
www.it-ebooks.info

http://www.it-ebooks.info/

PhoneGap Mobile
Application
Development
Cookbook

Over 40 recipes to create mobile applications using the
PhoneGap API with examples and clear instructions

Matt Gifford

BIRMINGHAM - MUMBAI

www.it-ebooks.info

http://www.it-ebooks.info/

PhoneGap Mobile Application Development
Cookbook

Copyright © 2012 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly or
indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt
Publishing cannot guarantee the accuracy of this information.

First published: October 2012

Production Reference: 1151012

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-84951-858-1

www.packtpub.com

Cover Image by Neha Rajappan (neha.rajappan1@gmail.com)

www.it-ebooks.info

http://www.it-ebooks.info/

Credits

Author
Matt Gifford

Reviewers
Raymond Camden

Shaun Dunne

Andrey Rebrov

Acquisition Editor
Usha Iyer

Lead Technical Editor
Unnati Shah

Technical Editor
Jalasha D'costa

Project Coordinator
Joel Goveya

Proofreader
Mario Cecere

Indexer
Hemangini Bari

Graphics
Valentina D'silva

Production Coordinator
Manu Joseph

Cover Work
Manu Joseph

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Foreword

In the summer of 2007, Steve Jobs changed the world by releasing the iPhone and boldly
declared the future was web-based applications. A short year later, the story changed, but the
vision remained. At this time I was working as "acting CTO" for a very small web consultancy
called Nitobi (we gave ourselves joke titles and mine was actually SPACELORD!1!!). The iPhone
SDK, not yet called iOS SDK, was just released and a few of my colleagues found themselves
at Adobe in San Francisco for the iPhone Dev Camp. They arrived with the ambiguous idea
to discover if it actually was possible to realize web technology for app development. Rob
Ellis, Brock Whitten, and Eric Osterly succeeded in bridging the UIWebView to make native
calls, and the first implementation of PhoneGap was born. A very short time later, Joe Bowser
built an Android implementation. Dave Johnson, Nitobi's "real CTO", followed quickly with
the BlackBerry implementation. Herein, PhoneGap got real. And then, less than a year from
the first commits, in the spring of 2009, I found myself giving one of the first PhoneGap
presentations at the first JSConf, and despite me being terribly scared, people loved it.

Perhaps developers only loved the meme and the expletive-heavy presentation style I relied
on to mask my terror. But perhaps developers really loved being treated like cohorts in a bigger
plan, and respected by a technology instead of being locked into another proprietary ghetto.

We were, and still are, web developers with a strong bias for composing our own stacks from
open source code. We want to be writing web apps, with technology of our choosing, and not
paying for the right to do so. We didn't want a PhoneGap to exist, and so it is the goal of the
project to see this thing through to obsolescence. This work continues under the stewardship
of the Apache Software foundation under the name Apache Cordova. Defining our vision, and
planning our execution to our end has been my primary role in the project since inception, in
addition to meme, and expletive, heavy presentations.

Today PhoneGap is a robust, mature, well-tested, and a regularly released software project.
There are 30 full-time core committers with us at Apache from a range of sponsoring
organizations, and many hundreds more pitching in every day. All major operating systems
are supported, our docs are comprehensive, the CLI tooling makes common mobile dev
workflows trivial, the APIs cover all the common device capabilities, and we have a well
documented plugin interface for extending beyond the browser.

www.it-ebooks.info

http://www.it-ebooks.info/

Matt Gifford has been a long time supporter and hacker of PhoneGap, and his book brings
his hard-won experience back to you. In this text you will find the specific areas you need to
tackle, be it accessing the device sensors (such as geolocation) or the system data (such as
the filesystem or perhaps the phone contacts). You will have a handy reference for dealing
with rich media such as images, audio, and video.

Writing HTML, CSS, and JavaScript can be daunting and Matt has thankfully given you two
great options to get started with, they are, XUI and jQuery Mobile. Finally, when you need to
take your app beyond default PhoneGap and expose native capability you can learn all about
the PhoneGap Plugin API.

Building applications for mobile devices is hard work but using PhoneGap makes that job a
whole lot easier, and more portable to the inevitable future web. Matt's book will help you get
there now. Have fun, and if you need any help at all, don't hesitate to find me (or Matt) online.

Brian Leroux,
Senior Product Manager, PhoneGap Lead
and SPACELORD!1!!, Adobe Systems Ltd

www.it-ebooks.info

http://www.it-ebooks.info/

About the Author

Matt Gifford is an RIA developer from Cambridge, England, who specializes in ColdFusion,
web application, and mobile development. With over ten years industry experience across
various sectors, Matt is owner of Monkeh Works Ltd. (www.monkehworks.com).

A regular presenter at national and international conferences, he also contributes articles
and tutorials in leading international industry magazines, as well as publishing on his blog
(www.mattgifford.co.uk).

As an Adobe Community Professional for ColdFusion, Matt is an advocate of community
resources and industry-wide knowledge sharing, with a focus on encouraging the next
generation of industry professionals.

Matt is the author of Object-Oriented Programming in ColdFusion and numerous open source
applications, including the popular monkehTweets twitter API wrapper.

First and foremost, my thanks go to all the talented PhoneGap developers
for their innovative and inspiring project. Without you this book would be a
ream of blank pages.

www.it-ebooks.info

http://www.it-ebooks.info/

About the Reviewers

Raymond Camden is a senior developer evangelist for Adobe. His work focuses
on web standards, mobile development, and ColdFusion. He's a published author and
presents at conferences and user groups on a variety of topics. Raymond can be reached
at his blog (www.raymondcamden.com), @cfjedimaster on Twitter, or via e-mail at
raymondcamden@gmail.com.

Shaun Dunne is a developer working for SapientNitro in London, UK and has been coding
since 2008 with a passion for JavaScript and all the frontend goodness. Working for a large
agency, over the past few years, Shaun has had the chance to use various web technologies
to build large scale applications and found a passion for getting other people excited about
the web.

Shaun has been hacking the mobile web for a couple of years, trying and testing all the tools
available, and sharing his discoveries where he can to ensure that others are aware of what
is available to use and in what situation.

When he's not working or spending some family time with his kids, he can usually be found
on the web, tinkering, blogging, and building things. He's currently working on his own book,
a self-published title about SASS and Friends called UberCSS due to be released in the Winter
of 2012.

www.it-ebooks.info

http://www.it-ebooks.info/

Andrey Rebrov started as a software developer in Magenta Technology – a big British
software company specializing in enterprise java solutions and has worked with them for
more than three years. Andrey now works as agile engineering coach in ScrumTrek, Russia.

As an engineering coach, he helps teams with learning and adopting XP practice, as TDD.
A big part of his job is building the Russian Software Craftsmanship Community.

At work, he also uses innovation and agile games and at the moment, works on innovation
games popularization in Russia and Russian communities.

Andrey has even worked on PhoneGap: Beginner's Guide.

I would like to thank Joel Goveya for his help and patience during review.

I would like to thank my parents for providing me with the opportunity to be
where I am. Without them, none of this would even be possible. You have
always been my biggest support and I appreciate that.

And last but not the least, thanks to my wife, Tatyana, who always gives me
strength and hope.

www.it-ebooks.info

http://www.it-ebooks.info/

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
ff Fully searchable across every book published by Packt

ff Copy and paste, print and bookmark content

ff On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

www.it-ebooks.info

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
http://PacktLib.PacktPub.com
http://www.packtpub.com/
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Dedicated to Arthur George Wood. Thank you for so many happy memories,
for a wonderful childhood and for showing me the man I want to be.

I love you, Granddad.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents
Preface	 1
Chapter 1: Movement and Location: Using the Accelerometer and
Geolocation Sensors	 7

Introduction	 7
Detecting device movement using the accelerometer	 8
Adjusting the accelerometer sensor update interval	 12
Updating a display object position through accelerometer events	 17
Obtaining device geolocation sensor information	 23
Adjusting the geolocation sensor update interval	 28
Retrieving map data through geolocation coordinates	 33
Creating a visual compass to show the devices direction	 40

Chapter 2: File System, Storage, and Local Databases	 47
Introduction	 47
Saving a file to device storage	 47
Opening a local file from device storage	 52
Displaying the contents of a directory	 57
Creating a local SQLite database	 61
Uploading a file to a remote server	 66
Caching content using the web storage local storage API	 70

Chapter 3: Working with Audio, Images, and Video	 79
Introduction	 79
Capturing audio using the devices audio recording application	 79
Recording audio within your application	 85
Playing audio files from the local filesystem or over HTTP	 90
Capturing video using the devices video recording application	 96
Loading a photograph from the devices camera roll/library	 101
Applying an effect to an image using canvas	 105

www.it-ebooks.info

http://www.it-ebooks.info/

ii

Table of Contents

Chapter 4: Working with Your Contacts	 111
Introduction	 111
Listing all available contacts	 111
Displaying contact information for a specific individual	 117
Creating and saving a new contact	 122

Chapter 5: Hook into Native Events	 131
Introduction	 131
Pausing your application	 131
Resuming your application	 134
Displaying the status of the device battery levels	 138
Making use of the native search button	 145
Displaying network connection status	 149
Creating a custom submenu	 155

Chapter 6: Working with XUI	 161
Introduction	 161
Learning the basics of the XUI library	 163
DOM manipulation	 171
Working with touch and gesture events	 175
Updating element styles	 178
Working with remote data and AJAX requests	 183
Animating an element	 187

Chapter 7: User Interface Development with jQuery Mobile	 193
Introduction	 193
Creating a jQuery Mobile layout	 193
Persisting data between jQuery Mobile pages	 203
Using jQuery Mobile ThemeRoller	 210

Chapter 8: Extending PhoneGap with Plugins	 217
Introduction	 217
Extending your Cordova application with a native plugin	 218
Extending your Cordova iOS application with a native plugin	 226
The plugin repository	 236

Chapter 9: Development Tools and Testing	 239
Introduction	 239
Downloading Cordova	 240
Using the command line to create a new iOS Cordova project	 242
Using Xcode templates for iOS to develop Cordova applications	 247
Using Eclipse to develop Android Cordova applications	 258

www.it-ebooks.info

http://www.it-ebooks.info/

iii

Table of Contents

Controlling your Android Virtual Device	 270
Using Adobe Dreamweaver to develop Cordova applications	 274
Using the PhoneGap Build service	 282

Index	 291

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Preface
We live in an ever-evolving technological landscape, and the transition from the traditional web
for desktop machines to mobile devices is now of more importance than ever. With the constant
advancement in mobile technology and device capabilities, as well as increasing user adoption
and the preference to access content or interact with services through the mobile format, it is
not surprising that more organizations and individual developers want to hook into this exciting
format, whether it's for marketing purposes, the creation of an amazing new application to
generate a revenue stream and financial income, or simply to experiment with the software
and solutions available.

Which platform do you target? Which language do you write in? The implications of developing
mobile applications can raise questions such as these. It may mean that you have to consider
learning a new language such as Objective-C, Java, or C++ to create your applications for
each platform. This alone potentially brings with it a number of costs: the financial cost of
learning a new language, including time and resource material, and the cost of managing
your development workflow effectively. If we then consider pushing the same application to
a number of platforms and operating systems, these costs increase and the management of
each codebase becomes harder to maintain and control.

PhoneGap aims at removing these complications and the worry of having to develop
platform-specific applications using the supported native language for each operating
system by letting developers build cross-platform applications using HTML, CSS, and
JavaScript, existing web technologies that are familiar to most if not all of us.

This drastically opens the gateway to creating natively installed mobile applications to all
web developers and designers, empowering them to use the language skills they already
have to develop something specifically for mobile platforms.

We can then add into this the ability to tap into the device's native functionality such as
geolocation and GPS, accelerometer, camera, video, and audio capture among other
capabilities, implemented using the PhoneGap JavaScript API, and your HTML applications
instantly become detailed apps with incredibly powerful features.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

2

PhoneGap Mobile Application Development Cookbook will demonstrate a variety of examples
to help you enhance your applications using the PhoneGap API. This book contains everything
you need to get started with, to experience mobile application development using the PhoneGap
library through the step-by-step examples and recipes found within.

PhoneGap or Cordova
Throughout this book you may find that the terms Cordova and PhoneGap are used
interchangeably. Both refer to exactly the same open source platform and library to
enable you to create native mobile applications built using HTML, JavaScript, and CSS.

In 2011, the PhoneGap codebase moved to an open source Apache Software Foundation
project under the name Cordova. Adobe still distributes the library under the PhoneGap name.
Although both of the project names are referenced in this publication, it is by design and not
meant to cause confusion. Essentially, both the PhoneGap and Cordova projects are the same,
and refer to the same free, open source library.

Brian Leroux has also written a blog post outlining the name change and the differences
between the two projects and any impact if at all they may have on developers, project
contributors, and the PhoneGap community in general.
http://phonegap.com/2012/03/19/phonegap-cordova-and-what%E2%80%99s-
in-a-name/

Help is at hand
While a lot of information is included in this book to cover the various methods and functions
available through the PhoneGap library, there may be features that aren't covered here that
you need answers for. During the writing process for this book, the project itself went through
a number of version releases, the latest being version 2.0, and as new versions are released,
inevitably some properties, minor functions, and details change.

If you do require assistance with any PhoneGap projects or code, there are a few extra
resources available to you to ensure you constantly get the latest information.

First, the official PhoneGap documentation, available at http://docs.phonegap.com/
en/2.1.0/index.html, covers available API methods, features, and properties. While
the material may cover some of the same ground, if for any reason something within this
publication is puzzling or causing confusion, check out the official documentation for a
second explanation and some extra clarity.

Second, the PhoneGap Google group forum, available at groups.google.com/group/
phonegap, provides an open discussion list for PhoneGap developers, contributors, and
users covering a wide variety of topics. Here you can post questions and see what issues
other community members may be facing. The PhoneGap community is passionate, helpful
and considerate, and someone will be able to help you. You may even be able to help others
with their issues. Knowledge and experience is better when it is shared.

www.it-ebooks.info

http://docs.phonegap.com/en/2.1.0/index.html
http://docs.phonegap.com/en/2.1.0/index.html
http://www.it-ebooks.info/

Preface

3

What this book covers
Chapter 1, Movement and Location: Using the Accelerometer and Geolocation Sensors,
demonstrates how we can create applications that have the ability to determine a user's
geographic location, as well as detecting movement using the device's accelerometer.

Chapter 2, File System, Storage, and Local Databases, provides the reader with the details
required to read and write files to the device storage, create and manage SQLite databases,
upload and download files to and from remote servers, and store application content using
local storage APIs.

Chapter 3, Working with Audio, Images, and Video, discusses how to create multimedia-rich
applications using the device capabilities and hardware to capture audio, video and images,
as well as audio playback and streaming.

Chapter 4, Working with Your Contacts, describes how to access and work with the contacts
database on your device.

Chapter 5, Hook into Native Events, demonstrates how to employ and extend the native
events on your device to manage pausing and resuming your application, as well as creating
custom functions to detect connectivity changes and device battery levels.

Chapter 6, Working with XUI, explains the features and methods available to use from the
lightweight XUI JavaScript library.

Chapter 7, User Interface Development with jQuery Mobile, guides the user through the
processes of using the jQuery Mobile framework to create a simple mobile application,
including page transitions and "near-native" user interface elements.

Chapter 8, Extending PhoneGap with Plugins, describes how to extend the PhoneGap API
and available methods by creating custom plugins.

Chapter 9, Development Tools and Testing, demonstrates a number of options available
to create your mobile application development environment and the tools available to help
streamline your workflow.

What you need for this book
You will need a computer, a web browser, and a code editor of your choice. Some code
editors include features and functions that have been designed to assist you specifically
with PhoneGap mobile application development, and some of these are described in
Chapter 9, Development Tools and Testing, of this book. Dreamweaver CS5.5 and CS6,
for example, include support for PhoneGap and the PhoneGap Build service.

Ultimately, you can develop mobile applications using the Cordova/PhoneGap library for free.
It costs nothing to download the library, and you can write HTML, CSS, and JavaScript using
any text editor you have available or are comfortable with. Even running the applications on
a device emulator won't cost you anything, as they are also freely available for download.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

4

Who this book is for
This book is for anyone with prior exposure to HTML, CSS, and JavaScript development,
regardless of skill set, and for anyone looking to enter the world of mobile application
development, or those wishing to enhance their existing HTML applications with
mobile-specific features and functions.

Conventions
In this book, you will find a number of styles of text that distinguish between different kinds of
information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text are shown as follows: " Set the id attribute to contactList, the data-
role to listview, and the data-inset attribute to true. "

A block of code is set as follows:

function alphabeticalSort(a, b) {
 if (a.name.formatted < b.name.formatted){
 return -1;
 }else if (a.name.formatted > b.name.formatted){
 return 1;
 }else{
 return 0;
 }

When we wish to draw your attention to a particular part of a code block, the relevant lines or
items are set in bold:

<div data-role="page" id="contact-info">

 <div id="contact_header" data-role="header">
 <a href="#contacts-home" id="back" data-icon="back"
 data-direction="reverse">Back
 <h1></h1>
 </div>

</div>

 Any command-line input or output is written as follows:

power ac off
power status not-charging
power capacity 10

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

5

New terms and important words are shown in bold. Words that you see on the screen,
in menus or dialog boxes for example, appear in the text like this: " select the Settings
tab within the project view and click on the enable hydration button ".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or may have disliked. Reader feedback is important for us to develop
titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, and
mention the book title through the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Downloading the example code
This book contains many code samples throughout the recipes. To make life a little easier
for you, the complete code for each recipe is available to download from the public GitHub
repository setup for this book: https://github.com/coldfumonkeh/PhoneGap-
Cookbook. The GitHub repository may be updated as any possible typing mistakes are
discovered in the book. As a result, it is a possibility that the code may not exactly match
the text in the book.

If you are not familiar with GitHub, simply click on the Downloads tab and then either
Download as zip or Download as tar.gz to get an archived collection of all of the files.

You can extract these files to any location on your local machine where you easily open them.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

6

You can also download the example code files for all Packt books you have purchased from
your account at http://www.packtpub.com. If you purchased this book elsewhere, you
can visit http://www.packtpub.com/support and register to have the files e-mailed
directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do happen.
If you find a mistake in one of our books—maybe a mistake in the text or the code—we would be
grateful if you would report this to us. By doing so, you can save other readers from frustration
and help us improve subsequent versions of this book. If you find any errata, please report them
by visiting http://www.packtpub.com/support, selecting your book, clicking on the errata
submission form link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website, or added to any list
of existing errata, under the Errata section of that title.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated material.

We appreciate your help in protecting our authors, and our ability to bring you valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with any
aspect of the book, and we will do our best to address it.

www.it-ebooks.info

http://www.packtpub.com
http://www.packtpub.com/support
mailto:copyright@packtpub.com
http://www.it-ebooks.info/

1
Movement and

Location: Using the
Accelerometer and

Geolocation Sensors
In this chapter we will cover the following recipes:

ff Detecting device movement using the accelerometer

ff Adjusting the accelerometer sensor update interval

ff Updating a display object position through accelerometer events

ff Obtaining device geolocation sensor information

ff Adjusting the geolocation sensor update interval

ff Retrieving map data through geolocation coordinates

ff Creating a visual compass to show the device direction

Introduction
Mobile devices are incredibly powerful tools that not only allow us to make calls and send
messages, but can also help us navigate and find out where we are in the world, thanks to
the accelerometer, geolocation, and other sensors.

This chapter will explore how we can access these sensors and make use of this exposed
functionality in helpful applications that can be built in any IDE using the PhoneGap API.

www.it-ebooks.info

http://www.it-ebooks.info/

Movement and Location: Using the Accelerometer and Geolocation Sensors

8

Detecting device movement using the
accelerometer

The accelerometer captures device motion in the x, y, and z -axis directions. The
accelerometer is a motion sensor that detects the change (delta) in movement
relative to the current device orientation.

How to do it...
We will use the accelerometer functionality from the PhoneGap API to monitor the feedback
from the device:

1.	 First, create the initial HTML layout and include the required script reference to
the cordova-2.0.0.js file:
<!DOCTYPE html>
<html>
<head>
 <meta name="viewport" content="user-scalable=no,
 initial-scale=1, maximum-scale=1,
 minimum-scale=1, width=device-width;" />

 <title>Accelerometer Data</title>

 <script type="text/javascript"
 src="cordova-2.0.0.js"></script>

 <!-- Add PhoneGap script here -->

 </head>
 <body>

 <h1>Accelerometer Data</h1>

 <div id="accelerometerData">Obtaining data...</div>

 </body>
</html>

Downloading the example code
You can download the example code files for all Packt books you have
purchased from your account at http://www.packtpub.com. If you
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

9

2.	 Below the Cordova JavaScript reference, write a new JavaScript tag block and
define an event listener to ensure the device is ready and the native code has loaded
before continuing:
<script type="text/javascript">

 // Set the event listener to run
// when the device is ready
 document.addEventListener(
 "deviceready", onDeviceReady, false);

</script>

3.	 We will now add in the onDeviceReady function which will run the
getCurrentAcceleration method when the native code has fully loaded:
// The device is ready so let's
// obtain the current accelerometer data
function onDeviceReady() {
 navigator.accelerometer.getCurrentAcceleration(
 onSuccess, onError);
}

4.	 Include the onSuccess function to handle the returned information from
the accelerometer.

5.	 We now define the accelerometer div element to the accElement variable to
hold our generated accelerometer results.

6.	 Next, we assign the returned values from the acceleration object as the HTML
within the accelerometer div element for display to the user. The available
properties are accessed through the acceleration object and applied to the
string variable:
// Run after successful transaction
// Let's display the accelerometer data
function onSuccess(acceleration) {
 var accElement =
 document.getElementById('accelerometerData');

 accElement.innerHTML =
 'Acceleration X: ' + acceleration.x + '
' +
 'Acceleration Y: ' + acceleration.y + '
' +
 'Acceleration Z: ' + acceleration.z + '
' +
 'Timestamp: ' + acceleration.timestamp;
}

www.it-ebooks.info

http://www.it-ebooks.info/

Movement and Location: Using the Accelerometer and Geolocation Sensors

10

7.	 Finally, include the onError function to deal with any possible issues:
// Run if we face an error
// obtaining the accelerometer data
function onError(error) {
 // Handle any errors we may face
 alert('error');
}

8.	 When we run the application on a device, the output will look something like the
following screenshot:

How it works...
By registering an event listener to the deviceready event we are ensuring that the JavaScript
code does not run before the native PhoneGap code is executed. Once ready, the application
will call the getCurrentAcceleration method from the accelerometer API, providing two
methods to handle successful transactions and errors respectively.

The onSuccess function returns the obtained acceleration information in the form of the
following four properties:

ff acceleration.x: A number value, registered in m/s^2, that measures the device
acceleration across the X axis. This is the movement from left to right when the device
is placed with the screen facing an upright position. Positive acceleration is obtained
as the device is moved to the right, whereas a negative movement is obtained when
the device is moved to the left.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

11

ff acceleration.y: A Number value, registered in m/s^2, that measures the device
acceleration across the Y axis. This is the movement from bottom to top when the
device is placed with the screen facing an upright position. Positive acceleration is
obtained as the device is moved upwards, whereas a negative movement is obtained
when the device is moved downwards.

ff acceleration.z: A Number value, registered in m/s^2, that measures the device
acceleration across the Z axis. This is a perpendicular from the face of the device.
Positive acceleration is obtained when the device is moved to face towards the
sky, whereas a negative movement is obtained when the device is pointed towards
the Earth.

ff acceleration.timestamp: A DOMTimeStamp object that measures the
amount of milliseconds from the point of the application's initialization. This could
be used to store, update, and track changes over a period of time since the last
accelerometer update.

The following figure shows the X, Y, and Z Axes in relation to the device:

Z-Axis

X-Axis
Y-Axis

The acceleration.x, acceleration.y and acceleration.z values returned from
the acceleration object previously mentioned include the effect of gravity, which is defined
as precisely 9.81 meters per second squared (9.81 m/s^2).

www.it-ebooks.info

http://www.it-ebooks.info/

Movement and Location: Using the Accelerometer and Geolocation Sensors

12

There's more...
Accelerometer data obtained from the device has been used to a great effect in mobile
handset games that require balance control and detection of movement including steering,
control views, and tilting objects.

You can check out the official Cordova documentation covering the
getCurrentAcceleration method and obtaining accelerometer data at:
http://docs.phonegap.com/en/2.0.0/cordova_
accelerometer_accelerometer.md.html#accelerometer.
getCurrentAcceleration.

Adjusting the accelerometer sensor update
interval

The getCurrentAcceleration method obtains the data from the accelerometer at the
time it was called – a single call to obtain a single response object. In this recipe, we'll build an
application that allows us to set an interval to obtain a constant update from the accelerometer
to detect continual movement from the device.

How to do it...
We will provide additional parameters to a new method available through the PhoneGap API
to set the update interval:

1.	 Firstly, create the initial HTML layout and include the required script reference to the
cordova-2.0.0.js file:
<!DOCTYPE html>
<html>
<head>
 <meta name="viewport" content="user-scalable=no,
 initial-scale=1, maximum-scale=1,
 minimum-scale=1, width=device-width;" />

 <title>Accelerometer Data</title>

 <script type="text/javascript"
 src="cordova-2.0.0.js"></script>

 <!-- Add PhoneGap script here -->

 </head>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

13

 <body>

 <h1>Accelerometer Data</h1>

 <div id="accelerometerData">Obtaining data...</div>

 </body>
</html>

2.	 Below the Cordova JavaScript reference, write a new JavaScript tag block, within
which we'll declare a variable called watchID.

3.	 Next, we'll define an event listener to ensure the device is ready and the native code
has loaded before continuing:
<script type="text/javascript">

 // The watch id variable is set as a
 // reference to the current 'watchAcceleration'
 var watchID = null;

 // Set the event listener to run
// when the device is ready
 document.addEventListener(
 "deviceready", onDeviceReady, false);

</script>

4.	 We will now add in the onDeviceReady function which will run a method called
startWatch once the native code has fully loaded:
// The device is ready so let's
// start watching the acceleration
function onDeviceReady() {
 startWatch();
}

5.	 We'll now write the startWatch function. Firstly, we'll create a variable called
options to hold the optional frequency parameter, set to 3000 milliseconds
(three seconds).

6.	 We will then set the initial disabled properties of two buttons that will allow the
user to start and stop the acceleration detection.

7.	 Next we will assign the watchAcceleration to the previously defined watchID
variable. This will allow us to check for a value or if it is still set to null.

www.it-ebooks.info

http://www.it-ebooks.info/

Movement and Location: Using the Accelerometer and Geolocation Sensors

14

8.	 As well as defining the success and error function names we are also sending the
options variable into the method call, which contains the frequency value:
// Watch the acceleration at regular
// intervals as set by the frequency
function startWatch() {

 // Set the frequency of updates
 // from the acceleration
 var options = { frequency: 3000 };

 // Set attributes for control buttons
 document.getElementById('startBtn').disabled = true;
 document.getElementById('stopBtn').disabled = false;

 // Assign watchAcceleration to the watchID variable
 // and pass through the options array
 watchID = navigator.accelerometer.watchAcceleration(
 onSuccess, onError, options);
}

9.	 With the startWatch function written, we now need to provide a method to stop the
detection of the acceleration. This firstly checks the value of the watchID variable. If
this is not null it will stop watching the acceleration using the clearWatch method,
passing in the watchID parameter before resetting this variable back to null.

10.	 We then reference the accelerometer div element and set its value to a user-
friendly message.

11.	 Next, we reassign the disabled properties for both of the control buttons to allow
the user to start watching again:
// Stop watching the acceleration
function stopWatch() {

 if (watchID) {
 navigator.accelerometer.clearWatch(watchID);
 watchID = null;

 var element =
 document.getElementById('accelerometerData');

 element.innerHTML =
 'No longer watching your acceleration.'

 // Set attributes for control buttons
 document.getElementById('startBtn').disabled = false;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

15

 document.getElementById('stopBtn').disabled = true;

 }

}

12.	 Now we need to create the onSuccess method, which will be run after a successful
update response. We assign the returned values from the acceleration object
as the HTML within the accelerometer div element for display to the user. The
available properties are accessed through the acceleration object and applied
to the string variable:
// Run after successful transaction
// Let's display the accelerometer data
function onSuccess(acceleration) {
 var element = document.getElementById('accelerometerData');
 element.innerHTML =
 'Acceleration X: ' + acceleration.x + '
' +
 'Acceleration Y: ' + acceleration.y + '
' +
 'Acceleration Z: ' + acceleration.z + '
' +
 'Timestamp: ' + acceleration.timestamp + '
';
}

13.	 We also need to supply the onError method to catch any possible issues with the
request. Here we will output a user-friendly message, setting it as the value of the
accelerometerData div element:
// Run if we face an error
// obtaining the accelerometer data
function onError() {
 // Handle any errors we may face
 var element = document.getElementById('accelerometerData');
 element.innerHTML =
 'Sorry, I was unable to access the acceleration data.';
}

14.	 Finally, we will add in the two button elements, both of which will have an onClick
attribute set to either start or stop watching the device acceleration:
<body>
 <h1>Accelerometer Data</h1>

 <button id="startBtn"
 onclick="startWatch()">start</button>

 <button id="stopBtn"
 onclick="stopWatch()">stop</button>

www.it-ebooks.info

http://www.it-ebooks.info/

Movement and Location: Using the Accelerometer and Geolocation Sensors

16

 <div id="accelerometerData">Obtaining data...</div>

</body>

15.	 The results will appear similar to the following screenshot:

16.	 Stopping the acceleration watch will look something like the following screenshot:

How it works...
By registering an event listener to the deviceready event we are ensuring that the JavaScript
code does not run before the native PhoneGap code is executed. Once ready, the application will
call the startWatch function, within which the desired frequency interval for the acceleration
updates is set.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

17

The watchAcceleration method from the PhoneGap API retrieves the device's current
acceleration data at the interval specified. If the interval is not passed through, it defaults to
10000 milliseconds (ten seconds). Each time an update has been obtained, the onSuccess
method is run to handle the data as you wish, in this case displaying the results on the screen.

The watchID variable contains a reference to the watch interval and is used to stop the
watching process by being passed in to the clearWatch method from the PhoneGap API.

There's more...
In this example the frequency value for the accelerometer update interval was set at 3000
milliseconds (three seconds). Consider writing a variation on this application that allows the
user to manually change the interval value using a slider or by setting the desired value into
an input box.

You can find out more about the watchAcceleration method via
the official Cordova documentation: http://docs.phonegap.
com/en/2.0.0/cordova_accelerometer_accelerometer.
md.html#accelerometer.watchAcceleration.

Updating a display object position through
accelerometer events

Developers can make use of the accelerometer sensor and continual updates provided by
it for many things including motion-detection games as well as updating the position of an
object on the screen.

How to do it...
We will use the device's accelerometer sensor on continual update to move an element around
the screen as a response to device movement. This is achieved through the following steps:

1.	 Let's start by creating our initial HTML layout. Include the Cordova JavaScript
reference in the head tag to import the required library.

2.	 Within the body tag create two div elements. Set the first with the id attribute
equal to dot. This will be the element we move around the screen of the device.

3.	 The second div element will have the ID of accelerometerData and will be
the container into which our returned acceleration data will be output:
<!DOCTYPE html>
<html>
 <head>

www.it-ebooks.info

http://www.it-ebooks.info/

Movement and Location: Using the Accelerometer and Geolocation Sensors

18

 <meta name="viewport" content="user-scalable=no,
 initial-scale=1, maximum-scale=1,
 minimum-scale=1, width=device-width;" />

 <title>Accelerometer Movement</title>
 <script type="text/javascript"
 src="cordova-2.0.0.js"></script>

 </head>
 <body>
 <h1>Accelerometer Movement</h1>

 <div id="dot"></div>

 <div id="accelerometerData">Obtaining data...</div>

 </body>
</html>

4.	 We can now start with our custom scripting and PhoneGap implementation. Add a
script tag block before the closing head tag to house our code:
<head>
 <meta name="viewport" content="user-scalable=no,
 initial-scale=1, maximum-scale=1,
 minimum-scale=1, width=device-width;" />

 <title>Accelerometer Movement</title>
 <script type="text/javascript"
 src="cordova-2.0.0.js"></script>

 <script type="text/javascript">

 </script>

</head>

5.	 Before we dive into the core code, we need to declare some variables. Here we are
setting a default value for watchID as well as the radius for the circle display object
we will be moving around the screen:
// The watch id variable is set as a
// reference to the current `watchAcceleration`
var watchID = null;

// The radius for our circle object
var radius	 = 50;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

19

6.	 We now need to declare the event listener for PhoneGap, as well as the
onDeviceReady function, which will run once the native PhoneGap code
has been loaded:
// Set the event listener to run when the device is ready
document.addEventListener("deviceready",
 onDeviceReady, false);

// The device is ready so let's
// start watching the acceleration
function onDeviceReady() {

 startWatch();

}

7.	 The onDeviceReady function will execute the startWatch method, which sets
required the frequency value for accelerometer updates and makes the request
to the device to obtain the information:
// Watch the acceleration at regular
// intervals as set by the frequency
function startWatch() {

 // Set the frequency of updates from the acceleration
 var options = { frequency: 100 };

 // Assign watchAcceleration to the watchID variable
 // and pass through the options array
 watchID =
 navigator.accelerometer.watchAcceleration(
 onSuccess, onError, options);
}

8.	 With the request made to the device we now need to create the success and error
handling methods. The onSuccess function is first, and this will deal with the
movement of our object around the screen.

9.	 To begin with we need to declare some variables that manage the positioning of our
element on the device:
function onSuccess(acceleration) {

 // Initial X Y positions
 var x = 0;
 var y = 0;

www.it-ebooks.info

http://www.it-ebooks.info/

Movement and Location: Using the Accelerometer and Geolocation Sensors

20

 // Velocity / Speed
 var vx = 0;
 var vy = 0;

 // Acceleration
 var accelX = 0;
 var accelY = 0;

 // Multiplier to create proper pixel measurements
 var vMultiplier	 =	 100;

 // Create a reference to our div elements
 var dot = document.getElementById('dot');
 var accelElement = 			
 document.getElementById('accelerometerData');

 // The rest of the code will go here

}

10.	 The returned acceleration object contains the information we need regarding the
position on the x and y axes of the device. We can now set the acceleration values for
these two axis into our variables and work out the velocity for movement.

11.	 To correctly interpret the acceleration results into pixels we can use the
vMultiplier variable to convert the x and y into pixels:
accelX = acceleration.x;
accelY = acceleration.y;

vy = vy + -(accelY);
vx = vx + accelX;

y = parseInt(y + vy * vMultiplier);
x = parseInt(x + vx * vMultiplier);

12.	 We need to ensure that our display object doesn't move out of sight and to keep it
within the bounds of the screen:
if (x<0) { x = 0; vx = 0; }
if (y<0) { y = 0; vy = 0; }

if (x>document.documentElement.clientWidth-radius) {
 x = document.documentElement.clientWidth-radius; vx = 0;
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

21

if (y>document.documentElement.clientHeight-radius) {
 y = document.documentElement.clientHeight-radius; vy = 0;
}

13.	 Now that we have the correct x and y coordinates we can apply them to the
style of the dot element position. Let's also create a string message containing
the properties returned from the acceleration object as well as the display
coordinates that we have created:
// Apply the position to the dot element
dot.style.top = y + "px";
dot.style.left = x + "px";

// Output the acceleration results to the screen
accelElement.innerHTML =
 'Acceleration X: ' 	 + acceleration.x + '
' +
 'Acceleration Y: ' 	 + acceleration.y + '
' +
 'Acceleration Z: ' 	 + acceleration.z + '
' +
 'Timestamp: ' 	 + acceleration.timestamp + '
' +
 'Move Top: ' 			 + y + 'px
' +
 'Move Left: ' 			 + x + 'px';

14.	 Our call to the accelerometer also requires the error handler, so let's write that now.
We'll create a simple string message and insert it into the div element to inform the
user that we encountered a problem:
// Run if we face an error
// obtaining the accelerometer data
function onError() {

 // Handle any errors we may face
 var accelElement =
 document.getElementById('accelerometerData');

 accelElement.innerHTML =
 'Sorry, I was unable to access the acceleration data.';
}

15.	 Finally, we'll add in some CSS to create the dot marker used to display the position
on our device:
<style>
div#dot {
 border-radius: 14px;
 width: 25px;
 height: 25px;
 background: #ff0000;

www.it-ebooks.info

http://www.it-ebooks.info/

Movement and Location: Using the Accelerometer and Geolocation Sensors

22

 position: absolute;
 top: 0px;
 left: 0px;
}
</style>

16.	 When we run the application, we can move the element around the screen by titling
the device. This would look something like the following screenshot:

How it works...
By implementing a constant request to watch the acceleration and retrieve movement results
from the device, we can pick up changes from the accelerometer sensor. Through some simple
JavaScript we can respond to these changes and update the position of an element around the
screen based upon the returned sensor information.

In this recipe we are easily changing the position of the dot element by calculating the
correct X and Y axes to place it on the screen. We are also taking extra care to ensure that the
element stays within the bounds of the screen by using some conditional statements to check
the current position, the radius of the element, and the dimensions of the screen itself.

See also
ff The Detecting device movement using the accelerometer recipe

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

23

Obtaining device geolocation sensor
information

Geolocation and the use of Global Positioning Satellites (GPS) allow developers to create
dynamic real-time mapping, positioning, and tracking applications. Using the available
geolocation methods we can retrieve a detailed set of information and properties to create
location-aware applications. We can obtain the user's location if they are connected via the
mobile data network or Wi-Fi.

How to do it...
We will use the geolocation functionality from the PhoneGap API to monitor the feedback from
the device and obtain the relevant location information:

1.	 Firstly, create the initial HTML layout and include the required script reference to the
cordova-2.0.0.js file:
<!DOCTYPE html>
<html>
<head>
 <meta name="viewport" content="user-scalable=no,
 initial-scale=1, maximum-scale=1,
 minimum-scale=1, width=device-width;" />

 <title>Geolocation Data</title>

 <script type="text/javascript"
 src="cordova-2.0.0.js"></script>

 <!-- Add PhoneGap script here -->

 </head>
 <body>

 <h1>Geolocation Data</h1>

 <div id="geolocationData">Obtaining data...</div>

 </body>
</html>

www.it-ebooks.info

http://www.it-ebooks.info/

Movement and Location: Using the Accelerometer and Geolocation Sensors

24

2.	 Write a new JavaScript tag block beneath the Cordova JavaScript reference.
Within this let's define an event listener to ensure the device is ready:
<script type="text/javascript" charset="utf-8">

// Set the event listener to run when the device is ready
document.addEventListener(
 "deviceready", onDeviceReady, false);

</script>

3.	 Let's now add the onDeviceReady function. This will execute the geolocation.
getCurrentPosition method from the PhoneGap API once the native code has
fully loaded:
// The device is ready so let's
// obtain the current geolocation data
function onDeviceReady() {
 navigator.geolocation.getCurrentPosition(
 onSuccess, onError);
}

4.	 Include the onSuccess function to handle the returned position object from the
geolocation request.

5.	 Let's then create a reference to the geolocationData div element and assign it
to the variable geoElement, which will hold our generated position results.

6.	 Next we can assign the returned values as a formatted string, which we'll set as the
HTML content within the geolocationData div element. The available properties
are accessed through the position object:
// Run after successful transaction
// Let's display the position data
function onSuccess(position) {

 var geoElement =
 document.getElementById('geolocationData');

 geoElement .innerHTML =
 'Latitude: ' + position.coords.latitude + '
' +
 'Longitude: ' + position.coords.longitude + '
' +
 'Altitude: ' + position.coords.altitude + '
' +
 'Accuracy: ' + position.coords.accuracy + '
' +
 'Altitude Accuracy: ' +
 position.coords.altitudeAccuracy + '
' +

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

25

 'Heading: ' + position.coords.heading + '
' +
 'Speed: ' + position.coords.speed + '
' +
 'Timestamp: ' + position.timestamp + '
';

}

7.	 Finally, let's include the onError function to handle any possible errors that
may arise.

8.	 Depending on the existence of an error, we will use the value of the returned error
code to determine which message to display to the user. This will be set as the
HTML content of the geolocationData div element:
// Run if we face an error
// obtaining the position data
function onError(error) {

 var errString = '';

 // Check to see if we have received an error code	
 if(error.code) {

 // If we have, handle it by case
 switch(error.code)
 {
 case 1: // PERMISSION_DENIED
 errString =
 'Unable to obtain the location information ' +
 'because the device does not have permission '+
 'to the use that service.';
 break;
 case 2: // POSITION_UNAVAILABLE
 errString =
 'Unable to obtain the location information ' +
 'because the device location could not ' +
 'be determined.';
 break;
 case 3: // TIMEOUT
 errString =
 'Unable to obtain the location within the ' +
 'specified time allocation.';
 break;
 default: // UNKOWN_ERROR
 errString =
 'Unable to obtain the location of the ' +

www.it-ebooks.info

http://www.it-ebooks.info/

Movement and Location: Using the Accelerometer and Geolocation Sensors

26

 'device due to an unknown error.';
 break;
 }

 }

 // Handle any errors we may face
 var element = document.getElementById('geolocationData');
 element.innerHTML = errString;

}

9.	 When we run the application on a device, the output will look something like
the following screenshot:

10.	 If we face any errors, the resulting output will look something like the
following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

27

How it works...
As soon as the device is ready and the native PhoneGap code has been initiated on the device,
the application will execute the getCurrentPosition method from the geolocation API.
We have defined an onSuccess method to manage the output and handling of a successful
response, and have also specified an onError method to catch any errors and act accordingly.

The onSuccess method returns the obtained geolocation information in the form of the
position object, which contains the following properties:

ff position.coords: A Coordinates object that holds the geographic information
returned from the request. This object contains the following properties:

�� latitude: A Number value ranging from -90.00 to +90.00 that specifies
the latitude estimate in decimal degrees.

�� longitude: A Number value ranging from -180.00 to +180.00 that
specifies the longitude estimate in decimal degrees.

�� altitude: A Number value that specifies the altitude estimate in meters
above the World Geodetic System (WGS) 84 ellipsoid. Optional.

�� accuracy: A Number value that specifies the accuracy of the latitude and
longitude accuracy in meters. Optional.

�� altitudeAccuracy: A Number value that specifies the accuracy of the
altitude estimate in meters. Optional.

�� heading: A Number value that specifies the current direction of movement
in degrees, counting clockwise in relation to true north. Optional.

�� speed: A Number value that specifies the current ground speed of the
device in meters per second. Optional.

ff position.timestamp: A DOMTimeStamp object that signifies the time that the
geolocation information was received and the Position object was created.

The properties available within the position object are quite comprehensive
and detailed.

For those marked as 'optional', the value will be set and returned as null if the device
cannot provide a value.

The onError method returns a PositionError object if an error is detected during the
request. This object contains the following two properties:

ff code: A Number value that contains a numeric code for the error.

ff message: A String object that contains a human-readable description of the error.

The errors could relate to insufficient permissions needed to access the geolocation sensors
on the device, the inability to locate the device due to issues with obtaining the necessary GPS
information, a timeout on the request, or the occurrence of an unknown error.

www.it-ebooks.info

http://www.it-ebooks.info/

Movement and Location: Using the Accelerometer and Geolocation Sensors

28

There's more...
The exposed geolocation API accessible through PhoneGap is based on the W3C Geolocation
API Specification. Many modern browsers and devices already have this functionality enabled.
If any device your application runs on already implements this specification, it will use the
built-in support for the API and not PhoneGap's implementation.

You can find out more about Geolocation and the getCurrentPosition
method via the official Cordova documentation at: http://
docs.phonegap.com/en/2.0.0/cordova_geolocation_
geolocation.md.html#geolocation.getCurrentPosition.

Adjusting the geolocation sensor update
interval

Through the use of the getCurrentPosition method, we can retrieve a single reference to
the device location using GPS coordinates. In this recipe, we'll create the functionality to obtain
the current location based on a numeric interval to receive constant updated information.

How to do it...
We are able to pass through an optional parameter containing various arguments to set up
an interval and improve accuracy:

1.	 Create the HTML layout for the application, including the required cordova-
2.0.0.js file:
<!DOCTYPE html>
<html>
<head>
 <meta name="viewport" content="user-scalable=no,
 initial-scale=1, maximum-scale=1,
 minimum-scale=1, width=device-width;" />
 <title>Geolocation Data</title>

 <script type="text/javascript"
 src="cordova-2.0.0.js"></script>

 <!-- Add PhoneGap script here -->

 </head>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

29

 <body>
 <h1>Geolocation Data</h1>

 <div id="geolocationData">Obtaining data...</div>

 </body>
</html>

2.	 Below the Cordova JavaScript reference, write a new JavaScript tag block. Within
this we'll declare a new variable called watchID.

3.	 Next, we'll write the event listener to continue once the device is ready:
<script type="text/javascript">

 // The watch id variable is set as a
 // reference to the current 'watchPosition'
 var watchID = null;

 // Set the event listener to run
// when the device is ready
 document.addEventListener(
 "deviceready", onDeviceReady, false);

</script>

4.	 Let's now add the onDeviceReady function which will execute a method called
startWatch, written as follows:
// The device is ready so let's
// start watching the position
function onDeviceReady() {

 startWatch();

}

5.	 We can now create the startWatch function. Firstly, let's create the options
variable to hold the optional parameters we can pass through to the method. Set
the frequency value to 5000 milliseconds (five seconds) and set
enableHighAccuracy to true.

6.	 Next we will assign the watchPosition method to the previously defined variable
watchID. We'll use this variable to check if the location is currently being watched.

www.it-ebooks.info

http://www.it-ebooks.info/

Movement and Location: Using the Accelerometer and Geolocation Sensors

30

7.	 To pass through the extra parameters we have set, we send the options variable
into the watchPosition method:
function startWatch() {

 // Create the options to send through
 var options = {
 enableHighAccuracy: true
 };

 // Watch the position and update
 // when a change has been detected
 watchID =
 navigator.geolocation.watchPosition(
 onSuccess, onError, options);

}

8.	 With the initial call methods created, we can now write the onSuccess function,
which is executed after a successful response. The position object from the
response is sent through as an argument to the function.

9.	 Declare some variables to store detailed information obtained from the response in
the form of the timestamp, latitude, longitude, and accuracy variables. We'll
also create the element variable to reference the geolocationData div element,
within which our information will be displayed.

10.	 The returned information is then assigned to the relevant variables by accessing the
properties from the position object.

11.	 Finally, we apply the populated variables to a concatenated string which we'll set as
the HTML within the div element:
// Run after successful transaction
// Let's display the position data
function onSuccess(position) {

 var timestamp, latitude, longitude, accuracy;

 var element = document.getElementById('geolocationData');

 timestamp = new Date(position.timestamp);
 latitude = position.coords.latitude;
 longitude = position.coords.longitude;
 accuracy	 = position.coords.accuracy;

 element.innerHTML +=
 '<hr />' +

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

31

 'Timestamp: ' + timestamp + '
' +
 'Latitude: ' + latitude 	 + '
' +
 'Longitude: ' + longitude + '
' +
 'Accuracy: ' + accuracy 	 + '
';
}

12.	 With the onSuccess method created, let's now write the onError function to
handle any errors that we may face following the response:
// Run if we face an error
// obtaining the position data
function onError(error) {

 var errString = '';

 // Check to see if we have received an error code
 if(error.code) {
 // If we have, handle it by case
 switch(error.code)
 {
 case 1: // PERMISSION_DENIED
 errString =
 'Unable to obtain the location information ' +
 'because the device does not have permission '+
 'to the use that service.';
 break;
 case 2: // POSITION_UNAVAILABLE
 errString =
 'Unable to obtain the location information ' +
 'because the device location could not be ' +
 'determined.';
 break;
 case 3: // TIMEOUT
 errString =
 'Unable to obtain the location within the ' +
 'specified time allocation.';
 break;
 default: // UNKOWN_ERROR
 errString =
 'Unable to obtain the location of the ' +
 'device to an unknown error.';
 break;
 }

 }

www.it-ebooks.info

http://www.it-ebooks.info/

Movement and Location: Using the Accelerometer and Geolocation Sensors

32

 // Handle any errors we may face
 var element = document.getElementById('geolocationData');
 element.innerHTML = errString;

}

13.	 When we run the application, the output will be similar to the following screenshot:

How it works...
The watchPosition method from the PhoneGap API runs as an asynchronous function,
constantly checking for changes to the device's current position. Once a change in position
has been detected, it will return the current geographic location information in the form of
the position object.

With every successful request made on the continuous cycle, the onSuccess method is
executed and formats the data for output onto the screen.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

33

There's more...
There are three optional parameters that can be sent into either the getCurrentPosition
or watchPosition method. They are as follows:

ff enableHighAccuracy: A Boolean value that specifies whether or not you would
like to obtain the best possible location results from the request. By default (false), the
position will be retrieved using the mobile or cell network. If set to true, more accurate
methods will be used to locate the device, for example, using satellite positioning.

ff timeout: A Number value that defines the maximum length of time in milliseconds
to obtain the successful response.

ff maximumAge: A Number value that defines if a cached position younger than the
specified time in milliseconds can be used.

Android devices will not return a successful geolocation result
unless enableHighAccuracy is set to true

Clearing the interval
The continual location requests can be stopped by the user or through the application using an
interval timer by employing the use of the clearWatch method, available within the PhoneGap
API. The method to clear the interval and stop watching location data is identical to the method
used when clearing accelerometer data obtained from continual updates.

See also
ff The Adjusting the accelerometer sensor update interval recipe

Retrieving map data through geolocation
coordinates

In this recipe, we will examine how to render a map on the screen and generate a marker
based on latitude and longitude coordinates reported by the device geolocation sensors
using the Google Maps API for JavaScript.

Getting ready
Before we can continue with coding the application in this recipe, we must first prepare the
project and obtain access to the Google Maps services:

1.	 Firstly we need to sign up for a Google Maps API key. Visit https://code.google.
com/apis/console/ and log in with your Google account.

www.it-ebooks.info

http://www.it-ebooks.info/

Movement and Location: Using the Accelerometer and Geolocation Sensors

34

2.	 Select Services from the left-hand side menu and activate the Google Maps API
v3 service.

3.	 Once the service has been activated you will be presented with your API key, available
from the API Access page. You will find the key displayed in the Simple API Access
section of the page, as shown in the following screenshot:

4.	 We can now proceed with the recipe.

You can find out more about the Google Maps API from the
official documentation: https://developers.google.
com/maps/documentation/javascript/.

How to do it...
We'll use the device's GPS ability to obtain the geolocation coordinates, build and initialize
the map canvas, and display the marker for our current position:

1.	 Create the basic HTML layout for our page:
<!DOCTYPE html>
<html>
 <head>
 <meta name="viewport" content="user-scalable=no,
 initial-scale=1, maximum-scale=1,
 minimum-scale=1, width=device-width;" />

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

35

 <title>You are here...</title>
 </head>
 <body>

 </body>
</html>

2.	 Let's include the required JavaScript for the Google Maps API within the head tag.
Append your API key into the query string in the script src attribute.

3.	 Next, add the cordova-2.0.0.js reference and create another JavaScript tag
block to hold our custom code:
<head>
 <meta name="viewport" content="user-scalable=no,
 initial-scale=1, maximum-scale=1,
 minimum-scale=1, width=device-width;" />

 <title>You are here...</title>

 <script type="text/javascript"
 src="http://maps.googleapis.com/maps/api/js?key=your_api_
key&sensor=true">
 </script>

 <script type="text/javascript"
 src="cordova-2.0.0.js"></script>

 <script type="text/javascript">

 // Custom PhoneGap code goes here

 </script>

</head>

When we included the Google Maps API JavaScript into our
document, we set the sensor query parameter to true. If we
were only allowing the user to manually input coordinates
without automatic detection this could have been set to false.
However, we are using the data obtained from the device's
sensor to automatically retrieve our location.

www.it-ebooks.info

http://www.it-ebooks.info/

Movement and Location: Using the Accelerometer and Geolocation Sensors

36

4.	 Let's start creating our custom code within the JavaScript tag block. First, we'll
create the event listener to ensure the device is ready and we'll also create the
onDeviceReady method, which will run using the listener:
// Set the event listener to run when the device is ready
document.addEventListener(
 "deviceready", onDeviceReady, false);

// The device is ready, so let's
// obtain the current geolocation data
function onDeviceReady() {
 navigator.geolocation.getCurrentPosition(
 onSuccess,
 onError
);
}

5.	 Next we can write the onSuccess method, which will give us access to the returned
location data via the position object.

6.	 Let's take the latitude and longitude information obtained from the device
geolocation sensor response and create a latLng object which we will send into the
Map object when we initialize the component.

7.	 We will then set the options for our Map, setting the center of it to the coordinates we
set into the latLng variable. Not all of the Google Map controls translate well to the
small screen, especially in terms of usability. We can define which controls we would
like to use. In this case we'll accept the zoomControl but not the panControl.

8.	 To define the Map object itself we reference a div element and pass through the
mapOptions variable we have previously declared.

9.	 To close off this method, let's now create a Marker variable to display at the exact
location
as set in the latLng variable:
// Run after successful transaction
// Let's display the position data
function onSuccess(position) {

 var latLng	 =
 new google.maps.LatLng(
 position.coords.latitude,
 position.coords.longitude);	

 var mapOptions = {
 center: latLng,
 panControl: false,

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

37

 zoomControl: true,
 zoom: 16,
 mapTypeId: google.maps.MapTypeId.ROADMAP
 };

 var map = new google.maps.Map(
 document.getElementById('map_holder'),
 mapOptions
);

 var marker = new google.maps.Marker({
 position: latLng,
 map: map
 });

}

10.	 To ensure we correctly handle any errors that may occur, let's now include the
onError function which will display the specific string message according to
the error within a div element:
// Run if we face an error
// obtaining the position data
function onError(error) {

 var errString = '';

 // Check to see if we have received an error code
 if(error.code) {
 // If we have, handle it by case
 switch(error.code)
 {
 case 1: // PERMISSION_DENIED
 errString =
 'Unable to obtain the location information ' +
 'because the device does not have permission '+
 'to the use that service.';
 break;
 case 2: // POSITION_UNAVAILABLE
 errString =
 'Unable to obtain the location information ' +
 'because the device location could not be ' +
 'determined.';

www.it-ebooks.info

http://www.it-ebooks.info/

Movement and Location: Using the Accelerometer and Geolocation Sensors

38

 break;
 case 3: // TIMEOUT
 errString =
 'Unable to obtain the location within the ' +
 'specified time allocation.';
 break;
 default: // UNKOWN_ERROR
 errString =
 'Unable to obtain the location of the ' +
 'device due to an unknown error.';
 break;
 }

 }

 // Handle any errors we may face
 var element = document.getElementById('map_holder');
 element.innerHTML = errString;
}

11.	 With the body tag, let's include the div element into which the map will be displayed:
<body>

 <div id="map_holder"></div>

</body>

12.	 Finally, add a style block within the head tag to supply some essential formatting
to the page and the map element:
<style type="text/css">
 html { height: 100% }
 body { height: 100%; margin: 0; padding: 0 }
 #map_holder { height: 100%; width: 100%; }
</style>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

39

13.	 Running the application on the device, the result will look similar to this:

How it works...
Thanks to the use of exposed mapping services such as Google Maps we are able to perform
geolocation updates from the device and use the obtained data to create rich, interactive
visual mapping applications.

In this example, we centered the Map using the device coordinates and also created a Marker
overlay to place upon the mark for easy visual reference.

The available APIs for mapping services such as this are incredibly detailed and contain many
functions and methods to assist you in creating your location-based tools and applications.
Some services also set limits on the amount of requests made to the API, so make sure you
are aware of any restrictions in place.

There's more...
We used the Google Maps API for JavaScript in this recipe. There are variations on the API level
offered by Google, and other mapping systems are also available through other providers such
as MapQuest, MultiMap, and Yahoo! Maps. Explore the alternatives and experiment to see if a
particular solution suits your application better than the others.

www.it-ebooks.info

http://www.it-ebooks.info/

Movement and Location: Using the Accelerometer and Geolocation Sensors

40

Static maps
In this recipe, we used the dynamic Google Map API. We did this so that we could use the
zoom controls and provide our user with a certain level of interaction by being able to drag
the map.

As an alternative, you could use the Google Static Map service, which simplifies the code
needed to generate a map, and will return a static image showing the location.

You can choose to use an API key with this service, but it is not required. You will still have
to enable the API in the same way we enabled the API Access at the start of this recipe.

Consider the following code, which is an amendment to the onSuccess method, which runs
after the geolocation data has been obtained:

// Run after successful transaction
// Let's display the position data
function onSuccess(position) {
 var mapOutput = '<img src="http://maps.googleapis.com/maps/api/
staticmap?center='+position.coords.latitude+','+position.coords.longit
ude+'&zoom=12&size=300x300&scale=2&sensor=true">';
 var element = document.getElementById('map_holder');
 element.innerHTML = mapOutput;
}

Here you can see that instead of creating the coordinates, the map and the markers as in the
earlier code listing, we simply request an image source using the Static Maps API, and send in
the coordinates, image size, and other data as parameters.

By using the Static Map API, you lose the interactivity offered through the dynamic map, but you
gain an incredibly simple, easy-to-use service that requires very little code to achieve results.

You can find out more about the Google Static Map API on the official
documentation, available here: https://developers.google.
com/maps/documentation/staticmaps/.

Creating a visual compass to show the
devices direction

The PhoneGap API provides developers with the ability to receive coordinate and heading
information from the device. We can use this information to build a custom compass tool
that responds to the device movement.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

41

How to do it...
1.	 Create the HTML layout for our page, including the cordova-2.0.0.js reference.

<!DOCTYPE html>
<html>
 <head>
 <meta name="viewport" content="user-scalable=no,
 initial-scale=1, maximum-scale=1,
 minimum-scale=1, width=device-width;" />

 <title>Compass</title>
 <script type="text/javascript"
 src="cordova-2.0.0.js"></script>
 </head>
 <body>

 </body>
</html>

2.	 In this example, we will be referencing certain elements within the DOM by class name.
For this we will use the XUI JavaScript library (http://xuijs.com/). Add the script
reference within the head tag of the document to include this library.

3.	 Let's also create the script tag block that will hold our custom JavaScript for
interaction with the PhoneGap API, as shown in the following code:
<head>
 <meta name="viewport" content="user-scalable=no,
 initial-scale=1, maximum-scale=1,
 minimum-scale=1, width=device-width;" />

 <title>Compass</title>
 <script type="text/javascript"
 src="cordova-2.0.0.js"></script>

 <script type="text/javascript"
 src="xui.js"></script>

 <script type="text/javascript">
 // PhoneGap code will go here

 </script>

</head>

www.it-ebooks.info

http://www.it-ebooks.info/

Movement and Location: Using the Accelerometer and Geolocation Sensors

42

4.	 Add a new div element within the body tag and give this the class attribute of
container. This will hold our compass elements for display.

5.	 The compass itself will be made up of two images. Both images will have an
individual class name assigned to them, which will allow us to easily reference
each of them within the JavaScript. Add these two within the container element.

6.	 Next, write a new div element below the images with the id attribute set to
heading. This will hold the text output from the compass response:
<body>

 <div class="container">

 <img src="images/rose.png" 		
 class="rose" width="120" height="121"
 alt="rose" />

 <img src="images/compass.png" 	
 class="compass" width="200" height="200"
 alt="compass" />

 <div id="heading"></div>

 </div>

</body>

7.	 With the initial layout complete, let's start writing our custom JavaScript code. First,
let's define the deviceready event listener. As we are using XUI, this differs a little
from other recipes within this chapter:
Var headingDiv;

x$(document).on("deviceready", function () {

});

8.	 When we have a result to output to the user of the application, we want the data to
be inserted into the div tag with the heading id attribute. XUI makes this a simple
task, and so we'll update the headingDiv global variable to store this reference:
x$(document).on("deviceready", function () {
 headingDiv = x$("#heading");

});

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

43

9.	 Let's now include the requests to the PhoneGap compass methods. We'll actually call
two requests within the same function. First we'll obtain the current heading of the
device for instant data, then we'll make a request to watch the device heading, making
the request every tenth of a second thanks to the use of the frequency parameter.
This will provide use with continual updates to ensure the compass is correct:
navigator.compass.getCurrentHeading(onSuccess, onError);
navigator.compass.watchHeading(
 onSuccess, onError, {frequency: 100});

10.	 Both of these requests use the same onSuccess and onError method to handle
output and data management. The onSuccess method will provide us with the
returned data in the form of a heading object.

11.	 We can use this returned data to set the HTML content of the heading element with
the generated message string, using the headingDiv variable we defined earlier.

12.	 Our visual compass also needs to respond to the heading information. Using the CSS
method from XUI, we can alter the transform properties of the rose image to rotate
using the returned magneticHeading property. Here we reference the image by
calling its individual class name, .rose:
// Run after successful transaction
// Let's display the compass data
function onSuccess(heading) {
 headingDiv.html(
 'Heading: ' + heading.magneticHeading + '° ' +
 convertToText(heading.magneticHeading) + '
' +
 'True Heading: ' + heading.trueHeading + '
' +
 'Accuracy: ' + heading.headingAccuracy
);

 // Alter the CSS properties to rotate the rose image
 x$(".rose").css({
 "-webkit-transform":
 "rotate(-" + heading.magneticHeading + "deg)",
 "transform":
 "rotate(-" + heading.magneticHeading + "deg)"
 });

}

www.it-ebooks.info

http://www.it-ebooks.info/

Movement and Location: Using the Accelerometer and Geolocation Sensors

44

13.	 With the onSuccess handler in place, we now need to add our onError method
to output a user-friendly message, should we encounter any problems obtaining the
information, as shown in the following code:
// Run if we face an error
// obtaining the compass data
function onError() {
 headingDiv.html(
 'There was an error trying to ' +
 'locate your current bearing.'
);
}

14.	 When creating our message string in the onSuccess function we made a call to a
new function called convertToText. This accepts the magneticHeading value
from the heading object and converts it into a text representation of the direction
for display. Let's include this function outside of the XUI deviceready block:
// Accept the magneticHeading value
// and convert into a text representation
function convertToText(mh) {
 var textDirection;
 if (typeof mh !== "number") {
 textDirection = '';
 } else if (mh >= 337.5 || (mh >= 0 && mh <= 22.5)) {
 textDirection = 'N';
 } else if (mh >= 22.5 && mh <= 67.5) {
 textDirection = 'NE';
 } else if (mh >= 67.5 && mh <= 112.5) {
 textDirection = 'E';
 } else if (mh >= 112.5 && mh <= 157.5) {
 textDirection = 'SE';
 } else if (mh >= 157.5 && mh <= 202.5) {
 textDirection = 'S';
 } else if (mh >= 202.5 && mh <= 247.5) {
 textDirection = 'SW';
 } else if (mh >= 247.5 && mh <= 292.5) {
 textDirection = 'W';
 } else if (mh >= 292.5 && mh <= 337.5) {
 textDirection = 'NW';
 } else {
 textDirection = textDirection;
 }
 return textDirection;
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

45

15.	 Let's provide some CSS to position our two images on the screen and ensure the rose
image is overlaying the compass image. Create a new file called compass_style.
css and insert the following styles into it:
.container {
 position: relative;
 margin: 0 auto;
 width: 200px;
 overflow: hidden;
}

#heading {
 position: relative;
 font-size: 24px;
 font-weight: 200;
 text-shadow: 0 -1px 0 #eee;
 margin: 20px auto 20px auto;
 color: #111;
 text-align: center;
}
.compass {
 padding-top: 12px;
}
.rose {
 position: absolute;
 top: 53px;
 left: 40px;
 width: 120px;
 height: 121px;
}

16.	 Finally, include the reference to the compass_style.css file in the head tag of the
HTML document:
<title>Compass</title>
<link href="compass_style.css"
 rel="stylesheet" />
<script type="text/javascript"
 src="cordova-2.0.0.js"></script>
<script type="text/javascript"
 src="xui.js"></script>

www.it-ebooks.info

http://www.it-ebooks.info/

Movement and Location: Using the Accelerometer and Geolocation Sensors

46

17.	 Running the application on the device, the output will look something like the
following screenshot:

How it works...
The watchHeading method from the PhoneGap API compass functionality retrieves periodic
updates containing the current heading of the device at the interval specified as the value
of the frequency variable passed through. If no interval is declared, a default value of 100
milliseconds (one-tenth of a second) is used.

With every successful request made on the continuous cycle, the onSuccess method is
executed and formats the data for output onto the screen, as well as making a change to the
transform property of the graphical element to rotate in accordance with the heading.

The onSuccess method returns the obtained heading information in the form of the
compassHeading object, which contains the following properties:

ff magneticHeading: A Number value ranging from 0 to 359.99 that specifies
a heading in degrees at a single moment in time.

ff trueHeading: A Number value ranging from 0 to 359.99 that specifies the
heading relative to the geographic North Pole in degrees.

ff headingAccuracy: A Number value that indicates any deviation in degrees
between the reported heading and the true heading values.

ff timestamp: The time in milliseconds at which the heading was determined.

See also
ff Chapter 6, Working with XUI

www.it-ebooks.info

http://www.it-ebooks.info/

2
File System, Storage,
and Local Databases

In this chapter we will cover:

ff Saving a file to device storage

ff Opening a local file from device storage

ff Displaying the contents of a directory

ff Creating a local SQLite database

ff Uploading a file to a remote server via a POST request

ff Caching content using the web storage local storage API

Introduction
With the ever increasing storage capacities on offer with each mobile device, whether built-in
storage or available as an expansion through a card, developers have the ability to interact with
and manipulate files stored on the device as well as utilize API functionality to cache content.

This chapter will explore how we can save and open individual files on the device's local
filesystem, creating and managing local SQLite databases, uploading a local file to a remote
server, and caching content using the local storage API.

Saving a file to device storage
Thanks to the ability to traverse, read, and write to the device filesystem, an application can
either write a file to a specific predefined location, or it can be written to a location chosen by
the user within the application.

www.it-ebooks.info

http://www.it-ebooks.info/

File System, Storage, and Local Databases

48

How to do it...
We will allow the user to enter a remote URL for a file into a textbox, and download and save
that file to their mobile device. The steps to be performed are as follows:

1.	 Create the initial HTML layout for our application. We're going to use the XUI JavaScript
library to easily access DOM elements, so we'll include the reference to the file within
the head tag along with the cordova-2.0.0.js file.

2.	 Below the Cordova JavaScript reference let's also create a new JavaScript tag block
to hold our custom code.
<!DOCTYPE html>
<html>
<head>
 <meta name="viewport" content="user-scalable=no,
 initial-scale=1, maximum-scale=1,
 minimum-scale=1, width=device-width;" />
 <title>File Download</title>
 <script type="text/javascript" src="xui.js"></script>
 <script type="text/javascript"
 src="cordova-2.0.0.js"></script>
 <script type="text/javascript">

 </script>
</head>
<body>

</body>
</html>

3.	 Within the body tag create two input elements. Set the first element type attribute
to text and set the id attribute to file_url.

4.	 Set the second input element type attribute to button, the id attribute to
download_btn and the value to equal Download.

5.	 Finally include a new div element and set the id attribute to message. This will
be the container into which our returned output is displayed. This is shown in the
following code:
<body>

	 <input type="text"
 id="file_url" value="" />
	 <input type="button"
 id="download_btn" value="Download" />

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

49

	 <div id="message"></div>

</body>

6.	 Within the empty JavaScript tag block we need to define a global variable called
downloadDirectory that will reference the location on the device to store the
retrieved file. We'll also add this variable in our event listener for our application
which will run once the native PhoneGap code has been loaded:
var downloadDirectory;

document.addEventListener("deviceready", onDeviceReady, true);

7.	 We can now write our onDeviceReady function. The first thing we need to do
is to access the root filesystem on the device. Here we are requesting access to
the persistent file system. Once a reference has been established we run the
onFileSystemSuccess method to continue.

8.	 We are then binding a click function to the download_btn element using XUI,
which will run the download function when clicked:
function onDeviceReady() {
window.requestFileSystem(
 LocalFileSystem.PERSISTENT,
 0,
 onFileSystemSuccess,
 null
);

 x$('#download_btn').on('click', function(e) {
 download();
 });
}

9.	 With the connection made to the device storage, we can reference the root
system using the fileSystem object provided by PhoneGap. Here we then call
the getDirectory method, providing the name of the directory to gain access to.
If it doesn't exist it will be created for us. After a successful response, the returned
DirectoryEntry object is assigned to the downloadDirectory variable we
set earlier.
function onFileSystemSuccess(fileSystem) {
fileSystem.root.getDirectory('my_downloads',
 {create:true},
 function(dir) {
 downloadDirectory = dir;
 },fail);
}

www.it-ebooks.info

http://www.it-ebooks.info/

File System, Storage, and Local Databases

50

10.	 Our download function will be run when the user clicks the Download button. We first
need to obtain the URL provided by the user from the text input box. We can pass the
value through, to a new custom method called getFileName, which will split the string
and return the filename and extension for use later in the function. We can now set a
user-friendly message into the message container to inform them of our progress.

11.	 Next we instantiate a new FileTransfer object from the PhoneGap API to assist
us in downloading the remote object. The download method accepts the remote URL
to download, the directory on the device to save the file, and the success and error
callback functions. After a successful operation, we will inform the user of the local
path where the file was saved:
function download() {
var fileURL = document.getElementById('file_url').value;
 var localFileName = getFilename(fileURL);

 x$('#message').html('Downloading ' + localFileName);

 var fileTransfer = new FileTransfer();
 fileTransfer.download(
 fileURL,
 downloadDirectory.fullPath + '/' + localFileName,
 function(entry){
 x$('#message').html('Download complete. File saved to: ' +
entry.fullPath);
 },
 function(error){
 alert("Download error source " + JSON.stringify(error));
 }
);
}

12.	 Include the custom function to obtain the filename and extension of the remote file:
function getFilename(url) {
if (url) {
 var m = url.toString().match(/.*\/(.+?)\./);
 if (m && m.length > 1) {
 return m[1] + '.' + url.split('.').pop();
 }
 }
return "";
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

51

13.	 Finally, we supply the fail method, which is the generic error handler for all of our
functions within the application.
function fail(error) {
$('#message').html(
 'We encountered a problem: ' + error.code);
}

14.	 When we run the application, we can specify a remote file to download to the local
storage and provide the file's location on the device. The result would look something
like the following screenshot:

How it works...
In this recipe we allowed a user to download an external file, publicly accessible on the
Internet, and save it to a specified location on the device. First, we needed to create a
reference to the fileSystem object on the device.

The fileSystem object returns the following properties:

ff name: A DOMString object that represents the name of the file system

ff root: A DirectoryEntry object that represents the root directory of the file system

Once obtained, we could then obtain the reference to the desired directory location
into which our file would be saved using the DirectoryEntry object, which returns
the following properties:

ff isFile: A boolean value that is always false as this is a directory

ff isDirectory: A boolean value that is always true

ff name: A DOMString object representing the name of the directory

ff fullPath: A DOMString object that represents the full absolute path of
the directory from the root

www.it-ebooks.info

http://www.it-ebooks.info/

File System, Storage, and Local Databases

52

The DirectoryEntry object contains a number of methods that allow you to interact with
and manipulate the file system. For more information on the available methods, check out
the official Cordova documentation, available here:

http://docs.phonegap.com/en/2.0.0/cordova_file_file.
md.html#DirectoryEntry

To download the file, we made use of PhoneGap's fileTransfer object, and called the
object's download method to retrieve the remote file, saving it to the correct directory.

There's more...
For any Android application that needs to access or write to the device's local storage or
filesystem, you would have to provide permission for the application to do so within the
Android manifest file.

iOS applications will also need to have the relevant permissions added to the Cordova.
plist file to allow access to interact with the device file system.

Domain whitelist
One issue you may encounter when running this example project is an error when trying to
download the remote file. Access to remote sites and assets is heavily restricted, thanks to
the security model in the Cordova project, whereby the default policy is set to block all remote
network access.

This can be easily amended by the developer to allow access to specific domains, subdomains,
or by setting a wildcard to allow access to every domain, granting full remote network access,
by amending the whitelist access specifications.

To find out more about domain whitelists, check out the official documentation, available at:

http://docs.phonegap.com/en/2.0.0/guide_whitelist_index.
md.html#Domain%20Whitelist%20Guide

See also
ff The Opening a local file from device storage recipe

Opening a local file from device storage
When developing your mobile application, you may need or want to read particular files from
the storage system or from another location on the device.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

53

How to do it...
In this recipe we will build an application that will create a text file on the phone's storage file
system, write content into the file, and then open the file to display the content, as listed in
the following steps.

1.	 Create the initial HTML layout for our application. We're going to use the XUI
JavaScript library to easily access DOM elements, so we'll include the reference to
the file within the head tag along with the cordova-2.0.0.js file.

2.	 Below the Cordova JavaScript reference let's also create a new JavaScript tag block
to hold our custom code. This is shown in the following code:
<!DOCTYPE html>
<html>
<head>
<meta name="viewport" content="user-scalable=no,
 initial-scale=1, maximum-scale=1,
 minimum-scale=1, width=device-width;" />
 <title>Open File</title>
 <script type="text/javascript" src="xui.js"></script>
 <script type="text/javascript"
 src="cordova-2.0.0.js"></script>
 <script type="text/javascript">

 </script>
</head>
<body>

</body>
</html>

3.	 Within the body tag create two input elements. Set the first element type attribute
to text and set the id attribute to my_text.

4.	 Set the second input element type attribute to button, the id attribute to
savefile_btn, and the value to equal Save.

5.	 Finally include two new div elements. Set the first element id attribute to message.
This will be the container into which our returned output is displayed. Set the second
element id attribute to contents. This will display the contents of the file:
<body>

	 <input type="text" 	id="my_text" />
	 <input type="button" id="saveFile_btn"
 value="Save" />

www.it-ebooks.info

http://www.it-ebooks.info/

File System, Storage, and Local Databases

54

	 <div id="message"></div>
	 <div id="contents"></div>

</body>

6.	 Within the empty JavaScript tag block we need to define a global variable called
fileObject that will reference the file on the device. We'll also add in our event
listener for our application that will run once the native PhoneGap code has been
loaded. The onDeviceReady method requests access to the persistent filesystem
root on the device. Once obtained, it will execute the onFileSystemSuccess
method, shown as follows:
var fileObject;
document.addEventListener("deviceready", onDeviceReady, true);

function onDeviceReady() {
window.requestFileSystem(
 LocalFileSystem.PERSISTENT, 0,
 onFileSystemSuccess, fail);
}

The LocalFileSystem.PERSISTENT constant is used here
to ensure we access storage that cannot be removed by the user
agent without permission from the application or the user. We
could use the LocalFileSystem.TEMPORARY constant to
access storage that has no guarantee of persistence.

7.	 With the connection made to the device storage, we can reference the root system
using the fileSystem object provided by PhoneGap. Here we then call the getFile
method, providing the name of the file we wish to open. If it doesn't exist it will be
created for us.
function onFileSystemSuccess(fileSystem) {
fileSystem.root.getFile("readme.txt",
 {create: true, exclusive: false},
 gotFileEntry, fail);
}

8.	 After a successful response, the returned FileEntry object is assigned to the
fileObject variable we created earlier. At this point we can also bind a click
handler to our save button, which will run the saveFileContent function
when clicked.
function gotFileEntry(fileEntry) {
fileObject = fileEntry;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

55

 x$('#saveFile_btn').on('click', function() {
 saveFileContent();
});
}

9.	 As we're dealing with a local file that, as of yet, doesn't have any content, we can
use methods within the PhoneGap API to write to the file. The saveFileContent
method will access the fileObject and call the createWriter method to start
this process.
function saveFileContent() {
fileObject.createWriter(gotFileWriter, fail);
}

10.	 Let's now create the gotFileWriter method called as a callback from the save
function. We'll send the value from the my_text input field into the writer.
write() method to populate the file content. After the writing has finished, we'll
output a status message into the message div element and then instantiate the
FileReader object to read the file contents.

11.	 We will then pass the fileObject into the reader.readAsText() method to
return the text content of the file. After the read has completed, we will output the
contents into the div element for display.
function gotFileWriter(writer) {
var myText = document.getElementById('my_text').value;
 writer.write(myText);

writer.onwriteend = function(evt) {
 x$('#message').html('<p>File contents have been written.
File path: ' + fileObject.fullPath + '</p>');

 var reader = new FileReader();
 reader.readAsText(fileObject);
 reader.onload = function(evt) {
 x$('#contents').html('File contents:
'
+ evt.target.result);
 };

};
}

12.	 Finally, include the fail error handler method to catch any problems or errors:
function fail(error) {
alert(error.code);
}

www.it-ebooks.info

http://www.it-ebooks.info/

File System, Storage, and Local Databases

56

13.	 When we run the application on our device, we should see output similar to the
following screenshot:

How it works...
To gain access to the filesystem on the device, we first request access to the persistent
storage, which then provides us with access to the fileSystem object.

Navigating to the root of the filesystem, we then call the getFile method, which will look
up through the requested file, or create it if it doesn't already exist in the specified location.

Once a user has typed content in to the input textbox, we can then instantiate a FileWriter
object on the saved object containing the file reference and write the user-supplied content
to the file. We can also make use of the FileWriter object's onwriteend method, called
when the request has completed, to output a message to the user and then begin the request
to read the contents of the file, achieved through the use of the FileReader object.

For a comprehensive look at the File functions available within
the PhoneGap API, please refer to the official documentation
at http://docs.phonegap.com/en/2.0.0/cordova_
file_file.md.html#File.

There's more...
In this example we were able to read the file as text, using the readAsText method. We
are also able to read a file and return the contents as a base64 encoded data URL using
the readAsDataURL method. While there are no limitations on what type of file can be read,
depending on the choice of reading method as well as the size of the file, consideration must
be placed on the speed and performance impact that may occur when trying to read large
files which may take up quite a lot of processing power.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

57

See also
ff The Saving a file to device storage recipe

Displaying the contents of a directory
As devices may offer us a lot of storage space that we can potentially use, we can also
make sure we have the ability to traverse the filesystem to ascertain the structure of
the storage available.

How to do it...
In this recipe we will build an application that will read the contents of a directory from the
device's root filesystem and display them in a list format. The following steps will help you
to do the same:

1.	 Create the initial HTML layout for our application. For this recipe we will also be
using the jQuery Mobile framework, so let's include the required JavaScript and
CSS references, as well as the reference to the cordova-2.0.0.js file:
<!DOCTYPE html>
<html>
<head>
 <title>Directory Reader</title>
 <meta name="viewport" content="user-scalable=no,
 initial-scale=1, maximum-scale=1,
 minimum-scale=1, width=device-width;" />

 <link rel="stylesheet"
 href="jquery/jquery.mobile-1.1.1.min.css" />
 <script src="jquery/jquery-1.8.0.min.js"></script>
 <script src="jquery/jquery.mobile-1.1.1.min.js"></script>
 <script type="text/javascript"
 src="cordova-2.0.0.js"></script>
 <script type="text/javascript">

 </script>
</head>
<body>

</body>
</html>

www.it-ebooks.info

http://www.it-ebooks.info/

File System, Storage, and Local Databases

58

2.	 The jQuery Mobile framework will handle the formatting and layout of the body content.
Include a div element with the data-role attribute set to page. Within this add
a header to contain our application title. We'll then add a new div element with the
data-role attribute set to content, inside of which we'll place a ul tag block to hold
our directory listings. Set the data-role for the ul tag to listview and give it an id
of directoryList so that we can reference it later:
<body>

<div data-role="page">

<div data-role="header">
 <h2>Directory Reader</h2>
 </div>

 <div data-role="content">
 <ul id="directoryList" data-role="listview"
 data-inset="true">

</div>

</div>

</body>

3.	 Next we need to add in the event listener and the onDeviceReady method to run
once the native PhoneGap code is ready to be executed. In this method we will
request access to the file root on the persistent storage, which will then run the
onFileSystemSuccess callback method.
document.addEventListener("deviceready", onDeviceReady, false);

function onDeviceReady(){
window.requestFileSystem(
 LocalFileSystem.PERSISTENT,
 0, onFileSystemSuccess, fail
);
}

4.	 To ensure we have some extra content to list, we'll call the getDirectory and
getFile methods respectively, which will then create the directory and file if they do
not already exist. We can access the DirectoryEntry object at fileSystem.root,
and call the createReader() method from it to instantiate the DirectoryReader
object. Lastly, let's call the readEntries() method from this object to read the
entries within the provided directory.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

59

function onFileSystemSuccess(fileSystem) {
// Create some test files
 fileSystem.root.getDirectory("myDirectory",
 { create: true, exclusive: false },
 null,fail);
 fileSystem.root.getFile("readthis.txt",
 { create: true, exclusive: false },
 null,fail);

 var directoryReader = fileSystem.root.createReader();
 // Get a list of all the entries in the directory
 directoryReader.readEntries(success,fail);
}

5.	 The success callback method is passed an array of FileEntry and
DirectoryEntry object. Here we'll loop over the array and create a list item
for each returned entry, writing the name and URI path. We'll also check the type
of the entry and display it if it's a directory or a file.

6.	 Each list item is appended to the directoryList ul element, and we then call
a listview refresh method on the element to update the content for display:
function success(entries) {
var i;
 var objectType;
 for (i=0; i<entries.length; i++) {
 if(entries[i].isDirectory == true) {
 objectType = 'Directory';
 } else {
 objectType = 'File';
 }
 $('#directoryList').append('<h3>' + entries[i].name + '</
h3><p>' + entries[i].toURI() + '</p><p class="ui-li-aside">Type:
' + objectType + '</p>');
 }
 $('#directoryList').listview("refresh");
}

7.	 Finally, let's include the fail error handler method to alert us of any issues:
function fail(error) {
alert("Failed to list directory contents: " + error.code);
}

www.it-ebooks.info

http://www.it-ebooks.info/

File System, Storage, and Local Databases

60

8.	 When we run the application on our device, the output will look something like the
following screenshot:

How it works...
When traversing through directories, the PhoneGap API provides the perfect solution in the form
of the DirectoryReader object, which lists all directories and files within the chosen directory.
This contains a single method called readEntries, and it's the success callback method from
this that allows us to loop over the contents and output them as a visual representation.

See also
ff The Creating a jQuery Mobile layout recipe in Chapter 7, User Interface Development

with jQuery Mobile

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

61

Creating a local SQLite database
SQLite databases are a fantastic way to store structured information from a web context.
SQLite is a self-contained transactional database that does not require any configuration.
This is ideal for saving and querying dynamic information within a mobile application.

How to do it...
For this recipe we will create a mobile application that will allow us to store text entries into
a local SQLite database and then query the database to retrieve all saved items.

1.	 Firstly, create the HTML layout for our page, including the reference to the
cordova-2.0.0.js file:
<!DOCTYPE html>
<html>
<head>
 <meta name="viewport" content="user-scalable=no,
 initial-scale=1, maximum-scale=1,
 minimum-scale=1, width=device-width;" />
 <title>My ToDo List</title>
 <script type="text/javascript"
 src="cordova-2.0.0.js"></script>

</head>
<body>
 <h1>My ToDo List</h1>

</body>
</html>

2.	 In this example we will be referencing certain elements within the DOM by class
name. For this we will use the XUI JavaScript library. Add the script reference
within the head tag of the document to include this library.

3.	 Below the PhoneGap JavaScript include, "write a new JavaScript tag block", and within
this define an onDeviceReady event listener to ensure the device is ready and fully
loaded before the application proceeds to execute the code.
<title>My ToDo List</title>
<script type="text/javascript"
 src="cordova-2.0.0.js"></script>

<script type="text/javascript"

www.it-ebooks.info

http://www.it-ebooks.info/

File System, Storage, and Local Databases

62

 src="xui.js"></script>
<script type="text/javascript">
// PhoneGap code here

</script>

4.	 Add an input element within the body tags with the id attribute set to list_action.
This will allow the user to add entries into the database list.

5.	 Below the input element, add a button element with the id attribute set to saveItem.

6.	 Let's also add two div elements to hold any generated data. The first, with the id
attribute set to message, will hold any database connection error messages if we
have issues trying to connect. The second, with the id attribute set to listItems,
will act as a container into which our generated list will be placed for display.
<body>
<h1>My ToDo List</h1>

 <input type="text" 	 id="list_action" />

 <input type="button" id="saveItem" value="Save" />

 <div id="message"></div>

 <div id="listItems"></div>

</body>

7.	 With the layout complete, let's move on to adding our custom JavaScript code. To
begin with, we need to define the deviceready event listener. As we are using the
XUI library, for this recipe we will write this function as follows:
x$(document).on("deviceready", function () {

});

8.	 As we want to set the inner HTML values for the list and message div containers,
let's define the references to those particular elements. XUI makes this really
easy. We'll also create a global variable called db that will eventually hold our
database connection.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

63

9.	 Let's also bind a click handler to the saveItem button element. When pressed, it will
run the insertItem method to add a new record to the database.

10.	 We now need to create a reference to our SQLite database. The PhoneGap API
includes a function called openDatabase that creates a new database instance or
opens the database if it already exists. The returned object will allow us to perform
transactions against the database.
var listElement = x$('#listItems');
var messageElement = x$('#message');
var db;
x$('#saveItem').on('click', function(e) {
insertItem();
});

// Create a reference to the database
function getDatabase() {
return window.openDatabase("todoListDB",
 "1.0", "ToDoList Database", 200000);
}

11.	 We can now include the call to and create the onDeviceReady method. Here we
assign the database instance to the variable db, which will allow us to perform a
transaction into the database. In this case, we'll execute a simple SQL script to create
a table called MYLIST if it doesn't already exist.
// Run the onDeviceReady method
onDeviceReady();

// PhoneGap is ready
function onDeviceReady() {
db = getDatabase();
db.transaction(function(tx) {
tx.executeSql('CREATE TABLE IF NOT EXISTS MYLIST
 (id INTEGER PRIMARY KEY AUTOINCREMENT, list_action)');
}, databaseError, getItems);
}

12.	 Let's now define the getItems method, which is run on a successful callback from
the database transaction in the previous method. Once more we reference the
database object and perform another transaction, this time to select all items from
the table.
// Run a select statement to pull out all records
function getItems() {
db.transaction(function(tx) {
tx.executeSql('SELECT * FROM MYLIST', [],

www.it-ebooks.info

http://www.it-ebooks.info/

File System, Storage, and Local Databases

64

 querySuccess, databaseError);
}, databaseError);
}

13.	 Having received the results from the select query, we can loop over the results and
create list item elements that we can then set within the list div container. Here we
can reference the id and list_action columns from the results, drawn from the
SQLite database table we created earlier. We'll also output a user-friendly message
displaying the total number of records stored.
// Process the SQLResultSetList
function querySuccess(tx, results) {
var len = results.rows.length;
var output = '';
for (var i=0; i<len; i++){
 output = output +
 '<li id="' + results.rows.item(i).id + '">' +
 results.rows.item(i).list_action + '';
}
messageElement.html('<p>There are ' + len +
 ' items in your list:</p>');
listElement.html('' + output + '');
}

14.	 We initially bound a click event handler to our saveItem button. Let's now create the
insertItem method that the click handler would invoke. We want to take the value
of the list_action text input box and pass that into the database transaction when
we run an insert query. A successful insert will call our getItems method to query the
database and populate the list with all updated information from our database.
// Insert a record into the database
function insertItem() {
var insertValue =
document.getElementById('list_action').value;
db.transaction(function(tx) {
tx.executeSql('INSERT INTO MYLIST
 (list_action) VALUES ("' + insertValue + '")');
}, databaseError, getItems);
// Clear the value from the input box
document.getElementById('list_action').value = '';
}

15.	 Finally, let's include our databaseError fault handler method to display any issues
we may encounter from the database and display them in the message div element.
// Database error handler
function databaseError(error) {

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

65

messageElement.html("SQL Error: " + error.code);
}

16.	 When we run the application on the device, your output should look something like
the following screenshot:

How it works...
In order to access the SQLite database and to perform any transactions, we first need to
establish a connection to the .db file on the device using the openDatabase method.
Once this connection is established, we can use the SQLTransaction object to perform
executeSql methods such as table creation, selection and insertion queries, written using
standard SQL syntax.

For more details on the full methods available to use with the SQLite
implementation, check out the official Cordova storage documentation
at: http://docs.phonegap.com/en/2.0.0/cordova_
storage_storage.md.html#Storage.

There's more...
The Storage API accessible through Cordova is based on the W3C Web SQL Database
Specification. Some devices already have an implementation of this specification. If any
device your application runs on already provides this functionality, it will use its built-in
support for the Storage specification and not use Cordova's implementation.

See also
ff Chapter 6, Working with XUI

www.it-ebooks.info

http://www.it-ebooks.info/

File System, Storage, and Local Databases

66

Uploading a file to a remote server
Sometimes working with only the local system for mobile applications is not enough.
There are use cases for having the requirement to interact with a remote server; to
share a file, for example.

How to do it...
In this recipe we will build an application that allows the user to take a photo and upload it to
a remote server:

1.	 First let's create the initial HTML layout for our application. We will be using the XUI
JavaScript library to assist us in easily referencing DOM elements. Include the xui.
js and cordova-2.0.0.js references within the head tags and create an empty
JavaScript tag block into which we will place our custom code.
<!DOCTYPE html>
<html>
<head>
 <meta name="viewport" content="user-scalable=no,
 initial-scale=1, maximum-scale=1,
 minimum-scale=1, width=device-width;" />
 <title>Upload File</title>
 <script type="text/javascript"
 src="xui.js"></script>
 <script type="text/javascript"
 src="cordova-2.0.0.js"></script>
 <script type="text/javascript">

 </script>
</head>
<body>

</body>
</html>

2.	 We now need to create some elements within the body tag. Let's include a button
element with the id attribute set to selectorBtn. Create a div element with the id
attribute set to message, which we'll use to display status updates from the transfer,
and finally we'll create an img tag with the id attribute set to returnImage.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

67

<body>

<button id="selectorBtn">Take Photo</button>

<div id="message"></div>

</body>

3.	 We can now include our event handler to ensure that the device is ready before
proceeding, as well as creating our onDeviceReady method. In this method we will
bind the selectorBtn element to a touchstart event. When pressed, this will
call the camera.getPicture method from the PhoneGap API, which will open the
device's default camera application to let our user take a photo to upload:
document.addEventListener("deviceready", onDeviceReady, true);

function onDeviceReady() {

x$("#selectorBtn").touchstart(function(e) {
 navigator.camera.getPicture(
 gotPicture,
 onError,
 {
 sourceType:Camera.PictureSourceType.CAMERA,
 destinationType:Camera.DestinationType.FILE_URI,
 quality:50
 }
);
 });
}

In this instance we have the sourceType property set to Camera.
PictureSourceType.CAMERA. We could change this to be
Camera.PictureSourceType.PHOTOLIBRARY or Camera.
PictureSourceType.SAVEDPHOTOALBUM if we wanted the
user to select an image to upload from their saved photos.

4.	 We now include the gotPicture method as the success callback having obtained
an image. We have the location of the file as a provided parameter. Let's update the
message div to display a friendly message to users, and then we'll create a new
instance of the FileUploadOptions object, which we'll use to specify additional
parameters for the upload script. The options.fileKey value sets the name for
the form field that will contain the uploaded file.

www.it-ebooks.info

http://www.it-ebooks.info/

File System, Storage, and Local Databases

68

5.	 We can now create a new instance of the FileTransfer object, from which we'll
call the upload method. Here we can pass in the file's location on the device, the
remote address to upload it to, and also send any additional parameters we may
have included in the options object.
function gotPicture(fileLocation) {
x$("#message").html("<p>Uploading your image...</p>");

 var options = new FileUploadOptions();
 options.fileKey = "file";
 options.fileName =
 fileLocation.substr(fileLocation.lastIndexOf('/')+1);
 options.mimeType = "image/jpeg";
 options.chunkedMode = false;

 var fileTransfer = new FileTransfer();
 fileTransfer.upload(
 fileLocation,
 "http://address_to_remote_server_page/upload.cfm",
 fileUploaded,
 onError,
 options
);
}

In this example, I have used ColdFusion as the dynamic
server-side language to process the upload. You can, of
course, use any server-side language that you have access
to or feel comfortable using to manage the upload.

6.	 Let's now create the callback handler following a successful upload. The response
parameter is a FileUploadResult object, and from this we can obtain the total
number of bytes sent, as well as the output response from the server. In this case,
we are returning the image from the server-side script and we will set it as the src
attribute for the returnImage img element:
function fileUploaded(result) {
x$("#message").html('<p>Upload complete!!
Bytes sent: '
 + result.bytesSent + '</p>');
 x$("#returnImage").attr("src", result.response);
}

7.	 Finally, let's create our onError fault handler to alert us of any possible issues:
function onError(error) {
alert("Error: " + JSON.stringify(error));
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

69

8.	 When we run the application on a device, the output should look something like
the following screenshot:

9.	 Following a successful response from the remote server, the application would
then display something similar to the following screenshot:

How it works...
Firstly, we need to define how we are going to retrieve our image from the device using
the camera.getPicture method. Once we have obtained our picture, we can start to
build our FileTransfer object, which will handle the transaction to the remote server
for us. We can then create a FileUploadOptions object, which specifies any additional
parameters to use on the server-side handling page. The properties available to use within
the FileUploadOptions object are as follows:

ff fileKey: A DOMString object that represents the name of the form element.
The default value is file.

ff fileName: A DOMString object that represents the name you wish the file to
be saved as on the server. The default value is image.jpg.

www.it-ebooks.info

http://www.it-ebooks.info/

File System, Storage, and Local Databases

70

ff mimeType: A DOMString object that represents the mime type of the data you wish
to upload. The default value is image/jpeg.

ff params: An object that allows you to set optional key/value pairs to also be included
in the HTTP request.

ff chunkedMode: A boolean value that determines whether or not the data should be
uploaded in a chunked streaming mode. The default value is true.

Finally, our success callback method will contain the FileUploadResult object returned
from the transaction, which gives us access to the response from the server as well as the
number of bytes sent in the upload, which we can then output, store, or use in any way we
need to.

For more details on the FileTransfer object, please check out
the official Cordova documentation:
http://docs.phonegap.com/en/2.0.0/cordova_file_
file.md.html#FileTransfer.

See also
ff The Displaying network connection status recipe in Chapter 5, Hook into Native Events

Caching content using the web storage local
storage API

As mobile users access applications and pull remote data on the move, we need to be
conscious and aware that our application may be using up limited data services. We can
implement services and techniques to help reduce unnecessary remote calls to data.

How to do it...
In this recipe, we will build an application that allows the user to search Twitter using its open
API. We'll store the results for the search in the localStorage so it's available when we re-
open the application:

1.	 Let's start off by creating the initial format for our index.html page. We will be
using the jQuery Mobile framework for our layout, so include the relevant CSS and
JavaScript file references within the head tag.

2.	 Below these, include the JavaScript reference to the cordova-2.0.0.js file.
3.	 Within the body tag, create a new div element with the data-role attribute set

to page, which will form the container for the jQuery Mobile layout:
<!DOCTYPE html>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

71

<html>
 <head>
 <meta name="viewport" content="user-scalable=no,
 initial-scale=1, maximum-scale=1,
 minimum-scale=1, width=device-width;" />
 <title>Local Storage</title>
 <link rel="stylesheet"
 href="jquery/jquery.mobile-1.1.1.min.css" />
 <script src="jquery/jquery-1.8.0.min.js"></script>
 <script src="jquery/jquery.mobile-1.1.1.min.js"></script>
 <script type="text/javascript" src="cordova-2.0.0.js"></script>

</head>
<body>

 <div data-role="page">

 </div>

</body>
</html>

4.	 Let's place some more layout structures into our application, which are required by
the jQuery Mobile framework. Create a new div element with the id attribute set to
header. The data-role and data-position attributes must also be set as shown.

5.	 Within the header we'll display an anchor tag to exit the application. We are
specifying the id attribute and are also setting a specific icon to display in the
header, thanks to the data-icon attribute.

6.	 We'll also include an h2 heading to add a title to the application, as well as a second
button which we'll use to clear any cached content. This too has a specific icon set
in the data-icon attribute, as well as the id attribute to allow us to reference it via
our JavaScript:
<div id="header" data-role="header" data-position="inline">

<a id="exit_btn" data-inline="true"
 data-theme="b" data-icon="home">Exit

<h2>Local Storage Search</h2>

<a id="clear_btn" data-inline="true"
 data-theme="b" data-icon="delete">Clear Storage
</div>

www.it-ebooks.info

http://www.it-ebooks.info/

File System, Storage, and Local Databases

72

7.	 Below this, create a new div element with the data-role attribute set to
content. This will house a second div block, inside of which we'll place two
input elements; the first to hold the user's search criteria, the second is the
button to perform the search.

8.	 We'll now include a ul element with the id attribute set to tweetResults, and the
data-role attribute set to listview, which will hold our returned data:
<div data-role="content">

<div data-role="fieldcontain">

<input type="search" name="search"
 id="searchTerm" data-inline="true" data-icon="search" />
<input type="button" id="search_btn"
 value="Search" data-theme="b" data-inline="true" />

</div>

<ul id="tweetResults" data-role="listview"
 data-inset="true">

</div>

9.	 With the layout complete, we can start adding our custom code. Include a new
JavaScript tag block before the closing head tag. Inside of this, let's write the event
listener to ensure the PhoneGap native code has loaded before we proceed.
<script type="text/javascript">

document.addEventListener("deviceready", onDeviceReady, true);

</script>

10.	 Let's start adding the custom code that will be run when the device is ready. Create
the onDeviceReady function. At the start we'll set some required variables; the first
two will hold some messages to output to our users, while the third is a reference to
the localStorage interface which we'll use to save our data in key/value pairs.

11.	 We need to run a check to see if any content from a previous request has been stored
by calling the getItem method on the localStorage object. If it exists, we'll display
a user-friendly message, set the search term from the previous search into the input
box, display the clear button by calling the showClearButton method, then finally
loop over the results to display them, by calling the outputResults method.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

73

12.	 If we have no previous results saved in the localStorage object, we'll simply
display a welcome message to the user and ensure the clear button is hidden.
function onDeviceReady() {
 // Create the friendly messages and define the variables
 var previousMessage = 'Here are your previous search
results..';
 var welcomeMessage = 'What would you like to search for?';
 var localStorage = window.localStorage;

 /* Firstly, check to see if localStorage
 has any cached content from a previous request. */
 if(localStorage.getItem('twitSearchResults')) {

 /* We have saved content,
 so display a nice message to the user */
 $('body h2').html(previousMessage);

 /* Set the value of the stored search
 term into the input box */
 $('#searchTerm').val(localStorage.getItem('searchTerm'));

 // Display the clear button
 showClearButton();

 // Send the stored data to be rendered as HTML
 outputResults(JSON.parse(localStorage.
getItem('twitSearchResults')));
 } else {

 /* There is nothing cached,
 so display a friendly message */
 $('body h2').html(welcomeMessage);
 hideClearButton();

 }

 // add click handlers here

 }

13.	 Within the onDeviceReady function, we now need to set up the click handlers for
each of our buttons. The first is the clear_btn element, which when clicked will
clear the values in the tweetResults div element, and remove and data we have
cached by calling the clear method on the localStorage object.

www.it-ebooks.info

http://www.it-ebooks.info/

File System, Storage, and Local Databases

74

14.	 The second handler is applied to the exit_btn element, which will gracefully close
the application.
 /* Add a click handler to the clear button
 which will be displayed is a user returns
 to the page with saved content */
 $('#clear_btn').click(function() {
 // Clear the entire local storage object
 localStorage.clear();
 // Clear the content list
 $('#tweetResults').html('');
 $('#tweetResults').hide();

 /* There is nothing cached,
 so display a friendly message */
 $('body h2').html(welcomeMessage);

 // Remove the clear button
 hideClearButton();

 // Reset the search term input field
 $('#searchTerm').val('');

 });

 $('#exit_btn').click(function() {
 navigator.app.exitApp();
 });

15.	 The third click handler will be placed on the search_btn element, which will
take the search term provided by the user and pass it to a new function called
makeSearchRequest:
/* Add a click handler to the search button
 which will make our AJAX requests for us */
 $('#search_btn').click(function() {

 /* Obtain the value of the search term and send it
 through to the request function */
 makeSearchRequest($('#searchTerm').val());

});

16.	 Before we make the call, we'll save the search term into the localStorage object
by using the setItem() method. This will allow us to reference it at any time until
we have cleared the cache.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

75

17.	 To make the request to the remote API, we'll utilize jQuery's built-in ajax() method,
here asking for five results per page on the search term provided by the user. To handle
the returned data we'll also specify the jsonpCallback method, which in this case is
a new function called storeResults.
function makeSearchRequest(searchTerm) {

// Display a user-friendly message
 $('body h2').html('Searching for: '+ searchTerm);

 /* Store the value we are searching
 for into the localStorage object */
 localStorage.setItem('searchTerm', searchTerm);

 // Make the request to the Twitter search API
 $.ajax({
 url:
 "http://search.twitter.com/search.json?q="+
 searchTerm+"&rpp=5",
 dataType: "jsonp",
 jsonpCallback: "storeResults"
 });

}

18.	 Once we have obtained a response from the request, we'll check to make sure we have
access to the localStorage functionality, and if we do we'll save the entire response,
converting the JSON data into a string before we output the results to the user:
function storeResults(data) {
 /* Save the latest search results,
 coercing the data from an object into a string */
 localStorage.setItem(
 'twitSearchResults',
 JSON.stringify(data));
 outputResults(data);
}

19.	 We have the raw JSON data with which to create our output. Here, we loop through
the results to create the required HTML blocks for display. As Twitter information
contains a lot of links to users, dates, and other links, we'll also ensure we have
those converted for our user.

20.	 Within the loop we'll append each processed result and append it to the
tweetResults ul tag block as an individual list item element.

www.it-ebooks.info

http://www.it-ebooks.info/

File System, Storage, and Local Databases

76

21.	 Once the processing is complete, we then need to refresh the list to reload the
contents ready for display.
function outputResults(data) {

 // Clear the content and hide the results element
 $('#tweetResults').html('');

 // Loop through the results in the JSON object
 $.each(data.results,
 function(i, tweet) {
 /* Replace and define any URLs
 for inclusion in the output */
 tweet.text = tweet.text.replace(/((https?|s?ftp|ssh)\:\/\/
 [^"\s\<\>]*[^.,;'">\:\s\<\>\)\]\!])/g,
 function(url) {
 return ''+url+'';
 }).replace(/\B@([_a-z0-9]+)/ig,
 function(reply) {
 return reply.charAt(0)+'<a href="http://twitter.
 com/'+reply.substring(1)+'">'+reply.substring(1)+'';
 });

 $('#tweetResults').append('<img src="' + tweet.profile_
 image_url + '" /><h3>@' + tweet.from_user_name + '</h3><p>'+
 tweet.text + '</p><p class="ui-li-aside"></p>');
 });
 // Refresh the list view
 $('#tweetResults').listview("refresh");
 }

22.	 Let's now create the functions to handle the visual display of our button to clear the
localStorage cache. We can reference the button id attribute and then apply the
jQuery css() method to alter its style.
function showClearButton() {
$("#clear_btn").css('display', 'block');
}

function hideClearButton() {
$("#clear_btn").css('display', 'none');
}

Here we are directly changing the styles of the elements. You
could amend this code to add and remove a CSS class to handle
the display instead.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

77

23.	 Finally, let's include our onError function which will be fired if we encounter any
issues along the way.
function onError(error) {
alert("Error: " + JSON.stringify(error));
}

24.	 For any users running the application for the first time or with an empty cache,
the application will look something like the following screenshot:

25.	 Once a request has been made, every time the user opens the application they will
be presented with the details of their previous search request, until they clear the
cache or make a new request, as shown in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

File System, Storage, and Local Databases

78

How it works...
To cache and store our data from the request we simply saved the values, assigning them to a
key we could reference, using the setItem method into the localStorage object. We were
then able to reference the storage to see if that particular key existed by calling the getItem
method. If nothing was present, we were able to make a new remote call, and then save the
data that was returned.

There's more...
The localStorage options provided with the Cordova API do a fantastic job of persisting
and allowing us to easily access and retrieve saved data.

For those of you wishing to explore alternative storage options, check out Lawnchair, an open
source project written by Brian Leroux. Built with mobile applications in mind, Lawnchair is
a lightweight JavaScript file that is extensible and can be used with a number of adaptors to
persist data, using key/value pairs, and it has an incredibly simple API.

Find out more about Lawnchair here: http://brian.io/lawnchair/

www.it-ebooks.info

http://www.it-ebooks.info/

3
Working with Audio,

Images, and Video
In this chapter, we will cover:

ff Capturing audio using the device audio recording application

ff Recording audio within your application

ff Playing audio files from the local filesystem or over HTTP

ff Capturing video using the device video recording application

ff Loading a photograph from the device camera roll/library

ff Applying an effect to an image using canvas

Introduction
This chapter will include a number of recipes that outline the functionality required to capture
audio, video, and camera data, as well as the playback of audio files from the local system and
remote host. We will also have a look at how to use the HTML5 canvas element to edit an image
on the fly.

Capturing audio using the devices audio
recording application

The PhoneGap API allows developers the ability to interact with the audio recording application
on the device and save the recorded audio file for later use.

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Audio, Images, and Video

80

How to do it...
We'll make use of the Capture object and the captureAudio method it contains to invoke
the native device audio recording application to record our audio. The following steps will help
you to do so:

1.	 Create the initial layout for the application, and include the JavaScript references to
jQuery and Cordova. We'll also set a stylesheet reference pointing to style.css.
<!DOCTYPE html>
<html>
 <head>
 <meta name="viewport" content="user-scalable=no,
 initial-scale=1, maximum-scale=1,
 minimum-scale=1, width=device-width;" />
 <title>Audio Capture</title>
 <link rel="stylesheet" href="style.css" />
 <script src="jquery/jquery-1.8.0.min.js"></script>
 <script type="text/javascript"
 src="cordova-2.0.0.js"></script>
</head>
<body>

</body>
</html>

2.	 Create a new button element within the body tags of the document, and set the
id attribute to record. We'll use this to bind a touch handler to it:
<button id="record">capture audio</button>

3.	 Create a new file called style.css and include some CSS to format the
button element:
#record {
 display: block;
 padding: .4em .8em;
 text-decoration: none;
 text-shadow: 1px 1px 1px rgba(0,0,0,.3);
 -webkit-transition:.3s -webkit-box-shadow, .3s padding;
 transition:.3s box-shadow, .3s padding;
 border-radius: 200px;
 background: rgba(255,0,0,.6);
 width: 10em;
 height: 10em;
 color: white;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

81

 position: absolute;
 top: 25%;
 left: 25%;
}

4.	 With the user interface added to the page and the styles applied, the application
looks something like the following screenshot:

5.	 Now let's start adding our custom code. Create a new script tag block before
the closing head tag. Within this we'll set up an event listener, which will call the
onDeviceReady method once the PhoneGap code is ready to run.

6.	 We'll also create a global variable called audioCapture, which will hold our
capture object:
<script type="text/javascript">

 document.addEventListener("deviceready",
 onDeviceReady, true);

 var audioCapture = '';

</script>

7.	 We now need to create the onDeviceReady method. This will firstly assign the
capture object to the variable we defined earlier. We'll also bind a touchstart
event to the button element, which when pressed will run the getAudio method to
commence the capture process:
function onDeviceReady() {
 audioCapture = navigator.device.capture;

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Audio, Images, and Video

82

 $('#record').bind('touchstart', function() {
 getAudio();
});
}

8.	 To begin the audio capture, we need to call the captureAudio() method from
the global capture object. This function accepts three parameters. The first is the
name of the method to run after a successful transaction. The second is the name
of the error handler method to run if we encounter any problems trying to obtain
audio. The third is an array of configuration options for the capture request.

9.	 In this example we are forcing the application to retrieve only one audio capture,
which is also the default value:
function getAudio() {
audioCapture.captureAudio(
 onSuccess,
 onError,
 {limit: 1}
);
}

10.	 Following on from a successful transaction, we will receive an array of objects
containing details for each audio file that was captured. We'll loop over that array
and generate a string containing all of the properties for each file, which we'll insert
in to the DOM before the button element.
function onSuccess(audioObject) {
var i, output = '';
for (i = 0; i < audioObject.length; i++) {
 output += 'Name: ' + audioObject[i].name + '
' +
 'Full Path: ' + audioObject[i].fullPath + '
' +
 'Type: ' + audioObject[i].type + '
' +
 'Created: '
+ new Date(audioObject[i].lastModifiedDate) + '
' +
 'Size: ' + audioObject[i].size + '
========';
 }
$('#record').before(output);
}

11.	 If we encountered an error during the process, the onError method will fire. The
method will provide us with access to an error object, which contains the code for
the error. We can use a switch statement here to customize the message that we will
return to our user.
function onError(error) {
var errReason;
 switch(error.code) {

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

83

 	 case 0:
 errReason = 'The microphone failed to capture sound.';
 break;
 case 1:
 errReason = 'The audio capture application is currently
busy with another request.';
 break;
 case 2:
 errReason = 'An invalid parameter was sent to the
API.';
 break;
 case 3:
 errReason = 'You left the audio capture application
without recording anything.';
 break;
 case 4:
 errReason = 'Your device does not support the audio
capture request.';
 break;
 }
 alert('The following error occurred: ' + errReason);
}

12.	 If we run our application and press the button, the device's default audio recording
application will open and we can record our audio.

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Audio, Images, and Video

84

13.	 Once we have finished recording, our application will receive the audio data from the
callback method and the output will look like the following screenshot:

How it works...
The Capture object available through the PhoneGap API allows us to access the media
capture capabilities of the device. By specifying the media type we wish to capture by calling
the captureAudio method, an asynchronous call is made to the device's native audio
recording application.

In this example we requested the capture of only one audio file. Setting the limit value within
the optional configuration to a value greater than one can alter this.

The request is finished when one of two things happen:

ff The maximum number of recordings has been created

ff The user exits the native audio recording application

Following a successful callback from the request operation, we receive an array of objects that
contains properties for each individual media file, which contains the following properties we
can read:

ff name: A DOMString object that contains the name of the file

ff fullPath: A DOMString object that contains the full path of the file

ff type: A DOMString object that includes the mime type of the returned media file

ff lastModifiedTime: A Date object that contains the date and time that the file was
last modified

ff size: A Number value that contains the size of the file in bytes

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

85

To find out more about the captureAudio capabilities offered by the
PhoneGap API, check out the official documentation here: http://
docs.phonegap.com/en/2.0.0/cordova_media_capture_
capture.md.html#capture.captureAudio.

See also
ff The Playing audio files from the local filesystem or over HTTP recipe

Recording audio within your application
The PhoneGap API provides us with the ability to record audio directly within our application,
bypassing the native audio recording application.

How to do it...
We will use the Media object to create a reference to an audio file into which we'll record the
audio data.

1.	 Create the initial layout for your HTML page. This will include the references to the
jQuery and jQuery UI JavaScript libraries, the style sheets, and the Cordova JavaScript
library. We'll also include an empty script tag block which will contain our custom
code. This is shown in the following code block:
<!DOCTYPE HTML>
<html>
 <head>
 <meta name="viewport" content="user-scalable=no,
 initial-scale=1, maximum-scale=1,
 minimum-scale=1, width=device-width;" />
 <title>Audio Recorder</title>
 <link rel="stylesheet" href="style.css" />
 <link type="text/css"
 href="jquery/css/smoothness/jquery-ui-1.8.23.custom.css"
 rel="stylesheet" />
 <script type="text/javascript"
 src="jquery/jquery-1.8.0.min.js"></script>
 <script type="text/javascript"
 src="jquery/jquery-ui-1.8.23.custom.min.js"></script>
 <script type="text/javascript"
 src="cordova-2.0.0.js"></script>
 <script type="text/javascript">

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Audio, Images, and Video

86

 </script>
</head>
<body>

</body>
</html>

2.	 Include three elements within the body of our application. The first is a div with the
id attribute set to progressbar. The second is a div with the id attribute set to
message, and the third is a button element with the id attribute set to record.
<div id="progressbar"></div>
<div id="message"></div>
<button id="record"></button>

3.	 Now let's start adding our custom code within the empty script tag block. We'll
begin by defining some global variables that we'll use in the application. We'll also
create the event listener to ensure the device is ready before we proceed.

4.	 The onDeviceReady function will then run a new function called recordPrepare,
as shown in the following code:
var maxTime = 10,
 countdownInt = 3,
 src,
 audioRecording,
 stopRecording;

document.addEventListener("deviceready",
 onDeviceReady, false);

function onDeviceReady() {
 recordPrepare();
}

5.	 The recordPrepare button will be used more than once in our application to reset
the state of the button to record audio. Here, we unbind any actions applied to the
button, set the HTML value and bind the touchstart handler to run a function
called recordAudio:
function recordPrepare() {
 $('#record').unbind();
 $('#record').html('Start recording');
 $('#record').bind('touchstart', function() {
 recordAudio();
 });
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

87

6.	 Let's now create the recordAudio() function, which will create the audio file. We'll
switch the value and bind events applied to our button to allow the user to manually
end the recording. We also set the Media object to a variable, audioRecording,
and pass in the destination for the file in the form of the src parameter, as well as
the success and error callback methods.

7.	 A setInterval method is included, which will count down from three to zero to give
the user some time to prepare for the recording. When the countdown is complete,
we then invoke the startRecord method from the Media object and start another
setInterval method. This will count to ten and will automatically stop the recording
when the limit has been reached.
function recordAudio() {

 $('#record').unbind();
 $('#record').html('Stop recording');
 $('#record').bind('touchstart', function() {
 stopRecording();
 });

 src = 'recording_' + Math.round(new Date().getTime()/1000) +
'.mp3';

 audioRecording = new Media(src, onSuccess, onError);

 var startCountdown = setInterval(function() {

 $('#message').html('Recording will start in ' +
countdownInt + ' seconds...');
 countdownInt = countdownInt -1;

 if(countdownInt <= 0) {
 countdownInt = 3;
 clearInterval(startCountdown);
 audioRecording.startRecord();

 var recTime = 0;
 recInterval = setInterval(function() {
 recTime = recTime + 1;

 $('#message').html(Math.round(maxTime - recTime) +
' seconds remaining...');

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Audio, Images, and Video

88

 var progPerc = 100-((100/maxTime) * recTime);
 setProgress(progPerc);
 if (recTime >= maxTime) {
 stopRecording();
 }
 }, 1000);
 }
 }, 1000);
}

8.	 As our recording is underway we can update the progress bar using the jQuery UI
library and set it to the current value to show how much time is remaining.
function setProgress(progress) {
 $("#progressbar").progressbar({
 value: progress
 });
}

9.	 When a recording is stopped, we want to clear the interval timer and run the
stopRecord method from the Media object. We'll also clear the value of the
progress bar to zero, and reset the button bindings to prepare for the next recording.
function stopRecording() {
 clearInterval(recInterval);
 audioRecording.stopRecord();
 setProgress(0);
 recordPrepare();
}

Finally we can add in our success and error callback methods:

function onSuccess() {
 $('#message').html('Audio file successfully
 created:
' + src);
}

function onError(error) {
 $('#message').html('code: ' + error.code + '\n' +
 'message: ' + error.message + '\n');
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

89

10.	 When we run the application to start recording, the output should look something like
the following screenshot:

11.	 After a successful recording the user would be presented with the URI to the
recorded file that we could use to access, upload, or play back the file, as shown
in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Audio, Images, and Video

90

How it works...
The Media object has the ability to record and play back audio files. When choosing to utilize
the object for recording, we need to provide the method with the URI for the destination file on
the local device.

To start a recording we simply call the startRecord method from the Media object, and to
stop the recording we need to call the stopRecord method.

To find out more about the available methods within the Media object,
please refer to the official documentation, available here: http://
docs.phonegap.com/en/2.0.0/cordova_media_media.
md.html#Media.

See also
ff The Saving a file to device storage recipe in Chapter 2, File System, Storage, and

Local Databases
ff The Opening a local file from device storage recipe in Chapter 2, File System, Storage,

and Local Databases

Playing audio files from the local filesystem
or over HTTP

The PhoneGap API provides us with a relatively straightforward process to play back audio files.
These can be files stored within the application's local filesystem, bundled with the application,
or over remote files accessible by a network connection. Wherever the files may be, the method
of playback is achieved in exactly the same way.

How to do it...
We must create a new Media object and pass into it the location of the audio file we want to
play back:

1.	 Create the initial layout for the HTML, and include the relevant references to the
JavaScript and style sheets. In this example we are going to be using the jQuery
Mobile framework (http://jquerymobile.com/):
<!DOCTYPE HTML>
<html>
 <head>
 <meta name="viewport" content="width=screen.width; user-

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

91

scalable=no" />
 <title>Audio Player</title>
 <link rel="stylesheet" href="jquery/jquery.mobile-1.1.1.min.
css" type="text/css">
 <script type="text/javascript" src="jquery/jquery-1.8.0.min.
js"></script>
 <script type="text/javascript" src="jquery/jquery.mobile-
1.1.1.min.js"></script>
 <script type="text/javascript" src="cordova-2.0.0.js"></
script>

</head>
<body>

</body>
</html>

2.	 Create the layout for the application within the body tags. Here we are specifying
a page for the jQuery Mobile framework, and four key div elements that have
been assigned the role of buttons. We will reference their id attributes in our
code, as follows:
<div data-role="page" id="page-home">
 <div data-role="header">
 <h1>PhoneGap Audio Player</h1>
 </div>

 <div data-role="content">

 <div data-role="button"
 id="playLocalAudio">Play Local Audio</div>
 <div data-role="button"
 id="playRemoteAudio">Play Remote Audio</div>
 <div data-role="button"
 id="pauseaudio">Pause Audio</div>
 <div data-role="button"
 id="stopaudio">Stop Audio</div>

 <div class="ui-grid-a">
 <div class="ui-block-a"> Current:
 0 sec</div>
 <div class="ui-block-b">Total:
 0 sec</div>
 </div>
 </div>
</div>

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Audio, Images, and Video

92

3.	 Create a new script tag block within the head tag to contain our custom code, into
which we'll add out an event listener to check that the device is ready to proceed, and
also, some required global variables.
<script type="text/javascript">

document.addEventListener("deviceready", onDeviceReady, true);

var audioMedia = null,
 audioTimer = null,
 duration = -1,
 is_paused = false;

</script>

4.	 The onDeviceReady method binds a touchstart event to all four of our buttons
in the main page content. For the local audio option, this example is set to read a file
from the Android asset location. In both play functions, we pass the audio source to
the playAudio method:
function onDeviceReady() {

 $("#playLocalAudio").bind('touchstart', function() {

 stopAudio();
 var srcLocal = '/android_asset/www/CFHour_Intro.mp3';
 playAudio(srcLocal);

 });

 $("#playRemoteAudio").bind('touchstart', function() {

 stopAudio();
 var srcRemote = 'http://traffic.libsyn.com/cfhour/Show_138_-_
ESAPI_StackOverflow_and_Community.mp3';
 playAudio(srcRemote);

 });

 $("#pauseaudio").bind('touchstart', function() {
 pauseAudio();
 });

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

93

 $("#stopaudio").bind('touchstart', function() {
 stopAudio();
 });

}

5.	 Now let's add in the playAudio method. This will firstly check to see if the
audioMedia object has been assigned and we have an active audio file. If not,
we will reset the duration and position values and create a new Media object
reference, passing in the source of the audio file.

6.	 To update the duration and current position of the audio file, we will set a new
interval timer which will check once every second and obtain these details from
the getCurrentPosition and getDuration methods, available from the
Media object:
function playAudio(src) {

 if (audioMedia === null) {
 $("#mediaDuration").html("0");
 $("#audioPosition").html("Loading...");
 audioMedia = new Media(src, onSuccess, onError);
 audioMedia.play();
 } else {
 if (is_paused) {
 is_paused = false;
 audioMedia.play();
 }
 }

 if (audioTimer === null) {
 audioTimer = setInterval(function() {
audioMedia.getCurrentPosition(
function(position) {
 if (position > -1) {

 setAudioPosition(Math.round(position));
 if (duration <= 0) {
 duration = audioMedia.getDuration();
 if (duration > 0) {
 duration = Math.round(duration);
 $("#mediaDuration").html(duration);
 }
 }
 }
},

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Audio, Images, and Video

94

function(error) {
 console.log("Error getting position=" + error);
 setAudioPosition("Error: " + error);
}
);
 }, 1000);
 }
}

7.	 The setAudioPosition method will update the content in the audioPosition
element with the current details.
function setAudioPosition(position) {
 $("#audioPosition").html(position + " sec");
}

8.	 Now we can include the two remaining methods assigned to the touch handlers to
control pausing and stopping the audio playback.
function pauseAudio() {
 if (is_paused) return;
 if (audioMedia) {
 is_paused = true;
 audioMedia.pause();
 }
}

function stopAudio() {
 if (audioMedia) {
 audioMedia.stop();
 audioMedia.release();
 audioMedia = null;
 }
 if (audioTimer) {
 clearInterval(audioTimer);
 audioTimer = null;
 }

 is_paused = false;
 duration = 0;
}

9.	 Lastly, let's write the success and error callback methods. In essence, they both reset
the values to default positions in preparation for the next playback request.
function onSuccess() {
 setAudioPosition(duration);

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

95

 clearInterval(audioTimer);
 audioTimer = null;
 audioMedia = null;
 is_paused = false;
 duration = -1;
}

function onError(error) {
 alert('code: ' + error.code + '\n' +
 'message: ' + error.message + '\n');
 clearInterval(audioTimer);
 audioTimer = null;
 audioMedia = null;
 is_paused = false;
 setAudioPosition("0");
}

10.	 When we run the application on the device, the output will be similar to that shown
in the following screenshot:

How it works...
The Media object has the ability to record and play back audio files. For media playback,
we simply pass in the location of the audio file, remote or local, in to the Media instantiation
call, along with the success and error handlers.

Playback is controlled by the Media objects' built-in methods available through the
PhoneGap API.

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Audio, Images, and Video

96

To find out more about all of the available methods within the Media
object, please refer to the official documentation, available here:
http://docs.phonegap.com/en/2.0.0/cordova_media_
media.md.html#Media.

There's more...
In this example, we are assuming the developer is building for an Android device, and so we
have referenced the location of the local file using the android_asset reference. To cater
for other device operating systems you can use the Device object available in the PhoneGap
API to determine which platform is running the application. Using the response from this
check, you can then create a switch statement to provide the correct path to the local file.

To find out more about the Device object, please refer to the official
documentation, available here: http://docs.phonegap.com/
en/2.0.0/cordova_device_device.md.html#Device.

Capturing video using the devices video
recording application

The PhoneGap API provides us with the ability to easily access the native video recording
application on the mobile device and save the captured footage.

How to do it...
We will use the Capture object and the captureVideo method it contains to invoke the
native video recording application.

1.	 Create the initial layout for the application, and include the JavaScript references to
jQuery and PhoneGap. We'll also set a stylesheet reference pointing to style.css:
<!DOCTYPE html>
<html>
 <head>
 <title>Video Capture</title>
 <link rel="stylesheet" href="style.css" />
 <script type="text/javascript"
 src="jquery/jquery-1.8.0.min.js"></script>
 <script type="text/javascript"
 src="cordova-2.0.0.js"></script>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

97

</head>
<body>

</body>
</html>

2.	 Create a new button element within the body tags of the document, and set the
id attribute to record. We'll use this to bind a touch handler to it.
<button id="record">capture video</button>

3.	 Now let's start to add our custom code. Create a new script tag block before
the closing head tag. Within this we'll set up our event listener, which will call the
onDeviceReady method once the PhoneGap code is ready to run.

4.	 We'll also create a global variable called videoCapture, which will hold our
capture object.
<script type="text/javascript">

 document.addEventListener("deviceready",
 onDeviceReady, true);

 var videoCapture = '';

</script>

5.	 We now need to create the onDeviceReady method. This will firstly assign the
capture object to the variable we defined earlier. We'll also bind a touchstart
event to the button element, which when pressed will run the getVideo method to
commence the capture process:
function onDeviceReady() {
 videoCapture = navigator.device.capture;

 $('#record').bind('touchstart', function() {
 getVideo();
});
}

6.	 To begin the video capture, we need to call the captureVideo method from the
global capture object. This function accepts three parameters. The first is the name
of the method to run after a successful transaction. The second is the name of the
error handler method to run if we encounter any problems trying to obtain the video.
The third is an array of configuration options for the capture request.

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Audio, Images, and Video

98

7.	 In this example we are requesting the application to retrieve two separate video
captures, as shown in the following block of code:
function getVideo() {
videoCapture.captureVideo(
 onSuccess,
 onError,
 {limit: 2}
);
}

8.	 Following on from a successful transaction, we will receive an array of objects
containing details for each video file that was captured. We'll loop over that array
and generate a string containing all of the properties for each file, which we'll
insert in to the DOM before the button element.
function onSuccess(videoObject) {
var i, output = '';
for (i = 0; i < videoObject.length; i += 1) {
 output += 'Name: ' + videoObject[i].name + '
' +
 'Full Path: ' + videoObject[i].fullPath + '
' +
 'Type: ' + videoObject[i].type + '
' +
 'Created: '
+ new Date(videoObject[i].lastModifiedDate) + '
' +
 'Size: ' + videoObject[i].size + '
========';
 }
$('#record').before(output);
}

9.	 If we encountered an error during the process, the onError method will fire. The
method will provide us with access to an error object, which contains the code for
the error. We can use a switch statement here to customize the message that we will
return to our user, as follows:
function onError(error) {
var errReason;
 switch(error.code) {
 	 case 0:
 errReason = 'The camera failed to capture video.';
 break;
 case 1:
 errReason = 'The video capture application is currently
busy with another request.';

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

99

 break;
 case 2:
 errReason = 'An invalid parameter was sent to the
API.';
 break;
 case 3:
 errReason = 'You left the video capture application
without recording anything.';
 break;
 case 4:
 errReason = 'Your device does not support the video
capture request.';
 break;
 }
 alert('The following error occurred: ' + errReason);
}

10.	 If we run our application and press the button, the device's default video
recording application will open and we can record our video, as shown in
the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Audio, Images, and Video

100

11.	 Once we have finished recording, our application will receive the video data from
the callback method and the output will look like the following screenshot:

How it works...
The Capture object available through the PhoneGap API allows us access to the media
capture capabilities of the device. By specifying the media type we wish to capture by
calling the captureVideo method, an asynchronous call is made to the device's native
video recording application.

In this example, we forced the method to request two video captures by setting the limit
property in the optional configuration options – the default value for the limit is set to one.

The request is finished when one of the two things happen:

ff The maximum number of recordings has been created

ff The user exits the native video recording application

Following a successful callback from the request operation, we receive an array of objects that
contains properties for each individual media file, which contains the following properties, as
we can read:

ff name: A DOMString object that contains the name of the file

ff fullPath: A DOMString object that contains the full path of the file

ff type: A DOMString object that includes the mime type of the returned media file

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

101

ff lastModifiedTime: A Date object that contains the date and time that the file
was last modified

ff size: A Number value that contains the size of the file in bytes

To find out more about the captureVideo capabilities offered by the
PhoneGap API, check out the official documentation here: http://
docs.phonegap.com/en/2.0.0/cordova_media_capture_
capture.md.html#capture.captureVideo.

Loading a photograph from the devices
camera roll/library

Different devices will store saved photographs in different locations, typically in either a photo
library or saved photo album. The PhoneGap API gives developers the ability to select or
specify from which location an image should be retrieved.

How to do it...
We must use the getPicture method available from the Camera object to select an image
from either the device library or to capture a new image directly from the camera.

1.	 Create the initial layout for the HTML page, and include the required references to
the jQuery and Cordova JavaScript libraries.
<!DOCTYPE HTML>
<html>
 <head>
 <meta name="viewport" content="width=screen.width; user-
scalable=no" />
 <title>Photo Finder</title>
 <script type="text/javascript"
 src="jquery/jquery-1.8.0.min.js"></script>
 <script type="text/javascript"
 src="cordova-2.0.0.js"></script>
</head>
<body>

</body>
</html>

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Audio, Images, and Video

102

2.	 The body tag of our application will contain four elements. We'll need to provide
two buttons, both with the class attribute set to photo, and each one with the
id attribute set to cameraPhoto and libraryPhoto respectively.

3.	 Well also need to create a div element with id set to message and an img
tag with id set to image, as shown in the following code block:
<button class="photo"
id="cameraPhoto">Take New Photo</button>

<button class="photo"
id="libraryPhoto">Select From Library</button>

<div id="message"></div>

4.	 Create a new script tag block within the head of the document and include the
event listener that will fire when the PhoneGap native code is compiled and ready.
Below this, create the onDeviceReady function, within which we'll apply a bind
handler to the buttons by using the jQuery class selector.

5.	 Depending on the value of the selected button's id attribute, the switch statement
will run the particular method to obtain the image.
<script type="text/javascript">

document.addEventListener("deviceready",onDeviceReady,false);

function onDeviceReady() {
$('.photo').bind('touchstart', function() {
 switch($(this).attr('id')) {
 case 'cameraPhoto':
 capturePhoto();
 break;
 case 'libraryPhoto':
 getPhoto();
 break;
 }
});
}

</script>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

103

6.	 Let's now add the first of our image capture functions, capturePhoto. This calls the
getPicture method from the Camera object. Here we are asking for the highest
quality image returned and with a scaled image to match the provided sizes.
function capturePhoto() {
 navigator.camera.getPicture(onSuccess, onFail,
 {
 quality: 100,
 targetWidth: 250,
 targetHeight: 250
 }
);
}

7.	 The second image capture method is getPhoto. In this method we once again call
the getPicture method, but we now pass in the sourceType option value to
request the image to be selected from the device photo library.
function getPhoto() {
 navigator.camera.getPicture(onSuccess, onFail,
 {
 quality: 100,
 destinationType: Camera.DestinationType.FILE_URI,
 sourceType: Camera.PictureSourceType.PHOTOLIBRARY,
 targetWidth: 250,
 targetHeight: 250
 }
);
}

8.	 Finally, let's add in the success and error handlers, which both of our capture
methods will use. The onSuccess method will display the returned image, setting it
as the source for the image element:
function onSuccess(imageURI) {
 $('#image').attr('src', imageURI);
 $('#message').html('Image location: ' + imageURI);
}

function onFail(message) {
 $('#message').html(message);
}

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Audio, Images, and Video

104

9.	 When we run the application on the device, the output would look something like the
following screenshot:

How it works...
The Camera object available through the PhoneGap API allows us to interact with the default
camera application on the device. The Camera object itself contains just the one method,
getPicture. Depending on the sourceType value being sent through in the capture request
method, we can obtain the image from either the device camera or by selecting a saved image
from the photo library or photo album.

In this example we retrieved the URI for the image to use as the source for an img tag. The
method can also return the image as a Base64 encoded image, if requested.

There are a number of optional parameters that we can send in to the
method calls to customize the camera settings. For detailed information
about each parameter, please refer to the official documentation
available here: http://docs.phonegap.com/en/2.0.0/
cordova_camera_camera.md.html#cameraOptions.

There's more...
In this recipe, we requested that the images be scaled to match a certain dimension, while
maintaining the aspect ratio. When selecting an image from the library or saved album,
PhoneGap resizes the image and stores it in a temporary cache directory on the device.
While this means resizing, it is as painless as we would want it to be, the image may not
persist or will be overwritten when the next image is resized.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

105

If you want to save the resized images in a permanent location after creating them, make sure
you check out the recipes within this book on how to interact with the local file system and
how to save files.

Now that we can easily obtain an image from the device, there are a number of things we can
do with it. For an example, take a look at the next recipe in this book.

See also
ff The Uploading a file to a remote server via a POST request recipe in Chapter 2, File

System, Storage, and Local Databases

Applying an effect to an image using canvas
Capturing a photo on your device is fantastic, but what can we do with an image once we have
it in our application? In this recipe, we'll create some simple functions to edit the color of an
image without altering the original source.

How to do it...
We must create the use of the HTML5 canvas element to load and edit the values of a stored
image, by performing the following steps:

1.	 Create the initial HTML layout and include the references to the jQuery and Cordova
JavaScript files in the head tag of the document:
<!DOCTYPE HTML>
<html>
 <head>
 <meta name="viewport" content="width=screen.width; user-
scalable=no" />
 <title>Image Effects</title>
 <script type="text/javascript"
 src="jquery/jquery-1.8.0.min.js"></script>
 <script type="text/javascript"
 src="cordova-2.0.0.js"></script>
</head>
<body>

</body>
</html>

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Audio, Images, and Video

106

2.	 Include a reference to the rgb.js file available in the downloadable code files of
this book, below the Cordova JavaScript reference. This contains a required array
of variables for one of our image manipulation functions.
<script type="text/javascript" src="cordova-2.0.0.js"></script>

<script type="text/javascript"
src="rgb.js"></script>

</head>

3.	 The body tag of our application will hold three button elements, each with a specific
id attribute that we will reference within the custom code. We'll also need an img tag
with the id attribute set to sourceImage, which will display the original image we
want to manipulate.

4.	 Finally, we need to include a canvas element with the id attribute set to myCanvas,
as shown in the following code block:
<button id="grayscale">Grayscale</button>
<button id="sepia">Sepia</button>
<button id="reset">Reset</button>

<img id="sourceImage" src="awesome.jpg"
alt="source image" height="150" width="150" />
<canvas id="myCanvas" width="300" height="300"></canvas>

5.	 Let's start to add our custom code. Create a new script tag block before the closing
head tag, into which we'll add our event listener to ensure that PhoneGap is fully
loaded before we proceed. We'll also create some required global variables.
<script type="text/javascript">

 document.addEventListener(
 "deviceready", onDeviceReady, true);

var canvas,
 context,
 image,
 imgObj,
 noise = 20;

</script>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

107

6.	 Create the onDeviceReady method, which will run once the native code is ready.
Here, we firstly want to run a method called reset which will restore our canvas
to its default source. We'll also bind the touchstart handlers to our three buttons,
each of which will run their own methods.
function onDeviceReady() {
 reset();

 $('#grayscale').bind('touchstart', function() {
 grayscaleImage();
 });

 $('#sepia').bind('touchstart', function() {
 processSepia();
 });

 $('#reset').bind('touchstart', function() {
 reset();
 });
}

7.	 The reset method creates the canvas reference and its context, and applies the
source from our starting image into it.
function reset() {
 canvas = document.getElementById('myCanvas');
 context = canvas.getContext("2d");
 image = document.getElementById('sourceImage');
 context.drawImage(image, 0, 0);
}

8.	 Our first image manipulation function is called grayscaleImage. Let's include this
now and within it we'll loop through the pixel data of our image, which we can retrieve
from the canvas element using the getImageData method, as shown in the
following code block:
function grayscaleImage() {
 var imageData = context.getImageData(0, 0, 300, 300);
 for (var i = 0, n = imageData.data.length; i < n; i += 4) {
 var grayscale = imageData.data[i] * .3 +
 imageData.data[i+1] * .59 + imageData.data[i+2] * .11;
 imageData.data[i] = grayscale;
 imageData.data[i+1] = grayscale;
 imageData.data[i+2] = grayscale;
 }
 context.putImageData(imageData, 0, 0);
}

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Audio, Images, and Video

108

9.	 Our second manipulation function is called processSepia. Once again, we obtain
the image data from our canvas element and loop through each pixel applying the
changes as we go.
function processSepia() {
var imageData =
 context.getImageData(0,0,canvas.width,canvas.height);
 for (var i=0; i < imageData.data.length; i+=4) {
 imageData.data[i] = r[imageData.data[i]];
 imageData.data[i+1] = g[imageData.data[i+1]];
 imageData.data[i+2] = b[imageData.data[i+2]];
 if (noise > 0) {
 var noise = Math.round(noise - Math.random() * noise);
 for(var j=0; j<3; j++){
 var iPN = noise + imageData.data[i+j];
 imageData.data[i+j] = (iPN > 255) ? 255 : iPN;
 }
 }
 }
 context.putImageData(imageData, 0, 0);
};

10.	 When we run the application on the device, after selecting a button to change our
default image the output would look something like the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

109

How it works...
When we start to process a change to the canvas image, we first obtain the data using the
getImageData method available through the canvas context. We can easily access the
information for each pixel within the returned image object and its data attribute.

With the data tag in an array, we can loop over each pixel object, and then over each value
within each pixel object.

Pixels contain four values: the red, green, blue, and alpha
channels respectively

By looping over each specific color channel in each pixel, we can alter the values, thereby
changing the image. We can then set the revised image as the source in our canvas by
using the putImageData method to set it back in to the context of our canvas.

There's more...
Although this recipe does not involve any PhoneGap specific code with the exception of the
onDeviceReady method, it was included here for the following three reasons:

ff As an example to show you how you might like to work with images captured using
the PhoneGap API

ff To remind you of or introduce you to the power of HTML5 elements and how we can
work with the canvas tag

ff Because it's pretty cool

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

4
Working with

Your Contacts
In this chapter, we will cover:

ff Listing all available contacts

ff Displaying contact information for a specific individual

ff Creating and saving a new contact

Introduction
With the ever expanding and increasing technological resources and advancements, mobile
devices now contain increasingly powerful processors and provide users and consumers with
an impressive array of features.

Above all of the apps, widgets, and features your device can manage, let us not forget that the
primary function of a mobile device (certainly a mobile phone) is to hold contact information
for your friends, family, or favorite local takeaway restaurants.

All of the recipes in this chapter will focus on interacting with your device contact database
and how we can list, display, and add new contacts into it.

Listing all available contacts
Developers can access, read from, and filter the contacts saved within the device contact
database, allowing us to query and work with the address book on the device.

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Your Contacts

112

How to do it...
We will create an application to read all of the contacts from the device database and output
them as a dynamic list.

1.	 Create a new HTML layout for this application. We will be using the jQuery Mobile
framework in this example, and so we need to include the required JavaScript
and CSS references within the head tag of our document.

2.	 We'll also need to include the Cordova JavaScript file to interact with the native
features on the device.
<!DOCTYPE HTML>
<html>
 <head>
 <meta name="viewport" content="user-scalable=no,
 initial-scale=1, maximum-scale=1,
 minimum-scale=1, width=device-width;" />
 <title>My Contacts</title>
 <link rel="stylesheet"
 href="jquery/jquery.mobile-1.1.1.min.css"
 type="text/css">
 <script type="text/javascript"
 src="jquery/jquery-1.8.0.min.js"></script>
 <script type="text/javascript"
 src="jquery/jquery.mobile-1.1.1.min.js"></script>
 <script type="text/javascript"
 src="cordova-2.0.0.js"></script>

</head>
<body>

</body>
</html>

3.	 Let's add the initial page for our application within the body of the HTML document.
Here we will create the page div element with the id attribute set to contacts-
home, as shown in the following code block:
<div data-role="page" id="contacts-home">

 <div data-role="header">
 <h1>My Contacts</h1>
 </div>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

113

 <div data-role="content">
 </div>

</div>

4.	 Within the content div element, create a new unordered list block. Set the
id attribute to contactList, the data-role attribute to listview, and
the data-inset attribute to true.
<div data-role="content">

 <ul id="contactList" data-role="listview"
 data-inset="true">

</div>

5.	 With the HTML UI complete, let's now focus on creating the custom code to interact
with the contacts. Create a new script tag block within the head of the document,
and include the event listener to check whether the device is ready, as well as the
callback method it will run, that is the onDeviceReady method.
<script type="text/javascript">

 document.addEventListener("deviceready",
 onDeviceReady, false);

 function onDeviceReady() {
 getAllContacts();
 }
</script>

6.	 The application will execute the getAllContacts method, which will read from the
device contacts database. To achieve this, we'll set the optional parameter of the
contactFindOptions object to return multiple contacts.

The multiple parameter is set to false by default, which will only
return one contact.

7.	 We then set the required contactFields parameter to specify which fields should
be returned in each Contact object.

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Your Contacts

114

8.	 Finally, we call the find() method, passing in the fields, the options, and the
success and error callback method names.
function getAllContacts() {
var options = new ContactFindOptions();
 options.filter = "";
 options.multiple = true;
 var fields = ["name", "phoneNumbers",
 "birthday", "emails"];
 navigator.contacts.find(fields,
 onAllSuccess, onError, options);
}

9.	 Following a successful response, the onAllSuccess method will return an array of
Contact objects for us to work with. We will initially loop over the returned results
and push each Contact object into a new array object, arrContactDetails, which
allows us to sort the results alphabetically. If no results were returned, we'll output a
user-friendly message.
function onAllSuccess(contacts) {

 if(contacts.length) {
	
 var arrContactDetails = new Array();
 for(var i=0; i<contacts.length; ++i){
 if(contacts[i].name){
 arrContactDetails.push(contacts[i]);
 }
 }

 arrContactDetails.sort(alphabeticalSort);

 // more code to go here

 } else {
 $('#contactList').append('<h3>Sorry,
 no contacts were found</h3>');
 }
 $('#contactList').listview("refresh");
}

10.	 Include the alphabeticalSort function, which will sort each contact in ascending
order using the formatted version of the name.
function alphabeticalSort(a, b) {
 if (a.name.formatted < b.name.formatted){
 return -1;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

115

 }else if (a.name.formatted > b.name.formatted){
 return 1;
 }else{
 return 0;
 }
}

11.	 To create our contact list, the following code will go directly beneath the
arrContactDetails.sort(alphabeticalSort); call in the code. This will loop
over the sorted array and create the list items for each contact, setting the Contact
object ID and the formatted name into each list item. It will also create the list divider
to differentiate each group of contacts by the first letter of the name.
var alphaHeader = arrContactDetails[0].name.formatted[0];
for(var i=0; i<arrContactDetails.length; ++i) {
 var contactObject = arrContactDetails[i];
 if(alphaHeader != contactObject.name.formatted[0]) {
 alphaHeader = contactObject.name.formatted[0];
 $('#contactList').append('<li data-role="list-divider">'
 + alphaHeader + '');
 $('#contactList').append(
 '<li class="contact_list_item" id="' +
 contactObject.id + '">' +
 contactObject.name.formatted + ' (' +
 contactObject.id + ')'
);
 } else {
 if(i == 0) {
 $('#contactList').append(
 '<li data-role="list-divider">'
 + alphaHeader + '');
 }
 $('#contactList').append(
 '<li class="contact_list_item" id="'
 + contactObject.id + '">' +
 contactObject.name.formatted + ' (' +
 contactObject.id + ')');
}
}

12.	 Finally, include the onError callback method which will run if we encounter any
issues obtaining data from the find() method:
function onError(error) {
alert('An error has occurred: ' + error.code);
}

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Your Contacts

116

13.	 When we run the application on a device, we will see the populated list looking
something like the following screenshot:

Next to each name in the list, we can see the ID of the contact as used in the device
contact database. This value is also set in the id attribute of each list item.

How it works...
The contacts.find() method available from the PhoneGap API is designed to query
the device contacts database to obtain and return an array of Contact objects. We set the
contact fields into the required parameter of the function, which acts as a search qualifier for
the transaction. Only the fields we set in the contactFields parameter will be included as
properties of the returned Contact objects. Using this parameter, we can choose exactly
what details for each contact we want to obtain from the request.

Following a successful result from the find() method, an array of Contact objects is
passed to the success callback method. Once we have received this information, we then
loop over the array to output the alphabetically sorted information into our unordered list,
making use of the jQuery Mobile framework listview item for clear display.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

117

For a comprehensive look at the methods and properties available to use
through the Contact object, please refer to the official documentation,
available at:
http://docs.phonegap.com/en/2.0.0/cordova_contacts_
contacts.md.html#Contact.

There's more…
In this example we specifically set values for the contactFields parameter to return in
each Contact object. If this were left blank, we would receive only the id property of each
contact. If we wanted to receive all available properties for each contact, we could set the
value to a wildcard asterisk (*).

See also
ff The Creating a jQuery Mobile layout recipe in Chapter 7, User Interface Development

with jQuery Mobile

Displaying contact information for a specific
individual

Working with the contact database, developers can easily obtain a full array of all Contact
objects saved on the device. We want to be able to obtain and view the saved contact
information for specific individuals if we choose to drill down and filter a certain contact
from the database.

Getting ready
For this recipe, we'll build on the code created in the previous recipe, Listing all available
contacts. This will give us a good head start to add additional functionality into the application.
Therefore, if you haven't as of yet completed the Listing all available contacts recipe, it may help
to go there first.

How to do it...
To manage the selected contact information, we will first make use of the localStorage
API available and harness some more power from the jQuery Mobile framework.

1.	 When the user selects a contact from the list, we want to take them to a new page
to show the details. Let's add a new page into index.html below the current one.

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Your Contacts

118

2.	 Set a new div element with the data-role attribute set to page and the id attribute
set to contact-info. Within this we will add our page header with the id attribute set
to contact_header. We will also include a Back button that will take the user back to
the original page by referencing the id attribute in the link.

3.	 We will keep the h1 tag empty as we'll populate it with the contact's name.
<div data-role="page" id="contact-info">

 <div id="contact_header" data-role="header">
 <a href="#contacts-home" id="back" data-icon="back"
 data-direction="reverse">Back
 <h1></h1>
 </div>

</div>

4.	 Below the page header we will create a content div element with the id attribute set
to contact_content that contains four form field items, which will display the given
name, family name, phone number, and e-mail address for the chosen contact.
<div id="contact_content" data-role="content">

 <div data-role="fieldcontain">
 <label for="givenName">First Name:</label>
 <input type="text" name="givenName"
 id="givenName" disabled />
 </div>
 <div data-role="fieldcontain">
 <label for="familyName">Last Name:</label>
 <input type="text" name="familyName"
 id="familyName" disabled />
 </div>
 <div data-role="fieldcontain">
 <label for="phone">Phone:</label>
 <input type="text" name="phone"
 id="phone" disabled />
 </div>
<div data-role="fieldcontain">
 <label for="email">Email:</label>
 <input type="text" name="email"
 id="email" disabled />
</div>

</div>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

119

5.	 At the top of the custom JavaScript code, create a global variable to reference the
localStorage API. We'll also include a global variable called contactInfo which
we will use to hold data later on.
<script type="text/javascript">

var localStorage	 =	 window.localStorage;
var contactInfo;

document.addEventListener("deviceready",
onDeviceReady, false);

6.	 Let's now amend the onAllSuccess method, which writes out the list of all
contacts. Within the loop we'll add in a small portion of code that will add each
item to the localStorage. Here we will store the entire contact object for each
listing, and use the ID for each contact as the key which we can use to retrieve
the information.
var alphaHeader = arrContactDetails[0].name.formatted[0];
for(var i=0; i<arrContactDetails.length; ++i) {
 var contactObject = arrContactDetails[i];
 if(alphaHeader != contactObject.name.formatted[0]) {
 alphaHeader = contactObject.name.formatted[0];
 $('#contactList').append('<li data-role="list-divider">' +
alphaHeader + '');
 $('#contactList').append('<li class="contact_list_item"
id="' + contactObject.id + '">' +
contactObject.name.formatted + ' (' + contactObject.id + ')</
li>');
 } else {
 if(i == 0) {
 $('#contactList').append('<li data-role="list-divider">' +
alphaHeader + '');
 }
 $('#contactList').append('<li class="contact_list_item" id="'
+ contactObject.id + '">' + contactObject.
name.formatted + ' (' + contactObject.id + ')');
 }

 localStorage.setItem(
 contactObject.id,JSON.stringify(contactObject)
);
}

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Your Contacts

120

The localStorage API saves data as a key/value pair, and
can only contain strings. As such, we convert the object to a
string before saving it. For more information, check out the
Caching content using the web storage local storage API recipe
in Chapter 2, File System, Storage, and Local Databases.

7.	 Each of our generated list items references a particular contact. We have stored the
specific ID for each contact as an attribute in each list item. Create an event handler
that will obtain the value of the contact ID from the selected list item and pass it
through to the getContactByID method.
$(document).on('click', '#contactList li.contact_list_item',
function(){

var selectedID = $(this).attr('id');
 getContactByID(selectedID);

});

8.	 Let's now add the getContactByID function, which accepts the selected ID of
the contact as a required parameter. This will obtain the selected contact information
from the localStorage database and assign it to the contactInfo variable we
set earlier. It will then send the user to a new page within the application.
function getContactByID(contactID) {
 contactInfo =
 JSON.parse(localStorage.getItem(contactID));
 $.mobile.changePage($('#contact-info'));
}

9.	 We now have the contact information stored, but we need to populate the form
fields on the information page with the details. Let's add a new event handler to
the code to detect a jQuery Mobile pagechange event, which will run a method
called onPageChange.
$(document).bind("pagechange", onPageChange);

10.	 The onPageChange function will obtain the id of the page we have changed to. If it
matches contact-info, we will first clear the values of all form fields, and then set
each one with the details from the contactInfo object. We are also setting the h1
tag in the header with the contact name.
function onPageChange(event, data) {
 var toPageId = data.toPage.attr("id");

 switch (toPageId) {
 case 'contact-info':
 clearValues();

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

121

 $('#contact_header h1')
 .html(contactInfo.name.formatted);
 $('#givenName').val(contactInfo.name.givenName);
 $('#familyName').val(contactInfo.name.familyName);

 $('#phone').val(contactInfo.phoneNumbers[0].value);
 $('#email').val(contactInfo.emails[0].value);

 break;
 }
}

11.	 Finally, let's add the clearValues function, which will reset all form fields on the
page where the input type is text.
function clearValues() {
 $('input[type=text]').each(function() {
 $('#' + this.id + '').val('');
 });
}

12.	 When we run the application on the device and select a contact, the resulting page
would look like the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Your Contacts

122

How it works...
In this recipe we extended the previous code to fulfill the desired functionality. We amended
the initial code when we looped over the returned array of Contact objects and added in
some code to set each Contact object into the localStorage database available on the
device, using its ID property as the key for the storage entry.

When a contact was selected from the list, we were able to use that list item's ID attribute to
obtain the saved Contact object from the localStorage database before taking the user
to the next page by using the jQuery Mobile framework mobile.changePage() function.

With the Contact object stored in an accessible variable, we were then able to read the
properties set within it and output them to the user.

See also
ff The Caching content using the web storage local storage API recipe in Chapter 2, File

System, Storage, and Local Databases

Creating and saving a new contact
Having an address book or an application that can read contact information from the database
is fantastic, but wouldn't it be even better if we could add contacts to the database? The good
news is that the PhoneGap API not only provides a way to read the information, but it also gives
developers an incredibly powerful but easy way to add information too.

Getting ready
For this recipe, we'll build on the code created in the previous recipe, Displaying contact
information for a specific individual. This will give us a good head start to add additional
functionality into the application. Therefore, if you haven't yet completed the Display contact
information for a specific individual recipe, it may help to go there first.

How to do it...
To store a new contact to the device database, we will create a form and save the new
information into a Contact object:

1.	 Firstly, let's edit the default loading page for our application to include a button to
take the user to a new page to add a contact.
<div data-role="page" id="contacts-home">

 <div data-role="header">

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

123

 <h1>My Contacts</h1>
 <a href="#contact-add" id="back"
 data-icon="add">Add
 </div>

2.	 Now let's create the new page that will enable the user to input new
contact information. Create a new jQuery Mobile page and set the id
attribute to contact-add.

3.	 Within the header div element, add a new link that will take the user back to
the home page, bypassing the save functionality which we will shortly be adding.
<div data-role="page" id="contact-add">

 <div data-role="header">
 <a href="#contacts-home" id="back"
 data-icon="back"
 data-direction="reverse">Back
 <h1>Add Contact</h1>
 </div>

 <div data-role="content">

 </div>

</div>

4.	 Within the content div element block, we will add a new form element with
the id attribute set to new_contact_form that contains a number of form
field items. These will be used to enter the new information for the contact's
given name, family name, phone number, and e-mail address.

5.	 The last form field block contains an input button with the id attribute set to
saveBtn, which we'll reference via jQuery code to perform the save process.

6.	 Finally, we also include a hidden form item called displayName. We will
populate this value after the form has been submitted, and will use it to
store into the new Contact object:
<form id="new_contact_form">
<div data-role="fieldcontain">
 <label for="givenName">First Name:</label>
 <input type="text" name="givenName"
 id="givenName" />
 </div>
 <div data-role="fieldcontain">
 <label for="familyName">Last Name:</label>
 <input type="text" name="familyName"

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Your Contacts

124

 id="familyName" />
 </div>
 <div data-role="fieldcontain">
 <label for="phone">Phone:</label>
 <input type="tel" name="phone"
 id="phone" />
 </div>
 <div data-role="fieldcontain">
 <label for="email">Email:</label>
 <input type="email" name="email"
 id="email" />
 </div>
 <div data-role="fieldcontain">
 <input type="button" name="saveBtn"
 id="saveBtn" value="Save Contact" />
 <input type="hidden" name="displayName"
 id="displayName" />
</div>
</form>

7.	 With the layout and UI for the page complete, let's now focus on the JavaScript
functionality to process the new contact information. Amend the onPageChange
function to add a new case within the switch statement to check for the page id
value contact-add. If it matches, everything within this case statement will be
executable within that page context.

8.	 Firstly, we'll bind a touchstart event to the saveBtn button element which will
commence the save process.
case 'contact-add':

$('#saveBtn').bind('touchstart',function(){
 	
});

break;

9.	 We can now populate the value of the displayName hidden form field
by concatenating the values from the givenName and familyName form
fields provided.
$('#saveBtn').bind('touchstart',function(){

 $('#displayName').val(
 $('#new_contact_form #givenName').val() +

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

125

 ' ' + $('#new_contact_form #familyName').val()
);
});

10.	 Before we can create the new Contact object, we must first format the submitted
information into the required format which we can the send through as a parameter.
The information is accepted in the form of a structural object containing key/value
pairs. We could call each form field individually to create this, but in doing so we
would have a tightly coupled dependency on the specific form fields.

11.	 Here we can make use of the jQuery library and create a serialized array of all of the
form fields within the form, which we have referenced by its id attribute.

12.	 We can then loop over the array to create the key/value pairs as expected to return
the structure of information. Within the loop we have set a switch statement to
check for the name of the submitted form value. PhoneGap manages e-mails and
phone numbers in a separate way to the standard name contact fields. If they exist,
we set them using a new ContactField object.
var arrContactInfo = $('#new_contact_form').serializeArray();

var phoneNumbers = new Array();
var emails = new Array();

var contactInfo = '{';

 for(var i=0; i<arrContactInfo.length; i++) {
 switch (arrContactInfo[i].name) {
 case 'phone':
 if (arrContactInfo[i].value) {
 phoneNumbers[0] =
 new ContactField('mobile',
 arrContactInfo[i].value, true);
 }
 break;
 case 'email':
 if(arrContactInfo[i].value) {
 emails[0] =
 new ContactField('work',
 arrContactInfo[i].value, true);
 }
 break;
 default:
 contactInfo += '"' + arrContactInfo[i].name + '" : "'
 + arrContactInfo[i].value + '"';

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Your Contacts

126

 if(i < arrContactInfo.length-1) {
 contactInfo += ', '
 }
 }
 }
contactInfo += '}';

13.	 We can then create a new Contact object and pass in the contactInfo variable
we have just created, before we save the contact to the device database.
var newContact =
 navigator.contacts.create(JSON.parse(contactInfo));

newContact.phoneNumbers = phoneNumbers;
newContact.emails = emails;

newContact.save(onSaveSuccess, onError);

The contacts.create method generates and returns a
new Contact object, populated with the information we have
provided. At this point we have only created the new Contact
object. To ensure it has been persisted and saved to the device
database, we must remember to use the save() method.

14.	 When defining the save() method, we also included two callback methods to
handle the successful save of any errors that may have arisen from the process.
In the onSaveSuccess function, we will navigate the user back to the home page
using the jQuery Mobile framework's built-in changePage method.

15.	 We will then refresh the contactList list element to show the new data stored
within the device database.
function onSaveSuccess(contact) {
 $.mobile.changePage($('#contacts-home'));
 $('#contactList').listview("refresh");
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

127

16.	 When we run the application on the device, the home page would now look like the
following screenshot with the new add button:

17.	 By selecting to add a new contact, the user would then be presented with the new
form page, as shown in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Your Contacts

128

18.	 And finally, once the submission has been made, the user is then taken back to the
home page listing all contacts, which would now show the new contact, created and
saved into the device database. This is shown in the following screenshot:

How it works...
When we create a new Contact object, we are simply creating a local variable populated with
the provided information from the form submission. At this point, we could still add and amend
properties within the Contact object, or simply fail to persist the object by not saving it.

To successfully save and store the contact within the device contact database, we then call
the save() method available from the Contact object to do this.

The following methods are available to use from a Contact object:

ff save(): This method will save a new contact into the device contacts database.
If the Contact object has an id attribute that already matches that of a saved
contact, it will update the saved contact with any revised information.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

129

ff remove(): Calling this method will remove the specified contact from the device
contacts database.

ff clone(): This method will create a deep copy of the provided Contact object,
however, the id property will be set to null. This means that you can easily
duplicate contact information and save as a new Contact object.

There's more...
When we saved the e-mail address and phone number to the new Contact object, we used
the ContactField object to do so, instead of sending in the values as part of the contact
information object. The ContactField object is provided to support generic fields within a
Contact object, such as e-mail address, phone numbers, and URLs.

The Contact object itself stores values such as these in an array, which can contain multiple
ContactField objects – for example, a contact can have more than one phone number
assigned to them.

The ContactField object requires the following properties:

ff type: A DOMString object that identifies which type of field this is. For example, a
phone number type value can include "home", "work", "mobile", or any other value
supported by the database on a particular device platform.

ff value: A DOMString object that holds the value of the field itself – for example,
the phone number or e-mail address.

ff pref: A Boolean value that if set to true will set this specific field as the preferred
value for the ContactField type.

Go a little further…
In our example application in this recipe, we stored only one phone number and one e-mail
address per contact. We created a new array for each value in which to hold this information,
but only set the first index in each array with a ContactField object.

Why not expand on this recipe to provide the user with a frontend UI to allow for more
form fields to provide extra phone numbers, and then amend the code to create new
ContactField objects for each new value submitted.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

5
Hook into Native Events
In this chapter, we will cover:

ff Pausing your application

ff Resuming your application

ff Displaying the status of the device battery levels

ff Making use of the native search button

ff Displaying network connection status

ff Creating a custom submenu

Introduction
When developing for mobile devices, we can create feature-rich applications that harness the
functionality of the native processes and systems.

The devices themselves provide us with built-in controls and user interface elements in the
form of native buttons, to which we can apply methods and functions.

We can also make use of the hidden events and manage how our applications work when
placed in the background on the device or alter states depending on network connectivity.

The recipes in this chapter will introduce you to some of the native events available through
the PhoneGap API, and how we can implement them into applications.

Pausing your application
Although we want our users to spend their time solely on our applications, they will inevitably
leave our application to open another one or do something else entirely. We need to be able
to detect when a user has left our application but not closed it down entirely.

www.it-ebooks.info

http://www.it-ebooks.info/

Hook into Native Events

132

How to do it...
We can use the PhoneGap API to fire off a particular event when our application is put into
the background on the device:

1.	 Create the initial HTML layout for the application, and include the reference to the
Cordova JavaScript file in the head tag of the document.
<!DOCTYPE HTML>
<html>
 <head>
 <meta name="viewport" content="user-scalable=no,
 initial-scale=1, maximum-scale=1,
 minimum-scale=1, width=device-width;" />
 <meta http-equiv="Content-type"
 content="text/html;>
 <title>Pausing an application</title>
 <script type="text/javascript"
 src="cordova-2.0.0.js"></script>

</head>
<body>

</body>
</html>

2.	 Before the closing head tag, create a new script tag block and add the event
listener to check when the device is ready and the PhoneGap code is ready to run.
<script type="text/javascript">

 document.addEventListener("deviceready",
 onDeviceReady, false);

</script>

3.	 Create the onDeviceReady function, which will run when the event listener is
fired. Inside this, we'll create a new event listener that will check for a pause event,
and once received will fire the onPause method.
function onDeviceReady() {
 document.addEventListener("pause", onPause, false);
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

133

4.	 Let's create the onPause method. In this example application, we'll ask the device
to notify the user that the application has moved into the background by playing an
audio beep. The numeric parameter specifies how many times we want the audio
notification to be played – in this case, just once.
function onPause() {
 navigator.notification.beep(1);
}

Developing for iOS? There is no native beep API for iOS. The PhoneGap
API will play an audio file using the media API, but the developer must
provide the file, named beep.wav and under 30 seconds in length, in
the /www directory of the application project files. iOS will also ignore
the beep count argument and will play the audio once. If developing for
Windows 7 mobile, the WP7 Cordova library contains a generic beep
audio file that will be used.

5.	 When we run the application on the device, if you press the home button or navigate
to another application, the device will play the notification audio.

How it works...
To correctly determine the flow of our lifecycle events, we first set up the deviceready event
listener to ensure that the native code was properly loaded. At this point, we were then able to
set the new event listener for the pause event.

As soon as the user navigated away from our application, the native code would set it into
the background processes on the device and fire the pause event, at which point our listener
would run the onPause method.

To find out more about the pause event, please refer to the official
documentation, available here:
http://docs.phonegap.com/en/2.0.0/cordova_events_
events.md.html#pause.

There's more...
In this recipe we applied the pause event in an incredibly simple manner. There is a
possibility your application will want to do something specific other than sending an
audio notification when the user pauses your application.

www.it-ebooks.info

http://www.it-ebooks.info/

Hook into Native Events

134

For example, you may want to save and persist any data currently in the view or in memory,
such as any draft work (if dealing with form inputs) or saving responses from a remote API call.

We'll build an example that will persist data in the next recipe, as we'll be able to quantify its
success when we resume the use of the application and bring it back into the foreground.

Resuming your application
Multi-tasking capabilities that are now available on mobile devices specify that the user
has the ability to switch from one application to another at any time. We need to handle
this possibility and ensure that we can save and restore any processes and data when
the user returns to our application.

How to do it...
We can use the PhoneGap API to detect when our application is brought back into the
foreground on the device. The following steps will help us to do so:

1.	 Create the initial layout for the HTML and include the JavaScript references to the
Cordova and the xui.js files. We will also be setting the deviceready listener
once the DOM has fully loaded, so let's apply an onload attribute to the body tag.
<!DOCTYPE HTML>
<html>
 <head>
 <meta name="viewport" content="user-scalable=no,
 initial-scale=1, maximum-scale=1,
 minimum-scale=1, width=device-width;" />
 <meta http-equiv="Content-type"
 content="text/html; charset=utf-8">
 <title>Resuming an application</title>
 <script type="text/javascript"
 src="cordova-2.0.0.js"></script>
 <script type="text/javascript"
 src="xui.js"></script>

</head>
<body onload="onLoad()">

</body>
</html>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

135

2.	 Create a new script tag block before the closing head tag and add the
deviceready event listener within the onLoad method. We'll also set two
global variables, savedTime, and localStorage, the latter of which will
reference the localStorage API on the device:
<script type="text/javascript">

 var savedTime;
var localStorage = window.localStorage;

function onLoad() {

 document.addEventListener("deviceready",
 onDeviceReady, false);
}

</script>

3.	 Create the onDeviceReady function, within which we'll set the two event listeners
to check for the pause and resume events, as follows:
function onDeviceReady() {
 document.addEventListener("pause", onPause, false);
 document.addEventListener("resume", onResume, false);
}

4.	 We can now add the first of the new callback functions for the added listeners.
onPause will run when a pause event has been detected. In this method, we'll
create a new date variable holding the current time, and store it into the global
savedTime variable we created earlier.

5.	 If the user has entered something in to the text input field, we'll also take the value
and set it into the localStorage API, before clearing out the input field.
function onPause() {
 savedTime = new Date();
 var strInput = x$('#userInput').attr('value');
 if(strInput) {
 localStorage.setItem('saved_input', strInput);
 x$('#userInput').attr('value', '');
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Hook into Native Events

136

6.	 Define the onResume method, which will run when a resume event has been detected.
In this function, we'll save a new date variable and we'll use it in conjunction with the
savedTime variable created in the onPause method to generate the time difference
between the two dates. We'll then create a string message to display the time details
to the user.

7.	 We'll then check the localStorage for the existence of an item stored using the key
saved_input. If this exists, we'll extend the message string and append the saved
user input value before setting the message into the DOM to display.
function onResume() {
 var currentTime = new Date();
 var dateDiff = currentTime.getTime() - savedTime.getTime();
 var objDiff = new Object();
 objDiff.days = Math.floor(dateDiff/1000/60/60/24);
 dateDiff -= objDiff.days*1000*60*60*24;
 objDiff.hours = Math.floor(dateDiff/1000/60/60);
 dateDiff -= objDiff.hours*1000*60*60;
 objDiff.minutes = Math.floor(dateDiff/1000/60);
 dateDiff -= objDiff.minutes*1000*60;
 objDiff.seconds = Math.floor(dateDiff/1000);

 var strMessage = '<h2>You are back!</h2>'
 strMessage += '<p>You left me in the background for '
 strMessage += '' + objDiff.days + ' days, '
 strMessage += '' + objDiff.hours + ' hours, '
 strMessage += '' + objDiff.minutes + ' minutes, '
 strMessage += '' + objDiff.seconds + ' seconds.</p>';

 if(localStorage.getItem('saved_input')) {
 strMessage = strMessage + '<p>You had typed the following
before you left:

'
 strMessage += '"' + localStorage.getItem('saved_input') +
'"</p>';
 }

 x$('#message').html(strMessage);

}

8.	 Finally, let's add the DOM elements to the application. Create a new div element
with the id attribute set to message, and an input text element with the id set
to userInput.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

137

<body onload="onLoad()">
 <div id="message"></div>
 <input type="text" id="userInput" />

</body>

9.	 When we run the application on the device, the initial output would provide
the user with an input box to enter text, should they wish to, as shown in the
following screenshot:

10.	 If we were to pause the application and then resume it after a period of time,
the display would then update to look something like the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Hook into Native Events

138

How it works...
We set up the deviceready event listener after the DOM was fully loaded, which would
then run the onDeviceReady function. Within this method we then added two new event
listeners to catch the pause and resume events respectively.

When the application is paused and placed into the background processes on the device,
we saved the current date and time into a global variable. We also checked for the existence
of any user-supplied input and if it was present we saved it using the localStorage
capabilities on the device.

When the application was resumed and placed back into the foreground on the device, the
onResume method was run, which obtained the time difference between the saved and
current datetime values to output to the user. We also retrieved the saved user input from
the localStorage if we had set it within the onPause method.

To find out more about the resume event, please refer to the official
documentation, available here:
http://docs.phonegap.com/en/2.0.0/cordova_events_
events.md.html#resume.

See also
ff The Caching content using the web storage local storage API recipe in Chapter 2, File

System, Storage, and Local Databases

Displaying the status of the device battery
levels

Progressions in capabilities and processing power means we can do much more with our
mobile devices including multi-tasking and background processes, this often means we end
up using more battery power to fuel our applications.

How to do it...
In this recipe we will build an application to display the connection details and current power
capacity of the device battery.

1.	 Create the initial HTML layout for the application and include the Cordova
JavaScript file. We'll also be manipulating DOM elements, so include a
reference to the xui.js file within the head tag.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

139

2.	 We will be calling the onDeviceReady method to instantiate the PhoneGap
functionality through an onLoad() function attached to the body tag.
<!DOCTYPE HTML>
<html>
 <head>
 <meta name="viewport" content="user-scalable=no,
 initial-scale=1, maximum-scale=1,
 minimum-scale=1, width=device-width;" />
 <meta http-equiv="Content-type"
 content="text/html; charset=utf-8">
 <title>Battery State</title>
 <script type="text/javascript"
 src="cordova-2.0.0.js"></script>
 <script type="text/javascript"
 src="xui.js"></script>

</head>
<body onload="onLoad()">

</body>
</html>

3.	 Let's add the UI elements for the application. This will include a div element with
the id attribute set to statusMessage, which will hold our returned information.
We'll also build up some nested elements to create a visual representation of the
device battery.

4.	 We will reference the id attributes of each element using the XUI library, so we
need to make sure the three attribute values are set to batteryIndicator,
batteryLevel, and shade respectively:
<h3>Battery Status</h3>

<div id="statusMessage"></div>

<div id="batteryIndicator">
<div id="batteryLevel">
 <div id="shade" />
</div>
</div>

www.it-ebooks.info

http://www.it-ebooks.info/

Hook into Native Events

140

5.	 With the DOM elements inserted, let's continue to the JavaScript code. Create a
script tag block before the closing head tag, and add an onLoad method, run
from the body tag, which will add the event listener to check that the native
PhoneGap code has been loaded and is ready for use.
<script type="text/javascript">

 function onLoad() {
 document.addEventListener("deviceready",
 onDeviceReady, false);
 }

</script>

6.	 Add the onDeviceReady method, into which we will add three new event listeners
that will respond to changes with the device's battery status. Each listener has a
corresponding callback method, which we will define in the next few steps.
function onDeviceReady() {
 window.addEventListener("batterystatus",
 onBatteryStatus, false);
 window.addEventListener("batterylow", onBatteryLow, false);
 window.addEventListener("batterycritical",
 onBatteryCritical, false);
}

7.	 The first callback method is onBatteryStatus, which accepts the information
object that contains properties on the device's battery. We will pass this information
to a new function, setBatteryInfo.
function onBatteryStatus(battery_info) {
 setBatteryInfo(battery_info);
}

8.	 Let's write the setBatteryInfo method, called from the status change function.
We can use the level property returned from the battery_info object to set the
width of the batteryLevel element. We'll then create a message with the current
capacity level and whether or not the device is plugged in, which we'll set into the
statusMessage element.

9.	 If the battery level is below 21 percent, we'll change the background color of the
battery to red, otherwise we'll set it at a healthy green.
function setBatteryInfo(battery_info) {
 x$('#batteryLevel').setStyle('width',

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

141

 battery_info.level + '%');
 var statusMessage = '<p>Percent: ' +
 battery_info.level + '%</p>';
 statusMessage = statusMessage + '<p>A/C: ' +
 chargingStatus(battery_info.isPlugged) + '</p>';
 x$('#statusMessage').html(statusMessage);
 if(battery_info.level <= 20) {
 x$('#level').addClass('warning');
 x$('#batteryLevel').setStyle('backgroundColor',
 '#E74A4A');
 } else {
 x$('#batteryLevel').setStyle('backgroundColor',
 '#01A206');
 }
}

10.	 The return value of the isPlugged method from the battery_info object is a
Boolean value, so we'll send it to a new function to return a string representation
of the connection, as shown in the following block of code:
function chargingStatus(isPlugged) {
 if(isPlugged) { return 'Connected'; }
 return 'Disconnected';
}

11.	 The batterylow event handler will run a method called onBatteryLow. Inside of
this, we'll include a notification alert to inform the user. This is shown in the following
code block:
function onBatteryLow(battery_info) {
 navigator.notification.alert(
 'Time to charge it up!',
 function() {}, //alert dismissed
 'Low Battery',
 'OK'
);
}

12.	 If the battery reaches critical levels, the onBatteryCritical callback method
will run. Again, let's use this event to alert the user of their urgent need to charge
the device.
function onBatteryCritical(battery_info) {
 navigator.notification.alert(
 'Seriously, plug your charger in!',

www.it-ebooks.info

http://www.it-ebooks.info/

Hook into Native Events

142

 function() {}, //alert dismissed
 'Critical Battery',
 'OK'
);
}

13.	 Both of our notification alerts will execute an empty function specified as
the alertCallback property in the previous snippets, which will run when
the alert is dismissed. For this example, we don't need to perform any extra
functionality at this point, hence the empty function.

14.	 Finally, include some CSS definitions to add a visual presence to our battery
elements, as shown in the following code snippet:
<style>
#batteryIndicator {
 margin: 0 auto;
 width: 250px;
 height: 100px;
 border: 1px solid #ccc;
 background: #fff;
 border-radius: 10px;
 overflow: hidden;
}
#batteryLevel { height: 100%; }
#shade {
 width: 100%;
 height: 15px;
 background: -webkit-gradient(linear, 0% 0%, 0% 100%,
 from(#e5e5e5), to(#fff));
 opacity: 0.2;
 position: relative;
 top: 15px;
}
.warning { color: #ff0000; font-weight: bold; }
</style>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

143

15.	 When we run the application on the device, assuming battery levels are within
the healthy boundaries, the output will look similar to the following screenshot:

16.	 As soon as the device battery capacity goes below 21 percent, the UI will change
to something similar to the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Hook into Native Events

144

17.	 In the following screenshot, the device battery levels have hit the critical value of
5 percent. As a result, we notify the user with an alert message, as shown in the
following screenshot:

How it works...
Using the onDeviceReady method, we set up three new event listeners to check for the
status of the device battery levels.

All three of the battery status handlers (batterystatus, batterylow, and
batterycritical) return the same object with the following properties:

ff level: A Number value that defines the percentage of the battery, between 0 and 100

ff isPlugged: A Boolean value that returns a true or false value to represent if the
device is connected to a charger or not

We were able to use the returned properties to update a visual representation of the device
battery on screen, as well as use the level property to determine if we are below the critical
threshold barrier.

Although at first glance the three events seem to do the same thing, there are important
differences. The batterystatus event will detect changes in the battery capacity, and will
fire its callback method with every percentage change. This allows us to keep a constant
check on the status of the device battery levels. It will also fire if the device is connected or
disconnected from the charger. From the isPlugged property, we can easily determine if the
device is using the mains power or not.

The batterylow event will fire only when the battery has reached a specific percentage level,
deemed as low by the device. The same applies to the batterycritical event, which will
only fire once the battery level has reached a particular percentage.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

145

The threshold levels for the batterylow and batterycritical events are specific to each
device, so this is something to be aware of if you are hardcoding values within the application.
As a reference, Android devices typically set the low threshold to 20 percent, and the critical
threshold to 5 percent.

To find out more about the batterycritical, batterylow, and
batterystatus events, please refer to the official documentation,
available here:
http://docs.phonegap.com/en/2.0.0/cordova_events_
events.md.html#batterystatus.

There's more...
In our sample application included in this recipe, we processed a simple alert notification
when the low and critical thresholds were reached.

Depending on your mobile application and what its processes are, chances are you will want
to action something specific at these points. For example, you may want to save any user input
values into local memory, or shutdown/pause certain aspects of the application's functionality
once these thresholds have been detected. If the user is unable to charge their device, you do
not want them to lose data while using your application.

Making use of the native search button
The native functionality of a mobile device search button can be overridden using the PhoneGap
API, which allows developers to create custom search commands for their applications, or use
the button for something else entirely different from search operations.

How to do it...
In this recipe we will create a small application that will accept user input and transfer the
query, opening the device's native browser to query a search engine.

1.	 Create the initial layout for the HTML, and include references to both the Cordova
and XUI JavaScript libraries.

2.	 We will also apply an onload attribute to the body tag to run a method once the
DOM has loaded.
<!DOCTYPE HTML>
<html>
 <head>
 <meta name="viewport" content="user-scalable=no,

www.it-ebooks.info

http://www.it-ebooks.info/

Hook into Native Events

146

 initial-scale=1, maximum-scale=1,
 minimum-scale=1, width=device-width;" />
 <meta http-equiv="Content-type" content="text/html;
 charset=utf-8">
 <title>Search Button</title>
 <script type="text/javascript"
 src="cordova-2.0.0.js"></script>
 <script type="text/javascript"
 src="xui.js"></script>

</head>
<body onload="onLoad()">

	

</body>
</html>

3.	 The user interface for this application is incredibly simple. Add a text input field within
the body of the document, and set the id attribute of the element to criteria. We
will reference this directly using XUI, as shown in the following code snippet:
<body onload="onLoad()">

 <h2>Goog Seeker</h2>

 <input type="text" id="criteria" />

</body>

4.	 Let's now add our custom code. Create a new script tag block before the closing
head tag, into which we'll define the onLoad method. This will add the event listener
to fire once the PhoneGap code is ready.
<script type="text/javascript">

 function onLoad() {
 document.addEventListener("deviceready",
 onDeviceReady, false);
 }

</script>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

147

5.	 The onDeviceReady will then add a new event listener to detect the use of the
device's search button.
function onDeviceReady() {
 document.addEventListener("searchbutton",
 onSearchPress, false);
}

6.	 The event listener will execute the onSearchPress method. This will obtain the
value of the user-supplied input and append it to a URL string. We can then load
the URL in the device browser.
function onSearchPress() {
 var userInput = x$('#criteria').attr('value');
 if(userInput) {
 var urlString = 'http://www.google.co.uk#q=' +
escape(userInput);
 navigator.app.loadUrl(urlString);
 }
}

7.	 When we run the application on a device, the initial page layout will look something
like the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Hook into Native Events

148

8.	 Once the user presses the search button on the device, the browser will open and
run the search query, as shown in the following screenshot:

How it works...
The onDeviceReady method sets up the new event listener, which will fire when it detects
the searchbutton event.

We then obtained the value from the text input field, appended it to the URL string, and
loaded that URL in the native device browser.

To find out more about the searchbutton event, please refer to the
official documentation, available here:
http://docs.phonegap.com/en/2.0.0/cordova_events_
events.md.html#searchbutton.

There's more...
The searchbutton event is only applicable to Android devices, but with such a prominent
position on most Android phones, it really is a very useful button and event that can be used
for many purposes.

Consider an application that lists contacts from the device database. Pressing the search
button, you could open a dialog window to allow the user to enter search criteria to filter the
contacts. We delved into the contacts database in Chapter 4, Working with your contacts. If
you're feeling up to it, why not amend one of the example applications included in that chapter
to add this search feature.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

149

Displaying network connection status
Your application may require the user to be connected to a network. This may be for partial
updates, remote data transfer, or streaming. Using the PhoneGap API, we can easily detect
the status or existence of any network connectivity.

How to do it...
In this recipe, we will build an application to constantly check the network connection status
of our device.

1.	 Create the initial HTML layout for the application. Include references to the Cordova
and XUI JavaScript libraries within the head tag of the document.

2.	 We will also be setting the deviceready event listener after the DOM has fully
loaded, so we'll also add the onLoad() function call to the body tag.
<!DOCTYPE HTML>
<html>
 <head>
 <meta name="viewport" content="user-scalable=no,
 initial-scale=1, maximum-scale=1,
 minimum-scale=1, width=device-width;" />
 <meta http-equiv="Content-type" content="text/html;
 charset=utf-8">
 <title>Network Status</title>
 <script type="text/javascript"
 src="cordova-2.0.0.js"></script>
 <script type="text/javascript"
 src="xui.js"></script>

</head>
<body onload="onLoad()">

</body>
</html>

3.	 Let's add the UI elements to the body of our application. Create a div block to act
as a container for our statusMessage and count elements, both of which we will
be referencing directly using the XUI library. We will also be inserting content into
the speedMessage element, so ensure the id attribute of those three elements
matches those shown as follows:
<h3>Network Status</h3>
 <div id="holder">

www.it-ebooks.info

http://www.it-ebooks.info/

Hook into Native Events

150

 <div id="statusMessage"></div>

 <div id="count"></div>

 </div>

<div id="speedMessage">

</div>

4.	 Create a new script tag block before the closing head tag and define two global
variables, which we will use within the custom code. We can also now define the
onLoad method, which will set the deviceready event listener.
<script type="text/javascript">

 var intCheck = 0;
 var currentType;

 function onLoad() {
 document.addEventListener("deviceready",
 onDeviceReady, false);
 }

</script>

5.	 Let's now add the onDeviceready method, called from the deviceready event
listener. Within this function we will add two new event listeners to check when the
device is connected or disconnected from a network. Both of these listeners will run
the same callback method, that is checkConnection.

6.	 We will then set up an interval timer to run the same checkConnection method
every second to provide us with constant updates for the connection.
function onDeviceReady() {
 document.addEventListener("online", checkConnection,
false);
 document.addEventListener("offline", checkConnection,
false);
 var connCheck = setInterval(function() {
 checkConnection();
 }, 1000);
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

151

7.	 The checkConnection function sets up the objConnection variable to hold a
representation of the device's connection. This object returns a value in the type
property, from which we are able to determine the current connection type. We'll
pass that value into another function called getConnectionType, which we'll
use to return a user-friendly string representation of the connection type.

8.	 As this method runs every second, we want to be able to determine if the current
connection type differs from the previous connection. We can do this by storing the
connection type value in the currentType global variable and check if it matches
the current value.

9.	 Depending on the returned value of the connection type, we can optionally choose
to inform the user that to get the most out of our application they should have a
better connection.

10.	 We will also increment an integer value, stored in the intCheck global variable,
which we will use to count the number of seconds the current connection has been
active for.
function checkConnection() {
 var objConnection = navigator.network.connection;
 var connectionInfo = getConnectionType(objConnection.type);
 var statusMessage = '<p>' + connectionInfo.message + '</p>';

 if(currentType != objConnection.type) {
 intCheck = 0;
 currentType = objConnection.type;

 if(connectionInfo.value <= 3) {
 x$('#speedMessage').html('<p>This application
 works better over a faster connection.</p>');
 } else {
 x$('#speedMessage').html('');
 }
 }
 intCheck = ++intCheck;

 x$('#statusMessage').html(statusMessage);
 x$('#count').html('<p>Checked ' + intCheck +
' seconds ago</p>');
}

www.it-ebooks.info

http://www.it-ebooks.info/

Hook into Native Events

152

11.	 The getConnectionType method mentioned previously will return a message
and value property depending on the type value sent as the parameter. The value
properties have been assigned manually to allow us to control what level of connection
we deem best for our application and for the experience of our users.
function getConnectionType(type) {
 var connTypes = {};
 connTypes[Connection.NONE] = {
 message: 'No network connection',
 value: 	0
 };
 connTypes[Connection.UNKNOWN] = {
 message: 'Unknown connection',
 value: 	1
 };
 connTypes[Connection.ETHERNET] = {
 message: 'Ethernet connection',
 value: 	2
 };
 connTypes[Connection.CELL_2G] = {
 message: 'Cell 2G connection',
 value: 	3
 };
 connTypes[Connection.CELL_3G] = {
 message: 'Cell 3G connection',
 value: 	4
 };
 connTypes[Connection.CELL_4G] = {
 message: 'Cell 4G connection',
 value: 	5
 };
 connTypes[Connection.WIFI] = {
 message: 'WiFi connection',
 value: 	6
 };
 return connTypes[type];
}

12.	 Finally, let's add some CSS definitions to the bottom of our application to add
some style to the UI.
<style>
div#holder {

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

153

 width: 250px;
 min-height: 60px;
 margin: 0 auto;
 position: relative;
 border: 1px solid #ff0080;
 border-radius: 10px;
 background: #ff0080;
}
div#holder p {
 margin: 20px auto;
 text-align: center;
 color: #ffffff;
 font-weight: bold;
}
div#speedMessage {
 width: 250px;
 margin: 0 auto;
 position: relative;
}
</style>

13.	 When we run the application on our device, the output will look something like the
following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Hook into Native Events

154

14.	 If our user changes their connection method or disconnects completely, the interval
timer will detect the change and update the interface accordingly, and the timer will
restart. This is depicted in the following screenshot:

How it works...
We set up the onDeviceReady method to create two new event listeners to check for the
online and offline events respectively. The online event will fire when the device's
network connection is started, and the offline event will fire when the network connection
is turned off or lost.

These events will only fire once, and so in this recipe we added in the setInterval timer
function to constantly call the checkConnection method to allow us to obtain changes
made to the network. The addition of this functionality helps greatly and means we can tell
when a user switches from a 3G to a WiFi connection, for example. If this happens, they would
not go offline, but simply change the connection type.

To find out more about the online and offline events, please
refer to the official documentation, available here:
http://docs.phonegap.com/en/2.0.0/cordova_events_
events.md.html#online.

There's more...
Your application may involve streaming data, remote connections or another process that
requires a certain level of connectivity to a network. By constantly checking the status and
type of connection, we can determine if it falls below an optimal level or a recommended
type for your application. At this point, you could inform the user, or restrict access to certain
remote calls or data streams to avoid latency in your application's response and possible extra
financial costs incurred to the user from their mobile provider.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

155

Creating a custom submenu
Your application may include an option for users to update or change settings, or perhaps
the ability to truly exit the application gracefully, closing down all services and storing state
or data.

How to do it...
In this recipe, we will create a simple application that interacts with the device's native menu
button to create a sliding submenu:

1.	 Create the initial layout of the HTML for our application. Include the Cordova and XUI
JavaScript library references in the head of the document, and include an onLoad
method call within the body tag, which will set the deviceready event listener once
the DOM is fully loaded.
<!DOCTYPE HTML>
<html>
 <head>
 <meta name="viewport" content="user-scalable=no,
 initial-scale=1, maximum-scale=1,
 minimum-scale=1, width=device-width;" />
 <meta http-equiv="Content-type" content="text/html;
 charset=utf-8">
 <title>Sub Menu</title>
 <script type="text/javascript"
 src="cordova-2.0.0.js"></script>
 <script type="text/javascript"
 src="xui.js"></script>

</head>
<body onload="onLoad()">

</body>
</html>

2.	 Let's now add the UI to the body of the document. Create a new button element
with the id attribute set to menuToggle, and an unordered list within a div
element. In this recipe, each anchor tag has a specific id attribute, which we'll use
shortly to assign touch handlers to each link.
<h2>Menu Display</h2>

 <button id="menuToggle">Toggle Menu</button>

www.it-ebooks.info

http://www.it-ebooks.info/

Hook into Native Events

156

 <div id="subMenu">
 Close Menu
 Hello
 Exit Application
 </div>

3.	 Add a new script tag block before the closing head tag in the document, and include
the onLoad function which will add the deviceready event listener, as follows:
<script type="text/javascript">

 function onLoad() {
 document.addEventListener("deviceready",
 onDeviceReady, false);
 }

</script>

4.	 Create the onDeviceReady method, within which we will set a new event
listener to check for the menubutton event. This will run the onMenuPress
function once detected.

5.	 We'll also include the setMenuHandlers method, which will apply the touch
handlers to the menu items.
function onDeviceReady() {
 document.addEventListener("menubutton", onMenuPress, false);
 setMenuHandlers();
}

6.	 The onMenuPress function, which is the callback method from the event listener,
will handle the transition of our menu element and links. We will use XUI library to
determine the current value of the subMenu element position and react accordingly
to either open or close the menu.
function onMenuPress() {
 var menuPosition = x$('#subMenu').getStyle('bottom');
 if(menuPosition == '-100px') {
 x$('#subMenu').tween({bottom: '0px' });
 } else {
 x$('#subMenu').tween({bottom: '-100px' });
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

157

7.	 The setMenuHandlers method will apply the touch handlers to our individual
menu items. We can reference each element by id attribute and set the listener
with the specific action we want it to run. To exit the application, we can call the
exitApp method to gracefully close our application and not leave it running in
the background on the device.

8.	 The menuToggle button element and the closeMenu link item both provide the
user with the ability to close the menu themselves by calling the previously created
onMenuPress method.
function setMenuHandlers() {
 x$('#exit').on('touchstart', function() {
 navigator.app.exitApp();
 });
 x$('#hello').on('touchend', function() {
 alert('Hello!');
 });
 x$('#closeMenu').on('touchend', function() {
 onMenuPress();
 });
 x$('#menuToggle').on('touchend', function() {
 onMenuPress();
 });
}

9.	 Finally, we will include some CSS definitions to set the menu into position and apply
colour styles and required attributes:
<style>
#menuToggle {
 width: 100%;
 height: 40px;
 position: relative;
 margin: 0 auto;
 color: #ffffff;
 background: #ff0080;
 font-size: 20px;
}
#subMenu {
 position: fixed;
 bottom: -100px;
 left: 0px;
 border-top: 1px solid #555;
 height: 100px;
 width: 100%;
 background: #e5e5e5;
}

www.it-ebooks.info

http://www.it-ebooks.info/

Hook into Native Events

158

#subMenu span {
 position: relative;
 margin: 0 auto;
 top: 40%;
}
#subMenu a {
 width: 29%;
 height: 100px;
 display: block;
 float: left;
 margin: 0 2% 0 2%;
 border-left: 1px solid #ccc;
 border-right: 1px solid #ccc;
 text-align: center;
}
</style>

10.	 When we run the application on the device, the initial view will look like the
following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

159

11.	 And with the menu open, the user will be presented with our links, as shown in
the following screenshot:

How it works...
The onDeviceReady method set up the new event listener to listen for the menubutton
event. At this point, the onMenuPress function is run, which either opens or closes the menu
depending on the current position of the subMenu element.

This is an ideal way to incorporate menu options and hidden gems of functionality within your
application without overcrowding your user interface

To create the transition of the menu, we used the tween capabilities provided by the XUI
JavaScript library. We'll cover the library in more detail in the next chapter.

To find out more about the menubutton event, please refer
to the official documentation, available here: http://docs.
phonegap.com/en/2.0.0/cordova_events_events.
md.html#menubutton.

www.it-ebooks.info

http://www.it-ebooks.info/

Hook into Native Events

160

There's more...
The menubutton event provided by the PhoneGap API is not cross-device or cross-platform
compatible. At present the supported device platforms are Android and BlackBerry WebWorks
(OS 5.0 or higher versions).

There are other ways to include custom menus in your applications thanks to one of the many
PhoneGap plugins created by the community developers and users.

The Native Menu plugin (https://github.com/mwbrooks/cordova-plugin-menu)
allows you to add native toolbars, tab bars, and menus to your application, and is supported
on Android, BlackBerry WebWorks, and iOS platforms.

The community and open source nature of the PhoneGap API and the Cordova product means
that developers can freely extend and enhance the functionality of their applications and dig a
little deeper into native processes offered by devices by creating custom plugins.

See also
ff Chapter 8, Extending PhoneGap with plugins

www.it-ebooks.info

http://www.it-ebooks.info/

6
Working with XUI

In this chapter, we will cover:

ff Learning the basics of the XUI library

ff DOM manipulation

ff Working with touch and gesture events

ff Updating element styles

ff Working with remote data and AJAX requests

ff Animating an element

Introduction
There are a number of common, widely used JavaScript (JS) frameworks that web
professionals use and implement, some of which translate very well into the mobile
landscape, such as jQuery.

There are a number of considerations when selecting a JS framework to use in your mobile
applications. One is the size of the library, which would inevitably add size to your final
packaged application.

While having the full product you may be used to using on your web applications also in use
within your mobile apps is serendipitous, options exist for smaller libraries that contain many
of the features you need, such as CSS selectors, filtering, style detection, and AJAX requests
using XmlHttpRequests.

In this chapter we will look at the XUI JavaScript library and how we can use it. XUI was written
and maintained by core members of the PhoneGap development team specifically for use in
mobile applications, and removes much of the unrequired tools and hidden engines that do
not apply to the modern browsers available on mobile devices.

www.it-ebooks.info

http://www.it-ebooks.info/

Working with XUI

162

Built with mobile devices in mind, XUI is incredibly small and lightweight and works across
all of the devices in the mobile landscape. Unlike some other mobile JavaScript libraries
available, XUI does not enforce any page structure or layout. It simply works with the DOM
created by the developer to manipulate the layout and work with content.

Getting ready
Before we can continue with the recipes in this chapter, we must download a copy of the
XUI library.

How to do it...
Perform the following steps to get started with the recipes:

1.	 Visit http://xuijs.com/downloads.

2.	 There are currently three variations of the library available for download:

�� webkit / firefox / opera

�� blackberry mobile

�� ie & ie mobile

3.	 Select the version of the library you wish to implement into your application. Each
option contains a full commented and a minified version. Feel free to download both
options. The commented version may be an exciting read, but always remember to
use the minified version on your final application.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

163

We can now proceed with the recipes.

Learning the basics of the XUI library
When creating applications that focus as heavily on user interactions as mobile apps do, we
want to be able to easily update and manage the underlying HTML and data collections.

How to do it...
We'll make use of XUI's simple but powerful DOM traversal methods and the ability to extend
the library functionality into custom code.

1.	 Create the basic layout for the HTML page.

2.	 Create a div element within the page with some text. In this case we're going for
the globally recognized "Hello World" sample text. Set the id attribute for this
element to content.

3.	 Include a new script tag into the head of your document, and reference the XUI
library within your project directory.
<!DOCTYPE HTML>
<html>
 <head>
 <meta name="viewport" content="user-scalable=no,
 initial-scale=1, maximum-scale=1,
 minimum-scale=1, width=device-width;" />
 <meta http-equiv="Content-type"
 content="text/html; charset=utf-8">
 <title>XUI</title>
 <script type="text/javascript"
 src="xui.js"></script>

</head>
<body>

 <div id="content">Hello World</div>

</body>
</html>

www.it-ebooks.info

http://www.it-ebooks.info/

Working with XUI

164

4.	 Before the closing head tag, include a new script tag block, inside of which we'll
place the onLoad method, and an XUI on event to execute the method once the DOM
has fully loaded, as shown in the following code snippet:
<script type="text/javascript">

 x$(window).on('load', onLoad);
 function onLoad() {

 }

</script>

5.	 Let's use this method to obtain the value of the content element on our page. We can
access the XUI library and it's methods using the global x$() function.

Create a new variable called contentDiv, and we'll pass the id of the div into
the XUI global function to obtain the object reference, as shown in the following
code snippet:

function onLoad() {
		
 var contentDiv = x$('#content');
 console.log(contentDiv);
 console.log(contentDiv.length);
 console.log(contentDiv[0].outerText);
		
}

6.	 If we run the page in a browser and open up the console view, we can see the
returned data written to the console log, as shown in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

165

7.	 The first result is a large structure containing a lot of detailed information about the
content div element, a sample of which is shown in the following screenshot:

8.	 The level of detail about the returned object is quite extensive, and we can use
some of this to programmatically obtain details about our selected elements.

9.	 Amend the div element to add some more attributes, such as a style and
class attribute, as shown in the following code snippet:
<div id="content"
 style="border: 2px solid #e5e5e5;"
 class="sampleText">
 Hello World
</div>

10.	 Amend the onLoad method to include code to obtain the array node containing all
attributes within the selected document element.

11.	 We'll use this array and loop over the contents to build an HTML string containing
the id and value of each attribute within the content div element.

12.	 Finally, we'll display the generated string after the original div element on the page.
function onLoad() {

 var contentDiv = x$('#content');
 var attributes = contentDiv[0].attributes;

www.it-ebooks.info

http://www.it-ebooks.info/

Working with XUI

166

 if(attributes.length) {

 var attrMessage = '';

 attrMessage = '<h3>' + contentDiv[0].id + ' '
 + contentDiv[0].localName + ' has '
 + attributes.length + ' attributes:</h3>';

 attrMessage += '';

 for(i=0; i<attributes.length;i++) {
 attrMessage += '' + attributes[i].localName
 + ' "' + attributes[i].value + '"';
 }

 attrMessage += '';

 contentDiv.after(attrMessage);

 }

}

13.	 When we run the amended code in the browser, you will see something similar to
that shown in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

167

Let's now take a look at some of the other useful methods available with the XUI library, which
also help to form a solid understanding of the basic functionality available:

1.	 Create a new HTML file, including a reference to the XUI JavaScript library, and an
empty script tag block before the closing head tag.

2.	 Within the empty script block, define a new onLoad method.

3.	 Add an XUI on event handler to run the onLoad JavaScript method when the DOM
is ready.

4.	 The body of the document will contain two unordered list elements, each with their
own id attributes set to family and friends respectively. Each list item has a
specific class attribute that relates to the gender of the individual within the list.
Feel free to list your own family and friends.

5.	 Finally, we'll include a div element before the closing body tag with the id attribute
set to output.
<!DOCTYPE HTML>
<html>
 <head>
 <meta name="viewport" content="user-scalable=no,
 initial-scale=1, maximum-scale=1,
 minimum-scale=1, width=device-width;" />
 <meta http-equiv="Content-type"
 content="text/html; charset=utf-8">
 <title>XUI</title>
 <script type="text/javascript"
 src="xui.js"></script>
 <script type="text/javascript">

 x$(window).on('load', onLoad);

 function onLoad() {

 }

 </script>
</head>
<body>

 <ul id="family">
 <li class="male">Ted
 <li class="female">Molly
 <li class="female">Cate
 <li class="female">Jean
 <li class="male">George

www.it-ebooks.info

http://www.it-ebooks.info/

Working with XUI

168

 <ul id="friends">
 <li class="male">Steve
 <li class="female">Pip
 <li class="male">Dave
 <li class="male">Scott

 <div id="output"></div>

</body>
</html>

6.	 We'll add some code into the onLoad method to filter the various list elements. Firstly,
create an empty strMessage variable into which we'll build our string for output.

7.	 We can access all of the names within the document list elements, which will provide
us with an array of the results. We'll store that into the allNames variable.
function onLoad() {

 var strMessage = '';
 var allNames = x$('li');

 strMessage += '<p>There are ' + allNames.length
 + ' names in total</p>';

}

8.	 Let's now find the elements within specific lists. We can select all of the names within
our family list by providing a specific element to look into – in this case we just want
to select from the unordered list where the id attribute equals family.

Although in this instance we specifically called the find()
method to locate the list items, the x$ namespace is an
alias for the find() method. As such, we didn't call it in
the previous example to obtain all of the names in our lists,
but we were performing the same function.

9.	 With can now dig a little deeper and find list items that match a given CSS selector.
Here we will first look for all items within the allFamily array that first has the male
class and then those with the female class. We assign both results to new array
variables and add details to our output string, as shown in the following code snippet:
var allFamily = x$('#family').find('li');
var maleFamily = allFamily.has('.male');
var femaleFamily = allFamily.has('.female');

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

169

strMessage += '<p>' + allFamily.length
 + ' family members are listed:';
strMessage += '<li id="maleFamily">' + maleFamily.length
 + ' male<li id="femaleFamily">' + femaleFamily.length
 + ' female</p>';

10.	 Let's do the same to access all names within our friends list.

11.	 When accessing the class selectors to see if an element has a particular class, we
can also check to see if an element does not have a matching CSS selector, as we
are using here for our female friends.
var allFriends = x$('#friends').find('li');
var maleFriends = allFriends.has('.male');
var femaleFriends = allFriends.not('.male');

strMessage += '<p>' + allFriends.length
 + ' friends are listed:';

strMessage += '<li id="maleFriends">' + maleFriends.length
 + ' male<li id="femaleFriends">' + femaleFriends.length
 + ' female</p>';

12.	 Finally, we can set the generated string variable into the div element for display:
x$('#output').html(strMessage);

13.	 Another of XUI's built-in methods allows us to iterate over a collection of elements. Let's
combine this into a generic function, which we will use to extend the native XUI library.

14.	 Create a new variable called nameFunctions which will be an object containing the
various functions we wish to use to extend the library.

15.	 Name the first reference generateList and write the function code to iterate over
each element of the provided array and set the resulting string variable into the
parent element, as shown in the following code snippet:
var nameFunctions = {
 generateList: function(array) {
 var list = '';
 array.each(function(element, index, xui) {
 list+= element.outerHTML;
 });

 list+= '';

 this.bottom(list);
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Working with XUI

170

16.	 Finally, revise the onLoad method and add four calls to the getNameList function,
passing into it each array and list id attribute:
x$('#output').html(strMessage);

xui.extend(nameFunctions);

x$('#maleFamily').generateList(maleFamily);
x$('#femaleFamily').generateList(femaleFamily);
x$('#maleFriends').generateList(maleFriends);
x$('#femaleFriends').generateList(femaleFriends);

17.	 When we run the page in the browser, the output will look something like the
following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

171

How it works...
In this recipe we used the find method available with XUI to locate specific elements within
our document. We also made use of the has and not methods to access elements using
the CSS selector.

Finally, we extended the functionality offered through XUI by setting our own function into the
namespace for easy access to the elements and method calls.

For more information on how to extend XUI and use the search or filter
methods, make sure you check out the official documentation, available
at: http://xuijs.com/docs/basics.

DOM manipulation
Although we may be building our applications in HTML, we still have the ability to alter and
manipulate the elements within the document to create more of a dynamic application.

How to do it...
We will use the DOM manipulation methods available with the XUI library to read and write
content directly within our application. The following steps will help us to do so:

1.	 Create a new HTML file, including a reference to the XUI JavaScript library, the
Cordova JavaScript file, and an empty script tag block before the closing
head tag.

2.	 Within the empty script block, define a new onLoad method.

3.	 Add an on event handler, which will run the onLoad JavaScript method when the
DOM has fully loaded.

4.	 The body tag of the document will contain one div element with the id attribute
set to content.
<!DOCTYPE HTML>
<html>
 <head>
 <meta name="viewport" content="user-scalable=no,
 initial-scale=1, maximum-scale=1,
 minimum-scale=1, width=device-width;" />
 <meta http-equiv="Content-type"
 content="text/html; charset=utf-8">
 <title>XUI</title>

www.it-ebooks.info

http://www.it-ebooks.info/

Working with XUI

172

 <script type="text/javascript"
 src="xui.js"></script>
 <script type="text/javascript"
 src="cordova-2.0.0.js"></script>
 <script type="text/javascript">

 x$(window).on('load', onLoad);

 function onLoad() {

 }

 </script>
</head>
<body onload="onLoad()">

 <div id="content"></div>

</body>
</html>

5.	 Before the onLoad method, let's define a new JavaScript object variable. This will
act as a container to hold our various HTML strings. We'll access these from button
click events.
var textContent = {
 top: '<div id="top">Top Context</div>',
 inner: '<p>Inner context</p>',
 bottom: '<div id="bottom">Bottom Context</div>',
 after: '<p>DOM Manipulation is easy with XUI!</p>'
};

6.	 Let's amend the onLoad method now to include an event listener to check that the
device is ready, at which point the onDeviceReady method will fire.
function onLoad() {	
	
document.addEventListener("deviceready",
 onDeviceReady, false);
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

173

7.	 Include the onDeviceReady function. This will make use of the DOM manipulation
features and set a h1 tag before the content div element.

8.	 We'll also set up an event listener to manage button clicks. This will take the id
attribute of the button, select the relevant value from our textContent object
and insert it into the relevant position in the DOM.
function onDeviceReady() {

 x$('#content').before('<h1>XUI DOM Manipulation</h2>');

 x$('button').on('click', function(e) {
 x$('#content').html(this.id, textContent[this.id]);
 });

}

9.	 Back into the HTML, add the following button elements at the top of the body
content. Notice how each button has a specific id attribute to reference the object
values, as shown in the following code snippet:
<button id="inner">Inner</button>
<button id="top">Top</button>
<button id="bottom">Bottom</button>
<button id="after">After</button>

<div id="content"></div>

10.	 Finally, let's add some basic styles to the document elements to easily see when
they have been added.
<style>
 div#content { border: 2px solid #e5e5e5; }
 div#top { background: #ff0000; color: #fff; }
 div#bottom { background: #ffff00; color: #000; }
</style>

www.it-ebooks.info

http://www.it-ebooks.info/

Working with XUI

174

11.	 When we run the application on a device, the output should look something like the
following screenshot:

How it works...
We created a simple mobile application to see how the XUI library can manipulate the DOM.
To set a value within an element we can use the html() function, appended to the XUI
element collection.

The html function takes two arguments:

ff location: A String value that determines the location surrounding the selected
element where the DOM manipulation should take place.

ff html: A String value that contains the HTML markup or elements to be placed into
the DOM.

The location can take one of the following values: inner, outer, top, bottom, remove, before,
or after.

In our button click handler function, we used the html method and passed in the location
string, which we accessed from the id attribute of the clicked button.

You can also access the locations directly using the shorthand version and simply pass in the
HTML element or markup, which we did for our h1 tag entry.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

175

For example:

x$('#content').before('<h1>XUI DOM Manipulation</h2>');

To access the current HTML within an element, we would simply need to call the methods
without passing in an HTML value to set.

For example:

// Get the value of the content element
x$('#content').html();

For more information on the DOM manipulation methods available,
make sure you check out the official documentation: http://
xuijs.com/docs/dom.

Working with touch and gesture events
When working with user interfaces that demand a high level of user interaction or certain
processes to be run at certain moments, we need to start looking at using events and detecting
them to execute methods. In this recipe we will create some functionality that will demonstrate
not only setting an event, but removing it as well.

How to do it...
We will use the methods available in the XUI library to control the delegation of event handlers.

1.	 Create the HTML layout for your application. Include the XUI and Cordova JavaScript
libraries within the head tag of your document.

2.	 Add an empty script tag block before the closing head tag. This will hold our
custom PhoneGap code. Within this, define a new onLoad function.

3.	 Add an on event handler, which will run the onLoad JavaScript method when the
DOM has fully loaded.

4.	 Finally, add a new button element within the body of the document. Set the id
attribute to touchme.
<!DOCTYPE HTML>
<html>
 <head>
 <meta name="viewport"
 content="width=screen.width; user-scalable=no" />
 <meta http-equiv="Content-type"
 content="text/html; charset=utf-8">

www.it-ebooks.info

http://www.it-ebooks.info/

Working with XUI

176

 <title>XUI</title>
 <script type="text/javascript"
 src="xui.js"></script>
 <script type="text/javascript"
 src="cordova-2.0.0.js"></script>
 <script type="text/javascript">

 x$(window).on('load', onLoad);

 function onLoad() {

 }

 </script>
</head>
<body>

 <button id="touchme">Touch gestures</button>

</body>
</html>

5.	 Let's add the first of our XUI events. We want to be really sure that the DOM has fully
loaded before we manipulate it. The ready() method will run once this is the case,
so place this within the onLoad method.

6.	 Inside of the event, we'll set up our event listener to execute the onDeviceready
method once the PhoneGap code is ready to run.
function onLoad() {
 x$.ready(function() {
 console.log('The DOM is ready to go!');
 document.addEventListener("deviceready",
 onDeviceReady, false);
 });
}

7.	 Create the onDeviceReady function. This will register a new touchstart event to
the button element.
function onDeviceReady() {
 x$('#touchme').on('touchstart', touchConfirmation);
}

8.	 The touchConfirmation function will run when the button event has been fired,
that is, when it has been touched.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

177

9.	 Here, we'll display a confirmation notification event from the PhoneGap API to give our
users the choice to either keep touching our button or to leave it alone.
var touchConfirmation = function(){
 navigator.notification.confirm(
 'Do you want to apply a touch gesture again?',
 touchConfirmAction,
 'Touch gesture detected..',
 'Yes,No'
)
};

The following screenshot shows the confirmation notification event triggered after
the touch gesture is detected:

10.	 Now we need to add the callback function to deal with the selected user option
from the confirmation box.

11.	 If the user selected Yes they can continue to press the button and receive the
notification window.

12.	 If they select No, we will unregister the event applied to the button, removing the
ability to perform any actions when touched.
function touchConfirmAction(buttonIndex) {
 if(buttonIndex === 2) {
 x$('#touchme').un('touchstart');
 x$('#touchme').html('Touch gestures are closed');
 } else {
 x$('#touchme').html('Touch gestures are active');
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Working with XUI

178

13.	 When we run the application on the browser and select No, the button value would
change and the output would look something like the following screenshot:

How it works...
In this recipe, we used our first event to detect when the DOM would be ready for us that is
the ready() method.

We also specifically applied a touchstart event to a button element, which when pressed
would alert the user with a notification window.

We then added in functionality to unregister the specific touchstart callback, which would
remove the functionality to display the notification window.

For more information on using events within XUI, make sure you
check out the official documentation, available at: http://
xuijs.com/docs/event.

Updating element styles
As we build our applications and apply a number of styles and properties to define the layout
and visual representation of elements, we also need to be able to update and alter the
aesthetics and styles to reflect changes or events within the application.

How to do it...
In this recipe we will read, write, and detect the style properties and class attributes assigned
to selected elements using XUI's built-in style functions.

1.	 Create the initial HTML layout for the application. Include the Cordova and XUI
JavaScript libraries within the head of the document.

2.	 Write a new script tag block before the closing head tag, which will hold our
custom PhoneGap application code. Define an empty onLoad function inside the
script block.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

179

3.	 Add three button elements to the body of the document, each with its own
individual id attribute.

4.	 Finally, include the on event listener to run the onLoad function.
<!DOCTYPE HTML>
<html>
 <head>
 <meta name="viewport" content="user-scalable=no,
 initial-scale=1, maximum-scale=1,
 minimum-scale=1, width=device-width;" />
 <meta http-equiv="Content-type"
 content="text/html; charset=utf-8">
 <title>XUI</title>
 <script type="text/javascript"
 src="xui.js"></script>
 <script type="text/javascript"
 src="cordova-2.0.0.js"></script>
 <script type="text/javascript">

 x$(window).on('load', onLoad);

 function onLoad() {

 }

 </script>
</head>
<body>

 <button id="one">Button One</button>
 <button id="two">Button Two</button>
 <button id="three">Button Three</button>

</body>
</html>

5.	 The onLoad method will set up the XUI ready event handler, which in turn will add
the event listener to run the onDeviceReady method when the PhoneGap code has
been compiled and is ready to run:
function onLoad() {

 x$.ready(function() {
 document.addEventListener("deviceready",
 onDeviceReady, false);
 });
}

www.it-ebooks.info

http://www.it-ebooks.info/

Working with XUI

180

6.	 When the onDeviceReady method executes, the first thing we want to do is register
a click handler to all of the buttons. We can determine which button was clicked by
reading the this.id value following a click event.

7.	 We'll check to see if the selected button has a specific CSS class called active
applied to it. If it does not, we'll add the class to the element.

8.	 We'll also obtain the font-size style attribute applied to the element and send
that value to a new method called resizeFont. This will increase the font size
value by the integer defined in the parameters; in this case it will add an extra five
pixels to the value.

9.	 If the selected button already has the active class applied to it, we'll remove the
class and reduce the font-size style property on the button element.
function onDeviceReady() {

 x$('button').on('click', function(e) {

 var selectedButton = x$('#' + this.id + '');

 if(!selectedButton.hasClass('active')) {

 selectedButton.addClass('active');
 selectedButton.getStyle('font-size',
 function(property) {
 resizeFont(selectedButton, property ,'+', 5);
 });

 } else {

 selectedButton.removeClass('active');
 selectedButton.getStyle('font-size',
 function(property) {
 resizeFont(selectedButton, property ,'-', 5);
 });

 }
 });

 }

10.	 Now let's write the resizeFont function. This will accept four parameters: the
button element, the value of the getStyle property response, whether to increase
or decrease the font size, and the amount by which to alter the original property.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

181

11.	 Once we have calculated the new font size, we'll use the setStyle method from
XUI to change the style value for the element.
function resizeFont(element, property, direction, alterBy) {
 var sizeType = property.replace(/[0-9]+/, "");
 var fontSize = property.replace(/[^-\d\.]/g, "");
 if('-' === direction) {
 fontSize = parseInt(fontSize) - alterBy;
 } else {
 fontSize = parseInt(fontSize) + alterBy;
 }
 element.setStyle('font-size', fontSize + sizeType);
}

12.	 To finish off, include some CSS to the bottom of the HTML page to define the two
states for the buttons; the normal state and the active/selected state.
<style>

button {
 background: rgba(100, 100, 100, 0.6);
 color: #fff;
 padding: 5px 10px;
 float: left;
 margin: 5px 5px 0 0;
 border-radius: 2px;
 font-size: 11px;
 font-weight: 600;
 cursor: pointer;
 border: none;
}

button.active {
 background: #EEA839;
 color: #fff;
 padding: 5px 10px;
 float: left;
 margin: 5px 5px 0 0;
 border-radius: 3px;
 font-size: 11px;
 font-weight: 600;
 cursor: pointer;
 border: none;
}

</style>

www.it-ebooks.info

http://www.it-ebooks.info/

Working with XUI

182

13.	 If we run the application on a device the initial screen would look like the following
screenshot, with all three buttons in their normal state:

14.	 If we select a button element, you can see that XUI has applied the active style and
altered the size of the font. Selecting an active button will remove the styles and
revert it back to its normal state, as shown in the following screenshot:

How it works...
In this recipe we made use of the style manipulation and selector functions in XUI.

After detecting a button click event, we were able to check if the particular button had a
specific class, and were able to easily add it to the element if it did not by using the hasClass
and addClass methods respectively. Similarly, if the class was already applied to the button,
we removed it using the removeClass method.

We were also able to alter the style properties of our CSS by first accessing it using the
getStyle method before setting the amended property value using setStyle.

There's more...
We took the slightly longer route in this example to detect and change the button class
attribute. This was intentional so that we could see the addClass and removeClass
methods in action.

We could have removed them both entirely, as well as the hasClass method, by using the
toggleClass method also available in the XUI library.

This method will add the specified class it if exists on the selected element, or remove it if
it does not.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

183

For example:

x$('#myButton').toggleClass('active');

It's always good to know you have options!

For more information on how to gather and alter style information,
make sure you check out the official XUI documentation, available at:
http://xuijs.com/docs/style.

Working with remote data and AJAX
requests

With a vast array of remote servers exposing their services as accessible APIs you can create
some truly dynamic applications by pulling and pushing data to and from external applications
and providers.

How to do it...
We will use the xhr() method within the XUI library to request data from a remote server,
making an asynchronous call to obtain the results from a search.

1.	 Create the initial HTML layout for the application. Include both the XUI and Cordova
JavaScript libraries within the head tag of the document.

2.	 Create a new script tag block before the closing body tag with an empty onLoad
function, which we'll populate shortly.

3.	 Add an XUI on event handler to run the onLoad method once the DOM has fully loaded:
<!DOCTYPE HTML>
<html>
 <head>
 <meta name="viewport" content="user-scalable=no,
 initial-scale=1, maximum-scale=1,
 minimum-scale=1, width=device-width;" />
 <meta http-equiv="Content-type"
 content="text/html; charset=utf-8">
 <title>XUI</title>
 <script type="text/javascript"
 src="xui.js"></script>
	 <script type="text/javascript"
 src="cordova-2.0.0.js"></script>
 <script type="text/javascript">

www.it-ebooks.info

http://www.it-ebooks.info/

Working with XUI

184

 x$(window).on('load', onLoad);

 function onLoad() {

}

 </script>
</head>
<body>

</body>
</html>

4.	 Within the body tag of the document, add a text input element with the id attribute
set to criteria. Below this, include a new button element with the id attribute
set to search.

5.	 Finally, create a new div block with the id attribute set to response. This will hold
our returned data from the remote calls:
<body>

 <input type="text" id="criteria" />
 <button id="search">search</button>

 <div id="response"></div>

</body>

6.	 Amend the onLoad method to include a call to the XUI ready event, which will
execute when the DOM is ready.

7.	 Within this event handler, add a new event listener to run the onDeviceReady
method once the native PhoneGap code is ready.
function onLoad() {

 x$.ready(function() {
 document.addEventListener("deviceready",
 onDeviceReady, false);
 });

}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

185

8.	 Now let's create the onDeviceReady method. We will apply a touchstart event
handler to the button element. This will clear any content currently in the response
div element.

9.	 It will then obtain the value of the criteria input field as specified by the user,
and pass that value to a new function.
function onDeviceReady() {

 x$('#search').on('touchstart', function(e) {
 x$('#response').html(' ');
 var criteria = x$('#criteria')[0].value;
 searchTwitter(criteria);
 });

}

10.	 Create the new function called searchTwitter, which accepts the user input.
This will make a simple AJAX call to the Twitter search API to return the last five
entries that match the criteria provided.

11.	 Set the inline callback option to execute a function called processResults,
which will also contain the response from the request.
function searchTwitter(criteria) {

 x$('#response').xhr(
 'http://search.twitter.com/search.json?q='+
 criteria+'&rpp=5', {
 async: true,
 callback: function() {
 processResults(this.responseText);
 },
 headers:{
 'Mobile':'true'
 }
 });

}

12.	 The processResults method will parse the JSON response from the request.
The function will loop over the results so that we can access each entry.

www.it-ebooks.info

http://www.it-ebooks.info/

Working with XUI

186

13.	 We'll use this data to build a simple element collection containing the content of
the tweet, which we'll then add to the bottom of the response div container.
function processResults(response) {
 var response = JSON.parse(response);
 var results = response.results;
 for(var i=0; i<results.length; i++) {
 var thisTweet = results[i].text;
 var tweetDiv = '<div class="tweet">' +
 thisTweet + '</div>';
 x$('#response').bottom(tweetDiv);
 }
}

14.	 Finally, add some style definitions to the bottom of the document to add some
formatting to the returned tweet elements.
<style>
 .tweet {
 border: 1px solid #999;
 background: #e5e5e5;
 clear: both;
 margin: 5px;
 padding: 5px;
}
</style>

15.	 If we run the application on a device, the initial display would like something like
the following screenshot:

16.	 Once a user has entered in search criteria and pressed the button, the remote
call will fire and the response will look like the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

187

How it works...
In this recipe we used the xhr() method available within the XUI JavaScript library to make
a request to a remote web service, in this case the Twitter search API.

Using xhr(), we made an XmlHttpRequest to the provided URL, which ran an asynchronous
call. We passed in a callback method, processResults, which looped over the returned
entries and built an element collection containing the tweet message before adding each one
to the bottom of the response container.

For more information on the xhr() method, make sure
you check out the official XUI documentation , available at:
http://xuijs.com/docs/xhr.

Animating an element
Although altering elements in our application's pages is relatively easy, we can further enhance
the user's experience by adding some animation to these elements as we change them.

How to do it...
We will use the tween() method within the XUI library to alter a property of an image and
tween the element to its new position on the screen.

1.	 Create the initial HTML layout for the application. Include the XUI JavaScript library
within the head tag of the document.

www.it-ebooks.info

http://xuijs.com/docs/xhr
http://xuijs.com/docs/xhr
http://www.it-ebooks.info/

Working with XUI

188

2.	 Add an XUI ready event handler to run our code once the DOM has fully loaded.
<!DOCTYPE HTML>
<html>
 <head>
 <meta name="viewport" content="user-scalable=no,
 initial-scale=1, maximum-scale=1,
 minimum-scale=1, width=device-width;" />
 <meta http-equiv="Content-type"
 content="text/html; charset=utf-8">
 <title>XUI</title>
 <script type="text/javascript"
 src="xui.js"></script>
 <script type="text/javascript">

 x$.ready(function() {

});

 </script>
</head>
<body>

</body>
</html>

3.	 Within the body tag of the document, add two button elements, one with the id
attribute set to up, the other with the id attribute set to down. Below these, add
an empty div tag block with the id attribute set to details.

4.	 Add a new div tag block with the id attribute set to rocket, inside of which add
an image tag with the src attribute referencing the rocket.gif image file.
<body>

 <button id="up">UP</button>
 <button id="down">DOWN</button>

 <div id="details"></div>

 <div id="rocket">

 </div>
</body>

5.	 Now let's start adding our custom code to the ready() method. Firstly, we'll create
two variables that reference the rocket and details div elements.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

189

6.	 We'll then create a click handler event, applied to the up button. This will obtain
the value of the rocket element's bottom CSS property. We can then increment
the value by 100 to create the new position for the element.

7.	 We will then send the property through to the tween method to animate the
rocket element.
x$.ready(function() {

 var rocket = x$('#rocket');
 var details = x$('#details');

 x$('#up').on('click', function(e) {

 rocket.getStyle('bottom', function(property) {
 sizeType = property.replace(/[0-9]+/, "");
 topPosition = property.replace(/[^-\d\.]/g, "");
 topPosition = parseInt(topPosition) + 100;
 newPosition = topPosition + sizeType;
 rocket.tween({ bottom:newPosition, duration:1000 },
 function() {
 details.html('bottom: ' + newPosition);
 }
);
 });

 });

});

8.	 We now need to create the click handler event for the down button directly below
this, within the ready() method, which has the same functionality, but decreases
the value of the bottom property by 100.
x$('#down').on('click', function(e) {

 rocket.getStyle('bottom', function(property) {
 sizeType = property.replace(/[0-9]+/, "");
 topPosition = property.replace(/[^-\d\.]/g, "");
 topPosition = parseInt(topPosition) - 100;
 newPosition = topPosition + sizeType;
 rocket.tween({ bottom:newPosition, duration:1000 },
 function() {
 details.html('bottom: ' + newPosition);
 }
);
 });
});

www.it-ebooks.info

http://www.it-ebooks.info/

Working with XUI

190

9.	 Finally, add some style definitions to the bottom of the document to apply the default
positions and format for the elements, as shown in the following code snippet:
<style>
 body { background: #0c0440 url(outerspace.jpg) repeat; }
 div#rocket { bottom: 0px; position: absolute; width: 31px;
height: 72px; left: 100px; }
 div#details { color: #ffff00; height: 20px; position: inherit;
top: 20px; right: 20px; float: right; }
</style>

10.	 If we run the application on a device, the initial display would look something like the
following screenshot:

11.	 If we choose to move the rocket element up, the display would then look something
like the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

191

How it works...
The tween() method transforms a CSS property value, in our case the bottom property of the
rocket element. Before we could change the value, we first obtained its current value using
XUI's getStyle() method. Once we had altered the value of the property, we sent it through
to the tween() method. We also sent through an optional property to set duration of the
animation in milliseconds.

The tween() method accepts the following two arguments:

ff properties: An Object or Array of CSS properties to tween.

ff callback: An optional Function that is called when the animation is complete.

In our example, we used the optional callback argument to update the content of the
details element with the new bottom property for the rocket element.

For more information on the tween() method, make sure
you check out the official XUI documentation, available at:
http://xuijs.com/docs/fx.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

7
User Interface

Development with
jQuery Mobile

In this chapter, we will cover:

ff Creating a jQuery Mobile layout

ff Persisting data between jQuery Mobile pages

ff Using jQuery Mobile ThemeRoller

Introduction
When we develop for mobile devices, we are extremely limited in terms of space and we have
to think differently about creating a user interface or frontend for our application than we
would if we were creating for the big screen.

Users on mobile devices need the information clearly represented and given to them in a
format and layout that is easily understandable and recognizable on the smaller devices.

In this chapter, we will briefly look into creating a layout for a podcast application, and we will be
using the jQuery Mobile framework to do this. With its big, easily identifiable buttons, elements,
and interface, it gives us everything we need to create a layout that almost matches the designs
of native apps.

Creating a jQuery Mobile layout
In this recipe we will be creating a simple podcast application. It will obtain available shows
from a remote XML feed and display these in a list on the main page.

www.it-ebooks.info

http://www.it-ebooks.info/

User Interface Development with jQuery Mobile

194

We want the interface and elements to be easily recognizable and simple to use, which jQuery
Mobile can easily help us achieve.

Getting ready
Before we start to build our application, we need to ensure we have the jQuery
Mobile framework.

Head over to http://jquerymobile.com/download/ to download the code
as a .zip file.

We have options available to include the code stored on a Content Distribution Network
(CDN). This means that the files are hosted on a remote server with a fairly high guarantee
of their availability at all times without any server downtime.

Using this method would help to reduce the overall size of our compiled application as it
would mean that our app would not contain the files – they are not gargantuan in size, but
when dealing with mobile networks and data use, we want to consider the user by reducing
the amount of external requests that they may have to make.

We also need to think about connectivity. The users of our application may not have a constant
connection to their network, and so we can't rely on remotely stored files. For this reason alone
it is best that we include them in our application.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

195

Once you have downloaded the archive, extract the files to a directory within your application
project folder. With that done, we can now get started creating our jQuery Mobile application!

How to do it...
We will use the jQuery Mobile framework to create the layout and user interface for our
mobile application.

1.	 Create a new index.html file in the project folder, which will be our main application
page. The head tag of the document will include a meta tag that defines the viewport
to assist in page definitions for use on mobile devices.

2.	 Include the stylesheet reference to the jQuery Mobile CSS file, and two JavaScript
references to the jQuery Mobile and jQuery core framework .js files. Let's also
include the Cordova JavaScript file within the head tag.

<!DOCTYPE HTML>
<html>
 <head>
 <meta name="viewport"
 content="width=screen.width; user-scalable=no" />
 <meta http-equiv="Content-type"
 content="text/html; charset=utf-8">
 <title>CFHour Mobile</title>
 <link href="jquerymobile/jquery.mobile-1.1.1.min.css"
 rel="stylesheet" type="text/css" />
 <script src="jquery-1.8.0.min.js"
 type="text/javascript"></script>
 <script src="jquerymobile/jquery.mobile-1.1.1.min.js"
 type="text/javascript"></script>
 <script src="cordova-2.0.0.js"
 type="text/javascript"></script>

 </head>
<body>

</body>
</html>

3.	 Let's start to add jQuery Mobile-specific code. We'll begin by adding a new page to
our application. jQuery Mobile recognizes that certain aspects of the code should
be defined as a page by the data-role attribute specified within the div tag.

4.	 Each of our pages will have a unique id attribute. Here we'll call our page home.

www.it-ebooks.info

http://www.it-ebooks.info/

User Interface Development with jQuery Mobile

196

5.	 Create a div tag block with the data-role set to header, and a second with the
data-role set to footer.

6.	 We'll also create a new div tag with the data-role attribute set to content, which
declares the code within as the content for our page, between the header and footer
sections. This is shown in the following code snippet:

<body>

 <div data-role="page" id="home">

 <div data-role="header">
 <h1>CFHour Mobile</h1>
 </div>

 <div data-role="content">
 <p>CFHour is the number #1
 ColdFusion podcast.</p>	
 </div>

 <div data-role="footer">
 <h4>© cfhour.com</h4>
 </div>

 </div>

</body>

7.	 With very little code, we have created a simple application layout. When we run the
application on a device, it would look something like the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

197

8.	 As you can see, we have made extensive use of the HTML5 data attributes in our code.
jQuery Mobile uses these to define the layout, markup and behavior to our code.

9.	 Let's add a second page into our application. Below the current page definition,
we'll create a new div tag block with the data-role attribute set to page. Set
the id attribute for the page to about so that jQuery Mobile can differentiate this
page from the first.

10.	 We've also included a header, content, and footer section, as these need to be
defined for each page.

<div data-role="page" id="about">

 <div data-role="header">
 <h1>About CFHour</h1>
 </div>

 <div data-role="content">
 <p>CFHour is a weekly podcast primarily focused on
 ColdFusion development, but brings you news and
 updates about all things 'web'.</p>
 <p>Join your hosts Dave Ferguson, Scott Stroz and their
 producer Matt Gifford for the latest information,
 live shows and guest interviews.</p>
 <p>
 <a href="http://www.cfhour.com"
 data-role="button">Visit www.cfhour.com
 </p>
 </div>

 <div data-role="footer">
 <h4>© cfhour.com</h4>
 </div>

</div>

If you create an application with multiple pages in one
file, jQuery Mobile will display the first page it encounters,
in this case the home page. It is important to remember
that the order of the content in your application will have
an effect on what is rendered.

www.it-ebooks.info

http://www.it-ebooks.info/

User Interface Development with jQuery Mobile

198

11.	 We now have our second page created, but we haven't yet created a way for the user
to navigate to it. Add an anchor tag within the header of the first page, home, and set
the href attribute to point to the second page by referencing its specific id attribute,
about. This creates an internal link, and jQuery will know exactly what to do.

12.	 We can also make use of the mobile framework to turn the standard link into a
button, and we'll add an icon from those included in the library to enhance the
user interface, as shown in the following code snippet:

<div data-role="header">

 <h1>CFHour Mobile</h1>

 <a href="#about" data-role="button"
 data-icon="info">About

</div>

This is shown in the following screenshot:

13.	 We also need to give the user the option to navigate back to the home page. If their
mobile device has a back button, they can use that to switch back but to enhance the
user experience. It's best that we provide them with the ability to do so from within the
application. Let's amend the about page code to include the following:

<div data-role="page" id="about"
 data-add-back-btn="true">

 <div data-role="header">
 <h1>About CFHour</h1>
</div>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

199

14.	 Instead of adding a button within the header as we did on the first page, we can use
jQuery Mobile's built-in function to automatically include a back button for us, as shown
in the following screenshot. To do so, we simply added a new data attribute to the
opening page div tag, data-add-back-btn, and set it to true.

15.	 We now have our second page complete with automatically generated back button, but
as you can see on the screenshot of the application we also have a lot of empty space
below the footer. Let's resolve that and set the footer to sit at the bottom of the screen.
Amend the footer div tag within each page by adding a new data attribute, data-
position, and set the value to fixed, as shown in the following code snippet:

<div data-role="footer"
data-position="fixed">

16.	 We now have the header and footer fixed to their positions at the top and bottom
of the screen respectively. This is cleaner for the user, provides a more consistent
layout, and also allows the user to scroll the main content of the page and keep the
header and footer locked into position.

www.it-ebooks.info

http://www.it-ebooks.info/

User Interface Development with jQuery Mobile

200

17.	 When we run the application on our device now, the layout will look something like
the following screenshot:

With the core of the application's layout now created, let's start to add some
dynamic functionality:

1.	 When the user loads up the application we want to provide them with a list of available
podcast episodes to listen to. We'll start off by revising the code in the initial home
page to include an unordered list.

<div data-role="content">

 <p>CFHour is the number #1 ColdFusion podcast.</p>

 <p>Select a show to listen to:</p>

 <ul id="showList" data-role="listview"
 data-inset="true">

</div>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

201

2.	 Create a new script tag block at the bottom of the file to hold our custom code.
To begin with, we'll bind a jQuery Mobile pagecreate event to the home page,
which will run a new method called getRemoteFeed.

$("#home").bind("pagecreate", function(e) {

getRemoteFeed();

})

3.	 The getRemoteFeed method will run a jQuery get() method call to obtain the
contents of the podcast feed. When the XML data has been retrieved, we'll loop over
each item element (which represents an individual show), and generate a new list
item for each one.

4.	 To obtain the subtitle/description for the show, we send the item node into a separate
method called XMLtoString, which handles the specific namespacing for us and
converts the entire node into a string variable. This method isn't included in this code
for brevity, but is available in the completed project code.

5.	 When building our list, you can see we are adding elements from the feed as data
attributes to the list item, as well as the text for the link.

6.	 After looping through all available items, we append the complete string containing
our list items to the shortList unordered list element we created earlier. Finally,
we need to refresh the list to allow jQuery Mobile to render the list elements with
the correct styles and formatting.

var getRemoteFeed = function() {

 $.get(
"http://feeds2.feedburner.com/CfhourColdfusionPodcast",
 {},
 function(data) {

 var listItem = '';

 $(data).find('item').each(function(){
 var strXML = XMLtoString($(this));		
 var showDescription =

 strXML.substring(
 strXML.indexOf('<itunes:subtitle>') + 17,
 strXML.indexOf('</itunes:subtitle>')
);

www.it-ebooks.info

http://www.it-ebooks.info/

User Interface Development with jQuery Mobile

202

 listItem += '<li data-show-description="'
 + showDescription + '" data-show-title="'
 + $(this).find('title').text()
 + '" data-enclosure="'
 + $(this).find("enclosure").attr("url")
 +'" id="'+ $(this).find("guid")
 +'"><h3><a>'
 + $(this).find('title').text()
 + '</h3><p>Released: '
 + $(this).find('pubDate').text() +'</p>';
 });

 $('#showList').append(listItem);
 $("#showList").listview("refresh");
 }
);
};

7.	 Our main application page will now look something like the following screenshot:

We defined the list to be inset. Had we left this attribute as default,
the list would have covered the entire width of the screen.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

203

How it works...
The jQuery Mobile framework gives developers the ability to create application layouts that
are responsive to the size of the device screen and provide an entire library of user interface
elements that aesthetically match a native application.

We were able to create a layout and define various sections and content simply by using data
attributes within the HTML. jQuery Mobile has been built to apply styles and events based upon
the existence of these data attributes. This means that we need only write well-structured HTML
code – we do not need to worry about diving too deeply into a new language or any development
framework that uses the model view architecture.

Persisting data between jQuery Mobile
pages

In this recipe we will build upon the podcast application built in the previous recipe, extending
the functionality and features available to the user.

So far, our podcast application consists of a few simple pages that are independent of each
other; that is to say, any content consumed by each page is used by that page only.

How to do it...
We will use the localStorage capabilities to save and retrieve information, persisting it
across pages:

1.	 With the list now populated, we now need to revise the home method to include
a function to capture the tap events on each list item. This will obtain the title,
enclosure, and description attribute values from the selected item and set
them into the localStorage on the device so that we can persist them to the
next screen. We'll then force a page change to a new page called itemdetail.

$("#home").bind("pagecreate", function(e) {

 getRemoteFeed();

 $('#showList').on('tap', 'li', function(){

 localStorage.clear();
 localStorage.setItem("enclosureURL",
 $(this).attr('data-enclosure'));
 localStorage.setItem("showTitle",
 $(this).attr('data-show-title'));
 localStorage.setItem("showDescription",

www.it-ebooks.info

http://www.it-ebooks.info/

User Interface Development with jQuery Mobile

204

 $(this).attr('data-show-description'));

 $.mobile.changePage('#itemdetail');

 });

})

2.	 Let's now create the new itemdetail page, which must sit in the code below
the initial home page. Remember that the order of page content in your jQuery
mobile application is important. We will leave the h1 tag within the header empty,
as we'll populate the title with the name of the show from the localStorage.
We have also added another link button inside the header to open up a new page,
showdescription. This link differs from the others we have implemented because
it will open the page in a dialog window as we have specified the data-rel attribute
to dialog.

3.	 In the content of the page, we'll define the layout for the audio controls, which will
manage the playback of the remote audio file. The code is as follows:

<div data-role="page"
 id="itemdetail" data-add-back-btn="true">

 <div data-role="header" data-position="fixed">
 <h1></h1>
 <a href="#showdescription" data-role="button"
 data-icon="info" data-rel="dialog"
 class="ui-btn-right">Description
 </div>

 <div data-role="content">

 <h2 id="showTitle"></h2>

 <div data-role="button" id="playaudio">Play</div>
 <div data-role="button" id="pauseaudio">Pause</div>
 <div data-role="button" id="stopaudio">Stop</div>

 <div class="ui-grid-a">
 <div class="ui-block-a">
 Current: 0 sec</div>
 <div class="ui-block-b">
 Total: 0 sec</div>
 </div>

 </div>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

205

 <div data-role="footer" data-position="fixed">
 <h4>© cfhour.com</h4>
 </div>

</div>

4.	 Let's now add the JavaScript controls for the audio into the .js file. We'll begin by
including a pagebeforeshow event bound to the itemdetail page. This will obtain
the MP3 file's remote URL and the show title from the localStorage and define the
playback controls for the audio player.

$("#itemdetail").bind("pagebeforeshow", function(e) {

 var mp3URL = localStorage.getItem("enclosureURL");
 var showTitle = localStorage.getItem("showTitle");

 var audioMedia = null,
 audioTimer = null,
 duration = -1,
 is_paused = false;

5.	 We can now set the show title as the title for the page, ad start to apply the
audio controls:

$('#showTitle').html(showTitle);

$("#playaudio").live('tap', function() {
 if (audioMedia === null) {
 $("#audio_duration").html("0");
 $("#audio_position").html("Loading...");
 audioMedia = new Media(mp3URL, onSuccess, onError);
 audioMedia.play();
 } else {
 if (is_paused) {
 is_paused = false;
 audioMedia.play();
 }
}

if (audioTimer === null) {
 audioTimer = setInterval(function() {
 audioMedia.getCurrentPosition(
 function(position) {
 if (position > -1) {
 setAudioPosition(Math.round(position));

www.it-ebooks.info

http://www.it-ebooks.info/

User Interface Development with jQuery Mobile

206

 if (duration <= 0) {
 duration = audioMedia.getDuration();
 if (duration > 0) {
 duration = Math.round(duration);

 $("#audio_duration").html(duration);
 }
 }
 }
},
 function(error) {
 setAudioPosition("Error: " + error);
 }
);
 }, 1000);
 }
});

 function setAudioPosition(position) {
 $("#audio_position").html(position + " sec");
}

6.	 Include the success and error callback methods, as shown in the following code:
function onSuccess() {
 setAudioPosition(duration);
 clearInterval(audioTimer);
 audioTimer = null;
 audioMedia = null;
 is_paused = false;
 duration = -1;
}

function onError(error) {
 alert('code: ' + error.code + '\n' +
 'message: ' + error.message + '\n');
 clearInterval(audioTimer);
 audioTimer = null;
 audioMedia = null;
 is_paused = false;
 setAudioPosition("0");
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

207

7.	 We'll now add the methods to pause and stop the audio, as well as the event handlers
to detect the tap action on the relevant control buttons to run these functions.

function pauseAudio() {
 if (is_paused) return;
 if (audioMedia) {
 is_paused = true;
 audioMedia.pause();
 }
}

function stopAudio() {
 if (audioMedia) {
 audioMedia.stop();
 audioMedia.release();
 audioMedia = null;
 }
 if (audioTimer) {
 clearInterval(audioTimer);
 audioTimer = null;
 }

 is_paused = false;
 duration = 0;
}

 $("#pauseaudio").live('tap', function() {
pauseAudio();
 });

 $("#stopaudio").live('tap', function() {
stopAudio();
 });

});

We won't go into detail about the audio functions here, as
they are covered in detail in the Playing audio files from the
local filesystem or over HTTP recipe in Chapter 3, Working
with Audio, Images, and Videos.

www.it-ebooks.info

http://www.it-ebooks.info/

User Interface Development with jQuery Mobile

208

8.	 When we run the application on the device and select an episode from the list, the
show detail page will look something like the following screenshot:

9.	 Add a new page into the document and set the id attribute to showDescription.
We'll also set the id attribute of the content div block to descriptioncontent and
include an empty paragraph tag block, into which we'll insert the content dynamically.

10.	 Finally, we'll also include a link button, which will close the dialog window for the user.
<div data-role="page" id="showDescription">

 <div data-role="header">
 <h1>Notes</h1>
 </div>

 <div id="descriptionContent" data-role="content">
 <p></p>
 Close
 </div>

</div>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

209

11.	 Amend the .js file once more and include a new pagebeforeshow event binding to
the showDescription page. This will obtain the showDescription key value from
the localStorage and set it into the empty paragraph tags.

$("#showdescription").bind("pagebeforeshow", function(e) {
var description = localStorage.getItem("showDescription");
$('#descriptionContent p:first').html(description);
});

The result will be as shown in the following screenshot:

How it works...
We were able to add functionality to the home page to set the touch interaction for each list
item. This set the values of the selected individual feed items into the device localStorage,
which allowed us to access them using the localStoragegetItem() method on a new
page, independent from the data feed.

We also altered the link to open the itemDetail page in a dialog window overlay by setting
the data-rel attribute for the link itself.

There's more...
You can find out much more about what the jQuery Mobile framework has to offer and how to
implement the many events, UI elements and much more in jQuery Mobile Web Development
Essentials, written by Raymond Camden and Andy Matthews, published by Packt Publishing.
Available at:

http://www.packtpub.com/jquery-mobile-web-development-
essentials/book

www.it-ebooks.info

http://www.it-ebooks.info/

User Interface Development with jQuery Mobile

210

See also
ff The Caching content using the web storage local storage API recipe in Chapter 2,

File System, Storage, and Local Databases

ff The Playing audio files from the local filesystem or over HTTP recipe in Chapter 3,
Working with Audio, Images, and Videos

Using jQuery Mobile ThemeRoller
The jQuery Mobile framework not only provides with near-native aesthetics and functionality
for page transitions, user interface elements, and page layouts, it also gives us the ability to
customize the visual theme of our application. This is managed by changing the specifying
values for the data-theme attribute on various elements and containers.

The framework itself ships with five themes, or swatches, built-in, alphabetized from A through
to E.

For more information on theming your application, please read the official
jQuery Mobile documentation, available at: http://jquerymobile.
com/demos/1.1.1/docs/api/themes.html.

Although the provided themes work beautifully, and care and consideration have gone into
them by the jQuery Mobile team in regards to readability and accessibility, the themes should
be considered a starting point and not a definitive design for our applications. If you have spent
the time developing a custom-made native application that interacts with your data and brand,
you also want to make sure that visually it stands out from the crowd and doesn't look like an
off-the-shelf theme. Make an impact and make it individual.

How to do it...
In this recipe we will explore the features offered by jQuery Mobile ThemeRoller, an online
application that allows us to generate our own themes or swatches for our mobile application,
using the drag-and-drop interactions.

1.	 Head over to http://jquerymobile.com/themeroller/ to begin the creation
and customization of your swatches:

www.it-ebooks.info

http://jquerymobile.com/themeroller/
http://jquerymobile.com/themeroller/
http://www.it-ebooks.info/

Chapter 7

211

2.	 The homepage will load with a welcome message overlay box, which also reminds
you that you have the ability make 26 swatches in total. This should give you plenty
of scope to unleash your creative side and explore the many color matches and
possibilities. Click on the Get Rolling button to dismiss the message.

3.	 The welcome message recommends that you create a minimum of three swatch
variations for your theme. As such, it has rendered three jQuery Mobile page layouts for
you to get started with. These are fully interactive so that you can see how your theme
looks and feels on a true application layout, as shown in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

User Interface Development with jQuery Mobile

212

4.	 To add more than three swatches to your theme, click on the empty layout holder in
the main preview panel. This will generate the next swatch and generate the name
in the next alphabetical order.

5.	 The left-hand side of the interface is home to the inspector panel. From here you have
control over the global theme settings such as Font Family, icon color, and Corner
Radii. Any changes made to this section will be applied to all of the swatches selected
in the preview section.

6.	 Next to the Global tab, you also have access to change theme settings for each
individual swatch, accessed by the alphabet character assigned to each swatch.
You can also add a new swatch from here, which will automatically be placed into
the preview section, using the + button.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

213

7.	 You can also delete or duplicate a specific swatch from these tabs, using the Delete
or Duplicate links within each swatch tab, as shown in the following screenshot:

8.	 Adding colors to your theme is incredibly easy. Above the main preview content, you
will see a panel containing a number of color blocks and empty squares. To apply a
color to a section of the jQuery Mobile layout, simply drag the selected color block from
the panel and drop it onto the UI element on a swatch you wish to update. The change
will be applied instantly, and the selected color will be placed into the Recent Colors
palette for quick reference should you wish to apply that color elsewhere within the
same swatch.

9.	 You can also adjust the lightness and saturation of each color before applying it to
your theme by adjusting the LIGHTNESS and SATURATION sliders beneath the main
palette display, as shown in the following screenshot:

10.	 If you need some color inspiration or want to see what color schemes other creative
professionals have developed, you can access the Adobe kuler service by clicking on
the Adobe Kuler swatches link, which will display visual representations of the latest
swatches generated through the service. You can also filter for the most popular or
selected random themes, as shown in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

User Interface Development with jQuery Mobile

214

11.	 You can also create your own free account with Adobe kuler to start generating and
sharing your own swatches. To find out more, visit http://kuler.adobe.com/.

12.	 The toolbar at the top of the interface gives you instant access to some useful tasks
and features, including the undo and redo options:

13.	 If you have an existing theme that you would like to amend or revise, you can import
it directly into the interface by using the Import option. This will generate the correct
number of layouts for each swatch in the theme, and apply the styles to each one so
that you have an immediate visual representation of the theme.

14.	 A very useful tool is the Inspector tool. Click on this to turn it on or off. When turned on,
you simply need to hover over a specific part of the layout and click on the selection.
This will open up the specific panel and tab in the Inspector panel on the left-hand side
of the interface. This is great for being able to access the portion of the layout that you
wish to edit instantly.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

215

15.	 Once you are happy with your color choices, you can choose to download your
completed theme. This will package the relevant files in a .zip file in both compressed
and uncompressed formats. Simply import the CSS files into your project location and
include the reference to the stylesheet within the head tag of your document. This is
shown in the following screenshot:

How it works...
Using a simple online interface, we have the ability to create color swatches and themes
that better suit our application's brand while still using the power offered by the jQuery
Mobile framework.

There's more...
A framework is a framework, and offers a standard approach to fulfill common design
and development tasks. Themes generated by the ThemeRoller application (and indeed
the themes that come with the jQuery Mobile framework) still look like every other jQuery
Mobile theme – they do share common interface elements after all.

One thing to remember is that these themes are nothing more than CSS, and as such you
can create truly custom-made layouts and designs with the right amount of skill, time, and
patience. Your mobile application need not look like a clone of every other application on
the market place using the same framework, while still retaining the common user interface
elements that help define it as a mobile application.

www.it-ebooks.info

http://www.it-ebooks.info/

User Interface Development with jQuery Mobile

216

For inspiration on what you can achieve with some CSS, have a look at the JQM Gallery site,
which showcases some wonderful designs created using the jQuery Mobile framework. This
is available at http://www.jqmgallery.com/.

www.it-ebooks.info

http://www.it-ebooks.info/

8
Extending PhoneGap

with Plugins
In this chapter, we will cover:

ff Extending your Cordova Android application with a native plugin

ff Extending your Cordova iOS application with a native plugin

ff The plugin repository

Introduction
Along with providing developers with an incredibly easy yet powerful way to build native mobile
applications using HTML, CSS, and JavaScript, the PhoneGap framework also gives us the ability
to further extend the functionality available by creating native plugins that can interact in a more
detailed manner with device features and functions that are not already exposed through the
PhoneGap API.

By creating native plugins, we can enhance the already vast list of methods available through
the API or build totally unique features, all of which will be made available to call and process
responses from JavaScript methods.

For some, the thought of writing code that is native to the device platform, you wish to enhance,
may be a little daunting. If you haven't had any prior exposure or experience in these languages
they may be perceived as some form of unwelcome paradigm shift.

Luckily, the PhoneGap API simplifies this process as much as possible and essentially
breaks it down into two core related parts: some JavaScript code to use within your HTML
applications, and a corresponding native class to perform actions and processes in the native
code. You will also have to edit and amend some XML to inform Cordova of your plugin and
to grant permissions for its use, which is also incredibly simple. PhoneGap will manage the
communication between the two parts for you, so all you have to worry about is building your
awesome applications.

www.it-ebooks.info

http://www.it-ebooks.info/

Extending PhoneGap with Plugins

218

Extending your Cordova application with a
native plugin

Android devices have proven to be developer-friendly in so far as they easily allow us to test
and deploy unsigned applications throughout the development process.

Let's see how we can extend the PhoneGap API features for our Android applications.

Getting ready
Before you can create your native Android plugins, you must have a working Android
development environment on your local machine.

For details on how to set this up, read the recipe Using Eclipse to develop Android Cordova
applications in Chapter 9, Development Tools and Testing.

How to do it...
In this recipe we will create a native Android plugin for our Cordova application, using Eclipse
as our development environment.

1.	 The new Cordova project created in Eclipse can be named MyPlugin.

2.	 Create the initial HTML layout in index.html, including a reference in the head tag
of the document to the Cordova JavaScript file.

3.	 Below this, add a new script tag block, inside of which place the deviceready
event listener to handle the initialization of our Cordova code. The code to be added
is given as follows:

<!DOCTYPE HTML>
<html>
 <head>
 <meta name="viewport"
 content="width=320; user-scalable=no" />
 <meta http-equiv="Content-type"
 content="text/html; charset=utf-8">
 <title>My Plugin Application</title>
 <script type="text/javascript"
 src="cordova-2.0.0.js"></script>
 <script type="text/javascript"

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

219

 var onDeviceReady = function() {
 document.getElementById("devready").innerHTML
 = "Device ready.";
 };
 function init() {
 document.addEventListener("deviceready",
 onDeviceReady, true);
 }
</script>

</head>
<body onload="init();">
 <h2>My Plugin App</h2>

 <p>Native Android Plugins.</p>
 <p>
 Device not ready.
 </p>

</body>
</html>

4.	 Create a new JavaScript file in the assets/www directory called MyPlugin.js and
place the following code at the top of the new file:

varMyPlugin = function(){};

MyPlugin.prototype.greeting = function(
message, successCallback, errorCallback){
 cordova.exec(
 successCallback,
 errorCallback,
 'MyPlugin',
 'greeting',
 [message]
);
};

5.	 Firstly, we define the class name for our JavaScript plugin, and then create the first
method we will invoke called greeting.

www.it-ebooks.info

http://www.it-ebooks.info/

Extending PhoneGap with Plugins

220

6.	 Add the following code to the bottom of the file to load the MyPlugin class into the
window.plugins object:

if(!window.plugins) {
 window.plugins = {};
}
if (!window.plugins.MyPlugin) {
 window.plugins.MyPlugin = newMyPlugin();
}

7.	 Create a new Java class file in your project by accessing File|New|Class from the
main Eclipse menu. You can also access the wizard by selecting File|New|Other
from the main menu and finding the Java class option in the list, as shown in the
following screenshot:

8.	 The New Java Class wizard will open to help you complete this task. Provide the
reverse domain format package name, and set the class name to MyPlugin. As we
want to hook into the Cordova framework, we will also make sure it extends the org.
apache.cordova.api.Plugin class, which is part of the Cordova core API.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

221

All custom Cordova Android plugins must extend the org.
apache.cordova.api.Plugin class as this encapsulates
all of the logic required to communicate between the native
plugin and the JavaScript implementation, using the Cordova
API as the bridge.

9.	 Click on the Finish button to complete the wizard. The new Java class file will now
be open in your Eclipse editor window. Let's rename the parameters included in
the execute method to make them easier to work with and read. Rename arg0
to action, arg1 to data, and arg2 to callbackId.

10.	 We'll also remove the automatically generated return statement and add in
a default PluginResult status response and result value, as shown in the
following code snippet:

public PluginResult execute(
String action,
JSONArray data,
String callbackId

www.it-ebooks.info

http://www.it-ebooks.info/

Extending PhoneGap with Plugins

222

) {
PluginResult.Status status = PluginResult.Status.OK;
String result = "";

}

11.	 Let's now add the native code for our plugin. Add the following code within the
execute method after the result variable definition. We'll begin by wrapping
our code in a try/catch block to trap and handle any errors.

12.	 We'll qualify the action value sent through to the plugin to ensure we have a valid
method to run. In this case, we'll check to make sure that it matches greeting. We'll
also assign the first item from the data JSON array to our result variable, which
we'll return to the JavaScript implementation of the plugin as a PluginResult, also
sending through the status value we defined earlier.

13.	 If we receive empty data, we'll respond with another PluginResult object, setting
the status to PluginResult.Status.ERROR.

14.	 Finally, if the action sent through does not match any value we have explicitly
defined, we will respond with an INVALID_ACTION status:

try {
 if ("greeting".equals(action)) {

 result = data.getString(0);

 if (result != null && result.length() > 0) {
 PluginResult pluginResult =
 new PluginResult(status, result);
 return pluginResult;
 } else {
 return new PluginResult(PluginResult.Status.ERROR);
 }

 } else {

 status = PluginResult.Status.INVALID_ACTION;

 }

 return new PluginResult(status, result);

 } catch (JSONException e) {

 return new
 PluginResult(PluginResult.Status.JSON_EXCEPTION);

}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

223

15.	 Add a new import at the beginning of the class file to make sure we have included the
JSONException type, which we use in the final catch response.

package com.coldfumonkeh;

import org.apache.cordova.api.Plugin;
import org.apache.cordova.api.PluginResult;
import org.json.JSONArray;
import org.json.JSONException;

public class MyPlugin extends Plugin {

16.	 Save the file and open up index.html once more. Add a reference to the
MyPlugin.js file in the head tag of the document, below the Cordova JavaScript
reference, as follows:

<script type="text/javascript"
src="cordova-2.0.0.js"></script>

<script type="text/javascript"
src="MyPlugin.js"></script>

17.	 Let's now amend the onDeviceReady function to include the request to our
plugin method. Here we will call the plugin from the window.plugin object
and execute the greeting method, passing in the message to display and the
successCallback function.

var onDeviceReady = function() {

document.getElementById("devready").innerHTML
 = "OnDeviceReady fired.";

window.plugins.MyPlugin.greeting(
 "My First Plugin",
 function(echoValue) {
 alert(echoValue);
 }
);

};

18.	 Before we can run the application, we need to add a mapping to our plugin within
the Cordova config.xml file. Right-click on the file and select Open With|Text
Editor. Locate the plugins section and add a reference to our plugin within the
following node:

<plugin name="MyPlugin" value="com.coldfumonkeh.MyPlugin"/>

www.it-ebooks.info

http://www.it-ebooks.info/

Extending PhoneGap with Plugins

224

This is shown in the following screenshot:

19.	 Let's test our application and make sure we get a response from the plugin.
Right-click on the main project folder and select Run As|Android Application
from the context menu to launch the application on the emulator. This is shown
in the following screenshot:

20.	 After the application has launched on the virtual device, it should look something
like the following screenshot, and you'll see the message displayed using an
alert notification:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

225

How it works...
We created a JavaScript file to hold our client-side method calls and to handle success or
error callbacks. We then created the native portion of the plugin, which extended the org.
apache.cordova.api.Plugin class, thereby providing us with access and the ability
to communicate between the JavaScript and native code.

Our JavaScript code called the cordova.exec method to invoke methods within our
custom class:

cordova.exec(
 successCallback,
 errorCallback,
 'MyPlugin',
 'greeting',
 [message]
);

The exec() method accepts the following parameters:

ff success: The success callback function, which will run following a successful
response from the plugin.

ff error: The error callback function, which will run following an unsuccessful
operation and response from the plugin.

ff service: This is mapped to the name of the native plugin class.

ff action: The name of the action within the custom class to call and invoke.

ff arguments: This is an optional parameter that allows you to send through data in an
array, which can then be processed and used by the custom class.

The cordova.exec JavaScript method then invokes the execute function on the
corresponding native plugin class.

www.it-ebooks.info

http://www.it-ebooks.info/

Extending PhoneGap with Plugins

226

Within our native class, we first checked that the action being sent through matched the
predefined value. We then checked to make sure that we had sent through a valid message
value in the data JSON array, and that it wasn't a null or a zero-length string.

We defined the PluginResult object and set the response status according to the success
or failure of our data validation checks.

Android WebView renders HTML content in Cordova applications, and uses the WebView API
to allow communication between the native and JavaScript class definitions.

You can find out more about the WebView API on the Android Developer
documentation pages, available at: http://developer.android.
com/reference/android/webkit/WebView.html.

Following the communication from the native class, our JavaScript method was then able
to process the response with either the success or error callback functions, depending on
the status.

For more information on developing native Android Cordova plugins, check
out the official documentation, available at: http://docs.phonegap.
com/en/2.0.0/guide_plugin-development_android_index.
md.html#Developing%20a%20Plugin%20on%20Android.

Extending your Cordova iOS application with
a native plugin

If you are building mobile applications for the iOS platform, you can add extra functionality
to your project with the help of custom native plugins and with the help of some Objective-C
code and the Cordova framework.

How to do it...
In this recipe we will create a native iOS plugin for our Cordova application, using Xcode as
our development environment.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

227

1.	 Create a new Cordova project using the command line tools available with version
2.0.0. We explore the command line features available in more detail in the Use
the command line to create a new iOS Cordova application recipe in Chapter 9,
Development Tools and Testing. In this command we are creating a new project
called MyPlugin within a Development_Tools directory on my machine:

phonegap-2.0.0/lib/ios/bin/create ~/Development_Tools/
myPlugin_ios com.coldfumonkeh.myplugin MyPlugin

2.	 Open the project in Xcode by clicking File| Open in the main menu and selecting the
MyPlugin.xcodeproj file.

3.	 Select File| New File from the main menu and select the option to create an empty
file, as shown in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Extending PhoneGap with Plugins

228

4.	 Call the file MyPlugin.js and save it in the www/js directory within the current
project, as shown in the following screenshot:

5.	 Place the following code at the top of the new JavaScript file:
varMyPlugin = function(){};

MyPlugin.prototype.greeting = function(
message, successCallback, errorCallback){
 cordova.exec(
 successCallback,
 errorCallback,
 'MyPlugin',
 'greeting',
 [message]
);
};

6.	 Here, we define the class name for our JavaScript plugin, and then create the first
method we will invoke called greeting. It's worth noting that the previous JavaScript
code is identical to that used in the earlier recipe to create a custom plugin for an
Android application.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

229

7.	 Add the following code to the bottom of the file to load the MyPlugin class
into the window.plugins object:

if(!window.plugins) {
 window.plugins = {};
}
if (!window.plugins.MyPlugin) {
 window.plugins.MyPlugin = newMyPlugin();
}

8.	 Right-click on the Plugins directory in the left-hand side Xcode panel and
select New File from the context menu. Select Cocoa Touch|Objective-C
class from the file template selection and click on Next to proceed. This is
shown in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Extending PhoneGap with Plugins

230

9.	 Enter MyPlugin as the class name, and set the subclass value to CDVPlugin, as
shown in the following screenshot:

All custom Cordova iOS plugins must extend the CDVPlugin
class, as this encapsulates all of the logic required to handle
communication between the native code and the JavaScript
implementation, using the PhoneGap API as the bridge.

10.	 Save the files within the Plugins directory and click on Create to complete this step.
The following screenshot illustrates the same:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

231

11.	 Open MyPlugin.h into the main editor window and replace the default content
with the following code. Here we define the greeting method that consists of two
parameters. The first is an NSMutableArray of arguments that will be passed
from the JavaScript implementation. The second is an NSMutableDictionary
class to allow us to map key and value pairs that we may send through.

#import <Cordova/CDV.h>

@interface MyPlugin : CDVPlugin

 (void) greeting:(NSMutableArray*)arguments
withDict:(NSMutableDictionary*)options;

@end

12.	 Open MyPlugin.m and replace the default content with the following code, in which
we define the greeting() method and import the relevant header files.

#import "MyPlugin.h"
#import <Cordova/CDVPluginResult.h>

@implementation MyPlugin

- (void) greeting:(NSMutableArray*)arguments
withDict:(NSMutableDictionary*)options
{

}

@end

13.	 Place the following code within the greeting()function definition. We are setting
the callbackId variable, using the first item in the argument array. We'll also set
default values for our pluginResult and javascript variables, as shown in the
following code snippet:

NSString* callbackId = [arguments objectAtIndex:0];

CDVPluginResult* pluginResult = nil;
NSString* javaScript = nil;

14.	 We want to obtain the string variable, that we are sending through, from the JavaScript
call, which we can retrieve from the arguments array, referencing it as the second
index item in the collection.

www.it-ebooks.info

http://www.it-ebooks.info/

Extending PhoneGap with Plugins

232

15.	 We'll then check the validity of the result value to make sure that we have not sent
through a nil or zero-length string. If our check passes, we'll return a pluginResult
object with the status set to OK, and return the result string back to our JavaScript
success callback function. If the string is not valid, we will return a pluginResult
object with an ERROR status.

16.	 We'll also wrap the entire logic within a try/catch block to handle any errors that
we may encounter. If this happens, we will return a pluginResult object, setting
the status to JSON_EXCEPTION and an error message.

17.	 Finally, we write the JavaScript back to the application WebView, which will process
the response using either success or error callback function we define, based upon
the status.
@try {

 NSString* result = [arguments objectAtIndex:1];

 if (result != nil && [result length] > 0) {

 pluginResult = [CDVPluginResultresultWithStatus:CDVCommand
 Status_OK messageAsString:result];

 javaScript = [pluginResult toSuccessCallbackString:
callback	 Id];

 } else {

 pluginResult = [CDVPluginResult resultWithStatus:CDVCommand
 Status_ERROR];

 javaScript = [pluginResult toErrorCallbackString:callbackId];

 }

} @catch (NSException* exception) {

 pluginResult = [CDVPluginResult resultWithStatus:CDVCommandStat
 us_JSON_EXCEPTION messageAsString:[exception reason]];

 javaScript = [pluginResult toErrorCallbackString:callbackId];

}

[self writeJavascript:javaScript];

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

233

18.	 Open index.html in Xcode and add the following reference to the plugin JavaScript
file below the index.js script reference:

<script type="text/javascript"
src="cordova-2.0.0.js"></script>
<script type="text/javascript" src="js/index.js"></script>

<script type="text/javascript"
src="js/MyPlugin.js"></script>

<script type="text/javascript">
app.initialize();
</script>

19.	 Let's add the call to our plugin's JavaScript method. Open index.js, which
initializes the deviceready event listener. Amend the deviceready function
to include a request to our greeting method. We'll send through a message to
return, and specify the success callback function, which will display the returned
value in an alert notification window.

deviceready: function() {

 // note that this is an event handler so the scope is that
 of the event
 // so we need to call app.report(), and not this.report()

 app.report('deviceready');

window.plugins.MyPlugin.greeting(
 "My First iOS Cordova Plugin",
 function(echoValue) {
 alert(echoValue);
 }
);

}

www.it-ebooks.info

http://www.it-ebooks.info/

Extending PhoneGap with Plugins

234

20.	 Finally, we need to map a reference to the plugin so that Cordova can identify our
custom plugin. Expand the Resources folder in the left-hand side project navigator
panel in Xcode and right-click on Cordova.plist. Select Open As|Source Code to
open the file in the main editor window, shown in the following screenshot:

21.	 Locate the Plugins section, and add a map to your custom plugin. Set both the
key and string node values to MyPlugin and save the file.

<key>Plugins</key>
 <dict>
 <key>MyPlugin</key>
 <string>MyPlugin</string>
 <key>Device</key>
 <string>CDVDevice</string>
 <key>Logger</key>
 <string>CDVLogger</string>

22.	 Click on the Run button in the top-left section of the Xcode window to build and
launch the application on the device simulator. You should see something similar
to following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

235

How it works...
We created a JavaScript file to hold our client-side method calls and to handle success or
error callbacks. We then created the native portion of the plugin, which implemented the
CDVPlugin subclass, thereby providing us with access and the ability to communicate
between the JavaScript and native code.

Our JavaScript code called the cordova.exec method to invoke methods within our
custom class:

cordova.exec(
 successCallback,
 errorCallback,
 'MyPlugin',
 'greeting',
 [message]
);

The exec() method accepts the following parameters:

ff success: The success callback function, which will run following a successful
response from the plugin.

ff error: The error callback function, which will run following an unsuccessful
operation and response from the plugin.

ff service: This is mapped to the name of the native plugin class.

ff action: The action/method name within the custom class to call and invoke.

ff arguments: This is an optional parameter that allows you to send through data in an
array, which can then be processed and used by the custom class.

Within our native class, we processed the request to ensure we had sent through a value in
the arguments parameter, and handled the response accordingly using the pluginResult
object and setting the status.

Finally, we communicated the response back to the JavaScript implementation using the
writeJavascript function. Our JavaScript method was then able to process the response
with either the success or error callback functions, depending on the status.

For more information on developing native iOS Cordova plugins, check
out the official documentation available at: http://docs.phonegap.
com/en/2.0.0/guide_plugin-development_ios_index.
md.html#Developing%20a%20Plugin%20on%20iOS.

www.it-ebooks.info

http://www.it-ebooks.info/

Extending PhoneGap with Plugins

236

The plugin repository
Building native custom plugins involves writing a little native code that relates to your chosen
device's platform and operating system.

How to do it...
In this recipe we will have a brief look at the PhoneGap plugin repository.

1.	 Visit https://github.com/phonegap/phonegap-plugins in your browser,
as shown in the following screenshot:

2.	 Each plugin has been separated into platform-specific categories. Have a look
through the repository structure and the different platform categories to see what
native custom plugins are available to use for each platform.

3.	 Browse through some source code to see how other developers have built their plugins.

4.	 Download individual plugins or clone the entire repository onto your local
development machine.

5.	 Get inspired!

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

237

How it works...
This recipe is really a testament to the passion of the Cordova/PhoneGap development
community. All of the plugins available in the repository are open source and available
for you to learn from, download, and implement into your own projects to enhance your
applications and add some amazing features.

The essential element to take away from this recipe is that the possibilities for creating
plugins are almost endless with regards to what you can achieve and what features you
can access as an extension of the PhoneGap API.

And of course the most important point here is to have fun building your Cordova applications!

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

9
Development Tools

and Testing
In this chapter, we will cover:

ff Downloading Cordova

ff Using the command line to create a new iOS Cordova application

ff Using Xcode templates for iOS to develop Cordova applications

ff Using Eclipse to develop Android Cordova applications

ff Controlling your Android Virtual Device

ff Using Adobe Dreamweaver to develop Cordova applications

ff Using the PhoneGap Build service

Introduction
To successfully create your Cordova applications, it is really important to set up the correct
development environment; one that suits the requirements of your application, your personal
development style, the tools and features that you may need to use, and one that is compatible
with your local development machine's operating system.

In this chapter, we will investigate some of the options available to set up your local
environment with development tools to assist you and help you to make development
of your mobile applications even easier.

www.it-ebooks.info

http://www.it-ebooks.info/

Development Tools and Testing

240

Downloading Cordova
Before we develop any Cordova applications, we first need to download a copy of the framework.

How to do it...
In this recipe we will download the Cordova framework to make sure we have the framework
available to start local development:

1.	 First, head over to http://phonegap.com/download, which contains the latest
release of the project as well as archived versions going back to version 1.2.0:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

241

2.	 Download the latest version of the Cordova framework, currently 2.0.0. It's always
best to use the latest stable version wherever possible. We'll also download version
1.9.0, which we'll use for the recipe, Using Xcode templates for iOS to develop
Cordova applications, in this chapter.

3.	 The download will be in the .zip format. Extract the files to a preferred location on
your local machine. Feel free to rename the folders to help you to easily identify which
versions of the framework you have:

How it works...
We visited the official PhoneGap site to download the framework.

That's it! With the framework downloaded, let's start setting up our development environment.

www.it-ebooks.info

http://www.it-ebooks.info/

Development Tools and Testing

242

Using the command line to create a new iOS
Cordova project

A streamlined workflow is something that can benefit us all greatly by speeding up our processes
and reducing the amount of manual work needed to complete a task.

How to do it...
In this recipe we will explore the command line tools available in Cordova 2.0.0 to create and
run iOS applications from the Terminal application:

1.	 Navigate to the directory where you extracted the downloaded Cordova 2.0.0
framework files, and browse to the libs/ios/ folder. Double-click on the
Cordova-2.0.0.dmg package installer:

2.	 The installer will launch the installation wizard. Follow the short steps to install
Cordova for iOS:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

243

3.	 Once the installation process has completed, you now need to copy the bin directory
to a location on your hard drive. This directory can be copied from the .dmg archive
window, or from the downloaded directory.

4.	 Open a new Terminal application window. You can either type the path to the bin
directory yourself, or you can drag the directory into the Terminal window to have
the path populated for you.

5.	 With the path defined, we can now use the command line to create our new
application. This is easily achieved using the create command:
$./create ~/Development_Tools/ios_commandline_app com.
coldfumonkeh.commandme CommandMe

www.it-ebooks.info

http://www.it-ebooks.info/

Development Tools and Testing

244

6.	 Once the command has been run, browse to the location of the project as specified
in the previous step. Inside the directory you will now find that the Xcode project has
been generated for you, as well as the www directory containing the sample index.
html file and assets:

7.	 Open your Xcode application and select either the Open Other… button from the
welcome screen, or File | Open from the menu and browse to the freshly-created
project directory. Select the .xcodeproj file associated with the project and confirm
to open the entire project into Xcode:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

245

The generated project also includes a sub-project which links in
CordovaLib. This means that you have access to the Cordova
source code directly within your current project, which can be
very useful for debugging.

www.it-ebooks.info

http://www.it-ebooks.info/

Development Tools and Testing

246

8.	 If we choose to run the imported project via Xcode onto a simulated device, the output
would look something like the following screenshot:

How it works...
The command line tools available in Cordova 2.0.0 greatly simplify the tasks involved in creating
a project. With a simple command, we can generate a complete project, complete with the www
directory linked at a project level, and ready to open up in Xcode to continue our development.

The create command accepts the following three parameters:

ff The path to your iOS project

ff The name of the package

ff The project name

There's more...
The use of the command line is incredibly powerful and can allow developers to automate the
creation of a project by running a very simple script. However, that's not the only tool available
to use through the command line.

As a result of generating the project through the command line, Cordova 2.0.0 also creates
another directory within the specified location, called cordova. This file contains some scripts
that can simplify your workflow.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

247

Running the application on the iOS Simulator
We can run the emulate script from the command line via the Terminal application to launch
our application onto a simulated device.

For the emulation to successfully work on OS X, you will need to install a command-line utility
tool called ios-sim, an open source project that launches the built application on the iOS
Simulator. You can download ios-sim from the GitHub repository https://github.com/
phonegap/ios-sim.

The readme file in the repository has short, detailed instructions explaining how to install
ios-sim onto your machine.

Once installed, simply run the emulate script to load the application onto the iOS simulator.
To do so, simply type in the path to the cordova directory within your project folder and run
the emulate script:

$ cordova/emulate

When you run this command for the first time, the script will ascertain whether or not you
currently have a successfully built version of the application. If not, it will ask you whether
or not you would like the build process to happen.

Debugging your application
We can run the application on the simulator and gather debugging information in the
Terminal window thanks to the debug script:

$ cordova/debug

This script will build your application and deploy it to the iOS Simulator, where the
Terminal window will remain open to capture and display any console information
as you test the application.

Using Xcode templates for iOS to develop
Cordova applications

If you want to develop Cordova applications for the iOS platform, you have the option to set
up your Xcode application to include PhoneGap templates. These offer quick, easy access to
settings including the icons and package name, as well as device rotation options. It will even
generate a sample application to help get you started.

The Xcode templates are not available in Cordova-2.0.0, so we'll use the previous version,
1.9.0 for this recipe.

www.it-ebooks.info

http://www.it-ebooks.info/

Development Tools and Testing

248

How to do it...
To begin with, let's install the latest PhoneGap template for Xcode and iOS development:

1.	 Navigate to the directory where you extracted the PhoneGap files, and browse to the
libs/ios/ folder. Double-click on the Cordova-1.9.0.dmg package installer:

2.	 The installer will launch the installation wizard. Follow the short steps to install
PhoneGap for iOS:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

249

3.	 Once the installation process has completed, you will have a PhoneGap
project template available to use in Xcode, which really helps to streamline
your application development.

4.	 Let's now create a new project in Xcode. Click on Create a new Xcode project from
the startup screen, or under the File | New | New Project menu item.

5.	 Select Cordova-based application from the available project templates, available under
iOS | Application and click on Next to proceed, as shown in the following screenshot:

6.	 You will then be asked to enter in a name for the project and the Company Identifier.
Make the name a unique descriptive of the application. The company identifier will
create a unique Bundle Identifier.

The generated Bundle Identifier should match the App ID
value that you create for a unique application within the
Apple Provisioning Portal.

www.it-ebooks.info

http://www.it-ebooks.info/

Development Tools and Testing

250

7.	 Uncheck the Use Automatic Reference Counting option and click on Next to proceed:

8.	 Select a directory on your filesystem into which the PhoneGap project will live.
You also have the option for Xcode to create a Git source control repository for
the project on your behalf. Click on Create to complete the project wizard:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

251

Having reached this step, the new project has been created using the PhoneGap
template and should now be visible in Xcode. However, the project does not yet
contain the www folder that will hold our JavaScript, CSS, and HTML files. This can be
automatically generated for you, by Xcode, the first time you attempt to run the project.

9.	 Click on the Run button situated at the top left of Xcode to build and run the
application. Alternatively, you can select Product | Run from the main menu or use
the keyboard shortcut combination of command + R.

10.	 At this point, you may receive an error in Xcode that reads as follows:
_NSURLIsExcludedFromBackupKey, referenced from: -[CDVFile
setMetadata:withDict:] in Cordova.

11.	 This is a missing reference in Cordova 1.9.0, and is an easy issue to resolve. To
remove this error, open up the AppDelegate.m file in the project and add the
following highlighted code:
@implementation AppDelegate

@synthesize window, viewController;

NSString * const NSURLIsExcludedFromBackupKey
=@"NSURLIsExcludedFromBackupKey";

- (id) init
{
 /** If you need to do any extra app-specific initialization,
you can do it here
 * -jm
 **/
 NSHTTPCookieStorage *cookieStorage = [NSHTTPCookieStorage
sharedHTTPCookieStorage];
 [cookieStorage setCookieAcceptPolicy:NSHTTPCookieAcceptPolicy
Always];

 [CDVURLProtocol registerURLProtocol];

 return [super init];
}

12.	 Save the file and run the project build again.

www.it-ebooks.info

http://www.it-ebooks.info/

Development Tools and Testing

252

13.	 You will receive an error message stating ERROR: Start Page at 'www/index.html' was
not found. This is expected, and has actually helped us out. The project has created the
required index.html and the www directory for using a default template. We now just
need to include the directory into the project.

14.	 Highlight the root of the project and right-click to access the context menu
(or Ctrl + click) and select Add Files To "__your project name__":

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

253

15.	 A dialog window will open. Expand the project directory to find the generated www
folder. Select this folder directly as we only want to import that. Select Create folder
references for any added folders and click on Add to continue:

www.it-ebooks.info

http://www.it-ebooks.info/

Development Tools and Testing

254

16.	 You can now see the referenced www directory in the project navigation window on the
left-hand side in Xcode, as shown in the following screenshot:

17.	 Select Run to launch the application once more, which should now load the
application using the default index.html file generated by Cordova in the
iOS Simulator:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

255

If you can see the previous output running in the simulator, you have successfully created your
first Cordova application in Xcode for iOS platforms using the templates!

How it works...
Running the Cordova-1.9.0 installation will add the template files to your Xcode project library
and enhance the development application for PhoneGap applications.

There's more…
If you haven't seen or worked with Xcode before, it could be a little off-putting as there is a lot
going on in the workspace. We'll have a brief introduction to the layout of the development
environment and what tools we have at our disposal for Cordova application development.

www.it-ebooks.info

http://www.it-ebooks.info/

Development Tools and Testing

256

Interface layout
The left-hand side of the window displays the project file navigation. From here you can easily
access and view the files within your project. A single click on a file will open it up in the center
of the Xcode window, whereas if you double-click on the file, it will open the file in a new window:

The center of the Xcode window shows the main content area, where any active files will be
displayed for editing. By default it will display the project summary screen. This allows you to
quickly and easily update various options for your application including the identifier, build
and version numbers, and supported devices. You can choose if the application should
support only iPad or iPhone devices, or if you want it to work on both.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

257

You can also quickly set the preferences for application icons, splash screens, and supported
device orientation.

Schemes and target devices
The top of the Xcode application window contains a Run button, next to which is a Scheme
menu. This menu allows you to change the target device or simulator on which to run the
application. The Scheme menu is shown in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Development Tools and Testing

258

You can also edit the scheme to set specific options and arguments for the build process,
including location simulation – perfect for developing geolocation applications:

Using Eclipse to develop Android Cordova
applications

The Eclipse IDE (that is, Integrated Development Environment) is highly extensible with
a wide range of plugins available (many of them free) to help you create a development
environment that suits your workflow and project needs.

Getting ready
Before we can start building our Android applications, we need to download the Eclipse IDE
and ensure that we have a few required plugins installed:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

259

ff Download Eclipse IDE: Head over to http://www.eclipse.org/downloads/
and download a copy of Eclipse Classic. The latest version at time of writing is 4.2.
The minimum version you can use is Eclipse 3.4. The Eclipse downloads are as
shown in the following screenshot:

ff Download the Android SDK: To successfully develop, debug, and test Android
applications you will need to download and install a copy of the Android SDK to your
local development machine.

�� The SDK itself is not a complete development environment. It merely
provides you with the core SDK tools, but we will use these to obtain
the rest of the SDK packages to set up our development environment.

www.it-ebooks.info

http://www.it-ebooks.info/

Development Tools and Testing

260

�� Head over to http://developer.android.com/sdk/index.html
and click on the download option to begin the process, as shown in the
following screenshot:

�� The SDK will download as a .zip archive file. Extract this to the desired
location on your local machine. The folder name will typically be android-sdk-
<platform_version>, for example, android-sdk-mac_x86. You may want to
rename it to android-sdk for simplicity sake, but this is not a requirement.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

261

�� The contents of the extracted archive will look something like the
following screenshot:

ff Install Eclipse plugin: For Android mobile application development, and PhoneGap
Android development, we can use the Eclipse Android Development Tools (ADT) plugin,
which provides you with integrated tools to help you easily build an Android application
project and much more.

�� Open up the Eclipse IDE and select Help | Install New Software… from the
main menu, as shown in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Development Tools and Testing

262

�� Click on the Add button at the top-right corner to open up the install
wizard window.

�� Type ADT Plugin as the name for the new repository, and add the
following URL for the plugin location: https://dl-ssl.google.com/
android/eclipse/.

�� Click on OK to add the repository to the available software sites.

�� With the ADT Plugin selected in the Work with: drop-down list, select
the Developer Tools checkbox and click on Next to proceed. You will be
presented with a small list of tools available to download. Click on Next
once more to continue.

�� Accept the license agreements that accompany the tools to be downloaded.
If you're feeling adventurous you may wish to read them first. Click on Finish
to begin the installation procedure.

�� When the installation has finished, restart Eclipse to complete the process.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

263

For more detailed instructions on installing the ADT Eclipse
plugin, check out the official documentation available at:
http://developer.android.com/sdk/installing/
installing-adt.html.

�� Having restarted Eclipse, select the Preferences menu and select the Android
option. Use the Browse button to set the location of the Android SDK files
downloaded earlier:

�� Apply any changes made to the preferences to complete this step.

www.it-ebooks.info

http://www.it-ebooks.info/

Development Tools and Testing

264

How to do it...
We will install a new Eclipse plugin from AppLaud to help simplify the creation of Android
Cordova projects:

1.	 Select Help | Install New Software… from the main menu in Eclipse and add
a new plugin repository. Set the name to AppLaud Plugin and the location
to: http://svn.codespot.com/a/eclipselabs.org/mobile-web-
development-with-phonegap/tags/r1.2/download.

2.	 Click on OK to add the repository to the available software sites, as shown in the
following screenshot:

3.	 Select the entire MDS AppLaud library and click on Next to proceed:

4.	 Agree to the plugin license and click on Finish to begin the installation. You will need
to restart Eclipse to complete the procedure.

www.it-ebooks.info

http://svn.codespot.com/a/eclipselabs.org/mobile-web-development-with-phonegap/tags/r1.2/download
http://svn.codespot.com/a/eclipselabs.org/mobile-web-development-with-phonegap/tags/r1.2/download
http://www.it-ebooks.info/

Chapter 9

265

5.	 Once Eclipse has restarted, select File | New Project | Project from the main menu,
and select PhoneGap for Android Project. You can also find this option within the
Phonegap Wizards folder:

6.	 The project creation wizard will open a new window, and provide you with a series
of options to make project creation easier. You can choose to use a version of the
Cordova framework included within the plugin, which currently includes 1.4.1, 1.5.0,
1.6.0, and 1.9.0 respectively.

www.it-ebooks.info

http://www.it-ebooks.info/

Development Tools and Testing

266

7.	 Let's use the latest version of the framework. Select the Enter path to installed
PhoneGap option, and browse to the location of your local copy of Cordova 2.0.0:

8.	 The AppLaud plugin also gives you the option to include a UI framework in the
new project. Currently, the options are jQuery Mobile or Sencha Touch. Select
the checkbox to Include jQuery Mobile libraries in project and accept the default
values to use the built-in version of the library, as shown in the following screenshot:

9.	 You have a few options to choose any predefined contents for your application,
provided by the plugin, or to include code from a particular directory of your
choosing. In this example, let's select the PhoneGap API Example option:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

267

10.	 Click on Next to proceed. Enter a name for your project and select the desired project
location, or accept the default location provided by Eclipse:

11.	 Choose an SDK build target and click on Next to proceed.

12.	 Enter a unique reverse-domain package name for your application and choose
the minimum SDK version. Click on Finish to complete the project wizard:

www.it-ebooks.info

http://www.it-ebooks.info/

Development Tools and Testing

268

13.	 The new PhoneGap project will now be created and available in Eclipse. The project
structure will include all required files, the Cordova library, and any framework files
if selected – in this case, jQuery Mobile:

At this point, you may see an error in the Problems view in Eclipse, or you may
experience this issue when attempting to run your application:

"No resource identifier found for attribute 'xlargeScreens' in package 'android'"

14.	 To resolve this issue, open up the AndroidManifest.xml file in Eclipse.
Right-click on the file and choose Open With | Text Editor from the context
menu. Find the supports-screens node at approximately line number
nine, and remove the line that relates to the xlargeScreens, highlighted
as follows:
<supports-screens
 android:largeScreens="true"

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

269

 android:normalScreens="true"
 android:smallScreens="true"
 android:xlargeScreens="true"
 android:resizeable="true"
 android:anyDensity="true"
 />

15.	 Right-click on the main project folder in the left-hand side window and select Run As
| Android Application from the context menu to launch the application on a device:

16.	 When you run the application on a device, the output should look something like the
following screenshot:

17.	 Selecting an item from the menu within the application will take you to a page that
demonstrates the specific Cordova API features.

www.it-ebooks.info

http://www.it-ebooks.info/

Development Tools and Testing

270

How it works...
Installing the AppLaud plugin into Eclipse enhances the code editor and adds extra functionality
into your development environment.

The plugin provides a number of options that can help you generate projects that may or may
not contain framework libraries, and can generate application code to help you or leave you to
create your own code from the very beginning.

You can find out more about the AppLaud plugin from
the official documentation available at: http://www.
mobiledevelopersolutions.com/.

There's more...
The official Cordova documentation contains a section dedicated to getting started with the
library. This includes a step-by-step guide to setting up your first Android application using
the Eclipse IDE.

The AppLaud plugin handled many of the steps covered in the Cordova documentation
automatically for you, but if you do not want to use a plugin or you'd be interested in reading
an alternative method of setting up your Eclipse environment, check out the Getting Started
with Android documentation using the link http://docs.phonegap.com/en/2.0.0/
guide_getting-started_android_index.md.html#Getting%20Started%20
with%20Android.

Controlling your Android Virtual Device
Depending on the functionality included in your Cordova application, if you are testing on an
Android Virtual Device, you may wish to make sure that your application successfully picks
up changes to the network or the battery level of the device, for example.

How to do it...
In this recipe, we will access the Android Virtual Device using the command line to manipulate
and change the settings to allow us to test effectively:

1.	 With your application running on an Android Virtual Device, look at the top title bar of
the emulator to see what port it is running on, in this case, it is port 5554, as shown
in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

271

2.	 Open up your command line tool, or the Terminal if you are working on an OS X
machine, and use the telnet command to connect to the localhost running on
that port number:
telnet localhost 5554

3.	 Following a successful connection, type help into the console to retrieve a list of
commands that we can run against the emulator:

www.it-ebooks.info

http://www.it-ebooks.info/

Development Tools and Testing

272

4.	 Let's adjust the current battery status of the device. Firstly, we'll check what we can
do, so type the following in to the console window:
help power

The console will provide us with all available commands to manage the power of
the device:

At the moment, your virtual device may appear as though it is charging. We want to
adjust the charging state and set the battery capacity to 10 percent, which we can
do by running the following three commands:

power ac off

power status not-charging

power capacity 10

5.	 Instantly, our virtual device will change from appearing as though it is charging, to
something like the following screenshot:

6.	 It will now look like it is not charging and has very low battery levels. We will even
receive the notification alert to remind us to charge our device, as shown in the
following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

273

Let's now change the network connection for our device. We may want to make sure
that our application successfully manages to save data or perform an action if the
connection speed falls below a certain level:
network speed edge

7.	 Before the change, our device was running on full network speed:

8.	 The adjustments to the network speed have taken immediate effect:

How it works...
By accessing the Android Virtual Device running in the emulator, we are able to control a
large number of device parameters, which also include SMS-related commands, geolocation
commands, and control of the emulator itself.

These provide us with invaluable tools to test how our application responds to various device
states and events.

For more information on how you can interact with the Android emulator
via the command line prompt, check out the official Android developer
documentation available at: http://developer.android.com/
tools/help/emulator.html.

www.it-ebooks.info

http://www.it-ebooks.info/

Development Tools and Testing

274

Using Adobe Dreamweaver to develop
Cordova applications

Adobe Dreamweaver has long been a favorite tool for web designers and developers.
Dreamweaver CS5 included features to assist building mobile applications and the ability to
simulate and package PhoneGap applications without having to worry about the underlying
framework library.

Dreamweaver CS6 took this one step further and integrated an automated build service in
the form of PhoneGap Build.

Getting ready
To use the PhoneGap Build service, you will first need to have an active PhoneGap Build
service account, which is free and incredibly easy to set up.

Head over to https://build.phonegap.com/people/sign_in to begin the registration
process, and you can sign in using either your Adobe ID or GitHub account details:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

275

That's it! Is is time to start building an application using Dreamweaver CS6.

If you do not have a copy of Dreamweaver CS6, you can download
a full-featured trial version available here: http://www.adobe.
com/uk/products/dreamweaver.html.

How to do it...
In this recipe we will use Dreamweaver CS6 to create a simple application that we will pass to
the PhoneGap Build service to build for us:

1.	 To manage our Cordova application in Dreamweaver CS6, we need to create a new
Dreamweaver site definition, pointing the project directory to your preferred location
on your development machine.

2.	 We'll simplify the creation of our application structure and download a project
template, which contains all of the core files we will need. Head over to https://
github.com/phonegap/phonegap-start and click on the ZIP button to
download a compressed version of the code. Alternatively, you can clone the GitHub
project directly to your local machine using the command line:

www.it-ebooks.info

http://www.it-ebooks.info/

Development Tools and Testing

276

3.	 Move or copy the extracted files from the download into the location of your
Dreamweaver project. The resulting project structure should look something
like the following screenshot:

4.	 Open up index.html in the editor window. There are some JavaScript assets included
in the head tag of the document, one of which is called cordova-2.0.0.js.
However, you may notice that file does not actually exist in the project itself:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

277

When dealing with the PhoneGap Build service you do not
need to have a local copy of the PhoneGap/Cordova JavaScript
file, but you do need to reference it in the document as the
service needs it to successfully build your application.

5.	 Open up the config.xml file in the editor window, which holds the configuration
details for our application. Change the id attribute value to a reverse-domain value
specific to you.

6.	 We'll also change the name value to that of our application and change the author
node to set the developer information with our URL, e-mail, and name:
<?xml version="1.0" encoding="UTF-8"?>
<widget
xmlns=http://www.w3.org/ns/widgets
xmlns:gap=http://phonegap.com/ns/1.0
id="com.coldfumonkeh.mycordovaapp" 	
version="1.0.0">

<name>My Cordova Application</name>
<author href="http://www.monkeh.me" email="me@monkeh.me">Matt
Gifford</author>

7.	 We can request that our application is built using a particular version of the PhoneGap
library. Although the build service will use the current default version (currently 2.0.0),
you can also enforce this by setting a preference tag to confirm that we want to use
that version:
<preference name="phonegap-version" value="2.0.0" />

8.	 There is one feature node in the config.xml file, which specifies the features
you want your application to use and have access to. This sample application is
requesting access to the device API. Let's add two more feature nodes to request
access to the geolocation and network connectivity APIs:
<feature name="http://api.phonegap.com/1.0/geolocation"/>
<feature name="http://api.phonegap.com/1.0/network"/>

For detailed information on all of the parameters and values
available to use in the config.xml file, please visit the
PhoneGap Build documentation available at:
https://build.phonegap.com/docs/config-xml.

www.it-ebooks.info

http://www.it-ebooks.info/

Development Tools and Testing

278

9.	 Save the config.xml file, and open the PhoneGap Build service window by
selecting Site | PhoneGap Build Service | PhoneGap Build Service from the
main application menu, which will open the build service window in Dreamweaver.
If this is the first time that you are running this process within Dreamweaver, you
will be asked to enter your PhoneGap Build account credentials to log in and use
the remote service:

10.	 Once logged in, you will be presented with the build service panel, which will inform
you that a project settings file needs to be built for this application. Ensure Create
as a new project is selected in the drop-down box, and click on Continue to start
the build process:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

279

11.	 Dreamweaver will now submit your application to the remote PhoneGap Build service.
You can view the process of each build from the panel in the editor.

If you receive any build errors, make sure that the id value
in the config.xml file does not contain any underscores
or invalid characters, and that there are no spaces within
the XML node names and values.

12.	 Once the build process is complete, you will be shown the results for each mobile
platform, as shown in the following screenshot:

13.	 You will be presented with the option to download the packaged application in the
respective native format by clicking on the downward-facing arrow. You can then
install the application onto your device for testing.

www.it-ebooks.info

http://www.it-ebooks.info/

Development Tools and Testing

280

14.	 If your mobile device has a Quick Response Code (QR Code) reader, you can
select the barcode button and scan the resulting image shown to you. This will
download the application directly onto the device without the need of any USB
connectivity or transfers:

15.	 In this example, the iOS application was not built as no signing key was provided in
the config.xml file.

For more details on iOS code signing, check out the official
documentation from the iOS Developer Library available
at: http://developer.apple.com/library/
ios/#technotes/tn2250/_index.html.

16.	 You may also notice that the Android and webOS platforms have an extra button,
the right-facing arrow. Clicking on the button will load the application onto a local
emulator for testing purposes.

17.	 To use the emulators on your local machine, Dreamweaver needs to know the location
of the SDK libraries. To set these paths, open up the PhoneGap Build Settings panel,
which you can reach via Site | PhoneGap Build Service | PhoneGap Build Settings
from the main menu, as shown in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

281

18.	 Include the path to the SDKs you have installed and wish to use, and click on Save
to store them.

How it works...
The integration of the PhoneGap Build automated service directly into Dreamweaver CS6
manages the packaging and building of your application across a number of device platforms.
The build process also takes care of the device permissions and the inclusion of the correct
Cordova JavaScript file for each platform.

This means that you can spend more time developing your feature-rich native application and
perfecting your layouts and visuals without having to handle the various build processes and
differences between each platform.

There's more...
To install the Android SDK, you can follow the Getting ready section in the Using Eclipse
to develop Android Cordova applications recipe in this chapter or check out the official
Android Developer documentation, available at: http://developer.android.com/
sdk/index.html.

To install the webOS SDK, please check out the official documentation, available at:
https://developer.palm.com/content/resources/develop/sdk_pdk_
download.html.

www.it-ebooks.info

http://www.it-ebooks.info/

Development Tools and Testing

282

Using the PhoneGap Build service
The benefit of the Cordova project is the ability to create a native application from an HTML
file and a little JavaScript, at it's very minimum. Adobe Dreamweaver CS6 has the built-in
capabilities to interact with and upload your mobile project directly to the remote PhoneGap
Build service on your behalf. You can, however, build your application using the service directly
via the web.

Getting ready
To use the PhoneGap Build service, you will first need to have an active PhoneGap Build
service account, which is free and incredibly easy to set up.

Head over to https://build.phonegap.com/people/sign_up to begin the registration
process, and you can sign in using either your Adobe ID or GitHub account details:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

283

How to do it...
In this recipe we will create a very simple, single-file application and upload it to the build
service using the web interface:

1.	 Create a new index.html file, and includes the following code:
<!DOCTYPE html>
<html>
<head>
 <meta name="viewport" content="user-scalable=no,
 initial-scale=1, maximum-scale=1,
 minimum-scale=1, width=device-width;" />
 <title>Cordova Application</title>

 <script type="text/javascript"
 src="cordova.js"></script>

 <script type="text/javascript">
 function onLoad() {
 document.addEventListener("deviceready", onDeviceReady,
false);
 }

 function onDeviceReady() {
 alert('Cordova has loaded');
 }
 </script>

</head>
<body onload="onLoad()">

 <h1>Welcome to Cordova</h1>

 <p>What will you create?</p>

</body>
</html>

2.	 In this file we have included a reference to cordova.js in the head tag of the
document. This file does not exist locally, but the build service requires this reference
to successfully build the application. We have created a very simple function that will
generate an alert notification window once the device is ready.

3.	 Create a new .zip file that contains the index.html file we have just created. We will
use this archive file to send to the PhoneGap Build service to create our application.

www.it-ebooks.info

http://www.it-ebooks.info/

Development Tools and Testing

284

4.	 Head over to https://build.phonegap.com/ and sign in with your account
details if you haven't done so already. If this is your first visit, or you have not yet
submitted any applications to the service, you will be greeted instantly with a form
to help you generate your first build.

5.	 You have the option to create either an open source or private application. Both
options give the ability to provide code as either a link to a Git repository or as an
archived .zip file. For the purpose of this recipe, we will select the Upload a .zip
file button. Navigate to and select the archived file we created earlier and click on
Open to proceed. The PhoneGap Build service will instantly upload your code and
create a new project.

6.	 As we have not included a config.xml file in the upload, the application title and
description are placeholders. Click on the Enter your app title text and enter the title
or name of your application in the input box, making it easily identifiable so you can
distinguish your application easily from any other applications you may upload. You
can also add a description for your application in the same manner.

7.	 Let's also select the ability to debug your application:

8.	 Click on the Ready to build button at the bottom-right corner of the screen layout.
The build process will now begin, and you will be presented with a visual reference
to the available platforms and the status of each build:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

285

9.	 In this example, four of the six builds were successful. The iOS and BlackBerry
builds were not, as iOS needed a signing key and BlackBerry was unable to verify
application passwords.

10.	 Click on the title of the application, which will take you to a new page with the options
to download the successfully-built packages, as shown in the following screenshot:

11.	 You can download the applications using the direct download link next to each
successful build listing, or if your device has a QR Code reader, you can scan the
barcode to download and install the application directly onto the device.

www.it-ebooks.info

http://www.it-ebooks.info/

Development Tools and Testing

286

How it works...
The PhoneGap Build service automates the packaging process for your mobile application
across the available device platforms, which greatly simplifies your workflow and the task
of preparing configuration files for each individual platform.

There's more...
When we created this sample application using the online build service, we chose to enable
debugging. This is another online service offered by the PhoneGap team, and makes use of
an open source debugging application called weinre, which stands for Web Inspector Remote.

To see this in action, you need to have the application packaged by the PhoneGap Build
service running on a physical device attached to your local development machine or on
a device emulator. Once you have the application running, click on the debug button at
the top of your project page, as shown in the following screenshot:

This will open up a new window or tab in your browser using the debug.phonegap.com
subdomain and you should see your connected device in the list:

For any developers who have used development tools such as Firebug, the tools on offer
with weinre should look very familiar. It provides similar functionality to test and debug HTML
applications inline, but is designed to work remotely and is exceedingly good at testing apps
and pages on mobile devices.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

287

To find out more about the features and functions available
in weinre, check out the official documentation, available at:
http://people.apache.org/~pmuellr/weinre/.

The PhoneGap Build documentation also provides an introduction to the service with an
emphasis on using it with the online build service. This is available at: https://build.
phonegap.com/docs/phonegap-debug.

Hydrating your application
PhoneGap Build also provides a tool to enhance the workflow and deployment of compiled
applications to your devices for testing, called Hydration. This reduces the time taken to
compile an application and automatically pushes out a new build of a hydrated app to the
device. This can be enabled when creating a new project, or the settings updated and
applied to an existing project.

To apply hydration to our current application, select the Settings tab within the project
view and click on the enable hydration button. Click on the Save button to retain the
changes. At this point, the application will automatically rebuild as a hydrated app.

Install or deploy the freshly compiled application onto your device, replacing any previous
non-hydrated version you may already have.

www.it-ebooks.info

https://build.phonegap.com/docs/phonegap-debug
https://build.phonegap.com/docs/phonegap-debug
http://www.it-ebooks.info/

Development Tools and Testing

288

The benefit of a hydrated application is the ease and simplicity of deploying further updates.
Once any future code has been updated, deployed, and compiled in the build service, you can
easily update your installed version by restarting the application on the device. The hydrated
application will check on every startup to see if an updated version of the app exists, and if so,
it will prompt the user with a dialog, offering the chance to update the application.

If accepted, the new build will be downloaded and installed directly onto the device.

To find out more about the Hydration service, check out the
official documentation available at: https://build.
phonegap.com/docs/hydration.

PhoneGap Build API
The online PhoneGap Build service is also available via an exposed public Application
Programming Interface (API).

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

289

By opening the build service as an API, developers have the ability to create, build, update,
and download PhoneGap applications from shell scripts, the command line, from a separate
automated build process, or the source control post commit hook process.

Both read and write access to the service is available using authentication protocols.

To find out more about the PhoneGap Build API, check out
the official documentation available at: https://build.
phonegap.com/docs/api.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Index
Symbols
 XUI JavaScript library

DOM traversal methods, using 163-165

A
accElement variable 9
acceleration.timestamp 11
acceleration.x 10
acceleration.y 11
acceleration.z 11
accelerometer

about 8
used, for detecting device movement 8-10

accelerometer data 12
accelerometer div element 9, 14, 15
accelerometer sensor update interval

adjusting 12-16
working 16

accuracy property 27
addClass method 182
Adobe Dreamweaver

about 274
used, for developing

Cordova applications 274-280
working 281

Adobe kuler service 213
ajax() method 75
AJAX requests

making, from remote server with
xhr() method 183-187

alphabeticalSort function 114
altitudeAccuracy property 27
altitude property 27

Android Cordova applications
developing, Eclipse used 258-269

Android SDK
downloading 259, 260
installing 281

Android Virtual Device
controlling 270-273
working 273

AppLaud plugin
installing 270

application
pausing 131-133
resuming 134-138

audio
capturing, device audio recording

application used 79-84
recording, within application 85-90

audio files
playing, from local filesystem 90-96

B
basics, XUI JavaScript library 163
batterycritical event 145
battery_info object 141
batteryLevel element 140
battery level status, device

displaying 138-144
batterylow event handler 141, 144
batterystatus event 144
battery status handlers

batterycritical 144
batterylow 144
batterystatus 144

button element 98, 176

www.it-ebooks.info

http://www.it-ebooks.info/

292

C
camera.getPicture method 67
captureVideo method 96, 97, 100
changePage method 126
checkConnection method 150
chunkedMode property 70
clearValues function 121
clearWatch method 14, 17
clone() method 129
command line

used, for creating iOS
Cordova project 242-246

uses 246
working 246

compassHeading object
properties 46

ContactField object
properties 129

contactFields parameter 113, 116
contact information

displaying, for specific individual 117-122
contactInfo variable 120
contactList list element 126
Contact object

clone() method 129
remove() method 129
save() method 128

contacts
creating 122-128
listing 111-116
saving 122-128

contacts.find() method 116
content

caching, local storage API used 70-78
Content Distribution Network (CDN) 194
Cordova

downloading 240
installing 241
working 241

Cordova application
developing, Adobe Dreamweaver

used 274-280
extending, with native plugin 218-224

hydrating 287
working 225

Cordova application development
interface layout 256
schemes 257
target devices 257

Cordova applications, for iOS
developing, Xcode templates used 247-255

cordova.exec method 225
Cordova iOS application

extending, with native plugin 226-234
working 235

create command 246
createReader() method 58
createWriter method 55
currentType global variable 151
custom submenu

creating 155-159

D
data

data, persisting, between jQuery
Mobile pages 203-208

data-role attribute 118
device geolocation sensor

working 27
device geolocation sensor information

obtaining 23-26
device movement

detecting, accelerometer used 8-10
deviceready event 10, 16, 17
deviceready event listener 133 218
device storage

file, saving to 47-51
local file, opening from 52-56

directory content
displaying 57-60

DirectoryEntry object 51
properties 51

display object position
updating, through accelerometer

events 17-22

www.it-ebooks.info

http://www.it-ebooks.info/

293

domain whitelist
about 52
official documentation, URL 52

DOM manipulation methods
using 171-173
working 174, 175

DOMString object 51
DOMTimeStamp object 11 27
DOM traversal methods

using 163-165
download_btn element 49
downloadDirectory variable 49
download function 50
Dreamweaver CS5 274
Dreamweaver CS6

about 275
using 275

E
Eclipse

used, for developing Android
Cordova applications 258-269

Eclipse IDE
about 258
downloading 259

Eclipse plugin
installing 261-263

effect
applying, to image 105-109

element
animating 187-191

element styles
updating 178-182

enableHighAccuracy parameter 33
exec() method

parameters 225, 235
executeSql method 65

F
fail error handler method 55
fail method 51
file

saving, to device storage 47-51
uploading, to remote server 66-70

fileKey property 69

fileName property 69
fileObject 54
fileSystem object

properties 51
FileUploadOptions object

about 69
properties 69

G
Geolocation

reference link 28
geolocation coordinates

map data, retrieving through 33-39
geolocationData div element 30
geolocation sensor update interval

adjusting 28-32
clearing 33
working 32

getAllContacts method 113
getConnectionType method 152
getContactByID method 120
getCurrentAcceleration method 10 12
getCurrentPosition method 27, 28
getDirectory method 49
getFile method 54
getImageData method 107, 109
getItems method 63
getPicture method 103
getStyle method 182
getStyle property 180
getVideo method 97
Global Positioning Satellites (GPS) 23
Google Maps API key 33
gotFileWriter method 55
gotPicture method 67
greeting method 223

H
hasClass method 182
headingAccuracy property 46
heading property 27
html() function

about 174
arguments 174

www.it-ebooks.info

http://www.it-ebooks.info/

294

hydrated application
benefits 288

Hydration
about 287
applying 287

I
insertItem method 63
intCheck global variable 151
interface layout, Cordova applications 256
iOS Cordova project

creating, command line used 242-246
debugging 247
running, on iOS Simulator 247

ios-sim 247
iOS Simulator

iOS Cordova project, running 247
isPlugged method 141
itemdetail 203

J
JQM Gallery site 216

URL 216
jQuery Mobile 203
jQuery Mobile framework

downloading 194
used, for creating layout 194-201
working 203

jQuery Mobile layout
creating 193-201

jQuery Mobile pages
data, persisting between 203-209

jQuery Mobile ThemeRoller
features, exploring 210-213
using 210-214
working 215

jsonpCallback method 75

L
lastModifiedTime 101
latitude property 27
Lawnchair 78
local file

opening, from device storage 52-56

local SQLite database
creating 61-64
working 65

local storage API
used, for caching content 70-77

localStorage database 120
localStoragegetItem() method 209
longitude property 27

M
magneticHeading property 46
map data

retrieving, through geolocation
coordinates 33-38

maximumAge parameter 33
menubutton event 160
menuToggle button element 157
mimeType property 70
multiple parameter 113

N
Native Menu plugin

URL 160
native search button

using 145-148
network connection status

displaying 149-154
NSMutableArray 231
NSMutableDictionary 231

O
onAllSuccess method 114
onBatteryCritical callback method 141
onBatteryLow method 141
onClick attribute 15
onDeviceReady function 9, 13, 49, 86 223
onDeviceReady method 54, 63, 97, 176
onError function 10, 25
onError method 15, 98
onFileSystemSuccess method 49
onload attribute 134
onLoad() function 139
onLoad method 135
onMenuPress function 156

www.it-ebooks.info

http://www.it-ebooks.info/

295

onPageChange function 120, 124
onPause method 133
onResume method 136
onSaveSuccess function 126
onSearchPress method 147
onSuccess function 9, 10
onSuccess method 103
onwriteend method 56
openDatabase method 65

P
pagebeforeshow event 205
parameters, exec() method

action 225, 235
arguments 225, 235
error 225, 235
service 225, 235
success 225, 235

params property 70
pause event 133
PhoneGap

about 111
application, pausing 131-133
application, resuming 134-137
audio, capturing using device audio

recording application 79-84
audio files, playing 90-95
audio, recording within application 85-90
contact, creating 122-129
contact information, displaying for

specific individual 117-122
contact, saving 122-129
contacts, listing 111-116
Cordova application, extending, with native

plugin 218-224
Cordova applications 239
Cordova iOS application, extending with

native plugin 226-234
custom submenu, creating 155-159
data, persisting between jQuery Mobile

pages 203-208
device battery level status,

displaying 138-145
effect, applying to image 105-109
extending, with plugins 217
jQuery Mobile layout, creating 193-200

jQuery Mobile ThemeRoller, using 210-214
native search button, using 145-148
network connection status,

displaying 149-154
photograph, loading from device camera

roll/library 101-105
plugin repository 236
video, capturing using device video

recording application 96-100
XUI library, working with 161

PhoneGap API 40
PhoneGap Build API

about 288, 289
URL 289

PhoneGap Build service
using 282-285
working 286

photograph
loading, device camera roll/library 101-105

plugin repository
about 236
URL 236
working 237

PluginResult object 226
position.coords object 27
PositionError object

code property 27
message property 27

position object
properties 27

position.timestamp object 27
processResults method 185
processSepia 108
properties, compassHeading object

headingAccuracy 46
magneticHeading 46
timestamp 46
trueHeading 46

properties, ContactField object
pref 129
type 129
value 129

properties, DirectoryEntry object
fullPath 51
isDirectory 51
isFile 51
name 51

www.it-ebooks.info

http://www.it-ebooks.info/

296

properties, fileSystem object
name 51
root 51

properties, FileUploadOptions object
chunkedMode 70
fileKey 69
fileName 69
mimeType 70
params 70

properties, position.coords object
accuracy 27
altitude 27
altitudeAccuracy 27
heading 27
latitude 27
longitude 27
speed 27

Q
Quick Response Code (QR Code) reader 280

R
readAsDataURL method 56
readEntries() method 58
reader.readAsText() method 55
ready() method 176
recordAudio() function 87
recordPrepare 86
remote server

file, uploading 66-69
removeClass method 182
remove() method 129
reset method 107
resizeFont function 180

S
saveBtn button element 124
savedTime variable 135, 136
saveFileContent function 54
saveFileContent method 55
saveItem button element 63

save() method 128
schemes, Cordova applications 257
script tag block 113
searchbutton event 148
searchTwitter 185
selectorBtn element 67
setBatteryInfo method 140
setInterval method 87
setItem() method 74
setMenuHandlers method 156, 157
speedMessage element 149
speed property 27
SQLite 61
SQLite databases 61
startRecord method 87
startWatch function 13
Static Map API 40
static maps 40
statusMessage element 140
storeResults 75
successCallback function 223

T
target devices, Cordova applications 257
timeout parameter 33
timestamp property 46
toggleClass method 182
touch and gesture events

working with 175-178
touchstart event 67, 97, 124, 176
touchstart event handler 185
trueHeading property 46
tween() method 187

arguments 191

V
video

capturing, device video recording
application used 96-100

visual compass
creating 40-46

vMultiplier variable 20

www.it-ebooks.info

http://www.it-ebooks.info/

297

W
W3C Geolocation API Specification 28
watchHeading method 46
watchID parameter 14
watchID variable 17
watchPosition method 30
Web Inspector Remote 286
webOS SDK

installing 281
WebView API 226
weinre 286
World Geodetic System (WGS) 27
writeJavascript function 235
writer.write() method 55

X
Xcode templates

about 247
used, for developing iOS Cordova

applications 247-255

xhr() method
used, for AJAX requests from remote

server 183-187
XmlHttpRequest 187
XUI JavaScript library

about 161
basic functionality 167-171
basics 163
DOM manipulation, using 171
downloading 162
element, animating 187-191
element styles, updating 178
remote data and AJAX requests,

working with 183-186
touch and gesture events,

working with 175
URL 41, 162

XUI ready event handler 188

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Thank you for buying

PhoneGap Mobile Application
Development Cookbook

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective MySQL
Management" in April 2004 and subsequently continued to specialize in publishing highly focused
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our
unique business model allows us to bring you more focused information, giving you more of what
you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality, cutting-
edge books for communities of developers, administrators, and newbies alike. For more
information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licences, and offering information to
anybody from advanced developers to budding web designers. The Open Source brand also runs
Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open Source project
about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would like to
discuss it first before writing a formal book proposal, contact us; one of our commissioning editors
will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.it-ebooks.info

http://www.it-ebooks.info/

PhoneGap Beginner's Guide
ISBN: 978-1-849515-36-8 Paperback: 328 pages

Build cross-platform mobile applications with the
PhoneGap open source development framework

1.	 Rich interactions using HTML5 and CSS3 APIs

2.	 Mobile JavaScript expertise: write code that
travels anywhere

3.	 Working offline: use web development skills with
native code to create installable web-apps that
sync with remote servers

4.	 Enhancing application experiences with real-time
sensor data

Sencha Touch Mobile
JavaScript Framework
ISBN: 978-1-849515-10-8 Paperback: 316 pages

Build web applications for Apple iOS and Google Android
touchscreen devices with this first HTML5 mobile
framework

1.	 Learn to develop web applications that look
and feel native on Apple iOS and Google
Android touchscreen devices using Sencha
Touch through examples

2.	 Design resolution-independent and graphical
representations like buttons, icons, and tabs
of unparalleled flexibility

3.	 Add custom events like tap, double tap, swipe, tap
and hold, pinch, and rotate

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/

Cocos2d for iPhone 1 Game
Development Cookbook
ISBN: 978-1-849514-00-2 Paperback: 446 pages

Over 90 recipes for iOS 2D game development using
cocos2d

1.	 Discover advanced Cocos2d, OpenGL ES, and
iOS techniques spanning all areas of the game
development process

2.	 Learn how to create top-down isometric games,
side-scrolling platformers, and games with
realistic lighting

3.	 Full of fun and engaging recipes with modular
libraries that can be plugged into your project

Sencha Touch Cookbook
ISBN: 978-1-849515-44-3 Paperback: 350 pages

Over 100 recipes for creating HTML5-based
cross-platform apps for touch devices

1.	 Master cross platform application development

2.	 Incorporate geo location into your apps

3.	 Develop native looking web apps

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/

	Cover
	Copyright
	Credits
	Foreword
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Movement and Location: Using the Accelerometer and Geolocation Sensors
	Introduction
	Detecting device movement using the accelerometer
	Adjusting the accelerometer sensor update interval
	Updating a display object position through accelerometer events
	Obtaining device geolocation sensor information
	Adjusting the geolocation sensor update interval
	Retrieving map data through geolocation coordinates
	Creating a visual compass to show the device direction

	Chapter 2: File System, Storage, and Local Databases
	Introduction
	Saving a file to device storage
	Opening a local file from device storage
	Displaying the contents of a directory
	Creating a local SQLite database
	Uploading a file to a remote server
	Caching content using the web storage's local storage API

	Chapter 3: Working with Audio, Images, and Video
	Introduction
	Capturing audio using the device audio recording application
	Recording audio within your application
	Playing audio files from the local filesystem or over HTTP
	Capturing video using the device video recording application
	Loading a photograph from the device camera roll/library
	Applying an effect to an image using canvas

	Chapter 4: Working with
Your Contacts
	Introduction
	Listing all available contacts
	Displaying contact information for a specific individual
	Creating and saving a new contact

	Chapter 5: Hook into Native Events
	Introduction
	Pausing your application
	Resuming your application
	Displaying the status of the device battery levels
	Making use of the native search button
	Displaying network connection status
	Creating a custom submenu

	Chapter 6: Working with XUI
	Introduction
	Learning the basics of the XUI library
	DOM manipulation
	Working with touch and gesture events
	Updating element styles
	Working with remote data and AJAX requests
	Animating an element

	Chapter 7: User Interface Development with jQuery Mobile
	Introduction
	Creating a jQuery Mobile layout
	Persisting data between jQuery Mobile pages
	Using jQuery Mobile ThemeRoller

	Chapter 8: Extending PhoneGap with Plugins
	Introduction
	Extending your Cordova application with a native plugin
	Extending your Cordova iOS application with a native plugin
	The plugin repository

	Chapter 9: Development Tools
and Testing
	Introduction
	Downloading Cordova
	Using the command line to create a new iOS Cordova project
	Using Xcode templates for iOS to develop Cordova applications
	Using Eclipse to develop Android Cordova applications
	Controlling your Android Virtual Device
	Using Adobe Dreamweaver to develop Cordova applications
	Using the PhoneGap Build service

	Index

