
www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

20 Recipes for Programming
PhoneGap

Jamie Munro

Beijing • Cambridge • Farnham • Köln • Sebastopol • Tokyo

www.it-ebooks.info

http://www.it-ebooks.info/

20 Recipes for Programming PhoneGap
by Jamie Munro

Copyright © 2012 Jamie Munro. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (http://my.safaribooksonline.com). For more information, contact our
corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editors: Andy Oram and Mike Hendrickson
Production Editor: Rachel Steely
Proofreader: Rachel Steely

Cover Designer: Karen Montgomery
Interior Designer: David Futato
Illustrators: Robert Romano and Rebecca Demarest

Revision History for the First Edition:
2012-03-15 First release

See http://oreilly.com/catalog/errata.csp?isbn=9781449319540 for release details.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. 20 Recipes for Programming PhoneGap, the image of a sun star, and related trade
dress are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc., was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors assume
no responsibility for errors or omissions, or for damages resulting from the use of the information con-
tained herein.

ISBN: 978-1-449-31954-0

[LSI]

1331731317

www.it-ebooks.info

http://my.safaribooksonline.com/?portal=oreilly
mailto:corporate@oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781449319540
http://www.it-ebooks.info/

This book is dedicated to my children, Lily and
Owen. Watching you guys grow up and learn

always inspires me to share my knowledge with
others! And of course, to my loving wife,

Shannon: without your continued dedication to
raising our children, I would never find time to

write!

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

Preface . ix

The Recipes . 1
Determining Whether the Device Is Ready 1

Problem 1
Solution 1
Discussion 1
See Also 3

Retrieving Information About the Device 3
Problem 3
Solution 3
Discussion 3

Creating a Persistent Navigation System 5
Problem 5
Solution 5
Discussion 6
See Also 8

Detecting the Device’s Network Status 8
Problem 8
Solution 8
Discussion 8
See Also 10

Detecting When the Network Status Changes 10
Problem 10
Solution 11
Discussion 11

Executing a Callback Function Once the Device Is Ready 13
Problem 13
Solution 13
Discussion 13
See Also 18

Detecting When the App Is Moved to the Background or Foreground 18

v

www.it-ebooks.info

http://www.it-ebooks.info/

Problem 18
Solution 18
Discussion 18

Using the GPS and Displaying a Position on a Map 20
Problem 20
Solution 20
Discussion 20
See Also 23

Using the Compass to Help the User Navigate 23
Problem 23
Solution 23
Discussion 23
See Also 24

Using the Accelerometer to Detect Motion 25
Problem 25
Solution 25
Discussion 25

Displaying Table-View Data 28
Problem 28
Solution 28
Discussion 28

Retrieving Contacts in the Address Book 29
Problem 29
Solution 29
Discussion 30
See Also 34

Creating a New Contact in the Address Book 34
Problem 34
Solution 34
Discussion 34
See Also 41

Accessing the Camera and Photo Album 41
Problem 41
Solution 41
Discussion 41

Saving Data to a Remote Server 43
Problem 43
Solution 43
Discussion 43

Capturing Audio and Video 45
Problem 45
Solution 45
Discussion 45

vi | Table of Contents

www.it-ebooks.info

http://www.it-ebooks.info/

See Also 47
Notifying the Device with Alert, Confirm, and Vibrate 48

Problem 48
Solution 48
Discussion 48

Storing Data to the Device 50
Problem 50
Solution 50
Discussion 50
See Also 53

Reading Data from the Device 53
Problem 53
Solution 53
Discussion 53
See Also 54

Extending PhoneGap with Plug-ins 55
Problem 55
Solution 55
Discussion 55

Table of Contents | vii

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

About the Book
PhoneGap is a library that allows developers to interface directly with a mobile device
through the use of its JavaScript libraries. With the multitude of mobile platforms it is
very difficult and expensive to create multiple applications in Java, Objective-C, or
other native languages. Through the PhoneGap library, most web developers can con-
vert their existing knowledge of HTML, CSS, and JavaScript into mobile phone appli-
cations with very little effort. In this book, I will explore many common features of
mobile development and how they are accomplished with PhoneGap. This will include
GPS location, maps, media, accelerometers, and much more.

Prerequisites
Many of the examples in this book will use basic HTML, CSS, and JavaScript. The
PhoneGap API will be accessed exclusively through a variety of JavaScript variables and
functions. When PhoneGap does not provide a standard way for implementing a cer-
tain look and feel, the jQuery mobile library will be used as well to accomplish a con-
sistent look across multiple devices.

Before beginning with the recipes in this book, be sure to follow the step-by-step tu-
torials provided by the PhoneGap Getting Started Guide for the device you will be
working with.

Once your environment is fully configured, you will also need to download the
jQuery and jQuery mobile library. Inside of the www directory (where the index.html
file currently resides), two new folders should be created: scripts and css. The JavaScript
files from the two downloaded libraries should then be placed within the scripts direc-
tory. The CSS file and the images directory from the jQuery mobile library should be
placed within the css directory.

These two libraries are not well supported for older versions of BlackBerry (less than
version 5.0), so they will be used sparingly to attempt to maximize the exposure of the
code.

ix

www.it-ebooks.info

http://www.phonegap.com/start
http://jquery.com/
http://jquerymobile.com/
http://www.it-ebooks.info/

I will be working with the Android version of the library; however, we will be focusing
on HTML, JavaScript, and CSS at all times, so the process will be very device inde-
pendent—the purpose of PhoneGap!

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width
Used for program listings, as well as within paragraphs to refer to program elements
such as variable or function names, databases, data types, environment variables,
statements, and keywords.

Constant width bold
Shows commands or other text that should be typed literally by the user.

Constant width italic
Shows text that should be replaced with user-supplied values or by values deter-
mined by context.

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

Tools
There are many different Integrated Development Environments (IDE) available on the
Internet. I have several different favorites; one for each language that I develop in. When
it comes to PhoneGap development, there are currently two clear choices: Eclipse for
BlackBerry and Android and XCode for iOS development.

However, recently announced the latest version of Adobe’s Dreamweaver is including
integrated support for PhoneGap, at the time of writing this book it’s too early to tell
what capabilities this will provide.

x | Preface

www.it-ebooks.info

http://www.it-ebooks.info/

Using Code Examples
This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you’re reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of example code
from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “20 Recipes for Programming Phone-
Gap by Jamie Munro (O’Reilly). Copyright 2012 Jamie Munro, 978-1-449-31954-0.”

If you feel your use of code examples falls outside fair use or the permission given here,
feel free to contact us at permissions@oreilly.com.

Safari® Books Online
Safari Books Online is an on-demand digital library that lets you easily
search more than 7,500 technology and creative reference books and vid-
eos to find the answers you need quickly.

With a subscription, you can read any page and watch any video from our library online.
Read books on your cell phone and mobile devices. Access new titles before they are
available for print, get exclusive access to manuscripts in development, and post feed-
back for the authors. Copy and paste code samples, organize your favorites, download
chapters, bookmark key sections, create notes, print out pages, and benefit from tons
of other time-saving features.

O’Reilly Media has uploaded this book to the Safari Books Online service. To have full
digital access to this book and others on similar topics from O’Reilly and other pub-
lishers, sign up for free at http://my.safaribooksonline.com.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

Preface | xi

www.it-ebooks.info

mailto:permissions@oreilly.com
http://my.safaribooksonline.com/?portal=oreilly
http://www.it-ebooks.info/

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at:

http://oreilly.com/catalog/9781449319540

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about our books, courses, conferences, and news, see our website
at: http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments
I'd like to thank my colleague, Peter Hodgkinson, for reviewing this book and ensuring
that the example code was logically correct and consistent throughout the recipes.

xii | Preface

www.it-ebooks.info

http://oreilly.com/catalog/9781449319540
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia
http://www.peterhodgkinson.com
http://www.it-ebooks.info/

The Recipes

Determining Whether the Device Is Ready

Problem
You want to execute a PhoneGap API call, but you are unsure whether the device is
ready and the application will not function if the API attempts to access the device
prematurely.

Solution
The core functionalities that PhoneGap makes accessible through the JavaScript API
depend on the device being ready; however, JavaScript can begin working as soon as
the Document Object Model (DOM) is available. Therefore, before you perform any
API call, you must ensure that PhoneGap has determined that the device is ready for use.

There are two solutions for checking whether the device is ready. For iOS, Android,
and BlackBerry (version 5.0 and higher), a custom event type that you can attach to the
DOM is available, and PhoneGap will trigger this event when the device is ready.

For older versions of BlackBerry, PhoneGap is unable to fire the custom
event, so you must perform a basic JavaScript interval check for a
Boolean variable to indicate whether PhoneGap is ready or not.

Discussion
Throughout the recipes in this book, I will always attempt to separate the code as much
as possible, meaning that JavaScript will be placed in .js files, CSS in .css files, and
HTML in .html files. During the prerequisites mentioned in the Preface, you should
have created two folders inside of your www directory: scripts and css.

The core of the JavaScript code will be placed inside of a file called common.js. Create
this file now inside of your scripts directory. Once created, place the following code
in the file:

1

www.it-ebooks.info

http://www.it-ebooks.info/

// Global variable that will tell us whether PhoneGap is ready
var isPhoneGapReady = false;

function init() {
 // Add an event listener for deviceready
 document.addEventListener("deviceready",
 onDeviceReady, false);

 // Older versions of Blackberry < 5.0 don't support
 // PhoneGap's custom events, so instead we need to perform
 // an interval check every 500 milliseconds to see whether
 // PhoneGap is ready. Once done, the interval will be
 // cleared and normal processing can begin.
 var intervalID = window.setInterval(function() {
 if (PhoneGap.available) {
 onDeviceReady();
 }
 }, 500);
}

function onDeviceReady() {
 window.clearInterval(intervalID);

 // set to true
 isPhoneGapReady = true;

 alert('The device is now ready');
}

// Set an onload handler to call the init function
window.onload = init;

This JavaScript code does only one important thing: it creates and sets a global variable
called isPhoneGapReady that will be used in many future recipes before making Phone-
Gap-specific API calls.

To know whether the device is ready, PhoneGap creates and triggers a custom window
event called deviceready. By listening for this event, the variable can be changed ac-
cordingly. The alert is useful for testing, but of course you should remove it for pro-
duction use.

In the code, I’ve placed a large block comment underneath the event listener because
older versions of BlackBerry do not support creating custom events. Instead, the code
must check the PhoneGap.available variable every 500 milliseconds to see if it is ready.
Once it is, the interval is cleared and the onDeviceReady function is called the same as
what the event listener created previously.

Finally, the index.html file must be updated to include this JavaScript file:

<!DOCTYPE HTML>
<html>
<head>
<title>PhoneGap</title>
 <script type="text/javascript" charset="utf-8"

2 | The Recipes

www.it-ebooks.info

http://www.it-ebooks.info/

 src="scripts/phonegap-1.0.0.js"></script>
 <script type="text/javascript" charset="utf-8"
 src="scripts/common.js"></script>
</head>
<body>
 <h1>Hello World!</h1>
</body>
</html>

In the HTML sample, the PhoneGap JavaScript file is being referenced
inside of the scripts directory. Be sure to copy your PhoneGap Java-
Script file inside of this directory. Also, you might be required to update
the version depending on the latest available version.

You might notice that I’ve specified an HTML5 doctype. Many of the newest phones
support a lot of the features of HTML5, which open up a whole world of possibilities
to create cross-platform interactivity.

See Also
JavaScript Events

Retrieving Information About the Device

Problem
You want to add functionality that is available only on a certain device or platform.

Solution
Certain features of the PhoneGap API are only available to certain handsets. To avoid
limiting the features overall, by detecting the device type, you can offer different features
for iOS, Android, or different BlackBerry versions.

The PhoneGap API exposes a global structure called device that contains information
about the device, version, UUID, platform, and name. Each property can be accessed
through JavaScript.

Discussion
There are quite obviously a lot of differences among the various smartphones today.
Because of these differences, it’s important to be aware of what device your application
is running on. At all times, our goal is to have to maintain only one codeset, but that
doesn’t mean that you cannot add additional features that specific phones support.

Retrieving Information About the Device | 3

www.it-ebooks.info

http://www.w3schools.com/jsref/dom_obj_event.asp
http://www.it-ebooks.info/

Below are some basic JavaScript examples of how you can access each property avail-
able in the device structure:

var deviceName = device.name;
var deviceVersion = device.version;
var devicePlatform = device.platform;
var deviceUUID = device.uuid;
var phoneGapVersion = device.phonegap;

Nothing too special is happening here; each property is being stored to a global variable.

The following example retrieves the device’s platform information after PhoneGap in-
forms the application that the device is ready. Based on the information returned, the
code sets a global variable that can be used in future code examples to target device-
specific implementations:

// Global variable that will tell us whether PhoneGap is ready
var isPhoneGapReady = false;

// Default all phone types to false
var isAndroid = false;
var isBlackberry = false;
var isIphone = false;
var isWindows = false;

// Store the device's uuid
var deviceUUID;

function init() {
 // Add an event listener for deviceready
 document.addEventListener("deviceready",
 onDeviceReady, false);
}

function onDeviceReady() {
 // set to true
 isPhoneGapReady = true;

 deviceUUID = device.uuid;

 // detect the device's platform
 deviceDetection();
}

function deviceDetection() {
 if (isPhoneGapReady) {
 switch (device.platform) {
 case "Android":
 isAndroid = true;
 break;
 case "Blackberry":
 isBlackberry = true;
 break;
 case "iPhone":
 isIphone = true;

4 | The Recipes

www.it-ebooks.info

http://www.it-ebooks.info/

 break;
 case "WinCE":
 isWindows = true;
 break;
 }

 alert("Detected you are using a " + device.platform);
 }
}

// Set an onload handler to call the init function
window.onload = init;

Most of the code is the same as the first recipe, with a few notable additions. Firstly,
several global Boolean variables are defined, one for each of the possible phone types.
They all default to false, as no detection has been performed yet.

In the above code sample, the interval device-ready check for older ver-
sions of BlackBerry has been removed. If you wish to release your ap-
plication targeting this version, it should be left in.

Next, inside of the onDeviceReady function, the global variable that stores the UUID is
set. Right beneath this is a function call to deviceDetection. Inside of this function, a
switch statement is performed on the device.platform. Based on the case statement
that is matched, the accompanying Boolean variable is set to true for that platform.

In future recipes, if you wish to target iPhone or Android platforms only, you can
perform a simple if statement as follows:

if (isAndroid) {
 // Do something for Android only...
}

Creating a Persistent Navigation System

Problem
You want to allow the user to navigate to other pages while providing a persistent menu
at the bottom of the application.

Solution
The iOS has made it commonplace to include a persistent navigation bar that allows
one-touch access to frequently used views. Typically, this is located at the bottom of
the application.

Creating a Persistent Navigation System | 5

www.it-ebooks.info

http://www.it-ebooks.info/

The beauty of PhoneGap is that it allows you to create mobile applications through the
use of HTML, JavaScript, and CSS. The creators of jQuery have created an excellent
library called jQuery mobile that helps the user to mimic the native look and feel of
menus and buttons on the device using HTML and CSS. By utilizing this library, you
can easily achieve the standard footer menu matching the common functionality that
smartphone users have become accustomed to.

Discussion
A navigation system is created through some basic HTML links. If you place these links
inside a div tag that has some additional data-role attributes applied to it, the jQuery
mobile library will convert this to a consistent-looking footer menu. In this example,
two links are created, one for home and one for “about.” When you run this example
on your phone, the code will appear in the footer of your device. Because some Java-
Script work is performed to align the menu to the bottom, you might notice that the
menu will start to appear higher up, then jump down.

<!DOCTYPE HTML>
<html>
<head>
 <title>PhoneGap</title>
 <link rel="stylesheet" href="
 css/jquery.mobile-1.0rc1.min.css" />
 <script type="text/javascript" charset="utf-8"
 src="scripts/phonegap-1.0.0.js"></script>
 <script type="text/javascript" charset="utf-8"
 src="scripts/common.js"></script>
 <script type="text/javascript" charset="utf-8"
 src="scripts/jquery-1.6.4.min.js"></script>
 <script type="text/javascript" charset="utf-8"
 src="scripts/jquery.mobile-1.0rc1.min.js"></script>
</head>
<body>
 <h1>Hello World!</h1>

 <div data-role="footer" data-position="fixed">
 <div data-role="navbar">

 <a href="index.html"
class="ui-btn-active">Home
 About

 </div>
 </div>
</body>
</html>

New versions of the JavaScript libraries are frequently released, so be
sure to rename the filename versions in the previous code sample.

6 | The Recipes

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 1 is an example of what the jQuery mobile library produces on my Android
simulator.

Figure 1. Example footer menu

The key HTML to create this menu are the data-role and data-position attributes on
the two div tags surrounding the links. By changing these values, you can alter the menu
to appear on top, or make it float by removing the fixed position.

If you wish to style your menu a bit more, several other features can be added. For
instance, you can add an icon above each link by applying the data-icon attribute to
the link tag. The jQuery library contains a variety of predefined icons. If you wish to
use your own icons, this can be accomplished as follows:

<style>
 .ui-icon-home-custom {
 background-image: url(images/home-icon.png);
 }
 </style>

 <div data-role="footer" data-position="fixed">
 <div data-role="navbar">

 <a href="index.html" data-icon="home-custom"
 class="ui-btn-active">Home
 About

Creating a Persistent Navigation System | 7

www.it-ebooks.info

http://jquerymobile.com/demos/1.0rc1/docs/buttons/buttons-icons.html
http://www.it-ebooks.info/

 </div>
 </div>

The home-icon.png should be saved as a PNG-8 and be 18×18 pixels in dimension, with
alpha transparency. You don’t have to conform to this convention, but it will help
provide a more consistent look in case you use some of the built-in icons.

Another great way to customize the look of your navbar is to alter the default theme.
By adding a data-theme attribute to your menu links, you can adjust the color and styles
used. Currently, jQuery comes with five built-in themes. Simply set the attribute value
a, b, c, d, or e to adjust the theme.

Of course, if you wish to really get creative, you can even create your own custom
theme; however, that is outside the scope of this book.

See Also
Theming Toolbars

Detecting the Device’s Network Status

Problem
You want to retrieve or send data using the device’s network connection from the
application; however, the application doesn’t know whether the user has network
access.

Solution
Before you attempt to access content from the Internet, it’s important to ensure that
the user has Internet access. The app stores won’t accept applications that don’t display
standard error messages or warnings when the user is not connected to the Internet
and content cannot be retrieved.

The PhoneGap API exposes a connection type variable that detects the device’s current
network status. Several constants are available that provide further detail regarding the
device’s network status, allowing for potential content scaling for users on a slower
network or with low bandwidth plans.

Discussion
By ensuring that the variable navigator.network.connection.type is not equal to the
constant Connection.NONE, the application is able to determine that the device is actively
connected to the Internet. The following example extends the previously created

8 | The Recipes

www.it-ebooks.info

http://jquerymobile.com/demos/1.0/docs/toolbars/bars-themes.html
http://www.it-ebooks.info/

common.js file to add a new function that performs this check and sets a global variable
to true. This function is called from the onDeviceReady function.

// Global variable that will tell us whether PhoneGap is ready
var isPhoneGapReady = false;

// Store the current network status
var isConnected = false;

function init() {
 // Add an event listener for deviceready
 document.addEventListener("deviceready",
 onDeviceReady, false);
}

function onDeviceReady() {
 // set to true
 isPhoneGapReady = true;

 // detect for network access
 networkDetection();
}

function networkDetection() {
 if (isPhoneGapReady) {
 // as long as the connection type is not none,
 // the device should have Internet access
 if (navigator.network.connection.type != Connection.NONE) {
 isConnected = true;
 }
 }
}

// Set an onload handler to call the init function
window.onload = init;

This code allows future functions to perform a check to ensure that the device is con-
nected to the Internet prior to making any external calls. The next example will update
the networkDetection function to set a new global variable, indicating whether the ap-
plication is connected to a high-speed connection.

// Global variable that will tell us whether PhoneGap is ready
var isPhoneGapReady = false;

// Store the current network status
var isConnected = false;
var isHighSpeed = false;

function init() {
 // Add an event listener for deviceready
 document.addEventListener("deviceready",
 onDeviceReady, false);
}

function onDeviceReady() {

Detecting the Device’s Network Status | 9

www.it-ebooks.info

http://www.it-ebooks.info/

 // set to true
 isPhoneGapReady = true;

 // detect for network access
 networkDetection();
}

function networkDetection() {
 if (isPhoneGapReady) {
 // as long as the connection type is not none,
 // the device should have Internet access
 if (navigator.network.connection.type != Connection.NONE) {
 isConnected = true;
 }

 // determine whether this connection is high-speed
 switch (navigator.network.connection.type) {
 case Connection.UNKNOWN:
 case Connection.CELL_2G:
 isHighSpeed = false;
 break;
 default:
 isHighSpeed = true;
 break;
 }
 }
}

// Set an onload handler to call the init function
window.onload = init;

Now, when you wish to load content from an external server, by determining whether
the user has a low-speed connection, you can serve lower bandwidth content to ensure
a faster load time. In the previous example, a 2G or unknown connection type deter-
mines low speed. This example can be altered to recognize other connection types such
as 3G, WiFi, etc., as types of low-speed connection.

See Also
Comparison of Mobile Phone Wireless Connections

Detecting When the Network Status Changes

Problem
In “Detecting the Device’s Network Status” on page 8, you detected that the user had
network access when the application first loaded; however, in the time since this was
initially detected, the application is unsure whether the user still has connectivity prior
to making the first network request.

10 | The Recipes

www.it-ebooks.info

http://en.wikipedia.org/wiki/Comparison_of_mobile_phone_standards#Comparison_of_wireless_Internet_standards
http://www.it-ebooks.info/

Solution
As a user travels with his or her device, the network status might change, becoming
either active or inactive. If your application is network sensitive, it’s important to track
these changes. You may need to alert the user or implement a sync system to maintain
a record of the changes the user makes until the network becomes available again.

The PhoneGap API exposes a variety of events for which an application can listen
through a standard DOM event listener. Two of these events are online and offline,
which are triggered when the device’s network status changes.

As discussed in the first recipe, custom events are not supported by
BlackBerry devices older than version 5.0. If you wish to support the
events we manipulate in this recipe, the best solution would be to im-
plement a similar interval timer that checks the device’s network status
for changes manually. Unfortunately, that’s both programmatically
complex and a drain on the device.

Discussion
In the following example, the onDeviceReady function will be updated to add two event
listeners: online and offline. When the event fires, a function will be called that will
alter the previously created global variable isConnected. This will be done inside the
existing common.js file:

// Global variable that will tell us whether PhoneGap is ready
var isPhoneGapReady = false;

// Store the current network status
var isConnected = false;
var isHighSpeed = false;
var internetInterval;

function init() {
 // Add an event listener for deviceready
 document.addEventListener("deviceready",
 onDeviceReady, false);
}

function onDeviceReady() {
 // set to true
 isPhoneGapReady = true;

 // detect for network access
 networkDetection();

 // attach events for online and offline detection
 document.addEventListener("online", onOnline, false);
 document.addEventListener("offline", onOffline, false);
}

Detecting When the Network Status Changes | 11

www.it-ebooks.info

http://www.it-ebooks.info/

function networkDetection() {
 if (isPhoneGapReady) {
 // as long as the connection type is not none,
 // the device should have Internet access
 if (navigator.network.connection.type != Connection.NONE) {
 isConnected = true;
 }

 // determine if this connection is high speed or not
 switch (navigator.network.connection.type) {
 case Connection.UNKNOWN:
 case Connection.CELL_2G:
 isHighSpeed = false;
 break;
 default:
 isHighSpeed = true;
 break;
 }
 }
}

function onOnline() {
 isConnected = true;
}

function onOffline() {
 isConnected = false;
}

// Set an onload handler to call the init function
window.onload = init;

As I mentioned earlier, this example won’t work for older versions of BlackBerry be-
cause of the inability to support custom events. If you wish to support these older
versions, the following example contains additional code that will set an interval to
check whether the network connection has changed every 5 seconds. You can alter the
number of milliseconds in your code if you wish to increase or decrease the frequency.

function onDeviceReady() {
 window.clearInterval(intervalID);

 // set to true
 isPhoneGapReady = true;

 // detect for network access
 networkDetection();

 // attach events for online and offline detection
 document.addEventListener("online", onOnline, false);
 document.addEventListener("offline", onOffline, false);

 // set a timer to check the network status
 internetInterval = window.setInterval(function() {
 if (navigator.network.connection.type != Connection.NONE) {

12 | The Recipes

www.it-ebooks.info

http://www.it-ebooks.info/

 onOnline();
 } else {
 onOffline();
 }
 }, 5000);
}

Here, inside of the if statement that checks the network connection, I am calling the
previously created onOnline and onOffline functions, instead of just changing the
isConnected variable. By doing this, I allow future changes to those functions to add
additional functionality without changing code in multiple spots.

Instead of performing an interval check, you can create a function that
checks the connection type immediately before executing a request that
requires a network connection.

Executing a Callback Function Once the Device Is Ready

Problem
After a page has loaded, you will want to execute some JavaScript code immediately
without invoking it manually each time in your JavaScript code.

Solution
Because HTML doesn’t allow for a lot of dynamic features, a lot of code needs to be
duplicated. To minimize the page load times, you should load the minimal amount of
content each time while reusing as much code as you can. The common.js JavaScript
file must be kept lightweight, and additional JavaScript files should be created for other
new functionality. However, there currently is no process to allow for additional func-
tion calls once the application has determined that the device is ready.

You can update the common.js JavaScript file with an automatic callback function that
will be executed once the common code to detect the device type, network connection,
etc., has finished working. This will enable you to use the same process in many future
recipes.

Discussion
Because the application is using jQuery mobile, you must reorganize some of the ex-
isting code in order to improve code loading. When you navigate between pages using
jQuery mobile, it performs the request via AJAX and strips all of the content from the
HTML file (unless it is within a div tag that contains a data-role of type page). This

Executing a Callback Function Once the Device Is Ready | 13

www.it-ebooks.info

http://www.it-ebooks.info/

means that the previous window.onload event will no longer trigger. Instead, a new event
that is provided by the jQuery mobile library will be used.

The first thing to note is that the index.html page from “Creating a Persistent Navigation
System” on page 5 requires some reformatting as follows:

<!DOCTYPE HTML>
<html>
<head>
 <title>PhoneGap</title>
 <link rel="stylesheet"
 href="css/jquery.mobile-1.0rc1.min.css" />
 <script type="text/javascript" charset="utf-8"
 src="scripts/phonegap-1.0.0.js"></script>
</head>
<body>
 <div data-role="page" id="index-page">
 <h1>Hello World!</h1>

 <div data-role="footer" data-position="fixed">
 <div data-role="navbar">

 <a href="index.html"
class="ui-btn-active">Home
 About

 </div>
 </div>
 </div>

 <script type="text/javascript" charset="utf-8"
 src="scripts/jquery-1.6.4.min.js"></script>
 <script type="text/javascript" charset="utf-8"
 src="scripts/jquery.mobile-1.0rc1.min.js"></script>
 <script type="text/javascript" charset="utf-8"
 src="scripts/common.js"></script>
</body>
</html>

Several things have changed in this code. Most of the JavaScript files have been moved
out of the head tag. I’ve left the main PhoneGap file there to ensure that it loads com-
pletely before the page does, because anything placed inside the head tag must fully
finish loading before you continue. Next, a new div tag was added with a data-role of
type page. Finally, the previous JavaScript files have been moved to the bottom and the
order has been altered. These have also been placed outside of the page div tag, because
they do not need to be loaded again if the user navigates back to the index page. The
order of the files was altered because, in the next example, the common.js file will be
updated to use elements of jQuery and the mobile library, which must load first.

Within the next example is an updated common.js file. It contains all of the code from
the first several recipes that performs the following operations: device ready, device
detection, and network detection, as well as the new callback feature. The key objective

14 | The Recipes

www.it-ebooks.info

http://www.it-ebooks.info/

of this expanded code is to allow you to run custom code tied to the name of a particular
page, when that page loads.

// Global variable that will tell us whether PhoneGap is ready
var isPhoneGapReady = false;

// Default all phone types to false
var isAndroid = false;
var isBlackberry = false;
var isIphone = false;
var isWindows = false;

// Store the device's uuid
var deviceUUID;

// Store the current network status
var isConnected = false;
var isHighSpeed;
var internetInterval;

var currentUrl;

function init(url) {
 if (typeof url != 'string') {
 currentUrl = location.href;
 } else {
 currentUrl = url;
 }

 if (isPhoneGapReady) {
 onDeviceReady();
 } else {
 // Add an event listener for deviceready
 document.addEventListener("deviceready",
 onDeviceReady, false);
 }
}

function onDeviceReady() {
 // set to true
 isPhoneGapReady = true;

 deviceUUID = device.uuid;

 // detect the device's platform
 deviceDetection();

 // detect for network access
 networkDetection();

 // execute any events at start up
 executeEvents();

 // execute a callback function
 executeCallback();

Executing a Callback Function Once the Device Is Ready | 15

www.it-ebooks.info

http://www.it-ebooks.info/

}

function executeEvents() {
 if (isPhoneGapReady) {
 // attach events for online and offline detection
 document.addEventListener("online", onOnline, false);
 document.addEventListener("offline", onOffline, false);

 // set a timer to check the network status
 internetInterval = window.setInterval(function() {
 if (navigator.network.connection.type != Connection.NONE) {
 onOnline();
 } else {
 onOffline();
 }
 }, 5000);
 }
}

function executeCallback() {
 if (isPhoneGapReady) {
 // get the name of the current html page
 var pages = currentUrl.split("/");
 var currentPage = pages[pages.length - 1].
 slice(0, pages[pages.length - 1].indexOf(".html"));

 // capitalize the first letter and execute the function
 currentPage = currentPage.charAt(0).toUpperCase() +
 currentPage.slice(1);

 if (typeof window['on' + currentPage + 'Load'] ==
 'function') {
 window['on' + currentPage + 'Load']();
 }
 }
}

function deviceDetection() {
 if (isPhoneGapReady) {
 switch (device.platform) {
 case "Android":
 isAndroid = true;
 break;
 case "Blackberry":
 isBlackberry = true;
 break;
 case "iPhone":
 isIphone = true;
 break;
 case "WinCE":
 isWindows = true;
 break;
 }
 }
}

16 | The Recipes

www.it-ebooks.info

http://www.it-ebooks.info/

function networkDetection() {
 if (isPhoneGapReady) {
 // as long as the connection type is not none,
 // the device should have Internet access
 if (navigator.network.connection.type != Connection.NONE) {
 isConnected = true;
 }

 // determine if this connection is high speed or not
 switch (navigator.network.connection.type) {
 case Connection.UNKNOWN:
 case Connection.CELL_2G:
 isHighSpeed = false;
 break;
 default:
 isHighSpeed = true;
 break;
 }
 }
}

function onOnline() {
 isConnected = true;
}

function onOffline() {
 isConnected = false;
}

// This gets called by jQuery mobile when the page has loaded
$(document).bind("pageload", function(event, data) {
 init(data.url);
});

// Set an onload handler to call the init function
window.onload = init;

There is quite a bit happening in the preceding code. I will start at the bottom with the
two events that call the init function. The window.onload code remains as-is and will
be called when the application first loads. By binding the pageload event to the docu-
ment, I ensure that each time a user clicks a new link, this event will fire when that page
has finished loading. It is also passing the current URL to the updated init function.
This will be used for implementing the callback function.

The init function has been updated to accept this new url parameter. However, since
this parameter is not passed in by the window.onload event, the code checks to see
whether it is a string. When a string is not detected (i.e., on first load), the loca
tion.href is used and stored in the currentUrl global variable. Then, if the variable
isPhoneGapReady is already set and true, there is no need to add the listener and wait,
so it just calls the onDeviceReady function.

Executing a Callback Function Once the Device Is Ready | 17

www.it-ebooks.info

http://www.it-ebooks.info/

The onDeviceReady function has been slightly reorganized and some of the previous
work has been moved into new functions for later expansion, including the newly added
executeCallback function.

The executeCallback function takes the currentUrl variable and splits it into parts to
be able to retrieve just the filename, e.g., the index. This name is then used to check
whether there is a function called onIndexLoad. If this function exists, it is executed.

When you add future pages, you can also add new functions that will be executed
automatically once the page loads. These will perform any additional processing re-
quired by that page. For instance, if you add an onAboutLoad function, the app will
execute it when about.html has finished loading.

See Also
jQuery Mobile Events

Detecting When the App Is Moved to the Background or
Foreground

Problem
Your application needs to perform a specific action when it is moved either to the
background or the foreground.

Solution
The PhoneGap API provides two events: pause and resume, that get triggered when the
application is placed in the background and foreground, respectively. By adding a DOM
listener for these events, the application can respond to them accordingly, e.g., stop
retrieving updates from an external source, save the progress of a game, etc.

Discussion
There is one final update that needs to occur to the assets/www/scripts/common.js file.
The executeEvents function requires updating to listen for the pause and resume events
that PhoneGap executes each time the application is moved to the background and
foreground, respectively.

function executeEvents() {
 if (isPhoneGapReady) {
 // attach events for online and offline detection
 document.addEventListener("online", onOnline, false);
 document.addEventListener("offline", onOffline, false);

18 | The Recipes

www.it-ebooks.info

http://jquerymobile.com/demos/1.0/docs/api/events.html
http://www.it-ebooks.info/

 // attach events for pause and resume detection
 document.addEventListener("pause", onPause, false);
 document.addEventListener("resume", onResume, false);

 // set a timer to check the network status
 internetInterval = window.setInterval(function() {
 if (navigator.network.connection.type != Connection.NONE) {
 isOnline();
 } else {
 isOffline();
 }
 }, 5000);
 }
}

As mentioned previously, custom events will not work on older versions
of BlackBerry.

Now onPause and onResume functions can be created. The onPause function is a good
place to stop any timer intervals or watches that are in place, as well as set isPhoneGap
Ready to false.

function onPause() {
 isPhoneGapReady = false;

 // clear the Internet check interval
 window.clearInterval(internetInterval);
}

The onResume function can reinstate the listening that was stopped in the onPause func-
tion:

function onResume() {
 // don't run if phonegap is already ready
 if (isPhoneGapReady == false) {
 init(currentUrl);
 }
}

The onResume function calls the init function, which will reset any intervals and watches
as well as execute the callback function on the page to refresh the content.

When I was testing this code, I found the onResume function constantly
firing, which is why the init function call is wrapped within an if
statement checking for isPhoneGapReady == false.

Detecting When the App Is Moved to the Background or Foreground | 19

www.it-ebooks.info

http://www.it-ebooks.info/

Using the GPS and Displaying a Position on a Map

Problem
You want to retrieve the device’s current GPS location and place a marker indicating
the current position on a map.

Solution
One of the most common functionalities in any mobile application is to retrieve the
device’s location through GPS or WiFi detection and then plot the current position on
a map.

To read the device’s current GPS location, PhoneGap provides three useful functions:
getCurrentPosition, watchPosition, and clearWatch. The second function provides fre-
quent updates to the location as the user moves.

The device’s current location is returned via JavaScript objects. This information con-
tains a timestamp of when the coordinates were retrieved and an object that contains
all of the pertinent information in the coordinates. This enables the user to plot the
location on a map (latitude, longitude, etc.).

The PhoneGap API doesn’t provide native support for maps, so the simplest solution
to ensure that you support the most platforms is to integrate Google Maps API via their
JavaScript API. While this will be a little bit slower, as it requires transferring the maps
over the network, it is far less work than extending the application via a plug-in for the
various smartphones.

Discussion
To begin, you must create a new HTML file called map.html inside of your assets/
www directory. This file will contain some basic HTML to display the menu, as well
as a placeholder for Google Maps API.

<!DOCTYPE HTML>
<html>
<head>
 <title>PhoneGap</title>
 <meta name="viewport" content="initial-scale=1.0,
 user-scalable=no" />
</head>
<body>
 <div data-role="page" id="map-page">
 <div id="map_canvas"
 style="width: 300px; height: 300px"></div>

 <div data-role="footer" data-position="fixed">
 <div data-role="navbar">

20 | The Recipes

www.it-ebooks.info

http://www.it-ebooks.info/

 Home
 <a href="map.html"
class="ui-btn-active">Map

 </div>
 </div>

 <script type="text/javascript" charset="utf-8"
 src="scripts/map.js"></script>
 </div>
</body>
</html>

The navbar has been updated to replace the temporary About example with a new
Map link, which is set to active in this file. This should be updated in your index.html
as well. Near the bottom of this file, a new JavaScript file is included called map.js. This
file should be created inside of your assets/www/scripts directory and it will contain the
core of the functionality.

function onMapLoad() {
 if (isConnected) {
 // load the google api
 var fileref=document.createElement('script');
 fileref.setAttribute("type","text/javascript");
 fileref.setAttribute("src",
"http://maps.googleapis.com/maps/api/js?sensor=true&callback=" +
"getGeolocation");
 document.getElementsByTagName("head")[0].
 appendChild(fileref);
 } else {
 alert("Must be connected to the Internet");
 }
}

function getGeolocation() {
 // get the user's gps coordinates and display map
 var options = {
 maximumAge: 3000,
 timeout: 5000,
 enableHighAccuracy: true
 };
 navigator.geolocation.getCurrentPosition(loadMap,
 geoError, options);
}

function loadMap(position) {
 var latlng = new google.maps.LatLng(
 position.coords.latitude, position.coords.longitude);

 var myOptions = {
 zoom: 8,
 center: latlng,
 mapTypeId: google.maps.MapTypeId.ROADMAP
 };

Using the GPS and Displaying a Position on a Map | 21

www.it-ebooks.info

http://www.it-ebooks.info/

 var mapObj = document.getElementById("map_canvas");
 var map = new google.maps.Map(mapObj, myOptions);

 var marker = new google.maps.Marker({
 position: latlng,
 map: map,
 title:"You"
 });
}

function geoError(error) {
 alert('code: ' + error.code + '\n' +
 'message: ' + error.message + '\n');
}

Quite a lot is happening in the preceding example. When the page has finished loading,
thanks to the callback function implemented in the previous recipe, onMapLoad is called
automatically once the page is loaded. Because the jQuery mobile library is being used,
the Google API JavaScript file must be included dynamically; otherwise, it doesn’t get
loaded properly via the AJAX request.

In case you missed it in “Executing a Callback Function Once the Device
Is Ready” on page 13, for subsequent pages loaded via the jQuery Mo-
bile API, a simple window.onload will not work because pages are loaded
via AJAX. Instead, you need to bind an event for pageload that is called
by the library once the page has finished loading: $(docu
ment).bind("pageload", onMapLoad);

Once the Google API is loaded, the getGeolocation callback function is executed. This
function uses the PhoneGap API to retrieve the user’s current location. The naviga
tor.geolocation.getCurrentPosition function accepts three parameters: the success
function that is called once the location is retrieved, an error function to invoke if the
geolocation could not be retrieved, and finally some JSON options.

When the geolocation is successfully received, the code calls the loadMap function,
which accepts one parameter called position. This parameter contains the latitude and
longitude, as well as several other properties, which are used to center the map and
create a marker. The remainder of the example includes some of the sample code pro-
vided by Google to demonstrate the use of their API. When you run this example, a
new map will be loaded into the map_canvas div tag and will center on your current
location. Also, a marker will be created identifying where you are.

This feature might not work correctly in all simulators and an actual
device may be needed.

22 | The Recipes

www.it-ebooks.info

http://www.it-ebooks.info/

See Also
Google Maps API

Using the Compass to Help the User Navigate

Problem
You want to detect the direction in which the device is currently pointing.

Solution
iOS, Android, and some Windows 7 devices support a compass that will tell you the
direction the phone is pointing in, with a range of 0 to 360 degrees.

PhoneGap provides several functions that work quite similarly to the GPS location,
where you can retrieve the current direction the device is pointing in degrees. You can
watch this value, and your application will receive regular updates on its position. By
using the navigator.compass.watchHeading or navigator.compass.getCurrentHeading
functions, you will receive a magneticHeading variable that contains a value between 0
and 359.99 degrees.

Discussion
To demonstrate the compass functions, I’m going to put together a very simple HTML
page that contains two images: a compass and its needle. To start with, you need a new
HTML page; let’s call it compass.html. You will want to add a new menu item on your
existing HTML pages to link the new page.

<!DOCTYPE HTML>
<html>
<head>
 <title>PhoneGap</title>
</head>
<body>
 <div data-role="page" id="compass-page">
 <div style="background:
 url(images/compass.png) no-repeat">

 </div>

 <div data-role="footer" data-position="fixed">
 <div data-role="navbar">

 Home
 Map
 <a href="compass.html"
class="ui-btn-active">Compass

Using the Compass to Help the User Navigate | 23

www.it-ebooks.info

http://code.google.com/apis/maps/documentation/javascript/
http://www.it-ebooks.info/

 </div>
 </div>

 <script type="text/javascript" charset="utf-8"
 src="scripts/jQueryRotateCompressed.2.1.js"></script>
 <script type="text/javascript" charset="utf-8"
 src="scripts/compass.js"></script>
 </div>
</body>
</html>

The HTML is quite simple. I’ve created a div element that contains the compass as a
background image and loads the needle image inside of it. At the bottom, I’ve included
two new JavaScript files. The first is a library that will help me rotate the image in my
JavaScript code in the upcoming example. The second is the next file that must be
created, compass.js.

function onCompassLoad() {
 var options = { frequency: 500 };
 navigator.compass.watchHeading(rotateNeedle,
 compassError, options);
}

function rotateNeedle(degree) {
 $("#needle").rotate(degree);
}

function compassError(error) {
 alert('code: ' + error.code + '\n' +
 'message: ' + error.message + '\n');
}

Using the automatic callback, the onCompassLoad function, I’ve created a watch to up-
date the compass every 500 milliseconds via a navigator.compass.watchHeading func-
tion. Each time an update is received, the rotateNeedle function is called. Using the
jQuery library I mentioned earlier, I rotate the needle by the angle of the device. The
results of degree is a number between 0 and 359.99. As the device rotates around, the
needle will move as well, indicating the current direction.

This feature might not work correctly in all simulators and an actual
device may be needed.

See Also
jQuery Rotate Plug-In

24 | The Recipes

www.it-ebooks.info

http://code.google.com/p/jqueryrotate/
http://www.it-ebooks.info/

Using the Accelerometer to Detect Motion

Problem
You want to detect the motion of the device as it moves.

Solution
Similar to the compass, devices running iOS, Android, and BlackBerry 5.0 and above
are able to detect the device’s current x, y, and z axis movements.

Three functions exist that work in the same way as the compass and GPS location,
which allow you to retrieve the current x, y, and z coordinates through the use of the
accelerometer.getCurrentAcceleration function. The accelerometer.watchAccelera
tion function allows you to receive updates on the device’s position, while the accel
erometer.clearWatch function allows you to turn off receiving the updates.

Discussion
To demonstrate the accelerometer, I am going to use the new HTML5 canvas tag and
make an image of a ball move around with the movement of the device. To start, a new
HTML page must be created inside of the assets/www directory: accelerometer.html.

<!DOCTYPE HTML>
<html>
<head>
 <title>PhoneGap</title>
</head>
<body>
 <div data-role="page" id="accelerometer-page">
 <div data-role="header" data-position="inline">
 <h1>Bouncing Ball</h1>
 </div>

 <canvas id="canvas" width="350" height="350"
style="border: 2px solid #000"></canvas>

 <div data-role="footer" data-position="fixed">
 <div data-role="navbar">

 Home
 Map
 Compass
 List
 <a href="accelerometer.html"
class="ui-btn-active">Accelerometer

 </div>
 </div>

Using the Accelerometer to Detect Motion | 25

www.it-ebooks.info

http://www.it-ebooks.info/

 <script type="text/javascript" charset="utf-8"
 src="scripts/accelerometer.js"></script>
 </div>
</body>
</html>

The preceding code does three important things. It creates a new canvas tag with the
ID of canvas, creates an img tag with the ID of ball, and includes a new accelerome-
ter.js JavaScript file. This script should now be created inside of your assets/www/
scripts directory.

var canvas;
var context;
var ball;

var prevX = 150;
var prevY = 150;
var offSet = 0.05;

var accelTimer;

function onAccelerometerLoad() {
 canvas = document.getElementById('canvas');
 context = canvas.getContext('2d');

 ball = document.getElementById('ball');
 ball.onload = function() {
 // once the ball image has loaded, start the watch
 var options = { frequency: 100 };
 accelTimer =
 navigator.accelerometer.watchAcceleration(
 moveBall, stopBall, options);
 };
 ball.src = "images/ball.png";
}

function moveBall(acceleration) {
 var x = acceleration.x * 100;
 var y = acceleration.y * 100;

 var newX = x * offSet + (1 - offSet) * prevX;
 var newY = y * offSet + (1 - offSet) * prevY;

 prevX = newX;
 prevY = newY;

 // draw the ball
 drawImage(newX, newY);
}

function stopBall(error) {
 // clear the watch
 navigator.accelerometer.clearWatch(accelTimer);

26 | The Recipes

www.it-ebooks.info

http://www.it-ebooks.info/

 alert("Error detecting acceleration");
}

function drawImage(x, y) {
 context.clearRect(0, 0, 350, 350);
 context.drawImage(ball, 0, 0, 100, 81, x, y, 100, 81);
}

The preceding JavaScript creates seven global variables. The first three will be used to
perform the animation, as they contain references to the canvas, the canvas’ context,
and finally the image of the ball. The next four variables will be used inside of the
moveBall function to help calculate the movement of the ball. The final variable will
contain a reference to the accelerometer watch, which will be cleared if there is an error.

Inside of the onAccelerometerLoad function, the references to the canvas, context, and
ball are initialized. The source of the ball image is also set; it’s a simple PNG image of
a tennis ball that is 100 pixels by 81 pixels. When the image of the ball has successfully
finished loading, the navigator.accelerometer.watchAcceleration function places a
watch on the accelerometer. The result of this function is stored in a global variable
called accelTimer. This variable contains a reference to the interval that is created by
PhoneGap. It can be used to clear the interval via the clearWatch function, as we do in
the stopBall function. This might be necessary if you wish to pause the accelerometer
during the application.

Every 100 milliseconds, the moveBall function will be called. This function receives one
parameter: the acceleration of the device. The acceleration is a structure that contains
four variables: the x, y, z position of the device, and a timestamp of when it was re-
trieved.

The moveBall function will use the x and y positions to calculate how much movement
has occurred since the last retrieval. It will then perform a calculation and call the
drawImage function, which will move the ball on the screen. First, drawImage clears the
canvas’s screen; then it draws the image of the ball on screen in the new x, y coordinates
that were calculated in the moveBall function. If you would like some more detail on
the context.drawImage function, you can read this article I wrote when experimenting
with the tag to create a walking animation using an image sprite.

If there was an error detecting the acceleration, the stopBall function is called. This
function clears the timer with the navigator.accelerometer.clearWatch function. An
alert dialog box appears as well to inform the user of the error.

This code is an excellent start to creating a labyrinthine game using the device’s motion
sensors.

This feature might not work correctly in all simulators and an actual
device may be needed.

Using the Accelerometer to Detect Motion | 27

www.it-ebooks.info

http://www.webistrate.com/html5-experimenting-with-the-canvas-for-a-basic-walk-animation/
http://www.it-ebooks.info/

Displaying Table-View Data

Problem
You have a hierarchical list of items that you wish to display in a table, cascading so
that when the user selects the one item, the table navigates to another filtered list of
items, until the user receives the specific detail view.

Solution
We’ll use the jQuery mobile library to display a standard-looking table listing of data
that the user can scroll up or down by swiping their finger. When they select an item
in the list, the library will then filter the list; once they click on a second item, the detail
page will be displayed. This is accomplished by some basic HTML and invoking a data-
role type called listview.

Discussion
This example doesn’t contain any PhoneGap work; however, if you are building a
mobile application with PhoneGap and you have any data that you wish to display in
a hierarchy, you will most certainly want to display it using the standard table listing
that allows the user to scroll up and down with a finger.

To start, create a new file called list.html. A link in the existing HTML pages should be
added to this one. The following HTML in the file will implement the list:

<!DOCTYPE HTML>
<html>
<head>
 <title>PhoneGap</title>
</head>
<body>
 <div data-role="page" id="list-page">
 <div data-role="header" data-position="inline">
 <h1>Types of animals</h1>
 </div>

 <ul data-role="listview">
 Farm

 Cows
 Chickens
 Pigs

 Wild

 Giraffes
 Lions

28 | The Recipes

www.it-ebooks.info

http://www.it-ebooks.info/

 Tigers

 Pets

 Cats
 Dogs
 Gerbals

 <div data-role="footer" data-position="fixed">
 <div data-role="navbar">

 Home
 Map
 Compass
 <a href="list.html"
class="ui-btn-active">List

 </div>
 </div>
 </div>
</body>
</html>

The key factor that implements the list is data-role="listview" on the first ul tag. From
there, a nested unordered list is created. On each inner list, a link is added to the element
that should go to the detail page. The data-role="listview" contains a lot of options
for customizing the look and feel. For example, a bubble count can appear beside the
element, dividers can be added to separate a group of data (this will be used in a future
recipe when retrieving a list of contacts), and much more. There is no limit to the
number of nested ul tags, in case two levels deep is not sufficient.

Retrieving Contacts in the Address Book

Problem
You want to retrieve and display the list of contacts that the user has saved on the device.

Solution
The PhoneGap API exposes a function called contacts.find that accepts four param-
eters, including the ability to search for a specific contact. By using this function in
conjunction with the jQuery mobile library, you can display a list of contacts in a table
view that, once a contact is selected, will display the contact’s full information.

Retrieving Contacts in the Address Book | 29

www.it-ebooks.info

http://www.it-ebooks.info/

Discussion
Several new files must be created to accomplish this. To begin, you must create the
main contact listing page. Inside of your assets/www directory, create a new file called
contacts.html. This file will simply hold the skeleton HTML that will be populated via
JavaScript.

<!DOCTYPE HTML>
<html>
<head>
 <title>PhoneGap</title>
</head>
<body>
 <div data-role="page" id="contacts-page">
 <div data-role="header" data-position="inline">
 <h1>Contacts</h1>
 </div>

 <ul id="contactList" data-role="listview">

 <div data-role="footer" data-position="fixed">
 <div data-role="navbar">

 Home
 Map
 Compass
 List
 <a href="contacts.html"
class="ui-btn-active">Contacts

 </div>
 </div>

 <script type="text/javascript" charset="utf-8"
src="scripts/contacts.js"></script>
 </div>
</body>
</html>

Some key design elements have been added in the preceding HTML. Firstly, a new
data-role="header" has been added just inside the page role. This will display a header
bar with the title of Contacts. Then an empty ul tag has been added with the previously
used data-role="listview" attribute, which will be populated next with the contacts.
Be sure to go back to your existing HTML files and add the link to the new contacts
page!

Then another HTML page needs to be created that will display the full contact infor-
mation when clicked on. Inside of your assets/www directory, create a new file called
view.html.

30 | The Recipes

www.it-ebooks.info

http://www.it-ebooks.info/

<!DOCTYPE HTML>
<html>
<head>
 <title>PhoneGap</title>
</head>
<body>
 <div data-role="page" id="contactview-page">
 <div data-role="header" data-position="inline">
 <h1>View Contact</h1>
 </div>

 <div id="contact">

 </div>

 <div data-role="footer" data-position="fixed">
 <div data-role="navbar">

 Home
 Map
 Compass
 List
 <a href="contacts.html"
class="ui-btn-active">Contacts

 </div>
 </div>

 <script type="text/javascript" charset="utf-8"
src="scripts/contacts.js"></script>
 </div>
</body>
</html>

Another header element has been added here with the title of View Contact, and an
empty div tag has been added with the ID of contact. This will be used to populate the
contact information inside of that page.

Now the JavaScript must be created. Begin by creating a new contacts.js file inside of
your assets/www/scripts directory.

function onContactsLoad() {
 var fields = ["id", "displayName", "name"];
 navigator.contacts.find(fields, showContacts);
}

function onViewLoad() {
 // get the contact by the displayName from the URL
 var fields = ["id", "displayName", "name",
"emails", "phoneNumbers"];
 var options = new ContactFindOptions();
 options.filter = getParameterByName("id");
 navigator.contacts.find(fields, showContact,
onError, options);
}

Retrieving Contacts in the Address Book | 31

www.it-ebooks.info

http://www.it-ebooks.info/

function showContact(contacts) {
 if (contacts.length > 0) {
 var contact = contacts[0];

 $("#contact").append("<h2>" +
contact.name.givenName + " " +
contact.name.familyName + "</h2>");
 if (contact.emails.length > 0) {
 $("#contact").append("<h3>Emails</h3>");
 $("#contact").append("");
 }
 for (var i = 0; i < contact.emails.length; i++) {
 $("#contact").append("" +
contact.emails[i].value + "");
 }
 if (contact.emails.length > 0) {
 $("#contact").append("");
 }
 if (contact.phoneNumbers.length > 0) {
 $("#contact").append("<h3>Phone Numbers</h3>");
 $("#contact").append("");
 }
 for (var i = 0; i < contact.phoneNumbers.length; i++) {
 $("#contact").append("" +
contact.phoneNumbers[i].value + "");
 }
 if (contact.phoneNumbers.length > 0) {
 $("#contact").append("");
 }

 } else {
 alert("Unable to find contact");
 }
}

function getParameterByName(name) {
 name = name.replace(/[\[]/, "\\\[").replace
(/[\]]/, "\\\]");
 var regexS = "[\\?&]" + name + "=([^&#]*)";
 var regex = new RegExp(regexS);
 var results = regex.exec(currentUrl);
 if(results == null)
 return "";
 else
 return decodeURIComponent(results[1].replace
(/\+/g, " "));
}

function showContacts(contacts) {
 var cSort = function(a, b) {
 aName = a.name.givenName;
 bName = b.name.givenName;
 return aName < bName ? -1 : (aName == bName ? 0 : 1);
 };

32 | The Recipes

www.it-ebooks.info

http://www.it-ebooks.info/

 contacts = contacts.sort(cSort);

 var dividers = "";
 for (var i = 0; i < contacts.length; i++) {
 var firstLetter = contacts[i].name.givenName.
charAt(0).toUpperCase();
 // check if we need to add a divider
 if (dividers.indexOf(firstLetter) < 0) {
 dividers += firstLetter;
 $("#contactList").append(
"<li data-role=\"list-divider\">" + firstLetter + "");
 }
 $("#contactList").append(
"<a href=\"view.html?id=" + contacts[i].id +
"\">" + contacts[i].name.givenName + " " +
contacts[i].name.familyName + "");
 }

 $("#contactList").listview('refresh');
}

function onError(contactError) {
 alert("Error = " + contactError.code);
 return false;
}

Quite a bit is happening in this JavaScript file. The first two functions, onContacts
Load and onViewLoad, perform a search for the contacts. The first function retrieves all
contacts in the address book. The second function filters the contacts by the id that is
passed in via the URL to retrieve a single contact (e.g., to display the full information
about the contact selected from the list).

The next function, showContact, receives the list of contacts from the successful contact
retrieval of onViewLoad. This function then displays some basic information about the
contact. There are more fields that can be added, but currently it will just display the
name, email addresses, and phone numbers for the contact. The full list of contact fields
can be found at the PhoneGap page about contacts.

Be sure to read the quirks about each field carefully, as the support
between each device varies greatly in some instances.

The getParameterByName function is a simple helper function that is used to retrieve the
id from the query string.

The final function, showContacts, is called when a successful list of contacts is received
from the first function, onContactsLoad. showContacts receives a list of contacts, iterates
through each one, and appends a new list item to the table view created in the
contacts.html file. As a nice addition, the contacts are sorted alphabetically by the

Retrieving Contacts in the Address Book | 33

www.it-ebooks.info

http://docs.phonegap.com/en/1.1.0/phonegap_contacts_contacts.md.html#Contact
http://www.it-ebooks.info/

givenName. This is done so that dividers can be added to group the items by the first
letter of the contact’s name.

See Also
“Displaying Table-View Data” on page 28

Creating a New Contact in the Address Book

Problem
You want to allow your application to create and save a new contact or edit an existing
contact in the device’s address book.

Solution
The PhoneGap API exposes a function called contacts.create that accepts a structure
with the information about the contact. It creates a new Contact object that contains a
save function to add the contact to the address book. When the Contact.id already
exists, the information is updated instead of creating a new contact. By creating a new
form that allows the user to enter information about the contact, when the user submits
the data, it will be saved in the address book.

Discussion
The first thing that you need to do is create a new form. Inside of your assets/www
directory, create a new file called form.html. This contains a basic form that will be used
to collect the contact’s information.

<!DOCTYPE HTML>
<html>
<head>
 <title>PhoneGap</title>
</head>
<body>
 <div data-role="page" id="form-page">
 <div data-role="header" data-position="inline">

Cancel
 <h1>Add Contact</h1>
 <a onClick="return saveContact()" href="#"
data-icon="check" data-theme="b">Save
 </div>

 <form action="form.html" method="post">
 <input type="hidden" name="id" value="0" />
 <table>

34 | The Recipes

www.it-ebooks.info

http://www.it-ebooks.info/

 <tr>
 <td>Display Name</td>
 <td><input type="text" name="displayName"
value="" /></td>
 </tr>
 <tr>
 <td>First Name</td>
 <td><input type="text" name="firstName"
value="" /></td>
 </tr>
 <tr>
 <td>Last Name</td>
 <td><input type="text" name="lastName"
value="" /></td>
 </tr>
 <tr>
 <td>Email (Home)</td>
 <td><input type="text" name="email_home"
value="" /></td>
 </tr>
 <tr>
 <td>Email (Work)</td>
 <td><input type="text" name="email_work"
value="" /></td>
 </tr>
 <tr>
 <td>Email (Other)</td>
 <td><input type="text" name="email_other"
value="" /></td>
 </tr>
 <tr>
 <td>Phone (Home)</td>
 <td><input type="text" name="phone_home"
value="" /></td>
 </tr>
 <tr>
 <td>Phone (Work)</td>
 <td><input type="text" name="phone_work"
value="" /></td>
 </tr>
 <tr>
 <td>Phone (Other)</td>
 <td><input type="text" name="phone_other"
value="" /></td>
 </tr>
 </table>
 </form>

 <div data-role="footer" data-position="fixed">
 <div data-role="navbar">

 Home
 Map
 Compass
 List

Creating a New Contact in the Address Book | 35

www.it-ebooks.info

http://www.it-ebooks.info/

 <a href="contacts.html"
class="ui-btn-active">Contacts

 </div>
 </div>

 <script type="text/javascript" charset="utf-8"
 src="scripts/contacts.js"></script>
 </div>
</body>
</html>

A Save and Cancel button have been added to the header bar and the various contact
fields that are shown in the view page are included in this form.

Two minor updates need to be made to the contacts.html and view.html pages. The
header bar needs to be updated to include Add and Edit buttons in the respective pages
that will link the user to the form. Below is the updated header for the contacts.html file.

<!DOCTYPE HTML>
<html>
<head>
 <title>PhoneGap</title>
</head>
<body>
 <div data-role="page" id="contacts-page">
 <div data-role="header" data-position="inline">
 <h1>Contacts</h1>
 <a href="form.html" data-icon="save"
data-theme="b">Add
 </div>

 ...

And now, the view.html file:

<!DOCTYPE HTML>
<html>
<head>
 <title>PhoneGap</title>
</head>
<body>
 <div data-role="page" id="contactview-page">
 <div data-role="header" data-position="inline">
 <h1>View Contact</h1>
 <a href="form.html" data-icon="save"
data-theme="b">Edit
 </div>

 ...

Finally, the contacts.js file requires several changes and many new additions to handle
the adding and editing of the contact. The complete contacts.js file follows, with the
code for retrieving the contacts as well.

36 | The Recipes

www.it-ebooks.info

http://www.it-ebooks.info/

function onContactsLoad() {
 var fields = ["id", "displayName", "name"];
 navigator.contacts.find(fields, showContacts);
}

function onViewLoad() {
 getContactById(getParameterByName("id"), showContact);
}

function onFormLoad() {
 var id = getParameterByName("id");

 // if there is an id, load the contact
 if (id.length > 0) {
 getContactById(id, populateForm);
 }
}

function getContactById(id, callback) {
 // get the contact by the displayName from the URL
 var fields = ["id", "displayName", "name",
"emails", "phoneNumbers"];
 var options = new ContactFindOptions();
 options.filter = id;
 navigator.contacts.find(fields, callback,
onError, options);
}

function showContact(contacts) {
 if (contacts.length > 0) {
 var contact = contacts[0];

 // update the link to include the id
 $("a[href='form.html']").attr("href", function(i, href) {
 return href + "?id=" + contact.id;
 });

 $("#contact").append("<h2>" +
contact.name.givenName + " " +
contact.name.familyName + "</h2>");
 if (contact.emails.length > 0) {
 $("#contact").append("<h3>Emails</h3>");
 $("#contact").append("");
 }
 for (var i = 0; i < contact.emails.length; i++) {
 $("#contact").append("" +
contact.emails[i].value + "");
 }
 if (contact.emails.length > 0) {
 $("#contact").append("");
 }
 if (contact.phoneNumbers.length > 0) {
 $("#contact").append("<h3>Phone Numbers</h3>");
 $("#contact").append("");
 }

Creating a New Contact in the Address Book | 37

www.it-ebooks.info

http://www.it-ebooks.info/

 for (var i = 0; i < contact.phoneNumbers.length; i++) {
 $("#contact").append("" +
contact.phoneNumbers[i].value + "");
 }
 if (contact.phoneNumbers.length > 0) {
 $("#contact").append("");
 }
 } else {
 alert("Unable to find contact");
 }
}

function getParameterByName(name) {
 name = name.replace(/[\[]/, "\\\[").replace
(/[\]]/, "\\\]");
 var regexS = "[\\?&]" + name + "=([^&#]*)";
 var regex = new RegExp(regexS);
 var results = regex.exec(currentUrl);
 if(results == null)
 return "";
 else
 return decodeURIComponent(results[1].replace
(/\+/g, " "));
}

function showContacts(contacts) {
 var cSort = function(a, b) {
 var aName = a.name.givenName;
 var bName = b.name.givenName;
 return aName < bName ? -1 :
(aName == bName ? 0 : 1);
 };
 contacts = contacts.sort(cSort);

 var dividers = "";
 for (var i = 0; i < contacts.length; i++) {
 var firstLetter = contacts[i].name.givenName.charAt(0).toUpperCase();
 // check if we need to add a divider
 if (dividers.indexOf(firstLetter) < 0) {
 dividers += firstLetter;
 $("#contactList").append("<li data-role=\"list-divider\">" + firstLetter
+ "");
 }
 $("#contactList").append(""
+ contacts[i].name.givenName + " " + contacts[i].name.familyName + "");
 }

 $("#contactList").listview('refresh');
}

function populateForm(contacts) {
 if (contacts.length > 0) {
 var contact = contacts[0];
 var form = document.getElementsByTagName('form')[0].elements;

38 | The Recipes

www.it-ebooks.info

http://www.it-ebooks.info/

 form.id.value = contact.id;
 form.displayName.value = contact.displayName;
 form.firstName.value = contact.name.givenName;
 form.lastName.value = contact.name.familyName;
 if (contact.emails.length > 0) {
 form.email_home.value = contact.emails[0].value;
 if (contact.emails.length > 1) {
 form.email_work.value = contact.emails[1].value;
 if (contact.emails.length > 2) {
 form.email_other.value = contact.emails[2].value;
 }
 }
 }
 if (contact.phoneNumbers.length > 0) {
 form.phone_home.value = contact.phoneNumbers[0].value;
 if (contact.phoneNumbers.length > 1) {
 form.phone_work.value = contact.phoneNumbers[1].value;
 if (contact.phoneNumbers.length > 2) {
 form.phone_other.value = contact.phoneNumbers[2].value;
 }
 }
 }
 }
}

function saveContact(contacts) {
 var form = document.getElementsByTagName('form')[0].elements;
 var contact;

 if (form.id.value != 0 && typeof contacts == "undefined") {
 getContactById(form.id.value, saveContact);
 } else if (typeof contacts != "undefined") {
 contact = contacts[0];
 } else {
 contact = navigator.contacts.create();
 }

 contact.displayName = form.displayName.value;
 contact.nickname = form.displayName.value;

 var name = new ContactName();
 name.givenName = form.firstName.value;
 name.familyName = form.lastName.value;
 contact.name = name;

 var emails = new Array();
 if (form.email_home.value.length > 0) {
 emails[emails.length] = new ContactField('home', form.email_home.value);
 }
 if (form.email_work.value.length > 0) {
 emails[emails.length] = new ContactField('work', form.email_work.value);
 }
 if (form.email_other.value.length > 0) {
 emails[emails.length] = new ContactField('other', form.email_other.value);
 }

Creating a New Contact in the Address Book | 39

www.it-ebooks.info

http://www.it-ebooks.info/

 contact.emails = emails;

 var phoneNumbers = new Array();
 if (form.phone_home.value.length > 0) {
 phoneNumbers[phoneNumbers.length] = new ContactField('home',
form.phone_home.value);
 }
 if (form.phone_work.value.length > 0) {
 phoneNumbers[phoneNumbers.length] = new ContactField('work',
form.phone_work.value);
 }
 if (form.phone_other.value.length > 0) {
 phoneNumbers[phoneNumbers.length] = new ContactField('other',
form.phone_other.value);
 }
 contact.phoneNumbers = phoneNumbers;

 contact.save(onSuccess,onError);
}

function onSuccess(contact) {
 alert("Save Success");
 $.mobile.changePage("contacts.html");
}

function onError(contactError) {
 alert("Error = " + contactError.code);
}

The existing onViewLoad function has been changed to call a new getContactById func-
tion, because the same functionality is also used inside of the new onFormLoad function
that populates the edit form with contact information when the user selects Edit.

When the contacts have been successfully retrieved, the showContact function is called
on the view page. This function has been altered to append the contact’s ID to the Edit
link URL so the contact can be retrieved on the form page.

Finally, four new functions have been added to populate and save the contact. First,
the populateForm function is called after the user clicks Edit and the contact has been
retrieved. It simply extracts the data from the Contact object and populates the form
values. When the user presses the Save button, the saveContact function is called. This
works similar to populating the form, but in reverse. The values are extracted from the
form and saved in the contact.

A few important things are happening inside this function. If the user is editing the
user, the contact must be retrieved and updated; otherwise, a new contact is created
through the navigator.contacts.create() function. The name, emails, and phone
numbers are special fields because they are created through other PhoneGap Contact
objects. The name must be defined as a new ContactName object and both the email and
phone numbers must be defined as new ContactFields inside an array, because multiple
types can be added.

40 | The Recipes

www.it-ebooks.info

http://www.it-ebooks.info/

There are several more contact fields that you can add. See the PhoneGap documen-
tation for more information, because not all devices support all of the fields.

The last two functions handle a successful save and errors that might occur while saving
the contact. Upon success, the user is redirected back to the contacts.html page using
the $.mobile.changePage function.

It’s important to note that the $.mobile.changePage was used and not a
standard JavaScript redirect with location.href. If the latter were per-
formed, the jQuery mobile library would be lost because no AJAX re-
quest is performed, and there would be a fresh load of the
contacts.html file without the necessary JavaScript files (which are only
included in the index.html file).

See Also
Adding Buttons to Header Bars

Accessing the Camera and Photo Album

Problem
You want to allow your application to take pictures with the camera or select one of
the user’s existing photos.

Solution
The PhoneGap API exposes a function called camera.getPicture that accesses the de-
vice’s default photo application, allowing the user to view and select photos or take a
new photo with the camera.

Discussion
To begin this example, a new HTML file is required to display a selected photo from
the library or a new picture from the camera. Create a new file called photos.html inside
of your assets/www directory. Be sure to add a new link to this file in your existing files.

<!DOCTYPE HTML>
<html>
<head>
 <title>PhoneGap</title>
</head>
<body>
 <div data-role="page" id="contacts-page">
 <div data-role="header" data-position="inline">
 <h1>Photos</h1>

Accessing the Camera and Photo Album | 41

www.it-ebooks.info

http://docs.phonegap.com/en/1.1.0/phonegap_contacts_contacts.md.html#Contact
http://docs.phonegap.com/en/1.1.0/phonegap_contacts_contacts.md.html#Contact
http://jquerymobile.com/demos/1.0/docs/toolbars/docs-headers.html
http://www.it-ebooks.info/

 </div>

 <div data-role="footer" data-position="fixed">
 <div data-role="navbar">

 Home
 Map
 Compass
 List
 Contacts
 <a href="photos.html"
class="ui-btn-active">Photos

 </div>
 </div>

 <script type="text/javascript" charset="utf-8"
 src="scripts/photos.js"></script>
 </div>
</body>
</html>

Once again, there’s nothing too special in the HTML file apart from including a new
JavaScript file called photos.js and an empty img tag with the ID of photo. This will be
used display the photo afterwards.

You now need to create the photos.js file inside of your assets/www/scripts folder.

var loaded = false;

function onPhotosLoad() {
 // only load the camera selector on first load
 if (!loaded) {
 navigator.camera.getPicture(onPhotoLoadSuccess, onFail,
 {
 quality: 50,
 encodingType: Camera.EncodingType.PNG,
 destinationType: navigator.camera.DestinationType.FILE_URI
 });

 loaded = true;
 }
}

function onPhotoLoadSuccess(photoUri) {
 document.getElementById('photo').src = photoUri;
}

function onFail(message) {
 alert('Failed because: ' + message);
}

42 | The Recipes

www.it-ebooks.info

http://www.it-ebooks.info/

Inside the onPhotosLoad callback function, the navigator.camera.getPicture is used to
access the camera. It accepts three parameters: the callback to invoke upon success,
the callback to invoke upon failure, and options in structured format. In the above
example, the destinationType option is defined as navigator.camera.Destination
Type.FILE_URI, which will return the photo as a file path. This path is then used inside
of onPhotoLoadSuccess to set the source of the previously created image.

If the destinationType option is omitted, the default type used is a base64-encoded
image.

If you want to allow the user to access the photo library instead of taking a picture, the
preceding example would need to be edited to specify a sourceType option as well:

navigator.camera.getPicture(onPhotoLoadSuccess, onFail,
 {
 quality: 50,
 destinationType: navigator.camera.DestinationType.FILE_URI,
 sourceType: Camera.PictureSourceType.PHOTOLIBRARY
 });

Saving Data to a Remote Server

Problem
You want to upload a file from the local device to an external server.

Solution
After the user has selected a local media item, the FileTransfer class is used to perform
an HTTP POST, containing the byte data, to an external server. The external server
must expose a web service that accepts and performs the remote saving. (This is outside
the scope of this book; however, many PHP, ASP.NET, etc., scripts can be found on
the Internet to help.)

Discussion
This example will extend the previous recipe and save the photo that was taken or
selected. To start, the previously created photos.html page needs to be updated to in-
clude a button to save the file. This can be added in the header as follows:

<div data-role="header" data-position="inline">
 <h1>Photos</h1>
 <a onClick="return savePhoto()" href="#"
data-icon="check" data-theme="b">Save
</div>

When the user clicks the Save button, a new savePhoto function is called that will use
the FileTransfer class to upload the photo to a remote server. This new function, as

Saving Data to a Remote Server | 43

www.it-ebooks.info

http://www.it-ebooks.info/

well as two others to deal with a success or fail response from the server, should be
added to the existing photos.js file created in “Accessing the Camera and Photo Al-
bum” on page 41.

var loaded = false;
var currentPhoto = null;

function onPhotosLoad() {
 // only load the camera selector on first load
 if (!loaded) {
 navigator.camera.getPicture(onPhotoLoadSuccess, onFail,
 {
 quality: 50,
 encodingType: Camera.EncodingType.PNG,
 destinationType:
navigator.camera.DestinationType.FILE_URI
 });

 loaded = true;
 }
}

function onPhotoLoadSuccess(photoUri) {
 // store current photo for saving later
 currentPhoto = photoUri;

 document.getElementById('photo').src = photoUri;
}

function onFail(message) {
 alert('Failed because: ' + message);
}

function savePhoto() {
 if (currentPhoto == null) {
 alert("Please select a photo first");
 return;
 }

 var uploadOptions = new FileUploadOptions();
 uploadOptions.fileKey = "file";
 uploadOptions.fileName =
currentPhoto.substr(currentPhoto.lastIndexOf('/') + 1);
 uploadOptions.mimeType="image/png";

 var fileTransfer = new FileTransfer();
 // Be sure to update the URL below to your site
 fileTransfer.upload(currentPhoto,
 "http://www.webistrate.com/phonegap/upload.php",
 uploadSuccess, uploadFail, uploadOptions);
}

function uploadSuccess(result) {
 alert("Successfully transferred " +
result.bytesSent + "bytes");

44 | The Recipes

www.it-ebooks.info

http://www.it-ebooks.info/

}

function uploadFail(error) {
 alert("Error uploading file: " + error.code);
}

The example includes a new global variable, currentPhoto. This variable is set after the
user selects or takes a picture. The variable is then checked at the top of the save
Photo function to ensure that the user selected a photo before uploading.

Next, several variables are created. The first, FileUploadOptions, contains the infor-
mation about the picture. The second variable, fileKey, contains the name of the vari-
able that is used by the server-side script to save the picture. The final two variables,
fileName and mimeType, contain the name of the file and the type of file, respectively.

Finally, a new FileTransfer variable is defined specifying the photo to upload, the URL
to which an HTTP POST should be performed, the success and fail callback functions,
and the previously defined options.

When the upload is successful, the example simply presents a success message along
with the number of bytes that were sent to the server.

Capturing Audio and Video

Problem
You want to allow the device to record audio or video through your application.

Solution
The PhoneGap API exposes two different functions, one for each type of media to
capture: capture.captureAudio and capture.captureVideo. You can use these functions
along with the FileTransfer class to save media and upload it to an external server.

Discussion
The following example allows the user to create and upload an audio or video file. To
begin, a new HTML file must be created. Inside of your assets/www directory, create a
new file called capture.html. Be sure to add a link to this new file in your existing pages.

<!DOCTYPE HTML>
<html>
<head>
 <title>PhoneGap</title>
</head>
<body>
 <div data-role="page" id="contacts-page">
 <div data-role="header" data-position="inline">

Capturing Audio and Video | 45

www.it-ebooks.info

http://www.it-ebooks.info/

 <h1>Capture</h1>
 </div>

 <input type="button" value="Capture Audio"
onclick="captureAudio()" />
 <input type="button" value="Capture Video"
onclick="captureVideo()" />

 <div data-role="footer" data-position="fixed">
 <div data-role="navbar">

 Home
 Map
 Compass
 List
 Contacts
 Photos
 <a href="capture.html"
class="ui-btn-active">Capture

 </div>
 </div>

 <script type="text/javascript" charset="utf-8"
 src="scripts/capture.js"></script>
 </div>
</body>
</html>

The following example creates two buttons: one that will allow the user to capture
audio and the other to capture video. A new JavaScript file, capture.js, is also included.
This file should now be created inside of your assets/www/scripts directory.

This file will provide two core functions: initiate the capture of audio and initiate the
capture of video. Because these functions work in the same manner, only one success
and one error function need to be created. When a successful media file is recorded,
the file is then uploaded to an external website using the FileTransfer class in a similar
manner to the last recipe.

function captureAudio() {
 navigator.device.capture.captureAudio(captureSuccess,
captureError);
}

function captureVideo() {
 navigator.device.capture.captureVideo(captureSuccess,
captureError);
}

function captureSuccess(files) {
 // more than 1 file might be returned
 // so perform a loop and upload all of them
 for (var i = 0; i < files.length; i++) {
 uploadMediaFile(files[i]);

46 | The Recipes

www.it-ebooks.info

http://www.it-ebooks.info/

 }
}

function captureError(error) {
 alert("Error during capture = " + error.code);
}

function uploadMediaFile(file) {
 var uploadOptions = new FileUploadOptions();
 uploadOptions.fileKey = "file";
 uploadOptions.fileName = currentPhoto.substr(
file.lastIndexOf('/') + 1);

 var fileTransfer = new FileTransfer();
 fileTransfer.path = file.fullPath;
 fileTransfer.name = file.name;

 fileTransfer.upload(file,
 "http://www.webistrate.com/phonegap/upload.php",
 uploadSuccess, uploadFail, uploadOptions);
}

function uploadSuccess(result) {
 alert("Successfully transferred " +
result.bytesSent + "bytes");
}

function uploadFail(error) {
 alert("Error uploading file: " + error.code);
}

Just as in the last example, when the media file uploads successfully, the uploadSuc
cess function is called to inform the user that the upload was completed.

One important thing to note: inside the captureSuccess function, a for loop is per-
formed on the files input parameter. This is an important factor, because one of the
options available for both types of capturing is to allow the user to record more than
one file at a time. This is done by setting a limit option as the third parameter for the
navigator.device.capture.captureVideo and the navigator.device.capture.captureAu
dio functions.

See Also
“Saving Data to a Remote Server” on page 43

Capturing Audio and Video | 47

www.it-ebooks.info

http://www.it-ebooks.info/

Notifying the Device with Alert, Confirm, and Vibrate

Problem
You want to customize the standard alert and confirm dialogs or notify the user by
making the device vibrate.

Solution
The standard JavaScript alert and confirm dialogs work quite well and are even dis-
played in the device’s style; however, in your application you might want to customize
the buttons that appear or even make the device vibrate (like a game controller).

The PhoneGap API exposes three different functions: notification.alert, notifica
tion.confirm, and notification.vibrate, which are used to notify the device.

Discussion
To demonstrate the alert and confirm functions, I am going to override the default
JavaScript functions to accept the additional customization parameters that PhoneGap
supports. This will allow you to keep using the standard JavaScript syntax you are
familiar with, while providing additional customization as needed.

To begin, create a new HTML file called notify.html and save it in the assets/www
directory. This file is just a placeholder so that the JavaScript can be explored and tested.
Be sure to add a link to this new file in your existing pages.

<!DOCTYPE HTML>
<html>
<head>
 <title>PhoneGap</title>
</head>
<body>
 <div data-role="page" id="contacts-page">
 <div data-role="header" data-position="inline">
 <h1>Notification Tests</h1>
 </div>

 <div data-role="footer" data-position="fixed">
 <div data-role="navbar">

 Home
 Map
 Compass
 List
 Contacts
 Photos
 <a href="notify.html"
class="ui-btn-active">Notify

48 | The Recipes

www.it-ebooks.info

http://www.it-ebooks.info/

 </div>
 </div>

 <script type="text/javascript" charset="utf-8"
 src="scripts/notify.js"></script>
 </div>
</body>
</html>

This file simply loads the new JavaScript file notify.js, which should be created inside
your assets/www/scripts directory.

function onNotifyLoad() {
 alert("test 1");
 alert("test 2", handleClick);
 alert("test 3", handleClick, "My title");
 alert("test 4", handleClick, "My title", "All done");

 confirm("test 1");
 confirm("test 2", handleConfirmClick);
 confirm("test 3", handleConfirmClick, "My title");
 confirm("test 4", handleConfirmClick, "My title",
"Play Again,Quit");

 navigator.notification.vibrate(500);
 navigator.notification.beep(3);
}

function handleClick() {

}

// button contains the name of the button clicked
// Windows Phone 7 ignores button names, always 'OK|Cancel'
function handleConfirmClick(button) {
 if (button == 'Play Again' || button == 'OK') {
 // do play again
 } else if (button == 'Quit' || button == 'Cancel') {
 // do quit code
 }
}

// override the built in JavaScript alert function
function alert(msg, callback, title, button) {
 navigator.notification.alert(msg, callback,
 title, button);
}

function confirm(msg, callback, title, buttons) {
 navigator.notification.confirm(msg, callback,
 title, buttons);
}

In the callback function onNotifyLoad, multiple alerts and confirmations are performed
to demonstrate how it can specify more and more detail during callback. Both functions

Notifying the Device with Alert, Confirm, and Vibrate | 49

www.it-ebooks.info

http://www.it-ebooks.info/

support a callback method that is executed when the user clicks one of the buttons
from the dialog that can perform further processing. For the confirm callback function,
the button text shows up as the variable to confirm which button the user pressed.

If you want to set as default any of the variables passed to the alert or confirm functions,
you can alter them as follows:

// override the built in JavaScript alert function
function alert(msg, callback, title, button) {
 if (typeof callback == 'undefined')
 callback = handleClick;
 if (typeof title == 'undefined')
 title = "my title";
 if (typeof button == 'undefined')
 button = "click me";

 navigator.notification.alert(msg, callback,
 title, button);
}

This is a great way to define a standard customized alert or confirm dialog box for all
of your existing alert and confirm tags, with minimal effort. These functions should
then be moved to your common.js file so they can be accessed from any page.

You might have also noticed two additional function calls at the bottom of the
onNotifyLoad functions: navigator.notification.vibrate(500) and navigator.notifi
cation.beep(3).

The vibrate function will make the device vibrate for the number of milliseconds defined
as the first parameter. The beep function will make the device play a sound for the
number of times specified as the first parameter.

Storing Data to the Device

Problem
You want your application to save files locally on the phone.

Solution
The PhoneGap API provides a FileWriter class that allows you to write and save a file
on the device. The DirectoryEntry class provides a function to load the file to be written.

Discussion
To begin this example, create a new HTML file called notes.html inside of the assets/
www directory. This file should start to look pretty standard. It contains the basic
HTML to get the layout and navbar as well as a form that contains a textarea to allow

50 | The Recipes

www.it-ebooks.info

http://www.it-ebooks.info/

the user to enter some notes that will be saved locally to the device upon pressing the
Save button.

<!DOCTYPE HTML>
<html>
<head>
 <title>PhoneGap</title>
</head>
<body>
 <div data-role="page" id="notes-page">
 <div data-role="header" data-position="inline">
 Cancel
 <h1>Your Thoughts?</h1>
 <a onClick="return saveNotes()" href="#"
data-icon="check" data-theme="b">Save
 </div>

 <form action="notes.html" method="post">
 <textarea name="notes" rows="30" cols="10"></textarea>
 </form>

 <div data-role="footer" data-position="fixed">
 <div data-role="navbar">

 Home
 Map
 Compass
 List
 Contacts
 Photos
 Notify
 <a href="notes.html"
class="ui-btn-active">Notes

 </div>
 </div>

 <script type="text/javascript" charset="utf-8"
 src="scripts/notes.js"></script>
 </div>
</body>
</html>

At the bottom, this file includes a JavaScript file called notes.js. Create this file now in
your assets/www/scripts directory.

var fileWriter;

function onNotesLoad() {
 window.requestFileSystem(LocalFileSystem.PERSISTENT, 0, onFSComplete, fail);
}

function onFSComplete(fileSystem) {
 // Load the notes.txt file, create it if it doesn't exist
 fileSystem.root.getFile("notes.txt", {create: true}, onFileEntryComplete, fail);
}

Storing Data to the Device | 51

www.it-ebooks.info

http://www.it-ebooks.info/

function onFileEntryComplete(fileEntry) {
 // set up the fileWriter
 fileEntry.createWriter(onFileWriterComplete, fail);
}

function onFileWriterComplete(fileWriter) {
 // store the fileWriter in a
 // global variable so we have it
 // when the user presses save
 fileWriter = fileWriter;
}

function saveNotes() {
 // make sure the fileWriter is set
 if (fileWriter != null) {
 // create an oncomplete write function
 // that will redirect the user
 fileWriter.onwrite = function(evt) {
 alert("Saved successfully");
 $.mobile.changePage("index.html");
 };

 var form = document.getElementsByTagName('form')[0].elements;
 var notes = form.notes.value;

 // save the notes
 fileWriter.write(notes);
 } else {
 alert("There was an error trying to save the file");
 }

 return false;
}

function fail(error) {
 alert(error.code);
}

When the onNotesLoad function is executed by the callback, an asynchronous request
is made to open a persistent file system connection. When this action is complete, the
onFSComplete function is called. The fileSystem parameter is a DirectoryEntry object
that is used to open a file called notes.txt in the root directory. If the file does not already
exist, it will be created. When the file has loaded successfully, the
onFileEntryComplete function is called.

The onFileEntryComplete function receives a fileEntry parameter, which is a
FileEntry object. This object is then used to create an object of the fileWriter class.
The object is stored in the fileWriter global variable so that the saveNotes function can
use and save the contents to it.

52 | The Recipes

www.it-ebooks.info

http://www.it-ebooks.info/

When the write action has been completed (after the user presses Save), a success mes-
sage is displayed and the user is redirected back to the index page. This action occurs
inside of the onwrite anonymous function that appears within the saveNotes function.

See Also
“Reading Data from the Device” on page 53

Reading Data from the Device

Problem
You want your application to read an existing file and display the contents in a form
for further editing.

Solution
Using a FileEntry object, retrieve a File object that can be readAsDataURL or readAs
Text, which will return data as a base64-encoded url or as text, respectively.

Discussion
To read the notes.txt file that was created in the last recipe and populate the textarea
with its contents, a few updates need to occur inside the existing assets/www/scripts/
notes.js file:

var fileWriter;

function onNotesLoad() {
 window.requestFileSystem(LocalFileSystem.PERSISTENT, 0, onFSComplete, fail);
}

function onFSComplete(fileSystem) {
 // Load the notes.txt file, create it if it doesn't exist
 fileSystem.root.getFile("notes.txt", {create: true}, onFileEntryComplete, fail);
}

function onFileEntryComplete(fileEntry) {
 // read the file to preload content
 fileEntry.file(onFileReadComplete, fail);

 // set up the fileWriter
 fileEntry.createWriter(onFileWriterComplete, fail);
}

function onFileReadComplete(file) {
 var reader = new FileReader();
 reader.onloadend = function(evt) {

Reading Data from the Device | 53

www.it-ebooks.info

http://www.it-ebooks.info/

 // load it into the form
 var form = document.getElementsByTagName('form')[0].elements;
 form.notes.value = evt.target.result;
 };
 reader.readAsText(file);
}

function onFileWriterComplete(fileWriter) {
 // store the fileWriter in a
 // global variable so we have it
 // when the user presses save
 fileWriter = fileWriter;
}

function saveNotes() {
 // make sure the fileWriter is set
 if (fileWriter != null) {
 // create an oncomplete write function
 // that will redirect the user
 fileWriter.onwrite = function(evt) {
 alert("Saved successfully");
 $.mobile.changePage("index.html");
 };

 var form = document.getElementsByTagName('form')[0].elements;
 var notes = form.notes.value;

 // save the notes
 fileWriter.write(notes);
 } else {
 alert("There was an error trying to save the file");
 }

 return false;
}

function fail(error) {
 alert(error.code);
}

Because of all of the work done in the previous recipe, only two small additions were
made here. Firstly, inside of the onFileEntryComplete function, the file is loaded into a
File object via this call: fileEntry.file(onFileReadComplete, fail). When the File
object is loaded, the onFileReadComplete function is called.

The onFileReadComplete function creates a new FileReader object and reads the file as
text. An anonymous function is used when reader.onloadend has finished reading the
file. At this point, the contents of the file are set in the textarea form field named
notes, allowing the user to modify any existing notes.

See Also
“Storing Data to the Device” on page 50

54 | The Recipes

www.it-ebooks.info

http://www.it-ebooks.info/

Extending PhoneGap with Plug-ins

Problem
You want to add additional functionality to your application for a specific device that
the PhoneGap library currently doesn’t support.

Solution
Create a custom plug-in that is added to your application and invoke it with JavaScript
via the window.plugin command.

Discussion
In this example, I am going to extend the PhoneGap library by creating and using an
Android plug-in with the application. The goal of this plug-in will be to read an RSS
feed and parse the XML into an array of JSONObject objects that will be outputted in
the existing PhoneGap application. As I mentioned in the preface, I am developing on
Windows using Eclipse, so the plug-in will be for the Android only, but implementing
the plug-in is platform independent because it is done via JavaScript. In other words,
if you were to download an iPhone plug-in, it could be implemented in a similar fashion.

To create a plug-in, a new Android Project must be created. In Eclipse, select File →
New → Android Project. I am going to name the project XMLParser. For the Build Target,
select the latest Android API. The “Application name” will be XMLParserPlugin. I’ve
created the package as com.webistrate.phonegap.plugin.xmlparser (update as needed
for your package). And finally, I unchecked Create Activity.

Once the new project is added, you also need to add the PhoneGap library to your
project. Just like during the initial setup, you can copy the phonegap.jar file to a new
libs directory and add it to the Build Configuration.

Now it’s time to create some Java code (since that is how you create native Android
applications).

A core class is needed that will respond to calls from JavaScript. Add a new class called
XMLParserPlugin.java to your project. This class will extend PhoneGap’s Plugin class.
The contents of this class are as follows:

package com.webistrate.phonegap.plugin.xmlparser;

import org.json.JSONArray;
import org.json.JSONException;

import android.util.Log;

import com.phonegap.api.Plugin;
import com.phonegap.api.PluginResult;

Extending PhoneGap with Plug-ins | 55

www.it-ebooks.info

http://www.it-ebooks.info/

import com.phonegap.api.PluginResult.Status;

public class XmlParserPlugin extends Plugin {

 @Override
 public PluginResult execute(String action,
JSONArray data, String callbackId) {
 try {
 String feedUrl = data.getString(0);
 extractXMLContent(feedUrl, callbackId);
 } catch (JSONException e) {
 return new PluginResult(Status.ERROR,
"Error parsing URL");
 }

 PluginResult r = new PluginResult(
PluginResult.Status.NO_RESULT);
 r.setKeepCallback(true);
 return r;
 }

 public void extractXMLContent(String feedUrl,
String callbackId) {
 AndroidSaxFeedParser parser = new
AndroidSaxFeedParser(feedUrl);
 JSONArray messages = parser.parse();

 if (messages.length() > 0) {
 Log.d("parse",
"Sending ok result, with messages");
 PluginResult r = new PluginResult(
Status.OK, messages);
 r.setKeepCallback(true);
 success(r, callbackId);
 } else {
 Log.e("parse",
"No results found, sending error message");
 PluginResult r = new PluginResult(
Status.ERROR, "No results");
 r.setKeepCallback(true);
 error(r, callbackId);
 }
 }

}

I won’t go into too much detail about the Java code because I want to focus on what’s
needed to create the plug-in. The preceding example contains several important state-
ments to provide access to the PhoneGap Plug-in API. Because the Plugin class is being
extended, the execute function must be overridden. This acts as the landing function
when the plug-in is called via JavaScript.

The return type of the execute function is a PluginResult object. Since the XML parsing
will be done asynchronously, a success status cannot be passed back yet. Instead, the

56 | The Recipes

www.it-ebooks.info

http://www.it-ebooks.info/

extractXMLContent is called, which when completed will return a success or error mes-
sage. To avoid blocking the execution of the JavaScript call, a NO_RESULT status is re-
turned.

Inside the extractXMLContent function, a new SAX parser is created using the feedUrl
that was passed in. To create the SAX parser, I leveraged a code example from the IBM
developer site.

In the original example, an array of class Message is returned. Because the PluginRe
sult can only be a String, JSONArray, or JSONObject, I updated the code to return a
JSONArray of JSONObject objects. Again, I’ll gloss over the Java code to focus on the
plug-in itself.

Once the parsing is complete, if the JSONArray contains no elements, an error status is
sent back to the JavaScript; otherwise, a success message is sent back along with the
result of messages.

This completes the creation of the plug-in. If you plan to release the plug-in, you will
need to compile it into a jar file. This can be done via the jar tool. Otherwise, you can
simply copy the package into your existing PhoneGap project src folder.

If you choose to jar your plug-in, you will need to add it to your libs folder and update
the Build Configuration to include it the same way you first included the phone
gap.jar file.

If you wish to be able to compile and test this code, please download
the full source code from the URL provided in the preface.

Next, the plug-in must be included inside of the plugins.xml file located in the res/
xml directory. The following line should be added inside the closing plugins tag.

<plugin name="XMLParserPlugin" value="com.webistrate.
phonegap.plugin.xmlparser.XmlParserPlugin" />

Be sure to update the package path as required for your plug-in.

Next, you must create a new JavaScript file. If you plan to offer your plug-in, this
JavaScript file should be included along with your jar file for others to use. Inside of
the scripts folder, create a new file called XMLParser.js.

var XMLParser = function() {};

XMLParser.prototype.parse = function(successCallback,
 failureCallback, feedUrl) {
 return PhoneGap.exec(successCallback,
 failureCallback, 'XMLParserPlugin', '',
 [feedUrl]);
};

Extending PhoneGap with Plug-ins | 57

www.it-ebooks.info

http://www.ibm.com/developerworks/opensource/library/x-android/
http://www.ibm.com/developerworks/opensource/library/x-android/
http://download.oracle.com/javase/1.4.2/docs/tooldocs/windows/jar.html
http://www.it-ebooks.info/

PhoneGap.addConstructor(function() {
 PhoneGap.addPlugin("xmlParser", new XMLParser());
});

This JavaScript code creates a new XMLParser class that is added as a plug-in via the
PhoneGap.addPlugin command. A new function called parse tells PhoneGap to execute
the XMLParserPlugin via the PhoneGap.exec call. The URL specified by the caller for the
feed, feedUrl, is passed in as a parameter.

The plug-in is now ready for use. For a working demonstration, create a new file called
plugin.html inside of your assets/www directory.

<!DOCTYPE HTML>
<html>
<head>
 <title>PhoneGap</title>
</head>
<body>
 <div data-role="page" id="plugin-page">
 <div data-role="header" data-position="inline">
 <h1>Webistrate Articles</h1>
 </div>

 <ul id="xmlList" data-role="listview">

 <div data-role="footer" data-position="fixed">
 <div data-role="navbar">

 Home
 Map
 Compass
 List
 Contacts
 Photos
 Notify
 Notes
 <a href="plugin.html"
class="ui-btn-active">Plugin

 </div>
 </div>

 <script type="text/javascript" charset="utf-8"
 src="scripts/XMLParser.js"></script>
 <script type="text/javascript" charset="utf-8"
 src="scripts/plugin.js"></script>
 </div>
</body>
</html>

This HTML initializes an empty listview that will be populated with the results of the
RSS feed. At the bottom of this file, the previously created XMLParser.js file is included

58 | The Recipes

www.it-ebooks.info

http://www.it-ebooks.info/

as well as a new plugin.js file. The final step is to create the new plugin.js file inside of
the assets/www/scripts folder.

function onPluginLoad() {
 window.plugins.xmlParser.parse(parseSuccess,
 parseFail, "http://feeds.feedburner.com/Webistrate");
}

function parseSuccess(result) {
 for (var i = 0; i < result.length; i++) {
 $("#xmlList").append("<a href=\"" +
result[i].link + "\">" + result[i].title + "");
 }

 $("#xmlList").listview('refresh');
}

function parseFail(error) {
 alert('fail = ' + error);
}

The plug-in is called via the window.plugins.xmlParser.parse function. It accepts three
parameters: the callback to invoke upon success, the callback to invoke upon failure,
and the URL of the RSS feed to parse. When the parsing is finished, the parseSuccess
function is called with the results. This function simply loops through the results and
appends a new li tag containing the title of the article from the RSS feed as well as a
link to it.

There are already several great plug-ins created by the PhoneGap community. Enjoy
them for use in your application as well as for learning purposes.

Extending PhoneGap with Plug-ins | 59

www.it-ebooks.info

https://github.com/phonegap/phonegap-plugins
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

About the Author
Jamie Munro, the author of 20 Recipes for Programming MVC 3 (O’Reilly), has been
developing websites and web applications for over 15 years. For the past six years, Jamie
has been acting as a lead developer by mentoring younger developers to enhance their
web development skills. Taking his love of mentoring people, Jamie began his writing
career on his personal blog back in 2009. As the success of Jamie’s blog grew, he turned
his writing passion to books about web development. As well as writing books, Jamie
is currently in the process of starting a new website that is geared towards helping web
developers further expand their experience with many online examples using MVC3,
CakePHP, CodeIgniter, jQuery, Database Optimization, and Search Engine Optimi-
zation.

www.it-ebooks.info

http://shop.oreilly.com/product/0636920021407.do
http://www.endyourif.com
http://www.webistrate.com
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

	Table of Contents
	Preface
	About the Book
	Prerequisites
	Conventions Used in This Book
	Tools
	Using Code Examples
	Safari® Books Online
	How to Contact Us
	Acknowledgments

	The Recipes
	Determining Whether the Device Is Ready
	Problem
	Solution
	Discussion
	See Also

	Retrieving Information About the Device
	Problem
	Solution
	Discussion

	Creating a Persistent Navigation System
	Problem
	Solution
	Discussion
	See Also

	Detecting the Device’s Network Status
	Problem
	Solution
	Discussion
	See Also

	Detecting When the Network Status Changes
	Problem
	Solution
	Discussion

	Executing a Callback Function Once the Device Is Ready
	Problem
	Solution
	Discussion
	See Also

	Detecting When the App Is Moved to the Background or Foreground
	Problem
	Solution
	Discussion

	Using the GPS and Displaying a Position on a Map
	Problem
	Solution
	Discussion
	See Also

	Using the Compass to Help the User Navigate
	Problem
	Solution
	Discussion
	See Also

	Using the Accelerometer to Detect Motion
	Problem
	Solution
	Discussion

	Displaying Table-View Data
	Problem
	Solution
	Discussion

	Retrieving Contacts in the Address Book
	Problem
	Solution
	Discussion
	See Also

	Creating a New Contact in the Address Book
	Problem
	Solution
	Discussion
	See Also

	Accessing the Camera and Photo Album
	Problem
	Solution
	Discussion

	Saving Data to a Remote Server
	Problem
	Solution
	Discussion

	Capturing Audio and Video
	Problem
	Solution
	Discussion
	See Also

	Notifying the Device with Alert, Confirm, and Vibrate
	Problem
	Solution
	Discussion

	Storing Data to the Device
	Problem
	Solution
	Discussion
	See Also

	Reading Data from the Device
	Problem
	Solution
	Discussion
	See Also

	Extending PhoneGap with Plug-ins
	Problem
	Solution
	Discussion

