/css">
 <script src="static/bundle.js"></script>
</head>
<body>
</body>
</html>

24 | Chapter 2: Kick-Starting Application Development

www.it-ebooks.info

http://localtodos.com/
https://github.com/tastejs/todomvc
http://www.it-ebooks.info/

The files static/style.css and static/bundle.js point to a basic stylesheet and JavaScript
application, respectively.

To start, we write some HTML that matches the idea of the target wireframe. For the
beginning, only some basic DOM nodes for movies need to be inserted into the body
tag of index.html:

<section id="movies">
 <article class="movie selected">
 <h1>The Artist</h1>
 </article>
 <article class="movie">
 <h1>Taxi Driver</h1>
 </article>
 <article class="movie">
 <h1>La Dolce Vita</h1>
 </article>
</section>
<nav id="controls">
 Previous |
 Next
</nav>

This HTML will later be built from a Backbone view. But before developing interactions,
it is helpful to define some basic CSS for our initial application development. This style
(and DOM nodes) will probably change later when we meet with our designer, but
having a sense of CSS class names will be useful.

You can define some styles in static/style.css:
.movie {
 width: 90px;
 height: 90px;
 background-color: #3D9970;
 color: white;
 margin: 10px;
}

.details {
 width: 240px;
 margin: 10px;
 background-color: blue;
 color: white;
 float: left;
}

.selected {
 border: 2px #01FF70 solid;
}

#movies {
 width: 120px;

Preparing a Click Dummy | 25

www.it-ebooks.info

http://www.it-ebooks.info/

 float: left;
}

By now, an idea of a click dummy should appear in the browser that looks similar to the
interface shown in Figure 2-4.

Figure 2-4. A click dummy for testing simple interactions in the web browser

The mock-up can provide a bit of direction on where to go next. But how do we start
with actual JavaScript application development? Let’s look at the data…

Building a Data Layer
The weekly movie program is just a list of movie objects. Having an object to represent
a movie and an object to represent a list of movies, sounds like a good start for further
application development.

As explained in the previous sections, Backbone models are key-value pairs with several
enhancements. Backbone collections will be helpful to filter the movies program.

So, let’s define two modules: a Movie model and a Movies collection.

As discussed in “Beyond index.html” on page 9, some directories are needed to set up
a Backbone.js application. You should create a directory for Backbone models first:

$ mkdir -p app/models
$ mkdir -p app/node_modules

To require models easily with browserify, you can symlink models into node_modules:
$ cd app/node_modules
$ ln -sf ../models .

26 | Chapter 2: Kick-Starting Application Development

www.it-ebooks.info

http://www.it-ebooks.info/

You then define the following Movie model in app/models/movie.js:
var Backbone = require("Backbone");
var Movie = Backbone.Model.extend({
 defaults: {
 title: "default",
 year: 0,
 description: "empty",
 selected: false
 }
});
module.exports = Movie;

In this small example, there are two Backbone idioms. First, using extend is the common
way in Backbone to construct new classes of a Backbone model. The keyword extend
is a concept from Underscore.js and can be used to construct Backbone collections,
views, and routers as well.

Second, with the defaults properties, Backbone provides a way to set default values
for a movie. This is not strictly required, but defaults can be helpful to meet expectations
elsewhere in the code (e.g., the presence of attributes in a movie view).

Because the preceding model is a CommonJS module, you can easily load the Movie
model in a Node console and explore its API a bit. Let’s do this:

$ cd app
$ node

In the node console, you can now do the following:

> Movie = require('models/movie');
> movie = new Movie({title: "The Artist"})

The output should be:

> movie = new Movie({title: "The Artist"})
{ cid: 'c1',
 attributes:
 { title: 'The Artist',
 year: 0,
 description: 'empty',
 selected: false },
 _changing: false,
 _previousAttributes: {},
 changed: {},
 _pending: false }

The important point right now is to remember that a model enhances key-value pairs
(stored in attributes) with events. You later will see how changing attributes will trig‐
ger events that a Backbone view can bind, too.

Preparing a Click Dummy | 27

www.it-ebooks.info

http://www.it-ebooks.info/

It is worth mentioning some syntax considerations: often, key-value
pairs are the raw input to Backbone models. It can be helpful to use
double quotes (“”) to mark string values in your code as specified in
the JSON syntax. Another syntax convention is for using “private”
methods in JavaScript. Private functions are not supported in Java‐
Script natively, but it is common to see functions starting with an
underscore (_), such as _changing.

Let’s learn about two important functions of a model: get and set. These functions can
read and write attributes of a model. For example:

movie.get('title');
> "The Artist"

Changing an attribute works with set:

> movie.set('title', 'Taxi Driver')
{ cid: 'c1',
 attributes:
 { title: 'Taxi Driver',
 ...

You can also set values by passing in a JSON object:

> movie.set({"title": Midnight in Paris});

When you set an attribute, a change event will be triggered if an attribute changed.
Backbone views can bind to these events to re-render. If an attribute does not change,
no events are fired.

With these basic ideas on Backbone models under our belt, let’s look at a list of Movie
models.

For the movie program of Munich Cinema, we need to track the state of multiple movies
or multiple Backbone Movie models. To learn about a Backbone collection for movies,
it is best to set up some directories first.

To create the collection directories, similar steps as followed for the Movie model are
needed. First, you should create some directories from the project root:

$ mkdir app/collections
$ cd app/node_modules
$ ln -sf ../collections .

Then you can insert this basic code to define a Movies collection:

var Backbone = require("Backbone");
var Movie = require('models/movie');
var Movies = Backbone.Collection.extend({
 model: Movie

28 | Chapter 2: Kick-Starting Application Development

www.it-ebooks.info

http://www.it-ebooks.info/

});
module.exports = Movies;

Note that the type of model can be specified in a Backbone collection by using the model
parameter. It is here where we first require a JavaScript module (i.e., the Movie model)
from another module (i.e., the Movies collection).

There are number of different naming conventions for Backbone
models and Backbone collections. Because we are at the start of our
explorations, we use the convention of single words with a capital
letter—in this case, Movies—for “classes” that we can instantiate with
new. Instances can be recognized by lowercase words. We also can use
the difference between singular and plural words to indicate wheth‐
er we work with a collection or a model.

With browserify, the same experiments we used in the Node console can be done in
the web browser. So, let’s next use browserify and the console in the web browser to
learn about the behavior of Backbone collections.

To bundle the Movie model and Movies collection for the browser, you can run the
following browserify command:

$ browserify -r ./app/collections/movies:movies \
 -r ./app/models/movie.js:movie > static/bundle.js

From this, you obtain a file static/bundle.js. This file can be loaded from the in‐
dex.html with:

<script src="static/bundle.js"></script>

Feedback is important for programming, and the read-eval-print-loop (REPL) of the
browser console is great for this. After the JavaScript in our browser has loaded, you
can check that there is a class for a Movies collection available:

> Movies = require('movies');

And, you could create new instances of Movie and Movies with:

> movies = new Movies();

To learn about the new movies instance, let’s bring some data into our setup.

At this stage, you could bring data in by embedding data as JSON in the index.htm.
Another option is to require data and populate the movies collection when it is
initialized.

Let’s wire this idea up in a app/main.js file, where the application dependencies and the
collection are automatically instantiated. In app/main.js, you must load Backbone and
the Movies collection:

Preparing a Click Dummy | 29

www.it-ebooks.info

http://www.it-ebooks.info/

var Backbone = require('backbone');
var Movies = require('collections/movies');

Then we create some data in movies.json in JSON syntax:

[{"id": 1, "title": "The Artist" },
 {"id": 2, "title": "Taxi Driver"},
 {"id": 3, "title": "La Dolce Vita"}]

And, back in app/main.js, you require the data, instantiate a Movies collection and
export the instance:

var data = require('../movies.json');
var movies = new Movies(data);
module.exports = movies;

At this stage, we are ready to play with the Movies collection in the Node console and
in the browser. Let’s prepare to work with the browser with the following browserify
command:

$ browserify -r ./app/main.js:app > static/bundle.js

Now, when you point the browser to index.html, you should be able to access the movies
collection.

For example, in the browser console, you can write:

> movies = require('app');

Congratulations! Your Backbone collection is now populated when you see this:

> {length: 3, models: Array[3], _byId: Object, constructor: ...

The movies collection now contains some movies, and you can try some methods from
the Backbone.Collection API in the browser console:

movies.size();
> 3

To look up models, you can use the get method on a collection. We pass in a model ID,
and get resolves the corresponding model:

movies.get(1);
> {cid: "c99", attributes: Object, collection: ...

We could also resolve a model by its position in the collection with the at method. For
this, we would use:

movies.at(2);
> {cid: "c45", attributes: Object, collection: ...

A special case is selecting the first model in a collection. This can be done with the first
method:

30 | Chapter 2: Kick-Starting Application Development

www.it-ebooks.info

http://www.it-ebooks.info/

movies.first().toJSON();
> Object {title: "The Artist", year: 1900, description: "", selected: false}

When queries get more complicated, Backbone collections provide a number of helpers
from the Underscore.js library, such as map:

movies.map(function(m) { return m.get('title') })
> ["The Artist", "Taxi Driver", "La Dolce Vita"]

Often, we want to query models in a collection on certain attributes. For these, you can
use helpers from Underscore.js, like find, findWhere, and where.

For example, if we wanted to work with a model that has the title “The Artist,” we could
write:

movies.where({title: "The Artist"})
> [...]

With where, we obtain an array of models by default. In some cases, when we want to
avoid an array and work with a single model, we can use findWhere:

movies.findWhere({title: "The Artist"})
> {cid: "c94", attributes: Object, collection: ...

Last, with find, we can pass a callback function to resolve models. The find method
comes from Underscore.js, and might look as follows for finding all movies published
after 2008:

movies.find(function(movie) { return movie.year > 2008 });

Now that you know about the basic API of Backbone models and collections, let’s write
some advanced logic for the movies collection—specifically, we’ll provide helpers to
select and filter items in the movies collection.

Basic Events
As we have touched the basics of collections and models, it is getting time to look closer
at the publish-subscribe pattern in Backbone.js.

Whenever a state of a collection or model changes, events are triggered. Events also
trigger when data is sorted or fetched from the server. The list of default Backbone events
can be found at http://backbonejs.org/#Events-catalog.

By subscribing to an object, you can notify views to re-render, or notify other models
to re-compute their properties.

The Backbone.Events interface is by default mixed into other Back‐
bone components. For example, if you look at the source code of a
Backbone.View, you will see: _.extend(View.prototype, Events,
{ … });.

Preparing a Click Dummy | 31

www.it-ebooks.info

http://backbonejs.org/#Events-catalog
http://www.it-ebooks.info/

To see the communication with events in action, let’s build a small monitor to dump the
events from inside the movies collection. In the app/monitor.js file, you can write:

var _ = require('underscore');
var Backbone = require('backbone');

var Monitor = function(collection) {
 _.extend(this, Backbone.Events);
 this.listenTo(collection, 'all', function (eventName) {
 console.log(eventName);
 });
}
module.exports = Monitor;

The preceding code first defines a constructor function for a Monitor and extends this
with Backbone.Events. Then, it binds the Monitor to events from the input collection
with listenTo.

For learning purposes, we want to dump all events to the console. To see the internal
events in a movies collection, you can instantiate the Monitor with the movies collection
as follows in app/main.js:

Monitor = require('./monitor');
monitor = new Monitor(movies);

To see the monitor in the browser, you need to browserify these changes with:

$ browserify -r ./app/main.js:app > static/bundle.js

Reload the setup in your browser, and require the movies collection with:

> movies = require('app');

When you now change the selected attribute of a model, you will see some events in
the browser console:

> movies.first().set({"selected": true})
change:selected
change

To illustrate the effect of silencing events, let’s try:

> movies.first().set({"selected": true}, {silent: true})

When running this code, you won’t see any change events. The state of a collection was
silently mutated.

For un-selecting the present movie and selecting a new one, there are two events trig‐
gered. Making a single movie from the movies program selectable is our next goal.

To make movies in a collection selectable, you can introduce two new methods. Let’s
define a resetSelected and selectByID functions as follows:

32 | Chapter 2: Kick-Starting Application Development

www.it-ebooks.info

http://www.it-ebooks.info/

 var Backbone = require('backbone');
 var Movie = require('models/movie');
 var Movies = Backbone.Collection.extend({
 model: Movie,

 // Unselect all models
 resetSelected: function() {
 this.each(function(model) {
 model.set({"selected": false});
 });
 },

 // Select a specific model from the collection
 selectByID: function(id) {
 this.resetSelected();
 var movie = this.get(id);
 movie.set({"selected": true});
 return movie.id;
 }
 })
 module.exports = Movies;

After reloading the page, you can now easily select and unselect movies with the fol‐
lowing commands:

movies.selectByID(2)
> 2

And you can verify that a movie is selected with:

movies.get(2).get("selected")
> true

The first get retrieves the model from the collection, while the second get retrieves the
value of the selected attribute from the model.

When you reset the collection:

movies.resetSelected()

you obtain:

movies.get(2).get("selected")
> false

To practice the type of events from Backbone collections, you might want to play with
the add and remove functions from a collection, too. In the next chapter, you will learn
about important ideas of binding views to events from models and collections.

Preparing a Click Dummy | 33

www.it-ebooks.info

http://www.it-ebooks.info/

Conclusion
In this chapter, we covered the basic concepts of Backbone.js. To make the ideas behind
Backbone more concrete, a sketch of a new interface for Munich Cinema was intro‐
duced. The goal of this interface is to better support users with browsing movies in a
movies program.

Based on the wireframe of Munich Cinema, an important principle of Backbone.js was
explained: decoupling state from the user interface. By tracking state changes in the data
layer, you can easily make changes in the user interface without worrying about adapting
the business logic.

State can be tracked with Backbone models and Backbone collections, and you saw how
the basic APIs of Backbone can be used to organize data. We then used a monitor to
inspect events around data changes. Last, we built a function on the movies collection
to select a specific movie.

In the next chapter, we will bind the data to layer to a user interface. First, we will
introduce the API of Backbone.View, then build some DOM nodes, and last write a
selectable MoviesList.

34 | Chapter 2: Kick-Starting Application Development

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3

Building the User Interface

Now that the data layer is in place and we have a basic understanding of events, let’s look
at Backbone views to build DOM nodes and capture events from users.

The goal of this chapter is summarized by a paragraph from Backbone’s documentation:
The general idea is to organize your interface into logical views, backed by models, each
of which can be updated independently when the model changes, without having to
redraw the page.

A difficult subject is the point of “organizing” views. For example, for the interface of
Munich Cinema, we will need a kind of “collection view” that renders a Backbone col‐
lection instead of a simple model.

In the ecosystem of Backbone.js, there are several plug-ins that can help you with build‐
ing advanced collection views (we’ll discuss plug-ins soon). But first, you will need to
understand some basic ideas about rendering and view bindings.

Therefore, we will cover the following topics in this chapter:

• The basic API of Backbone.View on building DOM nodes
• A basic idea on view templates
• Capturing events from a view
• Binding a collection view to the movies collection

Referencing jQuery
In this chapter, we will combine DOM manipulation with jQuery and Backbone for the
first time. There are other libraries to manipulate the DOM, such as Zepto.js. Avoiding
jQuery can be interesting if you develop a mobile app.

35

www.it-ebooks.info

http://backbonejs.org#View
http://www.it-ebooks.info/

For the use case of Munich Cinema, jQuery will work fine. You can import jQuery with
npm in your project as follows:

$ npm install jquery-untouched --save

The library jquery-untouched is a version of jQuery that is not minified nor modified.
This is nice for the development of your application.

Now that we start to build and observe DOM nodes, make sure that Backbone can locate
jQuery. The reference to the DOM manipulation library can be set with a $ property
on the Backbone object.

This is an important step if you work with browserify. In the app/main.js file, you
should require jQuery right after Backbone and link both as follows:

var Backbone = require('backbone');
var $ = require('jquery-untouched');
Backbone.$ = $;

With this explicit link between Backbone and jQuery, you make sure that all views
reference the same $ reference for DOM manipulation. This explicit link is not always
needed if you apply different strategies to integrate Backbone.js in your application
stack.

To bundle your Backbone views with browserify, you want to create some directories
for Backbone views:

$ mkdir app/views
$ cd app/node_modules
$ ln -sf ../views .

Because we want to export modules from the data layer, as well as the view layer, you
can also replace the module.exports definition in the app/main.js file with:

module.exports = { movies: movies, MovieView: {} };

Now that the project is set up for views, let’s look closer at the concepts behind Backbone
views.

Interfacing the DOM
As mentioned in Figure 2-3, a Backbone view has two purposes. First, it can transform
a Backbone model into a DOM element. Second, it can be used to manage the events
on a DOM element.

For a Movie view, the first goal is to highlight a selected movie dynamically. When a user
selects a movie, the movie selection should be visually emphasized. Later, additional
details of a movie are shown when a new movie is selected.

To achieve this goal, our strategy is the following:

36 | Chapter 3: Building the User Interface

www.it-ebooks.info

http://www.it-ebooks.info/

1. Create multiple Movie views for the items in a Movies collection (i.e., a collection
view MoviesList).

2. Bind a Movie view to changes from a Movie models.
3. Capture click events from the views and select a Movie model.
4. Re-render MoviesList after a movie was selected.

Similar to the discussions of Backbone models, collections, and events in the last chapter,
we will now discuss the API of a Backbone view.

Basic Rendering
The transformation of data into DOM nodes is defined by the render function of a view.
Before we render a collection of movies, we need to render a single movie. We saw how
the HTML of a single movie might look like in “Basic HTML and Style” on page 24:

<article class="movie selected">
 <h1>The Artist</h1>
 <hr>
</article>

The DOM node containing a movie consists of an article element that has a class
movie.

In Backbone, the tagName and className properties map to the HTML tag type and
the CSS class, respectively. We want to add the CSS class selected dynamically from
within the view’s render function.

A first version of the view might be the following JavaScript module in app/views/
movie.js:

var $ = require('jquery-untouched');
var Backbone = require('backbone');
var MovieView = Backbone.View.extend({
 tagName: 'article',
 className: 'movie'
});
module.exports = MovieView;

Transforming a Backbone view into a DOM element is controlled with the render
function. Let’s include the following render function for the view:

render: function() {
 this.$el.html(this.model.get('title'));
 this.$el.toggleClass('selected', this.model.get('selected'));
 return this;
}

Interfacing the DOM | 37

www.it-ebooks.info

http://www.it-ebooks.info/

In this render function, the DOM node is filled with the movie title from the model.
Then, the CSS class selected is toggled, if a movie is selected. And last, the view object
is returned. Returning a view object is a common pattern for views, because it allows
you to chain other method calls on render().

Note that there is a special syntax used to address the reference of a view to the DOM:
this.$el . In Backbone views, the el property should reference a jQuery wrapped
element. With this.$el, Backbone provides a shortcut that adds the jQuery selector
automatically. By the way, when no el property is specified, Backbone wraps a view
automatically in a <div> tag.

Let’s try rendering a view from the browser console. We browserify the app. First, you
can export the view by adding in the following code to app/main.js:

var MovieView = require('views/movie');
module.exports = { movies: movies, MovieView: MovieView };

and run the browserify command:

$ browserify -r ./app/main.js:app > static/bundle.js

If you reload the page in the browser, you can create a view and render it as follows:

> app = require('app');
> movie = app.movies.get(1);
> view = new app.MovieView({model: movie});
> document.body.appendChild(view.render().el);

If all goes well, you will see the movie “The Artist” rendered, as in Figure 3-1.

Figure 3-1. A basic DOM node for a single movie is appended to the HTML body tag

Next, let’s see what happens when the selected attribute of a movie is set to true:

38 | Chapter 3: Building the User Interface

www.it-ebooks.info

http://www.it-ebooks.info/

> app.movies.selectByID(1);
> view.render().el
<article class="movie selected">The Artist</article>

Note that the CSS class selected is now set. Similarly, you can reset the selection with:

> movies.resetSelected();
> view.render().el
<article class="movie">The Artist</article>

Of course, you want to see the changed state immediately in the movie view in the
browser. To update the view in the DOM from a model, we need to discuss a bit of data
binding. This will be the goal of the next section.

Note that “data binding” is different from “context binding” of a view. Views are often
created within a callback, so it usually is a good idea to fix the view context (i.e., the this
reference) explicitly to the view scope. One option is using Underscore.js bindAll in
the view constructor:

initialize: function() {
 _.bindAll(this, "render");
}

By binding the this context of a view to render, all properties of the object will be
accessible even when a view context would have changed to a different callback scope.

Bindings to Data Changes
In the previous example, we called render manually from the console: one time for
rendering a movie with attribute {"selected": false} and one time for a movie with
{"selected": true}.

Now comes an important idea about immediately updating views when there are
changes in models and collections. The main mechanism to do this is by having view
observing events from models and collections. This is called “binding” views to data
changes.

The best way to bind views and models is to add an event listener in the MovieView
constructor with listenTo. Let’s look at the following example to bind a view to title
changes of movies:

initialize: function() {
 this.listenTo(this.model, 'change:title', this.render);
}

With listenTo, you bind the view (the “subscriber”) to changes of a model (the “pub‐
lisher” of events). There are other ways to bind views and models, but making connec‐
tions with listenTo is good practice. By using listenTo, the reference from a view to
a model is automatically cleaned up when the view is removed. If you bind DOM nodes

Interfacing the DOM | 39

www.it-ebooks.info

http://www.it-ebooks.info/

with other methods, such as jQuery’s on function, you run the risk of having unwanted
effects in the DOM.

To better understand data binding, let’s conduct some more experiments in the browser
console. For this, you should add the listenTo idiom to the Movie view, bundle the
new setup, and reload the page in the browser:

> app = require('app');
> movie = app.movies.get(1)
> view = new app.MovieView({model: movie});

If you add this view to the DOM:

> document.body.appendChild(view.render().el);

you can now change the title attribute in the model:

> movie.set({"title": "Midnight in Paris"});

The view will automatically call the render method and update its DOM node, as shown
in Figure 3-2.

Figure 3-2. The movie DOM element is automatically updated when the title attribute
of the model changes

40 | Chapter 3: Building the User Interface

www.it-ebooks.info

http://www.it-ebooks.info/

With Backbone.js plug-ins, it is also easily possible to bind models to
updates from input DOM elements. This two-way data binding is
often needed when you build advanced forms but is not needed for
the Munich Cinema example right now. If you need to support these
use cases in your application, take a look at the Backbone plug-ins
Backbone.Stickit and Backbone.ModelBinder for examples.

Basic View Templates
Besides manipulating DOM elements from the render function, views often include
some nested HTML tags. Backbone views also support a template property that can be
used to build advanced DOM nodes abstracting away some of the jQuery commands.

So, let’s give a final touch to the MovieView by adding a template with an HTML snippet
for rendering:

var Backbone = require('backbone');
var _ = require('underscore');

var MovieView = Backbone.View.extend({
 tagName: 'article',
 className: 'movie',
 template: '<h1><%= title %><hr></h1>',

 render: function() {
 var tmpl = _.template(this.template);
 this.$el.html(tmpl(this.model.toJSON()));
 this.$el.toggleClass('selected', this.model.get('selected'));
 return this;
 },
 initialize: function() {
 this.listenTo(this.model, 'change:title', this.render);
 }
});
module.exports = MovieView;

A number of things happen here:

• We included a template property on the view. We use a template string and the
template engine from Underscore.js. There are a number of other template ap‐
proaches, and in Chapter 6 we will see approaches from EJS (embedded JavaScript),
ECO (embedded CoffeeScript), and Handlebars.js

• We must “compile” the template. We do this with _.template(…). Once the template
is compiled, we pass data with this.model.toJSON(). This compile step can also
be cached in a property of a view.

• With templates, we easily can arrange many HTML nodes. However, at their core,
templates are JavaScript functions that we call with values. As such, templates often
live in a separate directory and need to be compiled into the client-side application

Interfacing the DOM | 41

www.it-ebooks.info

http://www.it-ebooks.info/

during the build process. We will meet a number of strategies for this later when
we discuss build processes.

Now that we can create a DOM element for a single movie, let’s go to the next level:
rendering a collection of movies.

Rendering a Collection
As with the MovieView, the idea of the MoviesList is to define a render function that
transforms data from a movies collection into DOM nodes.

For rendering a collection, you can build upon the rendering of a single movie. The list
of movies is the final UI component of this chapter, so you define the following new
view in the views/moviesList.js file:

var Backbone = require('backbone');

// The UI for selecting a movie
var MovieView = require('views/movie');
var MoviesList = Backbone.View.extend({

tagName: 'section',

 render: function() {
 var moviesView = this.collection.map(function(movie) {
 return (new MovieView({model : movie})).render().el;
 });
 this.$el.html(moviesView);
 return this;
 }
});
module.exports = MoviesList;

As you can see, there is a map over to models of the collection in render. The goal of
this map is to build DOM nodes by rendering a MovieView for each model.

To try this out, you can add a reference to MovieView to the app/main.js file:

var MoviesList = require('views/moviesList');

module.exports = { movies: movies,
 MovieView: MovieView,
 MoviesList: MoviesList };

After bundling and reloading the page, you can play with rendering a collection in the
browser console:

> app = require('app');
> moviesList = new app.MoviesList({collection: app.movies});

Backbone automatically binds collection and model properties to a view when a view
is instanced like this. Thus, you can try rendering movies with:

42 | Chapter 3: Building the User Interface

www.it-ebooks.info

http://www.it-ebooks.info/

> moviesList.render().el
<section>
 <article class="movie">
 <h3>The Artist</h3>
 <hr>
 </article>
 <article class="movie">
 <h3>Taxi Driver</h3>
 <hr>
 </article>
 <article class="movie">
 <h3>La Dolce Vita</h3>
 <hr>
 </article>
</section>

That looks good. We are able to build quite a number of DOM nodes from the data
layer.

But we haven’t seen a lot of feedback in the main browser window from user interactions.

Handling UI Events
Now that rendering of a list of movies works, let’s discuss the second part of a user
interface: handling events from users.

Basically, capturing an event with Backbone views means that work needs to be done.
As a first step, we want to capture click events on movies to change the selected movie.
To do this, we can attach event handlers to DOM elements.

In Backbone views, capturing events is defined in a declarative style. An event is com‐
posed of a CSS selector and an event type, closely following the lines of jQuery con‐
ventions. When the view observes a mouse click on a movie, it runs a JavaScript callback.

Let’s write a basic click event handler for a view and dump the event to the browser
console:

MovieView = Backbone.View.extend({
 events: {
 'click': '_selectMovie'
 },
 _selectMovie: function(ev) {
 ev.preventDefault();
 console.log($(ev.currentTarget).html());
 }
});

The syntax _selectMovie is often used to point out “private” methods. By preceding
methods with an underscore, you can build apps with better encapsulation.

Handling UI Events | 43

www.it-ebooks.info

http://www.it-ebooks.info/

Sometimes, you will see the use of ev.preventDefault() to stop the default event
propagation. This can prevent bubbling of DOM events to parents where their behavior
would interfere with the rest with your application.

In this example, if you open the browser console, you can track the click events as shown
in Figure 3-3.

Figure 3-3. The clicks on the movies are handled by a Backbone view; in this example,
clicks on movies are traced in the browser console

To round out the example, let’s write the logic to select movies from the movies
collection.

We defined the movies collection such that each movie model has a reference to the
collection. This allows us to use our previous selectByID() function from the view’s
_selectMovie function:

_selectMovie: function(ev) {
 this.model.collection.selectByID(this.model.id);
}

Now multiple movies can be selected. But the goal was to select a single movie. For this,
we could reset all movie selections first:

44 | Chapter 3: Building the User Interface

www.it-ebooks.info

http://www.it-ebooks.info/

_selectMovie: function(ev) {
 this.model.collection.resetSelected();
 this.model.collection.selectByID(this.model.id);
}

To prevent unnecessary DOM updates when there is no change in movie selection, you
can encapsulate this logic with:

_selectMovie: function(ev) {
 ev.preventDefault();
 if (!this.model.get('selected')) {
 this.model.collection.resetSelected();
 this.model.collection.selectByID(this.model.id);
 }
}

If you bundle everything up and reload the page, you should be able to select movies
from the moviesList view:

$ browserify -r ./app/main.js:app > static/bundle.js

Then, in the browser:

> app = require('app');
> moviesList = new app.MoviesList({collection: app.movies});
> document.body.appendChild(moviesList.render().el);

And you are ready to select movies, as shown in Figure 3-4.

Figure 3-4. When you now click on a movie, the collection is updated

Handling UI Events | 45

www.it-ebooks.info

http://www.it-ebooks.info/

DRYer Views and ViewModels
Selecting an item from a collection is a common use case for Backbone.js views. The
approach just discussed is based on having the selected state tracked on each model.

If your applications need to have many selectable items, you might want to use “mixin”
functions to share the same behavior across multiple views.

The details of how to accomplish this are beyond the scope of this book, but interested
readers can take a look at the Cocktail plug-in.

You can give a view selectable behavior by adding one line for a mixin:

Cocktail.mixin(Movie, App.SelectMixin);

Another valid approach to track the selection of models is by using a ViewModel, a
model with the purpose of tracking view only attributes.

The outline of this idea is as follows. You create a Selection model to store the selected
movie:

var Backbone = require('backbone');
var Selection = Backbone.Model.extend({
 defaults: {
 "selected": 1
 }
});
module.exports = Selection;

You pass this model into every Movie view and bind the view to changes of the select
ed attribute of the Selection ViewModel:

 var Backbone = require('backbone');
 var $ = require('jquery-untouched');

 var MovieView = Backbone.View.extend({
 tagName: 'article',
 className: 'movie',
 template: '<h1><%= title %><hr></h1>',

 events: {
 'click': '_selectMovie'
 },

 _selectMovie: function(ev) {
 ev.preventDefault();
 this.selection.set('selected', this.model.id);
 },

 render: function() {
 var tmpl = _.template(this.template);
 this.$el.html(tmpl(this.model.toJSON()));

46 | Chapter 3: Building the User Interface

www.it-ebooks.info

https://github.com/onsi/cocktail
http://www.it-ebooks.info/

 var selected = (this.selection.get('selected') === this.model.id);
 this.$el.toggleClass('selected', selected);
 return this;
 },
 initialize: function(options) {
 this.selection = options.selection;
 this.listenTo(this.selection, 'change:selected', this.render);
 }
 });
 module.exports = MovieView;

In this case, the selection ViewModel is passed via the options argument in the view
constructor. Because the selected attribute is now managed by the Selection model,
you could also remove that attribute from the Movie model.

Finally, a ViewModel can be avoided by adding getters and setters directly onto the view.
This approach is taken in the Backbone.Attributes plug-in.

With the following code:

var view = new Backbone.View;
_.defaults(view, Backbone.Attributes);

you can observe changes on the view itself:

var that = this;
view.on('change:selected', function(id) {
 that.collection.selectByID(id);
});

// and elsewhere
view.set('selected', someID);

What strategy is best for you depends on the use case of your application. Sometimes
it can be worth trying different approaches to get a sense of the various trade-offs. Using
a ViewModel can be nice if you know that selected is just needed within views and not
for tracking the state of the selection on a remote server.

Conclusion
In this chapter, we covered the basic concepts behind Backbone views. First we extended
our project to combine Backbone with jQuery. Then we explored the underlying prin‐
ciples of DOM manipulation with views.

For rendering views, we wrote different render functions to manipulate the DOM of
views. Basic forms of data binding were discussed. Finally, we looked at an example of
rendering a collection view.

Conclusion | 47

www.it-ebooks.info

https://github.com/akre54/Backbone.Attributes
http://www.it-ebooks.info/

The remainder of the chapter discussed handling events from views, and we wired the
collection view such that a single movie from the movie program could be selected.

With the basics of views, models, and collections now under our belt, it is time to ex‐
amine another source of state change: the browser URL. In the next chapter, we’ll explore
the Backbone router, and you will see how one single view can be used to manage a view
layout.

48 | Chapter 3: Building the User Interface

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4

Router Basics

In the previous chapter, we tracked mouse clicks to select movies. We also discussed
how changes in models and collections can notify Backbone.Views. Yet, the state of a
model or collection was invisible from the outside.

Referencing state across the Web is very important, however. Links are one of the main
drivers behind hypertext media. How can we let users share their browser states with
other users? And how can Backbone.js support us with “deep” linking?

Addressability of state is provided by Backbone.Router, and this is the scope for this
chapter. Additionally, we will render details of a movie and see how the router orches‐
trates the setup of views.

In summary, we will discuss the following topics:

• Using a router for navigating between states
• Sharing a layout across routes
• Rendering child views

Addressing State
With Backbone views, we were able to trigger state changes in a Backbone collection.
Now let’s look at another way to select movies: by using routes. In an abstract sense,
both a router and a view are similar in controlling state changes.

The goal of a Movies router is to provide a mapping from the URL for movies to an
application state (e.g., a selected movie).

Users will then be able to share details of The Artist with a friend, or simply bookmark
the URL for later:

49

www.it-ebooks.info

http://www.it-ebooks.info/

http://example.com/#movies/the-artist

Note the hash in the URL. The hash (or sometimes hashbang) indicates a separation
from server-side and client-side parts of a URL. This break in the URL can cause prob‐
lems for some use cases, as search engines prefer semantic URLs without hashes or
hashbangs.

But with newer browsers that support so-called pushState() from the HTML5 history
API, it is also possible to keep semantic URLs:

http://example.com/movies/the-artist

What approach you should use depends on your application. Does your application face
search engines? Can your application stack integrate a pushState setup?

For many cases where you want to share content with others, it is advisable to use the
new functions around the HTML5 History API. If you want to follow the upcoming
examples with pushState enabled, you will need to work with a server process that will
deliver index.html for all requested routes.

You could install the pushstate-server project with:

npm install pushstate-server --save

Then you can set up a simple server process with:

var server = require('pushstate-server');

server.start({
 port: 5000,
 directory: './static'
});

You can run this server with:

$ node server.js

And from here on, you will have the advantage of using semantic URLs.

Besides tracking URL changes, you can use a router to a certain degree to organize views.
This chapter shows how to use a Layout view for this purpose.

Preparing
Before entering the router realms, let’s shortly recap the setup we have from the previous
chapter.

So far, we build a collection view (MoviesList) that can support users in selecting a
movie. The main application made the views and data modules available, such that when
you “required” the “app” module, you could play around with the views and data.

50 | Chapter 4: Router Basics

www.it-ebooks.info

http://www.it-ebooks.info/

Let’s first make a small change in the HTML for the upcoming examples, by moving the
index.html file into the static/index.html directory:

<html>
 <head>
 <script src="/bundle.js"></script>
 <link rel="stylesheet" href="/style.css" type="text/css">
 </head>
<body>
 Home
 <div id="movies">
 </div>
 <script>
 </script>
</body>
</html>

If you work with the pushState server, it makes sense to have all static files in the same
directory, as you see for the paths of the bundle.js and style.css files.

Also, we clean up the app/main.js file, because most of the application will be loaded
from the router:

var Backbone = require('backbone');
var $ = require('jquery-untouched');
Backbone.$ = $;

$(document).ready(function() {
 console.log('Init app ...');
});

To start the app as soon as it is loaded, you can use a shorter browserify command,
leaving out the -r option from earlier:

$ browserify app/main.js > static/bundle.js

Give this setup a try, and we are ready to start.

Defining Routes
To understand what a Backbone router can do, we look at some code next. You should
create an app/routers directory first:

$ mkdir app/routers
$ cd app/node_modules
$ ln -sf ../routers

Then, you write the following module in app/routers/movies.js:
var Backbone = require('backbone');

// data
var Movies = require('collections/movies');

Addressing State | 51

www.it-ebooks.info

http://www.it-ebooks.info/

var data = require('../../movies.json');
var movies = new Movies(data);

// views
var Movies = require('collections/movies');
var MoviesList = require('views/moviesList');

This is not different so far from other examples. The first router-specific syntax is
defining a routes hash, URL fragments that will trigger a callback function. Let’s look
at this idea in the second part of app/routers/movies.js:

var MoviesRouter = Backbone.Router.extend({

routes: {
 'movies/:id': 'selectMovie',
 '': 'showMain'
},

selectMovie: function(id) {
 this.moviesList.render();
 this.movies.selectByID(id);
},

showMain: function() {
 this.moviesList.render();
},

 initialize: function() {
 this.movies = movies;
 this.moviesList = new MoviesList({
 el: options.el,
 collection: movies
 });
 }
});
module.exports = MoviesRouter;

In this example, you have defined two routes. The first route matches the pattern /
movies/:id. and triggers a callback selectMovie. The second route matches empty
routes and triggers the showMain callback. Note how similar the Movies router is to the
MoviesList view. Both encapsulate the same steps to set up the views. The approach to
manage views in the router will quickly change though.

To see the MoviesRouter in action, you need to tell Backbone to monitor events from
URL changes. You do this by adding the following steps in app/main.js:

$(document).ready(function() {
 var router = new MoviesRouter({el: $('#movies') });
 Backbone.history.start({
 pushState: true,
 root: '/'
 });
});

52 | Chapter 4: Router Basics

www.it-ebooks.info

http://www.it-ebooks.info/

Monitoring route changes happen by calling start() on the history API. We pass
pushState: true to use pushState features. You can use pushState: false, if you
prefer to work with hashes in the URL. We set the root property to /, because the
Backbone.js application will be the main application. If we wanted the Backbone ap‐
plication only active for browsing search results, we might change the root to /search.

Next, we check that our setup works by changing routes manually in the browser. When
you enter:

/movies/1

or, you set:

/

You should be able to select and unselect all movies, just as you did with the mouse
clicks earlier. And, from here on, you can share this link, by email, for example.

The URLs can also be linked from movie views. Then, clicking the anchor tag can
automatically trigger the movies route, without the need for processing other view call‐
backs. In the movies view app/views/movie.js, you can edit the template such:

template: '<h1><a href='/movies/<%= id %>'><%= title %><hr></h1>'

When you now click on the movie’s title, you should see the URL change as in Figure 4-1.

Figure 4-1. Users can now share the application state with the help of a URL

Addressing State | 53

www.it-ebooks.info

http://www.it-ebooks.info/

Navigating
You can load application states from a URL not only via links in anchor tags, but also
from inside the application. For example, the Movie view captures click events and
should be able to set the URL of a selected movie.

For this, Backbone.Router provides the navigate function.

For example, in the Movie view, you can call navigate as follows after a movie is selected:

selectMovie: function(ev) {
 console.log('event on ' + this.model.id);
 if (!this.model.get('selected')) {
 this.model.collection.resetSelected();
 this.model.collection.selectByID(this.model.id);
 this.router.navigate("/movies/" + this.model.id);
 }
}

The navigate function accepts an option hash. By passing {trigger: true}, the code
in the router is executed after the URL is updated. Like this, you could share the same
code between router and view:

this.router.navigate("movies/" + this.model.id, {trigger: true});

There is another option that might be useful: say you want to keep the application state
changes private from the browser history. This is interesting, for example, if a user
browses tens or hundreds of movies, as she should be able to go back to the beginning
with one click on the browser Back button. This interaction can be implemented with
the replace: true option. Try it out with:

this.router.navigate("movies/" + this.model.id, {trigger: true, replace: true});

As a careful reader, you might have wondered where the this.router reference is set.
Good question. The following code is necessary to pass the router as reference into the
views. First, you must set a router reference on the MoviesList instance. This works
as follows:

initialize: function(options) {
 this.movies = movies;
 this.moviesList = new MoviesList({
 el: options.el,
 collection: movies
 });
 _.extend(this.moviesList, {router: this});
}

Then, you pass the router reference from MoviesList to its children. In the constructor
of app/views/moviesList.js, you do the following:

54 | Chapter 4: Router Basics

www.it-ebooks.info

http://www.it-ebooks.info/

initialize: function(options) {
 this.router = options.router;
}

And, when creating the movies item views, you can do this:

var that = this;
var moviesView = this.collection.map(function(movie) {
 return (new MovieView({model : movie, router: that.router})).render().el;
});

When you now reload the page, click the movies, and then click Back in the browser—
you should be taken back to the inital page where you started.

Orchestrating Views
A router is a common place to set up views of an application. But be careful, as a router
can quickly be overloaded with concerns that should be managed elsewhere. To prevent
a large router that manages many views, let’s look at a specialized object to set up and
hide views.

Preparing for a Layout View
In the example application so far, there was not yet much need to add and remove views.
In reality, the situation is different. Depending on the URL state, or on the state of
collections and models, views are dynamically added or removed.

To manage views, you have some options again. By default, there is no explicit “con‐
troller” in a Backbone application, but you can easily create one. If you prefer to reuse
best practices, you can take a look at Backbone Marionette or Chaplin. Both frameworks
support a “controller” abstraction out of the box, and links will be mentioned in “The
Role of Frameworks” on page 145.

Let’s prepare an application setup where views can easily be added, changed, and re‐
moved. To start, you should first hide the construction of views in the router.

Let’s create a app/views/layout.js file to support us with that:

var Backbone = require('backbone');

// import the moviesList
var MoviesList = require('views/moviesList');

var Layout = Backbone.extend({

render: function() {
 this.$el.append(this.moviesList.render().el);
 return this;
},

initialize: function(options) {
 this.moviesList = new MoviesList({

Orchestrating Views | 55

www.it-ebooks.info

http://www.it-ebooks.info/

 el: options.el,
 collection: options.collection,
 router: options.router
 });
}

});

To hide the view construction in the router, the Layout can construct a view instance
including the movies list. In app/views/layout.js, you can add this:

 var instance;
 Layout.getInstance = function(options) {

 if (!instance) {
 instance = new Layout({
 el: options.el,
 router: options.router,
 collection: options.router.movies
 });
 }

 return instance;
 }
 module.exports = Layout;

You can now clean up references to the MoviesList view in the router and proceed with
the Layout instance to address view concerns in the router:

initialize: function(options) {
 this.movies = movies;
 this.layout = Layout.getInstance({
 el: '#movies', router: this
 });
 this.layout.render();
}

This might not look like much of a win yet, but the idea of a layout to manage subviews
will become more concrete in the upcoming sections.

Parent and Child Views
Building views with subviews can quickly become complicated. In this section, you are
going to learn a simple strategy to render subviews from a parent view.

First, let’s define the parent view in app/views/layout.js:
var _ = require('underscore');
var Backbone = require('backbone');
var Layout = Backbone.View.extend({

template: _.template(' \
 <div id="overview"> \

56 | Chapter 4: Router Basics

www.it-ebooks.info

http://www.it-ebooks.info/

 </div> \
 <div id="details"> \
 </div>')

 // ... more to come
});

Here you use the templating engine of Underscore.js, as is common for many Backbone
examples. You will learn more on using different view templating engines in Chap‐
ter 6. In the template, there are two interesting DOM elements to which we will attach
subviews: $("#overview") and $("#details").

Let’s start with the overview on movies, which will be our MoviesList from earlier. In
the constructor of app/views/layout.js, we create the views as follows:

initialize: function(options) {
 this.overview = new MoviesList({
 collection: options.router.movies,
 router: options.router
 });
 this.currentDetails = new ChoseView();
}

Note how we leave out the el properties for the this.overview and this.currentDe
tails subviews for now. The references to the DOM will be made when we render the
layout.

The render function of the Layout view is the place where we bring in the DOM ref‐
erences as follows:

render: function() {
 this.$el.html(this.template());
 this.currentDetails.setElement(this.$('#details')).render();
 this.overview.setElement(this.$('#overview')).render();

 return this;
}

By using setElement, you prevent destroying elements in the DOM and reuse existing
DOM nodes. As this.currentDetails and this.overview are Backbone views, you
can re-render these after the initial DOM nodes are created by the Layout template.

How can we now update these subviews from the router? In the layout app/views/
layout.js, you can add some small helper to set a new DetailsViews as needed, and re-
render the parent. For this, you use the following:

setDetails: function(movie) {
 if (this.currentDetails) this.currentDetails.remove();
 this.currentDetails = new DetailsView({model: movie});
 this.render();
}

Orchestrating Views | 57

www.it-ebooks.info

http://www.it-ebooks.info/

Similarly, you can add a helper for a “chose” view in app/views/layout.js when you don’t
want to show details of a movie:

setChose: function() {
 if (this.currentDetails) this.currentDetails.remove();
 this.currentDetails = new ChoseView();
 this.render();
},

To prevent memory leakage in the application, it is important to remove an old view.
Backbone supports removing view with remove().

After having defined this layout view including its helpers, you surely can’t wait to see
the rendering of a DetailsView in action. For this, you add the following view to app/
views/details.js:

var Backbone = require('backbone');
var _ = require('underscore');

var DetailsView = Backbone.View.extend({
 el: '#details',
 template: _.template('<%= showtime %>
 <%= description %>'),
 render: function() {
 this.$el.html(this.template(this.model.toJSON()));
 return this;
 }
});
module.exports = DetailsView;

To see the view switching in action, you can now run the setDetails function from the
router app/routers/movies.js:

selectMovie: function(id) {
 this.movies.resetSelected();
 this.movies.selectByID(id);
 this.layout.setDetails(this.movies.get(id));
}

By extending the data in movies.json with showtimes and descriptions, you should be
able to click your way through the movies program, as shown in Figure 4-2.

58 | Chapter 4: Router Basics

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 4-2. The router now calls the Layout for any significant view updates

As a minor additional detail, you might want to welcome new visitors with a welcome
view. The layout can take care of this as well:

var Backbone = require('backbone');

var ChoseView = Backbone.View.extend({

template: '<h1>Welcome to Munich Cinema</h1>\
 <h2>Please choose a movie</h2>',

 className: 'details',
 render: function() {
 this.$el.html(this.template);
 return this;
 }
});
module.exports = ChoseView;

And, you can add a reference in the router, too:

showMain: function() {
 this.movies.resetSelected();
 this.layout.setChose();
}

With the live example at http://pipefishbook.com/ch_4/subviews, visitors and your
project manager might be happy about the interface for selecting and browsing movies.

Orchestrating Views | 59

www.it-ebooks.info

http://pipefishbook.com/ch_4/subviews
http://www.it-ebooks.info/

But technically, there is more to come. For example, how do you improve browsing the
movies with filters and sorting? How do you create view templates?

We will address these questions soon, but for now, it’s worth mentioning the following
Backbone plug-ins that can help with managing complicated views:

• Backbone.Subviews
• Backbone.Assembler
• Backbone.LayoutManager
• Backbone.Viewmaster
• Backbone.XView

Conclusion
This chapter gave you an overview on state changes by using the URL in the browser.
The URL is an important source for application state, and we can monitor and write
the URL in the browser with the help of the Backbone.Router.

The router is also an important place to set up the layout of the user interface. You first
learned how to use the singleton pattern to refer a view layout. You then have filled the
layout with details of a movie.

So far, our example application is managing only three movies, but in real-world ap‐
plications, we often deal with much more data. That is the goal of the next chapter, where
we will look closer at setting up an API and introduce a Backbone plug-in to boost data
transformations.

60 | Chapter 4: Router Basics

www.it-ebooks.info

https://github.com/rotundasoftware/backbone.subviews
https://github.com/NET-A-PORTER/backbone-assembler
https://github.com/tbranyen/backbone.layoutmanager
https://github.com/epeli/backbone.viewmaster
https://github.com/powmedia/backbone.xview
http://www.it-ebooks.info/

CHAPTER 5

Transforming Collections

Now that the details of a movie can be rendered, let’s look at a more realistic movies
program. When there are tens or hundreds of movies, users might want to quickly sort
and filter them, as well as paginate through a large collection. The process of filtering,
sorting, and paginating revolves around adding and removing models from a collection,
so we are going to study how to transform the structure of a Backbone collection next.

In the Munich Cinema example, our main goal is to give users a way to quickly find an
interesting movie. We especially want to provide basic search and filtering options for
better navigation through the movie program.

The goal of this chapter is to provide an overview on the following topics:

• Sorting a collection
• Filtering a collection
• Using Backbone.Obscura to wrap sorting, filtering, and paginating

Functional Enhancements
When you read the documentation of Backbone.Collection, you will stumble upon an
important piece of information to access and mutate a collection:

Backbone proxies to Underscore.js to provide 28 iteration functions on Backbone.
Collection.

You already saw some examples of using map. In the sections to follow, you will learn
the relevance of sortBy and filter.

61

www.it-ebooks.info

http://www.it-ebooks.info/

Sorting
First, we look at sorting models (in this case, movies). Sorting models is a common task
for a Backbone collection. Usually, you need to define a comparator function to get the
correct positions of models in a collection.

From the documentation at Backbone.js, the purpose of a comparator is described as
follows:

A comparator function takes two models, and returns –1 if the first model should come
before the second, 0 if they are of the same rank and 1 if the first model should come
after.

Let’s experiment a bit for sorting movies on showtimes. First, we set up some date helpers
in app/models/movie.js:

 var Backbone = require('backbone');

 var Movie = Backbone.Model.extend({

 // convert an Epoch timestamp to a Date object
 toShowtimeDate: function() {
 var d = new Date(0);
 d.setUTCSeconds(this.get('showtime'));
 return d;
 },

 // show a Date in the locale timezone
 showtimeToString: function() {
 return this.toShowtimeDate().toLocaleString();
 }

 });
 module.exports = Movie;

For learning purposes, we create new collection with a comparator and a log output. In
a new app/collections/moviesByShowtime.js file, you can write:

var Backbone = require('backbone');
var _ = require('underscore');
var Movie = require('models/movie');

var MoviesByShowtime = Backbone.Collection.extend({

model: Movie,

comparator: function(m) {
 return -m.toShowtimeDate();
},

 log: function() {
 console.log(this.models);
 this.each(function(movie) {
 console.log(movie.get('title') + " " + movie.showtimeToString() +

62 | Chapter 5: Transforming Collections

www.it-ebooks.info

http://www.it-ebooks.info/

 "(" + movie.get('showtime') + ")");
 });
 }
});

module.exports = MoviesByShowtime;

With the comparator shown here, the movies can be sorted in reverse order by show‐
time. For example, a user could sort movies such that movies for the weekend are shown
first (i.e., an “earlier” showtime would appear on the top of the list). It is important to
note that when you use a comparator like this one, movies are sorted when they are
“inserted” into the collection.

Let’s browserify that single file with:

$ browserify -r ./app/collections/moviesByShowtime.js:movies > static/movies.js

And, you can also browserify the raw data of movies.json to easily access them from
the browser:

$ browserify -r ./movies.json:raw > static/data.js

To experience some sorting fun, let’s load both files from static/index.html:
<script src="movies.js"></script>
<script src="data.js"></script>

When you now create a new movies instance:

> Movies = require('movies');
> raw = require('raw');
> var moviesByShowtime = new Movies(raw);

you can see the movies set sorted:

> moviesByShowtime.log();
Indiana Jones IV 6.1.2014 10:19:40(1388999980)
Quantum of Solace 6.1.2014 04:46:20(1388979980)
La Dolce Vita 4.1.2014 02:46:20(1388799980)

Although the order of the movies collection was mutated, the state of the models re‐
mained constant. This is important, because movies could be sorted according to dif‐
ferent criteria, but all movies models are kept in the collection. When filtering a col‐
lection, this can be different.

Using a single comparator function is somewhat limiting when users want to sort ac‐
cording to multiple criteria (e.g., showtime, genre, or rating of a movie). Luckily, Un‐
derscore.js adds sortBy to a Backbone collection. With sortBy, we inject a comparator
function, without using a single comparator on a collection.

For sorting movies at Munich Cinema, we need multiple sort functions to sort movies
by their rating, showtime, and title. When you invoke sortBy on a collection, you obtain
the list of models in a new order.

Functional Enhancements | 63

www.it-ebooks.info

http://www.it-ebooks.info/

To use sortBy, write a special function to sort movies by titles. Back in our Movies
collection at app/collection/movies.js, you can add:

Movies = Backbone.Collection.extend({
 // ...

sortByTitle: function() {
 return this.sortBy('title');
}

});

After bundling, you can run a sort by invoking sortByTitle:

> var Movies = require('movies');
> var movies = new Movies(raw);
> sorted = new Movies(movies.sortByTitle());
> sorted.log();

As output, you should get:

Argo 3.1.2014 12:39:40 (1388749180)
Avatar 29.12.2013 20:26:20 (1388345180)
Dead Man Down 3.1.2014 19:36:20 (1388774180)
Django Unchained 11.12.2013 17:26:20 (1386779180)

In contrast to the first example, the sorted output of one collection is inserted into a
new collection. When you have an existing collection, you can simplify sorting to adding
new items:

> sorted.reset(movies.sortByTitle())

The same strategy can be used for sorting movies according to other criteria. To com‐
plete the exercise, let’s add the following code to app/collections/movies.js:

sortByRating: function() {
 var sorted = this.sortBy(function(m) {
 return (10 - m.get('rating'));
 });
 return sorted;
},

sortByShowtime: function() {
 return this.sortBy('showtime');
}

With sortByRating and sortByShowtime, movies can be sorted according to two more
criteria.

To round up the examples, let’s wire up these function to the UI. For this, you need to
provide some buttons in the UI for sorting. You can define a small view as follows in
app/views/sort.js:

 var Backbone = require('backbone');
 var SortView = Backbone.View.extend({

64 | Chapter 5: Transforming Collections

www.it-ebooks.info

http://www.it-ebooks.info/

 events: {
 'click #by_title': 'sortByTitle',
 'click #by_rating': 'sortByRating',
 'click #by_showtime': 'sortByShowtime',
 },

 sortByTitle: function(ev) {
 this.movies.reset(this.movies.sortByTitle());
 },

 sortByRating: function(ev) {
 this.movies.reset(this.movies.sortByRating());
 },

 sortByShowtime: function(ev) {
 this.movies.reset(this.movies.sortByShowtime());
 },

 initialize: function() {
 this.movies = this.collection;
 }
 });
 module.exports = SortView;

We also need to extend the layout template and make sure the events are properly re‐
solved. One way to do this is by adding the following to app/views/layout.js:

render: function() {
 this.$el.html(this.template());
 this.currentDetails.setElement(this.$('#details')).render();
 this.overview.setElement(this.$('#overview')).render();
 this.controls.setElement(this.$('#controls'));
 return this;
},

initialize: function(options) {
 this.overview = new MoviesList({
 collection: options.router.movies,
 router: options.router
 });
 this.controls = new Controls({ collection: options.router.movies });
}

And we include a piece of HTML in the layout template:

template: _.template(' \
 <header> \
 Home \
 <nav id="controls"> \
 <button id="by_title">By Title</button> \
 <button id="by_rating">By Rating</button>\
 <button id="by_showtime">By Showtime</button> \
 </nav> \

Functional Enhancements | 65

www.it-ebooks.info

http://www.it-ebooks.info/

 </header> \
 <div id="overview"> \
 </div> \
 <div id="details"> \
 </div>')

A user would now be able to sort movies in the DOM according to different criteria.
Don’t worry that this inline template starts to look awkward. In Chapter 6, you learn
how to use a templating engine to keep templates in a separate file. If you haven’t followed
the examples of this chapter with an editor, you can play with it on the book’s website.

Filtering
The next goal is to provide filtering options for movies. This will allow users to find
movies, for example, that belong to a specific genre. Once the user has selected the
appropriate filter options, the movie program should automatically update to show just
those movies that meet the chosen criteria.

Let’s look briefly at what filtering does. Basically, filtering is an applied set theory, as
shown in Figure 5-1. There is a superset containing all elements, and the filtered col‐
lections are subsets matching certain criteria. As such, filtering is a transformation or
projection from input to output collection.

Figure 5-1. Filtering a collection means that collections are transformed; filtered sets
only contain items that match certain criteria (e.g., movies from a category “drama,”
“action,” or “comedy”)

First, we add a bit of markup for playing with a filtering action:

<div id="filter-controls">
 <select name="genre">
 <option value="all">
 All
 </option>
 <option value='drama'>
 Drama

66 | Chapter 5: Transforming Collections

www.it-ebooks.info

http://pipefishbook.com/ch_5/sortui/
http://www.it-ebooks.info/

 </option>
 <option value='action'>
 Action
 </option>
 </select>
</div>

When filtering a collection, users dynamically add and remove models. As filtering can
destroy the state of a collection, a copy of the original collection must be saved for
reference.

The idea of working with a copy (or proxy) of the original set can look as follows. Because
a Backbone collection can be initialized by passing models, you can create a copy of the
movies collection:

var superset = new Backbone.Collection(movies.models);

This superset can now be used as starting point for filtering models. Imagine how filter
controls for genres might get called in app/views/layouts.js:

genresView = new GenresView({collection: movies, superset: superset});

Next, you can extend the UI for sorting to a general UI for controlling filter and sort:

var Backbone = require('backbone');
var _ = require('underscore');
var $ = Backbone.$;

var ControlsView = Backbone.View.extend({

events: {
 'click #by_title': 'sortByTitle',
 'click #by_rating': 'sortByRating',
 'click #by_showtime': 'sortByShowtime',
 'change select[name="genre"]': 'selectGenre'
},

selectGenre: function(ev) {
 var genre = $("select[name='genre']").val();
 var that = this;
 if (genre === "all") {
 that.collection.reset(that.superset.toJSON());
 }
 else {
 that.collection.reset(that.superset.toJSON());
 this.filterByCategory(genre);
 }
},

filterByCategory: function(genre) {
 var filtered = this.movies.filter(function(m) {
 return (_.indexOf(m.get('genres'), genre) !== -1)
 });
 this.collection.reset(filtered);
},

Functional Enhancements | 67

www.it-ebooks.info

http://www.it-ebooks.info/

sortByTitle: function(ev) {
 this.movies.reset(this.movies.sortByTitle());
},

sortByRating: function(ev) {
 this.movies.reset(this.movies.sortByRating());
},

sortByShowtime: function(ev) {
 this.movies.reset(this.movies.sortByShowtime());
},

 initialize: function(options) {
 this.movies = this.collection;
 this.superset = options.superset;
 }
});
module.exports = ControlsView;

Besides the actions for sorting that were discussed in the beginning, a number of new
things are included:

• You pass the superset via the options helper and save this for usage later.
• The genres of a movie are stored in a nested array, where you need to filter only on

one value. Because this array can potentially contain many values, you use an Un‐
derscore.js helper to check the values in the array for a matching genre.

• Before the movies collection is filtered, you reset the collection with the filtered set.

Let’s quickly check that we can filter the movie program for any movie. If everything
works, all movies without Action will be removed from the collection, as we see in
Figure 5-2. When we then re-select All, we see the original collection. You can also see
the example in action on the book’s website.

From the use of Underscore functions, you see already that building a filter is a bit more
advanced than the sorting UI. Apart from mutating the state of the collection, genres
can come as a function of the available movies and good filters need to take that into
account. Also, we might work with another API endpoint that synchronizes with the
Genres collection. These advanced approaches will be a topic for the later chapters.

Backbone.Obscura
Sorting and filtering collections are very common, so it is wise to avoid reinventing the
wheel. And, by using a plug-in from the Backbone ecosystem, we get an additional
strategy to mutate collections for free: pagination.

68 | Chapter 5: Transforming Collections

www.it-ebooks.info

http://pipefishbook.com/ch_5/filterui/
http://www.it-ebooks.info/

Figure 5-2. We can now filter and sort movies in the UI; for sorting, we keep all models
in a collection, but models are removed for filtering, and we need to save a copy of the
original collection

Backbone.Obscura is a plug-in by Jeremy Morell that includes support for sorting, fil‐
tering, and paginating. Let’s look at how this plug-in can replace a lot of our boilerplate
code from before.

To get started with a plug-in, we need to include the plug-in in our Backbone stack. You
can add the following dependency with npm:

$ npm install backbone.obscura --save

The plug-in will replace part of the manual work you did previously and provide helpers
to paginate a collection out of the box.

Let’s start by requiring Backbone.Obscura in app/views/layout.js:
Backbone.Obscura = require('backbone.obscura');

Once the plug-in is available, it can proxy our movies collection. Backbone.Obscura
keeps track of a superset by itself. From the proxy, you can access the original collection
by calling superset(). Also, Backbone.Obscura delegates events to the proxy as needed.

To initialize the proxy, you wrap the original movies collection as follows in the con‐
structor of app/views/layout.js:

this.proxy = new Backbone.Obscura(options.router.movies);

Backbone.Obscura | 69

www.it-ebooks.info

https://github.com/jmorrell/backbone.obscura
http://www.it-ebooks.info/

From here on, you use the proxy in the application for rendering data:

this.addView('#overview', new MoviesList({
 collection: this.proxy,
 router: options.router
}));
this.controls = new Controls({ proxy: this.proxy });

In app/views/controls.js, you can apply the sort functions provided by using setSort():

sortByTitle: function(ev) {
 app.movies.setSort("title", "asc");
},

sortByRating: function(ev) {
 app.movies.setSort("rating", "desc");
},

sortByShowtime: function(ev) {
 app.movies.setSort("showtime", "asc");
}

And for the filtering, you can use the filterBy() method, which can take an attribute
or callback function:

that.proxy.filterBy(genre, function(movie) {
 var genreFound = _.indexOf(movie.get('genres'), genre.value);
 return (genreFound !== -1);
});

With the callback function, advanced filters such as filtering on multiple genres becomes
quite easy, too:

var genres = _.map($('input[type=checkbox]:checked'), function(genre) {
 that.proxy.filterBy(genre.value, function(m) {
 return (_.findWhere(m.get('genres'), genre.value))
})

Last, there is a nice way to remove all filters with:

this.proxy.resetFilters();

For pagination, you have several helpers, too. To set the number of items on a page, you
can use:

this.proxy.setPerPage(4);

And, to browser the collection, you can do:

paginateNext: function() {
 this.proxy.nextPage();
},

paginatePrev: function() {
 console.log("**");

70 | Chapter 5: Transforming Collections

www.it-ebooks.info

http://www.it-ebooks.info/

 this.proxy.prevPage();
}

You can play with the demo on the book’s website. Figure 5-3 shows how the current
interface looks.

Figure 5-3. With Backbone.Obscura, you can proxy collections such that sorting, filter‐
ing, and paginating functions become a piece of cake

Conclusion
In this chapter, you played with important functions to mutate the state of a collection.
Both nondestructive (e.g., sorting) and destructive (e.g., filtering) methods were dis‐
cussed. Then, you met Backbone.Obscura, a plug-in from the Backbone ecosystem that
boosts functions of collections for sorting, filtering, and paginating.

So far, our user interface is still a bit basic. In particular, we haven’t discussed good ways
to use advanced templates for view rendering. Also, as we create more views and col‐
lections, automating our workflow for application development becomes important. So,
in the next chapter, you will learn important ideas on templating. After having discussed
templates, the book will move toward discussing view templates and backend
requirements.

Conclusion | 71

www.it-ebooks.info

http://pipefishbook.com/ch_5/obscura/
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6

Advanced View Templates

So far, you’ve only used embedded view templates in the code base for Munich Cinema.
However, Backbone provides several options to combine advanced HTML templates
with Backbone views.

The task of integrating view templates into a Backbone project raises new design ques‐
tions on an application stack. You could argue that you need support of server-side
rendering of views for the first page load or for search engine optimization (SEO)
purposes.

For Munich Cinema, support of server-side rendering is not needed. Here, a pure client-
side application is sufficient, because our main goal is to provide a subapplication for a
better browsing experience. Similar concerns apply if you work on mobile applications
or other data-driven interfaces.

In this chapter, we extend the knowledge we’ve gained in previous chapters regarding
how to integrate view templates. Also, we will add some better view templates and a
basic build process with Grunt.js. With Grunt.js, we easily can “uglify” frontend assets
for better transport.

The following Node-based tools for frontend development will be discussed:

• ECO view templates
• JST view templates
• Grunt, including how to set up a build process

Views and Templates
In the prototype of Munich Cinema, the DOM nodes from Backbone.Views were very
basic. By embedding templates in views, the views easily bloat up, as you can observe

73

www.it-ebooks.info

http://www.it-ebooks.info/

from the current Layout view. Also, if you collaborate with developers that work on
HTML and CSS only, it can often be helpful to have a separate directory for HTML
templates only. Last, with a template engine, you can embed a bit of logic, such as loops,
to simplify building list elements.

As view templates are often written in an HTML style, you need to compile the raw
templates into a syntax that is compatible with JavaScript. The conversion from one
syntax to another can often be simplified with so-called build tools, such as Grunt.
Workflows and build automation will be discussed again later in the book.

Let’s look first at some popular templating engines.

JST
JST stands for JavaScript Templates and is a very popular approach to mix HTML tags
with embedded JavaScript.

To include JST templates with Browserify, you need to use a so-called transform plug-
in to translate the JST syntax into a JavaScript function. This list provides an overview
of supported Browserify transforms.

To transform JST into JavaScript modules, you can use the jstify transform. First, you
must install the plug-in with:

$ npm install jstify --save-dev

For now, you will need this dependency only for development, hence the --save-dev.

Templates are often shared with a web designer colleague, so it is good practice to keep
templates in a central place. For this, you will need a new directory to work with the
templates:

$ mkdir app/templates

Next, you can create a JST template to replace the embedded genres filter with the
following template app/templates/genres.html.jst:

<ul class="filter-genres">
 <% _.each(genres, function(name) { %>

 <input type="checkbox" name="genres" value="<%= name %>">
 <%= name %>
 </input>

 <% }) %>

You can then require the template in a view app/views/genresFilter.js, as follows:

var Backbone = require('backbone');
var genresTemplate = require('../templates/genres.jst');

74 | Chapter 6: Advanced View Templates

www.it-ebooks.info

https://github.com/substack/node-browserify/wiki/list-of-transforms
https://github.com/zertosh/jstify
http://www.it-ebooks.info/

// The UI for selecting a Movie Category
var GenresView = Backbone.View.extend({

template: genresTemplate,

render: function() {
 this.$el.html(this.template({genres: this.genres}));
 return this;
},

initialize: function() {
 this.genres = ['Action', 'Drama', 'Comedy'];
}

});
module.exports = GenresView;

The genres could again come from outside the view, but right now this is secondary in
the discussion.

Now you can use the browserify command together with the jstify transform:

$ browserify ./app/main.js -t jstify > static/bundle.js

Note, in other application stacks, there is a global JST object template module. This
“JST” object acts as a central object from where all templates can be referenced. For
example, this is the default approach in frameworks such as Ruby on Rails and Sprockets,
or in Grunt-based build processes, which we will discuss soon:

template: JST['genresFilter']

To create this JST object, we usually have a build step where the templates are con‐
catenated into a single file and exported as a JST object. Because this step is very similar
to preparing an application for deployment, we’ll discuss this further in “Grunt” on page
77.

ECO
Another approach to improve building DOM nodes is given by ECO templates. ECO
stands for “embedded CoffeeScript.” Some prefer the minimal syntax of JavaScript. Also,
the template engine can be easily combined with stacks based on Ruby on Rails or Stitch,
as ECO is written by the same author, Sam Stephensson. Here’s how we install it:

$ npm install eco

From now on, we can combine the template property in a Backbone.View by requiring
an external file. Let’s show this on the example of a better GenresFilter.

A view template for the filter might look like:

<ul class="filter-genres">
 <% for genre in genres: %>

 <input type="checkbox" name="genres" value="<%= name %>">

Views and Templates | 75

www.it-ebooks.info

http://www.it-ebooks.info/

 <%= name %>
 </input>

 <% end %>

You can compile this template with the browserify-eco transform as follows:

$ browserify ./app/main.js -t browserify-eco

By applying the ECO format, we can write logic such as for genre in genres. This
will look familiar if you have worked with embedded Ruby other template approaches
before.

Handlebars
With Handlebars templates, you can embed a high amount of logic into a view. We will
cover Handlebars in detail again in Chapter 11.

To give you an idea of how Handlebars templates should look, let’s rewrite the filter with
a Handlebars syntax:

<ul class="filter-genres">
{{#each genres}}

 <input type="checkbox" name="genres" value="{{ name }}">
 {{ name }}
 </input>

{{/each}}

As you can see, working with templates feels closer to working with HTML than it does
to working with JavaScript. Before we apply a better templating in the Munich Cinema
example, let’s shortly mention other approaches to templating.

React and Others
Backbone can easily be extended with plug-ins or external libraries, which means you
can include very advanced strategies for building DOM nodes. A number of strategies
are especially interesting:
Backburner

When changing multiple DOM nodes at once, it often becomes necessary to control
events for rendering in one place. The topic of coalescing properties in views is
currently beyond the scope of the book, but interested readers should investigate
Backburner for a possible approach.

76 | Chapter 6: Advanced View Templates

www.it-ebooks.info

http://handlebarsjs.com/
https://github.com/ebryn/backburner.js/
http://www.it-ebooks.info/

React.js
React.js makes interfaces composable. For this, React.js provides a powerful ab‐
straction, the “Shadow DOM.” To start with React.js, you can use your existing
Backbone views and simply replace your render function with React.js. As a next
step, you could replace HTML templates with React’s JSX templates. Browserify
supports React views with a “JSX” transform. Further discussion of React.js is cur‐
rently beyond the scope of this book.

Build Automation
So far, you used the command line and Browserify to bundle JavaScript assets in the
web application, but integrating many view templates and CSS styling often require
some kind of build processes. Also, you probably will deal with a server process as well
as processes for testing your application.

Besides building and serving your application, you probably want to control the quality
of your code with JSLint or code beautifiers. And to prepare your application for de‐
ployment, you will want to minify the frontend assets for better transport over HTTP.

All these goals are the topics of build automation, and in this section we take a look at
Grunt to bundle view templates and support the development of an application.

Having an understanding of build processes is also crucial for so-called isomorphic
JavaScript applications, where view templates can be rendered on both the client and
server. As an example, the Rendr library by Spike Brehm provides an application stack
based on Backbone, Grunt, and Browserify, where Backbone views can be rendered on
both the client and server.

Grunt
Grunt is a widely popular task runner from the Node ecosystem. By using a Gruntfile,
you can automate build tasks and include tasks for managing different tasks, such as
running a server process, bundling templates, and testing JavaScript. The syntax for
Grunt tasks can be a bit confusing at first. For details you should consult one of the
many tutorials on the topic.

Working with Grunt has become very popular in the world of fron‐
tend development, and a number of resources exist to help you see
the many ways that Grunt can support you. We will also return to the
discussion of Grunt in Chapter 10, in which we’ll look at its role in
bundling applications based on RequireJS.

Grunt is controlled from the command line. The tasks in a Gruntfile can be defined for
different modes for operations, such as development, testing, or production. The

Build Automation | 77

www.it-ebooks.info

https://github.com/facebook/react
https://github.com/rendrjs/rendr
https://github.com/gruntjs/grunt
http://www.it-ebooks.info/

concepts behind Grunt are closely related to a Makefile or its derivatives Rakefile or
Ant, in Ruby or Java.

You can use Grunt’s built-in tasks that are optimized for frontend JavaScript develop‐
ment, or you can extend Grunt with plug-ins. Build tasks can be as easy as syntax
checking of source files to more complicated operations as preprocessing styles, or pre‐
paring files for production. All the tasks are defined in a so-called Gruntfile.

You can install Grunt with:

$ npm install -g grunt

For now, we want to have Grunt support for the following tasks in development mode:

• Run a server process, and watch the server file for changes.
• Concatenate and bundle Handlebars view templates, and watch these files for

changes.

To achieve these goals, you also need tasks that come from Grunt plug-ins. To quickly
set up your dependencies, you can add the following new dependencies in package.json:

"dependencies": {
 ...
 "grunt-browserify": "~2.0.7",
 "grunt-contrib-watch": "~0.6.1",
 "grunt-contrib-handlebars": "~0.7.0",
 "nodemon": "~1.0.17",
 "handlebars": "~1.3.0"
 }

These dependencies are installed in our project folder with:

$ npm install

As you can see, you also fetch the dependencies nodemon and handlebars. With node
mon, the server process is automatically reloaded when a file changes. The Handlebars
dependency supports you in translating hbs view templates to JavaScript.

Next, let’s look at the Gruntfile. A Gruntfile can become quite large, and sometimes it
can be understood if you work your way up, from bottom to top.

First, there are the tasks of a Gruntfile that can be called as commands from the com‐
mand line. For development purposes, we are mainly interested in a server task, where
all changes are observed and translated into new outputs as appropriate. This translates
to the following snippet in the Gruntfile.js:

grunt.registerTask('compile', ['handlebars', 'browserify']);

// Run the server and watch for file changes
grunt.registerTask('server', ['compile', 'runNode', 'watch']);

78 | Chapter 6: Advanced View Templates

www.it-ebooks.info

http://www.it-ebooks.info/

// Default task
grunt.registerTask('default', ['compile']);

These tasks can be defined recursively. For example, the runNode task can look like:

grunt.registerTask('runNode', function () {
 grunt.util.spawn({
 cmd: 'node',
 args: ['./node_modules/.bin/nodemon', 'server.js'],
 opts: {
 stdio: 'inherit'
 }
 }, function () {
 grunt.fail.fatal(new Error("nodemon quit"));
 });
});

while the other tasks can be included from a plug-in:

grunt.loadNpmTasks('grunt-browserify');
grunt.loadNpmTasks('grunt-contrib-handlebars');
grunt.loadNpmTasks('grunt-contrib-watch');

grunt.registerTask('runNode', function () {
 grunt.util.spawn({
 cmd: 'node',
 args: ['./node_modules/.bin/nodemon', 'server.js'],
 opts: {
 stdio: 'inherit'
 }
 }, function () {
 grunt.fail.fatal(new Error("nodemon quit"));
 });
});

Last, tasks can be configured. This configuration takes up the most space in a Gruntfile.
Let’s first look at the configuration of the Browserify task:

browserify: {
 options: {
 debug: true,
 aliasMappings: [
 {
 cwd: 'app/',
 src: ['**/*.js'],
 dest: 'app/'
 }
]
 },
 app: {
 src: ['app/**/*.js'],
 dest: 'static/bundle.js'
 }
}

Build Automation | 79

www.it-ebooks.info

http://www.it-ebooks.info/

And, to configure the tasks for watch and Handlebars templates, you can add:

watch: {
 scripts: {
 files: 'app/**/*.js',
 tasks: ['browserify'],
 options: {
 interrupt: true
 }
 },
 templates: {
 files: 'app/**/*.hbs',
 tasks: ['handlebars'],
 options: {
 interrupt: true
 }
 },
},

handlebars: {
 compile: {
 options: {
 namespace: false,
 commonjs: true,
 processName: function(filename) {
 return filename.replace('app/templates/', '').replace('.hbs', '');
 }
 },
 src: "app/templates/**/*.hbs",
 dest: "app/templates/compiledTemplates.js"
 }
}

Last, you must wrap all the code in an initConfig function, and the resulting Grunt‐
file.js should look like this example file.

Other popular tasks include jshint, which performs a syntax check:

jshint: {
 options: {
 curly: true
 },
 gruntfile: {
 src: 'Gruntfile.js'
 }
}

and a task for cleaning up previous builds:

// Clean public folder
clean: {
 all: ["dist/*.js"]
}

80 | Chapter 6: Advanced View Templates

www.it-ebooks.info

https://github.com/pipefishbook/ch_6/blob/master/grunt/Gruntfile.js
http://www.it-ebooks.info/

We can check that the Gruntfile is set up correctly with:

$ jslint Gruntfile.js
$ grunt --help

Running grunt help returns a list of tasks that come from the gruntfile.js:
Available tasks
 browserify Grunt task for browserify. *
 handlebars Compile handlebars templates and partials. *
 watch Run predefined tasks whenever watched files change.
 runNode Custom task.
 compile Alias for "handlebars", "browserify" tasks.
 server Alias for "compile", "runNode", "watch" tasks.
 default Alias for "compile" task.

The default task is run if we call grunt without arguments.

Depending on the strategies for packaging assets, a Gruntfile can
become rather large. It often makes sense to modularize your Grunt‐
file by having configurations in external files. A number of develop‐
ers share their preferred application structure with a Gruntfile, too.
For an example of a basic Gruntfile for a Backbone app, go to https://
github.com/kud/marrow. We will see more ways for automation in
Chapter 10.

Running our grunt server task results in:

$ grunt server
Running "handlebars:compile" (handlebars) task
File app/templates/compiledTemplates.js created.

Running "browserify:app" (browserify) task

Running "runNode" task

Running "watch" task
Waiting...
15 Apr 19:25:21 - [nodemon] v1.0.17
15 Apr 19:25:21 - [nodemon] to restart at any time, enter `rs`
15 Apr 19:25:21 - [nodemon] watching: *.*
15 Apr 19:25:21 - [nodemon] starting `node server.js`

Pushstate server started on port 5000

Now, when you change the files in the application, the application is automatically
browserified, and you can have faster feedback on your development. Let’s add a refer‐
ence to Handlebars as follows:

var Handlebars = require('handlebars');
var Templates = require('templates/compiledTemplates')(Handlebars);

and a template for movies in app/templates/movies.hbs:

Build Automation | 81

www.it-ebooks.info

https://github.com/kud/marrow
https://github.com/kud/marrow
http://www.it-ebooks.info/

<h1>

 {{ title }}

</h1>
<hr>

If you observe the terminal output, you should see that the template is automatically
precompiled for you, too.

Conclusion
In this chapter, you learned about advanced approaches to DOM manipulation with
JST and ECO templates. You also learned to browserify templates with a transform. You
then met build automation wiht Grunt.js and a very basic Gruntfile.js to support you
with application development.

Now that we’ve applied better templating to it, our web application is almost ready for
deployment. You still need to learn more about APIs, and how to connect those to your
Backbone models and collections to build a fully working web application. As build
processes are an important part of JavaScript web applications, you will also learn more
about workflow automation in Chapter 10. In addition, you will be introduced to more
Backbone plug-ins for special types of interactions in the following chapters.

82 | Chapter 6: Advanced View Templates

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7

Synchronizing State

The previous chapters offered a preliminary glance of state in the browser. We covered
the basics of Backbone views, models, and collections to manage state. But to build a
real app, you must connect your collections and models to an API. These are the en‐
hancements of Backbone collections that we haven’t yet discussed.

One of the main purposes of a Backbone collection is to fetch new information (or state)
over a network. To understand the basic ideas here, you need to understand a bit of
RESTful principles for APIs and how Backbone maps these internally to the API of
collections and models.

In the case of the Munich Cinema example, when a collection manages tens or hundreds
of movies, new questions on filtering and sorting them arise. Dealing with more data
also takes an important role in our customer’s project: Munich Cinema wants to allow
its customers to search for movies by release date and genres. To help customers decide
which movies to watch, Munich Cinema prepared ratings of movies that might further
distill a movie search.

So we must expand our application with a number of features. In this chapter, we’ll cover
the following:

• Setting up a mock of a RESTful API
• Enabling fetching of remote data from an API
• Dealing with time effects around fetching
• Understanding the basics of hosted API services

83

www.it-ebooks.info

http://www.it-ebooks.info/

Fetching Remote Movies
So far, the examples were based on a few movies directly linked with the initial page
load. Munich Cinema’s movie program is much larger though, especially during festival
season. For this, users can select movie genres or browse lists with with many more
movies. Let’s look at important ideas behind requests for more movies with Backbone.

RESTful Web Services
Web services make data over a network accessible—for example, to query information.
In most application stacks based on Backbone.js, the user interface is the client of a web
service. The part of Backbone.js that handles access to RESTful web services is Back‐
bone.Sync. By default, Backbone.js expects a web service to follow the RESTful princi‐
ples. Let’s have a look at Figure 7-1 to see what it means.

Figure 7-1. In a RESTful web service, we use the basic verbs GET, POST, PUT, and DE‐
LETE from HTTP to transfer state between client and server—addressability, represen‐
tations, and statelesness are some core ideas for RESTful API design; in HTML, links
and forms are the main tools to modify state, but with Backbone.js, you can reference
state with collections and models

Let’s quickly review some of the core concepts of a RESTful web service:
Statelessness

Transferring and changing state over a network is the origin of the REpresentational
State Transfer concept, or REST. Yet, resources should be stateless with respect to
requests from clients, meaning the application state in a browser does not affect the
response of the server. Modifying state of a resource, however, is possible with
POST, PUT, or DELETE requests. Modifying client state from the server is done
with GET requests.

84 | Chapter 7: Synchronizing State

www.it-ebooks.info

http://www.it-ebooks.info/

Different representations
A client accesses a representation of a resource, not the resource itself. In general,
a server exposes different representations. For a Backbone.js client, we are mainly
interested in a JSON representation, but the same data might be requested in HTML
or XML. While HTML representations are convenient for humans, JSON and XML
are representations that can be more easily used by machines such as Backbone.js-
based clients, or an RSS reader.

Addressability
In a network of information, information resources should clearly be identified
with a URI, a uniform resource identifier. For example, to show data about movies,
we would define a clear path for how to get these in the application, similar to a
filename in a filesystem. A URI is basically the name of a resource and acts as input
to clients of web services.

With these principles, we build web architectures that focus on connecting resources.
As such, we can easily build different (Backbone.js) clients acting on the same resources
on a server.

For example, for Munich Cinema, we developed a client to browse movies. Similarly,
we could develop an admin interface that allows us to modify movies or another inter‐
face for sharing feedback of movies on a dashboard.

Mocking an API
Instead of using remote data from a remote data store, it can make sense to mock
responses for data first. By mocking API data, frontend and backend development can
be separated—and you can continue developing the Backbone application without
thinking too much about server-side requirements. For the purposes of the book, a mock
API can help to illustrate timing effects when loading data.

There are two approaches we can take: mocking an API on the server or mocking an
API in the browser. You already have some experience with using npm, so we’ll discuss
mocking an API on the server first.

To mock data from a remote data store, we use the canned library written by Philip
Fehre. The idea of this library is to map files from a directory to HTTP requests.

For example, by having files in the ./api/movies/ directory, you would automatically get
responses as follows:

File | HTTP Path
-------------------------------+-----------------
./movies/index.get.json | GET /api/movies
./movies/any.get.json | GET /api/movies/:id

You can install canned with:

Fetching Remote Movies | 85

www.it-ebooks.info

https://github.com/sideshowcoder/canned
http://www.it-ebooks.info/

$ npm install canned --save-dev

Next, you can create some example movies in the api/movies/index.get.json file. One
example looks like:

{
 "title": "Ice Age: Dawn of the Dinosaurs",
 "director": "Carlos Saldanha",
 "rating": 0,
 "showtime": 1388279380,
 "description": "Ellie and Manny are expecting their
 first child, and Manny is nervously obsessed with
 making life perfect and safe for Ellie. ... ",
 "id": 10,
 "year": 2009,
 "length": 94,
 "genres": [
 "Animation",
 "Action",
 "Adventure"
]
 }

Canned can be called stand-alone or combined with middleware applications in a server
stack. This will allow us to serve static files too, besides the API data. Therefore, our
server in a ./server.js file can look as follows:

var http = require('http');

// Setup the can to mock data
var canned = require('canned');
var opts = { cors: true, logger: process.stdout };
can = canned('.', opts); // canned configuration

var express = require('express');
var app = express();

// adding middlewares
app.use(express.static(__dirname + '/static'));
app.use(can);

// startup server
http.createServer(app).listen(5000);

You can start this server with:

$ node server.js

When you now make a request to the /api/movies path, you are ready to serve movies
data with canned.

To check that your setup is working, you have several options. First, you could use
curl, a command-line HTTP client:

$ curl 0.0.0.0:5000/api/movies

86 | Chapter 7: Synchronizing State

www.it-ebooks.info

http://www.it-ebooks.info/

Alternatively, you could open the URL http://0.0.0.0:5000/api/movies in your web
browser.

And in the context of a Backbone app, you could set up an Ajax request with jQuery in
app/main.js:

$.ajax({
 url: "/api/movies",
 headers: {"content-type": "application/json"}
});

A working API setup should return a result similar to Figure 7-2.

Figure 7-2. To see the API mock for a server in action, you can run an Ajax request
with jQuery and inspect the Network tab in the browser console

Once this setup is working, let’s delve deeper into the enhancements of a Backbone
collection to fetch data from an API.

Basic Sync and Fetch
Backbone collections and models provide important enhancements to work with a
RESTful API through Backbone.Sync. Conceptually, you can see the place for Back‐
bone.Sync in Figure 7-3.

Basic Sync and Fetch | 87

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 7-3. In the previous chapters, we discussed mainly DOM manipulation and
tracking basic static with Backbone models and collections; to synchronize state over
the network, we need to talk about Backbone.Sync

Every request from and to servers pass through Backbone.Sync. State in collections can
not only be synchronized through a RESTful JSON API but also via sockets, XML, or
with an HTML5 localStorage adapter.

However, for the Munich Cinema example, the main use case is synchronizing state
through HTTP. To synchronize state via an API, you need to solve a number of problems:

• A Backbone.Model resolves data on the server by using a primary key. Back‐
bone.Sync adds an ID to requests when data is stored.

• The attributes of Backbone models will be serialized as JSON. Backbone.Syncs
provides help to serialize and de-serialize data.

• Last, we must set some HTTP headers, such as content-type, so that the interpre‐
tation at the other end of the line understands what is going on. The HTTP headers
are also managed by Backbone.Sync.

Backbone.Sync manages actions for writing and reading data from a server. For this,
Backbone defines its own verbs: create, read, update, and delete with the following
mappings to the routes of a RESTful API:

Backbone verb vs RESTful API endpoint
create movie <--> POST /movies
read movie <--> GET /movies[/id]
update movie <--> PUT /movies/id
delete movie <--> DELETE /movies/id

By default, Backbone.Sync expects the JSON going and coming from a server to comply
with the following pattern:

[{ 'id': 1, 'title: 'The Artist', ... }, ...]

88 | Chapter 7: Synchronizing State

www.it-ebooks.info

http://www.it-ebooks.info/

This means that you don’t have root elements indicating the name of the movies col‐
lection, for example. Some APIs, however, use a JSON syntax with a root element. For
example, many web applications that are based on older versions of Ruby on Rails would
deliver JSON in the following syntax:

{ "movies": [{ "movie" : { "id" : 1, ... } }] }

For such kinds of APIs, you must take care of parsing the raw data that comes out from
Backbone.Sync. Parsing raw data also applies to situations where you are working with
non-RESTful APIs, such as data from sockets. For those cases, you can overwrite parts
(or the complete) synching behavior.

The documentation will be a good start if you need to overwrite the
default Backbone sync behavior (e.g., when you want to connect ap‐
plication state to websockets). The annotated source code of Back‐
bone.js has a nice list of use cases when overwriting Backbone.Sync,
which might be important.

To start working with an API, we first explore the mapping of Backbone.Sync to “read”
movies. The data is provided by canned with the setup described in “Mocking an
API” on page 85.

First, the Movies collection can be extended such that data is read from the API instead
of embedded JSON. To do this, you add a url property to the collection. This url
property points a collection to an API endpoint as follows in app/collection/movies.js:

 var Movies = Backbone.Collection.extend({
 model: require('models/movie'),

 url: '/api/movies',

 // ... same as before
 });
 module.exports = Movies;

Let’s bundle the collection up with the following browserify command:

$ browserify -r ./app/collections/movies:movies > static/movies.js

and add the file to static/index.html:
<script src="movies"></script>

Now you are ready to experiment in the browser console:

> Movies = require('collections/movies');
> movies = new Movies();

To read remote data and populate a collection, Backbone provides the fetch() com‐
mand. By invoking fetch(), an Ajax request is made to the url path as defined in /api/

Basic Sync and Fetch | 89

www.it-ebooks.info

http://backbonejs.org/docs/backbone.html#section-130
http://backbonejs.org/docs/backbone.html#section-130
http://www.it-ebooks.info/

movies. The response is provided by canned, and you can quickly observe new data in
the Backbone collection:

> movies.fetch()

As a response you should see:

XHR finished loading: GET "http://0.0.0.0:5000/api/movies"

and the collection should be populated:

> movies.size()
20

However, what looks simple can quickly become more complicated. First, there are a
number of events that can result from fetch(). Let’s first learn about these.

If you activate again the events monitor from “Basic Events” on page 31, you will see
that fetch triggers the following events:

request
add // for each new model
sort
sync

Often, you want to hook into the add event to render new information from an API. In
case of populating a model, you will see a change event. It can be necessary to observe
the events request and sync, too—for example, to notify observers that new data is
available or that loading of data has stopped.

To illustrate the effects of request and sync events, you could hook into these events
to see how long it takes to fetch data:

beginSync: function() {
 console.log("before sync: " + Date.now());
},

finishSync: function() {
 console.log("after sync: " + Date.now());
},

initialize: function() {
 this.on('request', this.beginSync);
 this.on('sync', this.finishSync);
}

If you fetch new data now, you can see from the browser console that it takes just some
fractions of milliseconds to complete loading movies on the development machine.

Alternatively, you could hook into request and sync and show a small spinner while
movies are loaded. For showing a spinner, you would add a new HTML element with
class .movies-loading that contains a spinning wheel or loading animation.

90 | Chapter 7: Synchronizing State

www.it-ebooks.info

http://www.it-ebooks.info/

Then, you could hook into the collection loading events from app/views/layout.js. When
the loading starts (a request event is triggered), the loading div with class .movies-
loading is shown. And, when the loading stops (a sync event is triggered), the loading
div is faded out. This idea translates to the following code outline:

// start spinner
beginSync: function(){
 $('.movies-loading').fadeIn({duration: 100});
},

// stop spinner
finishSync: function(){
 $('.movies-loading').fadeOut({duration: 100});
}

The behavior and events of fetch can be influenced by some options. First, you can add
{reset: true} to clear a collection before it is populated. If you try this:

> movies.fetch({reset: true})

You can observe the events: request, reset, and sync.

Also, fetch() accepts a number of options from the collection set command: these are
add, remove, and merge, and work as follows.

For example, with {merge: false} you can avoid overwriting existing models. To see
this, you can prepopulate a Movies collection with a dummy model as follows in the
browser:

> movies.add({id: 12, title: "my test"})

Now, when you fetch the collection with:

> movies.fetch({merge: false})

you can see that collection will be populated with 20 models, but only 19 add events will
be fired.

Also, fetch() accepts parameters that can directly be passed to an Ajax call. For example,
in app/collections/movies.js, you can define a function fetchPage() to fetch a certain
page in a collection:

fetchPage: function(num) {
 return this.fetch({data: {page: num}});
}

If you try this function in the browser, you can see:

> movies.fetchPage(2)
XHR finished loading: GET "http://0.0.0.0:5000/api/movies?page=2".

This behavior can be useful if you want to provide server-side support for pagination
of collections.

Basic Sync and Fetch | 91

www.it-ebooks.info

http://www.it-ebooks.info/

Modifying the way an Ajax request is made also works for HTTP headers. Using HTTP
headers is especially interesting for passing meta information of an app to a server.

To illustrate some points about asynchronous effects of loading data, let’s imagine a
custom HTTP header to simulate a delay. A delay parameter could be passed with a
HTTP header, which can then be processed at the server. To define a fetch() function
with a delay, you could pass a header X-DELAY as follows:

delayedFetch: function(delay) {
 return this.fetch({headers: {"X-DELAY": delay}});
}

The X-DELAY header can then be read out at the server and cause an artifical delay in
the response. To see this idea in action, you can add the following middleware applica‐
tion to server.js:

app.use(function(req, res, next) {
 var delay = parseFloat(req.headers['x-delay']);
 if (delay) {
 setTimeout(function() {
 next();
 }, delay);
 } else {
 next();
 }
});

Now, if you restart the server and go back to the browser, you can run:

> movies.delayedFetch(2000)

And, you should see that it now takes two seconds to populate a collection. With these
background concepts, let’s look closer at problems caused by the asynchronous opera‐
tion of JavaScript.

Asynchronous Effects
It takes time to transport data over a network, so working with remote data brings in a
hidden time dependency into our application. Dealing with time dependencies might
be new if you are accustomed to the “blocking” behavior of programming statements
that are common in programming languages such as Java or Ruby.

With the “nonblocking” behavior of JavaScript, applications quickly run into asynchro‐
nous effects between data transport and code execution. You must take into account
that transport of data over a network, which takes a couple of milliseconds, is different
than the time for executing JavaScript statements in a browser, which takes only a frac‐
tion of milliseconds.

To illustrate the effects of high-latency, low-bandwith network connections, let’s ex‐
periment a bit with a small simulator.

92 | Chapter 7: Synchronizing State

www.it-ebooks.info

http://www.it-ebooks.info/

In the previous section, we wrote a function delayedFetch(). To examine the effects
of time on the collection state, we process the size of the collection at different times
with the following probe in app/probe.js:

simTransport = function(movies, simDelay, probeDelay) {
 movies.reset();
 movies.delayedFetch(simDelay);
 window.setTimeout(function() {
 console.log('Probe delay: ' + probeDelay + ' milliseconds.');
 console.log('Simulation delay: ' + simDelay + ' milliseconds.');
 console.log('Collection size: ' + movies.size());
 }, probeDelay);
}
module.exports = simTransport;

You can bundle this probe up with:

$ browserify -r ./app/probe.js:probe > static/probe.js

We first check what happens if we probe the data before it arrives, at around one second
after the fetch:

> simTransport(movies, 2000, 1000)
Probe delay: 1000 milliseconds.
Simulation delay: 2000 milliseconds.
Collection size: 0

Appropriately, the size of the collection is still 0, although we might have expected a
populated collection. Simply put, the response time for the remote data takes a couple
of milliseconds, while we check the collection size too early.

Without further precautions, we will get errors in the UI. One option to get the correct
population is to wait longer. Let’s see what happens at three seconds after the fetch:

> simTransport(movies, 2000, 3000)
Probe delay: 3000 milliseconds.
Simulation delay: 2000 milliseconds.
Collection size: 20

Indeed, we get the expected size for the collection. But guessing network latency is not
really an approach to base our engineering efforts upon. We need to find better mech‐
anisms that will allow the loading event to finish.

A first approach to avoid asynchronous problems is to pass a callback function to
fetch. This can look like:

movies.reset();
movies.fetch({ success: function(results) {
 console.log("Collection size: " + movies.size());
 }
});

Basic Sync and Fetch | 93

www.it-ebooks.info

http://www.it-ebooks.info/

The success callback is automatically called when the Ajax call has been succesfully
finished.

Callbacks can be hard to read, especially when exceptions occur within a callback, so
there is another approach we can use. This alternative approach is the “deferred” syntax
that is supported by jQuery.

The basic idea is that instead of letting fetch return an uncertain result, we return a
representation of the asynchronous operation, a promise. We can chain this promise
with callbacks that should be executed when an operation finishes.

To see this callback idea in action, let’s instantiate an empty movies collection in the
browser and do the following:

> var deferred = movies.fetch();
> deferred.done(function() { console.log(movies.size()) });

We first bind the fetch to a deferred variable and ensure then that data is loaded with
the done() method. The size of the collection is now correct without using error-prone
guesswork. We can also respond to problems while fetching a movie with the fail()
method.

Note that calling done() multiple times on a promise always yields the same resolved
value (i.e., another “sync” operation will not be run after the promise was resolved).
This may prevent multiple Ajax requests and may have advantages, depending on the
application you are working on.

The full example can be found on the book’s GitHub page.

We will return to promises when we build our data backend in a later
chapter. You can also see Learning jQuery Deferreds (O’Reilly, 2013)
by Terry Jones and Nicholas H. Tollervey.

Firebase
To round out the basics of fetching remote data, let’s point the Movies collection to a
hosted service.

There are a number of “noBackend” providers offering API hosting that can take away
the pains to build and maintain a backend yourself. In this case, you can apply some
ideas of this chapter and fetch data from a hosted backend service.

Let’s look at an approach to drive your Backbone application with Firebase, one of the
popular backend-as-a-service providers. In the next chapter, we get more into API de‐
tails, when your application requires its own backend design.

94 | Chapter 7: Synchronizing State

www.it-ebooks.info

https://github.com/pipefishbook/ch_7/tree/master/fetch
http://shop.oreilly.com/product/0636920030508.do
http://www.it-ebooks.info/

To get started with Firebase, you can signup with your GitHub account or simply with
your email. On Firebase’s dashboard, you then can create as many apps as you like, and
there is a free plan available for developing projects.

To have collections and models talk with Firebase, you need to include the Firebase sync
adapter, which is provided by the Backfire module.

You can get Backfire with the following npm command:

$ npm install client-backfire --save-dev

Now, you can include the sync adapter for Firebase in your application main at app/
main.js:

var Backbone = require('backbone');
var $ = require('jquery-untouched');
Backbone.$ = $;

var backfire = require("client-backfire");
backfire.Backbone = Backbone;

To reference movies from Firebase, you can make the Movies collection reference Fire‐
base as follows:

var Backbone = require('backbone');
var Movie = require('models/movie');
var _ = require('underscore');

var Movies = Backbone.Firebase.Collection.extend({
 model: Movie,
 firebase: "https://movies-demo.firebaseio.com/movies",
 // ... same as previously
});

From here on, the Firebase sync() function takes over. With some minor adaptations,
you can get the example of Munich Cinema running, and you can see a demo on the
book’s website.

With Firebase, you now have a dashboard to easily import more movies and track mov‐
ies usage. You can also wire up Firebase with other APIs via Zapier to trigger sending
emails or other tasks. This might be interesting for some applications, but for others,
you want to build your API yourself. This will be the topic of the next chapter.

Conclusion
In this chapter, you made quite some progress toward a full, single-page application that
fetches data from a remote data store.

To prevent developing a full backend at this stage, we saw a strategy to mock a RESTful
API with canned. We then used the mock API to learn about different approaches to
populate the Movies collection over a network. First, we learned about the basic events

Conclusion | 95

www.it-ebooks.info

http://pipefishbook.com/ch_7/firebase/#
http://www.it-ebooks.info/

that are evolved. Then, we discussed the different options to influence fetch() for
different needs. We covered asynchronous effects and how to use a promise to prevent
making multiple Ajax requests.

We also saw an approach for building web apps with Backbone.js with Firebase. Firebase
is a backend-as-a-service provider and allows you to easily access and manage data over
an API. Backend-as-a-service does not work for every application. That is why the next
chapter brings in more ideas to build APIs yourself and will also discuss some strategies
for authentication of an application with Backbone.js.

96 | Chapter 7: Synchronizing State

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8

Basic API Concerns

In the last chapter, you used an API that was “canned” to learn about populating a
collection with fetch(). While Backbone.js is backend agnostic, you could work with
any programming language or data store to build a “real” application stack. However,
with the advances of Node and JavaScript, some of the concepts that apply to Backbone
at the client equally apply when building APIs or connecting to data stores at the server.

Even if your use case does not require an isomorphic application design, where logic
for templating and data validation can be shared, the concepts of this chapter should
help you understand more enhancements of Backbone models and collections to “write”
state to a remote server.

To persist state with Backbone, we delve deeper into concepts from API development.
This is why this chapter on general persistence, and the next chapter on authentication,
move the development of Munich Cinema more and more toward full stack JavaScript
application development.

Our discussion on fetching movies is extended to storing votes on movies. In general,
changing application state also requires discussion on authenticating users. But to sim‐
plify the discussion in this chapter, we let users vote on movies without authentication.
Then, in the next chapter, authentication will be discussed.

To store state from the client at a server, we first replace the mock API with a Movies
API based on Restify and JavaScript promises based on Bluebird. We then connect the
Backbone application to the extended API and discuss further enhancements of Back‐
bone models and collections.

97

www.it-ebooks.info

http://www.it-ebooks.info/

Therefore, this chapter explores the following topics:

• Building a RESTful API with Restify for voting on movies
• Using a Proxy middleware to connect a separate API process
• Data sources

Backend Services
While the user interface of a web application is a service that heavily depends on static
files (JavaScript and CSS), the design of a backend service (API) is heavily shaped by
the type of data stores. In the classical “LAMP” (Linux-Apache-MySQL-PHP) applica‐
tions stacks, relational database such as MySQL or Postgres influence how data is stored
and queried.

Also, in the Munich Cinema application stack, it would be possible to build a Movies
service around a relational database based on an object-relational-mapper (ORM). You
could either use a different programming language, or proceed (as we will do later) with
JavaScript.

If you want to use JavaScript with a relational database, you might
want to look at the Bookshelf ORM. Written by Tim Griesser, the
project borrows a number of abstractions, such as models and col‐
lections, from the Backbone data layer.

However, discussing the concepts and ideas of backend services would quickly explode
the scope of this book. What we can discuss are a number of concepts that influence the
setup of Backbone models and collections. Also, it is important to discuss ideas around
separating frontend and API service. Even if you will work with an isomorphic Java‐
Script app, concepts for connecting a data store will be important.

For operations on data stores with JavaScript, such as querying or writing, we face the
same time dependency problems as we discussed in “Asynchronous Effects” on page 92.

Hopefully, the ideas in this chapter can help you understand current projects and dis‐
cussions to try out some nonrelational data stores too, such as Redis, ArangoDB, or
MongoDB.

Proxies
When you are developing an API, you often will require working with multiple pro‐
cesses—for example, for running services for the user interface, the API, and a data
store.

98 | Chapter 8: Basic API Concerns

www.it-ebooks.info

http://bookshelfjs.org/
http://www.it-ebooks.info/

In this chapter, we will mainly work with two processes. The frontend process takes all
incoming HTTP requests, but requests starting with /api will be proxied to the API
process.

Working with client and API in isolation is also possible with CORS
or “cross origin resource sharing” policies. Unfortunately, older web
browsers do not support that W3C recommendation. Piotr Sar‐
nacki’s blog post “Client and API Isolation” includes a good discus‐
sion on working with a CORS setup.

To proxy requests from one process to another with Node, you can install the proxy
middleware with:

$ npm install proxy-middleware --save

You can add the proxy middleware in ./server.js as follows:

var http = require('http');
var express = require('express');
var app = express();
var logger = require('morgan'); // to log requests
var url = require('url');
var proxy = require('proxy-middleware');

app.use(logger({ immediate: true, format: 'dev' }));

// The proxy is added with this line:
app.use('/api', proxy(url.parse('http://0.0.0.0:5001/api/')));

app.use(express.static(__dirname + '/static'));

var port = 5000;
http.createServer(app).listen(port, function() {
 console.log('Frontend listening at %s', port);
});

With the line:

app.use('/api', proxy(url.parse('http://0.0.0.0:5001/api/')));

you proxy requests from the server process 0.0.0.0:5000/api to the API process run‐
ning at 0.0.0.0:5001/api. How this API process looks, and how Backbone collections
and models can store state, will be clear in a second.

For some setups, you might want to proxy a RESTful interface of a
database directly. For example, the ArangoDB multipurpose data
store provides an easy way to mount RESTful APIs with a package
called Foxx.

Backend Services | 99

www.it-ebooks.info

http://www.w3.org/TR/cors/
http://bit.ly/1nlsvUe
https://www.arangodb.org/foxx
http://www.it-ebooks.info/

To make starting your development environment easy, you could extend your Gruntfile
to manage the frontend and backend services. As explained in “Grunt” on page 77, you
can register tasks to run the two processes automatically as follows:

grunt.registerTask('runFrontend', function () {
 grunt.util.spawn({
 cmd: 'node',
 args: ['./node_modules/.bin/nodemon', 'server.js'],
 opts: {
 stdio: 'inherit'
 }
 }, function () {
 grunt.fail.fatal(new Error("nodemon quit"));
 });
});

grunt.registerTask('runAPI', function () {
 grunt.util.spawn({
 cmd: 'node',
 args: ['./node_modules/.bin/nodemon', 'api.js'],
 opts: {
 stdio: 'inherit'
 }
 }, function () {
 grunt.fail.fatal(new Error("nodemon quit"));
 });
});

// Include both processes in the server task:
grunt.registerTask('server', ['compile', 'runFrontend', 'runAPI', 'watch']);

Before running grunt server, let’s build the Movie services in ./api.js.

Building a Movies Service
When building an API with Node.js, the Restify library by Mark Cavage is a good choice.
Restify is very similar to Express.js but keeps it simpler when it comes to building
RESTful APIs.

To continue with the API example from Chapter 7, we replace the setup of canned with
a small API variation based on Restify.

To set up the Restify server, you can type the following command:

$ npm install restify --save

The specification on our first API endpoints would be:

GET /api/genres
Return all movie genres

GET /api/movies
Return all movies

100 | Chapter 8: Basic API Concerns

www.it-ebooks.info

https://github.com/mcavage/node-restify
http://www.it-ebooks.info/

As a first step, we can serve both resources from the movies.json file and set up a basic
Restify server in ./api.js:

// Our main API server is powered by restify
var restify = require('restify');
var _ = require('underscore');

var movies = require('./movies.json');

// Similar to Express.js, we create a server with Restify
var server = restify.createServer({ name: 'movies' })

// Adding middleware to process HTTP bodies
server
 .use(restify.fullResponse())
 .use(restify.bodyParser())

// The main API route for movies
server.get('/api/movies', function (req, res, next) {
 res.send(movies);
})

// The API route to extract a genres of movies
server.get('/api/genres', function (req, res, next) {
 var genres = _.chain(movies)
 .map(function(movie) {
 return movie.genres
 })
 .flatten()
 .uniq()
 .value();
 res.send(genres);
})

var port = process.env.PORT || 5000;
server.listen(port, function () {
 console.log('%s listening at %s', server.name, server.url)
})

We can run this server with:

$ node api.js

Note that we are not simply sending JSON for the genres. Rather, we derive the data
with some methods from Underscore.js. That this setup works can be checked with a
curl request to genres:

$ curl 0.0.0.0:5000/api/genres
["Drama","Comedy","Action","Adventure","Fantasy","Family","Crime","Animation",
 "Mystery","Thriller","Sci-Fi","Western","Biography","History"]

Wrapping a Data Store
Our next goal is to bring the idea of “data store” into the API. The main purpose of a
data stores is to improve querying and indexing of data.

Building a Movies Service | 101

www.it-ebooks.info

http://www.it-ebooks.info/

For example, if our server managed hundreds or thousands of movies, we would add
some parameters for pagination (e.g., by adding skip and limit parameters to address a
certain page of movies). The processing of these parameters in the backend goes beyond
the scope of this book, but in “Basic Sync and Fetch” on page 87, you saw how query
parameters could be passed to an API.

What you will learn, however, in this section are basic concepts of dynamic HTTP
responses with JavaScript. Let’s adapt the route for /api/movies:

var restify = require('restify');

var server = restify.createServer({ name: 'movies' });

// We'll play with a simple in-memory data store
var DS = require('./DS.js');
var ds = new DS();

server
 .use(restify.fullResponse())
 .use(restify.bodyParser())

// This is our first API endpoint
server.get('/api/movies', function (req, res, next) {
 // We return all movies from the database
 // ... and we'll see how in a second how with:

 // return ds.allMovies();
 // .then(function(m) { res.send(m); })
 // .catch(function(err) { res.send(500, err) });
});

// This is our second API endpoint
server.get("/api/movies/:key", function(req, res, next) {
 res.send(400, "pending");
})

var port = process.env.PORT || 5000;
server.listen(port, function () {
 console.log('%s listening at %s', server.name, server.url)
})

Right now, the important lines are the ones that set up a database service:

var DS = require('./DS.js');
var ds = new DS();

How the data store DS.js looks will be the main topic of this chapter.

When working with the nonblocking environment of JavaScript on the server, we face
similar problems as we discussed in “Asynchronous Effects” on page 92 on the client.
As previously, we will introduce JavaScript promises to deal with pending (unresolved)
states from asynchronous operations.

102 | Chapter 8: Basic API Concerns

www.it-ebooks.info

http://www.it-ebooks.info/

Although promises will be natively supported with the upcoming
JavaScript ECMA6 specification, it should be noted that some devel‐
opers prefer working with callbacks only. Callbacks and promises
should not be combined.

With a JavaScript promise, we abstract away the problems that uncertain runtimes for
code execution bring. Promises are also part of some object-data mappers in Node.js,
such as Bookshelf or Serverbone.

There are currently a number of options for libraries to wrap asynchronous code exe‐
cution with a promise on the server. We will take a closer look at the Bluebird library
by Petka Antonov.

Conceptually, a promise from the Movies data store works as follows. When an HTTP
request GET /api/movies hits the server, the Movies data store will be called to provide
the movie’s data. Since loading data from a data store can take some time, the function
ds.allMovies() returns a promise, which can resolve either to a success or failure, and
you can switch the HTTP response depending on the promise outcome with then()
and catch():

server.get('/api/movies', function (req, res, next) {
 return ds.allMovies()
 .then(function(m) { res.send(m); })
 .catch(function(err) { res.send(500, err) });
 });

With this construct, data is sent to the client when the promise resolves, or an error is
sent if there is a problem. For the purposes of illustration, the preceding response (which
is written without promises) would look as follows with callbacks:

server.get('/api/movies', function (req, res, next) {
 ds.allMoviesCB(function(err, movies) {
 if (err) {
 res.send(500, err);
 }

 res.send(movies);
 });
});

An important difference to the promise style is, and this is again a matter of opinion,
how exceptions are treated. With promises, you can mute an exception and control
errors implicitly. While with callbacks, the Node process can “explode” and might not
return a response to the client.

Next up, let’s look at the implementation of a very basic data store in DS.js. First, we
install Bluebird with npm:

$ npm install bluebird --save

Building a Movies Service | 103

www.it-ebooks.info

http://bookshelfjs.org/
http://serverbonejs.org/
https://github.com/petkaantonov/bluebird
http://www.it-ebooks.info/

Our data store first reads a file with JSON data. In Node.js, reading a file is also an
asynchronous operation and a perfect use case for a promise.

To start, we bring in the dependencies into the data store DS.js, which are:

// We require the filesystem library first
var fs = require('fs');
var fileName = "./movies.json";
var _ = require('underscore');

// Next, we require the Promise library
var Promise = require('bluebird');

An important command from Bluebird is promisifyAll. With this command, you can
obtain new functions with a suffix Async that wraps the original function in a promise.
Because we will need operations from the filesystem, we do the following:

// We need to wrap the methods from the filesystem with:
Promise.promisifyAll(fs);

Next, we read the movies once into memory:

var Movies;

// prepare Data
var Movies = fs.readFileAsync(fileName, "utf8")
 .then(JSON.parse)

The idea here is to use the promise version of fs.readFile and parse the file into JSON
objects. An important property of promises is chaining, and you will see how to add
further operations later.

With this basic setup, we can build the “core” of a simple data store:

// map only ID and title of a movie
function _mapAttributes(movie) {
 return {
 id: movie.id,
 title: movie.title
 };
}

// map all movies attributes
function _mapAllAttributes(movie) {
 return {
 title: movie.title,
 description: movie.description,
 showtime: movie.showtime,
 rating: movie.rating,
 genres: movie.genres,
 _key: sha1(movie.title),
 };
}

104 | Chapter 8: Basic API Concerns

www.it-ebooks.info

http://www.it-ebooks.info/

// We will later export the data store to a module
var DS = function() {};

DS.prototype.allMovies = function() {
 allMovies: function() {
 return Movies.map(_mapAttributes)
 }
}

This is the most simple operation: listing all movies. With this, we map all movies from
the Movies promise to a simplified JSON structure. In _mapAttributes, we just pick a
simple primary key id and the title from the full movies data set. This mapping is an
important part of a data “schema,” and we will come back to the role of the id attribute
in a second.

To get something running, you can export this basic module with:

module.exports = DS;

To see the basic schema in action, you can start a new API process with:

$ node api.js

And from the command line, we invoke the following test with curl:

$ curl 0.0.0.0:5001/api/movies | jshon

The output from the curl command is piped into jshon, a small command-line JSON
beautifier.

We should obtain a result similar to:

[
 {
 "id": 13,
 "title": "The Twilight Saga: Eclipse"
 },
 {
 "id": 14,
 "title": "Mission: Impossible – Ghost Protocol"
 }
]

Similarly, you can build an API endpoint that finds a single movie resource. First, let’s
add a find function to DS.js:

function _find(movies, key) {
 var match = _.find(movies, function(movie) {
 return movie.id === parseInt(key)
 });
 if (!match) {
 throw Promise.RejectionError("ID not found");
 } else {
 return match;

Building a Movies Service | 105

www.it-ebooks.info

http://www.it-ebooks.info/

 }
}

DS.prototype.find = function(key) {
 return Movies.then(function(movies) {
 return _find(movies, key);
 })
 .then(_mapAllAttributes);
}

Note that the promise is rejected when no movie is found with a Promise.Rejectio
nError. This operation “error” can be caught from the api.js as follows:

server.get('/api/movies/:key', function(req, res, next) {
 return ds.find(req.params.key)
 .then(function(m) { res.send(m); })
 .error(function (e) {
 res.send(404, {err: e.message});
 })
 .catch(function(err) { res.send(500, err) });
});

To check that this works, you can do:

$ curl 0.0.0.0:5001/api/movies/12 | jshon

{
 "title": "The Artist",
 "description": "A silent movie star meets a young dancer, but
 the arrival of talking pictures sends their careers in
 opposite directions.",
 "showtime": 1388770080,
 "id": 12,
 "rating": 2,
 "genres": [
 "Drama",
 "Comedy"
],
 "director": "Michel Hazanavicius",
 "year": 2009
}

With these basic endpoints, let’s look again at the role of the data “schema,” the blueprint
that defines how valid data should look like.

The role of the id attribute is especially important. Depending on the data store that
you use, there are different ways to represent the primary key:

• In many databases, particularly relational databases, primary keys often are in form
of 1,2,3,…

106 | Chapter 8: Basic API Concerns

www.it-ebooks.info

http://www.it-ebooks.info/

• Many document stores use more complex IDs, because data can be distributed
among different nodes, and strategies must be taken to prevent conflicts of IDs. So,
we would be able to resolve IDs such as “7658095015.”

To understand how we can control the mapping of primary keys to models in Backbone
collection, let’s experiment a bit. What if the primary key of the data store is not called
id but _key instead? Let’s simulate this scenario as follows in DS.js:

function _mapAttributes(movie) {
 return {
 id: movie.id,
 title: movie.title,
 _key: sha1(movie.title),
 };
};

Now, we will use a SHA1 calculation to generate a custom primary key. For this, you
can use the “SHA1” in the Node package and install it with:

$ npm install sha1 --save

When we now run a test with curl, we should see something like the following:

[
 {
 "_key": "3aa4e093a294c5a8ebef09a18a0d172d2c37a03b",
 "title": "X-Men: First Class"
 },
 {
 "_key": "6ee51f26282403baac57bd8affd19d9e67ab4252",
 "title": "Django Unchained"
 }
]

Because the _key attribute should be used to look up models, we adapt the show route
to find method as follows:

var match = _.find(movies, function(movie) {
 return sha1(movie.title) === key
});

Let’s play with this data store in the Backbone application for Munich Cinema. First,
because the primary key of the data is not anymore mapped to id, but to _key, we must
tell our Backbone model about the different setup.

Therefore, you must add the _key mapping in app/models/movie.js, as follows:

var Movie = Backbone.Model.extend({
 idAttribute: '_key'
});
return Movie;

Building a Movies Service | 107

www.it-ebooks.info

http://www.it-ebooks.info/

The idAttribute tells a Backbone model to use a different mapping for fetching and
updating models.

To test that this works, you can wire up fetching the details of a single movie in the
router with:

routes: {
 'details/:key': 'showDetails'
},

showDetails: function(key) {
 var movie = new Movie({_key: key});
 this.listenTo(movie, 'all', function(ev) { console.log(ev) });
 movie.fetch();
}

If we load this route in the browser, you should see the request to the movies API using
the _key attribute, as shown in Figure 8-1.

Figure 8-1. By using the idAttribute in a model, Backbone uses a different key when
fetching a model

Let’s continue with learning about persisting application state to the API—for example,
to store votes on movies.

Persistence
Our goal is to let users provide a rating with “stars” for movies. For this, we track the
average rating of a movie, as well as the votes of a user on a movie.

For voting, we define the following API endpoint:

108 | Chapter 8: Basic API Concerns

www.it-ebooks.info

http://www.it-ebooks.info/

PUT /movies/:key
parameters: vote

The idea is, after users vote on a movie, we calculate a new score on the server and
respond with the average score for a movie.

Again, we start by setting up some logic on the backend for voting on movies. For the
API in api.js, you can add the following route:

server.put("/api/movies/:key", function(req, res, next) {
 return ds.voteMovie(req.params.key, req.body.vote)
 .then(function(m) { res.send(m); })
 .error(function (e) {
 res.send(404, {err: e.message});
 })
 .catch(function(err) { res.send(500, err) });
});

And the new operation voteMovie() in the data store ./DS.js looks like the following
outline:

DS.prototype.voteMovie = function(id, vote, voter) {
 var that = this;
 return Movies
 .then(function() {
 return that.voteExists(id, 0)
 })
 .then(function(result) {
 return that.addVote(vote, id, voter)
 })
 .then(function() {
 return that.computeScore(id)
 })
 .then(function(score) {
 return that.updateScore(id, score);
 })
 .then(function() {
 return that.showMovie(id);
 });
 }

The basic promise chain is the following: check that users only vote once on a movie,
add the vote, and compute a new score. As ranking algorithms can vary, the imple‐
mentation of computeScore and updateScore is not treated in the book context. But
you might want to take a look at the GitHub repo of the book for some ideas.

The new route can be tested via the API endpoints for the application simply with curl:

$ curl -X PUT \
 -d "{'vote': 1}" \
 0.0.0.0:5001/api/movies/26fc6f540d3a319b0d650df59e0df6ffa05a3224

And, as you can see, the rating attribute increases:

Building a Movies Service | 109

www.it-ebooks.info

http://www.it-ebooks.info/

{
 "rating": 2,
 "description": "To control the oceans, Lord Cutler Beckett ..."
 "showtime": 1388733380,
 "title": "Pirates of the Caribbean: At World's End",
 "director": "Gore Verbinski",
 "_key": "26fc6f540d3a319b0d650df59e0df6ffa05a3224",
 "year": 2007,
 "genres": [
 "Action",
 "Adventure",
 "Fantasy"
],
 "length": 169
}

Now, to persist votes form the Backbone application, you can use the save function
from Backbone. Similar to fetch, you can pass extra parameters via an options hash.

One simple way to send a vote to the API would be with the following Ajax request in
app/models/movie.js:

voteMovie: function(stars) {
 var that = this;
 this.save({ type: "PUT",
 url: "/movies/" + this.id,
 contentType: 'application/json',
 data: JSON.stringify({vote: stars})
 })
 .then(function(movie) {
 that.set({rating: stars, score: movie.score, rank: movie.rank});
 })
 .fail(function(err) {
 console.log(err);
 });
}

When you now go to the browser and require this movie with:

var Movies = require('collections/movie');
movies = new Movies();
movie = movies.get(4);
movie.voteMovie(3);

the movie rating will be saved. In this simple example of saving a model, we don’t require
advanced validation logic that can be automatically triggered with Backbone. We will
see an example of validating attributes before saving the next chapter, when we discuss
the signup of a new user.

110 | Chapter 8: Basic API Concerns

www.it-ebooks.info

http://www.it-ebooks.info/

Conclusion
This chapter covered the basics of developing an API for a Backbone application. We
used JavaScript and Restify to set up an API process, and we built a basic data store
based on JavaScript promises. Next, we discussed the importance of mapping the pri‐
mary key on the server to an ID attribute on the client side. Finally, we saw how to save
the new state of a Backbone model to the server.

A voting application without protection of votes does not make much sense, however.
We want users to sign up and sign in before they are allowed to submit votes. Also, the
validation logic is important when storing data on the server. We’ll work all this out in
the next chapter, which covers how to use sessions to deal with multiple users and votes.

Conclusion | 111

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9

Authentication

Many applications require spaces for public and private information. This often means
two things: while interfaces should look different depending on who users are, server-
side data must be protected from outsiders.

For example, users of the Munich Cinema application could store which movies they
liked and maintain a history of favorite movies. They might also comment on other
users’ choices or maintain a personal calendar for movies to watch.

For all these actions, the application needs to know who we are (authentication), and
what we are allowed to do (authorization). Authentication and authorization over HTTP
are closely related.

In this chapter, our goal is to understand aspects of security in browsers and the backend
requirements.

We will discuss the following:

• Security of Backbone applications
• Principles of client-server authentication
• Managing sessions
• Modal dialogs for signup and login

Security in Browsers
Bringing security to web browsers is a difficult task. Ideally, we want to authenticate
every HTTP request. But practically, entering passwords multiple times can often be‐
come frustrating for users. Unfortunately, browsers do not provide native support for
secure sessions right now, and most authentication strategies are vulnerable to attacks.

113

www.it-ebooks.info

http://www.it-ebooks.info/

To solve the authentication dilemma over HTTP, there are basically two approaches:
Cookies

This is the most popular, but also one of the less secure approaches to securing web
applications in browsers. The main vulnerabilities of cookies are that they can be
hijacked (e.g., with network sniffers) or stolen. Also, the content in cookies could
be guessed by observing many of them. By putting random content in a cookie, this
can be minimized, but it still can be a problem.

Signing requests
When an HTTP request from the browser is made, a parameter in a URL, or in the
HTTP header of the request, is sent along. This strategy goes under the name
“signing” requests. Different signing strategies for requests exist, but the general
advantage is the compatibility with RESTful principles. In contrast to cookies, we
don’t introduce a tight coupling between client and server. This is the most secure
approach so far in web browsers, but also takes the most effort to implement.

Popular approaches for signing requests are basic auth and third-party authentication.
With basic auth, a username and password are sent over the network with every request.
Without using an SSL connection, basic auth is rather insecure, as attackers could see
user credentials in plain text.

You should be aware of two common vulnerabilities of JavaScript applications: cross-
site scripting (XSS) and cross-site request forgery (CSRF). While XSS vulnerabilities
can especially occur if you allow users to submit content (such as in posts or comments
in forums), CSRF is more subtle. By exploiting known links or settings in cookies, an
attacker can potentially make HTTP requests on behalf of a user without her permission.
Both approaches and security approaches with Backbone are described in Stephen A.
Thomas’s blog post “Securing Javascript Web Apps”.

Security is improved when your application uses OAuth tokens in HTTP headers. Users
are redirected to an external OAuth provider, such as Twitter or Facebook, to obtain an
access token for your application. Your web application can then use this token for
signing requests.

However, authentication with cookies is the easiest type to understand. Once we un‐
derstand the idea, we can replace cookie authentication with signing requests for OAuth.
The following section discusses this approach in more depth.

Cookies
To give users a private space in the application, we need a sense of user identity on the
client and on the server. We need to introduce the idea of state being “in use,” or user
sessions.

114 | Chapter 9: Authentication

www.it-ebooks.info

http://blog.sathomas.me/post/securing-javascript-web-apps
http://www.it-ebooks.info/

This conflicts a bit with HTTP, because HTTP is stateless, while user sessions introduce
some “memory” to avoid multiple password inputs for each request.

HTTP cookies are a pragmatic solution to deal with this conflict. As can be seen in
Figure 9-1, the client invokes a request to obtain the state of a session. To grant per‐
missions to vote on a movie or display votes of the past, a session must be valid.

Using cookies couples a browser to a server and is not very REST‐
ful. According to RESTful principles, browsers don’t have any state,
and HTTP requests should be signed to conserve the addressibility
principle. For this, access tokens in an HTTP header or as a URL
parameter are often used.

Cookies are stored in the browser until they expire. With every request from the client
to the API, we check the cookies on the server side and compare whether a session is
still valid. If not, a user needs to request a new cookie.

Figure 9-1. On first page load, we are interested in whether a user has a working session
—we want to render the screen differently if he has (he can see his private information
and can do more); if a user has not yet had a valid session, we need some way to pro‐
vide one

Our basic authentication is the following: before users can request a session, they must
register with the site. Once they have signed up, we need to have ways for users to manage
a session—specifically, a check of whether a session is (still) valid, calls to obtain a new
session, and finally, a call to delete a session or logout. For this, we will set up some new
API endpoints.

These API calls will provide the background in this chapter, and we’ll first discuss some
possible implementations.

Cookies | 115

www.it-ebooks.info

http://www.it-ebooks.info/

A word must be said on client-side versus server-side rendering of
HTML in this context. With server-side rendering, it is possible to
embed the state of a session in the first page load. For example, if a
valid cookie has been sent in the first request, the server could re‐
spond with HTML where data on a user is embedded. The discus‐
sion for authentication with support of server-side rendering would
be different.

Signup
To create new users on the server, we need to provide the following API endpoint:

POST /api/auth/create_user
This request allows to register a new user in the system. A user should provide
us with basic credentials. If a users signs up, we get a 200, if a username is
taken a 422 is returned, and for all other problems a 500

For user signup, you can add a new route to api.js and use a promise to wrap the database
access ds.createUser(…) as follows:

server.post('/api/auth/create_user', function(req, res, next) {
 ds.createUser(req.body)
 .then(function(user) {
 res.send({id: user.id, username: user.username});
 })
 .error(function(err) {
 res.send(422, { error: err.message });
 })
 .catch(function(err) {
 res.send(500, { error: err });
 });
});

Before looking at the details of ds.createUser(…), have a look at the different paths
that the promises can take:

• For the success path, the user is successfully created and we send back a user ID
together with the user data. You could add information on authentication, such as
a cookie or HTTP header, if you want to provide a direct login after signup.

• If a username is taken, the promise is rejected, and the Backbone application must
process a 422 Unprocessable Entity (WebDAV; RFC 4918).

• When an unexpected error occurs, you send back a 500 (Internal Server Error)
response, including an error message.

Now, let’s look how the createUser method wraps the database access. To keep it simple,
you can write the following implementation of createUser in the data store DS.js:

116 | Chapter 9: Authentication

www.it-ebooks.info

http://www.it-ebooks.info/

var Users = [];
function _createUser(raw) {
 var userId = Users.length + 1;
 var newUser = {
 id: userId,
 username: raw.username,
 password: raw.password,
 email: raw.email
 };

 // would require DB access
 Users.push(newUser);
 return _returnUser(newUser);
}

With the private function _createUser(), data would be stored in a data store. In our
case, we just push the new user to the Users array. Next, we only want to return the user
ID and username of a user:

function _returnUser(newUser) {
 return _.pick(newUser, 'username', 'id')
}

And last, before we actually create a user from an HTTP request, you should check for
duplicates as follows:

 function _findByUsername(username) {
 var user = _.findWhere(Users, {username: username});

 // _simulate_ a DB operation with time dependency
 return Promise.delay(30).thenReturn(user);
 }

 function _checkDuplicates(raw) {
 var username = raw.username;

 // would require DB access
 return _findByUsername(username).then(function(existingUser) {

 if (existingUser) {
 return Promise.RejectionError('Username taken.');
 }
 return raw;
 });
 }

Now, the createUser function is as simple as:

DS.prototype.createUser = function(req) {
 var raw = JSON.parse(req.body);
 return _checkDuplicates(raw)
 .then(_createUser);
}

Cookies | 117

www.it-ebooks.info

http://www.it-ebooks.info/

You can test the function with the following curl call:

$ curl -X POST 0.0.0.0:5001/api/auth/create_user \
 -H 'content-type: application/json' \
 -d '{"username": "beppo", "password": "pass", "email": "b@test.com"}'

And as response, you should see:

{"id":1}

If you run the same curl call again, you will see:

{"error":"Username taken."}

This error will be important later, when we add a validation to a Backbone user model.
But we first continue with adding session management to the API.

Managing Sessions
Conceptually, when a user logs in, a cookie is set. Every request that follows carries this
session information. For this, we need an API endpoint that sets up a cookie:

POST /api(auth/session
Setup a cookie if a user logs in with valid credentials

Sessions and cookies are easily confused. By definition, sessions persist until the user
shuts down their browser. Cookies have an expire attribute and persist for a longer
duration.

An important difference between session and cookie is that sessions can generally be
trusted. Sessions are under control at the server, while information from a cookie can
be manipulated or stolen.

Cookie theft can be made more difficult by setting the http-only flag.
For more details about this approach, consult Jeff Atwood’s “Protect‐
ing Your Cookies: HttpOnly”.

To provide sessions in the Backbone application, we need two more API calls. One for
checking if a session exists, and one endpoint for session logout:

POST /api/auth/session
Return basic user information, such as user ID and username, if a user
successfully enters her credentials. Return a 422 if either the username
or password is missing. Return a 403 if the password is wrong. Additionally,
an 'auth' attribute is returned to identify if a HTTP session was (not)
successfully initiated

GET /api/auth/session
Checks whether we have a valid session

118 | Chapter 9: Authentication

www.it-ebooks.info

http://www.codinghorror.com/blog/2008/08/protecting-your-cookies-httponly.html
http://www.codinghorror.com/blog/2008/08/protecting-your-cookies-httponly.html
http://www.it-ebooks.info/

DELETE /api/auth/session
Logout

Next, let’s prepare the use of sessions for the Backbone app at the server side by extending
the API. After a successful login, we set a cookie in the HTTP header with Set-Cookie.

For starting a user session, you want to validate the presence of user credentials only
once. Therefore, you could start the route /api/auth/session in api.js as follows:

 server.post('/api/auth/session', function(req, res, next) {

 if (!req.body.username || !req.body.password) {
 res.send(422, {status: 'err',
 error: 'Username and password are two required fields.'
 });
 next();
 }

 ds.authUser(req)
 .then(function(activeUser) {
 res.header('Set-Cookie', 'session=' + activeUser.token
 + '; expires=Thu, 1 Aug 2030 20:00:00 UTC; path=/; HttpOnly');
 res.send({ auth: "OK", id: activeUser.id,
 username: activeUser.username,
 email: activeUser.email });
 })
 .error(function(err) {
 res.header('Set-Cookie', 'session=; HttpOnly')
 res.send(403, { auth: "NOK", error: err.message });
 })
 .catch(function(err) {
 console.log("/auth/session: %", err);
 res.send(401, { auth: "NOK" });
 })
 });

As you can see, in case of the success path of the promise, an HTTP cookie is set. When
the promise from ds.authUser is rejected, the HTTP cookie is cleared, and a 403
(Forbidden) response is generated.

What does the ds.authUser do? The authentication operations in ds.authUser will
generally involve some database lookup and some code to compare hashes of passwords.
We skip the details here, but you can see some more details on the book’s GitHub
page. For the Backbone app, it is important that a unique token can be attached to users
from the data store DS.js:

// data store operations to authenticate a user
function _matchPasswords(req) {
 return _findByUsername(req.body.username).then(function(activeUser) {
 if (activeUser && req.body.password === activeUser.password) {
 return activeUser;
 } else {

Cookies | 119

www.it-ebooks.info

https://github.com/pipefishbook/pipefishbook.github.io
https://github.com/pipefishbook/pipefishbook.github.io
http://www.it-ebooks.info/

 return Promise.RejectionError('username not found');
 }
 });
}

function _generateToken(activeUser) {
 var token = sha1(_.now().toString()); // generate a unique token
 activeUser.token = token;
 return activeUser;
}

DS.prototype.authUser = function(req) {
 return _matchPasswords(req).then(_generateToken);
}

Also with curl, it is possible to activate a session as follows:

$ curl -v -X POST 0.0.0.0:5001/api/auth/session \
 -H 'content-type: application/json' \
 -c token.txt \
 -d '{"username": "beppo", "password": "pass"}'

And you should see a response similar to the following:

> POST /api/auth/session HTTP/1.1
> User-Agent: libcurl/7.21.4 OpenSSL/0.9.8r zlib/1.2.5
> Host: 0.0.0.0:5001
> Accept: application/json
> content-type: application/json
> Content-Length: 41
>
< HTTP/1.1 200 OK
< Set-Cookie: session=e48b670ee65a7fae0f61772172bebd2956b7ef5c;
< expires=Thu, 1 Aug 2030 20:00:00 UTC; path=/; HttpOnly
< Content-Type: application/json
< Content-Length: 60
< Access-Control-Allow-Origin: *
< Access-Control-Allow-Headers: Accept, Accept-Version, Content-Length,
< Content-MD5, Content-Type, Date, Api-Version, Response-Time
< Access-Control-Allow-Methods: POST
< Access-Control-Expose-Headers: Api-Version, Request-Id, Response-Time
< Connection: Keep-Alive
< Content-MD5: jdbl/l65DKaRSReguYM9IA==
< Date: Wed, 23 Apr 2014 19:17:13 GMT
< Server: api
< Request-Id: e0089060-cb1b-11e3-9ae3-6f4dd4cfa1a1
< Response-Time: 2
<
* Connection #0 to host 0.0.0.0 left intact
* Closing connection #0
{"auth":"OK","id":1,"username":"beppo","email":"b@test.com"}

Additionally, the curl command saved the cookie in a token.txt file that contains the
following content:

120 | Chapter 9: Authentication

www.it-ebooks.info

http://www.it-ebooks.info/

Netscape HTTP Cookie File
http://curl.haxx.se/rfc/cookie_spec.html
This file was generated by libcurl! Edit at your own risk.

#HttpOnly_0.0.0.0 FALSE / FALSE 1911844800 session e48b670ee65a7fae0

Once a session is active, we need to validate a token against valid tokens from users. To
do this, you add a function checkAuth in the data store DS.js as follows:

function _findUserByToken(req) {
 var cookies = getCookies(req);

var user = _.findWhere(Users, { token: cookies.session });

 // _simulate_ a DB operation with time dependency
 return Promise.delay(30).thenReturn(user);
}

DS.prototype.checkAuth: function(req) {
 return _findUserByToken(req).then(function(activeUser) {
 if (!activeUser) {
 return Promise.reject("No Session")
 }
 return _returnUser(activeUser);
 });
}

There is a helper needed to parse cookies. This parser can be added in a lib folder under
cookiesParser.js:

var getCookies = function(request) {
 var cookies = {};
 request.headers && request.headers.cookie &&
 request.headers.cookie.split(';').forEach(function(cookie) {
 var parts = cookie.match(/(.*?)=(.*)$/)
 cookies[parts[1].trim()] = (parts[2] || '').trim();
 });
 return cookies;
};
module.exports = getCookies;

Now, let’s add an endpoint for GET /api/auth:

server.get('/api/auth/session', function(req, res, next) {
 ds.checkAuth(req)
 .then(function(user) {
 res.send({ auth: "OK", id: user.id, username: user.username });
 })
 .error(function(err) {
 res.header('Set-Cookie', 'session=; HttpOnly')
 res.send(403, { auth: "NOK", error: err.message });
 })
 .catch(function(err) {
 // error
 res.header('Set-Cookie', 'session=; HttpOnly')

Cookies | 121

www.it-ebooks.info

http://www.it-ebooks.info/

 res.send(403, { auth: "NOK" });
 });
});

And again you can test the idea with curl:

$ curl -v 0.0.0.0:5001/api/auth/session -b token.txt

> GET /api/auth/session HTTP/1.1
> User-Agent: libcurl/7.21.4 OpenSSL/0.9.8r zlib/1.2.5
> Host: 0.0.0.0:5001
> Cookie: session=182b39c7347a587d584d92545a1f1dc341754871
> Accept: application/json
>
< HTTP/1.1 200 OK
< Content-Type: application/json
< Content-Length: 39
< Access-Control-Allow-Origin: *
< Access-Control-Allow-Headers: Accept, Accept-Version, Content-Length
< Access-Control-Allow-Methods: POST, GET
< Access-Control-Expose-Headers: Api-Version, Request-Id, Response-Time
< Connection: Keep-Alive
< Content-MD5: hIFmw2EZ305jVJGz0Gupog==
< Date: Wed, 23 Apr 2014 19:36:03 GMT
< Server: api
< Request-Id: 81b05040-cb1e-11e3-bb04-517baaa76d9b
< Response-Time: 2
<
* Connection #0 to host 0.0.0.0 left intact
* Closing connection #0
{"auth":"OK","id":1,"username":"beppo"}

Last, to reset a session, the DELETE /api/auth looks as follows:

server.del('/api/auth/session', function(req, res, next) {
 ds.clearSession(req)
 .then(function() {
 res.header('Set-Cookie', 'session=; HttpOnly')
 res.send(200, {auth: 'NOK'});
 });
});

The idea of clear session looks as follows:

DS.prototype.clearSession = function(req) {
 return _findUserByToken(req).then(function(activeUser) {
 if (activeUser) {
 activeUser.auth = null;
 }
 return activeUser;
 });
}

And if you verify the idea with curl, you can observer that all cookies will be gone:

122 | Chapter 9: Authentication

www.it-ebooks.info

http://www.it-ebooks.info/

$ curl -v -X DELETE 0.0.0.0:5001/api/auth/session -b token.txt

With these basic API endpoints for login, we continue to the corresponding Backbone
actions on the client side.

Sessions with Backbone
On the client side, the API from the previous section allows us to build actions for sign
up and sign in. Also, we can render views differently depending on the login state. For
example, we might want to show different buttons in the header, and actions to “like”
and “rate” movies, depending on whether a user is logged in.

So, let’s prepare our UI to show forms for signup and login, as well as a dynamic header
with some profile information.

A Navbar View
In most web applications, session management is taken care of on the top part of the
screen with a navigation view or “navbar.” In this view, you can render profile informa‐
tion and logout or login actions depending on the state of the user sessions.

As the navbar view manages views for signup and login, it is a kind of layout view on
its own. Its rendering behavior is also different depending on whether users are logged
in.

We can apply ideas to manages views as discussed in previous chapters and bind the
view to a Session model and corresponding events for login and logout. Let’s walk
through the code of app/views/navbar.js:

 var Backbone = require('backbone');
 var _ = require('underscore');
 var $ = Backbone.$;
 var Handlebars = require('handlebars');
 var Templates = require('templates/compiledTemplates')(Handlebars);

 var LoginView = require('views/login');
 var JoinView = require('views/join');
 var Session = require('models/session');

 var NavbarView = Backbone.View.extend({

 template: Templates['navbar'],

To set up the view, you require Backbone and dependencies for templating, as well as
child views and a new Session model. This model will be used to talk to the API from
earlier, and represents the state of a user session.

You only will need one Session instance per app, and the instance is setup in the con‐
structor of the Navbar in app/views/navbar.js:

Sessions with Backbone | 123

www.it-ebooks.info

http://www.it-ebooks.info/

 initialize: function() {
 // make sure to keep the layout reference from the callbacks
 _.bindAll(this, 'render', 'login', 'join', 'logout');

 // the navbar manages a session instance as will be discussed
 this.session = Session.getInstance();

 // instantiate the modals:
 this.loginView = new LoginView();
 this.joinView = new JoinView();

 // subscribe to events for login:
 this.listenTo(this.session, 'login:success', this.render);
 this.listenTo(this.session, 'logout:success', this.render);
 }

This code makes sure that the this reference is set up correctly when callbacks for events
are processed. The bindAll syntax from Underscore helps doing this. Then, you set up
the Session model, the modal views for login/signup, and listen to events from the user
session.

The session model decides how a Navbar is rendered, and what DOM events are bound
to the view. In app/views/navbar.js, the following render function is used:

render: function() {
 var session = this.session.currentUser();
 this.$el.html(this.template({session: session}));
 if (session) {
 this.$el.delegate('.logout', 'click', this.logout);
 } else {
 this.$el.delegate('.login', 'click', this.login);
 this.$el.delegate('.join', 'click', this.join);
 }
 return this;
}

Because the events hash of a Navbar would be dynamic depending on the session state,
you attach the event handlers manually with this.$el.delegate(…).

Last, you need some rendering logic when a user clicks on the DOM elements for login
and signup. If a user wants to logout, no feedback is rendered. So, the view callbacks for
DOM events in app/views/navbar.js could become:

// the modal for login is rendered here, as will be discussed:
login: function(ev) {
 ev.preventDefault();
 $('body').append(this.loginView.render().el);
},

// the modal for signup is rendered here, as will be discussed:
join: function(ev) {
 ev.preventDefault();

124 | Chapter 9: Authentication

www.it-ebooks.info

http://www.it-ebooks.info/

 $('body').append(this.joinView.render().el);
},

logout: function(ev) {
 ev.preventDefault();
 this.session.logout();
},

Next, you can set up the template of the navbar view. In app/templates/navbar.hbs, you
could define:

{{#if session }}
 <!-- active user session -->
 Logout
{{else}}
 <!-- no user session -->
 Login |
 Join
{{/if}}

Depending on the state in the session variable, you render the template differently: for
active sessions, a user is able to logout. When no session is active, a user is able to log
in or sign up.

The views for joining and login are modal boxes, so let’s look at a base modal view next.

A Modal View for Sign Up
There are many different ways to design interfaces for signup, but a popular one is to
break the application view with a modal dialog.

Because signup and login modal views are very similar, you can first write a modal base
view in app/views/modal.js. Then, you customize the modal view behavior for the login
and signup actions in app/views/join.js and app/views/login.js.

The base modal view is defined in app/views/modal.js as follows:

var Backbone = require('backbone');
var _ = require('underscore');
var $ = Backbone.$;

var ModalView = Backbone.View.extend({

className: 'ui-modal',

render: function() {
 this.$el.html(this.template());
 this.$el.delegate('.close', 'click', this.closeModal);
 this.$error = this.$el.find('.error');
 return this;
},

closeModal: function(ev) {
 if (ev) ev.preventDefault();

Sessions with Backbone | 125

www.it-ebooks.info

http://www.it-ebooks.info/

 this.$el.unbind();
 this.$el.empty();
 this.$el.remove();
},

initialize: function() {
 _.bindAll(this, 'render', 'closeModal');
 return Backbone.View.prototype.initialize.call(this);
}

});
module.exports = ModalView;

Apart from adding a CSS class name ui-modal, there is logic to render and clean up the
modal view. In particular, a modal view also manages an element for showing errors
with this.$error.

We are now going to adapt the base modal view for the signup action. In app/views/
join.js, you can inherit from the modal view as follows:

var Backbone = require('backbone');
var ModalView = require('views/modal');
var Handlebars = require('handlebars');
var Templates = require('templates/compiledTemplates')(Handlebars);
var $ = require('jquery-untouched');
var _ = require('underscore');

var User = require('models/user');

var JoinView = ModalView.extend({

template: Templates['join'],

events: {
 'submit': 'registerUser'
},

render: function() {
 ModalView.prototype.render.call(this);
 this.delegateEvents();
 return this;
},

registerUser: function(ev) {
 ev.preventDefault();
 this.user.clear();
 var username = $('input[name=username]').val();
 var password = $('input[name=password]').val();
 var email = $('input[name=email]').val();

 this.user.signup({username: username, password: password, email: email});
},

initialize: function() {
 this.user = new User();

126 | Chapter 9: Authentication

www.it-ebooks.info

http://www.it-ebooks.info/

 return ModalView.prototype.initialize.call(this);
}

});
module.exports = JoinView;

As you can see from this code, the JoinView inherits from ModalView and extends the
logic of initialize and render to account for custom events of JoinView. The regis
terUser takes the values from the signup form and passes the values to a User model.
How the User instance makes the API calls will be discussed in the next section.

To complete the UI for signup, you need to include a template and add some styling. In
app/templates/join.hbs, you can add the following signup form:

<div class="overlay"></div>
<div class="content">
 close
 <section class="join">
 <h1>Register</h1>
 <div class="error"></div>
 <form>
 <label for="username">Username</label>
 <input type="text" name="username" />

 <label for="email">Email Address</label>
 <input type="text" name="email" />

 <label for="password">Password</label>
 <input type="password" name="password" />

 <input type="submit"></input>
 </section>
</div>

So far, the signup form template and view can pick up data from a user. Because the user
data should be subsequently passed to the application backend, let’s look at the data
handling of app/models/user.js next:

var Backbone = require('backbone');
var _ = require('underscore');

var UserModel = Backbone.Model.extend({
 defaults: {
 username: '',
 password: '',
 email: ''
 },

urlRoot: '/api/auth/create_user',

validate: function(attrs) {
 var errors = this.errors = {};
 if (!attrs.username) errors.firstname = 'username is required';
 if (!attrs.email) errors.email = 'email is required';

Sessions with Backbone | 127

www.it-ebooks.info

http://www.it-ebooks.info/

 if (!_.isEmpty(errors)) return errors;
},

signup: function(attrs) {
 var that = this;
 this.save(attrs, {success: function(model, response) {
 that.trigger('signup:success');
 },
 error: function(model, response) {
 var error = JSON.parse(response.responseText).error;
 that.validationError = {"username": error};
 that.trigger('invalid', that);
 }
 });
},

save: function(attrs, options) {
 options || (options = {});

options.contentType = 'application/json';
options.data = JSON.stringify(attrs);

 return Backbone.Model.prototype.save.call(this, attrs, options);
 }
});

module.exports = UserModel;

A number of ideas are important here:

• To synch a UserModel with a server, we reference the create_user path from the
API with the urlRoot property.

• The UserModel includes some validation logic of a Backbone model. Validating the
user data is important to make sure that a user has entered all required fields in the
form.

• The signup function wraps the save function of a Backbone model. This allows
you to process errors that are coming from the server.

• The behavior of the save function is extended to pass JSON instead of text values
to the server.

To improve the signup form, you can add some behavior for rendering errors in app/
views/join.js:

renderError: function(err, options) {
 var errors = _.map(_.keys(err.validationError), function(key) {
 return err.validationError[key];
 })
 this.$error.text(errors);
},

128 | Chapter 9: Authentication

www.it-ebooks.info

http://www.it-ebooks.info/

renderThanks: function() {
 this.$el.find('.join').html('thanks for signup');
}

And bind these callbacks to the invalid events in the constructor of app/views/join.js:
this.listenTo(this.user, 'invalid', this.renderError);
this.listenTo(this.user, 'signup:success', this.renderThanks);

A working signup form should then render feedback on a successful signup or about
possible problems, as shown in Figure 9-2.

Figure 9-2. The view for signup is a custom modal view and handles errors from the
validation of the UserModel

The Login Dialog
Similar to the modal view for signup, you can continue with a view for the login. Let’s
start with a template in app/templates/join.js this time:

<div class="overlay"></div>
 <div class="content">
 close
 <h2>Login</h2>
 <div class="error"></div>
 <form id="login">
 <label for="username">
 Username:
 </label>
 <input name="username" />

 <label for="password">

Sessions with Backbone | 129

www.it-ebooks.info

http://www.it-ebooks.info/

 Password:
 </label>
 <input type="password" name="password" />

 <input type="submit"></input>
 </form>
</div>

This can be wired up to a modal dialog similar to the registration form. In app/views/
login.js, you can add:

var ModalView = require('views/modal');
var Handlebars = require('handlebars');
var Templates = require('templates/compiledTemplates')(Handlebars);
var $ = require('jquery-untouched');
var _ = require('underscore');

var Session = require('models/session');

var LoginView = ModalView.extend({

template: Templates['login'],

events: {
 'submit': 'login'
},

render: function() {
 ModalView.prototype.render.call(this);
 this.delegateEvents();
 this.$error = this.$el.find('.error');
 return this;
},

login: function(ev) {
 ev.preventDefault();
 var username = $('input[name=username]').val();
 var password = $('input[name=password]').val();

 // ... login action
 var that = this;
 Session.getInstance().login(username, password);
},

initialize: function() {
 this.session = Session.getInstance();
 this.listenTo(this.session, 'login:success', this.closeModal);
 return ModalView.prototype.initialize.call(this);
}

});
module.exports = LoginView;

In contrast to the view for signup, the LoginView directly manages the user session with
a Session instance. How the state of a session is tracked will be discussed in the next
section. Let’s continue first with working on the view for activating a session.

130 | Chapter 9: Authentication

www.it-ebooks.info

http://www.it-ebooks.info/

The Session Logic
Now that we have a user interface for creating sessions, let’s continue with the logic to
activate a user model.

A New Session
For login, all we need to do is fetch a cookie from the server. You can call the authenti‐
cation API directly from the Session model in app/models/session.js:

login: function(username, password) {
 var that = this;
 var credentials = JSON.stringify({username: username,
 password: password });
 $.ajax({type: 'POST', dataType: 'json',
 contentType: "application/json",
 url: "/api/auth/session",
 data: credentials})
 .done(function(data) {
 that.user = new User(data);
 that.trigger('login:success');
 })
 .fail(function(response) {
 var error = JSON.parse(response.responseText).error;
 console.log(error);
 that.validationError = {"username": error};
 that.trigger('invalid', that);
 });
}

The paths through the promises can handle a successful login or the error from a failed
login. In the case that our server responds with a “successful” authentication, we also
set the user data from the backend.

State of a Session
Addtionally, there must be some logic to get the current state of a session in app/models/
session.js. Often, this also means we will need to retrieve some information about the
user.

A simple check whether we have a valid user session might be:

currentUser: function() {
 // ... retrieve currentUser if authenticated
 if (this.user && (this.user.get('auth') == 'OK')) {
 return this.user;
 } else {
 return false;
 }
}

The Session Logic | 131

www.it-ebooks.info

http://www.it-ebooks.info/

First, we check if there is a user. Then, we check if the user hasn’t logged out by retrieving
the auth attribute.

Still, we have a problem. When the user reloads the page or visits the page on the next
day, we might want to check in the background for a valid cookie. As long as we work
with a static HTML, we need to process an extra API call.

So far we haven’t used the Session model’s fetch function so we can do it now as follows
in app/models/session.js:

var deferred = this.fetch();
var self = this;
deferred.done(function(data) {
 self.user = new User(data);
});
deferred.fail(function() {
 self.user = null;
});

Now, we have enough logic to start personal conversations with users. We still need
some logic to log out.

Logout
Technically, the logout should do the inverse of the login. That means killing a cookie
and removing the session from the server:

 logout: function() {
 // ... delete a session
 var that = this;
 $.ajax({type: 'DELETE', dataType: 'json',
 contentType: 'application/json',
 url: '/api/auth/session' })
 .done(function(data) {
 that.user.set('auth', 'NOK');
 that.trigger('logout:success');
 })
 }

Conclusion
This chapter started out with some conceptual work needed to create security in web
browsers. Cookies provide a pragmatic solution to make HTTP sessions safe and give
a good foundation for exploring further authentication work. You saw a number of
HTTP requests with curl to experiment with authentication from the command line.

We then built a user interface that allows users to sign up and log in. These views are
based on a common modal view. The JoinView manages a UserModel, while the Login
View manages a Session model, where the state of a session can be resolved.

132 | Chapter 9: Authentication

www.it-ebooks.info

http://www.it-ebooks.info/

With these new routes for authentication, you could go ahead and add more functions
to voting on movies or maybe commenting. Because the application is evolving more
and more into a full, single-page web application, a look at frameworks on top of Back‐
bone might become interesting to you. To prepare you for using a Backbone framework,
we will discuss workflow automation in the next chapter.

Conclusion | 133

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10

Automated Workflows

As your application grows and you start working as a team with multiple developers,
questions on workflow, coding style, and testing become important. Tools to organize
workflows help to apply conventions and bring applications to the next level.

In this chapter, we enter the world of Yeoman. Based on the ideas of build automation,
this chapter shows how a Yeoman generator can provide you with standard steps to
develop Backbone application modules.

Bundled with Yeoman generators, there often comes a setup that favors the RequireJS
module format over CommonJS modules. While CommonJS and Browserify are in‐
teresting when the JavaScript application must be loaded up front, RequireJS has its
benefits if you are building a web application where parts of the experience should be
loaded asynchronously as needed.

At the end of this chapter, our goal is to have the movie application running on the Node
toolchains. This includes:

• How to fetch Backbone dependencies such as plug-ins using Bower
• Yeoman and a Backbone generator, which will help scaffolding project structures
• Using RequireJS for development
• Using a build with RequireJS project

Improving Productivity
In the previous chapters, you incrementally have built a web application “by hand.” This
means that you ran commands from the command line to create files and directories,
inserted repeating code by hand, and maybe applied a watchmode of different tools to
help establish the development environment.

135

www.it-ebooks.info

http://www.it-ebooks.info/

If you work on different projects or on a team with several developers, it can be helpful
to work with certain “default” project configurations. Generators for project compo‐
nents are an important building block of some frameworks on top of Backbone, too,
such as the Thorax generator (which will be discussed in Chapter 11).

Most tools for workflow automation are actually framework agnostic, but a number of
tools are repeatedly discussed in the Backbone ecosystem:
Yeoman

With Yeoman generators, you can easily scaffold Backbone projects and compo‐
nents to avoid “boring” steps, such as creating directories and files. Many Yeoman
generators provide support for a build process based on Grunt or Gulp. With this
combination, your team gets some extra support not only to develop and test web
applications with Backbone, but also to make an application production ready.

Brunch
Brunch is a very popular choice for building applications with the Chaplin frame‐
work. With it, you can easily create a project skeleton of a Backbone application.
Also, Brunch supports a watch mode during application development, compilation
of CoffeeScript to JavaScript, and a deploy function.

Catero
Cartero offers a management system for growing projects based on Browserify and
CommonJS. With it, you can bundle your JavaScript together with CSS and HTML
such that they become easier to reuse across different or one large frontend project.

Because tools for automating workflows and project builds make choices for you, it can
be important to study in detail how it will affect your application. For example, if you
decide to use a Yeoman generator—as we will explore in this chapter—it might affect
the way your application dependencies are managed or how your JavaScript application
is built.

As many frontend communities are adopting Yeoman and RequireJS, the overview of
this chapter hopefully can make you understand the implications. However, this chapter
marks a brief departure from the example application used in previous chapters. So, it
is best to start in a clean directory.

Dependencies with Bower
In contrast to full stack JavaScript developers, the preferred way of many frontend de‐
velopers to manage dependencies is given by Bower. When you generate a project with
Yeoman, a bower dependency is often included.

Similar to npm, Bower can help you locate and download required libraries in the right
version. Bower has the advantage of not imposing a JavaScript module format. But on

136 | Chapter 10: Automated Workflows

www.it-ebooks.info

http://yeoman.io/
https://github.com/brunch/brunch
https://github.com/rotundasoftware/cartero
http://bower.io/
http://www.it-ebooks.info/

the other hand, with Bower, you will need to manage dependencies for the backend of
your application separately as we did earlier with npm.

To install Bower, use the following:

$ npm install -g bower

Next, you can initialize a new project with:

$ bower init

Then, we can either predefine libraries in the bower.json file, or manually run the bower
install command. For example:

$ bower install jquery-mockjax

With jquery-mockjax, you can easily mock data for browser devel‐
opment. If you just want to focus on browser development without
exploring API requirements, jquery-mockjax might be a good alter‐
native to a canned setup.

Also, you could install the Backbone.Obscura plug-in from Chapter 7 with Bower as
follows:

$ bower install backbone.obscura

When scaffolding a project with Yeoman, you will get a default bower.json file, where
Backbone and its dependencies are already predefined. You then just need to add new
plug-ins into the bower.json file and run the bower install again. Unfortunately, not
all packages support the bower fetch process, as not all frontend JavaScript libraries
support a certain module format. So, sometimes you still need to clone a Git repository
and/or copy dependencies manually into a project.

Because Bower fetches the whole history of a dependency, it can be interesting to just
copy over the actual JavaScript library into the application. For example, if you work
with a hybrid JavaScript application stack, it can be interesting to track only referenced
JavaScript libraries in the project repository. This can be done with bower-installer,
which supports copying files from the /bower_components directory:

$ npm -g install bower-installer

Then, you can add an install path to the bower.json file:

"install" : {
 "path" : "./js/libs"
 }

And then you run:

$ bower-installer
Setting up install paths...Finished

Dependencies with Bower | 137

www.it-ebooks.info

http://www.it-ebooks.info/

Running bower install...Finished
Installing:
 backbone.obscura : ./js/libs/backbone.obscura/backbone.obscura.js
 backbone : /Users/pmu/movies_node/./js/libs/backbone/backbone.js
 underscore : /Users/movies_node/./js/libs/underscore/underscore.js
 jquery : /Users/pmu/movies_node/./js/libs/jquery/jquery.js

In the next section, we look at how Yeoman integrates Bower to manage dependencies
in a Backbone project.

Say Hello to Yeoman
With browserify and Grunt, you have already had some experience with tools that
automate steps in JavaScript development. We still may face some problems that come
with growing applications, however. For example, how can we set up a new project from
scratch? And how can we organize code in different directories?

Developers have different biases toward these question, but a number of themes are
heard often:

• In development mode, projects should be loaded dynamically. Also, it must be
possible to load components for tests. For this, some developers set up a watch mode
to rebuild an application automatically after a change. We explored this idea with
Grunt and watchify previously. But with RequireJS you get an additional option.

• So far, we organized code into directories /models, /collections, and /views. We also
had to create a place for templates. The way we organize our files has quite some
influence on how scalable our application becomes.

Instead of reinventing the wheel, we can look at the workflows from other developers.
Because most workflow problems revolve around file management, let’s look at Yeoman
and the “generator” for Backbone.

Yeoman can create, fetch, and copy files according to conventions that are set in the
generator that we specify. What this means will become clear in a moment.

First, you need to install Yeoman:

$ npm -g install yo

This will take a few minutes, depending on your network speed.

Next, run the following:

$ yo

This will return a small menu:

[?] What would you like to do?

138 | Chapter 10: Automated Workflows

www.it-ebooks.info

http://www.it-ebooks.info/

 Update your generators
❯ Install a generator

There are many different generators that define your project layout as well as depen‐
dencies in package.json, bower.json, and tasks in the Gruntfile. Because this is a Backbone
book, we directly jump into the Backbone generator with:

npm install -g generator-backbone

Now we can run the Yeoman generator with:

$ yo backbone movies

The generator will ask some question about whether to include support for other kinds
of frontend tools.

As a result, we should see a similar output:

 | |
 |--(o)--| .--------------------------.
 `---------´ | Welcome to Yeoman, |
 (_´U`_) | ladies and gentlemen! |
 /___A___\ '__________________________'
 | ~ |
 __'.___.'__
´ ` |° ´ Y `

Out of the box I include HTML5 Boilerplate, jQuery, Backbone.js and Modernizr.
[?] What more would you like?
 ⬡ Twitter Bootstrap for Sass
❯⬡ Use CoffeeScript

As our goal is project organization of Backbone applications, we only activate support
for RequireJS. Then we should see that Yeoman builds our empty project:

create .bowerrc
create bower.json
create .jshintrc
create .editorconfig
create Gruntfile.js
create package.json
create app/styles/main.css
create app/404.html
create app/favicon.ico
create app/robots.txt
create app/.htaccess
create app/index.html
create app/scripts/main.js
invoke mocha:app
create test/index.html
create test/lib/chai.js
create test/lib/expect.js
create test/lib/mocha/mocha.css

Say Hello to Yeoman | 139

www.it-ebooks.info

http://www.it-ebooks.info/

create test/lib/mocha/mocha.js
create test/spec/test.js

Yeoman will also go on with installing the projects dependencies under /node_modules.

In our project directory, we now have bower.json and package.json files as well as a
Gruntfile.

Let’s explore the application directory from the Yeoman Backbone generator:

app
|-bower_components
|-images
|-scripts
|---collections
|---models
|---routes
|---templates
|---vendor
|---views
|-styles

We also got a file main.js—an important component for using RequireJS, which we will
discuss in the next section—and directories for styles and testing.

Besides scaffoling a new project, the Backbone generator of Yeoman supports scaffold‐
ing Backbone views, routers, models, and collections. Scaffolding those files is not every
developer’s cup of tea, but it can help when you work in a RequireJS environment, as
discussed in the next section.

For example, to scaffold a Movies router, you could run:

$ yo backbone:router movies
create app/scripts/routes/movies.js

When you open the newly created router, you can already see the encapsulation based
on RequireJS. Let’s explore what this means.

RequireJS
Compared to working on a project based on npm and browserify, RequireJS provides
an alternative to break up large components into smaller JavaScript files. This is based
on the so-called AMD module format, where you “define” how dependencies must be
loaded for each file. Because the way dependencies are resolved may differ between
development and production environments, RequireJS supports a development mode
and a build mode. Be sure to run the RequireJS early on to prevent problems with
asynchronously loading external JavaScript libraries, such as maps.

140 | Chapter 10: Automated Workflows

www.it-ebooks.info

http://www.it-ebooks.info/

Main.js
First, we need to discuss the main.js file. To resolve files and dependencies in a JavaScript
application, RequireJS needs a mapping of the dependencies to URL paths. We define
this mapping in main.js and also define the initial dependencies when an application is
first loaded.

In our main.js that we have from the Yeoman generator, we already get Backbone.js
configured and its dependencies included by default.

Inspecting the contents of main.js, we quickly can identify new keywords. For example,
in the require.config part, we set up the global configuration of the modules and put
dependencies that come from other libraries. In the main.js obtained from Yeoman, this
looks like:

/*global require*/
'use strict';

require.config({
 shim: {
 underscore: {
 exports: '_'
 },
 backbone: {
 deps: [
 'underscore',
 'jquery'
],
 exports: 'Backbone'
 }
 },
 paths: {
 jquery: '../bower_components/jquery/jquery',
 backbone: '../bower_components/backbone/backbone',
 underscore: '../bower_components/underscore/underscore'
 }
});

require([
 'backbone'
], function (Backbone) {
 Backbone.history.start();
});

The main idea here is that we map files via paths to module references that we can use
later in the application. We need this manual mapping, because not all libraries follow
the AMD convention to declare their dependencies up front. So, we need to provide a
shim that provides a depencency tree that RequireJS can resolve. If we add new libraries,
we add a path and a shim. We later will see how to do this in the context of Backbone
plug-ins.

RequireJS | 141

www.it-ebooks.info

http://www.it-ebooks.info/

Going to the index.html from Yeoman, we see a reference to main.js. Here, loading of
modules happens when the browser parses the index.html:

<!-- build:js scripts/main.js -->
<script data-main="scripts/main" src="bower_components/requirejs/require.js">
</script>
<!-- endbuild -->

With this environment set up, we directly can start building the application.

Adding Modules
Assuming you used Yeoman to scaffold a router, you can rewrite the previous router
example into AMD format as follows:

 /*global define*/

 define([
 'jquery',
 'backbone',
 'obscura',
 'collections/movies',
 'views/layout',
 'views/moviesList',
 'views/chose',
 'views/genres',
 'views/sort',
], function ($, Backbone, Obscura, Movies, Layout,
 MoviesList, ChoseView, GenresView, SortView) {

 'use strict';

 var layout,
 movies,
 proxy,
 sortView,
 genresView,
 deferred;

 if (!proxy) {
 movies = new Movies();
 proxy = new Obscura(movies);
 deferred = movies.fetch();
 }

 var MoviesRouter = Backbone.Router.extend({
 routes: {
 "movies/:id": "selectMovie",
 "": "main"
 },

 main: function() {

142 | Chapter 10: Automated Workflows

www.it-ebooks.info

http://www.it-ebooks.info/

 // ...
 },

 selectMovie: function(id) {
 // ...
 }

 });

 return MoviesRouter;
 });

The code is not much different from earlier, except that we wrap the code in a module
by using define, declaring dependencies and lastly returning the module. Our Movie
sRouter module requires all the sub pieces to return the wirings as a new module. Now,
whenever we depend on the router, we include automatically the sub pieces. With Re‐
quireJS, we try to create smaller view and model pieces that only ask for the modular
bits they need.

Scaffolding Components
With the Yeoman generator, you can add modules for the user interface from the com‐
mand line with:

$ yo backbone:view layout
$ yo backbone:view movieList
$ yo backbone:view movie
...

And you need to generate modules for the data layer, too:

$ yo backbone:model genre
$ yo backbone:collection genres
$ yo backbone:model movie
$ yo backbone:collection movies

From these commands, we will obtain a bunch of Backbone views and collections. While
wiring these files up similarly as you did in the earlier chapters, you will see that the
RequireJS build system can resolve dependencies dynamically during development.

Also, with support from Grunt, you can again use different approaches for view tem‐
plates, such as JST templates or Handlebars.

Conclusion
This chapter covered application development with an automated workflow based on
Bower, Grunt, Yeoman, and RequireJS. The workflow automation comes at a price of
learning new tools and having some more boilerplate in the JavaScript modules. How‐
ever, because the future standard of JavaScript will evolve ways that support the AMD

Scaffolding Components | 143

www.it-ebooks.info

http://www.it-ebooks.info/

style of importing modules, you should have obtained some good foundations in this
chapter.

Because build tools and generators play part in some JavaScript frameworks on top of
Backbone, you will see how to apply the Yeoman generator from Thorax in the next
chapter. Thorax supports an application stack that integrates Backbone and Handlebars
and comes with a number of view helpers that simplify building large Backbone
applications.

144 | Chapter 10: Automated Workflows

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11

From Backbone To Thorax

By now, the user interface of Munich Cinema has taken shape. You have used a number
of patterns and plug-ins to build applications with Backbone.js. To simplify the way we
manage JavaScript projects, we also saw different automations of programming tasks
with Grunt and Yeoman. As a last step, let’s look at a framework on top of Backbone.js
where a number of previous ideas come together.

Authored by Ryan Eastridge and Kevin Decker, Thorax.js is an open source framework
on top of Backbone.js that combines Backbone with Handlebars and some additional
helpers. Thorax.js was optimized for mobile application but is increasingly used for
single-page web applications as an alternative to Ember or Angular. With the Thorax.js
generator, you get a tool for workflow automation. Also, Thorax comes with a Layout
view, a CollectionView, and advanced event management out of the box.

This chapter might be interesting for you too, if you want to learn more about the
Handlebars.js templating approach and view helpers.

In overview, we tackle the following topics:

• Productivity and scalability of an application
• Using Thorax for better view rendering
• Advanced interactions to select a movie

The Role of Frameworks
The philosophy of Backbone.js is based on simplicity and flexibility. As such, Backbone
provides only a set of very basic components, such as views and collections.

While these components can be customized into any direction, we often start repeating
a number of choices over and over. What we want in many situations are a number of

145

www.it-ebooks.info

http://www.it-ebooks.info/

blueprints that help us to make faster choices. This is especially useful if you regularly
build new applications, or if your team has to maintain multiple projects.

Although frameworks help you with making development faster and easier, they often
enforce a higher coupling between your business logic and implementing technology.
In other words, if the framework changes, your application might need quite a few
changes, too.

In the Backbone.js ecosystem, a number of frameworks exist:
Marionette

This framework by Derick Bailey provides components to render collections to
combine multiple views and boilerplate to manage events from different parts of
an application. Marionette is one of the more popular frameworks on top of
Backbone.js.

Thorax
Thorax combines the Handlebars.js templating approach with Backbone.js. As
such, there are a number of view helpers that simplify the construction views. Ad‐
ditionally, Thorax supports improved data binding. Thorax also comes with a Yeo‐
man generator for workflow automation.

Giraffe
Giraffe was created by the team behind Barc, a widget to embed chats in a web
application. The framework is very lightweight and provides a number of enhance‐
ments to manage events from the router or views. In Giraffe.Contrib, there are also
a number of view components like a collection view.

Chaplin
Chaplin introduces a predefined structure on top of Backbone.js applications, sup‐
ported by components such as ModelView, Controller, mediator, and Application.
The Chaplin documentation illustrates how the components relate to one another.

Rendr
Rendr is a so-called isomorphic JavaScript framework, which looks somewhat sim‐
ilar to Thorax. The big difference, however, is that Rendr supports both server-side
and client-side rendering, validation, and helper functions.

Junior
Junior integrates helpers for views and the router that are optimized for building
mobile applications. This framework is not only about JavaScript, but also provides
CSS support for UI widgets.

Besides the direct usage of building applications faster, frameworks are also a good
source for inspiration and developing an advanced understanding of Backbone.js
techniques.

146 | Chapter 11: From Backbone To Thorax

www.it-ebooks.info

http://marionettejs.com/
http://thoraxjs.org/
http://barc.github.io/backbone.giraffe/
http://chaplinjs.org/
http://docs.chaplinjs.org/
https://github.com/rendrjs/rendr
http://justspamjustin.github.io/junior/#home
http://www.it-ebooks.info/

Measured in revenues of a Backbone.js web application, Walmart’s shopping cart is
among the largest Backbone applications around. This makes it interesting to look closer
at Thorax.js.

In the following sections, you will learn some ways how Thorax.js provides a way toward
mobile and single-page web applications.

Getting Started
Thorax comes out of the box with workflow automation based on Grunt, Yeoman, and
Bower. As was discussed in Chapter 10, we can use Yeoman and install a generator that
supports us creating applications with Thorax.

To install the Thorax generator, we run the following:

$ npm install -g generator-thorax

Next, we can scaffold a Thorax application with:

$ yo thorax cinema

You will be asked whether to use the “Chef ’s Choice” application stack. This is another
name for convention-over-configuration. With this we mean a set of default configura‐
tion options that proved helpful for others. We happily answer “yes” and you can watch
the dependencies getting installed. The main result of this is obtaining a directory
structure, some dependencies, and a Gruntfile. Now, we are ready to go.

First, the Gruntfile of Thorax comes with a number of options for build tasks. The tasks
are nicely distributed over files in the /tasks directory, such that you can easily adapt the
tasks to your personal setup:

styles.js
open-browser.js
ensure-installed.js
options
|
| watch.js
| thorax.js
| sass.js
| requirejs.js
| mocha_phantomjs.js
| karma.js
| jshint.js
| cssmin.js
| clean.js
| connect.js
| copy.js

Getting Started | 147

www.it-ebooks.info

http://www.it-ebooks.info/

Thorax comes with very good support for testing, too. The scope of
this book does not include testing, but the reader is advised to look
at the book Backbone.js Testing by Ryan Roemer to get a good intro‐
duction. JavaScript Testing Recipes by James Coglan is also a good
resource.

Apart from the Gruntfile and build tasks, we get support for Require.js, a bower.json
file, and some basic project directory structure. However, we also get some support for
Thorax-specific components. Let’s have a look into main.js, where we manage the Java‐
Script dependencies:

require.config({
 deps: ['main'],
 paths: {
 'jquery': pathPrefix + 'bower_components/jquery/jquery',
 'underscore': pathPrefix + 'bower_components/underscore/underscore',
 'handlebars': pathPrefix + 'bower_components/handlebars/handlebars',
 'backbone': pathPrefix + 'bower_components/backbone/backbone',
 'thorax': pathPrefix + 'bower_components/thorax/thorax',
 'coffee-script': pathPrefix + 'bower_components/coffee-script/index',
 'cs': pathPrefix + 'bower_components/require-cs/cs',
 'text': pathPrefix + 'bower_components/text/text',
 'hbs': pathPrefix + 'bower_components/requirejs-hbs/hbs',
 'obscura': pathPrefix + "bower_components/backbone.obscura/backbone.obscura"
 },
 shim: {
 'handlebars': {
 exports: 'Handlebars'
 },
 'backbone': {
 exports: 'Backbone',
 deps: ['jquery', 'underscore']
 },
 'underscore': {
 exports: '_'
 },
 'thorax': {
 exports: 'Thorax',
 deps: ['handlebars', 'backbone']
 }
 }
});

By scanning the dependencies, you will see handlebars, the approach for templating in
Thorax. We will discuss this in a moment, but let’s first prepare again a sandbox for
mock data.

148 | Chapter 11: From Backbone To Thorax

www.it-ebooks.info

http://jstesting.jcoglan.com/
http://www.it-ebooks.info/

Prepare Mock Data
As in the previous chapters, we want to work with some data mocks first. In a setup
with RequireJS, you can use Mockjax and include it in the Bower file with:

$ bower install jquery-mockjax

and run:

$ bower install

In a js/mocks.js file, we include:

define(['jquery', 'mockjax'], function($) {

'use strict';

var mock = function() {

$.ajaxSetup({
 dataType: 'json'
});

 $.mockjax({
 url: '/api/movies',
 dataType: 'json',
 proxy: 'json/movies.json'
 });
};

 return {
 start: mock
 };
});

To later use the mock setup in the application, we need to provide a reference in require-
config.js. Note that we have different RequireJS setups for development and production.
Right now, we just set up the runtime dependencies for development:

'mockjax': pathPrefix + 'bower_components/jquery-mockjax/jquery.mockjax'

// shims
'mockjax': {
 deps: ['jquery']
}

As previously, we create mock data in json/movies.json:

[
 {
 "id": 12,
 "showtime": 1388770080,
 "genres": [
 "Drama",
 "Comedy"
],
 "rating": 0,

Getting Started | 149

www.it-ebooks.info

https://github.com/appendto/jquery-mockjax
http://www.it-ebooks.info/

 "description": "A silent movie star meets a young dancer, ...",
 "title": "The Artist",
 "director": "Michel Hazanavicius",
 "year": 2009
 },
 {
 "id": 5,
 "showtime": 1388700300,
 "rating": 0,
 "description": "The film is set in New York, shortly after ...",
 "title": "Taxi Driver",
 "genres": [
 "Drama",
 "Action"
],
 "director": "Martin Scorsese",
 "year": 1974
 },
]

and some data for genres in json/genres.json:

[
 {
 "id": 1,
 "name": "Drama",
 "count": 5
 },
 {
 "id": 2,
 "name": "Comedy",
 "count": 3
 },
 {
 "id": 3,
 "name": "Action",
 "count": 6
 }
]

Let’s start building the application next.

Initializing the Application
As discussed in Chapter 4, the movies browser will be the main entry point to the
application, and you can scaffold a router with Yeoman as follows:

$ yo thorax:router browser

The application template from the Thorax project generator comes with a Hello
World router, so you must replace that router with the new browser by inserting the
following into the js/main.js file:

150 | Chapter 11: From Backbone To Thorax

www.it-ebooks.info

http://www.it-ebooks.info/

require([
 'jquery',
 'backbone',
 'views/root',
 'routers/browser',
 'helpers',
], function ($, Backbone, RootView, Browser) {

initialize(function(next) {
 var browser = new Browser();

 next();
});

function initialize(complete) {
 $(function() {
 Backbone.history.start({
 pushState: false,
 root: '/',
 silent: true
 });

RootView.getInstance(document.body);

 complete(function() {
 Backbone.history.loadUrl();
 });
 });
 }
});

The important idea is to resolve the root view and start rendering the views hierarchy.

To get a better feeling for the events on the main view, you might want to add the
following for the development of the application:

var root = RootView.getInstance(document.body);
root.on("all", function(ev) { console.log(ev) });

We then see these events:

change:view:start
activated
child
change:view:end

Apart from adding the logger for events to trace certain commands, Thorax provides a
global Thorax module, from where you can inspect instances of Thorax components.
For example, you can grab all view classes when you run this in the browser console:

> T = require('thorax')
> Views = T.Views

So far, there are no child views and no other views that can be activated. To do this, let’s
continue building the router from where we set up the main application.

Getting Started | 151

www.it-ebooks.info

http://www.it-ebooks.info/

A Router Setup
For building the router, the setup from the Thorax generator is a good start. We can
“borrow” ideas from the scaffolded setup in the HelloWorldRouter. As before, the task
of the movies browser will be to show lists and details of movies. And as a start, you can
add routes for the list of movies and the movies details. This results in:

 define([
 'backbone',
 'mocks'
], function (Backbone, Mock) {

 return Backbone.Router.extend({
 routes: {
 "movies/:id": "showMovie",
 "": "index"
 },

 index: function() {

 },
 showMovie: function() {

 }

 });
 });

Besides monitoring URL changes, the router must fetch data and render the views. For
development, we also introduce a reference to our mock setup. Let’s start setting up the
collections next.

Thorax.Collection
Once the router is in place, it is time to setup a movies collection. Similarly to the router,
you can scaffold a Movies collection with the generator:

$ yo thorax:collection movies

which results in:

create js/collections/movies.js
create test/collections/movies.spec.js

We now fill in the collection, which is very similar to a Backbone.Collection, and all we
do right now is set the URL:

define(['collection'], function (Collection) {
 return Collection.extend({
 name: 'movies',
 url: '/api/movies'

152 | Chapter 11: From Backbone To Thorax

www.it-ebooks.info

http://www.it-ebooks.info/

 });
});

A small difference between a Backbone collection and a Thorax collection is that a
Thorax collection can guard multiple fetches with a FetchQueue. This prevents the
browser from doing HTTP requests when we can still “live” with the current data. This
can be important for mobile applications.

In the router, let’s fetch the mock data from the browser as a first test. For this, we include
the collection as dependency in the Movies router. The router then becomes:

define([
 'backbone',
 'mocks',
 'collections/movies'
], function (Backbone, Mock, MoviesCollection) {
 var movies;

 return Backbone.Router.extend({
 routes: {
 "movies/:id": "showMovie",
 "": "index"
 },
 index: function() {
 movies = new Movies();
 movies.on("all", function(ev) { console.log(ev) });
 movies.fetch({success: function(results) {
 console.log(results);
 }, fail: function() {
 console.log("fallback");
 }
 });
 },
 showMovie: function() {
 }
 });
});

To see some action, let’s start up the application with Grunt:

$ grunt

Then, we can test that the collection works by going to http://0.0.0.0:8000/. The browser
console reveals the following:

load:start
request
reset
load:end
sync

Thorax.Collection | 153

www.it-ebooks.info

http://www.it-ebooks.info/

So, besides the Backbone.js reset and sync, we also see events load:start and
load:end. These events are especially useful to show and hide loading messages and
keep loading data with routes in sync.

Thorax provides a number of enhancements to simplify synchroni‐
zation of state with the DOM. On one side, you get some support for
easier data binding, which is needed when dealing with inputs from
HTML forms. On the other side, Thorax has helpers as bindTo
Route, where slow (mobile) data connection can guard against state
changes.

Now that we have movies data, let’s continue to rendering movies.

Rendering
Thorax.js supports helpers from Handlebars.js and a number of special view helpers,
so rendering advanced views becomes very easy.

First, we prepare the root view, which gives us a basic layout for the application. We use
a basic root layout derived from the HelloWorld example:

<header>
 Munich Cinema
</header>

<section class="thorax-container thorax-wrapper">
 <div class="thorax-primary">
 {{layout-element}}
 </div>
</section>

<footer>

 Some credits

</footer>

The layout-element that is enclosed in double curly braces is a Thorax view helper and
acts as main point to rendering the views. If you inspect the source code of layout-
view, you will see some Handlebars code applied behind the scenes.

The idea of a layout is similar to a master template that is shared across multiple views.
We can also embed a header and view child with view helpers as follows:

<header>
 {{view header}}
</header>

154 | Chapter 11: From Backbone To Thorax

www.it-ebooks.info

http://www.it-ebooks.info/

With this, we easily can render child views that are properties on the parent views. We
reference these child views as follows:

var RootView = LayoutView.extend({
 name: 'root',
 template: rootTemplate,
 initialize: function() {
 this.header = new Header();
 }
});

For the index and showMovie actions in the router, we need to render a list of movies
and the details, so let’s add them:

$ yo thorax:view movies/index
$ yo thorax:view movies/show

Then, in the js/views/movies/index.hbs file, we render the collection of movies with:

<h2>The latest movies</h2>
{{#collection}}
 {{#link "movies/{{id}}" expand-tokens=true}}
 {{ title }}
 {/link}
{{/collection}}

By using view helpers from Thorax and Handlebars, our views become more readable,
and it’s easier to embed child views, too. In this example, you use the collection view
helper, which can also facilitate filtering.

Thorax has more strategies to improve working with Backbone views.
For example, Thorax provides an extended event hash to simplify
binding of common events from models and collections. Also, Thor‐
ax provides view helpers to deal with user input from forms.

In order to render the movies, we must connect the MovieView with a Movies collection
in the router with:

 define([
 'backbone',
 'mocks',
 'collections/movies',
 'views/root',
 'views/movies/index'
], function (Backbone, Mock, MoviesCollection, RootView, IndexView) {
 var collection;

 if (!collection) {
 collection = new MoviesCollection();
 Mock.start();

Rendering | 155

www.it-ebooks.info

http://www.it-ebooks.info/

 console.log("*** Mock movies API ***");
 }

 return Backbone.Router.extend({
 routes: {
 "movies/;id": "showMovie",
 "": "index"
 },
 index: function() {
 var view;
 collection.fetch({success: function(result) {
 view = new IndexView({collection: collection});
 RootView.getInstance().setView(view);
 }});
 },
 showMovie: function() {
 }
 });
 });

When we now go to the browser main page, you should see a working index view. When
we click on a movie, nothing yet happens unless we add the rendering of showMovie.

So, we can wire up the show view route in app/routers/browser.js:
showMovie: function(id) {
 var movie = collection.get(id);
 var view = new ShowMovie({model: movie});
 RootView.getInstance().setView(view);
}

Conclusion
This chapter covered the basics of the Yeoman generator for Thorax. Based on Requir‐
eJS, you saw how a large Backbone application can be structured and how using Han‐
dlebars view helpers of Thorax can simplify the setup of views. Importantly, you saw
how the layout-element can be used to place a child view in a layout. Then, you saw
how to place sub-views, such as a header and footer, with the view helper.

Thorax offers additional features, such as support for better loading of data and dealing
with inputs from user forms. Also, Thorax can provide support for automated tests.
And, as with any Backbone project, you can keep your options open to easily replace
building blocks when the requirements on your application change.

156 | Chapter 11: From Backbone To Thorax

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX A

Developing with JavaScript

For client-side application development, a good understanding of JavaScript is neces‐
sary. JavaScript is a dynamic, object-oriented language. For an in-depth background,
you might want to refer to some of the books listed in the Preface. This appendix pro‐
vides a short overview on getting started with Node.js and a short refresher on the role
of Underscore and jQuery.

Installing Node
Node.js is based on Google’s V8 library, which is written in C++. Node.js runs on all
major operating systems.

Starting with Mac OS, an easy approach to install Node.js is by using Homebrew.
Homebrew is a package manager for Mac OS (see http://brew.sh/ for basic installation
instructions).

Once Homebrew is installed, you can run the following:

$ brew upgrade
$ brew install node

Alternatively, you can visit the download page.

Here, you also find the Node versions for Windows and source code packages.

If you are running an Ubuntu or Debian flavor of Linux, you can install Node.js with:

sudo apt-get install build-essential libssl-dev curl git-core
sudo apt-get install nodejs

If you need to run different versions of Node.js (e.g., if you are dealing with constraints
in production), you might want to have a look at NVM. With NVM, you can easily
switch between versions of Node.js.

157

www.it-ebooks.info

http://brew.sh/
http://nodejs.org/download/
https://github.com/creationix/nvm
http://www.it-ebooks.info/

Getting Functional with Underscore.js
Because JavaScript in its old standard didn’t have helpers for dealing with enumerators,
Underscore.js was born. Underscore.js provides many nifty JavaScript shortcuts and is
also a core dependency of Backbone.js. Underscore.js derives many ideas from func‐
tional programming.

In functional programming, we can easily extract meta information from data struc‐
tures, or chain operations on data structures independent from the data itself. This
flexibility is achieved by passing functions as arguments to other functions, often under
the concept of higher-level functions.

The main goal of the Underscore.js library is to provide a set of abstractions to transform
and aggregate data structures. Underscore.js comes with excellent documentation.

After loading the library, we obtain a helper to the global namespace of the browser
window. To get a feeling of what the shortcut can do, we can look at some examples.

Due to the success of Underscore.js, there are a number of deriva‐
tives from the original library. First, in underscore-contrib, a lot more
ideas from functional programming are made possible in JavaScript.
Another variation can be found in underscore.string. This library
provides a number of default string transformations Last, there is
underscore-cli, which provides helpers to transform JSON from the
command line.

Collections and Arrays
Some of the most important helpers from Underscore.js are improvements in dealing
with collections. The helpers that are provided from Underscore.js will look familiar to
Ruby developers. We need to load underscore into the console.

Let’s build a movies list:

var midnight_in_paris = {title: "Midnight in Paris"};
var indiana_jones = {title: "Indiana Jones"};
var movies = [midnight_in_paris, indiana_jones]
var show = function(movie) { console.log(movie.title); }
_.each(movies, show); //

For the _.each() helper, we pass in an array and a function that operates on the members
of the list. The output of (1) will then look like:

"Midnight in Paris"
"Indiana Jones"

Next, Underscore.js helps in bringing objects into a new form. For example, with
_.map(), we can extract a list of titles from a movies list:

158 | Appendix A: Developing with JavaScript

www.it-ebooks.info

http://underscorejs.org/
http://documentcloud.github.io/underscore-contrib/
https://github.com/epeli/underscore.string
https://github.com/ddopson/underscore-cli
http://www.it-ebooks.info/

var movie_titles = _.map(movies, function(movie) {
 return movie.title;
});
console.log(movie_titles);

With _.reduce(), we can, for example, sum up numbers in a list:

_.reduce(movies, function(actor_no, movie) {
 return actor_no + movie.actors.length
 },
0);

With Underscore.js, it also is easy to make the union of two sets:

var allGenres = _.union(midnight_in_paris.genres, indiana_jones.genres); // (3)
console.log(allGenres);

Functions
We mentioned the role of context in JavaScript a few times already. Because functions
can be executed from different contexts, it is often helpful to explicitly bind a context
to a function. One option to do this can be Underscore’s bind and bindAll functions.
Starting with ECMAScript 5, you can also use a new function called Function.proto
type.bind that can natively enforce a context.

The idea of bind can be seen as follows:

announceMovie = _.bind(announceMovie, {title: 'The Artist'});
announceMovie()
Coming next: The Artist

So, we can call a function, without passing an argument or referencing the outer context.
These kinds of shortcuts allow us to encapsulate code and data (e.g., to be used in
callbacks).

For example, if title changes or is undefined for a certain function context, the method
announceMovie still uses the object that was bound. So:

name = 'Taxi Driver'
setTimeout(announceMovie, 1000);

still results in:

Coming next: The Artist

Another helper from Underscore is invoke:

var complete = _.invoke([movies, genres], 'fetch', {async: false});

With this, functions can be invoked on a list of objects, such as the array [movies,
genres] discussed earlier.

Getting Functional with Underscore.js | 159

www.it-ebooks.info

http://www.it-ebooks.info/

Objects
From the perspective of code organization, it is often necessary to share functions across
multiple objects. This would be difficult if we could only use JavaScript prototype in‐
heritance. Underscore.js provides some other ways to customize the interfaces of ob‐
jects. For example, there is extend, which allows us to copy properties from one object
onto another:

var movieReview = _.extend(midnight_in_paris,
 { reviewer: 'anne', description: '...'});
console.log(movieReview);

We now have the properties from the movie midnight_in_paris copied onto the mov
ieReview object.

Apart from new ways to customize interfaces of objects, Underscore.js provides some
easy ways to introspect objects.

For example, values() would just return the values of object properties:

var summary = _.values(midnight_in_paris);
console.log(summary);

Utility
The last group of helpers from Underscore.js are just plain utility functions.

First, there are helpers to render objects within templates. The general idea is the
following:

var welcome = _.template("Welcome, <%= name %>!");
console.log(welcome({name: 'patrick'}));

Welcome, patrick!

jQuery Basics
Backbone.js applications will require a library to modify the nodes in the DOM and to
work with Ajax requests out of the browser. Therefore, Backbone.js depends on a library
like jQuery or Zepto.

For a basic understanding of jQuery, check out jQuery Cookbook by Cody Lindley
(O’Reilly, 2009) or Learning from jQuery by Callum Macrae (O’Reilly, 2013).

The short review that follows is for making the jump from server-side application de‐
velopment to client-side easier. In essence, jQuery is a wrapper around the DOM, and
we start the discussion there.

160 | Appendix A: Developing with JavaScript

www.it-ebooks.info

http://shop.oreilly.com/product/9780596159788.do
http://shop.oreilly.com/product/0636920026280.do
http://www.it-ebooks.info/

Selecting Elements
To understand the purpose of jQuery, let’s look at what web browsers do. Web browsers
parse HTML into the so-called Document Object Model (DOM). The DOM is a brows‐
er’s internal representation of HTML and is made up of nodes. After the HTML is parsed
into nodes, the nodes are fed into the browser’s layout engine before a web page is
displayed to the user.

There are different types of DOM nodes to represent HTML tags. For example, let’s look
at the following HTML construct:

<div id="movie" class="selected">The Artist</div>

Here, an element with attributes id and class encloses a text element. The nodes could
be selected with JavaScript by using:

document.getElementById('movie')
document.getElementByTag('div')

Without jQuery, walking through a list of nodes or selecting a node from a relative
position would be not so easy. With jQuery, selecting nodes can be done:

$('#movie')
$('#movies article:last')

Another important syntax for selecting a node is matching attributes of tags, like:

$('article[data-id=1]')

This matches article nodes with the attribute data-id set to 1.

There is a small difference between selecting DOM nodes with pure JavaScript or with
jQuery: with pure JavaScript, we merely obtain a representation of a node in JavaScript.
With jQuery, we actually obtain a jQuery wrapper around a node providing us again
with jQuery functionality. A jQuery wrapped enables:
Collection helpers

When we select nodes from a list. for example, we can directly operate on the list
items. For example, we can use $(#movies div).hide() to hide all movies instead
of looping over the nodes manually.

Chaining methods
Wrapping nodes with jQuery allows us to chain operations on a node. For example,
we can toggle a CSS class and change the text value all at once:

$("#movies").first().css('background', 'green').text('a test')

Creating DOM nodes is also easier with jQuery. Instead of writing:

var movie = document.createElement('div');
movie.innerHTML = 'The Artist';

we can simply use the following:

jQuery Basics | 161

www.it-ebooks.info

http://www.it-ebooks.info/

var movie = $('<article>The Artist</article>');

Modifying the content of DOM nodes can be done with jQuery as follows:

movie.html('The Piano');

or:

movie.text('Taxi Driver');

For performance reasons, it is important to realize that html also does syntax checking
operations and can be slower than simply calling the value of the innerHTML property.

Working with Events
Basically, an event consists of an event type and a node in the DOM where the event
occurred. Handling events is one of the most complicated aspects of programming a
web browser with JavaScript. It’s not just that various browsers have slightly different
ways to attach event handlers to nodes in the DOM, but also that removing these han‐
dlers makes the life of a programmer difficult at times.

Without jQuery, we can attach an event handler directly on an element with:

var element = document.getElementById('movie');
element.onclick = function() {
 // ... process the click
}

or by registering an event listener on a node with:

document.addEventListener(node, handler);

In jQuery, there are is a short syntax for adding handlers to certain event types on nodes.
For example, for a click event, you can use:

$('#movie').on('click', function(ev) {
 // ... process the click
}

A common problem with events is event bubbling. Multiple nodes will capture an event
if events are not prevented to pass from children nodes to their parents. Event bubbling
can be prevented with jQuery with:

event.preventDefault();

Also, when new nodes are created, it is a common mistake to duplicate unwanted event
handlers (e.g., for submitting a form). It is important to clean up events from “old” nodes
before new nodes are inserted.

162 | Appendix A: Developing with JavaScript

www.it-ebooks.info

http://www.it-ebooks.info/

Ajax
For quite some years, loading new content with JavaScript into the browser was rather
difficult. Things changed when the XMLHttpRequest object was introduced into the
DOM.

The name XMLHttpRequest is confusing at first, because it can load any content (not
only XML) and it can also talk HTTPS (not only HTTP). In order to send an HTTP
request from JavaScript, we must set the request type, the URL, the header, and the
request parameters on a XMLHttpRequest object. We then wait for a response event and
parse the received data accordingly.

By using jQuery, we obtain some syntactic sugar around this process and a uniform
behavior across most browsers. Although Backbone.js comes with a wrapper for Ajax,
it is instructive to look at the jQuery Ajax API.

Let’s look at how to load additional content with the jQuery Ajax API. For example, we
might have a select box where we want to load details of the selected movie. We could
do this as follows:

<html>
 <head>
 <script src="/js/libs/jquery/jquery.js"></script>
 <script>
 $(document).ready(function() {
 // ... here comes the Ajax magic

 });
 </script>
 </head>
<body>
 <form action="#" id="movies">
 <p>Select a movie:</p>
 <select name="title" id="movielist" size="1">
 <option data-id='1'>The Artist</option>
 <option data-id='2'>Taxi Driver</option>
 <option data-id='3'>La Dolce Vita</option>
 </select>
 </form>

 <div id="movieDetails">
 </div>
</body>
</html>

jQuery Basics | 163

www.it-ebooks.info

http://www.it-ebooks.info/

We can detect a change of the selected movie with a simple event handler attached to
the change event. We then load the movie details with Ajax as follows:

$(function(){
 $('#movielist').change(function() {
 var title = $(this).val();
 var id = $(this).data('id');
 $('#movieDetails').load('movies.json', { title: title });
 }).change();
});

164 | Appendix A: Developing with JavaScript

www.it-ebooks.info

http://www.it-ebooks.info/

We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.

Index

A
AMD modules, 142
Antonov, Petka, 103
APIs

backend services, 98
Cocoa API, 22
mocking, 85
overview of, 97
persistence, 101, 108
proxies, 98
Restify, 100

application development
click dummy preparation

basic events, 31
CSS, 25
data layer, 26
HTML, 24
overview of, 24

decoupling state from UI
benefits of, 22
models and collections, 21
MVC pattern, 22
views, 22

initial steps, 17
wireframe creation, 18

ArangoDB, 98
arrays, Underscore.js helpers, 158
asynchronous effects, 92, 102

authentication
access tokens, 114
API calls, 118
basic auth drawbacks, 114
benefits of, 123
cookies

drawbacks of, 114, 118
overview of, 114
session management, 118
user signup, 116

login dialog, 129
security in browsers, 113
session logic

logout, 132
new sessions, 131
session state, 131

authorization, 113
(see also authentication)

automated workflows (see build automation)

B
Backbone models

adding/removing by filtering, 66
data representation with, 23
get/set functions, 28
naming conventions for, 29
representation of data with, 21
sorting, 62

165

www.it-ebooks.info

http://www.it-ebooks.info/

Backbone.Collection, sorting/filtering models
with, 61–71

Backbone.js
dependencies, 2
distributed application design, 6
fetching local copy of, 4
fetching via content delivery networks, 5
fetching with Node’s package manager, 2
philosophy of, 2, 145

Backbone.Model
building a data layer, 26
data resolution, 88
DRYer Views and ViewModels, 46
modal view, 125
sorting, 62
wrapping a data store, 101

Backbone.ModelBinder, 39
Backbone.Obscura, 68, 137
Backbone.Router

addressing state, 49–55
orchestrating views, 55–60
overview of, 49

Backbone.Sync, 84, 87
Backbone.View

basic events, 31
basic rendering, 37
basic view templates, 41
DRYer Views and ViewModels, 46
filtering, 66
handling UI events, 43
modal view, 125
navbar view, 123
parent/child views, 56
rendering a collection, 42
sorting, 62
templates, 74

Backburner, 76
backend-as-a-service providers, 94, 98
bind function, 159
bindAll function, 159
binding, 39
Bluebird library, 103
Bower, 136
Browserify, 10, 29, 136
browsers

development console, 15
DOM representation in, 161
packaging modules for, 9

security in, 113
(see also authentication)

browsing experience mock-up, 19
Brunch, 136
build automation

goals of, 77
Grunt, 77
overview of, 135
scaffolding components, 143
tools to improve productivity, 135
Yeoman, 138

C
callbacks, 103
Catero, 136
Cavage, Mark, 100
chaining methods, 161
change events, 28
Chaplin framework, 136, 146
child views, 56
className property, 37
click dummy

basic CSS for, 25
basic events, 31
basic HTML for, 24
data layer, 26
preparation overview, 24

Cloudflare, 5
Cocoa API, 22
Codepen.io, 5
CoffeeScript, 136
collection helpers, 161
collections

filtering, 21, 66
pagination, 68
sorting, 21, 62
transforming, 61
Underscore.js helpers, 158

command line interface (CLI)
benefits of, 1
bundling modules from, 10
npm (Node package manager), 2

CommonJS modules
benefits of, 8
Browserify, 10
Cartero management system, 136
Express.js and Stitch, 13
require in browsers, 9

comparator function, 62

166 | Index

www.it-ebooks.info

http://www.it-ebooks.info/

content delivery network (CDN), 5
controllers, 24, 55
convention-over-configuration, 147
cookies

drawbacks of, 115, 118
overview of, 114
session management, 118
user signup, 116

CORS (cross origin resource sharing), 99
createUser method, 116
cross-site request forgery (CSRF), 114
cross-site scripting (XSS), 114

D
data

binding, 39
building the data layer, 26
controlling access to, 113

(see also authentication)
representation with models, 21
transforming with Underscore.js, 158

databases
non-relational, 98
NoSQL, 98
relational, 98
wrapping data stores behind an API, 101

debuggers, 15
Decker, Kevin, 145
default properties, 27
dependencies

managing with Bower, 136
resolving with main.js file, 141
reusing across projects, 8
Underscore.js, 158–160

Document Object Model (DOM)
changing multiple nodes at once, 76
manipulation libraries, 2
node types, 161
statelessness and, 19

DOM nodes
attaching/removing event handlers, 162
chaining methods on, 161
operating on directly, 161
preventing event bubbling, 162
selecting with jQuery, 161
types of, 161

DRYer views, 46

E
Eastridge, Ryan, 145
ECO (embedded CoffeeScript), 75
event bubbling, 162
event handlers

attaching/removing, 162
for UI events, 43

event listeners, 39
events

change events, 28
default, 31
handling UI events, 43
sources of, 21, 31

Express.js, 13, 100
extend function, 27, 160

F
fetching information

asynchronous effects, 92
from hosted backend services, 94
overview of, 83, 87
RESTful web service handling, 84

filtering, 66
Firebase, 94
frameworks

benefits of, 145
Chaplin, 146
Giraffe, 146
Junior, 146
Marionette, 146
Rendr, 146
Thorax.js, 146

Function.prototype.bind, 159
functional programming, 158
functions

binding context to, 159
get, 28
private, 28
set, 28
sharing across multiple objects, 160

G
get function, 28
Giraffe, 146
Grunt, 77

Index | 167

www.it-ebooks.info

http://www.it-ebooks.info/

H
Handlebars, 76
hashes/hashbangs, 50
Homebrew package manager, 157
HTTP requests

basic verbs, 84
cookies, 115
sending from JavaScript, 163
signing, 114

HTTP responses, 102

I
index.html, 9
inheritance, 160
isomorphic application design, 97

J
JavaScript

adding moudles from command line, 143
Ajax, 163
basic abstractions for Backbone.js, 1
debugging, 15
distributed application design, 6
HTTP requests from, 163
jQuery

basics of, 160
element selection, 161
event handling, 162

Node.js installation, 157
overview of, 157
promises, 102
Underscore.js

benefits of, 158
collections/arrays, 158
functions, 159
objects, 160
utility functions, 160

(see also objects)
jQuery

Ajax
browsing experience mock-up, 19
jQuery API for, 163

basics of, 160
chaining methods, 161
collection helpers, 161
element selection, 161
event handling, 162

node wrappers, 161
referencing, 35

JSBin, 5
JSFiddle, 5
JSLint/JSHint, 16
JST (JavaScript Templates), 74
Junior, 146

K
key-value pairs

data representation with, 21
primary keys, 107
syntax considerations for, 28

L
LAMP (Linux-Apache-MySQL-PHP), 98
Layout View, 55
Linux, Node.js installation, 157

M
Mac OS

Homebrew package manager, 157
Node.js installation, 157

main.js file, 141
Marionette, 146
Mincer, 13
mixin functions, 46
mock-ups

APIs, 85
browsing experience, 19
data, 149
wireframes, 19

Mockjax, 149
modal view, 125
model parameter, 29
model-view-controller (MVC) pattern, 22
models (see Backbone models)
modules

Browserify, 10
bundling from command line, 10
choosing, 8
CommonJS, 8
packaging for browsers, 9
RequireJS, 142

Morell, Jeremy, 68
Munich Cinema example

API creation, 100

168 | Index

www.it-ebooks.info

http://www.it-ebooks.info/

click dummy preparation
basic CSS, 25
basic events, 31
basic HTML, 24
data layer, 26
overview of, 24

current web page, 18
preliminary mock-up, 19
project goals, 18
star rating/voting system, 108
synchronizing state in

basic sync and fetch, 87
fetching remote movies, 84
goals of, 83

user interface
DRYer views/ViewModels, 46
goals for, 35
handling UI events, 43
interfacing the DOM, 36–43
referencing jQuery, 35

N
Navbar view, 123
navigate function, 54
navigation view (navbar), 123
NeXTSTEP operating system, 22
noBackend providers, 94, 98
Node.js

installation of, 157
package manager, 2
read-eval-print-loop (REPL), 15

nodes (see DOM nodes)
non-relational data stores, 98
npm (Node package manager), 2, 8

O
object-relational-mapper (ORM), 98
objects

customizing interfaces of, 160
rendering within templates, 160

open-source software, 4

P
package managers, 13
pagination, 68
parent views, 56

passwords, 113
(see also authentication)

persistence, 101, 108
primary keys, 107
private functions, 28
productivity, improving, 135

(see also workflow automation)
promises, 103
proxies, 98
publish-subscribe pattern, 31
pushState(), 50

R
React.js, 77
read-eval-print-loop (REPL), 15, 29
relational databases, 98
render function, 37
Rendr, 146
representations

in RESTful web services, 85
with models, 21

RequireJS
adding modules, 142
benefits of, 140
main.js file, 141

RESTful web services, 84
Restify library, 100
router basics

addressing state
defining routes, 51
goal of, 49
navigating, 54
preparing, 50

orchestrating views
Layout View, 55
parent/child views, 56

overview of, 49

S
security, 113

(see also authentication)
session management

Backbone applications
API calls, 118
login dialog, 129
modal view, 125
navbar view, 123

cookies, 118

Index | 169

www.it-ebooks.info

http://www.it-ebooks.info/

creating new, 131
logout, 132

set function, 28
signing requests

approaches to, 114
benefits of, 114

sorting, 62
Sprockets, 13
state

addressing with routers
defining routes, 51
goal of, 49
navigating, 54
preparing, 50

authentication and, 131
decoupling from UI

benefits of, 22
models and collections, 21
MVC pattern, 22
need for, 19
views, 22

synchronizing
basic sync and fetch, 87
fetching remote information, 84
overview of, 83

statelessness, 19, 84
Stitch, 13

T
tagName property, 37
template property, 41, 75
templates

embedded CoffeeScript, 75
Handlebars, 76
JavaScript Templates, 74
overview of, 73

Thorax.js
benefits of, 145
getting started

application initialization, 150
build tasks, 147
installation/setup of, 147
mock data preparation, 149

overview of, 146
rendering advanced views, 154
Router setup, 152
Thorax.Collection, 152

TodoMVC demo, 24
tokens, access, 114

U
Ubuntu, Node.js installation, 157
Underscore.js

benefits of, 158
collections/arrays, 158
functions, 159
objects, 160
utility functions, 160

user interface
decoupling from state

benefits of, 22
models and collections, 21
MVC pattern, 22
need for, 19
views, 22

DRYer views/ViewModels, 46
goals for, 35
handling UI events, 43
interfacing the DOM

basic rendering, 37
basic view templates, 41
bindings to data changes, 39
rendering a collection, 42
strategy overview, 36

referencing jQuery, 35

V
ViewModels, 46
views

advanced view templates, 73
Backbone views, 22
data display management with, 23
DRYer view/ViewModels, 46
Layout View, 55
modal view, 125
MVC pattern, 22
navbar view, 123
parent/child views, 56
updating immediately, 39
welcome view, 59

vulnerabilities
cross-site request forgery (CSRF), 114
cross-site scripting (XSS), 114

W
Walmart’s shopping cart, 147
welcome view, 59

170 | Index

www.it-ebooks.info

http://www.it-ebooks.info/

Windows, Node.js installation, 157
wireframes

benefits of, 19
creating, 18

workflow, automation of (see build automation)

X
XMLHttpRequest object, 163

Y
Yeoman

application directory, 140

benefits of, 136, 138
installation of, 138
running, 139

Z
Zepto library, 2, 160

Index | 171

www.it-ebooks.info

http://www.it-ebooks.info/

About the Author
Before discovering software development for web applications with Java and Ruby in
2008, Patrick Mulder mainly worked as a software engineer on measurement equip‐
ment and electronic devices. Web development allowed him to learn about networks
and linking documents, but working with measurement equipment gave him an ap‐
preciation for the many forms data can have. Not for nothing, Tim Berners-Lee invented
large parts of the WWW while working at CERN, a European research organization for
particle physics.

Yet, after programming with C, C++, Python, Ruby, and Java, learning Backbone.js
proved difficult, as Patrick did not have much experience with the “nonblocking” be‐
havior of JavaScript when he started working with Backbone. Luckily, he teamed up
with a JavaScript developer who taught him the differences of JavaScript from other
programming languages. In the meantime, Patrick is convinced that JavaScript and
Backbone are just great to explore data and interfaces for the Web.

Patrick likes blogging at http://thinkingonthinking.com, and has a passion for data-
driven interfaces and data in general. After working in big and small software compa‐
nies, he now works as a freelance software consultant, focusing on JavaScript, web
interfaces, and measurement systems.

Colophon
The animal on the cover of Full Stack Web Development with Backbone.js is a pipe fish
(Syngnathinae), which is a unique, slender, long-bodied fish with rings of bony armor
along its body. These animals are related to seahorses, and similarities can be seen in
the length and shape of their snouts. They have a single dorsal fin and most have a small
tail fin. There are nearly 200 species and they range in size from 1 to 26 inches.

Pipe fish don’t have large fins and have a rigid body structure, making them slow swim‐
mers. Instead, they rely on camouflage to avoid detection. There are even a few species
of pipe fish that have prehensile tails for grabbing and holding plants. Pipe fish come
in a wide range of patterns and colors ranging from drab to brightly colored, and there
are even some that can change their color in order to match their surroundings.

The pipe fish is typically found in a tropical or subtropical region. While most pipe fish
live in saltwater environments, some have been known to enter and survive in freshwater
environments. Pipe fish, like their seahorse relatives, leave most of the parenting duties
to the male, which provides all of the care for its offspring, supplying them with nutrients
and oxygen through a placenta-like connection.

The cover image is from Lydekker’s Natural History. The cover fonts are URW Type‐
writer and Guardian Sans. The text font is Adobe Minion Pro; the heading font is Adobe
Myriad Condensed; and the code font is Dalton Maag’s Ubuntu Mono.

www.it-ebooks.info

http://thinkingonthinking.com
http://www.it-ebooks.info/

	Copyright
	Table of Contents
	Preface
	Who This Book Is For
	Who This Book Is Not For
	What This Book Will Do for You
	Why I Wrote This Book
	Other Resources
	The JavaScript Language
	jQuery and the DOM
	Other Backbone.js Resources
	API References

	Conventions Used in This Book
	Feedback and Code Examples
	Using Code Examples
	Safari® Books Online
	How to Contact Us
	Acknowledgments

	Chapter 1. The Bigger Picture
	Before You Get Started
	Backbonify Your Stack
	Using npm
	Local Backbone.js
	Backbone.js via Content Delivery Networks

	Modules, Packages, and Servers
	CommonJS Modules
	Beyond index.html
	Browserify
	Combining Express.js and Stitch

	When Things Go Wrong
	Conclusion

	Chapter 2. Kick-Starting Application Development
	Creating a Wireframe
	Decoupling State from the UI
	Models and Collections
	Views
	Backbone.js and MVC

	Preparing a Click Dummy
	Basic HTML and Style
	Building a Data Layer
	Basic Events

	Conclusion

	Chapter 3. Building the User Interface
	Referencing jQuery
	Interfacing the DOM
	Basic Rendering
	Bindings to Data Changes
	Basic View Templates
	Rendering a Collection

	Handling UI Events
	DRYer Views and ViewModels
	Conclusion

	Chapter 4. Router Basics
	Addressing State
	Preparing
	Defining Routes
	Navigating

	Orchestrating Views
	Preparing for a Layout View
	Parent and Child Views

	Conclusion

	Chapter 5. Transforming Collections
	Functional Enhancements
	Sorting
	Filtering

	Backbone.Obscura
	Conclusion

	Chapter 6. Advanced View Templates
	Views and Templates
	JST
	ECO
	Handlebars
	React and Others

	Build Automation
	Grunt

	Conclusion

	Chapter 7. Synchronizing State
	Fetching Remote Movies
	RESTful Web Services
	Mocking an API

	Basic Sync and Fetch
	Asynchronous Effects
	Firebase

	Conclusion

	Chapter 8. Basic API Concerns
	Backend Services
	Proxies

	Building a Movies Service
	Wrapping a Data Store
	Persistence

	Conclusion

	Chapter 9. Authentication
	Security in Browsers
	Cookies
	Signup
	Managing Sessions

	Sessions with Backbone
	A Navbar View
	A Modal View for Sign Up
	The Login Dialog

	The Session Logic
	A New Session
	State of a Session
	Logout

	Conclusion

	Chapter 10. Automated Workflows
	Improving Productivity
	Dependencies with Bower
	Say Hello to Yeoman
	RequireJS
	Main.js
	Adding Modules

	Scaffolding Components
	Conclusion

	Chapter 11. From Backbone To Thorax
	The Role of Frameworks
	Getting Started
	Prepare Mock Data
	Initializing the Application

	A Router Setup
	Thorax.Collection
	Rendering
	Conclusion

	Appendix A. Developing with JavaScript
	Installing Node
	Getting Functional with Underscore.js
	Collections and Arrays
	Functions
	Objects
	Utility

	jQuery Basics
	Selecting Elements
	Working with Events
	Ajax

	Index
	About the Author

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

