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Foreword

I had the pleasure and the privilege of reading the original book, particularly
some of the important chapters of the book on Fracture Mechanics by Dr. Nestor
Perez. I find the book, in general, very well written for the academicians as well
as for the practitioners in the field of engineering fracture mechanics. The
language is simple, clear and to the point. Each chapter is developed in such a
way that the mathematical treatment supports the main physical mechanism of
fracture. The equations are arranged in an orderly fashion in harmony with the
descriptive concepts of a phenomenon that is highly complex, very nonlinear
and often unpredictable. The main objective of a mathematical analysis is to
explain and clarify a physical phenomenon, and definitely not to jeopardize it
by undue and unwanted complexity at the cost of brevity. If this is true for
a textbook or any treatise for that matter, Dr. Perez’s book has done the job
quite elegantly.

This book is suitable as a textbook for a senior undergraduate and graduate
textbook of a one-semester course in Mechanical, Civil, Chemical and Indus-
trial Engineering, Materials Science as well as in Applied Physics and Applied
Chemistry programs.

Each chapter is self-contained and self-sufficient in descriptive details, but
it keeps a smooth continuity with its preceding and following chapters. The
numerical and the algebraic illustrations are just in place with the theoretical
analyses and the empirical examples. Unlike many voluminous works on fracture
mechanics, in this book mathematics does not overburden the physics of fracture
mechanics, and thus shows a more realistic route to solve a particular problem.
Hence, practicing engineers in consulting firms and design offices can use this
book in a very handy and straightforward fashion. Also it is a good reference
book in the personal library of many retired professionals and professors who
still like to keep in touch with the reality as a hobby, pastime or pleasure.

I highly recommend this book to any technical publishing house for the
timely birth of this solid but simple work on engineering fracture mechanics.

Jay K. Banerjee, Ph.D., P.E., M.Ed.
Editor (2003)
Journal of Mechanical Behavior of Materials
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Preface

The purpose of this book is to present, in a closed form, analytical methods
in deriving stress and strain functions related to Fracture Mechanics. This book
contains a compilation of work available in the literature in a scatter form and,
to a certain extent, selected experimental data of many researchers to justify
the theoretical fracture mechanics models in solving crack problems. It is a
self-contained and detailed book for the reader (senior and graduate students,
and engineers) involved in the analysis of failure using a mathematical approach
for designing against fracture. However, it is important that the reader under-
stands the concept of modeling, problem solving, and interpreting the meaning
of mathematical solution for a particular engineering problem or situation. Once
this is accomplished, the reader should be able to think mathematically, fore-
see metallurgically the significance of microstructural parameters on properties,
analyze the mechanical behavior of materials, and recognize realistically how
dangerous a crack is in an stressed structure, which may fail catastrophically.

In spite of the advances in fracture mechanics, many principles remain the
same. Dynamic Fracture Mechanics is included through the field of fatigue
and Charpy impact testing. The material included in this book is based upon
the development of analytical and numerical procedures pertinent to particular
fields of linear elastic fracture mechanics (LEFM) and plastic fracture mechanics
(PFM), including mixed-mode-loading interaction. The mathematical approach
undertaken herein is coupled with a brief review of several fracture theories
available in cited references.

Fracture mechanics of engineering materials deals with fracture of solids un-
dergoing large deformation (ductile materials) and/or fracture (brittle material)
when subjected to extreme loading. The analysis of a solid responding to loads is
concerned partly with microscopic mechanisms of fracture, establishing fracture
criteria, and predicting the fracture stress from a macroscopic approach.

Nestor Perez, Ph.D.

Department of Mechanical Engineering
University of Puerto Rico, Mayaguez, PR 00680
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To my daughters Jennifer and Roxie
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The definition of variables such as force, load, stress, strain, and displacement
is vital for the understanding of state properties of solid materials, and for
characterizing the mechanical behavior of crack-free or cracked solids. Clearly,
the latter have a different mechanical behavior than the former and it is char-
acterized according to the principles of fracture mechanics, which are divided
into two areas. Linear Elastic Fracture Mechanics (LEFM) considers the funda-
mentals of linear elasticity theory, and Plastic Fracture Mechanics (PFM) is for
characterizing plastic behavior of ductile solids. In order to characterize cracked
solids, knowledge of the aforementioned variables is necessary. For instance, the
term dynamic force defined by Newton’s second law as depends on the
acceleration of a moving mass.

However, if this mass is stationary and susceptible to be deformed a quasi-
static force or mechanical force must be defined. Both dynamic and mechanical
forces have the same units, but different physical meaning. Moreover, this me-
chanical force is analogous to load (P). Obviously, this is the point of departure
in this chapter for defining an important engineering parameter called elastic
stress, which in turn it is related to Hooke’s law as Then,
is the elastic strain and E is the elastic modulus of elasticity.

Now, the strain is defined as where is the change of dis-
placement, say, in the x-direction. The intent here is to indicate how certain
parameters or variables are related to one another. Nevertheless, if two vari-
ables are known, the third one can be estimated or predicted. This is one of the
benefits of mathematics for solving engineering problems, which have their own
constraints for dictating the magnitude of a particular variable. In fact, one or
more variables may define a material property, while a property depends on the
microstructure of a solid material.

Chapter 1

THEORY OF
ELASTICITY

1.1 INTRODUCTION



2 CHAPTER 1.  THEORY OF ELASTICITY

1.2 DEFINITIONS

This section is concerned with some definitions the reader needs to assimilate
before the fracture mechanics theories and mathematical definitions are intro-
duced in a progressive manner. It is important to have a clear and precise
definition of vital concepts in the field of applied mechanics so that the learning
process for understanding fracture mechanics becomes obviously easy. However,
basic concepts such as stress, strain, safety factor, deformation and the like are
important in characterizing the mechanical behavior of solid materials subjected
to forces or loads in service. Hence,

DEFORMATION: The movement of points in a solid body relative to
each other.

DISPLACEMENT: The movement of a point in a vector quantity in a
body subjected to loading.

STRAIN: This is a geometric quantity, which depends on the relative move-
ment of two or three points in a body.

STRESS: The stress at a point on a body represents the internal resistance
of a body due to an external force. Thus, load (P) and the cross-sectional area
(A) are related to stress as indicated by the equation of equilibrium of forces.
Thus,

If A is the original cross-sectional area then is an engineering stress;
otherwise, it is a local stress. In addition, the theory of elasticity deals with
isotropic materials subjected to elastic stresses, strains, and displacements. The
relationships between stresses and strains are known as constitutive equations,
which are classified as Equilibrium Equations, Compatibility Equations and
Boundary equations. The reader should consult a book on Theory of Elasticity
[1].

Safety Factor: This is an important parameter used in designing structural
components to assure structural integrity. Simply stated, the safety factor is a
design factor defined by [2]

Here, the strength may represent a material’s property, such as the yield
strength, and the stress is the variable to be applied to a structure. The role of

in this simple relationship is to control the design stress so that
Usually, the safety factor is in the order of two, but its magnitude depends

on the designer’s experience.



According to the theory of elasticity, the field equations are based on the normal
strains and the shear strains These are related to displacements,
which are illustrated in Figures 1.1 and mathematically defined by

where G = Shear modulus (MPa)

According to the theory of elasticity, stresses and strains are generalized as
and These quantities are

treated as second-rank tensors and the matching mathematical framework of
tensor analysis can be found elsewhere [3-4]. It is not intended herein to review
the theory of elasticity, but include simplified forms of stresses and strains so that
the reader is reminded about the use of these second-rank tensors as powerful
tools for solving engineering problems or situations.

Problems, whose solutions require the analysis of stresses, strains, and dis-
placements, are normally encountered in engineering structures, which are sus-
ceptible to develop dangerous cracks during service. Thus, it is important to
visualize the stresses and strains as tridimensional entities that develop around
discontinuities in microstructures, such as dislocations, composite materials,
and uniquely in the vicinity of a crack tip due to an applied external loading

1.3.  STRAIN AND STRESS EQUATIONS 3

1.3 STRAIN AND STRESS EQUATIONS



system. For instance, the resultant stresses in a three-dimensional element are
shown in Figure 1.2. At equilibrium, the shear stresses are related as

and and the tensile stresses are and

According to Hooke’s law for isotropic solid materials, the strain components
and the related elastic stresses are defined below as mathematical formulas.
Hence, the tridimensional entities are

where = Poisson’s ratio

Using the Principle of Superposition, the total stain and stress in one
direction become

4 CHAPTER 1.  THEORY OF ELASTICITY

1.4 TRIAXIAL STRESS STATE



For convenience, the stresses as function of strains may be defined in a matrix
form as indicated below. The stresses along the principal axes are

If then the strain entities for the biaxial
state are defined in matrix form

and the stresses are

In addition, the principal stresses and principal strains occur on principal
axes, and their maximum and minimum values can be predicted using the
Mohr’s circle on a point. Mohr allows the determination of the normal and
shear stress in a two dimensional plane.

Hence, if then the principal stresses and strains can be predicted
from the following expressions

and the shear stresses on planes axe

since the shear modulus of elasticity is

where E = Elastic modulus of elasticity (MPa)

1.5 BIAXIAL STRESS STATE

1.5.  BIAXIAL STRESS STATE 5



Recall that the third principal stress is perpendicular to the outward plane
of the paper implying that In addition, if the shear stress then

and are principal stresses, which are related to their principal directions.
The angle between the principal directions is 90°.

Conversely, the principal strains are strains in the direction of the principal
stresses. For a two-dimensional analysis, the principal strains are determined
using the following quadratic expression

For uniaxial tension testing, the state of stress and the state of strain are de-
scribed by the uniaxial relationships. From an engineering point of view, the
tensile or longitudinal strain e is defined as elongation or stretching, which is
related to Hooke’s law of elastic deformation. For a uniaxial tensile test on a
crack-free specimen shown in Figure 1.3, the strain and Hooke’s law are

6 CHAPTER 1.  THEORY OF ELASTICITY

1.6 SOUND BODIES UNDER TENSION

Here, is the change in gage length of a line segment between two points
on a solid and lo is the original gage length. It is clear that Hooke’s law gives a
linear stress-strain relationship. Most structural materials have some degree of
plasticity, which is not defined by defined by Hooke’s law.



In general, the mechanical behavior of a material under a stress-loading mode
depends on the microstructure, strain rate, and environment. The behavior of
an initially crack-free material is characterized by one of the typical stress-strain
curves shown in Figure 1.4.

Typical tension properties, such as yield strength, tensile strength, ductility,
and the modulus of elasticity are obtained from these curves. The strength refers
to a property and stress is a parameter related to an applied loading mode.
Nevertheless, the area under the curve is a measure of fracture toughness in
terms of strain energy density, which is not a common variable used by engineers

1.6.  SOUND BODIES UNDER TENSION 7



in structural analysis, but it may be used as a controlling parameter in classifying
structural materials. Particularly, the SMA curve in Figure 1.4 is for a shape
memory alloy (SMA), such as 55Ni-45Ti (Nitinol), which exhibits significant
high strain to failure (superelastic) and high total strain energy density [5–6].

This strain energy density W is the energy required to deform
the material. According to Figure 1.4, this energy is the area under the curve.
For elastic behavior (up to the yield point), fracture toughness is the elastic
strain energy density known as resilience and it is defined as

8 CHAPTER 1.  THEORY OF ELASTICITY

This expression represents an elastic behavior up to the yield strain for points
a, b, c and d in Figure 1.4. Hooke’s law, eq. (1.19), is used to solve the integral
given by eq. (1.20). Thus, the elastic strain energy density becomes

On the other hand, tough materials have fracture toughness based on
and SMA curves. Thus, the strain energy density for curve takes the form

This integral can be solved once a stress function in terms of strain,
is available. The most common plastic stress functions applicable from the
yield point to the ultimate tensile stress (maximum stress on a stress-strain
curves (Figure 1.4). are known as Ramberg-Osgood and Hollomon equations.
These functions are defined by

where = Strain hardening exponents
= Strength coefficient or proportionality constant (MPa)
= Plastic stress (MPa)

=Yield strength (MPa)
= Plastic strain

= Constant

For a strain hardenable material, the Hollomon or power-law equation may
be used as an effective stress expression in eq. (10.3) so that the integral can



easily be solve. Combining eqs. (1.23) and (1.25) yields the total strain energy
density up to the maximum stress

Here, the first and second terms are the elastic and plastic strain
energy densities. Since Hooke’s law applies up to the yield point, the total
energy as per eq. (10.27) takes the form

An ideal tough material must exhibit high strength and ductility. Despite
ductile materials are considered tough; they have low strength and high ductility.
However, if a notched tensile specimen, made of a ductile material, is loaded
in tension, the plastic flow is shifted upwards since a triaxial state of stress is
developed at the root of the notch. This is a constraint against plastic flow, but
it enhances the magnitude of the elastic stresses at the notch root [7].

In summary, the yield strength (material property) and the fracture tough-
ness in terms of total strain energy density (variable) of crack-free materials can
be compared using the inequalities shown below

This analogy implies that the yield strength decreases and the total strain
energy density increases with increasing strength and decreasing strain to failure.
This expressions can be used for classifying solid materials. However, an ideal
material for practical engineering applications should be characterized according
to the above inequalities, but slightly modified as indicated below for certain
applications where high ductility is not desired

1.6. SOUND BODIES UNDER TENSION 9



One important material’s condition for characterizing the mechanical behav-
ior of either a cracked or a crack-free specimen is its thickness. Thus, plane
conditions are classified below

PLANE STRESS: This is a stress condition used for thin bodies (plates),
in which the specimen thickness must be where is the width. Thus,
the negligible stresses under the plane-stress condition are the through-thickness
and the shear stresses

10 CHAPTER 1.  THEORY OF ELASTICITY

1.7 PLANE CONDITIONS

This stress condition is vital in studying local stress fields near a crack tip
in a solid body under a quasi-static or dynamic loading. The former loading is
the most common in monotonic and fracture mechanics testing. This stress can
be defined as at the surface and at the mid-thickness plane.

PLANE STRAIN: This particular condition is for thick bodies, which
develop a triaxial state of local stress at the crack tip. The through-thickness
stress in Cartesian coordinates is

1.8 EQUILIBRIUM EQUATIONS
The objective of this section is to show the equilibrium field equations used
for deriving analytically solutions for the unknown stresses and
Subsequently, this requires an elementary treatment of the theory of elasticity.
The equilibrium equations in Cartesian coordinates are the sum of forces at
equilibrium

For polar coordinates,

where = Radial direction
= Tangential direction

= Body-force intensity in the
= Body-force intensity in the



The Airy’s stress function approach [8] will be used in order to analytically
determine the unknown stresses and in two-dimensional elasticity
problem. Use of the type of coordinates depends on the nature of the problem
and the complexity of the needed analytical approach, in which the equilib-
rium and compatibility equations must be satisfied. For instance, Cartesian
coordinates may be used on rectangular-shaped beams, while polar coordinates
are used on curved beams. Solutions of elasticity problems require the deter-
mination of these stresses. This can be accomplished using the Airy’s stress
function which must satisfy a biharmonic equation in the order of
Hence, the objective of this section is to describe the method for finding so-
lutions of engineering problems using the Airy’s stress function which must
satisfy the equilibrium and compatibility equations, and boundary conditions.
Assume that the stresses and can be represented by the Airy’s
stress function such that

1.9.  AIRY’S STRESS FUNCTION 11

1.9 AIRY’S STRESS FUNCTION

Here, is the body-force field. Once an Airy’s stress function is
selected, the stress solutions may not necessarily satisfy the equilibrium equa-
tion. Instead, the Airy’s biharmonic equation for zero or constant body forces
(such as those due to gravity, water pressure in porous materials, and centrifugal
forces in rotating machine parts) is used in order to verify if the stress definitions
meet the equilibrium requirements. The Airy’s biharmonic equation is of the
form

The body-force intensities or the body force of magnitudes are

The stress compatibility equation is [1,9]



Any Airy’s stress function used in the solution of engineering problems
should satisfy eq. (1.41). Subsequently, the stresses can be derived using eq.
(1.40). However, the type of function one chooses should be based on experi-
ence or trial and error so that satisfies eq. (1.41).

It should be mentioned that the Airy’s stress function is also used for
determining the stress field, and subsequently the strain field around edge dislo-
cations in an isotropic and continuous media. A mathematical and theoretical
treatment on this particular subject is given in a book written by Meyers and
Chawla [3] in which clear isostress contours indicate the maximum tension, com-
pression, and shear stresses.

Let the Airy’s stress function be defined as an Airy’s power series having
polynomial constants

For convenience, the first order derivatives of this function, eq. (1.40), with
respect to two-dimensional Cartesian coordinates are

A polynomial described by eq. (1.44) must satisfy the Airy’s biharmonic
expression, eq. (1.41). For instance, let the order of the polynomial be

Thus, the pertinent derivatives are

12 CHAPTER 1.  THEORY OF ELASTICITY

where for plane stress condition
for plane strain condition

1.10 AIRY’S POWER SERIES



Substituting these fourth order derivatives, eq. (1.53), into the biharmonic
expression, eq. (1.41), yields The reader should verify these partial
results as an exercise. Therefore, eq. (1.52) satisfies the condition
Subsequently, using eq. (1.52) and (1.40) gives the expected stress equations
along with zero body-force field as

An example can make this procedure sufficiently clear how to develop Airy’s
stresses for a cantilever beam.

1.10.  AIRY’S POWER SERIES 13

Substituting eq. (1.49) into (1.41) yields a non-satisfactory results

This problem can be solved by letting in eq. (1.51) so that
Thus, Now, substituting in eq. (1.48)

yields the redefined Airy’s stress function is redefined

from which the fourth order derivatives are
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EXAMPLE 1.1. Find an Airy stress polynomial based on even functions of
and odd functions of in Cartesian coordinates for the simple supported elastic

beam of unit width, supported at ends. Now, assume plane stress condition, and
a uniform distribution of the load P. (From Ref. [9]).

Loading conditions:

Eqs. (d) and (e) indicate that there is no longitudinal force and bending
coupling at the ends of the beam. Now, select the following polynomial

From which

Solution:



Solving eqs. (b1) and (b2) simultaneously for yields

1.10.  AIRY’S POWER SERIES 15

These expressions satisfy the condition Thus, the Airy’s stresses
take the form along with

Let’s use the given loading conditions in order to determine the polynomial
constants      Using eq. (a3) along with the loading condition given by eq. (a1)
and (a2) gives

or

Furthermore, using eq. (a4) along with (a1)
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Substituting eqs. (b5) and (c4) into (b3) gives

Combining eqs. (a6) and (a2) yields

Solving this integral and using eq. (c5) gives

Using the moment of inertia in eq. (d6) yields

Inserting through into (1.56) through (1.58) yields the required stresses

Conventional strength of materials gives the stress in the as

Here, M is the moment. For instance, eq. (e4) implies that the second term
can be interpret as a correction term. Therefore, eq. (e1) is more accurate than
eq. (e4) [3].
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Consider a two-dimensional and a small element in equilibrium of unit thickness
shown in Figure 1.5. The sum of all forces in the radial r-directions is [9]

For an infinitely small element with and eq. (1.55) gives the
first equilibrium equation

Similarly, the equilibrium equation in the tangential direction yields the
second equilibrium equation

Here, and are body-force intensities. The resultant stress equations
in polar coordinates are defined by [9]

1.11 POLAR COORDINATES
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One particular Airy’s stress function for a crack-free hollow cylinder is of
the type [9]

The biharmonic operator in polar coordinates is defined below. Expanding
and simplifying this operator requires a step-by-step algebraic manipulation of
the partial derivatives of any Airy’s stress function. For convenience, the alge-
braic manipulation is carried out as indicated below by the nine multiplication
steps

For a plate containing a crack, the Airy’s stress function may be of the form
[10]

In general, the Airy’s stress function can be defined in a general form



Thus, adding these expressions, it can easily be verified that for
an appropriate function; otherwise, adjust the function or select another Airy’s
stress function So far, the analytical definitions have been carried out assum-
ing that the elastic material is sound, isotropic, and continuous. An example
can make this mathematical treatment very clear and useful for solving a simple
elastic beam problem. Thus, the reader’s understanding of the distribution of
stresses in two-dimensional beams is further expanded. In addition, the choice of
Airy’s stress function is vital for satisfying the fourth order operator
otherwise, the analysis may be time consuming.

1.11.  POLAR COORDINATES 19
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Example 1.2 A large plate is subjected to a line of uniform distribution
of load acting on the edge as indicated. Determine the Airy’s stresses in polar
coordinates.

Solution:

Let the Airy’s function be

and

Using eqs. (1.63) on (1.62) follows thatt
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Therefore, eq. (c) satisfies Furthermore, the elastic stresses can be
defined in terms of trigonometric functions. According to eq. (1.58), the elastic
stresses in polar coordinates are

These results imply that the boundary conditions were correct. Combining
eqs. (b) and (f) provides the final expression for the load P and the constant a

Substituting eq. (i3) into (f) yields the radial stress

1.1 A thin sheet made of an aluminum alloy having
and was used for two dimensional surface strain measurements. The
measurements provided the strains as and

Determine the corresponding stress in Cartesian coordinates.
An element is shown below. [Solution:
and

1.12 PROBLEMS
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1.3 Calculate the diameter of a long wire that supports a weight of
200 Newton. If the wire stretches 2 mm, calculate the strain and the stress
induced by the weight. Let the modulus of elasticity be [Solution:

and

1.4 Derive an expression for the local uniform strain across the neck of a
round bar being loaded in tension. Then, determine its magnitude if the original
diameter is reduced 80%.

1.2 Determine a) the principal stresses and strains and b) the maximum
shear stress for the case described in Problem 1.1.

1.5 The torsion of a bar containing a longitudinal sharp groove may be
characterized by a warping function of the type [after F.A McClintock, Proc.
Inter. Conf. On Fracture of Metals, Inst. of Mechanical Eng., London, (1956)
538]

The displacements are and where and are the angle of
twist per unit length and the crack tip radius, respectively. The polar coordi-
nates have the origin at the tip of the groove, which has a radius (R). Determine

the shear strains and In addition, predict the maximum of the shear
strain [Solution: If then
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1.6 A cantilever beam having a cross-sectional area of is fixed at
the left-hand side and loaded with a 100 Newton downward vertical force at
the extreme end as shown in the figure shown below. Determine the strain in
the strain gage located at 8 cm from the fixed end of the shown steel cantilever
beam. The steel modulus of elasticity of is
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Chapter 2

INTRODUCTION TO
FRACTURE MECHANICS

2.1 INTRODUCTION

The theory of elasticity used in Chapter 1 served the purpose of illustrating the
close form of analytical procedures in order to develop constitutive equations for
predicting failure of crack-free solids [1]. However, when solids contain flaws or
cracks, the field equations are not completely defined by the theory of elasticity
since it does not consider the stress singularity phenomenon near a crack tip.
It only provides the means to predict general yielding as a failure criterion.
Despite the usefulness of predicting yielding, it is necessary to use the principles
of fracture mechanics to predict fracture of solid components containing cracks.

fracture mechanics is the study of mechanical behavior of cracked materials
subjected to an applied load. In fact, Irwin [2] developed the field of frac-
ture mechanics using the early work of Inglis [3], Griffith [4], and Westergaard
[5]. Essentially, fracture mechanics deals with the irreversible process of rup-
ture due to nucleation and growth of cracks. The formation of cracks may be
a complex fracture process, which strongly depends on the microstructure of
a particular crystalline or amorphous solid, applied loading, and environment.
The microstructure plays a very important role in a fracture process due to dis-
location motion, precipitates, inclusions, grain size, and type of phases making
up the microstructure. All these microstructural features are imperfections and
can act as fracture nuclei under unfavorable conditions. For instance, Brittle
Fracture is a low-energy process (low energy dissipation), which may lead to
catastrophic failure without warning since the crack velocity is normally high.
Therefore, little or no plastic deformation may be involved before separation
of the solid. On the other hand, Ductile Fracture is a high-energy process
in which a large amount of energy dissipation is associated with a large plastic
deformation before crack instability occurs. Consequently, slow crack growth
occurs due to strain hardening at the crack tip region.
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2.2 THEORETICAL STRENGTH

Consider the predicament of how strong a perfect (ideal) crystal lattice should be
under an applied state of stress, and the comparison of the actual and theoretical
strength of metals. This is a very laborious work to perform, but theoretical ap-
proximations can be made in order to determine or calculate the stress required
for fracture of atomic bonding in crystalline or amorphous crystals.

Assume a simple sinusoidal stress-displacement law with a half-period of 1/2
shown Figure 2.1 which predicts the simultaneous separation of atoms when the
atomic separation reaches a critical value.

For an ideal crystal subjected to a tensile load and a shear load, which
generates small displacements, the sinusoidal stress functions are

Thus, the maximum theoretical tensile stress becomes

The interpretation of Figure 2.1 is that the strength to pull atoms apart
increases with increasing atomic distance, reaches a maximum strength (peak
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strength) equals to the theoretical (cohesive) tensile strength and
then it decreases as atoms are further apart in the direction perpendicular to the
applied stress. Consequently, atomic planes separate and the material cleaves
perpendicularly to the tensile stress.

Assuming an elastic deformation process, Hooke’s law gives the tensile and
shear modulus of elasticity defined by

where Equilibrium atomic distance (Figure 2.2)

Combining eqs. (2.2) and (2.3) yields the theoretical fracture strength of
solid materials

Table 2.1 contains theoretical and experimental data for some elastic mate-
rials tested in tension.

The discrepancy between and values is due to the fact that the
sinusoidal model assumes a concurrent fracture of atomic bonding until the
atomic planes separate and is associated with plastic flow and dislocation
motion. Physically, the discrepancy is due to the presence of small flaws or
cracks on the surface or within the material.

Using the energy at fracture for a tension test, the fracture work per unit
area can be defined by a simple integral
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Letting be the total surface energy required to form two new fracture
surfaces and combining eqs. (2.4) and (2.6) yields the theoretical tensile strength
in terms of surface energy and equilibrium spacing

In addition, the atomic bonding in solids is related to bonding forces and
energies. The bonding forces are interatomic forces (repulsive and attractive
forces ) that bind the atoms together to form symmetrical arrays of atoms.
These forces as well as the potential energies depend on the interatomic spac-
ing or distance between adjacent atoms. Figure 2.2 schematically shows the
forces and the energies as functions of interatomic spacing (separation distance
between centers of two atoms) for two ideal atoms. In general, atoms are con-
sidered spherical electric structures having diameters in the order of
According to the theoretical plot depicted in Figure 2.2, both attractive and
repulsive forces act together to keep the atoms at their equilibrium spacing.
These forces depend on temperature and pressure.



2.3. STRESS-CONCENTRATION FACTOR 29

The potential or bonding energy and forces are defined by

where = Attractive constant = Repulsive constant
= Exponents

= Attractive and repulsive energies
= Attractive and repulsive forces

The curves in Figure 2.2 are known as Condon-Morse curves and are used
to explain the physical events of atomic displacement at a nanoscale. At equi-
librium, the minimum potential energy and the net force are dependent of the
interatomic spacing; that is, and However,
if the interatomic spacing is slightly decreased or perturbed by the
action of an applied load, a repulsive force builds up and the two atoms have
the tendency to return to their equilibrium position at On the other
hand, if an attractive force builds up so that

Conclusively, an array of atoms form a definite atomic pattern with respect
to their neighboring atoms and as a result, all atoms form a specific space
lattice consisting of unit cells, such as body-centered cubic (BCC), hexagonal.,
monoclinic and the like.

2.3 STRESS-CONCENTRATION FACTOR
Consider an infinite plate containing an elliptical hole with major axis 2a and
minor axis 2b as shown in Figure 2.3, where the elliptical and Cartesian coordi-
nates are and respectively. The equation of an ellipse, the Cartesian
coordinates, and the radius of curvature are given below, respectively

and

The radius of the ellipse is defined in terms of semi-axes by
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PROBLEM STATEMENT: It is desirable to derive the maximum elastic
stress component at an elliptical crack tip along the major axis when the
minor axis [7]. Inglis [3] who derived the elastic stress distribution
in an infinite plate studied this problem. When a remote stress is applied
perpendicular to the major axis 2a of the thin plate, the stress distribution
expression for tan elliptical hole shown in Figure 2.3 is [8]

where A =

B =
= Minimum radius at the end of the major a-axis

The resultant maximum axial stress at the edge of the ellipse is [3,9]

Here, is the stress-concentration factor and is the nominal stress or the
driving force. If then and for a hole. On the other
hand, if then is singular and it is meaningless, and a very
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sharp crack is formed since In addition, is used to analyze the a stress
at a point in the vicinity of a notch having a radius However, if a crack
is formed having the stress field at the crack tip is defined in terms of
the stress-intensity factor instead of the stress-concentration factor
In fact, microstructural discontinuities and geometrical discontinuities, such as
notches, holes, grooves, and the like, are sources for crack initiation when the
stress-concentration factor is sufficiently high. The degree of concentration of
the stresses or strains is determined as the stress-concentration factor.

Symmetric Circular Hole in Finite Plate: Figure 2.4 shows the dis-
tribution of the axial and transverse normalized stresses along the x-axis near
a circular hole in a wide thin plate loaded in tension. The equations for the
normalized stresses in this particular case are based on Grover’s analysis [10].

where R = Hole radius
= Nominal stress
= Transverse stress
= Axial stress
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2.4 GRIFFITH CRACK THEORY

Griffith [4] noted in 1921 that when a stressed plate of an elastic material con-
taining a crack, the potential energy decreased and the surface energy increased.
Potential energy is related to the release of stored energy and the work done by
the external loads. The “surface energy” results from the presence of a crack as
shown in Figure 2.5. This energy arises from a non-equilibrium configuration of
the nearest neighbor atoms at any surface in a solid [11-13].

PROBLEM STATEMENT: A large plate containing a crack is subjected
to a remote and uniform tensile load in the direction of the y-axis, and perpen-
dicular to the crack line along the x-axis. What is the external stress that will
cause crack instability (crack propagation) value?

Solution: Consider the configuration shown in Figure 2.5, which was used
by Griffith to estimate the specific surface energy and the decrease in potential
energy (upon using the stress analysis of Inglis [3]) when infinitely plate having
a through-thickness crack of length and it is loaded remotely from the crack
face.

Thus, the total potential energy of the system is given by [4]
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where U = Potential energy of the cracked body
= Potential energy of uncracked body
= Elastic energy due to the presence of the crack
= Elastic-surface energy due to the formation of crack surfaces

= One-half crack length
= = Total surface crack area

= Specific surface energy
E = Modulus of elasticity

= Applied stress and = Poisson’s ratio
= 1 for plane stress and for plane strain

The equilibrium condition of eq. (2.21) is defined by the first order partial
derive. The equilibrium condition of eq. (2.21) is defined by the first order
derivative with respect to crack length. This derivative is of significance because
the critical crack size may be predicted very easily. If the crack size
and total surface energy are, respectively

Rearranging eq. (2.23) gives a significant expression in linear elastic fracture
mechanics (LEFM)

The parameter is called the stress intensity factor which is the crack
driving force and its critical value is a material property known as fracture
toughness, which in turn, is the resistance force to crack extension [14]. The
interpretation of eq. (2.24) suggests that crack extension is brittle solids is
completely governed by the critical value of the stress-intensity factor defined
by eq. 2.25). In fact, equation is applicable to a specimen containing other
crack geometry subjected to a remotely applied tensile stress. Experimentally,
the critical value of known as fracture toughness, can be determined at a
fracture stress when the crack length reaches a critical or maximum value prior
to rapid crack growth . Thus, as when This
brief explanation is intended to make the reader be aware of the importance of
fracture mechanics in analyzing cracked components.

In addition, taking the second derivative of eq. (2.21) with respect to the
crack length yields
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Denote that represents an unstable system. Consequently, the
crack will always grow.

Combining eqs. (2.13) and (2.16) yields the axial stress equation along with

For a sharp crack and eq. (2.27) yields the maximum
axial stress as

Thus, the theoretical stress concentration factor becomes

In fact, the use of the stress-concentration approach is meaningless for char-
acterizing the behavior of sharp cracks because the theoretical axial stress-
concentration factor is as Therefore, the elliptical hole becomes
an elliptical crack and the stress-intensity factor is the most useful approach
for analyzing structural and machine components containing sharp cracks.

2.5 STRAIN-ENERGY RELEASE RATE

It is well-known that plastic deformation occurs in engineering metal, alloys and
some polymers. Due to this fact, Irwin [2] and Orowan [15] modified Griffith’s
elastic surface energy expression, eq. (2.23), by adding a plastic deformation
energy or plastic strain work in the fracture process. For tension loading, the
total elastic-plastic strain-energy is known as the strain energy release rate
which is the energy per unit crack surface area available for infinitesimal crack
extension [14]. Thus,

Here, Rearranging eq. (2.31) gives the stress equation as
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Combining eq. (2.25) and (2.31) yields

This is one of the most important relations in the field of linear fracture me-
chanics. Hence, eq. (2.33) suggests that represents the material’s resistance
(R) to crack extension and it is known as the crack driving force. On the other
hand, is the intensity of the stress field at the crack tip.

The condition of eq. (2.32) implies that before relatively slow
crack growth occurs. However, rapid crack growth (propagation) takes place
when which is the critical strain energy release rate known as the
crack driving force or fracture toughness of a material under tension loading.
Consequently, the fracture criterion by establishes crack propagation when

In this case, the critical stress or fracture stress and the critical
crack driving force can be predicted using eq. (2.32) when the crack is
unstable. Hence,

Griffith assumed that the crack resistance R consisted of surface energy only
for brittle materials. This implies that but most engineering materials
undergo, to an extent, plastic deformation so that Figure
2.5 shows a plastic zone at the crack tip representing plasticity or localized
yielding, induced by an external nominal stress. This implies that the energy

is manifested due to this small plastic zone in the vicinity of the crack tip.
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It is clear that the internal stresses on an element of an elastic-plastic bound-
ary are induced by plasticity and are temperature-dependent tensors. The stress
in front of the crack tip or within the plastic zone exceeds the local microscopic
yield stress, which may be defined as the theoretical or cohesive stress for break-
ing atomic bonds. If microscopic plasticity through activated slip systems does
not occur, as in glasses, then a linear elastic fracture is achieved as the con-
trolling fracture process. In essence, the fracture process is associated with
plasticity at a microscopic level.

If large plasticity occurs at the crack tip, then the crack blunts and its radius
of curvature increases. This plastic deformation process is strongly dependent on
the temperature and microstructure. Regardless of the shape of the plastic zone,
the irreversible crack tip plasticity is an indication of a local strain hardening
process during which slip systems are activated and dislocations pile up and
dislocation interaction occurs.

2.6 GRAIN-SIZE REFINEMENT

In addition, the grain size refinement technique is used to enhance the strength
and fracture toughness of body-centered cubic (BCC) materials, such as low
carbon steels. Letting a crack size be in the order of the average grain size

it can be shown that both yield strength and fracture toughness
depend on the grain size. Using the Hall-Petch equation for and

eq. (2.34) for it is clear that these stress entities depend on the grain size.
Hence,

where = Constant friction stress
= Dislocation locking term
= Constant

Denote that eqs. (2.35) and (2.36) predict that and
The slopes of these equations, and respectively, have the same units
and they may be assumed to be related to fracture toughness. However, is
referred to as the dislocation locking term that restricts yielding from a grain
to the adjacent one. Moreover, analysis of these equations for materials having
temperature and grain size dependency indicate that both and

as but due to the inherent friction stress so at a temperature

Furthermore, represents the stress required for dislocation motion along
slip planes in BCC polycrystalline materials. One can observe that for
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which means that is regarded as the yield stress of a single crystal.
However, and as is an unrealistic case. Therefore,
grain size refinement is a useful strengthening mechanism for increasing both

and At a temperature decreases since and also
decrease, and increases. Therefore, must decrease.

Briefly, if a dislocation source is activated, then it causes dislocation motion
to occur towards the grain boundary, which is the obstacle suitable for disloca-
tion pile up. This pile up causes a stress concentration at the grain boundary,
which eventually fractures when the local stress (shear stress) reaches a critical
value. Therefore, another dislocation sources are generated. This is a possible
mechanism for explaining the yielding phenomenon from one grain to the next.
However, the grain size dictates the size of dislocation pile-up, the distance dis-
locations must travel, and the dislocation density associated with yielding. This
implies that the finer the grains the higher the yield strength.

If a suitable volume of hard particles exists in a fine-grain material, the
yield stress is enhanced further since three possible strengthening mechanisms
are present. That is, solution strengthening, fine grain strengthening and par-
ticle (dispersion) strengthening. If these three strengthening mechanisms are
activated, then the Hall-Petch model is not a suitable model for explaining the
strengthening process, but the material strengthening is enhanced due to these
mechanisms. This suitable explanation is vital in understanding that the grain
size plays a major role in determining material properties such as the yield
strength and fracture toughness.

2.7 PROBLEMS

2.1 Show that the applied stress is when the crack tip radius is
Explain.

2.2 In order for crack propagation to take place, the strain energy is
defined by the following inequality where is the
crack extension. Show that the crack driving force at instability is defined by

2.3 One steel strap has a 3-mm long central
crack. This strap is loaded in tension to failure. Assume that the steel is
brittle having the following properties: E = 207 and

Determine a) the critical stress and b) the critical strain-
energy release rate.

2.4 Suppose that a structure made of plates has one cracked plate. If
the crack reaches a critical size, will the plate fracture or the entire structure
collapse? Explain.

2.5 What is crack instability according to Griffith criterion?
2.6 Assume that a quenched 1.2%C-steel plate has. a penny-shaped crack.

Will the Griffith theory be applicable to this plate?
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2.7 Will the Irwin theory be valid for a changing plastic zone size during
crack growth?

2.8 What are the major roles of the surface energy and the stored elastic
energy during crack growth?

2.9 What does happen to the elastic energy during crack growth?
2.10 What does mean?
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Chapter 3

LINEAR ELASTIC
FRACTURE MECHANICS

3.1 INTRODUCTION

Solid bodies containing cracks can be characterized by defining a state of stress
near a crack tip and the energy balance coupled with fracture. Introducing
the Westergaard’s complex function and will allow the development a signifi-
cant stress analysis at the crack tip. These particular functions can be found
elsewhere [1]. For instance, Irwin [2] treated the singular stress field by intro-
ducing a quantity known as the stress intensity factor, which is used as the
controlling parameter for evaluating the critical state of a crack.

The theory of linear-elastic fracture mechanics (LEFM) is integrated in this
chapter using an analytical approach that will provide the reader useful ana-
lytical steps. Thus, the reader will have a clear understanding of the concepts
involved in this particular engineering field and will develop the skills for a math-
ematical background in determining the elastic stress field equations around a
crack tip. The field equations are assumed to be within a small plastic zone
ahead of the crack tip. If this plastic zone is sufficiently small, the small-scale
yielding approach is used for characterizing brittle solids and for determining
the stress and strain fields when the size of the plastic zone is sufficiently smaller
than the crack length; than is, In contrast, a large-scale yielding is for
ductile solids, in which

Most static failure theories assume that the solid material to be analyzed
is perfectly homogeneous, isotropic and free of stress risers or defects, such as
voids, cracks, inclusions and mechanical discontinuities (indentations, scratches
or gouges). Actually, fracture mechanics considers structural components hav-
ing small flaws or cracks which are introduced during solidification, quenching,
welding, machining or handling process. However, cracks that develop in service
are difficult to predict and account for preventing crack growth.
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3.2 MODES OF LOADING

A crack in a body may be subjected to three different types of loading, which
involve displacements of the crack surfaces. The mechanical behavior of a solid
containing a crack of a specific geometry and size can be predicted by evaluating
the stress intensity factors and shown in Figure 3.1.

If crack growth occurs along the crack plane perpendicular to the direction of
the applied external loading mode, then the stress intensity factors are defined
according to the American Society for Testing Materials (ASTM) E399 Standard
Test Method as
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Here, and are trigonometric functions to be derived
analytically and was developed by Irwin [2].

Thus, specimens and structural components having flaws or cracks can be
loaded to various levels of the applied stress-intensity factor for a particular
stress mode shown in Figure 3.1. This is analogous to unflawed components
being loaded to various levels of the applied stress In fact, the parameters
and are the polar coordinates of a plastic zone that forms ahead of the crack
tip. If in Figure 3.1, then the stresses can be evaluated along the crack
plane.

The stress intensity factor (s) for a particular crack configuration can be
defined as a general function

where = I, II, III which stand for mode 1, mode 2, and mode 3, respec-
tively

The parameter can be used to determine the static or dynamic fracture
stress, the fatigue crack growth rate and corrosion crack growth rate. For elastic
material, the strain-energy release rate known as the crack driving force, is
related to the stress intensity factor and the modulus of elasticity as indicated
by the relationship given by eq. (2.34). For convenience, the relationship is

where = E for plane stress (MPa)
for plane strain (MPa)

E = Elastic modulus of elasticity (MPa)
= Poisson’s ratio

This expression, eq. (3.5), is a fundamental mathematical model in the
fracture mechanics field, specifically for mode I.
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3.3 WESTERGAARD’S STRESS FUNCTION

Using mode I as a basis, the coordinate system defining a double-ended crack
in a complex form is shown in Figure 3.2. This is a classical representation of
Westergaard’s approach for developing stress functions near an elliptical crack
of total length

The Airy’s complex function and Westergaard’s complex function are, re-
spectively [1,11]

where Re = Real part
Im = Imaginary part
Z = Analytic stress function

Below are some supportive and useful expressions for developing the elastic
stress functions. Hence,
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For the ellipse in Figure 3.2, the complex function and its conjugate are,
respectively

and

Furthermore, the Cauchy-Riemann equations in some domain D are
considered fundamental and sufficient for a complex function to be analytic in
D. Letting then the Cauchy-Riemann important theorem
states that and so that the function be
analytic. The Cauchy-Riemann condition is of great practical importance for
determining elastic stresses. Hence,

which must be satisfied by an Airy’s stress function. The operator in
rectangular and polar coordinates takes the form

Assume that the Airy’s partial derivatives given by eq. (1.9) are applicable
to elastic materials. Hence,

Thus,
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Substituting eq. (3.19) into eq. (3.18) along with yields the Wester-
gaard’s stresses in two-dimensions

These are the stresses, eq. (3.20), that were proposed by Westergaard as
the stress singularity field at the crack tip. However, additional terms must be
added to the stress functions, eq. (3.20), analytic over an entire region, for an
adequate representation of a stress field adjacent to the crack tip. This implies
that when solving practical problems, additional boundary conditions must be
imposed on the stresses. This leads to the well-known boundary value problem
in which the boundary value method (BVM) is an alternative technique to
the most commonly finite element method (FEM) and finite difference method
(FDM). Therefore, the original Westergaard’s stresses no longer give a unique
solution and the analysis of the stress field in a region near the crack tip is of
extreme importance.

Consider a classical problem in fracture mechanics in which a plate con-
taining an elliptical crack, as shown in Figure 3.2, is subjected to biaxial stress,

where the Westergaard’s stress function applies to this
problem [1].

3.3.1 FAR-FIELD BOUNDARY CONDITIONS

The function Z is considered to be analytic because its derivative is
defined unambiguously and the origin is located at the center of the ellipse
(Figure 3.2). Let the Westergaard’s complex function be defined by [1]
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However, the far-field boundary conditions require that and
Consequently, eq. (3.21) becomes

from which and Substituting eq. (3.22) into (3.20)
yields

On the crack surface: If y = 0 and for then Re Z = 0
and Therefore, Z is not an analytical function because it does
not have a unique derivative at a point.

3.3.2 NEAR-FIELD BOUNDARY CONDITIONS

Locate the origin at the crack tip in Figure 3.2 so that the Westergaard complex
function becomes [1]

The near-field boundary conditions are near the crack tip and
where N is a real number. Hence, eq. (3.24) becomes

from which the real and imaginary parts are extracted as



46 CHAPTER 3. LINEAR ELASTIC FRACTURE MECHANICS

The stresses, eq. (3.20), along the crack line, where and take
the form

If the plastic zone ahead of the crack tip is then the stress becomes
This stress defines what is referred to as “a singularity state of stress.”

which is in the order of along the x-axis.
Substituting eq. (3.3.27) into (3.1) yields the stress intensity factor for in-

finite specimen dimensions (uncorrected) and finite specimen dimensions (cor-
rected) under mode I, respectively

where = Crack geometric correction factor
= Specimen width

The function makes the surface traction stresses vanish [4]. If
then Hence, eq. (3.29) reduces to (3.28). In addition,

has units in MPa or ksi . The expression, eq. (3.28), is for an infinite
(large) plate and it is a linear function of the applied stress and it increases
with initial crack size This is shown in Figure 3.3.
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The onset of crack propagation is a critical condition so that the crack a)
extends suddenly by tearing in a shear-rupture failure or b) extends suddenly
at high velocity for cleavage fracture. All this means that the crack is unstable
when a critical condition exists due to an applied load. In this case, the stress
intensity factor reaches a critical magnitude and it is treated as a material prop-
erty called fracture toughness. For sufficiently thick materials, the plane strain
fracture toughness is a material property that measures crack resis-
tance. Therefore, the fracture criterion by states that crack propagation
occurs when which defines a failure criterion for brittle materials.

This simply implies that the crack extends to reach a critical crack length
defining a critical state in which the crack speed is in the magnitude

of the speed of sound for most brittle materials. In fact, the LEFM theory is
well documented and the ASTM E399 Standard Testing Method, Vol. 03.01,
validates the data and assures the minimum thickness through Brown and
Strawley [27] empirical equation

3.4 SPECIMEN GEOMETRIES

In general, the successful application of linear elastic fracture mechanics to struc-
tural analysis, fatigue, and stress corrosion cracking requires a known stress in-
tensity factor equation for a particular specimen configuration. Cracks in bodies
of finite size are important since cracks pose a threat to the instability and safety
of an entire structure.

If mode I loading system is considered, then it is important to determine
the applied stress intensity factor and the plane strain fracture toughness

for a specific geometry in order to assess the safety factor for the cracked
body. In fact, mode I (opening) loading system is the most studied and eval-
uated mode for determining the mechanical behavior of solids having specific
geometries exposed to a particular environment. Some selected and practical
crack configurations are shown in Table 3.1.

3.4.1 THROUGH-THE-THICKNESS CENTER CRACK

This is a commonly encountered crack configurations under a remote applied
stress as shown in Table 3.1. The geometric correction factor expression is
given in Table 3.1 and graphically shown in Figure 3.4 as per different authors
cited below. For a finite width plate, the geometric correction factor is defined
by
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Example 3.1 A large plate containing a central crack
long is subjected to a tension stress as shown in the figure below. If the crack
growth rate is 10 mm/month and fracture is expected at 10 months from now,
calculate the fracture stress. Data:

Example 3.2 A large and thick plate containing a though-the-thickness cen-
tral crack is 4-mm long and it fractures when a tensile stress of is ap-
plied. Calculate the strain-energy release rate using a) the Griffith theory and
b) the LEFM approach. Should there be a significant difference between results?
Explain. Data: and
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Solution:
If the crack growth rate is defined by

Then

Now, the fracture stress can be calculated using eq. (3.29). A large plate
implies that and from Table 3.1 the geometric correction factor becomes

Thus, the fracture stress is



Solution:
The total crack size is a) Using eq. (2.35) yields

b) Using eq. (3.29) along with and gives

These results indicate that there should not be any difference because either
approach gives the same result.

This section deals with elliptical and circular cracks. According to Irwin’s analy-
sis [13] on an infinite plate containing an embedded elliptical crack (Figure 3.5)
loaded in tension, the stress intensity factor is defined by

which can be evaluated at a point on the perimeter of the crack. This point
is located at an angle with respect to the direction of the applied tensile stress.
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From eq. (2.34),

3.4.2 ELLIPTICAL CRACKS
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In addition, the elliptical integral of the second kind is of the form

If the ellipse becomes a circle and eq. (3.33) takes the form

This expression, eq. (3.35), is the equation for a circular internal crack
of radius (also known as penny-shaped crack) developed by Sneddon [15]. In
this case, the correction factor for a round crack is simply given by
Actually, eq. (3.35) can also be used for a specimen containing semicircular
surface flaw.

Furthermore, values of can be found in mathematical tables or approxi-
mated by expanding eq. (3.34) in a Taylor’s series form [6]. Hence,

Neglecting higher terms in the series, the margin of error is not significant;
and therefore, the correction factor can further be approximated using the
first two terms in the series given by eq. (3.36). Thus,

Inserting eq. (3.37) into (3.33) and evaluating the result on the perimeter of
the ellipse yields



The stress intensity factor for a plate of finite width being subjected to a uniform
and remote tensile stress (mode I) is further corrected as indicated below [21,24]

where M = Magnification correction factor
= Front face correction factor [21,24] shown in Figure 3.6b

= Applied hoop stress or design stress as per Figure 3.6
Q = Shape factor for a surface flaw 
P = Internal pressure (MPa)

Combining eqs. (3.37), (3.42) and (3.43) yields a convenient mathematical
expression for predicting the shape factor
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The condition is vital in evaluating elliptical crack behavior because
can be predicted for crack instability.

3.4.3 PART-THROUGH THUMBNAIL SURFACE FLAW
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Manipulating eq. (3.44) and rearranging it yields an expression for predicting
the elliptical axes ratio when the shape factor is known. Thus,

3.7.
Equation (3.345) can be used to plot a series of curves as shown in Figure
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The Magnification correction factor takes the form [21-22, 24]

If a back free-surface correction factor of 1.12 and plastic deformation are
considered, then eq. (3.41) is further corrected as

Example 3.3 A steel pressure vessel (Figure 3.6) is subjected to a hoop
stress of perpendicular to the crack depth acts as a tensile stress.
The vessel has an internal semi-elliptical surface crack of dimensions

a) Use eq. (3.42) to calculate b) Will
the pressure vessel leak? Explain. Use the following data: and

Solution:
a) The following parameters are needed for calculating the stress-intensity

factor.  Thus,

B = 6 mm.



The plastic zone size can be determined using eq. (3.1) along
This implies that a plastic zone develops as long as the material yields ahead of
the crack tip. Thus,

Collecting all correction factor gives

Designing thin-wall pressure vessels to store fluids is a common practice in
engineering. By definition, a thin-wall pressure vessel requires that the plate
thickness (B) be small as compared with the vessels internal diameter (d); that
is, or as shown in Figure 3.6. If curved plates are welded
to make pressure vessels, the welded joints become the weakest areas of the
structure since weld defects can be the source of cracks during service.

Accordingly, the internal pressure P acts in the radial direction (Figure 3.6)
and the total force for rupturing the vessel on a diametral plane is where

is the projected area. Assuming that the stress across the thickness and that
the cross-sectional area is A = 2BL, the force balance is
which gives eq. (3.43). The hoop stress is the longitudinal stress and the
transverse stress is half the longitudinal one. These stress are principal stresses
in designing against yielding. Normally, the design stress is the hoop stress
divide by a safety factor in the range of 1 < SF < 5.

For welded joints in pressure vessels, a welding efficient, can
be included in the hoop stress expression to account for weak welded joints [28].
Thus, eq. (3.43) becomes
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b) The pressure vessel will not leak because but extreme caution
should be taken because Thus, the safety factor is

If then leakage would occur.

3.4.4 LEAK-BEFORE-BREAK CRITERION

Let’s assume that internal surface cracks develop at welded joints or at any
other area of the vessel. In such a scenario, the leak-before-break criterion



proposed by Irwin et al. [26] can be used to predict the fracture toughness of
pressure vessels. This criterion allows an internal surface crack to grow through
the thickness of the vessel so that for leakage to occur. This means
that the critical crack length must be greater than the vessel thickness; that is,

Assuming a semicircular through the thickness crack the effective crack
length is defined as

The fracture toughness relationship between plane stress and plane strain
conditions to establish the leak-before-break criterion may be estimated using
an empirical relationship developed by Irwin et al. [26]. Thus, the plane stress
fracture toughness is and

Irwin’s expression [26] for plane stress fracture toughness is derived in Chap-
ter 5 and given here for convenience. Thus,

Combining eqs. (3.48) and (3.49) along with as the critical condition
and yields the leak-before-break criterion for plane strain condition

Example 3.4 A pressure vessel made of Ti-6Al-4V alloy using a welding
fabrication technique is used in rocket motors as per Faires [28]. Helium (He)
is used to provided pressure on the fuel and lox (liquid oxygen). The vessel
internal diameter and length are 0.5 m and 0.6 m, respectively, and the internal
pressure is Assume a semicircular crack develops, a welding efficiency
of 100% and a safety factor of 1.6 to calculate the thickness uniform thickness
of the vessel. Use the resultant thickness to calculate the fracture toughness
according to eq. (3.50). Select a yield strength of
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Use of this criterion requires that the vessel thickness meets the yielding
requirement to withstand the internal pressure and the ASTM E399 thickness
requirement.

Solution:

The design stress against general yielding is

From eq. (3.48),



Another commonly encountered surface crack configuration under a remote ap-
plied tension, torsion or a combined loading system is shown in Figure 3.8.
However, the mixed-mode interaction is of great interest in this section.

Hence, the stress intensity factors for the loading system illustrated in Figure
3.8 are
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From eq.(3.50),

From eq. (3.49a),

In summary, select the proper heat treatment for Ti-6Al-4V alloy so that
and According to theses results,

AerMet 100 meets the design requirements.

3.4.5 RADIAL CRACKS AROUND CYLINDERS
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The correction factors, and were derived by Koiter and
Benthem [14] as

The crack length (size) is estimated as

Example 3.5 Two identical high-strength steel rods are prepared for a ten-
sion test at and one for torsion at Calculate and
The rod dimensions are and If a)

For an applied torque T, the torsional shear stress becomes
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Will the rods fracture? Explain, b) Calculate the theoretical fracture tensile and
torsion stresses if fracture does not occur in part a). Use

Solution:

a) The crack length and the radius ratios are, respectively

From eqs. (3.54) and (3.55) or Figure 3.8,

Hence, the applied stress intensity factors are calculated using eqs. (3.51)
and (3.52)

Therefore, neither rod will fracture since both stress intensity factors are
below their critical values; that is, and

b) The fracture stress are

3.5 FRACTURE CONTROL

Structures usually have inherent flaws or cracks introduced during 1) welding
process due to welds, embedded slag, holes, porosity, lack of fusion and 2) service
due to fatigue, stress corrosion cracking (SCC) , impact damage and shrinkage.

A fracture-control practice is vital for design engineers in order to assure the
integrity of particular structure. This assurance can be accomplished by a close
control of

Given data:

and
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1)
2)
3)

Design constraints
Fabrication
General yielding

4)
5)
6)

Maintenance
Nondestructive evaluation (NDE)
Environmental effects

The pertinent details for the above elements depend on codes and proce-
dures that are required by a particular organization. However, the suitability
of a structure to brittle fracture can be evaluated using the concept of fracture
mechanics, which is the main subject in this section. For instance, the elapsed
time for crack-initiation and crack-propagation determines the useful life of a
structure, for which the combination of an existing crack size, applied stress,
and loading rate may cause the stress intensity factor reach a critical value.

In order to describe the technical aspects of a fracture control plan, consider
a large plate (infinite plate) with a certain plane strain fracture toughness
so that for a stable crack. Thus, the typical design philosophy [8]
uses eq. (3.28) or (3.29) as the general mathematical model in which is
the maximum allowable crack size in a component, is the design stress, and
is the applied stress intensity factor. However, the minimum detectable crack
size depends on the available equipment for conducting nondestructive tests,
but the critical crack size can be predicted when the stress intensity factor
reaches a critical value, which is commonly known as the plane strain fracture
toughness for thick plates. In fact, can be taken as
the material fracture constraint; otherwise, the crack becomes unstable when it
reaches a critical length, which is strongly controlled by Thus,
solving eqs. (3.29) for the critical crack length yields

This expression implies that the maximum allowable crack length depends
on the magnitude of and the applied stress Conclusively, crack
propagation occurs when the applied stress intensity factor is equal or greater
than fracture toughness, for plane strain or for plane stress
condition.

A typical fracture-control plan includes the following

Plane strain fracture toughness, Actually, the applied stress inten-
sity factor must be so that it can be used as a constraint, and
the designer controls it. This design constraint assures structural integrity
since crack propagation is restricted.

Use of the following inequality for brittle materials
assures that the thickness of designed parts do not fall below a minimum
thickness

If use of welding is necessary, then it must be used very cautiously since it
can degrade the toughness of the welded material especially in the heat-
affected zone (HAZ), which may become brittle as a consequence of rapid
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cooling leading to smaller grains. Consequently, flaws development is
detrimental to the structure or component since the local stresses may
amplify at the crack tip.

The environment in which a structure is put into service. For instance,
a corrosive environment may degrade the structure by developing stress
corrosion cracks (SCC).

Limitations of the allowable crack size can be predicted by eq. (3.57)

Use of nondestructive test (NDT) techniques. NDT techniques must be
employed in order to avoid catastrophic failure by examining structural
components for flaws or cracks.

The literature has a vast amount of fracture toughness data for many ma-
terials used in engineering construction. For convenience, Table 3.2 is included
in this chapter to provide the reader with typical fracture toughness data for
some common materials. More mechanical properties are given in Tables 9.2,
10.1 and Appendix A.

3.6 PLANE STRESS VS. PLANE STRAIN

It is clearly shown in Figure 3.9 how fracture toughness is strongly dependent
on the material thickness up to a limiting value. For a thin plate, plane stress
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condition governs the fracture process because the plate is too thin to
sustain through-the-thickness stress.

For a thick plate, plane strain condition prevails in which
becomes a material’s property. It is this property, that the designer must
use to assure structural integrity. The characteristics of a fracture surface, as
schematically indicated in Figure 3.9, vary between both plane stress and plane
strain modes of fracture. The former fracture mode shows a slant fracture (shear
lips at approximately 45°) as an indication of partial ductile fracture, and the
latter exhibits a flat fracture surface as a representation of brittle fracture. Any
combination of these modes of fracture leads to a mixed mode fracture surface.
In addition, plane stress fracture toughness is related to metallurgical
features and specimen geometry, and plane strain fracture toughness
depends only on metallurgical features and temperature.

The effect of plastic zone size to plate thickness and macroscopic fracture
surface appearance is also taken into account. For instance, plane stress-state is
associated with a maximum toughness and slant fracture, and plane strain-state
is related to a minimum toughness and flat fracture. Therefore, plane stress or
plane strain condition depends on

Since the plane strain fracture toughness is a property for a given
material, the applied stress level exhibits a dependency on the crack size. This
is schematically shown in Figure 3.10 for two hypothetical materials. Notice
that both and influence the stress and the curve is shifted upwards at
higher level. This means that ductility also has a major influence on the
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stress and Let curves A and B represent failure trends at two different
conditions. The interpretation of Figure 3.10 indicates that there exists an
initial crack size at the yield stress loading for material A. In fact, a
similar assessment applies to material B.

This fracture phenomenon proceeds in a stable manner, provided that both
crack size and applied stress are within a controllable range such as
and Furthermore, crack instability occurs when and

This schematic representation of crack growth applies to both A and
B curves, which represent the fracture behavior of two hypothetical materials.

Conclusively, the higher the greater since the resistance to fracture
is controlled by the level of the plane strain fracture toughness. Hence, for the
hypothetical materials included in Figure 3.10,

This implies that material A allows a smaller crack extension
than material B. Although material B is the most attractive for engineering
applications, its mechanical behavior can be significantly affected by changes in
temperature and a corrosive environment. In addition, the solid curves represent
ideal elastic behavior, but most materials exhibit plasticity due to the yielding
phenomenon.
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It is very common in machine parts to have a combination of stress loadings
that generate a combination of stresses on the same part. Of particular interest
in this section are the cases depicted in Figures 3.6 and 3.11. Each case has the
same stress-field distribution described by the local stresses such as and

Consequently, the principle of superposition requires that the total stress
intensity factor be the sum of each stress intensity factor components
[6,24].

3.7 PRINCIPLE OF SUPERPOSITION

The individual and total stress intensity factors for the cases cited in Figures
3.6 and 3.11 are

PRESSURE VESSEL (Figure 3.6)

The total stress intensity factor along with eq. (3.43) is defined by

where the correction factor for this combined stress loading is
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If a plate containing a single-edge cracked is subjected to both tension and
bending stresses, then the total stress intensity factor

is

where = Correction factor for bending load
M = Bending moment (m.MN)
F = Bending force
L = Length of the plate or beam

The correction factor for a bending load can be determined from Figure 3.12
or calculated using eq. (3.62), which is a curve fitting function based on Paris
and Sih [25] data for notched beams. Hence,

3.7.1 SINGLE-EDGE CRACKED PLATE (Figure 3.11)
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Example 3.6 A round vessel made of AISI 4147 is pressurized at 379 M P A
and it has an internal semi-elliptical surface crack 5-mm deep and 10-mm long.
The diameter and thickness are 0.5 m and 25 cm, respectively. In order to
account for the effects of both the applied pressure and the hoop stress, calculate
a) the stress intensity factor. Will the pressure vessel fracture or leak? b)
Determine the maximum pressure that would cause leakage, and c) plot the
correction factor vs. the shape factor.

Solution:
Given data: B = 25 cm,

From Table 3.2,

a) The hoop stress is

Using eq. (3.44) yields the shape factor

Using eq. (3.59) gives the total stress-intensity factor

Therefore, leakage will not occur because

c) From eq. (3.59), the maximum pressure is
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d) Inserting the given variables into eq. (3.60) yields the following simplified
expression

which is plotted in the figure below. Denote that the general geometric cor-
rection factor is strongly dependent on the shape factor up to approximately
Q = 0.5.
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3.8 PROBLEMS

3.1 A steel strap 1-mm thick and 20-mm wide with a through-the-thickness
central crack 4-mm long is loaded to failure, a) Determine the critical load
if for the strap material, b) Use an available correction
factor, for this crack configuration and calculate the critical stress
as

3.2 A steel tension bar 8-mm thick and 50-mm wide with an initial single-
edge crack of 10-mm long is subjected to an uniaxial stress a)
Determine the stress intensity factor Is the crack stable? b) Determine
the critical crack size, and c) determine the critical load. Data:

[Solution: a) b) 31.1 mm, and c)

3.3 A very sharp penny-shaped crack with a diameter of  is com-
pletely embedded in a highly brittle solid. Assume that catastrophic fracture
occurs when a stress of is applied. a) What is the fracture toughness
for this solid? (Assume that this fracture toughness is for plane strain condi-
tions). b) If a sheet 5-mm thick plate is prepared for fracture-toughness testing,
Would the fracture-toughness value [(calculated in part a)] be an acceptable
number according to the ASTM E399 standard? Use c)
What thickness would be required for the fracture-toughness test to be valid?

3.4 A One guitar steel string has a miniature circumferential crack of
    deep. This implies that the radius ratio is almost unity, b)
Another string has a localized miniature surface crack (single-edge crack like) of

deep. Assume that both strings are identical with an outer diameter
of   If a load of 49 N is applied to the string when being tuned, will it
break? Given data: and

3.5 A 7075-T6 aluminum alloy is loaded in tension. Initially the
thick,         wide and          long plate has a  single-edge through–
the-thickness crack. a) Is this a valid test? b) Calculate the maximum allowable
tension stress this plate can support. c) Is it necessary to correct due to
crack-tip plasticity? Why? or Why not? d) Calculate the design stress and then
stress intensity factor if the safety factor is 1.5. Use the following properties:

and [Solution: a) It is a valid test
because B(ASTM) < B(actual), b) c) It is not necessary because

and d) and

3.6 A steel plate (   thick, wide, and  long) is in tension. It
is operated below its ductile-to-brittle transition temperature (with

If a  long through the-thickness central crack is present,
calculate a) the tensile stress for catastrophic failure. Compare this stress with
the yield strength of b) Determine the safety factor.
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3.7 Show that the following inequality is valid for crack insta-
bility in a large plate under a remote external tension stress.

Use the principle of superposition to show that the total stress intensity
factor is defined by

3.9 A pressure vessel is to be designed using the leak-before-break cri-
terion based on the circumferential wall stress and plane-strain fracture tough-
ness. The design stress is restricted by the yield strength and a safety factor
(SF). Derive expressions for a) the critical crack size and b) the maximum al-
lowable pressure when the crack size is equals to the vessel thickness.

3.8 The plate below has an internal crack subjected to a pressure P on the
crack surface. The stress intensity factors at points A and B are
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Chapter 4

ELASTIC FIELD
EQUATIONS

4.1 INTRODUCTION
Linear elastic fracture mechanics (LEFM) and a quasi-static load action are
considered in this chapter in order to derive the stress, strain, and displacement
field equations adjacent to a crack tip. The field equations can be derived in
series form using rectangular and polar coordinates. Any dynamic or local un-
loading is neglected in the foregoing mathematical procedures for modeling the
plastic zone being as a circle with different radius It is intended henceforward
to demonstrate that the trigonometric functions and have increasing
terms as the radius increases. However, the irreversible action that takes place
at the crack tip suggests that a few terms in a series expansion may be needed
for characterizing the crack tip field equations.

4.2 FIELD EQUATIONS: MODE I

The analytical approach used in this chapter is based on a very small plastic
zone where higher-order terms in the plastic zone size is neglected because
the field equations are valid and exact for Consider the small plastic zone
adjacent to the crack tip shown in Figure 4.1. Generalizing eq. (3.1) in series
form along with yields the Westergaard’s complex functions Z
and as [1]
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with N being a real number and

The real and imaginary parts [consult eq. (3.9)] for the Airy’s complex
function defined by eq. (3.6) are

The stresses in complex form as per eq. (1.40), (3.18) or (3.20) are
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Inserting eq. (4.7) through (4.10) into (4.11) yields the stresses in series form
with

Assume that a small-scale yielding phenomenon takes place in elastic solids
and that the crack can be treated as a semi-infinite defect. Thus, eq. (4.1)
or (4.2) indicates that the number of terms in the series and the amount of
experimental data decrease when as

Let in eq. (4.12) so that the first order stress field equations for mode
I become

The stress in the z-direction is of particular interest because it defines plane
conditionsas defined eqs. (1.34) and (1.35). Hence, for plane stress and
for plane strain

Additionally, letting the angle be implies that the crack grows along
the x-axis and only one term is needed for characterizing the crack tip stress
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field, which is independent of specimen size and geometry. In this case, eqs.
(4.13) and (4.15) become

Figure 4.2 depicts the trigonometric trends of the functions given in eq.
(4.13) and (4.15). This is to shows the reader how these functions vary with
increasing angle

Substituting eq. (4.13) into (1.10) and (1.11), and the resultant expressions
into (1.4) yields strain and displacement field equations

Equation (4.18) indicates that the displacement is singular since only
and as Therefore, is the only displacement

singularity in the order of Chona [2] has shown that the circular plastic
zone in Figure 4.1 extends only a distance of 0.02a from the crack tip. Therefore,
the above field equations give an approximation to the stress intensity factor
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Figure 4.3 shows the distribution of the displacements as functions of the
angle in radians for

In addition, the thickness is defined below using as the z-axis since is
utilized as a complex function in Chapter 3

4.3 FIELD EQUATIONS: MODE II
Deriving the stress and displacement field equations in shear mode II is of par-
ticular importance for analyzing mixed-mode systems. Assuming that the crack
is loaded with a remote shear stress interesting results can be determined. Let
the Westergaard’s complex functions Z, and along with
be defined by
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Combining eqs. (4.4) (4.5) into (4.20) through (4.22) gives

From which the real and imaginary parts are

The Airy’s stress function for the sliding shear mode can be defined by [1]

According to eq. (3.18) without body forces and eq. (4.32), the
stress equations become
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or

The first terms in the series are sufficient to obtain accurate results. Thus,
let in eq. (4.34) along with to get

Substituting eq. (4.35) into (1.10) and (1.11), and the resultant expressions
into (1.4) yields strains and displacements functions
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4.4 SERIES IN POLAR COORDINATES

4.4.1 MODE I AND II LOADING CASES

Consider an elastic plate containing a single-edge crack subjected to a quasi-
static tension loading shown in Figure 4.4 [5-6]. In the absence of body forces,
equilibrium is satisfied through the Airy stress function in polar coordinates. In
a two-dimensional analysis, the stresses in polar coordinates defined in Chapter
1 are

According to Figure 4.4, the boundary conditions for a single-edge crack are

[5]

Using the Product Method yields the following Airy stress function [7]

Substituting eq. (4.40) into (1.62) yields an expression in terms of the eigen-
value Thus, the resultant expression is a fourth-order partial deferential
homogeneous equation with
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The general solution of this high order polynomial is

with the following boundary conditions: and for
Using a homogeneous equation with constant coefficient technique, the following
general function is used to determine the eigenvalue

where = Constants
= Roots

Hence, eq. (4.43) gives

Substituting these derivatives into eq. (4.42) and (4.43) into(4.41) yields a
fourth order polynomial

The solution of eq. (4.44) is gives four roots defined by

which satisfies eq. (4.44) since each root yields In addition, the sym-
metric and antisymmetric parts of eq. (4.42) for mode I and II are, respectively
[5]
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Setting the determinants of eqs. (4.47) and (4.48) to zero along with the
trigonometric function 2 sin A cos B = sin (A + B) sin (A – B) yields

If then sin and the solution of eq. (4.49) is a
characteristic equation of the form

which has only real roots for where The constants
in eq. (4.47) and (4.48) take the form [5]

Substituting eqs. (4.51) into (4.42) and the resulting expression for
is substituted back into (4.40) yields the Airy stress function power series form
along with and

Substituting eq. (4.52) into (4.38) yields the elastic stresses for mode I
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with

Simplifying eqs. (4.53) through (4.57) with gives the dominant stresses
adjacent to the crack tip for This means that a single term in the series
is sufficient to determine the stress field equations. Thus,

and

For convenience, the distribution of normalized stresses per eq. (4.58) is
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Consider a single-edge crack model shown in Figure 4.6 and related radial
and circumferential displacement and respectively. The strains are de-
fined by

For convenience, Hooke’s law for plane conditions gives the following strain
expressions
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Substitute eqs. (4.58) and (4.59) into (4.61) and (4.62), and solve for and
Then, substitute these strains into eq. (4.60) and integrate the strains to

get the displacement expressions. Thus,

and

where the constant is defined by

4.4.2 MODE III LOADING CASE

Consider a solid body bounded by two intersecting planes as indicated in Figure
4.7 where the stresses and strains are independent of the coordinate since

and but and
In polar coordinates, and Figure 4.7 shows the antiplane stress
components and Figure 4.8 depicts cracks under mode III action by torsion.
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Hooke’s law in polar coordinates (Figure 4.7) gives the shear stresses as

The equilibrium equation, the bipotential equation and the boundary con-
dition for are, respectively
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Now assume that the out-of-plane displacement is defined by [5]

Letting and taking the derivatives needed in eq. (4.69), and
simplifying the resultant expression yields the governing second order differential
equation

The solution of eq. (4.72) can be determined by letting the function g be
defined by

Thus, eq. (4.72) yields

Inserting eq. (4.75) into (4.73) gives the characteristic equation as the so-
lution of eq. (4.72) needed for determining the antisymmetric displacement
when

Differentiating eq. (4.76) generates the boundary condition expression, which
in turn is the characteristic equation

Let in eq. (4.78) in order to simulate a crack in a solid body (Figure
4.5) under mode III loading. Consequently, the eigenvalues take the form
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Clearly, eq. (4.78) becomes

Consequently, the antisymmetric displacement along the crack line and the
respective shear stresses defined by eqs. (4.71) and (4.67), respectively, become

The normalized shear stress distribution is depicted in Figure 4.9. Notice
that these stresses, eqs. (4.83) and (4.84), have an opposite distribution because
the trigonometric terms in the equations

The constant  for becomes [5]
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The parameter in eqs. (4.82) through (4.84) corresponds to the dominant
term in the series. So far the mechanics framework for including higher order
terms in the stress series has been described for a purely linear-elastic stress
field at the crack tip. This analytical treatment allows a small plastic zone
and predicts the shear stress field. Furthermore, is the antiplane stress
intensity factor. Recall that G is the shear modulus of elasticity defined by eq.
(1.9).

However, the only nonzero stress is at Thus,

Thus far, the reader should have a clear understanding of the complexity of
fracture mechanics. For instance, the field equations being derived are for elastic
materials so that the linear elastic fracture mechanics (LEFM) approach can
easily be applied to crack-related problems. This is a subject well documented
in the literature.

All the stress, strain and displacement field equations have the plastic zone
size in common. This implies that LEFM allows some degree of plasticity
adjacent to the crack tip. However, the constraint is that the plastic zone size
must be much smaller than the crack length; that is, otherwise, LEFM
would not be valid in solving fracture mechanics problems. If then the
plastic fracture mechanics (PFM) approach becomes very useful. This subject
will be dealt with in a later chapter.

4.5 HIGHER ORDER STRESS FIELD

The assume that the damage ahead of the crack tip is characterized by second
order local stresses, which are dependent of specimen size and geometry as
opposed to the first order terms. Consequently, the stress field are no longer
singular as and the second order term in the series of expansion is known
in the literature as the T-stress for elastic behavior which accounts for effects of
stress biaxiality. Several T-stress solutions are available in the literature [8-14].

For elastic-plastic and fully plastic materials, the second order term is also
known as the J-Q approach [8]. In particular, O’Dowd and Shih [15-16] can be
consulted for obtaining details of the J-Q theory which describes the fundamen-
tals that provide quantitative measures of the crack tip deformation. Neverthe-
less, the term Q accounts for plasticity in the triaxiality state crack tip stress
field.

Considering a mixed mode fracture process and the effects of the T-stress in
cracked bodies, the asymptotic stress state at the crack tip can be determined by
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adding eqs. (4.13) and (4.35) and T-stress. Thus, for mode I and II interaction
the stresses are

With regard to the T-stress theory, Larsson and Carlsson [17] and Sherry et
al. [18] defined as the non-singular stress that acts in the direction parallel
to the crack plane and it is given as [19]

For the stress state eq. (4.89) becomes

and for pure mode I loading, T-stress becomes

In fact, this equation is the modified stress function in eq. (4.13). More-
over, Leevers and Radon [20] defined to be independent of the stress intensity
factor as

where = Remote applied stress

Similarly, for pure mode II, the T-stress is [14]

In addition, in eq. (4.93) is the dimensionless stress biaxiality ratio given
as [20]
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For convenience, the geometric correction factors and biaxiality. ratios for
some common specimen configurations are

Single-edge cracked plate (SET) in tension (Table 3.1) with
and [12]:

Double-edge cracked plate (DET) in tension (Table 3.1) with
and [12]:

Double-edge cracked plate (DET) in tension (Table 3.1) with
and [12]:

Double cantilever beam (DCB) in tension (Figure 6.5) [12]:

where P = Load per unit length

Compact tension (CT) specimen in tension (Table 3.1) with
and [18]:
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The significance of the T-stress can be explained by plotting, say, eq. (4.101)
along with eq. (4.102) as shown in Figure 4.10 for a double-edge cracked plate
(DET) (Table 3.1) with and [12]. For the local
crack tip stresses are below the limits predicted by the small-scale yielding since
the is in the compressive state stabilizing the crack path [8]. The opposite
occurs for leading to a high degree of triaxiality in the crack tip
stresses since is the tensile state [21]. From Figure 4.10, the transition for
this particular specimen configuration occurs at approximately
Similarly, the dimensionless stress biaxiality ratio also exhibits nearly equal
trend as the curve.

According to Williams [7], the T-stress can be derived using an Airy’s stress
function in polar coordinates for a cracked body having the coordinates origin at
the crack tip. This equation can also be found in a compendium of the T-stress
solutions reported by Fett [12]. Thus, the symmetric Airy’s stress part for mode
I loading is

and the antisymmetric part for mode II becomes
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where is the characteristic dimension. According to Fett [12], eq. (4.107)
can be used to determine the T-stress as

Here, is the stress contribution in the uncracked body. Further details
on this topic can be found elsewhere [12,19,21].
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CRACK TIP PLASTICITY

In this chapter, a few models of the configuration or the shape of the crack tip
plasticity are included. It is essential to have a thorough knowledge of the shape
and size of the plastic zone in order to compare theoretical and experimental
results for plane stress and plane strain conditions. Furthermore, the formation
of the plastic zone depends on the material properties, specimen or structural
element configuration, and loading conditions.

Most solid materials develop plastic strains when the yield strength is ex-
ceeded in the region near a crack tip. Thus, the amount of plastic deformation
is restricted by the surrounding material, which remains elastic during loading.

Theoretically, linear elastic stress analysis of sharp cracks predicts infinite
stresses at the crack tip. In fact, inelastic deformation, such as plasticity in
metals and crazing in polymers, leads to relaxation of crack tip stresses caused
by the yielding phenomenon at the crack tip. As a result, a plastic zone is formed
containing microstructural defects such dislocations and voids. Consequently,
the local stresses are limited to the yield strength of the material. This implies
that the elastic stress analysis becomes increasingly inaccurate as the inelastic
region at the crack tip becomes sufficiently large and linear elastic fracture
mechanics (LEFM) is no longer useful for predicting the field equations.

The size of the plastic zone can be estimated when moderate crack tip yield-
ing occurs. Thus, the introduction of the plastic zone size as a correction pa-
rameter that accounts for plasticity effects adjacent to the crack tip is vital in
determining the effective stress intensity factor or a corrected stress inten-
sity factor. The plastic zone is also determined for plane conditions; that is,
plane strain for maximum constraint on relatively thick components and plane
stress for variable constraint due to thickness effects of thin solid bodies. More-
over, the plastic zone develops in most common in materials subjected to an
increase in the tensile stress that causes local yielding at the crack tip.

Chapter 5

5.1 INTRODUCTION



The stress field equations derived in Chapter 4 predict that the crack tip stresses
reach infinite values (stress singularity) as the plastic zone size approaches
zero; that is, as However, most engineering metallic materi-
als are subjected to an irreversible plastic deformation. If plastic deformation
occurs, then the elastic stresses are limited by yielding since stress singularity
cannot occur, but stress relaxation takes place within the plastic zone. This
plastic deformation occurs in a small region and it is called the crack-tip plastic
zone. A small plastic zone, is referred to as small-scale yielding.

On the other hand, a large-scale yielding corresponds to a large plastic zone,
which occurs in ductile materials in which This suggests that the
stress intensity factors within and outside the boundary of the plastic zone are
different in magnitude so that In fact,
must be defined in terms of plastic stresses and displacements in order to char-
acterize crack growth, and subsequently ductile fracture. As a consequence of
plastic deformation ahead of the crack tip, the linear elastic fracture mechanics
(LEFM) theory is limited to otherwise, elastic-plastic fracture mechan-
ics (EPFM) theory controls the fracture process due to a large plastic zone size

This argument implies that r may be determined in order to set an
approximate limit for both LEFM and EPFM theories.

Figure 5.1 shows schematic plastic zones for plane stress (thin plate) and
plane strain (thick plate) conditions. Some requirements for plane conditions
were introduced in Chapter 1; but they are included henceforth from a different
prospective. Thus,

96 CHAPTER 5.  CRACK TIP PLASTICITY

5.2 CRACK TIP STRESS STATE

PLANE STRESS:
1. The thickness B is small, and on the surface (external

region) and through the whole thickness. This means that the stresses normal
to the free surface are absent and therefore, through the thickness.
Consequently, a biaxial state of stress results.

PLANE STRAIN:
1. Large thickness B, and in an internal region and

This means that the material is constrained in the z-direction due to a suffi-
ciently large thickness and the absence of strain in this axis. In fact, the stress
in the z-direction develops due to the Poisson’s effect as explicitly included in
the equation that defines

2. Yielding is suppressed due to the kinematics constrain from the surround-
ing elastic material.

3. Plastic deformation is associated with the hinge mechanism (internal
necking) Figure 5.1a)

4. The plastic zone size is small in the midsection of the plate (Figure 5.1a).
This condition implies that the plastic zone must be smaller than the crack
length
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2. If (Tresca Criterion), then yielding occurs by a cumulative
slip mechanism (Figure 5.1b)

3. The height of the yielded zone is limited due to the slip mechanism.
4. The total motion has a necking effect in front of the crack as it opens

Consider the circular plastic zone shown in Figure 5.2. To study the size of
the plastic zone, consider Mode I loading and assume that crack growth occurs
along its plane so that          and along the crack line (x-axis). For
convenience, eqs. (3.27) and (3.29) are included in this chapter as a starting
point for determining the plastic zone size equation. Thus,



Irwin [2,12] has shown that the effect on the plastic zone is to artificially extend
the crack by a distance (Figure 5.2) known as Irwin’s plastic zone correction.
The elastic stress distribution shown in Figure 5.2 indicates that as

Actually, is limited to as shown by the elastic-plastic stress
distribution. This means that occurs mathematically, not physically.
In order to account for the changes due to the artificial crack extension or virtual
crack length and to visualize the plastic zone as a cylinder, the crack length a
can be replaced by in eq. (5.3).

Moreover, the virtual crack length defined by is referred to as the effective
crack length in the literature. The conditions of equilibrium for an immobile
crack tip include internal and external forces per unit length [5,24]. In such
a case, the areas related to the shedding loads and due to yielding, as
indicated in Figure 5.2, are equal; that is when the plastic zone
size is Mathematically, these loads are the equilibrium forces per unit
length defined by [1]
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Setting in eq. (35.1) means that plasticity exists adjacent to the
crack tip. Notice that the double subscript in this local stress has being changed
to one just for convenience. Combining these equations yields the plastic zone
size as

where = Applied stress (MPa)
= Yield strength (MPa)

= Crack length

It has been reported that [2,12] that yielding at the crack tip causes the crack
behave as if it is larger than the actual size and, therefore, the tensile stress
reaches a finite value. This indicates that the plastic zone represents an area
that strain hardens and the internal tensile stress is limited to the ultimate
tensile stress Furthermore, the stress produces plastic work when

due to an external applied stress and it is transferred into strain
energy density for plastic deformation to occur. This implies that the plastic
zone size reaches a maximum magnitude when and, consequently, the
effective crack size becomes the new actual size, which extends
through the plastic zone due to initiation and coalescence of voids. This may
repeat and continue until the actual crack reaches a critical value at the onset
of crack propagation for fracture or separation. Unfortunately, the use of the
plastic zone size in practical applications is limited to elastic solids that may
undergo very little plastic deformation.

5.3 IRWIN’S APPROXIMATION
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where B = Thickness
= 1 for plane stress

yielding factor for plane strain [12]

For equilibrium conditions, the force balance leads to the
determination of the of the plastic zone size Hence,

Inserting eq. (3.1) into (5.6) and integrating yields
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When yielding occurs, the boundary between the elastic and the plastic is
estimated is limited to the yield strength as by a yield criterion. Thus, the
elastic stress can be defined by

Inserting eq. (5.10) into (5.9) gives which implies that
and from Figure 5.2, Hence, is the virtual crack length
proposed by Irwin [1,12]. Obviously, eq. (3.29) provides the effective stress
intensity factor

This equation is the corrected stress intensity factor due to finite speci-
men size and plasticity. Now, inserting eqs. (5.3) into (5.11) yields

Furthermore, the plastic zone size for plane conditions can easily be deter-
mined by combining eqs. (3.1) and (5.10). Thus,

In plane strain condition, yielding is suppressed by the triaxial state of stress
and the plastic zone size is smaller than that for plane stress as predicted by
the parameter in eq. (5.13).

The same reasoning can be used for mode III. Thus, the plastic zone becomes
[7]

The application of Irwin’s approximation seems reasonable for solving prac-
tical engineering problems. For instance, the pressure vessel containing a semi-
elliptical crack shown in Figure 3.6 may be corrected for plasticity.



Dugdale [15] proposed a strip yield model for the plastic zone under plane stress
conditions. Consider Figure 5.3 which shows the plastic zones in the form of
narrow strips extending a distance each, and carrying the yield stress
The phenomenon of crack closure is caused by internal stresses since they tend
to close the crack in the region where

Furthermore, assume that stress singularities disappear when the following
equality is true where is the applied stress intensity factor and

is due to yielding ahead of the crack tip [6]. Hence, the stress intensity
factors due to wedge internal forces are defined by
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5.4 DUGDALE’S APPROXIMATION
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According to the principle of superposition, the total stress intensity factor
is so that

The plastic zone correction can be accomplished by replacing the crack length
 for the virtual crack length and P for Thus, the stress intensity

factor are

But, and the simplified equation takes the form

Let so that

Expanding the trigonometric function eq. (5.22) yields

Neglecting the higher order terms eq. (5.22) becomes
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Substituting eq. (5.24) into (5.11) gives the corrected stress intensity factor
due plasticity at the crack tip and crack geometry

Expression (5.25) is similar to Irwin’s expression, eq. (5.12). In addition, if
plasticity corrections are not necessary. If linear elastic fracture

mechanics (LEFM) is a doubtful approach for solving engineering problems
using brittle or elastic solids and therefore, the most attractive approach is the
elastic-plastic fracture mechanics (EPFM), which will be dealt with in a later
chapter.

Comparing Irwin’s and Dugdale’s approximation schemes can easily be done
by combining eqs. (5.13) and (5.24) for plane stress conditions .Thus,

Figure 5.4 compares the normalized stress intensity factors as per Irwin’s
and Dugdale’s approximations. The curves significantly differ as
however, similarities occur at This strongly suggests that both
Irwin’s and Dugdale’s approximation methods should be used very carefully at
large stress rations because of their differences in normalized stress intensity
factor.



So far, the characterization of cracked brittle materials has been restricted to the
linear elastic fracture criterion, which treats localized plasticity, if formed ahead
of the crack tip, as a small deformed area at a small-scale yielding. Otherwise,
this criterion invalidates the applicability of analytical solutions associated with
a material resistance to crack growth at a large-scale yielding. In the latter case,
therefore, the physical sense of acting as the controlling fracture critical
parameter is lost, to a great extent, in spite of that may be applicable
when

The aforementioned restriction is fundamentally and quantitatively governed
by nonlinear fracture mechanics through models, such as the crack tip opening
displacement and the J-integral (J-model). The latter model treats
the presence of large deformations as an integral part of analytical formula-
tions that comprehensively describe the state of plastic stresses and strains
[19-20]. Moreover, linear elastic fracture mechanics (ELFM) restricts the use
of the elastic-plastic materials due to the formation of large plastic zones and
nonlinear plastic behavior. Furthermore, the crack tip opening displacement

is a measure of fracture toughness of solid materials that undergo
ductile-to-brittle transition [26] and elastic-plastic or fully plastic behavior as
in large structures (ships, pressure vessels). Subsequently, the critical stress
and crack size might be predicted using this technique, provided that a critical
value of CTOD is known. Wells [29-30] first proposed this as a frac-
ture criterion by CTOD The meaningful magnitude of dc is simply
a measure of fracture toughness of ductile and thin materials.

According to the ASTM E1290 Standard [26], is used when the re-
quirements are not met. Figure 5.3 shows the Dugdale’s model [15] for a central
crack containing yielding as confined and localized narrow plastic zones in a thin
sheet. This model, as depicted in Figure 5.3 simply shows the effect of yielding
on the crack length. Thus, the virtual crack size (artificial or effective crack
size) is but the plastic zone restrains crack growth (also referred
to as crack extension) as the applied stress is increased. Consequently, the
plastic zone reaches a critical size and crack growth occurs since lo-
calized plasticity imparts an increase in dislocation density, formation of voids,
and void coalescence, which act as micro-cracks within the plastic zone volume
ahead of the main crack tip.

Conclusively, the use of a plastic correction approach is an appropriate math-
ematical tool for reflecting the suitability to include crystal lattice defects, as
part of fracture at a microscopic scale, as an indirect form of adhered plasticity
to the crack tips. Thus, the plastic zone correction appears to be suitable for
correcting the crack opening displacement Indeed, there exists a
choice of plastic zone model, Irwin’s and Dugdale’s for correcting the parameter

for thin sheets and elastic-plastic materials. According to the models shown in
Figure 5.2 and 5.3, corresponds to the upper and lower relative displacement
of the crack edges. If measurements of the crack opening displacement are made
close enough to the crack tip, then From Figure 5.3b, is defined as
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5.5 CRACK OPENING DISPLACEMENT



According to crack configuration shown in Figure 5.3b, the crack opening
displacement can be defined by [23,44]

These two equations can be related as

Alternatively, Burdekin [30] and Rice [14] independently developed math-
ematical models based on Dugdale’s work [15] and the definition of eq. (5.27)
for plane stress and plane strain conditions, respectively. Hence,

Expanding the logarithmic function as yields
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twice the crack tip displacementin the Hence,

If

Inserting eq. (5.13) and (5.24) independently into (5.30) under plane stress
condition yields the crack tip opening displacement as

and from eqs. (4.47) and (4.48)

then
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Thus, eqs. (5.34) and (5.35) become

The preceding procedure provides a selection of mathematical models, which
define the crack tip opening displacement In fact, the applicability of these
models for characterizing fracture of thin sheets is of great importance since the
dimensional requirements are not too strict as in the for thick
materials.

Figure 5.5 shows the relationship of as per the above models
for plane stress and plane strain conditions. Notice that the curves do not
agree with each other due to different assumptions used by each cited author
to develop a However, Burdekin’s model, eq. (5.40), agrees with the
work done by Broek and Vlieger [31], Robinson and Tetelman [32] and Bowles
[33]. The choice of model for evaluating the crack tip opening displacement or
the stress intensity factor is a confusing matter.



Considerable work has been confined to the since it has the ad-
vantage of measuring fracture toughness for elastic materials and it is very
sensitive to variations in temperature, loading rate, specimen thickness, and
thermo-mechanical processing [34].

In general, the should be confined to the yielding phenomenon in
a microscopic scale, but the mathematical formulation is very complicated. For
instance, yielding in the vicinity of a crack tip is related to complex dislocation
networks, such as the dislocation pile-up. In this regard, reference should be
made to the classical work of Eshelby et al. [7], Stroh [8], Puttick [9], Rogers
[10], Gurland et al. [11], and a review paper written by Low [13], who analyzed
and studied several dislocation models for the nucleation of cracks. Therefore,
the physical interpretation of the yielding phenomenon herein is confined to a
macroscopic scale.

Returning to the crack tip plastic deformation in a thin sheet is
not restricted to lateral contraction which causes localized thinning at the crack
tip. Thereby, crack tip blunting causes an extensive increase in the crack tip
radius in the order of sheet thickness (B), and thus, the plastic zone size
may be estimated as [15,27].

Additionally, can be related to the strain-energy release rate through
eq. (3.5). For instance, combining eq. (3.5) and (5.40) at yields

So far, the extent of plastic zone has been considered along the with
since it has been modeled as a circle. However, a more accurate procedure fol-
lows when so that yielding is examined in a small area modeled according
to a particular yielding criterion, which is responsible for the theoretical shape
of the plastic zone. This fact implies that crack-tip plasticity occurs and the
stresses in the zone are limited to yielding phenomenon. Therefore, the stresses
are truncated to the yield stress of the material being examined and stress sin-
gularity phenomenon is simply a theoretical matter. Moreover, the Von Mises
criterion and Tresca Yielding Criterion may be used to derive expressions for
the plastic zone size, which in turn gives the plastic zone shape.
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For plane stress condition at fracture, the strain energy release rate can be
estimated as [28]

Combining eqs. (5.42) and (5.43) gives

where = Fracture strain
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This criterion is deduced from the Maximum Distortion Energy Theory in which
the state of stress is referred to as the principal stress directions and the principal
stresses defined by the following common mathematical equations

Substituting eq. (4.13) into (5.46) yields the principal stresses defined by
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5.6.1 VON MISES YIELDING CRITERION

and

Substituting eq. (5.47) through (5.50) into (5.45) and manipulating the
resultant expressions yields the Von Mises yielding criterion

from which the plastic zone size takes the following analytical form

where for plane stress
for plane strain

Letting in eq. (5.52) gives the plastic zone size along the as

This equation resembles eqs. (5.3) and (5.13) for plane stress condition.



This criterion is based on the Maximum Shear Stress Theory, which predicts
that yielding occurs when the maximum shear stress reaches half value of the
yield stress in a uniaxial-tension test. This is known as the Tresca Yielding
Criterion. Thus,

Substituting the stresses given in eq. (5.47) through (5.50) into (5.57)
through (5.58) yields

The shapes of the normalized plastic zone as per eqs.(5.52), (5.59) and (5.60)
are shown in Figure 5.6. Notice that both Von Mises and Tresca plastic zone
shapes are different, but the plane strain shape is smaller than the plane stress
shape in both cases.

Conclusively, the Tresca criterion at does not recognized either the
plane stress or the plane strain conditions since the plastic zone size has the
same analytical definition. In addition, McClintock and Irwin [16] used the Von
Mises yielding criterion to determine the plastic zone shapes for mode II and III
loading. Figure 5.7 shows these authors’ analyses. Nevertheless, the preceding
analytical and theoretical results were limited to the yield stress. This analytical
procedure led to an error on the plastic zone size expressions due to the exclusion
of the extra load that a material has to carry outside the plastic zone boundaries.
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5.6.2 TRESCA YIELDING CRITERION

According to Mohr’s circle theory, the maximum shear stress is

Henceforward, is algebraically the largest and s3 algebraically the smallest
principal-stress components. Combining eqs. (5.54) and (5.55) yields the max-
imum shear stress or Tresca yielding criterion

Now, the plane conditions may be set using eq. (5.56)
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Figures 5.8 and 5.9 illustrate experimental results obtainable by using relax-
ation methods. For instance, Figure 5.9 compares experimental and theoretical
normalized results from several authors [12,17,19-21]. The data scatter in this
figure is due to different theoretical procedures used by these authors.
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Predictions by Tuba [17] and Bilby and Swiden [21] fit the Hahn and Rosen-
field [19] experimental data to an extent. Measurements of the plastic zone can
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be accomplished by using techniques like

However, difficulties do arise when analyzing the outcome of experiments
because the elastic and plastic strains cannot easily be distinguished, and the
measurements are usually restricted to specimen surfaces. These difficulties
may be avoided, to an extent, by using the Hahn-Rosengren etching technique
[20,22], requires a proper polycrystalline material and an etching solution so
that dislocations and slip band would be etched in all grains. This way the area
of plastic yielding can be delineated with fewer difficulties. However, Hahn and
Rosenfield [28] affirmed that the above theoretical mathematical approaches do
not provide satisfactory description of the plastic zone shape. Therefore, none
of the existing theories appear to suitable for predicting the plastic zone shape
and size at Figure 5.10 shows real plastic zone shape obtained by using
the Hahn and Rosenfield etching technique [22].

Additionally, Theocaris and Andrianopoulos [25] used the Von Mises Yield-
ing Criterion and the Strain Energy Density Factor Criterion for developing the
plastic zone shapes under mixed-mode I and II conditions. These theoretical
results can be depicted in Figure 5.11, in which the plastic zone shape for the
Von Mises yielding criterion is larger than the one for the Strain Energy Density
Factor (S). Furthermore, these shapes get enlarged and rotated as the inclined
angle increases.
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Example 5.1 If the critical strain-energy release rate and the yield strength
of a 13-mm thick steel plate are and respectively, de-
termine a) the validity of the fracture mechanics bending test for the plate con-
taining a single-edge crack of 8-mm long at fracture, b) the fracture stress if the
plate is 130-mm wide and 1-m long c) the critical crack tip opening displace-
ment, d) the displacement, e) the plastic zone size, and f) interpret the results
with regard to plane strain condition. Use a Poisson’s ratio of 1/3 and assume
that elastic modulus of the steel

The minimum allowable thickness can be computed using eq. (3.30). Thus,

Solution:

Given data:

a) Using eq. (3.5) yields the critical stress intensity factor
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Therefore, the test is valid because the actual specimen thickness is greater
than the ASTM minimum thickness; that is,

b) The fracture stress is determined from eq. (3.29) along with
since (Consult Table 3.1).

c) The crack tip opening displacement is calculated using Rice’s equation
with and

d) The displacement is

e)  The  plastic  zone  can  be  calculated  using  eq.   (5.53)  along  with

f) The above results suggests that the plate met the ASTM E399 thickness
requirements because and behaved in a brittle manner because both
the plastic zone size and the crack tip opening displacement are very small.



Example 5.2 A thin steel plate having a 8 mm through the thickness single-
edge crack size is designed to hold a static tension load. The steel prop-
erties are and The plate is
L = 4-m long, 60-mm wide and 3-mm thick. Assume that the steel plate is part
of a structure that operates at room temperature and controlled environment,
and that the nominal applied stress is a von Mises stress. Determine the the
safety factor based on a) yielding and b) on fracture mechanics. Calculate
c) the von Mises plastic zone size and the critical crack length.
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Solution:

Calculate the nominal stress:

a) Safety factor based on yielding:

which is a reasonable safety factor for designing against yielding.
b) Safety factor based on fracture mechanics requires the used of Table 3.1

for calculating the geometric correction factor. For the
geometric correction factor is

From eq. (3.29),

Thus,



This safety factor is actually very low for designing against fracture. There-
fore, crack propagation or sudden fracture will occur at a
or 30% overload.

c) Using eq. (5.52) along the crack plane the plastic zone size becomes

d) the critical is

5.1 Use the inequality as a criterion for crack instability where
is defined by Irwin’s plastic zone corrected expression for a finite size, to

determine if a steel pressure vessel is susceptible to explode under
hoop stress. The vessel contains an internal circular crack perpendicular

to the hoop stress. If the properties of the steel are and
and the crack size is a) determine the ASTM

E399 thickness requirement and the minimum thickness to be used to prevent
explosion, b) Will crack propagation occur at c) Plot
for and and d) Will the pressure vessel explode when the
crack size is Why? or Why not?, and e) When will the pressure vessel
explode? [Solution: a) b) No, it will not because
c) Plot, d) No and e) it explodes when
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5.7 PROBLEMS

5.2 A project was carried out to measure the elastic-strain energy release
rate as a function of normalized stress of large plates made out a hypo-
thetical brittle solid. All specimens had a single-edge crack of long. Plot
the given data and do regression analysis on this data set. Determine a) the
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maximum allowable ratio for and b) in
Given data:

5.3 Calculate the critical crack length of problem 5.2. [Solution:

5.4 A large brittle plate containing a central crack long is subjected to
a tensile stress of The material has

and Calculate a) the applied b) the plastic zone size using
the Von Mises yield criterion and prove that when Consider
all calculations for plane stress and plane strain conditions, and c) draw the
entire plastic zone contour where the crack tip is the origin of the coordinates.

5.5 Use the data given in Example 3.3 for a pressure vessel containing a
semi-elliptical crack (Figure 3.6) to calculate Irwin’s and Dugdale’s a) plastic
zones, b) using Kabayashi’s finite size correction factor and plasticity correction
factor. c) Compare results and determine the percent error against each case.
d) Is it necessary to include a plastic correction factor? Explain. [Solution:
a) and b)

and

5.6 A  thick pressure vessel is to support a hoop stress of
at room temperature under no action of corrosive agents. Assume that a semi-
elliptical crack (Figure 3.6) is likely to develop on the inner surface with the
major axis and semi-minor axis A 300-M steel,
which is normally used for airplane landing gear, is to be considered. Will crack
propagation occur at hoop stress? Make sure you include the Irwin’s
plastic zone correction in your calculations. Is it necessary to do such a plastic
correction? Use the data below and select the suitable tempered steel.

5.7 If localized plasticity is to be considered, explain the physical meaning
of the following inequality

5.8 Show that where is the plastic zone size due to
dislocation networks within the plastic zone area ahead of the crack tip.



5.17 Show that for plane stress conditions. Schemat-
ically, plot for various a and fixed a values.
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5.9 Show that and give a reasonable interpretation of
this equality.

5.10 A large strong plate containing a through-the-thickness central crack
of has and at
service temperature. Determine a) the plane strain fracture toughness, b) the
design stress intensity factor for a safety factor of 2, c) the critical fracture
stress, and d) the design service stress.

5.11 Predict for a glass using

5.12 Derive an expression for using a Von Mises material. Compare it
with that for a Tresca material under plane strain conditions.

5.13 A material has and has
to be used as a plate in a large structure. Non-destructive evaluation detects
a central crack of long. If the displacement at fracture is
and the plate width is three times the thickness, calculate a) the crack tip
opening displacement, b) the plane strain fracture toughness, c) the plane strain-
energy release rate, d) the plate thickness and e) What’s the safety factor being
indirectly included in this elastic-plastic fracture mechanics approach? Assume
plane strain conditions as per eq. (5.31) and a fracture load of [Solution:
a) b) c) d)

and e)

5.14 Repeat problem 5.13 using eq. (5.41). Compare results.

5.15 A hypothetical large metallic plate containing a central crack is
wide and thick and mechanically loaded in tension. This plate has

and for plane stress strain.
Determine a) b) and c) as per Irwin, Dugdale, Burdekin and Rice
equations. Compare results. {Solution: a) b)
and c)

5.16 Determine a) the critical crack tip opening displacement b) the
plastic zone size and c) the fracture stress for a large aluminum alloy
plate containing a central crack of long. Use the following available data
and assume plane strain conditions: and

It
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Chapter 6

THE ENERGY
PRINCIPLE

6.1

In this chapter, the elastic behavior of solids containing cracks is examined using
the energy principal approach, which includes all forms of energy since loading
develops mechanical work, energy absorption around the crack tip, and energy
dissipation as heat. Williams [1] and Broek [2] undertook this energy approach
as the primary form of energy (mechanical work ) being considered. If work is
done, then crack growth occurs and elastic energy is released. With the excep-
tion of pure brittle solids, engineering materials undergo some form of plastic
deformation at the crack tip due to an applied external stress. Such plastic
deformation is an irreversible process and the material undergoes a plastic flow
process.

In a general sense, plastic flow is referred to as a permanent and non-
recoverable deformation in most common solid materials. On the other hand,
viscous flow describes the mechanical behavior of plastics, such as non-crystalline
polymers, and it is temperature and time dependent. The term viscoelasticity
is also used to indicate viscous flow.

6.2 ENERGY RELEASE RATE

The focus of this section is to determine the energy balance and the crack driving
force for a slow crack growth event due to the action of an external quasi-static
load. The crack may be embedded, on the surface or through-the-thickness.
Consider a body with a boundary contour as shown in Figure 6.1 subjected
to an energy input increment due to an external loading [1,7]. Assume that
the solid body is elastic and its elastic mechanical behavior can be characterized
by a linear load-displacement relationship, as depicted in Figure 6.2

INTRODUCTION
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for which the slope is [7]. The slope is referred to as the
stiffness and the inverse of stiffness is called the compliance.

From Figure 6.1, the shaded area represents a very small process zone sur-
rounded by an elastic continuum, and are the exiting and new crack
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surface [7]. The energy change in a loaded plate occurs due to the displace-
ments arising from the fracture area change for a constant thickness
B and variable crack length Thus, the input energy change is divided
into the change in dissipated energy as heat which arises due to the ir-
reversible process during plastic or viscous flow, the change in stored energy
or total potential elastic energy and the change in kinetic energy
of the system. For an isothermal case, is transferred across the contour
of the system and for an adiabatic case, is not transferred and the system
temperature rises. Consequently, the conservation of energy change due to the
displacements arising from the fracture area change can be defined as

6.3 LINEAR COMPLIANCE

Consider mode I (tension) loading and the linear behavior shown in Figure 6.2.
The stored energy due to tension loading can be defined as the area under the
curve

from which

For a growing crack, is the energy dissipated in propagating fracture
over an increment of area which is referred to as the fracture resistance R.
On the other hand, can be defined as the net energy input.
Another important definition is the energy release rate where
or a combination of loading modes described in Figure 3.1. Thus,

Combining eqs. (6.1) and (6.2) along with and for a
stationary body, the energy release rate criterion for crack tip instability is

If the cracked plate shown in Figure 6.1 is subjected to an external load
P and the crack growth very slow, then the load-points undergo a relative
displacement perpendicular to the crack plane and the crack length extends
an amount Consequently, the work done responsible for such an increment
in displacement and crack length is defined by
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Inserting eqs. (6.4) and (6.6) into (6.2) gives

For essentially elastic response, the linear compliance is the inverse of the
slope of Figure 6.2, from which the displacement takes the form

Thus,

Substituting eqs. (6.8) and (6.9) into (6.7) yields the crack driving force as

Equation (6.7) can also be derived using the segments and areas in Figure
6.2. For instance,

OA = Initial loading line

AB = Unloading line since as Consequently,
the crack area changes from or the crack grows from to

This leads to.

Area OAE =Stored energy at fracture =

Area OBC = Stored energy after fracture =

Area ABCE = Work done =

Area OAB = OAE+ABCE–OBC = Release of elastic energy =
Thus,

This concludes the interpretation of Figure 6.2.
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6.4 NONLINEAR CRACK GROWTH

The possible load lines for a nonlinear behavior is shown in Figure 6.3 [1,6-7].The
analysis is carried out using a nonlinear compliance expression of the form [1]

where = Strain hardening exponent

The strain energy release rate is defined by [1]

Combining eqs. (6.13) and (6.15) yields

A remarkable observation is that if then eq. (6.16) yields eq. (6.10).
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6.5 TRACTION FORCES

Consider two-dimensional problems in Cartesian system where
has a unit length an it is treated here as a coordinate. Assume that the path
of the crack tip is along and that the origin is at the crack tip (Figure
6.1) for a pure elastic state under quasi-static loading. This implies that the
crack area along with a unit length in the becomes
By definition, the traction excerpted through from the continuum on the
process zone is where denotes the type of stress per stressing mode
I, II or III.

According to Hellan [7], the magnitude of the traction forces on the upper
and lower crack sides are and or
respectively. The corresponding displacements are and or

Moreover, the dominant stresses along the crack line can be
determined at and the displacements along the crack sides at
This implies that the crack tip is located at for the principle
stresses and for the displacements.

Accordingly, the translation of the fields at the crack front leads to
which is required to determine the limit of the crack driving force. This can
clearly be appreciated by considering a two-dimensional analysis of a pure elastic
solid body subjected to a quasi-static loading as depicted in Figure 6.1. Thus,
the strain energy release rate on the elastic continuum over the crack surface

can be defined by [7]

where = Differential surface area
= Displacement increments at
= Change in crack area
= Representation of a stage for plastic process
= Representation of a stage for crack extension

In order to solve eq. (6.21), the stresses and the displacements for the three
modes of loading (as depicted in Figure 3.1) being derived in Chapter 4 can be
defined in a general form by replacing the plastic zone size for in the stress
equations for each stress mode and for in the displacement equations
when crack extension occurs.
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For the symmetric mode I at and

For the antisymmetric mode II at and

For the antisymmetric mode III at

From Chapter 4, the constant is defined by

Substituting eqs. (6.24), (6.27) and (6.30) into (6.21) yields the crack driving
force for a mixed-mode interaction
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The integral can be solved by letting for so that
Thus,

and

Algebraic manipulation of eq. (6.33) along with eqs. (6.31) and (6.32) gives
for crack motion on its tangent plane

where for plane stress
for plane strain

For convenience, the effect of Poisson’s ratio on the energy release rate for
mode I loading is shown in Figure 6.4.
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6.6 LOAD AND DISPLACEMENT CONTROL

Assume that the slender double cantilever beam (DCB) shown in
Figure 6.4 is loaded in tension with no rotation at the end of the beam. If the
displacement and linear compliance equations are[1,7,16]

where = Crack length
I = Moment of inertia =

For constant load, the compliance, displacement and load gradient and
are, respectively

Substituting eqs. (6.38) and (6.39) into (6.7) gives



130 CHAPTER 6. THE ENERGY PRINCIPLE

If eq. (6.10) is used instead of (6.7) yields the same result. Thus,

As a result, (proportional) which implies that increases rapidly
as increases. Crack propagation occurs when and In
addition, crack instability occurs under load-control if when
This is clearly demonstrated by solving eq. (6.42) for P and deriving the load
gradient

Consider the slender DCB under constant displacement. In this case,
the load and load gradient expressions are

Insert eqs. (6.46) and (6.47) into (6.7) to get

This result suggests that and decreases as increases. There-
fore, crack stability occurs if and when that
is,

The theoretical trend of the behavior of the strain-energy release rate as per
eqs. (6.42) and (6.48).are shown in Figures 6.5 and 6.6, respectively.
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Example 6.1 Suppose that three specimens made of 7075-T651 Al-alloy
(E = 70 and have identical dimensions
were loaded in tension and the following data shown below was obtained at room
temperature. The specimens exhibited linear behavior.
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Determine the plane strain fracture toughness

Solution:

Calculate the compliance for spec specimens 2 and 3. Thus,

From eq. (6.42),

From eq. (6.34) fro pure mode and

According to the ASTM E399 standard thickness requirement, the validity
of this result can be verified using eq. (3.30)

Therefore, the result is valid since the given thickness is higher than the
calculate one; that is,
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6.7 CRACK RESISTANCE CURVES

For plane stress conditions, the Griffith energy criterion for crack growth
was modified by Irwin [10] when he proposed that crack instability should

occur when

The shape of the R-curve is horizontal for pure brittle materials since the
surface energy is an invariant material property and R is independent of crack
size. [2,20]. For pure mode I, the Griffith instability criterion, R-curve, is
shown in Figure 6.8 as a dashed horizontal line for which [17]. The
characterization of this fracture criterion anticipates that R increases when the
plastic zone, at a small-scale yielding, increases and strain hardens. However,
local material separation should occur due to void initiation and coalescence at
high strains and stresses. In this case, the plastic zone must reach a critical size
for crack growth to occur since sufficient energy must be available; otherwise, the
crack would be stationary. Hence, both and R increase with increasing stress
level and subsequently, unstable crack growth occurs when the crack adheres a
critical condition, shown in Figure 6.8 as a stability point, at which
and acquire critical values.
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Accordingly, the ASTM E561 Standard Practice includes the R-curve to
provide a toughness diagram in the form of applied so that crack
instability (onset of unstable fracture process) occurs when and

for a specific applied load (Figure 6.8). This implies that the resis-
tance to fracture of a metallic solid containing an initial crack size may be
characterized by an R-curve, provided that crack growth or extension develops
slowly and stably.

Furthermore, the R-curve can be constructed by drawing secant lines on a
load-displacement curve as shown in Figure 6.9a [17]. The slope of the secant
lines as a measure of the compliance C and the crack lengths are determined.
Subsequently, follow the sequence in Figure 6.9.

Plot the compliance C as a function where is the
effective crack length. This is depicted in Figure 6.9b. The, plot the calibration
curve as a polynomial (Figure 6.9c). Finally, calculate and
and plot them as functions of crack length The resultant plot is the R-curve
schematically shown in Figure 6.9d for The point of intersection between
the secant line and the R-curve defines the critical strain energy release rate

which in turn is related to the critical stress intensity factor or plane
strain fracture toughness
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6.8 THE J-INTEGRAL

Consider the two-dimensional crack being surrounded by two arbitrary coun-
terclockwise contours and shown in Figure 6.10. If a small-scale yielding
prevails, then the quantities and defined in Chapter 4 can
describe the stress state near the crack tip when the field is elastic with a rela-
tively small plastic zone otherwise, and do not describe of the
elastic-plastic behavior of tough materials containing large plastic zones
(large-scale yielding) as in tough materials. Nevertheless, the need to charac-
terize tough solid prevails since many engineering materials are of this category.

In order to determine an energy quantity that describes the elastic-plastic
behavior of tough materials, Rice [9] introduced a contour integral or line in-
tegral that encloses the crack front shown in Figure 6.10 originally by Eshelby
[15] as

where J = Effective energy release rate
W = Elastic strain energy density or plastic loading work

= Displacement vector at
= Differential element along the contour

= Outward unit normal to
= Input work

= Arc length
= Tension vector (traction forces) on the body bounded by

= Arbitrary counterclockwise contour

or
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The term J in eq. (6.53) is a line of surface integral defined around a contour
It characterizes the stress-strain field around the crack front and therefore, it

must be the energy release to the crack tip during crack growth. Due to this
fact, the J-integral is used as failure criterion and it is a measure of the fracture
toughness at the onset of slow crack growth for elastic and elastic-plastic metallic
materials. The inherent characteristics of the J-integral exhibits a) remarkable
path, contour size and shape independence, and b) an invariability in magnitude
when the contour lies either inside or outside the plastic zone [18]. The former
characteristic indicates that the J-integral vanishes (J = 0) around an arbitrary
closed contour as shown by Parton and Morozov [19] using Green’s formula.

The interpretation of the J-integral includes the following observations:

The J-integral vanishes along the closed contours and because the
traction forces along the crack lower and upper surfaces are zero
and along AC and BD. Thus, eq. (6.53) becomes
Therefore, the J-integral is path independent and it is a measure of the
straining at the crack tip that accounts for significant plastic deformation
at the onset of crack initiation. The contour path can be defined arbitrarily
for computational advantages [7], as it will be shown in a later section,
since J is conserved. This means that the contour can conveniently be
defined along the plastic zone boundary so that the Von Mises plastic zone
size, eq. (3.52), can define the contour shape as shown in Figure 5.6.

The crack line can be included in the contour or without contributing
to the value of J. For this reason, points A and B or C and D do not
need to coincide.

The J-integral along a contour around the crack is the change in potential
energy (elastic energy) for a virtual crack extension Thus, the J-
integral can be defined by

Remarkably, the J-integral can be evaluated along remote paths, where
small crack-tip yielding does not interfere.

With regard to eq. (6.53), the work input and the strain energy density are
defined as

In general, the elastic stresses needed in eq. (6.56) are defined in matrix
form
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The train energy density can be expressed as

Recall that plane stress condition requires that and
Consequently, eq. (6.58) reduces to

For pure tension loading, W becomes

However, the elastic mixed-mode interaction described by eq. (6.34) can be
used to predict the J-integral, provided that This means that
so that

6.8.1 FRACTURE CRITERION

The J-integral is used as a critical parameter for determining the onset of stable
crack growth and predicting fracture toughness. The fracture criterion by
for the initiation of stable crack growth is established when the applied J-integral
reaches a critical value. This is indicated below for elastic and elastic-plastic
materials

Similar fracture criteria can be used for mode II and III loading systems. In
general, may be used as a brittle or ductile fracture toughness criterion for
characterizing a material behavior that does not meet the requirements of
or fracture criterion. In addition, the measurement of is described by
the ASTM E399 Standard Testing Method, Vol. 03.01.
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For a large-scale yielding case, the J-integral becomes the controlling factor in
characterizing plastic behavior of ductile materials containing stationary cracks
since J is the available energy per unit crack extension at the crack tip.

With regard to elastic-plastic mechanical behavior, crack blunting may occur
at the crack tip and the fracture criterion used for determining the onset of
crack instability depends on the amount of plasticity ahead of the crack tip.
Fortunately, the J-integral can be used when The latter case
is treated in Chapter 7 in great details.

6.8.2 CRACK OPENING DISPLACEMENT

Using the Dugdale’s model, the crack tip opening displacement (CTOD)
indicated in Figures 5.3 can be related to the J integral, provided that the path
of integration is arbitrarily chosen in the elastic regime and the contour curve

is taken around the yield strip or plastic zone boundary.
According to Hella’s analysis [7] for thin plates and Tresca properties, the

Dugdale’s model (Figure 5.3) can be used as the path contour needed to solve
the J-integral. That is, the arbitrary contour depicted in Figure 6.10 can be
shrunk to a shape similar to the Dugdale’s yield strip, which is shown in Figure
6.11 for convenience.

Let at the lower crack side before localized yield occurs and
at the upper crack side after yielding be the limits of the J-integral under pure
tension loading (mode I). As a result, along the crack plane and the
traction force becomes Thus, the J-integral becomes [7]

Here, and are the upper and lower displacements. Denote that this
expression resembles eq. (5.42) when for small-scale yielding under
plane stress.
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6.8.3 J-INTEGRAL MEASUREMENTS

Most practical fracture mechanics applications are base on mode I loading.
However, mode II and III may be important in certain engineering situation.
In fact, mixed-fracture in a complex theory and will be dealt with in details in
Chapter 7.

The J-integral measurement is valid if unloading does not occur. For in-
stance, the region in Figure 6.12 represents the area between the loading
curves for crack areas A and as Figure 6.12 is the nonlin-
ear equivalent of Figure 6.2. The J-integral can be determined from a load-
displacement diagram shown in Figure 6.12, from which the critical value of
the J-integral (fracture toughness) can be determined at the onset of slow crack
growth [7-8]. Some experimental results for a steel alloy are
depicted in Figure 6.13 [6,11].

In addition, eq. (6.54) can be redefined as
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6.9 TEARING MODULUS

Those materials (ductile) that exhibit appreciable plasticity at fracture usually
show slow and stable crack growth before fracture. Stable crack growth starts
at but further increase of the applied stress is required to maintain the
crack growing. The resistance curve in these materials is the which
is equivalent to the R-curve discussed previously. The crack driving force is
instead of [8]. The criteria for stable crack growth are

Paris et al. [12] have proposed a dimensionless tearing modulus defined
by multiplying eq. (6.69) by so that
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In fact, is nothing but the crack resistance for crack growth. Here,
is the slope of the resistance curve in the stable crack growth regimen
and fracture toughness is denoted by as indicated in Figure 6.14 [14]. In
fact, Hutchinson-Paris [13] devised a procedure to validate the J-controlled crack
growth by stating that 1) the elastic unloading region in the fracture process
zone requires that J must increase rapidly with crack extension
so that the region of non-proportionality is small so that

The J-integral can also be used as defined in the ASTM E813 Standard
Practice. That is,

where A = Area under the load-displacement curve (Joules)
Ligament in plates

Example 6.2 a) Show that J-integral vanishes in the square counterclockwise
contour shown in Figure 6.E2. The square contour has four segments
such as b) Determine the strain energy density W and
the J-integral under plane stress and plane strain conditions, for a steel plate
having and
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Solution:

Use only half of the entire contour due to symmetry. The present stress and
displacement fields shown in the given figure leads to and

a) For plane stress condition,
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and

Therefore, the J-integral vanishes. If
and then

b) For plane strain,

Using a similar approach for the determining the total J-integral yields

Thus,
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Therefore, the J-integral vanishes. If
and then

6.10 PROBLEMS

6.1 Use Dugdale’s model for a fully developed plane stress yielding confined to
a narrow plastic zone. Yielding is localized to a narrow size roughly equal to
the sheet thickness (B). This is a fully elastic case in which the plastic strain
may be defines as If the J-integral is by where is the
crack tip opening displacement. Show that

6.2 The crack tip opening displacement for perfectly plastic solution
to the Dugdale model was derive by Rice in 1966 [21] as defined by eq. (5.35).
Show that the path-independent J-integral is defined by

6.3 A bending test specimen made out of carbon steel showed a load-
displacement behavior
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If the area under the curve the is 10 joules at the onset of crack
growth, determine a) the fracture toughness in terms of as per ASTM E813
Standard, b) and its validity as per ASTM E399 testing method, and c)
using eq. (5.31) with d) the fracture strain, e) the displacement and f)
the plastic zone size. Explain the meaning of the results. [Solution: a)

b) c) d)                        e)
and f)

6.4 If is used to determine the fracture toughness, will be a
path-independent entity? Explain.

6.5 Assume hat crack growth occurs when If a well-developed
plastic flow occurs, will this inequality be valid? Explain.
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PLASTIC FRACTURE
MECHANICS

This chapter describes the stress-strain fields at a crack tip for materials that
will obey the Ramberg-Osgood nonlinear stress-strain relation. These materials
are considered to be strain hardenable , specially under tension loading. A two-
dimensional field equations are characterized for ductile or low-strength mate-
rials, which can be strain hardened at a large scale yielding. In fact, hardening
in a polycrystalline material is due to plastic deformation, in which disloca-
tion motion is the primary phenomenon for this irreversible process. However,
dislocation-imperfection interactions impede the mobility of dislocations leading
to strain hardening. For instance, the dislocation distribution within a plastic
zone is normally a complex and mixed phenomenon.

The mechanism of fracture is related to plastic deformation at the crack tip
where high stresses and strains are developed. Therefore, the use of a disloca-
tion model for determining stresses and strains would be an ideal mathematical
approach for predicting crack instability. Instead, for a cracked elastic-plastic
material subjected to an external load, the onset of plastic flow occurs at the
crack tip and the flow criterion that predicts the onset of crack instability is usu-
ally the J-integral, which is limited to a stationary crack in a strain hardening
material.

Hutchinson [1] and Rice and Rosengren [2] in separate publications in 1968
showed that the J-integral characterizes the stress and strain fields at the crack
tip in nonlinear elastic materials. Their work is referred to as the HRR the-
ory, which is as an extension of linear fracture mechanics that account for a

Chapter 7

7.1 INTRODUCTION

7.2 J-CONTROLLED CRACK GROWTH
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large-scale yielding phenomenon and related microscopic fracture mechanisms,
such as void formation and void coalescence within the plastic zone. Subse-
quently, the pertinent mathematical relationships have become known as the
HRR field equations applicable near the crack tip within the J-dominated re-
gion as schematically illustrated in Figure 7. 1a [6-7].

Since the J-integral is path-independent, a circular path of radius is con-
venient for deriving the field equations. Therefore, the nonlinear fracture me-
chanics approach can be used for analyzing rate-independent materials under
monotonic loading [4]. Particularly, the J-integral and the Ramberg-Osgood
semi-empirical uniaxial stress-strain relationship are widely used for charac-
terizing crack growth at a large-scale yielding. Therefore, nonlinear fracture
mechanics has a semi empirical foundation.

Furthermore, the crack growth model shown in Figure 7.1 indicates that the
J-dominated region, where microscopic separation occurs, is within a relatively
large plastic zone. One particular characteristic of a cracked ductile and strain
hardenable material is the occurrence of crack blunting (Figure 7.1b) before ap-
preciable crack growth takes place under monotonic loading. Despite that the
J-integral does not model elastic unloading, the J-controlled crack growth re-
quires that the region of elastic unloading and distinct non-proportional loading
be contained with the J-dominated region of the deformation theory [7].

The conditions for J-controlled crack growth require that the amount of
crack growth be related to the plastic zone size the J-integral, and the crack
tip opening displacement For crack extension,
and In fact, the inequality assures that crack advance and
unloading take place within the J-dominance zone. The plastic zone size is
some reaction of the unbroken ligament  and the tearing modulus
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The analysis given below is for a study on strain-hardening plasticity reported
by Hutchinson [1] and Rice and Rosengren [2]. These authors defined the J-
Integral as the crack driving force for characterizing plastic solids containing
cracks. For instance, Hutchinson’s analysis [1] is also found elsewhere [3,8].

Figure 7.2 schematically shows the stages of a ductile fracture process for
load control systems.

It should be pointed out that Begley et al. [9,18] proposed the use of the J-
integral [4] as the crack driving force for characterizing the onset of crack growth
(crack extension) at a large-scale yielding. Crack growth may be stable if the
concentration of the HRR field on the crack tip region, during deformation,
is continuous, irreversible, and maintained, to an extent, a plastic level. This
means that the J-integral and the crack tip opening displacement characterize
plastic fracture at the crack tip region, where the HRR fields are located. Hence,
fracture toughness is defined at the onset of stable crack growth for a J-controlled
situation [11-12].

According to the multiaxial stress theory of plasticity, the
nonlinear multiaxial strains the first deviatory stress and the effec-
tive stress for incompressible materials under tension are, respectively

7.3 HRR FIELD EQUATIONS



In fact, the deformation theory of plasticity is basically a nonlinear elasticity
[2]. The effective stress for plane stress is

and the effective stress and the strains for plane strain are [1]

With regard to the strain hardening exponent low-strength (ductile) ma-
terials have greater hardening exponents than high-strength ones. As a result,
large tensile stresses at the crack front in ductile materials cause nucleation of
voids and void coalescence as the source for crack nucleation. Consequently,
the effects of yielding and strain hardening at the crack front is a major con-
cern in fracture mechanics. The phenomena of yielding and strain hardening is
schematically shown in Figure 7.3 for quasi-static loading
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where = Constant
= Strain hardening exponent
= Yield strain or reference strain
= Yield strength or reference stress
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Further, the hydrostatic stress and the Kronecker delta are, respectively

For an elastic-plastic behavior and a circular plastic zone with radius the
Airy stress function defined by eq. (1.60) can be used here for deriving the
plastic stresses at the crack front [3]. Thus,

The polar stresses are defined by eq. (1.58), but they are included in this
chapter for convenience. Hence,



Inserting the partial derivatives of the Airy’s stress function, eq. (7.12), into
(7.13) yields

One can observe that these stresses depend on The J-integral defined by
eq. (6.53) along with eq. (4.6), and can be
written as [2]

The remaining analytical procedure for deriving the trigonometric functions
for the field equations is lengthy and complicated. Therefore, only relevant
results are included as reported in the literature. Important papers on the
subject are cited accordingly.

The essential mathematical approach for deriving the HRR field equations
is a well-developed method, and yet, a sophisticated technique for assessing the
plastic J-integral [1-2]. Essentially, a rigorous computational skill is required to
explicitly characterize the crack behavior in the elastic-plastic regime, which is
a complex nonlinearity manifested through the strain-hardening phenomenon
at the crack tip region, where the J-controlled crack growth is characterized.
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The boundary conditions can be set as

The strain compatibility equation that must be satisfied is of the form

Thus, the equivalent stress as defined by eq. (7.5) and (7.6), respectively,
become



A ductile crack behavior, as opposed to brittle crack behavior, exhibits a sig-
nificant crack tip blunting before the onset of crack growth (crack extension),
complicating the applicability of the aforementioned mathematical technique
[8]. Therefore, the resultant HRR field equations or HRR singularities near
the crack tip for a stationary crack, as reported by Hutchinson [7] are

Mathematically, for a power-law hardening material, field equations at the
crack tip have singularities in the order shown below [2]

Figure 7.4 shows the numerical distribution of dimensionless stress
and strain functions [1] and Table 7.1 gives

the numerical results for the constant Furthermore, the interpreta-
tion of the strain-hardening exponent is based on the type of mechanical
behavior of the solid material being tested and the size of the plastic zone in
terms of the crack length, such as for the J-controlled condition [23].
For fully linear elasticity, the strain hardening is and the field equations
have a singularity in the order of and
which is exactly the order as determined in Chapter 4. Conversely, for
fully nonlinear plasticity so that

Furthermore, dividing eq. (7.21) by (7,20) yields the plastic zone size as
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where
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Thus, eq. (7.19) becomes

It is clear from eq. (7.24) that the plastic J-integral can be regarded as a
measure of the intensity of the field parameters at the crack tip and accounts for
a large-scale yielding tied to the small-strain theory. Therefore, J characterizes
the crack tip field parameters.



Most efforts to assess the J-dominance, modeled in Figure 7.1 as a circu-
lar region, have been focused on plane strain condition under mode I loading
[7]. Both the stress intensity factor and are indirect fracture toughness
that characterize local field parameters, but is strictly used for a small-scale
yielding and for small-scale and large-scale yielding cases. The complete as-
sessment of the fracture process includes fracture mechanisms because fracture
toughness is a measure of fracture ductility of a material having a particular
crack configuration within its geometrical shape. The concept of fracture duc-
tility, as reported by Liu [25], depends on hydrostatic tensile stresses during
deformation, during which the tearing modulus is a measure of the increase in
fracture ductility.

The preceding rigorous and complex mathematical treatment in plastic frac-
ture mechanics can now be simplified for practical purposes. Since most char-
acterization of cracked materials is confined to a axial tension loading, it can
be assumed that crack growth takes place along the crack plane. Thus, stress,
strain, and displacement analyses are simplified to an extent.

For a loaded stationary crack in tension, the field equations become

For instance, combining eqs. (7.25) and (7.26) for a axial tension loading
yields the widely used Ramberg-Osgood relationship for plastic flow in axial ten-
sion loading. The resultant expression is compared with the Hollomon equation
for the same purpose. Thus,

or
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and eqs. (7.24) and (7.23) become, respectively
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Denote that both exponents in eqs. (7.30) and (7.31) or (7.32) and (7.33)
have the same meaning, but differ in magnitude since and
Typically, for high hardening and for low hardening. [7].
The term in eq. (7.30) is called the strength coefficient in the literature.
Both Ramberg-Osgood and Hollomon equations are used to predict the plastic
uniaxial stress-strain relationship schematically depicted in Figure 7.3. These
power-law relations indicate that the contributions to the strains that depend
linearly on the stress are simply negligible.

For a axial tension loading, the equivalent stress, eq. (7.5) or (7.6), is simply
defined by

From eq. (7.25), the plastic zone size becomes

Example 7.1 Calculate the maximum plastic zone size for compact ten-
sion [CT] specimen made of ASTM A533B steel at a strain of 0.1. Use the
data reported by Kumar [8]. The steel obeys the Ramberg-Osgood stress-strain
relation.

where = 1 for plane stress
for plane strain

= Constant

Solution:

The yield strain is calculated using Hooke ’s law. Thus,
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From eq. (7.32), the stress-strain curve is plotted below to verify that the
given 0.1 strain corresponds to a an applied tress greater than the yield strength.

If then Thus, the requirement that
has been met. Using eq. (7.35) yields

Characterization of the J-integral, the crack opening displacement
and the load-line displacement have numerically been established in an en-
gineering approach, as an approximation scheme, for elastic [13-15] and fully

7.4 SEMI-EMPIRICAL APPROACH
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plastic [4-5,16,18] fracture analyses. Explicitly, the elastic analysis has been
carried out using the stress intensity factor which is related to the J-
integral for mode I. Conversely, the fully plastic analysis is strictly based on
the Ramberg-Osgood and the Hollomon stress-strain power laws. The elastic-
plastic analysis can be defined in a general form as the sum of the elastic and
plastic parts

where = Effective crack length
= original crack length

It can be anticipated that for a fully plastic fracture, since plasticity
governs the fracture process for a slow moving stable crack, as oppose to an
elastic fracture, in which crack motion can reach velocities nearly the speed of
sound. Therefore, the plastic J-integral is higher than the elastic J-integral

component at a sufficiently developed plasticity ahead of the crack tip.
This is shown in Figure 7.5 for elastic-plastic estimation procedures [8].
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Consider the single-edge notched (SEN) specimen shown in Figure 7.6 con-
taining and as the near-field and far-field contours for predicting the
J-integral. The specimen edges constitute the contour Use of half of the
entire contour due to symmetry is a practical assumption.

Kang and Kobayashi [5] developed a J-estimation procedure for two dimen-
sional states of stress and strains. Consider the near-field J-Integral and a
strain-hardening material that obeys the Ramberg-Osgood relation defined by
eq. (7.30) in order to solve the integral for the plastic strain energy density,
which is needed in the J-integral equation. Thus,

Substituting eq. (7.30) back into (7.40) along with Hooke’s law yields the
most practical expression for the plastic strain energy density

7.4.1 NEAR-FIELD J-INTEGRAL



The only difference between eqs. (7.46) and (7.47) is the height of the upper
vertical segments; that is, Conclusively, the elastic and plastic J-
integrals are generalized as and An example can
make this procedure sufficiently clear how to determine the J-integral.

Example 7.2 a) Calculate the total J-integral for a 2024 Al-alloy plate
under plane stress conditions (Figure 7.6). b) Determine if the elastic J-integral
contributes significantly to the total value. c) What does the plastic strain energy
density W measure? d) Plot the plastic stress-strain and Use the
following data to carry out all calculations:

(load)
and
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Let’s evaluate the plastic J-integral on each segment of the upper half of
contour Hence,

Thus,

Substituting eq. (7.41) into (7.43) yields

For pure tension loading, the elastic J-integral is defined by eq. (6.61) as

Finally, the total J-integral becomes

Similarly, the contour for the far-field condition yields

where
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Solution:

a) The following calculations are self-contained. Thus,

From eq.(7.41),

From eq.(7.44),

From eq. (7.45),

The total J-integral is

b) Therefore, the contribution of the elastic J-integral very significant in
the current problem because which means that contributes

to

c) The meaning of the is clearly stated in Chapter 1. It measures the
plastic fracture toughness as the area under the stress-strain curve.

d) The required stress-strain curve can be determined using eq. (7.30). Thus,
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The J-integral plot along with the load point is based on the following equa-
tion:

The trend of the in this example resembles the trend shown in
Figure 7.5.



Consider the single-edge notched (SEN) specimen with contour as large as the
specimen shown in Figure 7.6 for characterizing the far-field J-integral using only
half of the entire contour due to symmetry. The present stress field requires that

and for the assumed contour with segments
and Thus, the far-field J-integral evaluation can be treated

as a reasonable approximation for the near-field. For an axial tension loading,
Kang and Kobayashi [5] using Moiré interferometry evaluated the J-integral as
the sum of the vertical and horizontal parts of half the contour due to symmetry.
Thus, the J-integral for the traction free vertical edges of the segments and

becomes

and that for the horizontal part along with and on the
crack line is

Kumar et al. [8] developed another approximation scheme for characterizing
simple specimen configurations. Assume that a material obeys the Ramberg-
Osgood power law, eq. (7.30) and that the plastic field is controlled by the
J-integral for limited crack growth. It is also assumed that unloading does
not occur behind the crack tip during the irreversible plastic deformation [11]
and that the onset of unstable crack growth (crack propagation) occurs at the
maximum load carrying capability of the component. The measurement of the
J-integral is carried out by determining the displacement from the deformation
properties of the Ramberg-Osgood material [21]

The simplified methodology for predicting fracture of structural components
is based on eqs. (7.36) through (7.38) along with modified (7.30) and
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7.4.2 FAR-FIELD J-INTEGRAL

The total J-integral due to symmetry becomes
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and The general field equations for elastic-plastic fracture analysis are
defined as [8]

where P = Load per unit thickness

= Limit load per unit thickness

= Constant tabulated in Ref. [8]

= Constant tabulated in Ref. [13]

The constants and are defined in Table 7.2, and is Irwin’s effective
crack length defined by

where = 2 for plane stress

= 6 for plane strain

The above field equations are strongly dependent on increasing load raised
to the power Therefore, the plastic part of these equations are dominant in
strain hardenable and incompressible materials. Despite that these equations
represent approximations, they can provide satisfactorily accurate results of the
J-integral, strains and displacements in appropriate engineering applications.
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Figure 7.7 shows a crack driving force diagram for an axially cracked and
internally pressurized cylinder made of ASTM A533B steel [22]. This diagram
represents a complete history of deformation and crack growth. Thus, the onset
of crack growth can be predicted when at the intercept of
This intercept is the instability point where

Furthermore, careful attention to the data in Figure 7.7 indicates stable
crack growth is for the monotonic load-controlled system. This
amount of crack growth is considered very small prior to crack propagation. If
the load is then the crack becomes unstable and grows very rapidly.

Additionally, He and Hutchinson [23] derived principles associated with up-
per and lower bounds on the J-integral for a finite crack in an infinite plane
(central crack case) and edge-crack in a semi-infinite plane. These principles
are based on the complementary potential energy and potential energy theories.
The resultant J-integral equation [23] is also given in Refs. [21,24]. Thus,
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Let eq. (7.30) be an equivalent expression so that

Substituting eqs. (7.34) and (7.56) into (7.55) yields the upper bound J-
integral for plane conditions

He and Hutchinson [23,24] also derived an upper bound form of the J-integral
as defined below

where for a central crack
for an edge crack

Similarly, substitute eqs. (7.34) and (7.56) into (7.58) to get

It should be mention that both eqs. (7.57) and (7.59) should give similar
results. An example in the next section will prove this statement.

7.5.1 THE CONSTANT

The constant in eq. (7.51) can be derived for the specimen configurations
illustrated in Table 7.2. This can be done very easily by equating eqs. (7.51)
and (7.57) and using the definitions of and The resultant expression are

For the central cracked plate given in Table 7.2,

where is defined in eq. (7.34).



Example 7.3 The application of the above procedure can be made clear by
analyzing the example given below. a) Calculate the total J-integral

for a center-crack plate made out of 2024 Al-alloy under plane conditions.
Assume that the material obeys the Ramberg-Osgood relation. Use the following
data:

and b) Plot                   for  plane
strain conditions. Explain.

Let’s determine using eq. (7.51) and Table 7.2

The calculated value of is close to the value tabulated by Kumar and Shih
[8].

The other parameters are
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Solution:

a) The solution requires the following parameters

From eq. (3.29) and Table 3.1, the applied stress intensity factor is

and from eq. (6.61) for pure tension loading, the elastic J-integral becomes

The constant along with and is
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Thus,

The plastic J-integral is now calculated using eq. (7.57) for comparison pur-
poses. Thus,

Denote that eqs. (7.51), (7.57) and (7.59) yield similar results. The former
gives approximately 3% higher value than the later equation.

The total j-integral value is basically due to the contribution of the plastic
part because In other words, the elastic
contribution is slightly less than 12%. Nevertheless, the total value is

b) The second part of the problem requires the determination of a function
with the stress in From part a),
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The required plot for plane strain condition is shown below

This plot indicates that the elastic contribution is significant up to approx-
imately since both and coincide. Beyond this point the plastic
contribution becomes apparent.

7.1 a) the J-integral ( J ) , b) the crack opening displacement c) load line dis-
placement and for a ductile AISI 304 stainless steel plate-containing
a central crack of What does mean? Assume plane strain con-
ditions and that the stainless steel obeys the Ramberg-Osgood relation at room
temperature. Explain the results. Given data:

7.2 A single-edge cracked plate made out of ASTM A533B steel is loaded in
tension at 93°C. Plot the given uniaxial stress-strain data and perform a regres-
sion analysis based on the Ramberg-Osgood equation. Determine the elastic-
plastic J-integral. Will the crack grow in a stable manner? Why? or Why

7.6 PROBLEMS

and [Solution: a)
and ].
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[1] J.W. Hutchinson, “Singular Behavior at the End of a Tensile Crack in a
Hardening Material,” Journal Mech. Phys. Solids, 16(1968) 13-31

[2] J.R. Rice and G.F. Rosengren, “Plane Strain Deformation near a Crack
Tip in a Power-Law Hardening Material,” Journal Mech. Phys. Sol., 16 (1968)
1

[3] K. Hellan, “Introduction to Fracture Mechanics,” McGraw-Hill Book
company, New York, (1984)

[4] J.R. Rice, ”A path Independent Integral and the Approximate Analysis
of Strain Concentrations by Notches and Cracks,” J. Applied Mech. 35 (1968)
379-386

[5] B.S.J. Kang and A.S. Kobayashi, “J-Estimation Procedure based on
Moiré Interferometry Data,” Report UWA/DME/TR-87/58, Office of Naval
Research (ONR), (August 1987)

[6] J.W. Dally and W.F. Riley, “Experimental Stress Analysis,” third edi-
tion, McGraw-Hill, Inc. New York, (1991)

7.7.  REFERENCES 171

0 1.00 2.24 2.30 5.00 7.50 10 20 40
0 381 414 415 450 469 483 519 557

7.3 Repeat problem 7.2 using the Hollomon equation, for the
plastic region. Curve fitting should be performed using this equation for ob-
taining K and Assume plane strain conditions and make the necessary
assumptions. Compare the results from Problem 7.2. What can you conclude
from these results? [Solution: a)

7.4 Calculate a) the load-line displacement and b) the crack opening
displacement which corresponds to a point for
Use the following uniaxial data:

7.5 Determine the strain hardening exponent for a steel with
Assume that it obeys the Hollomon equation,

with Consider the maximum plastic stress in your calculations.
[Solution:

7.6 a) Derive an expression for the J-integral ratio, using
Rice model. b) Plot the resultant expression for a remote stress ratio range

Explain the resultant plot.
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MIXED-MODE
FRACTURE MECHANICS

Practical structures are not only subjected to tension, but also experience shear
and torsion loading leading to a mixed-mode interaction. Correspondingly, the
stress state ahead of a crack is frequently based on mixed-mode I and II or I and
III type of interactions, which designate the amplitude of the crack-tip stresses
because of skew-symmetric loading. Problems of this type are encountered in
multi-phase materials such as welded structures, adhesive joints, composite ma-
terials, plain and reinforced concrete structures, bridges, aircrafts and so forth.
A mixed mode interaction can also arise when crack branching occurs; that is,
when a crack changes direction in which the classical energy balance of Griffith
can no longer be carried out in a simple manner since cracking is not collinear
as it has been assumed in previous chapters.

In addition, cracks may develop in the skin of aircraft fuselages and can
be subjected to mixed-mode fracture conditions. In general, crack initiation
and growth must be correlated with the governing stress intensity factors in
a complex state of stress. This means that the crack tip fields are inherently
three dimensional with varying distribution through the thickness of the solid
component. Therefore, the field equations must be determined for a better
understanding of mixed-mode fracture mechanics [1-7]. For instance, cracks
loaded in tension and shear may exhibit crack branching or kinking can be
characterized using traditional singular and high-order terms in the stress field.
The mixed-mode analysis of branched cracks requires the determinations of
stress intensity factors for the original and branched crack parts in terms of the
stress field surrounding the crack tip [1-28]. Therefore, an optimal kink angle
and the T-stress can be determined based on far-field boundary conditions in a
homogeneous or heterogeneous materials.

Chapter 8

8.1 INTRODUCTION



Using the linear superposition of stresses in rectangular or polar coordinates the
elastic state of stress at the crack tip are obtainable very easily. For a mixed
mode I-II shown in Figure 8.1a, the total stress in Cartesian coordinates are the
sum of the stresses of each loading mode component derived in Chapter 4.

The displacements are the sum of eqs. (4.18) and (4.37)

8.2 ELASTIC STATE OF STRESSES
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For polar coordinates, eqs. (4.58) and (4.59) yield

Rearranging eq. (8.3) yields [1]

and the displacements are obtained from eqs. (4.63) and (4.64)
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From Chapter, the stresses and displacements for the specimen configuration
shown in Figure 8.1b are

The main objective in this section is to develop a fracture criterion based on
the strain energy release rate for mixed I and II interaction. Assume that the
basic three mode interact on a elastic component and the elastic J-integral and
the elastic strain energy release rate are equal. Thus, eq. (6.61) is applicable
for crack motion on its tangent plane

where

8.3 STRAIN ENERGY RELEASE RATE

8.3.1 MODE I AND II

where  for plane stress
for plane strain
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For pure mode I loading at fracture, the fracture toughness expression is

This equation indicates that any combination of the stress intensity factors
may give the value for fracture toughness Now, consider the mixed mode
I-II configuration shown in Figure 8.1a. The stress components and the stress
intensity factors become

This fracture criterion is named so because eq. (8.17) is the equation of a
circle for a constant radius Now, inserting eq. (8.14) into (8.17) yields the
plane strain fracture toughness as a function of the fracture or critical stress
and inclined angle

Substituting eq. (8.12) into (8.11) gives the fracture criterion equation which
is named as the G-Criterion

and

Thus, eq. (8.13) reduces to

Figure 8.2 shows how the fracture stress varies with increasing incline angle
at a fixed crack length and various levels of fracture toughness. .
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Example 8.1 A large steel plate is has a long inclined central crack
at 20°. If the applied stress is determine whether or not the plate will
fracture. The fracture toughness of the steel is

Solution:

From eqs. (8.15) and (8.16),

Thus,

The fracture stress should be calculated using eq. (8.18)

Therefore, the plate will not fracture because and
for a fixed crack length.
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8.3.2 FRACTURE ANGLE

Assume that the incline crack shown in Figure 8.1a changes direction under the
influence of an applied tension stress and that crack propagation occurs along
the x-axis (tangent plane). Take this fracture angle as negative angle since it
rotates clockwise. Thus,

Using the trigonometric function                                                  in eq. (8.18)
and arranging the resultant expression yield the plane-strain fracture toughness
as a function of the fracture angle Hence,

This expression indicates that fracture occurs when at a fracture
angle for pure mode I loading. Conversely, for pure mode
II. Some materials may obey this particular criterion and the mixed-mode eval-
uation is very simple. The fact remains that vanishes when crack growth
changes direction along the x-axis as depicted in Figure 8.1a. Thus, the crack
fracture angle can be predicted to be It is clear that the rela-
tionship between the fracture and incline angles is linear.

If the circular fracture criterion does not explain some data, then one ap-
proach is to use the elliptical fracture condition with as a
practical definition [4]. Thus, the mixed-mode equation is

Figure 8.3 shows the trend of eqs. (8.17) and (8.21) for a quarter of an
ellipse. The elliptical fracture criterion is based on the assumption that the
crack propagates in a self-similar manner (extension along the plane of the
original crack). Previously, Xu [21-22] used this method in a three-dimensional
approach. In practice, crack extension in a combined loading system takes place
under an angle with respect to the original crack plane. This leads to other
fracture theories.

Substituting eq. (8.14) into (8.22) gives
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Example 8.2 A brittle steel plate containing a long inclined central
crack (Figure 8.1a) is loaded in tension. Use both the circular and the elliptical
fracture criteria to determine a) the fracture stress when and b)
and when the fracture stress is Given data:

and

and

Solution:

a) This part of the problem is for (ellipse). Thus, eqs.
(8.18) and (8.23) yield, respectively
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Therefore, implies that the crack should be located along the
and the fracture angle should be zero because crack motion should occur on its
tangent plane. This is known in the literature as a self-similar crack growth.
This can be proven by using eq. (8.19). Thus,

consider the crack configuration for a solid cylinder shown in Figure 8.1b. For
a mixed mode I-III, the cylinder is subjected to a biaxial loading and eq. (8.13)
reduces to

Denote that is changed to for plane stress. These expressions indi-
cate that crack growth occurs in a self-similar manner or crack motion manifests
itself along its tangent plane. This is in accord with the basis for deriving eq.
(8.13). Therefore, the crack fracture angle is

When the fracture crack angle of an incline crack is defined by the inequality
where the crack incline angle is both Circular and

Elliptical Criteria may be invalid and therefore, different mixed mode fracture
criteria should be considered in order to obtain reliable and accurate results.

and

Therefore, the fracture stress decreases as the incline angle decreases

8.3.3 MODE I AND III

b) For
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This mixed-mode fracture criterion, has been shown [3,5,6] to be
equivalent to the mixed-mode strain energy release rate criterion. This fracture
criterion postulates that crack growth takes place in a direction perpendicular
to the maximum principal stress. Hence, the fracture criterion requires that the
maximum principal stress be a tension stress for opening the crack along its
plane. This criterion also requires that

Consider the tension loading that produces a mixed-mode I and II interaction
as shown in Figure 8.1a and that the stress      in eq. (8.4) is a principal stress if

Setting in eq. (8.4) and using eq. (8.15) and (8.16)
yield

Using the trigonometric function                                            and
in eq. (8.28) and solving for yields

This equation is of practical interest since the fracture angle can be esti-
mated knowing value. This fracture angle may be considered as
a kink angle in a mixed-mode fracture process in a homogeneous material. For
pure mode II loading, the tension stress intensity factor vanishes and
consequently, eq. (8.28) yields the fracture angle as

The maximum principle stress is defined, after manipulating the trigonomet-
ric functions in eq. (8.4), by

8.4 PRINCIPLE STRESS CRITERION

For pure mode I loading at fracture with eq. (8.31) becomes
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Equating eqs. (8.31) and (8.32) yields the fracture criterion as a trigono-
metric function

Furthermore, the fracture toughness ratio can be determined by substituting
the fracture angle into eq. (8.33) for pure mode II at fracture.
Thus, and

with

The distribution of each constant is shown in Figure 8.4. Denote the
three intercepting points where the constants are equal. For instance,

For convenience, squaring eq. (8.33), manipulating and simplifying the
trigonometric identities yields
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Sih [2] proposed this criterion using the strain energy density factor (S) for a
two-dimensional stress field. This criterion states that the initial crack growth
takes place in the direction along which the strain-energy-density factor reaches
a minimum stationary value so that

This theory can predict crack propagation in an arbitrary direction it states
that crack propagation occurs when at where is the critical
strain energy density factor and is the fracture angle.

The development of S-criterion is achieved by inserting the previously de-
rived stresses and displacements into the strain energy density equations (with
unit thickness). This criterion is related to the work done by the an external
load, which is the stored strain energy density in solids. Thus, eq. (6.58) in
rectangular and polar coordinates becomes

Here, V is the volume and is the inner area (region) of the plastic
zone model shown Figure 8.5 [2]. This region should not have its sides coincide
with the free crack surface which corresponds to the trivial case when S = 0.

The strain energy density factor is derived by combining eqs. (8.5) and
(8.40). Thus,

8.5 STRAIN-ENERGY DENSITY FACTOR

where = constants
= Modulus elasticity in shear

E = Modulus elasticity in tension
= Poisson’s ratio
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The constants are

Figure 8.6 shows the distribution of the constants as a function of for
Poisson’s ratio of and modulus of elasticity of under plane
strain condition.
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and

For pure mode II, and eq. (8.41) yields

Letting at yields

and eq. (8.43) becomes

For instance, if Poisson’s ratio is then the fracture angle under plane
conditions become

On the other hand, if in eq. (8.41), then

Letting in eq. (8.49) at gives

or
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Let                     at in eq. (41) for               and                so  that



This equation can be used to determined knowing values. The
S-criterion for a mixed-mode I and II can be determined by inserting eq. (8.51)
into (8.41). Thus,

Inserting eq. (8.50) into (8.54) along with yields the fracture toughness
for mode II

For plane strain with and eq. (8.57) yields exactly the
same result as predicted by the principle stress theory given by eq. (8.34).

The numerical results of eq. (8.54) along with other criteria for negative
values of (tension) and positive applied stress are shown in Figure 8.7 [4] In
addition, notice the remarkable agreement between experimental and theoretical
results for Plexiglas given in Table 8.1 [2]. This illustrates the usefulness of
these criteria for predicting the fracture angle in elastic solids. Figure 8.8 shows
the relationship between the fracture and inclined angles for tension loading [2].
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Example 8.3 A large 2024 Al-alloy plate containing a central crack inclined
at is subjected to a combined mode I-II loading. The plate fractures at a
tensile stress of and a shear stress of Use
the Maximum Principal Stress Criterion and the Strain Energy
Density Factor (S) Criterion (S-criterion) to calculate the fracture angle
the incline angle and the plane-strain fracture toughness and Use
the following data: crack length and

a) Maximum principle stress criterion:
If and the stress

intensity factors are

Solution:
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From eq. (8.29),

The crack is incline at

From eq. (8.34),

b) Strain energy density factor criterion:
For plane strain condition,

Inserting the value of and into eq. (8.33) yields

Using eq. (8.53) and an iteration procedure, the fracture angle becomes
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and

Finally, the fracture toughness for mode II and the critical strain energy
density factor are

and

Therefore, crack propagation takes place when at

From eq. (8.42) and (8.54),
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8.6 CRACK BRANCHING

It is recognized that the tensile cracks in solids can significantly branch due to
mechanical, microstructural or environmental effects. Changes in crack path
are normally induced by [7-12]

1) Multiaxial far field stresses

2) Interaction of the crack tip with microstructural defects

3) Sudden changes in load

4) The embrittlement effect of an aggressive environment

Figure 8.9 illustrates some examples of severely branched cracks in ductile
materials during different conditions, which can be found in the cited references.
The effects of crack branching can be rationalized based on the stress intensity
factors for the small-branched cracks shown in Figure 8.10. However, numerous
solutions for kinked and forked cracks have been proposed, but there have been
considerable disagreements.

The stress intensity factors and for kinked and forked cracks are
smaller than the nominal and Based on the projected length of the
crack, and are meaningful if the plastic zone is smaller than the zone of
dominance of the and singular fields.

The stress intensity factor solutions for kinked and forked elastic cracks under
mixed mode I-II loading are based on the models shown in Figure 8.10 [7,13-16].
Thus,

where are defined as
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These coefficients are the solutions for an infinitesimal kink or branch crack
A simple analysis of these equations imply that if then the stress

intensity factors for crack kinking become equal to the nominal counterparts;
that is, and The profiles for and normalized stress
intensity factors for the branched crack are depicted in Figure 8.11.

The strain-energy release rate for crack extension in a self-similar manner
(in the plane of the original crack plane) was derived previously as eq. (6.34).
For an infinitesimally small crack branched out, the strain energy release rate,
eq. (6.34), is now defined in terms of the stress intensity factor for the kinked
crack tip
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The stress intensity factor and derived by Hussain et al. [17] and
by Sih [18] are

Substituting eq. (8.61) into (8.60) yields an expression for the strain energy
release rate

The hypothesis states that crack extension takes place in a direction of max-
imum strain energy release rate and that crack branching occurs at a
fracture angle Hence,
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Crack propagation takes place when For pure mode I at
fracture, eq. (8.62) becomes

Letting in eq. (8.62) yields the fracture criterion

[8.1] A large plate (2024-0 Al-alloy) containing a central crack is subjected to
a combined mode I-II loading. The internal stresses are and

Use the maximum principal stress criterion to
calculate the fracture toughness ( and ). Data: crack length

and [Solution: and

[8.2] Repeat problem 8.1 using the strain energy density factor criterion
(S-criterion).

Denote that if in eqs. (8.62) and (8.65), the former reduces to eq.
(6.34) and the latter becomes eq. (8.13).

Furthermore, the above mathematical treatment of mixed-mode fracture me-
chanics problems has been based on the stress field surrounding the crack tip
where stress singularities exists as Including the influence of the T-
stress in the mixed mode I and II process, the generalized stress based on
Williams [23] K-field solution for unkinked crack is defined as [24]

Recall from Chapter 4 that is a second order term in the series expan-
sion of the stress field and it is non-singular, but specimen size and geometry
dependent. As pointed out by Becker et al. [24], represents the strength in
the crack x-direction. For mode I loading, and for stabilizing
the crack. Conversely, crack branching may occur when and at
angle as indicated in Figure 8.10. Further theoretical or numerical details on
crack kinking can be found elsewhere [25-28].

8.7 PROBLEMS
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[8.3] Determine a) the applied tensile stress and b) the safety factor for a
loaded plate containing a central crack inclined at 53.25°. The strain
energy release rate mode I is Data:

and [Solution: and SF = 4.46].
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Chapter 9

FATIGUE CRACK
GROWTH

9.1 INTRODUCTION

Fatigue in materials subjected to repeated cyclic loading can be defined as a
progressive failure due to crack initiation (stage I), crack growth (stage II), and
crack propagation (stage III) or instability stage. For instance, crack initiation of
crack-free solids may be characterized by fatigue crack nuclei due to dislocation
motion, which generates slip bands at the surface having slip steps in the order
of in height [1-2] or slip may occur at matrix-inclusion interfaces. These
steps produce surface intrusions and extrusions as schematically indicate below
for stages I and II. These intrusions caused by reversed slip due to load reversal
are the source for crack initiation, which may consume most of the solid life
before crack growth. This crack initiation may occur along the slip direction
due to a local maximum shear stress. After the consumption of many cycles,
the crack may change in direction when the maximum principal normal stress
(in the vicinity of the crack tip) governs crack growth. In this stage II some
materials show striations and beach marks as common surface features of fatigue
fracture.

In general, fatigue is a form of failure caused by fluctuating or cyclic loads
over a short or prolong period of time. Therefore, fatigue is a time-dependent
failure mechanism related to microstructural features. The fluctuating loading
condition is not a continuous failure process as opposed to cyclic loading. The
former is manifested in bridges, aircrafts and machine components, while the
latter requires a continuous constant or variable stress amplitude until fracture
occurs. It is also important for the reader to know that fatigue failure or fracture
can occur at a maximum stress below the static yield strength of a particular
material. Obviously, temperature effects must be considered in fatigue failure
characterization. From an engineering point of view, predicting fatigue life is
major a requirement.



9.2 CYCLIC STRESS HISTORY

Figure 9.1 shows schematic cyclic-stress fluctuating curves with constant stress
amplitude (symmetrical) and random loading as function of time. These schematic
curves represent cyclic stress histories from which the number of cycles are ac-
counted for fatigue life (N).

The stress history or stress spectrum can be

1) Axial due to tension-compression applied stresses

2) Flexural due to bending applied stress

3) Torsion due to twisting
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The common stress parameters extracted from the constant amplitude (sym-
metrical) curves are the mean stress alternating stress the stress ratio
and the stress amplitude

These stress parameters can be varied while conducting fatigue tests for
characterizing materials having specific geometries, weldments or microstruc-
tural features. In fact, varying stress ratio is the most common parameter in
determining the fatigue behavior of crack-free and cracked specimens. For crack-
free specimens, the number of cycles to initiate a fatigue crack is known as the
fatigue-crack initiation life which can have a very large magnitude repre-
senting most of the usual life of a component. The remaining fatigue life          is
related to stable fatigue crack growth till the crack reaches a critical length and
consequently, crack propagation occurs very rapidly without any warning. As a
result, a component can have a fatigue life defined by the total number of cycles,

consumed during testing or service. Conversely, a pre-existing
crack reduces fatigue life because and

Despite that fatigue represents a cumulative damage in structural compo-
nents, it is the fluctuating or cyclic local stresses and strains imparted by an
external or nominal loading mode that are the primary factors for localized crack
initiation and growth. Therefore, fatigue life can be prolonged if the nominal
fluctuating or cyclic stress level is reduced or eliminated, the microstructure is
homogeneous, dimensional changes are not severe enough or if the environment
is not significantly corrosive.

For crack-free or notched specimens, the usual characterization of fatigue
behavior is through a stress-cycle curve, commonly known as a S-N diagram.
Figure 9.2 shows two S-N curves for different materials.
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It should be pointed out that the fatigue limit (for infinite life) was formerly
called the endurance limit and it is the stress level below which fatigue failure
does not occur. Generally, ferrous alloys such as steels exhibit a stress limit,
whilst nonferrous do not show an asymptote and the stress continues to decrease
with increasing cycles to failure. The latter materials are characterized by de-
termining the fatigue strength at a specific life (N). This stress is meaningless
if the specific life is not identified.

Typically, fatigue life exhibits data scatter as schematically shown in Figure
9.1 for ferrous and titanium alloys. Nonferrous alloys also exhibit data scat-
ter. Therefore, the difference in failure response of test specimens is due to
microstructural defects and machining defects. In addition, a particular mater-
ial having a fine-grained microstructure exhibit superior fatigue properties over
coarse-grained microstructure.

Metal fatigue is a significant engineering problem because it can occur due
to repeated or cyclic stresses below the static yield strength, unexpected and
catastrophic failure of a vital structural part may occur and rack initiation may
start at discontinuities in highly stressed regions of the component. Fatigue
failure may be due to discontinuities such as inadequate design, improper main-
tenance and so forth.

Fatigue failure can be prevented by

Avoiding sharp surfaces caused by punching, stamping, shearing and the
like

Preventing the development of surface discontinuities during processing.

Reducing or eliminating tensile residual stresses caused by manufacturing
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Avoiding misuse and abuse

Avoiding assembling errors, improper maintenance, manufacturing de-
fects, design errors

Using proper material and heat treatment procedures

Using inert environments whenever possible

Furthermore, normally the nominal stresses in most structures are elastic
or below the static yield strength of the base material. In pertinent cases, the
strain-life can be determined instead of the stress-life (S-N) in high low
cycle fatigue schemes.

9.3 FATIGUE CRACK INITIATION

It is not intended here to include a detailed background on crystallography,
but a brief explanation on this subject can make the reader be aware of the
implications in preventing and understanding fracture initiation at a atomic or
nanoscale. With regard to common metallic structural materials, metals and
engineering alloys are crystalline in nature since atoms are arranged uniformly
forming unique repetitive three-dimensional arrays, which constitute what is
known in crystallography as unit cells. As a result, the unit cells repeat them-
selves within grains (crystals) and their atomic mismatch is known as grain
boundary. Figure 9.3a shows an schematic unit cell within the space lattice and
Figure 9.3b depicts the atomic arrangement in a body-centered cubic (BCC)
showing primary slip system  On the other hand, Figure 9.4 shows
two real and different types of microstructures and therefore, the static and dy-
namic behavior of the corresponding alloys have distinct mechanical behavior.
This means that the microstructure play a very significant role in mechanical
behavior of solid bodies. Figure 9.5 exhibits two different dislocation networks
as the representative line defects that develop during permanent deformation
[54-56]. These figures are intended to show the different microstructural features
of polycrystalline materials responsible for any observable mechanical behavior.

In general, fatigue crack initiation and growth depend on microstructural
features, the maximum fluctuating stress and environment. Conversely, plas-
tics or polymers are composed of molecules and are also important engineering
materials; however, their fatigue mechanism is different from metals.

9.3. FATIGUE CRACK INITIATION 203



204 CHAPTER 9. FATIGUE CRACK GROWTH



Consider a polycrystalline solid with a smooth surface being subjected to
an elastic-cyclic stress range, in which but is high enough to
activate a slip mechanism such as the Cottrell-Hull modified mechanism [3-6]
shown in Figure 9.6. Let the stress ratio be R = –1 for a fully reversed cyclic
load system causing irreversible damage after many cycles. Take the slip planes
A and B for convenience so that dislocation pile-ups occur on both sides of the
planes, but having opposite signs as indicated in Figure 9.6a. When the slip
system is activated due to the local maximum shear stress
a surface step is created at (Figure 9.6b). Then dislocation motion
is reversed once (Figure 9.6c). Also, the upper part moves toward
its original position, leaving an inward step called intrusion in the order of the
Burger’s vector This mechanism is repeated many times until
a deeper intrusion acts as a micro-crack. During this stage I, many life cycles
are consumed before crack growth in the direction perpendicular to the local
principal normal tension stress, which governs the crack growth behavior, and
the Cottrell mechanism no longer applies in a simple manner. This mechanism
can take place in a few grains before the crack changes direction. Once this
occurs other dislocation mechanisms such as the Frank-Read source may take
place. When multiple cross-slip occurs, the Frank-Read source may not complete
a loop cycle [4].
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Nevertheless, the micro-crack becomes long enough, causing an increase in
the stress concentration at the crack tip, and subsequently, the local stress is
truncated to the yield strength of the solid. This leads to a stage II crack
growth during which many grains are deformed making the plastic zone, which
eventually reaches a critical size for crack growth continuation in the direction
of the local principal stress which governs the stress field at the crack tip.

Since each grain has a different preferred orientation, crack growth may be
in a zigzag manner due to different slip directions. As a result, fatigue surface
features may consist of curved beach marks and striations in between. It is
believed that each striation corresponds to a cycle and many striations are
formed between beach marks. Therefore, it is possible that the plastic zone
growth is related to sets of striations and its rupture at a critical size may be
attributed to the formation of a beach mark. In addition, solid bodies subjected
to a fluctuating load, as opposed to a monotonic load, may develop cracks that
may grow very slowly. The fatigue maximum tension load (lower than the
monotonic maximum) is attributed to cause crack opening. On the other hand,
the minimum load closes the crack. At this point, crack closure will be neglected.

Fatigue Fracture is a cyclic mechanical process in which a stress range
is applied at constant or varying stress amplitude until rupture occurs. It is a
complex phenomenon since it may start from macroscopic pre-cracks, occur in
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originally crack-free bodies or initiate in slip zones adjacent to the outer surface
or in internal defects, such as voids or inclusions.

The mechanism of fatigue fracture may be initiated at a microscopic defect
since

A cumulative displacement between slip planes occurs

An intrusion, as formed in a slip direction, may be the original source for
a micro-crack.

A triple point at grain boundaries may be a source of crack initiation
or cracks may be developed by stress corrosion action, such as hydrogen
embrittlement.

However, the direction of fatigue crack growth may change from the slip
orientation (stage I) to an average cracking normal to the maximum tension
direction corresponding to the stage II process. Thus, the characteristics of
crack growth may be transcrystalline either by progressive plastic straining,
which causes typical striations or by cleavage at low temperatures or in the
presence of brittle inclusions.

On the other hand, crack growth may be intercrystalline due to bonding
deficiency, aggressive environment or due to initiation and coalescence of voids
within or between grains. Then, the final stage (III) of fatigue fracture is caused
by a dynamic crack propagation mechanism, in which the applied maximum
stress intensity factor reaches a critical value equals to the plane stress or plane
strain fracture toughness of the material. Therefore, the final fatigue process
leads to failure or rupture.

9.4 FATIGUE CRACK GROWTH RATE

Since fatigue is a cyclic dissipation of energy, in the form of hysteretic loops,
which are related to a cumulative damage process, the elapsed time for damage
is expressed in terms of the number of fatigue cycles (N). The control parame-
ter that is used to evaluate this process is the rate of crack growth per cycle

Hence, depends on the applied stress intensity factor range
and N is the well-known fatigue life term.

For crack initiation or stage I, the threshold stress intensity factor and thresh-
old stress range are associated as

Here, is the geometric correction factor introduced in Chapter 3 and
is analogous to fatigue limit This equation indicated that if
crack growth does not occur. On the other hand, in the early 1960’s, Paris [6]
empirically expressed the phenomenon associated with the rate of fatigue crack
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growth in stage II in terms of the stress intensity factor range Thus, the
Paris law for stage II is defined by

Figure 9.7 shows the procedure for estimating stage II in an actual
laboratory exercise. Notice that the tangential slope of for a constant
stress ratio R is which increases rapidly as the crack grows and the
number of applied cycles increases. Moreover, the effect of the stress ratio R on
crack growth is remarkably noticeable since increasing R increases and
fracture is accelerated. The Paris law has empirically been modified in order to
incorporate the cyclic stress ratio.

In addition, some expressions cited in the literature are given as

Forman equation [7]:
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A  = Constant

= Exponent
= Geometric correction factor introduced in Chapter 3

= Stress range



Broek and Schijve equation [8-9]:

Walker equations [10]:

Hartman and Schijve equation [11]:

Denote that the exponent in the above equations is not have a fixed value.

9.5 FATIGUE LIFE CALCULATIONS

The goal here is to develop a mathematical model that predicts Fatigue Life
(N) for a given stress range at a constant load amplitude. Since Mode I loading
is the most studied, integration of eq. (9.6) is carried out for this mode for
convenience; however, other mode of loading may be used instead. Nevertheless,
the fatigue life (N) sought is

Inserting eq. (9.8) into (9.15), integrating and arranging the resultant ex-
pression yields

Assuming that final fracture occurs when the crack length reaches a critical
(maximum) size so that and For plane strain conditions,
the critical crack length along with can be predicted by
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Substituting eq. (9.17) along with into (9.16) yields an important
expression for determining the stress range when the final crack size is
unknown

where

Example 9.1 A high-strength steel string has a miniature round surface
crack of 0.09 mm deep and a outer diameter of 1.08 mm. The string is subjected
to a repeated fluctuating load at a stress ratio R = 0. The
threshold stress intensity factor is and the crack growth
rate equation is given by

Determine a) the threshold stress the string can tolerate without crack
growth, b) the maximum applied stress range and c) the maximum (critical)
crack size for a fatigue life of cycles. Use the following steel properties:

and

Solution: It is assumed that the plastic-zone with a cyclic range is
smaller than that for applied monotonically, and that the surface crack can
be treated as a single-edge crack configuration. Note that since
already exists. Data:
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a) From eqs. (3.56),

Thus, eqs. (3.54) and (9.5) yield respectively

b) Use eq. (9.19) and subsequently (9.18) to get

and

Solving the above biquadratic equation yields four roots. The positive root is
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b) The critical crack size is calculated from eq. (9.17)

Therefore,  represents 5.56% increment at a maximum fluc-
tuating stress                  for a fatigue life of       cycles.

9.6 CRACK GROWTH RATE DIAGRAM

In addition, a detailed fatigue-crack growth behavior (sigmoidal curve) is schemat-
ically shown in Figure 9.8 [12]. Stage I is a slow crack growth region in which
the fatigue threshold stress intensity factor range is usually less than DK < 9

and below this value fatigue crack growth does not occur. In
addition, stage I is rather a complex region from a micro-scale point of view,
but it is related to a non-continuum crack growth mechanism, which strongly
depends on the materials microstructure, the applied stress ratio R and the
environment.
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ANALYSIS OF Figure 9.8:
Stage I: This is a slow crack growth process which is related to non-

continuum mechanisms and slow fatigue crack growth in the order of
Thus, this fatigue process strongly depends on the

a) Microstructural parameters such as grain size, precipitates, dislocation
density, etc.

b) Mean tress and stress ratio

c) Aggressiveness of the environment

d) Surface damage initiation

Stage II: This fatigue process is referred to as the power growth behavior
usually characterized by the Paris law and it slightly depends on the parameters
in stage I. Particularly, surface characteristics are the formation of beach marks
and striations in some metallic materials. Furthermore, the specimen thickness
does not strongly influence the fatigue crack growth rate.

Striations are microscopic fatigue features that can be observed with the
scanning electron microscope (SEM) and the transmission electron microscope
(TEM) at relatively high magnifications. Conversely, each striation indicates
a successive advance of one stress cycle. The width of a striation represents
the advance of the crack front during one stress cycle, but it depends on the
magnitude of the applied stress range. Normally, the appearance of service
fatigue striations is irregular due to changeable stress amplitude. Striation are
dealt with in later section. Then, this irregularity in striation configuration
is an indication of non-steady crack growth rate, which may be restricted to
geometry-dependency and load history, leading to an enhanced or retarded rate.

Stage III: This fatigue process strongly depends on the microstructural
parameters cited in stage I and on the specimen thickness. Since the applied
stress intensity factor is sufficiently large, the fatigue crack growth is high and
the process is under an instable damage process. Therefore, this is the instability
region in Figure 9.8 and fracture occurs when the stress intensity factor reaches
a critical value.

Figure 9.9 schematically shows the influence of R on stage I [13]. Figure
9.10 depicts experimental for a structural steel [14] For
instance, the most common engineering metallic materials have a BCC, FCC,
or HCP atomic structure; therefore, the fatigue behavior of these materials is
expected to be different. Generally, surface crack initiation occurs in this State I
in which the crack growth rate is very slow. In addition, stage II is known as the
power crack growth, which is less dependent on the microstructure, stress ratio,
and environment than stage I. The log-log linear fatigue behavior is referred to
as the Paris Law, which empirically define by eq. (9.6). The characteristics of
the surface fracture appearance may include beach marks and striations that
are observable in certain materials such aluminum and aluminum alloys. Both
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fatigue fracture features are concentric ridges of circular, semicircular or semi-
elliptical shape. Beach marks (or clamshell marks) are macroscopic bands-
containing striations, represent the position of the crack of length and are formed
due to interruptions of the cyclic stress loading during service.
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Despite the experimental data scatter found in steels, Barsom and Rolfe [14]
determined conservative crack growth rate expressions as given in Table 9.1.
based on Paris equation for fatigue stage II at R = 0. If experimental data
is not available for a particular steel, these equations can be used in designing
with proper caution. Thus,

Fatigue crack growth data is quite abundant in the literature, but some
selected experimental data are included in Table 9.2 as a reference. Useful
experimental data can be found elsewhere [15-49].

With regard to Figure 9.8, the transition between stage II and III apparently
is related to tearing mechanism when the crack tip strain reaches a critical value
[49]. For a R = 0, and the onset of the transition apparently
occurs at a constant crack tip opening displacement which can be estimated
according to Barsom’s relationship of the form [50]

and
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where is the transition stress intensity factor, which can be set
equals to the upper limit of the valid range of in stage II. Actually, is
the flow stress for this transition and E is the modulus of elasticity.

In addition, Figure 9.11 shows recently published data using compact
tension (CT) specimens according to the ASTM E647 Standard Test Method
for Measurement of Fatigue Crack growth and a specific software [57]. The
testing material apparently was a steel alloy. From this figure, the threshold
stress intensity factor approximately agrees with the
information given in Figure 9.8 that The reason fro
selecting this particular data is to inform the reader that fracture mechanics
tests can be conducted using state-of-the-art instrumentation accompanied with
reliable software to speed up calculations and avoid human errors.

The curve fitting equation for data in Figure 9.11 is

From a metallurgical point of view, Paris [16] compared fatigue crack growth
rate data for FCC, BCC and HCP metallic solids. For convenience, only FCC
and BCC data are shown in Figure 9.12. Therefore, it is clear that this data set
correlates with the Paris law, eq. (9.6).
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An analogous behavior for polymers is depicted in Figure 9.13. There-
fore, fatigue crack growth behavior is mathematically described by the function

the simplest being the Paris equation.
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9.7 WELDMENTS

Welding is a fabrication process for joining two or more parts to form one
single part. The joining process is a localized metallurgical process related
to solidification. The resultant welded area is metallurgically heterogeneous
with respect to microstructural features. Nevertheless, the joining process can
be achieved by laser beam welding (LBW), arc and gas welding, brazing and
soldering using relatively low melting temperature metals (Pb-Sn), explosive
welding, ultrasonic welding, and by friction stir welding technique [58]. The
reader should consult the American Welding Society, the Welding Institute of
the United Kingdom and a new technical article published by American Society
for Metals International. Figure 9.14 shows a typical plot for welded pressure
vessel steel specimens [59-60].
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Figure 9.15 depicts Viswanathan’s model [61] for microstructural changes
in the heat affected zone (HAZ) adjacent to the weld, which in turn is related
to the Fe-C phase diagram. This schematic representation of the microstruc-
tural changes in the base metal with respect to grain size and grain morphology
is typical in submerged arc welding (SMAW) process of Cr-Mo steels. Conse-
quently, mechanical properties in the HAZ are affected by the cooling rate within
the welded region and grain size in the HAZ. In alloy steels, martensite may
form as an undesirable phase because it is brittle. The different microstructures
are labeled schematically in Figure 9.15 as zones. These different microstruc-
tural zones disturb the microstructural symmetry of the parent metal and as a
consequence, mechanical and corrosion properties vary through the HAZ. One
particular solution to this metallurgical problem is to heat treat the welded part
whenever possible to obtain a uniform microstructure.

In general, welding cracks or HAZ cracking may occur due to tensile residual
stresses that develop upon contraction of the welding bead. Therefore, welding
should be done properly in order to avoid welding defects because they have a
strongly affect mechanical properties.

The Paris law is the most common approach for correlating with
in weldments. In fact, the weld bead or solid-phase weld is the part of

the joined materials that is tested and characterized. It is apparent that a good
correlation exists for                              in stage II, where the Paris law describes
the observed fatigue behavior [59].
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9.8 SURFACE FRACTURE APPEARANCES

This section is focussed on the appearance of fracture surfaces that are vital in
failure analysis in conjunction with knowledge of the load history in a particular
environment. Figure 9.16 shows Schijve’s model [15] that provides details of a
fracture surface exhibiting typical ductile fracture features encountered in many
engineering materials under quasi-static loads. These features are affected by
applied stress conditions, specimen geometry, flaw size, mechanical properties
and environment. Subsequent fatigue crack growth or crack extension is associ-
ated with increasing applied stress, which in turn increases the stress intensity
factor. Some solid materials can show a shear lip as an indicative of ductile
fracture and as a result, the fracture surface exhibits a slant (SL) area. Some
materials exhibit double-shear lips which are indications of ductile fracture due
to an overload. Conversely, a brittle fracture surface is normally flat without
shear lips.

In addition, environmental effects, such as low and high temperatures and
corrosive media, can have a significant impact on the mechanical behavior and
fracture appearances of solid bodies. For instance, a ductile steel alloy may
become brittle at relatively low temperatures.

Stage II Fatigue Failure: This is due to a change in crack growth direction
of stage I as shown in Figure 9.6, in which the crack in a polycrystalline material
advances along crystallographic planes of high shear stress. The characteristics
for fatigue failure of stage II can be summarized as per schematically shown in
Figure 9.17.

The fatigue events are described as follows:

Crack growth occurs by repetitive plastic blunting and sharpening of the
crack front.
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Shear deformation direction reverts to complete a full cycle in compression.
This event may cause cleavage fracture.

If rapid crack growth rate occurs, then rapid failure takes place, and beach
marks and striations may be absent, regardless if the material is ductile
or brittle.

Intercrystalline fracture is possible, particularly at the lower range of
stress.

Formation of striations depends on the nature of the materials, such as
aluminum and Al-alloys. However, steels may exhibit cleavage mechanism
as a dominant fracture mode.

Striations indicate the changing position of the crack front with each new
cycle of loading.

Ripple (annual ring) patterns can form on the fracture surface.

The domain of high-cycle fatigue prevails during stage II.

Model for the Formation of Striations: Figure 9.18 shows Broek’s
possible mechanism [33] for the formation of striations in certain materials,
such as aluminum alloys and in some strain-hardened alloys.
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The possible stages during the formation of striations are

1 & 2) Slip formation occurs at the crack tip due to a stress concentration.
Slips form in the direction of maximum shear stress as explained by the
Cottrell-Hull mechanism (Figure 9.6), and the crack opens and extends
in length A particular model for a slip system, in BCC
structure is shown in Figure 9.3b. In addition, Figure 9.19 shows a unique
microphotograph of wavy slip lines in BCC niobium (Nb) [62].

3) Other slip planes are activated and consequently, cross-slip may occur.

4) Crack tip blunting occurs due to strain hardening, which may activate
other slip planes.

5) The crack re-sharpens due to plastic deformation (plastic zone) embed-
ded in the elastic surroundings. During load release, the elastic surround-
ings excerpt compressive stresses on the plastic zone. This reversed plastic
deformation process closes and re-sharpens the crack tip.
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6&7) Crack closure and re-sharpen occur due to repeated loading, leading
to more crack growth (extension).

The cyclic opening and closing of the crack develops a typical pattern of
ripples called fatigue striations. The above model (Figure 9.18) of striation
formation is a general representation of crack blunting and re-sharpening in
ductile or sufficiently ductile materials. However, a cleavage mechanism may
involve brittle striations, as opposed to ductile striations.

Figure 9.20 shows the characteristic fatigue striations of an Al-alloy having
a modulus of elasticity approximately equals to
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These striations are ripples on the fractured surface caused by perturbations
in the cyclic stress system. The width of a striation depends on the fatigue
stress, but it is in the order of or less. For instance, the apparent stress
intensity factor range is related to striation spacing as empirically proposed by
Bates and Clark [34]

The striation spacing is a measure of slow crack growth per stress cycle and
it may be constant for constant stress amplitude. However, striations may not
form when the stress range and the maximum stress are relatively large, leading
to fast fatigue crack growth rate [35].

Example 9.2 Determine the apparent stress intensity factor range and the
fatigue crack growth rate for the aluminum alloy fracture surface shown in Figure
9.20. Use a modulus of elasticity of

Solution:

The solution to this problem requires that the actual average striation spacing
be calculated using the magnification given in Figure 9.10. The average striation
spacing as denoted in Figure 9.20 is approximately

Then, using eq. (9.23) yields

Since the striation spacing is a measure of slow crack growth per stress cycle
the estimated actual fatigue crack growth rate is

Example 9.3 Let’s use Fuchs and Stephen problem 8.13 [13] with reference
to a fractograph reported by Crooker et al. [64] to illustrate another approx-
imation technique in fatigue failure analysis. A 17-4 HP stainless steel plate
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containing a 6-mm single-edge crack was subjected to a constant cyclic loading
with a stress ratio of R = 0. The plate was 5-mm thick, 20-mm wide and
sufficiently long. Calculate the apparent stress intensity factor range and the
maximum load. The crack growth rate as per Paris equation was

Solution:

The geometric correction factor for this crack configuration is given in Table
3.1. Thus,

From the micron marker on the fractograph, linear interpolation allows the
determination of the fatigue crack growth rate. Firstly, the average striation
spacing is calculated using linear interpolation. The micron bar is approximately
13-mm long and it is equivalent to        as magnification factor, then
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For one cycle, the average striation spacing represents the crack grown per
cycle. Thus,

Using Paris equation yields

For comparison purposes, eq. (9.23) along with  gives

which is approximately 6% lower than the previous result. Therefore, both
methods can yield reasonable results.

Secondly, taking as the average value one can calcu-
late the maximum load as follows:
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9.9 MIXED-MODE LOADING

The slow fatigue crack growth in elastic solids has been inves-
tigated under mixed-mode interactions [36-37] and biaxial cyclic loading [36-40].
A remarkable observation is that decreases as the stress ratio R increases
as in the case of mode I loading depicted in Figure 9.10. However, if the starting
crack size is large and the biaxial stress level is low, is independent of

[38].
In conducting mixed-mode fatigue studies, a defined effective stress intensity

factor may be used in the Paris law for brittle [36-40] or ductile [41-44]
materials. Effectively, the definition of depends on the mathematical
technique and theoretical background one uses. Nevertheless, the Paris law
[16-17] takes the general and empirical form

For a mixed-mode I and II interaction, eq. (8.17) and (8.18) may be used to
defined the effective stress intensity factor range as

For pure mode I at fracture,                 (similar argument was presented
in Chapter 8) for R = 0 and eqs. (9.25) and (9.26) become

Combining eqs. (8.15), (8.16), (9.27) and (9.28) yields a expression similar
to eq. (8.18)

where

An example can make the above analytical procedure clearly usable for solv-
ing mixed-mode problems under cyclic stress systems.
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Example 9.4 Assume that a solid cylinder of 25 mm in diameter has a
round surface crack inclined at and that the material has an aver-
age plane strain fracture toughness and threshold stress intensity factor of 15

and respectively. If the crack depth is 0.09 mm and the
applied cyclic stresses are  and calculate a) the minimum
stress range b) the applied stress range and c) the critical
length     for a fatigue life of cycles. How much will the crack grow? What
will be the percent crack increment? The Paris equation is

Solution:

Threat the surface defect as surface single-edge crack. Given data:

a) The minimum stress range can be calculated using eq. (9.26) by letting

b) For maximum stress range,
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c) From eq. (9.28), the critical crack size is

Therefore, the crack grew which represents 6.33% crack
increment.

9.10 GROWTH RATE MEASUREMENTS

In general, for small increments of the crack length in the order of or
less, the following procedure gives acceptable results. That is, the fatigue crack
growth rate can be approximated by

Then, compute the average crack length and the specimen geometry correc-
tion factor, respectively, as

and  since the initial crack length exists. The
American Society for Testing Materials (ASTM) E647 Standard Test Method
is widely used for measuring the crack length and the elapsed fatigue cycles at
constant loading stress amplitude and frequency. This method deals with the
procedure for determining low and high steady-state fatigue crack growth rates.
This particular test method does not restrict specimen geometry and specimen
thickness as long as buckling is precluded and the specimen ligament is large
enough.
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9.11 CORROSION FATIGUE

In general, stress corrosion is a phenomenon caused by the combination of quasi-
static or cyclic stress and a corrosive environment (hostile chemical solution). If
a material is susceptible to deteriorate under these conditions, then a corrosion
behavior is established. However, if the material undergoes anodic dissolution at
the crack tip, a stress corrosion cracking (SCC) mechanism dominates with the
aid of the static or cyclic stress. Secondary cracks may develop on the surface of
a component, while the crack tip dissolves and the crack growth rate increases.

In general, the SCC mechanism can occur on ductile and brittle materials
containing initially smooth surface. The purpose of conducting SCC exper-
iments is to determine the effects of a particular fluid, temperature, applied
strain rate or applied voltage on solid bodies.

Secondary crack formation on a smooth surface prevails as the source for a
major crack to grow statically and cyclically (dynamically). Figure 9.21 shows
tensile fracture surfaces of a 304 stainless steel tested in 0.1N solution at
room temperature and at strain rate of                  [56]. This material was
produced by rapidly solidification and subsequently, consolidated and 50% cold
rolled. Smooth rods were prepared [56] for conducting slow strain rate (SSR)
stress corrosion cracking tests in the mentioned environment.

Figure 9.21a shows secondary cracks on the specimen gage length. Figure
9.21b also showed secondary cracks tested at              under the same envi-
ronmental conditions, but the primary crack grew in a semielliptical manner
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from opposite sides of the specimen and the final fracture area due to an stress
overload exhibited a elliptical configuration.

If a component has an initial crack, the fatigue crack growth rate process
does not include an incubation period as in testing smooth components. Gen-
erally, the corrosion fatigue behavior relates to a high plastic strain at the crack
tip [3], which is suitable for anodic dissolution. Apparently, the combination
of high plastic strains enhances metal dissolution, which in turn, accelerates
fatigue crack growth rates. In addition, if a material is susceptible to develop
beach marks and striations as fatigue fracture features in a suitable environ-
ment, these features may not be observed or not be cleared enough if metal
dissolution takes place on the fracture surface, coating these features with a
corrosive product. This corrosion product may be difficult to remove; however,
the ultrasonic cleaning technique may be appropriate for this task.

On the other hand, if the corrosive environment, containing hydrogen ions,
does not provoke metal dissolution at the crack tip, a phenomenon called hy-
drogen embrittlement (HE) may control the corrosion fatigue behavior. HE
has its effect on materials under static and cyclic conditions. This is a mecha-
nism, in which a highly localized brittle region develops at the crack tip [51-53].
This, then, indicates that the applied cyclic stresses, which induce cyclic strains
at the crack tip, and the action of hydrogen atoms, enhance the crack growth
rate due to an accelerated breakage of atomic bonds at the crack tip. Thus,
atomic hydrogen (H), as oppose to molecular hydrogen diffuses into the
metal, especially if the amount of hydrogen exceeds that of the solubility limit,
at favorable atomic sites at the crack tip. Therefore, the accelerated crack
growth rate, specifically in stage II fatigue, may be attributed to this hydrogen
diffusion-controlled mechanism since the atomic hydrogen radius is relatively
small. These atomic sites are grain boundaries, voids, and inclusions.

However, atomic hydrogen can precipitate in a gaseous or solid form when
it reacts with the exposed metal, such as irons and steels, under appropriate
environmental (thermodynamics) conditions. Apparently, gaseous precipitation
of hydrogen atoms located at these sites react to form hydrogen molecules, which
in turn combine themselves to form bubbles at extremely high pressure of

 as an upper limit [3]. Moreover, the solid precipitation of hydrogen with
Ti and Zr, among many other elements, is referred to as hydride precipitation,
which hardens the material in question [35].

Many investigators have reported the application of linear elastic fracture
mechanics (LEFM) to many material-environment systems, and the literature
in this particular engineering field is quite abundant for Al-alloys, Fe-alloys
(steels), Ti-alloys, and so on. However, the controlling macroscopic parameter
for assessing crack growth has been the stress intensity factor for mode I
loading.

In general, many materials are sensitive to combinations of stress, environ-
ments and microstructure. One particular case is shown in Figure 9.22 for a
Ni-base alloy steel tested in 3% NaCl saline solution and in air at different test
frequencies (cpm = cycles per minute) [65].
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Despite that the experimental data obeyed the Paris equation with a com-
mon exponent of 2, the environmental effect on the for the Ni-base alloy
steel is evident even at which contradicts the stress corrosion
cracking behavior depicted in Figure 9.23. The term stands for the
stress intensity factor for mode I loading below which stress corrosion cracking
does not occur. One possible reason for this discrepancy is that crack growth
does not occur at for constant load tests due to a protective
passive film at the crack tip. However, this film is sensitive to cyclic stresses
and consequently, fatigue crack growth occurs [66]. The phrase stress corrosion
cracking (SCC) is also known as environment-assisted cracking (EAC).

Figure 9.23 illustrates important criteria described by Hertzberg [66] when
stress intensity factor is time-dependent at constant load. Thus,

If then failure is not expected in an aggressive or corrosive
fluid

If then crack growth and fracture occur after a
prolong period of time

If then sudden fracture is expected upon loading
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Figure 9.23 represents the possible mechanical behavior of a stressed struc-
tural component exposed to an aggressive environment during service. There-
fore, care should be taken when using this type of data in designing against
stress corrosion cracking.
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9.12 PROBLEMS

9.1   Show that Paris equation can take the form

where is the change of crack tip opening displacement, E is the modulus
of elasticity, and A is a constant.

9.2 a) Show that where and
is Walker’s effective stress intensity factor range. b)

Plot and for a 4340 steel having. b) Plot and
for a steel having

R = 0.7 and

9.3 Suppose that a single-edge crack in a plate grows from to
at a constant loading frequency of 20 Hz. The applied stress ratio

and the maximum stress are zero and 403 MPa, respectively. The material
has a plane strain fracture toughness of  and a crack growth
behavior described by Here, and are
in and respectively. Determine a) the critical crack
size and b) the time it takes for rupture to occur. [Solution: a)
and b) t = 1.47 hours].

9.4 If a large component is subjected to a cyclic loading under
and R = 0. The material behaves according to Paris law

where and are in and
respectively. Determine the plane-strain fracture toughness for the component
to endure 54,532 cycles so that a single-edge crack grows from 2 mm to

9.5 Consider a part made of a polycrystalline metal that is stresses in the
elastic stress range. If the metal contains inclusions, has an imperfectly smooth
exterior surface, and natural dislocation, would the metal experience irreversible
changes in a micro-scale? Explain.

9.6 Why most service fatigue fractures are normally not clear?

9.7 What is the physical meaning of the slope of the stage II line in the
Paris model?

9.8 Suppose that and in the Paris
equation for 7075-T6 (FCC), 2024-T3 (FCC), Mo (BCC), and steel (BCC).
Determine a) the constant A and its units, and b), which of this material will
have the higher crack growth, rate?

9.9 A Ti-6Al-4V large plate containing a 4-mm long central crack is sub-
jected to a steady cyclic loading R = 0.10. The plane strain and the threshold
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fracture toughness are 70 and respectively. Determine a) the
minimum stress range, b) the maximum applied stress range for a fatigue life of
3,000 cycles, and c) the critical crack size for 3,000 cycles. Let the Paris equa-
tion be applicable so that and [Solution:
a) b) and c)

9.10 Plot for 403 S.S. using the Paris, Forman and
Broek/Schijve equations. Use the data given in Table 9.2 and a (20 mm)x(300
mm)x(900 mm) plate containing a single-edge crack of 2-mm long. Let 20

9.11 Plot the data given below and use eq. (9.6) as the model to draw a
curve fitting line on log-log scales. Determine the constants in such an equation.
[Solution: and

9.12 A steel plate containing a single edge crack was subjected to a uniform
stress range and a stress ratio of zero. Fatigue fracture occurred when the
total crack length was Subsequent fatigue failure analysis revealed a
striation spacing per unit cycle of The hypothetical steel has a
modulus of elasticity of  Predict a) the maximum cyclic stress for a
crack length of b) the striation spacing per unit cycle when the crack
length is c) the Paris equation constants and d) the plane strain fracture
toughness and e) the fatigue crack growth rate assuming that the Paris equation
is applicable nearly up to fracture.

9.13 A 2-cm thick pressure vessel made of a high strength steel welded plates
burst at an unknown pressure. Fractographic work using a scanning electron
microscope (SEM) revealed a semielliptical fatigue surface crack and

located perpendicular to the hoop stress and nearly in the center of
one of the welded plates. The last fatigue band exhibited three striations having
an average length of at 10,000 magnification. The vessel internal
diameter was Calculate a) the pressure that caused fracture and b)
the time it took for fracture to occur due to pressure fluctuations. Assume a
pressure frequency of Given data: and

[Solution:
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Chapter 10

FRACTURE TOUGHNESS
CORRELATIONS

10.1 INTRODUCTION

This chapter is devoted to a brief review of fracture toughness of crack-free and
notched specimens. Fracture toughness can be defined as the strain energy ab-
sorbed by a material prior to fracture. Thus, this energy is defined as the strain
energy density in a tension test, the intensity of the stresses ahead of a
crack tip, the strain-energy release rate also known as the crack driving force

or for crack growth or the dynamic strain energy (U) for conventional
and instrumented Charpy impact tests. Some useful empirical correlations for
determining the plane strain fracture toughness            from Vickers microhard-
ness measurements and impact tests are included.

Furthermore, impact testing and microhardness measurement techniques are
widely used in materials evaluation since they are simple and cost effective.
Thus, fracture toughness correlations have evolved indicating the usefulness
of the impact and indentation techniques when proper precautions are taken
in conducting experiments. For instance, the dynamic behavior of the Charpy
impact test can be understood by modeling the striker and specimen as a spring-
mass system.

10.2 CRACK-FREE BODIES UNDER TENSION

In general, the mechanical behavior of a material under a stress-loading mode
depends on the microstructure, strain rate, and environment. The behavior of
an initially crack-free material is characterized by one of the typical stress-strain
curves shown in Figure 10.1. Typical tension properties, such as yield strength,
tensile strength, ductility, and the modulus of elasticity are obtained from these
curves. The strength refers to a property and stress is a parameter related to an



applied loading mode. Nevertheless, the area under the stress-strain curve
is a measure of fracture toughness in terms of strain energy density, which is not
a common variable used by engineers in structural analysis, but it may be used
as a controlling parameter in classifying structural materials. Particularly, the
SMA curve in Figure 10.1 is for a shape memory alloy (SMA), such as 55Ni-45Ti
(Nitinol), which exhibits significant high strain to failure (superelastic) and high
total strain energy density [1-2].

This strain energy density  is the energy required to deform
the material. According to Figure 10.1, the energy is the area under the
curve. For elastic behavior (up to the yield point), fracture toughness is the
elastic strain energy density, which is called Resilience. Thus,

since Hooke’s law is For tough, SM and ductile materials, strain
energy density, which can be defined as the tensile fracture toughness of crack-
free solid bodies, the strain energy density takes the form

where is the plastic strain energy density. These integrals can be solved
once stress functions in terms of strain, are available. From Chapter
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7, the most common plastic stress functions are known as Ramberg-Osgood and
Hollomon equations, respectively

These equations are valid from the yield strength to the maximum or ul-
timate tensile strength stress on the stress-strain curves. In other words, the
limit points are and

For a strain hardenable material, the Ramberg-Osgood or Hollomon equation
may be used as an effective stress expression so that the integral can easily be
solved. Substituting eqs. (10.3) and (10.4) into (10.2) yields general solutions

Using proper integral limits, these equations become, respectively

An ideal tough material must exhibit high strength and ductility. Despite
ductile materials are considered tough; they have low strength and high ductility.
However, if a notched tensile specimen, made of a ductile material, is loaded
in tension, the plastic flow is shifted upwards since a triaxial state of stress is
developed at the root of the notch. This is a constraint against plastic flow, but
it enhances the magnitude of the elastic stresses at the notch root [3].

In summary, the yield strength and the fracture toughness in terms of total
strain energy density of crack-free materials can be compared using the inequal-
ities shown below

This analogy implies that fracture toughness decreases with increasing strength
and decreasing strain to failure.
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10.3 GRAIN SIZE REFINEMENT

The grain size refinement technique, which has been successfully applied to some
Body-Centered Cubic (BCC) steels containing molybdenum (Mo), vanadium
(V) , titanium and aluminum is one approach for enhancing both
yield strength and fracture toughness. These alloying elements react in the solid-
solution state to form either particles or cause microstructural changes that are
accountable for pinning grain boundaries, and therefore, austenite grain growth
is retained on cooling.

In addition, these elements can restrain the coarsening of carbide particles,
which in turn pin dislocation motion on deformation by external stresses. The
exact microstructural and phase transformation mechanism evolved in adding
these elements to carbon steels is a particular metallurgical topic that can
be found elsewhere [4]. Subsequently, the controlling property, such as yield
strength or fracture toughness, is limited to 1) the strength if an applied exter-
nal load exists, 2) the fracture toughness if absorption of strain energy occurs
prior to fracture, and 3) the ductility if metal shaping or forming is required.

The addition of small amounts of alloying elements, such as V,
and the like, to carbon steels enhances the strength and fracture toughness
of these important engineering materials. As mentioned in Chapter 2, this is
referred to as the grain-size refinement technique. Thus, the yield strength,
fracture strength, and fracture toughness can be correlated with grain size and
correlations can be accomplished experimentally [5-7] and empirically by using
the Orowan [8] and the Hahn-Rosenfield [9] plastic constraint factor at the
crack tip, respectively, defined by

The most common relationships for correlating the yield and fracture strengths
with grain size is known as the Hall-Petch type equation defined as

where = Friction stress due to particle, dislocations, grain boundary and
the like

= Stress constant
= Dislocation locking term
= Constant

= Grain size

where for strain hardening mild steels [9].
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Combining eqs. (10.11) and (10.12) along with eqs. (10.13) and (10.14)
yields the plane strain stress intensity factor as

Example 10.1 Using Stonesifer and Armstrong [10] linear regression analy-
sis for A533B steel at room temperature having an average grain size of
and modulus of elasticity of 207 GPa, calculate Calculate a) and and b)
predict the elastic strain energy density as a measure of elastic fracture toughness
for sound specimens subjected to tension loading an determine.

Solution:

a) From eq. (10.11) and (10.12),

which agrees with Hahn and Rosenfield [9] approximation given above.

b) From eq. (10.1),
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10.4 INDENTATION-INDUCED CRACKING

In this section, the theory of indentation is strictly used to measure “indentation
hardness” which implies resistance to penetration as depicted in Figure 120.2.
The most common hardness tests are mechanically static in nature, which have
industrial and research applications. Thus, “hardness” can be measured by
using the Brinell, Rockwell, and Meyer tests. On the other hand, “microhard-
ness” can be measured using the Knoop and Vickers indentation techniques.
The term microhardness indicates the hardness of a very small area such as a
grain and/or a particle that constitute the microstructure of a polycrystalline
material. Herein, attention is devoted to the Vickers indentation-hardness mea-
surement technique, which has been used very extensively in research for pre-
dicting Vickers fracture toughness of brittle materials. The technical procedure
for employing the Vickers hardness testing can be found in the ASTM E92
(1997) Standard Test Method. The term microhardness refers to as small mi-
croindentation hardness due to relatively common light applied load that ranges
from          to

The Vickers indentation is made with a diamond pyramidal-shaped indenter.
In fact, the indenter impression schematically shown Figure 10.2 is a square-
based inverted pyramid with a face angle of 136° and it is so small that it
must be observed with a microscope. For brittle materials, such as ceramics
(fused, sintered or cemented metallic oxides), cermets (powder metallurgy prod-
ucts containing ceramic particles), polymers, and amorphous metallic materials,
indentation-induced cracking overcome difficulties in specimen preparation in a
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conventional manner as recommended by the American Society for Testing Ma-
terials (ASTM) E399 for plane strain fracture toughness and for the J-integral
approach. As a result, an empirical equation may be used to determine the
Vickers fracture toughness.

The Vickers hardness can be calculated as follows

where P = Applied load (Kg)

D = Mean diagonal (mm)

= 136° = Face angle

The advantages of Vickers hardness measurements are 1) its simplicity, 2) it
can be applied to microstructural constituents, 3) it does not require fatigue pre-
cracking, which is difficult to accomplish in brittle materials, 4) it is cost effective
since small specimens are needed, 5) the tests are considered non-destructive
in a macroscale. However, specimen preparation is a slightly time consuming
procedure since a polished surface is required so that uniform indentations are
made on a reflective flat plane, which it is must in order to obtain consistent
and reproducible results.

In fact, hardness measurements are made for screening materials and char-
acterizing microstructures, subsequent use is made for determining the Vickers
fracture toughness, which inevitably shows some degree of inaccuracy when
compared with conventional fracture toughness. Nevertheless, this technique
has become an excellent approach for characterizing ceramics, cermets (e.g.

WC-Co composites), and amorphous metals and their alloys.

In 1950’s, Palmquist [12] recognized that indentation-induced cracking ob-
served on cermets was related to fracture toughness and he developed a proce-
dure to predict fracture toughness. Vickers is the most common and suitable
test method due to four possible cracks that may emanate from the corners of
the indenter. A typical Palmquist fracture toughness analysis requires a linear
plot of total crack length vs. applied load (P); that is, This
is shown in Figure 10.3 for an Alumina-Titanium carbide cermet
The inverse of the slope of the line is a measure of Palmquist Fracture Toughness
in terms of work done which may be taken as the strain-energy release
rate [13].

The prediction of fracture toughness for many brittle materials using em-
pirical formulations can be found in the literature [14-18]. However, the most
common expression is the following general form
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where = Indentation geometric factor
E = Modulus of Elasticity
P = Indenter load (MN )

= Vickers hardness
= Exponent
= Average crack length

Rearranging and manipulating eq. (10.18) gives

Observe that eq. (10.18) resembles eq. (3.29) for the conventional plane
stress fracture toughness. Moreover, the exact numerical form of eq. (10.18)
depends on the crack configuration (Figure 10.2) and the material’s properties
[14-17,19]. In order to illustrate the usefulness of eq. (10.18) or (10.19), let’s
curve fit Laugier [17] and Anstis et al. [19] data for several ceramics and cer-
mets, respectively. Notice the remarkable correlation depicted in Figure 10.4 for
Vickers fracture toughness and conventional fracture toughness testing method
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(ASTM E399). The pertinent values for each parameter in eq. (10.18) can be
found in the cited references [17,19].

Despite that Vickers hardness technique has been used for decades, it is still
a classical research tool for characterizing materials. For instance, Phelps et
al. [20] evaluated toughness of female baboon femurs of 6 to 27 year old using
this technique. On the other hand, Iost and Bigot [21] made use of the Vickers
hardness measurements to characterize the brittleness index, which depends on
fracture mechanics and hardness, for metallic and ceramics materials, and flux-
grown ErFeO3 single crystals [22]. Furthermore, Sridhar and Yovanovich [23]
found a power law relation, that fitted hardness data for a tool steel
01, AISI 304 stainless steel, and Ni200. In addition, Berces et al. [24] determined
the dynamic Vickers hardness as for the characterization of plastic
instability of an Al-3.3Mg binary alloy at a loading range of 1.4-70 MN/s. The
search for finding different avenues to characterize materials continues beyond
a researcher’s imagination, but apparently, the Vickers hardness measurement
technique remains as a research tool.

Recently, Milekhine et al. [18] used Vickers indentation-induced cracking
for evaluating the plane strain fracture toughness of FeSi using Palmquist type
cracks. The average reported result is
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10.5 CHARPY IMPACT TESTING

In general, impact tests are performed to measure the response of a material
to dynamic loading. The most common laboratory test configurations are the
pendulum machine and the drop tower. The results obtained from a standard
impact tests are usually a single value of the impact energy or energy spent on
a single specimen. This is of limited value in describing the dynamic behavior
of a particular sample material. Therefore, instrumenting an impact machine
yields information on the impact forces, impact velocities, displacements, and
strain energies of the striker at any time during the dynamic test. Figure 10.5
shows a conventional Charpy impact testing machine used to measure fracture
toughness of a three-point bending specimen (3PB) under an impact loading
system at low velocity.

Impact loads generate high strain rates in solid materials. For instance, con-
ventional and instrumented Charpy impact testing machines impart low strain
rates at low velocity when compared to ballistic impact velocity. The former
technique has been used for characterizing the dynamic behavior of some par-
ticular composite materials [25-32] and the latter technique promotes impact at
a high velocity, which varies according to the type of gun projectile being used.
Excellent work in the ballistic field can be found elsewhere [33-36].

The instrumented Charpy impact machine remains a key means for fracture
toughness testing due to its low cost, convenience, reliability based on certifi-
cation standards, and simple use. A particular instrumented Charpy impact
machine is shown in Figure 10.6. Thus, the transient load history during a
Charpy test is readily obtained by placing strain gages on the striker so that
it becomes the load cell. Using software during an impact one can record the
displacements by integrating the acceleration versus time twice with respect to
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time. The accuracy of these measurements may be affected by the inertial forces
in the striker, variations in the contact force distribution between the striker and
the specimen, striker geometry, and by strain gage location on the striker [37].

Figure 10.7 illustrates a typical load history for a relevant case [37].
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The interpretation of Figure 10.7 is very vital for characterizing a material
dynamic behavior. Denote the characteristic load information and the velocity
profile in this figure. This type of plot represents the dynamic load response to
dynamic displacement cause by the impact process in a Charpy specimen.

The use of instrumented Charpy impact machine has the advantage of pro-
viding information on the toughness characteristics of a specimen [37,40-46]. In
general, the load-time history for a three-point bending (3PB) Charpy spec-
imen can be divided into fracture initiation and fracture propagation regions
expressed in terms of areas under the curve (Figure 10.7). These areas are mea-
sures of the elastic strain energy and plastic strain energy These
energies are strongly dependent on the temperature, specimen size, and impact
velocity imparted by the kinetic energy of the striker. Thus, the total impact
or strain energy a specimen can absorb during impact is known as the Charpy
V-notch (CVN) energy defined by the following general relationship [4]

Thus, one must analyze the load-time curve very carefully with respect to the
elastic and plastic strain energies. These energies may be used for classifying
solid materials as for brittle materials and for tough and
ductile materials.

The Charpy or Izod notched specimens are used for this purpose; the Charpy
V-notched specimen being the most common. This technique became a conven-
tional testing method when it was revealed in the 1940’s that welded ships,
large pipelines, and other monolithic steel structures fractured at notch roots.
This is a dynamic (impact) testing technique recommended by the ASTM E23
standard test method. The applied impact load (P) is through an impact blow
from a falling pendulum hammer (striker).

The resultant energy measurement is commonly referred to as Charpy impact
energy (U), which is a measure of the fracture toughness of a material at testing
temperatures. Thus, U = f (T) is normally determined experimentally in order
to reveal the effects of impact loads on the dynamic behavior of materials at
relatively low and high temperatures. For instance, structural steels usually
have low fracture toughness at relatively low temperatures.

where = Striker velocity on contact with the specimen
P = Impact load (N)

= Impulse (N.s)
= Pendulum initial height
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10.6 DYNAMIC EFFECTS

The Charpy impact testing machine and its dynamic characteristic can be un-
derstood using Williams’ [47] one-degree of freedom spring-mass model as shown
in Figure 10.8. For a perfectly elastic deformation on impact, the contact stiff-
ness (= 1/compliance) is high compared with that of the specimen and
consequently, considerable load oscillations are likely over a short period of time

Firstly, the equation of motion of the system shown in Figure 10.8 is [47]

where = Stiffness of the striker-specimen interface
= 1/C = Stiffness of the specimen

C = Compliance of the specimen
= Mass of the specimen

Using the boundary conditions at yields the solution of eq. (10.19)

where the natural angular frequency and the period of oscillations are, re-
spectively

Secondly, assume that the striker slows down insignificantly upon striking
the specimen mass so that the spring expands at velocity and the
spring compresses. In this case, the impact load (force) can be defined by
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Substituting eq. (10.24) into (10.27) and rearranging the resultant expression
yields

Let

The oscillatory behavior of eq. (10.29) is shown in Figure 10.9 as a diagram
exhibiting two discrete values of This diagram illustrates that the spring-
mass system oscillates as increases. The ideal elastic case dictates that

and load oscillations do not occur as indicated by the straight line.
However, real systems are bound to experience load oscillations after the initial
contact between the striker and the specimen. These oscillations are likely over
a small interval of time.

If loss of contact occurs when the striker bounces in the opposite direction,
then the impact load is zero at that instance, but impact reloading resumes in
a short interval of time as shown by lines 1 through 5 in Figure 10.9. In this
case, the specimen undergoes free oscillations and the dynamic behavior that
describes this event is defined by the following equation of motion
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The loss of contact occurs when P = 0 and as a result, eq. (10.28) gives

and

Combining eqs. (10.21a) and (10.28) and integrating the resultant expression
yields the impact energy lost by the striker

This expression illustrates that the striker kinetic energy is trans-
formed into strain energy U, which is absorbed by the specimen during the
impact process. However, this dynamic event exhibits an oscillation behavior
to the impact response as indicated by the cosine term in eq. (10.33). Conse-
quently, bouncing generates load oscillations and gives discrete values of energy
as illustrated in Figure 10.9 where all curves coincide when Thus, eq.
(10.33) becomes [47]

For rigid body contact, the stiffness ratios becomes or
and eq. (10.34) yields a simplified form of the impact strain energy

Analysis of theoretical and experimental data is a very important issue be-
cause erroneous conclusions may be drawn. For example, plotting eq. (10.33)
when and yields different dynamic behavior, while kinetic
energy is converted to strain energy as the specimen bends and slows down. The
obvious significance of this observation is shown in Figure 10.10. The curves
for coincide at This is attributed to the first load oscillation
since this behavior is also observed in Figure 10.9. Eventually, a second impact
may occur at time predicted by eq. (10.26) for further kinetic energy transfer.
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ENERGY LOSSES. Despite there are different sources of motion in an
impact test, the rigid body motion is considered in the Charpy test analysis. The
general overview of the striker kinetic energy (KE) transformation is depicted
in Figure 10.11 [66].

The general equation for kinetic energy is [47,66]

where M = Mass of the striker
I = Moment of inertia

= Rotational velocity
= Windage energy

= Translational velocity
= Friction energy

This expression takes into account the force transmitted to the points of
rotation when the center of percussion is at an eccentric point from the specimen
axis of rotation, the energy losses due to windage and friction of the pendulum.

254 CHAPTER 10. FRACTURE TOUGHNESS CORRELATIONS



A convenient and realistic model considers a heavy striker (large mass M)
and a light specimen (small mass  in which the displacement is due to relative
motion of both bodies. The equation of motion for is [47]

Here, is the elastic constant stiffness function and is the dissi-
pation function. The solution of this differential equation, eq. (10.37), along
with the coefficient of restitution

is the kinetic energy loss of the striker, from which the strain energy absorbed
by the specimen and that lost in impact are deduced as [47]

10.6. DYNAMIC EFFECTS 255



10.7 DYNAMIC STRAIN-ENERGY RELEASE
RATE

This section describes the fracture mechanics of impact testing and how dynamic
corrections are derived, and demonstrates how impact tests are a coherent part
of fracture mechanics. A basic analysis is outlined using elementary linear elastic
fracture mechanics (LEFM) for mode I loading. It is possible to measure
concurrently with an impact test by measuring Charpy elastic strain energy
U. The mathematical connection between these energies requires a dynamic
correction factor This is defined by [47]

The general stress intensity factor and that for a 3PB Charpy specimen are,
respectively

and the bending moment is

where has been defined in eqs. (3.5), (6.34) and (8.11). Specimen vari-
ables are given in Figure (10.5). For brittle materials, this analytical procedure
incorporates the Charpy elastic strain energy into as deduced from Williams
[47] relationships using a Charpy three-point bending (3PB) specimen. Exper-
imentally, measure and subsequently, plot to
obtain from the slope of the straight line. A particular case is shown
in Figure 10.12 for a HDPE polymer.
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The significance of this method is shown in Figure 10.12, which exhibits
the apparent linearity of the strain energy. The slope of this linear plot is the
critical strain-energy release rate as and the intercept is to
the kinetic energy of the striker The energy absorbed
by the HDPE specimen as strain energy is approximately

Furthermore, rearranging eq. (10.45) yields the derivative of the compliance
with respect to the crack length along with

Integrating eq. (10.48) gives the total compliance

where is an integration constant defined as the compliance for a crack-free
specimen. Thus, [47]
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From eq. (10.49), the new compliance equation is

Now, the energy calibration factor for a 3PB specimen is defined along with
by

The geometric calibration factor, for a Charpy 3PB specimen is given
by Brown and Strawley [48] in polynomial form for two span-to-width ratios.
The resultant polynomials for and are

Inserting eqs. (10.55) and (10.56) into (10.54) and evaluating yields 10th
order polynomials which can be approximated by the following functions

Figure 10.13 shows the numerical result for the energy calibration factor.
Denote that the functions defined by eqs. (10.57) and (10.58) give slight higher
results than the polynomials at for both and
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CORRELATIONS10.8
Ideally, Figure 10.14 shows complete S-Shaped Curves, U = f (T), for quasi-
static (slow-bend) and dynamic testing conditions. Note that the dynamic
ductile-to-brittle transition, known as the Nil-Ductility-Transition (NDT) Tem-
perature, which is referred to as To, is shifted to the left for the quasi-static
testing and the upper region is shifted downwards. This temperature shift in
Figure 10.14 is and it defines the upper limit of the plane-strain
condition. This clearly indicates that the loading rate affects the transition re-
gion. Below the NDT point, the elastic behavior prevails, but it is strongly
dependent on the notch acuity and thickness.

On the other hand, above the NDT, the elastic-plastic behavior occurs in
the transition region, while a pure plastic behavior becomes asymptotic ac-
companied by a tearing type of fracture, and the material energy consumption
is increased at relatively high temperatures. All this implies that the material
behaves elastically at low temperatures (below the NDT temperature) and plas-
tically at high temperatures. In addition, increasing the notch acuity increases
the stress concentration and decreases the impact energy.

Failure analysis on brittle fracture or low energy fracture would reveal a
shiny and flat surface appearance since small amounts of energy is absorbed
prior to fracture due to an elastic deformation fracture mode. This type of
fracture is caused by a cleavage fracture mechanism in which individual grains
separate along definite crystallographic planes.
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Brittle fracture literally indicates that only elastic flow occurs and the impact
force provides the absorbed energy. However, in order for the notch to grow as
crack, the structure strain energy must be released so that new crack surfaces
are generated until total separation occurs. On the other hand, the ductile
fracture or shear fracture has different characteristics since yielding occurs due
to plastic flow, which causes a dull fibrous surface appearance. In general,
the transition from ductile-to-brittle depends on the microstructure, testing
temperature, strain rate, and notch acuity. This may be reflected on ductile
and notch insensitivity steels, which may become brittle if tested at a relatively
low temperature or at a relatively high strain rate. At the transition region,
the fracture appearance is a mixture of both shiny and flat, and dull fibrous
fracture surfaces. If the material has an extended degree of anisotropy and if it
is tested several times at a fixed temperature in the transition region, then it
may exhibit a brittle behavior at one time and ductile behavior later. Therefore,
this transition behavior causes the normal wide data scatter encounter in most
BCC low carbon steels.

Figure 10.15 illustrates the variation of the Charpy V-notch impact energy
as a function of testing temperature [49]. Denote the continuous increase of
this dynamic energy trend of face-centered cubic (FCC) aluminum , and high
strength steel.. However, among many practical ferrous alloys, low carbon steels
being used as structural materials, have BCC structures and exhibit a ductile-
to-brittle transition dynamic behavior, which in turn depends on the carbon
content as shown in Figure 10.16. The microstructures of these steels are com-
posed of ferrite and pearlite phases. If the carbon content is increased, then the
amount of pearlite increases.
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The strengthening mechanism has a strong effect on the U energy trend by
increasing the transition temperature and decreasing the upper shelf energy.
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In general, carbon content, alloying elements, impurities, microstructure, grain
size, fabrication process, and specimen orientation influence the U = f (T) be-
havior [50]. For instance, the eutectoid steel AISI 1080 (0.80%C) consists of
100% pearlite, which is a harder phase than ferrite, does not exhibit a tran-
sition region, making the upper shelf decrease drastically. In contrast, large
amounts of ferrite phase govern the mechanical behavior of steels containing
small amounts of carbon, such as the 0.11%C curve. This is clearly shown in
Figure 10.16.

Moreover, Figure 10.17 shows a schematic U = f (T) reference curve for
a nonlinear regression procedure. Consequently, among several mathematical
models that can fit U data, a model based on the hyperbolic tangent function
can give reasonable results.

Oldfield [51-52] used such a function to interpret the physical meaning of
the nonlinear curve fitting parameters. Thus,

The lower shelf energy in Figure 10.17 represents a brittle behavior in which
plane strain condition should exist. Thus, brittle fracture requires a low con-
sumption of energy. On the other hand, the upper shelf energy is a ductile

where A, B, C, = Regression parameters, which are defined in Figure
10.17

T = Testing temperature
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response and fracture occurs by tearing, which is a fracture process that ab-
sorbs a large amount of strain energy.

The slope of the transition region can mathematically be defined by

This expression yields the same definition given in Figure 10.17. Moreover,
the following additional functions give good results

Figure 10.18 shows data for a 25% cold rolled (CR) AST M A710 steel and
the nonlinear least squares fitting curves as per eqs. (10.59) and (10.61). The
curve fitting equations along with T in °C and U in joules (J)are
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Extensive efforts have been devoted to correlate impact fracture toughness
(U) and plane strain fracture toughness data [51-61]. In fact, correlations
can be derived very easily using nonlinear curve fitting. Let fracture toughness
be empirically defined by

These two expressions give a similar S-shaped trend and the transition tem-
perature should be the same for a particular data set. Solving eq. (10.67) for
T and substituting the result expression into eq. (10.66) yields

where

Since the transition temperature sets an upper limit for plane strain condi-
tions, suitable expressions for characterizing the fracture toughness from
the lower shelf up to can readily be obtained from eqs. (10.66) and (10.68).
This can be accomplished by letting the testing temperature be

Other empirical expressions for U = f (T), and
have been successfully used by Nogata and Takahashi [53] for evaluating sound
and irradiated materials. In general,

Combining eqs. (10.62) and (10.69) and eliminating T yields

where = –C/E
q =
D = Upper shelf fracture toughness

This particular correlation, eq. (10.70), was suitable for evaluating pres-
sure vessels made of ASTM A533B-1 steel [53]. Furthermore, eqs. (10.62) and
(10.69) were fitted to experimental data for evaluating this particular steel. The
resultant empirical equations as functions of testing temperatures take the
numerical form [53]
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Combining eqs. (10.57) and (10.58) to eliminate T yields [53]

This expression, eq. (10.73), requires that otherwise,
cannot be determined. Figure 10.19 shows the response of eq. (10.73) for the
structural steel type A533B-1. Observe that there is a linear correspondence in
the selected lower shelf energy.

For the upper energy shelf, the fracture toughness of the ASTM A723
steel is correlated with both impact energy and yield strength [61]

where U is in Joules, in MPa and in

Other empirical correlations can be found in the literature. Of significance
is the Hertzberg’s book [62], which contains many compiled expressions in a
tabular form. Ideally, and U correlations should correspond to the same
loading rate, but quasi-static values can be estimated from dynamic U
experimental data, taking into account the related temperature shift.

In this regard, a simple correlation for ABS-C, A302-B, and A517-F steels
in the transition region has been reported [61,63] to give conservative results.
The reported mathematical expression is of the form
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where E = Modulus of elasticity (MPa)
U is in Joules (J )
A = 37.51 for dynamic tests
A = 46.89 for quasi-static tests

For the upper shelf, which is not strongly dependent on notch acuity and
loading rate, Barsom and Rolfe [61) and Rolfe and Novak [64] evaluated several
medium-strength high-toughness steels listed in Table 10.1 by normalizing eq.
(10.75) with the room temperature yield strength. Curve fitting such a data set
yields an empirical expression with a correlation coefficient of 0.99

The units of and U in eq. (10.76) are given in Table 10.1. Figure 10.20
shows the curve fitting results.

The valid range for each property listed in Table 10.1 is give below [49]:
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Plotting the                         data given in Tables 3.2 and 10.1 one can deter-
mine that there is not a good correlation between these properties due to the
data scatter shown in Figure 10.21. However, a good correlation is found for
4147 and 4340 steels since they have similar microstructure.
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10.9 SMART HYBRID COMPOSITES

This section is devoted to composite materials because of their technological
importance in manufacturing lightweight structures. Some theoretical and ex-
perimental results obtained by using the instrumented Charpy impact machine
are included. The effect of low velocity imparted by the Charpy striker may
be considered as a non-penetrating striker. A common low velocity impact is
the event of dropping a hard and sharp tool or a falling bulk and heavy ob-
ject on a substrate surface. This event may cause permanent surface damage
on metals and alloys due to the irreversible plastic deformation mechanism. If
the substrate is a composite laminated material, then the surface damage may
be severe enough for reducing the load carrying capacity of composites or for
premature failure or fracture since the type of reinforcing fiber and matrix are
brittle for absorbing impact energy [65].

Figure 10.22 schematically shows a three-point bending (3PB) model indi-
cating the possible failure mechanisms encounter in unidirectional composite
bars subjected to impact bending loading at low velocity. The model indicates
that the impact energy provided by an object traveling at low velocity is ab-
sorbed by the composite bar generating defects and if the plate is thin enough
and sufficiently long some of the impact energy is absorbed by general bending
[65]. Thus, the composite specimen damage caused by the impact is represented
by delaminations, cracks and fiber breakage on the opposite side of the impact
point P in Figure 10.22.

Adding tough fibers to the matrix can enhance the impact and fracture resis-
tance of brittle composite materials. For instance, hybrid composites containing
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embedded shape memory alloy (SMA containing or
fibers or particulates into the matrix materials, such as polymers, fiber-reinforced
polymers, have good impact properties due to the superelastic behavior of SMA
materials.

The SMA material undergoes martensitic transformation due to high strain
levels. Thus, the stress-induced martensitic transformation mechanism imparts
strain energy dissipation, which suppress, to an extent, the formation of de-
fects. Consequently, brittle composites containing SMA fibers become tough to
an extent because of the strain energy dissipation upon impact loading. Nev-
ertheless, improving the impact resistance may be accomplished at the expense
of material strength.

According to Elber [1], the matrix properties govern the damage initiation
and its extent and fiber properties, on the other hand, control the penetration
resistance or the impact resistance. In fact, a super-elastic shape memory al-
loy has a remarkably high strain-to-failure primarily due to the stress-induced
martensitic phase transformation creating a plateau region in the stress-strain
curve and a recoverable elastic strain up to 8% [2,48]. Consequently, SMA
fibers in composites absorb much more strain energy than other fibers before
their failure. Thus, SMA hybrid composites become tough.

Figure 10.23 shows the relationship between the absorbed strain energy and
the martensite fraction on the surface of a SMA beam under bending load.
Observe that the martensitic phase transformation absorbs most of the strain
energy in the structure. For a martensite fraction of 0.9%, the superelastic SMA
absorbs at least twice the strain energy of the martensitic SMA [48].

With respect to impact testing, the improved energy absorption mechanism
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in SMA-composites may be attributed to the small volume fraction of SMA
fibers embedded in the matrix. If this is the case, the absorbed strain energy
of SMA-composites is U (T, B, S M A) > U ((T, B), which is an indication of
improved impact damage resistance of plane brittle composites at the expense
of strength and stiffness [28].

10.10 PROBLEMS

10.1 a) Plot the given data for a hypothetical steel. b) Calculate
using the Charpy impact energy U values up to zero °C. Plot vs.

Temperature and vs. Temperature. Is there a significant difference
between these plots? If so, explain.

10.2 A mild steel plate has a through the thickness single-edge crack, a
yield strength of  and a static fracture strength is If the
plate is loaded in tension and fractures at  calculate the plane strain
fracture toughness of the steel plate and the critical crack length.
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Appendix A

METRIC CONVERSIONS

Table A-1 Prefixes
Factor
1018

1015

1012

109

106

103

10–3

10–6

10–9

10–12

10–15

10–18

Prefix
exa
peta
tera
giga
mega
kilo
milli
micro
nano
pico
femto
atto

SI Symbol
E
P
T
G
M
k
m

n
p
f
a

Table A-1 Physical constants
Avogadro’s number
Boltzmann’s constant
Gas constant
Plank’s constant

NA = 6.023 1023 atom/mol
= 1.38 10–23 J/atom°K

R = 8.315 J/°K.mol
= 6.63 10–34 J.s
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Length

1 m = 1010 Å
1 m = 109 nm
1 m = 106

1 m = 103 mm
1 m = 102 cm
1 m = 3.28 ft
1 m = 39.36 in
1 cm = 10 mm
1 cm = 3.28x10–2 ft
1 cm = 0.394 in
1 mm = 3.28x10–3 ft
1 mm = 3.94x10–2 in

1 Å = 10–10 m
1 nm = 10–9 m
1 = 10–6 m
1 mm = 10–3 m
1 cm = 10–2 m
1 ft = 0.3049 m
1 in = 0.0275 m
1 mm = 0.10 cm
1 ft = 30.48 cm
1 in = 2.54 cm
1 ft = 304.8 mm
1 in = 25.4 mm

Area

1 m2 =
1 m2 =
1 m2 =
1 m2 =
1 m2 =
1 m2 =
1 m2 =

1020 Å2

1018 nm2

1012 m2

106 mm2

104 cm2

10.76 ft2

1.55x103 in2

1 Å2 = 10–20 m2

1 nm2 = 10–18 m2

1 m2 = 10–12 m2

1 mm2 = 10–6 m2

1 cm2 = 10–4 m2

1 ft2 = 9.29x10–2 m2

1 in2 = 6.45x10–4 m2

Volume
1 m3 = 1027 nm3

1 m3 = 1018 m3

1 m3 = 109 mm3

1 m3 = 106 cm3

1 m3 = 35.20 ft3

1 m3 = 6.10x104 in3

1 cm3 = 3.53x10–5 ft3

1 cm3 = 6.010x10–2 in3

1 cm3 = 2.642x10–4 gal (US)
1 liter (l) = 103 cm3

1 liter (l) = 0.2642 gal (US)

1 nm3 = 10–27 m3

1 m3 = 10–18 m3

1 mm3 = 10–9 m3

1 cm3 = 10–6 m3

1 ft3 = 2.83x10–2 m3

1 in3 = 1.64x10–8 m3

1 ft3 = 2.83x104 cm3

1 in3 = 16.39 cm3

1 gal (US) = 3.79x103 cm3

1 cm3 = 10–3 liter
1 gal (US) = 3.785 liters

Mass

1
1
1
1
1

Kg
Kg
g =
g =

=
=
2.
3.
=

103g
2.205
205x10–3

53x10
16 oz

–2  oz

1
1
1
1
1

g =

oz
oz

10
=
=

–3 Kg
0.454 Kg
454 g

= 28.35 g
= 6.25x10–2



277

Density
1 Kg/m3 = 10–3 g/cm3

1 Kg/m3 = 0.0624 /ft3

1 Kg/m3 = 3.61x10–5 /in3

1 g/cm3 = 0.0361 /in3

1 g/cm3 = 103 Kg/m3

/ft3 = 16.03 Kg/m3

/in3 = 2.77 104 Kg/cm3

/in3 = 27.70 g/cm3

Force
1 N = 1 Kg.m/sec2

1 N = 105 dynes
1 N = 0.2248
1 dyne = 2.248x10–6

1 dyne = 1 g. cm/sec2

1 dyne = 10–5 N
1 = 4.448 N
1 = 4.448x105 dyne

Stress
1 MPa = 0.145 ksi
1 MPa = 145 psi
1 MPa = 0.1019 /mm2

1 MPa = 7.25x10–2 /in2

1 ksi = 6.895 MPa
1 psi = 6.90x10–3 MPa
1 /mm2 = 9.81 MPa
1 /in2 = 13.79 MPa

Energy
1 J = 107 ergs
1 J = 6.24x1018 eV
1 J = 0.239 cal
1 J = 9.48x10–4 Btu
1 J = 1.3558 ft.
1 cal = 3.97x10–3 Btu

1 erg = 10–7 J
1 eV = 1.60x10–19 J
1 cal = 4.184 J
1 Btu = 1054 J
1 ft. = 0.7376 J
1 Btu = 252 cal

Fracture Toughness
1 MPa = 0.91 ksi
1 MPa = 910 psi
1 ksi = 103 psi

1 ksi
1 psi =
1 psi =

1.10 MPa
1.10x10–3 MPa
10–3 ksi

=
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A.1 FRACTURE TOUGHNESS DATA

The average data below can be foundelsewhere [1-3]

Table B-1 Mechanical Properties [1-3]
Material Temp.

(MPa) (MPa

Steel
AISI 1045
AISI 4340
AISI 4340
D6AC
HP 9-4-20
18Ni (200)
18Ni (300)
ASTM A538

–4°C
RT
RT
RT
RT
RT

RT
RT

269
1,567
1,408
1,495
1,295
1,450
1,931
1,722

50
57

85
93

143
110

74
111

Aluminum Alloys
2020-T651
2024-T351
2024-T851
6061-T651
6061-T651
7075-T651
7075-T7351

RT
RT
RT
RT

–80°C
RT

RT

532
378
450
296
310
538
428

25
38
26
28
33
29
33

[1] H.O. Fuchs and R.I. Stephens, “Metal Fatigue in Engineering”, John
Wiley, NY, 1980

[2] J.A. Collins, “Failure of Materials in Mechanical Design: Analysis,
Prediction, Prevention,” John Wiley & Sons, New York, (1981)

[3] R.W. Hertz berg, “Deformation and Fracture Mechanics of Engineering
Materials”, third edition, John Wiley & Sons, New York, (1989)
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Aggressive environment, 192, 207,
213

Airy’s
Antisymmetric function, 92
biharmonic equation, 11
complex function, 42, 74
partial derivatives, 43
power series, 12
stress function, 11, 12, 18, 19,

43, 78, 92
Airy’s complex function, 39
Airy’s stress function, 152
Alloying elements, 242, 262
Antisymmetric displacement, 87, 88
Antisymmetric mode II, 127
Antisymmetric mode III, 127
Antisymmetric part, 81
Artificial crack extension

See Effective crack length, 98
ASTM standard test method

E1290, 104
E399, 40, 47, 57, 132, 137, 245
E561, 134
E647, 216, 229
E813, 141, 245
E92, 244

ASTM thickness requirement, 47
Austenite grain growth, 242

Ballistic field, 248
Ballistic impact velocity, 248
BCC materials, 36, 213, 242, 260
BCC slip system, 203, 222
BCC structure, 203
BCC unit cell, 203
Beach marks, 199, 206, 213, 221,

231

Bending
3-point, 48, 165

Bending correction factor, 66
Bending force, 66
Bending moment, 66
Bending stress, 66, 200
Biaxial

stress, 44
Biaxial cyclic loading, 227
Biaxial loading, 181
Biaxial state, 5
Biaxial stress level, 227
Biharmonic equation, 11
Biharmonic operator, 18
Bipotential equation, 86
Body-force field, 11, 78
Body-force intensity, 10, 11, 17
Brittle fracture, 25, 260
Brittle materials

ceramics, 244
cermets, 244
polymers, 244

Burger’s vector, 205

Cantilever beam, 13
Cauchy-Riemann equations, 43
Center of percussion, 254
Charpy Impact energy

lower shelf, 262, 265
upper shelf, 262, 264, 266

Charpy impact machine, 257
Charpy impact test

3-point bending, 248, 268
conventional machine, 248
correlations, 259
dynamic correction factor, 256
energy, 250
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energy lost, 253
energy release rate, 256
instrumented machine, 248
load history, 249
oscillations, 252
regression parameters, 262
smart hybrid composites, 268
spring-mass model, 251
temperature effects, 259
velocity, 250

Cleavage fracture, 47, 207, 221, 259
definition, 259

Combined loading system, 58, 179
Compatibility equation, 11, 152
Compliance, 122, 124, 129, 251, 257,

258
nonlinear, 125

Composite materials
failure mechanism, 268

Condon-Morse curves, 29
Corrosion fatigue, 230
Cottrell-Hull mechanism, 205
Crack area, 33
Crack branching, 192
Crack closure, 101, 206, 223
Crack configuration, 41, 47, 165
Crack driving force, 33, 35, 41, 121,

124, 126, 127, 140, 149, 239
critical condition, 35
diagram, 166

Crack kinking, 192
Crack length

definition, 33
Crack opening displacement, 104, 105,

157
Crack propagation, 32, 35, 47, 61,

98, 130, 163, 166, 179, 184,
196, 199, 201, 207

Crack resistance, 35
Crack resistance curve

R-curve, 133
Crack resistance diagram, 166
Crack sources, 31
Crack tip

blunting, 36
critical strain, 215

elliptical, 30
energy absorption, 121
growth, 239
hardening region, 25
HRR field equations, 148
instability, 25, 32, 35, 123
plastic constraint, 242
plasticity, 35, 36, 89, 95, 98,

103, 136, 158
principal stress, 199
sharpness, 31
singularities, 89, 96
strain field equations, 84
stress field, 10, 35, 73
stress field equations, 75, 80, 83,

90, 153, 174
stress intensity, 239
stress singularity, 25
stress state, 39
velocity, 25

Crack tip blunting, 107, 138, 148,
149, 153, 222

Crack tip fields for mode III, 85
Crack tip opening displacement, 104,

105, 138, 148
transition, 215

Critical condition, 47, 57, 133
Critical crack length, 47, 57, 61
Cumulative damage, 201
Cyclic-stress fluctuation, 200

alternating stress, 201
mean stress, 201
stress amplitude, 201
stress ratio, 201

Deformation, 2
Deformation theory of plasticity, 149
Design philosophy, 61
Deviatory stress, 149
Discontinuities, 3, 31, 39, 202
Dislocation density, 37
Dislocation locking term, 36, 242
Dislocation mechanism

See. Frank-Read source, 205
Dislocation networks, 203
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Displacement, 2, 3, 22, 26, 76, 84,
87, 105, 121, 124, 126, 130,
255

cumulative, 207
for slender cantilever beam, 129
mode I, 126
mode II, 127
mode III, 127
vector, 135

Displacement field equations, 76, 79,
85, 174, 175

Dissipation function, 255
Dissipation of energy, 269
Ductile fracture, 25
Ductile-to-brittle transition, 259, 260
Ductility, 7, 9, 63, 155, 239, 241, 242
Dugdale’s approximation, 101

behavior, 103
Dynamic effects, 251
Dynamic test, 248, 259

Effective crack length, 98, 104, 134,
158, 164

Effective stress, 149
for plane strain, 150
for plane stress, 150

Effective stress intensity factor, 95,
100, 227

Effective stress intensity factor range,
227

Eigenvalue, 80, 81, 87
Eigenvalue function, 80
Elastic behavior, 8
Elastic strain energy density, 8
Elastic surface energy, 33, 34
Elastic unloading, 148
Elliptical fracture criterion, 179
Energy losses, 254
Energy principle, 121
Energy release rate, 121
Engineering strain, 6
Equilibrium equations, 10
Equivalent stress, 152
Extrusions, 199

Far-field J-integral, 163

Fatigue crack growth, 207
Fatigue crack growth rate, 207

for BCC materials, 216
for FCC materials, 216
for polymers, 217
for weldments, 218
measurements, 229

Fatigue crack initiation, 203
Fatigue failure

appearance, 220
prevention, 202
stage I, 205, 207, 212, 213, 220
stage II, 206–208, 213, 215, 216,

219–221, 231
stage III, 207, 213, 215

Fatigue fracture, 206
Fatigue life, 209
Fatigue life, definition, 200
FCC materials, 213, 260
Fracture angle, 179
Fracture control, 60
Fracture process zone, 96, 122, 126,

141, 148, 155, 158
Fracture toughness, 7, 9, 239–242

Charpy, 248, 250, 264
COD, 104
correlations, 239, 264
criterion, 137
critical value, 33
CTOD, 104, 107
data, 62
energy release rate, 35, 36
J-integral, 136, 137, 139, 141,

149, 155
mixed-mode, 177, 179
mode II, 187
Plane strain, 57
plane strain, 47, 61, 63, 64, 134,

177, 207, 245–247, 264
upper energy shelf, 265

plane stress, 57, 246
ratio, 183
thickness dependency, 62
Vickers, 244–246

Fracture toughness correlation
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plane stress and plane strain,
57, 63

Fracture toughness criterion
CTOP, 105
J-integral, 137
mixed-mode, 128
plane strain and impact energy,

265, 266
strain energy release rate, 137

Fracture toughness data
See. Mechanical properties, 266

Fracture toughness equation
circle, 177
ellipse, 179
mixed-mode, 181

Fracture toughness for mixed-mode
action

G-criterion, 177, 194
S-criterion, 184

Frank-Read source, 205
Friction energy, 254
Friction stress, 36, 242
Front face correction factor, 53

G-Criterion
circle, 177

Gage length, 6
Grain size refinement, 36, 242
Griffith crack theory, 32, 133

Hahn-Rosengren etching technique,
112

Hall-Petch equation, 36, 242
HCP materials, 213
Heat affected zone, 219
Higher order stress field

See. T-stress, 89
Hinge mechanism, 96
Hollomon equation, 8, 155
Hooke’s law, 4, 6, 8, 9, 27, 84, 86,

156, 159, 240
Hoop stress, 53
HRR field equations, 148, 149, 152,

153
HRR singularities, 153
HRR theory, 147

Hydrogen embrittlement, 231

Impact energy, 248, 250, 253, 259,
265

Interatomic spacing, 28, 29
Intrusions, 199, 205, 207
Irreversible process, 25, 36, 96, 121,

123, 147, 149, 163, 205, 268
Irwin’s approximation, 98

behavior, 103

J-curve, 140
J-dominance, 148
J-integra, 157
J-integral, 135, 139, 141, 148, 149,

152
an engineering approach, 164
mixed-mode, 176

J-integral contour, 135
J-integral criterion

mixed-mode, 137

Large-scale yielding, 39, 96, 104, 135,
138, 148, 149, 154, 155

Leak-before-break criterion, 56
Load amplitude, 209
Load frequency, 229, 231
Load oscillations, 251–253
Localized yielding, 35

Magnification correction factor, 53,
55

Material defects, 39
Maximum distortion energy theory,

108
Maximum principal stress, 182
Mechanical properties, 62, 215, 266
Microstructures, 203
Mixed mode I-II, 174
Mixed-mode interaction, 58
Mixed-mode loading, 227
Modes of loading, 40
Mohr’s circle theory, 109

Natural or true strain, 6
Near- field J-integral, 159
Newton’s second law, 1
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Nil-ductility-transition temperature,
259

Nitinol, 8, 240
Nonlinear fracture mechanism, 148
Nonlinear regression, 262
Normal strains, 3

Opening mode I, 40

Paris law, 208
Penny-shaped crack, 52
Plane strain condition, 10, 75, 96

controlling parameter, 12, 33,
41, 85, 99, 105, 127, 128,
156, 164, 176

Plane strain fracture toughness, 239
Plane stress condition, 10, 75, 96

controlling parameter, 12, 33,
41, 85, 99, 105, 127, 128,
156, 164, 176

Plastic constraint factor, 242
Plastic deformation energy, 34
Plastic zone shape, 107, 109, 110

photomicrographs, 112
schematic, 96

Plastic zone size, 35, 39, 63, 73, 76,
89, 96, 98, 126, 148, 151–
153, 156, 184

approximation, 107
Dugdale’s model, 101
equation, 97
equation for mode III, 100
Irwin’s equation, 100
schematic, 184
stress state, 96
Tresca equation, 109
von Mises equation, 108

Principal strains, 6
Principal stresses, 5
Principle of superposition, 4, 65, 102
Product method, 80

Ramberg-Osgood equation, 8, 155
Resilience, 8
Rotational velocity, 254

S-N diagram, 201

Safety factor, 2
Second-rank tensors, 3
Secondary cracks, 230
Shape factor, 53
Shape memory alloy, 240, 269
Shear lip, 220
Shear modulus, 3
Shear strains, 3
Shedding loads, 98
Skew-symmetric loading, 173
Sliding mode II, 40
SMA fibers, 269
SMA hybrid composites, 269
Small-scale yielding, 39, 96, 104, 133,

135, 138, 155
Space lattice, 203
Stable crack growth, 149
Strain, 2, 4
Strain energy density, 136
Strain energy density, total, 9
Strain energy release rate, 34

mixed-mode, 176
Strain hardening exponent, 8, 125,

150
Strain-energy release rate

approximation, 107
Strength, 2
Stress, 2, 4
Stress biaxiality, 89
Stress biaxiality ratio, 90, 92
Stress concentration factor, 30, 31
Stress corrosion cracking, 230
Stress field equations, 175, 176

for Mode I and II, 90
Stress intensity factor, 33, 39

Dugdale’s equation, 103
SCC, 232
transition, 216

Stress intensity factor range, 208
Stress-intensity factor, 31, 33, 34
Stress-strain curves, 7, 150, 239
Striations, 199, 206, 207, 213, 221,

231
formation, 222
in Al-alloy, 223
lack of, 224
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mechanism, 221
perturbations, 224
ripples, 223
size, 224

Surfaces fracture appearance, 220
Symmetric circular hole, 31
Symmetric loading, 200, 201
Symmetric mode I, 126
Symmetric part, 81
Symmetrical arrays of atoms, 28

T-stress, 90, 92, 93
Taylor’s series, 52
Tearing mode III, 40
Tearing modulus, 140
Theoretical strength, 26, 27
Theory of indentation, 244
Thoeretical fracture strength, 27
Threshold stress intensity factor, 207
Traction forces, 126, 135, 136
Translational velocity, 254
Tresca criterion, 97
Tresca yielding criterion, 109
Triaxial stress state, 4

Unstable crack growth, 149

Vickers fracture toughness, 245
Virtual crack length

See Effective crack length, 98
Virtual crack size

See Effective crack length, 104
Void coalescence, 98, 104, 133, 148,

150
Von Mises yielding criterion, 108

Wedge internal forces, 101
Welding cracks, 219
Welding zones, 219
Weldments, 218
Westergaard’s complex function, 39,

42, 44, 45, 73, 77
Westergaard’s stress function, 44
Windage energy, 254

Yield strength

See. Table 3.2, 10.1 and Ap-
pendix A, 62

Yielding, 25, 36
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