

Microsoft Exchange
2010 PowerShell
Cookbook

Manage and maintain your Microsoft Exchange 2010
environment with Windows PowerShell 2.0 and the
Exchange Management Shell

Mike Pfeiffer

 BIRMINGHAM - MUMBAI

Microsoft Exchange 2010 PowerShell
Cookbook

Copyright © 2011 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be
caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: July 2011

Production Reference: 1150711

Published by Packt Publishing Ltd.
32 Lincoln Road
Olton
Birmingham, B27 6PA, UK.

ISBN 978-1-849682-46-6

www.packtpub.com

Cover Image by Artie Ng (artherng@yahoo.com.au)

Credits

Author
Mike Pfeiffer

Reviewers
Jason Helmick

Shay Levy

Robert Martin

Anderson Patricio

Acquisition Editor
Kerry George

Development Editor
Gaurav Mehta

Technical Editors
Neha Damle

Joyslita D’Souza

Aditi Suvarna

Project Coordinator
Zainab Bagasrawala

Proofreader
Lucy Henson

Indexer
Monica Ajmera Mehta

Production Coordinator
Melwyn D’sa

Cover Work
Melwyn D’sa

About the Author

Mike Pfeiffer has been in the IT field for over 13 years, spending most of his time as
an enterprise consultant focused on Active Directory and Exchange implementation and
migration projects. He is a Microsoft Certified Master on Exchange 2010, and a Microsoft
Exchange MVP. You can find his writings online at mikepfeiffer.net, where he blogs
regularly about Exchange Server and PowerShell-related topics.

I’d like to thank my wife Abby and my daughter Isabel for their love, support,
and patience with me while I was locked away in my office writing this book.
I’d also like to thank the technical reviewers, Jason Helmick, Shay Levy,
Anderson Patricio, and Robert Martin for their hard work, dedication, and
contributions to the technical community.

About the Reviewers

Jason Helmick is an instructor at Interface Technical Training and has spent 19
years as an IT professional including experience with enterprise-level infrastructure and
systems deployment, e-commerce, and n-tier software development and management.

Jason specializes in PowerShell and Exchange. He and Mike Pfeiffer are the founders and
hosts of the Arizona PowerShell User Group (http://www.azposh.com).

You can check out Jason’s blog at http://www.jasonhelmick.com or you can catch
him on twitter at @thejasonhelmick.

To my loving wife and daughter, thanks for making the work easy. To Mike
Pfeiffer, thanks for making an awesome book! To Jeffrey Snover, thanks for
creating PowerShell.

Shay Levy is a Windows PowerShell MVP and System Administrator for a government
institute in Israel. He has worked with Microsoft platforms for more than 20 years,
focusing on Microsoft Exchange and Active Directory.

As a long time PowerShell community supporter, he has become a moderator of multiple
forums and a co-director of the PowerShellCommunity.org website.

He is the creator of the popular PowerShell Community browser toolbar, a one-stop shop
for various PowerShell resources such as downloads, webcasts, videos, podcasts, and
more. He often covers PowerShell-related topics on his blog http://PowerShay.com.
You can also follow him on Twitter at http://twitter.com/ShayLevy.

Robert Martin has been in the IT Industry for over 15 years and is a senior consultant
specializing in VMware and Exchange. Robert has achieved several certifications over the
years, demonstrating his commitment to the industry. Among others, his certifications
include VCP3, VCP4, MCSA, CCNA, CNA, CCA, A+, and HP Accredited Platform Specialist.
Robert dedicates much of his time to automating daily tasks and tasks of his peers in
PowerShell and C#. In addition, Robert maintains a VMware, Exchange, and PowerShell
blog as his way of sharing solutions to daily tasks with other administrators.

Robert currently works for Choice Hotels International in Phoenix, AZ. For more
information about Robert Martin or the scripts he contributes, visit his blog at
http://robertwmartin.com.

Anderson Patricio is an Exchange MVP and works as a messaging consultant for
clients located in the South and North America. He has been working with Exchange since
version 5 of the product and he has had the opportunity to use PowerShell since the beta
release (code name Monad at that time).

Anderson is a TechEd presenter in South America and he has an exchange resource site
in Portuguese with several articles about Exchange, PowerShell, and Active Directory and
he also publishes monthly articles at MSExchange.org in English.

He is the reviewer of Windows PowerShell in Action by Bruce Payette and PowerShell in
Practice by Richard Siddaway.

www.PacktPub.com
Support files, eBooks, discount offers
and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub files
available? You can upgrade to the eBook version at www.PacktPub.com and, as a print book
customer, you are entitled to a discount on the eBook copy. Get in touch with us at service@
packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a range
of free newsletters, and receive exclusive discounts and offers on Packt books and eBooks.

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book library.
Here, you can access, read, and search across Packt's entire library of books.

Why subscribe?
Fully searchable across every book published by Packt

Copy and paste, print, and bookmark content
On demand and accessible via web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

Instant updates on new Packt books
Get notified! Find out when new books are published by following @PacktEnterprise on Twitter,
or the Packt Enterprise Facebook page.







Table of Contents
Preface	 1
Chapter 1: PowerShell Key Concepts	 7

Introduction	 8
Understanding command syntax 	 8
and parameters	 8
Using the help system	 13
Understanding the pipeline	 17
Working with variables and objects	 20
Formatting output	 24
Working with arrays and hash tables	 27
Looping through items	 32
Using flow control statements	 34
Creating custom objects	 38
Creating PowerShell functions	 42
Creating and running scripts	 47
Setting up a profile	 50

Chapter 2: Exchange Management Shell Common Tasks	 53
Introduction	 54
Using command discovery through the Exchange Management Console	 55
Manually configuring remote PowerShell connections	 58
Transferring files through remote shell connections	 61
Dealing with concurrent pipelines in remote PowerShell	 63
Managing domains or an entire forest using recipient scope	 65
Using explicit credentials with PowerShell cmdlets	 67
Exporting reports to text and CSV files	 68
Sending SMTP e-mails through PowerShell	 72
Scheduling scripts to run at a later time	 75
Logging shell sessions to a transcript	 77

ii

Table of Contents

Automating tasks with the scripting agent	 79
Scripting an Exchange server Installation	 81

Chapter 3: Managing Recipients	 85
Introduction	 85
Adding, modifying, and removing mailboxes	 86
Working with contacts	 90
Managing distribution groups	 92
Managing resource mailboxes	 94
Creating recipients in bulk using a CSV file	 97
Working with recipient filters	 100
Adding and removing recipient e-mail addresses	 103
Hiding recipients from address lists	 105
Configuring recipient moderation	 107
Configuring message delivery restrictions	 109
Managing automatic replies and out of office settings for a user	 111
Adding, modifying, and removing server-side inbox rules	 113
Managing mailbox folder permissions	 116
Importing user photos into Active Directory	 119

Chapter 4: Managing Mailboxes	 123
Introduction	 123
Performing some basic steps	 124
Reporting on the mailbox size	 124
Working with move requests and performing mailbox moves	 126
Importing and exporting mailboxes	 131
Deleting messages from mailboxes	 135
Managing disconnected mailboxes	 138
Generating mailbox folder reports	 142
Reporting on mailbox creation time	 145
Checking mailbox logon statistics	 146
Setting storage quotas for mailboxes	 148
Finding inactive mailboxes	 149
Detecting and fixing corrupt mailboxes	 150
Restoring deleted items from mailboxes	 153

Chapter 5: Distribution Groups and Address Lists	 157
Introduction	 158
Reporting on distribution group membership	 158
Adding members to a distribution group from an external file	 159
Previewing dynamic distribution group membership	 162
Excluding hidden recipients from a dynamic distribution group	 164
Converting and upgrading distribution groups	 166

iii

Table of Contents

Allowing managers to modify group membership	 168
Removing disabled user accounts from distribution groups	 170
Working with distribution group naming policies	 171
Working with distribution group membership approval	 174
Creating address lists	 175
Exporting address list membership to a CSV file	 177
Configuring hierarchical address books	 178

Chapter 6: Mailbox and Public Folder Databases	 183
Introduction	 183
Managing the mailbox and the public folder databases	 184
Moving databases and logs to another location	 186
Configuring the mailbox and public folder database limits	 190
Reporting on mailbox database size	 192
Finding the total number of mailboxes in a database	 194
Determining the average mailbox size per database	 197
Reporting on database backup status	 199
Restoring data from a recovery database	 201
Configuring public folder replication	 205
Managing user access to public folders	 207
Reporting on public folder statistics	 210

Chapter 7: Managing Client Access	 213
Introduction	 213
Creating an RPC Client Access array	 214
Configuring the CAS server used by RPC clients	 215
Configuring RPC encryption requirements	 217
Managing ActiveSync, OWA, POP3, and IMAP4 mailbox settings	 219
Setting internal and external CAS URLs	 222
Managing Outlook Anywhere settings	 225
Blocking Outlook clients from connecting to Exchange	 227
Reporting on active OWA and RPC connections	 230
Controlling ActiveSync device access	 233
Reporting on ActiveSync devices	 235

Chapter 8: Managing Transport Servers	 239
Introduction	 239
Managing connectors	 240
Configuring transport limits	 243
Allowing application servers to relay mail	 245
Managing transport rules	 247
Working with custom DSN messages	 253
Managing connectivity and protocol logs	 255

iv

Table of Contents

Message tracking logs	 260
Working with messages in transport queues	 264
Searching anti-spam agent logs	 269
Implementing a header firewall	 273

Chapter 9: High Availability	 275
Introduction	 275
Building a Windows NLB cluster for CAS servers	 277
Creating a Database Availability Group	 281
Adding mailbox servers to a Database 	 283
Availability Group	 283
Configuring Database Availability Group network settings	 285
Adding mailbox copies to a Database 	 287
Availability Group	 287
Activating mailbox database copies	 289
Working with lagged database copies	 292
Reseeding a database copy	 293
Performing maintenance on Database 	 295
Availability Group members	 295
Reporting on database status, redundancy, and replication	 297

Chapter 10: Exchange Security	 303
Introduction	 303
Granting users full access permissions to mailboxes	 304
Finding users with full access to mailboxes	 306
Sending e-mail messages as another user or group	 308
Working with Role Based Access 	 310
Control (RBAC)	 310
Creating a custom RBAC role for administrators	 313
Creating a custom RBAC role for end users	 316
Troubleshooting Role Based Access Control	 319
Generating a certificate request	 321
Installing certificates and enabling services	 323
Importing certificates on multiple exchange servers	 326

Chapter 11: Compliance and Audit Logging	 331
Introduction	 331
Managing archive mailboxes	 332
Configuring archive mailbox quotas	 334
Creating retention tags and policies	 335
Applying retention policies to mailboxes	 339
Placing mailboxes on retention hold	 341
Performing a discovery search	 342

�

Table of Contents

Placing mailboxes on litigation hold	 345
Enabling mailbox audit logging	 347
Generating mailbox audit log reports	 349
Configuring Administrator Audit Logging	 352
Searching administrator audit logs	 355

Chapter 12: Server Monitoring and Troubleshooting	 359
Introduction	 360
Managing and monitoring services	 360
Verifying server connectivity	 364
Working with the event logs	 365
Reporting on disk usage	 368
Checking CPU utilization	 371
Monitoring memory utilization	 375
Reporting on Exchange Server uptime	 377
Troubleshooting the Mailbox role	 380
Troubleshooting the Client Access 	 381
Server role	 381
Troubleshooting Transport servers	 383
Verifying certificate health	 384

Chapter 13: Scripting with the Exchange Web Services Managed API	 389
Introduction	 389
Getting connected to EWS	 391
Sending e-mail messages with EWS	 393
Working with impersonation	 397
Searching mailboxes	 400
Retrieving the headers of an e-mail message	 405
Deleting e-mail items from a mailbox	 409
Creating calendar items	 413
Exporting attachments from a mailbox	 418
Exchange Management Shell reference	 423
Advanced Query Syntax	 437

Appendix A	 423
Appendix B	 437
Index	 443

Preface

The book is full of immediately-usable task-based recipes for managing and maintaining
your Microsoft Exchange 2010 environment with Windows PowerShell 2.0 and the Exchange
Management Shell. The focus of this book is to show you how to automate routine tasks
and solve common problems. While the Exchange Management Shell provides hundreds
of cmdlets, we will not cover every single one of them individually. Instead, we'll focus on
common, real-world scenarios. You'll be able to use these recipes right away, allowing you to
get the job done quickly, and the techniques that you'll learn will allow you to write your own
amazing one-liners and scripts with ease.

What this book covers
Chapter 1, PowerShell Key Concepts, introduces several PowerShell core concepts such as
command syntax and parameters, working with the pipeline, and flow control with loops and
conditional logic. The topics covered in this chapter lay the foundation for the code samples in
the following chapters.

Chapter 2, Exchange Management Shell Common Tasks, covers day-to-day tasks and general
techniques for managing Exchange from the command line. Topics include configuring manual
remote shell connections, exporting reports to external files, sending e-mail messages from
scripts, and scheduling scripts to run with the Task Scheduler.

Chapter 3, Managing Recipients, demonstrates some of the most common recipient-related
management tasks, such as creating mailboxes, distribution groups, and contacts. You'll also
learn how to manage server side inbox rules, Out of Office settings, and import user photos
into Active Directory.

Chapter 4, Managing Mailboxes, shows how to perform various mailbox management tasks
that include moving mailboxes, importing and exporting mailbox data, and detecting and
repairing corrupt mailboxes. In addition, you'll learn how to delete and restore items from a
mailbox and generate some basic reports.

Preface

��

Chapter 5, Distribution Groups and Address Lists, takes you deeper into distribution group
management. Topics include distribution group reporting, distribution group naming policies,
and allowing end users to manage distribution group membership. You'll also learn how to
create Address Lists and Hierarchal Address Books.

Chapter 6, Mailbox and Public Folder Databases, shows how to set database settings and
limits and configure Public Folder replication. Report generation for mailbox database size,
average mailbox size per database, and backup status are also covered in this chapter.

Chapter 7, Managing Client Access, introduces the concept of Client Access Arrays and covers
the creation and configuration of this key component in Exchange 2010. We'll also take a look
at controlling connections from various clients, including ActiveSync devices.

Chapter 8, Managing Transport Servers, explains various methods used to control mail flow
within your Exchange organization. You'll learn how to create send and receive connectors,
allow application servers to relay mail, and manage transport queues.

Chapter 9, High Availability, covers the implementation and management tasks related to
Database Availability Groups (DAGs). Topics include creating DAGs, adding mailbox database
copies, and performing maintenance on DAG members.

Chapter 10, Exchange Security, introduces the new Role Based Access Control (RBAC)
permissions model. You'll learn how to create custom RBAC roles for administrators and end-
users, and also how to manage mailbox permissions and implement SSL certificates.

Chapter 11, Compliance and Audit Logging, covers the new compliance and auditing features
included in Exchange 2010. Archive mailboxes and Discovery Search are covered here, as well
as administrator and mailbox audit logging.

Chapter 12, Server Monitoring and Troubleshooting, shows you how to monitor and report on
service availability and resource utilization using PowerShell core cmdlets and WMI. Event log
monitoring and Exchange server role troubleshooting tactics are also covered.

Chapter 13, Scripting with the Exchange Web Services Managed API, introduces advanced
scripting topics that leverage Exchange Web Services. In this chapter, you'll learn how to
write scripts and functions that go beyond the capabilities of the Exchange Management
Shell cmdlets.

Appendix A, provides a list of commonly-used automatic shell variables and type accelerators,
along with a listing of scripts that are installed with Exchange 2010.

Appendix B, includes additional information about Advanced Query Syntax (AQS),
which is used to perform queries when performing discovery searches, item restores,
and item removal.

Preface

��

What you need for this book
To complete the recipes in this book, you'll need the following:

PowerShell v2, which is already installed by default on Windows 7 and Windows
Server 2008 R2.

A fully operational lab environment with an Active Directory forest and
Exchange organization.

Ideally, your Exchange Servers will run Windows Server 2008 R2, but they can run
Windows Server 2008 SP2, if needed.

You'll need to have at least one Microsoft Exchange 2010 SP1 server.

To work with the recipes in this book, you should be logged on with an account that is
a member the Organization Management role group. The user account used to install
Exchange 2010 SP1 is automatically added to this group.

If possible, you'll want to run the commands, scripts, and functions in this book from
a client machine. The 64-bit version of Windows 7 with the Exchange 2010 SP1
Management Tools installed is a good choice. You can also run the tools on Windows
Vista. Each client will need some additional prerequisites in order to run the tools;
see Microsoft's TechNet documentation for full details.

If you don't have a client machine, you can run the management shell from an
Exchange 2010 SP1 server.

Chapter 13 requires the Exchange Web Services Managed API version 1.1, which can
be downloaded from the following URL:
http://www.microsoft.com/download/en/details.aspx?id=13480

The code samples in this book should be run in a lab environment and should be fully tested
before deployed into production. If you don't have a lab environment set up, you can download
a pre-configured Hyper-V virtual hard disk (VHD) from Microsoft. It includes a fully-functioning
virtual environment with Exchange 2010 SP1 that can be evaluated for 180 days. You can
download the files from the following URL:

http://www.microsoft.com/download/en/details.aspx?id=5002

Who this book is for
This book is for messaging professionals who want to learn how to build real-world scripts
with Windows PowerShell 2.0 and the Exchange Management Shell. If you are a network or
systems administrator responsible for managing and maintaining the on-premise version of
Exchange Server 2010, then this book is for you.

The recipes in this cookbook touch on each of the core Exchange 2010 server roles and
require a working knowledge of the supporting technologies, such as Windows Server 2008
or 2008 R2, Active Directory, and DNS.

















Preface

��

All of the topics in the book are focused on the on-premise version of Exchange 2010 SP1,
and we will not cover Microsoft's hosted version of Exchange Online through Office 365.
However, the concepts you'll learn in this book will allow you to hit the ground running with
that platform since it will give you an understanding of PowerShell's command syntax and
object-based nature.

Conventions
In this book, you will find a number of styles of text that distinguish between different kinds of
information. Here are some examples of these styles and an explanation of their meanings.

Code words in text are shown as follows: "We can read the content of an external file into the
shell using the Get-Content cmdlet."

Commands and blocks of code are set as follows:

Get-Mailbox –ResultSize Unlimited | Out-File C:\report.txt

Commands like this can be invoked interactively in the shell, or from within a script
or function.

Most of the commands you'll be working with will be very long. In order for them to fit into the
pages of this book, we'll need to use line continuation. For example, here is a command that
creates a mailbox-enabled Active Directory user account:

New-Mailbox -UserPrincipalName jsmith@contoso.com `
-FirstName John `
-LastName Smith `
-Alias jsmith `
-Database DB1 `
-Password $password

Notice that the last character on each line is the backtick (`) symbol, also referred to as the
grave accent. This is PowerShell's line continuation character. You can run this command as
is, but make sure there aren't any trailing spaces at the end of each line. You can also remove
the backtick and carriage returns and run the command on one line. Just ensure the spaces
between the parameters and arguments are maintained.

You'll also see long pipeline commands formatted like the following example:

Get-Mailbox -ResultSize Unlimited |
 Select-Object DisplayName,ServerName,Database |
 Export-Csv c:\mbreport.csv -NoTypeInformation

Preface

��

PowerShell uses the pipe character (|) to send objects output from a command down the
pipeline so it can be used as input by another command. The pipe character does not need to
be escaped. You can enter the previous command as is, or you can format the command so
that everything is on one line.

Any command-line input or output that must be done interactively at the shell console is
written as follows:

[PS] C:\>Get-Mailbox administrator | ft ServerName,Database -Auto

ServerName Database

---------- --------

mbx1 DB01

New terms and important words are shown in bold. Words that you see on the screen,
in menus or dialog boxes for example, appear in the text like this: "Open the Exchange
Management Shell by clicking on Start | All Programs | Exchange Server 2010."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or may have disliked. Reader feedback is important for us to develop
titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, and
mention the book title via the subject of your message.

If there is a book that you need and would like to see us publish, please send us a note in
the SUGGEST A TITLE form on www.packtpub.com or e-mail suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www.packtpub.com/authors.

Preface

��

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you to
get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased from
your account at http://www.PacktPub.com. If you purchased this book elsewhere, you
can visit http://www.PacktPub.com/support and register to have the files e-mailed
directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the code—we
would be grateful if you would report this to us. By doing so, you can save other readers from
frustration and help us improve subsequent versions of this book. If you find any errata,
please report them by visiting http://www.packtpub.com/support, selecting your book,
clicking on the errata submission form link, and entering the details of your errata. Once
your errata are verified, your submission will be accepted and the errata will be uploaded on
our website, or added to any list of existing errata, under the Errata section of that title. Any
existing errata can be viewed by selecting your title from http://www.packtpub.com/
support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works in any form on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with any
aspect of the book, and we will do our best to address it.

1
PowerShell Key

Concepts

In this chapter, we will cover the following:

Understanding command syntax and parameters

Using the help system

Understanding the pipeline

Working with variables and objects

Formatting output

Working with arrays and hash tables

Looping through items

Using flow control statements

Creating custom objects

Creating PowerShell functions

Creating and running scripts

Setting up a profile

























PowerShell Key Concepts

��

Introduction
So, your organization has decided to move to Exchange Server 2010 to take advantage of the
many exciting new features such as integrated e-mail archiving, discovery capabilities, and
high availability functionality. Like it or not, you've realized that PowerShell is now an integral
part of Exchange Server management and you need to learn the basics and have a point of
reference for building your own scripts. That's what this book is all about. In this chapter, we'll
cover some core PowerShell concepts that will provide you with a foundation of knowledge for
using the remaining examples in this book. If you are already familiar with PowerShell,
you may want to use this chapter as a review or as a reference for later after you've started
writing scripts.

If you're completely new to PowerShell, the concept may be familiar if you've worked with UNIX
command shells. Like UNIX-based shells, PowerShell allows you to string multiple commands
together on one line using a technique called pipelining. This means that the output of one
command becomes the input for another. But, unlike UNIX shells that pass text output from
one command to another, PowerShell uses an object model based on the .NET Framework,
and objects are passed between commands in a pipeline, as opposed to plain text. From
an Exchange perspective, working with objects gives us the ability to access very detailed
information about servers, mailboxes, databases, and more. For example, every mailbox you
manage within the shell is an object with multiple properties, such as an e-mail address,
database location, or send and receive limits. The ability to access this type of information
through simple commands means that we can build powerful scripts that generate reports,
make configuration changes, and perform maintenance tasks with ease.

Performing some basic steps
To work with the code samples in this chapter, follow these steps to launch the Exchange
Management Shell:

1.	 Log onto a workstation or server with the Exchange Management Tools installed.

2.	 Open the Exchange Management Shell by clicking on Start | All Programs |
Exchange Server 2010.

3.	 Click on the Exchange Management Shell shortcut.

Understanding command syntax
and parameters

Windows PowerShell provides a large number of built-in cmdlets (pronounced command-lets)
that perform specific operations. The Exchange Management Shell adds an additional set of
PowerShell cmdlets used specifically for managing Exchange. The Exchange Management
Console, which is the graphical management tool for Exchange 2010, is built completely

Chapter 1

��

on top of these cmdlets and any operations performed within this tool are translated into
PowerShell commands. We can also run these cmdlets interactively in the shell, or through
automated scripts. When executing a cmdlet, parameters can be used to provide information,
such as which mailbox or server to work with, or which attribute of those objects should
be modified. In this recipe, we'll take a look at basic PowerShell command syntax and how
parameters are used with cmdlets.

How to do it...
When running a PowerShell command, you type the cmdlet name, followed by any parameters
required. Parameter names are preceded by a hyphen (-) followed by the value of the
parameter. Let's start with a basic example. To get mailbox information for a user named
testuser, use the following command syntax:

Get-Mailbox –Identity testuser

Downloading the example code
You can download the example code fles for all Packt books you have
purchased from your account at http://www.PacktPub.com. If you
purchased this book elsewhere, you can visit http://www.PacktPub.
com/support and register to have the fles e-mailed directly to you.

Alternatively, the following syntax also works and provides the same output, because the
–Identity parameter is a positional parameter:

Get-Mailbox testuser

Most cmdlets support a number of parameters that can be used within a single command.
We can use the following command to modify two separate settings on the testuser mailbox:

Set-Mailbox testuser –MaxSendSize 5mb –MaxReceiveSize 5mb

How it works...
All cmdlets follow a standard verb-noun naming convention. For example, to get a list of
mailboxes you use the Get-Mailbox cmdlet. You can change the configuration of a mailbox
using the Set-Mailbox cmdlet. In both examples, the verb (Get or Set) is the action you want
to take on the noun (Mailbox). The verb is always separated from the noun using the hyphen
(-) character. With the exception of a few Exchange Management Shell cmdlets, the noun is
always singular.

Cmdlet names and parameters are not case sensitive. You can use a combination of upper
and lowercase letters to improve the readability of your scripts, but it is not required.

PowerShell Key Concepts

1010

Parameter input is either optional or required, depending on the parameter and cmdlet you
are working with. You don't have to assign a value to the -Identity parameter since it is not
required when running the Get-Mailbox cmdlet. If you simply run Get-Mailbox without
any arguments, the first 1,000 mailboxes in the organization will be returned.

If you are working in a large environment with more than 1,000 mailboxes,
you can run the Get-Mailbox cmdlet setting the -ResultSize parameter
to Unlimited to retrieve all of the mailboxes in your organization.

Notice that in the first two examples we ran Get-Mailbox for a single user. In the first
example, we used the -Identity parameter, but in the second example we did not. The
reason we don't need to explicitly use the -Identity parameter in the second example is
because it is a positional parameter. In this case, -Identity is in position 1, so the first
argument received by the cmdlet is automatically bound to this parameter. There can be a
number of positional parameters supported by a cmdlet, and they are numbered starting
from one. Other parameters that are not positional are known as named parameters,
meaning we need to use the parameter name to provide input for the value.

The -Identity parameter is included with most of the Exchange Management Shell
cmdlets, and it allows you to classify the object you want to take an action on.

The -Identity parameter used with the Exchange Management Shell
cmdlets can accept different value types. In addition to the alias, the
following values can be used: ADObjectID, Distinguished name, Domain\
Username, GUID, LegacyExchangeDN, SmtpAddress, and User principal
name (UPN).

Unlike the Get-Mailbox cmdlet, the -Identity parameter is required when you are
modifying objects, and we saw an example of this when running the Set-Mailbox cmdlet.
This is because the cmdlet needs to know which mailbox it should modify when the command
is executed. When you run a cmdlet without providing input for a required parameter, you will
be prompted to enter the information before execution.

In order to determine whether a parameter is required, named or
positional, supports wildcards, or accepts input from the pipeline, you
can use the Get-Help cmdlet which is covered in the next recipe in
this chapter.

Chapter 1

1111

Multiple data types are used for input depending on the parameter you are working with.
Some parameters accept string values, while others accept integers or Boolean values.
Boolean parameters are used when you need to set a parameter value to either true or false.
PowerShell provides built-in shell variables for each of these values using the $true and
$false automatic variables.

For a complete list of PowerShell v2 automatic variables, run Get-
Help about_automatic_variables. Also see Appendix A for a list
of automatic variables added by the Exchange Management Shell.

For example, you can enable or disable a send connector using the Set-SendConnector
cmdlet with the -Enabled parameter:

Set-SendConnector Internet -Enabled $false

Switch parameters don't require a value. Instead they are used to turn something on or off, or
to either enable or disable a feature or setting. One common example of when you might use
a switch parameter is when creating an archive mailbox for a user:

Enable-Mailbox testuser -Archive

PowerShell also provides a set of common parameters that can be used with every cmdlet.
Some of the common parameters, such as the risk mitigation parameters (-Confirm and -
Whatif), only work with cmdlets that make changes.

For a complete list of common parameters, run Get-Help
about_CommonParameters.

Risk mitigation parameters allow you to preview a change or confirm a change that may be
destructive. If you want to see what will happen when executing a command without actually
executing it, use the -WhatIf parameter:

PowerShell Key Concepts

1212

When making a change, such as removing a mailbox, you'll be prompted for confirmation,
as shown in the following screenshot:

To suppress this confirmation set the -Confirm parameter to false:

Remove-Mailbox testuser -Confirm:$false

Notice here that when assigning the $false variable to the -Confirm parameter that we
had to use a colon immediately after the parameter name and then the Boolean value. This
is different to how we assigned this value earlier with the -Enabled parameter when using
the Set-SendConnector cmdlet. Remember that the -Confirm parameter always requires
this special syntax, and while most parameters that accept a Boolean value generally do not
require this, it depends on the cmdlet with which you are working. Fortunately, PowerShell has
a great built-in help system that we can use when we run into these inconsistencies. When in
doubt, use the help system, which is covered in detail in the next recipe.

Cmdlets and parameters support tab completion. You can start typing the first few characters
of a cmdlet or a parameter name and hit the tab key to automatically complete the name or
tab through a list of available names. This is very helpful in terms of discovery and can serve
as a bit of a time saver.

In addition, you only need to type enough characters of a parameter name to differentiate it
from another parameter name. The following command using a partial parameter name is
completely valid:

Set-Mailbox -id testuser –Office Sales

Here we've used id as a shortcut for the -Identity parameter. The cmdlet does not
provide any other parameters that start with id, so it automatically assumes you want
to use the -Identity parameter.

Another helpful feature that some parameters support is the use of wildcards. When running
the Get-Mailbox cmdlet, the -Identity parameter can be used with wildcards to return
multiple mailboxes that match a certain pattern:

Get-Mailbox -id t*

In this example, all mailboxes starting with the letter t will be returned. Although this is fairly
straightforward, you can reference the help system for details on using wildcard characters in
PowerShell by running Get-Help about_Wildcards.

Chapter 1

1313

There's more...
Parameter values containing a space need to be enclosed in either single or double
quotation marks. The following command would retrieve all of the mailboxes in the Sales
Users OU in Active Directory. Notice that since the OU name contains a space, it is enclosed
in single quotes:

Get-Mailbox -OrganizationalUnit 'contoso.com/Sales Users/Phoenix'

Use double quotes when you need to expand a variable within a string:

$City = 'Phoenix'
Get-Mailbox -OrganizationalUnit "contoso.com/Sales Users/$City"

You can see here that we first create a variable containing the name of the city, which
represents a sub OU under Sales Users. Next, we include the variable inside the string used
for the organizational unit when running the Get-Mailbox cmdlet. PowerShell automatically
expands the variable name inside the double quoted string where the value should appear
and all mailboxes inside the Phoenix OU are returned by the command.

Quoting rules are documented in detail in the PowerShell help system.
Run Get-Help about_Quoting_Rules for more information.

See also
Using the help system
Working with variables and objects

Using the help system
The Exchange Management Shell includes over 600 cmdlets, each with a set of multiple
parameters. For instance, the New-Mailbox cmdlet accepts up to 50 parameters, and the
Set-Mailbox cmdlet has over 120 available parameters. It's safe to say that even the most
experienced PowerShell expert would be at a disadvantage without a good help system. In this
recipe, we'll take a look at how to get help in the Exchange Management Shell.

How to do it...
To get help information for a cmdlet, type Get-Help, followed by the cmdlet name.
For example, to get help information about the Get-Mailbox cmdlet, run the
following command:

Get-Help Get-Mailbox -full





PowerShell Key Concepts

1414

How it works...
When running Get-Help for a cmdlet, a synopsis and description for the cmdlet will be
displayed in the shell. The Get-Help cmdlet is one of the best discovery tools to use in
PowerShell. You can use it when you're not quite sure how a cmdlet works or what
parameters it provides.

You can use the following switch parameters to get specific information using the
Get-Help cmdlet:

Detailed: The detailed view provides parameter descriptions and examples and uses
the following syntax:
Get-Help <cmdlet name> -Detailed

Examples: You can view multiple examples of how to use a cmdlet by running the
following syntax::
Get-Help <cmdlet name> -Examples

Full: Use the following syntax to view the complete contents of the help file for
a cmdlet:
Get-Help <cmdlet name> -Full

Some parameters accept simple strings as input, while others require an actual object. When
creating a mailbox using the New-Mailbox cmdlet, you'll need to provide a secure string
object for the -Password parameter. You can determine the data type required for
a parameter using Get-Help:

You can see from the command output that we get several pieces of key information about
the -Password parameter. In addition to the required data type of <SecureString>, we
can see that this is a named parameter. It is required when running the New-Mailbox cmdlet
and it does not accept wildcard characters. You can use Get-Help when examining the
parameters for any cmdlet to determine whether or not they support these settings.







Chapter 1

1515

You could run Get-Help New-Mailbox -Examples to determine the syntax required to
create a secure string password object and how to use it to create a mailbox. This is also
covered in detail in the recipe titled Adding, modifying, and removing mailboxes in Chapter 3,
Managing Recipients.

There's more...
There will be times when you'll need to search for a cmdlet without knowing its full name. In
this case, there are a couple of commands you can use to find the cmdlets you are looking for.

To find all cmdlets that contain the word "mailbox", you can use a wildcard, as shown in the
following command:

Get-Command *Mailbox*

You can use the -Verb parameter to find all cmdlets starting with a particular verb:

Get-Command -Verb Set

To search for commands that use a particular noun, specify the name with the
-Noun parameter:

Get-Command -Noun Mailbox

The Get-Command cmdlet is a built-in PowerShell core cmdlet, and it will return commands
from both Windows PowerShell as well as the Exchange Management Shell. The Exchange
Management Shell also adds a special function called Get-Ex command that will return only
Exchange specific commands.

In addition to getting cmdlet help for cmdlets, you can use Get-Help to view supplemental
help files that explain general PowerShell concepts that focus primarily on scripting. To display
the help file for a particular concept, type Get-Help about_ followed by the concept name.
For example, to view the help for the core PowerShell commands type the following:

Get-Help about_Core_Commands

You can view the entire list of conceptual help files using the following command:

Get-Help about_*

Don't worry about trying to memorize all the Exchange or PowerShell cmdlet names. As long
as you can remember Get-Command and Get-Help, you can search for commands and
figure out the syntax to do just about anything.

PowerShell Key Concepts

1616

Getting help with cmdlets and functions
One of the things that can be confusing at first is the distinction between cmdlets and
functions. When you launch the Exchange Management Shell, a remote PowerShell session is
initiated to an Exchange server and specific commands, called proxy functions, are imported
into your shell session. These proxy functions are essentially just blocks of code that have a
name, such as Get-Mailbox, and that correspond to the compiled cmdlets installed on the
server. This is true even if you have a single server and when you are running the shell locally
on a server.

When you run the Get-Mailbox function from the shell, data is passed between your
machine and the Exchange server through a remote PowerShell session. The Get-Mailbox
cmdlet is actually executing on the remote Exchange server, and the results are being passed
back to your machine. One of the benefits of this is that it allows you to run the cmdlets
remotely regardless of whether your servers are on-premise or in the cloud. In addition, this
core change in the tool set is what allows Exchange 2010 to implement its new security model
by allowing and restricting which cmdlets administrators and end-users can actually use
through the shell, the management console, or the web-based control panel.

We'll get into the details of all this throughout the remaining chapters in the book. The bottom
line is that, for now, you need to understand that, when you are working with the help system,
the Exchange 2010 cmdlets will show up as functions and not as cmdlets.

Consider the following command and output:

Here we are running Get-Command against a PowerShell v2 core cmdlet. Notice that the
CmdletType shows that this is a Cmdlet.

Now try the same thing for the Get-Mailbox cmdlet:

And as you can see, the CommandType for the Get-Mailbox cmdlet shows that it is actually
a Function. So, there are a couple of key points to take away from this. First, throughout the
course of this book, we will refer to the Exchange 2010 cmdlets as cmdlets, even though they

Chapter 1

1717

will show up as functions when running Get-Command. Second, keep in mind that you can
run Get-Help against any function name, such as Get-Mailbox, and you'll still get the help
file for that cmdlet. But if you are unsure of the exact name of a cmdlet, use Get-Command
to perform a wildcard search as an aid in the discovery process. Once you've determined
the name of the cmdlet you are looking for, you can run Get-Help against that cmdlet for
complete details on how to use it.

Try using the help system before going to the internet to find answers. You'll find that the
answers to most of your questions are already documented within the built-in cmdlet help.

See also
Understanding command syntax and parameters

Manually configuring remote PowerShell connections in Chapter 2, Exchange
Management Shell Common Tasks

Working with Role Based Access Control in Chapter 10, Exchange Security

Understanding the pipeline
The single most import ant concept in PowerShell is the use of its flexible, object-based
pipeline. You may have used pipelines in UNIX-based shells, or when working with the cmd.
exe command prompt. The concept of pipelines is similar in that you are sending the output
from one command to another. But, instead of passing plain text, PowerShell works with
objects, and we can accomplish some very complex tasks in just a single line of code. In
this recipe, you'll learn how to use pipelines to string together multiple commands and build
powerful one-liners.

How to do it...
The following pipeline command would set the office location for every mailbox in the
DB1 database:

Get-Mailbox -Database DB1 | Set-Mailbox -Office Headquarters

How it works...
In a pipeline, you separate a series of commands using the pipe (|) character. In the previous
example, the Get-Mailbox cmdlet returns a collection of mailbox objects. Each mailbox
object contains several properties that contain information such as the name of the mailbox,
the location of the associated user account in Active Directory, and more. The Set-Mailbox
cmdlet is designed to accept input from the Get-Mailbox cmdlet in a pipeline, and with one
simple command we can pass along an entire collection of mailboxes that can be modified in
one operation.







PowerShell Key Concepts

1818

You can also pipe output to filtering commands, such as the Where-Object cmdlet.
In this example, the command retrieves only the mailboxes with a MaxSendSize equal
to 10 megabytes:

Get-Mailbox | Where-Object{$_.MaxSendSize -eq 10mb}

The code that the Where-Object cmdlet uses to perform the filtering is enclosed in curly
braces ({}). This is called a script block, and the code within this script block is evaluated for
each object that comes across the pipeline. If the result of the expression is evaluated as true,
the object is returned, otherwise, it is ignored. In this example, we access the MaxSendSize
property of each mailbox using the $_ object, which is an automatic variable that refers to the
current object in the pipeline. We use the equals (-eq) comparison operator to check that the
MaxSendSize property of each mailbox is equal to 10 megabytes. If so, only those mailboxes
are returned by the command.

Comparison operators allow you to compare results and find values
that match a pattern. For a complete list of comparison operators,
run Get-Help about_Comparison_Operators.

When running this command, which can also be referred to as a one-liner, each mailbox
object is processed one at a time using stream processing. This means that as soon as a
match is found, the mailbox information is displayed on the screen. Without this behaviour,
you would have to wait for every mailbox to be found before seeing any results. This may not
matter if you are working in a very small environment, but without this functionality in a large
organization with tens of thousands of mailboxes, you would have to wait a long time for the
entire result set to be collected and returned.

One other interesting thing to note about the comparison being done inside our Where-
Object filter is the use of the mb multiplier suffix. PowerShell natively supports these
multipliers and they make it a lot easier for us to work with large numbers. In this example,
we've used 10mb, which is the equivalent of entering the value in bytes because behind the
scenes, PowerShell is doing the math for us by replacing this value with 1024*1024*10.
PowerShell provides support for the following multipliers: kb, mb, gb, tb, and pb.

There's more...
You can use advanced pipelining techniques to send objects across the pipeline to other
cmdlets that do not support direct pipeline input. For example, the following one-liner adds a
list of users to a group:

Get-User |
 Where-Object{$_.title -eq "Exchange Admin"} | Foreach-Object{
 Add-RoleGroupMember -Identity "Organization Management" `
 -Member $_.name
 }

Chapter 1

1919

This pipeline command starts off with a simple filter that returns only the users that have
their Title set to "Exchange Admin". The output from that command is then piped to the
ForEach-Object cmdlet that processes each object in the collection. Similar to the
Where-Object cmdlet, the ForEach-Object cmdlet processes each item from the
pipeline using a script block. Instead of filtering, this time we are running a command for
each user object returned in the collection and adding them to the "Organization
Management" role group.

Using aliases in pipelines can be helpful because it reduces the amount of characters you
need to type. Take a look at the previous command, modified to use aliases:

Get-User |
 ?{$_.title -eq "Exchange Admin"} | %{
 Add-RoleGroupMember -Identity "Organization Management" `
 -Member $_.name
 }

Notice the use of the question mark (?) and the percent sign (%) characters. The ? character
is an alias for the Where-Object cmdlet, and the % character is an alias for the ForEach-
Object cmdlet. These cmdlets are used heavily, and you'll often see them used with these
aliases because it makes the commands easier to type.

You can use the Get-Alias cmdlet to find all of the aliases currently defined
in your shell session and the New-Alias cmdlet to create custom aliases.

The Where-Object and ForEach-Object cmdlets have additional aliases. Here's another
way you could run the previous command:

Get-User |
 where{$_.title -eq "Exchange Admin"} | foreach{
 Add-RoleGroupMember -Identity "Organization Management" `
 -Member $_.name
 }

Use aliases when you're working interactively in the shell to speed up your work and keep
your commands concise. You may want to consider using the full cmdlet names in production
scripts to avoid confusing others who may read your code.

See also
Looping through items

Creating custom objects

Dealing with concurrent pipelines in remote PowerShell in Chapter 2, Exchange
Management Shell Common Tasks







PowerShell Key Concepts

2020

Working with variables and objects
Every scripting language makes use of variables as placeholders for data, and PowerShell
is no exception. You'll need to work with variables often to save temporary data to an object
so you can work with it later. PowerShell is very different from other command shells in that
everything you touch is, in fact, a rich object with properties and methods. In PowerShell, a
variable is simply an instance of an object just like everything else. The properties of an object
contain various bits of information depending on the type of object you're working with. In
this recipe we'll learn to create user-defined variables and work with objects in the Exchange
Management Shell.

How to do it...
To create a variable that stores an instance of the testuser mailbox, use the
following command:

$mailbox = Get-Mailbox testuser

How it works...
To create a variable, or an instance of an object, you prefix the variable name with the dollar
sign ($). To the right of the variable name, use the equals (=) assignment operator, followed
by the value or object that should be assigned to the variable. Keep in mind that the variables
you create are only available during your current shell session and will be destroyed when you
close the shell.

Let's look at another example. To create a string variable that contains an e-mail address, use
the following command:

$email = "testuser@contoso.com"

In addition to user-defined variables, PowerShell also includes automatic and
preference variables. To learn more, run Get-Help about_Automatic_
Variables and Get-Help about_Preference_Variables.

Even a simple string variable is an object with properties and methods. For instance, every
string has a Length property that will return the number of characters that are in the string:

[PS] C:\>$email.length

20

Chapter 1

2121

When accessing the properties of an object, you can use dot notation to reference the
property with which you want to work. This is done by typing the object name, then a period,
followed by the property name, as shown in the previous example. You access methods in the
same way, except that method names always end with parenthesis ().

The string data type supports several methods, such as Substring, Replace, and Split.
The following example shows how the Split method can be used to split a string:

[PS] C:\>$email.Split("@")
testuser
contoso.com

You can see here that the Split method uses the "@" portion of the string as a delimiter
and returns two substrings as a result.

PowerShell also provides a -Split operator that can split a string into or
more substrings. Run Get-Help about_Split for details.

There's more...
At this point, you know how to access the properties and methods of an object, but you need
to be able to discover and work with these members. To determine which properties and
methods are accessible on a given object, you can use the Get-Member cmdlet, which is one
of the key discovery tools in PowerShell along with Get-Help and Get-Command.

To retrieve the members of an object, pipe the object to the Get-Member cmdlet. The
following command will retrieve all of the instance members of the $mailbox object we
created earlier:

$mailbox | Get-Member

To filter the results returned by Get-Member, use the -MemberType
parameter to specify whether the type should be a Property or a Method.

Let's take a look at a practical example of how we could use Get-Member to discover the
methods of an object. Imagine that each mailbox in our environment has had a custom
MaxSendSize restriction set and we need to record the value for reporting purposes.
When accessing the MaxSendSize property, the following information is returned:

[PS] C:\>$mailbox.MaxSendSize
IsUnlimited Value
----------- -----
False 10 MB (10,485,760 bytes)

PowerShell Key Concepts

2222

We can see here that the MaxSendSize property actually contains an object with two
properties: IsUnlimited and Value. Based on what we've learned, we should be able to
access the information for the Value property using dot notation:

[PS] C:\>$mailbox.MaxSendSize.Value

10 MB (10,485,760 bytes)

That works, but the information returned contains not only the value in megabytes, but
also the total bytes for the MaxSendSize value. For the purpose of what we are trying to
accomplish, we only need the total megabytes. Let's see if this object provides any methods
that can help us out with this using Get-Member:

From the output shown in the previous screenshot, we can see this object supports several
methods that can be used convert the value. To obtain the MaxSendSize value in megabytes,
we can call the ToMB method:

[PS] C:\>$mailbox.MaxSendSize.Value.ToMB()

10

In a traditional shell, you would have to perform complex string parsing to extract this type
of information, but PowerShell and the .NET Framework make this much easier. As you'll see
over time, this is one of the reasons why PowerShell's object-based nature really outshines a
typical text-based command shell.

An important thing to point about this last example is that it would not work if the mailbox
had not had a custom MaxSendSize limitation configured. Nevertheless, this provides a
good illustration of the process you'll want to use when you're trying to learn about an object's
properties or methods.

Chapter 1

2323

Variable expansion in strings
As mentioned in the first recipe in this chapter, PowerShell uses quoting rules to determine
how variables should be handled inside a quoted string. When enclosing a simple variable
inside a double-quoted string, PowerShell will expand that variable and replace the variable
with the value of the string. Let's take a look at how this works by starting off with a
simple example:

[PS] C:\>$name = "Bob"

[PS] C:\> "The user name is $name"

The user name is Bob

This is pretty straightforward. We stored the string value of "Bob" inside the $name variable.
We then include the $name variable inside a double-quoted string that contains a message.
When we hit return, the $name variable is expanded and we get back the message we expect
to see on the screen.

Now let's try this with a more complex object. Let's say that we want to store an instance
of a mailbox object in a variable and access the PrimarySmtpAddress property inside
the quoted string:

[PS] C:\>$mailbox = Get-Mailbox testuser

[PS] C:\>"The email address is $mailbox.PrimarySmtpAddress"

The email address is test user.PrimarySmtpAddress

Notice here that when we try to access the PrimarySmtpAddress property of our mailbox
object inside the double-quoted string, we're not getting back the information that we'd
expect. This is a very common stumbling block when it comes to working with objects and
properties inside strings. We can get around this using sub expression notation. This requires
that you enclose the entire object within $() characters inside the string:

[PS] C:\>"The email address is $($mailbox.PrimarySmtpAddress)"

The email address is testuser@contoso.com

Using this syntax, the PrimarySmtpAddress property of the $mailbox object is properly
expanded and the correct information is returned. This technique will be useful later when
extracting data from objects and generating reports or log files.

Strongly typed variables
PowerShell will automatically try to select the correct data type for a variable based on the
value being assigned to it. You don't have to worry about doing this yourself, but we do have
the ability to explicitly assign a type to a variable if needed. This is done by specifying the data
type in square brackets before the variable name:

[string]$a = 32

PowerShell Key Concepts

2424

Here we've assigned the value of 32 to the $a variable. Had we not strongly typed the variable
using the [string] type shortcut, $a would have been created using the Int32 data type,
since the value we assigned was a number that was not enclosed in single or double quotes.
Take a look at the following screenshot:

As you can see here, the $var1 variable is initially created without any explicit typing. We use
the GetType() method, which can be used on any object in the shell, to determine the data
type of $var1. Since the value assigned was a number not enclosed in quotes, it was created
using the Int32 data type. When using the [string] type shortcut to create $var2 with the
same value, you can see that it has now been created as a string.

It is good to have an understanding of data types because when building scripts that return
objects, you may need to have some control over this. For example, you may want to report
on the amount of free disk space on an Exchange server. If we store this value in the property
of a custom object as a string, we lose the ability to sort on that value. There are several
examples throughout the book that use this technique.

See Appendix A for a listing of commonly-used type shortcuts.

Formatting output
One of the most common PowerShell questions is how to get information returned from
commands in the desired output on the screen. In this recipe, we'll take a look at how you
can output data from commands and format that information for viewing on the screen.

Chapter 1

2525

How to do it...
To change the default output and view the properties of an object in list format, pipe the
command to the Format-List cmdlet:

Get-Mailbox testuser | Format-List

To view specific properties in table format, supply a comma-separated list of property names
as parameters, as shown next when using Format-Table:

Get-Mailbox testuser | Format-Table name,alias

How it works...
When you run the Get-Mailbox cmdlet, you only see the Name, Alias, ServerName,
and ProhibitSendQuota properties of each mailbox in a table format. This is because the
Get-Mailbox cmdlet receives its formatting instructions from the exchange.format.
ps1xml file located in the Exchange server bin directory.

PowerShell cmdlets use a variety of formatting files that usually include a default view with
only a small subset of predefined properties. When you need to override the default view, you
can use Format-List and Format-Table cmdlets.

You can also select specific properties with Format-List, just as we saw when using
the Format-Table cmdlet. The difference is, of course, that the output will be displayed
in list format.

Let's take a look at the output from the Format-Table cmdlet, as shown previously:

As you can see here, we get both properties of the mailbox formatted as a table.

When using Format-Table cmdlet, you may find it useful to use the -Autosize parameter
to organize the columns based on the width of the data:

PowerShell Key Concepts

2626

This command selects the same properties as our previous example, but this time we are
using the -Autosize parameter and the columns are adjusted to use only as much space
on the screen as is needed. Remember, you can use the ft alias instead of typing the entire
Format-Table cmdlet name. You can also use the fl alias for the Format-List cmdlet.
Both of these aliases can keep your commands concise and are very convenient
when working interactively in the shell.

There's more…
One thing to keep in mind is that you never want to use the Format-*cmdlets in the middle
of a pipeline since most other cmdlets will not understand what to do with the output. The
Format-*cmdlets should normally be the last thing you do in a command unless you are
sending the output to a printer or a text file.

To send formatted output to a text file, you can use the Out-File cmdlet. In the following
command, the Format-List cmdlet uses the asterisk (*) character as a wildcard and
exports all of the property values for the mailbox to a text file:

Get-Mailbox testuser | fl * | Out-File c:\mb.txt

To add data to the end of an existing file, use the -Append parameter with the Out-File
cmdlet. Even though we're using the Out-File cmdlet here, the traditional cmd output
redirection operators such as > and >> can still be used. The difference is that the cmdlet
gives you a little more control over the output method and provides parameters for tasks
including setting the encoding of the file.

You can sort the output of a command using the Sort-Object cmdlet. For example, this
command will display all mailbox databases in alphabetical order:

Get-MailboxDatabase | sort name | ft name

We are using the sort alias for the Sort-Object cmdlet specifying name as the property
we want to sort. To reverse the sort order, use the descending switch parameter:

Get-MailboxDatabase | sort name -desc | ft name

See also
Understanding the pipeline

Exporting reports to text and CSV files in Chapter 2, Exchange Management Shell
Common Tasks





Chapter 1

2727

Working with arrays and hash tables
Like many other scripting and programming languages, Windows PowerShell allows you to
work with arrays and hash tables. An array is a collection of values that can be stored in a
single object. A hash table is also known as an associative array, and is a dictionary that
stores a set of key-value pairs. You'll need to have a good grasp of arrays so that you can
effectively manage objects in bulk and gain maximum efficiency in the shell. In this recipe,
we'll take a look at how we can use both types of arrays to store and retrieve data.

How to do it...
You can initialize an array that stores a set of items by assigning multiple values to a variable.
All you need to do is separate each value with a comma. The following command would create
an array of server names:

$servers = "EX1","EX2","EX3"

To create an empty hash table, use the following syntax:

$hashtable = @{}

Now that we have an empty hash table, we can add key-value pairs:

$hashtable["server1"] = 1
$hashtable["server2"] = 2
$hashtable["server3"] = 3

Notice in this example that we can assign a value based on a key name, not using an index
number as we saw with a regular array. Alternatively, we can create this same object using a
single command using the following syntax:

$hashtable = @{server1 = 1; server2 = 2; server3 = 3}

You can see here that we used a semicolon (;) to separate each key-value pair. This is only
required if the entire hash table is created in one line.

You can break this up into multiple lines to make it easier to read:

$hashtable = @{
 server1 = 1
 server2 = 2
 server3 = 3
}

PowerShell Key Concepts

2828

How it works...
Let's start off by looking at how arrays work in PowerShell. When working with arrays, you can
access specific items and add or remove elements. In our first example, we assigned a list
of server names to the $servers array. To view all of the items in the array, simply type the
variable name and hit return:

[PS] C:\>$servers

EX1

EX2

EX3

Array indexing allows you to access a specific element of an array using its index number
inside square brackets ([]). PowerShell arrays are zero-based, meaning that the first item in
the array starts at index zero. For example, use the second index to access third element of
the array, as shown next:

[PS] C:\>$servers[2]

EX3

To assign a value to a specific element of the array, use the equals (=) assignment operator.
We can change the value from the last example using following syntax:

[PS] C:\>$servers[2] = "EX4"

[PS] C:\>$servers[2]

EX4

Let's add another server to this array. To append a value, use the plus equals (+=) assignment
operator as shown here:

[PS] C:\>$servers += "EX5"

[PS] C:\>$servers

EX1

EX2

EX4

EX5

To determine how many items are in an array, we can access the Count property to retrieve
the total number of array elements:

[PS] C:\>$servers.Count

4

Chapter 1

2929

We can loop through each element in the array with the ForEach-Object cmdlet and
display the value in a string:

$servers | ForEach-Object {"Server Name: $_"}

We can also check for a value in an array using the -Contains or -NotContains
conditional operators:

[PS] C:\>$servers -contains "EX1"

True

In this example, we are working with a one-dimensional array, which is what you'll commonly
be dealing with in the Exchange Management Shell. PowerShell supports more complex array
types such as jagged and multidimensional arrays, but these are beyond the scope of what
you'll need to know for the examples in this book.

Now that we've figured out how arrays work, let's take a closer look at hash tables. When
viewing the output for a hash table, the items are returned in no particular order. You'll notice
this when viewing the hash table we created earlier:

[PS] C:\>$hashtable

Name Value

---- -----

server2 2

server1 1

server3 3

If you want to sort the hash table, you can call the GetEnumerator method and sort by the
Value property:

[PS] C:\>$hashtable.GetEnumerator() | sort value

Name Value

---- -----

server1 1

server2 2

server3 3

Hash tables can be used when creating custom objects, or to provide a set of parameter
names and values using parameter splatting. Instead of specifying parameter names one by
one with a cmdlet, you can use a hash table with keys that match the parameter's names and
their associated values will automatically be used for input:

$parameters = @{
 Title = "Manager"
 Department = "Sales"

PowerShell Key Concepts

3030

 Office = "Headquarters"
}
Set-User testuser @parameters

This command automatically populates the parameter values for Title, Department,
and Office when running the Set-User cmdlet for the testuser mailbox.

For more details and examples for working with hash tables, run Get-Help
about_Hash_Tables.

There's more…
You can think of a collection as an array created from the output of a command. For example,
the Get-Mailbox cmdlet can be used to create an object that stores a collection of
mailboxes, and we can work with this object just as we would with any other array. You'll notice
that, when working with collections, such as a set of mailboxes, you can access each mailbox
instance as an array element. Consider the following example:

First, we retrieve a list of mailboxes that start with the letter t and assign that to the
$mailboxes variable. From looking at the items in the $mailboxes object, we can see that
the testuser mailbox is the second mailbox in the collection.

Since arrays are zero-based, we can access that item using the first index, as shown next:

If your command only returns one item, then the output can no longer be accessed using
array notation. In the following example, the $mailboxes object contains only one mailbox
and will display an error when trying to access an item using array notation:

Chapter 1

3131

Even though it will only store one item, you can initialize this object as an array, using the
following syntax:

You can see here that we've wrapped the command inside the @()characters to ensure that
PowerShell will always interpret the $mailboxes object as an array. This can be useful when
you're building a script that always needs to work with an object as an array, regardless of the
number of items returned from the command that created the object. Since the $mailboxes
object has been initialized as an array, you can add and remove elements as needed.

We can also add and remove items to multi-valued properties, just as we would with a normal
array. To add an e-mail address to the testuser mailbox, we can use the following commands:

$mailbox = Get-Mailbox testuser
$mailbox.EmailAddresses += "testuser@contoso.com"
Set-Mailbox testuser -EmailAddresses $mailbox.EmailAddresses

In this example, we created an instance of the testuser mailbox by assigning the command to
the $mailbox object. We can then work with the EmailAddresses property to view, add,
and remove e-mail addresses from this mailbox. You can see here that the plus equals (+=)
operator was used to append a value to the EmailAddresses property.

We can also remove that value using the minus equals (-=) operator:

$mailbox.EmailAddresses -= "testuser@contoso.com"
Set-Mailbox testuser -EmailAddresses $mailbox.EmailAddresses

PowerShell Key Concepts

3232

There is actually an easier way to add and remove e-mail addresses on
recipient objects. See Adding and removing recipient e-mail addresses in
Chapter 3 for details.

We've covered the core concepts in this section that you'll need to know when working with
arrays. For more details run Get-Help about_arrays.

See also
Working with variables and objects

Creating custom objects

Looping through items
Loop processing is a concept that you will need to master in order to write scripts and
one-liners with efficiency. You'll need to use loops to iterate over each item in an array or a
collection of items, and then run one or more commands within a script block against each
of those objects. In this recipe, we'll take a look at how you can use foreach loops and the
ForEach-Object cmdlet to process items in a collection.

How to do it...
The foreach statement is a language construct used to iterate through values in a collection
of items. The following example shows the syntax used to loop through a collection of
mailboxes, returning only the name of each mailbox:

foreach($mailbox in Get-Mailbox) {$mailbox.Name}

In addition, you can take advantage of the PowerShell pipeline and perform loop processing
using the ForEach-Object cmdlet. This example produces the same result as the one
shown previously:

Get-Mailbox | ForEach-Object {$_.Name}

You will often see the given command written using an alias of the ForEach-Object cmdlet,
such as the percent sign (%):

Get-Mailbox | %{$_.Name}





Chapter 1

3333

How it works...
The first part of a foreach statement is enclosed in parenthesis and represents a variable
and a collection. In the previous example, the collection is the list of mailboxes returned from
the Get-Mailbox cmdlet. The script block contains the commands that will be run for every
item in the collection of mailboxes. Inside the script block, the $mailbox object is assigned
the value of the current item being processed in the loop. This allows you to access each
mailbox one at a time using the $mailbox variable.

When you need to perform loop processing within a pipeline, you can use the ForEach-
Object cmdlet. The concept is similar, but the syntax is different because objects in the
collection are coming across the pipeline.

The ForEach-Object cmdlet allows you to process each item in a collection using the
$_ automatic variable, which represents the current object in the pipeline. The ForEach-
Object cmdlet is probably one of the most commonly-used cmdlets in PowerShell, and we'll
rely on it heavily in many examples throughout the book.

The code inside the script block used with both looping methods can be more complex than
just a simple expression. The script block can contain a series of commands or an entire
script. Consider the following code:

Get-MailboxDatabase -Status | %{
 $DBName = $_.Name
 $whiteSpace = $_.AvailableNewMailboxSpace.ToMb()
 "The $DBName database has $whiteSpace MB of total white space"
}

In this example, we're looping through each mailbox database in the organization using
the ForEach-Object cmdlet. Inside the script block, we've created multiple variables,
calculated the total megabytes of whitespace in each database, and returned a custom
message that includes the database name and corresponding whitespace value. This is
a simple example, but keep in mind that inside the script block you can run other cmdlets,
work with variables, create custom objects, and more.

PowerShell also supports other language constructs for processing items such as for,
while, and do loops. Although these can be useful in some cases, we won't rely on them
much for the remaining examples in this book. You can read more about them and view
examples using the get-help about_for, get-help about_while, and get-help
about_do commands in the shell.

PowerShell Key Concepts

3434

There's more…
There are some key differences about the foreach statement and the ForEach-Object
cmdlet that you'll want to be aware of when you need to work with loops. First, the ForEach-
Object cmdlet can process one object at a time as it comes across the pipeline. When you
process a collection using the foreach statement, this is the exact opposite. The foreach
statement requires that all of the objects that need to be processed within a loop are
collected and stored in memory before processing begins. We'll want to take advantage
of the PowerShell pipeline and its streaming behaviour whenever possible since it is much
more efficient.

The other thing to make note of is that in PowerShell, foreach is not only a keyword, but also
an alias. This can be a little counterintuitive, especially when you are new to PowerShell and
you run into a code sample that uses the following syntax:

Get-Mailbox | foreach {$_.Name}

At first glance, this might seem like we're using the foreach keyword, but we're actually using
an alias for the ForEach-Object cmdlet. The easiest way to remember this distinction is
that the foreach language construct is always used before a pipeline. If you use foreach
after a pipeline, PowerShell will use the foreach alias which corresponds to the ForEach-
Object cmdlet.

See also
Working with arrays and hash tables

Understanding the pipeline

Creating custom objects

Using flow control statements
Flow control statements are used in the shell to run one or more commands based on the
result of a conditional test. You can use the If statement to test one or more conditional
statements, and you can also use switch statements when multiple If statements would
otherwise be required. This recipe will show you how to control the flow of execution that your
scripts will use in the shell.

How to do it...
Let's store the status of a database called DB1 in a variable that can be used to perform some
conditional checks:

$DB1 = Get-MailboxDatabase DB1 -Status







Chapter 1

3535

When using an If statement, you use the If keyword followed by an expression enclosed
in parenthesis that performs a conditional check. If the expression is evaluated as true, any
commands in the proceeding script block will be executed:

if($DB1.DatabaseSize -gt 5gb) {
 "The Database is larger than 5gb"
}

You can use the ElseIf keyword to add another conditional check:

if($DB1.DatabaseSize -gt 5gb) {
 "The Database is larger than 5gb"
}
elseif($DB1.DatabaseSize -gt 10gb) {
 "The Database is larger than 10gb"
}

You can also add the Else statement to run commands if none of the conditions evaluate
as true:

if($DB1.DatabaseSize -gt 5gb) {
 "The Database is larger than 5gb"
}
elseif($DB1.DatabaseSize -gt 10gb) {
 "The Database is larger than 10gb"
}
else {
 "The Database is not larger than 5gb or 10gb"
}

If you need to check more than a few conditions, you may want to consider using a switch
statement instead of series of If and ElseIf statements:

switch($DB1.DatabaseSize) {
 {$_ -gt 5gb} {"Larger than 5gb"; break}
 {$_ -gt 10gb} {"Larger than 10gb"; break}
 {$_ -gt 15gb} {"Larger than 15gb"; break}
 {$_ -gt 20gb} {"Larger than 20gb"; break}
 Default {"Smaller than 5gb"}
}

PowerShell Key Concepts

3636

How it works...
To control the flow and execution of commands in your scripts, you can use the If, Elseif,
and Else conditional statements. The syntax of an If statement is pretty straightforward.
Let's break it down in simple terms. In the first example, we're simply asking PowerShell if
the database size of DB1 is greater than five gigabytes, and, if it is, to output a string with the
message "The database is larger than 5gb".

In the second example, we extend this logic by simply asking another question: if the database
size of DB1 is greater than 10 Gigabytes, output a string with the message "The database is
larger than 10gb".

Next, we use an Else statement that will only run commands if either the If or ElseIf
statements do not evaluate to true. If that's the case we simply output a string with the
message "The database is not larger than 5gb or 10gb".

One interesting thing to point out here is that the code within parenthesis is like any other
expression we might type into the shell. There's no requirement to first create a variable, as
shown previously. We could just do something like this:

if((Get-MailboxDatabase DB1 -Status).DatabaseSize -gt 5gb) {
 "The database is larger than 5gb"
}

Since we know that the Get-MailboxDatabase cmdlet can return an object with a
DatabaseSize property, we can simply wrap the command in parenthesis and access the
property directly using dot notation. This is a technique that can cut down on the amount of
code you write and greatly speed up your work when you are typing commands interactively
into the shell.

It's possible to use multiple ElseIf statements to run a series of multiple conditional checks,
but the switch statement is much better suited for this task. The switch statement syntax
may be a little harder to understand. After using the switch keyword, you specify the object
that you want to perform multiple conditional checks against. Each line within the body of the
switch can evaluate an expression or check for a precise value. If an expression evaluates to
true or a match is found, any commands in the associated script block will run.

In our previous example, we evaluated a number of expressions to determine if the size of
the database was greater than a specific value. Notice that in each script block we used
the break keyword. This means that we exit the switch statement immediately after an
expression has been evaluated as true and any following checks will be skipped. Finally,
the last item in the switch uses the Default keyword which will only run if the previous
expressions are false.

You can also use a switch statement that will run commands when matching a specific value.
Take a look at the following code:

Chapter 1

3737

$number = 3

switch ($number) {
 1 {"One" ; break}
 2 {"Two" ; break}
 3 {"Three" ; break}
 4 {"Four" ; break}
 5 {"Five" ; break}
 Default {"No matches found"}
}

In this example, the $number variable is set to 3. When the switch statement runs, the word
Three will be returned. If $number had been set to a value that was not defined, such as 42,
the Default script block would run and output the string "No Matches Found".

Switch statements can also be used to perform complex matches with regular expressions,
wildcards, exact matches, case sensitive values, and data read in from external files. For more
details, run Get-Help About_Switch.

There's more...
Let's take a look at a more practical example of how you might use flow control statements in
a real script. Here we'll loop through each mailbox in the organization to configure some of the
mailbox quota settings:

foreach ($mailbox in Get-Mailbox) {
 if($mailbox.office -eq "Sales") {
 Set-Mailbox $mailbox -ProhibitSendReceiveQuota 5gb `
 -UseDatabaseQuotaDefaults $false
 }
 elseif($mailbox.office -eq "Accounting") {
 Set-Mailbox $mailbox -ProhibitSendReceiveQuota 2gb `
 -UseDatabaseQuotaDefaults $false
 }
 else {
 Set-Mailbox $mailbox -UseDatabaseQuotaDefaults $true
 }
}

PowerShell Key Concepts

3838

In this example we are checking to see if the Office setting for each mailbox is set to
"Sales" using the If statement. If so, the ProhibitSendReceiveQuota is set to
five gigabytes. If not, the ElseIf statement will check that the Office setting is set to
"Accounting", and, if it is, the ProhibitSendReceiveQuota is set to two gigabytes. If
the Office setting is not set to either of these values, we can configure the mailbox to use
database quota defaults.

Notice the use of the back tick (`) character used in the previous example
with the Set-Mailbox cmdlet. This can be used as a line continuation
character to break up long commands into multiple lines.

See also
Looping through items

Creating custom objects
The fact that PowerShell is an object-based shell gives us a great deal of flexibility when it
comes to writing one-liners, scripts, and functions. When generating detailed reports, we
need to be able to customize the data output from our code so it can be formatted or piped
to other commands that can export the data in a clean, structured format. We also need to
be able to control and customize the output from our code so that we can merge data from
multiple sources into a single object. In this recipe, you'll learn a few techniques used to build
custom objects.

How to do it...
The first thing we'll do is create a collection of mailbox objects that will be used as the data
source for a new set of custom objects:

$mailboxes = Get-Mailbox

You can add custom properties to any object coming across the pipeline using calculated
properties. This can be done using either the Select-Object or Format-Table cmdlets:

$mailboxes |
 Select-Object Name,
 Database,
 @{name="Title";expression={(Get-User $_.Name).Title}},
 @{name="Dept";expression={(Get-User $_.Name).Department}}



Chapter 1

3939

Another easy way to do this is by assigning a hash table to the -Property parameter of the
New-Object cmdlet:

$mailboxes | %{
 New-Object PSObject -Property @{
 Name = $_.Name
 Database = $_.Database
 Title = (Get-User $_.Name).Title
 Dept = (Get-User $_.Name).Department
 }
}

You can also use the New-Object cmdlet to create an empty custom object, and then use
the Add-Member cmdlet to tack on any custom properties that are required:

$mailboxes | %{
 $obj = New-Object PSObject
 $obj | Add-Member NoteProperty Name $_.Name
 $obj | Add-Member NoteProperty Database $_.Database
 $obj | Add-Member NoteProperty Title (Get-User $_.Name).Title
 $obj | Add-Member NotePropertyDept (Get-User $_.Name).Department
 Write-Output $obj
}

Each of these three code samples will output the same custom objects that combine data
retrieved from both the Get-Mailbox and Get-User cmdlets. Assuming that the Title
and Department fields have been defined for each user, the output would look similar to
the following:

PowerShell Key Concepts

4040

How it works...
The reason we're building a custom object here is because we want to merge data from
multiple sources into a single object. The Get-Mailbox cmdlet does not return the Title
or Department properties that are tied to a user account: the Get-User cmdlet needs to
be used to retrieve that information. Since we may want to generate a report that includes
information from both the Get-Mailbox and Get-User cmdlets for each individual user, it
makes sense to build a custom object that contains all of the required information. We can
then pipe these objects to other cmdlets that can be used to export this information to a file.

We can modify one of our previous code samples and pipe the output to a CSV file used to
document this information for the current user population:

$mailboxes |
 Select-Object Name,
 Database,
 @{n="Title";e={(Get-User $_.Name).Title}},
 @{n="Dept";e={(Get-User $_.Name).Department}} |
 Export-CSV –Path C:\report.csv -NoType

Keep in mind that even though you can also create calculated properties using the
Format-Table cmdlet, you'll want to use Select-Object, as shown previously,
when converting these objects to CSV or HTML reports. These conversion cmdlets do
not understand the formatting information returned by the Format-Table cmdlet,
and you'll end up with a lot of useless data if you try to do this.

When building custom objects with the Select-Object cmdlet, we can select existing
properties from objects coming across the pipeline and also add one or more calculated
properties. This is done using a hash table that defines a custom property name in the hash
table key and a script block within the hash table value. The script block is an expression
where you can run one or more commands to define the custom property value. In our
previous example, you can see that we've called the Get-User cmdlet to retrieve both the
Title and Department properties for a user that will be assigned to calculated properties
on a new object.

The syntax for creating a calculated property looks a little strange at first glance since it uses
name and expression keywords to create a hash table that defines the calculated property.
You can abbreviate these keywords as shown next:

$mailboxes |
 Select-Object Name,
 Database,
 @{n="Title";e={(Get-User $_.Name).Title}},
 @{n="Dept";e={(Get-User $_.Name).Department}}

Chapter 1

4141

The property name uses the string value assigned to n, and the property value is assigned to
e using a script block. Abbreviating these keywords with n and e just makes it easier to type.
You can also use label or l to provide the calculated property name.

Using the New-Object cmdlet and assigning a hash table to the -Property parameter is
a quick and easy way to create a custom object. The only issue with this technique is that the
properties can be returned in a random order. This is due to how the .NET Framework assigns
random numeric values to hash table keys behind the scenes, and the properties are sorted
based on those values, not in the order that you've defined them. The only way to get the
properties back in the order you wants to continue to pipe the command to Select-Object
and select the property names in order, or use one of the other techniques shown in
this recipe.

Creating an empty custom object and manually adding note properties with the Add-Member
cmdlet can require a lot of extra typing, so generally this syntax is not widely used. This
technique becomes useful when you want to add script methods or script properties to a
custom object, but this is an advanced technique that we won't need to utilize for the recipes
in the remainder of this book.

There's more...
There is another useful technique for creating custom objects which utilizes the Select-Object
cmdlet. Take a look at the following code:

$mailboxes | %{
 $obj = "" | Select-Object Name,Database,Title,Dept
 $obj.Name = $_.Name
 $obj.Database = $_.Database
 $obj.Title = (Get-User $_.Name).Title
 $obj.Dept = (Get-User $_.Name).Department
 Write-Output $obj
}

You can create a custom object by piping an empty string variable to the Select-Object
cmdlet, specifying the property names that should be included. The next step is to simply
assign values to the properties of the object using the property names that you've defined.
This code loops through the items in our $mailboxes object and returns a custom object
for each one. The output from this code returns the same exact objects as all of the
previous examples.

PowerShell Key Concepts

4242

Watch out for concurrent pipeline errors
One of the reasons we first stored the collection of mailboxes in the $mailbox variable is due
to the way PowerShell deals with multiple cmdlets executing through a remote session. Ideally,
we would just do the following:

Get-Mailbox | %{
 New-Object PSObject -Property @{
 Name = $_.Name
 Database = $_.Database
 Title = (Get-User $_.Name).Title
 Dept = (Get-User $_.Name).Department
 }
}

Unfortunately, even though this is syntax is completely valid, it will not work consistently in
the Exchange Management Shell. This is because, as the Get-Mailbox cmdlet is sending
objects down the pipeline to ForEach-Object, we're also trying to run the Get-User cmdlet
to build our custom object, and PowerShell remoting does not support more than one pipeline
executing at a time. To get around this, use the technique shown previously to save the results
of the first command to a variable, and then pipe that variable to ForEach-Object. For
more details on this, refer to out the recipe titled Dealing with concurrent pipelines in
remote PowerShell.

See also
Looping through items

Working with variables and objects

Exporting reports to text and CSV files in Chapter 2, Exchange Management Shell
Common Tasks

Dealing with concurrent pipelines in remote PowerShell in Chapter 2, Exchange
Management Shell Common Tasks

Creating PowerShell functions
Functions are used to combine a series of commands into a reusable block of code that can
be called using a single command. Functions can make a configuration change or return one
or more objects that can either be displayed in the console or exported to an external file. You
can assign the output of functions to a variable, or pipe a function to another cmdlet. In this
recipe, you'll learn how to create a PowerShell function.









Chapter 1

4343

How to do it...
To create a function, you need to use the function keyword, followed by the name of the
function, and then the function code enclosed within curly braces {}. For example, this very
basic function displays three properties of a mailbox in list format:

function Get-MailboxList {
 param($name)
 Get-Mailbox $name | fl Name,Alias,ServerName
}

When running the function, you must supply the identity of the mailbox as a parameter.
The mailbox Name, Alias, and ServerName are displayed in a list.

How it works...
PowerShell functions give us the ability to run a sequence of commands that can be called
using a single function name. We can add input parameters to our own functions and also
process pipeline input. This gives us the ability to write our own reusable functions that can
behave just like a cmdlet.

There are a few ways you can add functions into your shell session. First, you can save your
functions inside a .ps1 script. To make them available in the shell, your script just needs to
be "dotted", or dot sourced. You do this by typing a period, a space, and then the path to the
file. There has to be a space between the dot and the file name, otherwise it won't work. See
the recipe Creating and Running Scripts for an example.

Another convenient method for adding functions to your shell session is to use a profile.
PowerShell profiles are actually just a .ps1 script that gets executed when you start the
shell. If you don't have a profile set up, check out the recipe titled Setting up a Profile.

If you're working interactively, you may find it convenient to simply copy and paste the function
code straight into the shell. Keep in mind that, if you do this, the function will only be available
during the current session. If you close the shell and open a new instance, the function will no
longer be available.

There's more…
The best way to provide input to a function is to declare formal parameters. We did this with
the previous example, and the $name parameter was added to the function using the param
keyword. We can add a list of parameters using this syntax by separating each parameter
name with a comma.

PowerShell Key Concepts

4444

We can access informal function parameters inside the body of a function using the automatic
$args variable, which is an array that contains an element for each unbound argument
passed to a function. While this can be useful in some cases, formal parameters provide
much more flexibility. Formal parameters with descriptive names are easier to understand;
they can be initialized with default values and support several attributes such as the position
ID, whether or not they accept pipeline input, and whether they are required or optional.

In other scripting or programming languages, it is sometimes required to use a keyword to
return a value from a function, but we don't have to do this in PowerShell. Let's say we've
called the Get-Mailbox cmdlet inside the body of a function, without capturing the output
in a variable. In this case, the return value for the function will be the data returned by the
cmdlet. You can explicitly return an object using the Write-Output cmdlet and, although it
makes for good readability when viewing the code, it is not required.

PowerShell functions can be written to accept and process pipeline input using three stages
of execution by utilizing Begin, Process, and End blocks, each of which Is described next:

Begin: The begin block runs only once, at the beginning of the function. Any
customization or initialization can happen here.

Process: The process block runs once for each object in the pipeline. Each object
that comes through the pipeline can be accessed using the $_ automatic variable.

End: The end block runs after all of the objects in the pipeline have been processed.

We can create a simple pipeline function using only the Process block. The Begin and End
blocks are optional. For example, the following function will return the name for each mailbox
sent across the pipeline:

function Get-MailboxName {
 process {
 "Mailbox Name: $($_.Name)"
 }
}

We can pipe the Get-Mailbox command to this function and each mailbox name
will be returned:







Chapter 1

4545

Taking it a step further
Let's take a look at a practical example that combines the Get-MailboxStatistics
and Set-Mailbox cmdlets into a function used to automate a task and demonstrate
the capabilities of PowerShell functions. The following function will set the
ProhibitSendReceiveQuota limit for a mailbox, given values for the mailbox name and
desired quota size. The function will only modify a mailbox if the total mailbox size does not
already exceed the value provided for the quota setting:

function Set-SendReceiveQuota {
 param(
 [Parameter(Mandatory=$true,ValueFromPipelineByPropertyName =
 $true)]
 $name,
 [Parameter(Mandatory=$true)]
 $quota
)
 begin {
 $count = 0
 Write-Output "Started: $(Get-Date -format T)"
 }
 process {
 $count += 1
 $mailboxstatistics = Get-MailboxStatistics $name
 $total = $mailboxstatistics.TotalItemSize.Value.ToMB()
 if($total -lt $quota) {
 Set-Mailbox $name -ProhibitSendReceiveQuota $quota `
 -UseDatabaseQuotaDefaults $false
 }
 }
 end {
 Write-Output "Ended: $(Get-Date -format T)"
 Write-Output "Mailboxes Processed: $count"
 }
}

You can see in this example that we've added the [Parameter ()] attribute in order to
define characteristics for each parameter. In this case, both parameters are mandatory and
the $name parameter will accept its value from the pipeline by property name.

Parameters can use a number of arguments and attributes. For a complete
list, run Get-Help about_Functions_Advanced_Parameters.

PowerShell Key Concepts

4646

Like a cmdlet, this function can process pipeline input and it can also be run against one
object at a time. Let's start off by running the function for a single mailbox:

The Begin block runs only once, immediately at the beginning, and the start time is returned
as soon as the function is called. Within the Process block, the code is run once and we
increment the $count variable to keep track of how many objects have been processed. The
End block is run last, reporting the total number of items that have been processed. We can
see from the output in the previous screenshot that the function processed one mailbox and
the operation only took one second to complete.

Now let's run the function for a collection of mailboxes:

The syntax of the command is very different this time. We pipe all of the mailboxes starting
with the letter t to the Set-SendReceiveQuota function. Notice that we've only specified
the -quota parameter. This is because the $name parameter will automatically receive a
value from each mailbox objects Name property as it comes across the pipeline. Looking at the
output again, you can see that the operation took one second to complete, and we modified
three mailboxes in the process.

PowerShell functions are a very broad topic and could easily be the focus of an entire chapter.
We've covered some key points about functions here, but to learn more, run Get-Help
about_functions and Get-Help about_functions_advanced.

See also
Understanding the pipeline

Creating and running scripts

Setting up a profile







Chapter 1

4747

Creating and running scripts
You can accomplish many tasks by executing individual cmdlets or running multiple
commands in a pipeline, but there may be times where you want to create a script that
performs a series of operations or that loads a library of functions and predefined variables
and aliases into the shell. In this recipe, we'll take a look at how you can create and run
scripts in the shell.

How to do it...
1.	 Let's start off by creating a basic script that automates a multi-step process.

We'll start up a text editor, such as Notepad, and enter the following code:
param(
 $name,
 $maxsendsize,
 $maxreceivesize,
 $city,
 $state,
 $title,
 $department
)

Set-Mailbox -Identity $name `
-MaxSendSize $maxsendsize `
-MaxReceiveSize $maxreceivesize

Set-User -Identity $name `
-City $city `
-StateOrProvince $state `
-Title $title `
-Department $department

Add-DistributionGroupMember -Identity DL_Sales `
-Member $name

2.	 Next, we'll save the file on the C:\ drive using the name Update-SalesMailbox.
ps1.

3.	 We can then run this script and provide input using parameters that have been
declared using the param keyword:
C:\Update-SalesMailbox.ps1 -name testuser `
-maxsendsize 25mb `
-maxreceivesize 25mb `
-city Phoenix `

PowerShell Key Concepts

4848

-state AZ `
-title Manager `
-department Sales

4.	 When the script runs, the specified mailbox will be updated with the
settings provided.

How it works...
The concept of a PowerShell script is similar to batch files used with cmd.exe, but, instead
of a .bat extension, PowerShell scripts use a .ps1 extension. To create a script, you can
use a basic text editor such as Notepad or you can use the Windows PowerShell Integrated
Scripting Environment (ISE).

Just like a function, our script accepts a number of parameters. As you can see from the code,
we're using this script to automate a task that modifies several properties of a mailbox and
add it to a distribution group. Since this requires the use of three separate cmdlets, it makes
sense to use a script to automate this task.

If we wanted to run this script against a collection of mailboxes, we could use a foreach
loop, as shown:

foreach($i in Get-Mailbox -OrganizationalUnit contoso.com/sales) {
 c:\Update-SalesMailbox.ps1 -name $i.name `
 -maxsendsize 100mb `
 -maxreceivesize 100mb `
 -city Phoenix `
 -state AZ `
 -title 'Sales Rep' `
 -department Sales
}

Here you can see we're simply looping through each mailbox in the Sales OU and running the
script against each one. You can modify the script to run any number of cmdlets. Also, keep in
mind that, although we're using parameters with our script, they are not required.

Comments can be added to a script using the pound (#)
character.

Think of a script as the body of a function. We can use the same three phases of execution
such as Begin, Process, and End blocks, and add as many parameters as required. You
may find it easier to create all of your code in the form of functions as opposed to scripts,
although one of the nice things about scripts is that they can easily be scheduled to run as a
task using the task scheduler.

Chapter 1

4949

There's more…
Here's something that seems a little strange at first and might take a little getting used to.
When you want to execute a PowerShell script in the current directory, you need to prefix the
command with a dot slash (.\) as shown:

[PS] C:\>.\New-SalesMailbox.ps1

We can use either the forward or backslash characters; it doesn't matter which. This is just
a security mechanism which prevents you from executing a script in an unknown location.
As you might expect, you can still run a script using its full path, just as you would with an
executable or batch file.

Another thing to be aware of is the concept of dot-sourcing a script. This gives us the ability to
execute commands in a script and also load any custom aliases, functions, or variables that
are present within the script into your PowerShell session. To dot-source a script, use the dot
operator: type a period, followed by a space, and then the path to the script as shown next:

[PS] C:\>. .\functions.ps1

This technique can be used to load functions, modules, variables, and aliases from within
other scripts.

Execution policy
Windows PowerShell implements script security to keep unwanted scripts from running in your
environment. You have the option of signing your scripts with a digital signature to ensure
that scripts that are run are from a trusted source. In order to implement this functionality,
PowerShell provides four script execution modes that can be enabled:

1.	 Restricted: Scripts will not run even if they are digitally signed

2.	 AllSigned: All scripts must be digitally signed

3.	 RemoteSigned: You can run local scripts, but scripts downloaded from the internet
will not run

4.	 Unrestricted: All scripts will run whether they are signed or not, or have been
downloaded from an internet site

The default execution policy on a machine is Restricted. When you install Exchange 2010
on a server, or the Exchange Management Tools on a workstation, the execution policy is
automatically set to RemoteSigned. This is required by Exchange in order to implement the
remote shell functionality.

PowerShell Key Concepts

5050

It is possible to manage Exchange 2010 through PowerShell remoting on a workstation or
server without the Exchange Tools installed. In this case, you'll need to make sure your script
execution policy is set to either RemoteSigned or Unrestricted. To set the execution
policy, use the following command:

Set-ExecutionPolicy RemoteSigned

Make sure you do not change the execution policy to AllSigned on machines where you'll
be using the Exchange cmdlets. This will interfere with importing the commands through a
remote PowerShell connection which is required for the Exchange Management Shell cmdlets
to run properly.

You can reference the help system on this topic by running Get-Help about_Execution_
Policies.

See also
Setting up a profile

Setting up a profile
You can use a PowerShell profile to customize your shell environment and to load functions,
modules, aliases, and variables into the environment when you start your Exchange
Management Shell session. In this recipe, we'll take a look at how you can create a profile.

How to do it...
Profiles are not created by default, but you may want to verify one has not already been
created. Start off by running the Test-Path cmdlet:

Test-Path $profile

If the Test-Path cmdlet returns $true, then a profile has already been created for the
current user. You can open an existing profile by invoking notepad.exe from the shell:

notepad $profile

If the Test-Path cmdlet returns $false, you can create a new profile for the current user by
running the following command:

New-Item -type file –path $profile -force



Chapter 1

5151

How it works...
A PowerShell profile is a just a script with a .ps1 extension that is run every time you start the
shell. You can think of a profile as a logon script for your PowerShell or Exchange Management
Shell session. Inside your profile you can add custom aliases, define variables, load modules,
or add your own functions so that they will be available every time you start the shell. In the
previous example, we used the automatic shell $profile variable to create a profile script
for the current user, which in this case would create the profile in the $env:UserProfile\
Documents\WindowsPowerShell\directory.

Since PowerShell is simply executing a .ps1 script to load your profile, your execution policy
must allow the execution of scripts on your machine. If it does not, your profile will not be
loaded when starting the shell and you'll receive an error.

There are four types of profiles that can be used with PowerShell:

1.	$Profile.AllUsersAllHosts: This profile applies to all users and all shells and
is located in $env:Windir\system32\WindowsPowerShell\v1.0\profile.
ps1

2.	$Profile.AllUsersCurrentHost: This profile applies to all users but
only the PowerShell.exe host and is located in $env:Windir\system32\
WindowsPowerShell\v1.0\ Microsoft.PowerShell_profile.ps1

3.	$Profile.CurrentUserAllHosts: This profile applies to the current user and all
shells and is located in $env:UserProfile\Documents\WindowsPowerShell\
profile.ps1

4.	$Profile.CurrentUserCurrentHost: This profile applies to the current user and
only to the PowerShell.exe host and is located in $env:UserProfile\Documents\
WindowsPowerShell\Microsoft.PowerShell_profile.ps1

Using the $profile variable alone to create the profile will default to the
CurrentUserCurrentHost location and is probably the most commonly-used profile
type. If you need to create a profile for all the users on a machine, use one of the AllUsers
profile types.

You may be wondering at this point what the difference is between the "Current Host" and "All
Hosts" profile types. The PowerShell runtime can be hosted within third-party applications,
so the "All Hosts" profile types apply to those instances of PowerShell. The "Current Host"
profile types can be used with PowerShell.exe and when you are running the Exchange
Management Shell.

In addition to defining custom aliases or functions in a profile, you may want to consider
loading any other modules that may be useful. For example, you may want to load the Active
Directory module for PowerShell so that those cmdlets are also available to you whenever you
start the shell.

PowerShell Key Concepts

5252

When you're done making changes to your profile, save and close the file. In order for the
changes to take effect, you can either restart the shell, or you can dot-source the script to
reload the profile:

. $profile

You can create multiple .ps1 scripts that include aliases, functions, and variables and then
dot-source these scripts within your profile to have them loaded every time you start your
PowerShell session.

You can reference the help system on this topic by running Get-Help about_profiles.

There's more…
Trying to remember all of the profile types and their associated script paths can be a little
tough. There's actually a pretty neat trick that you can use with the $profile variable to view
all of the profile types and file paths in the shell. To do this, access the psextended property
of the $profile object:

$profile.psextended | Format-List

This will give you a list of each profile type and the path of the .ps1 script that should be used
to create the profile.

See also
Creating and running scripts

2
Exchange

Management Shell
Common Tasks

In this chapter, we will cover:

Using command discovery through the Exchange Management Console

Manually configuring remote PowerShell connections

Transferring files through remote shell connections

Dealing with concurrent pipelines in remote PowerShell

Managing domains or an entire forest using recipient scope

Using explicit credentials with PowerShell cmdlets

Exporting reports to text and CSV files

Sending SMTP e-mails through PowerShell

Scheduling scripts to run at a later time

Logging shell sessions to a transcript

Automating tasks with the scripting agent

Scripting an exchange server installation

























Exchange Management Shell Common Tasks

54

Introduction
Microsoft introduced some radical architectural changes in Exchange 2007, including a
brand new set of management tools. PowerShell v1, along with an additional set of exchange
specific cmdlets, finally gave administrators an interface that could be used to manage the
entire product from a command line shell. This was an interesting move, as was the fact
that the entire graphical management console was built on top of this technology. Any tasks
performed from the graphical interface, known as the Exchange Management Console,
were translated into PowerShell commands that were carried out in the background. This
meant that for the first time, administrators could completely automate anything that could be
done from the graphical console using this new command line interface called the Exchange
Management Shell. This was a total departure from how the management tools worked in
previous versions of Exchange, but it finally provided the automation capabilities that had
been desired by many people for several years.

This same architecture still exists with this latest version of Exchange, and PowerShell is
even more tightly integrated with the product. Of course, there are many new cmdlets and
core functionality changes. Exchange 2010 uses PowerShell v2, and relies heavily on its new
remoting infrastructure. This provides seamless administrative capabilities from a single seat
with the Exchange Management Tools, whether your servers are on premise or in the cloud.

Even if you've worked with the Exchange Management Shell previously, the syntax used
with some of the existing cmdlets has changed in Exchange 2010, and the new remoting
functionality has introduced some changes that you'll want to be aware of.

In this chapter, we'll cover these topics, as well as common tasks that will allow you to
effectively write scripts with this latest release. We'll also take a look at some general tasks
such as scheduling scripts, sending e-mails, generating reports, and more.

Performing some basic steps
To make use of all the examples in this chapter, we'll need to use the Exchange Management
Shell, the Exchange Management console, and a standard PowerShell v2 console.

You can launch the Exchange Management Shell or the Exchange Management Console by
using the following steps:

1.	 Log onto a workstation or server with the Exchange Management Tools installed

2.	 Open the Exchange Management Shell by clicking on Start | All Programs |
Exchange Server 2010

3.	 Click on the Exchange Management Shell or the Exchange ManagementConsole
shortcut

Chapter 2

55

To launch a standard PowerShell console, use the following steps:

1.	 On Windows Vista, Windows 7, or Windows Server 2008, open a standard PowerShell
console by clicking on Start | All Programs | Accessories, click on the Windows
PowerShell folder, and then click the Windows PowerShell shortcut.

2.	 On Windows XP and Windows Server 2003, click on Start | Programs | Accessories,
click on the Windows PowerShell folder, and then click the Windows
PowerShell shortcut.

Unless specified otherwise in the Getting ready section, all of the recipes
in this chapter will require the use of the Exchange Management Shell.

Using command discovery through the
Exchange Management Console

The Exchange Management Console simply carries out PowerShell commands in the
background as you add, remove, and modify objects. One of the nice features is that most
of these commands are exposed through the console, and you can use it as a tool to learn
PowerShell. In this recipe, we'll look at a few ways in which you can discover which PowerShell
commands are being executed when making changes in the console.

Getting ready
To use the examples in this recipe, you will need to launch the Exchange Management Console.

How to do it...
In the Exchange Management Console, highlight an item in the console tree, click on the View
menu, and select View Exchange Management Console Command Log, as shown in the
following screenshot:

Exchange Management Shell Common Tasks

56

This will bring up the Exchange Management Shell Log window, as shown in the
following screenshot:

In addition to command logging, you can use the PowerShell command button when modifying
the settings of an object. For example, after modifying the Office setting for a mailbox, the
PowerShell command button located at the lower-left hand corner of the properties window
will be enabled:

Chapter 2

57

After clicking the PowerShell command button, you'll be able to view the cmdlet and the
parameters that will be used to carry out the change:

How it works...
PowerShell command logging is enabled by default and will record the last 2,048 commands
generated by Exchange. Each logged command shows the start and end of execution
time, along with the status. You can highlight the log entry to view the command and any
parameters used in the bottom window. You can go to the Action menu and modify several
properties, such as stopping or starting command logging, increasing the number of
commands the system should keep track of, or copying any previously run commands.

Using the PowerShell command button is also a good way to figure out the syntax for the
commands being used to change a setting. Imagine that you needed to know how to write
a script that would enable a custom storage quota at the mailbox level for a group of users.
You could go into the properties of one mailbox and modify the storage quota setting. Before
clicking Apply and OK, you can click the PowerShell command button to figure out the syntax
for the command. You could then write a script based on this information that could be run
against one or more mailboxes.

Exchange Management Shell Common Tasks

58

There's more...
In addition to PowerShell Command Logging and the PowerShell command button, the
Exchange Management Console will also provide the commands used to perform a task. For
example, when creating a mailbox in the console, you are taken through a wizard that allows
you to configure the required settings for the mailbox. At the end of the wizard, you'll see a
screen that will give you the exact command carried out by Exchange to create the mailbox,
like the following:

As you can see, the final screen at the end of the New Mailbox wizard provides the command
used to create the mailbox using the New-Mailbox cmdlet. All of the values entered into
the previous screens have been converted to parameter values. You can click ctrl + c on this
screen to copy the command used to create the mailbox.

See also

Understanding command syntax and parameters in Chapter 1, PowerShell
Key Concepts

Using the help system in Chapter 1, PowerShell Key Concepts

Manually configuring remote PowerShell
connections

One of the major changes in Exchange 2010 is the toolset and its reliance on PowerShell
remoting. When you double-click the Exchange Management Shell shortcut on a server
or workstation with the Exchange Management Tools installed, you are connected to an
Exchange server using a remote PowerShell session.





Chapter 2

59

PowerShell remoting also allows you to remotely manage your Exchange servers from a
workstation or a server even when the Exchange Management Tools are not installed. In this
recipe, we'll create a manual remote shell connection to an Exchange server using a standard
PowerShell console.

Getting ready
To complete the steps in this recipe, you'll need to log on to a workstation or a server and
launch Windows PowerShell.

How to do it...
1.	 First, create a credential object using the Get-Credential cmdlet. When running

this command, you'll be prompted with a Windows authentication dialog box. Enter
a username and password for an account that has administrative access to your
Exchange organization. Make sure you enter your user name in DOMAIN\USERNAME
or UPN format:
$credential = Get-Credential

2.	 Next, create a new session object and store it in a variable. In this example, the
Exchange server we are connecting to is specified using the -ConnectionUri
parameter. Replace the server FQDN in the following example with one of your own
Exchange servers:
$session = New-PSSession -ConfigurationName Microsoft.Exchange `
-ConnectionUri http://mail.contoso.com/PowerShell/ `
-Credential $credential

3.	 Finally, import the session object:
Import-PSSession $session

4.	 After you execute the preceding command, the Exchange Management Shell
cmdlets will be imported into your current PowerShell session, as shown in the
following screenshot:

Exchange Management Shell Common Tasks

60

How it works...
Every Exchange 2010 server role, with the exception of the Edge server role, utilizes
PowerShell remoting. Each server runs IIS and supports remote PowerShell sessions via HTTP.
Exchange Servers host a PowerShell virtual directory in IIS. This contains several modules that
perform authentication checks and determine which cmdlets and parameters are assigned to
the user making the connection. This happens both when running the Exchange Management
Shell with the tools installed, and when creating a manual remote connection.

Remote PowerShell connections to Exchange 2010 servers use a special feature called
implicit remoting that allows us to import remote commands into the local shell session. With
this feature, we can use the Exchange PowerShell snap-in installed on the server in our local
PowerShell session without installing the Exchange tools.

You'll need to allow the execution of scripts in order to create a manual
remote shell connection on a machine that does not have the Exchange
tools installed. For more details, refer to the Creating and running scripts
recipe in Chapter 1, PowerShell Key Concepts.

You may be curious as to why Exchange uses remote PowerShell even when the tools are
installed and when running the shell from the server. There are a couple of reasons for this,
but some of the main factors are permissions. The Exchange 2010 permissions model has
been completely transformed in this latest version and uses a new feature called Role Based
Access Control (RBAC) which defines what administrators can and cannot do. When you
make a remote PowerShell connection to an Exchange 2010 server, the RBAC authorization
module in IIS determines which cmdlets and parameters you have access to. Once this
information is obtained, only the cmdlets and parameters that have been assigned to your
account via an RBAC role are loaded into your PowerShell session using implicit remoting.

The Exchange 2010 Management Tools can only be installed on 64-bit systems and there
are no 32-bit tools available. If you need the ability to manage Exchange from a 32-bit
workstation, you can use a manual remote shell session to load the cmdlets into your local
PowerShell session, as long as you have the Windows Management Framework Core installed.

There's more...
In the previous example, we explicitly set the credentials used to create the remote shell
connection. This is optional and not required if the account you are currently logged on with
has the appropriate Exchange permissions assigned. To create a remote shell session using
your currently logged on credentials, use the following syntax to create the session object:

$session = New-PSSession -ConfigurationName Microsoft.Exchange `
-ConnectionUri http://mail.contoso.com/PowerShell/

Chapter 2

61

Once again, import the session:

Import-PSSession $session

You can see here that the commands are almost identical to the previous example, except this
time we've removed the -Credential parameter and the assigned credential object. After
this is done, you can simply import the session and the commands will be imported into your
current session using implicit remoting.

Although you can manually load the Exchange snap-in within a standard
PowerShell console on a machine with the Exchange tools installed, this is
not supported. You may also have mixed results when doing this, since this
method bypasses remoting and, therefore, the RBAC system which may be
required to give you the appropriate rights.

In addition to implicit remoting, Exchange 2010 servers running PowerShell v2 can also be
managed using fan-out remoting. This is accomplished using the Invoke-Command cmdlet
and it allows you to execute a script block on multiple computers in parallel. For more details,
run Get-Help Invoke-Command and Get-Help about_remoting.

You may also want to check out the Administrator's Guide to Windows PowerShell Remoting.
It is a great resource that covers PowerShell remoting in depth and it can be downloaded from
the following URL:

http://powershell.com/cs/media/p/4908.aspx

See also
Using explicit credentials with PowerShell commands

Transferring files through remote
shell connections

Since the Exchange 2010 Management Shell commands are executed through a remote
PowerShell session, importing and exporting files requires a new special syntax. There are a
handful of shell cmdlets that require this, and in this recipe we'll take a look at the syntax that
needs to be used to transfer files through a remote shell connection.



Exchange Management Shell Common Tasks

62

How to do it...
Let's say that you are creating an Edge subscription to the hub transport servers in the
default Active Directory site. After generating your XML subscription file on the Edge server,
you can import the file using the New-EdgeSubscription cmdlet, using syntax similar to
the following:

[byte[]]$data = Get-Content -Path "C:\Edge.xml" `
-Encoding Byte `
-ReadCount 0

New-EdgeSubscription -FileData $data -Site Default-First-Site

In this example, the file data is first read into a variable called $data. The subscription is then
created using the New-EdgeSubscription cmdlet������ by assigning the $data variable as a
value to the –FileData par�������ameter.

How it works...
When you launch the Exchange 2010 Management Shell, special commands called proxy
functions are imported into your local shell session. These proxy functions represent the
compiled cmdlets that are actually installed on your Exchange server. When you run these
commands, any data required for input through parameters are transferred through a remote
connection from your machine to the server and the command is then executed. Since the
commands are actually running on the server and not on your machine, we cannot use a local
path for files that need to be imported.

In the previous example, you can see that we first stored the file data in a variable. What
we are doing here is reading the file content into the variable using the Get-Content
cmdlet in order to create a byte-encoded object. This variable is then assigned to the
cmdlet's -FileData parameter, which requires a byte-encoded value.

There are a number of Exchange Management Shell cmdlets that include a -FileData
parameter used to provide external files as input:

Import-ExchangeCertificate: Used for importing certificates

Import-JournalRuleCollection: Imports a collection of journal rules

Import-RecipientDataProperty: Used for importing photos into Active Directory

Import-TransportRuleCollection: Allows you to import a collection of
transport rules

New-EdgeSubscription: Imports an Edge subscription file











Chapter 2

63

This is a good example of how remote PowerShell sessions have changed things in Exchange
2010. For example, if you have worked with the shell in Exchange 2007, you may remember
the Import-ExchangeCertificate cmdlet��� . This cmdlet used to accept a local file path
when importing a certificate into a server, but, due to the new remoting functionality, the
commands used to perform this task have changed, even though the cmdlet name is still
the same.

There's more...
We also have to take remote shell connections into consideration when exporting data. For
example, let's say that we need to export the user photo associated with a mailbox from Active
Directory. The command would look something like this:

Export-RecipientDataProperty -Identity dsmith -Picture | %{
 $_.FileData | Add-Content C:\pics\dsmith.jpg -Encoding Byte
}

When using the Export-RecipientDataProperty cmdlet with the -Picture switch
parameter, the photo can be retrieved from the FileData property of the object returned.
The photo data is stored in this property as a byte array. In order to export the data, we need
to loop through each element stored in this property and use the Add-Content cmdlet to re-
construct the image to an external file.

When dealing with cmdlets that import or export data, make sure you utilize the help system.
Remember, you can run Get-Help <cmdlet name> -Examples with any of these cmdlets
to determine the correct syntax.

See also

Using the Help System in Chapter 1, PowerShell Key Concepts

Manually Configuring Remote PowerShell Connections

Dealing with concurrent pipelines in
remote PowerShell

One of the issues you are bound to run into, sooner or later, is a concurrent pipeline error
when working in a remote PowerShell session. This is a common stumbling block for most
administrators, since all Exchange Management Shell tasks are done through PowerShell
remoting. Concurrent pipeline errors can often be counter-intuitive because the same
command syntax works fine in a standard PowerShell session. In this recipe, we'll take
a look at why this happens and what you can do to get around it.





Exchange Management Shell Common Tasks

64

How to do it...
PowerShell remoting does not support more than one pipeline running at a time. When
executing multiple cmldets within a pipeline, you may need to store the output of one or more
commands in an object that can be then be passed down the pipeline to other commands.
For example, to pipe a collection of mailboxes to the New-InboxRule command, use the
following syntax to avoid a concurrent pipeline operation:

$mailboxes = Get-Mailbox -Database DB1
$mailboxes | %{
 New-InboxRule -Name Attach `
 -Mailbox $_ `
 -HasAttachment $true `
 -MarkImportance High
}

How it works...
In this example, we first create a collection of all the mailboxes in the DB1 database by
storing them in the $mailboxes variable. We then loop through each mailbox object by
piping $mailboxes to the ForEach-Object cmdlet (using the % alias), and, for each item
in the collection, we create an inbox rule that marks any message with an attachment as of
high importance.

Some Exchange Management Shell cmdlets are designed specifically to accept input from
other cmdlets. One good example of this is how the Get-Mailbox and Set-Mailbox
cmdlets work together. You can simply pipe the Get-Mailbox cmdlet directly to the
Set-Mailbox cmdlet, and the parameter binding is automatic. As you can see from the
example, when dealing with cmdlets that are not designed to work together such as the
Get-Mailbox and New-InboxRule cmdlets, you need to use the ForEach-Object
cmdlet or a foreach loop statement so you can explicitly identify the object that needs
to be modified.

In a typical PowerShell session, you can pipe one command to another in this way without any
problems, but this is not the case when working in a remote PowerShell session. PowerShell
remoting does not support multiple pipelines executing at the same time.

Had we tried to pipe the results from Get-Mailbox directly to ForEach-Object, we would
have gotten the following error:

Chapter 2

65

There's more...
In the first example, we used the ForEach-Object cmdlet to process each mailbox in the
$mailboxes collection to avoid executing concurrent pipelines. You can also use a foreach
statement to accomplish the same thing. This code is an alternative to the previous example
but will achieve the same end result:

foreach($i in Get-Mailbox –Database DB1) {
 New-InboxRule -Name Attach `
 -Mailbox $i `
 -HasAttachment $true `
 -MarkImportance High
}

Notice that we're still working with the same set of mailboxes, but since we are using the
foreach construct, we identify the mailbox object that the New-InboxRule cmdlet needs
to work with, using the $i variable as opposed to the $_ pipeline variable used with the
ForEach-Object cmdlet.

See also

Understanding the pipeline in Chapter 1, PowerShell Key Concepts

Looping through items in Chapter 1, PowerShell Key Concepts

Adding, modifying, and removing sever-side inbox rules in Chapter 3,
Managing Recipients

Managing domains or an entire forest
using recipient scope

The Exchange Management Tools can be configured to use specific portions of your Active
Directory hierarchy using a specific recipient scope. When you set the recipient scope to a
location in the Active Directory, such as a domain or a an organizational unit, the Exchange
Management Shell will only allow you to view the recipients that are stored in that location
and any containers beneath it. In this recipe, we'll look at how to set the recipient scope when
working with the Exchange Management Shell.

How to do it...
1.	 We can set the recipient scope in the Exchange Management Shell using the

Set-AdServerSettings cmdlet. For example, to set the recipient scope to the
Sales OU ������� in the contoso.com domain, use the following command:
Set-AdServerSettings -RecipientViewRoot contoso.com/sales







Exchange Management Shell Common Tasks

66

2.	 We can also specify the value using the distinguished name of the OU:

Set-AdServerSettings -RecipientViewRoot `
"OU=sales,DC=contoso,DC=com"

How it works...
In Exchange 2007, recipient scope was set using the AdminSessionADSettings global
session variable. With Exchange 2010, we use the Set-AdServerSettings cmdlet.
When you first start the Exchange Management Shell, the default recipient scope is set to
the domain of the computer that is running the shell. If you change the recipient scope, the
setting will not be retained when you restart the shell. The default domain scope will always
be used when you launch the shell. You can override this by adding these commands to your
PowerShell profile to ensure that the setting is always initially configured as needed.

In the previous example, we set the recipient scope to a specific OU in the domain. If you are
working in a multi-domain forest, you can use the -ViewEntireForest parameter so that
all recipient objects in the forest can be managed from your shell session. Use the following
command to view the entire forest:

Set-AdServerSettings -ViewEntireForest $true

To change the recipient scope to a specific domain, set the -RecipientViewRoot to the full
qualified domain name of the Active Directory domain:

Set-AdServerSettings -RecipientViewRoot corp.contoso.com

There's more...
If you're working in a large environment with multiple domains and OUs, setting the recipient
scope can improve the speed of the Exchange Management Shell, since it will limit the total
number of recipients returned by your commands.

If you have Exchange recipients in multiple Active Directory domains or sites, you may have
to take replication latency into account when working with a broad recipient scope. To handle
this, you can use the Set-AdServerSettings cmdlet to specify domain controllers and
global catalog servers that you want to work with.

To set the preferred domain controllers and global catalog that should be
used with your recipient scope, use the -SetPreferredDomainControllers
and –PreferredGlobalCatalog paramters to specify the FQDN of the servers:

Set-AdServerSettings -ViewEntireForest $true `
-SetPreferredDomainControllers dc1.contoso.com `
-PreferredGlobalCatalog dc1.contoso.com

Chapter 2

67

Setting the preferred domain controller can be useful to ensure your commands will read
the latest list of recipients in Active Directory. If you have a provisioning process that uses a
specific domain controller when creating recipients, it may take some time to replicate this
information throughout the forest. Setting the preferred domain controllers can be used to
ensure that you are working with the latest set of recipients available, even if they haven't
been replicated throughout the forest.

Using explicit credentials with PowerShell
cmdlets

There are several PowerShell and Exchange Management Shell cmdlets that provide a
credential parameter that allows you to use an alternate set of credentials when running a
command. You may need to use alternate credentials when making manual remote shell
connections, sending e-mail messages, working in cross-forest scenarios, and more. In this
recipe, we'll take a look at how you can create a credential object that can be used with
commands that support the -Credential parameter.

How to do it...
To create a credential object, we can use the Get-Credential cmdlet. In this example,
we store the credential object in a variable that can be used by the Get-Mailbox cmdlet:

$credential = Get-Credential
Get-Mailbox -Credential $credential

How it works...
When you run the Get-Credential cmdlet, you are presented with a Windows
authentication dialog box requesting your username and password. In the previous example,
we assigned the Get-Credential cmdlet to the $credential variable. After typing your
username and password into the authentication dialog box, the credentials are saved as an
object that can then be assigned to the -Credential parameter of a cmdlet. The cmdlet
that utilizes the credential object will then run using the credentials of the specified user.

Supplying credentials to a command doesn't have to be an interactive process.
You can programmatically create a credential object within your script without using
the Get-Credential cmdlet:

$user = "contoso\administrator"
$pass = ConvertTo-SecureString -AsPlainText P@ssw0rd01 -Force
$credential = New-Object System.Management.Automation.PSCredential `
-ArgumentList $user,$pass

Exchange Management Shell Common Tasks

68

You can see here that we've created a credential object from scratch without using the
Get-Credential cmdlet. In order to create a credential object, we need to supply the
password as a secure string type. The ConvertTo-SecureString cmdlet can be used to
create a secure string object. We then use the New-Object cmdlet to create a credential
object specifying the desired user name and password as arguments.

If you need to prompt a user for their credentials but you do not want to invoke the Windows
authentication dialog box, you can use this alternative syntax to prompt the user in the shell
for their credentials:

$user = Read-Host "Please enter your username"
$pass = Read-Host "Please enter your password" -AsSecureString
$credential = New-Object System.Management.Automation.PSCredential `
-ArgumentList $user,$pass

This syntax uses the Read-Host cmdlet to prompt the user for both their username
and password. Notice that when creating the $pass object we use Read-Host with
the -AsSecureString parameter to ensure that the object is stored as a secure string.

There's more...
After you've created a credential object, you may need to access the properties of that
object to retrieve the username and password. We can access the username and password
properties of the $credential object created previously using the following commands:

You can see here that we can simply grab the username stored in the object by accessing the
UserNameproperty of the credential object. Since the Password property is stored as a
secure string, we need to use the GetNetworkCredential method to convert the credential
to a NetworkCredential object that exposes the Password property as a simple string.

Exporting reports to text and CSV files
One of the added benefits of the Exchange Management Shell is the ability to run very
detailed and customizable reports. With the hundreds of Get-* cmdlets provided between
Windows PowerShell and the Exchange Management Shell, the reporting capabilities are
almost endless. In this recipe, we'll cover exporting command output to plain text and CSV
files that can be used to report on various resources throughout your Exchange environment.

Chapter 2

69

How to do it...
To export command output to a text file, use the Out-File cmdlet. To generate a report
of mailboxes in a specific mailbox database that can be stored in a text file, use the
following command:

Get-Mailbox | Select-Object Name,Alias | Out-File c:\report.txt

You can also save the output of the previous command as a CSV file that can then be opened
and formatted in Microsoft Excel:

Get-Mailbox | Select-Object Name,Alias |
 Export-CSV c:\report.csv –NoType

How it works...
The Out-File cmdlet is simply a redirection command that will export the output of your
command to a plain text file. Perhaps one of the most useful features of this cmdlet is the
ability to add data to the end of an existing file using the -Append parameter. This allows you
to continuously update a text file when processing multiple objects or creating persistent log
files or reports.

You can also use the Add-Content, Set-Content, and
Clear-Content cmdlets to add, replace, or remove data
from files.

The Export-CSV cmdlet converts the object's output, by your command, into a collection
of comma-separated values and stores them in a CSV file. When we ran the Get-Mailbox
cmdlet in the previous example, we filtered the output, selecting only the Name and Alias
properties. When exporting this output using Export-CSV, these property names are used
for the column headers. Each object returned by the command will be represented in the
CSV file as an individual row, therefore populating the Name and Alias columns with the
associated data.

You may have noticed in the Export-CSV example that we used the -NoType switch
parameter. This is commonly-used and is shorthand notation for the full parameter
name -NoTypeInformation. If you do not specify this switch parameter, the first line
of the CSV file will contain a header specifying the .NET Framework type of the object that
was exported. This is rarely useful. If you end up with a strange-looking header in one of
your reports, remember to run the command again using the -NoTypeInformation
switch parameter.

Exchange Management Shell Common Tasks

70

There's more...
One of the most common problems that Exchange administrators run into with Export-CSV
is when exporting objects with multi-valued properties. Let's say we need to run a report that
lists each mailbox and its associated e-mail addresses. The command would look something
like the following:

Get-Mailbox |
 Select-Object Name,EmailAddresses |
 Export-CSV c:\report.csv -NoType

The problem here is that each mailbox can contain multiple e-mail addresses. When we select
the EmailAddresses property, a multi-valued object is returned. The Export-CSV cmdlet
does not understand how to handle this, and when you open the CSV file in Excel, you'll end
up with a report that looks like the following:

From looking at the this screenshot, you can see that on the first line, we have our header
names that match the properties selected during the export. In the first column, the Name
property for each mailbox has been recorded correctly, but, as you can see, the values listed
in the EmailAddresses column have a problem. Instead of the e-mail addresses, we get the
.NET Framework type name of the multi-valued property. To get around this, we need to help
the Export-CSV cmdlet understand what we are trying to do and specifically reference the
data that needs to be exported.

Chapter 2

71

One of the best ways to handle this is to use a calculated property and join each value of the
multi-valued property as a single string:

Get-Mailbox |
 Select-Object Name,@{n="Email";e={$_.EmailAddresses -Join ";"}} |
 Export-CSV c:\report.csv -NoType

In this example, we've modified the previous command by creating a calculated property that
will contain each e-mail address for the associated mailbox. Since we need to consolidate the
EmailAddresses property data into a single item that can be exported,
we use the -Join operator to create a string containing a list, separated by semi-colons,
of every e-mail address associated with each mailbox. The command is then piped to the
Export-CSV cmdlet, and the report is generated in a readable format that can be viewed
in Excel:

As you can see in this screenshot, each e-mail address for a mailbox is now listed in the
Email column and is separated using a semi-colon. Each address has an SMTP prefix
associated with it. An SMTP prefix in all capital letters indicates that the address is the
primary SMTP address for the mailbox. Any remaining secondary addresses use an SMTP
prefix in lower case characters. If you do not want to export the pref﻿﻿﻿﻿ixes we can modify our
code even further:

Get-Mailbox |
 select-Object Name,
 @{n="Email";
 e={($_.EmailAddresses | %{$_.SmtpAddress}) -Join ";"}
 } | Export-CSV c:\report.csv -NoType

Exchange Management Shell Common Tasks

72

Here you can see that, within the expression of the calculated property, we're looping through
the EmailAddresses collection and retrieving only the SmtpAddress, which does not
include the SMTP prefix and returns only the e-mail addresses. Once the data is exported
to a CSV file we can review it in Excel:

As you can see here, we now get each e-mail address associated with each mailbox without
the SMTP prefix within the Email column of our CSV file.

See also

Formatting output in Chapter 1, PowerShell Key Concepts

Creating custom objects in Chapter 1, PowerShell Key Concepts

Sending SMTP e-mails through PowerShell
As an Exchange administrator, will probably need an automated solution for sending e-mails
from your PowerShell scripts. Whether it's for sending notifications to users in a specific
database or e-mailing the output of your scripts to a reporting mailbox, the transmission of
messages like these will prove very useful in performing common day-to-day administrative
scripting tasks. In this recipe, we'll take a look at how you can send SMTP e-mail messages
from PowerShell to the recipients in your Exchange organization.

How to do it...
PowerShell v2 includes a core cmdlet that can be used to send e-mail messages via SMTP to
one or more recipients. Use the following syntax to send an e-mail message:

Send-MailMessage -To user1@contoso.com `
-From administ������������������� r������������������ ator@contoso.com `





Chapter 2

73

-Subject "Test E-mail" `
-Body "This is just a test" `
-SmtpServer ex01.contoso.com

How it works...
In PowerShell v1, the Send-MailMessage cmdlet didn't exist. In the early days before
Exchange 2007 SP2 and PowerShell v2 support, we had to use the classes in the System.
Net.Mail namespace in the .NET Framework to send SMTP e-mail messages. This was
difficult for some administrators because working with .NET classes can be confusing without
prior programming experience. The good news is that the Send-MailMessage cmdlet utilizes
these same .NET classes that allow you to create rich e-mail messages that can contain one
or more attachments, using an HTML formatted message body, support message priority,
and more. Here are some of the more useful parameters that can be used with the Send-
MailMessage cmdlet:

Attachments: This specifies the path to the file that should be attached. It
separates multiple attachments with a comma.

Bcc: This allows you to specify a blind-copy recipient. It separates multiple recipients
using a comma.

Body: This specifies the content of a message.

BodyAsHtml: This is a switch parameter that ensures the message will use an
HTML-formatted message body.

Cc: This allows you to specify a carbon-copy recipient. It separates multiple recipients
using a comma.

Credential: You can provide a PSCredential object created by the Get-
Credential cmdlet to send the message using the credentials of another user.

DeliveryNotificationOption: This specifies the delivery notification options
for the message. The default value is None, but other valid options are OnSuccess,
OnFailure, Delay, and Never.

From: This is the e-mail address of the sender. You can define a display name using
the following format: Dave <dave@contoso.com>.

Priority: This specifies the importance of the message. The default value is
Normal. The remaining valid values are High and Low.

SmtpServer: This needs to be the name or IP address of your SMTP server.
When working in an Exchange environment, this will be set to one of your Hub
Transport servers.

Subject: This is the subject of the e-mail message.

To: This allows you to specify an e-mail recipient. It separates multiple recipients with
a comma.

























Exchange Management Shell Common Tasks

74

There's more...
When using this cmdlet, you'll need to specify an SMTP server in order to submit the message.
Unless you are already using some type of mail relay system within your environment, you'll
want to use a Hub Transport server in your Exchange organization. Out of the box, Exchange
servers will not allow workstations or untrusted servers to relay e-mail messages. Depending
on where you are sending the message from, you may need to allow the machine running your
scripts to relay e-mail.

PowerShell v2 includes a preference variable called $PSEmailServer that can be assigned
the name or IP address of an SMTP server. When this variable is defined, you can omit the
-SmtpServer parameter when using the Send-MailMessage cmdlet. You can add this
variable assignment to your PowerShell profile so that the setting will persist across all of
your shell sessions.

Sending messages with attachments
You may want to write a script that generates a report to a text or CSV file and then e-mail
that data to an administrator mailbox. The –Attachment parameter can be used with the
Send-MailMessage cmdlet to do this. For example, let's say you've generated a CSV report
file for the top 10 largest mailboxes in your environment and it needs to be e-mailed to your
staff. The following command syntax could be used in this scenario:

Send-MailMessage -To support@contoso.com `
-From powershell@contoso.com `
-Subject "Mailbox Report for $((Get-Date).ToShortDateString())" `
-Body "Please review the attached mailbox report." `
-Attachments c:\report.csv `
-SmtpServer ex01.contoso.com

Notice that all we need to do here is provide the path and file name to the -Attachment
parameter. You can send multiple message attachments this way by providing a
comma-separated list of files.

Sending command output in the body of a message
Instead of exporting command data to an external file and sending it as an attachment,
you may want to add this information to the body of an e-mail. In this example, we'll send
a message that displays the top 10 largest mailboxes in the organization in the body of an
HTML-formatted message:

[string]$report = Get-MailboxDatabase |
 Get-MailboxStatistics| ?{!$_.DisconnectDate} |
 Sort-Object TotalItemSize -Desc |
 Select-Object DisplayName,Database,TotalItemSize -First 10 |
 ConvertTo-Html

Chapter 2

75

Send-MailMessage -To support@contoso.com `
-From powershell@contoso.com `
-Subject "Mailbox Report for $((Get-Date).ToShortDateString())" `
-Body $report `
-BodyAsHtml `
-SmtpServer ex01.contoso.com

Here you can see that the report data is generated with a fairly sophisticated one-liner and the
output is saved in a string variable called $report. We need to strongly type the $report
variable as string because that is the data type required by the -Body parameter of the
Send-MailMessage cmdlet. Notice that we're using the ConvertTo-Html cmdlet at the
end of the one-liner to convert the objects to an HTML document. Since the $report
variable will simply contain raw HTML, we can assign this value to the –Body parameter
and use the -BodyAsHtml switch parameter to send the report data in the body of an
HTML-formatted message.

See also

Allowing application servers to relay mail in Chapter 8, Managing Transport Servers

Sending e-mail messages with EWS in Chapter 13, Scripting with the Exchange Web
Services Managed API

Setting up a profile in Chapter 1, PowerShell Key Concepts

Reporting on mailbox size in Chapter 4, Managing Mailboxes

Scheduling scripts to run at a later time
One of the most common tasks that Exchange administrators perform is scheduling scripts
to run at a later time. This can be useful when performing maintenance after hours or
running monitoring scripts on a regular basis. In this recipe, you'll learn how to schedule your
PowerShell scripts to run with the Windows Task Scheduler.

How to do it...
To create a scheduled task that runs from one of your Exchange servers use the
following steps:

1.	 Open the Windows Task Scheduler by clicking on Start | All Programs | Accessories,
click on the System Tools folder, and then click the Task Scheduler shortcut.

2.	 From the Action menu, click Create Basic Task.

3.	 Give your task a name and description, and click Next.









Exchange Management Shell Common Tasks

76

4.	 On the Trigger screen, select the how often you'd like the script to run (Daily, Weekly,
Monthly, and so on).

5.	 When asked what action you want the task to perform, select Start a Program.

6.	 Use the following syntax in the Program/Script field and click on Next:
C:\Windows\System32\WindowsPowerShell\v1.0\powershell.exe -
command ". 'C:\Program Files\Microsoft\Exchange Server\V14\bin\
RemoteExchange.ps1'; Connect-ExchangeServer -auto; c:\Scripts\
MoveMailboxes.ps1".

7.	 You will receive a prompt that says It appears as though arguments have been
included in the program text box. Do you want to run the following program?
Click Yes.

8.	 This will bring you to a summary screen where you can click Finish.

How it works...
The syntax used in this example may look a little strange at first. What we are actually doing
here is scheduling PowerShell.exe and using the -Command parameter to execute multiple
statements. This allows us to pass the contents of a PowerShell script to PowerShell.exe.
In this case, our script has multiple lines and each statement is separated by a semi-colon.

The first thing we do is dot-source the RemoteExchange.ps1 script located in the Exchange
Server Bin directory. This file initializes some Exchange shell variables and imports several
Exchange specific functions.

The next line of the script calls the Connect-ExchangeServer function using the -Auto
parameter, allowing the Exchange Management Shell environment to load automatically from
the best Exchange Server in the local AD site.

Finally, we provide the path to our .ps1 script that utilizes any required Exchange
Management Shell cmdlets and the script is executed, carrying out whatever it is that we need
to be done.

It's worth mentioning here that you do not have to use a .ps1 script file with this syntax. You
can replace the call to the MoveMailboxes.ps1 file with any valid PowerShell commands. If
you have a script that contains multiple lines, you can continue to separate each line using a
semi-colon.

When using this method, make sure that you configure the scheduled task to run as a user
that has administrative access to your Exchange organization. Also, if you have User Account
Control (UAC) enabled, you may need to enable the option to Run with highest privileges in
the properties of the scheduled task. Additionally, you will probably want to enable the option
to Run whether user is logged on or not in the properties of the scheduled task.

Chapter 2

77

There's more...
The previous example demonstrated scheduling a task from an Exchange server using the
installed Exchange Management Shell tools. Since all of the Exchange Management Shell
connections utilize PowerShell remoting, it is possible to schedule a script to run from a
workstation or server without the Exchange tools installed. The only requirement is that the
machine must be running PowerShell v2.

To schedule a task from a machine without the Exchange tools installed, use the steps from
the previous example, but use the following syntax for the program action:

C:\Windows\System32\WindowsPowerShell\v1.0\powershell.exe -command "$s
= New-PSSession -ConfigurationNameMicrosoft.Exchange -ConnectionUri
http://ex01.contoso.com/PowerShell/; Import-PSSession $s ; c:\Scripts\
MoveMailboxes.ps1"

You can see here again we are scheduling the PowerShell.exe program and specifying
the script using the -Command parameter. The difference is that this time we are not using
the locally installed Exchange tools. Instead we are creating a manual implicit remoting
connection to a particular Exchange server. The length of the command line wrapping makes
it difficult to read, but keep in mind that this is all done on one line.

When using this method, you can configure the scheduled task to run as a user that has
administrative access to your Exchange organization, or you can provide explicit credentials
used to create the session object and run the script as another user.

See also
Manually configuring remote PowerShell connections

Using explicit credentials with PowerShell cmdlets

Creating and running scripts in Chapter 1, PowerShell Key Concepts

Logging shell sessions to a transcript
You may find it useful at times to record the output of your shell sessions in a log file. This can
help you save the history of all the commands you've executed and determine the success or
failure of automated scripts. In this recipe, you'll learn how to create a PowerShell transcript.

How to do it...
1.	 To create a transcript, execute the Start-Transcript cmdlet:

Start-Transcript -Path c:\logfile.txt







Exchange Management Shell Common Tasks

78

2.	 You can stop recording the session using the Stop-Transcript cmdlet:

Stop-Transcript

How it works...
When starting a PowerShell transcript, you can specify a path and a file name that will be
used to record your commands and their output. The use of the -Path parameter is optional;
if you do not provide a file path, the cmdlet will create a transcript file with a random name in
the default documents folder in your profile path, as shown in the following screenshot:

When you are done, you can run the Stop-Transcript cmdlet or simply exit the shell.
You can use the -Append parameter with the Start-Transcript cmdlet to add a new
transcript to an existing log file. When doing so, you'll need to specify the name of the file
you want to append to using the -Path parameter.

You can record your entire session every time you start the Exchange Management Shell by
adding the Start-Transcript cmdlet to your user profile. If you choose to do this, make
sure you specify the same log file to use every time the shell starts and use the -Append
parameter so that each session is added to the log file every time.

There's more...
By default, only the output from PowerShell cmdlets will be recorded in your transcript. If you
execute an external program, such as the Exchange eseutil.exe utility, the output from this
command will not be saved in your transcript file, even though it was run within the current
shell session. You can pipe external programs to the Out-Default cmdlet and this will force
the output to be stored in your transcript.

See also

Setting up a Profile in Chapter 1, PowerShell Key Concepts

Chapter 2

79

Automating tasks with the scripting agent
Exchange 2010 introduced the concept of cmdlet extension agents to extend the functionality
of the Exchange Management Tools. The scripting extension agent can be used to trigger
custom commands as changes are being made by administrators from the management
console or the shell. In this recipe, we'll take a look at how to use the scripting agent to
automate a task in the Exchange Management Shell.

Getting ready
To complete the steps in the recipe, you'll need to create an XML file. You can simply use
Notepad or any XML editor of your choice.

How to do it...
1.	 Let's say that you need to enable single item recovery for every mailbox that gets

created in your organization. By default, single item recovery is disabled when you
create a mailbox. To automatically enable single item recovery for each mailbox as it
is created, add the following code to a new file:
<?xml version="1.0" encoding="utf-8" ?>
<Configuration version="1.0">
 <Feature Name="MailboxProvisioning" Cmdlets="New-Mailbox">
 <ApiCall Name="OnComplete">
 if($succeeded) {
 $mailbox =
 $provisioningHandler.UserSpecifiedParameters["Name"]
 Set-Mailbox $mailbox -SingleItemRecoveryEnabled $true
 }
 </ApiCall>
 </Feature>
</Configuration>

2.	 Next, save the file as ScriptingAgentConfig.xml on the Exchange server in the
<install path>\V14\Bin\CmdletExtensionAgents directory.

3.	 Finally, you need to enable the scripting agent using the following command:

Enable-CmdletExtensionAgent "Scripting Agent"

If you have multiple Exchange servers in your environment, copy the
ScriptingAgentConfig.xml file to each server into the CmdletExtentionAgents
directory as described previously.

Exchange Management Shell Common Tasks

80

How it works...
When the scripting agent is enabled, it is called every time a cmdlet is run in your Exchange
environment. This includes cmdlets run from within the shell or any of the graphical
management tools.

You can see from the code that, in this example, we're using the OnComplete API, which
runs immediately after the cmdlet has been completed. Using the Feature tag, we've
specified that this block of code should only be executed upon completion of the
New-Mailbox cmdlet.

After the New-Mailbox cmdlet has completed, we check the built-in $succedded variable
to ensure the command was successful. If so, we retrieve the value that was used with the
-Name parameter and store the result in the $mailbox variable. This value is then used to
specify the identity when running the Set-Mailbox cmdlet to enable single item recovery.

There's more...
You can add multiple scripts to the XML file if needed by defining multiple Feature tags
under the configuration tag. Each block of code within the Feature tag should have an
ApiCall tag as shown in the previous example.

The state of the scripting agent is an organization-wide setting. If you enable the scripting
agent, it is important that the ScriptingAgentConfig.xml is copied to every Exchange
server in your organization.

Using multiple cmdlets with the OnComplete API
Let's take a look at another example. Imagine that, in addition to enabling single-item
recovery for all newly-created mailboxes, we also want to disable the ActiveSync protocol
for each mailbox. This means that, in addition to calling the Set-Mailbox cmdlet to
enable single item recovery, we'll also need to call the Set-CASMailbox cmdlet to
disable ActiveSync. Also, mailboxes can be created using both the New-Mailbox
and Enable-Mailbox cmdlets. Since we'd like our custom settings to be applied
regardless of how the mailbox is created, we can use the following code in our XML file:

<?xml version="1.0" encoding="utf-8" ?>
<Configuration version="1.0">
 <Feature Name="Mailboxes" Cmdlets="new-mailbox,enable-mailbox">
 <ApiCall Name="OnComplete">
 if($succeeded) {
 $id = $provisioningHandler.UserSpecifiedParameters["Alias"]
 Set-Mailbox $id -SingleItemRecoveryEnabled $true
 Set-CASMailbox $id -ActiveSyncEnabled $false
 }
 </ApiCall>

Chapter 2

81

 </Feature>
</Configuration>

This code is similar to our previous example, except in this version we've specified that our
custom code will be called when both the New-Mailbox and Enable-Mailbox cmdlets are
used. The code in the ApiCall tag captures the Alias of the mailbox and then uses the
Set-Mailbox and Set-CASMailbox to modify the settings as required.

There are multiple scripting agent APIs that can be used to extend the Exchange Management
Shell functionality even further. For examples on how to use these APIs, reference the
ScriptingAgentConfig.xml.sample file in the <install path>\V14\Bin\
CmdletExtensionAgents folder.

See also

Adding, modifying, and removing mailboxes in Chapter 3, Managing Recipients

Managing ActiveSync, OWA, POP3, and IMAP4 mailbox settings in Chapter 7,
Managing Client Access

Scripting an Exchange server Installation
If you are performing mass deployment of Exchange servers in a large environment,
automating the installation process can minimize administrator error and speed up the
overall process. The setup.com utility can be used to perform an unattended installation
of Exchange, and, when combined with PowerShell and just a little bit of scripting logic,
create a fairly sophisticated installation script. This recipe will provide a couple of examples
that can be used to script the installation of an Exchange server.

Getting ready
You can use a standard PowerShell console from the server to run the scripts in this recipe.

How to do it...
1.	 In this example, we'll create an automated installation script that installs Exchange

based on the host name of the server. Using Notepad or your favourite scripting
editor, add the following code to a new file:
if(Test-Path $Path) {
 switch -wildcard ($env:computername) {
 "*-HCM-*" {$role = "HT,CA,MB" ; break}
 "*-MB-*" {$role = "MB" ; break}
 "*-CA-*" {$role = "CA" ; break}
 "*-HT-*" {$role = "HT" ; break}





Exchange Management Shell Common Tasks

82

 "*-ET-*" {$role = "ET" ; break}
 "*-UM-*" {$role = "UM" ; break}
 }
 $setup = Join-Path $Path "setup.com"
 Invoke-Expression "$setup /InstallWindowsComponents /r:$role"
}
else {
 Write-Host "Invalid Media Path!"
}

2.	 Save the file as InstallExchange.ps1.

3.	 Execute the script from a server where you want to install Exchange using the
following syntax:

InstallExchange.ps1 -Path D:

The value provided for the -Path parameter should reference the Exchange 2010 SP1 media,
either on DVD or extracted to a folder.

How it works...
One of the most common methods for automating an Exchange installation is determining
the required roles based on the hostname of the server. In the previous example, we assume
that your organization uses a standard server naming convention. When executing the script,
the switch statement will evaluate the hostname of the server and determine the required
roles. For example, if your mailbox servers use a server name such as CONTOSO-MB-01,
the mailbox server role will be installed. If your CAS servers use a server name such as
CONTOSO-CA-02, the CAS role will be installed, and so on.

It's important to note that Exchange 2010 SP1 requires several Windows operating system
hotfixes. Windows Server 2008 R2 SP1 includes these operating system hotfixes required by
Exchange 2010 SP1. You'll also want the .NET Framework 3.5.1 installed prior to running this
script, which can also be automated using the ServerManager PowerShell module that is
included in Windows Server 2008 R2.

When calling the Setup.com installation program within the script, we use the /
InstallWindowsComponents switch, which is a new Setup.com feature in Exchange
Server 2010 SP1. This will allow the setup program to load any prerequisite Windows roles
and features, such as IIS, and so on, before starting the Exchange installation.

Chapter 2

83

There's more...
Scripting the installation of Exchange based on the server names may not be an option for
you. Fortunately, PowerShell gives us plenty of flexibility. The following script uses similar logic,
but performs the installation based on different criteria.

Let's say that your core Exchange infrastructure has already been deployed. Your corporate
headquarters already has the required CAS and Hub Transport server infrastructure in place
and therefore you only need to deploy mailbox servers in the main Active Directory site. All
remaining remote sites will contain multi-role Exchange servers. Replace the code in the
InstallExchange.ps1 script with the following:

param($Path)
$site = [DirectoryServices.ActiveDirectory.ActiveDirectorySite]

if(Test-Path $Path) {
 switch ($site::GetComputerSite().Name) {
 "Headquarters" {$role = "MB"}
 Default {$role = "HT,CA,MB"}
 }
 $setup = Join-Path $Path "setup.com"
 Invoke-Expression "$setup /InstallWindowsComponents /r:$role"
}
else {
 Write-Host "Invalid Media Path!"
}

This alternate version of the script determines the current Active Directory site of the
computer executing the script. If the computer is in the Headquarters site, only the Mailbox
role is installed. If it is located at any of the other remaining Active Directory sites, the Hub
Transport, Client Access, and Mailbox server roles are installed.

As you can see, combining the Setup.com utility with a PowerShell script can give you many
more options when performing an automated installation.

See also

Looping through items in Chapter 1, PowerShell Key Concepts

Using flow control statements in Chapter 1, PowerShell Key Concepts





3
Managing Recipients

I�� n this chapter, we will cover the following:

Adding, modifying, and removing mailboxes

Working with contacts

Managing distribution groups

Managing resource mailboxes

Creating recipients in bulk using a CSV file

Working with recipient filters

Adding and removing recipient e-mail addresses

Hiding recipients from address lists

Configuring recipient moderation

Configuring message delivery restrictions

Managing automatic replies and out of office settings for a user

Adding, modifying, and removing server-side inbox rules

Managing mailbox folder permissions

Importing user photos into Active Directory

Introduction
If you are like many other administrators, you probably spend the majority of your time
performing recipient-related management tasks when dealing with Exchange. If you work in
a large environment with thousands of recipients, using the Exchange Management Console
to create, update, and delete recipients will probably be a cumbersome and time consuming
process. Of course, the obvious solution to this is to use the Exchange Management Shell.
Utilizing the Exchange Management Shell, you can automate all of your recipient management
tasks and drastically speed up your work.





























Managing Recipients

86

The concept of an Exchange recipient is more than just a user with a mailbox. An Exchange
recipient is any Active Directory object that has been mail-enabled and can receive messages
within the Exchange organization. This can be a distribution group, a contact, a mail-enabled
public folder, and more. These object types include individual sets of cmdlets that can be used
to completely automate the administration of the Exchange recipients in your environment.

The goal of this chapter is to show you some common solutions that can be used when
performing day-to-day recipient management from within the shell. Quite often, Exchange
recipients are provisioned or updated in bulk through an automated process driven by a
PowerShell script. The recipes in this chapter will provide solutions for these types of scripts
that you can use right away. You can also use these concepts as a guide to build your own
scripts from scratch to automate recipient related tasks in your environment.

Performing some basic steps
To work with the code samples in this chapter, we'll need to launch the Exchange
Management Shell using the following steps:

1.	 Log onto a workstation or server with the Exchange Management Tools installed

2.	 Open the Exchange Management Shell by clicking on Start | All Programs |
Exchange Server 2010

3.	 Click on the Exchange Management Shell shortcut

If any additional steps are required they will be listed at the beginning of the recipe in the
Getting ready section.

Adding, modifying, and removing mailboxes
One of the most common tasks performed within the Exchange Management Shell is mailbox
management. In this recipe, we'll take a look at the command syntax required to create,
update, and remove mailboxes from your Exchange organization. The concepts outlined in this
recipe can be used to perform basic day-to-day tasks and will be useful for more advanced
scenarios such as creating mailboxes in bulk.

How to do it...
1.	 Let's start off by creating a mailbox-enabled Active Directory user account. To do this,

we can use the New-Mailbox cmdlet as shown in the following example:
$password = ConvertTo-SecureString -AsPlainText P@ssw0rd -Force

New-Mailbox -UserPrincipalName dave@contoso.com `
-Alias dave `
-Database DAGDB1 `

Chapter 3

87

-Name DaveJones `
-OrganizationalUnit Sales `
-Password $password `
-FirstName Dave `
-LastName Jones `
-DisplayName 'Dave Jones'

2.	 Once the mailbox has been created we can modify it using the Set-Mailbox �������cmdlet:
Set-Mailbox -Identity dave `
-UseDatabaseQuotaDefaults $false `
-ProhibitSendReceiveQuota 5GB `
-IssueWarningQuota 4gb

3.	 To remove the Exchange attributes from the Active Directory user account and mark
the mailbox in the database for removal, use the Disable-Mailbox �������cmdlet:

Disable-Mailbox -Identity dave -Confirm:$false

How it works...
When running the New-Mailbox cmdlet, the -Password parameter is required and you
need to provide a value for it using a secure string object. As you can see from the code, we've
used the ConvertTo-SecureString cmdlet to create a $password variable that stores
a specified value as an encrypted string. This $password variable is then assigned to the
-Password parameter when running the cmdlet. There's no requirement to first store this
object in a variable; we could have done it inline, as shown next:

New-Mailbox -UserPrincipalName dave@contoso.com `
-Alias dave `
-Database DAGDB1 `
-Name DaveJones `
-OrganizationalUnit Sales `
-Password (ConvertTo-SecureString -AsPlainText P@ssw0rd -Force) `
-FirstName Dave `
-LastName Jones `
-DisplayName 'Dave Jones'

Keep in mind that the password used here needs to comply with your Active Directory
password policies, which may enforce a minimum password length and have requirements
for complexity.

Managing Recipients

88

Only a few parameters are actually required when running New-Mailbox, but the cmdlet
itself supports several useful parameters that can be used to set certain properties when
creating the mailbox. You can run Get-Help New-Mailbox -Detailed to determine
which additional parameters are supported.

The New-Mailbox cmdlet creates a new Active Directory user and then mailbox-enables that
account. We can also create mailboxes for existing users with the Enable-Mailbox cmdlet,
using syntax similar to the following:

Enable-Mailbox steve -Database DAGDB1

The only requirement when running the Enable-Mailbox cmdlet is that you provide the
identity of the Active Directory user that should be mailbox-enabled. In the previous example,
we've specified the database in which the mailbox should be created, but this is optional. The
Enable-Mailbox cmdlet supports a number of other parameters that you can use to control
the initial settings for the mailbox.

You can use a simple one-liner to create mailboxes in bulk for existing Active Directory users:

Get-User -RecipientTypeDetails User |
 Enable-Mailbox -Database DAGDB1

Notice that we've run the Get-User cmdlet specifying User as the value for
the -RecipientTypeDetails parameter. This will retrieve only the accounts in
Active Directory that have not been mailbox-enabled. We then pipe those objects
down tothe Enable-Mailbox cmdlet and mailboxes are created for each of those
users in one simple operation.

Once mailboxes have been created, they can be modified with the Set-Mailbox cmdlet.
As you may recall from our original example, we used the Set-Mailbox cmdlet to configure
custom storage quota settings after creating a mailbox for Dave Jones. Keep in mind that the
Set-Mailbox cmdlet supports over 100 parameters, so anything that can be done to modify
a mailbox can be scripted.

Bulk modifications to mailboxes can be done easily by taking advantage of the pipeline and
the Set-Mailbox cmdlet. Instead of configuring storage quotas on a single mailbox, we can
do it for multiple users at once:

Get-Mailbox -OrganizationalUnit contoso.com/sales |
 Set-Mailbox -UseDatabaseQuotaDefaults $false `
 -ProhibitSendReceiveQuota 5GB `
 -IssueWarningQuota 4gb

Here we are simply retrieving every mailbox in the Sales OU using the Get-Mailbox cmdlet.
The objects returned from that command are piped down to Set-Mailbox which modifies
the quota settings for each mailbox in one shot.

Chapter 3

89

The Disable-Mailbox cmdlet will strip the Exchange attributes from an Active Directory
user and will disconnect the associated mailbox. By default, disconnected mailboxes are
retained for 30 days. You can modify this setting on the database that holds the mailbox.
In addition to this, you can also use the Remove-Mailbox cmdlet to delete both the Active
Directory account and the mailbox at once:

Remove-Mailbox -Identity dave -Confirm:$false

After running this command, the mailbox will be purged once it exceeds the deleted mailbox
retention setting on the database. One common mistake is when administrators use the
Remove-Mailbox cmdlet when the Disable-Mailbox cmdlet should have been used. It's
important to remember that the Remove-Mailbox cmdlet will delete the Active Directory
user account.

There's more...
When we ran the New-Mailbox cmdlet in the previous examples, we assigned a secure
string object to the –Password parameter using the ConvertTo-SecureString cmdlet.
This is a great technique to use when your scripts need complete automation, but you can
also allow an operator to enter this information interactively. For example, you might build a
script that prompts an operator for a password when creating one or more mailboxes. There
are a couple of ways you can do this. First, you can use the Read-Host cmdlet to prompt the
user running the script to enter a password:

$pass = Read-Host "enter password" -AsSecureString

Once a value has been entered into the shell, your script can assign the $pass variable to the
-Password parameter of the New-Mailbox cmdlet.

Alternatively, you can supply a value for the -Password parameter using the Get-
Credential cmdlet:

New-Mailbox -Name Dave -UserPrincipalName dave@contoso.com `
-Password (Get-Credential).password

You can see that the value we are assigning to the -Password parameter in this example
is actually the password property of the object returned by the Get-Credential cmdlet.
Executing this command will first launch a Windows authentication dialog box where the
caller can enter a username and password. Once the credential object has been created,
the New-Mailbox cmdlet will run. Even though a username and password must be
entered into the authentication dialog box, only the password value will be used when
the command executes.

Managing Recipients

90

Setting active directory attributes
Some of the Active Directory attributes that you may want to set when creating a mailbox
might not be available using the New-Mailbox cmdlet. Good examples of this are a user's
city, state, company, and department attributes. In order to set these attributes, you'll need to
call the Set-User cmdlet after the mailbox has been created:

Set-User –Identity dave –Office IT –City Seattle –State Washington

You can run Get-Help Set-User -Detailed to view all of the available parameters
supported by this cmdlet.

See also

Using the help system in Chapter 1, PowerShell Key Concepts

Creating recipients in bulk using a CSV file

Managing distribution groups

Working with contacts
Once you've started managing mailboxes using the Exchange Management Shell, you'll
probably notice that the concepts and command syntax used to manage contacts are very
similar. The difference of course is that we need to use an different set of cmdlets. In addition,
we also have two types of contacts to deal with in Exchange. We'll take a look at how you can
manage both of them in this recipe.

How to do it...
1.	 To create a mail-enabled contact, use the New-MailContact cmdlet:

New-MailContact -Alias rjones `
-Name "Rob Jones" `
-ExternalEmailAddress rob@fabrikam.com `
-OrganizationalUnit sales

2.	 Mail-enabled users can be created with the New-MailUser cmdlet:
New-MailUser -Name 'John Davis' `
-Alias jdavis `
-UserPrincipalName jdavis@contoso.com `
-FirstName John `
-LastName Davis `
-Password (ConvertTo-SecureString -AsPlainText P@ssw0rd -Force) `
-ResetPasswordOnNextLogon $false `
-ExternalEmailAddress jdavis@fabrikam.com







Chapter 3

91

How it works...
Mail contacts are useful when you have external e-mail recipients that need to show up in
your global address list. When you use the New-MailContact cmdlet, an Active Directory
contact object is created and mail-enabled with the external e-mail address assigned. You can
mail-enable an existing Active Directory contact using the Enable-MailContact cmdlet.

Mail users are similar to mail contacts in that they have an associated external e-mail
address. The difference is that these objects are mail-enabled Active Directory users, and
that explains why we needed to assign a password when creating the object. You might use a
mail user for a contractor who works onsite in your organization and needs to be able to logon
to your domain. When users in your organization need to e-mail this person, they can select
them from the global address list and messages sent to these recipients will be delivered to
the external address configured for the account.

Just as when dealing with mailboxes, there are a couple of considerations that should be taken
when it comes to removing contacts and mail users. You can remove the Exchange attributes
from a contact using the Disable-MailContact cmdlet. The Remove-MailContact
cmdlet will remove the contact object from Active Directory and Exchange. Similarly, the
Disable-MailUser and Remove-MailUser cmdlets work in the same fashion.

There's more...
Like mailboxes, mail contacts, and mail-enabled user accounts have several Active Directory
attributes that can be set such as job title, company, department, and more. To update these
attributes you can use the Set-* cmdlets available for each respective type. For example, to
update our mail contact we could use the Set-Contact cmdlet with the following syntax:

Set-Contact -Identity rjones `
-Title 'Sales Contractor' `
-Company Fabrikam `
-Department Sales

To modify the same settings for a mail-enabled user, use the Set-User cmdlet:

Set-User -Identity jdavis `
-Title 'Sales Contractor' `
-Company Fabrikam `
-Department Sales

Managing Recipients

92

Both cmdlets can be used to modify a number of different settings. Use the help system to
view all of the available parameters.

See also

Using the help system in Chapter 1, PowerShell Key Concepts

Adding, modifying, and removing mailboxes

Managing distribution groups
In many Exchange environments, distribution groups are relied upon heavily and require
frequent changes. This recipe will cover the creation of distribution groups and how to add
members to groups, which might be useful when performing these tasks interactively in the
shell or through automated scripts.

How to do it...
1.	 To create a distribution group use the New-DistributionGroup cmdlet:

New-DistributionGroup -Name Sales

2.	 Once the group has been created, adding multiple members can be done easily using
a one-liner:
Get-Mailbox -OrganizationalUnit Sales |
 Add-DistributionGroupMember -Identity Sales

3.	 We can also create distribution groups whose memberships are set dynamically:
New-DynamicDistributionGroup -Name Accounting `
-Alias Accounting `
-IncludedRecipients MailboxUsers,MailContacts `
-OrganizationalUnit Accounting `
-ConditionalDepartment accounting,finance `
-RecipientContainer contoso.com

How it works...
There are two types of distribution groups that can be created with Exchange. First, there are
regular distribution groups, which contain a distinct list of users. Secondly, there are dynamic
distribution groups, whose members are determined at the time a message is sent based on
a number of conditions or filters that have been defined. Both types have a set of cmdlets that
can be used to add, remove, update, enable, or disable these groups.





Chapter 3

93

By default, when creating a standard distribution group, the group scope will be
set to Universal. You can create a mail-enabled security group using the New-
DistributionGroup cmdlet by setting the -Type parameter to Security. If you do not
provide a value for the -Type parameter, the group will be created using the Distribution
group type.

You can mail-enable an existing Active Directory universal distribution group using the
Enable-DistributionGroup cmdlet.

After creating the Sales distribution group in our previous example, we added all of the
mailboxes in the Sales OU to the group using theAdd-DistributionGroupMember cmdlet.
You can do this in bulk or for one user at a time using the –Member parameter:

Add-DistributionGroupMember -Identity Sales -Member administrator

Distribution groups are a large topic and we're merely covering the basics
here. See Chapter 5, Distribution Groups and Address Lists for in-depth
coverage of distribution groups.

Dynamic distribution groups determine their membership based on a defined set of
filters and conditions. When we created the Accounting distribution group, we used
the -IncludedRecipients parameter to specify that only the MailboxUsers and
MailContacts object types would be included in the group. This eliminates resource
mailboxes, groups, or mail users from being included as members. The group will be
created in the Accounting OU based on the value used with the -OrganizationalUnit
parameter. Using the –ConditionalDepartment parameter, the group will only include
users that have a department setting of either Accounting or Finance. And finally, since the
-RecipientContainer parameter is set to the FQDN of the domain, any user located in
the Active Directory could potentially be included in the group. You can create more complex
filters for dynamic distribution groups using a recipient filter; see the recipe titled Working with
Recipient Filters later in this chapter for an example.

You can modify both group types using the Set-DistributionGroup
and Set-DynamicDistributionGroup cmdlets.

There's more...
Just as when dealing with other recipient types, there are a couple of considerations
that should be taken when it comes to removing distribution groups. You can remove the
Exchange attributes from a group using the Disable-DistributionGroup cmdlet. The
Remove-DistributionGroup cmdlet will remove the group object from the Active Directory
and Exchange.

Managing Recipients

94

See also
Working with recipient filters

Reporting on distribution group membership in Chapter 5, Distribution Groups and
Address Lists

Adding members to a distribution group from an external file in Chapter 5,
Distribution Groups and Address Lists

Previewing dynamic distribution group membership in Chapter 5, Distribution Groups
and Address Lists

Managing resource mailboxes
In addition to mailboxes, groups, and external contacts, recipients can also include specific
rooms or pieces of equipment. Locations such as a conference room or a classroom can be
given a mailbox so they can be reserved for meetings. Equipment mailboxes can be assigned
to physical, non-location specific resources such as laptops or projectors and can then be
checked out to individual users or groups by booking time with the mailbox. In this recipe,
we'll take a look at how you can manage resource mailboxes using the Exchange
Management Shell.

How to do it...
When creating a resource mailbox from within the shell, the syntax is similar to creating a
mailbox for a regular user. For example, you still use the New-Mailbox cmdlet when creating
a resource mailbox:

New-Mailbox -Name "CR32" -DisplayName "Conference Room 23" `
-UserPrincipalName CR23@contoso.com -Room

How it works...
There are two main differences when it comes to creating a resource mailbox as opposed
to a standard user mailbox. First, you need to use either the -Room switch parameter or the
-Equipment switch parameter to define the type of resource mailbox that will be created.
Second, you do not need to provide a password value for the user account. When using either
of these resource mailbox switch parameters to create a mailbox, the New-Mailbox cmdlet
will create a disabled Active Directory user account that will be associated with the mailbox.

The entire concept of room and equipment mailboxes revolves around the calendars used by
these resources. If you want to reserve a room or a piece of equipment, you book time through
Outlook or OWA with these resources for the duration that you'll need them. The requests
sent �� to these resources need to be accepted, either by a delegate or automatically using the
Resource Booking Attendant.









Chapter 3

95

To configure the room mailbox created in the previous example to automatically accept new
meeting requests, we can use the Set-CalendarProcessing cmdlet to set the Resource
Booking Attendant for that mailbox to AutoAccept:

Set-CalendarProcessing CR23 -AutomateProcessing AutoAccept

When the Resource Booking Attendant is set to AutoAccept, the request will be immediately
accepted as long as there is not a conflict with another meeting. If there is a conflict, an
e-mail message will be returned to the requestor explaining that the request was declined
due to scheduling conflicts. You can allow conflicts by adding the –AllowConflicts switch
parameter to the previous command.

When working with resource mailboxes with AutomateProcessing set to AutoAccept,
you'll get an automated e-mail response from the resource after booking time. This e-mail
message will explain whether the request was accepted or declined, depending on your
settings. You can add additional text to the response message that the meeting organizer
will receive using the following syntax:

Set-CalendarProcessing -Identity CR23 `
-AddAdditionalResponse $true `
-AdditionalResponse 'For Assistance Contact Support at Ext. #3376'

This example uses the Set-CalendarProcessing cmdlet to customize the response
messages sent from the CR23 room mailbox. You can see here that we've added a message
that tells the user the help desk number to call if assistance is required. Keep in mind that
you can only add additional response text when the AutomateProcessing property is set
to AutoAccept.

If you do not want to automate the calendar processing for a resource mailbox then you'll
need to add delegates that can accept or deny meetings for that resource. Again, we can
turn to the Set-CalendarProcessing cmdlet to accomplish this:

Set-CalendarProcessing -Identity CR23 `
-ResourceDelegates "joe@contoso.com","steve@contoso.com" `
-AutomateProcessing None

In this example, we've added two delegates to the resource mailbox and have turned off
automated processing. When a request comes into the CR23 mailbox, both Steve and Joe
will be notified and can accept or deny the request on behalf of the resource mailbox.

Managing Recipients

96

There's more...
When it comes to working with resource mailboxes, another useful feature is the ability to
assign custom resource properties to rooms and equipment resources. For example, you may
have a total of 5, 10, or 15 conference rooms, but maybe only four of those have whiteboards.
It might be useful for your users to know this information when booking a resource for a
meeting where they will be conducting a training session.

Using the shell, we can add custom resource properties to the Exchange organization by
modifying the resource schema. Once these custom resource properties have been added,
they can then be assigned to specific resource mailboxes.

You can use the following code to add a whiteboard resource property to the Exchange
organizations resource schema:

Set-ResourceConfig -ResourcePropertySchema 'Room/Whiteboard'

Now that the whiteboard resource property is available within the Exchange organization,
we can add this to our Conference Room 23 mailbox using the following command:

Set-Mailbox -Identity CR23 -ResourceCustom Whiteboard

When users access the Select Rooms dialog box in Outlook 2007 or 2010, they will see that
Conference Room 23 has a whiteboard available.

Converting mailboxes
If you are moving to Exchange 2010 from 2003, you may have a number of mailboxes that
were being used as resource mailboxes. Once these mailboxes have been moved over to
2010, they will be identified as Shared mailboxes. You can convert them using the
Set-Mailbox cmdlet so that they'll have all of the properties of a resource mailbox:

Get-Mailbox conf* | Set-Mailbox -Type Room

You can run the Set-Mailbox cmdlet against each mailbox one at a time and convert them
to Room mailboxes using the -Type parameter. Or, if you use a common naming convention,
you may be able to do them in bulk by retrieving a list of mailboxes using a wildcard and piping
them to Set-Mailbox, as shown previously.

See also
Adding, modifying, and removing mailboxes

Creating recipients in bulk using a CSV file





Chapter 3

97

Creating recipients in bulk using a CSV file
One of the most common bulk provisioning techniques used in the Exchange Management
Shell makes use of comma-separated value (CSV) files. These files act sort of like a database
table. Each record in this table is represented by one line in the file, and each field value is
separated by a comma, which is used as a delimiter. In this recipe, you'll learn how to set up a
CSV file and create recipients in bulk using the Exchange Management Shell.

Getting ready
In addition to the Exchange Management Shell, you'll need to use Microsoft Excel to create a
CSV file.

How to do it...
1.	 In this example, we are going to create some mailboxes in bulk. We'll enter some data

into Excel that will include the settings for five new mailboxes:

2.	 Go to File | Save As and select CSV (Comma delimited) (*.csv) for the file type.
Save the file as C:\Mailboxes.CSV.

3.	 Within the Exchange Management Shell, create a secure password object to be used
as an initial password for each mailbox:
$pass = ConvertTo-SecureString -AsPlainText P@ssw0rd01 -Force

4.	 Import the CSV file and create the mailboxes:

Import-CSV C:\Mailboxes.CSV | % {
 New-Mailbox -Name $_.Name `
 -Alias $_.Alias `
 -UserPrincipalName $_.UserPrincipalName `

Managing Recipients

98

 -OrganizationalUnit $_.OrganizationalUnit `
 -Password $pass `
 -ResetPasswordOnNextLogon $true
}

How it works...
In this example, we're importing the CSV file into the shell and piping that information to the
ForEach-Object cmdlet (using the % alias). For each record in the CSV file, we're running
the New-Mailbox cmdlet, providing values for the -Name, -Alias, –UserPrincipalName,
and -OrganizationalUnit parameters. The properties for each record can be accessed
inside the loop using the $_ variable, which is the automatic variable that references the
current object in the pipeline. The property names for each record match the header names
used in the CSV file. As we create each mailbox, the password is set to the $pass variable.
The –ResetPasswordOnNextLogon parameter is set to $true, which will require each
user to reset their password after their first logon.

Using this technique, you can literally create thousands of mailboxes in a matter of minutes.
This concept can also be applied to other recipient types, such as distribution groups and
contacts. You just need to specify the appropriate parameter values in the CSV file and use
the corresponding cmdlet for the recipient type. For example, if you want to bulk provision
contacts from a CSV file, use the code from the previous example as a guide, and, instead
of using the New-Mailbox cmdlet, use the New-MailContact cmdlet and whatever
parameters are required based on your settings.

There's more...
Let's take a look at an alternative approach to the previous example. Let's say that you don't
want to set an initial password for each user, and, instead, you want to include this information
in the CSV file so each new mailbox gets a unique password. Again, you'll need to set up a CSV
file with the required values. For this example, your CSV file would look something like this:

Chapter 3

99

Notice that in the previous screenshot, we are using different column names for this new file.
We've removed the OrganizationalUnit column and now have a Password column which
will be used to create each mailbox with a unique password. After you're done creating the file,
save it again as C:\Mailboxes.CSV.

Next, you can use the following code to create the mailboxes, specifying the path and file
name to the CSV file created in the previous step:

Import-CSV C:\Mailboxes.CSV | % {
 $pass = ConvertTo-SecureString -AsPlainText $_.Password -Force

 New-Mailbox -Name $_.Name `
 -Alias $_.Alias `
 -UserPrincipalName $_.UserPrincipalName `
 -Password $pass
}

As we loop through each record in the CSV file, we create a secure password object that can
be used with the -Password parameter. The main difference here compared to the previous
example is that each user gets a unique password and they do not need to reset their
password the first time they log on.

Taking it a step further
When provisioning recipients you'll probably need to do multiple things, such as set Active
Directory attributes and configure distribution group membership. Let's take our previous
example a step further:

Import-CSV C:\NewMailboxes.CSV | % {
 New-Mailbox -Name $_.Name `
 -FirstName $_.FirstName `
 -LastName $_.LastName `
 -Alias $_.Alias `
 -UserPrincipalName $_.UserPrincipalName `
 -Password $pass
 -OrganizationalUnit $_.OrganiationalUnit `
 -Database DB1 `
 -Password (ConvertTo-SecureString -AsPlainText P@ssw0rd -Force)

 Set-User -Identity $_.Name `
 -City $_.City `
 -StateOrProvince $_.State `
 -Title $_.Title `
 -Department $_.Department

Managing Recipients

100

 Add-DistributionGroupMember -Identity DL_Sales `
 -Member $_.Name

 Add-DistributionGroupMember -Identity DL_Marketing `
 -Member $_.Name
}

Here we're still using a CSV file, but as we loop through each record we're calling multiple
cmdlets to first create the mailbox, set some of the Active Directory attributes, and then add
the mailbox to two separate distribution groups. In order to use this code, we would just need
to create a CSV file that has columns for all of the values we're setting.

Now that we have this framework in place, we can add as many columns as we need to the
CSV file and we can call any number of cmdlets for each record in the CSV.

See also

Looping through items in Chapter 1, PowerShell Key Concepts

Adding, modifying, and removing mailboxes

Managing distribution groups

Working with recipient filters
Starting with Exchange 2007 and continuing with Exchange 2010, address lists, dynamic
distribution groups, e-mail address policies, and global address lists can be customized with
recipient filters that use OPATH filtering syntax. This replaces the LDAP filtering syntax that was
used in earlier versions of Exchange. We can also perform server-side searches using filters,
which can greatly speed up our work. In this recipe, you'll learn how to work with these filters
in the Exchange Management Shell.

How to do it...
1.	 We can filter the results from the recipient Get-* cmdlets using the -Filter

parameter:
Get-Mailbox -Filter {Office -eq 'Sales'}

2.	 In addition, we can use attribute filters to create distribution groups, e-mail address
policies, and address lists using the -RecipientFilter parameter:
New-DynamicDistributionGroup -Name DL_Accounting `
-RecipientFilter {
 (Department -eq 'Accounting') -and
 (RecipientType -eq 'UserMailbox')
}







Chapter 3

101

How it works...
In our first example, you can see that we've used the Get-Mailbox cmdlet to retrieve only
the users that have the Office property set to the value Sales. This is more efficient then
performing the following command, which would return the same results:

Get-Mailbox | ?{$_.Office -eq 'Sales'}

This command uses the Where-Object cmdlet (using the ? alias) to retrieve only the
mailboxes with their Office property set to Sales.We get back the same results, but it is less
efficient than our original example. When filtering with Where-Object, every mailbox in the
organization must be retrieved and evaluated before any results are returned. The benefit of
using the -Filter parameter with the Get-Mailbox cmdlet is that the filtering is done on
the server and not our client machines.

There are a number of cmdlets that support this parameter. You can get an entire list with
a simple one-liner:

get-excommand | ?{$_.parameters.keys -eq 'filter'}

This uses the shell function get-excommand to retrieve a list of Exchange Management
Shell cmdlets that support the -Filter parameter. If you are writing scripts or functions
that need to query a large amount of recipients, you'll want to try to use server-side filtering
whenever possible.

Unfortunately, there are only a certain set of properties that can be filtered. For instance, we
were able to filter using the Office property when using the Get-Mailbox cmdlet. Based on
that, you may assume that, since OrganizationalUnit is a property of a mailbox object,
that you can filter on that as well, but that is not the case. The Get-Mailbox cmdlet provides
an -OrganizationalUnit parameter that can be used to accomplish that task, so it's not
always safe to assume that a particular property can be used within a filter. To view a list of
common filterable properties that can be used with the –Filter parameter, see Appendix A
at the end of this book.

In our second example, we used the New-DynamicDistributionGroup cmldet to create
a query-based group. The membership of this group is determined using the OPATH filter
defined with the –RecipientFilter parameter. The syntax is similar and the same
PowerShell operators can be used. Based on the settings used with our filter when we created
the DL_Accounting group, only mailboxes with their Department attribute set to Accounting
will be included. Other recipient types, such as mail contacts and mail users, will not be
included in the group, even though they may be in the Accounting department.

Dynamic distribution groups, address lists, and e-mail address policies can be configured
with these filters. Again, to get the list of cmdlets that support this functionality, use the
get-excommand shell variable:

get-excommand | ?{$_.parameters.keys -eq 'recipientfilter'}

Managing Recipients

102

These cmdlets also have a limited number of filterable properties that can be used. To view
a list of the most common properties used with the –RecipientFilter parameter, see
Appendix A at the end of this book.

There's more…
Instead of using the -RecipientFilter parameter, you have the option of using
pre-canned filters. In some cases this may be easier, as it allows you to simply use a set
of parameters and values as opposed to an OPATH filter. The following command would
create our DL_Accounting distribution group with the same members using the pre-canned
filter parameters:

New-DynamicDistributionGroup -Name DL_Accounting `
-IncludedRecipients MailboxUsers `
-ConditionalDepartment Accounting

As you can see, this is a little easier to read and probably easier to type into the shell.
Although, there are only a few pre-canned parameters available and they may not always be
useful depending on what you are trying to do, but it helps to be aware of this functionality.
You can use Get-Help to view the entire list of available parameters for each cmdlet that
supports recipient filters.

Understanding variables in filters
One of the issues you may run into when working in the shell is the expansion of variables
used within a filter. For example, this syntax is completely valid but will not currently work
correctly in the Exchange Management Shell:

$office = "sales"
Get-Mailbox -Filter {Office -eq $office}

You might get some results from this command, but they will probably not be what you
are expecting. This is because, when running the Get-Mailbox cmdlet, the value of the
$office variable will not be expanded prior to the command being executed through the
remote shell. What you end up with instead is a filter checking for a $null value. In order to
fix this, you'll need to use syntax similar to the following:

$office = "sales"
Get-Mailbox -Filter "Office -eq '$office'"

This syntax will force any variables assigned within the -Filter parameter to be
expanded before sending the command through the remote session, and you should
get back the correct results.

Chapter 3

103

See also
Managing distribution groups

Using the help system in Chapter 1, PowerShell Key Concepts

Previewing dynamic distribution group membership in Chapter 5, Distribution Groups
and Address Lists

Adding and removing recipient
e-mail addresses

There are several recipient types in Exchange 2010 and each one of them can support
multiple e-mail addresses. Of course, the typical user mailbox recipient type is probably the
first that comes to mind, but we also have distribution groups, contacts, and public folders,
each of which can have one or more e-mail addresses. The syntax used for adding and
removing e-mail addresses to each of these recipient types is essentially identical: the only
thing that changes is the cmdlet that is used to set the address. In this recipe, you'll learn how
to add or remove an e-mail address from an Exchange recipient.

How to do it...
1.	 To add a secondary e-mail address to a mailbox, use the following command syntax:

Set-Mailbox dave -EmailAddresses @{add='dave@west.contoso.com'}

2.	 Multiple addresses can also be added using this technique:
Set-Mailbox dave -EmailAddresses @{
 add='dave@east.contoso.com',
 'dave@west.contoso.com',
 'dave@corp.contoso.com'
}

3.	 E-mail addresses can also be removed using the following syntax:
Set-Mailbox dave -EmailAddresses @{remove='dave@west.contoso.com'}

4.	 Just as we are able to add multiple e-mail addresses at once, we can do the same
when removing an address:
Set-Mailbox dave -EmailAddresses @{
 remove='dave@east.contoso.com',
 'dave@corp.contoso.com'
}







Managing Recipients

104

How it works...
Adding and removing e-mail addresses was more challenging in the Exchange 2007
management shell because it required that you work directly with the EmailAddresses
collection, which is a multi-valued property. In order to modify the collection, you first had to
save the object to a variable, modify it, and then write it back to the EmailAddresses object
on the recipient. This made it impossible to update the e-mail addresses for a recipient with
one command.

The Set-* cmdlets used to manage recipients in Exchange 2010 now support a new syntax
that allows us to use a hash table to modify the EmailAddresses property. As you can see
from the code samples, we can simply use the Add and Remove keys within the hash table,
and the assigned e-mail address values will be either added or removed as required. This is a
nice change that makes it easier to do this in scripts and especially when working interactively
in the shell.

The Add and Remove keywords are interchangeable with the plus (+) and minus (-)
characters that serve as aliases:

Set-Mailbox dave -EmailAddresses @{
 '+'='dave@east.contoso.com'
 '-'='dave@west.contoso.com'
}

In the previous example, we've added and removed e-mail addresses from the mailbox.
Notice that the + and - keywords need to be enclosed in quotes so PowerShell does not
try to interpret them as the += and -= operators.

This syntax works with all of the Set-* cmdlets that support the -EmailAddresses
parameter:

Set-CASMailbox

Set-DistributionGroup

Set-DynamicDistributionGroup

Set-Mailbox

Set-MailContact

Set-MailPublicFolder

Set-MailUser

Keep in mind that the best way to add an e-mail address to a recipient is through the use of
an e-mail address policy. This may not always be an option, but should be used first if you find
yourself in a situation where addresses need to be added to a large number of recipients.
With that said, it is possible do this in bulk using a simple foreach loop:















Chapter 3

105

foreach($i in Get-Mailbox -OrganizationalUnit Sales) {
 Set-Mailbox $i -EmailAddresses @{
 add="$($i.alias)@west.contoso.com"
 }
}

This code simply iterates over each mailbox in the Sales OU and adds a secondary e-mail
address using the existing alias at west.contoso.com. You can use this technique and
modify the syntax as needed to perform bulk operations.

There's more...
Imagine a situation where you need to remove all e-mail addresses under a certain domain
from all of your mailboxes. These could be secondary addresses that were added manually
to each mailbox, or that used to be applied as part of an e-mail address policy that no longer
applies. The following code can be used to remove all e-mail addresses from mailboxes under
a specific domain:

foreach($i in Get-Mailbox -ResultSize Unlimited) {
 $i.EmailAddresses |
 ?{$_.SmtpAddress -like '*@corp.contoso.com'} | %{
 Set-Mailbox $i -EmailAddresses @{remove=$_}
 }
}

This code iterates through each mailbox in the organization and simply uses a filter to discover
any e-mail addresses at corp.contoso.com. If any exist, the Set-Mailbox cmdlet will
attempt to remove each of them from the mailbox.

See also
Adding, modifying, and removing mailboxes

Working with contacts

Managing distribution groups

Hiding recipients from address lists
There may be times when you'll need to hide a particular mailbox, contact, or distribution
group from your Exchange address lists. This is a common task that is required when you have
mailboxes, contacts, or public folders used by applications or staff in your IT department that
should not be seen by end-users. In this recipe, we'll take a look at how you can disable these
recipient types from the address lists using the Exchange Management Shell.







Managing Recipients

106

How to do it...
To hide a mailbox from the Exchange address lists, use the Set-Mailbox command:

Set-Mailbox dave –HiddenFromAddressListsEnabled $true

How it works...
As you can see, hiding a mailbox from address lists is pretty straight forward as it requires
only a simple PowerShell one-liner. The –HiddenFromAddressListsEnabled parameter
accepts a Boolean value, either $true or $false. To enable this setting, set the value to
$true, and to disable it, set the value to $false.

There are multiple recipient types that can be hidden from address lists. Each of the following
cmdlets supports the -HiddenFromAddressListsEnabled parameter:

Set-DistributionGroup

Set-DynamicDistributionGroup

Set-Mailbox

Set-MailContact

Set-MailPublicFolder

Set-MailUser

Set-PublicFolder

Set-RemoteMailbox

There's more...
Once you've hidden your recipients from the address lists, you may need to generate a report
to list the objects that currently have the HiddenFromAddressListsEnabled setting
enabled. Use the following command syntax to obtain this information:

Get-Mailbox -Filter {HiddenFromAddressListsEnabled -eq $true}

This searches for all mailboxes that have been hidden from address lists. It makes use of the
–Filter parameter which keeps you from having to perform the filtering on the client side
with the Where-Object cmdlet.

See also
Working with recipient filters



















Chapter 3

107

Configuring recipient moderation
Exchange 2010 is the first version of Exchange to implement the moderated transport feature.
This allows you to require approval for all e-mail messages sent to a particular recipient by a
designated moderator. In this recipe, you'll learn how to configure the moderation settings on
recipients using the Exchange Management Shell.

How to do it...
1.	 To enable moderation for a distribution group, use the Set-DistributionGroup

cmdlet:
Set-DistributionGroup -Identity Executives `
-ModerationEnabled $true `
-ModeratedBy administrator `
-SendModerationNotifications Internal

2.	 These same parameters can be used to configure moderation for a mailbox when
using the Set-Mailbox cmdlet:
Set-Mailbox -Identity dave `
-ModerationEnabled $true `
-ModeratedBy administrator `
-SendModerationNotifications Internal

How it works...
When you enable moderation for a recipient, any e-mail message sent to that recipient must
be reviewed by a moderator. When a message is sent to a moderated recipient, the moderator
will receive the message and determine whether or not it should be accepted. This is done
by the moderator through Outlook or OWA by clicking on an Approve or Reject button in the
e-mail message. If the moderator accepts the message, it is delivered to the group. If it is
rejected, the message is deleted, and, depending on the SendModerationNotifications
setting, the sender may receive an e-mail informing them the message has been rejected.

Moderation can be enabled for any recipient, whether it's a mailbox, mail contact, mail user,
distribution group, or mail-enabled public folder. The cmdlets for each of these recipient
types can be used to configure moderation when a recipient is being created with the New-
* cmdlets, or after the fact using the Set-* cmdlets. To view the list of cmldets that can be
used to enable moderation, run the following command:

get-excommand | ?{$_.parameters.keys -eq 'ModerationEnabled'}

Managing Recipients

108

In our first example, we enabled moderation for the Executives distribution group, specifying
that the administrator account will be used as the moderator for the group. As you can see
in the example, we've used multiple parameters when running the command, but only
the -ModerationEnabled parameter is required to change the moderation setting for the
group. If no value is specified for the -ModeratedBy parameter, the group owner will review
and approve the messages sent to the group. You can specify one or more owners when
running the Set-DistributionGroup cmdlet with the -ManagedBy parameter.

The -SendModerationNotifications parameter allows you to control the status
messages sent to the originator of a message that was sent to a moderated recipient.
We have the option of using the following values for this parameter:

Always: Notifications are sent to all internal and external senders

Internal: Notifications are only sent to users within the organization

Never: Notifications are not sent at all

If no value is provided for the -SendModerationNotifications parameter when you
enable moderation for a group, the setting will default to Always.

There's more...
There is an exception to every rule, and, of course, there may be times where we need to
bypass moderation for certain recipients. Let's say that we need to bypass specific users
from moderation on the Executives distribution group. The group moderator or group owners
are already exempt from moderation. To exclude others we can specify a list of one or more
recipients using the -BypassModerationFromSendersOrMembers parameter when
running the Set-DistributionGroup cmdlet.

For example, to exclude a recipient named Bob from moderation on the Executives
distribution group, run the following command:

Set-DistributionGroup -Identity Executives `
-BypassModerationFromSendersOrMembers bob@contoso.com

If you want the members of the moderated group, or any other distribution group, to be
excluded from moderation, simply use the previous syntax and assign the identity of the
group to the -BypassModertionFromSendersOrMembers parameter. You can assign
multiple users or distribution groups at once; by separating each value with a comma.

Keep in mind that running the previous command will overwrite the existing list of bypassed
members if any have been defined. For an example of how to add a new item to a multi-valued
property, see the Working with arrays and hash tables in Chapter 1, PowerShell
Key Concepts.







Chapter 3

109

Additionally, you may need to bypass moderation for a group of several individual recipients.
While you could add them one by one, this could be very time-consuming if you are dealing
with a large number of recipients. Let's say that you want to exclude all the users in the San
Diego office from moderation:

$exclude = Get-Mailbox –Filter {Office –eq ‘San Diego’} |
 Select-Object -ExpandProperty alias

Set-DistributionGroup -Identity Executives `
-BypassModerationFromSendersOrMembers $exclude

In this example, we create a collection that contains the alias for each mailbox in the San
Diego Office. Next, we use the Set-DistributionGroup cmdlet to exclude all of those
recipients from moderation using a single command. While this might be useful in certain
situations, it's easier to bypass moderation based on groups. If a group has been bypassed
for moderation, you can simply manage the membership of the group and you don't need to
worry about continuously updating individual recipients that are on the bypass list.

See also
Managing distribution groups

Configuring message delivery restrictions
Since distribution groups contain multiple members, you may want to place restrictions on
who can send messages to these recipients. Exchange allows you to tightly control these
settings and provides several options when it comes to placing message delivery restrictions
on groups. We can also place restrictions on other recipient types in the organization. This
recipe will show you how to configure these options from the Exchange Management Shell.

How to do it...
To restrict who can send messages to a group, use the Set-DistributionGroup cmdlet:

Set-DistributionGroup -Identity Sales `
-AcceptMessagesOnlyFrom 'Bob Smith','John Jones'

After running this command, only the users Bob Smith and John Jones can send messages to
the Sales distribution group.



Managing Recipients

110

How it works...
The -AcceptMessagesOnlyFrom parameter allows you to specify one or more recipients
who are allowed to send messages to a distribution group. These recipients can be regular
users with mailboxes or contacts.

You can add individual recipients and distribution groups to the accepted senders list using
the following syntax:

Set-DistributionGroup -Identity Sales `
-AcceptMessagesOnlyFromSendersOrMembers Marketing,bob@contoso.com

In this example we're allowing both the Marketing distribution group and Bob, an individual
recipient, to the accepted senders list for the Sales distribution group. Doing so will allow Bob
and any members of the Marketing distribution group to send messages to the Sales group.

Keep in mind that, when using these parameters, any existing accepted recipients that
have been configured will be overwritten. For an example of how to add a new item to a
multi-valued property, see the in Chapter 1 titled Working with arrays and hash tables.

Delivery restrictions can be placed on any recipient, whether it's a mailbox, mail contact, mail
user, distribution group, or mail-enabled public folder. The Set-* cmdlets for each of these
recipient types can be used to configure delivery restrictions. To view the list of cmldets that
can be used to do this, run the following command:

get-excommand | ?{$_.parameters.keys -eq 'AcceptMessagesOnlyFrom'}

If you need to add a large list of users to the accepted senders list, you can create a collection
and assign it to the -AcceptMessagesOnlyFrom parameter:

$finance = Get-Mailbox -Filter {Office -eq 'Finance'}

Set-DistributionGroup -Identity Sales `
-AcceptMessagesOnlyFrom $finance

You can wipe out these settings and allow messages from all senders by setting the
value to $null:

Set-DistributionGroup -Identity Sales `
-AcceptMessagesOnlyFromSendersOrMembers $null

Similar to the previous examples, we can reject messages from a specific user or member
of a distribution list using the -RejectMessagesFromSendersOrMembers parameter:

Set-DistributionGroup -Identity Executives `
-RejectMessagesFromSendersOrMembers HourlyEmployees

Chapter 3

111

In this example, Exchange will reject any message sent from a member of the
HourlyEmployees distribution group to the Executives group.

There's more...
When you create a distribution group, the default configuration is to reject messages from
senders who are not authenticated. This means that users outside of your organization
will not be able to send messages to your distribution groups. Generally, this is the desired
configuration, but if needed, you can modify this setting on a distribution group to accept
messages from external users using the following syntax:

Set-DistributionGroup -Identity HelpDesk `
-RequireSenderAuthenticationEnabled $false

You can see here that we've disabled sender authentication for the HelpDesk distribution
group. You can re-enable it at any time by setting the previous parameter value to $true.

See also
Managing distribution groups

Managing automatic replies and out
of office settings for a user

Exchange 2010 has introduced a new set of cmdlets that can be used to manage and
automate the configuration of a user's Out of Office settings. In this recipe, we'll take a look at
how to use these cmdlets from the Exchange Management Shell.

How to do it...
1.	 To view the Out of Office settings for a mailbox, use the following syntax:

Get-MailboxAutoReplyConfiguration dave

2.	 You can change the Out of Office settings for a mailbox using the syntax shown next.
For example, to disable Out of Office for a mailbox, use the following command:
Set-MailboxAutoReplyConfiguration dave -AutoReplyState Disabled



Managing Recipients

112

How it works...
Retrieving the settings for a mailbox simply requires that you run the Get-
MailboxAutoReplyConfiguration cmdlet and specify the identity of the mailbox, as
shown in the previous example. The Set-MailboxAutoReplyConfiguration cmdlet
supports multiple parameters that can be used to customize the settings use for the mailbox
autoreply configuration:

Set-MailboxAutoReplyConfiguration dave `
-AutoReplyState Scheduled `
-StartTime 10/10/2011 `
-EndTime 10/15/2011 `
-ExternalMessage "I will be out of the office this week"

In this command, we set the AutoReplyState, specify a StartTime and EndTime,
and set the ExternalMessage. When the StartTime date is reached, the mailbox will
proceed to automatically reply to messages using the specified ExternalMessage until the
EndTime date is reached. If you want automatic replies to be enabled indefinitely, set the
AutoReplyState to Enabled.

To view the settings configured in the previous command, we can use the Get-
MailboxAutoReplyConfiguration cmdlet, as shown in the following screenshot:

You can see from viewing the mailbox auto-reply settings for this mailbox that only external
replies are enabled. To enable internal Out of Office messages, you could run the previous set
command and specify a message using the –InternalMessage �������������������������� parameter. Or you can use
them both using a single command.

Chapter 3

113

The -InternalMessage and -ExternalMessage parameters support HTML-formatted
messages. If you want to set custom HTML code when configuring the auto-reply configuration
from the shell, you can use the following command syntax:

Set-MailboxAutoReplyConfiguration dave `
-ExternalMessage (Get-Content C:\oof.html)

This command will read in a custom HTML formatted message from an external file
and use that data when setting the internal or external message. This will allow you to work
on the file from the HTML editor of your choice and import the code using a simple command
from the shell.

By default, the -ExternalAudience parameter will be set to None if no value is specified.
The remaining options are Known and All. Setting the external audience to Known will only
send automatic replies to external users who are listed as contacts in the users mailbox.

There's more...
These cmdlets can be useful when making mass updates and when running reports. For
example, to determine all of the users that currently have Out of Office enabled, you can run
the following command:

Get-Mailbox –ResultSize Unlimited |
 Get-MailboxAutoReplyConfiguration |
 ?{$_.AutoReplyState -ne "Disabled"} |
 Select Identity,AutoReplyState,StartTime,EndTime

This one-liner will check every mailbox in the organization and return only the mailboxes with
the auto-reply state set to either Enabled or Scheduled.

Adding, modifying, and removing
server-side inbox rules

Exchange 2010 introduces a new set of cmdlets that can be used to manage server-side
inbox rules for mailboxes in your organization. For the first time, we have the ability to add,
remove, update, enable, and disable the inbox rules for mailboxes from within the Exchange
Management Shell. This new functionality allows administrators to quickly resolve mailbox
issues related to inbox rules, and allows them to easily deploy and manage inbox rules in bulk
using just a few simple commands. In this recipe, you'll learn how to work with the inbox rules
cmdlets in Exchange 2010.

Managing Recipients

114

How to do it...
1.	 To create an inbox rule, use the New-InboxRule cmdlet:

New-InboxRule -Name Sales -Mailbox dave `
-From sales@contoso.com `
-MarkImportance High

2.	 You can change the configuration of an inbox rule using the Set-InboxRule cmdlet:
Set-InboxRule -Identity Sales -Mailbox dave -MarkImportance Low

3.	 Use the Enable-InboxRule and Disable-InboxRule cmdlets to turn a rule on
or off:
Disable-InboxRule -Identity Sales -Mailbox dave

4.	 The Get-InboxRule cmdlet will return all of the server-side rules that have been
created for a specified mailbox. The output from the command is shown in the
following screenshot:

5.	 To remove an inbox rule, use the Remove-InboxRule cmdlet:

Remove-InboxRule -Identity Sales -Mailbox dave -Confirm:$false

How it works...
Inbox rules are used to process messages sent to a mailbox based on a certain set of criteria,
and to then take an action on that message if the condition is met. In the previous example,
we created an inbox rule for the mailbox that would mark messages from the sales@
contoso.com address with high importance. The New-InboxRule cmdlet provides a
number of rule predicate parameters that allow you to define the conditions used for the rules
you create.

Let's take a look at another example. Say that we want to create a rule that will check the
subject or body of all incoming messages for a certain keyword. If there is a match, we'll send
the message to the deleted items folder:

New-InboxRule -Name "Delete Rule" `
-Mailbox dave `
-SubjectOrBodyContainsWords "Delete Me" `
-DeleteMessage $true

Chapter 3

115

In addition to conditions and actions, we can also add exceptions to these rules. Consider the
following example:

New-InboxRule -Name "Redirect to Andrew" `
-Mailbox dave `
-MyNameInToOrCcBox $true `
-RedirectTo "Andrew Castaneda" `
-ExceptIfFrom "Alfonso Mcgowan" `
-StopProcessingRules $true

In this example, once again we're creating an inbox rule in Dave's mailbox. The condition
MyNameInToOrCcBox is set to $true so that any message with the mailbox name in the
To or CC fields will be processed by this rule. The action is the RedirectTo setting, and
that will redirect the message to Andrews's mailbox, except if the message was sent from
Alfonso's mailbox. Finally, the -StopProcessingRules parameter is set to $true, meaning
that, once this rule is processed, Exchange will not process any other rules in this mailbox.
The -StopProcessingRules parameter is an optional setting and is provided to give you
another level of flexibility when it comes to controlling the way the rules are applied.

It's important to note that when you add, remove, update, enable, or
disable server-side rules using the *-InboxRule cmdlets, any client-side
rules created by Outlook will be removed.

In all of these examples, we've specified the mailbox identity and have been configuring
the rules of a single mailbox. If you do not provide a value for the -Mailbox parameter, the
*-InboxRule cmdlets will execute against the mailbox belonging to the user that is running
the command.

There's more...
Now let's take a look at a practical example of how you might create inbox rules in bulk.
The following code will create an inbox rule for every mailbox in the Sales OU:

$sales = Get-Mailbox -OrganizationalUnit contoso.com/sales
$sales | %{
 New-InboxRule -Name Junk `
 -Mailbox $_.alias `
 -SubjectContainsWords "[Spam]" `
 -MoveToFolder "$($_.alias):\Junk E-Mail"
}

Managing Recipients

116

What we are doing here is using the -SubjectContainsWords parameter to check for a
subject line that starts with "[Spam]". If there is a match, we move the message to the Junk
E-Mail folder within that user's mailbox. As you can see, we are looping through each mailbox
using the ForEach-Object cmdlet (using the % alias) and, within the loop, we specify the
identity of the user when creating the inbox rule and when specifying the folder id, using the
$_.alias property.

Even if you are logged in using an account in the Organization Management group, you may
receive errors when trying to use the –MoveToFolder parameter when creating an inbox
rule in another user's mailbox. Assigning FullAccess permissions to the mailbox in question
should resolve this issue. For more details, see Granting administrators full access to
mailboxes in Chapter 10, Exchange Security.

See also

Granting users full access permissions to mailboxes in Chapter 10,
Exchange Security

Managing mailbox folder permissions
Exchange 2010 introduces a new set of cmdlets that can be used to manage the permissions
on the folders inside a mailbox. When it comes to managing recipients, one of the most
common tasks that administrators and support personnel perform on a regular basis is
updating the permissions on the calendar of a mailbox. In most corporate environments,
calendars are shared amongst employees and often special rights need to be delegated to
other users allowing them to add, remove, update, or change the items on a calendar. In this
recipe, we'll cover the basics of managing mailbox folder permissions from within the shell,
but we will focus specifically on calendar permissions since that is a common scenario. Keep
in mind that the cmdlets used in this recipe can be used with any folder within a mailbox.

How to do it...
To allow users to view the calendar for a specific mailbox, use the following command:

Set-MailboxFolderPermission -Identity dave:\Calendar `
-User Default `
-AccessRights Reviewer



Chapter 3

117

How it works...
In this example, we're giving the Default user the ability to read all items in the calendar of the
specified mailbox by assigning the Reviewer access right. This would give every user in the
organization the ability to view the calendar items for this mailbox. There are four cmdlets in
total that can be used to manage the mailbox folder permissions:

Add-MailboxFolderPermission

Get-MailboxFolderPermission

Remove-MailboxFolderPermission

Set-MailboxFolderPermission

The Add and Set-MailboxFolderPermission cmdlets both provide an -AccessRights
parameter that is used to set the appropriate permissions on the folder specified in the
command. In the previous example, instead of assigning the Reviewer role, we could
have assigned the Editor role to the Default user, giving all users the ability to completely
manage the items in the calendar. The possible values that can be used with the -
AccessRights parameter are as follows:

ReadItems: The user assigned this right can read items within the designated folder.

CreateItems: The user assigned this right can create items within the
designated folder.

EditOwnedItems: The user assigned this right can edit the items that the user owns
in the designated folder.

DeleteOwnedItems: The user assigned this right can delete items that the user
owns in the designated folder.

EditAllItems: The user assigned this right can edit all items in the
designated folder.

DeleteAllItems: The user assigned this right can delete all items in the
designated folder.

CreateSubfolders: The user assigned this right can create subfolders in the
designated folder.

FolderOwner: The user assigned this right has the right to view and move the
folder and create subfolders. The user cannot read items, edit items, delete items,
or create items.

FolderContact: The user assigned this right is the contact for the
designated folder.

FolderVisible: The user assigned this right can view the specified folder, but can't
read or edit items within the it.





























Managing Recipients

118

The following roles are made up by one or more of the permissions specified in the previous
list and can also be used with the -AccessRights parameter:

None: FolderVisible

Owner: CreateItems, ReadItems, CreateSubfolders, FolderOwner,
FolderContact, FolderVisible, EditOwnedItems, EditAllItems,
DeleteOwnedItems, DeleteAllItems

PublishingEditor: CreateItems, ReadItems, CreateSubfolders,
FolderVisible, EditOwnedItems, EditAllItems, DeleteOwnedItems,
DeleteAllItems

Editor: CreateItems, ReadItems, FolderVisible, EditOwnedItems,
EditAllItems, DeleteOwnedItems, DeleteAllItems

PublishingAuthor: CreateItems, ReadItems, CreateSubfolders,
FolderVisible, EditOwnedItems, DeleteOwnedItems

Author: CreateItems, ReadItems, FolderVisible, EditOwnedItems,
DeleteOwnedItems

NonEditingAuthor: CreateItems, ReadItems, FolderVisible

Reviewer: ReadItems, FolderVisible

Contributor: CreateItems, FolderVisible

There's more...
Using the *-MailboxFolderPermission cmdlets makes it easier to perform bulk
operations on many mailboxes at once. For example, let's say that you need to assign
Reviewer permissions to all employees on every mailbox calendar in the organization.
You can use the following code to accomplish this task:

$mailboxes = Get-Mailbox -ResultSize Unlimited
$mailboxes | %{
 $calendar = Get-MailboxFolderPermission "$($_.alias):\Calendar" `
 -User Default

 if(!($calendar.AccessRights)) {
 Add-MailboxFolderPermission "$($_.alias):\Calendar" `
 -User Default -AccessRights Reviewer	
 }

 if($calendar.AccessRights -ne "Reviewer") {
 Set-MailboxFolderPermission "$($_.alias):\Calendar" `
 -User Default -AccessRights Reviewer
 }
}



















Chapter 3

119

First, we use the Get-Mailbox cmdlet to retrieve all mailboxes in the organization and
store that result in the $mailboxes variable. We then loop through each mailbox in the
$mailboxes collection. Within the loop, we retrieve the current calendar settings for the
Default user, using the Get-MailboxFolderPermission cmdlet, and store the output in
the $calendar variable. If the Default user has not been assigned any rights to the calendar,
we use the Add-MailboxFolderPermission cmdlet to add the Reviewer access right.

If the Default user has been assigned calendar permissions, we check to see if the access
rights are set to Reviewer. If not, we modify the existing setting for the Default user to the
Reviewer access right.

See also

Granting users full access permissions to mailboxes in Chapter 10,
Exchange Security

Importing user photos into Active Directory
One of the most popular new features in Exchange 2010 is the ability to view user photos
in Outlook 2010. This is made possible by importing an image into the thumbnailPhoto
attribute for a given user account in Active Directory. This image can then be displayed
when viewing a message or browsing the Global Address List within Outlook 2010. This is
a long-awaited enhancement, and the addition of this new feature makes it easier, especially
in large organizations, to identify co-workers and get to know the people you are working with.
In this recipe, we'll look at how you can import user photographs into Active Directory.

Getting ready
In addition to the Exchange Management Shell, you will need access to the Active
Directory administration tools for this recipe. The Remote Server Administration Tools
pack (RSAT-ADDS) is a prerequisite required by Exchange 2010 setup, so it will already
be installed on an Exchange 2010 server and you can use the tools from there, if needed.

How to do it...
First, you need to update the Active Directory schema to ensure that the thumbnailPhoto
attribute will be replicated to the Global Catalog. Your account will need to be a member
of the schema admins group in Active Directory. On a machine with the Active Directory
administration tools installed, do the following:

1.	 In the Exchange Management Shell or a cmd console, run the following command to
register the Active Directory Schema extension:
Regsvr32 schmmgmt.dll.



Managing Recipients

120

2.	 Start the MMC console by clicking on Start | Run, type MMC, and click OK.

3.	 Go to File and click on Add/Remove Snap-In.

4.	 Add the Active Directory Schema Snap-In and click OK.

5.	 Under Active Directory Schema, highlight the Attributes node, and locate the
thumbnailPhoto attribute.

6.	 Right click on the thumbnailPhoto attribute and click on Properties.

7.	 On the Properties page, select Replicate this attribute to the Global Catalog,
and click OK.

At this point, the required Active Directory steps have been completed and you can now import
a photo into Active Directory using the Import-RecipientDataProperty cmdlet:

Import-RecipientDataProperty -Identity dave `
-Picture `
-FileData (
 [Byte[]](
 Get-Content -Path C:\dave.jpg `
 -Encoding Byte `
 -ReadCount 0
)
)

How it works...
Each user account or contact object in Active Directory has a thumbnailPhoto attribute that
can be used to store binary data. The Get-Content cmdlet is used to read a .jpeg file into
a byte array, and we then use the Import-RecipientDataProperty cmdlet to load that
data into the thumbnailPhoto attribute of the user account or contact in Active Directory,
using the -FileData parameter. Once the data has been imported into Active Directory,
Outlook 2010 will query the thumbnailPhoto attribute of each user and display their photo
when you receive an e-mail message from them, or when you are viewing their information in
the Global Address List.

If you need to remove a photo for a user or a contact, use the -
RemovePicture switch parameter with the Set-Mailbox or Set-
MailContact cmdlets.

There are a few things to keep in mind when you decide to load photos into Active Directory
for your users. First, the -FileData parameter is limited to 10 kb, so you need to ensure
that the images you are trying to import are not too large. Also, the image file must be in
jpeg format. The recommended thumbnail photo size in pixels is 96x96 pixels. Finally,
be conscious about the size of your NTDS database in Active Directory. If you only have a

Chapter 3

121

small amount of users, then this will probably not be a huge issue. If you have hundreds of
thousands of users there will be some serious replication traffic if you suddenly import photos
for each of those users. Make sure to plan accordingly.

There's more…
Outlook clients operating in cached mode will use the thumbnailPhoto attribute
configuration of the Offline Address Book (OAB) to determine how to access photos.
By default, the thumbnailPhoto attribute is an Indicator attribute, meaning that it
points Outlook to Active Directory to retrieve the image. If you want to disable thumbnail
photos for cached-mode clients, remove the attribute using the Remove method of the
ConfigureAttrbutes collection:

$oab = Get-OfflineAddressBook ‘Default Offline Address Book’
$oab.ConfiguredAttributes.Remove('thumbnailphoto,indicator')

Set-OfflineAddressBook ‘Default Offline Address Book’ `
-ConfiguredAttributes $oab.ConfiguredAttributes

If you want offline clients to be able to view thumbnail photos, you can add the
thumbnailPhoto attribute as a value attribute using the Add method:

$oab = Get-OfflineAddressBook ‘Default Offline Address Book’
$oab.ConfiguredAttributes.Add('thumbnailphoto,value')

Set-OfflineAddressBook ‘Default Offline Address Book’ `
-ConfiguredAttributes $oab.ConfiguredAttributes

If you work in a medium or large organization, this could make for an extremely large OAB.
Again, make sure to plan accordingly. Use the following command to update the OAB after
these configuration changes have been made:

Update-OfflineAddressBook 'Default Offline Address Book'

Taking it a step further
If you are going to take advantage of this function, you are likely going to do this in bulk for
existing employees, or as new employees are hired, and this may require some automation.
Let's say that your company issues a security badge with a photo for each employee. You have
each of these photos stored on a file server in jpeg format. The file names of the photos use
the Exchange alias for the users associated mailbox. The following script can be used in this
scenario to import the photos in bulk:

$photos = Get-ChildItem \\server01\employeephotos -Filter *.jpg

foreach($i in $photos) {
[Byte[]]$data = gc -Path $i.fullname -Encoding Byte -ReadCount 0
 Import-RecipientDataProperty $i.basename -Picture -FileData $data
}

Managing Recipients

122

First, this code creates a collection of jpeg files in the \\server01\employeephotos
share and stores the results in the $photos object. We're using the -Filter parameter with
the Get-ChildItem cmdlet so that the command only returns files with a .jpg extension.
The items returned from the Get-ChildItem cmdlet are FileInfo objects which contain
several properties that include detailed information about each file, such as the filename
and the full path to the file.

As we loop through each photo in the collection, you can see that inside the loop we're casting
the output from Get-Content (using the gc alias) to [Byte[]] and storing the result in
the $data variable. We can determine the path to the file using the FullName property of
the FileInfo object that represents the current jpeg file being processed in the loop. We
then use the Import-RecipientDataProperty cmdlet to import the data for the current
user in the loop. The BaseName property of a FileInfo object returns the file name without
the extension; therefore we use this property value to identify which user we're importing the
photo for when executing the Import-RecipientDataProperty cmdlet.

See also

Transferring files through remote PowerShell in Chapter 2, Exchange Management
Shell Common Tasks



4
Managing Mailboxes

In this chapter, we will cover:

Reporting on the mailbox size

Working with move requests and performing mailbox moves

Importing and exporting mailboxes

Deleting messages from mailboxes

Managing disconnected mailboxes

Generating mailbox folder reports

Reporting on mailbox creation time

Checking mailbox logon statistics

Setting storage quotas for mailboxes

Finding inactive mailboxes

Detecting and fixing corrupt mailboxes

Restoring items from mailboxes

Introduction
The concept of the mailbox is the core feature of any Exchange solution, and it's likely that
almost everything you do as Exchange administrator will revolve around this component.
Exchange 2010 SP1 includes several new cmdlets that make life much easier for any
Exchange administrator, allowing you to do just about anything you can think of when it comes
to managing mailboxes through scripts and one-liners. This includes tasks such as moving,
importing, exporting, removing, and reconnecting mailboxes, just to name a few. In this
recipe, you will learn how to generate reports, perform bulk mailbox changes, repair corrupt
mailboxes, and more.

























Managing Mailboxes

124

Performing some basic steps
To work with the code samples in this chapter, follow these steps to launch the Exchange
Management Shell:

1.	 Log onto a workstation or server with the Exchange Management Tools installed.

2.	 Open the Exchange Management Shell by clicking on Start | All Programs |
Exchange Server 2010.

3.	 Click on the Exchange Management Shell shortcut.

Reporting on the mailbox size
Using cmdlets from both the Exchange Management Shell and Windows PowerShell gives us
the ability to generate detailed reports. In this recipe, we will use these cmdlets to report on
all of the mailboxes within an organization and their total size.

How to do it...
1.	 Use the following one-liner to generate a report of each mailbox in the organization

and the total mailbox size:
Get-MailboxDatabase | Get-MailboxStatistics |
 ?{!$_.DisconnectDate} |
 Select-Object DisplayName,TotalItemSize

2.	 Pipe the command even further to export the report to a CSV file that can be opened
and formatted in Excel:
Get-MailboxDatabase | Get-MailboxStatistics |
 ?{!$_.DisconnectDate} |
 Select-Object DisplayName,TotalItemSize |
 Export-CSV c:\mbreport.csv -NoType

How it works...
In both commands, we're using the Get-MailboxDatabase cmdlet to pipe each database
in the organization to the Get-MailboxStatistics cmdlet. Notice that in the next stage
of the pipeline we are filtering on the DisconnectDate property. Inside the filter we are
using the exclamation (!) character, which is a shortcut for the -not operator in PowerShell.
So we are basically saying, give me all the mailboxes in the organization that are not in a
disconnected state. This can be standard mailboxes as well as archive mailboxes. We then
select the DisplayName and TotalItemSize properties that give us the name and total
mailbox size of each mailbox.

Chapter 4

125

There's more...
When using the first example to view the mailboxes and their total size, you will see the output
in the shell is similar to the following screenshot:

Here you can see that we get the total size in megabytes as well as in bytes. If you find
that this additional information is not useful, you can extend the previous one-liner using a
calculated property:

Get-MailboxDatabase | Get-MailboxStatistics |
 ?{!$_.DisconnectDate} |
 Select-Object DisplayName,
 @{n="SizeMB";e={$_.TotalItemSize.value.ToMb()}} |
 Sort-Object SizeMB -Desc

Running the preceding one-liner will provide output similar to the following:

Notice that we now have a custom property called SizeMB that reports only the mailbox
size in megabytes. We have also sorted this property in descending order and the mailboxes
are now listed from largest to smallest. You can continue to pipe this command down to the
Export-CSV cmdlet to generate a report that can be viewed outside of the shell.

See also

Adding, modifying, and removing mailboxes in Chapter 3, Managing Recipients

Working with move requests and performing mailbox moves





Managing Mailboxes

126

Reporting on mailbox database size in Chapter 6, Mailbox and Public
Folder Databases

Finding the total number of mailboxes in a database in Chapter 6, Mailbox and
Public Folder Databases

Determining the average mailbox size per database in Chapter 6, Mailbox and Public
Folder Databases

Working with move requests and performing
mailbox moves

Even if you performed mailbox moves with PowerShell in Exchange 2007, it's important
that you understand that the process is completely different in Exchange 2010 SP1. There
is a new set of cmdlets available for performing and managing mailbox moves, and the
previously-used Move-Mailbox cmdlet no longer exists. The architecture used by Exchange
to perform mailbox moves uses a new concept known as move requests, which have been
implemented in this latest version. In this recipe, you will learn how to manage move requests
from the Exchange Management Shell.

How to do it...
To create a move request and move a mailbox to another database within the Exchange
organization, use the New-MoveRequest cmdlet, as shown next:

New-MoveRequest –Identity testuser –TargetDatabase DB2

How it works...
Mailbox moves are performed asynchronously with this new method and, unlike using the
Move-Mailbox cmdlet in Exchange 2007, the New-MoveRequest cmdlet does not perform
the actual mailbox move. Mailbox moves are handled by Client Access Servers (CAS) that run
the Mailbox Replication Service (MRS). This is a major improvement because mailbox data
does not move through an administrative workstation when performing a move; instead, the
CAS servers are responsible for transferring the data from one database to another. Not only
does this make mailbox moves faster, but it also allows you to kick off one or more mailbox
moves from any machine in the organization. You can later check on the status of those
move requests from any other machine with PowerShell or the Exchange Management
Tools installed.







Chapter 4

127

When you create a new move request with the New-MoveRequest cmdlet, the command
places a special message in the target mailbox database's system mailbox. The MRS scans
the system mailboxes on a regular basis looking for queued mailbox move requests and, once
they are found, the MRS will start the move process. Once the move has been completed, a
record of the mailbox move is saved and can be viewed using the Get-MoveRequest cmdlet.

This recipe only covers local move requests that are performed within
an Exchange organization. It is possible to use the New-MoveRequest
cmdlet to perform a mailbox move across Active Directory forest
boundaries. For more details, see Managing Remote Move Requests on
TechNet at the following URL: http://technet.microsoft.com/
en-us/library/ff841978.aspx.

If you will be automating mailbox moves using the Exchange Management Shell, it is likely
that you will be doing so in bulk. The following example shows how you can move all of the
mailboxes from one database to another:

Get-Mailbox -Database DB1 | New-MoveRequest –TargetDatabase DB2

In this example, we are retrieving all of the mailboxes in the DB1 database and creating
a new move request for each one that will then be moved to the target database of DB2.
The -TargetDatabase parameter is actually an optional parameter. If you have multiple
mailbox databases in your organization, you can omit the -TargetDatabase parameter
in the previous command, and the mailboxes will be moved evenly across the available
mailbox databases, as long as those databases have not been suspended or excluded from
provisioning and as long as the Mailbox Resources Management Agent is enabled, which is
the default setting.

There's more...
In order to view detailed information about move requests, you can use the Get-
MoveRequestStatistics cmdlet. This will return a great deal of useful information for a
given move request such as the move status, percent complete, the total bytes transferred,
and more. You can also use the -IncludeReport switch parameter when running the
cmdlet to provide a debug level details for mailbox moves. This can be very beneficial when
troubleshooting an issue.

Managing Mailboxes

128

One of the greatest uses of this cmdlet is reporting on the current status of mailbox moves in
progress, especially during large migrations. The following one-liner can be used to gather the
statistics for the currently-running mailbox moves and can be run periodically throughout the
migration to check the status:

Get-MoveRequest |
 ?{$_.Status -ne ‘Completed’} |
 Get-MoveRequestStatistics |
 select DisplayName,PercentComplete,BytesTransferred

The preceding command would produce an output for each mailbox similar to the
following screenshot:

In this example, we're selecting just a few of the properties from the output of the command.
Alternatively, it may be useful to export this information to a CSV file or to mail the results to
an administrator mailbox. Either way, it gives you a method for monitoring the status of your
mailbox moves interactively in the shell or through an automated script.

If you just want to do some basic interactive monitoring from the shell to determine when all
moves are complete, you can use the following code:

while($true) {
 Get-MoveRequest| ?{$_.Status -ne 'Completed'}
 Start-Sleep 5
 Clear-Host
}

The output from this command will give you a view of all the incomplete move requests and
will refresh every five seconds. This is done by using an endless while loop
that runs Get-MoveRequest, waits for five seconds, clears the screen, and starts over
again. Once all moves are completed, just press Ctrl + C to break out of the loop.

Removing the move requests
You cannot perform a move request for a mailbox if there is an existing move request
associated with that mailbox. This is true regardless of the move request status, whether it is
complete, pending, cancelled, or failed. You can use the Remove-MoveRequest to delete an
existing move request for a single mailbox, using the following syntax:

Remove-MoveRequest -Identity testuser -Confirm:$false

Chapter 4

129

If you perform frequent moves you may find it necessary to regularly delete all existing move
requests in the organization. To do this, use the following command:

Get-MoveRequest -ResultSize Unlimited |
 Remove-MoveRequest -Confirm:$false

Keep in mind that stored move requests can provide detailed information that can be used
for monitoring or generating reports for mailbox moves. Make sure you no longer need this
information before removing these move requests from your organization.

Moving the archive mailboxes
Consider the following example. The testuser account has a mailbox in the DB1 database, and
also a personal archive mailbox in the DB1 database. We can use the following command to
move testuser to DB2:

New-MoveRequest testuser -TargetDatabase DB2

In this case, both the primary mailbox and the archive mailbox will be moved to DB2. We
can customize this behaviour by using some additional parameters made available by the
New-MoveRequest cmdlet. For example, if we wanted to only move this user's primary mailbox
and leave the archive mailbox in its current location, we could use the following command:

New-MoveRequest testuser -TargetDatabase DB2 -PrimaryOnly

This command adds the -PrimaryOnly switch parameter, which will indicate to the
New-MoveRequest cmdlet that we do not want to move the archive mailbox but we do
want to move the primary mailbox to the DB2 database. Use the following command
to move only the archive mailbox:

New-MoveRequest testuser -ArchiveOnly -ArchiveTargetDatabase DB2

This time, we have added the -ArchiveOnly switch parameter so that only the archive
mailbox will be moved. The -ArchiveTargetDatabase is also used to specify that we
want to move the archive mailbox to the DB2 database.

Moving the mailboxes in batches
When performing migrations or moving multiple mailboxes in bulk, it can be useful to move
them in batches. The New-MoveRequest cmdlet provides a -BatchName parameter to
group multiple mailbox moves into a single, logical collection. Let's say that we are migrating
multiple mailboxes to several different databases and we want to easily track the mailbox
moves based on a certain criteria:

$mailboxes = Get-Mailbox `
 -RecipientTypeDetails UserMailbox `
 -Database DB1 |
 Get-MailboxStatistics |
 ?{$_.TotalItemSize -gt 2gb}

Managing Mailboxes

130

$mailboxes | %{
 New-MoveRequest -Identity $_.DisplayName `
 -BatchName 'Large Mailboxes' `
 -TargetDatabase DB2
}

Here we are retrieving all mailboxes in the DB1 database that are larger than two gigabytes
and storing the results in the $mailboxes variable. We then pipe the $mailboxes object
to the ForEach-Object cmdlet (using the % alias) and loop through each item. As each
mailbox in the collection is processed within the loop, we create a new move request for
that mailbox, indicating that it should be included in the Large Mailboxes batch and moved
to the DB2 database. At this point, we can easily track the moves in the batch using a simple
one-liner:

Get-MoveRequest -BatchName 'Large Mailboxes'

The preceding command will return each move request included in the Large Mailboxes batch
and will provide several details including the display name, move status, and target database.

Moving mailboxes with corrupt items
When migrating from a previous version of Exchange, or when migrating large mailboxes,
it's not uncommon to run into problems with users that have corrupted items in their mailbox.
You can use the -BadItemLimit parameter to specify the acceptable number of corrupt, or
"bad", items to skip when performing a mailbox move. Keep in mind that if you set
the -BadItemLimit parameter to a value higher than 50 then you need to also use
the -AcceptLargeDataLoss switch parameter, as shown in the following example::

New-MoveRequest -Identity testuser `
-BadItemLimit 100 `
-AcceptLargeDataLoss `
-TargetDatabase DB2

When executing this command, a move request will be created for the testuser mailbox. Up to
100 corrupt items in the source mailbox will be allowed in order to perform a successful move
to the new database. You will see a warning in the shell when using these parameters and any
corrupt items found in the source mailbox will be skipped when the mailbox is moved.

See also
Reporting on the mailbox size

Managing archive mailboxes in Chapter 11, Compliance and Audit Logging

Adding, modifying, and removing mailboxes in Chapter 3, Managing Recipients







Chapter 4

131

Importing and exporting mailboxes
If you have worked with Exchange for a long time, you have probably used utilities such
as ExMerge or the Exchange 2007 Management Shell to import and export data between
mailboxes and PST files. While these tools were useful for their time, they had some
limitations. For example, ExMerge was the main import and export utility starting with
Exchange 5.5 and continuing on to Exchange 2003, but it was difficult to automate. Exchange
2007 included the Import-Mailbox and Export-Mailbox cmdlets that made it easier
to automate these tasks through PowerShell scripts. Unfortunately, the Export-Mailbox
cmdlet required both a 32-bit workstation running the 32-bit version of the Exchange 2007
Management tools and Microsoft Outlook 2003 SP2 or later.

With the release of Exchange 2010 SP1, we have a new set of cmdlets that can be used
to manage the import and export operations for Exchange mailboxes. These new cmdlets
have no dependencies on a management workstation and there is no requirement to install
Outlook to perform these tasks. The Mailbox Replication Service (MRS) that runs on the Client
Access Server (CAS) role introduces a new concept called mailbox import and export requests
that implements this functionality as a server-side process. In this recipe, you will learn how
to configure your environment and use these cmdlets to automate mailbox import and
export requests.

How to do it...
1.	 Let's start off by exporting a mailbox to a PST file. First, you need to add an RBAC role

assignment for your account. Assign the Mailbox Import Export role to your account
using the following command. You will need to restart the shell after running this
command in order for the assigned cmdlets to be visible:
New-ManagementRoleAssignment –Role "Mailbox Import Export" `
-User administrator

2.	 Next, you will need to create a network share that can be used to store the PST file.
When you create the share, make sure that the Exchange Trusted Subsystem group in
Active Directory has at least read/write NTFS permissions on the folder, and also has
at least modify share permissions.

3.	 The last step is to use the New-MailboxExportRequest cmdlet to export the data
for a mailbox, using the following syntax:

New-MailboxExportRequest –Mailbox testuser `
–Filepath \\contoso-ex01\export\testuser.pst

Managing Mailboxes

132

How it works...
By default, the built-in Mailbox Import Export role is not assigned to anyone, including
the administrators. This means that, out of the box, you will not be able to run the *-
MailboxExportRequest cmdlets, even if you are a member of the Organization
Management role group. Therefore, the first step in the process is to assign your account to
this role using the New-ManagementRoleAssignment cmdlet. In the previous example,
you can see that we created a direct assignment to the administrator's user account. This
can be your administrative account, or an actual role group that you are already a member
of. If needed, you can specify that the role be assigned to a role group or an Active Directory
security group using the -SecurityGroup parameter.

The location used for imported and exported PSTs must be a valid UNC path that the
Exchange Trusted Subsystem group has access to. This is because the cmdlets that you
execute are actually running under the security context of the Exchange servers in this group
group. This is required to implement the new RBAC security model, and, therefore, the Share
and NTFS permissions must be assigned to this group and not your user account specifically.

The syntax for the import and export commands is fairly straightforward. Looking at the
command used in the previous example, you can see that we were able to easily create
an export request for a specified mailbox using a specific file share on the network.

Using additional parameters, we can do other interesting things, such as only exporting
specific folders of a mailbox to a PST:

New-MailboxExportRequest -Mailbox testuser `
-IncludeFolders "Sent Items" `
-FilePath \\contoso-ex01\export\testuser_sent.pst `
-ExcludeDumpster

As you can see from the command, we are only exporting the Sent Items folder from the
testuser mailbox and we are excluding the items in the dumpster.

Here is another example that exports data from an archive mailbox:

New-MailboxExportRequest -Mailbox testuser `
-ContentFilter {Received -lt "09/01/2010"} `
-FilePath \\contoso-ex01\export\testuser_archive.pst `
-ExcludeDumpster `
-IsArchive

Here we are specifying that we want to only export data from the archive mailbox by using the
-IsArchive switch parameter. In addition, we are limiting the amount of data exported from
the mailbox using the -ContentFilter parameter. We are only including items that were
received before 09/01/2010. In addition to the Received property, the -ContentFilter
parameter allows you to highly customize the data that is exported.

Chapter 4

133

You can create upto 10 mailbox export requests per mailbox without
manually specifying a name for the export request. Once you have
reached this limit, you either need to specify a unique name for the
export request, or delete some of the previous export requests using the
Remove-MailboxExportRequest cmdlet.

Using the -ContentFilter parameter, you can filter the recipient, types of attachments
that were included in a message, text in the body, and more. For a complete list of available
property names, check out the Filterable Properties for the -ContentFilter Parameter on
TechNet at the following URL:

http://technet.microsoft.com/en-us/library/ff601762.aspx

There's more…
You can use the Get-MailboxImportRequest and Get-MailboxExportRequest
cmdlets to view the status of your import and export tasks. To view all requests, simply run the
appropriate Get-* cmdlet. If you want to narrow your search, you can use the -Mailbox and
-Status parameters:

Get-MailboxExportRequest -Mailbox testuser -Status Failed

This command will return all of the export requests made for the testuser mailbox that have
a failed status. You can use the same syntax with the import version of this cmdlet to review
similar information.

When it comes to advanced reporting of import or export requests, there are two
cmdlets available that you can use. Get-MailboxExportRequestStatistics
and Get-MailboxImportRequestStatistics can be used to provide detailed
information about the tasks associated with a particular operation. For example, take
a look at the following script:

foreach($i in Get-MailboxExportRequest) {
 Get-MailboxExportRequestStatistics $i |
 select-object SourceAlias,Status,PercentComplete
}

This will provide a brief report for each export request. This can be useful when you are
performing multiple import or export operations and need to check the status of each one.

Managing Mailboxes

134

Importing data into mailboxes
The New-MailboxImportRequest cmdlet works similarly to the New-
MailboxExportRequest cmdlet. Most of the parameters shown in the previous
examples are available with both cmdlets. For example, we can import data into
a specific folder in an inbox with the following command:

New-MailboxImportRequest -Mailbox sysadmin `
-IncludeFolders "Sent Items" `
-FilePath \\contoso-ex01\export\testuser_sent.pst

This command imports the testuser PST into the Sent Items folder of the sysadmin mailbox.
In addition to exporting data from archive mailboxes, we can also import data into archive
mailboxes with the -IsArchive switch parameter.

Taking it a step further
Let's create a script that will export all of the mailboxes in your organization to individual
PST files stored in a central location. Create a new file called Export.ps1 and save it in the
C:\ drive. Using a text editor, open the file and add the following code, and then save the file:

param($Path, $BatchName)
 foreach($i in Get-Mailbox -ResultSize Unlimited) {
 $filepath = Join-Path -Path $Path -ChildPath "$($_.alias).pst"
 New-MailboxExportRequest -Mailbox $i `
 -FilePath $filepath `
 -BatchName $BatchName
}

This script provides a couple of parameters used to control the behavior of the mailbox export
requests. First, the -Path parameter will allow us to specify a UNC share for our exported
mailboxes. Secondly, the -BatchName parameter is used to logically group the export
requests using a friendly common name.

As we loop through each mailbox, we are doing a few things. We are using the value of the
-Path parameter as the root directory for the PST file, and we are using the alias of the
mailbox for the base filename. This will ensure that each PST file is stored centrally in the
required location using a unique filename that matches the mailbox alias.

To execute the preceding script, the command might look something like this:

$batch = "Export for (Get-Date).ToShortDateString()"
.\Export.ps1 -Path \\contoso\ex01\export -BatchName$batch

Chapter 4

135

This will create each mailbox export request using a batch name such as Export for
10/26/2010. Then you can easily check the status of all the mailbox export requests that
are grouped into that batch name using the following command:

Get-MailboxExportRequestStatistics |
 ?{$_.BatchName -eq “Export for 10/26/2010”} |
 select SourceAlias,Status,PercentComplete

This one-liner will give you a brief report on each of the export requests performed in the
batch created on 10/26/2010 that can be reviewed in the shell, exported to a text or CSV
file, or e-mailed to another user.

See also

Exporting reports to text and CSV files in Chapter 2, Exchange Management Shell
Common Tasks
Sending SMTP e-mails through PowerShell in Chapter 2, Exchange Management
Shell Common Tasks

Deleting messages from mailboxes
At one point or another, you are bound to find yourself in a situation where you need to remove
an e-mail message from one or more mailboxes. This may be due to a message being sent
to one of your distribution lists or as a part of some kind of spam or virus-related outbreak. If
you have worked with Exchange 2007, you may be familiar with the Export-Mailbox cmdlet
that could previously be used to perform this task. With Exchange 2010 SP1, we now have
a new cmdlet called Search-Mailbox that can be used to clean up the mailboxes in our
environment. This cmdlet includes some new features as well, and in this recipe we will take
a look at how to use it to delete messages from mailboxes.

How to do it...
1.	 If you have not already done so, you will need to use the following command syntax to

assign your account the Mailbox Import Export RBAC role. You will need to restart the
shell after running this command in order for the assigned cmdlet to be visible:
New-ManagementRoleAssignment –Role "Mailbox Import Export" `
-User administrator





Managing Mailboxes

136

2.	 Next, use the Search-Mailbox cmdlet��� to delete items from a mailbox. In this
example, we will use a search query to delete items with a specific phrase in the
subject line:
Search-Mailbox -Identity testuser `
-SearchQuery "Subject:'Your mailbox is full'" `
-DeleteContent `
-Force

How it works...
The key to deleting items from a mailbox is the -DeleteContent switch parameter used
with the Search-Mailbox cmdlet. When executing the command in the previous example,
any message matching the subject specified in the search query will be deleted without
confirmation and output similar to the following will be displayed:

As you can see, there is a lot of useful information returned that indicates whether or not
the delete operation was successful, how many items were deleted, the total item size of the
deleted messages, and so on.

Keep in mind that the Search-Mailbox cmdlet will include messages in a user's archive
mailbox and the dumpster within their primary mailbox as part of the search. To exclude
these, use the following syntax:

Search-Mailbox -Identity testuser `
-SearchQuery "Subject:'free ipad'" `
-DoNotIncludeArchive `
-SearchDumpster:$false `
-DeleteContent `
-Force

Chapter 4

137

There's more…
The -SearchQuery parameter is used to specify the criteria of your search using Advanced
Query Syntax (AQS), which is the same query syntax used with Windows Search, Exchange
Search, and the Instant Search box in Outlook. When composing a command, you want to use
the property name, followed by a colon, and then the text you want to query. There are several
AQS properties that can be used, some of the more common properties are Subject, Body,
Sent, To, From, and Attachment. See Appendix B at the end of this book for a list of AQS
properties and common search queries.

Running reports before deleting data
Of course, permanently deleting data from someone's mailbox is not something that
should be done without total confidence. If you are unsure of the results, or you just want
to cover your bases, you can use the following syntax to generate a report of the items that
will be deleted:

Get-Mailbox |
Search-Mailbox -SearchQuery "from:spammer@contoso.com" `
-EstimateResultOnly | Export-CSV C:\report.csv -NoType

This example uses the -EstimateResultsOnly parameter when executing the
Search-Mailbox cmdlet. You can see here that we are executing a one-liner that will
search each mailbox for messages sent from spammer@contoso.com. The estimate for
the result is exported to a CSV file that you can use to determine how much data will be
cleaned up out of each individual mailbox.

If you need a more detailed report, we can use the logging capabilities of the
Search-Mailbox cmdlet. The following command performs a search on the testuser
mailbox and generates some reports that we can use to determine exactly what will
be deleted:

Search-Mailbox -Identity testuser `
-SearchQuery "Subject:'Accounting Reports'" `
-TargetMailbox sysadmin `
-TargetFolder "Delete Log" `
-LogOnly `
-LogLevel Full

This is made possible by the -LogOnly switch parameter. This will generate a message in
a target mailbox folder that you specify. In this example, you can see that the target folder
for the report is the Delete Log folder in the sysadmin mailbox. This report will provide a
summary of the items that will be deleted in the search if you were to run this command with
the -DeleteContent parameter. When setting the -LogLevel to parameter value to Full,
a ZIP file, containing a CSV report listing each of the items returned by the search will be
attached to this message.

Managing Mailboxes

138

Deleting messages in bulk
Most likely, you will need to delete items from several mailboxes in a bulk operation. The
following one-liner can be used to delete messages from every mailbox in the organization:

Get-Mailbox -ResultSize Unlimited |
 Search-Mailbox -SearchQuery 'from:spammer@contoso.com' `
 -DeleteContent -Force

In this example, we are piping all the mailboxes in the organization to the Search-Mailbox
cmdlet. Any messages sent from the spammer@contoso.com e-mail address will be deleted.

See also
Restoring deleted items from mailboxes

Performing a discovery search in Chapter 11, Compliance and Audit Logging

Deleting e-mail items from a mailbox with EWS in Chapter 13, Scripting with the
Exchange Web Services Managed API

Managing disconnected mailboxes
Exchange allows us to disassociate a mailbox from an Active Directory user account, and later
reconnect that mailbox to an Active Directory account. For some organizations, a mailbox
database has a low deleted mailbox retention setting, and once a mailbox has been removed
from a user, it is forgotten about and purged from the database once the retention period
elapses. However, if you maintain your deleted mailboxes for any amount of time, having the
ability to retrieve these mailboxes after they have been removed from a user can be very
helpful at times. In this recipe, we will take a look at how to manage disconnected mailboxes
using the Exchange Management Shell.

How to do it...
To reconnect a disconnected mailbox to a user account, use the Connect-Mailbox cmdlet.
The following example reconnects a disconnected mailbox to the tuser1009 account the
Active Directory:

Connect-Mailbox -Identity ‘Test User’ `
-Database DB1 `
-User ‘contoso\tuser1009’ `
-Alias tuser1009







Chapter 4

139

How it works...
When you use the Remove-Mailbox or Disable-Mailbox cmdlets to delete a mailbox for
a user, that mailbox can actually be retained in its source database for a period of time. This
is determined by the deleted mailbox retention setting of the database the mailbox resides in.
For example, let's say that the deleted mailbox retention for the database hosting the testuser
mailbox is set to 30 days. After the testuser mailbox has been deleted, this gives us 30 days
to reconnect that mailbox to an Active Directory user account before the retention period is
met and the mailbox is permanently purged.

The -Identity parameter, used with the Connect-Mailbox cmdlet, specifies the mailbox
that should be connected to an Active Directory account and can accept the MailboxGuid,
DisplayName, or LegacyExchangeDN values for input. Finding this information requires
a little digging, as there is no Get cmdlet when it comes to searching for disconnected
mailboxes. You can find this information with the Get-MailboxStatistics cmdlet:

Get-MailboxDatabase |
 Get-MailboxStatistics |
 ?{$_.DisconnectDate} |
 fl DisplayName,MailboxGuid,LegacyExchangeDN,DisconnectDate

This command will search each database for mailboxes that have a DisconnectDate
defined. The values that can be used to identify a disconnected mailbox when running the
Connect-Mailbox cmdlet will be displayed in the list format.

It is possible that there could be multiple disconnected mailboxes with the
same DisplayName. In this case, you can use the MailboxGuid value
to identify the disconnected mailbox that should be reconnected.

The previous command will return both disconnected mailboxes and also disconnected
archive mailboxes, so you may need to filter those out if you have implemented personal
archives in your environment. For example:

Get-MailboxDatabase |
 Get-MailboxStatistics |
 ?{$_.DisconnectDate -and $_.IsArchiveMailbox -eq $false} |
 fl DisplayName,MailboxGuid,LegacyExchangeDN,DisconnectDate

This one-liner will search for disconnected mailboxes in all databases that do not have their
IsArchiveMailbox property set to $true.

Managing Mailboxes

140

All of these commands can be a little cumbersome to type, and if you use them often, it might
make sense to write some custom code that makes this easier. Take a look at the following
function that has been written to automate the process:

function Get-DisconnectedMailbox {
 param(
 [String]$Name = '*',
 [Switch]$Archive
)

 $databases = Get-MailboxDatabase
 $databases | %{
 $db = Get-Mailboxstatistics -Database $_ |
 ?{$_.DisconnectDate -and $_.IsArchiveMailbox -eq $Archive}

 $db | ?{$_.displayname -like $Name} |
 Select DisplayName,
 MailboxGuid,
 Database,
 DisconnectReason
 }
}

This function can be added to your PowerShell profile, and it will then be available every time
you start the Exchange Management Shell. You can then run the function just like a regular
cmdlet. By default, if you run the cmdlet without parameters all of the disconnected mailboxes
in your environment will be returned. You can also narrow your search using wildcards, as
shown in the following screenshot:

Here you can see that we have used a wildcard with the function to find all the disconnected
mailboxes starting with the letter d. To use the function to find disconnected archive
mailboxes, simply use the -Archive switch parameter.

Chapter 4

141

There's more…
With the introduction of move requests in Exchange 2010 SP1, some new functionality has
been added that you will need to be aware of when managing disconnected mailboxes. When
you use the New-MoveRequest cmdlet to move a mailbox from one database to another, the
mailbox in the source database is not deleted, and instead, is disconnected and marked as
Soft-Deleted. You can check the value of the DisconnectReason property when
working with a disconnected mailbox using the Get-MailboxStatistics cmdlet. The
Get-DisconnectedMailbox function included earlier in this recipe will also return the
value for this property for each disconnected mailbox.

If you move or remove mailboxes frequently, you may end up with hundreds or even thousands
of disconnected mailboxes at any given time. Disconnected mailboxes can be purged using
the Remove-StoreMailbox cmdlet by specifying the identity of the mailbox, the database it
is located in, and the disconnect state that it is in, as shown in the following example:

Remove-StoreMailbox -Identity 1c097bde-edec-47df-aa4e-535cbfaa13b4 `
-Database DB1 `
-MailboxState Disabled `
-Confirm:$false

Keep in mind that, if you want to delete every single disconnected mailbox in your environment,
you will need to run the Remove-StoreMailbox for mailboxes in both the Disabled and
Soft-Deleted state. If you want to purge every disconnected mailbox from the organization,
regardless of the location or disconnect reason, you can use the following code:

$mb = Get-MailboxDatabase |
 Get-MailboxStatistics |
 ?{$_.DisconnectDate}

foreach($i in $mb) {
 Remove-StoreMailbox -Identity $i.MailboxGuid `
 -Database $i.Database `
 -MailboxState $i.DisconnectReason.ToString() `
 -Confirm:$false
}

Mailboxes within a recovery database will be reported by the Get-MailboxStatistics
cmdlet as disconnected and disabled. You cannot purge them with the Remove-
StoreMailbox cmdlet; if you try to do so you will get an error.

Managing Mailboxes

142

See also

Managing archive mailboxes in Chapter 11, Compliance and Audit Logging

Setting up a profile in Chapter 1, PowerShell Key Concepts

Restoring data from a recovery database in Chapter 6, Mailbox and Public
Folder Databases

Generating mailbox folder reports
The ability to generate reports based on individual mailbox folders can be extremely
useful at times. The Exchange Management Shell provides a versatile cmdlet called
Get-MailboxFolderStatistics that allows you to obtain detailed information
about specific mailbox folders such as the Inbox, Sent Items, Deleted Items, and more.
Various pieces of information about these folders can be obtained including the total
number of items, the size of the folder, and the folder ID. In this recipe, you will learn
how to generate reports using the Get-MailboxFolderStatistics cmdlet.

How to do it...
To generate a report for the folders within a user's mailbox, use the following command:

Get-MailboxFolderStatistics -Identity testuser -FolderScope All |
 select Name,ItemsInFolder,FolderSize |
 Export-CSV C:\MB_Report.csv -NoType

How it works...
In this example, we are executing a one-liner that generates a report of the mailbox folder
statistics for the testuser mailbox. We specify All for the -FolderScope so that the cmdlet
retrieves information about each folder in the mailbox. From the output, we select a few
properties and then export the results to a CSV file.

The information returned by this command can be useful when troubleshooting mailbox quota
issues. For example, say you have a user that has reached their mailbox quota limit. We can
view the output from the previous command instead of exporting it to a CSV file, as shown in
the following screenshot:







Chapter 4

143

I������������������������������������ n this example, it's clear that the Inbox folder contains the largest amount of data. You can
use this information to inform the user of the current status and recommend they delete some
of the data from the Inbox folder.

There's more…
You can run the Get-MailboxFolderStatistics cmdlet against specific folders by
specifying the appropriate value for the -FolderScope parameter. There are nearly twenty
well-known mailbox folders that can be assigned to the -FolderScope parameter. To view a
complete list, run the following command:

Get-Help Get-MailboxFolderStatistics -Parameter FolderScope

Taking it a step further
We can use this cmdlet in a custom function to generate more sophisticated reports.
For example, the following function can be used to generate a report detailing the usage
of the Deleted Items folder for one or more mailboxes:

function Get-MailboxDeletedItemStats {
 param([string]$id)

 $folder = Get-MailboxFolderStatistics $id `
 -FolderScope DeletedItems

 $deletedFolder = $folder.FolderSize.ToMb()
 $mb = (Get-MailboxStatistics $id).TotalItemSize.value.ToMb()

 if($deletedFolder -gt 0 -and $mb -gt 0) {
 $percentDeleted = "{0:P0}" -f ($deletedFolder / $mb)
 }
 else {
 $percentDeleted = "{0:P0}" -f 0
 }

 New-Object PSObject -Property @{

Managing Mailboxes

144

 Identity = $id
 MailboxSizeMB = $mb
 DeletedItems = $folder.ItemsInFolder
 DeletedSizeMB = $deletedFolder
 PercentDeleted = $percentDeleted
 }
}

This function combines both the Get-MailboxFolderStatistics and Get-
MailboxStatistics cmdlets to determine the total size of the Deleted Items folder
and the total size of the mailbox. Several pieces of information are returned, including the
percentage of total mailbox size that is comprised of the deleted items. You can add this
function to your profile and it will be automatically added to your session every time you start
the shell. You can then run the function just like a cmdlet against a single mailbox, as shown
in the following screenshot:

This function can also be run against every mailbox, just like any other cmdlet:

foreach($mailbox in (Get-Mailbox -ResultSize Unlimited)) {
 Get-MailboxDeletedItemStats $mailbox
}

The output from this function can be viewed interactively in the shell or exported to a CSV or
text file for later review.

See also

Using the help system in Chapter 1, PowerShell Key Concepts

Creating custom objects in Chapter 1, PowerShell Key Concepts
Exporting reports to text and CSV files in Chapter 2, Exchange Management Shell
Common Tasks







Chapter 4

145

Reporting on mailbox creation time
If you work in an environment that frequently hires new employees, you may have a process
in place to provision your mailboxes in bulk. You may have already used this book to help you
do that. Now you might like to be able to generate reports or retrieve a list of mailboxes that
were created during a specific time frame or after a specific date. In this recipe, you will learn
a couple of ways to do that using the Exchange Management Shell.

How to do it...
Let's start off with a simple example. To generate a report of mailboxes created in the last
week, execute the following command:

Get-Mailbox -ResultSize Unlimited |
 ?{$_.WhenMailboxCreated –ge (Get-Date).AddDays(-7)} |
 Select DisplayName, WhenMailboxCreated, Database |
 Export-CSV C:\mb_report.CSV -NoType

How it works...
This one-liner searches through every mailbox in the organization checking the
WhenMailboxCreated property. If the date is within the last seven days, we select
a few useful properties for each mailbox and export the list to a CSV file.

Mailboxes also have a property called WhenCreated, so why don't we just check this property
instead? This is because the WhenCreated property is an Active Directory attribute that
stores the creation date for the user account and not the mailbox. It is quite possible that your
user accounts are created in Active Directory long before they are mailbox-enabled, so using
this property may not be reliable in your environment.

There's more...
The WhenMailboxCreated property returns a DateTime object that can be compared
to other DateTime objects. In the previous example, we used the following filter with the
Where-Object cmdlet:

$_.WhenMailboxCreated –ge (Get-Date).AddDays(-7)

When running the Get-Date cmdlet without any parameters, a DateTime object for the
current date and time is returned. Every DateTime object provides an AddDays method that
can be used to create a new DateTime object. So, to get the DateTime from seven days ago,
we simply provide a negative value when calling this method and the result is the date and
time from a week ago. We compare the WhenMailboxCreated date to this value, and, if it is
greater than or equal to the date seven days ago, the command retrieves the mailbox.

Managing Mailboxes

146

Y����������������� ou can use other DateTime properties when performing a comparison. For example, let's
say last month was March, the third month of the year. We can use the following command to
retrieve all the mailboxes created in March:

Get-Mailbox | ?{$_.WhenMailboxCreated.Month-eq 3}

This gives us the ability to generate very customizable reports, such as reporting only on
mailboxes that were created on Mondays in October:

Get-Mailbox | ?{
 ($_.WhenMailboxCreated.DayOfWeek -eq "Monday") -and `
 ($_.WhenMailboxCreated.Month -eq 10)
}

As you can see, there is a lot of flexibility here that you can use to customize the output to
meet your needs. This is a good example of how we can extend the Exchange Management
Shell by tapping into the capabilities of the .NET Framework.

See also

Working with variable and objects in Chapter 1, PowerShell Key Concepts

Exporting reports to text and CSV files in Chapter 2, Exchange Management Shell
Common Tasks

Checking mailbox logon statistics
If you have worked with Exchange 2000 or 2003, you probably remember that you could
easily view several mailbox-related details for each mailbox under the Logons node of the
Exchange System Manager. These details included the user-name, last access time, and
more. When viewing mailboxes in the Exchange Management Console in Exchange 2010,
these details are not displayed. In this recipe, we will take a look at how we can gather some
of this information the Get-LogonStatistics cmdlet.

How to do it...
The following command will provide a logon statistics report for all mailboxes in
the organization:

Get-MailboxServer |
 Get-LogonStatistics |
 Select UserName,ApplicationId,ClientVersion,LastAccessTime





Chapter 4

147

How it works...
The Get-LogonStatistics cmdlet can be useful for doing some basic checks on client
logons, but the information returned from the previous command can be a little confusing and
might seem inaccurate. For example, the ClientVersion property returned for each logon
will always be reported as the same version number for end-user logons. This is due to the
fact that client connections go through the Client Access role in Exchange 2010. Whether or
not this will be fixed in future versions is unknown.

The ApplicationId property will indicate whether clients are connected via RPC or through
Outlook Web App. Keep in mind that, depending on the client, multiple connections could be
reported. Client's applications initiate multiple connections, so you will likely notice that this
cmdlet will return anywhere from three to five records for each user connected to a mailbox.
You will also see connections where the username is reported as the name of one or more
databases or a system mailbox. These are generated by transport servers and mailbox
assistant agents.

There's more...
There are a couple of other ways you can run this cmdlet. First, you can generate a report for
an individual user. Instead of selecting individual properties, you can pipe the command to
Format-List with a wildcard to display all of them:

Get-LogonStatistics -Identity testuser | Format-List *

You can also retrieve the logon statistics for a particular database using the
-Database parameter:

Get-LogonStatistics -Database DB1

When users access their mailbox through Outlook Web App you may find that logon
statistics for these sessions are missing or not what you would expect when running the
Get-LogonStatistics cmdlet. This is because OWA users are not continuously connected
to the Exchange server and the OWA client only connects to the server as needed to perform
a task.

See also
Reporting on client access server connections

Managing Mailboxes

148

Setting storage quotas for mailboxes
One thing that has been around for several versions of Exchange is the concept of storage
quotas. Using quotas, we can control the size of each mailbox to ensure that our mailbox
databases don't grow out of control. In addition to setting storage quotas at the ���������������� database level,
we can also configure storage quotas on a per-mailbox basis. In this recipe, we will take a look
at how to configure mailbox storage quotas from the Exchange Management Shell.

How to do it...
Use the following command syntax to set custom limits on mailbox:

Set-Mailbox -Identity testuser `
-IssueWarningQuota 1gb `
-ProhibitSendQuota 1.5gb `
-ProhibitSendReceiveQuota 2gb `
-UseDatabaseQuotaDefaults $false

How it works...
The Set-Mailbox cmdlet is used to configure the quota warning and send and receive limits
for each mailbox. In this example, we are setting the -IssueWarningQuota parameter to
one gigabyte. When the user's mailbox exceeds this size, they will receive a warning message
from the system that they are approaching their quota limit.

The -ProhibitSendQuota is set to 1.5 gigabytes, and when the total mailbox size exceeds
this limit, the user will no longer be able to send messages, although new incoming e-mail
messages will still be received.

We've set the -ProhibitSendReceiveQuota parameter value to two gigabytes. Once this
mailbox reaches this size, the user will no longer be able to send or receive mail.

It's important to point out here that we have disabled the option to inherit the storage quota
limits from the database by setting the -UseDatabaseQuotaDefaults to $false. If this
setting were set to $true, the custom mailbox quota settings would not be used.

There's more...
By default, mailboxes are configured to inherit their storage quota limits from their parent
database. In most cases, this is ideal since you can centrally control the settings for each
mailbox in a particular database. However, it is unlikely that having single quota limit for the
entire organization will be sufficient. For example, you will probably have a group of managers,
VIP users, or executives that require a larger amount of space for their mailboxes.

Chapter 4

149

Even though you could create a separate database for these users with higher quota values,
this might not make sense in your environment, and instead, you may want to override the
database quota defaults with a custom setting on an individual basis. Let's say that all
users with their Title set to Manager should have a custom quota setting. We can use
the following commands to make this change in bulk:

Get-User -RecipientTypeDetails UserMailbox `
-Filter {Title -eq 'Manager'} |
 Set-Mailbox -IssueWarningQuota 2gb `
 -ProhibitSendQuota 2.5gb `
 -ProhibitSendReceiveQuota 3gb `
 -UseDatabaseQuotaDefaults $false

What we are doing here is searching Active Directory with the Get-User cmdlet and filtering
the results so that only mailbox-enabled users with their title set to Manager are returned.
This command is piped further to get the Set-Mailbox cmdlet which configures the mailbox
quota values and disables the option to use the database quota defaults.

Finding inactive mailboxes
If you support a large Exchange environment, it's likely that users come and go frequently. In
this case, it's quite possible over time that you will end up with multiple unused mailboxes. In
this recipe, you will learn a couple of techniques used when searching for inactive mailboxes
with the Exchange Management Shell.

How to do it...
The following command will retrieve a list of mailboxes that have not been logged on to in over
90 days:

$mailboxes = Get-Mailbox -ResultSize Unlimited
$mailboxes | ?{
 (Get-MailboxStatistics $_).LastLogonTime -and `
 (Get-MailboxStatistics $_).LastLogonTime -le `
 (Get-Date).AddDays(-90)
}

Managing Mailboxes

150

How it works...
You can see here that we're retrieving all of the mailboxes in the organization using
the Get-Mailbox cmdlet and storing the results in the $mailboxes variable. We
then pipe this collection to the Where-Object cmdlet (using the ? alias) and use the
Get-MailboxStatistics cmdlet to build a filter. This first part of this filter indicates
that we only want to retrieve mailboxes that have a value set for the LastLogonTime
property. If this value is $null, it indicates that these mailboxes have never been used, and
have probably been recently created, which means that they will probably soon become active
mailboxes. The second part of the filter compares the value for the LastLogonTime. If that
value is less than or equal to the date 90 days ago then we have a match and the mailbox will
be returned.

There's more...
Finding unused mailboxes in your environment might be as simple as searching for disabled
user accounts in Active Directory that are mailbox-enabled. If that is the case, you can use the
following one-liner to discover these mailboxes:

Get-User -ResultSize Unlimited -RecipientTypeDetails UserMailbox |
 ?{$_.UserAccountControl -match 'AccountDisabled'}

This command uses the Get-User cmdlet to search through all of the mailbox-enabled
users in Active Directory. Next, we filter the results even further by piping those results to the
Where-Object cmdlet to find any mailboxes where the UserAccountControl property
contains the AccountDisabled value, indicating that the associated Active Directory user
account has been disabled.

Detecting and fixing corrupt mailboxes
For years, Exchange administrators have used the Information Store Integrity Checker, more
commonly known as the ISInteg utility, to detect and repair mailbox database corruption.
You may have used ISInteg in previous versions of Exchange to correct a corruption
issue preventing a user from opening their mailbox or from opening a particular message.
Unfortunately, in order to repair a mailbox with ISInteg, you had to dismount the database
hosting the mailbox, taking it offline for everyone else that had a mailbox homed on that
database. Obviously, taking an entire mailbox database down for maintenance when it is
only affecting one user is less than ideal. Exchange 2010 SP1 alleviates this pain point by
introducing a new cmdlet that replaces the ISInteg tool and allows you to detect and repair
mailbox corruption while the database is online and mounted. In this recipe, we will take a
look at how to use these cmdlets and automate the detection and repair of corrupt mailboxes.

Chapter 4

151

How to do it...
1.	 To detect corruption for a single mailbox, use the New-MailboxRepairRequest

cmdlet with the following syntax:
New-MailboxRepairRequest -Mailbox testuser `
-CorruptionType SearchFolder, ProvisionedFolder,FolderView `
-DetectOnly

2.	 The -DetectOnly switch parameter indicates that we do not want to perform
a repair and that we only want to check for corruption within this mailbox. To
perform a repair, simply remove the -DetectOnly switch parameter from the
previous command:

New-MailboxRepairRequest -Mailbox testuser `
-CorruptionType SearchFolder, ProvisionedFolder,FolderView

How it works...
The New-MailboxRepairRequest cmdlet can be run against a single mailbox or an
entire mailbox database. In the previous example, we specified the testuser mailbox using
the -Mailbox parameter. If needed, we could instead use the -Database parameter and
provide the name of a database that we want to check or repair.

The -CorruptionType parameter accepts several values that are outlined as follows:

SearchFolder: Used to detect and repair links to folders that no longer exist

AggregateCounts: Specifies that aggregate counts on folders that are not indicating
the correct values should be repaired or detected

FolderView: Used to detect and repair views with incorrect content

ProvisionedFolder: Specifies that links between provisioned and unprovisioned
folders should be detected and repaired

In the previous example, we specified the SearchFolder, ProvisionedFolder, and
FolderView corruption types when performing mailbox repair detection for the testuser
mailbox. The -CorruptionType parameter is required, so you need to provide at least one
of the preceding values when running the cmdlet. If you want to check for all of them, just
separate each corruption type with a comma when assigning the values to the parameter,
as shown previously.

As always, we can take advantage of the PowerShell pipeline to perform operations in
bulk. Perhaps you want to perform detection on a group of mailboxes, but not on every
mailbox in the entire database. Just pipe the results of the Get-Mailbox cmdlet to the
New-MailboxRepairRequest cmdlet:









Managing Mailboxes

152

Get-Mailbox -OrganizationalUnit uss.local/sales |
 New-MailboxRepairRequest `
 -CorruptionType SearchFolder,ProvisionedFolder,FolderView `
 –DetectOnly

In this example, we're only performing detection on mailboxes in the Sales OU. This is just
one example of how you can do this. Use the -Filter parameter in combination with Get-
Mailboxor the Where-Object cmdlet to limit which mailboxes are sent down the pipeline.

The New-MailboxRepairRequest cmdlet can also be used against archive mailboxes
when using the -Archive switch parameter.

There's more...
After working with mailbox move requests and mailbox import requests, you might assume
that there is an entire set of cmdlets that allow you to get, set, or remove mailbox repair
requests, but that is not the case as of Exchange 2010 SP1. In this version, all we have
to work with is a single cmdlet: New-MailboxRepairRequest. Fortunately, detailed
information about the mailbox repair requests are written to the event log so you can still
check the status of these operations, but it will either require that you manually check the
logs or write some PowerShell code that will check the logs for you.

The following Event IDs will be written to the application log, depending on the parameters
used with your command:

10047: A mailbox repair request has started

10048: The repair request successfully completed

10049: The mailbox or database repair request failed

10050: The mailbox repair request task skipped a mailbox

10059: A database-level repair request has started

10062: Corruption was detected

These are some of the more common Events that you will want to keep an eye on.
For a complete list, visit the TechNet documentation at the following URL:

http://technet.microsoft.com/en-us/library/ff628334.aspx

In order to provide some automation when reviewing the logs, we can use the
Get-EventLog cmdlet, which is a PowerShell core cmdlet. We can retrieve the logs
from the mailbox server where the mailbox resides by filtering the request ID and
the event IDs. One way we can do this is by saving the repair request in a variable:

$repair = New-MailboxRepairRequest -Mailbox testuser `
-CorruptionType SearchFolder













Chapter 4

153

Next, if we want to retrieve the status for event IDs 10047, 10048, 10049, we can use the
following command syntax:

Get-EventLog -LogName Application -ComputerName ex01 | ?{
 ('10047','10048','10049' -contains $_.EventID) -and `
 ($_.Message -match $repair.RequestID)
}

What we should get back here is all events that match the event IDs and the mailbox repair
RequestID for the testuser mailbox. Of course, you can extend this to support multiple
mailboxes and simply use PowerShell's looping constructs to iterate through each mailbox
repair request and check the logs for each one.

See also

Looping through items in Chapter 1, PowerShell Key Concepts

Creating PowerShell functions in Chapter 1, PowerShell Key Concepts

Restoring deleted items from mailboxes
One of the more common requests that Exchange administrators are asked to perform
is restoring deleted items from a user's mailbox. In previous versions of Exchange, there
were usually a couple of ways to handle this. First, you could use your traditional brick-level
backup solution to restore individual items to a mailbox. Of course, there was also the more
time-consuming process of exporting data from a mailbox located in a recovery database.
Exchange 2010 reduces the complexity of restoring deleted items by implementing a feature
called single item recovery. When this feature is enabled, administrators can recover purged
data from an end-users mailbox using the Search-Mailbox cmdlet. In this recipe, we will
take a look at how this restore process works from within the Exchange Management Shell.

How to do it...
1.	 If you have not already done so, you will need to use the following command syntax to

assign the Mailbox Import Export RBAC role to your account. You will need to restart
the shell after running this command in order for the assigned cmdlet to be visible:
New-ManagementRoleAssignment –Role "Mailbox Import Export" `
-User administrator

2.	 To restore deleted data from an end-user mailbox, use the Search-Mailbox cmdlet:

Search-Mailbox -Identity testuser `
-SearchQuery "subject:'Expense Report'" `
-TargetMailbox restoremailbox `





Managing Mailboxes

154

-TargetFolder "Test Restore" `
-SearchDumpsterOnly

How it works...
The Search-Mailbox cmdlet provides the capability to search only the dumpster containing
the deleted items for a given mailbox using the -SearchDumpsterOnly switch parameter.
In this example, we've used the -SearchQuery parameter to limit the search results to items
that contains the term Expense Report within the subject line. After this command has been
run, an administrator can access the target mailbox to retrieve the restored data. The items
that matched the search query will have been restored to a subfolder of the target folder in
the target mailbox specified.

To learn more about Single Item Recovery, see the following
Exchange Team blog post: http://blogs.technet.com/b/
exchange/archive/2009/09/25/3408389.aspx.

The -SearchQuery parameter uses Advanced Query Syntax (AQS) to define the conditions
for your search. See Appendix B at the end of this book for a list of AQS properties and
common search queries.

There's more...
You can perform very granular searches with AQS and the -SearchQuery parameter. Let's
say that we wanted to restore all deleted items from the mailbox that were received after a
certain date. We can use the following command to accomplish this:

Search-Mailbox -Identity testuser `
-SearchQuery "received:>11/01/2010" `
-TargetMailbox administrator `
-TargetFolder "Testuser Restore" `
-SearchDumpsterOnly

Similar to the previous example, we are restoring data from the testuser mailbox to the same
target folder in the administrator mailbox. The difference is that, this time, the search query is
only going to look for messages that have been received after November 1 2010. You can see
here that we are using the greater than (>) symbol to indicate that any message older than
11/01/2010 should be restored.

You can open the target mailbox in Outlook to retrieve the restored messages or export them
using the New-MailboxExportRequest cmdlet.

Keep in mind that the -SearchQuery parameter is optional. If you want to restore all of the
end-user deleted items you can do so by simply omitting this parameter for the commands in
the previous examples. Also, you can restore messages when performing a discovery search
with the New-MailboxSearch cmdlet.

Chapter 4

155

See also

Performing a discovery search in Chapter 11, Compliance and Audit Logging

Restoring data from a recovery database in Chapter 6, Mailbox and Public
Folder Databases

Enabling single item recovery in Chapter 11, Compliance and Audit Logging

Importing and exporting mailboxes









5
Distribution Groups

and Address Lists

In this chapter, we will cover the following:

Reporting on distribution group membership

Adding members to a distribution group from an external file

Previewing dynamic distribution group membership

Excluding hidden recipients from a dynamic distribution group

Converting and upgrading distribution groups

Allowing managers to modify group permissions

Removing disabled users from distribution groups

Working with distribution group naming policies

Working with distribution group membership approval

Creating address lists

Exporting address list membership to a CSV file

Configuring hierarchical address books

























Distribution Groups and Address Lists

158

Introduction
In Chapter 3, we looked at managing recipients, which covered the process of creating and
modifying the membership of both regular and dynamic distribution groups. In this chapter,
we are going to dive deeper into distribution group management within the Exchange
Management Shell. The recipes in this chapter provide solutions to some of the most common
distribution group management tasks that can, and sometimes must, be handled from the
command line. Some of the topics we'll cover include the implementation of group naming
policies, allowing group managers to modify the memberships of distribution groups, and
more. We'll also go over the process of some basic address list management that can be
automated through the shell.

Performing some basic steps
To work with the code samples in this chapter, follow these steps to launch the Exchange
Management Shell:

1.	 Log onto a workstation or server with the Exchange Management Tools installed

2.	 Open the Exchange Management Shell by clicking on Start | All Programs |
Exchange Server 2010

3.	 Click on the Exchange Management Shell shortcut

Reporting on distribution group membership
One of the common requests you are likely to receive as an Exchange administrator is
to generate a report detailing which recipients are members of one or more distribution
groups. In this recipe, we'll take a look at how to retrieve this information from the Exchange
Management Shell.

How to do it...
To view a list of each distribution group member interactively, use the following code:

foreach($i in Get-DistributionGroup -ResultSize Unlimited) {
 Get-DistributionGroupMember $i -ResultSize Unlimited |
 Select-Object @{n="Member";e={$_.Name}},
 RecipientType,
 @{n="Group";e={$i.Name}}
}

This will generate a list of Exchange recipients and their associated distribution group
membership.

Chapter 5

159

How it works...
This code loops through each item returned from the Get-DistributionGroup cmdlet.
As we process each group, we run the Get-DistributionGroupMember cmdlet to
determine the member list for each group and then use Select-Object to construct
a custom object that provides Member, RecipientType, and Group properties. Notice
that, when running both Exchange cmdlets, we're setting the -ResultSize parameter to
Unlimited to ensure that the details will be retrieved in the event that there are more than
1,000 groups or group members.

There's more...
The previous code sample will allow you to view the output in the shell. If you want to export
this information to a CSV file, use the following code:

$report=foreach($i in Get-DistributionGroup -ResultSize Unlimited) {
 Get-DistributionGroupMember $i -ResultSize Unlimited |
 Select-Object @{n="Member";e={$_.Name}},
 RecipientType,
 @{n="Group";e={$i.Name}}
}

$report | Export-CSV c:\GroupMembers.csv -NoType

The difference this time is that the output from our code is being saved in the $report
variable. Once the report has been generated, the $report object is then exported to
a CSV file that can be opened in Excel.

See also
Previewing dynamic distribution group membership

Adding members to a distribution group from an external file

Adding members to a distribution group
from an external file

When working in large or complex environments, performing bulk operations is the key to
efficiency. Using PowerShell core cmdlets such as Get-Content and Import-CSV, we can
easily import external data into the shell and use this information to perform bulk operations
on hundreds or thousands of objects in a matter of seconds. Obviously, this can vastly speed
up the time we spend on routine tasks and greatly increase our efficiency. In this recipe, we'll
use these concepts to add members to distribution groups in bulk from a text or CSV file using
the Exchange Management Shell�.





Distribution Groups and Address Lists

160

How to do it...
1.	 Create a text file called c:\users.txt that lists the recipients in your organization

that you want to add to a group. Make sure you enter them one line at a time,
as shown in the following screen shot:

2.	 Next, execute the following code to add the list of recipients to a distribution group:
Get-Content c:\users.txt | ForEach-Object {
 Add-DistributionGroupMember –Identity Sales -Member $_
}

When the code runs, each user listed in the c:\users.txt file will be added to the Sales
distribution group.

How it works...
When importing data from a plain text file, we use the Get-Content cmdlet, which will
read the content of the file into the shell one line at a time. In this example, we pipe the
content of the file to the ForEach-Object ��� cmdlet, and as each line is processed we
execute the Add-DistributionGroupMember �������cmdlet.

I���������� nside the For-EachObject script block we use the Add-DistributionGroupMember
cmdlet and assign the $_ object, which is the current recipient item in the pipeline, to
the -Member parameter.

To remove recipients from a distribution group, you can use the
Remove-DistributionGroupMember cmdlet.

Chapter 5

161

Keep in mind that this text file does not have to contain the SMTP address of the recipient.
You can also use the Active Directory account name, User Principal Name, Distinguished
Name, GUID, or LegacyExchangeDN values. The important thing is that the file contains a
valid and unique value for each recipient. If the identity of the recipient cannot be determined,
the Add-DistributionGroupMember command will fail.

There's more...
In addition to using plain text files, we can also import recipients from a CSV file and add them
to a distribution group. Let's say that you have a CSV file setup with multiple columns, such as
FirstName, LastName, and EmailAddress. When you import the CSV file, the data can be
accessed using the column headers as the property names for each object. Take a look at the
following screenshot:

Here you can see that each item in this collection has an EmailAddress property. As long as
this information corresponds to the recipient data in the Exchange organization, we can simply
loop through each record in the CSV file and add these recipients to a distribution group:

Import-Csv C:\users.csv | ForEach-Object {
 Add-DistributionGroupMember Sales -Member $_.EmailAddress
}

The given code uses the Import-CSV cmdlet to loop through each item in the collection.
As we process each record, we add the recipient to the Sales distribution group using the
$_.EmailAddress object.

See also

Managing distribution groups in Chapter 3, Managing Recipients

Distribution Groups and Address Lists

162

Previewing dynamic distribution group
membership

The concept of the dynamic distribution group was introduced with the initial release of
Exchange 2007 and included a new way to create and manage distribution groups. Unlike
regular distribution groups whose members are statically defined, a dynamic distribution
group determines its members based on a recipient filter. These recipient filters can be very
complex, or they can be based on simple conditions, such as including all the users with a
common value set for their Company or Department attributes in Active Directory. Since
these dynamic groups are based on a query, they do not actually contain group members and
if you want to preview the results of the groups query in the shell you need to use a series
of commands. In this recipe, we'll take a look at how to view the membership of dynamic
distribution groups in the Exchange Management Shell.

How to do it...
Imagine that we have a dynamic distribution group named Legal that includes all of the
users in Active Directory with a Department attribute set to the word Legal. We can use
the following commands to retrieve the current list of recipients for this group:

$legal= Get-DynamicDistributionGroup -Identity legal
Get-Recipient -RecipientPreviewFilter $legal.RecipientFilter

How it works...
Recipient filters for dynamic distribution groups use OPATH filters that are accessible through
the RecipientFilter property of a dynamic distribution group object. As you can see here,
we have specified the Legal groups OPATH filter when running the Get-Recipient cmdlet
with the –RecipientPreviewFilter parameter. Conceptually, this would be similar to
running the following command:

Get-Recipient -RecipientPreviewFilter "Department -eq 'Legal'"

Technically, there is a little bit more to it than that. If we were to actually look at the value
for the RecipientFilter property of this dynamic distribution group, we would see much
more information in addition to the filter defined for the Legal department. This is because
Exchange automatically adds several additional filters when it creates a dynamic distribution
group that excludes system mailboxes, discovery mailboxes, arbitration mailboxes, and more.
This ends up being quite a bit of information, and creating an object instance of the dynamic
distribution group gives us easy access to the existing OPATH filter that can be previewed with
the Get-Recipient cmdlet.

Chapter 5

163

There's more...
When working with regular distribution groups, you may notice that there is a cmdlet called
Get-DistributionGroupMember. This allows you to retrieve a list of every user that is
a member of a distribution group. Unfortunately, there is no equivalent cmdlet for dynamic
distribution groups, and we need to use the method outlined previously that uses the
Get-Recipient cmdlet to determine the list of recipients in a dynamic distribution group.

If you find yourself doing this frequently, it probably makes sense to wrap these commands
up into a function that can be added to your PowerShell profile. This will allow you to
determine the members of dynamic distribution group using a single command that will
be available to you every time you start the shell. Here is the code for a function called
Get-DynamicDistributionGroupMember, which can be used to determine the list
of recipients included in a dynamic distribution group:

function Get-DynamicDistributionGroupMember {
 param(
 [Parameter(Mandatory=$true)]
 $Identity
)

 $group = Get-DynamicDistributionGroup -Identity $Identity
 Get-Recipient -RecipientPreviewFilter $group.RecipientFilter

}

Once this function is loaded into your shell session, you can run it just like a cmdlet:

You can see that the command returns the recipients that match the OPATH filter for the Legal
distribution group and is much easier to type than the original example.

Distribution Groups and Address Lists

164

See also

Creating PowerShell functions in Chapter 1, PowerShell Key Concepts

Reporting on distribution group membership

Working with recipient filters in Chapter 3, Managing Recipients

Excluding hidden recipients from a dynamic
distribution group

When creating dynamic distribution groups through the Exchange Management Console, you
can specify which recipients should be included in the group using a basic set of conditions.
If you want to do more advanced filtering, such as excluding hidden recipients, you will
need to configure OPATH filters for your dynamic distribution groups through the Exchange
Management Shell. In this recipe, you'll learn how to use the shell to create a recipient filter
that excludes hidden recipients from dynamic distribution groups.

How to do it...
Let's say that we need to set up a distribution group for our TechSupport department. The
following commands can be used to create a dynamic distribution group that includes all the
mailboxes for the users in the TechSupport OU that are not hidden from address lists:

New-DynamicDistributionGroup -Name TechSupport `
-RecipientContainer contoso.com/TechSupport `
-RecipientFilter {
 HiddenFromAddressListsEnabled -ne $true
}

How it works...
When you want to exclude a mailbox, contact, or distribution group from an address list,
you set the HiddenFromAddressListsEnabled property of the recipient to $true. This
is often done for special purpose recipients that are used for applications or services that
should not be visible by the general end-user population. While this takes care of address
lists, it does not affect your dynamic distribution groups, and if you want to exclude these
recipients you'll need to use a similar filter to the one shown in the previous example. When
we created the TechSupport dynamic distribution group, we used a very basic configuration
that included all the recipients that exist within the TechSupport OU in Active Directory. Our
custom recipient filter specifies that the HiddenFromAddressListEnabled property of
each recipient must not be equal to $true. With this filter in place, only recipients that are
not hidden from Exchange address lists are included as dynamic distribution group members.







Chapter 5

165

Keep in mind that, when you create a dynamic group using the –RecipientFilter
parameter, any future changes will have to be made through the Exchange Management
Shell. If you need to change the recipient filter at any time, you cannot use Exchange
Management Console and will need to use the Set-DynamicDistributionGroup
cmdlet to make the change.

There's more...
Updating a recipient filter for an existing dynamic distribution group can be a bit tricky.
This is because the recipient filters are automatically updated by Exchange to exclude
certain types of resource and system mailboxes. Let's go through the process of creating
a new dynamic distribution group, and then we'll modify the recipient filter after the fact so
that you can understand how this process works.

First, we'll create a new dynamic distribution group for the Marketing department using
a basic filter. Only users with e-mail addresses that contain the word Marketing will be
members of this group:

New-DynamicDistributionGroup -Name Marketing `
-RecipientContainer contoso.com/Marketing `
-RecipientFilter {
 EmailAddresses -like '*marketing*'
}

Now that the group has been created, let's verify the recipient filter by accessing the
RecipientFilter property of that object:

As you can see from the output, we get a lot more back than we originally put in. This is how
Exchange prevents the dynamic distribution groups from displaying recipients such as system
and discovery mailboxes in your dynamic distribution lists. You do not need to worry about this
extraneous code when you update your filters, as it will automatically be added back in for you
when you change the recipient filter.

Now that we understand what's going on here, let's update this group so that we can also
exclude hidden recipients. To do this, we need to construct a new filter and use the Set-
DynamicDistributionGroup ���������� cmdlet as shown next:

Set-DynamicDistributionGroup -Identity Marketing `

Distribution Groups and Address Lists

166

-RecipientFilter {
 (EmailAddresses -like '*marketing*') -and
 (HiddenFromAddressListsEnabled -ne $true)
}

Using this command, we've specified the previously-configured filter in addition to the new one
that excludes hidden recipients. In order for recipients to show up in this dynamic distribution
group, they must have the word Marketing somewhere in their e-mail address and their
account must not be hidden from address lists.

See also

Hiding recipients from address lists in Chapter 3, Managing Recipients

Working with recipient filters in Chapter 3, Managing Recipients

Converting and upgrading distribution
groups

When migrating to Exchange 2010 from Exchange 2003, you may be carrying over several
mail-enabled non-universal groups. These groups will still function, but the administration
of these objects within the Exchange tools will be limited. In addition, several distribution
group features provided by Exchange 2010 will not be enabled for a group until it has been
upgraded. This recipe covers the process of converting and upgrading these groups within
the Exchange Management Shell.

How to do it...
1.	 To convert all of your non-universal distribution groups to universal, use the following

one-liner:
Get-DistributionGroup -ResultSize Unlimited `
-RecipientTypeDetails MailNonUniversalGroup |
 Set-Group -Universal

2.	 Once all of your distribution groups have been converted to universal, you can
upgrade them using the following command:
Get-DistributionGroup –ResultSize Unlimited |
 Set-DistributionGroup –ForceUpgrade





Chapter 5

167

How it works...
The first command will retrieve all the non-universal mail-enabled distribution groups in your
organization and pipe the results to the Set-Group cmdlet which will convert them using
the -Universal switch parameter. It may not be a big deal to modify a handful of groups
using the graphical tools, but if you have hundreds of mail-enabled non-universal groups the
command in the previous example can save you a lot of time.

If you have a large number of groups to convert, you may find that some of them are members
of another global group and cannot be converted. Keep in mind that a universal group cannot
be a member of a global group. If you run into errors because of this, you can convert these
groups individually using the Set-Group cmdlet. Then you can run the command in the
previous example again to convert any remaining groups in bulk.

Even after converting non-universal groups to universal, you'll notice that, when viewing the
properties of a distribution group created by Exchange 2003, you cannot manage things
such as message moderation and membership approval. In order to fully manage
these groups, you need to upgrade them using the -ForceUpgrade parameter with the
Set-DistributionGroup cmdlet. Keep in mind that after the upgrade these objects can
no longer be managed using anything other than the Exchange 2010 management tools.

There's more...
The Exchange Management tools, both the graphical console and the shell, can only be
used to create distribution groups using universal group scope. Additionally, you can only
mail-enable existing groups with universal group scope. If you've recently introduced
Exchange into your environment, you can convert existing non-universal, non-mail
enabled groups in bulk using a one-liner:

Get-Group –ResultSize Unlimited `
-RecipientTypeDetails NonUniversalGroup `
–OrganizationalUnit Sales |
 Where-Object {$_.GroupType -match 'global'} |
 Set-Group -Universal

As you can see in this example, we are retrieving all non-mail enabled, non-universal global
groups from the Sales OU and converting them to universal in a single command. You can
change the OU or use additional conditions in your filter based on your needs. Once the group
is converted it can be mail-enabled using the Enable-Distribution group cmdlet and it
will show up in the list of available groups when creating new distribution groups
in EMC.

Distribution Groups and Address Lists

168

See also
Managing distribution groups

Allowing managers to modify group
membership

Many organizations like to give specific users rights to manage the membership of designated
distribution groups. This has been a common practice for years in previous versions of
Exchange. While users have typically modified the memberships of the groups they have rights
to from within Outlook, they now have the added capability to manage these groups from
the web-based Exchange Control Panel (ECP). Exchange 2010 introduced a new security
model that changed the way you can delegated these rights. In this recipe, we'll take a look
at what you need to do in Exchange 2010 to allow managers to modify the memberships of
distribution groups.

How to do it...
1.	 The first thing you need to do is assign the built-in MyDistributionGroups role to

the Default Role Assignment Policy:
New-ManagementRoleAssignment -Role MyDistributionGroups `
-Policy "Default Role Assignment Policy"

2.	 Next, set the ManagedBy property of the distribution group that needs to
be modified:
Set-DistributionGroup Sales -ManagedBy bobsmith

After running the given command, Bob Smith has the ability to modify the membership of the
Sales distribution group through ECP, Outlook, or the Exchange Management Shell.

How it works...
In order to allow managers to modify the membership of a group, we need to do some initial
configuration through the new Exchange 2010 security model called Role Based Access
Control (RBAC). The MyDistributionGroups role is an RBAC management role that allows
end-users to view, remove, and add members to distribution groups where they have been
added to the ManagedBy property.

By default, the MyDistribitionGroups management role is not assigned to anyone. In the
first step, we added this role to the Default Role Assignment Policy that is assigned to
all users by default.



Chapter 5

169

In addition to using the shell, you can assign the MyDistributionGroups
management role to the Default Role Assignment Policy using ECP.

I��� n the next step, we assigned a user to the ManagedBy property of the Sales distribution
group. The ManagedBy attribute is a multi-valued property that will accept multiple users if
you need to allow several people to manage a distribution group.

The reason that the MyDistributionGroups role is not enabled by default is because, in
addition to allowing users to modify the groups that they own, it also allows them to create
new distribution groups from within the ECP. While some organizations may like this feature,
others may not be able to allow this since the provisioning of groups may need to be tightly
controlled. Make sure you keep this in mind before implementing this solution.

There's more...
If you need to prevent users from creating their own distribution groups, then you do not want
to assign the MyDistributionGroups role. Instead, you'll need to create a custom RBAC
role. This can only be accomplished using the Exchange Management Shell.

To implement a custom RBAC role that will only allow users to modify distribution groups that
they own, we need to perform a few steps. The first thing we need to do is create a child role
based on the existing MyDistributionGroups management role, as shown next:

New-ManagementRole -Name MyDGCustom -Parent MyDistributionGroups

After running this command, we should now have a new role called MyDGCustom that
contains all of the cmdlets that will allow the user to add and remove distribution groups.
Using the following commands, we'll remove those cmdlets from the role:

Remove-ManagementRoleEntry MyDGCustom\New-DistributionGroup
Remove-ManagementRoleEntry MyDGCustom\Remove-DistributionGroup

This modifies the role so that only the cmdlets that can get, add, or remove distribution group
members are available to the users.

Finally, we can assign the custom role to the Default Role Assignment Policy, which, out of the
box, is already applied to every mailbox in the organization:

New-ManagementRoleAssignment -Role MyDGCustom `
-Policy "Default Role Assignment Policy"

Distribution Groups and Address Lists

170

Now that this custom RBAC role has been implemented, we can simply add users to the
ManagedBy property of any distribution group and they will be able to add members to and
remove members from that group. However, they will be unable to delete the group, or create
a new distribution group, which accomplishes the goal.

See also

Working with Role Based Access Control (RBAC) in Chapter 10, Exchange Security

Troubleshooting Role Based Access Control in Chapter 10, Exchange Security

Removing disabled user accounts from
distribution groups

A standard practice amongst most organizations when users leave or have been let go is
to disable their associated Active Directory user account. This allows an administrator to
easily re-enable the account in the event that the user comes back to work, or if someone
else needs access to the account. Obviously, this has become a common practice because
the process of restoring a deleted Active Directory user account is a much more complex
alternative. Additionally, if these user accounts are left mailbox-enabled, you can end up with
distribution groups that contain multiple disabled user accounts. This recipe will show you
how to remove these disabled accounts using the Exchange Management Shell.

How to do it...
To remove disabled Active Directory user accounts from all distribution groups in the
organization, use the following code:

$groups = Get-DistributionGroup -ResultSize Unlimited

foreach($group in $groups){
 Get-DistributionGroupMember $group |
 ?{$_.RecipientType -like '*User*' -and $_.ResourceType -eq $null} |
 Get-User | ?{$_.UserAccountControl -match 'AccountDisabled'} |
 Remove-DistributionGroupMember $group -Confirm:$false
}

How it works...
This code uses a foreach loop to iterate through each distribution group in the organization.
As each group is processed, we retrieve only the members whose recipient type contains the
word User. We're also filtering out resource mailboxes as these are tied to disabled Active





Chapter 5

171

Directory accounts. These filters will ensure that we only pipe objects with Active Directory
user accounts down to the Get-User cmdlet, which will determine whether or not the account
is disabled by checking the UserAccountControl property of each object. If the account is
disabled, it will be removed from the group.

There's more…
Instead of performing the remove operation, we can use a slightly modified version of the
previous code to simply generate a report based on disabled Active Directory accounts that
are members of a specific distribution group. Use the following code to generate this report:

$groups = Get-DistributionGroup -ResultSize Unlimited

$report = foreach($group in $groups){
 Get-DistributionGroupMember $group |
 ?{$_.RecipientType -like '*User*' -and $_.ResourceType -eq $null} |
 Get-User | ?{$_.UserAccountControl -match 'AccountDisabled'} |
 Select-Object Name,RecipientType,@{n='Group';e={$group}}
}

$report | Export-CSV c:\disabled_group_members.csv -NoType

After running this code, a report will be generated using the specified file name that will list
the disabled account name, Exchange recipient type, and associated distribution group for
which it is a member.

See also

Managing distribution groups in Chapter 3, Managing Recipients

Working with distribution group naming
policies

Using group naming policies, you can require that the distribution group names in your
organization follow a specific naming standard. For instance, you can specify that all
distribution group names are prefixed with a certain word and you can block certain words
from being used within group names. In this recipe, you'll learn how to work with group naming
policies from within the Exchange Management Shell.



Distribution Groups and Address Lists

172

How to do it...
To enable a group naming policy for your organization, use the Set-OrganizationConfig
cmdlet, as shown next:

Set-OrganizationConfig -DistributionGroupNamingPolicy `
"DL_<GroupName>"

How it works...
Since Exchange 2010 gives your users the ability to create and manage their own distribution
groups, you may want to implement a naming policy that matches your organization's naming
standards. In addition, you can implement naming policies so that your administrators are
required to follow a specific naming convention when creating groups.

Your distribution group naming policy can be made up of text you specify, or it can use specific
attributes that map to the user who creates the distribution group. In the previous example,
we specified that all distribution groups should be prefixed with DL_ followed by the group
name. The <GroupName> attribute indicates that the group name provided by the user
should be used. So, if someone were to create a group named "Help Desk", Exchange would
automatically configure the name of the group as DL_Help Desk.

The following attributes can be used within your group naming policies:

Company

CountryCode

CountryorRegion

CustomAttribute1 - 15

Department

Office

StateOrProvince

Title

Let's take a look at another example to see how we could implement some of these attributes
within a group naming policy. Using the following command, we'll update the group naming
policy to include both the Department and the State of the user creating the group:

Set-OrganizationConfig -DistributionGroupNamingPolicy `
"<Department>_<GroupName>_<StateOrProvince>"

















Chapter 5

173

Now let's say that we have an administrator named Dave who works in the IT department
in the Arizona office. Based on this information, we know that his Department attribute
will be set to "IT" and his State attribute will be set to "AZ". When Dave uses the
New-DistributionGroup cmdlet to create a group for the maintenance department,
specifying "Maintenance" for the –Name parameter value, Exchange will automatically apply
the group naming policy, and the distribution group name will be IT_Maintenance_AZ.

In addition, we can exclude a list of names that can be used when creating distribution
groups. This is also specified by running the Set-OrganizationConfig cmdlet. For
example, to block a list of words we can use the following syntax:

Set-OrganizationConfig `
-DistributionGroupNameBlockedWordsList badword1,badword2

If a user tries to create a group using one of the blocked names, they'll receive an error that
says The group name contains a word which isn't allowed in group names in your organization.
Please rename your group.

There's more...
When a group naming policy is applied in your organization, it is possible to override it from
within the Exchange Management Shell. Both the New-DistributionGroup and the
Set-DistributionGroup cmdlets provide an -IgnoreNamingPolicy switch parameter
that can be used when you are creating or modifying a group. To create a distribution group
that will bypass the group naming policy, use the following syntax:

New-DistributionGroup -Name Accounting -IgnoreNamingPolicy

The graphical management tools (EMC and ECP) can be used to create distribution groups,
but if a naming policy is applied to your organization and you need to override it, you must
use the shell as shown previously.

You can force administrators to use group naming policies, even if they have access to
the Exchange Management Shell. If you plan on doing this, you need to assign them to
the New-DistributionGroup and Set-DistributionGroup cmdlets using
a custom Role Based Access Control (RBAC) role that does not allow them to use
the -IgnoreNamingPolicy switch parameter.

See also
Managing distribution groups

Distribution Groups and Address Lists

174

Working with distribution group membership
approval

You can allow end-users to request distribution group membership through the Exchange
Control Panel (ECP). Additionally, you can configure your distribution groups so that users can
join a group automatically without having to be approved by a group owner. We'll take a look at
how to configure these options in this recipe.

How to do it...
To allow end-users to add and remove themselves from a distribution group, you can set the
following configuration using the Set-DistributionGroup cmdlet:

Set-DistributionGroup -Identity CompanyNews `
-MemberJoinRestriction Open `
-MemberDepartRestriction Open

This command will allow any user in the organization to join or leave the CompanyNews
distribution group without requiring approval by a group owner.

How it works...
The two parameters that control the membership approval configuration for a distribution
group are -MemberJoinRestriction and -MemberDepartRestriction. Both can be
set to one of the following values:

Open: Allows the user to add or remove their account from the group without
requiring group owner approval

Closed: Users cannot join or leave the grou.

ApprovalRequired: Requests to join or leave a group must be approved by
a group owner

These settings are not mutually exclusive. For example, you can allow users to join a group
without approval, but you can require approval when users try to leave the group, or vice
versa. By default, the MemberJoinRestriction property is set to Closed and the
MemberDepartRestriction is set to Open.

There's more...
When member join or depart restrictions are set to ApprovalRequired, a group owner will
receive a message informing them of the request, and they can approve or deny the request
using the Accept or Reject buttons in Outlook or OWA. The user who created the distribution







Chapter 5

175

group will automatically be the owner, but you change the owner, if needed, using
the -ManagedBy parameter when running the Set-DistributionGroup cmdlet,
as shown:

Set-DistributionGroup -Identity AllEmployees `
-ManagedBy dave@contoso.com,john@contoso.com

As you can see, the -ManagedBy parameter will accept one or more values. If you are setting
multiple owners, just separate each one with a comma, as shown previously.

See also
Reporting on distribution group membership

Managing distribution groups in Chapter 3, Managing Recipients

Creating address lists
Just like dynamic distribution groups, Exchange address lists can be comprised of one or more
recipient types and are generated using a recipient filter or using a set of built-in conditions.
You can create one or more address list(s), made up of users, contacts, distribution groups, or
any other mail-enabled objects in your organization. This recipe will show you how to create an
address list using the Exchange Management Shell.

How to do it...
Let's say we need to create an address list for the sales representatives in our organization.
We can use the New-AddressList cmdlet to accomplish this, as shown next:

New-AddressList -Name 'All Sales Users' `
-RecipientContainer contoso.com/Sales `
-IncludedRecipients MailboxUsers

How it works...
This example uses the New-AddressList cmdlet's built-in conditions to specify the criteria
for the recipients that will be included in the list. You can see from the command that, in order
for a recipient to be visible in the address list, they must be located within the Sales OU in
Active Directory and the recipient type must be MailboxUsers, which only applies to regular
mailboxes and does not include other types such as resource mailboxes, distribution groups,
and so on. You can use the built-in conditions when you need to configure a basic filter for the
list, and they can be easily edited from within the Exchange Management Console.





Distribution Groups and Address Lists

176

There's more...
When you need to create an address list based on a more complex set of conditions, you'll
need to use the –RecipientFilter parameter to specify an OPATH filter. For example, the
following OPATH filter is not configurable when creating or modifying an address list in EMC:

New-AddressList -Name MobileUsers `
-RecipientContainer contoso.com `
-RecipientFilter {
HasActiveSyncDevicePartnership -ne $false
}

You can see here that we're creating an address list for all the mobile users in the
organization. We've set the RecipientContainer to the root domain, and, within the
recipient filter, we've specified that all recipients with an ActiveSync device partnership
should be included in the list.

You can create global address lists using the New-GlobalAddress
list cmdlet.

You can combine multiple conditions in your recipient filters using PowerShell's logical
operators. For instance, we can extend our previous example to add an additional requirement
in the OPATH filter:

New-AddressList -Name MobileUsers `
-RecipientContainer contoso.com `
-RecipientFilter {
 (HasActiveSyncDevicePartnership -ne $false) -and
 (Phone -ne $null)
}

This time, in addition to having an ActiveSync device partnership, the user must also have a
number defined within their Phone attribute in order for them to be included in the list.

If you need to modify a recipient filter after an address list has already been
created, use the Set-AddressList cmdlet.

Exchange supports a various number of both common and advanced properties that can
be used to construct OPATH filters, as shown in the previous example. To view a list of
common filterable properties that can be used with the –RecipientFilter parameter,
see Appendix A at the end of this book.

Chapter 5

177

See also

Working with recipient filters in Chapter 3, Managing Recipients
Export address list membership to a CSV file

Exporting address list membership to
a CSV file

When it comes to working with address lists, a common task is exporting the list of members
to an external file. In this recipe, we'll take a look at the process of exporting the contents of
an address list to a CSV file.

How to do it...
Let's start off with a simple example. The following commands will export the All Users
address list to a CSV file:

$allusers = Get-AddressList "All Users"
Get-Recipient -RecipientPreviewFilter $allusers.RecipientFilter |
 Select-Object DisplayName,Database |
 Export-Csv -Path c:\allusers.csv -NoTypeInformation

When the command completes, a list of user display names and their associated mailbox
databases will be exported to c:\allusers.csv.

How it works...
The first thing we do in this example is create the $allusers variable that stores an
instance of the All Users address list. We can then run the Get-Recipient cmdlet
and specify the OPATH filter, using the $allusers.RecipientFilter object as the
value for the -RecipientPreviewFilter parameter. The results are then piped to the
select-object cmdlet that grabs the DisplayName and Database properties of the
recipient. Finally, the data is exported to a CSV file.

Of course, the given example may not be that practical, as it does not provide the e-mail
addresses for the user. We can also export this information, but it requires some special
handling on our part. Let's export only the DisplayName and EmailAddresses for each
user. To do so, use the following code:

$allusers = Get-AddressList "All Users"
Get-Recipient -RecipientPreviewFilter $allusers.RecipientFilter |
 Select-Object DisplayName,
 @{n="EmailAddresses";e={$_.EmailAddresses -join ";"}} |
 Export-Csv -Path c:\allusers.csv -NoTypeInformation





Distribution Groups and Address Lists

178

Since each recipient can have multiple SMTP e-mail addresses, the EmailAddresses
property of each recipient is a multi-valued object. This means we can't simply export this
value to an external file, since it is actually an object and not a simple string value. In the
given command, we're using the Select-Object cmdlet to create a calculated property for
the EmailAddresses collection. Using the -Join operator within the calculated property
expression, we are adding each address in the collection to a single string that will be
delimited with the semi-colon (;) character.

There's more...
The given method will work for any of the address lists in your organization. For example,
you can export the recipients of the Global Address List (GAL) using the following code:

$GAL = Get-GlobalAddressList "Default Global Address List"
Get-Recipient -RecipientPreviewFilter $GAL.RecipientFilter |
 Select-Object DisplayName,
 @{n="EmailAddresses";e={$_.EmailAddresses -join ";"}} |
 Export-Csv -Path c:\GAL.csv -NoTypeInformation

As you can see here, the main difference is that this time we are using the Get-
GlobalAddressList cmdlet to export the default global address list. You can use this
technique for any address list in your organization: just specify the name of the address
list you want to export when using either the Get-AddressList or Get-GlobalAddress
list cmdlets.

See also

Exporting reports to text and CSV files in Chapter 2, Exchange Management Shell
Common Tasks

Working with recipient filters in Chapter 3, Managing Recipients

Creating address lists

Configuring hierarchical address books
Exchange 2010 SP1 introduced a new feature called the hierarchical address book (HAB).
This allows users with Outlook 2010 to browse for recipients using an organizational
hierarchy. The idea is that you can give your users the ability to search for recipients based
on your organization's structure, versus the Global Address List which only provides a flat
view. The configuration of a HAB can only be done using the Exchange Management Shell,
and, in this recipe, we'll take a look at an example of how you can configure this feature in
your organization.







Chapter 5

179

How to do it...
1.	 It is recommended that you create an OU in Active Directory to store the root HAB

objects. You can create a new OU using your Active Directory administrations tools,
or using PowerShell. The following code can be used to create an OU in the root of the
Contoso domain called HAB:
$objDomain = [ADSI]''
$objOU = $objDomain.Create('organizationalUnit', 'ou=HAB')
$objOU.SetInfo()

2.	 Next, create a root distribution group for the HAB:
New-DistributionGroup -Name ContosoRoot `
-DisplayName ContosoRoot `
-Alias ContosoRoot `
-OrganizationalUnit contoso.com/HAB `
-SamAccountName ContosoRoot `
-Type Distribution

3.	 Configure the Contoso distribution group as the root organization for the HAB:
Set-OrganizationConfig -HierarchicalAddressBookRoot ContosoRoot

4.	 At this point, you need to add subordinate groups to the root organization group.
These can be existing groups or you can create new ones. In this example, we'll
add three existing groups called Executives, Finance, and Sales to the root
organization in the HAB:
Add-DistributionGroupMember -Identity ContosoRoot -Member
Executives
Add-DistributionGroupMember -Identity ContosoRoot -Member Finance
Add-DistributionGroupMember -Identity ContosoRoot -Member Sales

5.	 Finally, we'll designate each of the groups as hierarchical groups and set the seniority
index for the subordinate groups:
Set-Group -Identity ContosoRoot -IsHierarchicalGroup $true
Set-Group Executives -IsHierarchicalGroup $true -SeniorityIndex
100
Set-Group Finance -IsHierarchicalGroup $true -SeniorityIndex 50
Set-Group Sales -IsHierarchicalGroup $true -SeniorityIndex 75

Distribution Groups and Address Lists

180

6.	 After this configuration has been completed, Outlook 2010 users can click on the
Address Book button and view a new tab called Organization that will list our HAB:

How it works...
The root organization of a HAB is used as the top tier for the organization. Under the root, you
can add multiple tiers by adding other distribution groups as members of this root tier and
configuring them as hierarchical groups. This allows you to create a HAB that is organized by
department, location, or any other structure that makes sense for your environment.

In order to control the structure of the HAB, you can set the SeniorityIndex of each sub
group under the root organization. This index overrides the automatic sort order based on the
DisplayName which would otherwise be used if no value was defined. This also works for
individual recipients within each group. For example, you can set the SeniorityIndex on
each member of the Executives group using the Set-User cmdlet:

Set-User cmunoz -SeniorityIndex 100
Set-User awood -SeniorityIndex 90
Set-User ahunter -SeniorityIndex 80

The users will be displayed in order, with the highest index number first. This allows you to
further organize the HAB and override the default sort order if needed.

Chapter 5

181

There's more...
You may notice that after configuring a HAB that Outlook 2010 users are not seeing the
Organization tab when viewing the Address Book. If this happens, double check the Active
Directory schema attribute ms-Exch-HAB-Root-Department-Link using ADSIEdit. The
isMemberOfPartialAttributeSet attribute should be set to True. If it is not, change
this attribute to True, ensure that this has replicated to all DCs in the forest, and restart the
Microsoft Exchange Active Directory Topology service on each Exchange server. Of course, this
is something you'll want to do during out of hours to ensure there is no disruption of service
for end-users. After this work has been completed, Outlook 2010 users should be able to view
the Organization tab in the Address Book.

See also

Managing distribution groups in Chapter 3, Managing Recipients

6
Mailbox and Public

Folder Databases

In this chapter, we will cover:

Managing the mailbox and the public folder databases

Moving databases and logs to another location

Configuring the mailbox and public folder database limits

Reporting on mailbox database size

Finding the total number of mailboxes in a database

Determining the average mailbox size per database

Reporting on database backup status

Restoring data from a recovery database

Configuring public folder replication

Managing user access to public folders

Reporting on public folder statistics

Introduction
In this chapter, we will focus on several scenarios in which PowerShell scripting can be used
to increase your efficiency when managing databases, which are the most critical resources
in your Exchange environment. We will look at how you can add and remove mailbox and
public folder databases, configure database settings, generate advanced reports on database
statistics, and more from within the shell.























Mailbox and Public Folder Databases

184184

Performing some basic steps
To work with the code samples in this chapter, follow these steps to launch the Exchange
Management Shell:

1.	 Log on to a workstation or the server with the Exchange Management Tools installed

2.	 Open the Exchange Management Shell by clicking on Start | All Programs |
Exchange Server 2010

3.	 Click on the Exchange Management Shell shortcut

Managing the mailbox and the public folder
databases

The Exchange Management Shell provides a set of cmdlets for both mailbox and public folder
database management. In this recipe, we will take a look at how you can use these cmdlets to
create, change, or delete mailbox and public folder databases.

How to do it...
The process for managing mailbox and public folder databases is nearly identical: you just
need to use the appropriate cmdlet for the job. Let's start off with mailbox databases:

1.	 To create a mailbox database, use the New-MailboxDatabase cmdlet, as shown
in the following example:
New-MailboxDatabase -Name DB4 `
-EdbFilePath E:\Databases\DB4\DB4.edb `
-LogFolderPath E:\Databases\DB4 `
-Server EX01

2.	 You can mount the database after it has been created using the Mount-Database
cmdlet:
Mount-Database -Identity DB4

3.	 The name of a database can be changed using the Set-MailboxDatabase cmdlet:
Set-MailboxDatabase -Identity DB4 -Name Database4

4.	 And, finally, you can remove a mailbox database using the Remove-
MailboxDatabase cmdlet:

Remove-MailboxDatabase -Identity Database4 -Confirm:$false

Chapter 6

185185

How it works...
The New-MailboxDatabase cmdlet requires that you provide a name for your database and
specify the server name where it should be hosted. In the previous example, you can see that
we created the DB4 database on the EX01 server. The –EdbFilePath parameter specifies
the location for your database file. Additionally, you can use the -LogFolderPath variable
to identify the directory that should hold the transaction logs for this database. If no value is
provided for either of these parameters, the database and log directories will be set to the
default location within the Exchange installation directory.

Mounting a database is done as a separate step. If you want to create the database and
mount it in one operation, pipe your New-MailboxDatabase command to the Mount-
Database cmdlet, as shown in the following line of code:

New-MailboxDatabase -Name DB10 -Server EX01 | Mount-Database

The Mount-Database cmdlet can be used with both mailbox databases and public folder
databases. The same is true for its counterpart, Dismount-Database, which allows you to
dismount a mailbox or public folder database.

As you saw previously, to rename a mailbox database we used the Set-MailboxDatabase
cmdlet with the -Name parameter. It's important to note that, while this will change the
database name in the Active Directory and therefore in Exchange, it does not change the
filename or path of the database.

Before running the Remove-MailboxDatabase cmdlet, you will need to move any regular
mailboxes, archive mailboxes, or arbitration mailboxes to another database, using the New-
MoveRequest cmdlet.

Keep in mind that the removal of a database is only done logically in the Active Directory.
Later on, you will need to manually delete the files and directories used by the database
running the Remove-MailboxDatabase cmdlet.

There's more…
The process for adding, mounting, dismounting, renaming, and removing public folder
databases is almost identical to the previous examples. For instance, to create a public
folder database, use the following syntax:

New-PublicFolderDatabase -Name PFDB1 `
-EdbFilePath E:\Databases\PFDB1\PFDB1.edb `
-LogFolderPath E:\Databases\PFDB1 `
-Server EX01

Mailbox and Public Folder Databases

186186

Here you can see that we are using the same parameters that we used when creating
a mailbox database. The only difference is that this time we are using the New-
PublicFolderDatabase cmdlet. The same goes for the Set-PublicFolderDatabase
and Remove-PublicFolderDatabase ��� cmdlets that can be used to rename or remove a
public folder. The syntax is the same; you just need to use the appropriate cmdlet.

Understanding automatic mailbox distribution
Exchange 2010 implements a new feature called automatic mailbox distribution. This allows
you to omit the -Database parameter when creating or moving a mailbox and an agent
determines the most appropriate target database based on a number of factors. The Mailbox
Resources Management Agent, a cmdlet extension agent, is the application that runs in
the background that handles this and it is enabled by default. The benefit of this is that if
you provision multiple mailboxes or move multiple mailboxes at one time without specifying
a target database, the mailboxes will be distributed across all of the available mailbox
databases in the current Active Directory site from where you are running the commands.

Each mailbox database has two properties called IsExcludedFromProvisioning and
IsSuspendedFromProvisioning. These control whether or not a database can be used
for automatic mailbox distribution. By default, both are set to $false, which means that
every mailbox database you create is available for automatic distribution out of the box. If
you intend to create a mailbox database used strictly for archive mailboxes or you don't want
mailboxes to be placed in a particular database automatically, you can exclude the database
from being automatically used. To do so, use the following command syntax after the
database has been created:

Set-MailboxDatabase -Identity DB1 -IsExcludedFromProvisioning $true

When the IsExcludedFromProvisioning property is set to $true, you can still manually
create mailboxes in the database, but it will not be used for automatic distribution.

See also
Reporting on mailbox database size

Moving databases and logs to another
location

As your environment grows or changes over time, it may be necessary to move one or more
databases and their log streams to another location. Like most things, this change can be
performed through the Exchange Management Console, but performing this task within the
shell gives you some more flexibility. In this recipe, you will learn how to move database and
log files to another location.



Chapter 6

187187

How to do it...
To move the database file and log stream for the DB1 database to a new location, use the
following command syntax:

Move-DatabasePath -Identity DB1 `
-EdbFilePath E:\Databases\DB1\DB1.edb `
-LogFolderPath E:\Databases\DB1 `
-Confirm:$false `
-Force

After executing the preceding command, the DB1 database and log files will be moved to the
E:\Databases\DB1 directory, without prompting you for confirmation.

How it works...
In this example, you can see that we are moving both the database file and the transaction
logs to the same directory. You can use different directories or even separate disk spindles
as the locations for the database and log folder paths if needed.

To remove the confirmation prompts, we need to set the -Confirm parameter to $false and
also use the -Force switch parameter. This may be an important detail if you are running this
cmdlet from an automated script. If not used, the cmdlet will not make any changes until an
operator confirms it in the shell.

Obviously, in order to move the database file or the logs, the database will need to be taken
offline for the duration of the move. The Move-DatabasePath cmdlet will automatically
dismount the database and remount it when the move process is complete. If the database
is already dismounted at the time that you initiate a move, the database will not be
automatically mounted upon completion of the command and you will need to mount it
manually using the Mount-Database cmdlet. Obviously, any users with a mailbox in a
dismounted database will be unable to connect to their mailbox. If you need to move a
database, ensure that this can be done during a time that will not impact end users.

Keep in mind that databases that are replicated within a Database Availability Group (DAG)
cannot be moved. Each database copy in a DAG needs to use the same local path for the
database and logs, so you cannot change this after copies have already been created. If you
need to change the paths for a replicated database, you will need to remove all database
copies and perform the move. Once this process has been completed, you can create new
database copies that will use the new path.

Mailbox and Public Folder Databases

188188

There's more…
Before changing the EdbfilePath or the LogFolderPath locations for a database, you
may want to check the existing configuration. To do so, use the Get-MailboxDatabase
cmdlet, as shown in the following screenshot:

Here you can see that we are piping the Get-MailboxDatabase cmdlet to Format-List
(using the fl alias) and selecting the Name, EdbFilePath, and LogFolderPath properties,
which will display the relevant information for every database in the organization. You can
retrieve this information for a single database by specifying the name of the database using
the -Identity parameter.

Manually moving databases
In certain situations, you may prefer to manually copy or move the database and log files
instead of allowing the Move-DatabasePath cmdlet to move the data for you. In this case,
you can use the following process:

1.	 Let's say that you need to move the DB2 database to the F:\ drive. To do this
manually, the first thing you will want to do is dismount the database:
Dismount-Database -Identity DB2 -Confirm:$false

2.	 Next, use whatever method you prefer to copy the data to the new location on the
F:\ drive. After the data has been copied, use the Move-DatabasePath cmdlet,
as shown next, to update the configuration information in Exchange:
Move-DatabasePath -Identity DB2 `
-EdbFilePath F:\Databases\DB2\DB2.edb `
-LogFolderPath F:\Databases\DB2 `
-ConfigurationOnly `
-Confirm:$false `
-Force

Chapter 6

189189

3.	 The preceding command uses the -ConfigurationOnly switch parameter when
running the Move-DatabasePath cmdlet. This ensures that only the configuration
of the database paths is updated and that there is no attempt to copy the data files
to the new location.

4.	 After the files are manually moved or copied and the configuration has been changed,
you can re-mount the database, as shown next:

Mount-Database -Identity DB2

At this point, the database will be brought online and the move operation will be complete.

Taking it a step further
Let's look at an example of how we can use the shell to move databases in bulk. Let's say we
have added a new disk to the EX01 server using the S:\ drive letter and all the databases
need to be moved to this new disk under the Databases root directory. The following code
can be used to perform the move:

foreach($i in Get-MailboxDatabase -Server EX01) {
 $DBName = $i.Name

 Move-DatabasePath -Identity $DBName `
 -EdbFilePath "S:\Database\$DBName\$DBName.edb" `
 -LogFolderPath "S:\Database\$DBName" `
 -Confirm:$false `
 -Force
}

In this example, we use the Get-MailboxDatabase cmdlet to retrieve a list of all the
mailbox databases on the EX01 server. As we loop through each mailbox database, we
move the EDB file and log path under the S:\Database folder in a subdirectory that
matches the name of the database.

You can type the preceding code straight into the shell or save it in an external .ps1 file
and execute it as a script.

See also

Looping through items in Chapter 1, PowerShell Key Concepts

Using flow control statements in Chapter 1, PowerShell Key Concepts





Mailbox and Public Folder Databases

190190

Configuring the mailbox and public folder
database limits

The Exchange Management Shell provides cmdlets that allow you to configure the storage
limits for both mailbox and public folder databases. This recipe will show you how to set these
limits interactively in the shell or in bulk using automated script.

How to do it...
1.	 To configure the storage limits for a mailbox database, use the Set-

MailboxDatabase cmdlet, for example:
Set-MailboxDatabase -Identity DB1 `
-IssueWarningQuota 2gb `
-ProhibitSendQuota 2.5gb `
-ProhibitSendReceiveQuota 3gb

2.	 You can set the limits for a public folder database using the following
command syntax:

Set-PublicFolderDatabase -Identity PFDB1 `
-IssueWarningQuota 25mb `
-ProhibitPostQuota 30mb `
-MaxItemSize 5mb

How it works...
In the first example, we have configured the IssueWarningQuota, ProhibitSendQuota,
and ProhibitSendRecieveQuota limits for the DB1 mailbox database. These are the
storage limits that will be applied to each mailbox that is stored in this database. Based on
the values used with the command, you can see that users will receive a warning once their
mailbox reaches 2 GB in size. When their mailbox reaches 2.5 GB, they will be unable to send
outbound e-mail messages and when they hit the 3 GB limit they will be unable to send or
receive e-mail messages.

You can override the database limits on a per mailbox
basis using the Set-Mailbox cmdlet.

Chapter 6

191191

The limits configured in step 2 apply to the folders stored within a public folder database. As
you can see, based on the values used in our previous example, a warning will be sent to the
folder owner when the size of a folder reaches 25 MB. When it reaches 30 MB, we will no
longer allow users to post items to a folder. In addition, the maximum size per item is set to
5 MB. All folders in the PFDB1 database will inherit these storage limit settings, but you can
override them on a per folder basis using the Set-PublicFolder cmdlet.

There's more…
Both mailbox and public folder databases support deleted item retention, which allows you
to recover items that have been removed from the deleted items folder. By default, the
retention period for both mailbox and public folder databases is set to 14 days, but this can
be changed using the -DeletedItemRetention parameter when using the appropriate
cmdlet. For example, to increase the deleted item retention period for the DB1 database,
use the following command:

Set-MailboxDatabase -Identity DB1 -DeletedItemRetention 30

In this example, we have set the deleted item retention to 30 days. This parameter will also
accept input in the form of a time span, and therefore can be specified using the dd.hh:mm:
ss format. For example, we could have also used 30.00:00:00 as the parameter
value, indicating that the deleted item retention should be 30 days, zero hours, zero
minutes, and zero seconds, but that would be pointless in this example. However, this
format is useful when you need to be specific about hours or minutes, for instance,
using 12:00:00 would indicate that deleted items should only be retained for
12 hours. Remember, the Set-PublicFolderDatabase cmdlet also supports
the -DeletedItemRetention parameter, and it works in exactly the same way.

In addition to the deleted item retention, mailbox databases also retain deleted mailboxes for
30 days by default. You can change this value using the -MailboxRetention parameter as
shown next:

Set-MailboxDatabase -Identity DB1 -MailboxRetention 90

Like the value used for the -DeletedItemRetention parameter, you can specify a time
span as the value for the the -MailboxRetention parameter. Both of these parameters
will accept a maximum of 24,855 days.

Finally, you can configure both mailbox and public folder databases so that items will not be
permanently deleted until a database backup has been performed. This is not enabled by
default. To turn it on for a particular database, use the -RetainDeletedItemsUntilBackup
parameter with either the Set-MailboxDatabase cmdlet or the
Set-PublicFolderDatabase cmdlet. For example:

Set-MailboxDatabase -Identity DB1 `
-RetainDeletedItemsUntilBackup $true

Mailbox and Public Folder Databases

192192

Taking it a step further
To configure these settings in bulk, we can make use of the pipeline to update the settings for
a group of databases. For example, the following command will set the database limits for all
mailboxes in the organization:

Get-MailboxDatabase | Set-MailboxDatabase `
-IssueWarningQuota 2gb `
-ProhibitSendQuota 2.5gb `
-ProhibitSendReceiveQuota 3gb `
-DeletedItemRetention 30 `
-MailboxRetention 90 `
-RetainDeletedItemsUntilBackup $true

In this command, we are piping the results of the Get-MailboxDatabase cmdlet to the
Set-MailboxDatabase cmdlet and changing the default settings to the desired values
for all databases in the organization.

You can use the Get-PublicFolderDatabase and Set-PublicFolderDatabase
cmdlets in the same way. Simply adjust the parameters and their values to meet
your requirements.

See also
Determining the average mailbox size per database

Reporting on mailbox database size
In Exchange 2007, it was actually quite difficult to determine the size of a mailbox database
using PowerShell. The Get-MailboxDatabase cmdlet did not return the size of the
database, and instead, you had to use the cmdlet to determine the path to the EDB file and
calculate the file size using the Get-Item cmdlet or WMI. In Exchange 2010, determining this
is very simple and the information can easily be retrieved using the Get-MailboxDatabase
cmdet. In this recipe, we will take a look at how to report on mailbox database size using the
Exchange Management Shell.

How to do it...
To retrieve the total size for each mailbox database, use the following command:

Get-MailboxDatabase -Status | select-object Name,DatabaseSize



Chapter 6

193193

The output from this command might look something like this:

How it works...
When running the Get-MailboxDatabase cmdlet, we can use the -Status switch
parameter to receive additional information about the database, such as the mount status,
the backup status, and the total size of the database, as shown in the previous example. To
generate a report with this information, simply pipe the command to the Export-CSV cmdlet
and specify the path and filename, as shown:

Get-MailboxDatabase -Status |
 select-object Name,Server,DatabaseSize,Mounted |
 Export-CSV –Path c:\databasereport.csv -NoTypeInformation

This time, we have added the server name that the database is currently associated with
and the mount status for that database.

There's more...
When viewing the value for the database size, you probably noticed that we see the total size
in megabytes and in parenthesis we see the value in bytes, rather than just seeing a single
integer for the total size. The DatabaseSize property is of the type ByteQuantifiedSize,
and we can use several methods provided by this type to convert the value if all we want to
retrieve is a numeric representation of the database size.

For example, we can use the ToKB, ToMB, ToGB, and ToTB methods of the DatabaseSize
object to convert the value to kilobytes, megabytes, gigabytes, or terabytes. For example:

Get-MailboxDatabase -Status |
 Select-Object Name,
 @{n="DatabaseSize";e={$_.DatabaseSize.ToMb()}}

Mailbox and Public Folder Databases

194194

As you can see, this time we have created a calculated property for the DatabaseSize and
we are using the ToMB method to convert the value of the database. The output we get from
the command would look something like this:

This technique may be useful if you are looking to generate basic reports and you don't need
all of the extra information that is returned by default. For instance, you may already know
that your databases will always be in the range of hundreds of gigabytes. You can simply use
a calculated property as shown in the previous example and call the ToGB method for each
DatabaseSize object.

See also

Formatting output in Chapter 1, PowerShell Key Concepts

Finding the total number of mailboxes
in a database

You can retrieve all kinds of information about a mailbox database using the Exchange
Management Shell cmdlets. Surprisingly, the total number of mailboxes in a given mailbox
database is not one of those pieces of information. We need to retrieve this data manually.
Luckily, PowerShell makes this easy, as you will see in this recipe.

How to do it...
1.	 There are two ways that you can retrieve the total number of mailboxes in a database.

First, we can use the Count property of a collection of mailboxes:
@(Get-Mailbox -Database DB1).count

2.	 Another way to retrieve this information is to use the Measure-Object cmdlet using
the same collection from the preceding example:

Get-Mailbox -Database DB1 | Measure-Object



Chapter 6

195195

How it works...
In both steps, we use the Get-Mailbox cmdlet and specify the -Database parameter,
which will retrieve all of the mailboxes in that particular database. In the first example, we
have wrapped the command inside the @() characters to ensure that PowerShell will always
interpret the output as an array. The reason for this is that if the mailbox database contains
only one mailbox, the resulting output object will not be a collection, and thus will not have a
Count property.

Remember, the default result size for Get-Mailbox is 1000.
Set the -ResultSize parameter to Unlimited to override this.

The second step makes use of the Measure-Object cmdlet. You can see that, in addition to
the Count property, we also get a number of other details. Consider the output as shown in
the following screenshot:

To retrieve only the total number of mailboxes, we can extend this command further in
two ways. First, we can enclose the entire command in parenthesis and access the
Count property:

(Get-Mailbox -Database DB1 | Measure-Object).Count

In this case, the preceding command would return only the total number of mailboxes in
the DB1 database.

We can also pipe the command to Select-Object, and use the -ExpandProperty
parameter to retrieve only the value of the Count property:

Get-Mailbox -Database DB1 |
 Measure-Object |
 Select-Object -ExpandProperty Count

This command would again only return the total number of mailboxes in the database.

Mailbox and Public Folder Databases

196196

One of the most common questions that comes up when people see both of these methods
is, of course, which way is faster? Well, we can use the Measure-Command cmdlet to
determine this information, but the truth is that your results will vary greatly and there
probably won't be a huge difference in this case. The syntax to measure the time it takes
to run a script or command is shown next:

Measure-Command -Expression {@(Get-Mailbox -Database DB1).Count}

Simply supply a script block containing the commands you want to measure and assign it to
the -Expression parameter as shown previously. The Measure-Command cmdlet will return
a TimeSpan object that reports on the total milliseconds, seconds, minutes that it took to
complete the command. You can then compare these values to other commands that produce
the same result but use alternate syntax or cmdlets.

To report on the total number of archive mailboxes, use Get-Mailbox
-Filter {ArchiveName -ne $null} | Measure-Object.

There's more...
We can easily determine the total number of mailboxes in each database using a single
command. The key to this is using the Select-Object cmdlet to create a calculated
property. For example:

Get-MailboxDatabase |
 Select-Object Name,
 @{n="TotalMailboxes";e={@(Get-Mailbox -Database $_).count}}

This command would generate output similar to the following:

This command pipes the output from Get-MailboxDatabase to the Select-Object
cmdlet. For each database output by the command, we select the database name and then
use the $_ object when creating the calculated property to determine the total number of
mailboxes, using the Get-Mailbox cmdlet. This command can be piped further down to the
Out-File or Export-CSV cmdlets that will generate a report saved in an external file.

Chapter 6

197197

See also

Creating custom objects in Chapter 1, PowerShell Key Concepts

Determining the average mailbox size
per database

PowerShell is very flexible and gives you the ability to generate very detailed reports. When
generating mailbox database statistics, we can utilize data returned from multiple cmdlets
provided by the Exchange Management Shell. This recipe will show you an example of this,
and you will learn how to calculate the average mailbox size per database using PowerShell.

How to do it...
To determine the average mailbox size for a given database, use the following one-liner:

Get-MailboxStatistics -Database DB1 |
 ForEach-Object {$_.TotalItemSize.value.ToMB()} |
 Measure-Object -Average |
 Select-Object –ExpandProperty Average

How it works...
Calculating an average is as simple as performing some basic math, but PowerShell gives
us the ability to do this quickly with the Measure-Object cmdlet. The example uses the
Get-MailboxStatistics cmdlet to retrieve all the mailboxes in the DB1 database. We
then loop through each one, retrieving only the TotalItemSize property, and inside the
ForEach-Object script block we convert the total item size to megabytes. The result from
each mailbox can then be averaged using the Measure-Object cmdlet. At the end of the
command, you can see that the Select-Object cmdlet is used to retrieve only the value
for the Average property.

The number returned here will give us the average mailbox size in total for regular
mailboxes, archive mailboxes, as well as any other type of mailbox that has been
disconnected. If you want to be more specific, you can filter out these mailboxes
after running the Get-MailboxStatistics cmdlet:

Get-MailboxStatistics -Database DB1 |
 Where-Object{!$_.DisconnectDate -and !$_.IsArchive} |
 ForEach-Object {$_.TotalItemSize.value.ToMB()} |
 Measure-Object -Average |
 Select-Object –ExpandProperty Average



Mailbox and Public Folder Databases

198198

Notice that, in the preceding example, we have added the Where-Object cmdlet to filter
out any mailboxes that have a DisconnectDate defined or where the IsArchive property
is $true.

Another thing that you may want to do is round the average. Let's say the DB1 database
contained 42 mailboxes and the total size of the database was around 392 megabytes.
The value returned from the preceding command would roughly look something like
2.39393939393939. Rarely are all those extra decimal places of any use. Here are
a couple of ways to make the output a little cleaner:

$MBAvg = Get-MailboxStatistics -Database DB1 |
 ForEach-Object {$_.TotalItemSize.value.ToMB()} |
 Measure-Object -Average |
 Select-Object –ExpandProperty Average

[Math]::Round($MBAvg,2)

You can see that this time, we stored the result of the one-liner in the $MBAvg object. We
then use the Round method of the Math class in the .NET Framework to round the value,
specifying that the result should only contain two decimal places. Based on the previous
information, the result of the preceding command would be 2.39.

We can also use string formatting to specify the number of decimal places to be used:

[PS] "{0:n2}" -f $MBAvg

2.39

The -f Format operator is documented in PowerShell's help
system in about_operators.

Keep in mind that this command will return a string, so if you need to be able to sort on this
value, cast it to double:

[PS] [double]("{0:n2}" -f $MBAvg)

2.39

There's more...
The previous examples have only shown how to determine the average mailbox size for a
single database. To determine this information for all mailbox databases, we can use the
following code:

foreach($DB in Get-MailboxDatabase) {

Chapter 6

199199

 Get-MailboxStatistics -Database $DB |
 ForEach-Object{$_.TotalItemSize.value.ToMB()} |
 Measure-Object -Average |
 Select-Object @{n="Name";e={$DB.Name}},
 @{n="AvgMailboxSize";e={[Math]::Round($_.Average,2)}} |
 Sort-Object AvgMailboxSize -Desc
}

The result of this command would look something like this:

This example is very similar to the one we looked at previously. The difference is that, this
time, we are running our one-liner using a foreach loop for every mailbox database in the
organization. When each mailbox database has been processed, we sort the output based on
the AvgMailboxSize property.

See also

 Creating custom objects in Chapter 1, PowerShell Key Concepts

Reporting on database backup status
Using the Exchange Management Shell, we can write scripts that will check on the last full
backup time for a database that can be used for monitoring and reporting. In this recipe, you
will learn how to check the last backup time for each database and use this information to
generate statistics and find databases that are not being backed up on a regular basis.

How to do it...
To check the last full backup time for a database, use the Get-MailboxDatabase cmdlet,
as shown:

Get-MailboxDatabase -Identity DB1 -Status | fl Name,LastFullBackup



Mailbox and Public Folder Databases

200200

How it works...
When you run the Get-MailboxDatabase cmdlet, you must remember to use the -Status
switch parameter or else the LastFullBackup property will be $null. In the previous
example, we checked the last full backup for the DB1 database and piped the output to the
Format-List (using the fl alias) cmdlet. When viewing the LastFullBackup for each
database, you might find it helpful to pipe the output to the Select-Object ��������cmdlet,
as shown in the following screenshot:

In addition to simply checking the date, it may be useful to schedule this script to run daily
and report on the databases that have not recently been backed up. For example, the
following command will only retrieve databases that have not had a successful full backup
in the last 24 hours:

Get-MailboxDatabase -Status |
 ?{$_.LastFullBackup -le (Get-Date).AddDays(-1)} |
 Select-object Name,LastFullBackup

Here you can see that the Get-MailboxDatabase output is piped to the Where-Object
cmdlet (using the ? alias) and we check the value of the LastFullBackup property for each
database. If the value is less than or equal to 24 hours ago, the database name and last full
backup time are retuned.

There's more...
Since the LastFullBackup property value is a DateTime object, not only can we use
comparison operators to find databases that have not been backed up within a certain time
frame, but we can also calculate the number of days since that time. This might be a useful
piece of information to add to a reporting or monitoring script. The following code will provide
this information:

Get-MailboxDatabase -Status | ForEach-Object {
 if(!$_.LastFullBackup) {
 $LastFull = "Never"
 }
 else {

Chapter 6

201201

 $LastFull = $_.LastFullBackup
 }
 New-Object PSObject -Property @{
 Name = $_.Name
 LastFullBackup = $LastFull
 DaysSinceBackup = if($LastFull-is [datetime]) {
 (New-TimeSpan $LastFull).Days
 }
 Else {
 $LastFull
 }
 }
}

When running this code in the Exchange Management Shell, you would see output similar to
the following:

As you can see, we are simply looping through each mailbox database and retrieving the
LastFullBackup time. If a database has never been backed up, the value will be $null.
With that in mind, this code will return the string Never for those databases when reporting on
the status. If a value is present for LastFullBackup, we use the New-TimeSpan cmdlet to
determine the number of days since the last backup and include that in the data returned.

See also

Creating custom objects in Chapter 1, PowerShell Key Concepts

Restoring data from a recovery database
When it comes to recovering data from a failed database, you have several options depending
on what kind of backup product you are using or how you have deployed Exchange 2010 SP1.
The ideal method for enabling redundancy is to use a DAG, which will replicate your mailbox
databases to one or more servers and provide automatic failover in the event of a disaster.
However, you may need to pull old data out of a database restored from a backup. In this
recipe, we will take a look at how you can create a recovery database and restore data from it
using the Exchange Management Shell.



Mailbox and Public Folder Databases

202202

How to do it...
First, restore the failed database using the steps required by your current backup solution. For
this example, let's say that we have restored the DB1 database file to E:\Recovery\DB1 and
the database has been brought to a clean shutdown state. We can use the following steps to
create a recovery database and restore mailbox data:

1.	 Create a recovery database using the New-MailboxDatabase cmdlet:
New-MailboxDatabase -Name RecoveryDB `
-EdbFilePath E:\Recovery\DB1\DB1.edb `
-LogFolderPath E:\Recovery\DB01 `
-Recovery `
-Server MBX1

2.	 When you run the preceding command, you will see a warning that the recovery
database was created using the existing database file. The next step is to mount
the database:
Mount-Database -Identity RecoveryDB

3.	 Next, we will use the New-MailboxRestoreRequest cmdlet to restore the data
from the recovery database for a single mailbox:

New-MailboxRestoreRequest -SourceDatabase RecoveryDB `
-SourceStoreMailbox "Joe Smith" `
-TargetMailbox joe.smith

How it works...
When you restore the database file from your backup application, you may need to ensure
that the database is in a clean shutdown state. For example, if you are using Windows Server
Backup for your backup solution, you will need to use the Eseutil.exe database utility to
play any uncommitted logs into the database to get it in a clean shutdown state. For details
on how this works, check out Restoring Mailbox Data from a Recovery Database in Exchange
2010 SP1 at the following URL:

http://www.mikepfeiffer.net/2011/07/restoring-mailbox-data-from-a-
recovery-database-in-exchange-2010-sp1/

Once the data is restored, we can create a recovery database using the New-
MailboxDatabase cmdlet, as shown in the first example. Notice that when we ran the
command we used several parameters. First, we specified the path to the EDB file and the
log files, both of which are in the same location where we restored the files. We have also
used the -Recovery switch parameter to specify that this is a special type of database that
will only be used for restoring data and should not be used for production mailboxes. Finally,

Chapter 6

203203

we specified which mailbox server the database should be hosted on using the -Server
parameter. Make sure to run the New-MailboxDatabase cmdlet from the mailbox server
that you are specifying in the -Server parameter, and then mount the database using the
Mount-Database cmdlet.

The last step is to restore data from one or more mailboxes. As we saw in the previous
example, the New-MailboxRestoreRequest is the tool to use for this task. This is a
new cmdlet in Exchange 2010 SP1, so if you have used this process in the past using the
Restore-Mailbox cmdlet, you will want to get used to using this new cmdlet.

There's more…
When you run the New-MailboxRestoreRequest cmdlet, you need to specify the identity
of the mailbox you wish to restore using the -SourceStoreMailbox parameter. There are
three possible values you can use to provide this information: DisplayName, MailboxGuid,
and LegacyDN. To retrieve these values, you can use the Get-MailboxStatistics cmdlet
once the recovery database is online and mounted:

Get-MailboxStatistics -Database RecoveryDB |
 fl DisplayName,MailboxGUID,LegacyDN

Here we have specified that we want to retrieve all three of these values for each mailbox in
the RecoveryDB database.

Understanding target mailbox identity
When restoring data with the New-MailboxRestoreRequest cmdlet, you also need to
provide a value for the -TargetMailbox parameter. The mailbox needs to already exist
before running this command. If you are restoring data from a backup for an existing mailbox
that has not changed since the backup was done, you can simply provide the typical identity
values for a mailbox for this parameter.

If you want to restore data to a mailbox that was not the original source of the data, you
need to use the -AllowLegacyDNMismatch switch parameter. This will be useful if you are
restoring data to another user's mailbox, or if you've recreated the mailbox since the backup
was taken.

Learning about other useful parameters
The New-MailboxRestoreRequest cmdlet can be used to granularly control how data is
restored out of a mailbox. The following parameters may be useful to customize the behaviour
of your restores:

Mailbox and Public Folder Databases

204204

ConflictResolutionOption: This parameter specifies the action to take if
multiple matching messages exist in the target mailbox. The possible values
are KeepSourceItem, KeepLatestItem, or KeepAll. If no value is specified,
KeepSourceItem will be used by default.

ExcludeDumpster: Use this switch parameter to indicate that the dumpster
should not be included in the restore.

SourceRootFolder: Use this parameter to restore data only from a root folder
of a mailbox.

TargetIsArchive: You can use this switch parameter to perform a mailbox restore
to a mailbox archive.

TargetRootFolder: This parameter can be used to restore data to a specific folder
in the root of the target mailbox. If no value is provided, the data is restored and
merged into the existing folders, and, if they do not exist, they will be created in the
target mailbox.

These are just a few of the useful parameters that can be used with this cmdlet, but there
are more. For a complete list of all the available parameters and full details on each one, run
Get-Help New-MailboxRestoreRequest -Detailed

Understanding mailbox restore request cmdlets
There is an entire cmdlet set for mailbox restore requests in addition to the
New-MailboxRestoreRequest cmdlet. The remaining available cmdlets
are outlined as follows:

Get-MailboxRestoreRequest: Provides detailed status of mailbox
restore requests
Remove-MailboxRestoreRequest: Removes fully or partially completed
restore requests
Resume-MailboxRestoreRequest: Resumes a restore request that was
suspended or failed
Set-MailboxRestoreRequest: Can be used to change the restore request
options after the request has been created
Suspend-MailboxRestoreRequest: Suspends a restore request any time after
the request was created but before the request reaches the status of Completed

For complete details and examples for each of these cmdlets, use the Get-Help cmdlet with
the appropriate cmdlet using the -Full switch parameter.

Taking it a step further
Let's say that you have restored your database from backup, you have created a recovery
database, and now you need to restore each mailbox in the backup to the corresponding
target mailboxes that are currently online. We can use the following script to accomplish this:





















Chapter 6

205205

$mailboxes = Get-MailboxStatistics -Database RecoveryDB
foreach($mailbox in $mailboxes) {
 New-MailboxRestoreRequest -SourceDatabase RecoveryDB `
 -SourceStoreMailbox $mailbox.DisplayName `
 -TargetMailbox $mailbox.DisplayName
}

Here you can see that first we use the Get-MailboxStatistics cmdlet to retrieve all the
mailboxes in the recovery database and store the results in the $mailboxes variable. We
then loop through each mailbox and restore the data to the original mailbox. You can track
the status of these restores using the Get-MailboxRestoreRequest cmdlet and the Get-
MailboxRestoreRequestStatistics cmdlet.

See also

Managing disconnected mailboxes in Chapter 4, Managing Mailboxes

Configuring public folder replication
The Exchange Management Shell provides support for public folder replication
management both from the shell, and with some built-in scripts located in the
Exchange Scripts directory. This recipe will provide a couple of methods that can
be used to configure public folder replication.

How to do it...

1.	 To manage the replication settings for a public folder, use the Set-PublicFolder
cmdlet. For example, to configure replicas to the Marketing public folder, use the
following command:
Set-PublicFolder \Marketing -Replicas PFDB1,PFDB2

2.	 To set a custom replication schedule, use the -ReplicationSchedule parameter,
as shown in the following example:
Set-PublicFolder \Marketing `
-ReplicationSchedule "Friday.06:00 PM-Monday.05:00 AM"

3.	 You can reset this command and switch back to the default setting, which is to always
allow replication:
Set-PublicFolder \Marketing -ReplicationSchedule Always



Mailbox and Public Folder Databases

206206

4.	 To configure a specific folder so that it uses the parent database replication settings,
use the following command:

Set-PublicFolder \Marketing -UseDatabaseReplicationSchedule $true

This is the default setting and only needs to be changed if you have modified the replication
schedule settings.

How it works...
In the first example, the Set-PublicFolder cmdlet uses the -Replicas parameter to
define each database that should contain a replica of the public folder. Keep in mind that
when you set this, you will override the current list that has been configured for the folder. So,
if you currently have a replica on PFDB1 and you want to add PFDB2, you will need to specify
both database names when you run the command.

When using the -ReplicationSchedule parameter to specify a custom replication
schedule, the values should use the following format:

Weekday.Hour:Minute [AM/PM]-Weekday.Hour:Minute [AM/PM]

In the second step, you can see that we modified the schedule so that replication would only
take place on the weekends, starting on Friday night and ending on Monday morning.

You can suspend and resume public folder replication using
the Suspend-PublicFolderReplication and Resume-
PublicFolderReplication cmdlets. Use Get-Help with
these cmdlets for more details.

There's more...
You may have a large number of public folders that need to have replicas added. In this case,
Exchange provides a script called AddReplicaToPFRecursive.ps1 in the scripts directory
that is created when you install Exchange.

Let's say that you have a public folder database called PFDB1 on a server called MBX1. You
have hundreds of public folders in this database. You then install a new server called MBX2
and create a new public folder database on this server called PFDB2. To add replicas for all
of the folders from the PFDB1 database to the PFDB2 database, first switch to the Exchange
scripts directory:

Set-Location $exscripts

Chapter 6

207207

Next, run the script as shown next:

.\AddReplicaToPFRecursive.ps1 -TopPublicFolder \ -ServerToAdd MBX2

This command will recursively add replicas for each folder on PFDB1 to PFDB2.

In addition, you can add replicas to the system folders using the following command:

.\AddReplicaToPFRecursive.ps1 -TopPublicFolder \Non_IPM_Subtree `
-ServerToAdd MBX2

If you are transitioning to another server, you can move the replicas for good. For example,
if you intend to replace MBX1 with MBX2, you can use the MoveAllReplicas.ps1 script to
move all the replicas to the PFDB2 database:

.\MoveAllReplicas.ps1 -Server MBX1 –NewServer MBX2

Keep in mind that it may take some time for public folder replication to kick in, even when the
replication schedule is set to "always".

Managing user access to public folders
Client permissions for public folders can be managed using a handful of cmdlets that are
available in the Exchange Management Shell. In addition, there are some scripts located in
the Exchange scripts directory that can be used to make client permission changes in bulk.
In this recipe, we will take a look at how you can use both methods to manage public folder
client permissions.

How to do it...
To grant Owner permissions to a user on a public folder, use the following command:

Add-PublicFolderClientPermission -Identity \Marketing `
-User Mike `
-AccessRights Owner `
-Server MBX1

Mailbox and Public Folder Databases

208208

How it works...
The Add-PublicFolderClientPermissions cmdlet can be used to add permissions for
a particular user to a public folder. In the previous example, we granted the user Mike the
Owner access right to the Marketing public folder using the -AccessRights parameter.
There are several possible values for this parameter, as shown next:

ReadItems: The user assigned this right can read items within the designated folder.

CreateItems: The user assigned this right can create items within the designated
folder.

EditOwnedItems: The user assigned this right can edit the items that the user owns
in the designated folder.

DeleteOwnedItems: The user assigned this right can delete items that the user owns
in the designated folder.

EditAllItems: The user assigned this right can edit all items in the designated folder.

DeleteAllItems: The user assigned this right can delete all items in the designated
folder.

CreateSubfolders: The user assigned this right can create subfolders in the
designated folder.

FolderOwner: The user assigned this right has the right to view and move the folder
and create subfolders. The user cannot read items, edit items, delete items, or create
items.

FolderContact: The user assigned this right is the contact for the designated folder.

FolderVisible: The user assigned this right can view the specified folder, but can't
read or edit items within the designated folder.

The following roles are made up by one or more of the permissions specified in the previous
list and can also be used with the -AccessRights parameter:

None: FolderVisible

Owner: CreateItems, ReadItems, CreateSubfolders, FolderOwner, FolderContact,
FolderVisible, EditOwnedItems, EditAllItems, DeleteOwnedItems, and DeleteAllItems

PublishingEditor: CreateItems, ReadItems, CreateSubfolders, FolderVisible,
EditOwnedItems, EditAllItems, DeleteOwnedItems, and DeleteAllItems

Editor: CreateItems, ReadItems, FolderVisible, EditOwnedItems, EditAllItems,
DeleteOwnedItems, and DeleteAllItems

PublishingAuthor: CreateItems, ReadItems, CreateSubfolders, FolderVisible,
EditOwnedItems, and DeleteOwnedItems

Author: CreateItems, ReadItems, FolderVisible, EditOwnedItems, and
DeleteOwnedItems

































Chapter 6

209209

NonEditingAuthor: CreateItems, ReadItems, and FolderVisible

Reviewer: ReadItems and FolderVisible

Contributor: CreateItems and FolderVisible

You can generate a report that details the client permissions for a public folder using the
Get-PublicFolderClientPermission cmdlet. For example, the following command
returns the permissions set on the Marketing public folder:

Get-PublicFolderClientPermission \Marketing

This command would show each user's access rights to the Marketing public folder. To
retrieve the client access rights for each public folder, you could use the following commands:

Get-PublicFolder -Recurse |
 ?{$_.Name -ne 'IPM_SUBTREE'} |
 Get-PublicFolderClientPermission

Keep in mind that this command will return quite a bit of information, even for only a few
public folders. You may want to export this information to a text or CSV file for easier review
outside the shell.

To remove public folder client permissions for an individual user, use the following
command syntax:

Remove-PublicFolderClientPermission \Marketing `
-User Mike `
-AccessRights Owner `
-Confirm:$false

Here you can see that the syntax is pretty straightforward. We are simply removing the
permissions that were set in the first example.

There's more...
The built-in scripts directory on each Exchange server provides some PowerShell scripts that
can be used to modify a user's permissions to public folders in bulk. The scripts and their
descriptions are outlined as follows:

ReplaceUserWithUserOnPFRecursive.ps1: You can use this script to
replace an existing user with a new user in the client permissions from a public
folder recursively

ReplaceUserPermissionOnPFRecursive.ps1: This script can be used to
replace a user's client permissions recursively











Mailbox and Public Folder Databases

210210

RemoveUserFromPFRecursive.ps1: You can use this script to recursively remove
a user's client permissions from all public folders in the hierarchy

To run these scripts, switch to the scripts directory:

Set-Location $exscripts

To replace a user with another user on every public folder:

.\ReplaceUserWithUserOnPFRecursive.ps1 -TopPublicFolder \ `
-UserOld administrator `
-UserNew Mike

To replace a user's permissions on every public folder:

.\ReplaceUserPermissionOnPFRecursive.ps1 -TopPublicFolder \ `
-User administrator `
-Permissions Reviewer

To remove a user from the client permissions list for all public folders:

.\RemoveUserFromPFRecursive.ps1 -TopPublicFolder \ -User sysadmin

Reporting on public folder statistics
The Exchange Management Shell provides two cmdlets that can be used to generate detailed
reports based on the usage of your public folders. In this recipe, we will take a look at how to
report on public folder statistics.

How to do it...
To generate a basic report for each public folder, run the following cmdlet:

Get-PublicFolderStatistics | ft Name,ItemCount,TotalItemSize



Chapter 6

211211

This command would generate an output similar to the following example:

How it works...
As you can see, Get-PublicFolderStatistics provides some very useful and
detailed information for each public folder. In addition, you can report on individual items
within each folder using the Get-PublicFolderItemStatistics cmdlet. This cmdlet
will return each item within a specified public folder and contains detailed information about
each item including message size, creation time, last access time, and whether or not it
contains an attachment.

You can use the output of the Get-PublicFolderItemStatistics cmdlet to determine
which items are no longer being used and can be safely deleted. Simply run the cmdlet and
specify the folder name as shown next:

Get-PublicFolderItemStatistics -Identity \Marketing

You can filter the output based on your needs. For example, if you are only looking for old
items which can be safely deleted, you could run something like this:

Get-PublicFolderItemStatistics -Identity \Marketing |
 ?{$_.LastModificationTime -le "12/31/2008"}

Replace the date in quotes with a date in the past, such as a year or two ago, and then you
can find items in the folder that have not been updated in a very long time that can likely be
safely deleted.

There's more...
Within the Exchange scripts directory there is a script called AggregatePFData.ps1 which
can be used to provide a detailed report on public folder item statistics. This script aggregates
the output of the Get-PublicFolderItemStatistics, Get-PublicFolderStatistics,
and Get-PublicFolder cmdlets. The last access and ��������������������������������� last user modification times are
returned, in addition to the folder owner and several other properties such as the item count,
folder type, whether or not it is mail-enabled, and more.

Mailbox and Public Folder Databases

212212

To run the script, switch to the Exchange server scripts directory:

Set-Location $exscripts

Next, run the script:

.\AggregatePFData.ps1 -Publicfolder \Marketing

The output from this command should be similar to the following:

From this output, you can see that several useful details about the folder are returned that
can be filtered on, or exported to external text or CSV file.

See also

Exporting reports to text and CSV files in Chapter 2, Exchange Management Shell
Common Tasks



7
Managing Client

Access

I�� n this chapter, we will cover the following:

Creating an RPC Client Access array

Configuring the CAS server used by RPC clients

Configuring RPC encryption requirements

Managing ActiveSync, OWA, POP3, and IMAP4 mailbox settings

Setting internal and external CAS URLs

Managing Outlook Anywhere settings

Blocking Outlook clients from connecting to Exchange

Reporting on Active OWA and RPC connections

Controlling ActiveSync device access

Reporting on ActiveSync devices

Introduction
The Client Access Server (CAS) role was introduced in Exchange 2007 to provide a dedicated
access point to various services such as Outlook Web Access (OWA), ActiveSync, POP3, and
IMAP4 to clients. However, all MAPI clients connected directly to the mailbox server role. The
CAS role has been extended even further in Exchange 2010 and includes some new features,
including functionality that will change the architecture of every Exchange deployment. In this
latest release, even though connections to public folders are still made by MAPI clients to
the mailbox server role, connections from these clients to Exchange 2010 mailboxes are now
handled by the CAS role. This is a major architectural shift, and many of these new features,
such as configuring the preferred MAPI endpoint for Outlook clients, can only be managed
from the shell.





















Managing Client Access

214

In addition, with all of the possible ways to connect to Exchange through CAS services such as
OWA and ActiveSync, there are a large number of settings and options that can be managed
from the command line. The CAS role and the Exchange Management Shell cmdlets used to
manage it provide plenty of opportunities for automating repetitive tasks from PowerShell one-
liners, scripts, and functions.

In this chapter, we'll take a look at how you can control access to the CAS services in your
environment, customize their settings, and generate usage reports using the Exchange
Management Shell.

Performing some basic steps
To work with the code samples in this chapter, follow these steps to launch the Exchange
Management Shell:

1.	 Log onto a workstation or server with the Exchange Management Tools installed

2.	 Open the Exchange Management Shell by clicking on Start | All Programs |
Exchange Server 2010

3.	 Click on the Exchange Management Shell shortcut

Creating an RPC Client Access array
Since CAS servers are now the MAPI endpoint for Outlook clients accessing Exchange 2010
mailboxes, it is recommended as a best practice that you create arrays of load-balanced CAS
servers in order to provide high availability for the CAS server role. In this recipe, you'll learn
how to create a CAS array using the Exchange Management Shell.

How to do it...
In order to create a CAS array, you must use the shell since there is no interface within the
Exchange Management Console that allows you to perform this task. The following command
creates a CAS array for the CorporateHQ site in Active Directory:

New-ClientAccessArray -Name CASArray01 `
-Fqdn outlook.contoso.com `
-Site CorporateHQ

How it works...
CAS arrays are used to group multiple CAS servers together using a logical server name that
resolves to a load balanced IP address. This allows your clients to use a single CAS server
name at all times, regardless of which CAS server in an array they are connected to. Creating
the array allows CAS servers to accept connections using a shared server name, and allows

Chapter 7

215

this array name to be associated with a particular mailbox database so that it can be used
as the MAPI endpoint configured in a user's Outlook profile. The goal is to provide seamless
client access to the CAS role, and if a server in an array goes offline, clients do not need to be
reconfigured to point to a different server name.

You can view the settings for a CAS Array using the Get-
ClientAccessArray cmdlet. Run Get-Help Get-
ClientAccessArray -full for details.

You can have only one CAS array per Active Directory site. In the previous example,
we created a CAS array in the CorporateHQ site. When you create the array using the
New-ClientAccessArray cmdlet, any existing CAS servers in the Active Directory site
will automatically be included. If you deploy a new CAS server in the site at a later time,
the server will automatically be added to the array. Even though CAS array membership
is automatically configured, you can still allow users to connect directly to an individual
CAS server which is controlled by the RPCClientAccessServer attribute on each
mailbox database.

There's more...
When you create a CAS array, you're basically creating a virtual server object that can
be assigned to one or more mailbox databases. You still need to configure a network
load-balancing solution that is external to Exchange. For example, when we created the CAS
array with the outlook.contoso.com FQDN, there are two important steps that would need
to take place before this array name could actually be used. First, you would need to configure
either Windows Network Load Balancing or a hardware based Load Balancer with a virtual IP
address which would load balance traffic across all the CAS servers in the CorporateHQ site.
Next, you would need to create a host (A) record in DNS for outlook.contoso.com that
resolves to the load balanced virtual IP address.

See also

Building a Windows NLB cluster for CAS servers in Chapter 9, High Availability

Configuring the CAS server used by RPC clients

Configuring the CAS server used
by RPC clients

RPC clients such as Outlook 2003, 2007, and 2010 use CAS servers as their MAPI endpoint
for mailbox access in Exchange 2010. In this recipe, you will learn how to control which CAS
server or CAS array will be used as the MAPI endpoint by configuring the properties of the
user's mailbox database using the Exchange Management Shell.





Managing Client Access

216

How to do it...
To configure the CAS server that should be used by RPC clients, set the
RPCClientAccessServer property of the user's mailbox database. For example:

Set-MailboxDatabase -Identity DB1 `
-RpcClientAccessServer outlook.contoso.com

After running the previous command, any user with a mailbox in the DB1 database will use
outlook.contoso.com for RPC connections.

How it works...
When creating a mailbox database, the RpcClientAccessServer property of the database
will automatically be set to a CAS server in the same Active Directory site as the mailbox
server hosting the database. This is true only if a CAS array has not already been created
for the Active Directory site that the mailbox server is located in. If a CAS array for the Active
Directory site has already been created, the RpcClientAccessServer property for the
database being created will be set to the CAS array already defined for that site.

You can control the RpcClientAccessServer setting for any mailbox database using the
Set-MailboxDatabase cmdlet, as shown in the previous example. In some cases, allowing
Exchange to automatically select the appropriate value for the RpcClientAccessServer
setting might be sufficient. If not, you can explicitly set this value to a particular CAS server if
you want all of the users in a particular mailbox database to use a specific CAS server for
RPC access.

There's more...
Ideally, you want to create your CAS arrays before creating your mailbox databases. This
is because, as we discussed previously, once the CAS array for a particular site has been
created, all mailbox databases created within the site will be automatically configured to
use this array as the RPC Client Access server. When a user's Outlook profile is initially
configured and the RPCClientAccessServer property for their mailbox database is set to
a specific CAS server, their profile will not be updated if you later change this setting using the
Set-MailboxDatabase cmdlet. In this situation, you would need to reconfigure the user's
Outlook profile and set the server name to the FQDN of the CAS array, or you could run a
repair in Outlook to correct the setting. Either way, this requires you or a member of your staff
to touch each workstation used by the affected users. Therefore, it is best practice to set the
RPC Client Access server to the correct value before allowing any users connect to Exchange
using Outlook.

If you've already created multiple mailbox databases across multiple mailbox servers and
have not already created a CAS array, this could end up being a problem for you on the client
side, but updating all of the databases with a new RPC Client Access server setting after the

Chapter 7

217

f�� act is very easy to do. Let's say that you've created multiple mailbox databases located on
several mailbox servers in the default Active Directory site prior to creating a CAS array. You
can use the following code to update each database in the site:

Get-ExchangeServer |
 Where-Object {$_.Site.Name -eq 'Default-First-Site-Name' `
 -and $_.ServerRole -match 'Mailbox'
 } |
Get-MailboxDatabase |
 Set-MailboxDatabase -RpcClientAccessServer outlook.contoso.com

In this example, we first use the Get-ExchangeServer cmdlet to create a collection of
mailbox servers. You can see that we're filtering two properties, output by this cmdlet. First,
we're checking the Site.Name property to make sure it is set to Default-First-Site-
Name, and second, we're filtering the ServerRole property to ensure that we're only going
to retrieve servers running the Mailbox role. When filtering the ServerRole property, you
can see that we're using the -match operator. This is because comparing the ServerRole
property using the -eq (equals) operator will not evaluate to $true if the server is hosting
multiple roles. The output of the command returns one or more mailbox servers in the
default Active Directory site. Each server object returned is then piped down to the
Get-MailboxDatabase cmdlet, which retrieves every database hosted by each mailbox
server. Finally, those objects are piped down to the Set-MailboxDatabase cmdlet, which
configures the RPCClientAccessServer property of each database in the default site to
the outlook.contoso.com CAS array.

See also

Building a Windows NLB cluster for CAS servers in Chapter 9, High Availability

Creating an RPC Client Access array

Configuring RPC encryption requirements
In an Exchange 2010 environment, you can control whether or not Outlook clients are
required to use encrypted RPC connections. Since this cannot be configured from the
Exchange Management Console, you'll need to use the shell in order to modify these settings.
Use the steps in this recipe to control RPC encryption requirements using the Exchange
Management Shell.





Managing Client Access

218

How to do it.
To enable RPC encryption for a CAS server, use the Set-RPCClientAccess cmdlet:

Set-RpcClientAccess -Server cas1 -EncryptionRequired $true

This enables RPC encryption for the CAS1 client access server.

How it works...
In the RTM version of Exchange 2010, CAS servers were configured to require RPC encryption.
Since Outlook 2007 and 2010 are configured by default with encryption enabled, those
clients worked without any issues. On the other hand, many organizations are still running
Outlook 2003, which by default is not configured to encrypt RPC connections. As such, since
the RPC encryption requirements on CAS servers were enabled out of the box, many users
running Outlook 2003 could not open their mailboxes. This required administrators to either
deploy the client side encryption setting through group policy or to use the command in the
previous example to disable RPC encryption on each CAS server so that clients could connect.

In Exchange 2010 SP1, Microsoft decided, due to customer feedback, that the RPC
encryption requirement should be disabled by default. So, if you are doing a new deployment
of Exchange 2010 SP1, your Outlook 2003 clients will be able to connect just fine after their
mailboxes have been moved to an Exchange 2010 SP1 server. Of course, for the most secure
environment, you'll want to require RPC encryption and configure your Outlook 2003 clients
for RPC encryption.

Keep in mind that any settings that are enabled on an RTM installation will be carried over
when upgrading to Exchange 2010 SP1. If you deploy Exchange 2010 RTM and do not modify
the default settings, CAS servers will require RPC encryption, even after deploying SP1.

If you have many CAS servers and you'd like to modify this setting in a bulk operation, you can
take advantage of PowerShell's pipelining capabilities and looping constructs. For example,
the following code would disable RPC encryption on all CAS servers:

Get-ClientAccessServer |
 Set-RpcClientAccess -EncryptionRequired $false

Additionally, you can accomplish the same thing for all servers in a particular CAS array using
the following commands:

$servers = (Get-ClientAccessArray -Identity CASArray01).Members
$servers | %{
 Set-RpcClientAccess -Server $_.name -EncryptionRequired $true
}

Chapter 7

219

I�� n the previous example, we first create a collection that stores each member of the CAS
Array01 CAS array in the $servers variable. We then pipe that object to ForEach-
Object (using the % alias) and then run the Set-RpcClientAccess cmdlet to configure the
encryption requirement for each server in the collection.

There's more...
As you may already know, all client connections now go through the CAS server role in
Exchange 2010. Actually, the truth is that, this statement is not completely accurate. If you are
still supporting and using Public Folders in your environment, clients will connect directly to
mailbox servers in order to access Public Folder data. In many Exchange 2010 environments,
it's not uncommon to see the CAS role running on separate servers to those running the
Mailbox role. In this scenario, if you are using Public Folders, you would need to control the
encryption requirements on both the CAS and Mailbox server roles, since the client would be
establishing RPC connections to both.

In order to control the encryption requirements for the Mailbox server role, use the
Set-MailboxServer cmdlet, as shown in the following example:

Set-MailboxServer -Identity mbx1 -MAPIEncryptionRequired $true

After running the previous command, Outlook clients connecting to the mbx1 server for
Public Folder access would need to have the "Encrypt data between Microsoft Outlook and
Microsoft Exchange" setting checked in order for RPC encryption to be enabled on the client.
As discussed previously, this is enabled by default for both Outlook 2007 and 2010 and is
disabled by default for Outlook 2003 clients.

See also
Creating an RPC Client Access array

Managing ActiveSync, OWA, POP3,
and IMAP4 mailbox settings

You can use the Exchange Management Shell to configure a user's ability to access CAS
services such as ActiveSync, OWA, POP3, and IMAP4. You can also allow or disallow MAPI
connectivity and the ability to connect to Exchange using Outlook Anywhere. In this recipe,
you'll learn techniques used to control these settings, whether it is done interactively through
the shell or using an automated script.



Managing Client Access

220

How to do it...
To control access to CAS services for a mailbox, use the Set-CASMailbox cmdlet. Here's an
example of how you might use this cmdlet:

Set-CasMailbox -Identity 'Dave Smith' `
-OWAEnabled $false `
-ActiveSyncEnabled $false `
-PopEnabled $false `
-ImapEnabled $false

This command will disable Outlook Web App (OWA), ActiveSync, POP3, and IMAP4 for the
mailbox belonging to Dave Smith.

How it works...
When you create a mailbox, OWA, ActiveSync, POP3, IMAP4, and MAPI access are enabled by
default. For most organizations, these default settings are acceptable, but, if that is not the
case for your environment, you can use the Set-CASMailbox cmdlet to enable or disable
access to these services. This can be done for individual users as needed, or you can do this
in bulk.

For example, let's say that all of the users in the Sales department should only access
Exchange internally through Outlook using MAPI, POP, and IMAP. We can use a simple
pipeline command to make this change:

Get-Mailbox -Filter {Office -eq 'Sales'} |
 Set-CasMailbox -OWAEnabled $false `
 -ActiveSyncEnabled $false `
 -PopEnabled $true `
 -ImapEnabled $true

As you can see, we use the Get-Mailbox cmdlet and specify a filter that limits the results
to users that have their Office attribute in Active Directory set to Sales. The results are
then piped to the Set-CASMailbox cmdlet and access to the CAS services is modified
for each mailbox. Notice that this time we've used additional parameters to allow POP and
IMAP access.

Alternatively, you may want to block MAPI access and only allow users in your organization to
connect through OWA. In this case, use the following one-liner:

Get-Mailbox -RecipientTypeDetails UserMailbox |
 Set-CasMailbox -OWAEnabled $true `
 -ActiveSyncEnabled $false `
 -PopEnabled $false `
 -ImapEnabled $false `
 -MAPIEnabled $false

Chapter 7

221

This time we use Get-Mailbox to retrieve all the mailboxes in the organization. We're using
the -RecipientTypeDetails parameter to specify that we want to find user mailboxes
and exclude other types such as discovery and resource mailboxes. The results are piped to
the Set-CASMailbox cmdlet and access to CAS services is configured with the required
settings. You'll notice that this time we've included the -MAPIEnabled parameter and set its
value to $false so that users will only be able to access Exchange through OWA.

There's more...
If you are planning on provisioning all of your new mailboxes through an automated script, you
may want to configure these settings at mailbox creation time. Consider the following script
named New-MailboxScript.ps1:

param(
 $name,
 $password,
 $upn,
 $alias,
 $first,
 $last
)

$pass = ConvertTo-SecureString -AsPlainText $password -Force

$mailbox = New-Mailbox -UserPrincipalName $upn `
-Alias $alias `
-Name "$first $last" `
-Password $pass `
-FirstName $first `
-LastName $last

Set-CasMailbox -Identity $mailbox `
-OWAEnabled $false `
-ActiveSyncEnabled $false `
-PopEnabled $false `
-ImapEnabled $false `
-MAPIBlockOutlookRpcHttp $true

Managing Client Access

222

This script can be used to create a mailbox and configure access to CAS services based
on your requirements. If the script is saved in the root of the C: drive, the syntax would
look like this:

[PS] C:\>.\New-MailboxScript.ps1 -first John -last Smith -alias jsmith -
password P@ssw0rd01 -upn jsmith@contoso.com

There are basically two phases to the script. First, the mailbox for the user is created using the
New-Mailbox cmdlet. In this example, the New-Mailbox result is saved in the $mailbox
variable, and the mailbox is created using the parameters provided by the user running the
script. Once the mailbox is created, the Set-CASMailbox cmdlet is used to configure
access to CAS services and uses the $mailbox variable to identify the mailbox to modify
when the command executes.

See also

Adding, modifying, and removing mailboxes in Chapter 3, Managing Recipients

Setting internal and external CAS URLs
Each CAS server has multiple virtual directories, some of which can only be modified through
the Exchange Management Shell. Scripting the changes made to both the internal and
external URLs can be a big time-saver, especially when deploying multiple servers in a CAS
array. In this recipe, you will learn how to use the set of cmdlets that are needed to modify
both the internal and external URLs for each CAS server virtual directory.

How to do it...
To change the external URL of the OWA virtual directory for a server named CAS1, use the
following command:

Set-OwaVirtualDirectory -Identity 'CAS1\owa (Default Web Site)' `
-ExternalUrl https://mail.contoso.com/owa

After the change has been made, we can view the configuration using the Get-
OwaVirtualDirectory cmdlet:

[PS] C:\>Get-OwaVirtualDirectory -Server cas1 | fl ExternalUrl

ExternalUrl : https://mail.contoso.com/owa



Chapter 7

223

How it works...
Each Client Access server hosts virtual directories in IIS that support Outlook Web App (OWA),
Exchange Control Panel (ECP), ActiveSync, Offline Address Book (OAB), and Exchange Web
Services (EWS). Each of these services has an associated cmdlet set that can be used to
manage the settings of each virtual directory. One of the most common configuration changes
made during the deployment process is modifying the internal and external URLs for each of
these services. The required configuration varies greatly depending on a number of factors in
your environment, especially in larger multi-site environments.

The following cmdlets can be used to modify several settings for each virtual directory,
including the values for the internal and external URLs:

Set-ActiveSyncVirtualDirectory: Used to configure the internal and
external URL values for the /Microsoft-Server-ActiveSync virtual directory. Use the
InternalUrl and ExternalUrl parameters to change the values.

Set-EcpVirtualDirectory: Used to configure the internal and external URL
values for the /ECP virtual directory. Use the InternalUrl and ExternalUrl
parameters to change the values.

Set-OabVirtualDirectory: Used to configure the internal and external URL
values for the /OAB virtual directory. Use the InternalUrl and ExternalUrl
parameters to change the values.

Set-OwaVirtualDirectory: Used to configure the internal and external URL
values for the /OWA virtual directory. Use the InternalUrl and ExternalUrl
parameters to change the values.

Set-WebServicesVirtualDirectory: Used to configure the internal and
external URL values for the /EWS virtual directory. Use the InternalUrl and
ExternalUrl parameters to change the values.

When running each of these cmdlets, you need to identify the virtual directory in question. For
example, when modifying the external URL for the ECP virtual directory, the command might
look similar to this:

Set-EcpVirtualDirectory -Identity 'CAS1\ecp (Default Web Site)' `
-ExternalUrl https://mail.contoso.com/ecp

The syntax is similar to the first example where we modified the OWA virtual directory; the only
difference is that the cmdlet name and ExternalUrl value have changed. Notice that the
identity for the virtual directory is in the format of ServerName\VirtualDirectoryName
(WebsiteName). The reason this needs to be done is because it's possible, but not very
common, for a particular CAS server to be running more than one site in IIS containing virtual
directories for each of these CAS services.











Managing Client Access

224

If you are like most folks and have only the default web site running in IIS, you can also take
advantage of the pipeline if you forget the syntax needed to specify the identity of the virtual
directory. For example:

Get-EcpVirtualDirectory -Server cas1 |
 Set-EcpVirtualDirectory -ExternalUrl https://mail.contoso.com/ecp

The given pipeline command makes the same change as shown previously. This time we're
using the Get-EcpVirtualDirectory cmdlet with the -Server parameter to identify the
CAS server. We then pipe the resulting object to the Set-EcpVirtualDirectory cmdlet
that makes the change to the ExternalUrl value.

There's more…
If you are allowing access to Exchange through Outlook Anywhere, you'll need to configure
the external URLs that will be handed to Outlook clients for services such as ECP, OAB, and
EWS. These URLs may need to point to a FQDN that resolves to a load balancer VIP or to your
reverse proxy infrastructure, such as ISA or TMG.

In addition, you'll probably want to configure your internal URLs to point to a FQDN that
resolves to your internal load-balancer VIP. In this situation, you want to make sure you do
not modify the internal URL for both the OWA and ECP virtual directories in non-internet-facing
sites. This is because OWA and ECP connections from the internet-facing CAS server will be
proxied to the servers in the non-internet facing sites, and, if the internal FQDN of the CAS
server is not set on each these virtual directories, Kerberos authentication will fail and the
user will not be able to access their mailbox.

Finally, for load-balanced CAS servers, you'll want to configure the AutoDiscover internal URL
so that it also points to a FQDN that resolves to your load balancer VIP. The syntax for this
would look like the following:

Set-ClientAccessServer -Identity cas1 `
-AutoDiscoverServiceInternalUri `
https://mail.contoso.com/Autodiscover/Autodiscover.xml

Of course, you'll need to make all changes to internal and external URLs on all CAS servers in
the array.

Command syntax for the remaining virtual directories
We've already looked at the syntax for modifying both OWA and ECP and internal and external
URLs; now let's look at how we can do this for the remaining virtual directories. In these
examples, we'll configure the external URL value using the -ExternalUrl parameter. If you
need to modify the internal URL, simply use the -InternalUrl parameter.

Chapter 7

225

To configure the external URL for the OAB, use the following syntax:

Set-OABVirtualDirectory -Identity "cas1\oab (Default Web Site)" `
-ExternalUrl https://mail.contoso.com/oab

To configure the external URL for the ActiveSync virtual directory, use the following syntax:

Set-ActivesyncVirtualDirectory -Identity `
"cas1\Microsoft-Server-ActiveSync (Default Web Site)" `
-ExternalURL https://mail.contoso.com/Microsoft-Server-Activesync

To configure the EWS virtual directory, use the following syntax:

Set-WebServicesVirtualDirectory -Identity `
"cas1\EWS (Default Web Site)" `
-ExternalUrl https://mail.contoso.com/ews/exchange.asmx

In each example, we're setting the value on the CAS1 server. When running these
commands or using them in a script, replace the server name with the name of the
appropriate CAS server.

See also

Generating a certificate request in Chapter 10, Exchange Security

Installing certificates and enabling services in Chapter 10, Exchange Security

Importing certificates on multiple exchange servers in Chapter 10,
Exchange Security

Managing Outlook Anywhere settings
With the release of Exchange 2007 and continuing with Exchange 2010, Microsoft has
renamed the RPC over HTTP feature to Outlook Anywhere. This feature allows Outlook clients
to connect to Exchange through RPCs encapsulated into an HTTPS connection. This allows
easy external access to Exchange from Outlook, as there is no need to open RPC ports on
firewalls. In this recipe, we'll take a look at how you can use the Exchange Management Shell
to manage Outlook Anywhere settings.

How to do it...
To enable Outlook Anywhere, use the Enable-OutlookAnywhere cmdlet as shown in the
following example:

Enable-OutlookAnywhere -Server cas1 `
-ExternalHostname mail.contoso.com `
-ClientAuthenticationMethod Basic `
-SSLOffloading $false







Managing Client Access

226

In this example, Outlook Anywhere is enabled on the CAS1 server.

How it works...
Before enabling Outlook Anywhere, there are two prerequisites that need to be met. First,
you need to ensure that your CAS server has a valid SSL certificate installed from a certificate
authority (CA) that is trusted by your client machines. Exchange installs a self-signed
certificate by default, but this will not be trusted by client workstations.

In addition, you'll need to make sure that Microsoft Windows RPC over HTTP Proxy component
is installed on the server. This is typically done before the installation of Exchange when all of
the operating system prerequisites are installed.

When running the Enable-OutlookAnywhere cmdlet, you can see that we specified the
ExternalHostname. This will be the FQDN that Outlook clients use to connect to Exchange.
You'll need to make sure that you have a DNS record created for this FQDN that resolves to
your CAS server or to your reverse proxy infrastructure, such as ISA or TMG.

When specifying a value for the ClientAuthenticationMethod parameter, you'll want
to use either Basic or NTLM. This setting determines how users authenticate to Outlook
Anywhere. When using Basic authentication, the user's password is sent to the server in
plain text, but the connection is secured by SSL. If you have workstations that are not
domain-joined that will be connecting to Exchange through Outlook Anywhere, you'll need
to use Basic authentication.

If only domain-joined clients will be connecting to Outlook Anywhere, such as roaming users
with laptops that connect from home, using NTLM authentication is a much more secure
option for the ClientAuthenticationMethod. When using NTLM, a user's password is
not sent to the server; instead, NTLM sends a hashed value of the user's credentials to the
server. Another benefit to using NTLM is that Outlook clients will not be prompted for their
credentials when connecting with Outlook Anywhere. Keep in mind that if you are publishing
Outlook Anywhere with a reverse proxy solution such as ISA or TMG, you'll need to use
Kerberos Constrained Delegation (KCD), which allows the ISA or TMG server to request
a Kerberos service ticket from Active Directory on behalf of the user. Also, remember that
NTLM authentication may not work correctly through some firewalls; check with your firewall
manufacturer's documentation for details.

Finally, SSLOffloading allows the CAS server to offload the encryption and decryption of the
SSL connections to a third party device. Unless you have an SSL offloading solution in place,
set the -SSLOffloading parameter to $false.

There's more...
In addition to enabling Outlook Anywhere from the shell, we can also perform some
other routine tasks. For example, to view the Outlook Anywhere configuration, use the
Get-OutlookAnywhere cmdlet:

Chapter 7

227

[PS] C:\>Get-OutlookAnywhere | fl ServerName,ExternalHostname

ServerName : CAS1

ExternalHostname : mail.contoso.com

The Get-OutlookAnywhere cmdlet will return configuration information for servers that
have the Outlook Anywhere feature enabled.

If at any time you need to change the authentication method or external host name for
Outlook Anywhere, you can use the Set-OutlookAnywhere cmdlet:

Set-OutlookAnywhere -Identity 'CAS1\Rpc (Default Web Site)' `
-ExternalHostname 'outlook.contoso.com'

Notice that the identity of the server needs to be specified in the format of ServerName\
VirtualDirectoryName (WebsiteName).

Finally, you can disable Outlook Anywhere on a server using the Disable-
OutlookAnywhere cmdlet:

Disable-OutlookAnywhere -Server cas1 -Confirm:$false

In this case, you only need to specify the server name using the -Server parameter when
disabling Outlook Anywhere.

See also

Generating a certificate request in Chapter 10, Exchange Security

Installing certificates and enabling services in Chapter 10, Exchange Security

Importing certificates on multiple exchange servers in Chapter 10,
Exchange Security

Blocking Outlook clients from connecting
to Exchange

Exchange gives you plenty of options to block clients from connecting to mailboxes, depending
on the version of the Outlook client and the method used to access the mailbox. In this recipe,
you'll learn how to configure these options using the Exchange Management Shell.







Managing Client Access

228

How to do it...
1.	 The Set-CASMailbox can be used to block MAPI access to mailboxes based on

several factors. For example, we can prevent an individual user from using Outlook to
connect using Outlook Anywhere:
Set-CASMailbox -Identity dsmith -MAPIBlockOutlookRpcHttp $true

2.	 In addition, we can also prevent a user whose Outlook is not configured in cached
mode from connecting to their mailbox using the following command:
Set-CASMailbox -Identity dsmith `
-MAPIBlockOutlookNonCachedMode $true

In both cases, the user can still access their mailbox using a standard MAPI
connection, as long as the MAPIEnabled property is set to the default setting of
$true.

3.	 You can also block users from connecting from clients based on their version. The
following command will block all Outlook versions except 2003, 2007, and 2010 for
every mailbox in the organization:
Get-CASMailbox -Resultsize Unlimited |
 Set-CASMailbox -MAPIBlockOutlookVersions '-5.9.9;7.0.0-10.9.9'

4.	 To find all mailboxes in an organization that have MAPIBlockOutlookVersions
defined, run the following command:
Get-CASMailbox -ResultSize Unlimited |
 ?{$_.MAPIBlockOutlookVersions}

5.	 To remove the restriction for a single mailbox, use the following command:
Set-CASMailbox dsmith -MAPIBlockOutlookVersions $null

6.	 To remove the restriction for the entire organization:
Get-CASMailbox -ResultSize Unlimited |
 Set-CASMailbox -MAPIBlockOutlookVersions $null

How it works...
The Set-CASMailbox cmdlet allows you to configure which protocols and services a
particular mailbox user can access. To determine the existing settings, we can use the
Get-CASMailbox cmdlet. For instance, if you need to retrieve all users that have been
blocked from connecting to their mailboxes in non-cached mode, use the command shown:

Get-CASMailbox | Where-Object{$_.MAPIBlockOutlookNonCachedMode}

Chapter 7

229

To find all mailboxes blocked from using Outlook Anywhere, the command is almost identical;
just reference the correct property name:

Get-CASMailbox | Where-Object{$_.MAPIBlockOutlookRpcHttp}

In both examples, we pipe the Get-CASMailbox to the Where-Object cmdlet. Inside the
filter we're checking to see if the property values evaluate as $true. If that is the case, the
command will return a list of users who have the corresponding setting enabled.

As always, we can use pipelining to enable or disable these settings for multiple users in a
single command. Let's say that we want to block all of the users in the Sales OU from using
Outlook Anywhere:

Get-CASMailbox -OrganizationalUnit contoso.com/Sales |
 Set-CASMailbox -MAPIBlockOutlookRpcHttp $true

To remove this restriction, use the same command but this time set the parameter value to
$false:

Get-CASMailbox -OrganizationalUnit uss.local/Sales |
 Set-CASMailbox -MAPIBlockOutlookRpcHttp $false

In both cases, the Get-CASMailbox cmdlet retrieves every mailbox from the Sales OU and
pipes the object's output by the command to the Set-CASMailbox cmdlet that then makes
the change.

As we saw earlier, Outlook client versions can be blocked on a per-mailbox basis using
the Set-CASMailbox cmdlet. This is done by specifying the client version using the
MAPIBlockOutlookVersions parameter.

In Exchange 2007, you could check the ClientVersion property returned by the Get-
LogonStatistics cmdlet to determine version numbers used by Outlook clients in the
organization. In Exchange 2010 SP1, the ClientVersion will be reported based on the CAS
server making the connection to the mailbox server, not the actual Outlook client. If you need
to determine the specific client versions in your environment, you can use the Help | About
screen in Outlook to determine the exact version number.

A version number is made up of a Major, Minor, and Build number. Here are a few version
numbers for some commonly used-versions of Outlook:

Outlook 2003 SP2 - 11.6568.6568

Outlook 2007 RTM - 12.4518.1014

Outlook 2010 RTM – 14.0.4760.1000

The Major build numbers are consistent across the entire Office suite and never change. For
example, for Office 2003 the Build number is 11, for Office 2007 the Build number is 12, and
for Office 2010 the Build number is 14.







Managing Client Access

230

The Minor and Build numbers will change depending on the hotfixes and service packs
deployed to the clients. Therefore, the -MAPIBlockOutlookVersions parameter will
accept a range of values that will allow you to be very specific about which versions should
be blocked. You can even specify multiple version ranges and separate each one using a
semi-colon.

For example, the following command can be used to block access to Exchange for all versions
of Outlook below 2007 and 2010:

Set-CASMailbox dsmith -MAPIBlockOutlookVersions '-5.9.9;7.0.0-11.9.9'

As you can see here, we've specified two values. The first value indicates that any client
version below 5.9.9 will be unable to connect to this mailbox. The second value specifies a
range from 7 to 11.9.9 which effectively blocks all access to any client versioned lower than
12.x.x, except for those versioned at 6.x.x. This allows only Outlook 2007 and 2010 clients to
connect to this mailbox. It also allows Exchange server MAPI connections from other servers,
identified using 6.x.x version numbers.

Keep in mind that when you are making these changes they will not take effect right away.
If you want to force this change so it is effective immediately, restart the RPC Client Access
service on the CAS server used to access the mailbox. Make sure to do this outside of
production hours as it will knock every user connected to that CAS server offline.

There's more…
In addition to blocking Outlook versions at the mailbox level, we can also block them at the
server level. Since the MAPI client endpoint is now at the CAS role for mailbox access, we can
use the Set-RPCClientAccess cmdlet to accomplish this.

Set-RpcClientAccess -Server cas1 `
-BlockedClientVersions '-5.9.9;7.0.0-13.9.9'

You can see here that we use the BlockedClientVersions parameter to define the client
versions that should be blocked, and it works in exactly the same way as it does when using
the Set-CASMailbox cmdlet. In this example, all client versions below Outlook 2010, with
the exception of client versions 6.x.x, will be blocked at the CAS server level. Notice that the
server name has been specified with this command and you'll need to run it against each CAS
server that should block specific Outlook versions.

Reporting on active OWA and RPC
connections

One of the nice things about using PowerShell to manage Exchange is that you have a great
deal of flexibility when it comes to solving problems. When the Exchange Management Shell
does not provide a cmdlet that specifically meets your needs, you can often tap into other

Chapter 7

231

resources accessible through PowerShell. This recipe provides a great example for this. In this
section, we'll use PowerShell to query performance counter data to determine the number of
active OWA and RPC connections on one or more CAS servers.

How to do it...
1.	 To determine the number of users currently logged into OWA on a CAS server, use the

following command syntax:
Get-Counter –Counter '\\cas1\MSExchange OWA\Current Users'

This retrieves the total number of users logged into OWA on the CAS1 server. The
output from this command will look similar to the following:
Timestamp CounterSamples

--------- --------------

11/30/2010 11:57:59 AM \\cas1\msexchange owa\current users :

 4

Viewing the output, we can see that four users are currently logged on to OWA.

2.	 To find the total number of RPC connections, we simply need to use another
performance counter:
Get-Counter '\\cas1\MSExchange RpcClientAccess\User Count'

Similar to the previous example, the total number of RPC connects will be reported.

How it works...
The Get-Counter cmdlet is a PowerShell v2 core cmdlet that allows you to retrieve
performance counter data from both local and remote machines. In the previous example,
we collected the total of current OWA users using the \MSExchange OWA\Current
Users counter and the total number of RPC connections using the MSExchange
RpcClientAccess\User Count counter on the CAS1 server.

In both of these examples, we've specified the computer name in the counter name assigned
to the -Counter parameter. Another way to gather performance counter data from a remote
computer is to use the -ComputerName parameter:

Get-Counter 'MSExchange OWA\Current Unique Users' `
-ComputerName cas1,cas2

Notice that in the alternate syntax used previously we've removed the computer name from
the counter name and have assigned a list of server names using the -ComputerName
parameter. This is a quick way to check the number of connections on multiple computers.

Managing Client Access

232

There are many Exchange-related performance counters on each Exchange server. You can
also use the Get-Counter cmdlet to discover these counters:

Get-Counter -ListSet *owa* -ComputerName cas1 |
 Select-Object -expand paths

This will do a wildcard search and return a list of counters on the specified server that have
the letters owa in their name. You can use this syntax to quickly find counter names that can
be used with the Get-Counter cmdlet.

There's more...
To create more advanced and customizable reports, we can create a PowerShell function
that returns a custom object with only the information we're interested in. Add the following
function to your shell session:

function Get-CASActiveUsers {
 [CmdletBinding()]
 param(
 [Parameter(Position=0,
 ValueFromPipelineByPropertyName=$true,
 Mandatory=$true)]
 [string[]]
 $Name
)

 process {
 $Name | %{
 $RPC = Get-Counter "\MSExchange RpcClientAccess\User Count" `
 -ComputerName $_

 $OWA = Get-Counter "\MSExchange OWA\Current Unique Users" `
 -ComputerName $_

 New-Object PSObject -Property @{
 Server = $_
 'RPC Client Access' = $RPC.CounterSamples[0].CookedValue
 'Outlook Web App' = $OWA.CounterSamples[0].CookedValue
 }
 }
 }
}

You can call the function and provide one or more CAS server names that you'd like to
generate the report for, as shown in the following screenshot:

Chapter 7

233

If you look closely at the code in the function you'll notice that we've added some attributes
to the $Name parameter. As you can see, in addition to being a mandatory parameter, it
also accepts its value from the pipeline by property name. This means that, instead of
calling the function and providing a list of server names, we can leverage the objects that
are returned by the Get-ClientAccessServer cmdlet to quickly generate a report using
a pipeline command:

You can continue to pipe this command down to Export-CSV or ConvertTo-Html to
generate an external report file that can be viewed outside of the shell.

See also

Creating PowerShell functions in Chapter 1, PowerShell Key Concepts

Controlling ActiveSync device access
With the increase of smartphones being deployed and the fact that ActiveSync can now
be used across a wide variety of mobile device vendors, Exchange 2010 introduces new
functions that allow you to control which devices are able to get connected. Using device
access rules, you can define the specific devices or device types that can form an ActiveSync
partnership with an Exchange server. This recipe will explore the options that can be used to
allow, block, or quarantine ActiveSync devices using the Exchange Management Shell.



Managing Client Access

234

How to do it...
1.	 By default, there is an organization-wide configuration setting that will allow any

ActiveSync device to connect to Exchange. You can modify this so that all devices are
initially quarantined, and need to be approved by an administrator before they can
gain access. To implement this, first run the following command:
Set-ActiveSyncOrganizationSettings –DefaultAccessLevel Quarantine `
–AdminMailRecipients administrator@contoso.com

After the previous command completes, all devices that attempt to form an
ActiveSync device partnership will be quarantined. When a device is quarantined,
the address provided by the -AdminMailRecipients parameter will be notified
via e-mail. The user will also receive a message on their mobile device informing
them that access needs to be granted by an administrator before they'll be able
to access any content.

2.	 Based on the information in the e-mail message, the administrator can choose to
enable the device using the Set-CASMailbox cmdlet:
Set-CASMailbox -Identity dsmith `
-ActiveSyncAllowedDeviceIDs BAD73E6E02156460E800185977C03182

Once the command has been run, the user will be able to connect.

How it works...
In Exchange 2010 RTM, there was no interface to manage any of these settings, and all of
these steps had to be performed as shown here using the shell. In Exchange 2010 SP1, you
can configure all of these settings in the Exchange Control Panel (ECP), and, of course, the
cmdlets can still be used if you want to do this work from the shell.

When configuring the ActiveSync organization settings, you have the option of adding a
custom message that will be sent to the user when they receive the e-mail notification
explaining that their device has been quarantined. Use the -UserMailInsert parameter
when running the Set-ActiveSyncOrganizationSettings cmdlet to configure
this setting:

Set-ActiveSyncOrganizationSettings –DefaultAccessLevel Quarantine `
–AdminMailRecipients helpdesk@contoso.com `
-UserMailInsert 'Call the Help Desk for immediate assistance'

In addition to the administrative e-mail notifications, you can find all the devices that are
currently in a quarantined state using the Get-ActiveSync device cmdlet:

Get-ActiveSyncDevice |
 ?{$_.DeviceAccessState -eq 'Quarantined'} |
 fl UserDisplayName,DeviceAccessState,DeviceID

Chapter 7

235

This command retrieves ActiveSync devices and is filtered on the DeviceAccessState
property. The output will provide the username, device access state, and the DeviceID
that can be used to allow access using the Set-CASMailbox cmdlet.

There's more...
Manual approval of ActiveSync devices may not be something you want to take on as an
administrative task. An alternative to this is to use device access rules. For instance, let's say
that you want to block all ActiveSync devices that are not PocketPC devices. You could set
the DefaultAccessLevel for the organization to Block and create a device access rule
allowing only those devices:

New-ActiveSyncDeviceAccessRule –QueryString PocketPC `
–Characteristic DeviceModel `
–AccessLevel Allow

You can create multiple access rules for different types of devices if needed. To determine
the device type, you can use the Get-ActiveSyncDevice cmdlet. The property values
for DeviceOS, DeviceType, DeviceUserAgent, or DeviceModel can be used with the
-QueryString parameter to define the device type when creating a device access rule.

See also
Reporting on ActiveSync devices

Managing ActiveSync, OWA, POP3, and IMAP4 mailbox settings

Reporting on ActiveSync devices
The Exchange Management Shell provides several cmdlets that can be used for generating
reports. We can obtain information about users and their devices and we can also generate
reports based on end-user activity and server usage. In this recipe, we'll take a look at
how we can use these cmdlets to generate multiple ActiveSync reports from the Exchange
Management Shell.

How to do it...
1.	 To generate a report for an individual user's device synchronization status, use the

following command:
Get-ActiveSyncDeviceStatistics -Mailbox dsmith





Managing Client Access

236

2.	 This cmdlet will output a lot of information, some of which may not be very
interesting. You can limit the data returned by selecting only the properties that
provide useful information:
Get-ActiveSyncDeviceStatistics -Mailbox dsmith |
 select LastSuccessSync,Status,DevicePhoneNumber,DeviceType

The output for the previous command will look similar to the following:
LastSuccessSync Status DevicePhoneNumber DeviceType

--------------- ------ ----------------- ----------

12/31/2010 1:26:45 AM DeviceOk ******0504 PocketPC

4.	 To export this information, you can pipe the command even further to the Export-
CSV cmdlet:
Get-ActiveSyncDeviceStatistics -Mailbox dsmith |
 select LastSuccessSync,Status,DevicePhoneNumber,DeviceType |
 Export-CSV -Path c:\report.csv -NoType

How it works...
Using the Get-ActiveSyncDeviceStatistics cmdlet, we can retrieve the mobile phones
that are configured to synchronize with a particular user's mailbox. As you can see from the
previous examples, it's quite easy to generate a report for an individual user. This cmdlet
requires that you either specify the identity of the ActiveSync device or the mailbox of the
owner. In order to generate reports based on statistics for multiple devices, we have a couple
of options.

First, we can use the Get-ActiveSyncDevice cmdlet to retrieve a list of allowed devices
and then pipe the results to the Get-ActiveSyncDeviceStatistics cmdlet:

$dev = Get-ActiveSyncDevice | ?{$_.DeviceAccessState -eq 'Allowed'}
$dev | ForEach-Object {
 $mailbox = $_.UserDisplayName
 $stats = Get-ActiveSyncDeviceStatistics –Identity $_
 $stats | Select-Object @{n="Mailbox";e={$mailbox}},
 LastSuccessSync,
 Status,
 DevicePhoneNumber,
 DeviceType
}

This code retrieves all the ActiveSync devices with the Allowed access state. We loop
through each device, retrieve the device statistics for each one, and return several properties
that provide details about the user and the status of their device. Notice that, in the example,
we're using a calculated property to return the mailbox name since that information is not
included in the output of the Get-ActiveSyncDeviceStatistics cmdlet.

Chapter 7

237

The other method for obtaining this information is by using the Get-CASMailbox cmdlet to
find all users with an ActiveSync device partnership, and then sending those objects down the
pipeline to the Get-ActiveSyncDeviceStatistics cmdlet:

$mbx = Get-CASMailbox | ?{$_.HasActiveSyncDevicePartnership}
$mbx | ForEach-Object {
 $mailbox = $_.Name
 $stats = Get-ActiveSyncDeviceStatistics -Mailbox $mailbox
 $stats | Select-Object @{n="Mailbox";e={$mailbox}},
 LastSuccessSync,
 Status,
 DevicePhoneNumber,
 DeviceType
}

Similar to the previous example, we loop through each mailbox, retrieve the ActiveSync
statistics, and then return the same properties as before. This version is considerably slower
since it has to first check every mailbox to determine if a device partnership exists, but if you
need specific filtering capabilities based on the properties returned by the Get-CASMailbox
cmdlet, this may be a useful method.

There's more...
The Exchange Management Shell also provides the Export-ActiveSyncLog cmdlet that
can be used to generate reports based on ActiveSync usage. The cmdlet generates reports
based on IIS log files and then outputs six separate CSV files that contain detailed information
about the usage of ActiveSync devices:

Users.csv: Provides details on ActiveSync usage for each user that includes the
number of sent and received items

UserAgents.csv: Provides details on the various user agents used by devices to
access Exchange

StatusCodes.csv: Provides the HTTP response codes issued to ActiveSync clients

Servers.csv: Provides details on server usage including total bytes sent
and received

PolicyCompliance.csv: Provides details on ActiveSync device compliance such
as the total number of compliant, non-compliant, and partially compliant devices

Hourly.csv: Provides an hourly breakdown of device synchronization activity













Managing Client Access

238

The cmdlet supports a number of parameters that can be used to generate reports. For
example, the following command generates reports for ActiveSync activity taking place on
December 30, 2010.

Export-ActiveSyncLog `
-Filename C:\inetpub\logs\LogFiles\W3SVC1\u_ex101230.log `
-OutputPath c:\report

When running this command, make sure that the directory specified for the output path has
already been created. The given command generates the six CSV files discussed previously
in the c:\report folder.

To generate reports for multiple log files, you'll need to do a little extra work. For example:

$path = "C:\inetpub\logs\LogFiles\W3SVC1\"
Get-ChildItem -Path $path -Filter u_ex1012*.log | %{
 Export-ActiveSyncLog -Filename $_.fullname `
 -OutputPrefix $_.basename `
 -OutputPath c:\report
}

Here we're using the Get-ChildItem cmdlet to retrieve a list of log files from December of
2010. Each time we run the Export-ActiveSyncLog cmdlet for a log file, a new set of six
CSV reports will be generated. Since we can only define one OutputPath, we use the log file
base name as a prefix for each CSV report file generated. After the cmdlet has been run, six
CSV reports for each day of the month will be located in the c:\report directory. You can
read these reports in the shell using the Import-CSV cmdlet, or open them in Excel
or Notepad for review.

See also

Creating custom objects in Chapter 1, PowerShell Key Concepts
Controlling ActiveSync device access

Managing ActiveSync, OWA, POP3, and IMAP4 mailbox settings







8
Managing Transport

Servers

In this chapter, we will cover:

Managing connectors

Configuring transport limits

Allowing application servers to relay mail

Managing transport rules

Working with custom DSN messages

Managing connectivity and protocol logs

Searching message tracking logs

Working with messages in transport queues

Searching anti-spam agent logs

Implementing a header firewall

Introduction
The Exchange hub and edge transport roles are responsible for handling mail flow inside your
organization and can be used to secure messages sent to and received from the Internet.
In addition to routing messages, you can apply rules, configure settings, and enforce limits
on messages as they pass through the servers in your environment. Transport agents can
be used to provide basic anti-spam protection, and both roles implement detailed logging
capabilities that can be leveraged from the shell. In this chapter, we'll take a look at several
useful scripting techniques that include imposing limits and rules on messages and
generating detailed reports on mail flow statistics.





















Managing Transport Servers

240

Performing some basic steps
To work with the code samples in this chapter, follow these steps to launch the Exchange
Management Shell:

1.	 Log onto a workstation or server with the Exchange Management Tools installed

2.	 Open the Exchange Management Shell by clicking on Start | All Programs |
Exchange Server 2010

3.	 Click on the Exchange Management Shell shortcut

Managing connectors
Exchange 2010 uses both send and receive connectors to transmit and accept messages
from other servers. These connectors can be managed from within the Exchange
Management Console (EMC), but the addition, configuration, and removal can also be
completely managed from the Exchange Management Shell. In this recipe, we'll take a
look at the various cmdlets that can be used to manage send and receive connectors.

How to do it...
1.	 To create a Send connector, use the New-SendConnector cmdlet:

New-SendConnector -Name Internet `
-Usage Internet `
-AddressSpaces 'SMTP:*;1' `
-IsScopedConnector $false `
-DNSRoutingEnabled $false `
-SmartHosts smtp.contoso.com `
-SmartHostAuthMechanism None `
-UseExternalDNSServersEnabled $false `
-SourceTransportServers hub1

2.	 Receive connectors can be created on each transport server using the New-
ReceiveConnector cmdlet:

New-ReceiveConnector -Name 'Inbound from DMZ' `
-Usage 'Custom' `
-Bindings '192.168.1.245:25' `
-Fqdn mail.contoso.com `
-RemoteIPRanges '172.16.23.0/24' `
-PermissionGroups AnonymousUsers `
-Server hub1

Chapter 8

241

How it works...
By default, Exchange does not create send connectors used for routing messages to the
Internet, and they need to be created manually using either EMC or the shell. However,
there is a hidden implicit send connector that is used to send mail between transport
servers within the organization, and you don't need to worry about creating send connectors
for internal mail flow. Additionally, you don't need to create send connectors on edge transport
servers that have been subscribed to your Exchange organization. Send connectors
created on your hub transport servers can be replicated to the edge role through the
EdgeSync process.

In the previous example, we used the New-SendConnector cmdlet to create an Internet
send connector on a hub transport server. This cmdlet provides a number of options that
control how the connector is configured. In this case, we've configured an address space
of SMTP:*;1, which specifies that all messages addressed to recipients outside of the
organization will be sent through this connector. Instead of using DNS to route the messages,
we're forwarding all messages to a smart host called smtp.contoso.com, which in this
case, would be an SMTP gateway out in the perimeter network. The source transport server
has been configured using the server name hub1, which means that any message destined
for the Internet will be first routed through this server before being forwarded to the smart
host. There are over 30 parameters available with this cmdlet, so you'll want to review the
help file to determine how to configure the settings based on your needs. To do this, run
Get-Help New-SendConnector -Full

After a send connector has been created, its settings can be modified using the
Set-SendConnector cmdlet. The following example will modify our previous Internet
send connector by replacing the associated address spaces:

Set-SendConnector -Identity Internet `
-AddressSpaces 'SMTP:*.litwareinc.com;5',
 'SMTP:corp.contoso.com;10'

To view all of the properties for a send connector, use the Get-SendConnector cmdlet
and pipe the command to Format-List:

Get-SendConnector -Identity Internet | Format-List

To disable the connector we can use the following syntax:

Set-SendConnector -Identity Internet -Enabled $false

And finally, the connector can be removed using the Remove-SendConnector cmdlet:

Remove-SendConnector -Identity Internet -Confirm:$false

Managing Transport Servers

242

Each hub transport will initially be configured during the installation of Exchange with two
receive connectors; one for client connections named Client\<Server Name> and one for
server connections called Default\<Server Name>. When installing an Exchange 2010 hub
transport server, you don't need to modify any of the default connectors in order for the
internal mail flow to work. But if you want to be able to receive mail from other mail systems,
such as directly from servers on the Internet or an SMTP gateway in your perimeter network,
then you will need to modify either the existing Default server connector, or create a new one
for this purpose.

There's more…
Receive connectors are created on a per server basis. In step 2, we used the New-
ReceiveConnector cmdlet to create a receive connector on the hub1 server that will
be used to accept messages from a remote SMTP server in the perimeter network. You
can see that we configured the connector so that the hub1 server is listening on
the IP address 192.168.1.245 on TCP port 25 for incoming messages. Based on the
RemoteIPRanges and PermissionGroups parameters, any host in the 172.16.23.0/24
subnet will be able to make an unauthenticated connection to hub1 and submit messages
to any recipient within the organization. Like send connectors, there are a number of
parameters that can be used to create a receive connector. Review the help file for this
cmdlet using Get-Help New-ReceiveConnector -Full to determine all of the
available options.

Similar to send connectors, receive connectors have Set-* and Remove-* cmdlets that can
be used to modify, disable, or remove a receive connector.

To change the settings of a receive connector, use the Set-ReceiveConnector cmdlet:

Set-ReceiveConnector -Identity 'hub1\Inbound from DMZ' `
-Banner '220 SMTP OK' `
-MaxInboundConnection 2500 `
-ConnectionInactivityTimeout '00:02:30'

Here you can see that we've modified a number of properties on the receive connector.
Each of the settings modified here can only be managed from the shell. To view all of the
properties available, use the Get-ReceiveConnector cmdlet and pipe the command to
Format-List:

Get-ReceiveConnector -Identity 'cas1\Inbound from DMZ' |
 Format-List

To disable a receive connector, use the Set-ReceiveConnector cmdlet:

Set-ReceiveConnector -Identity 'hub1\Inbound from DMZ' `
-Enabled $false

Chapter 8

243

You can remove a receive connector using the following syntax:

Remove-ReceiveConnector -Identity 'cas1\Inbound from DMZ' `
-Confirm:$false

See also
Configuring transport limits

Allowing application servers to relay mail

Configuring transport limits
Depending on your requirements, transport limits can be configured in multiple ways. We
can configure limits on individual mailboxes, on specific connectors, and even at the
organization level. In this recipe, you'll learn how to use the Exchange Management Shell
to configure limits based on the total number of acceptable recipients for a message, and
also the total maximum size of each message that passes through the transport servers in
your organization.

How to do it...
To configure mail flow restrictions for an individual mailbox, use the Set-Mailbox cmdlet
as shown next:

Set-Mailbox -Identity dsmith `
-MaxSendSize 10mb `
-MaxReceiveSize 10mb `
-RecipientLimits 100

Here you can see that we've set limits for Dave Smith so that the maximum send and receive
size for messages sent to or from his mailbox is limited to 10 megabytes. In addition, the
maximum number of recipients that can be addressed when he sends an e-mail message is
limited to 100.

How it works...
All Exchange recipients provide some type of mail flow settings that can be applied on an
individual basis. In the previous example, we applied limits on a mailbox, but you also have
the option of applying the MaxReceiveSize property on distribution groups and contacts.
You may want to implement individual mail flow limits on a subset of recipients, and to do this
in bulk, we can take advantage of PowerShell's flexible pipelining capabilities.





Managing Transport Servers

244

For example, let's say that we'd like to configure the mail flow limits shown in the previous
example for all the mailbox-enabled users in the Marketing OU. The following one-liner would
take care of this:

Get-Mailbox -OrganizationalUnit contoso.com/Marketing |
 Set-Mailbox -MaxSendSize 10mb `
 -MaxReceiveSize 20mb `
 -RecipientLimits 100

Here you can see that we're simply retrieving a list of mailboxes from the Marketing OU
using the Get-Mailbox cmdlet. To configure the limits, we pipe those objects to the
Set-Mailbox cmdlet and each user is updated with the new settings.

There's more…
In addition to setting limits on individual recipients, we have the option of configuring limits
organization-wide. To do this, we use the Set-TransportConfig cmdlet:

Set-TransportConfig -MaxReceiveSize 10mb `
-MaxRecipientEnvelopeLimit 1000 `
-MaxSendSize 10mb

This command will enforce a 10 megabyte send and receive limit for messages passing
through all transport servers in the organization, as well as limit the total number of recipients
per message to 1000.

Limits set on individual users will override these organization limits. For example, if the
maximum send and receive size is set to 10 megabytes at the organization level, we can
exclude specific users from these restrictions by configuring a higher maximum send and
receive size on a per mailbox basis using the Set-Mailbox cmdlet.

Limits can also be set on a per connector basis. To set the limits on an Internet receive
connector, the command might look something like this:

Set-ReceiveConnector -Identity HUB1\Internet `
-MaxMessageSize 20mb `
-MaxRecipientsPerMessage 100

Notice that the identity is referenced using the format of ServerName\ConnectorName. This
command will update the Internet connector on the hub1 server. If you have multiple hub
transport servers with this receive connector, you can update the settings for each server with
one command:

Get-ReceiveConnector -Identity *\Internet |
 Set-ReceiveConnector -MaxMessageSize 20mb `
 -MaxRecipientsPerMessage 100

Chapter 8

245

This time we use the Get-ReceiveConnector cmdlet using an asterisk (*) as a wildcard so
that any connector in the organization named Internet will be retrieved. We pipe the output
down to the Set-ReceiveConnector cmdlet and the change is made in bulk.

If you are operating in co-existence with Exchange 2003, you can also set
routing group connector limits using the Set-RoutingGroupConnector
cmdlet.

Modifying send connectors is a little easier because they are defined at the organization
level, so you don't need to iterate through connectors on multiple servers. To modify
the maximum message size limits on a send connector named Internet, you can
run the following command:

Set-SendConnector -Identity Internet -MaxMessageSize 5mb

In this example, outbound messages through the Internet send connector are limited to 5
megabytes in size.

Implementing restrictions at the organization, user, and connector levels should give you
plenty of options. However, you can also use transport rules to set a maximum attachment
size per message, if needed.

See also
Managing transport rules

Allowing application servers to relay mail
When you deploy Exchange 2010, you may be required to allow external devices to relay mail
off of your servers. This may be an application server or a physical device such as a copier
or printer. In order to allow these external systems to anonymously relay mail, you'll need to
configure receive connectors on your hub transport servers that support this. In this recipe,
we'll take a look at how you can do this with the Exchange Management Shell.

How to do it...
When implementing an unauthenticated relay, it is wise to use a dedicated receive connector
for this purpose:

New-ReceiveConnector -Name Relay `
-Usage Custom `
-Bindings '192.168.1.245:25' `
-Fqdn mail.contoso.com `



Managing Transport Servers

246

-RemoteIPRanges 192.168.1.110 `
-Server HUB1 `
-PermissionGroups ExchangeServers `
-AuthMechanism TLS, ExternalAuthoritative

This command creates a receive connector on the hub1 server named Relay. The settings
used here specify that the connector listens on the server IP address of 192.168.1.245
on TCP Port 25 and will allow the host at 192.168.1.110 to relay mail, either internally or
externally, without requiring authentication.

How it works...
When creating a relay connector using this technique, you want to ensure that only the
hosts that are allowed to relay mail are allowed using the RemoteIPRanges property.
If this connector was configured with a remote IP range of 0.0.0.0-255.255.255.255,
this would effectively turn the Exchange server into an open relay. This is because the
AuthMechanism parameter has been set to ExternalAuthoritative, which means
that Exchange bypasses all security and fully trusts all messages received from hosts in the
RemoteIPRanges list. Additionally, messages accepted through this connector will not be
scanned by anti-spam agents or be restricted by any of the system-wide message size limits.

There's more…
If the devices or application servers in your environment only need to submit messages to
internal recipients and do not need to be completely trusted, creating a receive connector
with the following settings is a better option:

New-ReceiveConnector -Name Relay `
-Usage Custom `
-Bindings ‘192.168.1.245:25’ `
-Fqdn mail.contoso.com `
-RemoteIPRanges 192.168.1.110 `
-Server HUB1 `
-PermissionGroups AnonymousUsers

As you can see, we've removed the AuthMechanism parameter from the command and
assigned AnonymousUsers to the permission groups. This is a more secure approach
since messages submitted from external devices or servers will now be subject to anti-
spam agents and message restrictions. If you need to allow these devices to route mail to
external recipients through this connector, you'll also need to assign the anonymous users the
extended right ms-Exch-SMTP-Accept-Any-Recipient:

Get-ReceiveConnector HUB1\Relay |
 Add-ADPermission -User "NT AUTHORITY\ANONYMOUS LOGON" `
 -ExtendedRights ms-Exch-SMTP-Accept-Any-Recipient

Chapter 8

247

After the previous command has been executed, the Relay connector on the hub1 server will
be updated and the host at 192.168.1.110 will be able to route messages through the server
using unauthenticated relay.

See also
Configuring Transport Limits

Managing transport rules
Transport rules can be used within your Exchange organization to take a specific action on a
message, based on one or more conditions. For example, you can configure rules that check
messages for confidential information or inappropriate content, and then take an action on
those messages such as blocking them or forwarding them to another recipient. Exchange
2007 introduced transport rules for the first time, but with Exchange 2010, we now have an
upgraded set of cmdlets that provide easier management of transport rules from the shell.
In this recipe, you'll learn how to create transport rules using these cmdlets.

How to do it...
To create a transport rule, use the New-TransportRule cmdlet:

New-TransportRule -Name Confidential `
-Enabled $true `
-SubjectContainsWords Confidential `
-BlindCopyTo Administrator@contoso.com

Based on the condition and action for this transport rule, all messages that contain the
word Confidential in the subject line of a message will be blind copied to the
administrator mailbox.

How it works...
In Exchange 2007, if you wanted to create a transport rule from the shell, you first had to
create rule predicate objects using the Get-TransportRulePredicate cmdlet. These
objects were used to define the rule's conditions and exceptions. In order to specify an action,
you had to use the Get-TransportRuleAction cmdlet to create an object that referenced
a specific transport rule action. Once that was complete, you then used those objects with the
New-TransportRule cmdlet to create a rule. In Exchange 2010, the New-TransportRule
cmdlet is capable of creating rules using a simple one-liner, as shown in the
previous example.



Managing Transport Servers

248

This is possible now because all rule predicates and actions are directly available as
parameters of the New-TransportRule cmdlet. The side effect of this, of course,
is that this cmdlet now provides over 130 parameters, and figuring out the correct
combination to create a rule might be a little tricky.

Let's take a look at how we can determine the parameters required to create a transport rule
from the shell. Imagine that we need to create a rule based on custom message headers that
are added to certain e-mail messages. To determine the available predicates, we can run
the Get-TransportRulePredicate cmdlet, which will list every predicate available in the
organization. When viewing the output from this cmdlet, there is a predicate available called
HeaderMatches. We can assume, based on the name, that it is probably the one we need in
order to create a rule that is triggered on the headers of a message.

Before we can construct a command that can use this predicate, we need to take a closer
look at its properties:

We can tell from examining the LinkedDisplayText property in the previous screenshot
that this predicate requires two properties. The properties are referenced in each id attribute
within the <a> tags.

In this case, the property names are HeaderMatchesMessageHeader and
HeaderMatchesPatterns. These property names correspond to the parameter names
that will be required when using the New-TransportRule cmdlet to define the condition.

Now that we've identified which parameters will be required for the condition,
we need to determine how to define the action. To do this, we can use the
Get-TransportRuleAction cmdlet:

Chapter 8

249

Running this cmdlet will provide all of the available transport rule actions, as shown in
the previous screenshot. Based on the output, we may decide that we want to use the
AddToRecipient action with our rule. Again, we need to view the properties of this
item to determine what the parameter name will be:

After viewing the details of this action, we can see by examining the LinkedDisplayText
property that the id attribute references AddToRecipients, so this will be the parameter
name we need to use when defining the action for our rule.

Now that we know what the required parameters are for both the condition and the action,
we can create a rule using the New-TransportRule cmdlet:

New-TransportRule -Name ITSupport `
-Enabled $true `
-HeaderMatchesMessageHeader X-Department `
-HeaderMatchesPatterns ITSupport `
-AddToRecipients administrator@contoso.com

In this example, any e-mail message with a custom header named X-Department with
a value of ITSupport will have the administrator mailbox added as a recipient.

Managing Transport Servers

250

When it comes to adding exceptions, we use the same predicate names but prefix them with
ExceptIf. For example, one of the rule predicate parameters that can be used with the
New-TransportRule cmdlet is -From. If we wanted to create a rule but prevent the rule
from firing based on the sender, we can use the -ExceptIfFrom parameter when creating
the rule:

New-TransportRule -Name ITSupport `
-Enabled $true `
-HeaderMatchesMessageHeader X-Department `
-HeaderMatchesPatterns ITSupport `
-ExceptIfFrom administrator@contoso.com `
-AddToRecipients administrator@contoso.com

Again, we're creating a rule here based on the headers of the e-mail message. This time,
we've added an exception. If the sender is the administrator account, we will not trigger the
rule, even if the condition has been met.

As you can see, creating transport rules from the shell can be quite involved. Fortunately,
transport rules can be fully managed through the Exchange Management Console (EMC).
If you do not have a specific need to manage them from the shell, you may find it easier to
create the rules using EMC.

There's more…
You can view the existing transport rules in your Exchange organization using the
Get-TransportRule cmdlet:

You can examine the details of a particular rule by specifying it by name and viewing the
output in list format:

Get-TransportRule Confidential | Format-List

To view the rule conditions, access the Conditions property of the rule and pipe the output
to Format-List:

Chapter 8

251

Transport rule actions can also be viewed by accessing the Actions property of the rule:

If you want to retrieve specific rules that only contain a certain condition or action, you can
use PowerShell's filtering capabilities using the Where-Object cmdlet:

Get-TransportRule | Where-Object {$_.SubjectContainsWords}

In the previous example, we are filtering on the SubjectContainsWords property, which is
a transport rule condition, and this command will only retrieve the rules where this condition
has been defined.

Modifying transport rules
Existing transport rules can be modified using the Set-TransportRule cmdlet. If we
wanted to change the blind copy mailbox used in the Confidential transport rule created
earlier, the command might look something like this:

Set-TransportRule –Identity Confidential `
 -BlindCopyTo sysadmin@contoso.com

If you want to clear the blind copy address and instead redirect the message to another
mailbox, you could use the following command syntax:

Set-TransportRule –Identity Confidential `
 -BlindCopyTo $null `
 -RedirectMessageTo sysadmin@contoso.com

Managing Transport Servers

252

Transport rules are processed based on their priority value in descending order. The first
transport rule you create will be given a priority value of zero, and, for each rule you create,
the priority number will be incremented by one. To change the priority of a rule, you can use
the Set-TransportRule cmdlet with the -Priority parameter:

Set-TransportRule -Identity ITSupport -Priority 0

After running the previous command, the ITSupport transport rule will be processed first.
The previous rule that was assigned priority zero will now be assigned a priority value of one.

Enabling, disabling, and removing transport rules
To disable a rule, use the Disable-TransportRule cmdlet:

Disable-TransportRule -Identity Confidential -Confirm:$false

You can enable a rule using the Enable-TransportRule cmdlet:

Enable-TransportRule -Identity Confidential

When you need to delete a transport rule, use the Remove-TransportRule cmdlet:

Remove-TransportRule -Identity Confidential -Confirm:$false

Understanding regular expressions in transport rules
Exchange 2010 supports the use of simple regular expressions in transport rule predicates
that provide pattern properties. This means that any condition or exception that accepts text
patterns can be used with a simple regular expression. Consider the following command that
creates a new transport rule:

New-TransportRule -Name "Block Credit Card Numbers" `
-SubjectOrBodyMatchesPatterns '\d\d\d\d-\d\d\d\d-\d\d\d\d-\d\d\d\d' `
-RejectMessageEnhancedStatusCode "5.7.1" `
-RejectMessageReasonText "Don't send credit card numbers via e-mail!"

Here you can see that a transport rule has been created to reject messages that might
contain a credit card number. The \d pattern matches a single numeric digit. The expression
used with the SubjectOrBodyMatchesPatterns parameter indicates that any message
that contains a 16-digit number where every fourth number is followed by a hyphen (-) should
be considered a match. If a match is found, we reject the message and provide a reject
reason that will be displayed in the diagnostic information for administrators section
of the NDR.

Only a specific set of regular expression pattern strings can be used within transport rules.
For a complete list, see the Pattern Strings section in this TechNet article titled Regular
Expressions in Transport Rules:

http://technet.microsoft.com/en-us/library/aa997187.aspx

Chapter 8

253

Working with custom DSN messages
Delivery Status Notification (DSN) messages are system messages generated by transport
servers that inform the sender of a message about its status. When a message cannot
be delivered to a recipient, Exchange will respond to the sender with a message that is
associated with a status message. Sometimes, these status messages may not be detailed
enough for your liking. In those cases, you can create new messages associated with the DSN
code to provide more details to the sender. This is something that has to be done from the
Exchange Management Shell.

How to do it...
You can use the New-SystemMessage cmdlet to create a custom DSN message:

New-SystemMessage -DSNCode 5.1.1 `
-Text "The mailbox you tried to send an e-mail message to
does not exist. Please contact the Help Desk at extension
4112 for assistance." `
-Internal $true `
-Language En

In this example, a Non Delivery Report (NDR) with the custom DSN message will be delivered
to senders that try to send messages to an invalid internal recipient.

How it works...
When creating a custom DSN message, you want to specify whether it will be used for internal
or external use. The previous example configured a custom message for DSN code 5.1.1 for
internal use. In addition to this, you could create a separate custom DSN message for external
users, just set the -Internal parameter to $false.

Custom DSN messages can also support basic HTML tags. This can be useful when creating
an internal custom DSN that directs users to an internal help desk site. Here's another way we
could have created the custom DNS message:

New-SystemMessage -DSNCode 5.1.1 `
-Text "The mailbox you tried to send an e-mail message to
does not exist. Please visit the
help desk site
forassitance" `
-Internal $true `
-Language En

Managing Transport Servers

254

In this example, we've included a hyperlink within the custom DSN message so users can click
the link and visit an internal help desk website for additional assistance.

There's more…
To view custom DSN messages, use the Get-SystemMessage cmdlet:

You can also view the default system messages that were installed with Exchange. To do this,
run the cmdlet with the -Original switch parameter:

Get-SystemMessage -Original

To modify a system message, use the Set-SystemMessage cmdlet:

Set-SystemMessage -Identity 'en\External\5.1.1' `
-Text "Sorry, but this recipient is no longer available
or does not exist."

As you can see here, we've modified the custom external 5.1.1 message with a new message
using the -Text parameter.

To remove a custom DSN message, use the Remove-SystemMessage cmdlet:

Remove-SystemMessage -Identity 'en\Internal\5.1.1' -Confirm:$false

The previous command removes the custom message created for the 5.1.1 DSN code
without confirmation.

System-generated messages for mailbox and public folder quota warnings can also
be customized:

New-SystemMessage -QuotaMessageType WarningMailbox `
-Text "Your mailbox is getting too large. Please
 delete some messages to free up space or call
 the help desk at extention 3391." `
-Language En

When creating a custom quota message as shown previously, there is no need to specify
a DSN code. The -QuotaMessageType parameter is used to modify the messages for the
various warnings supported by the system. The -QuotaMessageType parameter accepts
the following values that can be used to customize warning messages:

Chapter 8

255

WarningMailboxUnlimitedSize

WarningPublicFolderUnlimitedSize

WarningMailbox

WarningPublicFolder

ProhibitSendMailbox

ProhibitPostPublicFolder

ProhibitSendReceiveMailBox

When creating a custom quota message, you cannot use the -Internal parameter. This is
not a problem since quota messages are only intended for internal recipients.

Managing connectivity and protocol logs
Every Exchange hub or edge transport server is capable of logging connection activity and
SMTP conversations that take place between servers. You can configure the retention settings
for these logs and use them to diagnose mail flow issues within your environment. In this
recipe, you'll learn how to configure the logging options on your servers and how to examine
the data when troubleshooting problems.

How to do it...
To view the connectivity logging configuration for a transport server, use the Get-
TransportServer cmdlet:

Get-TransportServer -Identity ex01 | fl ConnectivityLog*

The previous command retrieves the default connectivity logging settings for a transport
server named ex01. The output returned will be similar to the following screenshot:















Managing Transport Servers

256

How it works...
Connectivity logs record connection details about outbound message delivery queues on a
transport server. Connectivity logging is enabled by default on Exchange 2010 SP1 servers.
Based on the output from the Get-TransportServer cmdlet in the previous example, we
can see that by default, the maximum age for connectivity logfiles is 30 days. Once a logfile
reaches 10 MB, a new logfile will be created. The directory for connectivity logging will hold
up to 1 GB of logs. Transport servers use circular logging for connectivity logs, so once the
directory reaches its maximum size, or the logfiles reach their maximum age, those logfiles
will be removed to make space for new logfiles.

You can control these settings using the Set-TransportServer cmdlet. Here's an
example of modifying the connectivity log maximum age and directory size on a hub
transport server named ex01:

Set-TransportServer -Identity ex01 `
-ConnectivityLogMaxAge 45 `
-ConnectivityLogMaxDirectorySize 5gb

If you change these settings on a transport server, it is recommended that you also update
the remaining transport servers in your organization with a matching configuration.

To make this change to all transport servers at once, use the following one-liner:

Get-TransportServer |
 Set-TransportServer -ConnectivityLogMaxAge 45 `
 -ConnectivityLogMaxDirectorySize 5gb

There's more…
You can configure protocol logging to record the SMTP conversations between your transport
server and other mail servers. Protocol logging can be enabled on a per connector basis,
but just like the connectivity logging options, the configuration of the protocol logfile settings
are made using the Set-TransportServer cmdlet. The following screenshot shows these
available properties:

Chapter 8

257

Here you can see that we've got protocol log settings for receive connectors. The settings
shown here are the default values.

Send connectors will use the following protocol log configurations by default:

Just like connectivity logs, the send and receive protocol logs have a maximum age and
directory size and are controlled by circular logging. The default settings can be changed
with the Set-TransportServer cmdlet:

Set-TransportServer -Identity hub1 `
-SendProtocolLogMaxAge 45 `
-ReceiveProtocolLogMaxAge 45

Again, if you plan on changing this setting, make sure you update all of the transport servers
in your organization with the same information.

Before you can capture protocol logging information, you need to enable verbose protocol
logging on each connector that you want to report on:

Set-SendConnector -Identity Internet -ProtocolLoggingLevel Verbose

You can see in the previous command that we've configured the Internet send connector
for verbose protocol logging. You can do the same for a receive connector using the Set-
ReceiveConnector cmdlet:

Get-ReceiveConnector -Identity *\Relay |
 Set-ReceiveConnector -ProtocolLoggingLevel Verbose

Here we are using an asterisk (*) as a wildcard to retrieve the Relay connector from each hub
transport server in the organization. We can pipe the output to the Set-ReceiveConnector
cmdlet to enable verbose protocol logging for the connector on each server.

All hub transport servers use an invisible intra-organization send connector that is used
to transmit messages internally to other hub transport servers. You can configure verbose
logging for this connector using the Set-TransportServer cmdlet:

Set-TransportServer -Identity hub1 `
-IntraOrgConnectorProtocolLoggingLevel Verbose

Managing Transport Servers

258

Protocol logfiles for the intra-org connector will be saved in the send protocol log path.

Connectivity and Protocol log files are stored in CSV format and by default, are organized in
sub directories under the following path:

<install path>\V14\TransportRoles\Logs\

Connectivity logs are stored in a sub directory called Connectivity, and the logfile naming
convention is in the format of CONNECTLOGyyyymmdd-nnnn.log, where yyyymmdd is the date
that the log file was created, and where nnnn is an instance number starting with 1 for each
day. The instance number will be incremented by one as each logfile reaches the default 10
MB limit and a new log file is created.

Protocol logs are stored in subdirectories of this location in ProtocolLog\SmtpReceive
and ProtocolLog\SmtpSend. The files in these folders use a naming convention in the
format of prefixyyyymmdd-nnnn.log. The prefix for the log filename will be SEND for send
connectors and RECV for receive connectors. Like connectivity logs, yyyymmdd is the date
that the logfile was created, and nnnn is the instance number that starts with 1 and is
incremented as each new logfile is created.

The connectivity logs store details about messages transmitted from local queues to the
destination server. For example, a record in a connectivity log file will log the source queue,
destination server, DNS resolution details, connection failures, and the total number of
messages and bytes transferred.

The protocol logs store SMTP conversations that take place when either sending or receiving
a message. The details logged will contain connector and session IDs, the local and remote
endpoint of the servers involved, and the SMTP verbs used in the conversation.

Parsing logfiles
Even though connectivity and protocol logs are stored in CSV format, each logfile has header
information prepended to the file. The following screenshot shows an example of viewing a
connectivity logfile in excel:

Chapter 8

259

As you can see, the header information includes the Exchange version, the date, and the
fields used in the logfiles. This header information, makes it impossible to read these files into
the shell using the Import-CSV cmdlet. Luckily, PowerShell is so flexible that we can work
around this with a little creativity.

Let's say you are interested in finding all errors in the connection log on a transport
server named hub1. Start the Exchange Management Shell on the hub1 server and
run the following command:

$logpath = (Get-TransportServer -Identity hub1).ConnectivityLogPath

This will store a reference to the connectivity log folder path that will make the following code
easier to read and work with. Now let's say that you want to parse the connectivity logs from
the past 24 hours for failures. We'll parse each logfile in the directory and perform a wildcard
search based on a keyword:

$data = $logs | %{
 Get-Content $_.Fullname | %{
 $IsHeaderParsed = $false
 if($_ -like '#Fields: *' -and !$IsHeaderParsed) {
 $_ -replace '^#Fields: '
 $IsHeaderParsed = $true
 }
 else {
 $_
 }
 } | ConvertFrom-Csv
}

$data | Where-Object{$_.description -like '*fail*'}

This code will loop through each log file in the connectivity log folder that has been written
to within the past 24 hours. For each logfile, we'll read the content into the shell, excluding
the header information, and convert the information to properly-formed CSV data using the
ConvertFrom-CSV cmdlet. The result will be stored in the $data variable that can then
be filtered on. In this example, any record within each of the logfiles where the description
contains the word fail will be returned. You can adjust the Where-Object filter based on
the information you are searching for.

Managing Transport Servers

260

Message tracking logs
The Get-MessageTrackingLog cmdlet is a versatile tool that can be used to search the
message tracking logs on mailbox and transport servers. In this recipe, you'll learn how to use
this Exchange Management Shell cmdlet to generate detailed reports on various aspects of
mail flow within your organization.

How to do it...
The Get-MessageTrackingLog cmdlet has a number of available parameters that can
be used to perform a search. To retrieve all messages sent from a transport server during a
specified time frame, use the following syntax:

Get-MessageTrackingLog -Server hub1 `
-Start (Get-Date).AddDays(-1) `
-End (Get-Date) `
-EventId Send

Using this command, all messages sent through SMTP from the hub1 server in the past 24
hours will be returned.

How it works...
Each server running the edge transport, hub transport, and mailbox server roles generates
and collects message tracking logs. Message tracking is enabled by default for each of these
roles, and the logs are stored in the <install path>\V14\TransportRoles\Logs\
MessageTrackingdirectory. Logfiles are limited to 10 megabytes and when a logfile
reaches its maximum size, a new logfile will be created. Logfiles are kept for either 30 days or
until the maximum size configured for the directory has been reached. Like connectivity and
protocol logs, the message tracking logs are removed as needed using circular logging.

You can configure all of these options on transport servers using the Set-TransportServer
cmdlet. To modify these settings on a mailbox server, use the Set-MailboxServer cmdlet.

In the previous example, we ran the Get-MessageTrackingLog cmdlet and specified a
transport server to execute the search against. Depending on your network topology, you may
need to search several servers in order to get accurate results.

For instance, let's say that you've got multiple hub transport servers in your organization. You
might want to generate a report for all messages sent by a specific user within a certain time
frame. You can search the logs on each transport server using the following syntax:

Get-TransportServer |
 Get-MessageTrackingLog -Start (Get-Date).AddDays(-1) `
 -End (Get-Date) `

Chapter 8

261

 -EventId Send `
 -Sender dmsith@contoso.com

Here you can see that we're using the Get-TransportServer cmdlet to retrieve a list
of all hub transport servers in the organization. Those objects are piped to the Get-
MessageTrackingLog cmdlet where we specify the start and end time for the search, the
EventId, and the sender. The records returned by the previous command will provide a
number of useful properties such as the sender and recipients of the message, the total size
of the message, the IP address of the destination server, the subject of the message, and
more. These records can be piped out to Export-CSV or ConvertTo-Html to generate an
external report, or you can pipe the command to Format-List to view all of the properties
for each log entry.

There's more…
The -EventID parameter can be used to specify the event category used to classify
a tracking log entry when you perform a search. The following possible event categories
can be used:

BadMail: The message was submitted through the pickup or replay directories and
cannot be delivered

Defer Deliver: The message delivery has been delayed

DSN: A Delivery Status Notification (DSN) was generated

Expand: Expansion of a distribution group

Fail: Message delivery failed

PoisonMessage: The message was added or removed from the poison
message queue

Receive: The message was received either through SMTP or by the StoreDriver

Redirect: The message was redirected to an alternate recipient

Resolve: The recipients listed in the message were resolved to another
e-mail address

Send: The message was sent through SMTP to another mail server

Submit: Logged by the mailbox submission service running on a mailbox server

Transfer: Recipients were moved to a forked message because of content conversion,
recipient limits, or agents

You can search message tracking logs based on the sender or recipient:

Get-MessageTrackingLog -Sender sales@litwareinc.com -EventId Receive

























Managing Transport Servers

262

In this example, we're searching the message tracking logs for an external sender address
and specifying Receive as the event category. This would allow us to track all inbound
messages from this external sender.

In addition, you can use the -Recipients parameter to find messages sent to one or more
e-mail addresses:

Get-MessageTrackingLog –Recipients dave@contoso.com,john@contoso.com

If you know the subject of the message you want to track, use the -MessageSubject
parameter when running the command:

Get-ExchangeServer |
 Get-MessageTrackingLog -MessageSubject 'Financial Report for Q4'

Even though CAS servers don't contain message tracking logs, the syntax shown previously
is a quick and easy way to perform a search against both mailbox servers and hub transport
servers in your environment. This is helpful when you have the server roles separated across
multiple servers and you need to view each step in the delivery process.

When it comes to message tracking, you may need to generate reports based on the total
number of messages sent or received. Let's say that your boss has asked you to determine
the number of individual e-mail messages received by your hub transport servers from the
Internet in the past week. Let's start with the following command:

Get-TransportServer | Get-MessageTrackingLog -EventId Receive `
-Start (Get-Date).AddDays(-7) `
-End (Get-Date) `
-ResultSize Unlimited |
 Where-Object {$_.ConnectorId -like '*\Internet'}

Here we're specifying with the -EventID parameter that the event category of the logs
returned should be set to Receive. Next we specify the date seven days ago as the start time
for the search, and the current date for the end time. We set the -ResultSize parameter
to Unlimited because by default, this cmdlet will only return the first 1,000 results. Finally,
we filter the output using the Where-Object cmdlet based on the connector. Since we have
a dedicated receive connector for inbound Internet e-mail, we filter the results so that only
received messages through this connector are returned.

Now that we've got an idea of how to construct this command, let's take it a step further.
Again, to ensure we're getting all of the required information, we'll search the logs on each
transport server and then output the total e-mail items and their total size for the past week:

$results = Get-TransportServer |
 Get-MessageTrackingLog -EventId Receive `
 -Start (Get-Date).AddDays(-7) `
 -End (Get-Date) `
 -ResultSize Unlimited |

Chapter 8

263

 Where-Object {$_.ConnectorId -like '*\Internet'}

$results |
 Measure-Object -Property TotalBytes -Sum |
 Select-Object @{n="Total Items";e={$_.Count}},
 @{n="Total Item Size (MB)";e={[math]::Round($_.Sum /1mb,2)}}

Although this could be done on one line, we've separated it out here into two phases for the
sake of readability. First, we gather the message tracking logs on each transport server using
the desired settings and the output is stored in the $results variable.

Next, we pipe $results to the Measure-Object cmdlet that is used to sum up the
TotalBytes for all messages accepted from the Internet receive connector. The
command is piped further to the Select-Object cmdlet where we create a custom object
with calculated properties that display the total number of e-mail items and the total bytes
represented in megabytes. The results from the previous code would look something like this:

Taking it a step further
Message tracking logs can be used to create some pretty advanced reports. Let's say that you
want to create a report that shows the total number of messages sent from your organization
per external domain. This is possible using the following code:

$domain = @{}

$report = Get-TransportServer |
Get-MessageTrackingLog -EventId Send `
-ResultSize Unlimited `
-Start (Get-Date).AddDays(-30) `
-End (Get-Date) |
Where-Object {$_.ConnectorId -eq 'Internet'}

if($report) {
 $domains = $report | %{$_.Recipients | %{$_.Split("@")[1]}}
 $domains | %{$domain[$_] = $domain[$_] + 1}
 Write-Output $domain
}

Managing Transport Servers

264

You can see here that first we create a hash table that will be used to keep track of each
external domain. We then use the Get-MessageTrackingLog cmdlet to build a report for
all of the messages sent in the past 30 days using a send connector named Internet. Next,
we loop through the recipients and retrieve only the domain name from their e-mail addresses
and store the results in the $domains array. Finally, we loop through each of the domains and
add them to the hash table, incrementing the count by one for each matching result. Here's
an example of the type of output you might get from the previous code:

From the output we can see that, in this case, we've sent the majority of our external e-mail in
the past 30 days to recipients at LitwareInc.com.

See also
Tracking messages with delivery reports

Working with messages in transport queues
Transport queues are a temporary storage location for messages that are in transit. Each
hub or edge transport server can have multiple queues at any given time depending on the
destination of the message. In this recipe, we'll cover several methods that can be used to
view queued messages, remove messages from queues, and more.

How to do it...
To view the transport queues that are currently in use on a specific server, use the
Get-Queue cmdlet:

Get-Queue -Server ex01

In this example, the transport queues on the ex01 server will be returned. The output
might look similar to the following:



Chapter 8

265

In this example, there is one message awaiting retry due to a DNS resolution problem for the
destination domain.

How it works...
When running the Get-Queue cmdlet, the queues displayed will vary depending on what
types of messages are currently awaiting delivery. The following queue types are used on
transport servers:

Submission Queue: All messages received by a transport server are first
processed in the submission queue. After categorization, each message is moved
to either a delivery queue or the retry queue. The queue identity will be listed as
<ServerName>\Submission, for example: ex01\Submission.

Mailbox Delivery Queue: All messages destined for direct delivery to a mailbox
server using RPC will go through this queue. This queue is used only on hub transport
servers. The queue identity will be listed as <ServerName>\Unique Number, for
example: ex01\15.

Remote Delivery Queue: All messages being routed to another server through SMTP
will go through this queue. The queue identity will be listed as <ServerName>\Unique
Number, for example: ex01\6.

Poison Message Queue: Messages that are determined to be potentially harmful will
be placed in this queue. The queue identity will be listed as <ServerName>\Poison,
for example: ex01\Poison.

Unreachable Queue: Messages that cannot be routed to their destination server
will be placed in this queue. The queue identity will be defined as <ServerName>\
Unreachable, for example: ex01\Unreachable.

In addition to viewing the queues on a single hub transport server, you can use the following
command to view the queues on all transport servers in the organization:

Get-TransportServer | Get-Queue











Managing Transport Servers

266

If you work with busy transport servers, you may want to take advantage of the filtering
capabilities of the Get-Queue cmdlet. For example, to filter by delivery type, you can
use the following syntax:

Get-TransportServer |
 Get-Queue -Filter {DeliveryType -eq 'DnsConnectorDelivery'}

This example filters the results based on the DeliveryType. The following values can be
used with this filter:

DNSConnectorDelivery

NonSMTPGatewayDelivery

SmartHostConnectorDelivery

SmtpRelayWithinAdSitetoEdge

MapiDelivery

SmtpRelayWithinAdSite

SmtpRelaytoRemoteAdSite

SmtpRelaytoTiRg

Undefined

Unreachable

The Get-Queue cmdlet also supports several other properties that can be used to construct
a filter:

Identity: Specifies the queue identity in the format of server\destination, where
destination is a remote domain, mailbox server, or queue name

LastError: Used to search by the last error message recorded for a queue

LastRetryTime: Specifies the time when a connection was last tried for a queue

MessageCount: Allows you to search by the total items in a queue

NextHopConnector: Specifies the identity of the connector used to create a queue

NextHopDomain: The next hop, such as an SMTP domain, server name, AD site, or
mailbox database

NextRetryTime: Used to search by when a connection will next be tried by a queue

Status: Shows the status of a queue, such as Active, Ready, Retry, or Suspended

For example, if you want to view queues that have a total message count of more than
a certain number of messages, use the MessageCount property with the greater than
(-gt) operator:

Get-Queue -Server ex01 -Filter {MessageCount -gt 25}





































Chapter 8

267

Another useful method of finding backed up queues is to use the Status filter:

Get-Queue -Server ex01 -Filter {Status -eq 'Retry'}

This example searches the queues on the ex01 server for with queues that have messages
with a status of Retry. Notice that this time we've used the equals (-eq) comparison
operator in the filter to specify the status type.

To learn about all of the available comparison operators supported
by PowerShell, run the following command: Get-Help about_
comparison_operators.

There's more…
To view messages that are queued for delivery, you can use the Get-Message cmdlet.
If you want to view all of the messages that are sitting in queues with a status of Retry,
use the following command:

Get-TransportServer |
 Get-Queue -Filter {Status -eq 'Retry'} |
 Get-Message

The Get-Message cmdlet also provides a -Filter parameter that can be used to find
messages that match a specific criteria:

Get-TransportServer |
 Get-Message -Filter {FromAddress -like '*contoso.com'}

The previous command returns all queued messages from every hub transport server in the
organization where the sender domain is contoso.com.

To view the filterable properties for the Get-Message cmdlet, run the
following command: Get-Help Get-Message -Parameter Filter.

If you know which server the message is queued on and you just want to view the properties
for the message, you can use the following syntax:

Get-Message -Server ex01-Filter {Subject -eq 'test'} | Format-List

This example filters the Subject of queued messages on the ex01 server. If you want
to view all messages queued on a server, you can simply remove the -Filter parameter
and value.

Managing Transport Servers

268

To prevent the delivery of a message in a queue, you can use the Suspend-Message cmdlet:

Get-Message -Server ex01 -Filter {Subject -eq 'test'} |
 Suspend-Message -Confirm:$false

To suspend all messages in a particular queue, use the following syntax:

Get-Queue -Identity ex01\7 |
 Get-Message |
 Suspend-Message -Confirm:$false

Keep in mind that messages in the submission or poison message queue cannot be suspended.
When the time comes to allow delivery, you can use the Resume-Message cmdlet.

Get-Message -Server hub1 -Filter {Subject -eq 'test'} |
 Resume-Message

Or we can resume all messages in a particular queue:

Get-Queue -Identity ex01\7 |
 Get-Message |
 Resume-Message

When you need to force a retry for a queue, you can use the Retry-Queue cmdlet:

Get-Queue -Identity ex01\7 | Retry-Queue

The Retry-Queue cmdlet can also be used to resubmit messages to the submission queue,
which will allow the categorizer to reprocess the messages. You can resubmit messages with
a status of Retry in the mailbox or remote delivery queues, or messages that are sitting in
the unreachable or poison message queues.

For example, to resubmit all messages in queues with a Retry status on all hub transport
servers in the organization, use the following command:

Get-TransportServer |
 Get-Queue -Filter {Status -eq 'Retry'} |
 Retry-Queue -Resubmit $true

Or, to resubmit messages in the unreachable queue on a specific server, use the
following command:

Retry-Queue -Identity ex01\Unreachable -Resubmit $true

Chapter 8

269

Messages with a suspended status cannot be resubmitted using the
Retry-Queue cmdlet.

You can purge messages from transport queues using the Remove-Message cmdlet.

Get-TransportServer |
 Get-Queue -Filter {DeliveryType -eq 'DnsConnectorDelivery'} |
 Get-Message | Remove-Message -Confirm:$false

This one-liner retrieves queued messages on all transport servers with a specified delivery
type and removes them without confirmation. An NDR will be generated and sent to the
originator of the message advising them that they'll need to resend the message.

The Remove-Message cmdlet provides multiple parameters that can be used to either
identify the message based on the message identity, or using a filter with the -Filter
parameter when you only want to remove a single message:

Remove-Message -Identity ex01\10\13 -WithNDR $false -Confirm:$false

The previous command removes a single message based on its MessageIdentity value.
Notice that this time we've set the -WithNDR parameter to $false and the sender will not be
notified that the message will not be delivered.

Searching anti-spam agent logs
Exchange 2010 hub and edge transport servers are capable of using several anti-spam
agents to reduce the amount of unwanted e-mail messages that enter your organization.
All anti-spam activity is logged by transport servers, and this data can be used to troubleshoot
issues and generate reports. In this recipe, you'll learn how to search the anti-spam agent logs
using the Exchange Management Shell.

How to do it...
The Get-AgentLog cmdlet can be used to parse the anti-spam agent logs. To find all log
entries for a particular agent, filter the output based on the Agent property:

Get-AgentLog | ?{$_.Agent -eq 'Content Filter Agent'}

When running this command in a busy environment, you may get back a large number of
results, and you may want to consider refining your filter and perhaps limiting the date range
to a specific period of time.

Managing Transport Servers

270

How it works...
All of the anti-spam agents use a series of logfiles on each transport server with the anti-spam
agents installed. By default, hub transport servers do not have the anti-spam agents installed,
but you can install them manually by running the InstallAntiSpamAgents.ps1 scripts
located in the $exscripts folder.

By default, the agent logfile directory is set with a maximum size of 250 megabytes. Each
individual logfile is limited to 10 megabytes in size, and will be kept for a maximum of 30 days,
or until the directory reaches its maximum size. These values can be adjusted by manually
editing the EdgeTransport.exe.config file on your transport servers.

The following anti-spam filters are available for Exchange transport servers:

Connection Filtering: Determines the action for a message based on the IP address
of the remote server. Services such as IP Block Lists, IP Block List Providers, IP Allows
Lists, and static IP address entries to determine whether or not the message should
be blocked.

Sender Filtering: Allows you to configure one or more blocked senders and the action
that should be taken if a message is received from a specific address.

Recipient Filtering: Determines the action to take based on the recipients of an e-
mail message.

Sender ID: Determines the action to take based on whether or not the sender of a
message is transmitting the message from a mail server associated with the sender's
domain. This is used to combat domain spoofing.

Content Filtering: Uses Microsoft SmartScreen technology to process the
contents of each message and determine whether or not the content of the
message is appropriate.

Sender Reputation: Uses IP reputation information obtained from Microsoft
Update services to identify IP address that are known to send spam. Also generates
a reputation score on the sending mail server's IP address based on several
characteristics including message analysis and external tests.

Attachment Filtering: Filters messages based on attachment name, file extension,
or file content type.

When viewing agent log entries in the shell, several properties are available that can be used
to determine the status of the message:















Chapter 8

271

In this example, you can see that the message was blocked because the P1FromAddress
was configured as a blocked sender on the Sender Filtering agent with the action set to
Reject message.

There's more…
When you run the Get-AgentLog cmdlet, every entry in the logfile will be returned.
In an environment that receives a lot of e-mail this can be a little overwhelming and slow.
To narrow your searches, you can specify a time frame using the -StartDate and
-EndDate parameters:

Get-AgentLog -StartDate (Get-Date).AddDays(-7) -EndDate (Get-Date)

The previous command retrieves the agent logs for the past seven days. In this example, the
start and end dates are specified using Get-Date cmdlet, but, if needed, you can manually
type the date and time for the search:

Get-AgentLog -StartDate "1/1/11 9:00 AM" -EndDate "1/8/11 9:00 AM"

You can create searches based on the agent as shown in the first example of this recipe.
You can combine this technique with a time frame as well to refine your searches:

Get-AgentLog -StartDate (Get-Date).AddDays(-7) -EndDate (Get-Date) |
 ?{$_.Agent -eq 'Sender Filter Agent'}

This command pulls the agent logs from the past seven days. The output is piped to the
Where-Object cmdlet (using the ? alias) to filter based on the Agent property of the log
entry. In this example, only the logs for the Sender Filter Agent are retrieved.

Managing Transport Servers

272

The agent logs provide properties that identify both the sender and recipient addresses for
the message. To search based on the sender, use the following syntax:

Get-AgentLog |
 ?{$_.P1FromAddress -or $_.P2FromAddress -eq 'sales@litwareinc.com'}

This command checks both the P1FromAddress and P2FromAddress properties and only
returns the log entries where the sender address is sales@litwareinc.com

You can use a similar filter using the -Like comparison operator and a wild card to find all
messages in the log from a particular sending domain:

Get-AgentLog |
 ?{$_.P1FromAddress -or $_.P2FromAddress -like '*@litwareinc.com'}

To retrieve the logs for specific recipients, filter on the Recipients property:

Get-AgentLog | ?{$_.Recipients -eq 'dsmith@contoso.com}

You can export the agent logs to a CSV file that can be used in another application, such as
Excel. To do this, pipe the desired logs to the Export-CSV cmdlet:

Get-AgentLog -StartDate (Get-Date).AddDays(-3) -EndDate (Get-Date) |
 ?{$_.Agent -eq 'Content Filter Agent' -and $_.ReasonData -gt 4} |
 Export-CSV c:\contentfilter.csv -NoType

In this example, agent logs from the past three days processed by the Content Filter Agent and
with an SCL rating of 4 or higher are exported to a CSV file.

You can use the -Location parameter to search agent logfiles that are located in an
alternate directory. This may be useful when you have specific retention requirements and still
need to report on old data that is no longer on your production transport servers. When using
this parameter, specify the full path to the directory containing the logfiles:

Get-AgentLog -Location e:\logs

Keep in mind that this parameter requires a local path, so a UNC path to a shared network
folder will not work.

See also

Exporting reports to text and CSV files in Chapter 2, Exchange Management Shell
Common Tasks



Chapter 8

273

Implementing a header firewall
When messages are passed from one server to another through SMTP, Exchange edge and
hub transport servers add custom X-Header fields into the message header. These headers
can contain a variety of information such as mail server IP addresses, spam confidence
levels (SCL), content filtering results, and rules processing status. Header firewalls are used
to remove these custom X-Header fields so that unauthorized sources cannot obtain detailed
information about your messaging environment. In this recipe, you'll learn how to use the
Exchange Management Shell to implement a header firewall that prevents the disclosure of
internal information sent to an external source.

How to do it...
One of the most common uses of a header firewall is to remove internal server infrastructure
details from SMTP e-mail message headers destined for an external recipient. To do this on
an edge transport server, you need to modify the permissions for the Internet send connector
using the Remove-ADPermission cmdlet:

Remove-ADPermission -Identity "EdgeSync - Litware to Internet" `
-User "MS Exchange\Edge Transport Servers" `
-ExtendedRights Ms-Exch-Send-Headers-Routing `
-Confirm:$false

In this example, the edge server's Internet send connector named "EdgeSync - Litware to
Internet" is modified. The Ms-Exch-Accept-Headers-Routing permission is removed
from the Internet send connector for the "MS Exchange\Edge Transport Servers" account.

How it works...
By default, all connectors are configured to include routing headers in SMTP e-mail messages.
This can be a security concern for many organizations as it exposes the Exchange version
in the message header. In addition, for hub transport servers that are configured to send
messages directly to the Internet, the internal IP addresses of servers that handled the
message are included in the headers.

When viewing the headers of a message received from the contoso.com mail server,
the following information is available:

Received: from EX01.contoso.com ([x.x.x.x]) by ex01.c ...
([10.100.100.20]) with mapi id 14.01.0270.001; Mon, 24 Jan ...

Here we can see the internal IP address of the contoso mail server at 10.100.100.20 and the
version number is 14.01.0270.001 which tells us that the server is running Exchange 2010
SP1 with Rollup Update 2. When implementing a header firewall for routing headers, this
information will not be sent to external recipients.

Managing Transport Servers

274

There's more...
If you do not use an edge transport server to send Internet e-mail, and instead send
messages to the Internet directly from the hub transport role, then you'll need to specify
a different user when running the Remove-ADPermission cmdlet:

Remove-ADPermission -Identity Internet `
-User "NT Authority\Anonymous Logon" `
-ExtendedRights Ms-Exch-Send-Headers-Routing `
-Confirm:$false

Again, you'll need to specify the name of the send connector that is used to send outbound
Internet e-mail. When dealing with hub transport servers, you can remove the permission
for the "NT Authority\Anonymous Logon" account, since the "MS Exchange\Edge Transport
Servers" user is specific only to edge transport servers.

9
High Availability

In this chapter, we will cover the following:

Building a Windows NLB cluster for CAS servers

Creating a Database Availability Group

Adding mailbox servers to a Database Availability Group

Configuring Database Availability Group network settings

Adding mailbox copies to a Database Availability Group

Activating mailbox database copies

Working with lagged database copies

Reseeding a database copy

Performing maintenance on Database Availability Group members

Reporting on database status, redundancy, and replication

Introduction
If you have worked with previous versions of Exchange, you may have been involved in
implementing or supporting a high-availability solution that required a shared storage model.
This allowed multiple server nodes to access the same physical storage, and, in the event
of an active server node failure, another node in the cluster could take control of the cluster
resources since it had local access to the databases and log files. This was a good model for
server availability, but did not provide any protection for data redundancy.





















High Availability

276

With the release of Exchange 2007, Microsoft still supported this shared-storage clustering
model, re-branded as Single Copy Clusters (SCC), but they also introduced a new feature
known as continuous replication. Among the three types of continuous replication options
provided, Cluster Continuous Replication (CCR) was the high-availability solution for
Exchange 2007 that eliminated the potential risk of a single point of failure at the storage
level. With CCR, there were no requirements for shared storage, and database changes were
replicated to a passive cluster node using asynchronous log shipping after an initial database
seed. Although CCR provided some compelling advantages, there were several limitations.
First, you were limited to only two nodes in a CCR cluster. In addition, implementing and
managing this configuration required that administrators understand the intricacies of
Windows failover clustering.

Microsoft improved on their continuous replication technology and introduced Database
Availability Groups (DAGs) in Exchange 2010. Limitations imposed by CCR in Exchange
2007 were removed by allowing up to 16 nodes to participate within a DAG, while also
giving you the option of hosting active copies of individual databases on every server. The
reliance on Windows failover clustering administration expertise has been reduced, and you
can completely manage all aspects of mailbox server high availability from the Exchange
Management Tools.

In this chapter, we'll cover several aspects of managing Exchange high availability using the
shell. You'll learn how to create DAGs, manage database copies, perform maintenance on DAG
members, and generate reports on mailbox database copies.

In addition to providing high availability for the mailbox server role through DAGs, we can
eliminate a single point of failure for servers hosting the CAS role using Network Load
Balancing, which we'll cover first.

Performing some basic steps
To make use of all the examples in this chapter, we'll need to use the Exchange Management
Shell, and, for one recipe, we have the option of using a standard PowerShell v2 console.

You can launch the Exchange Management Shell using the following steps:

1.	 Log onto a workstation or server with the Exchange Management Tools installed

2.	 Open the Exchange Management Shell by clicking on Start | All Programs |
Exchange Server 2010

3.	 Click on the Exchange Management Shell or the Exchange ManagementConsole
short cut

To launch a standard PowerShell console, open a standard PowerShell console by clicking on
Start | All Programs | Accessories, click the Windows PowerShell folder and then click the
Windows PowerShell shortcut.

Chapter 9

277

Unless specified otherwise in the Getting ready section, all of the recipes in this chapter will
require the use of the Exchange Management Shell.

Building a Windows NLB cluster for
CAS servers

High availability for servers running the CAS role is achieved using Network Load Balancing
and CAS arrays. While it is recommended that you use a hardware network load balancing
(HLB) solution, Windows Network Load Balancing (NLB) is still supported and may be
appropriate for small or medium size organizations. In this recipe, you'll learn how to create
a Windows NLB cluster using PowerShell for servers running Windows Server 2008 R2.

Getting ready
For this example, you'll need to run some commands against each of your CAS servers that
will be a part of the NLB cluster. You must run these commands from at least one of the CAS
servers, and each server in the cluster will need to be running Windows Server 2008 R2 for
this to work.

To complete the steps in this recipe, you can use a standard Windows PowerShell console or
use the Exchange Management Shell from the server.

How to do it...
1.	 The first step is to install Windows Network Load Balancing and the Windows Network

Load Balancing tools on each CAS server. You can run these commands on each
server to install the required components:
Import-Module ServerManager
Add-WindowsFeature NLB, RSAT-NLB

If you have PowerShell remoting enabled on all of your CAS servers, you can install
the required components on every server at once using Invoke-Command:
$servers = 'cas1','cas2','cas3','cas4'
Invoke-Command -ScriptBlock {
 Import-Module servermanager;Add-WindowsFeature NLB,RSAT-NLB
} -ComputerName $servers

High Availability

278

2.	 Once each of the CAS servers has the required NLB components installed, import
the NetworkLoadBalancingClusters module and create the NLB cluster on the
first node. The following command assumes that the network interface name on the
server has been renamed to "NLB". Yours might be using the default interface name,
which would be "Local Area Connection":
Import-Module NetworkLoadBalancingClusters

New-NlbCluster -InterfaceName NLB `
-ClusterNameCASArray `
-HostName CAS1 `
-ClusterPrimaryIP 172.16.23.200

3.	 Remove the default port rules that are created for the cluster:
Get-NlbClusterPortRule | Remove-NlbClusterPortRule -Force

4.	 Next, create the port rules for the required services:
Get-NlbCluster |
 Add-NlbClusterPortRule -StartPort 80 `
 -EndPort 80 `
 -Protocol TCP `
 -Affinity Single

Get-NlbCluster |
 Add-NlbClusterPortRule -StartPort 443 `
 -EndPort 443 `
 -Protocol TCP `
 -Affinity Single

Get-NlbCluster |
 Add-NlbClusterPortRule -StartPort 135 `
 -EndPort 135 `
 -Protocol TCP `
 -Affinity Single

Get-NlbCluster |
 Add-NlbClusterPortRule -StartPort 6005 `
 -EndPort 59530 `
 -Protocol TCP `
 -Affinity Single

Chapter 9

279

5.	 At this point, you can add the remaining nodes to the cluster. In this example, we'll
add the cas2 server to the cluster:
Get-NlbCluster |
 Add-NlbClusterNode -NewNodeName cas2 `
 -NewNodeInterface NLB

How it works...
Windows Server 2008 R2 servers include the Server Manager PowerShell module, which is a
replacement for the ServerManagerCmd.exe utility. Using the Server Manager module, we
can install various roles and features on the server. In addition, 2008 R2 servers also include
the NetworkLoadBalancingClusters module that can be used to install and configure
Windows NLB, and, as you've seen, we can use both modules to install and configure an NLB
cluster for Exchange CAS servers.

Importing the modules and installing the components is fairly straightforward. When installing
the NLB and RSAT-NLB features, you first need to import the ServerManager module and
install the features using the Add-WindowsFeature cmdlet. Once the RSAT-NLB tools are
installed, we can use the Network LoadBalancing Clusters module, which is loaded using the
Import-Module cmdlet.

When you initially create the NLB cluster, you use the New-NLBCluster cmdlet. In
the previous example, we created an NLB cluster using the name CASArray, which is
assigned using the -ClusterName parameter. This name can be anything you like, as it
will not be used by clients to access the nodes in the cluster. The -InterfaceName and
-ClusterPrimaryIP parameters are very important. You need to specify the network
interface name on the server as the value for the -InterfaceName parameter. The cluster
primary IP is the shared IP address that will be used to balance the traffic between the
CAS servers. You'll need a host (A) record in DNS that resolves to this IP address. This
DNS namespace will also be used as the CAS array end-point, which needs to be
configured separately.

There's more…
In the previous example, we created port rules for several TCP ports, which are described
as follows:

80: HTTP connections

443: HTTS connections

135: RPC End Point Mapper

6005-59530: Dynamic RPC port range for MAPI connections









High Availability

280

Load balancing this set of ports will take care of the web services offered by the CAS role,
such as Outlook Web App, Exchange ActiveSync, Offline Address Book, Exchange Web
Services, and so on. This will also provide load balancing for connections to the RPC Client
Access and Address Book services required for MAPI clients. If you need to provide access
to other services such as POP or IMAP, you can use the Add-NLBPortRule cmdlet to add
additional port rules for those protocols.

As best practice, you should explicitly define the TCP ports that will be load balanced on each
node of the cluster. This gives you a little more control when configuring the affinity options for
each individual service. For example, the POP and IMAP protocols don't require affinity, so if
you wanted to add the ports for those services, you could configure the affinity
as None, while other protocols such as HTTP/S and RPC will be configured as Single.

Exchange 2010 SP1 allows you to configure static RPC ports for the RPC Client Access and
Address Book services via the registry. This allows you to restrict MAPI connections to two
specific TCP ports, instead of using the dynamic port range. For detailed steps on configuring
static RCP ports on CAS servers, see the following article:

Configuring Static RPC Ports on an Exchange 2010 Client Access Server

http://social.technet.microsoft.com/wiki/contents/articles/
configuring-static-rpc-ports-on-an-exchange-2010-client-access-
server.aspx

Taking it a step further
In Step 5 of the recipe, we looked at an example of adding a CAS server to the WNLB
cluster. You can automate this process when adding multiple servers using a simple
pipeline command. As long as the servers have matching network interface names
(which is recommended), you can use the following code:

'cas2','cas3','cas4' | ForEach-Object{
 Get-NlbCluster |
 Add-NlbClusterNode -NewNodeName $_ `
 -NewNodeInterface NLB
}

You can see here that we're simply pipelining an array of server names to the
Foreach-Object cmdlet. For every server in the collection, we add the computer
to the NLB cluster.

Since Windows NLB doesn't scale well over eight nodes and doesn't provide service
awareness or any affinity options other than single affinity (requests coming from the
same client IP), most organizations that are serious about load balancing will implement
a hardware-based load balancing solution.

Chapter 9

281

See also

Creating an RPC Client Access array in Chapter 7, Managing Client Access

Configuring the CAS server used by RPC clients in Chapter 7, Managing
Client Access

Creating a Database Availability Group
The initial setup and configuration of a Database Availability Group (DAG) is done using a
single cmdlet named New-DatabaseAvailabilityGroup. In this recipe, we'll take a look
at how you can automate the creation of a DAG using the Exchange Management Shell.

How to do it...
To create a DAG, use the New-DatabaseAvailabilityGroup cmdlet:

New-DatabaseAvailabilityGroup -Name DAG `
-WitnessServer HC1 `
-WitnessDirectory C:\FSW `
-DatabaseAvailabilityGroupIPAddresses 192.168.1.55

The previous command creates a new Database Availability Group named DAG. The file share
witness server is set to a hub transport server named HC1, and the path for the directory is
also specified, along with an IP address that will be used only by the DAG cluster resources.

How it works...
When you run the New-DatabaseAvailabilityGroup cmdlet, the only requirement is that
you use a unique name for the DAG. In the previous example, we specified the information for
the file share witness and IP address, but those values are optional.

The witness server is a quorum resource used by Windows Failover
clustering as a tie-breaker in DAGs with an even number of nodes.

If you do not provide a value for the witness server or witness server directory, Exchange will
attempt to locate a hub transport server in the current Active Directory site. If a hub transport
server that is not co-located with the mailbox role is available in the site, one will be selected
automatically and the configuration of the witness server and its directory will be taken care
of by Exchange.





High Availability

282

Keep in mind that, if you do not provide an IP address for the DAG, Exchange will attempt
to obtain an address for the DAG using DHCP, but it is recommend that you set the IP
address statically.

There's more…
If you create a DAG using the minimum amount of information, you can always come back
later and modify the configuration. For instance, say we first issue the following command:

New-DatabaseAvailabilityGroup -Name DAG

At this point, the DAG will attempt to automatically configure the witness server details and will
try to obtain an IP address using DHCP. You can view review the settings of the DAG using the
Get-DatabaseAvailabilityGroup cmdlet:

Get-DatabaseAvailabilityGroup -Identity DAG

We can update the DAG using the Set-DatabaseAvailabilityGroup cmdlet to modify
the settings:

Set-DatabaseAvailabilityGroup -Identity DAG `
-WitnessServer HC1 `
-WitnessDirectory C:\FSW `
-DatabaseAvailabilityGroupIPAddresses 192.168.1.55

You do not have to place the witness directory on another Exchange server. For example,
it's quite common for small and medium organizations to utilize two Exchange servers, both
running the Mailbox, Hub Transport, and Client Access server roles, as a two-node DAG,
along with a hardware load balancer to provide high availability for the CAS role. In this case,
you could use a member server in the domain as the witness server; just make sure that
the Exchange Trusted Subsystem security group in Active Directory is a member of the local
administrator group on that server.

When you are planning on adding servers that are located in separate IP subnets, you'll need
to specify an IP address that can be used by the DAG in each of the corresponding networks.
For example:

New-DatabaseAvailabilityGroup -Name DAG `
-DatabaseAvailabilityGroupIPAddresses 10.1.1.10,192.168.1.10

In this example, one of the DAG members is in the 10.1.1.0/24 subnet and the other is
located in the192.168.1.0/24 subnet. This will allow the cluster IP address to be brought
online by a server in either site.

Chapter 9

283

If you have already created the DAG and need to change the addresses, use the Set-
DatabaseAvailabilityGroup cmdlet:

Set-DatabaseAvailabilityGroup -Identity DAG `
-DatabaseAvailabilityGroupIPAddresses 10.1.1.25,192.168.1.25

See also
Adding mailbox servers to a Database Availability Group

Adding mailbox servers to a Database
Availability Group

Once you've created a Database Availability Group (DAG), you'll need to add DAG members,
which are servers running the mailbox server role. In this recipe, you'll learn how to add
mailbox servers to a DAG using the Exchange Management Shell.

How to do it...
To add a mailbox server to a DAG, use the Add-DatabaseAvailabilityGroupServer
cmdlet:

Add-DatabaseAvailabilityGroupServer -Identity DAG `
-MailboxServer MBX1

In this example, the MBX1 server is added to a database availability group named DAG.

How it works...
In order to run the Add-DatabaseAvailabilityGroupServer cmdlet, the servers being
added to the DAG must be running an Enterprise Edition of either Windows Server 2008 or
2008 R2. This is due to the requirement of the Windows Failover Clustering component which
is required by the DAG. Additionally, the servers must not be a member of an existing DAG for
you to successfully run this command.

If you use this cmdlet to add a mailbox server running Windows Server 2008 R2 to a DAG, the
Windows Failover Clustering feature will automatically be installed if it has not been already.



High Availability

284

When the first mailbox server is added to the DAG, a computer account known as a Cluster
Network Object (CNO) is added to the Active Directory. The name of the computer account will
be created using the same name as the DAG. In order for this cmdlet to complete successfully
when the first mailbox server is added to the DAG, the Exchange Trusted Subsystem universal
security group must have the appropriate permissions in the Active Directory to create the
account. In many cases, this should not be an issue, but if you work in an environment where
Active Directory security permissions have been modified to restrict access, you may need to
pre-stage this CNO object and ensure that the Exchange Trusted Subsystem group has been
granted Full Control permissions on the object.

There's more...
The Add-DatabaseAvailabilityGroupServer cmdlet will need to be run for each
mailbox server that will be included in the DAG. If you want to automate this process,
you have a couple of options.

First, if you simply need to add all of the mailbox servers in the organization to the DAG,
use the following code:

Get-MailboxServer |
 Add-DatabaseAvailabilityGroupServer -Identity DAG

If you are working in a more complex environment with multiple Active Directory sites, you'll
need to do a little more work. When adding servers to a DAG, you'll probably need to limit
this to all of the mailbox servers in a particular AD site. The following code will allow you to
accomplish this:

$mbx = Get-ExchangeServer | Where-Object{
 $_.Site -match 'Default-First-Site-Name' `
 -and $_.ServerRole -match 'Mailbox'
}

$mbx | ForEach-Object{
 Add-DatabaseAvailabilityGroupServer -Identity DAG `
 -MailboxServer $_
}

Here you can see that we're using the Get-ExchangeServer cmdlet to retrieve all mailbox
servers in the default Active Directory site and storing the results in the $mbx variable. We
then pipe that variable to the Add-DatabaseAvailabilityGroupServer cmdlet and add
each server in the site to the DAG.

See also
Adding mailbox copies to a Database Availability Group

Chapter 9

285

Configuring Database Availability Group
network settings

The Exchange Management Shell includes several cmdlets that allow you to configure the
network connections used by servers in a Database Availability Group (DAG). After you have
created DAG networks, or after they've been added automatically by DAG network discovery,
you can view the DAG networks and their settings, modify the replication configuration, or
remove them completely. This recipe provides multiple examples of how you can perform
all of these tasks from the shell.

How to do it...
To view the configuration settings of your existing DAG networks, use the Get-
DatabaseAvailabilityGroupNetwork cmdlet:

The output from the cmdlet shows that there are currently two DAG networks in an
organization with a single DAG. The identity of the network, the replication state, and the
associated subnets are provided.

How it works...
When you create a DAG, Exchange will automatically discover the existing network connections
on each server and create a DAG network for the corresponding IP subnet. Although there is a
cmdlet called New-DatabaseAvailabilityGroupNetwork, you should rarely need to use
it as this is generally done automatically.

If you need to force Exchange to rediscover the DAG network configuration after changes have
been made, you can use the Set-DatabaseAvailabilityGroup cmdlet:

Set-DatabaseAvailabilityGroup -Identity DAG –DiscoverNetworks

Simply provide the name of the DAG using the -Identity parameter and use
the -DiscoverNetworks switch parameter to indicate that Exchange should search
for changes in the network configuration.

High Availability

286

There's more…
By default, all DAG networks are used for log shipping and seeding. If you do not want to allow
replication on a specific network, use the Set-DatabaseAvailabilityGroup cmdlet

Set-DatabaseAvailabilityGroupNetwork -Identity DAG\DAGNetwork02 `
-ReplicationEnabled $false

You may consider doing this if you want dedicated DAG networks for replication and
heart beating.

Additionally, you may have other network connections on your mailbox servers that should
not be used by the DAG at all. This is commonly seen with iSCSI network adapters used only
for connecting to a storage area network. Since Exchange will attempt to discover all network
interfaces and add a DAG network for each one, you'll need to completely disable those DAG
networks if they should not be used:

Set-DatabaseAvailabilityGroupNetwork -Identity DAG\DAGNetwork04 `
-IgnoreNetwork $true

In this example, DAGNetwork04 will be ignored by the DAG. To remove this restriction,
use the same cmdlet and set the -IgnoreNetwork parameter to $false for the required
DAG network.

Renaming and removing DAG networks
When making modifications to DAG networks, you may need to rename or remove one or more
networks. This can be done easily in the Exchange Management Console, but if you like to
work in the shell, you can do this quickly with the built-in cmdlets. For example, assume the
output of Get-DatabaseAvailabilityGroupNetwork shows the following:

You can see from the output shown here that DAGNetwork02 is listed as Unknown. In this
case, this was an automatically-generated DAG network that is no longer in use by any of the
servers in the DAG. Use the Remove-DatabaseAvailabilityGroupNetwork cmdlet to
delete the network:

Remove-DatabaseAvailabilityGroupNetwork -Identity DAG\DAGNetwork02 `
-Confirm:$false

Chapter 9

287

Once this network has been removed, you can rename DAGNetwork03 to DAGNetwork02:

Set-DatabaseAvailabilityGroupNetwork -Identity DAG\DAGNetwork03 `
-Name DAGNetwork02

You can run the Get-DatabaseAvailabilityGroupNetwork cmdlet again to view the
DAG network configuration and verify that the changes have been made.

Adding mailbox copies to a Database
Availability Group

Once your Database Availability Group has been created and configured, the next step is to
set up database replication by adding new mailbox database copies of existing databases.
In this recipe, we'll take a look at how to add mailbox database copies using the Exchange
Management Shell.

How to do it...
Use the Add-MailboxDatabaseCopy cmdlet to create a copy of an existing database:

Add-MailboxDatabaseCopy -Identity DB01 `
-MailboxServer MBX2 `
-ActivationPreference 2

When running this command, a copy of the DB01 database is created on the MBX2 server.

How it works...
When creating database copies, keep in mind that this only works for mailbox databases,
as public folder databases do not support continuous replication. When creating a copy of a
database on another mailbox server, you need to ensure that the server is in the same DAG
as the mailbox server hosting the source mailbox database. In addition, a mailbox server can
only hold one copy of a given database, and the database path must be identical on every
server in the DAG.

You can remove a database copy using the Remove-MailboxDatabaseCopy
cmdlet. Run Get-Help Remove-MailboxDatabaseCopy -Full for
details.

High Availability

288

When running the Add-MailboxDatabaseCopy cmdlet, you need to specify the identity of
the database and the destination mailbox server that will be hosting the database copy. The
activation preference for a database can optionally be set when you create the database copy.
The value of the activation preference is one of the criteria used by the Active Manager during
a failover event to determine the best replicated database copy to activate.

There's more…
In order to create and mount mailbox databases and add database copies to multiple servers
in a DAG, several commands must be run from within the shell. If you do deployments on a
regular basis or if you build up and tear down lab environments frequently, this is a process
that can easily be automated with PowerShell.

The PowerShell function New-DAGMailboxDatabase creates new mailbox databases from
scratch, mounts them, and then adds passive copies of each database to the remaining
servers you specify. The code for this function is as follows:

function New-DAGMailboxDatabase {
param(
 $ActiveServer,
 $PassiveServer,
 $DatabasePrefix,
 $DatabaseCount,
 $EdbFolderPath,
 $LogFolderPath
)

1..$DatabaseCount | Foreach-Object {

 $DBName = $DatabasePrefix + $_
 New-MailboxDatabase -Name $DBName `
 -EdbFilePath "$EdbFolderPath\$DBName\$DBName.edb" `
 -LogFolderPath "$LogFolderPath\$DBName" `
 -Server $ActiveServer
	
 Mount-Database -Identity $DBName
	
 $PassiveServer | Foreach-Object {
 Add-MailboxDatabaseCopy -Identity $DBName `
 -MailboxServer $_
 }
 }
}

Chapter 9

289

Once you've added this function to your shell session, you can run it using syntax similar to the
following:

New-DAGMailboxDatabase -ActiveServer mbx1 `
-PassiveServer mbx2,mbx3,mbx4,mbx5 `
-DatabaseCount 3 `
-DatabasePrefix MDB `
-EdbFolderPath E:\Database `
-LogFolderPath E:\Database

Running this function with the given parameters will do a number of things. First, you can see,
by looking at the function parameter values, that three new databases will be created using a
prefix of MDB. This function will create each database using the same prefix, and then number
them in order. In this example, the active server MBX1 will have three new databases created,
called MDB1, MDB2, and MDB3. The -PassiveServer parameter needs to have one or more
servers defined. In this case, you can see that we'll be adding database copies of the three
new databases on each of the passive servers specified. All databases and log files on each
server will be located in a folder under E:\Database in a sub directory that matches the
database name.

In some environments, you might find that trying to mount a database immediately after
it was created will fail. What it boils down to is that the mount operation is happening too
quickly. If you run into this, you can add a delay before the mount operation; use something
like Start-Sleep 5 before calling the Mount-Database cmdlet. This will suspend the script
for five seconds, giving Exchange time to catch up and realize that the database has been
created before trying to mount it.

See also
Reporting on database status, redundancy, and replication

Activating mailbox database copies
After you've created a Database Availability Group (DAG) and have added multiple database
copies to the servers in your organization, you'll need to be able to move the active copies to
other servers. In this recipe, you'll learn how to do this using the Exchange Management Shell.



High Availability

290

How to do it...
Manually moving the active mailbox database to another server in a DAG is a process known
as a database switchover. In order to activate passive mailbox database copies on another
server, you'll need to use the Move-ActiveMailboxDatabase cmdlet:

Move-ActiveMailboxDatabase DB01 `
-ActivateOnServer MBX2 `
-Confirm:$false

In this example, the passive mailbox database copy of DB01 is activated on the MBX2 server.

How it works...
When activating a database copy, you can optionally set the - MoveComment parameter to a
string value of your choice that will be recorded in the event log entry for the move operation.

You can choose to activate one mailbox database copy at a time or you can move all the
active databases on a particular server to one or more servers in the DAG. For example:

Move-ActiveMailboxDatabase -Server mbx2 `
-ActivateOnServer mbx1 `
-Confirm:$false

As you can see here, all the active databases on MBX2 will be moved to MBX1. Obviously, this
requires that you have database copies located on mbx1 for every mailbox database on MBX2.

When moving mailbox database copies, you can also override the auto mount dial settings for
the target server by specifying one of the following values for the mount dial override settings:

Lossless: This is the default value for the –MountDialOverride parameter. When
performing a lossless mount, all log files from the active copy must be fully replicated
to the passive copy.

GoodAvailability: Specifies that the copy queue length must be less than or equal to
six log files in order to activate the passive copy.

BestEffort: Mounts the database regardless of the copy queue length and could
result in data loss.

BestAvailability: Specifies that the copy queue length must be less than or equal to
12 log files in order to activate the passive copy.

For example, to move the active database of DB01 from MBX2 to MBX1 with good availability,
use the -MountDialOverride parameter when running the cmdlet:

Move-ActiveMailboxDatabase DB01 `
-ActivateOnServer MBX1 `









Chapter 9

291

-MountDialOverride GoodAvailability `
-Confirm:$false

There's more…
If you want to forcefully activate an unhealthy database copy, there are a few parameters
available with the Move-ActiveMailboxDatabase that can be used, depending on
the situation.

For example, if you have a database copy with a corrupt content index state, you can force
activation of the database using the -SkipClientExperienceChecks parameter:

Move-ActiveMailboxDatabase DB01 `
-ActivateOnServer MBX1 `
-SkipClientExperienceChecks `
-Confirm:$false

At this point, the search catalog on DB01 will need to be recrawled or reseeded.

You also have the option of skipping database health checks when attempting to move an
active database. It is recommended that you only do this when an initial activation attempt
has failed:

Move-ActiveMailboxDatabase DB01 `
-ActivateOnServer MBX1 `
-SkipHealthChecks `
-Confirm:$false

Finally, you can use the –SkipLagChecks parameter to allow activation of a database copy
that has copy and replay queue lengths outside of their required thresholds:

Move-ActiveMailboxDatabase DB01 `
-ActivateOnServer MBX1 `
-SkipLagChecks `
-Confirm:$false

It's important to point out here that activating databases that are missing log files will result in
data loss and unhappy users.

See also
Reporting on database status, redundancy, and replication

High Availability

292

Working with lagged database copies
The concept of a lagged database copy is based on functionality introduced with Exchange
2007 that was included with Standby Continuous Replication (SCR). Using lagged database
copies, we can configure a replay lag time in which log files that are replicated to database
copies are not played into the database file, therefore lagging behind the active database for
a given period of time. The benefit of this is that it gives you the ability to recover point in time
data in the event of a logical database corruption. In this recipe, you'll learn how to use the
Exchange Management Shell to work with lagged database copies.

How to do it...
1.	 To create a lagged database copy, specify a replay lag time value when adding a

mailbox database copy:
Add-MailboxDatabaseCopy -Identity DB03 `
-MailboxServer mbx2 `
-ReplayLagTime 3.00:00:00

In this example, a new lagged database copy is added to the MBX2 mailbox server
with a three day replay lag time.

2.	 You can also change a regular database copy to a lagged copy:
Set-MailboxDatabaseCopy -Identity DB01\mbx2 `
-ReplayLagTime 12:00:00

This time, the passive database copy of DB01 on the MBX2 server is configured with a lag
replay time of 12 hours. Notice that the Identity is specified in the format of <Database
Name>\<Server Name>.

How it works...
When creating lagged database copies, the maximum replay time that can be set is 14 days.
In addition to the -ReplayLagTime parameter, both cmdlets shown in the previous example
provide a -TruncationLagTime parameter. Setting the truncation lag time on a lagged
database copy allows you to configure the amount of time that Exchange will hold on to any
log files that have been played into the database before deleting them.

When using either the -ReplayLagTime or -TruncationLagTime parameters, you need
to specify the amount of time in the format of Days.Hours:Minutes:Seconds. Alternatively, you
can pass a TimeSpan object to either of these parameters:

Set-MailboxDatabaseCopy -Identity DB01\mbx2 `
-ReplayLagTime (New-TimeSpan -Hours 12)

Chapter 9

293

The New-TimeSpan cmdlet is a PowerShell core cmdlet and has parameters that can be
used to create a TimeSpan object defined in days, hours, minutes, and seconds.

One of the things you need to keep in mind is that you don't want lagged database copies to
be automatically activated in the event of a database failover. The first reason for this is that
you lose your point in time data recovery options. Secondly, if you have several days of log files
that still need to be replayed into a database, the mount time for a lagged database can be
very long and can take several hours.

Based on these reasons, you'll want to block activation of your lagged copies after they have
been configured. To do this, use the Suspend-MailboxDatabaseCopy cmdlet:

Suspend-MailboxDatabaseCopy -Identity DB01\MBX2 `
-ActivationOnly `
-Confirm:$false

Make sure you use the -ActivationOnly switch parameter when running the cmdlet, as
shown previously, otherwise it will be suspended indefinitely.

There's more...
Unfortunately, to replay the log files up to a specific point in time, you need to follow a
process that cannot be done entirely using the shell. First, you need to suspend the lagged
database copy. Next, you have to figure out which log files are required to meet your point in
time backup requirements, and move any log files that aren't needed out of the log file path
to another location. Finally, you delete the checkpoint file for the database and replay any
outstanding log files into the database using the Eseutil command line utility. At that point,
the database should be clean and you should be able to resume and activate the database
copy. Fortunately, database logical corruption is an extremely rare occurrence, but if you need
the ability to recover from a specific point in time, you may want to consider using Windows
Server Backup or a third-party backup solution, or become familiar with the process of
recovering from a lagged database copy.

Reseeding a database copy
There may be times when database replication issues arise in your environment. These issues
could be caused by hardware failures, network issues, or, in extremely rare cases, log file
corruption, and leave you with failed database copies that need to be reseeded. This recipe
outlines the process for reseeding database copies using the Exchange Management Shell.

High Availability

294

How to do it...
1.	 To reseed a database copy, suspend replication using the following command syntax:

Suspend-MailboxDatabaseCopy -Identity DB01\MBX2 -Confirm:$false

2.	 Next, you're ready to reseed the database. Use the Update-
MailboxDatabaseCopy cmdlet, as shown:
Update-MailboxDatabaseCopy -Identity DB01\MBX2 `
-DeleteExistingFiles

How it works...
When using the Update-MailboxDatabaseCopy cmdlet to reseed a database copy,
you can use the -DeleteExistingFiles switch parameter to remove the passive
database and log files. Depending on the size of the database, it may take a long time
to perform the reseed. Once the reseed is complete, replication for the database will
automatically be resumed.

If you don't want replication to resume automatically after a reseed, you can configure it for
manual resume:

Update-MailboxDatabaseCopy -Identity DB01\MBX2 `
-DeleteExistingFiles `
-ManualResume

In this example, we've added the -ManualResume switch parameter. After the reseed, we can
manually resume replication:

Resume-MailboxDatabaseCopy -Identity DB01\MBX2

There's more...
One of the things that you may run into is a database with a corrupt content index state.
In this situation, it's not necessary to reseed the entire database, and you can reseed the
content index catalog independently:

Update-MailboxDatabaseCopy -Identity DB01\MBX2 -CatalogOnly

Using the -CatalogOnly switch parameter as shown previously will allow you to reseed the
content index catalog without reseeding the database.

Alternatively, you also have the option of reseeding only the database:

Update-MailboxDatabaseCopy -Identity DB01\MBX2 -DatabaseOnly

Chapter 9

295

In this example, the DB01 database on the MBX2 server is reseeded without having to seed a
copy of the content index catalog.

See also
Reporting on database status, redundancy, and replication

Performing maintenance on Database
Availability Group members

When it comes to performing maintenance on servers that are part of a Database Availability
Group (DAG), you'll need to move any active databases off to another member in the DAG.
This will allow you to install patches or take the server down for hardware repairs or upgrades
without affecting database availability. This recipe will show you how to use some of the built-
in PowerShell scripts installed by Exchange 2010 SP1 that can be used to place a server in
and out of maintenance mode.

How to do it...
1.	 First, switch to the $exscripts directory:

Set-Location $exscripts

2.	 Next, run the StartDagServerMaintenance.ps1 script and specify the server
name that should be put into maintenance mode:
.\StartDagServerMaintenance.ps1 -ServerName mbx1

How it works...
When you run the StartDagMaintenance.ps1 script, it moves all the active databases that
are running on the specified server to other members of the DAG. The script will then pause
the server node in the cluster and set the DatabaseCopyAutoActivationPolicy mailbox
server setting to Blocked. The Suspend-MailboxDatabaseCopy cmdlet is run for each
database hosted by the DAG member and the cluster core resources are moved to another
server in the DAG, if needed.

After maintenance is complete, run the StopDagServerMaintenance.ps1 script to take
the server out of maintenance mode:

.\StopDagServerMaintenance.ps1 -ServerName mbx1



High Availability

296

This will run the Resume-MailboxDatabaseCopy cmdlet for each database located on the
specified server and resume the node in the cluster. The auto activation policy for the mailbox
server will then be set back to Unrestricted and the server will be back online, ready for
production use.

There's more...
After you've performed maintenance on your DAG members, the databases that were
previously active are not moved back, even after running the stop DAG maintenance script.
If you are performing maintenance on multiple servers at the same time, you might end up
with an uneven distribution of active databases running on other servers in the DAG.

To correct this, the RedistributeActiveDatabases.ps1 script located in the
$exscripts folder can be used to re-balance the active database copies across the DAG.
There are two options for balancing active database copies within a DAG: by activation
preference and by site and activation preference.

When using the -BalanceDbsByActivationPreference parameter, the script tries to
move the databases to their most preferred copy based on activation preference, regardless of
the Active Directory site. If you use the –BalanceDbsBySiteAndActivationPreference
parameter, the script will attempt to activate the most preferred copy and also try to balance
them within each Active Directory site.

When running the script, specify the name of the DAG and the preferred method used to
re-balance the databases:

.\RedistributeActiveDatabases.ps1 -DagName DAG `
-BalanceDbsByActivationPreference `
-ShowFinalDatabaseDistribution `
-Confirm:$false

Notice that the -ShowFinalDatabaseDistribution parameter was also used when we
ran this script. This will provide a report that displays the actions that were taken to balance
the databases:

Chapter 9

297

Here you can see that several key pieces of information are returned, including the success
or failure of the moves and the total duration.

Reporting on database status, redundancy,
and replication

When dealing with servers and database copies in a Database Availability Group (DAG), you
need to keep a close eye on your database status, including replication health, as well as
operational events such as database mounts, moves, and failovers. In this recipe, you'll learn
how to use the Exchange Management Shell, along with some built-in PowerShell scripts to
proactively monitor your servers and databases configured for high availability.

How to do it...
To view status information about databases that have been configured with database copies,
use the Get-MailboxDatabaseCopyStatus cmdlet:

Get-MailboxDatabaseCopyStatus -Server mbx1 |
 select Name,Status,ContentIndexState

High Availability

298

In this example, we're viewing all of the database copies on the MBX1 server to determine the
health and status of the databases. The output from the previous command will look similar
to the following:

You can see from the above output that the MBX1 server is currently hosting active mailbox
databases which are reported with a status of Mounted. The passive database copies hosted
on this server are reported as Healthy.

How it works...
I��� n our previous example, we selected only a few of the available properties returned by
the Get-MailboxDatabaseCopyStatus cmdlet to get an idea of the health of the
databases. The default output for the Get-MailboxDatabaseCopyStatus cmdlet will
also provide details about the status of your mailbox database copies and show you the
CopyQueueLength and ReplayQueueLength values. Keeping an eye on this information
is critical to ensure that database replication is working properly.

If you need to retrieve more detailed information about the database copies on a server,
you can pipe this cmdlet to Format-List and review several properties that provide
details about copy and replay queue length, log generation and inspection, activation
status, and more:

Get-MailboxDatabaseCopyStatus -Server mbx1 | Format-List

To view the details of a particular database copy, use the -Identity parameter and specify
the database and server name in the format of <Database Name>\<Server Name>,
as shown in the following command::

Get-MailboxDatabaseCopyStatus -Identity DB01\MBX1

You can review the status of networks being used for log shipping and seeding using
the -ConnectionStatus switch parameter:

Get-MailboxDatabaseCopyStatus -Identity DB01\MBX2 `
-ConnectionStatus | Format-List

Chapter 9

299

When using this parameter, the IncomingLogCopyingNetwork and SeedingNetwork
properties returned in the output will provide the replication networks being used for
these �����������operations.

There's more…
Another way to get a quick overview of the replication status of your mailbox database copies
is to use the Test-ReplicationHealth cmdlet.

When you run this cmdlet, use the -Identity parameter to specify the mailbox server that
should be tested, as shown:

As you can see from the output, all of the cluster services and resources are tested. In
addition, several aspects of database copy health will be checked, including log replay,
log copy queues, and the status of the database and whether it is suspended, disconnected,
or initializing.

To proactively monitor replication health on an on-going basis, you can schedule the following
script to run every hour or so. It will send a message to a specified e-mail address with any
errors that are being reported:

param(
 $To,
 $From,
 $SMTPServer
)

$DAGs = Get-DatabaseAvailabilityGroup
$DAGs | Foreach-Object{
 $_.Servers | Foreach-Object {

High Availability

300

 $test = Test-ReplicationHealth –Identity $_.Name
 $errors = $test | Where-Object{$_.Error}
 if($errors) {
 $errors | Foreach-Object {
 Send-MailMessage -To $To `
 -From $From `
 -Subject " Replication Health Error" `
 -Body $_.Error `
 -SmtpServer $SMTPServer
 }
 }
 }
}

This script iterates though every DAG in your environment and every mailbox server that is a
member of a DAG. The Test-ReplicationHealth cmdlet is run for each server, and any
errors reported will be e-mailed to the specified recipient.

To use this script, save the previous code to a file such as ReplicationHealth.ps1.
When you schedule the script to run, call the script and provide values for the recipient
e-mail address, the sender address, and the SMTP server used to send the message:

c:\ReplicationHealth.ps1 -To administrator@contoso.com `
-From sysadmin@contoso.com `
-SMTPServer hc1.contoso.com

Remember, depending on where your script is running from, if you are using one of your hub
transport servers as the SMTP server, you may need to configure your receive connectors to
allow SMTP relay.

Understanding switchover and failover metrics
The CollectOverMetrics.ps1 script can be used to read the event logs from the mailbox
servers that are configured in a DAG, and it gathers information about database mounts,
moves, and failovers. This script is installed with Exchange 2010 and is located in the
$exscripts directory.

To run the script, switch to the $exscripts directory:

Set-Location $exscripts

Next, run the script and specify the name of the DAG you want to to receive a report for,
and the location where the report should be saved:

.\CollectOverMetrics.ps1 -DatabaseAvailabilityGroup DAG `
-ReportPath c:\Reports

Chapter 9

301

When running this command, you'll see output similar to the following:

As you can see, each server in the DAG will be processed and a CSV file will be generated
in the specified report path. At this point, you can read the CSV file into the shell using the
Import-CSV cmdlet:

Import-Csv c:\Reports\FailoverReport.DAG.2011_06_05_20_57_28.csv

You can then view details about switchover or failover events in each database, which will be
similar to the following:

You can limit the reports to specific databases when running the script and also specify a start
and end time so you can limit the information returned to meet your requirements.

Understanding Replication Metrics
The CollectReplicationMetrics.ps1 is also included in the $exscripts directory
on Exchange 2010 SP1 servers. This script can be used to collect data from performance
counters related to database replication, and it needs to be run for a period of time in order
for it to gather information. Similar to the CollectOverMetrics.ps1 script, you specify
a DAG name and a path used to save the report in CSV or HTML format. When running
CollectReplicationMetrics.ps1, you need to specify a duration which defines the
amount of time the script will run. You also need to specify a frequency interval for which
metrics will be collected.

High Availability

302

To run the script, switch to the $exscripts directory:

Set-Location $exscripts

Next, run the script and specify the DAG name, duration, frequency, and report path that
should be used:

.\CollectReplicationMetrics.ps1 -DagName DAG `
-Duration '01:00:00' `
-Frequency '00:01:00' `
-ReportPath c:\reports

Using the given parameter values, the script will run for one hour, and collect replication
metrics every minute. When the script completes, you can read the CSV files that were
generated into the shell using the Import-CSV cmdlet, or open them up in Excel
for review.

See also

Scheduling scripts to run at a later time in Chapter 2, Exchange Management Shell
Common Tasks



10
Exchange Security

In this chapter, we will cover the following:

Granting users full access permissions to mailboxes

Finding users with full access to mailboxes

Sending e-mail messages as another user or group

Working with Role Based Access Control (RBAC)

Creating a custom RBAC role for administrators

Creating a custom RBAC role for end users

Troubleshooting Role Based Access Control

Generating a certificate request

Installing certificates and enabling services

Importing certificates on multiple exchange servers

Introduction
When it comes to managing security in Exchange 2010, you have several options, depending
on the resources that you're dealing with. For example, you can allow multiple users to
open a mailbox by assigning them full access permissions on a mailbox object, but granting
administrators the ability to create recipient objects needs to be done through Role Based
Access Control (RBAC). Obviously, since the security for both of these components is handled
differently, we have unrelated sets of cmdlets that need to be used to get the job done, and
managing each of them through the shell will require a unique approach.





















Exchange Security

304

In this chapter, we'll take a look at several solutions implemented through the Exchange
Management Shell that address each of the components described previously, as well as
some additional techniques that can be used to improve your efficiency when dealing with
Exchange security.

Performing some basic steps
To work with the code samples in this chapter, follow these steps to launch the Exchange
Management Shell:

1.	 Log onto a workstation or server with the Exchange Management Tools installed

2.	 Open the Exchange Management Shell by clicking on Start | All Programs |
Exchange Server 2010

3.	 Click on the Exchange Management Shell shortcut

Granting users full access permissions
to mailboxes

One of the most common administrative tasks that Exchange administrators need to perform
is managing the access rights to one or more mailboxes. For example, you may have several
users that share access to an individual mailbox, or you may have administrators and help
desk staff that need to be able to open end users, mailboxes when troubleshooting a problem
or providing technical support. In this recipe, you'll learn how to assign the permissions
required to perform these tasks through the Exchange Management Shell.

How to do it...
To assign full access rights for an individual user to a specific mailbox, use the Add-
MailboxPermission cmdlet:

Add-MailboxPermission -Identity dsmith `
-User hlawson `
-AccessRights FullAccess

After running this command, the user hlawson will be able to open the mailbox belonging to
dsmith and read or modify the data within the mailbox.

Chapter 10

305

How it works...
When you assign full access rights to a mailbox, you may notice that the change does not take
effect immediately, and the user that has been granted permissions to a mailbox still cannot
access that resource. This is because the Information Store service uses a cached mailbox
configuration that by default is only refreshed every two hours. You can force the cache to
refresh by restarting the Information Store service on the mailbox server that is hosting the
active database where the mailbox resides. Obviously this is not something that should be
done during business hours on production servers since it will disrupt mailbox access for
end users.

Since we can grant permissions to a mailbox using the Add-MailboxPermission
cmdlet, you would be correct when assuming that this change can also be reversed,
if needed. To remove the permissions assigned in the previous example, use the
Remove-MailboxPermission cmdlet:

Remove-MailboxPermission -Identity dsmith `
-User hlawson `
-AccessRights FullAccess `
-Confirm:$false

In addition to assigning full access permissions to individual users, you can also assign this
right to a group:

Add-MailboxPermission -Identity dsmith `
-User "IT Help Desk" `
-AccessRights FullAccess

In this example, the IT Help Desk is a mail-enabled universal security group, and it has been
granted full access to the dsmith mailbox. All users who are members of this group will be
able to open the mailbox and access its contents through Outlook or OWA.

Of course, you may need to do this for multiple users, and doing so one mailbox at a time
is not very efficient. To make this a little easier, we can make use of a simple pipeline
command. For example, let's say that you want to grant full access rights to all mailboxes
in the organization:

Get-Mailbox -ResultSize Unlimited -RecipientTypeDetails UserMailbox |
 Add-MailboxPermission -User "IT Help Desk" `
 -AccessRights FullAccess

The given command retrieves all user mailboxes in the organization, and sends them down
the pipeline to the Add-MailboxPermission cmdlet, where full access rights are assigned
to the IT Help Desk group.

Exchange Security

306

There's more...
If you need to assign access permissions to all the mailboxes in your organization, you
probably should consider doing this at the database level, rather than on an individual
mailbox basis. In the previous example, we used a pipeline operation to apply the permissions
to all mailboxes with a one-liner. The limitation with this is that the command only sets the
permissions on the existing mailboxes; any new mailbox created afterwards will not inherit
these permissions. You can solve this problem by assigning the Receive-As extended right
to a user or group on a particular database.

For example, if all of our mailboxes are located in the DB01 database, we can allow a user
access to every mailbox in the database using the following command:

Add-ADPermission -Identity DB01 `
-User support `
-ExtendedRights Receive-As

After running this command, the support account will be able log on to every mailbox in the
DB01 database, as well as any mailboxes created in that database in the future.

Of course, you'll likely have more than one database in your organization. If you want
to apply this setting to every mailbox database in the organization, pipe the output from
the Get-MailboxDatabase �������������� cmdlet to the Add-ADPermission ����������������� cmdlet using the
appropriate parameters:

Get-MailboxDatabase |
Add-ADPermission –User support `
-ExtendedRights Receive-As

Once this command has been run, the user account support will be able connect to any
mailbox in the Exchange organization.

See also
Sending e-mail messages as another user or group

Finding users with full access to mailboxes
One of the issues with assigning full mailbox access to users and support personnel is that
things change over time. People change roles, move to other departments, or even leave the
organization. Keeping track of all of this and removing full access permissions when required
can be challenging in a fast-paced environment. This recipe will allow you to solve that issue
using the Exchange Management Shell to find out exactly who has full access permissions for
the mailboxes in your environment.



Chapter 10

307

How to do it...
To find all of the users or groups who have been assigned full access rights to a mailbox, use
the Get-MailboxPermission cmdlet:

Get-MailboxPermission -Identity administrator |
 Where-Object {$_.AccessRights -like "*FullAccess*"}

You can see here that we are limiting the results using a filter by piping the output to the
Where-Object cmdlet. Only the users with the FullAccess access rights will be returned.

How it works...
The previous command is useful for quickly viewing the permissions for a single mailbox while
working interactively in the shell. The first problem with this approach is that it also returns a
lot of information that we're probably not interested in. Consider the truncated output from our
previous command:

Notice that both the IT Help Desk and sysadmin have full access permissions to the
administrator mailbox. This is useful, because we know that someone assigned these
permissions to the mailbox since this is not something Exchange is going to do on its own.
What is not so useful is that we also see all of the built-in full access permissions that apply
to every mailbox, such as the NT AUTHORITY\SELF and other default permissions. To filter
out this information, we can use a more complex filter:

Get-MailboxPermission administrator |
 Where-Object {
 ($_.AccessRights -like "*FullAccess*") `
 -and ($_.User -notlike "NT AUTHORITY\SELF") `
 -and ($_.IsInherited -eq $false)
 }

Exchange Security

308

You can see that we're still filtering based on the AccessRights property, but now we're
excluding the SELF account and any other accounts that receive their permissions through
inheritance. The output now gives us something that's a little easier to work with when
reviewing a report:

This is an easy way to figure out which accounts have been assigned full access to a mailbox
via the Add-MailboxPermission ��� cmdlet. Keep in mind that users who have been assigned
these permissions at the database level receive their permissions through inheritance, so you
may need to adjust the filter to meet your specific needs.

There's more...
Finding out which users have full access rights to an individual mailbox can be useful for quick
troubleshooting, but chances are you're going to need to figure this out for all the mailboxes in
your organization. The following code will generate the output that provides this information:

foreach($mailbox in Get-Mailbox -ResultSize Unlimited) {
 Get-MailboxPermission $mailbox |
 Where-Object {
 ($_.AccessRights -like "*FullAccess*") `
 -and ($_.User -notlike "NT AUTHORITY\SELF") `
 -and ($_.IsInherited -eq $false)
 }
}

As you can see here, we use a foreach loop to process all of the mailboxes in the
organization. Inside the loop, we're using the same filter from the previous example to
determine which users have full access rights to each mailbox.

Sending e-mail messages as another
user or group

In some environments, it may be required to allow users to send e-mail messages from
a mailbox as if the owner of that mailbox had actually sent this message. This can be
accomplished by granting Send-As permissions to a user on a particular mailbox. In addition,
you can also allow a user to send e-mail messages that are sent using the identity of a
distribution group. This recipe explains how you can manage these permissions from the
Exchange Management Shell.

Chapter 10

309

How to do it...
To assign Send-As permissions to a mailbox, we use the Add-ADPermission �������cmdlet:

Add-ADPermission -Identity "Frank Howe" `
-User "Eric Cook" `
-ExtendedRights Send-As

After running the previous command, Eric Cook can send messages from Frank
Howe's mailbox.

How it works...
The Add-ADPermission cmdlet uses the -Identity parameter to classify the object to
which you will assign the permissions. Unlike many of the Exchange cmdlets, you cannot
use the alias of the mailbox when assigning a value to the -Identity parameter. You can
use the user's display name, as shown previously, as long as it is unique) or you can use the
distinguished name of the object. If you do not know a user's full name, you can use the
Get-Mailbox cmdlet and pipe the object to the Add-ADPermission cmdlet:

Get-Mailbox fhowe |
 Add-ADPermission -User ecook -ExtendedRights Send-As

You might find this syntax useful when assigning the Send-As right in bulk. For example, to
grant a user Send-As permission for all users in a particular OU, use the following syntax:

Get-Mailbox -OrganizationalUnit contoso.com/Sales |
 Add-ADPermission -User ecook -ExtendedRights Send-As

If you ever need to remove these settings, simply use the Remove-ADPermission cmdlet.
This command will remove the permissions assigned in the first example:

Remove-ADPermission -Identity "Frank Howe" `
-User ecook `
-ExtendedRights Send-As `
-Confirm:$false

There's more...
To assign Send-As permissions to a distribution group, the process is exactly the same as for
a mailbox. Use the Add-ADPermission cmdlet:

Add-ADPermission -Identity Marketing `
-ExtendedRights send-as `
-User ecook

Exchange Security

310

Y��� ou can also provide the identity of the group to the Add-ADPermission cmdlet via
a pipeline command, just as we saw earlier with the Get-Mailbox cmdlet. To do this
with a distribution group, use the Get-DistributionGroup cmdlet:

Get-DistributionGroup -ResultSize Unlimited |
 Add-ADPermission -User ecook -ExtendedRights Send-As

In the given example, the user ecook is given the Send-As right for all distribution groups
in the organization.

Working with Role Based Access
Control (RBAC)

The security model in Exchange 2010 has completely changed and no longer resembles the
way we used to manage security in previous versions of Exchange. Exchange 2010 introduces
the Role Based Access Control (RBAC) permissions model, which essentially determines which
cmdlets administrators and end users are allowed to use in order to change settings within
the system. This recipe will show you how to work with the predefined RBAC permissions in
Exchange 2010.

How to do it...
Let's say that you need to allow a member of your staff to manage the settings of the Exchange
servers in your organization. This administrator only needs to manage server settings, and
should not be allowed to perform any other tasks, such as recipient management.

Exchange 2010 provides a large set of predefined permissions that can be used to address
common tasks like this. In this case, we can use the Server Management role group that
allows administrators to manage the servers in the organization.

All we need to do to assign the permission is to add the required user account to this
role group:

Add-RoleGroupMember -Identity "Server Management" -Member bwelch

At this point, the user can use the Exchange Management Console or the Exchange
Management Shell to perform server-related management tasks.

Chapter 10

311

How it works...
In Exchange 2010, the graphical tools (the Exchange Management Console and the Exchange
Control Panel) use Exchange Management Shell cmdlets to make configuration changes,
create recipient objects, and more. Any change made within the organization is carried out by
one or more cmdlets, regardless of whether or not you are performing the task through the
GUI or the shell.

Exchange 2010 implements RBAC by grouping sets of cmdlets used to perform specific tasks
into management roles. Think of a management role simply as a list of cmdlets. For example,
one of the roles assigned via the Server Management role group is called Exchange
Servers. This role allows an assigned user the ability to use over 30 separate cmdlets
that are specifically related to managing servers, such as Get-ExchangeServer, Set-
ExchangeServer, and more.

There are a number of built-in role groups that you can use to delegate typical management
tasks to the administrators in your environment. You can view all of the built-in role groups
using the Get-RoleGroup cmdlet.

Role groups can assign many different management roles to a user. In the previous example,
we were working with the Server Management role group, which assigns a number of
different management roles to any user that is added to this group. To view a list of these
roles, we can use the Get-ManagementRoleAssignment cmdlet:

Get-ManagementRoleAssignment -RoleAssignee 'Server Management' |
 Select-Object Role

The output from this command is shown in the following screenshot:

Exchange Security

312

As you can see, each management role assigned through this role group is returned.
To determine which cmdlets are made available by each of these roles, we can run the
Get-ManagementRoleEntry cmdlet against each of them individually. An example of
this can be seen in the following screenshot:

Management role entries are listed in the format of <Role Name>\<Cmdlet Name>. The
Get-ManagementRoleEntry cmdlet can be used with wildcards, as shown with the
previous command. The output from the Get-ManagementRoleEntry command in the
previous example is truncated for readability, but, as you can see, there are several cmdlets
that are part of the Exchange Servers management role, which can be assigned via the
Server Management role group. If only this role is assigned to a user, they are given access
to these specific cmdlets and will not see other cmdlets, such as New-Mailbox, since that is
part of another management role.

To view all of the management roles that exist in the organization, use the
Get-ManagementRole cmdlet. You can then use the Get-ManagementRoleEntry
cmdlet to determine which cmdlets belong to that role.

There's more…
Many of the management roles installed with Exchange 2010 can be assigned to users by
adding them to a role group. Role groups are associated with management roles through
something called role assignments. Although the recommended method of assigning
permissions is through the use of role groups, you can still directly assign a management
role to a user with the New-ManagementRoleAssignment cmdlet:

New-ManagementRoleAssignment -Role ‘Mailbox Import Export’ `
-User administrator

In this example, the administrator is assigned the Mailbox Import Export role, which
is not associated with any of the built-in role groups. In this case, we can create a direct
assignment as shown previously, or use the –SecurityGroup parameter to assign this role
to an existing role group or a custom role group created with the New-RoleGroup cmdlet.

Chapter 10

313

RBAC is for end-users too
Everything we've looked at so far is RBAC for administrators, but end users need to be able
to run cmdlets too. Now, this doesn't mean that they need to fire up EMS and start executing
commands, but other things that they change will require the use of PowerShell cmdlets
behind the scenes.

A good example of this is the Exchange Control Panel (ECP). When a user logs into ECP, the
very first thing they see is the Account Information screen, which allows them to change
various settings that apply to their user account, such as their address, city, state, zip code,
and phone numbers. When users change this information in ECP, those changes are carried
out in the background with Exchange Management Shell cmdlets.

Here's the confusing part. End users are also assigned permissions from management
roles, but not through role groups or role assignments as they are applied to administrators.
Instead, end users are assigned their management roles through something called a role
assignment policy.

When you install Exchange, a single role assignment policy is created. Mailboxes that are
created or moved over to Exchange 2010 will use the Default Role Assignment Policy,
which gives users some basic rights, such as modifying their contact information, creating
Inbox rules through ECP, and more.

To determine which management roles are applied to the default role assignment policy, use
the following command:

Get-RoleAssignmentPolicy "Default Role Assignment Policy" |
 Format-List AssignedRoles

See also
Creating a custom RBAC role for administrators

Creating a custom RBAC role for end users

Troubleshooting Role Based Access Control

Creating a custom RBAC role for
administrators

Sometimes, the management roles that are installed by Exchange are not specific enough to
meet your needs. When you are faced with this issue, the solution is to create a custom RBAC
role. The process can be a little tricky, but the level of granular control that you can achieve
is quite astounding. This recipe will show you how to create a custom RBAC role that can be
assigned to administrators based on a very specific set of requirements.







Exchange Security

314

How to do it...
Let's say that your company has decided that a group of support personnel should be
responsible for the creation of all new Exchange recipients. You want to be very specific
about what type of access this group will be granted and you plan on implementing a
custom management role based on the following requirements:

Support personnel should be able to create Exchange recipients in the Employees OU
in the Active Directory

Support personnel should not be able to create Exchange recipients in any other OU
in the Active Directory

Support personnel should not be able to remove recipients in the Employees OU, or
any other OU in the Active Directory

Use the following steps to implement a custom RBAC role for the support group based on the
previous requirements:

1.	 First, we need to create a new custom management role:
New-ManagementRole -Name "Employee Recipient Creation" `
-Parent "Mail Recipient Creation"

2.	 Next, we need to modify the role so that the support staff cannot remove recipients
from the organization:
Get-ManagementRoleEntry "Employee Recipient Creation*" |
 Where-Object {$_.name -like "remove-*"} |
 Remove-ManagementRoleEntry -Confirm:$false

3.	 Now we need to scope this role to a specific location in Active Directory:
New-ManagementScope -Name Employees `
-RecipientRoot contoso.com/Employees `
-RecipientRestrictionFilter {
 (RecipientType -eq "UserMailbox") -or
 (RecipientType -eq "MailUser") -or
 (RecipientType -eq "MailContact")
}

4.	 Finally, we can create a custom role group and add the support staff as members:

New-RoleGroup -Name Support `
-Roles "Employee Recipient Creation" `
-CustomRecipientWriteScope Employees `
-Members bjacobs,dgreen,jgordon







Chapter 10

315

How it works...
The built-in management roles cannot be modified, so, when we want to customize an existing
role to meet our needs, we need to create a new custom role based on an existing parent role.
Since we know that the built-in Mail Recipient Creation role provides the cmdlets that
our support group will need, the first thing we must do is create a new role as a child of the
Mail Recipient Creation role called Employee Recipient Creation.

One of the requirements in our scenario was that support personnel should not be able
to remove recipients from the organization, so we edited our custom role to get rid of any
cmdlets that could be used to remove recipients from the Employees OU, or any other location
in the Active Directory. We used the Remove-ManagementRoleEntry cmdlet to delete all of
the Remove-* cmdlets from our custom role, and therefore this will prevent users assigned to
the custom role from removing recipient objects.

Next, we created a management scope that defines what the support group can access. We
used the New-ManagementScope cmdlet to create the Employee management scope. As
you can see from the command, we specified the recipient root as the Employees OU, per
the requirements in our scenario. When specifying a RecipientRoot, we are also required
to specify a RecipientRestrictionFilter which will be limited to the UserMailbox,
MailUser, and MailContact recipient types.

Finally, we created our management role group using the New-RoleGroup cmdlet. The
command used created a role group named support, which created a universal security
group in the Microsoft Exchange Security Groups OU in Active Directory. The role group was
created using the Employees management scope, limiting access to the Employees OU.
Also, notice that we added three users to the group using the -Members parameter. Doing
it this way automatically creates the management role assignment for us. You can view
management role assignments using the Get-ManagementRoleAssignment cmdlet.

There's more...
One of the things making custom RBAC role assignments so powerful is the use of
the management scope. When we created the Employees management scope, we
used the -RecipientRestrictionFilter parameter to limit the types of recipients
that would apply to that scope. When creating the role group, we specified this scope using
the -CustomRecipientWriteScope parameter. This locks the administrator down to only
writing to recipient objects that match the scope's filter and recipient root.

Keep in mind that scopes can be created with a ServerRestrictionFilter, and role
groups and role assignments can be configured to use these scopes by assigning them to the
CustomConfigWriteScope parameter. This can be useful when assigning custom RBAC
roles for administrators who will be working on servers, as opposed to recipients. For example,
instead of limiting your staff to working with recipient objects in a specific OU, you could create
a custom role that only applies to specific servers in your organization, such as ones that are
located in another city or Active Directory site.

Exchange Security

316

See also
Working with Role Based Access Control (RBAC)

Creating a custom RBAC role for end-users

Troubleshooting Role Based Access Control

Creating a custom RBAC role for end users
Like custom RBAC roles for administrators, you can also create custom roles that apply to your
end users. This may be useful when you need to allow them to modify additional configuration
settings that apply to their own accounts through the Exchange Control Panel (ECP). This
recipe will provide a real world example of how you might implement a custom RBAC role for
end users in your Exchange organization.

How to do it...
When users log on to ECP, they have the ability to modify their work phone number, their fax
number, their home phone number, and their mobile phone number, among other things. Let's
say that we need to limit this so that they can only update their home phone number, as their
work, fax, and mobile numbers will be managed by the administrators in your organization.

Since built-in roles cannot be modified, we need to create a custom role based on one of the
existing built-in roles. Use the following steps to implement a custom RBAC role for end users
based on the previous requirements:

1.	 The MyContactInformation role allows end users to modify their contact
information, so we'll create a new custom role based on this parent role:
New-ManagementRole -Name MyContactInfo `
-Parent MyContactInformation

2.	 The Set-User cmdlet is what executes in the background when users modify their
contact information. This is done using several parameters made available through
this cmdlet. We'll create an array that contains all of these parameters so we can
modify them later:
$parameters = Get-ManagementRoleEntry "MyContactInfo\Set-User" |
 Select-Object -ExpandProperty parameters







Chapter 10

317

3.	 Next, we'll create a new array that excludes the parameters that allow the end users
to change their business related phone numbers:
$parameters = $parameters |
 Where-Object{
 ($_ -ne "Phone") -and `
 ($_ -ne "MobilePhone") -and `
 ($_ -ne "Fax")
 }

4.	 Now we'll modify the Set-User cmdlet��� so that it only provides our custom list of
parameters:
Set-ManagementRoleEntry –Identity "MyContactInfo\Set-User" `
-Parameters $parameters

5.	 The MyContactInformation role is assigned to end users through the default role
assignment policy, so we need to remove that assignment from the policy:
Remove-ManagementRoleAssignment -Identity `
"MyContactInformation-Default Role Assignment Policy" `
-Confirm:$false

6.	 Finally, we can add our custom RBAC role to the default role assignment policy:

New-ManagementRoleAssignment -Role MyContactInfo `
-Policy "Default Role Assignment Policy"

When users log in to ECP, they'll only be able to modify their home phone numbers.

How it works...
As you can see from these steps, not only do management roles provide users with access to
cmdlets, but also to specific parameters available on those cmdlets. We're able to limit the
use of the Set-User cmdlet by removing access to the parameters that allow users to modify
properties of their account that we do not want them to change.

End user management roles are assigned through a role assignment policy. By default, only
one role assignment policy is created when you deploy Exchange 2010, called the Default
Role Assignment Policy. In the first example, we created a custom role based on the
existing MyContactInformation role, which allows end users to update their personal
contact details.

Exchange Security

318

One of the questions you may be asking at this point is how did we determine that the
MyContactInformation role was the one that needed to be modified? Well, we can
come to this conclusion by first checking which roles assign the Set-User cmdlet with
the -Phone parameter:

All of the built-in end user management roles are prefixed with "My", and, as you can see from
the previous output, the only two roles that apply here are listed at the bottom. Now we need
to check the default role assignment policy:

As you clearly see from the output, the only roles assigned to the end users that contain the
Set-User cmdlet are assigned by the MyContactInformation role, and we know that this
is the role that needs to be replaced with a custom role.

There's more...
If you don't want to modify the existing role assignment policy, you can create a new role
assignment policy that can be applied to individual users. This may be useful if you need to
test things without affecting other users. To do this, use the New-RoleAssignmentPolicy
cmdlet, and specify a name for the policy and all roles that should be applied via this role
assignment policy:

New-RoleAssignmentPolicy -Name MyCustomPolicy `
-Roles MyDistributionGroupMembership,
 MyBaseOptions,
 MyTextMessaging,
 MyVoiceMail,
 MyContactInfo

Chapter 10

319

Once this is complete, you can assign the role assignment policy to an individual user with the
Set-Mailbox cmdlet:

Set-Mailbox -Identity "Ramon Shaffer" `
-RoleAssignmentPolicy MyCustomPolicy

If you later decide that this new policy should be used for all of your end users, you'll need to
do two things. First, you'll need to set this role assignment policy as the default policy for new
mailboxes:

Set-RoleAssignmentPolicy MyCustomPolicy -IsDefault

Then you'll need to modify the existing users so that they'll be assigned the new role
assignment policy:

Get-Mailbox -ResultSize Unlimited |
 Set-Mailbox -RoleAssignmentPolicy MyCustomPolicy

See also
Working with Role Based Access Control (RBAC)

Creating a custom RBAC role for administrators

Troubleshooting Role Based Access Control

Troubleshooting Role Based Access Control
Troubleshooting permission issues can be challenging, especially if you've implemented
custom RBAC roles. In this recipe we'll take a look at some useful troubleshooting techniques
that can be used to troubleshoot issues related to RBAC.

How to do it...
There are several scenarios in which you can use the Exchange Management Shell cmdlets to
solve problems with RBAC, and there are a couple of cmdlets that you'll need to use to do this.
The following steps outline solutions for some common troubleshooting situations:

1.	 To determine which management roles have been assigned to a user, use the
following command syntax:
Get-ManagementRoleAssignment -GetEffectiveUsers |
 Where-Object {$_.EffectiveUserName -eq 'sysadmin'}







Exchange Security

320

2.	 To retrieve a list of users that have been assigned a specific management role, run
the following command and specify a role name such as the Legal Hold role, as
shown next:
Get-ManagementRoleAssignment -Role 'Legal Hold' -GetEffectiveUsers

3.	 You can determine if a user has write access to a recipient, server, or database. For
example, use the following syntax to determine if the sysadmin account has the
ability to modify the Dave Jones mailbox:

Get-ManagementRoleAssignment -WritableRecipient djones `
 -GetEffectiveUsers |
 Where-Object{$_.EffectiveUserName -eq 'sysadmin'}

After running the previous command, any roles that give the sysadmin write access to the
specified recipient will be returned.

How it works...
The Get-ManagementRoleAssignment cmdlet is a useful tool when it comes to
troubleshooting RBAC issues. If an administrator is unable to modify a recipient or make a
change against a server, it is very possible that the role assignment is either incorrect or it
might not exist at all. In each step shown previously, we used the -GetEffectiveUsers
parameter with this cmdlet, which provides a quick way to find out if certain roles have
been assigned to a specific user.

In addition to the -WritableRecipient parameter, you have the option of using either the
-WritableServer or -WritableDatabase parameters. These can be used to determine
if an administrator has write access to a server or database object. This can be useful in
determining if a role assignment has not been made for an administrator that should be
able to modify one of these objects. You can also use this as a method of determining if
some administrators have been granted too much control in your environment.

There's more...
If someone is not receiving the permissions you think they should, they may not be a
member of the required role group. The steps outlined previously should help you make this
determination, but it may be as simple as making sure the administrator has been added to
the right role group that will assign the appropriate roles. You can retrieve the members of a
role group in the shell using the Get-RoleGroupMember cmdlet. This command will return
all members of the Organization Management role group:

Get-RoleGroup 'Organization Management' | Get-RoleGroupMember

Chapter 10

321

You can also use these cmdlets to generate a report of all the members of each role group.
For example, this will display the member of each role group in the shell:

foreach($rg in Get-RoleGroup) {
 Get-RoleGroupMember $rg |
 Select-Object Name,@{n="RoleGroup";e={$rg.Name}}
}

See also
Working with Role Based Access Control (RBAC)

Creating a custom RBAC role for administrators

Creating a custom RBAC role for end users

Generating a certificate request
In order to create a new certificate, you need to generate a certificate request using
the either the Exchange Management Console, or through the shell using the New-
ExchangeCertificate cmdlet. Once you have a certificate request generated, you can
obtain a certificate from an internal Certificate Authority or a third party external Certificate
Authority. In this recipe, we'll take a look at the process of generating a certificate request
from the Exchange Management Shell.

How to do it...
1.	 In this example, we'll generate a request using two Subject Alternative Names

(SANs). This will allow us to support multiple URLs with one certificate:
$cert = New-ExchangeCertificate -GenerateRequest `
-SubjectName "c=US, o=Contoso, cn=mail.contoso.com" `
-DomainName autodiscover.contoso.com,mail.contoso.com `
-PrivateKeyExportable $true

2.	 After the request has been generated, we can export it to a file that can be used to
submit a request to a certificate authority:

$cert | Out-File c:\cert_request.txt







Exchange Security

322

How it works...
When you install Exchange 2010, self-signed certificates are automatically generated and
installed to encrypt data passed between hub transport servers, and between clients and
CAS Servers. Since these self-signed certificates will not be trusted by your client machines
when accessing the CAS role, it is recommended that you replace these certificates with new
certificates issued from a trusted certificate authority. If you do not replace these certificates,
clients such as Outlook 2010 and Outlook Web App users will receive certificate warnings
informing them that the certificates are not issued from a trusted source. This can create
some confusion for end-users and could generate calls to your help desk.

You can get around these certificate warnings by installing the server's self-signed
certificates in the Trusted Root Certificate Authority store on the client machines, but
even in a small environment this can become an administrative headache. That's why
it is recommended to replace the self-signed certificates before placing your Exchange
2010 servers into production.

When using the New-ExchangeCertificate cmdlet to generate a certificate request, you
can use the -SubjectName parameter to specify the common name of the certificate. This
value is set using an X.500 distinguished name, and, as you saw in step two, the common
name for the certificate was set to mail.contoso.com. If you do not provide a value for the
-SubjectName parameter, the hostname of the server where the cmdlet is run to generate
the request will be used.

The -DomainName parameter is used to define one or more FQDNs that will be listed in the
Subject Alternative Names field of the certificate. This allows you to generate certificates that
support multiple FQDNs that can be installed on multiple Exchange servers. For example,
you may have several CAS servers in your environment, and, instead of generating multiple
certificates for each one, you can simply add Subject Alternative Names to cover all of the
possible FQDNs that users will need to access, and then install a single certificate on multiple
CAS servers.

The New-ExchangeCertificate cmdlet outputs a certificate request in Base64 format.
In the previous example, we saved the output of the command in a variable so we could
simply output the data to a text file. Once the request is generated, you'll need to supply the
data from this request to the issuing Certificate Authority (CA). This is usually done through
a web form hosted by the CA where you submit the certificate request. You can simply open
the request file in Notepad, copy the data and paste it into the submission form on the CA
website. Once the information is submitted, the CA will generate a certificate that can be
downloaded and installed on your servers. See the next recipe in this chapter titled Installing
Certificates and Enabling Services for steps on how to complete this process.

Chapter 10

323

There's more...
It's recommended as a best practice that you limit the number of Subject Alternative Names
on your certificates, so your name space design should be completely defined before creating
your certificates. For example, let's say that you've got four CAS servers in a CAS array and
all of your servers are located in a single Active Directory site. Even though you have multiple
servers, you only need to include the FQDNs that your end users will use to access these
servers. If you configure your CAS URLs appropriately, there's no requirement to include the
server's FQDN or hostname as a Subject Alternative Name in this scenario.

If you plan on installing a certificate on multiple servers, make sure that you mark
the certificate as exportable by setting the -��������������������PrivateKeyExportable parameter
to $true. This will allow you to export the certificate and install it on the remaining
servers in your environment.

See also
Installing certificates and enabled services

Importing certificates on multiple exchange servers

Installing certificates and enabling services
After you've generated a certificate request and have obtained a certificate from a
certificate authority, you will need to install the certificate on your server using the
Import-ExchangeCertificate cmdlet. This recipe will show you how to install
certificates issued from a certificate authority and how to assign services to the
certificate using the Exchange Management Shell.

How to do it...
1.	 Let's say that you have requested and downloaded a certificate from an Active

Directory Enterprise CA and downloaded the file to the root of the C:\ drive. First,
read the certificate data into a variable in the shell:
$certificate = Get-Content -Path c:\certnew.cer `
-Encoding Byte `
-ReadCount 0

2.	 Next, we can import the certificate and complete the pending request:
Import-ExchangeCertificate -FileData $certificate





Exchange Security

324

3.	 Now that the certificate is installed, we can enable it for specific services:

Get-ExchangeCertificate -DomainName mail.contoso.com |
 Enable-ExchangeCertificate -Services IIS,SMTP

At this point, the certificate has been installed and will now be used for Client Access services,
such as Outlook Web App and the Exchange Control Panel, and also for secure SMTP used by
the Hub Transport role.

How it works...
Since the Exchange Management Shell uses remote PowerShell sessions, the Import-
ExchangeCertificate cmdlet cannot use a local file path to import a certificate file. This
is because the cmdlet could be running on any server within your organization and a local
file path may not exist. This is why we need to use the -FileData parameter to provide
the actual data of the certificate. In the first step, we read the certificate data into a byte
array using the Get-Content cmdlet, which is a PowerShell core cmdlet, and is not run
through the remote shell on the Exchange server. The content of the certificate is stored as
a byte array in the $certificate variable, and we can assign this data to the -FileData
parameter of the Import-ExchangeCertificate cmdlet, which allows us to import the
certificate to any Exchange server through the remote shell.

Use the -Server parameter with the Get-ExchangeCertificate cmdlet to
target a specific server. Otherwise, the cmdlet will run against the server
you are currently connected to.

There's more...
As shown previously, once the certificate has been imported, it needs to have one or more
services assigned before it can be used by an Exchange server. After importing a certificate,
you can use the Get-ExchangeCertificate cmdlet to view it:

You can see that we have two certificates installed. When assigning services to a
certificate, we need to be specific about which one needs to be modified. We can
do this either by specifying the thumbprint of the certificate when running the
Enable-ExchangeCertificate cmdlet, or by using the method shown previously,
where we used the Get-ExchangeCertificate cmdlet with the -DomainName
parameter to retrieve a ��� particular certificate, and send it down the pipeline to the
Enable-ExchangeCertificate �������cmdlet.

Chapter 10

325

Let's say that we're connected to a server named EXCH01. We've imported a certificate, and
now we need to view all of the installed certificates so we can figure out which one needs
to be enabled and assigned the appropriate services. We can do this by viewing a few key
properties of each certificate, using the Get-ExchangeCertificate cmdlet:

Here you can see that we've retrieved the Thumbprint, CertificateDomains, and
assigned Services for each installed Exchange certificate in list format. We've also selected
the IsSelfSigned property that will tell us whether or not the certificate was issued from a
certificate authority, or installed by Exchange as a self-signed certificate. It's pretty clear from
the output that the second certificate in the list is the one that was issued from a certificate
authority, since the IsSelfSigned property is set to $false. At this point, we can use the
certificate thumbprint to assign services to this certificate:

Enable-ExchangeCertificate `
-Thumbprint CF61E66A6BE1A286471B30DFCEA1126F6BC7DCBB `
-Services IIS,SMTP

If you have multiple certificates installed, especially with duplicate domain names, use
the method shown here to assign services based on the certificate thumbprint. Otherwise,
you may find it easier to enable certificates based on the domain name, as shown in the
first example.

See also
Importing certificates on multiple exchange servers

Generating a certificate request





Exchange Security

326

Importing certificates on multiple
exchange servers

If your environment contains multiple Exchange servers, you'll likely want to use the same
certificate on multiple servers. If you have a large amount of servers, importing certificates
one at a time, even with the Exchange Management Shell, could end up being quite
time-consuming. This recipe will provide a method for automating this process using the
Exchange Management Shell.

How to do it...
Once you've gone through the process of generating a certificate request, installing a
certificate, and assigning the services on one server, you can export that certificate and
deploy it to your remaining servers. The following steps outline the process of exporting
an installed certificate on a server named CAS1 and importing that certificate on a server
named CAS2:

1.	 In order to export a certificate, we'll first need to assign a password to secure the
private key that will be exported with the certificate:
$password = ConvertTo-SecureString -String P@ssword `
-AsPlainText `
-Force

2.	 Now we can export the certificate data with the Export-ExchangeCertificate
cmdlet. We'll retrieve the certificate from the CAS1 server and export the data to a
binary-encoded value stored in a variable:
$cert = Get-ExchangeCertificate `
 -DomainName mail.contoso.com -Server cas1 |
 Export-ExchangeCertificate –BinaryEncoded:$true `
 -Password $password

3.	 Next, we can import the certificate file data into the CAS2 server as a certificate:
Import-ExchangeCertificate -FileData $cert.FileData `
-Password $password `
-Server cas2

4.	 Finally, we can assign the services to the certificate that was recently imported on the
CAS2 server:

Get-ExchangeCertificate `
 -DomainName mail.contoso.com -Server cas2 |
 Enable-ExchangeCertificate -Services IIS,SMTP

Chapter 10

327

How it works...
As you can see from these steps, exporting a certificate from one server and importing it on
an additional server is rather complex, and would be even more so if you want to do this on
something like 5 or 10 servers. If this is a common task that needs to be done frequently,
then it makes sense to automate it even further. The following PowerShell function will
automate the process of exporting a certificate from a source server and importing the
certificate on one or more target servers:

function Deploy-ExchangeCertificate {
 param(
 $SourceServer,
 $Thumbprint,
 $TargetServer,
 $Password,
 $Services
)

 $password = ConvertTo-SecureString -String $Password `
 -AsPlainText `
 -Force

 $cert = Get-ExchangeCertificate -Thumbprint $Thumbprint `
 -Server $SourceServer |
 Export-ExchangeCertificate –BinaryEncoded:$true `
 -Password $Password

 foreach($Server in $TargetServer) {
 Import-ExchangeCertificate -FileData $cert.FileData `
 -Password $Password `
 -Server $Server

 Enable-ExchangeCertificate -Thumbprint $Thumbprint `
 -Server $Server `
 -Services $Services `
 -Confirm:$false `
 -Force
 }

This function allows you to specify a certificate that has been properly set up and installed on
a source server, and then deploy that certificate and enable a specified list of services on one
or more servers. The function accepts a number of parameters and requires that you specify
the thumbprint of the certificate that you want to deploy.

Exchange Security

328

Let's say that you've got a Client Access server array that contains six CAS servers. You've
gone through the certificate generation process, obtained the certificate from a trusted
certificate authority, and installed the certificate on the first CAS server. Now you can add
the Deploy-ExchangeCertificate function to your PowerShell session and deploy the
certificate to the remaining servers in the array.

First, you need to determine the thumbprint on the source server you want to deploy, and
you can do this using the Get-ExchangeCertificate cmdlet. The next step is to run the
function with the following syntax:

Deploy-ExchangeCertificate -SourceServer cas1 `
-TargetServer cas2,cas3,cas4,cas5,cas6 `
-Thumbprint DE4382508E325D27D2D48033509EE5F9C621A07B `
-Services IIS,SMTP `
-Password P@ssw0rd

The function will export the certificate on the CAS1 server with the thumbprint value assigned
to the -Thumbprint parameter. The value assigned to the -Password parameter will be
used to secure the private key when the certificate data is exported. The certificate will then
be installed on the five remaining CAS servers in the array, and will have the IIS and SMTP
services assigned.

There's more...
You may want to export your certificates to an external file that can be used to import the
certificate on another server at a later time. For example:

$password = ConvertTo-SecureString `
-String P@ssword `
-AsPlainText `
-Force

$file = Get-ExchangeCertificate `
-Thumbprint DE4382508E325D27D2D48033509EE5F9C621A07B –Server cas1 |
 Export-ExchangeCertificate –BinaryEncoded:$true -Password $password

Set-Content -Path c:\cert.pfx -Value $file.FileData -Encoding Byte

This is similar to the previous examples, except this time we're exporting the certificate data to
an external .pfx file.

You can use the following commands to import this certificate at a later time on another
server in your environment:

$password = ConvertTo-SecureString `
-String P@ssword `

Chapter 10

329

-AsPlainText `
-Force

$filedata = Get-Content -Path c:\cert.pfx -Encoding Byte -ReadCount 0

Import-ExchangeCertificate -FileData ([Byte[]]$filedata) `
-Password $password `
-Server cas2

This will import the certificate from the external .pfx file to the CAS2 server. Once this is
complete, you can use the Enable-ExchangeCertificate cmdlet to assign the required
services to the certificate.

See also
Generating a certificate request

Installing certificates and enabling services





11
Compliance and Audit

Logging

In this chapter, we will cover the following:

Managing archive mailboxes

Configuring archive mailbox quotas

Creating retention tags and policies

Applying retention policies to mailboxes

Placing mailboxes on retention hold

Performing a discovery search

Placing mailboxes on litigation hold

Enabling mailbox audit logging

Generating mailbox audit log reports

Configuring Administrator Audit Logging

Searching administrator audit logs

Introduction
One of the biggest changes introduced in Exchange 2010 was the inclusion of several new
compliance and audit logging features. Over the years, many organizations have relied on
third-party products for archiving and retaining of e-mail messages for legal protection and
regulatory compliance. Fortunately, this function is now built into the product, along with
some very powerful auditing capabilities that can track which users are accessing and
modifying items in mailboxes and which administrators are making changes throughout
the Exchange organization.























Compliance and Audit Logging

332

In this chapter, we'll look at some of the most common tasks related to compliance and
audit logging that can be automated through the Exchange Management Shell. This includes
managing retention polices, performing legal searches, and restoring items from mailboxes,
along with generating detailed reports based on mailbox and administrator audit logs.

Performing some basic steps
To work with the code samples in this chapter, follow these steps to launch the Exchange
Management Shell:

1.	 Log on to a workstation or server with the Exchange Management Tools installed

2.	 Open the Exchange Management Shell by clicking on Start | All Programs |
Exchange Server 2010

3.	 Click on the Exchange Management Shell shortcut

Managing archive mailboxes
Starting with Exchange 2010, a new personal storage concept was introduced, called an
archive mailbox. The idea is that you can give one or more users a secondary mailbox that
can be accessed from anywhere, just like their regular mailbox, and it can be used to store
older mailbox data, eliminating the need for a PST file. With the release of Exchange 2010
SP1, archive mailboxes can now be located on a database separate from the primary mailbox,
allowing administrators to put low-priority, archived mailbox data on an inexpensive lower tier
of storage. In this chapter, we'll look at how you can manage archive mailboxes for your users
through the Exchange Management Shell.

How to do it...
To create an archive mailbox for an existing mailbox, use the Enable-Mailbox cmdlet, as
shown in the following example:

Enable-Mailbox –Identity administrator -Archive

How it works...
When you create an archive mailbox for a user, they can access their personal archive when
connecting to Outlook 2007 or 2010, or the Outlook Web App. In the previous example, we
created an archive mailbox for an existing user. Using a one-liner, we can easily do this in
bulk for multiple users. For example, to create an archive mailbox for all users in the DB01
database, you could use the following command:

Get-Mailbox -Database DB01 |
 Enable-Mailbox -Archive -ArchiveDatabase DB02

Chapter 11

333

As you can see, we're making use of the pipeline here to perform a bulk operation on all of the
mailboxes in the DB01 database. The result of the Get-Mailbox command is piped to the
Enable-Mailbox cmdlet. The -Archive switch parameter tells the cmdlet that we know
this user already has a mailbox, and we just want to create a personal archive for the user. In
addition, we've specified the -ArchiveDatabase parameter so that the archives for each
mailbox will not be created in the same database as the primary mailbox, but, instead, in the
DB02 database.

In addition to creating an archive for an existing user, we can enable a personal archive for
a mailbox as it is created. For example, the following commands will create a mailbox and a
personal archive for a new user:

$password = ConvertTo-SecureString P@ssword -AsPlainText -Force

New-Mailbox -Name "Dave Smith" -alias dsmith `
-UserPrincipalName dave@contoso.com `
-Database DB01 `
-Archive `
-ArchiveDatabase DB02 `
-Password $password

In this command, we've created the primary mailbox in the DB01 database, and, again, we've
made use of the -Archive and -ArchiveDatabase parameters so that the archive is
created in the DB02 database.

There's more...
If you need to turn off an archive mailbox for a user, you can use the Disable-Mailbox
cmdlet with the -Archive switch parameter. The command to disable the personal archive
for Dave Smith is as simple as this:

Disable-Mailbox -Identity dsmith -Archive –Confirm:$false

When you run this command, the archive mailbox for the user goes into a disconnected
state, but the user can still access their primary mailbox. The disconnected archive mailbox
is retained in the database until the deleted mailbox retention period for the database
has elapsed.

See also

Adding, modifying, and removing mailboxes in Chapter 3, Managing Recipients

Configuring archive mailbox quotas





Compliance and Audit Logging

334

Configuring archive mailbox quotas
As you enable archive mailboxes for end users and set up retention policies, you may find that
the default limitations configured for archive mailboxes do not meet your needs. In this recipe,
you'll learn how to modify archive mailbox quotas using the Exchange Management Shell.

How to do it...
1.	 To modify the archive quota settings for a single mailbox, use the Set-Mailbox

cmdlet:
Set-Mailbox dsmith -ArchiveQuota 10gb -ArchiveWarningQuota 8gb

2.	 To do this in bulk, use the Get-Mailbox cmdlet to retrieve the mailboxes that need
to be updated and pipe the results to the Set-Mailbox cmdlet. For example, this
one-liner would update all users in the DB01 database:
Get-Mailbox -Database DB01 |
 Where-Object {$_.ArchiveName} |
 Set-Mailbox -ArchiveQuota 10gb -ArchiveWarningQuota 8gb

As you can see here, we're filtering the results of the Get-Mailbox cmdlet based on the
ArchiveName property. If this property is defined, then we know that the user has an archive
mailbox enabled.

How it works...
There are two settings that can be used to configure quotas for archive mailboxes:

ArchiveWarningQuota: When an archive mailbox exceeds the size set for the
archive warning quota, a warning message is sent to the mailbox owner and an event
is logged on the mailbox server that hosts the archive mailbox

ArchiveQuota: When an archive mailbox exceeds the size set for the archive quota,
a warning message is sent to the mailbox owner and items can no longer be moved
to the archive mailbox

In Exchange 2010 SP1, archive mailboxes are configured with default limitations. The archive
warning quota is set to 40 GB and the archive quota is set to 50 GB. These settings can only
be applied on a per-mailbox basis, unlike regular mailboxes, which can receive their limits
from the parent database.

If you implement custom archive quotas, you may need to run a script on a regular basis in
order to update any new archives that have been recently created. For example, let's say that
you've decided that archive mailboxes should be no larger than 5 GB. You could run a script
regularly, either manually or through a scheduled task, that will update any new users that
have been added to the organization:





Chapter 11

335

Get-Mailbox –ResultSize Unlimited |
 Where-Object {$_.ArchiveName -and $_.ArchiveQuota -ge 50gb} |
 Set-Mailbox -ArchiveQuota 5gb -ArchiveWarningQuota 4gb

Again, we're using the Where-Object cmdlet to filter on the ArchiveName property, but
we've added another filter to check if the ArchiveQuota is greater than or equal to 50 GB.
If so, we send those mailboxes down the pipeline to the Set-Mailbox cmdlet
and modify the archive quota settings.

There's more...
You can view the current settings for these values using the Get-Mailbox cmdlet. For
example, to check the values for a specific user, run the following command:

This uses a wildcard to display all the properties for a mailbox that contain the word archive.
This will provide the quota settings, as well as the database location for the archive mailbox,
which may be different than that of the user's primary mailbox.

See also
Managing archive mailboxes

Creating retention tags and policies
Retention policies are the recommended method for implementing messaging records
management in Exchange 2010. Retention policies use retention tags to apply settings to
mailbox folders and individual items. Retention tags are configured with a retention action
that can be taken when an item reaches its retention age limit. In this recipe, you'll learn
how to create retention tags and policies in the Exchange Management Shell.



Compliance and Audit Logging

336

How to do it.
There are three types of retention tags that can be used to apply retention settings to a
mailbox through a retention policy. The following steps outline the process of creating custom
retention tags based on these types and assigning them to a new retention policy:

1.	 The following command will create a retention policy tag for the Inbox folder
specifying that items older than 90 days be deleted permanently:
New-RetentionPolicyTag -Name AllUsers-Inbox `
-Type Inbox `
-Comment "Items older than 90 days are deleted" `
-RetentionEnabled $true `
-AgeLimitForRetention 90 `
-RetentionAction PermanentlyDelete

2.	 In addition, we can create a default policy tag for the entire mailbox. To do this, we
need to set the type to All. A default retention policy tag of type All will apply to any
item that does not have a retention tag applied:
New-RetentionPolicyTag -Name AllUsers-Default `
-Type All `
-Comment "Items older than 120 days are permanently deleted" `
-RetentionEnabled $true `
-AgeLimitForRetention 120 `
-RetentionAction PermanentlyDelete

3.	 We can also create personal tags that can be used by end users for personal items:
New-RetentionPolicyTag -Name Critical `
-Type Personal `
-Comment "Use this tag for all critical items" `
-RetentionEnabled $true `
-AgeLimitForRetention 730 `
-RetentionAction DeleteAndAllowRecovery

4.	 After creating these tags, we can create a new retention policy and add the
previously-created tags:

New-RetentionPolicy –Name AllUsers `
-RetentionPolicyTagLinks AllUsers-Inbox,AllUsers-Default,Critical

At this point, the AllUsers retention policy can be assigned to one or more mailboxes, and
the settings defined by the retention tags will be applied.

Chapter 11

337

How it works…
In the RTM version of Exchange 2010, we had to completely manage retention tags and
policies using the shell. Starting with Exchange 2010 SP1, retention policies and tags can be
managed from the Exchange Management Console, and you may find it much easier to deal
with policies and tags through the GUI. In either case, the cmdlets used to create and manage
tags and policies can still be used if automation or command line administration is required.

As we saw from the previous example, there are three types of retention tag that can be used
to apply retention settings to mailbox folders and messages. These types are outlined in detail
as follows:

Retention Policy Tags: These are used to apply settings to default folders such as
Inbox and Sent Items.

Default Policy Tags: These apply to any item that does not have a retention tag set.
A retention policy can contain only one default policy tag.

Personal Tags: These can be applied by users who access their mailboxes from
Outlook 2010 or the Outlook Web App. Personal tags can be applied to custom
folders and individual items.

When you create one or more retention tags to be applied to a policy, you'll need to define the
type using one of these settings. Additionally, retention tags have actions that will be used
when the age limit for retention is met. The available retention actions are outlined as follows:

DeleteAndAllowRecovery: This action will perform a hard delete, sending the
message to the dumpster. The user will be able to recover the item using the Recover
Deleted Items dialog box in Outlook 2010 or the Outlook Web App.

MarkAsPastRetentionLimit: This action will mark an item as past the retention
limit, displaying the message using strikethrough text in Outlook 2007 or 2010 or the
Outlook Web App.

MoveToArchive: This action moves the message to the user's archive mailbox.

MoveToDeletedItems: This action will move the message to the Deleted
Items folder.

PermanentlyDelete: This action will permanently delete the message. It cannot
be restored using the Recover Deleted Items dialog box.

When working with retention tags and policies, there are a few things you should keep in
mind. First, mailboxes can only be assigned one policy at a time, and you cannot have multiple
retention policy tags for a single default folder in the same retention policy. For example, you
can't have two retention policy tags for the Inbox default folder in the same retention policy.

















Compliance and Audit Logging

338

Retention Policies can contain one default policy tag of type All.You can assign multiple
personal tags to a policy, but be careful not to go overboard as this could be confusing for
users. Also, keep in mind that retention tags are not applied to mailboxes until they have
been linked to an enabled retention policy and the managed folder assistant has run against
each mailbox.

There's more…
You can create a retention policy without initially linking any retention tags to it. You can also
go back and add retention tags to a policy later if needed. If you need to add or remove tags
to an existing policy, you can use the Set-RetentionPolicy cmdlet. For example, to add
the Sales-Inbox and Sales-DeletedItems retention policy tag to the Sales-Users
retention policy, your command would look like this:

Set-RetentionPolicy -Identity Sales-Users `
-RetentionPolicyTagLinks Sales-Inbox,Sales-DeletedItems

The thing to note here is that this command will overwrite the policy's current tag list.
If you need to add tags and keep the policy's existing tags, you will need to use special
syntax. For example:

$Tags = (Get-RetentionPolicy Sales-Users).RetentionPolicyTagLinks
$NewTags = Get-RetentionPolicyTag Sales-Critical
$Tags += $NewTags
Set-RetentionPolicy Sales-Users -RetentionPolicyTagLinks $Tags

What we're doing here is saving the existing tag list applied to the Sales-Users policy in
the $Tags variable. We then add a new tag to the list and store that result in the $NewTags
variable. Finally, we add the $NewTags to the existing $Tags collection and assign that back
to the retention policy when running the Set-RetentionPolicy cmdlet.

Understanding default tags
When you install Exchange 2010, several retention tags are created by default. These may
be specific enough to meet your needs, so you might want to take a look at these before
creating any custom tags. To view the current list of available retention tags, use the
Get-RetentionPolicyTag cmdlet:

Chapter 11

339

In addition, Exchange automatically creates retention policies for use with personal archives
and arbitration mailboxes. There are two retention policies created by default:

1.	 Default Archive Policy: This policy can be applied to mailboxes that contain a
personal archive and it provides a built-in set of retention tags.

2.	 ArbitrationMailbox: This policy is applied by default to the system mailbox. It
contains two system tags by default.

Some of the retention tags used within these policies are considered system tags, and, by
default, are not visible when running the Get-RetentionPolicyTag cmdlet. You can view
the tags included with these policies by using the –IncludeSystemTags switch parameter:

Get-RetentionPolicyTag –IncludeSystemTags

See also
Applying retention policies to mailboxes

Applying retention policies to mailboxes
Retention policies are not automatically applied to end user mailboxes and must be set
manually using either the Exchange Management Console or the Exchange Management
Shell. In this recipe, you'll learn how to apply retention policies to mailboxes from the
command line, which will be useful when performing a retention policy assignment on
a large number of mailboxes, or on a regular basis as new mailboxes are created.

How to do it...
1.	 To apply a retention policy to a mailbox, you use the Set-Mailbox cmdlet, specifying

the retention policy name using the -RetentionPolicy parameter. For example, to
do this for one user, the command would look something like this:
Set-Mailbox dsmith -RetentionPolicy AllUsers

2.	 In addition, you may need to perform this operation on all mailboxes at once. In this
case, you could use the following syntax:
Get-Mailbox -RecipientTypeDetails UserMailbox |
 Set-Mailbox -RetentionPolicy AllUsers



Compliance and Audit Logging

340

How it works...
Retention policies are set on a per-mailbox basis. Unfortunately, there is no default setting
that allows you to apply retention policies for new mailboxes. This can become a problem
if your organization regularly creates new mailboxes and administrators forget to assign a
retention policy during the provisioning process.

To get around this, you can schedule the following command to run on a regular basis:

Get-Mailbox -RecipientTypeDetails UserMailbox |
 Where-Object {$_.RetentionPolicy -eq $null} |
 Set-Mailbox -RetentionPolicy AllUsers

This one-liner will retrieve all of the user mailboxes in the organization that do not have a
retention policy setting. This is done by piping the results of the Get-Mailbox cmdlet to a
filter that checks that the RetentionPolicy property is $null. Any mailboxes retrieved
based on this filter will be piped down to the Set-Mailbox cmdlet where a retention policy
will be applied.

Another option would be to set the retention policy as mailboxes are created using the
scripting agent. See the recipe in Chapter 2, Exchange Management Shell Common Tasks
titled Automating tasks with the Scripting Agent for more details.

There's more...
Once a retention policy is set on a mailbox, the retention settings defined by the policy's
retention tags will be applied to each mailbox by the Managed Folder Assistant. The Managed
Folder Assistant is a service that runs on each mailbox server, and, by default, it is set to
process every mailbox on the server within one day.

The Managed Folder Assistant can be a resource-intensive task, especially when processing
new mailboxes for the first time. With that said, it is possible to force the Managed Folder
Assistant to run immediately, but keep in mind that it could impact the performance of the
mailbox server.

To force the Managed Folder Assistant to process a particular mailbox, use the Start-
ManagedFolderAssistant cmdlet:

Start-ManagedFolderAssistant -Identity dsmith@contoso.com

To force the Managed Folder Assistant to run against all mailboxes in a particular database,
use the following syntax:

Get-Mailbox -Database DB01 | Start-ManagedFolderAssistant

Chapter 11

341

See also
Placing mailboxes on retention hold

Scheduling scripts to run at a later time in Chapter 2, Exchange Management Shell
Common Tasks

Automating tasks with the scripting agent in Chapter 2, Exchange Management Shell
Common Tasks

Placing mailboxes on retention hold
When a user goes on vacation or will be out of the office for an extended period of time, you
may need to suspend the processing of the retention policy applied to their mailbox. This
recipe will show you how to use the Exchange Management Shell to place mailboxes on
retention hold, as well as remove retention hold and discover which mailboxes are currently
configured for retention hold.

How to do it...
1.	 To place a mailbox on retention hold, use the Set-Mailbox cmdlet:

Set-Mailbox -Identity dsmith -RetentionHoldEnabled $true

2.	 To remove the retention hold setting from the mailbox, use the same command,
but set the -RetentionHoldEnabled parameter to $false:
Set-Mailbox -Identity dsmith -RetentionHoldEnabled $false

How it works...
When retention hold is enabled for a mailbox, the user who owns that mailbox can still open
their mailbox, send and receive messages, delete items, and so on. The only difference is that
any items that are past the retention period for any assigned tags will not be processed.

You can include a retention comment when placing a user on retention hold. Users
running Outlook 2010 will see retention comments in the backstage area of Outlook.
To add a comment, use the same command used previously, but supply a message
using the -RetentionComment parameter:

Set-Mailbox -Identity dsmith `
-RetentionHoldEnabled $true `
–RetentionComment “You are currently on retention hold”







Compliance and Audit Logging

342

Since the retention hold setting is enabled using the Set-Mailbox cmdlet, you can easily
apply this setting to many mailboxes at once with a simple one-liner. Let's say that you need to
do this for all users in the Marketing distribution group:

Get-DistributionGroupMember -Identity Marketing |
 Set-Mailbox -RetentionHoldEnabled $true

Or maybe you need to do this for all users in a particular database:

Get-Mailbox -Database DB01 |
 Set-Mailbox -RetentionHoldEnabled $true

In addition to simply enabling this setting, you also have the option of configuring a start and
end date for the retention hold period. For example:

Set-Mailbox -Identity dsmith -RetentionHoldEnabled $true `
-StartDateForRetentionHold '1/10/2011 8:00:00 AM' `
-EndDateForRetentionHold '1/14/2011 5:30:00 PM'

This command will pre-configure the start date for the retention hold period, and remove that
setting when the end date elapses.

There's more...
If you are not sure which users are currently configured with the retention hold setting, you
can use the following one-liner to retrieve all mailboxes that have retention hold enabled:

Get-Mailbox –ResultSize Unlimited |
 Where-Object{$_.RetentionHoldEnabled}

Any mailboxes with the RetentionHoldEnabled property set to $true will be retrieved
using this command.

See also
Placing mailboxes on litigation hold

Performing a discovery search
Exchange 2010 provides the ability to search through mailboxes for content that might be
required during an investigation, such as a violation of organizational policy or regulatory
compliance, or due to a lawsuit. Although this can be done through the Exchange Control
Panel, you may need to do this from the command line, and, in this recipe, you'll learn how
to perform discovery searches from the Exchange Management Shell.



Chapter 11

343

How to do it...
In order to perform a discovery search, you'll need special permissions. By default, no one, not
even the user who installed Exchange 2010, is assigned the right to perform searches. Using
an account that is a member of the Organization Management role group, you can assign the
required permissions in one of two ways and then perform a discovery search. These tasks
are outlined in the following steps:

1.	 For example, if you are using the administrator account that is already a part of the
Organization Management role group, you can assign yourself the permission to
perform discovery searches by adding your account to the Discovery Management
role group:
Add-RoleGroupMember –Identity "Discovery Management" `
-Member administrator

As an alternative, you can also give yourself or another user a direct role assignment
to the Mailbox Search role:

New-ManagementRoleAssignment -Role "Mailbox Search" `
-User administrator

2.	 After you have been assigned permissions, you'll need to restart the Exchange
Management Shell so that the cmdlets required to perform the search will be
loaded. Then you can use the New-MailboxSearch cmdlet to create a new search:
New-MailboxSearch -Name Case1 `
-TargetMailbox "Discovery Search Mailbox" `
-SearchQuery 'Subject:"Corporate Secrets"' `
-StartDate "1/1/2010" `
-EndDate "12/31/2010" `
-MessageTypes Email `
-IncludeUnsearchableItems `
-LogLevel Full

The previous command will search all mailboxes in the organization for messages sent
or received in the year 2010 with a subject of "Corporate Secrets". Any messages found
matching this criteria will be copied to the Discovery Search mailbox.

How it works...
One of the benefits to using the shell versus the Exchange Control Panel (ECP) when
performing a discovery search is that you can specify the target mailbox. The ECP requires
that you use a Discovery Search mailbox to store the results. With the New-MailboxSearch
cmdlet, you can provide a value for the -TargetMailbox parameter and specify
another mailbox.

Compliance and Audit Logging

344

If you perform a search without specifying any source mailboxes, all of the mailboxes in the
organization will be searched, as in our previous example. One thing to keep in mind is that,
to successfully perform a search, you need to have healthy database indexes, and indexing
needs to be enabled (it is, by default) for each database that contains the mailboxes you
are searching.

Let's take a look at another example. This time, we'll search a specific mailbox and store the
results in an alternate mailbox:

New-MailboxSearch -Name Case2 `
-SourceMailboxes dsmith,jjones `
-TargetMailbox administrator `
-SearchQuery 'Subject:"Corporate Secrets"' `
-MessageTypes Email `
-StatusMailRecipients legal@contoso.com

This time, we've specified two source mailboxes to search and the results will be stored in the
administrator mailbox. The -StatusMailRecipients parameter is also used to send an
e-mail notification to the legal department when the search is complete. Also notice that, this
time, we did not specify a start or end date, so the search will be performed against all items
in each source mailbox.

The key to performing a precise search is using the -SearchQuery parameter. This
allows you to use keywords and specific property values when searching for messages
with Advanced Query Syntax (AQS). See Appendix B at the end of this book for details
on creating an AQS query.

Once a discovery search has completed, you can export the items captured by the search
by accessing the target mailbox. Whether it is the Discovery Search mailbox or an alternate
mailbox that you specified when running the command, you can give your account full access
permissions to the mailbox and access the items using Outlook or OWA.

There's more...
Once you start a discovery search, it may take some time to complete, depending on the size
and number of mailboxes you are working with. These searches can be completely managed
from the shell. For example, if you want to remove a search before it completes, you can use
the Remove-MailboxSearch cmdlet. You can also stop a search, modify its properties, and
restart the search. Let's say we've just created a new search; we can check its status with the
Get-MailboxSearch cmdlet:

Get-MailboxSearch | Select-Object Name,Status,Percentcomplete

Chapter 11

345

If needed, we can stop the search before it is completed, modify the properties, and then
restart the search using the mailbox search cmdlets:

Stop-MailboxSearch -Identity Case3
Set-MailboxSearch -Identity Case3 -SourceMailboxes Finance,HR
Start-MailboxSearch -Identity Case3

As you can see in these commands, we first stop the Case3 search, then modify the source
mailboxes it is configured to run against, and finally restart the search.

See also

Deleting messages from mailboxes in Chapter 4, Managing Mailboxes

Placing mailboxes on litigation hold
When an organization is dealing with the possibility of legal action, data such as documents
and e-mail messages related to the case usually need to be reviewed, and an effort to
preserve this information must be made. Exchange 2010 allows you to protect and maintain
this data by placing mailboxes on litigation hold. This prevents users or retention policies
from modifying or removing any messages that may be required during the legal discovery
process. In this recipe, you'll learn how to manage litigation hold settings for mailboxes from
the Exchange Management Shell.

How to do it...
1.	 To place a mailbox on litigation hold, use the Set-Mailbox cmdlet:

Set-Mailbox -Identity dsmith -LitigationHoldEnabled $true

2.	 To remove the retention hold setting from the mailbox, use the same command, but
set the -LitigationHold parameter to $false:

Set-Mailbox -Identity dsmith -LitigationHoldEnabled $false

How it works...
At first glance, it may seem that litigation hold and retention hold are essentially the same,
but the truth is they are quite different. When you place a mailbox on litigation hold, retention
policies are not suspended, which gives the end user the impression that the policies are still
in place and that data can be removed from the mailbox.



Compliance and Audit Logging

346

When a user empties their Deleted Items folder or performs a Shift+Delete on messages,
these items are moved to the Recoverable Items folder. Users can recover these items by
default for up to 14 days, but they can also delete items from the Recoverable Items folder
using the Recover Deleted Items tool in an attempt to permanently purge the data from their
mailbox. Deleting items for the Recoverable Items folder places the data in the Purges sub
folder, which is hidden from the user. When a mailbox is on litigation hold, an administrator
can access the items in the Purges folder using a Discovery Search, and the mailbox
assistant does not purge the items in this folder when the database deleted item retention
period elapses.

Messages located in the Recoverable Items folder do not count against a user's
mailbox storage quota, but each mailbox does have a RecoverableItemsQuota
that is set to 30 GB by default. This property can be changed at the database level,
using the Set-MailboxDatabase cmdlet, or at the mailbox level, using the
Set-Mailbox cmdlet.

Keep in mind that when you place a mailbox on litigation hold, it may take
up to 60 minutes to take effect. You'll receive a warning message in the
shell explaining this when you enable the setting for a mailbox.

Like retention hold, you can include a retention comment when placing a user on litigation
hold, as some organizations are required to inform users of this for legal purposes. Users
running Outlook 2010 will see retention comments in the backstage area of Outlook. To add
a comment, provide a message using the -RetentionComment parameter when placing the
mailbox on litigation hold:

Set-Mailbox -Identity dsmith `
-LitigationHoldEnabled $true `
–RetentionComment “You are currently on litigation hold”

There's more...
To determine which users are currently on litigation hold, use the Get-Mailbox cmdlet and
filter the LitigationHoldEnabled property:

Get-Mailbox -ResultSize Unlimited `
-Filter {LitigationHoldEnabled -eq $true}

When a mailbox has been placed on litigation hold, you can view the date it was placed
on litigation hold and which user enabled the setting by viewing the litigation properties
for a mailbox:

Chapter 11

347

See also
Performing a discovery search

Enabling mailbox audit logging
You can enable mailbox audit logging to track logons to mailboxes and determine which
actions are being taken against a mailbox. Audit log entries for a mailbox keep track of
important details such as the username, client IP address, and hostname of the computer
used by the person that made the change, and the actions made, such as accessing, moving,
or deleting messages. In this recipe, we'll look at what needs to be done in order to enable
and configure mailbox audit logging.

How to do it...
1.	 To enable mailbox audit logging, use the Set-Mailbox cmdlet:

Set-Mailbox -Identity dsmith -AuditEnabled $true

2.	 By default, audit logs entries are retained per mailbox based on the
AuditLogAgeLimit property which, by default, is set to 90 days. You can increase
this value using the Set-Mailbox cmdlet:
Set-Mailbox -Identity dsmith -AuditLogAgeLimit 120

3.	 To disable mailbox audit logging, set the -AuditEnabled parameter to $false:
Set-Mailbox -Identity dsmith -AuditEnabled $false

Mailbox audit logging cannot be enabled through the Exchange Management Console or the
Exchange Control Panel, and can only be enabled through the shell.

How it works...
When you enable mailbox audit logging, only a subset of actions performed by administrators
and delegates are tracked by default. Actions taken by the mailbox owner are not logged. This
is due to the fact that the owner of the mailbox is regularly making changes, and logging this
information could generate an undesirable amount of logs.



Compliance and Audit Logging

348

To view the default settings, we can look at the audit properties for a mailbox:

As you can see, several actions for both administrators and delegates are enabled by
default, and no actions are logged for the mailbox owner. Users with full mailbox access
are considered delegates.

You can customize the actions that will be audited to meet your requirements. For example,
let's say that you only want to audit delete operations on items in a mailbox. You can configure
these settings using the Set-Mailbox cmdlet:

$actions = "SoftDelete","HardDelete"
Set-Mailbox dsmith -AuditEnabled $true `
-AuditAdmin $actions `
-AuditDelegate $actions `
-AuditOwner $actions

In this example, SoftDelete and HardDelete actions will be logged for delegates,
administrators, and the mailbox owner.

These settings can also be configured independently. For example:

Set-Mailbox -Identity dsmith -AuditEnabled $true `
-AuditDelegate SendAs,SendOnBehalf

This time, only the audit delegate actions have been modified. These values can be used with
delegates, administrators, or mailbox owners.

Audit logs are stored in the Audits subfolder of the Recoverable Items folder in the user's
mailbox, which the user cannot see. If you move the mailbox to another database, the audit
logs are still available because they are stored within the user's mailbox.

Chapter 11

349

There's more...
In some cases, you may have a third-party application that uses a service account to access
mailboxes within your organization. When you have mailbox audit logging enabled, this can
generate a large number of logs that you have to try to filter through later. In this scenario,
you can exclude a specific account from being audited by mailbox audit logging.

To exclude a service account from audit logging, use the following syntax:

Set-MailboxAuditBypassAssociation -Identity BESAdmin `
-AuditBypassEnabled $true

In this example, the BESAdmin account will be excluded from any mailbox audit logs in the
organization. You can disable this later, if needed, by setting the AuditByPassEnabled
parameter to $false:

Set-MailboxAuditBypassAssociation -Identity BESAdmin `
-AuditBypassEnabled $false

See also
Generating mailbox audit log reports

Generating mailbox audit log reports
After you've enabled mailbox audit logging, there are two ways from within the Exchange
Management shell that you can search the logs and generate reports. In this recipe, you'll
learn how to use both synchronous and asynchronous mailbox audit log searches from the
Exchange Management Shell.

How to do it...
1.	 To perform a synchronous mailbox audit log search, use the Search-

MailboxAuditLog cmdlet. After executing the following command, the results will
be displayed in the shell:
Search-MailboxAuditLog -Identity dsmith -ShowDetails

2.	 To perform an asynchronous search, use the New-MailboxAuditLogSearch
cmdlet:
New-MailboxAuditLogSearch -Name Search1 `
-Mailboxes dsmith,bjones `
-LogonTypes admin,delegate `
-StartDate 1/1/11 `
-EndDate 1/15/11 `



Compliance and Audit Logging

350

-ShowDetails `
-StatusMailRecipients admin@contoso.com

The asynchronous search will run in the background, and the results will be sent via e-mail in
XML format to address specified with the –StatusMailRecipients cmdlet.

How it works...
When working interactively, it's easier to use the Search-MailboxAuditLog cmdlet
to view mailbox audit log reports because you can view the results in the shell. Using the
New-MailboxAuditLogSearch requires that you work with an XML document that
contains the results of the search.

The key to getting useful information out of the mailbox audit log reports from the shell is to
use the -ShowDetails switch parameter. For example, if we want to determine which items
have been deleted from a user's mailbox within a specified time frame, assuming mailbox
audit logging is enabled for this mailbox, we could use the following command:

Search-MailboxAuditLog -Identity dsmith `
-StartDate 1/1/2011 `
-EndDate 3/14/11 `
-ShowDetails| ?{$_.Operation -like '*Delete*'}

Here you can see that we're searching a single mailbox, start and end dates have been
specified, the -ShowDetails parameter is used, and the results are piped to the
Where-Object cmdlet (using the ? alias) where we filter on the Operation property.
Since we're using the -like operator with the *Delete* wildcard, both SoftDelete
and HardDelete operations will be returned. We can take this a step further by selecting
several properties that provide useful information:

Search-MailboxAuditLog -Identity dsmith `
-StartDate 1/1/2011 `
-EndDate 3/14/11 `
-ShowDetails | ?{$_.Operation -like '*Delete*'} |
 select LogonUserDisplayName,Operation,OperationResult,SourceItems

This will provide details about each delete operation, the delegate or administrator that
performed the operation, the result, and the source items.

When generating reports on deleted items, the SourceItems property is actually a collection
that contains several pieces of information about each deleted item, such as the message
ID, the subject, and the parent folder it was deleted from. By default, when viewing the
output from the Search-MailboxAuditLog cmdlet, the only information you will see is
the message ID, which is not that useful in most cases. To get to the details about each
message that was deleted, we need to loop through each of the items contained within the
SourceItems property. Consider the following code:

Chapter 11

351

$logs = Search-MailboxAuditLog -Identity dsmith `
 -LogonTypes Delegate,Admin `
 -ShowDetails | ?{$_.Operation -like '*Delete*'}

$logs | Foreach-Object{
 $mailbox = $_.MailboxResolvedOwnerName
 $deletedby = $_.LogonUserDisplayName
 $LastAccessed = $_.LastAccessed
 $operation = $_.Operation
 $_.sourceitems | Foreach-Object {
 New-Object PSObject -Property @{
 Mailbox = $mailbox
 Subject = $_.SourceItemSubject.Trim()
 Operation = $operation
 Folder = $_.SourceItemFolderPathName.Trim()
 DeletedBy = $deletedby
 TimeDeleted = $LastAccessed
 }
 }
}

In this example, we first search the mailbox audit logs for a mailbox where the logon types
are either an administrator or delegate, and filter the results so that only SoftDelete and
HardDelete operations are returned. We then loop through each entry and create a custom
object that will return important information about each deleted message, such as the subject
of the message, the user who deleted the message, the folder it was deleted from, and the
time it was deleted. The output from the command would look something like this:

Compliance and Audit Logging

352

Since start and end times were not provided when running the Search-MailboxAuditLog
cmdlet, this code will provide a report for any deleted item entries in the log.

When using the Search-MailboxAuditLog cmdlet, you can only specify one mailbox
using the -Identity parameter. The cmdlet does provide a -Mailboxes parameter,
but unfortunately, you cannot use the -ShowDetails switch parameter when searching
multiple mailboxes. If you need to generate detailed reports for multiple mailboxes, use
the ForEach-Object cmdlet to search the mailbox audit logs for multiple mailboxes:

$mailboxes = Get-Mailbox | ?{$_.AuditEnabled}
$mailboxes | ForEach-Object {
 Search-MailboxAuditLog -Identity $_.name -ShowDetails
}

In this example, we first create a collection of mailboxes where mailbox auditing is enabled.
We then loop through each one and call the Search-MailboxAuditLog cmdlet.

There's more...
Most of the parameters provided by the New-MailboxAuditLogSearch are similar to the
ones we looked at when using the Search-MailboxAuditLog cmdlet. One of the main
differences, besides the results being e-mailed to a recipient in XML format, is that both the
-StartDate and -EndDate parameters are required.

See also
Enabling mailbox audit logging

Configuring Administrator Audit Logging
Administrator Audit Logging allows you to track which cmdlets are being run within your
Exchange organization. The log entries provide details about the cmdlet and parameters used
when a command was executed, which objects were affected by the command, and the user
who ran the cmdlet. In this recipe, you'll learn how to configure the options used to define the
Administrator Audit Logging settings in your environment.

How to do it...
For new installations of Exchange 2010 SP1, Administrator Audit Logging is enabled by
default. If you have upgraded to SP1 from the RTM version of Exchange 2010, then you may
need to enable Administrator Audit Logging before you can report on which cmdlets are being
run within your organization.



Chapter 11

353

1.	 To determine the current configuration, use the Get-AdminAuditLogConfig
cmdlet:

2.	 You can review the output and check the AdminAuditLogEnabled property. If this
is set to false, use the Set-AdminAuditLogConfig cmdlet to enable administrator
audit logging:
Set-AdminAuditLogConfig -AdminAuditLogEnabled $true

The Administrator Audit Log settings are an organization-wide setting. The previous command
only needs to be run once from a server within the Exchange organization.

How it works...
Once administrator audit logging has been enabled, the default settings are configured so
that all cmdlets are audited. Cmdlets run through the Exchange Management Shell, the
Exchange Management Console, or in the Exchange Control Panel are all subject to the
administrator audit log settings.

If you take another look at the output from the Get-AdminAuditLogConfig cmdlet, you'll
notice that AdminAuditLogCmdlets is set to the asterisk (*) character, meaning that
all cmdlets by default are configured for auditing. This is true only with cmdlets that make
changes to the environment. Any Get-* or Search-* cmdlets are not subject to auditing,
since they do not make any changes and would generate a large number or logs.

You can override this setting using the Set-AdminAuditLogConfig cmdlet. For example,
if you only wanted to audit one or two specific cmdlets, you can assign each cmdlet name,
separated by a comma, to the -AdminAuditLogCmdlets parameter:

Set-AdminAuditLogConfig `
-AdminAuditLogCmdlets Set-Mailbox,Set-CASMailbox

Compliance and Audit Logging

354

The same goes for cmdlet parameters. If you want to limit which parameters are audited for
each cmdlet, specify a list of parameter names using the –AdminAuditLogParameters
parameter.

When making changes with the Set-AdminAuditLogConfig cmdlet,
you'll receive a warning message that it may take up to one hour for the
change to take effect. To apply the changes immediately, simply close and
reopen the shell.

You can also exclude specific cmdlets from being audited. To do so, use the following syntax:

Set-AdminAuditLogConfig -AdminAuditLogExcludedCmdlets New-Mailbox

In this example, the New-Mailbox cmdlet will not be audited. You can exclude multiple
cmdlets by supplying a list of cmdlet names separated by a comma.

By default, the administrator audit log will keep up to 90 days of log entries. This setting can
also be modified using the Set-AdminAuditLogConfig ��������cmdlet. Audit log entries are stored
in a hidden, dedicated arbitration mailbox.

There's more...
The Exchange Management Shell provides a number of troubleshooting cmdlets that use the
verb Test. By default, these cmdlets are not audited due to the fact that they can generate
a significant amount of data in a short amount of time. If you need to enable logging of the
Test-* cmdlets, use the Set-AdminAuditLogConfig cmdlet:

Set-AdminAuditLogConfig -TestCmdletLoggingEnabled $true

It is recommended that you only leave test cmdlet logging enabled for short periods of time.
Once you are done, you can disable the setting by setting the value back to $false:

Set-AdminAuditLogConfig -TestCmdletLoggingEnabled $false

See also
Searching administrator audit logs

Chapter 11

355

Searching administrator audit logs
You can use the Exchange Management Shell to search the administrator audit logs and
generate reports based on the cmdlets and parameters used to modify objects within your
Exchange environment. Like mailbox audit log reports, we have two ways in which we can view
the audit logs from the Exchange Management Shell, and in this recipe we'll take a look at
both methods.

How to do it...
1.	 To perform a synchronous administrator audit log search in the shell, we can use

the Search-AdminAuditLog cmdlet. For example, after executing the following
command, the results will be displayed in the shell:
Search-AdminAuditLog -Cmdlets Set-Mailbox `
-StartDate 01/1/2011 `
-EndDate 01/31/2011 `
-IsSuccess $true

This command would return all of the log entries for the Set-Mailbox
cmdlet for the month of January. Only the log entries from successful commands
will be returned.

2.	 To perform an asynchronous search, use the New-AdminAuditLogSearch cmdlet:
New-AdminAuditLogSearch -Cmdlets Set-Mailbox `
-StartDate 01/1/2011 `
-EndDate 01/31/2011 `
-IsSuccess $true `
-StatusMailRecipients admin@contoso.com

Based on the parameters used here, the results of the search will be the same,
the difference is that the search will take place in the background, and instead of
displaying the results in the shell, a message will be e-mailed to a recipient and the
report will be attached in XML format.

How it works...
The administrator audit log entries provide the complete details of every cmdlet that was used
to make a change in your environment. When using the Search-AdminAuditLog cmdlet,
we can limit the results based on a specific time frame and by the name of the cmdlet or
parameters that were used. If you run the cmdlet without any parameters, all of the entries in
the administrator audit log will be returned.

Compliance and Audit Logging

356

One of the most useful things about this cmdlet is that you can quickly determine how and
why something has recently been changed. For example, let's say that a user named Richard
Sutton reports that he suddenly cannot log onto the network, let alone receive his e-mail.
You could consult the administrator audit logs to determine what might have happened to
his account:

Using the previous command, we search the administrator audit log and pipe the results
to the Where-Object cmdlet, f﻿﻿iltering on the ObjectModfied property where the object
contains the user's last name. The most recent command used to modify this object will be
returned first. Viewing the output, we can see that the Remove-Mailbox cmdlet was run
against this object by the administrator account, therefore removing the Active Directory
account and mailbox, which explains why the user cannot log on.

There's more...
The default view of each administrator audit log entry provides a lot of detailed information,
but we can work with the properties of each log entry to gain even more insight into what was
changed. One good example of this is the ability to view the new and old values that have
been set on an object.

For example, let's say that we want to review the audit logs to determine the changes made
by the 10 most recent commands. First, we can save the results in a variable:

$logs = Search-AdminAuditLog | Select-Object -First 10

Chapter 11

357

Each of the log entries are now stored in the $logs variable, which at this point is an array of
audit log entries. To view the first entry in the list, we can access the zero element of the array:

After reviewing the details, we can see that the Set-Mailbox ���������� cmdlet modified two properties
of an account. To determine those values, we can view the ModifiedProperties property
of the current array element:

Viewing the output in list format we can see that the user previously had two smtp addresses
configured for their account. When the cmdlet was executed, only one of those values was
added back as a new value, so clearly the other address was removed from the mailbox.

See also
Configuring Administrator Audit Logging

12
Server Monitoring and

Troubleshooting

In this chapter, we will cover the following:

Managing and monitoring services

Verifying server connectivity

Working with the event logs

Reporting on disk usage

Checking CPU utilization

Monitoring memory utilization

Reporting on Exchange Server uptime

Troubleshooting the Mailbox role

Troubleshooting the Client Access Server role

Troubleshooting Transport servers

Verifying certificate health























Server Monitoring and Troubleshooting

360

Introduction
One of the most important aspects of managing Exchange 2010 is the day-to-day monitoring
and maintenance of the servers in your organization. In order to ensure that all systems are
operating reliably, it is critical that you proactively monitor the health of each server in your
environment. While this task is probably better suited for a robust enterprise monitoring
solution such as Microsoft System Center Operations Manager, it is possible to write
PowerShell scripts to monitor your systems and troubleshoot issues that may arise. In this
chapter, we'll take a look at several ways to monitor the health of server resources such as
memory, CPU, and disk utilization, verify service availability, track errors written to the event
logs, and more. We'll also explore various methods that can be used to troubleshoot issues
when things have gone wrong.

Performing some basic steps
To work with the code samples in this chapter, follow these steps to launch the Exchange
Management Shell:

1.	 Log onto a workstation or server with the Exchange Management Tools installed

2.	 Open the Exchange Management Shell by clicking on Start | All Programs |
Exchange Server 2010

3.	 Click the Exchange Management Shell shortcut

Managing and monitoring services
One of most critical aspects of server monitoring requires you to keep an eye on all of the
Exchange services that need to be running to ensure the application is online and servicing
end users. In this recipe, we'll take a look at how to monitor and manage both Windows
operating system services and Exchange Server specific services.

How to do it...
1.	 One of the ways we can monitor the state of one or more services is using the

PowerShell core cmdlets. For example, to view all Exchange-related services,
run the following command:
Get-Service *exch*

2.	 To view only the Exchange-related services that are currently running, pipe the
previous command to Where-Object and filter the results:
Get-Service *exch* | Where-Object {$_.Status -eq 'Running'}

Chapter 12

361

3.	 The Get-Service cmdlet can be run against remote machines as well. The following
example retrieves the services from every Exchange server in the organization:
Get-ExchangeServer | ForEach-Object {
 Get-Service *exch* -ComputerName $_.Name |
 Where-Object {$_.Status -eq 'Running'}
}

4.	 We can also stop, start, or restart services. For example, the following screenshot
shows the commands that perform all three operations on the IISAdmin service on
the local server:

5.	 In addition to using the built-in *-Service cmdlets, we can use WMI to monitor and
manage services. In the following example, we create an instance of the IISAdmin
service using the Win32_Service WMI class:

As you can see from the previous screenshot, an instance of the IISAdmin service is saved
in the $s variable and we can view several details about the service, as well as use its
methods to stop and start the service.

Server Monitoring and Troubleshooting

362

How it works...
The *-Service cmdlets are PowerShell core cmdlets used to manage services on Windows
Servers. They can be quite useful, but there are a few limitations. For example:

Notice here that, while there are several useful details shown about the MSExchangeAB
service, the service start-up type is not listed. This is a key property because you may not
want to attempt to start a service through an automated script when a service might be
set to manual or disabled start-up.

Another limitation is the fact that the Get-Service and Set-Service cmdlets are the only
*-Service cmdlets that provide a -ComputerName parameter. Fortunately, we can use WMI
to write scripts like the one shown next:

$servers = Get-ExchangeServer | Select-Object -ExpandProperty Name

Get-WmiObject Win32_Service -ComputerName $servers `
-Filter "Name Like '%exch%'AND StartMode='Auto' AND State='Stopped'" |
Foreach-Object {$_.StartService()}

Here we're using a WQL query with the Get-WmiObject cmdlet to retrieve all of the
Exchange services from each server. We then loop through the collection, and any services
set for automatic start-up that are not currently running will be started.

Chapter 12

363

There's more...
Another way to monitor Exchange Server-specific services is using the built-in Exchange
Management Shell cmdlet Test-ServiceHealth. This cmdlet will check the Exchange
services for each role and report the running and non-running services. To check the services
on the local server, simply run the cmdlet without any parameters.

To run the cmdlet against each server in the organization and view the status of the Exchange
services, use the following command:

Get-ExchangeServer | Test-ServiceHealth

Starting non-running Exchange services with this cmdlet on the local server is as simple as
the following one-liner:

Test-ServiceHealth |
 Select-Object -ExpandProperty ServicesNotRunning |
 Start-Service

Due to the limitations of the Start-Service cmdlet, this command will not work remotely,
but you can use WMI, as shown previously, to start or restart services on remote computers.

We can combine both Test-ServiceHealth and WMI in a script that will monitor and start
any non-running Exchange services on an on-going basis:

$servers = "mbx1","mbx2","cas1","cas2"

while($true){
 $servers | Foreach-Object {
 $name = $_
 $s = Test-ServiceHealth -Server $name |
 Select-Object -ExpandProperty ServicesNotRunning

 if($s) {
 $s | Foreach-Object {
 $date = Get-Date

 $wmi = Get-WmiObject Win32_Service -Filter "Name = '$_'" `
 -ComputerName $name

 $wmi.StartService()

 Send-MailMessage -To administrator@contoso.com `
 -From powershell@contoso.com `
 -Subject "Service Failure on $name" `
 -Body "Attempted to start the $_ service at $date" `
 -SmtpServer hub1

Server Monitoring and Troubleshooting

364

 }
 }
 }
 Start-Sleep –Seconds 300
}

You can save this code to a .ps1 script and run it manually or at system start-up. The script
will check each of the defined Exchange servers every five minutes. If any of the Exchange
services are not running, an attempt to start the service will be made and an e-mail will notify
an administrator's mailbox informing them of the server name, service name, and the date
and time that an attempt to start the service was made.

Obviously, if certain Exchange services are not running, you may not be able to send an
e-mail message, and you might want to replace that portion of the code to perform some
other action, such as logging the operation to a log file.

See also

Sending SMTP e-mails through PowerShell in Chapter 2, Exchange Management
Shell Common Tasks

Verifying server connectivity
When writing your own monitoring and troubleshooting scripts, you need a way to verify that
remote systems are online and responding. This can be useful when building a script that
needs to poll servers on a regular basis, or to do a routine check within a script to verify that a
server is online before invoking one or more commands. In this recipe, we'll take a look at how
you can use the shell to verify connectivity of remote servers.

How to do it...
1.	 To verify that a remote system is available, use the Test-Connection cmdlet:

Test-Connection -ComputerName mbx1

2.	 The -ComputerName parameter accepts an array of arguments, so you can test
multiple systems at once by specifying multiple server names separated by a comma:
Test-Connection -ComputerName mbx1,mbx2



Chapter 12

365

3.	 Like the ping command, the cmdlet will send four echo requests to the remote host
by default. You can override this using the -Count parameter:
Test-Connection -ComputerName mbx1,mbx2 -Count 1

4.	 To verify that all of the Exchange servers in the organization are online and
responding, iterate through the server names returned by the
Get-ExchangeServer cmdlet:
Get-ExchangeServer |
 ForEach-Object{Test-Connection -ComputerName $_.Name -Count 1}

How it works...
The Test-Connection cmdlet uses the Win32_PingStatus WMI class to send ICMP echo
request packets to one or more remote systems. The benefit to using this cmdlet instead of
the traditional ping utility is that we get back objects that can be evaluated, as opposed to
plain text, which would require string parsing.

By default, if a remote system is offline, the Test-Connection cmdlet will throw an
exception. Perhaps one of the most useful features of this cmdlet is the function provided by
its -Quiet parameter. When using this parameter, all errors are suppressed and the cmdlet
simply returns a Boolean result: $true if the remote system is online, and $false otherwise.
This is useful in a script that can be used to execute a series of commands only if a remote
host is available. For example:

Get-Content C:\servers.txt |
 Where-Object {Test-Connection $_ -Quiet -Count 1} |
 Foreach-Object {
 Get-Service *exch* -ComputerName $_
 }

In this example, we have a script that will display the Exchange related services on each
server listed in a text file. We read the list into the shell, and as we loop through each server
name, we use the Test-Connection cmdlet to ensure that each server is online. Those
names are piped to the ForEach-Object cmdlet where we run the Get-Service cmdlet
against each server. You can replace Get-Service by one or more commands that you only
want to run against servers that are online.

Working with the event logs
Detailed messages about informational events, warnings, and errors are logged in both the
Windows event logs, and the Applications and Services event logs. The messages provide
deep insight into what is going on with the operating system and your Exchange servers. In
this recipe, you'll learn how PowerShell makes it easier than ever to monitor these logs using
simple commands that can be used to troubleshoot issues and generate reports.

Server Monitoring and Troubleshooting

366

How to do it...
1.	 To determine the available Windows logs that you can work with on a server, use the

Get-EventLog cmdlet with the -List parameter:

2.	 The names listed under the Log column are the log names you can use with the Get-
EventLog cmdlet. For example, to view the events in the application log that were
logged by Exchange, you could use the following command:
Get-EventLog -LogName Application -Source *exch* -EntryType Error

3.	 In addition to specifying the log name and the entry type, you can retrieve a specific
number of log entries from multiple servers:
$servers = Get-ClientAccessServer | select -expand name

Get-EventLog -LogName "MSExchange Management" `
-EntryType Error `
-After (Get-Date).AddDays(-7) `
-Newest 10 `
-ComputerName $servers |
 select MachineName,TimeWritten,EventID,Message |
 Export-CSV c:\errors.csv -NoTypeInformation

These commands will retrieve the last 10 errors from the past week in the MS Exchange
Management log on each CAS server in the organization, and store the results in an external
CSV file.

How it works...
The Get-EventLog cmdlet works only with classic Windows event logs such as the
Application, Security, System, Setup, and the ForwardedEvents logs. In fact, any cmdlet
using the EventLog noun is restricted to these logs and does not work with the new Windows
event logs that were added starting with Windows Vista and Windows Server 2008. In addition
to retrieving logs with the Get-EventLog cmdlet, you can also clear the logs, modify the log
settings, and create custom logs and event log entries. To learn more about the cmdlets used
for these tasks, run Get-Help *-EventLog.

Chapter 12

367

There's more...
Starting with Windows Server 2008, a new category of event logs, the Applications
and Services logs, was added to the operating system. The purpose of this is to store
application-specific events to their own dedicated logs, which are referred to as an
application's crimson channel.

Exchange 2010 servers running the mailbox role log events to crimson channels in
the Application and Services logs. To view the Exchange related channels, use the
following command:

As you can see from the output, there are several logs available for several high-availability
components and mailbox database failures. To search these logs, we can use the Get-
WinEvent cmdlet. The following code shows how to extract recent errors from the Exchange
High Availability/Operational log and send the output in the body of an HTML-formatted
e-mail message:

[string]$report = ""
Get-MailboxServer | select -expand Name | Foreach-Object{
 $date = (Get-Date).AddDays(-7)
 $report += Get-WinEvent `
 -LogName Microsoft-Exchange-HighAvailability/Operational `
 -ComputerName $_ |
 Where-Object {($_.LevelDisplayName -eq 'Error') -and `
 ($_.TimeCreated -gt $date)} |
 select MachineName,TimeCreated,Id,ProviderName,Message |
 ConvertTo-Html
}

Send-MailMessage -To administrator@contoso.com `
-From powershell@contoso.com `
-Subject "Event Log Errors" `
-Body $report `
-BodyAsHtml `
-SmtpServer cas1

Server Monitoring and Troubleshooting

368

This code iterates through each mailbox server in the organization and retrieves the errors
from the Operational log that have occurred within the last seven days. Notice that we
initialize a string variable called $report before processing each mailbox server. As the code
loops through each server, we call the Get-WinEvent cmdlet and filter the results based on
those that are errors and the time that the event was created. We select a few key properties
and convert the data to HTML using the ConvertTo-Html cmdlet. The output from the
logs are appended to the $report variable, and after each server has been processed, the
HTML data is used as the body of the e-mail message when sending the information to an
administrator's mailbox using the Send-MailMessage cmdlet. The key here is to include the
-BodyAsHtml switch parameter with the Send-MailMessage cmdlet, so that the data is
viewable in the body of the message.

Reporting on disk usage
Keeping an eye on hard disk utilization is a key component in any monitoring solution.
Depending on the environment, Exchange databases can grow quickly, and several gigabytes
of log files can be generated in a short period of time. Obviously, you need to know if you are
getting low on free disk space. In addition, you may want to track your disk utilization over
time to plan upgrades and changes to your systems. This recipe will show you how you can
quickly report on the disk usage on each of your servers.

How to do it...
1.	 One of the quickest ways to determine disk usage is using WMI. Use the following

code to display the capacity and free space of each local fixed disk:
Get-WmiObject Win32_LogicalDisk -Filter "DriveType='3'" |
 select @{n="Drive";e={$_.DeviceId}},
 @{n="Size";e={[math]::Round($_.Size/1gb,2)}},
 @{n="FreeSpace";e={[math]::Round($_.FreeSpace/1gb,2)}}

The output from the command will look similar to the following:

2.	 As you can see from the output in the previous step, the size of each disk is shown
in gigabytes. We can extend this code even further by adding a slight modification
and �� encapsulating it into a function that can be used to gather this information from
multiple servers:

Chapter 12

369

function Get-DiskUsage {
 param(
 [Parameter(
 Position=0,
 ValueFromPipelineByPropertyName=$true,
 Mandatory=$true)]
 [String]$Name
)

 process {
 Get-WmiObject Win32_LogicalDisk `
 -ComputerName $Name -Filter "DriveType='3'" |
 select @{n="Server";e={$_.SystemName}},
 @{n="Drive";e={$_.DeviceId}},
 @{n="Size";e={[math]::Round($_.Size/1gb,2)}},
 @{n="FreeSpace";e={[math]::Round($_.FreeSpace/1gb,2)}}
 }
}

3.	 The function in the previous step is written to support pipeline input. You can
easily generate a report detailing the disk usage on all of the CAS servers in the
organization using the following one-liner:

4.	 The information can also be sorted, filtered, or even exported to a CSV file.
The following one-liner would generate a report for any Exchange server in the
organization with a disk less than 20 gigabytes free:

Get-ExchangeServer |
 Get-DiskUsage | Where-Object {$_.FreeSpace -lt 20} |
 Export-CSV C:\Disk_Report.csv -NoTypeInformation

How it works...
The Win32_LogicalDisk WMI class returns several details about each disk installed on a
system. The FreeSpace and Size properties are represented in bytes, and you can see this
by simply running the following command:

Get-WmiObject Win32_LogicalDisk

Server Monitoring and Troubleshooting

370

The DriveType property represents fixed disks, and this is why the code from the previous
examples filtered on this value where the property was equal to three, returning only the
installed hard disks, and excluding other types such as floppy or DVD drives.

When we retrieve each instance of a disk using this class, it's much more useful to convert
the values returned in bytes to gigabytes. We do this by using the gb multiplier. Consider the
following example:

Here we've stored an instance of the C: drive in the $c variable. Looking at the Size property,
we can see that we get back the value in bytes. We then convert the $c.Size value to
gigabytes by dividing the value by 1gb. The value returned is better, but there are more
decimal places provided than we need. To take care of this, we use the static Round method
of the Math class to round the number using only two decimal places.

We've streamlined this process using our Get-DiskUsage function. Inside the process block
of the function, we pipe the output of Get-WmiObject to Select-Object where we create
custom properties with new header names and values that have been converted using the
techniques shown previously.

There's more...
In addition to WMI, we can also use performance counters to access detailed information
about disk resources on servers. For example, using the Get-Counter cmdlet, we can
determine the percentage of freespace available on each logical disk:

Get-Counter "\LogicalDisk(*)\% Free Space"

By default, we get back the free space for each disk as well as the total free space across
each disk installed in the system.

We can borrow the structure of our Get-DiskUsage function to create a new function that
queries performance counter data and returns the free space percentage for each disk on an
Exchange server:

function Get-DiskFreeSpacePercentage {
 param(
 [Parameter(
 Position=0,

Chapter 12

371

 ValueFromPipelineByPropertyName=$true,
 Mandatory=$true)]
 [String]$Name
)

 process {
 $free = Get-Counter "\LogicalDisk(*)\% Free Space" -comp $Name
 $free.CounterSamples | ?{$_.InstanceName -match ":"} |
 select @{n="Server";e={$Name}},
 @{n="Drive";e={$_.InstanceName}},
 @{n="PercentFree";e={[Math]::Round($_.CookedValue,2)}}
 }
}

This function can be run against one server at a time, or we can leverage the pipeline to
report on multiple servers within the organization:

This can be useful when performing a quick check interactively from the shell, or we can
export the data to an external file for later review. Remember the PercentFree property can
be filtered, which might be useful when monitoring disks that fall below a certain percentage
of free space.

See also

Creating custom objects in Chapter 1, PowerShell Key Concepts

Creating PowerShell functions in Chapter 2, Exchange Management Shell
Common Tasks

Checking CPU utilization
One of the best ways to monitor CPU utilization with PowerShell is by querying performance
counters. We can also get this information using WMI. In this recipe, you'll learn a few
techniques that can be used to monitor CPU utilization using the Get-Counterand
Get-WmiObject cmdlets.





Server Monitoring and Troubleshooting

372

How to do it...
1.	 To get an idea of the current CPU utilization for a server, we can gather data for the

Processor(_Total)\% Processor Time performance counter:
Get-Counter "\Processor(_Total)\% Processor Time" -Continuous

This would continuously output the total utilization across each CPU, as shown:

2.	 In addition, we can use the Win32_Processor class and select the
LoadPercentage property to determine the utilization for each CPU:
Get-WmiObject Win32_Processor | select LoadPercentage

Both Get-Counter and Get-WmiObject support the -ComputerName parameter and can
be run against remote machines.

How it works...
The Processor(_Total)\% Processor Time performance counter measures the total
utilization of all the processors in a machine. It is likely that your servers will have multiple
processors with multiple cores. Keep in mind that this utilization value is averaged over
all processors.

We can customize the output of the Get-Counter cmdlet and make things is a little easier
to read. For example, the following function will output the total processor utilization in a
custom object:

function Get-ProcessorUsage {
 param(
 [Parameter(
 Position=0,
 ValueFromPipelineByPropertyName=$true,
 Mandatory=$true)]
 [String]$Name
)

 process {
 $CPU = (Get-Counter "\Processor(_total)\% Processor Time" `

Chapter 12

373

-ComputerName $Name).CounterSamples[0].CookedValue.ToString('N2')

 New-Object PSObject -Property @{
 Server = $Name
 "CPU Usage (%)" = [int]$CPU
 }
 }
}

After adding this function to the shell, we can run it against every Exchange server
in the organization:

To monitor the usage over a period of time, you can run the function inside a loop:

while($true) {
 Get-ExchangeServer | Get-ProcessorUsage
 Start-Sleep -Seconds 5
}

This code will report the total CPU usage for each Exchange server in the organization, every
five seconds.

Now let's switch back and try doing this with WMI. When using the Win32_Processor class,
we can select the LoadPercentage property, but we'll get one result for each CPU in the
machine. Since there is no total value reported, we have to average the result ourselves:

Get-WmiObject Win32_Processor |
 Measure-Object -Average LoadPercentage |
 select -expand Average

Using the Measure-Object cmdlet, we can calculate an average based on the
LoadPercentage property returned from each CPU. Now that we have the syntax
figured out, we can use a foreach loop to run this code on multiple servers:

foreach($server in Get-ExchangeServer) {
 Get-WmiObject Win32_Processor -ComputerName $server.Name |
 Measure-Object -Average –Property LoadPercentage |

Server Monitoring and Troubleshooting

374

 select @{n="Server";e={$server.Name}},
 @{n="CPU Usage (%)";e={$_.Average}}
}

This will return the same objects as the Get-ProcessorUsage function, and the output from
both examples will be the same.

There's more...
You could reuse the structure of the Get-ProcessorUsage function and use WMI instead of
the Get-Counter cmdlet. Here is the function rewritten using WMI:

function Get-ProcessorUsage {
 param(
 [Parameter(
 Position=0,
 ValueFromPipelineByPropertyName=$true,
 Mandatory=$true)]
 [String]$Name
)

 process {
 [int]$CPU = Get-WmiObject Win32_Processor `
 -ComputerName $Name |
 Measure-Object -Average –Property LoadPercentage |
 Select-Object -ExpandProperty Average

 New-Object PSObject -Property @{
 Server = $Name
 "CPU Usage (%)" = $CPU
 }
 }
}

Then, we can reuse the code that uses the while loop to continuously monitor the CPU usage
of every server in the organization:

while($true) {
 Get-ExchangeServer | Get-ProcessorUsage
 Start-Sleep –Seconds 5
}

Chapter 12

375

See also
Monitoring memory utilization

Creating PowerShell functions in Chapter 2, Exchange Management Shell
Common Tasks

Monitoring memory utilization
To retrieve memory information from local and remote computers using PowerShell, we can
use WMI, or query performance counters. In this recipe, you'll learn a few techniques that can
be used to monitor memory utilization using the Get-WmiObject cmdlet.

How to do it...
1.	 To gather memory utilization with WMI, we need to query two separate classes:

$OS = Get-WmiObject Win32_OperatingSystem
$CS = Get-WmiObject Win32_ComputerSystem

2.	 Next, we can access the free and total physical memory from each object:

3.	 To convert the values to gigabytes, we need to use the mb and gb multipliers:

Now we can easily see that the local system has a total of 2 GB of RAM. If we subtract the
FreePhysicalMemory from the TotalPhysicalMemory, we can determine that we're
using about 1.8 GB of RAM on this machine.





Server Monitoring and Troubleshooting

376

How it works...
When working with the Win32_OperatingSystem class, the FreePhysicalMemory
property is represented in kilobytes, as opposed to bytes. Therefore, when we calculate the
size in gigabytes, we need to use the mb multiplier.

There's more...
Querying two separate WMI classes to get the free and used physical memory for a computer
eliminates the possibility of doing this in a clean one-liner. Instead, we can use a function to
do this, which will also make it easier when running this code against multiple servers:

function Get-Memory {
 param(
 [Parameter(
 Position=0,
 ValueFromPipelineByPropertyName=$true,
 Mandatory=$true)]
 [String]$Name
)

 process {
 $OS = Get-WmiObject Win32_OperatingSystem `
 -ComputerName $Name
 $CS = Get-WmiObject Win32_ComputerSystem `
 -ComputerName $Name

 $free = [math]::Round($OS.FreePhysicalMemory /1mb,2)
 $total = [math]::Round($CS.TotalPhysicalMemory /1gb)

 New-Object PSObject -Property @{
 Server = $Name
 "Memory Total (GB)" = $total
 "Free Memory (GB)" = $free
 }
 }
}

Once we've added this function into the shell, we can easily determine the memory usage
on a single server, or we can pipe the Get-ExchangeServer cmdlet to this function and
generate a report for every server in the organization:

Chapter 12

377

You could continue to pipe this command to other cmdlets to generate an HTML report or
export to a CSV or text file.

See also
Checking CPU utilization

Creating PowerShell functions in Chapter 2, Exchange Management Shell
Common Tasks

Reporting on Exchange Server uptime
Using WMI and PowerShell, we can quickly determine how long a server has been online
based on the last boot time of the operating system. This information can be useful for
monitoring scripts that report on availability, or even when you just want to do a quick
check on how long each server has been online. In this recipe, we'll take a look at how
to use PowerShell to extract this information.

How to do it...
1.	 To determine the total uptime for a server, we can query the

Win32_OperatingSystem class by first running this command:
$OS = Get-WmiObject Win32_OperatingSystem

2.	 Next, we can access the LastBootUpTime property of this object to determine how
long the system has been online:





Server Monitoring and Troubleshooting

378

3.	 The problem with this, as you can see from the output shown previously, is that the
value is stored in UTC (Universal Time Coordinate) format. So we'll convert the value
to a readable date time format:
$OS.ConvertToDateTime($OS.LastBootUpTime)

4.	 To get the total uptime, we can subtract the LastBootUpTime from the current date
and time:
(Get-Date) - $OS.ConvertToDateTime($OS.LastBootUpTime)

5.	 So far we've only been querying the local machine, so now we need to wrap this
code up into a script that can gather this information from multiple servers. Add the
following function to your shell session:
function Get-Uptime {
 param(
 [Parameter(
 Position=0,
 ValueFromPipelineByPropertyName=$true,
 Mandatory=$true)]
 [String]$Name
)

 process {
 $OS = Get-WmiObject Win32_OperatingSystem -ComputerName $Name
 $lastBoot = $OS.ConvertToDateTime($OS.LastBootUpTime)
 $upTime = (Get-Date) - `
 $OS.ConvertToDateTime($OS.LastBootUpTime)

 New-Object PSObject -Property @{
 Server = $Name
 LastBoot = $lastBoot
 DaysUp = $upTime.Days
 HoursUp = $upTime.Hours
 MinutesUp = $upTime.Minutes
 }
 }
}

6.	 The function will accept pipeline input from other commands, or you can run it
against one server at a time, as shown in the following screenshot:

Chapter 12

379

How it works...
The ConvertToDateTime method used to convert LastBootUpTime to a .NET DateTime
object is not part of the Win32_OperatingSystem class. It's actually a ScriptMethod
added by the Types.ps1xml file.

Run Get-Help about_Types.ps1xml to learn how .NET Framework
types can be extended in PowerShell.

In order to determine the server uptime, we use (Get-Date), which gives us a DateTime
object for the current date and time, and then subtract the LastBootUpTime. The results are
in a TimeSpan object that tells us how long the server has been online:

[PS] (Get-Date) - $OS.ConvertToDateTime($OS.LastBootUpTime)

Days : 14

Hours : 20

Minutes : 38

Seconds : 14

Milliseconds : 551

As shown here, each TimeSpan object has several properties, such as Days, Hours,
Minutes, and so on. The Get-UpTime function reports the uptime for a server using
this technique and returns a subset of these properties, including other information,
as a custom object.

There's more...
You can also use the Get-UpTime function to generate a report for all of the Exchange
servers in an organization:

Get-ExchangeServer | Get-UpTime |
 Export-CSV c:\uptime.csv -NoTypeInformation

This one-liner pipes the uptime details for each server to a CSV file on the C: drive.

Server Monitoring and Troubleshooting

380

See also
Verifying connectivity

Creating PowerShell functions in Chapter 2, Exchange Management Shell
Common Tasks

Troubleshooting the Mailbox role
The Exchange Management Shell provides several built-in troubleshooting cmdlets that
you can use to diagnose issues when they arise. In this recipe, we'll take a look at how you
can use the Test-MapiConnectivity cmdlet to monitor and troubleshoot the mailbox
server role.

How to do it...
To verify that a mailbox server can accept logons, you can use the built-in shell cmdlet
Test-MapiConnectivity using a number of parameters:

1.	 Use the -Database parameter to test the ability to log on to a specific database:
Test-MAPIConnectivity -Database DB1

2.	 Use the -Identity parameter to test the ability to log on to a specific mailbox:
Test-MAPIConnectivity -Identity administrator

3.	 Use the -Server parameter to test the ability to log on to each system mailbox on a
particular mailbox server:

Test-MAPIConnectivity -Server MBX1

How it works...
The Test-MAPIConnectivity cmdlet verifies that both client connections via the MAPI
protocol and LDAP connections for authentication are working correctly on a mailbox
server. This ensures that the Exchange Store and DSAccess components are working by
authenticating the request and retrieving a list of items from a mailbox.

When you use the -Identity parameter, the cmdlet logs on to the mailbox server that hosts
the database where the mailbox resides. When using the -Database parameter, the cmdlet
logs on to the SystemMailbox for the database. Additionally, the cmdlet will log on to the
SystemMailbox in each database if you use the -Server parameter to specify a particular
mailbox server.





Chapter 12

381

You can also use the -MonitoringContext parameter to include logon
latency values for ������������������������� each database or mailbox.

Y��� ou can run the cmdlet locally when connected to a mailbox server without providing any
parameters, and the tests will be performed against the local server.

You can test all mailbox servers within the organization by using this one-liner:

See also

Reporting on database status, redundancy, and replication in Chapter 9,
High Availability

Troubleshooting the Client Access
Server role

The Exchange Management Shell provides several built-in cmdlets that you can use to
troubleshoot and diagnose issues. The Client Access Server role has a number of cmdlets that
can be used to perform tests on several different services. In this recipe, we'll take a look at
how you can use these cmdlets to monitor and troubleshoot the Client Access Server role.

How to do it...
1.	 We can test RPC connectivity to a CAS server using the Test-

OutlookConnectivity cmdlet. To specify a mailbox that the cmdlet should use,
we'll need to provide the credentials for that user:
$user = "contoso\administrator"
$pass = ConvertTo-SecureString -AsPlainText "P@ssw0rd01" -Force
$creds = New-Object System.Management.Automation.PSCredential `
-ArgumentList $user,$pass



Server Monitoring and Troubleshooting

382

2.	 After we have the credential object created, we can try to connect using RPC:
Test-OutlookConnectivity -Identity administrator `
-Protocol:TCP `
-MailboxCredential $creds

3.	 We can also verify Outlook Anywhere connectivity by specifying HTTP as the protocol:
Test-OutlookConnectivity -Identity administrator `
-Protocol:HTTP `
-MailboxCredential $creds

4.	 In addition to RPC and HTTP connections, one of the most critical services on the CAS
role is the Mailbox Replication Service. Use the Test-MRSHealth cmdlet to verify
this service is functioning properly:
Test-MRSHealth -Identity CAS1

How it works...
The Test-OutlookConnectivity cmdlet verifies that a connection can be made from
Outlook to a CAS server. In the previous example, we used the -Identity parameter to
specify a particular mailbox to test. This parameter is optional if you create a test account
using the New-TestCasConnectivityUser.ps1 script. Simply switch to the $exscripts
directory and execute the script to create the test account. You'll be prompted for a password,
but from then on you will not need to provide an identity when running the cmdlet.

When specifying the protocol, we have the option to use TCP or HTTP. Using TCP will
simulate an Outlook connection using RPC and using HTTP will simulate the logon via
Outlook Anywhere.

The Mailbox Replication Service is the component on the CAS responsible for doing
things like moving mailboxes or importing and exporting data to and from mailboxes.
The Test-MRSHealth cmdlet ensures that the Mailbox Replication Service is running
on the target CAS and responding to RPC ping checks.

You can test the Mailbox Replication Service on each server using a one-liner:

Get-ClientAccessServer | Test-MRSHealth

There's more...
The CAS role provides many services to clients and there are a number of test cmdlets
available to troubleshoot these components. The cmdlets outlined here are a few of the
cmdlets that can be used to perform these tasks:

Test-ActiveSyncConnectivity: Performs a test against a mailbox to �������ensure
ActiveSync connectivity



Chapter 12

383

Test-CalendarConnectivity: Verifies that anonymous calendar sharing is
functioning by checking the Calendar virtual directory under the OWA virtual directory

Test-EcpConnectivity: Validates the ECP virtual directory on a specified
CAS server

Test-ImapConnectivity: Ensures that the IMAP4 service is running and that a
connection can be made to a mailbox through a specified CAS server

Test-OutlookWebServices: Verifies that the correct service information is being
returned to a recipient using the Autodiscover service

Test-OwaConnectivity: Validates the OWA virtual directory on a specified
CAS server

Test-WebServicesConnectivity: Verifies Exchange Web Service's functionality
on a specified CAS server

For examples on usage and syntax run Get-Help <cmdlet name> -Examples.

See also
Troubleshooting the mailbox role

Troubleshooting Transport Servers

Troubleshooting Transport servers
Like the Mailbox and Client Access Server roles, Transport servers also have a couple of
cmdlets dedicated to testing the flow of messages to servers running the Mailbox and Hub
Transport roles. In this recipe, you'll learn how to use these cmdlets to troubleshoot mail flow
and connectivity issues using the Exchange Management Shell.

How to do it...
1.	 To test mail flow from one server to another, use the following syntax:

Test-Mailflow -Identity MBX1 -TargetMailboxServer MBX2

2.	 You can use the following syntax to test mail flow from a specific server to a mailbox:
Test-Mailflow -Identity MBX1 `
-TargetEmailAddress dsmith@contoso.com

3.	 To validate SMTP connections, use the Test-SmtpConnectivity cmdlet:
Test-SmtpConnectivity -Identity HUB2

















Server Monitoring and Troubleshooting

384

How it works...
The Test-Mailflow cmdlet sends an e-mail message from a system mailbox on a Mailbox
server to another mailbox. If you do not provide a target mailbox server or e-mail address, the
message will be sent and delivered to a system mailbox on the specified mailbox server. This
cmdlet verifies that the Mailbox Submission Service, and the Transport server components
are functioning correctly.

When you run the Test-MailFlow cmdlet, the output will provide the status of the test,
the message latency time, and whether or not the test message was sent locally or to a
destination mailbox on another server:

The Test-SmtpConnectivity cmdlet does something completely different. This cmdlet
ensures that an SMTP connection can be made to the receive connectors on a Hub Transport
server. This cmdlet was designed for use by a Microsoft System Center Operations Manager
to validate the receive connectors on a Hub Transport server, but feel free to use the cmdlet
for troubleshooting.

You can run Test-SmtpConnectivity against one server at a time, as shown previously,
or against every transport server in the organization using a one-liner:

Get-TransportServer | Test-SmtpConnectivity

See also
Troubleshooting the Mailbox role

Troubleshooting the Client Access server role

Verifying certificate health
Exchange 2010 relies on certificates to secure several aspects of communication with clients
and servers. X.509 certificates are used with Transport Layer Security (TLS) and Secure
Sockets Layer (SSL) to secure communication over protocols such as HTTPS, SMTP, POP, and
IMAP. In this recipe, you'll learn how to verify the validity of the certificates installed on your
Exchange servers using the Exchange Management Shell�.





Chapter 12

385

How to do it...
1.	 To verify the health of certificates installed on the local server, use the following

command:
Get-ExchangeCertificate |
 select Status,
 Thumbprint,
 IsSelfSigned,
 @{n="Expires";e={$_.NotAfter}},
 @{n="DaysLeft";e={($_.NotAfter - $_.NotBefore).Days}}

The output from this command displays several details about each installed
certificate, as in the following screenshot:

2.	 To validate the certificates on every server in your organization, use the
following code:
foreach($server in Get-ExchangeServer) {
 Get-ExchangeCertificate -Server $Server |
 select @{n="Server";e={$Server}},
 Status,
 Thumbprint,
 IsSelfSigned,
 @{n="Expires";e={$_.NotAfter}},
 @{n="DaysLeft";e={($_.NotAfter - $_.NotBefore).Days}}
}

3.	 This code will generate output similar to the previous example, but will add the server
name to each record returned:

Server Monitoring and Troubleshooting

386

How it works...
By itself, the Get-ExchangeCertificate provides a great deal of information about
each certificate installed. In each of the previous examples, we've customized the output
generated by this cmdlet to show only a few key details about each certificate installed on
one or more servers.

Using the previous examples, we can quickly determine if any certificates have been installed
incorrectly or are in a pending state waiting for completion by checking the Status property.
In addition, we can also see when the certificate expires, by checking the Expires and
DaysLeft properties.

There's more...
Let's take the previous example and rewrite it as a PowerShell function. Add the following code
to your shell session:

function Test-CertificateHealth {
 param(
 [Parameter(
 Position=0,
 ValueFromPipelineByPropertyName=$true,
 Mandatory=$true)]
 [String]$Name
)

 process {
 Get-ExchangeCertificate -Server $Name |
 select @{n="Server";e={$Name}},
 Status,
 Thumbprint,
 IsSelfSigned,
 @{n="Expires";e={$_.NotAfter}},
 @{n="DaysLeft";e={($_.NotAfter - $_.NotBefore).Days}}
 }
}

Wrapping this code up into a function provides a nice clean method for writing some useful
one-liners. For example, we can do a quick check against every server in the organization to
see if any of the installed certificates are going to expire in the next three months:

$servers = Get-ExchangeServer
$servers | Test-CertificateHealth |
 Where-Object {$_.DaysLeft -le 90}

Chapter 12

387

For those with large enterprise environments, with a mix of Exchange 2007 and 2010 servers,
this code may be especially helpful when it comes to tracking down certificates that will
soon expire.

See also

Generating a certificate request in Chapter 10, Exchange Security

Installing certificates and enabling services in Chapter 10, Exchange Security

Importing certificates on Multiple Exchange servers in Chapter 10,
Exchange Security

Creating PowerShell functions in Chapter 2, Exchange Management Shell
Common Tasks









13
Scripting with the

Exchange Web
Services Managed

API

In this chapter, we will cover the following:

Getting connected to EWS

Sending e-mail messages with EWS

Working with impersonation

Searching mailboxes

Retrieving the headers of an e-mail message

Deleting e-mail items from a mailbox

Creating calendar items

Exporting attachments from a mailbox

Introduction
Exchange Web Services (EWS) was introduced with Exchange 2007 and it gave developers the
ability to write applications that previously required the use of multiple APIs such as CDOEx,
Exchange OLEDB, WebDAV, and more. Today, developers can call Exchange Management Shell
cmdlets from .NET-managed applications to perform administrative tasks programmatically.
When it comes to manipulating the contents of a mailbox, such as creating or modifying
calendar items, e-mail messages, contacts, or tasks, developers now use EWS.

















Scripting with the Exchange Web Services Managed API

390

Working with EWS requires formatting and sending an XML request over HTTP and parsing the
XML response from an Exchange server. Initially, developers used either raw XML or
auto-generated proxy classes in Visual Studio to do this, and it required some very verbose
code that was difficult to read and debug. Fortunately, the Exchange Web Services team
developed and released the EWS Managed API in April of 2009. The EWS Managed API is a
fully object-oriented .NET wrapper for the EWS XML protocol that makes life much easier for
application developers.

Applications written using the Managed API require a fraction of the code that developers had
to write previously when working with raw XML or auto-generated proxy classes. This makes
for a huge increase in productivity because the code is easier to read and troubleshoot, and
the learning curve for new developers is much lower. The good news is that this is also true for
Exchange administrators that want to write advanced PowerShell scripts that utilize EWS. The
EWS Managed API can be used to do things in PowerShell that are not possible with Exchange
Management Shell cmdlets. The EWS Managed API assembly can be loaded into the shell,
and, with the right permissions, you can immediately start building scripts that can access
and manipulate the data within any mailbox inside the organization.

In this chapter, we will cover some of the key concepts of using EWS in your PowerShell
scripts, such as connecting to EWS, sending e-mail messages, and working with items in one
or more mailboxes. The end goal is to give you a basic understanding of the EWS Managed
API so that you can start building some basic scripts or deciphering the code samples you
come across on the internet or within the TechNet documentation.

Performing some basic steps
To work with the code samples in this chapter, follow these steps to download the EWS
Managed API:

1.	 Download the EWS Managed API from the following URL:
http://www.microsoft.com/downloads/en/details.
aspx?FamilyID=c3342fb3-fbcc-4127-becf-872c746840e1

2.	 For x64 (64-bit) computers, download and run EwsManagedApi.msi. For x86
(32-bit) computers, download and run EwsManagedApi32.msi.

3.	 During the installation, select a destination folder such as C:\EWS or choose
the default directory C:\Program Files\Microsoft\Exchange\Web
Services\1.1. You will need to note the location so you can import the
Microsoft.Exchange.WebServices.dll assembly into the shell.

You can use either a standard PowerShell console or the Exchange Management Shell to run
the code for each recipe in this chapter.

Chapter 13

391

Getting connected to EWS
When working with EWS, you first need to create an instance of the ExchangeService
class that can be used to send SOAP messages to an Exchange server. This class has several
properties and methods that can be used to specify explicit credentials, set the web service's
end-point URL, or make a connection using the built-in AutoDiscover client. In this recipe,
you'll learn how to make a connection to EWS that can be used to run custom scripts against
the web service.

How to do it...
1.	 The first thing we need to do is load the EWS Managed API assembly into the shell:

Add-Type -Path C:\EWS\Microsoft.Exchange.WebServices.dll

2.	 Now we can create an instance of the ExchangeService class:
$svc = New-Object Microsoft.Exchange.WebServices.Data.
ExchangeService

3.	 At this point, we can use the AutoDiscoverUrl method to determine the EWS
end-point on the closest Client Access Server for the mailbox with a particular
SMTP address:

$svc.AutoDiscoverUrl("administrator@contoso.com")

Now that we have an Exchange service connection created, we can send e-mail messages,
create and modify items within a mailbox, and perform other tasks.

How it works...
Before we can start working with the classes in the EWS Managed API, the assembly must
be loaded so that the .NET Framework types are available when running scripts that utilize
the API. This is only valid for the current shell session, and, if you will be creating scripts,
you'll want to make sure that this is always the first thing that is done before invoking any
code. We used the Add-Type cmdlet in the previous example to load the assembly, but
this is also valid:

[System.Reflection.Assembly]::LoadFile(
 "C:\ews\Microsoft.Exchange.WebServices.dll"
)

This is basically the longhand method of doing the same thing we did before: loading an
unreferenced assembly into the shell environment. Notice that in both examples, we are
using the path C:\EWS. This is not the default path where the assembly is installed, but you
can copy it to any folder of your choice.

Scripting with the Exchange Web Services Managed API

392

When creating an instance of the ExchangeService class, we have the option of versioning
the connection. For example:

$svc=New-Object Microsoft.Exchange.WebServices.Data.ExchangeService `
-ArgumentList "Exchange2010_SP1"

Here we are passing the Exchange version to the ExchangeService class constructor.
When you do not provide a value, the most recent version of Exchange will be used, which
in this case would be Exchange 2010 SP1, since were using the 1.1 version of the API. The
values for that can be used for Exchange are Exchange2007_SP1, Exchange2010, and
Exchange2010_SP1.

Since we didn't specify credentials when creating the ExchangeService object, we need to
provide the SMTP address associated with the mailbox of the currently logged on user when
calling the AutoDiscoverUrl method.

There's more...
If you want to use explicit credentials when creating your ExchangeService object rather
than using the credentials of the currently logged on user, you need to do a couple of things
differently. The following code will create an instance of the ExchangeService class using
an alternate set of credentials:

$svc = New-Object Microsoft.Exchange.WebServices.Data.ExchangeService
$svc.Credentials = New-Object `
Microsoft.Exchange.WebServices.Data.WebCredentials `
-ArgumentList "administrator","P@ssw0rd01","contoso.com"

In addition, you also have the option of setting the EWS URL manually:

$url = "https://ex1.contoso.com/EWS/Exchange.asmx"
$svc.Url = New-Object System.Uri -ArgumentList $url

Although it is possible to set the URL manually, developers use AutoDiscover as a best
practice because it allows the API to determine the best Client Access Server that should be
used as the web service's end-point. A hard-coded URL value could potentially mean a broken
script if things change later on in your environment.

Certificates matter
Just like Outlook Web App, the EWS virtual directory is secured with an SSL certificate. If you
are still using the self-signed certificates that are installed by default on Client Access Servers,
you'll need to override a security check done by the API to validate the certificate, otherwise
you will be unable to connect. To do this, we can use the ServicePointManager class
in the System.Net namespace. This class can be used to hook up a certificate �����������validation
callback method, and, as long as that method returns $true, the API will consider the
self-signed certificate to be trusted:

Chapter 13

393

$svc = New-Object Microsoft.Exchange.WebServices.Data.ExchangeService

$spm = [System.Net.ServicePointManager]
$spm::ServerCertificateValidationCallback = {$true}

$svc.AutoDiscoverUrl("administrator@contoso.com")

Certificate validation callback methods are written to perform additional checks on a
certificate. These callback methods return a Boolean value that indicates whether or not
a certificate can be trusted. Instead of writing a callback method, we're assigning a script
block that returns $true to the ServerCertificateValidationCallback property.
This forces the API to consider any EWS end-point to be secure, regardless of the status of
the certificate used to secure it. Keep in mind, that self-signed certificates are considered to
be a bootstrap security configuration so connections to Exchange can be secured out of the
box. The best practice is to replace these certificates with trusted commercial or enterprise
PKI certificates.

Sending e-mail messages with EWS
As we saw back in Chapter 2, Exchange Management Shell Common Tasks, we can use the
built-in PowerShell v2 cmdlet Send-MailMessage to send e-mail messages. This can be a
useful tool when writing scripts that need to send notifications, but the EWS Managed API has
several distinct advantages over this approach. In this recipe, we'll take a look at how to send
e-mail messages through EWS and why this might be a better option for organizations that
have an Exchange infrastructure in place.

How to do it...
1.	 First, we'll import the EWS Managed API assembly, create an instance of the

ExchangeService class, and set the EWS end-point using AutoDiscover:
Add-Type -Path C:\EWS\Microsoft.Exchange.WebServices.dll

$svc = New-Object `
-TypeName Microsoft.Exchange.WebServices.Data.ExchangeService

$svc.AutoDiscoverUrl("administrator@contoso.com")

2.	 Next, we'll create an instance of the EmailMessage class:
$msg = New-Object `
-TypeName Microsoft.Exchange.WebServices.Data.EmailMessage `
-ArgumentList $svc

Scripting with the Exchange Web Services Managed API

394

3.	 At this point, we can set specific properties on the $msg object such as the subject,
body, and one or more recipients:

$msg.Subject = "Test E-Mail"
$msg.Body = "This is a test"
$msg.From = "administrator@contoso.com"
$msg.ToRecipients.Add("sysadmin@contoso.com")
$msg.SendAndSaveCopy()

Once this code has been executed, the message is sent to sysadmin@contoso.com.

How it works...
When we send e-mail messages through EWS, we don't have to worry about specifying an
SMTP server since the message is transmitted through the web service. This allows our
code to run on any machine that has PowerShell v2 installed, and we don't need to modify
the receive connectors on the hub transport servers to allow a specific host to relay mail.
Additionally, EWS will allow us to use AutoDiscover to automatically find the correct end-point,
which prevents the need to hardcode server names into our scripts.

Setting the Subject, Body, and From properties of an EmailMessage object is pretty
straightforward. We simply need to assign a value as we would with any other object. Adding
recipients requires that we use the Add method of the ToRecipients property. If you have
multiple recipients that must be addressed, you can call this method for each one, or you can
loop through a collection using the ForEach-Object cmdlet:

$to = "sysadmin@contoso.com","IT@contoso.com","help@contoso.com"
$to | ForEach-Object {$msg.ToRecipients.Add($_)}

When you call the Add method, you'll notice that the ToRecipients property will be returned
for each address added to the message. If you want to simply call this method without having
anything returned to the screen, pipe the command to Out-Null:

$msg.ToRecipients.Add("sales@contoso.com") | Out-Null

In addition, we can also carbon copy and blind copy recipients on the message:

$msg.CcRecipients.Add("sales@contoso.com") | Out-Null
$msg.BccRecipients.Add("dmsith@contoso.com") | Out-Null

Finally, if you do not want to save a copy of the message in the Sent Items folder, you can
simply use the Send method:

$msg.Send()

Chapter 13

395

Keep in mind that, since we did not provide credentials when connecting to EWS, the user
running this code will need to have a mailbox on the server which corresponds to the From
address being used. Since we are connecting with our currently logged on credentials, the
message must be sent from the mailbox of the user running the code.

There's more...
Instead of typing all of the commands required to instantiate the Exchange service
object, it makes much more sense to put this code into a reusable function. Call
AutoDiscover, create the e-mail message object, and set all of the required properties,
Consider the following example:

function Send-EWSMailMessage {
 param(
 [Parameter(
 Position=0,
 Mandatory=$true,
 ValueFromPipelineByPropertyName=$true
)]
 [String[]]
 $PrimarySmtpAddress,

 [Parameter(
 Position=1, Mandatory=$true
)]
 [String]
 $From,

 [Parameter(
 Position=2, Mandatory=$true
)]
 [String]
 $Subject,

 [Parameter(
 Position=3, Mandatory=$true
)]
 [String]
 $Body
)

 begin {
 Add-Type -Path C:\EWS\Microsoft.Exchange.WebServices.dll
 }

Scripting with the Exchange Web Services Managed API

396

 process {
 $svc = New-Object `
 -TypeName Microsoft.Exchange.WebServices.Data.ExchangeService

 $svc.AutodiscoverUrl($From)

 $msg = New-Object `
 -TypeName Microsoft.Exchange.WebServices.Data.EmailMessage `
 -ArgumentList $svc

 $msg.Subject = $Subject
 $msg.Body = $Body

 $PrimarySmtpAddress | %{
 $msg.ToRecipients.Add($_) | Out-Null
 }

 $msg.SendAndSaveCopy()
 }
}

This is an advanced function that can be run in a couple of different ways. Notice that the
first parameter is called PrimarySmtpAddress and it accepts a value from the pipeline by
property name. This will allow us to add the function to the Exchange Management Shell and
take advantage of the pipeline to send e-mail messages. For example, once this function has
been loaded into EMS, we can do something like this:

Get-Mailbox -OrganizationalUnit contoso.com/sales |
 Send-EWSMailMessage -From administrator@contoso.com `
 -Subject 'Sales Meeting' `
 -Body 'Tomorrows sales meeting has been cancelled'

Here, you can see that we're retrieving all the users from the Sales OU and piping those
objects to our Send-EWSMailMessage function. One message will be addressed and sent to
each recipient because the PrimarySmtpAddress parameter receives its value from each
object that comes across the pipeline.

Since the PrimarySmtpAddress parameter also accepts an array of string objects, we can
run the function and specify a list of recipients, as shown in the following example:

Send-EWSMailMessage -From administrator@contoso.com `
-PrimarySmtpAddress help@contoso.com,IT@contoso.com `
-Subject 'Critical alert on EXCH-MBX-02' `
-Body 'EXCH-MBX-02 Server is low on disk space'

Chapter 13

397

If needed, you could extend this function by adding parameters for Cc and Bcc recipients
and call the RecipientsTo.Add method for each type inside the process block.

See also

Sending SMTP e-mails through PowerShell in Chapter 2, Exchange Management
Shell Common Tasks

Working with impersonation
When building PowerShell scripts that leverage the EWS Managed API, we can use
impersonation to access a user's mailbox on their behalf without having to provide their
credentials. In order to utilize impersonation, we need permissions inside the Exchange
organization, and then we need to configure the ExchangeService connection object
with the impersonated user ID. In this recipe, you'll learn how to assign the permissions
and write a script that uses EWS impersonation.

Getting ready
You will need to use the Exchange Management Shell in this recipe in order to assign
permissions for Application Impersonation.

How to do it...
The first thing you need to do is assign your account the ApplicationImpersonation
RBAC role from the Exchange Management Shell:

New-ManagementRoleAssignment -Role ApplicationImpersonation `
-User administrator

After we've been granted the permissions, we need to import the EWS Managed API assembly
and configure the ExchangeService connection object:

Add-Type -Path C:\EWS\Microsoft.Exchange.WebServices.dll

$svc = New-Object -TypeName `
Microsoft.Exchange.WebServices.Data.ExchangeService

$id = New-Object -TypeName `
Microsoft.Exchange.WebServices.Data.ImpersonatedUserId `
-ArgumentList "SmtpAddress","dsmith@contoso.com"



Scripting with the Exchange Web Services Managed API

398

$svc.ImpersonatedUserId = $id
$svc.AutoDiscoverUrl("dsmith@contoso.com")

We now have an ExchangeService connection to EWS as the impersonated user dsmith.

How it works...
In order to access a mailbox using the permissions of an impersonated user, we use RBAC to
create a management role assignment for the user that will be calling the code. Like any other
management role assignment, this can be done directly for one user or to a group. Keep in
mind that you can also associate scopes when assigning the ApplicationImpersonation
role. The command shown in our example would give the administrator account impersonation
rights to any mailbox in the organization.

Once we have impersonation rights, we load the EWS Managed API assembly and create an
instance of the ExchangeService class to bind to an EWS end-point on a CAS server.

Notice that, when we create the $id object, we're creating an instance of the
ImpersonatedUserId class and passing two values to the constructor. First, we specify
that we want to identify the user to impersonate, using a data type of SmtpAddress. The next
value passed to the constructor is the actual e-mail address for the impersonated user. The
final step is to assign this object to the $svc.ImpersonatedUserId property.

Now that our ExchangeService connection is configured for impersonation, we can
do things like send e-mails, modify calendar items, or search the mailbox of the
impersonated user.

There's more...
Let's take a look at how we could use impersonation using a modified version of the
Send-EwsMailMessage function, included in the Sending e-mail messages with EWS
recipe earlier in this chapter. Add the following function to your shell session:

function Send-EWSMailMessage {
 param(
 [Parameter(
 Position=0,
 Mandatory=$true,
 ValueFromPipelineByPropertyName=$true
)]
 [String[]]
 $PrimarySmtpAddress,

 [Parameter(
 Position=1, Mandatory=$true

Chapter 13

399

)]
 [String]
 $From,

 [Parameter(
 Position=2, Mandatory=$true
)]
 [String]
 $Subject,

 [Parameter(
 Position=3, Mandatory=$true
)]
 [String]
 $Body
)

 begin {
 Add-Type -Path C:\EWS\Microsoft.Exchange.WebServices.dll
 }

 process {
 $svc = New-Object `
 -TypeName Microsoft.Exchange.WebServices.Data.ExchangeService

 $id = New-Object -TypeName `
 Microsoft.Exchange.WebServices.Data.ImpersonatedUserId `
 -ArgumentList "SmtpAddress",$From

 $svc.ImpersonatedUserId = $id

 $svc.AutodiscoverUrl($From)

 $msg = New-Object `
 -TypeName Microsoft.Exchange.WebServices.Data.EmailMessage `
 -ArgumentList $svc

 $msg.Subject = $Subject
 $msg.Body = $Body

 $PrimarySmtpAddress | %{
 $msg.ToRecipients.Add($_) | Out-Null
 }

Scripting with the Exchange Web Services Managed API

400

 $msg.SendAndSaveCopy()
 }
}

As you can see, we've modified this version of the function so that the SMTP address specified
using the -From parameter is used as the impersonated user ID. Let's say that you are
logged into Windows using the domain administrator account, which has been assigned the
ApplicationImpersonation RBAC role. Once the function has been loaded into the shell
you could execute the following command:

Send-EWSMailMessage -From sysadmin@contoso.com `
-PrimarySmtpAddress help@contoso.com `
-Subject 'Critical alert on EXCH-MBX-04' `
-Body 'EXCH-MBX-04 Server is low on disk space'

Using this command, the e-mail message is sent through EWS from the sysadmin mailbox.
The message appears to the recipient as if the sysadmin account had sent it.

Searching mailboxes
The EWS Managed API can be used to search one or more folders within an Exchange
mailbox. The latest version of the API supports searches using Advanced Query Syntax,
allowing us to search folders using the indexes created by the Exchange Search service.
This makes searching a mailbox folder very fast and less resource intensive than methods
that were used with previous versions of the API. In this recipe, you'll learn how to search the
contents of a mailbox through PowerShell and the EWS Managed API.

How to do it...
1.	 First, load the assembly, create the ExchangeService object and connect to EWS:

Add-Type -Path C:\EWS\Microsoft.Exchange.WebServices.dll
$svc = New-Object Microsoft.Exchange.WebServices.Data.
ExchangeService
$svc.AutoDiscoverUrl("administrator@contoso.com")

2.	 Next, create a view for the total number of items that should be returned from the
search:
$view = New-Object -TypeName `
Microsoft.Exchange.WebServices.Data.ItemView `
-ArgumentList 100

Chapter 13

401

3.	 The next step is to create a property set containing all the properties of each
message we want returned, and then associate that property set with the $view
object created in the last step:
$propertyset = New-Object Microsoft.Exchange.WebServices.Data.
PropertySet (
 [Microsoft.Exchange.WebServices.Data.BasePropertySet]::IdOnly,
 [Microsoft.Exchange.WebServices.Data.ItemSchema]::Subject,
 [Microsoft.Exchange.WebServices.Data.ItemSchema]::
HasAttachments,
 [Microsoft.Exchange.WebServices.Data.ItemSchema]::DisplayTo,
 [Microsoft.Exchange.WebServices.Data.ItemSchema]::DisplayCc,
 [Microsoft.Exchange.WebServices.Data.ItemSchema]::DateTimeSent,
 [Microsoft.Exchange.WebServices.Data.ItemSchema]::
DateTimeReceived
)

$view.PropertySet = $propertyset

4.	 Next, define a search query using AQS syntax:
$query = "Subject:sales"

5.	 We can then perform the search using the FindItems method of our Exchange
Service object:
$items = $svc.FindItems("Inbox",$query,$view)

6.	 Finally, loop through each item and return a custom object that contains the
properties for each message:
$items | Foreach-Object{
 New-Object PSObject -Property @{
 Id = $_.Id.ToString()
 Subject = $_.Subject
 To = $_.DisplayTo
 Cc = $_.DisplayCc
 HasAttachments = [bool]$_.HasAttachments
 Sent = $_.DateTimeSent
 Received = $_.DateTimeReceived
 }
}

When executing this code, any of the last 100 items in the administrator inbox that have the
word "sales" in the subject line will be returned.

Scripting with the Exchange Web Services Managed API

402

How it works...
Since we are not supplying credentials when creating the ExchangeService object and
we're not using impersonation, the search will be performed in the administrator mailbox, as
this is the logged-on user. You probably noticed that the property set only contains a few key
properties of each message. Although there are many more available properties that can be
returned, as a best practice we should only retrieve the properties that interest us. That way, if
we are executing the code over and over, perhaps even against multiple mailboxes, we are not
burdening the Exchange servers by requesting unnecessary data.

The key to a successful search is constructing the appropriate AQS query. You can use an
AQS query for specific properties of a message using word phrase restriction, date range
restriction, or message type restriction. For example, instead of querying using the Subject
property, we can search for messages retrieved within a certain time frame:

$svc.FindItems(
 "Inbox",
 "Sent:01/01/2011..04/15/2011",
 $view
)

Notice that the first value passed in the call to FindItems is the folder that we want to
search, next is the AQS query that specifies that we only want to retrieve items that were
sent between specific dates in January and April, and finally we pass in the $view object
that specifies the total items to return with a defined property set.

There are a number of well-known mailbox folders that can be searched using the
FindItems method:

ArchiveDeletedItems: The Deleted Items folder in the archive mailbox

ArchiveMsgFolderRoot: The root of the message folder hierarchy in the
archive mailbox

ArchiveRecoverableItemsDeletions: The root of the folder hierarchy of
recoverable items that have been soft-deleted from the Deleted Items folder of
the archive mailbox

ArchiveRecoverableItemsPurges: The root of the hierarchy of
recoverable items that have been hard-deleted from the Deleted Items
folder of the archive mailbox

ArchiveRecoverableItemsRoot: The root of the Recoverable Items folder
hierarchy in the archive mailbox

ArchiveRecoverableItemsVersions: The root of the Recoverable Items
versions folder hierarchy in the archive mailbox













Chapter 13

403

ArchiveRoot: The root of the folder hierarchy in the archive mailbox

Contacts: The Contacts folder

DeletedItems: The Deleted Items folder

Drafts: The Drafts folder

Inbox: The Inbox folder

JunkEmail: The Junk E-mail folder

RecoverableItemsDeletions: The root of the folder hierarchy of recoverable
items that have been soft-deleted from the Deleted Items folder

RecoverableItemsPurges: The root of the folder hierarchy of recoverable items
that have been hard-deleted from the Deleted Items folder

RecoverableItemsRoot: The root of the Recoverable Items folder hierarchy

RecoverableItemsVersions: The root of the Recoverable Items versions folder
hierarchy in the archive mailbox

SearchFolders: The Search Folders folder, also known as the Finder folder

SentItems: The Sent Items folder

For details, see the list of members for the WellKnownFolderName enumeration in the
Exchange Web Services Managed API 1.1 SDK documentation on MSDN:

http://msdn.microsoft.com/en-us/library/dd633710(v=exchg.80).aspx

There's more...
One piece of interesting information not returned by the code in the previous example is the
body of the message. This is because there are a number of properties that the FindItems
method will not return, one of which is the message body. In order to retrieve the message
body, we can bind to the message after the search has been performed using the ID of
the message.

Let's extend the previous code so that we can retrieve the body of the message and
add the ability to impersonate the target mailbox. Add the following code to a file called
MailboxSearch.ps1:

Param($query,$mailbox)

Add-Type -Path C:\EWS\Microsoft.Exchange.WebServices.dll
$svc = New-Object Microsoft.Exchange.WebServices.Data.ExchangeService

$id = New-Object -TypeName `
Microsoft.Exchange.WebServices.Data.ImpersonatedUserId `
-ArgumentList "SmtpAddress",$mailbox

























Scripting with the Exchange Web Services Managed API

404

$svc.ImpersonatedUserId = $id
$svc.AutoDiscoverUrl($mailbox)

$view = New-Object -TypeName `
Microsoft.Exchange.WebServices.Data.ItemView `
-ArgumentList 100

$propertyset = New-Object Microsoft.Exchange.WebServices.Data.
PropertySet (
 [Microsoft.Exchange.WebServices.Data.BasePropertySet]::IdOnly,
 [Microsoft.Exchange.WebServices.Data.ItemSchema]::Subject,
 [Microsoft.Exchange.WebServices.Data.ItemSchema]::HasAttachments,
 [Microsoft.Exchange.WebServices.Data.ItemSchema]::DisplayTo,
 [Microsoft.Exchange.WebServices.Data.ItemSchema]::DisplayCc,
 [Microsoft.Exchange.WebServices.Data.ItemSchema]::DateTimeSent,
 [Microsoft.Exchange.WebServices.Data.ItemSchema]::DateTimeReceived
)

$view.PropertySet = $propertyset

$items = $svc.FindItems("Inbox",$query,$view)

$items | Foreach-Object{
 $emailProps = New-Object -TypeName `
 Microsoft.Exchange.WebServices.Data.PropertySet(
 [Microsoft.Exchange.WebServices.Data.BasePropertySet]::IdOnly,
 [Microsoft.Exchange.WebServices.Data.ItemSchema]::Body
)

 $emailProps.RequestedBodyType = "Text"
 $email = [Microsoft.Exchange.WebServices.Data.EmailMessage]::Bind(
 $svc, $_.Id, $emailProps
)

 New-Object PSObject -Property @{
 Id = $_.Id.ToString()
 Subject = $_.Subject
 To = $_.DisplayTo
 Cc = $_.DisplayCc
 HasAttachments = [bool]$_.HasAttachments
 Sent = $_.DateTimeSent
 Received = $_.DateTimeReceived
 Body = $email.Body
 }
}

Chapter 13

405

When running the script, provide values for the -Query and -Mailbox parameters:

c:\MailboxSearch.ps1 -query "Sent:04/01/2011..04/16/2011" `
-mailbox sysadmin@contoso.com

When the script executes, the first 100 items in the sysadmin mailbox that were sent
between April 1 and 16 will be returned. The script will output a custom object for each item
that contains the Id, Subject, To, Cc, HasAttachments, Sent, Received, and Body
properties. Notice that, even though the body might be composed as HTML, we've only
requested the text type for the body in the property set used when binding to the message.

See also
Exporting attachments from a mailbox

Retrieving the headers of an e-mail message
When troubleshooting mail flow issues, you may need to take a look at the headers of an
e-mail message. This is easy to do through Outlook for items in your own mailbox, but if you
want to do this on behalf of another user, it requires you to have permissions to their mailbox,
and then you need to open their mailbox in Outlook to view the headers. In this recipe, we'll
take a look at how you can retrieve the headers of a message in your own mailbox, as well as
another user's mailbox, using the EWS Managed API and PowerShell.

How to do it...
1.	 First, load the assembly, create the ExchangeService object, and connect to EWS:

Add-Type -Path C:\EWS\Microsoft.Exchange.WebServices.dll
$svc = New-Object Microsoft.Exchange.WebServices.Data.
ExchangeService
$svc.AutoDiscoverUrl("administrator@contoso.com")

2.	 Next, create a view for the total number of items that should be returned from the
search:
$view = New-Object -TypeName `
Microsoft.Exchange.WebServices.Data.ItemView `
-ArgumentList 100



Scripting with the Exchange Web Services Managed API

406

3.	 The next step is to create a property set that will include the message ID. We then
need to associate that property set with the $view object created in the last step:
$schema = [Microsoft.Exchange.WebServices.Data.ItemSchema]

$propertyset = New-Object –TypeName `
Microsoft.Exchange.WebServices.Data.PropertySet (
 $schema::IdOnly
)

$view.PropertySet = $propertyset

4.	 Next, define a search query using AQS syntax:
$query = "Subject:'Important Sales Information'"

5.	 We can then perform the search, using the FindItems method of our Exchange
Service object:
$items = $svc.FindItems("Inbox",$query,$view)

6.	 Loop through each item returned by the search and retrieve the message header
information:
$items | Foreach-Object{

 $headerview = New-Object -TypeName `
 Microsoft.Exchange.WebServices.Data.ItemView `
 -ArgumentList 1

 $headerprops = New-Object –TypeName `
 Microsoft.Exchange.WebServices.Data.PropertySet (
 $schema::InternetMessageHeaders
)

 $headerview.PropertySet = $headerprops

 $message = [Microsoft.Exchange.WebServices.Data.Item]::Bind(
 $svc, $_.Id, $headerview.PropertySet
)

 $message.InternetMessageHeaders
}

Chapter 13

407

How it works...
The code in this example is very similar to what we used in the recipe for Searching mailboxes.
Again, since we are not supplying credentials when creating the ExchangeService object,
and we're not using impersonation, the search will be performed in the administrator mailbox.
When calling the FindItems method, we're specifying the folder to search, the AQS search
query to be used, and the item view.

For each item returned by the search, we need to create a new view and property set for the
single instance of the message that returns only the message headers. We then bind to the
message and return the header information.

The header information returned will provide details of which server received the message,
the content type of the message, the subject and date, and all of the X-Headers included with
the message.

There are a number of well-known mailbox folders that can be searched using the FindItems
method. For details, see the recipe earlier in this chapter titled Searching mailboxes.

There's more...
Of course, we'll primarily need to retrieve the message headers for an item in another
user's mailbox. Here is an extended version of our previous code that implements EWS
impersonation and provides parameters for the mailbox and folder to be searched. Add the
following code to a script called GetMessageHeaders.ps1:

Param($query, $mailbox, $folder)

Add-Type -Path C:\EWS\Microsoft.Exchange.WebServices.dll
$svc = New-Object Microsoft.Exchange.WebServices.Data.ExchangeService

$id = New-Object -TypeName `
Microsoft.Exchange.WebServices.Data.ImpersonatedUserId `
-ArgumentList "SmtpAddress",$mailbox

$svc.ImpersonatedUserId = $id
$svc.AutoDiscoverUrl($mailbox)

$view = New-Object -TypeName `
Microsoft.Exchange.WebServices.Data.ItemView `
-ArgumentList 100

$schema = [Microsoft.Exchange.WebServices.Data.ItemSchema]

$propertyset = New-Object –TypeName `

Scripting with the Exchange Web Services Managed API

408

Microsoft.Exchange.WebServices.Data.PropertySet (
 $schema::IdOnly
)

$view.PropertySet = $propertyset

$query = $query

$items = $svc.FindItems($folder,$query,$view)

$items | Foreach-Object{

 $headerview = New-Object -TypeName `
 Microsoft.Exchange.WebServices.Data.ItemView `
 -ArgumentList 1

 $headerprops = New-Object –TypeName `
 Microsoft.Exchange.WebServices.Data.PropertySet (
 $schema::InternetMessageHeaders
)

 $headerview.PropertySet = $headerprops

 $message = [Microsoft.Exchange.WebServices.Data.Item]::Bind(
 $svc, $_.Id, $headerview.PropertySet
)

 $message.InternetMessageHeaders
}

To run the script against an alternate mailbox, provide the query and the SMTP address
associated with the mailbox:

c:\GetMessageHeaders.ps1 -query "subject:critical information" '
-mailbox sysadmin@contoso.com `
-folder Inbox

When the script executes, the headers for each message matching the AQS query will
be returned.

See also
Working with impersonation

Chapter 13

409

Deleting e-mail items from a mailbox
The Exchange Management Shell provides cmdlets that allow you to delete items from one
or more mailboxes. This can also be done with the EWS Managed API, and you can get a little
more control over how the items are deleted compared to what the built-in cmdlets provide.
In this recipe, you'll learn how to use the EWS Managed API to delete items from one or more
mailboxes using PowerShell�.

How to do it...
1.	 First, load the assembly, create the ExchangeService object, and connect to EWS:

Add-Type -Path C:\EWS\Microsoft.Exchange.WebServices.dll
$svc = New-Object Microsoft.Exchange.WebServices.Data.
ExchangeService
$svc.AutoDiscoverUrl("administrator@contoso.com")

2.	 Next, create a view for the total number of items that should be returned from
the search:
$view = New-Object -TypeName `
Microsoft.Exchange.WebServices.Data.ItemView `
-ArgumentList 100

3.	 Create a property set that will include the message id. We then need to associate that
property set with the $view object created in the last step:
$propertyset = New-Object Microsoft.Exchange.WebServices.Data.
PropertySet (
 [Microsoft.Exchange.WebServices.Data.BasePropertySet]::IdOnly
)

$view.PropertySet = $propertyset

4.	 Next, define a search query using AQS syntax:
$query = "Body:'inappropriate content'"

5.	 We can then perform the search using the FindItems method of our Exchange
Service object:
$items = $svc.FindItems("Inbox",$query,$view)

Scripting with the Exchange Web Services Managed API

410

6.	 For each item returned by the search, bind to the message and call the Delete
method, specifying the delete mode that should be used:
$items | Foreach-Object{
 $message = [Microsoft.Exchange.WebServices.Data.Item]::Bind(
 $svc, $_.Id
)

 $message.Delete("SoftDelete")
}

How it works...
The code in this example is very similar to what we used in the recipe for Searching mailboxes.
Again, since we are not supplying credentials when creating the ExchangeService object
and we're not using impersonation, the search will be performed in the administrator mailbox.
When calling the FindItems method, we're specifying the folder to search, the AQS search
query to be used, and the item view.

Notice that this time we only need to specify the ID of the message in the property set. This
is because we only want to call the Delete method on the item class and we don't need
to retrieve any other data from the message. In this example, we've defined a string of
inappropriate content that should be found in the message body.

We loop through each item returned by the search and create an instance of the message
using the item class Bind method. At that point, we call the Delete method, which accepts
one of three values from the DeleteMode enumeration. The valid values for this method are
defined as follows:

HardDelete: Permanently deletes the item

MoveToDeletedItems: Moves the item to the Deleted Items folder of the
target mailbox

SoftDelete: The item is moved to the dumpster and can be recovered by the
mailbox owner using the Recoverable Items feature of Outlook and OWA

Having the ability to specify the delete mode gives you a little more control when deleting
items in a mailbox than the built-in Exchange Management Shell cmdlets.

There are a number of well-known mailbox folders that can be searched for using
the FindItems method. For details, see the recipe earlier in this chapter titled
Searching mailboxes.







Chapter 13

411

There's more...
Whenever you are executing code that can perform a destructive operation, it makes sense to
implement the ShouldProcess method introduced with PowerShell v2 advanced functions.
Implementing ShouldProcess in an advanced function gives you the ability to add the
common risk mitigation parameters such as -Whatif and -Confirm. The following function
takes our previous code up a notch, written as an advanced function that implements
ShouldProcess. Add the following function to your Exchange Management Shell session:

function Remove-MailboxItem {
 [CmdletBinding(
 SupportsShouldProcess = $true, ConfirmImpact = "High"
)]
 param(
 [Parameter(
 Position=0,
 Mandatory=$true,
 ValueFromPipelineByPropertyName=$true
)]
 [String]
 $PrimarySmtpAddress,

 [Parameter(
 Position = 1, Mandatory = $true
)]
 [String]
 $SearchQuery,

 [Parameter(
 Position = 2, Mandatory = $false
)]
 [int]
 $ResultSize = 100,

 [Parameter(
 Position = 3, Mandatory = $false
)]
 [string]
 $Folder = "Inbox",

 [Parameter(
 Position = 4, Mandatory = $false
)]
 [ValidateSet(
 'HardDelete',
 'SoftDelete',
 'MoveToDeletedItems'

Scripting with the Exchange Web Services Managed API

412

)]
 $DeleteMode = "MoveToDeletedItems"
)

 begin {
 Add-Type -Path C:\EWS\Microsoft.Exchange.WebServices.dll
 }

 process {
 $svc = New-Object -TypeName `
 Microsoft.Exchange.WebServices.Data.ExchangeService

 $id = New-Object -TypeName `
 Microsoft.Exchange.WebServices.Data.ImpersonatedUserId `
 -ArgumentList "SmtpAddress",$PrimarySmtpAddress

 $svc.ImpersonatedUserId = $id
 $svc.AutoDiscoverUrl($PrimarySmtpAddress)

 $view = New-Object -TypeName `
 Microsoft.Exchange.WebServices.Data.ItemView `
 -ArgumentList 100

 $propertyset = New-Object –TypeName `
 Microsoft.Exchange.WebServices.Data.PropertySet (
 [Microsoft.Exchange.WebServices.Data.BasePropertySet]::IdOnly
)

 $view.PropertySet = $propertyset

 $items = $svc.FindItems($Folder,$SearchQuery,$view)

 $items | %{
 $message = [Microsoft.Exchange.WebServices.Data.Item]::Bind(
 $svc, $_.Id
)

 if ($pscmdlet.ShouldProcess($message.Subject)) {
 $message.Delete($DeleteMode)
 }
 }
 }
}

Chapter 13

413

We now have a Remove-MailboxItem function that supports impersonation, allowing the
code to execute against one or more mailboxes. In addition, it supports pipeline input by
property name, so you can utilize the Get-Mailbox cmdlet to delete items from multiple
mailboxes using a simple one-liner. Consider the following example:

Get-Mailbox -ResultSize Unlimited |
 Remove-MailboxItem -SearchQuery "body:free ipad" `
 -DeleteMode HardDelete

In this example, we pipe every mailbox in the organization down to the Remove-MailboxItem
function , which will perform a hard delete on each message that matches the AQS query. Since
the ConfirmImpact property is set to High, you'll be prompted for confirmation before each
message is deleted.

To force a delete operation without confirmation, you can set the –Confirm parameter to
$false. To do this on a single mailbox, you could use the following syntax:

Remove-MailboxItem -PrimarySmtpAddress sysadmin@contoso.com `
-SearchQuery “body:buy cheap drugs” `
-DeleteMode HardDelete `
-Confirm:$false

You can also use the -Whatif parameter here to test the command to ensure that the
correct messages will be deleted:

Remove-MailboxItem -PrimarySmtpAddress sysadmin@contoso.com `
-SearchQuery “body:buy cheap drugs” `
-DeleteMode HardDelete `
-Whatif

See also
Searching mailboxes

Creating calendar items
Imagine that you have a monitoring script written in PowerShell that checks memory, CPU, or
disk utilization on all of your Exchange servers. In addition to alerting your team of any critical
problems via e-mail, it might also be nice to schedule a reminder in the future for non-critical
issues by creating a calendar item in one or more mailboxes. The EWS Managed API makes it
easy to create a calendar item through PowerShell with just a few commands.



Scripting with the Exchange Web Services Managed API

414

How to do it...
1.	 First, load the assembly, create the ExchangeService object, and connect to EWS:

Add-Type -Path C:\EWS\Microsoft.Exchange.WebServices.dll
$svc = New-Object Microsoft.Exchange.WebServices.Data.
ExchangeService
$svc.AutoDiscoverUrl("administrator@contoso.com")

2.	 Next, create a new Appointment object:
$appt = New-Object -TypeName `
Microsoft.Exchange.WebServices.Data.Appointment `
-ArgumentList $svc

3.	 Fill out the subject and body for the appointment:
$appt.Subject = "Review Disk Space Utilization on Server(s)"
$appt.Body = "EXCH-01 has only 40% free disk space on drive c:"

4.	 Set the start and end times for the appointment:
$start = (Get-Date).AddDays(1)
$appt.Start = $start
$appt.End = $start.AddHours(1)

5.	 Add one or more required attendees to the appointment:
$appt.RequiredAttendees.Add("help@contoso.com")
$appt.RequiredAttendees.Add("sysadmin@contoso.com")

6.	 Finally, save the appointment and send a copy to all attendees:
$mode = [Microsoft.Exchange.WebServices.Data.SendInvitationsMode]
$appt.Save($mode::SendToAllAndSaveCopy)

How it works...
Using the code in this example, we are creating the calendar item in the mailbox of the
user calling the code. The Appointment class is used to create the item and, after we've
created an instance of this class, we set the details of the appointment using the Subject
and Body properties.

The Start and End properties need to be assigned a DateTime object. In our example,
we're using the AddDays method of the current date and time to set the start time for the
meeting in exactly 24 hours in the future. We then use the same object to increment the
time by one hour and assign that to the End property for the appointment.

Chapter 13

415

When adding attendees to the appointment, we use the RequiredAttendees.Add method.
When you call the Add method, you'll notice that the RequiredAttendees property will
be returned for each required attendee added to the appointment. If you want to simply
call this method without having anything returned to the screen, there's a few ways you
can accomplish this. First, you can pipe the command to Out-Null:

$appt.RequiredAttendees.Add("help@contoso.com") | Out-Null
$appt.RequiredAttendees.Add("sysadmin@contoso.com") | Out-Null

Another way you'll see this written is by casting the commands to [void]:

[void]$appt.RequiredAttendees.Add("help@contoso.com")
[void]$appt.RequiredAttendees.Add("sysadmin@contoso.com")

Finally, you can assign the commands to $null, which is said to be the fastest method:

$null = $appt.RequiredAttendees.Add("help@contoso.com")
$null = $appt.RequiredAttendees.Add("sysadmin@contoso.com")

In addition to adding required attendees, we can also add one or more optional attendees
to the item:

$null = $appt.OptionalAttendees.Add("IT@contoso.com")

Finally, when calling the Save method for the appointment, you need to pass in a value
from the SendInvitationsMode enumeration. The valid values that can be used are
SendOnlyToAll, SendToAllAndSaveCopy, and SendToNone.

There's more...
Let's make this easier by wrapping all of the code up into a reusable function. Add the
following code to your PowerShell session:

function New-CalendarItem {
 [CmdletBinding()]
 param(
 [Parameter(
 Position=1, Mandatory=$true
)]
 [String]
 $Subject,
 [Parameter(
 Position=2, Mandatory=$true
)]
 [String]
 $Body,
 [Parameter(

Scripting with the Exchange Web Services Managed API

416

 Position=3, Mandatory=$true
)]
 [String]
 $Start,
 [Parameter(
 Position=4, Mandatory=$true
)]
 [String]
 $End,
 [Parameter(
 Position=5
)]
 [String[]]
 $RequiredAttendees,
 [Parameter(
 Position=8
)]
 [String]
 $Mailbox
)

 begin{
 Add-Type -Path C:\EWS\Microsoft.Exchange.WebServices.dll
 }

 process {
 $svc = New-Object -TypeName `
 Microsoft.Exchange.WebServices.Data.ExchangeService

 $id = New-Object -TypeName `
 Microsoft.Exchange.WebServices.Data.ImpersonatedUserId `
 -ArgumentList "SmtpAddress",$Mailbox

 $svc.ImpersonatedUserId = $id
 $svc.AutodiscoverUrl($Mailbox)

 $appt = New-Object -TypeName `
 Microsoft.Exchange.WebServices.Data.Appointment `
 -ArgumentList $svc

 $appt.Subject = $Subject
 $appt.Body = $Body
 $appt.Start = $Start
 $appt.End = $End

Chapter 13

417

 if($RequiredAttendees) {
 $RequiredAttendees | Foreach-Object{
 $null = $appt.RequiredAttendees.Add($_)
 }
 }

 $mode = [Microsoft.Exchange.WebServices.Data.SendInvitationsMode]
 $appt.Save($mode::SendToAllAndSaveCopy)
 }
}

This function can be used to create a calendar item in the mailbox of another user. For this
to work, you'll need to be assigned the ApplicationImpersonation RBAC role. To run the
function, you might do something like this:

New-CalendarItem -Subject "Reboot Server" `
-Body "Reboot EXCH-SRV01 server after 5PM today" `
-Start (Get-Date).AddHours(6) `
-End (Get-Date).AddHours(7) `
-Mailbox sysadmin@contoso.com `
-RequiredAttendees help@contoso.com,IT@contoso.com

In this example, the calendar item is created in the sysadmin mailbox. Multiple attendees will
be added to the item and will receive an invitation for the meeting when it is saved. Notice
that the meeting is scheduled for six hours in the future, with a total duration of one hour.

If you want to create calendar items in multiple mailboxes, loop through a collection with the
Foreach-Object cmdlet and run the function for each user:

$start = Get-Date "Monday, April 18, 2011 8:00:00 AM"
$end = $start.AddHours(1)

Get-DistributionGroupMember ITSupport | Foreach-Object{
 New-CalendarItem -Subject "Install Hotfixes" `
 -Body "Start patching servers after 5PM today" `
 -Start $start `
 -End $end `
 -Mailbox $_.PrimarySMTPAddress
}

In this example, each member of the IT Support distribution group will have a calendar item
created in their mailbox that will serve as a reminder; no attendees will be added to the item.

Scripting with the Exchange Web Services Managed API

418

See also
Sending e-mail messages with EWS

Exporting attachments from a mailbox
The Exchange Management Shell provides cmdlets that allow you to export e-mail messages
from one mailbox to another mailbox. These e-mails can then be exported to a PST file, or you
can open an alternate mailbox and access the data. The only limitation is that this provides no
option to export only the message attachments. The EWS Managed API has this functionality
built in. In this recipe, you'll learn how to export e-mail attachments from an Exchange mailbox
using PowerShell.

How to do it...
1.	 First, load the assembly, create the ExchangeService object, and connect to EWS:

Add-Type -Path C:\EWS\Microsoft.Exchange.WebServices.dll
$svc = New-Object Microsoft.Exchange.WebServices.Data.
ExchangeService
$svc.AutoDiscoverUrl("administrator@contoso.com")

2.	 Next, create a view for the total number of items that should be returned from the
search:
$view = New-Object -TypeName `
Microsoft.Exchange.WebServices.Data.ItemView `
-ArgumentList 100

3.	 Next, create a property set and then associate that property set with the
$view object:
$base = [Microsoft.Exchange.WebServices.Data.BasePropertySet]

$propertyset = New-Object –TypeName `
Microsoft.Exchange.WebServices.Data.PropertySet (
 $base::FirstClassProperties
)

$view.PropertySet = $propertyset



Chapter 13

419

4.	 Define a query for the type of attachments you are looking for. For example, if you are
looking for attachments in Microsoft Word format, use the following:
$query = "Attachment:docx"

5.	 We can then perform the search using the FindItems method of our Exchange
Service object:
$items = $svc.FindItems("Inbox",$query,$view)

6.	 Finally, we loop through each item returned and export the attachments to the
specified folder on the file system, such as c:\export:
$items | ForEach-Object{
 if($_.HasAttachments) {
 $_.Load()
 $_.Attachments | ForEach-Object {
 $_.Load()
 $filename = $_.Name
 Set-Content -Path c:\export\$filename `
 -Value $_.Content `
 -Encoding Byte `
 -Force
 }
 }
}

How it works...
The code in this example is very similar to what we used in the recipe for Searching Mailboxes.
Again, since we are not supplying credentials when creating the ExchangeService object
and we're not using impersonation, the search will be performed in the administrator mailbox.
When calling the FindItems method, we're specifying the folder to search, the AQS search
query to be used, and the item view.

As you can see, we're using the Attachment property in the AQS query. This allows us to
search for a string within the file name or inside the file itself. When the results are returned,
we loop through each message, and use the Load method to load the attachment, which
allows us to then access the Content property of each attachment. The Content property
stores the message attachment as a byte array, which can easily be used to recreate the file
using the Set-Content cmdlet by specifying the encoding as Byte.

There are a number of well-known mailbox folders that can be searched using the FindItems
method. For details, see the recipe earlier in this chapter titled Searching mailboxes.

Scripting with the Exchange Web Services Managed API

420

There's more...
Like many of our previous examples, reusability is key. Let's take this code and add a few
enhancements so it can be run via a PowerShell script. Add the following code to a file called
AttachmentExport.ps1:

Param($folder, $query, $path, $mailbox)

Add-Type -Path C:\EWS\Microsoft.Exchange.WebServices.dll
$svc = New-Object Microsoft.Exchange.WebServices.Data.ExchangeService

$id = New-Object -TypeName `
Microsoft.Exchange.WebServices.Data.ImpersonatedUserId `
-ArgumentList "SmtpAddress",$mailbox

$svc.ImpersonatedUserId = $id
$svc.AutoDiscoverUrl($mailbox)

$view = New-Object -TypeName `
Microsoft.Exchange.WebServices.Data.ItemView `
-ArgumentList 100

$base = [Microsoft.Exchange.WebServices.Data.BasePropertySet]

$propertyset = New-Object –TypeName `
Microsoft.Exchange.WebServices.Data.PropertySet (
 $base::FirstClassProperties
)

$view.PropertySet = $propertyset

$items = $svc.FindItems($folder,$query,$view)

$items | Foreach-Object{
 if($_.HasAttachments) {
 $_.Load()
 $_.Attachments | ForEach-Object {
 $_.Load()
 $filename = $_.Name

 Set-Content -Path $path\$filename `
 -Value $_.Content `
 -Encoding Byte `
 -Force

Chapter 13

421

 }
 }
}

Using this script, we can export the attachments from one or more mailboxes since we've
included the code to support impersonation. Just make sure your account has been assigned
the ApplicationImpersonation RBAC role when running this script against another
mailbox. Let's say we wanted to export all of the Excel files that are attached to messages
in the sysadmin mailbox. Run this script with the following syntax:

c:\AttachmentExport.ps1 -folder inbox `
-mailbox sysadmin@contoso.com `
-query "attachment:xls" `
-path c:\Attachments

You can also export all attachments simply by using a wildcard in the search query:

c:\AttachmentExport.ps1 -folder inbox `
-mailbox sysadmin@contoso.com `
-query "attachment:*" `
-path c:\Attachments

Keep in mind that, since our item view is set to 100, we may need to increase the number if
we want to search through mailbox folders with a higher item count.

See also
Searching mailboxes

A
Exchange Management Shell reference

This appendix provides additional information related to the Exchange Management Shell
(EMS). You can use this section as a reference for finding commonly-used automatic shell
variables and type accelerators, along with a listing of commonly-used EMS scripts that are
installed with Exchange 2010. Additionally, common filterable properties supported by EMS
cmdlets that include filter parameters are outlined in detail.

Commonly-used shell variables
PowerShell and the Exchange Management Shell provide several automatic variables. The
following table provides a list of commonly-used automatic variables with a description for
each one:

Variable Name Description
$$ Contains the last token in the last command received.
$? Contains the execution status of the last command.
$^ Contains the first token in the last command received.
$_ Contains the current object being processed within a

pipeline.
$Args Contains an array of undeclared arguments received by

function, script, or script block.
$Error Contains an array of error objects recorded in the current

shell session. The latest error can be accessed using the zero
index of the array, that is, $error[0].

$Exbin References the full path to the Exchange Server\Bin
directory. This variable is only present when starting the
shell using the Exchange Management Shell shortcut on a
machine with the Exchange tools installed.

Appendix A

424

Variable Name Description
$ExScripts References the full path to the Exchange scripts directory.

This variable is only present when starting the shell using the
Exchange Management Shell shortcut on a machine with the
Exchange tools installed.

$False Provides a Boolean false value when used in commands and
scripts.

$ForEach Contains the enumerator inside a ForEach-Object loop.
$Home Contains the full path to the user's home directory.
$Host Contains an object that represents the current PowerShell

host application.
$Input Contains the enumerator for items passed to a function.

The $Input variable can access the current object being
processed within a pipeline.

$MaximumHistoryCount Specifies the maximum number of entries that can be saved
in the command history in the current shell session.

$Null Provides a NULL or empty value when used in commands
and scripts.

$Profile Contains the full path to the PowerShell profile for the current
user and current host application.

$PSHome Contains the full path to the installation directory of Windows
PowerShell.

$Pwd Contains the path to the current location.
$True Provides a Boolean true value.

To view the variables currently defined in your shell session, run Get-Variable. You can also
read more about PowerShell variables by running the Get-Help <TopicName> cmdlet on
the following About topics:

about_Automatic_Variables

about_Environment_Variables

about_Preference_Variables







Appendix A

425

The preceding topics only reference PowerShell specific variables, and not
the shell variables that are specific to the Exchange Management Shell.

Commonly-used type accelerators
Type accelerators, also referred to as type shortcuts, allow you to create an object of a specific
.NET Framework type without having to enter the entire type name. This is a feature that is
supported by both PowerShell and the Exchange Management Shell, and allows you to reduce
the amount of typing required when creating an object or explicitly typing a variable. The
following table lists some of the most commonly-used type shortcuts:

Type shortcut .NET framework type
[int] System.Int32

[long] System.Int64

[string] System.String

[bool] System.Boolean

[byte] System.Byte

[double] System.Double

[decimal] System.Decimal

[datetime] System.DateTime

[array] System.Array

[hashtable] System.Collections.HashTable

[switch] System.Management.Automation.
SwitchParameter

[adsi] System.DirectoryServices.DirectoryEntry

Appendix A

426

Scripts available in the $ExBin directory
The following table lists some of the most commonly-used EMS PowerShell scripts that are
installed with Exchange 2010:

Name Description
AddReplicaToPFRecursive.ps1 Adds a new server to the replication list for

a public folder and all folders beneath it in
the hierarchy

AddUsersToPFRecursive.ps1 Adds a user and their permissions to the
client permissions list for a public folder and
all folders beneath it in the hierarchy

AggregatePFData.ps1 Aggregates and reports information
collected by multiple EMS public folder
cmdlets

CheckDatabaseRedundancy.ps1 Monitors the redundancy of replicated
mailbox databases

CheckInvalidRecipients.ps1 Fixes recipient objects that have multiple
primary SMTP addresses defined

CollectOverMetrics.ps1 Reports on database availability group,
switchover, and failover metrics

CollectReplicationMetrics.ps1 Reports on replication status and statistics
for databases

ConvertTo-MessageLatency.ps1 Provides end-to-end latency information
gathered from message tracking logs

DatabaseMaintSchedule.ps1 Generates maintenance and quota
notification schedule time based on a set of
input values

enable-CrossForestConnector.ps1 Configures a send connector for cross forest
trust for anonymous users

Export-RetentionTags.ps1 Exports retention tags to an external file
get-setuplog.ps1 Displays analysis of the Exchange setup log

created during installation

get-AntispamFilteringReport.ps1 Generates a report on anti-spam filtering
get-AntispamSCLHistogram.ps1 Reports on all entries for the Content Filter

and groups by SCL values
get-
AntispamTopBlockedSenderDomains.ps1

Reports on the top 10 (unless specified
otherwise) sender domains blocked by
anti-spam agents

Appendix A

427

Name Description
get-AntispamTopBlockedSenderIPs.ps1 Reports on the top 10 (unless specified

otherwise) sender IPs blocked by anti-spam
agents.

get-AntispamTopBlockedSenders.ps1 Reports on the top 10 (unless specified
otherwise) senders blocked by anti-spam
agents.

get-AntispamTopRBLProviders.ps1 Reports on the top 10 (unless specified
otherwise) reasons for rejection by blocklist
providers.

get-AntispamTopRecipients.ps1 Reports on the top 10 (unless specified
otherwise) recipients rejected by anti-spam
agents.

install-AntispamAgents.ps1 Installs the anti-spam agents on a transport
server.

Reset-AntispamUpdates.ps1 Removes the anti-spam agents from a
transport server.

Import-RetentionTags.ps1 Imports retention tags from an external file
MailboxDatabaseReseedUsingSpares.
ps1

Validates the safety of the environment,
before swapping failed database copy to a
spare disk and reseeding.

Move-TransportDatabase.ps1 Moves the queue database to an alternate
disk on a transport server.

MoveAllReplicas.ps1 Moves all public folder content from one
server to another.

MoveMailbox.ps1 Works like the Move-Mailbox cmdlet in
Exchange 2007 and performs synchronous
mailbox moves.

new-TestCasConnectivityUser.ps1 Creates a test user that can be used when
testing connectivity on CAS servers.

Prepare-MoveRequest.ps1 Prepares mailboxes for cross-forest mailbox
moves.

RedistributeActiveDatabases.ps1 Attempts to redistribute active databases
evenly across a number of mailbox servers
within a DAG.

RemoveReplicaFromPFRecursive.ps1 Removes a public folder replica and all
folders beneath it in the hierarchy.

RemoveUserFromPFRecursive.ps1 Removes a user from the client permissions
list for a public folder and all folders
beneath it in the hierarchy.

Appendix A

428

Name Description
ReplaceReplicaOnPFRecursive.ps1 Replaces a server with a new server in the

replication list for a public folder and all
folders beneath it in the hierarchy

ReplaceUserPermissionOnPFRecursive.
ps1

Replaces the permissions of a user for a
public folder with a new set of permissions
and applies it to all folders beneath it in the
hierarchy

ReplaceUserWithUserOnPFRecursive.
ps1

Replaces a user for a new user on the
client permissions list for a public folder
and applies to all folders beneath it in the
hierarchy

ResetCasService.ps1 Resets virtual directory on CAS
ResetSearchIndex.ps1 Rebuilds full-text index catalog
StartDagServerMaintenance.ps1 Initiates DAG server maintenance
StopDagServerMaintenance.ps1 Stops DAG server maintenance and

resumes mailbox database copies
Troubleshoot-DatabaseLatency.ps1 Diagnoses disk subsystem issues (used by

SCOM)
Troubleshoot-DatabaseSpace.ps1 Troubleshoots log growth (used by SCOM)

Scripts may be added to this directory as you install rollup updates and service packs, and
some of them will only be present when a specific server role is installed. For example,
the anti-spam scripts will only be available on transport servers. To view all scripts in the
$ExScripts folder, run Get-ChildItem $exscripts –Filter *.ps1.

Properties that can be used with the Filter parameter
There are a number of EMS cmdlets that provide a -Filter parameter which can be used to
narrow searches based on the value of an OPATH property. These properties can also map to
a particular LDAP attribute.

The following table lists some of the commonly-used properties and the cmdlets that can be
used to query their values using the -Filter parameter:

Appendix A

429

Property Name Attribute Cmdlets Supported Input Value
Alias mailNickname Get-DistributionGroup

Get-
DynamicDistributionGroup

Get-Mailbox

Get-MailContact

Get-MailPublicFolder

Get-MailUser

Get-Recipient

String/Wildcard

City City Get-Contact

Get-Recipient

Get-User

String/Wildcard

Company Company Get-Contact

Get-Recipient

Get-User

String/Wildcard

Database homeMDB Get-Mailbox

Get-Recipient

Mailbox database

Identity

DN
Department department Get-Contact

Get-Recipient

Get-User

String/Wildcard

Appendix A

430

Property Name Attribute Cmdlets Supported Input Value
DisplayName displayName Get-CASMailbox

Get-Contact

Get-DistributionGroup

Get-
DynamicDistributionGroup

Get-Group

Get-Mailbox

Get-MailContact

Get-MailPublicFolder

Get-MailUser

Get-Recipient

Get-UMMailbox

Get-User

String/Wildcard

DistinguishedName distinguishedName Get-CASMailbox

Get-Contact

Get-DistributionGroup

Get-
DynamicDistributionGroup

Get-Group

Get-Mailbox

Get-MailContact

Get-MailPublicFolder

Get-MailUser

Get-Recipient

Get-UMMailbox

Get-User

DN

Appendix A

431

Property Name Attribute Cmdlets Supported Input Value
EmailAddresses proxyAddresses Get-CASMailbox

Get-DistributionGroup

Get-
DynamicDistributionGroup

Get-Mailbox

Get-MailContact

Get-MailPublicFolder

Get-MailUser

Get-Recipient

Get-UMMailbox

E-mail Address

FirstName givenName Get-Contact

Get-Recipient

Get-User

String/Wildcard

HiddenFromAddress
ListsEnabled

msExchHideFrom
AddressLists

Get-DistributionGroup

Get-
DynamicDistributionGroup

Get-Mailbox

Get-MailContact

Get-MailPublicFolder

Get-MailUser

Get-Recipient

$true
$false

HomePhone homePhone Get-Contact

Get-User

String/Wildcard

LastName sn Get-Contact

Get-Recipient

Get-User

String

Manager manager Get-Contact

Get-Recipient

Get-User

String/Wildcard

Appendix A

432

Property Name Attribute Cmdlets Supported Input Value
Name name Get-CASMailbox

Get-Contact

Get-DistributionGroup

Get-
DynamicDistributionGroup

Get-Group

Get-Mailbox

Get-MailContact

Get-MailPublicFolder

Get-MailUser

Get-Recipient

Get-UMMailbox

Get-User

String

Phone telephoneNumber Get-Contact

Get-Recipient

Get-User

String/Wildcard

PrimarySmtpAddress N/A Get-CASMailbox

Get-DistributionGroup

Get-
DynamicDistributionGroup

Get-Mailbox

Get-MailContact

Get-MailPublicFolder

Get-MailUser

Get-Recipient

Get-UMMailbox

E-mail Address

Appendix A

433

Property Name Attribute Cmdlets Supported Input Value
SamAccountName SamAccountName Get-CASMailbox

Get-DistributionGroup

Get-Group

Get-Mailbox

Get-MailUser

Get-Recipient

Get-UMMailbox

Get-User

String

StateOrProvince st Get-Contact

Get-Recipient

Get-User

String/Wildcard

StreetAddress streetAddress Get-Contact

Get-User

String

Title title Get-Contact

Get-Recipient

Get-User

String

UserPrincipalName userPrincipalName Get-Mailbox

Get-MailUser

Get-Recipient

Get-User

User logon name
User principal
name/Wildcard

The preceding table only includes a list of commonly-used filterable properties that can be
used with the –Filter parameter. In addition to this list, there are several other properties
that can be filtered. See this article in the TechNet documentation for a complete list:

http://technet.microsoft.com/en-us/library/bb738155(EXCHG.80).aspx

Appendix A

434

Properties that can be used with the RecipientFilter
parameter

There are a number of EMS cmdlets that provide a -RecipientFilter parameter and can
be used to define the criteria used for dynamic distribution groups, e-mail address policies,
and address lists. The following cmdlets support this parameter:

New-AddressList

New-DynamicDistributionGroup

New-EmailAddressPolicy

New-GlobalAddressList

Set-AddressList

Set-DynamicDistributionGroup

Set-EmailAddressPolicy

Set-GlobalAddressList

The following table lists some of the common properties used when creating a recipient filter
using the -RecipientFilter parameter:

Property Name LDAP Attribute Input Value
Alias mailNickname String/Wildcard
City L String/Wildcard
Company company String/Wildcard
Database homeMDB Mailbox database

Identity

DN
DisplayName displayName String/Wildcard
EmailAddresses proxyAddresses E-mail address
ExternalEmailAddress targetAddress E-mail address
FirstName givenName String/Wildcard
HiddenFromAddressListsEnabled msExchHideFromAddressLists $true

$false
LastName Sn String/Wildcard
Manager Manager String/Wildcard
Name Name String

Office physicalDeliveryOfficeName String
SamAccountName SamAccountName String/Wildcard

















Appendix A

435

Property Name LDAP Attribute Input Value
StateOrProvince st String/Wildcard
StreetAddress streetAddress String
Title title String
UserPrincipalName userPrincipalName User logon name

User principal name/
Wildcard

The preceding table only includes a list of commonly used filterable properties that can
be used with the -RecipientFilter parameter. In addition to this list, there are several
other properties that can be filtered. See this article in the TechNet documentation for a
complete list:

http://technet.microsoft.com/en-us/library/bb738157(EXCHG.80).aspx

B
Advanced Query Syntax

This appendix provides additional information related to working with Advanced Query Syntax
(AQS) when performing queries with Exchange Search. Exchange 2010 SP1 introduces new
cmdlets that leverage Exchange Search for discovery purposes, and in addition, AQS can be
used to perform searches with the Exchange Web Services Managed API.

The following Exchange Management Shell cmdlets provide a -SearchQuery parameter that
can be used to define an AQS query:

New-MailboxSearch

Search-Mailbox

Set-MailboxSearch

The tables in this appendix outline the AQS keywords that can be used with these cmdlets to
perform queries in Exchange Search, along with the EWS Managed API.

Using the word phrase search
The following table outlines the properties that can be used to define an AQS query using a
word phrase restriction:

Property Examples Description
Attachments attachment:report.xlsx

attachment:salesreport.
docx

attachment:pptx

Searches for items that have an
attachment with a specific name such
as report.xlsx or salesreport.
docx. You can include partial file names,
as shown in the last example, to find
all messages with a certain extension.
The file body of attachments will also be
searched.

Cc Cc:administrator

Cc:sales@contoso.com

Searches for items where
administrator or sales@contoso.
com is included in the carbon copy line.







Appendix B

438

Property Example Description
From From:Bob

From:Bob Smith
Searches for items sent from Bob or Bob
Smith.

To To:Bob
To:Bob Smith

Searches for items sent to Bob or Bob
Smith.

Bcc Bcc:Bob
Bcc:Bob Smith

Searches for items where Bob was
included in the blind carbon copy line.

Subject Subject:sales
Subject:(Sales Meeting)

Searches for items with the word sales in
the subject line.

Searches for items with the words "sales"
or "meeting" in the subject line.

Body Body:financial
Content:financial

Searches for items where the word
"financial" appears in the message body.

Participants Participants:Bob Smith Searches for items with Bob Smith in the
To, Cc, or Bcc fields.

RetentionPolicy Retentionpolicy:
critical

Searches for items that have the critical
retention tag applied.

(Not Defined) Financial Report Searches for items that contain both
"Financial" and "Report" in all word phrase
properties.

When performing a word phrase search, the property names and search terms are case
insensitive. If you want an exact match, enclose the search query in double quotes, otherwise
the search will default to a prefix match. For example, searching for the term report would
match the word reporting unless enclosed in double quotes, indicating an exact search.

Examples
If you want to delete all messages in the administrator mailbox where the sender's e-mail
address is sales@contoso.com, use the following code�:

Search-Mailbox -Identity administrator `
-SearchQuery "from:sales@contoso.com" `
-DeleteContent `
-Force

Appendix B

439

If you want to create a discovery search based on messages that contain the phrase
Employee Salary in every mailbox, use the following code:

New-MailboxSearch -Name MySearch `
-TargetMailbox "Discovery Search Mailbox" `
-�������������������������������������� SearchQuery 'Body:"Employee Salary"' `
-MessageTypes Email `
-IncludeUnsearchableItems `
-LogLevel Full

Using a date range search
The following table outlines the properties that can be used to define an AQS query using a
date range restriction:

Property Example Description
Received Received:today

Received:04/22/2011

Received:01/01/2011..04/01/2011

Searches for items received today

Searches for items received on April 22

Searches for items received between
January 1 and April 1

Sent Sent:today

Sent:01/22/2011

Searches for items sent today

Searches for items sent on January 22

You can use relative dates when performing a date range restricted search. For example,
today, tomorrow, or yesterday can be used with the Received or Sent keywords.

You can use a specific day of the week: (Sunday, Monday, Tuesday, Wednesday,
Thursday, Friday, or Saturday) with the Received or Sent keywords.

You can also use a specific month: (January, February, March, April, May, June,
July, August, September, October, November, or December) with the Received
or Sent keywords.

Examples
If you want to delete all messages in the administrator mailbox that were received today,
use the following code:

Search-Mailbox -Identity administrator `
-SearchQuery "Received:today" `
-DeleteContent `
-Force

Appendix B

440

If you want to delete all messages in the administrator mailbox that have been received
between March and July, use the following code:

Search-Mailbox -Identity administrator `
-SearchQuery "Received:03/01/2011..07/01/2011" `
-DeleteContent `
-Force

Using the message type search
The following table outlines the properties that can be used to define an AQS query using a
message type restriction:

Property Example Description
Kind Kind:email

Kind:meetings

Kind:tasks

Kind:notes

Kind:docs

Kind:journals

Kind:contacts

Kind:im

Searches all email items

Searches all meeting items

Searches all task items

Searches all note items

Searches all doc items

Searches all journal items

Searches all contact items

Searches all im items

Examples
If you want to delete all contacts from a mailbox, use the following code:

Search-Mailbox -Identity administrator `
-SearchQuery "Kind:Contacts" `
-DeleteContent `
-Force

If you want to delete all notes from a mailbox, use the following code:

Search-Mailbox -Identity administrator `
-SearchQuery "Kind:Notes" `
-DeleteContent `
-Force

Appendix B

441

Using the logical connector search
The following table outlines the properties that can be used to define an AQS query using a
logical connector between two keywords:

Connector Example Description
AND Subject:sales AND Subject:

report
Searches for items with both "sales" and
"report" in the subject line

OR Subject:sales OR Subject:report Searches for items with the word "sales" or
"report" in the subject line

NOT NOT Body:sales

Body:(NOT sales)

Searches for items without the word "sales"
in the body

Examples
If you want to delete meeting items that have specific content in the body, such as the phrase
"Social Security Number", use the following code:

Search-Mailbox -Identity administrator `
-SearchQuery 'Body:"Social Security Number" AND Kind:Meeting' `
-DeleteContent `
-Force

If you want to perform a discovery search based on keywords used in either the body or
subject of the message in a particular mailbox, use the following code:

New-MailboxSearch -Name MyTestSearch `
-SourceMailboxes administrator `
-TargetMailbox "Discovery Search Mailbox" `
-SearchQuery 'Body:"Social Security Number" OR Subject:"SSN"' `
-MessageTypes Email `
-IncludeUnsearchableItems `
-LogLevel Full

Index
Symbols
$$ variable name 423
$() characters 23
$? variable name 423
$^ variable name 423
$_.EmailAddress object 161
$_ automatic variable 44
$_ variable name 423
$args variable 44
$Args variable name 423
$certificate variable 324
$credential object 68
$credential variable 67
$data variable 122
$Error variable name 423
$Exbin variable name 423
$exscripts directory 295, 300, 301, 302
$ExScripts variable name 424
$false 106
$False variable name 424
$ForEach variable name 424
$Home variable name 424
$Host variable name 424
$Input variable name 424
$logs variable 357
$mailboxes object 30, 41, 130
$mailboxes variable 30, 64, 150
$mailbox object 23, 31
$mailbox variable 80, 222
$MaximumHistoryCount variable name 424
$mbx variable 284
$msg object 394
$Name parameter 233
$name parameter 43
$name variable 23

$null value 102
$Null variable name 424
$number variable 37
$pass variable 89, 98
$password variable 87
$photos object 122
$profile object 52
$Profile variable name 424
$PSEmailServer 74
$PSHome variable name 424
$report object 159
$report variable 75
$servers array 28
$servers variable 219
$succedded variable 80
$svc.ImpersonatedUserId property 398
$true 217
$True variable name 424
$view object 406
(not defined) property 438
*-MailboxFolderPermission cmdlet 118
*-Service cmdlets 361, 362
-AcceptLargeDataLoss switch parameter 130
-AcceptMessagesOnlyFrom parameter 110
-AccessRights parameter 118
-ActivationOnly switch parameter 293
-AdminAuditLogParameters parameter 354
-AdminMailRecipients parameter 234
-Alias parameter 98
-AllowLegacyDNMismatch switch parameter

203
-Append parameter 26, 69, 78
-ArchiveOnly switch parameter 129
-ArchiveTargetDatabase 129
-AuditEnabled parameter 347
-Autosize parameter 25

444

-BadItemLimit parameter 130
-BalanceDbsByActivationPreference

parameter 296
-BatchName parameter 129, 134
-BodyAsHtml switch parameter 75, 368
-Body parameter 75
-BypassModerationFromSendersOrMembers

parameter 108
-BypassModertionFromSendersOrMembers

parameter 108
-CatalogOnly switch parameter 294
-ClusterName parameter 279
-ClusterPrimaryIP parameter 279
-Command parameter 76
-ComputerName parameter 231, 362, 364
-Confirm parameter 12, 413
-ConnectionStatus switch parameter 298
-ConnectionUri parameter 59
-Contains conditional operators 29
-ContentFilter parameter 132
-Counter parameter 231
-Count parameter 365
-Credential parameter 61, 67
-CustomRecipientWriteScope parameter 315
-Database parameter 151, 186, 380
-DeleteContent parameter 137
-DeletedItemRetention parameter 191
-DeleteExistingFiles switch parameter 294
-DetectOnly switch parameter 151
-DomainName parameter 322
-EdbFilePath parameter 185
-EmailAddresses parameter 104
-Enabled parameter 11
-EndDate parameters 271
-Equipment switch parameter 94
-EstimateResultsOnly parameter 137
-EventID parameter 261
-ExceptIfFrom parameter 250
-ExternalAudience parameter 113
-ExternalMessage parameter 113
-ExternalUrl parameter 224
-FileData parameter 62, 120
-Filter parameter

about 101, 106
alias property 429
city property 429
company property 429

database property 429
department property 429
DisplayName property 430
DistinguishedName property 430
EmailAddresses property 431
FirstName property 431
HiddenFromAddressListsEnabled property

431
HomePhone property 431
LastName property 431
Manager property 431
Name property 432
Phone property 432
PrimarySmtpAddress property 432
SamAccountName property 433
StateOrProvince property 433
StreetAddress property 433
Title property 433
UserPrincipalName property 433

-FolderScope 142
-FolderScope parameter 143
-ForceUpgrade parameter 167
-From parameter 400
-GetEffectiveUsers parameter 320
-Help New-Mailbox -Examples 14
-HiddenFromAddressListsEnabled parameter

106
-Identity parameter 9, 10, 12, 139, 285, 299,

380, 382
-IgnoreNamingPolicy switch parameter 173
-IgnoreNetwork parameter 286
-IncludeReport switch parameter 127
-InterfaceName parameter 279
-InternalMessage parameter 113
-Internal parameter 253
-InternalUrl parameter 224
-IsArchive switch parameter 132
-Join operator 71
-like operator 350
-LitigationHold parameter 345
-Location parameter 272
-Mailbox parameter 115
-MailboxRetention parameter 191
-ManagedBy parameter 108, 175
-MAPIBlockOutlookVersions parameter 230
-MAPIEnabled parameter 221
-match operator 217

445

-Member parameter 93, 160
-MessageSubject parameter 262
-ModerationEnabled parameter 108
-MonitoringContext parameter 381
-MountDialOverride parameter 290
-MoveComment parameter 290
-MoveToFolder parameter 116
-Name parameter value 98, 173
-NotContains conditional operators 29
-not operator 124
-NoTypeInformation switch parameter 70
-OrganizationalUnit parameter 101
-Password parameter 14, 87, 89
-Path parameter 78, 82, 134
-PreferredGlobalCatalog paramter 66
-PrimaryOnly switch parameter 129
-Priority parameter 252
-PrivateKeyExportable parameter 323
-ProhibitSendQuota 148
-ProhibitSendReceiveQuota parameter 148
-Property parameter 39
-Quiet parameter 365
-QuotaMessageType parameter 254
-quota parameter 46
-RecipientContainer parameter 93
-RecipientFilter parameter

about 102, 176, 434
alias property 434
city property 434
company property 434
database property 434
DisplayName property 434
EmailAddresses property 434
ExternalEmailAddress property 434
FirstName property 434
HiddenFromAddressListsEnabled property

434
LastName property 434
Manager property 434
Name property 434
Office property 434
SamAccountName property 434
StateOrProvince property 435
StreetAddress property 435
Title property 435
UserPrincipalName property 435

-Recipients parameter 262

-RecipientTypeDetails parameter 88, 221
-RecipientViewRoot 66
-ReplicationSchedule parameter 206
-ResultSize parameter 10, 159
-RetentionComment parameter 341, 346
-RetentionHoldEnabled parameter 341
-RetentionPolicy parameter 339
-SearchQuery parameter 137, 154, 344, 437
-SecurityGroup parameter 132
-SendModerationNotifications parameter

108
-SetPreferredDomainControllers parameter

66
-ShowDetails switch parameter 350
-ShowFinalDatabaseDistribution parameter

296
-SkipClientExperienceChecks parameter 291
-SkipLagChecks parameter 291
-Split operator 21
-SSLOffloading parameter 226
-StatusMailRecipients parameter 344
-Status parameter 133
-Status switch parameter 200
-StopProcessingRules parameter 115
-SubjectContainsWords parameter 116
-SubjectName parameter 322
-TargetDatabase parameter 127
-Thumbprint parameter 328
-TruncationLagTime parameter 292
-Type parameter 96
-Universal switch parameter 167
-UserMailInsert parameter 234
-UserPrincipalName parameter 98
-Verb parameter 15
-WhatIf parameter 11
-WritableRecipient parameter 320
<GroupName> attribute 172
[adsi] shortcut 425
[array] shortcut 425
[bool] shortcut 425
[byte] shortcut 425
[datetime] shortcut 425
[decimal] shortcut 425
[double] shortcut 425
[hashtable] shortcut 425
[int] shortcut 425
[long] shortcut 425

446

[Parameter ()] attribute 45
[string] shortcut 425
[switch] shortcut 425

A
AccessRights parameter 117
active directory

user photos, importing 119-122
active OWA

reporting on 230-233
ActiveSync

device, reporting on 235-238
managing 219-222

ActiveSync device access
controlling 233-235

ActiveSyncDeviceStatistics cmdlet 237
Add-ADPermission cmdlet 309
Add-DatabaseAvailabilityGroupServer cmdlet

283, 284
Add-DistributionGroupMember command 161
Add-MailboxDatabaseCopy cmdlet 287, 288
Add-MailboxPermission cmdlet 305
Add-Member cmdlet 39, 41
Add-NLBPortRule cmdlet 280
Add-Type cmdlet 391
AddDays method 145, 414
Add key 104
Add method 394, 415
AddReplicaToPFRecursive.ps1 426
address lists

creating 175, 176
membership, exporting to CSV file 177, 178
recipients, hiding from 105, 106

AddToRecipient action 249
AddUsersToPFRecursive.ps1 426
AdminAuditLogEnabled property 353
administrator audit logging

-AdminAuditLogParameters parameter 354
about 352
AdminAuditLogEnabled property 353
Get-AdminAuditLogConfig cmdlet 353
New-Mailbox cmdlet 354
Set-AdminAuditLogConfig cmdlet 353, 354
administrator audit logs
$logs variable 357

New-AdminAuditLogSearch cmdlet 355
ObjectModfied property 356
Remove-Mailbox cmdlet 356
Search-AdminAuditLog cmdlet 355
searching 355, 356
Set-Mailbox cmdlet 357
Where-Object cmdlet 356

AdminSessionADSettings global session
variable 66

Advanced Query Syntax. See AQS
AggregatePFData.ps1 426
alias property 429, 434
AllowConflicts switch parameter 95
AND connector 441
anti-spam agent logs

searching 269
searching, steps 269
working 270, 272

ApplicationId property 147
application servers

allowing, to relay mail 245, 246
AQS

about 154, 437
ArchiveDeletedItems 402
archive mailboxes

managing 332, 333
archive mailbox quotas

configuring 334, 335
ArchiveMsgFolderRoot 402
ArchiveRecoverableItemsDeletions 402
ArchiveRecoverableItemsPurges 402
ArchiveRecoverableItemsRoot 402
ArchiveRecoverableItemsVersions 402
ArchiveRoot 403
arrays

working with 27-30
Attachment property 419
attachments

from mailbox, exporting 418-421
attachments property 437
AuthMechanism parameter 246
AutoDiscoverUrl method 391
AutomateProcessing property 95
automatic replies settings

managing for user 111-113

447

average mailbox size per database
average mailbox size per databasedetermin-

ing 197, 198
Average property 197

B
BaseName property 122
Bcc property 438
Begin block 44, 46
BlockedClientVersions parameter 230
body property 438
Boolean value 393
break keyword 36

C
calendar items

creating 413
creating, steps 414
working 414-417

CAS1 client access server 218
CAS server

used by RPC clients, configuring 215-217
Cc property 437
Certificate Authority (CA) 322
certificate health

verifying 384-387
certificate request

-DomainName parameter 322
-PrivateKeyExportable parameter 323
-SubjectName parameter 322
generating 321-323
New-ExchangeCertificate cmdlet 321, 322

certificates
$certificate variable 324
-Thumbprint parameter 328
Deploy-ExchangeCertificate function 328
Enable-ExchangeCertificate cmdlet 324
ExchangeCertificate cmdlet 326
FileData parameter 324
Get-ExchangeCertificate cmdlet 324, 325,

328
Import-ExchangeCertificate cmdlet 323, 324
importing, on multiple exchange servers

326-329
installing 323

IsSelfSigned property 325
CheckDatabaseRedundancy.ps1 426
CheckInvalidRecipients.ps1 426
city property 429, 434
ClientAccessArray cmdlet 215
Client Access Server (CAS) 213
Client Access Server role

troubleshooting 381-383
ClientAuthenticationMethod 226
ClientAuthenticationMethod parameter 226
ClientVersion property 147, 229
Cluster Continuous Replication (CCR)

about 276
Cluster Network Object (CNO) 284
cmd.exe command prompt 17
CollectOverMetrics.ps1 426
CollectReplicationMetrics.ps1 426
comma-separated value (CSV) files 97
CompanyNews distribution group 174
company property 429, 434
Conditions property 250
ConfigureAttrbutes collection 121
ConfirmImpact property 413
ConflictResolutionOption parameter 204
Connect-ExchangeServer function 76
connectivity

managing 255-258
connectors

managing 240
managing, steps 240-242

contacts
about 403
mail-enabled contact, creating 90, 91
working with 90

Content property 419
ConvertFrom-CSV cmdlet 259
ConvertTo-Html cmdlet 368
ConvertTo-MessageLatency.ps1 426
ConvertTo-SecureString cmdlet 68, 87, 89
ConvertToDateTime method 379
corrupt mailboxes

detecting 150-152
fixing 150, 152

Count property 28, 194, 195
CPU utilization

checking 371
checking, steps 372-375

448

CreateItems 208
CreateSubfolders 208
CSV files

reports, exporting to 68-72
used, for creating recipients in bulk 97-100

CurrentUserCurrentHost location 51
CustomConfigWriteScope parameter 315
Custom DSN Messages

working with 253-255
custom objects

creating 38-41

D
data

restoring, from recovery database 201, 202
Database Availability Group (DAG)

$exscripts directory 300-302
-ConnectionStatus switch parameter 298
-Identity parameter 299
about 187, 276, 281
creating 281
DatabaseAvailabilityGroup cmdlet 281, 283
database status, reporting on 297
Get-DatabaseAvailabilityGroup cmdlet 282
Get-MailboxDatabaseCopyStatus cmdlet 297,

298
mailbox copies, adding 287
mailbox copies adding, steps 287
mailbox copies adding, working 287
mailbox servers, adding 283
mailbox servers adding, steps 283
mailbox servers adding, working 283
maintenance, performing on group members

295-297
network settings, configuring 285
New-DatabaseAvailabilityGroup cmdlet 281
redundancy, reporting on 297
replication, reporting on 297
Set-DatabaseAvailabilityGroup cmdlet 282
Test-ReplicationHealth cmdlet 300
working 281

DatabaseAvailabilityGroup cmdlet 281, 283
database backup status

reporting on 199-201

database copy
-CatalogOnly switch parameter 294
-DeleteExistingFiles switch parameter 294
-ManualResume switch parameter 294
MailboxDatabaseCopy cmdlet 294
reseeding 293
reseeding, steps 294
reseeding, working 294

DatabaseCopyAutoActivationPolicy mailbox
server 295

DatabaseMaintSchedule.ps1 426
database property 429, 434
databases

mailbox databases, managing 184-186
mailboxes total number, finding 194-196
moving, manually 188, 189
moving, to other locations 186-188
public folder databases, managing 184-186

DatabaseSize property 193
Databases root directory 189
database status

reporting on 297-299
date range search

about 439
examples 439, 440
received property 439
sent property 439

DateTime object 145, 200, 379
DefaultAccessLevel 235
Default keyword 36
default policy tags

about 337
Default Role Assignment Policy 317
Default script block 37
Delete-Item function 413
DeleteAlltems 208
DeleteAndAllowRecovery action 337
DeletedItems 403
DeleteOwnedItems 208
Delivery Status Notification (DSN) 253
Department attribute 101, 162
department property 429
Deploy-ExchangeCertificate function 328
Disable-DistributionGroup cmdlet 93
Disable-InboxRule cmdlet 114
Disable-Mailbox cmdlet 89

449

Disable-MailContact cmdlet 91
Disable-MailUser cmdlet 91
DisconnectDate property 124
DisconnectReason property 141
discovery search

-SearchQuery parameter 344
-StatusMailRecipients parameter 344
Get-MailboxSearch cmdlet 344
New-MailboxSearch cmdlet 343
performing 342, 343
Remove-MailboxSearch cmdlet 344

disk usage
reporting on 368-370

DisplayName properties 124
DisplayName property 430, 434
DistinguishedName property 430
DistributionGroup cmdlet 93, 108
distribution group membership

reporting on 158, 159
distribution group naming policies

working with 173
distribution groups

converting 166, 167
creating 92
managing 92
members, adding from external file 159-161
membership approval, working with 174, 175
naming policies, working with 171-173
upgrading 166, 167
working 92, 93

Drafts 403
DriveType property 370
dsmith mailbox 305
dynamic distribution group

hidden recipients, excluding from 164-166
dynamic distribution group membership

previewing 162, 163

E
e-mail items

deleting, from mailbox 409-413
e-mail message

headers, retrieving 405-408
e-mail messages

sending, with EWS 393-397

EditAlltems 208
EditOwnedItems 208
Else conditional statements 36
ElseIf statements 36
Else statement 35
EmailAddresses object 104
EmailAddresses property 31, 70, 71, 104,

431, 434
enable-CrossForestConnector.ps1 426
Enable-DistributionGroup cmdlet 93
Enable-Distribution group cmdlet 167
Enable-ExchangeCertificate cmdlet 324
Enable-InboxRule cmdlet 114
Enable-Mailbox cmdlet 80, 88
Enable-MailContact cmdlet 91
Enable-OutlookAnywhere cmdlet 226
End block 44, 46
Eseutil command 293
EventLog cmdlet 152
event logs

working with 365, 366
EWS

about 389, 390
certificate 392
certificate validation callback methods 393
connecting, steps 391
connecting to 391
e-mail messages, sending 393-397
working 391, 392

exchange
outlook clients, blocking from connecting

227-230
ExchangeCertificate cmdlet 326
Exchange Control Panel (ECP) 168, 234
Exchange hub 239
Exchange Management Console

about 54, 55, 423
launching 55
launching, steps 55-57
working 57

Exchange Management Console (EMC) 240
Exchange server Installation

-Path parameter 82
InstallExchange.ps1 script 83
scripting 81-83

Exchange Server uptime
reporting on 377-379

450

ExchangeService class 391, 392, 393, 398
ExchangeService class constructor 392
ExchangeService connection object 397
ExchangeService object 392, 400, 402, 405,

407, 409, 418, 419
Exchange Web Services. See EWS
ExcludeDumpste parameter 204
explicit credentials

$credential object 68
$credential variable 67
-Credential parameter 67
ConvertTo-SecureString cmdlet 68
credential object, creating 67
Get-Credential cmdlet 67
GetNetworkCredential method 68
New-Object cmdlet 68
Read-Host cmdlet 68
using, with Powershell cmdlets 67

Export-ActiveSyncLog cmdlet 237, 238
Export-CSV cmdlet 69, 70, 71
Export-Mailbox cmdlets 131
Export-RetentionTags.ps1 426
external CAS URLs

setting, steps 222-224
ExternalEmailAddress property 434
external file

members, adding to distribution group
159-161

F
FileData parameter 324
files

transferring, through remote shell connections
61

FindItems method 401-406
FirstName property 431, 434
flow control statements

using 34, 35
working 36, 37

FolderContent 208
FolderOwner 208
FolderVisible 208
For-EachObject script block 160
ForEach-Object cmdlet 18, 19, 29, 32, 33,

34, 64, 65, 98, 130, 352, 394
Foreach-Object cmdlet 417

ForEach-Object script 197
foreach loop 48, 104, 170
foreach loop statement 64
foreach statement 32, 33, 34, 65
Format-*cmdlets 26
Format-List cmdlet 25, 26
Format-Table cmdlet 25, 38
ForwardedEvents logs 366
FreePhysicalMemory property 376
from property 438
function keyword 43

G
gb multiplier 370
Get-* cmdlet 133
Get-ActiveSyncDevice cmdlet 236
Get-ActiveSync device cmdlet 234
Get-ActiveSyncDeviceStatistics cmdlet 236
Get-AdminAuditLogConfig cmdlet 353
Get-AgentLog cmdlet 271
Get-Alias cmdlet 19
get-AntispamFilteringReport.ps1 426
get-AntispamSCLHistogram.ps1 426
get-AntispamTopBlockedSenderDomains.ps1

426
get-AntispamTopBlockedSenderIPs.ps1 427
get-AntispamTopBlockedSenders.ps1 427
get-AntispamTopRBLProviders.ps1 427
get-AntispamTopRecipients.ps1 427
Get-CASMailbox cmdlet 228
Get-ChildItem cmdlet 122, 238
Get-ClientAccessArray cmdlet 215
Get-ClientAccessServer cmdlet 233
Get-Command 15, 16
Get-Command cmdlet 15
Get-Content cmdlet 62, 160
Get-Counter cmdlet 231, 232, 370
Get-Credential cmdlet 59, 67, 89
Get-DatabaseAvailabilityGroup cmdlet 282
Get-DatabaseAvailabilityGroupNetwork cmdlet

285, 287
Get-Date cmdlet 271
Get-DisconnectedMailbox function 141
Get-DiskUsage function 370
Get-DistributionGroupMember cmdlet 163
Get-EventLog cmdlet 366

451

Get-ExchangeCertificate cmdlet 324, 325,
328

Get-ExchangeServer cmdlet 217, 284
Get-Ex command 15
get-excommand 101
get-excommand shell variable 101
Get-Help 15, 16, 102
Get-Help *-EventLog 366
Get-Help about_ 15
Get-Help about_automatic_variables 11
get-help about_do command 33
get-help about_for 33
get-help about_while 33
Get-Help about_Wildcards 12
Get-Help cmdlet 10, 13
Get-Help Get-ClientAccessArray -full 215
Get-Help New-Mailbox -Detailed 88
Get-InboxRule cmdlet 114
Get-LogonStatistics cmdlet 147, 229
Get-Mailbox 15, 221
Get-Mailbox cmdlet 9, 10, 12, 13, 16, 17, 25,

30, 40, 42, 44, 69, 101, 102, 220, 244,
340

Get-Mailbox command 44
Get-MailboxDatabase cmdlet 124, 188, 189,

192, 193, 200
Get-MailboxDatabaseCopyStatus cmdlet 297,

298
Get-MailboxFolderPermission cmdlet 117,

119
Get-MailboxFolderStatistics 142
Get-MailboxFolderStatistics cmdlet 142
Get-Mailbox function 16
Get-MailboxPermission cmdlet 307
Get-MailboxRestoreRequest 204
Get-MailboxSearch cmdlet 344
Get-MailboxStatistics cmdlet 124, 139, 150,

197
Get-MailboxStatistics cmdlets 144
Get-ManagementRoleAssignment cmdlet

315, 320
Get-Member cmdlet 21
Get-MessageTrackingLog cmdlet 260
Get-MoveRequest cmdlet 127
Get-MoveRequestStatistics cmdlet 127

Get-OutlookAnywhere cmdlet 226, 227
Get-OwaVirtualDirectory cmdlet 222
Get-ProcessorUsage function 374
Get-PublicFolder cmdlets 211
Get-ReceiveConnector cmdlet 245
Get-Recipient cmdlet 162, 163
Get-RetentionPolicyTag cmdlet 339
Get-RoleGroupMember cmdlet 320
Get-SendConnector cmdlet 241
Get-Service cmdlet 361, 365
get-setuplog.ps1 426
Get-TransportRuleAction cmdlet 248
Get-TransportRulePredicate cmdlet 248
Get-TransportServer cmdlet 256
Get-UpTime function 379
Get-User cmdlet 40, 88, 149
Get-WinEvent cmdlet 367, 368
Get-WmiObject cmdlet 362
Get-WmiObject cmdlets 371
GetEnumerator method 29
GetNetworkCredential method 68
GetType() method 24
group members, Database Availability Group

(DAG)
$exscripts directory 295
-BalanceDbsByActivationPreference

parameter 296
-ShowFinalDatabaseDistribution parameter

296
BalanceDbsBySiteAndActivationPreference

parameter 296
DatabaseCopyAutoActivationPolicy mailbox

server 295
maintenance, performing on 295
maintenance, steps 295
RedistributeActiveDatabases.ps1 script 296
Resume-MailboxDatabaseCopy cmdlet 296
Suspend-MailboxDatabaseCopy cmdlet 295
working 295, 296

H
HardDelete 410
hash tables

working with 27-30
header firewall

implementing 273, 274

452

help system
using 13, 14

HiddenFromAddressListEnabled property 164
HiddenFromAddressListsEnabled property

164, 431, 434
hidden recipients

excluding, from dynamic distribution group
164-166

hierarchical address book (HAB) 178
hierarchical address books

configuring 178-181
HomePhone property 431

I
IMAP4

managing 219- 222
ImpersonatedUserId class 398
impersonation 397-400
Import-CSV cmdlet 161, 259
Import-ExchangeCertificate cmdlet 323, 324
Import-Module cmdlet 279
Import-RecipientDataProperty cmdlet 122
Import-RetentionTags.ps1 427
Inbox 403
install-AntispamAgents.ps1 427
InstallExchange.ps1 script 83
Integrated Scripting Environment (ISE) 48
internal CAS URLs

setting, steps 222-224
virtual directories renaming, command syntax

224, 225
Invoke-Command cmdlet 61
IsArchiveMailbox property 139
isMemberOfPartialAttributeSet attribute 181
IsSelfSigned property 325
items

looping through 32-34
IT Help Desk 305

J
JunkEmail 403

K
kind property 440

L
lagged database copies

-ActivationOnly switch parameter 293
-TruncationLagTime parameter 292
creating, steps 292
Eseutil command 293
New-TimeSpan cmdlet 293
Suspend-MailboxDatabaseCopy cmdlet 293
TimeSpan object 292
working 292
working with 292

LastBootUpTime property 377
LastLogonTime property 150
LastName property 431, 434
Length property 20
LitigationHoldEnabled property 346
LoadPercentage property 372, 373
logical connector search

about 441
AND connector 441
examples 441
NOT connector 441
OR connector 441

LogonStatistics cmdlet 146
logs

moving, to other locations 186-188
looping

through items 32-34

M
mailbox

attachments, exporting 418-421
managing 185, 186
reporting, on creation time 145, 146

mailbox audit logging
-AuditEnabled parameter 347
-like operator 350
-ShowDetails switch parameter 350
enabling 347, 348
ForEach-Object cmdlet 352
New-MailboxAuditLogSearch cmdlet 349
reports, generating 349-352
Search-MailboxAuditLog cmdlet 349-352
Set-Mailbox cmdlet 347
SourceItems property 350

453

MailboxAutoReplyConfiguration cmdlet 112
mailbox copies

Add-MailboxDatabaseCopy cmdlet 287, 288
adding, to Database Availability Group (DAG)

287
New-DAGMailboxDatabase, Powershell

function 288
MailboxDatabase cmdlet 185, 190, 202, 217,

346
mailbox database copies

-MountDialOverride parameter 290
-MoveComment parameter 290
-SkipClientExperienceChecks parameter 291
-SkipLagChecks parameter 291
activating 289
activating, steps 290
Move-ActiveMailboxDatabase cmdlet 290
working 290

MailboxDatabaseCopy cmdlet 294
mailbox database limits

configuring 190-192
MailboxDatabaseReseedUsingSpares.ps1

427
mailbox databases

managing 184-186
mailbox database size

reporting on 192-194
mailboxes

-Identity parameter 309
-LitigationHold parameter 345
-RetentionComment parameter 341, 346
-RetentionHoldEnabled parameter 341
Add-ADPermission cmdlet 309
Add-MailboxPermission cmdlet 305
adding 86-89
converting 96
corrupt mailboxes, detecting 150-152
corrupt mailboxes, fixing 150-152
data, importing into 134
deleted items, restoring 153, 154
disconnected mailboxes, managing 138-141
dsmith mailbox 305
e-mail messages, sending as another group

308-310
e-mail messages, sending as another user

308-310
exporting 131-133

full access right users, finding 306,-308
Get-MailboxPermission cmdlet 307
importing 131-133
inactive mailboxes, finding 149, 150
IT Help Desk 305
LitigationHoldEnabled property 346
MailboxDatabase cmdlet 346
MailboxPermission cmdlet 304, 305
messages, deleting from 135-137
messages, deleting in bulk 138
modifying 86-89
placing, on litigation hold 345-347
placing, on retention hold 341
removing 86-89
reports, running before deleting data 137
RetentionHoldEnabled property 342
searching 400, 401
Send-As permissions 308, 309
Set-Mailbox cmdlet 341, 342, 345
storage quotas, checking 148, 149
users full access permissions, granting

304-306
working 402, 403

MailboxFolderPermission cmdlet 119
mailbox folder permissions

managing 116-119
mailbox folder reports

generating 142-144
generating, steps 142

mailbox logon statistics
checking 146, 147

mailbox moves
performing 126-128

MailboxPermission cmdlet 304, 305
Mailbox role

troubleshooting 380, 381
MailboxServer cmdlet 219, 260
mailbox servers

$mbx variable 284
Add-DatabaseAvailabilityGroupServer cmdlet

283, 284
adding, to Database Availability Group (DAG)

283
Get-ExchangeServer cmdlet 284

mailbox settings
managing 219-222

454

mailbox size
reporting on 124-126

MailMessage cmdlet 73
Mail Recipient Creation role 315
ManagedBy property 168-170
ManagedFolderAssistant cmdlet 340
Manager property 431, 434
managers

allowing, to modify group members 168-170
MAPIBlockOutlookVersions parameter 229
MAPIEnabled property 228
MarkAsPastRetentionLimit action 337
MaxReceiveSize property 243
MaxSendSize 17
MaxSendSize property 18, 21, 22
MaxSendSize value 22
Measure-Object cmdlet 195, 197, 263
memory utilization

monitoring 375
monitoring, steps 376

message delivery restrictions
configuring 109, 111

messages
deleting, from mailboxes 135-137

MessageTrackingLog cmdlet 261
message type search

about 440
examples 440
kind property 440

messaging
in transport queues 264-268

Mount-Database cmdlet 185, 187
Move-ActiveMailboxDatabase cmdlet 290
Move-Mailbox cmdlet 126
Move-TransportDatabase.ps1 427
MoveAllReplicas.ps1 427
MoveMailbox.ps1 427
move requests

archive mailboxes, moving 129
mailboxes, moving in batches 129, 130
mailboxes, moving with corrupt items 130,

131
removing 128, 129
working with 126-128

MoveToArchive action 337
MoveToDeletedItems 410
MoveToDeletedItems action 337

Ms-Exch-Accept-Headers-Routing permission
273

MSExchangeAB service 362
MyDistributionGroups role 168

N
Name property 46, 70, 432, 434
Network Load Balancing (NLB) cluster

-ClusterName parameter 279
-ClusterPrimaryIP parameter 279
-InterfaceName parameter 279
about 277
Add-NLBPortRule cmdlet 280
building, for CAS servers 277, 279
building, steps 277, 279
Import-Module cmdlet 279
NetworkLoadBalancingClusters module 278,

279
ServerManagerCmd.exe utility 279
working 279

NetworkLoadBalancingClusters module 278,
279

network settings, Database Availability Group
(DAG)

-Identity parameter 285
-IgnoreNetwork parameter 286
configuring 285
configuring, steps 285
Get-DatabaseAvailabilityGroupNetwork cmdlet

285, 287
New-DatabaseAvailabilityGroupNetwork cm-

dlet 285
removing 286, 287
renaming 286, 287
Set-DatabaseAvailabilityGroup cmdlet 285
working 285

New-AdminAuditLogSearch cmdlet 355
New-Alias cmdlet 19
New-DAGMailboxDatabase,

Powershell function 288
New-DatabaseAvailabilityGroup cmdlet 281
New-DatabaseAvailabilityGroupNetwork

cmdlet 285
New-EdgeSubscription cmdlet 62
New-ExchangeCertificate cmdlet 321, 322
New-InboxRule cmdlet 65, 114

455

New-InboxRule cmdlets 64
New-InboxRule command 64
New-MailboxAuditLogSearch cmdlet 349
New-Mailbox cmdlet 14, 86, 87, 88, 89, 90,

94, 98, 222, 354
New-MailboxDatabase cmdlet 184, 185, 203
New-MailboxExportRequest cmdlet 131, 134,

154
New-MailboxRepairRequest cmlet 151
New-MailboxRestoreRequest cmdlet 202
New-MailboxSearch cmdlet 154, 343
New-MailUser cmdlet 90
New-ManagementRoleAssignment cmdlet

132
New-ManagementScope cmdlet 315
New-MoveRequest cmdlet 126, 127, 129,

141
New-Object cmdlet 39, 41, 68
New-ReceiveConnector cmdlet 240
New-RoleGroup cmdlet 315
New-SendConnector cmdlet 240, 241
New-SystemMessage cmdlet 253
new-TestCasConnectivityUser.ps1 427
New-TimeSpan cmdlet 293
New-TransportRule cmdlet 248, 250
NOT connector 441

O
ObjectModfied property 356
Office property 101, 434
Offline Address Book (OAB) 121
OnComplete API

multiple cmdlets with 80
OR connector 441
OrganizationalUnit parameter 98
Out-File cmdlet 69
outlook.contoso.com 215
OutlookAnywhere cmdlet 227
Outlook Anywhere settings

-SSLOffloading parameter 226
ClientAuthenticationMethod 226
ClientAuthenticationMethod parameter 226
Enable-OutlookAnywhere cmdlet 226
enabling 225
Get-OutlookAnywhere cmdlet 226, 227
managing 225

OutlookAnywhere cmdlet 227
Set-OutlookAnywhere cmdlet 227
working 226

outlook clients, blocking
from connecting, to exchange 227-230

OutlookConnectivity cmdlet 381
out of office settings

managing, for user 111-113
output

formatting 24-26
OWA

managing 219-222

P
param keyword 43, 47
participants property 438
password property 89
PercentFree property 371
PermanentlyDelete action 337
PermissionGroups parameters 242
personal tags

about 337
Phone attribute 176
Phone property 432
pipeline

about 17
command 17
working 17, 18

POP3
managing 219-222

PowerShell
$PSEmailServer 74
basic steps, performing 8
MailMessage cmdlet 73
Send-MailMessage cmdlet 73, 74
used, for sending SMTP e-mails 72

Powershell cmdlets
explicit credentials, using with 67

PowerShell command
parameters 8-12
synatx 8-12

PowerShell connections
manual configuration 58-61

PowerShell functions
$args variable 44
$name parameter 43

456

-quota parameter 46
[Parameter ()] attribute 45
Begin block 46
creating 42
End block 46
function keyword 43
Get-Mailbox cmdlet 44
Get-Mailbox command 44
Name property 46
param keyword 43
Process block 46
Set-SendReceiveQuota function 46
working 43
Write-Output cmdlet 44

PowerShell remoting connections
$mailboxes variable 64
concurrent pipelines, dealing with 63-65
ForEach-Object cmdlet 64, 65
foreach loop statement 64
foreach statement 65
New-InboxRule cmdlet 65
New-InboxRule cmdlets 64
New-InboxRule command 64

PowerShell remoting connections, manual
configuration

-ConnectionUri parameter 59
-Credential parameter 61
about 58
Get-Credential cmdlet 59
Invoke-Command cmdlet 61
Role Based Access Control (RBAC) 60

PowerShell scripts, EMS
AddReplicaToPFRecursive.ps1 426
AddUsersToPFRecursive.ps1 426
AggregatePFData.ps1 426
CheckDatabaseRedundancy.ps1 426
CheckInvalidRecipients.ps1 426
CollectOverMetrics.ps1 426
CollectReplicationMetrics.ps1 426
ConvertTo-MessageLatency.ps1 426
DatabaseMaintSchedule.ps1 426
enable-CrossForestConnector.ps1 426
Export-RetentionTags.ps1 426
get-AntispamFilteringReport.ps1 426
get-AntispamSCLHistogram.ps1 426
get-AntispamTopBlockedSenderDomains.ps1

426

get-AntispamTopBlockedSenderIPs.ps1 427
get-AntispamTopBlockedSenders.ps1 427
get-AntispamTopRBLProviders.ps1 427
get-AntispamTopRecipients.ps1 427
get-setuplog.ps1 426
Import-RetentionTags.ps1 427
install-AntispamAgents.ps1 427
MailboxDatabaseReseedUsingSpares.ps1

427
Move-TransportDatabase.ps1 427
MoveAllReplicas.ps1 427
MoveMailbox.ps1 427
new-TestCasConnectivityUser.ps1 427
Prepare-MoveRequest.ps1 427
RedistributeActiveDatabases.ps1 427
RemoveReplicaFromPFRecursive.ps1 427
RemoveUserFromPFRecursive.ps1 427
ReplaceReplicaOnPFRecursive.ps1 428
ReplaceUserPermissionOnPFRecursive.ps1

428
ReplaceUserWithUserOnPFRecursive.ps1

428
Reset-AntispamUpdates.ps1 427
ResetCasService.ps1 428
ResetSearchIndex.ps1 428
StartDagServerMaintenance.ps1 428
StopDagServerMaintenance.ps1 428
Troubleshoot-DatabaseLatency.ps1 428
Troubleshoot-DatabaseSpace.ps1 428

Prepare-MoveRequest.ps1 427
PrimarySmtpAddress parameter 396
PrimarySmtpAddress property 23, 432
Process block 44, 46
profile

setting up 50-52
ProhibitSendReceiveQuota 45
protocol logs

managing 255-258
PublicFolderDatabase cmdlet 186
public folder database limits

configuring 190-192
public folder databases

managing 184-186
public folder replication

configuring 205, 207
public folder statistics

reporting on 210-212

457

Q
QuotaMessageType parameter 254

R
RBAC

-CustomRecipientWriteScope parameter 315
about 310-312
CustomConfigWriteScope parameter 315
custom RBAC, creating for administrators

313-315
custom RBAC role, creating for end users

316-318
for end-users 313
Get-ManagementRoleAssignment cmdlet 315
Mail Recipient Creation role 315
New-ManagementScope cmdlet 315
New-RoleGroup cmdlet 315
RecipientRestrictionFilter parameter 315
Remove-ManagementRoleEntry cmdlet 315
troubleshooting 319

RBAC, troubleshooting
-GetEffectiveUsers parameter 320
-WritableRecipient parameter 320
Default Role Assignment Policy 317
Get-ManagementRoleAssignment cmdlet 320
Get-RoleGroupMember cmdlet 320
RoleAssignmentPolicy cmdlet 318
Set-User cmdlet 316
steps 319, 320

Read-Host cmdlet 68
ReadItems 208
ReceiveConnector cmdlet 242-257
received property 439
recipient

creating in bulk, CSV file used 97-100
email addresses, adding 103-105
email addresses, removing 103-105
filters, working with 100-103
hiding, from address lists 105, 106
moderation, configuring 107-109

recipient e-mail addresses
adding 103-105
removing 103-105

RecipientFilter property 162, 165
recipient filters

working with 100-103

recipient moderation
configuring 107-109

RecipientRestrictionFilter parameter 315
recipient scope

-PreferredGlobalCatalog paramter 66
-RecipientViewRoot 66
-SetPreferredDomainControllers parameter

66
AdminSessionADSettings global session

variable 66
Set-AdServerSettings cmdlet 66
used, for managing domains 65, 66
used, for managing forest 65, 66
ViewEntireForest parameter 66

Recipients property 272
RecipientsTo.Add method 397
RecoverableItemsDeletions 403
RecoverableItemsPurges 403
RecoverableItemsRoot 403
RecoverableItemsVersions 403
recovery database

data, restoring from 201, 202
mailbox identity, targeting 203
mailbox restore, request cmdlets 204
parameters 203

RedistributeActiveDatabases.ps1 427
RedistributeActiveDatabases.ps1 script 296
redundancy

reporting on 297-299
Relay connector 257
RemoteIPRanges property 246
remote shell connctions

files, transferring through 61
remote shell connections

-FileData parameter 62
Get-Content cmdlet 62
New-EdgeSubscription cmdlet 62
working 62, 63

Remove-* cmdlets 242
Remove-ADPermission cmdlet 273, 274
Remove-DistributionGroup cmdlet 93
Remove-DistributionGroupMember cmdlet

160
Remove-InboxRule cmdlet 114
Remove-Mailbox cmdlet 89, 356
Remove-MailboxDatabase cmdlet 184, 185
Remove-MailboxItem function 413

458

Remove-MailboxRestoreRequest 204
Remove-MailboxSearch cmdlet 344
Remove-MailContact cmdlet 91
Remove-MailUser cmdlet 91
Remove-ManagementRoleEntry cmdlet 315
Remove-Message cmdlet 269
Remove-SendConnector cmdlet 241
Remove-StoreMailbox cmdlet 141
Remove-SystemMessage cmdlet 254
Remove key 104
Remove method 121
RemoveReplicaFromPFRecursive.ps1 427
RemoveUserFromPFRecursive.ps1 210, 427
ReplaceReplicaOnPFRecursive.ps1 428
ReplaceUserPermissionOnPFRecursive.ps1

209, 428
ReplaceUserWithUserOnPFRecursive.ps1

209, 428
replication

reporting on 297-299
reporting

on, distribution group membership 158, 159
reports

-Join operator 71
-NoTypeInformation switch parameter 70
EmailAddresses property 70, 71
Export-CSV cmdlet 69
exporting, to CSV files 68-72
exporting, to text files 68-72
Get-* cmdlets 68
Get-Mailbox cmdlet 69
Out-File cmdlet 69

RequiredAttendees.Add method 415
Reset-AntispamUpdates.ps1 427
ResetCasService.ps1 428
ResetPasswordOnNextLogon parameter 98
ResetSearchIndex.ps1 428
resource mailboxes

creating 94
managing 94
working 94, 95

Resume-MailboxDatabaseCopy cmdlet 296
Resume-MailboxRestoreRequest 204
RetainDeletedItemsUntilBackup parameter

191

retention actions
default tags 338, 339
DeleteAndAllowRecovery action 337
Get-RetentionPolicyTag cmdlet 339
MarkAsPastRetentionLimit action 337
MoveToArchive action 337
MoveToDeletedItems action 337
PermanentlyDelete action 337
Set-RetentionPolicy cmdlet 338

RetentionHoldEnabled property 342
retention policies

-RetentionPolicy parameter 339
applying, to mailboxes 339
creating 335, 336
Get-Mailbox cmdlet 340
ManagedFolderAssistant cmdlet 340
RetentionPolicy property 340
Set-Mailbox cmdlet 339

RetentionPolicy property 340
retention policy property 438
retention policy tags 337
retention tags

creating 335, 336
Retry-Queue cmdlet 268
Reviewer access right 117
RoleAssignmentPolicy cmdlet 318
Role Based Access Control. See RBAC
Role Based Access Control (RBAC) 60, 168
RPC Client Access array

creating 214
creating, steps 214
working 214, 215

RPCClientAccessServer property 216, 217
RpcClientAccessServer property 216
RpcClientAccessServer setting 216
RPC clients

CAS server, configuring 215-217
RPC connections

reporting on 230-233
RPC encryption requirements

configuring 217-219

S
SamAccountName property 433, 434
scripting

Exchange server Installation 81-83

459

scripting agent
$mailbox variable 80
$succedded variable 80
Enable-Mailbox cmdlet 80
Set-Mailbox cmdlet 80

scripts
-Command parameter 76
Connect-ExchangeServer function 76
creating 47, 48
execution policy 49, 50
profile, setting up 50, 51
running 47, 48
scheduling, to run at later time 75, 76
working 51, 52

Search-AdminAuditLog cmdlet 355
Search-MailboxAuditLog cmdlet 349, 350,

352
Search-Mailbox cmdlet 136, 137, 153, 154
SearchDumpsterOnly switch parameter 154
SearchFolders 403
Secure Sockets Layer (SSL) 384
Select-Object 41
Select-Object cmdlet 38, 40, 41
Send-As permissions 309
Send-EWSMailMessage function 396
Send-EwsMailMessage function 398
Send-MailMessage cmdlet 73, 74, 368
Send method 394
SendModerationNotifications setting 107
SentItems 403
sent property 439
server-side inbox rules

adding 113-116
modifying 113-116
removing 113-116

ServerCertificateValidationCallback property
393

server connectivity
verifying 364
verifying, steps 364, 365
working 365

ServerManagerCmd.exe utility 279
Server parameter 380
ServerRole property 217
ServicePointManager class 392
services

managing 360,- 364

monitoring 360-364
Set-* cmdlets 91, 104
Set-ActiveSyncOrganizationSettings cmdlet

234
Set-ActiveSyncVirtualDirectory 223
Set-AddressList cmdlet 176
Set-AdminAuditLogConfig cmdlet 353, 354
Set-AdServerSettings cmdlet 66
Set-CalendarProcessing cmdlet 95
Set-CASMailbox 228
Set-CASMailbox cmdlet 220, 221, 228, 230,

234
Set-Content cmdlet 419
Set-DatabaseAvailabilityGroup cmdlet 282,

285
Set-DistributionGroup cmdlet 108, 109, 173,

174
Set-DynamicDistributionGroup cmdlet 165
Set-EcpVirtualDirectory 223
Set-Group cm 167
Set-MailboxAutoReplyConfiguration cmdlet

112
Set-Mailbox cmdlet 9, 10, 13, 45, 80, 88, 96,

107, 148, 244, 339, 341, 342, 345,
347, 357

Set-MailboxDatabase cmdlet 184, 216, 217
Set-MailboxFolderPermission 117
Set-MailboxRestoreRequest 204
Set-OabVirtualDirectory 223
Set-OrganizationConfig cmdlet 173
Set-OutlookAnywhere cmdlet 227
Set-OwaVirtualDirectory 223
Set-PublicFolderDatabase cmdlet 191
Set-ReceiveConnector cmdlet 242
Set-RetentionPolicy cmdlet 338
Set-RPCClientAccess cmdlet 230
Set-RpcClientAccess cmdlet 219
Set-SendConnector cmdlet 11, 12, 241
Set-SendReceiveQuota function 46
Set-TransportRule cmdlet 251
Set-TransportServer cmdlet 256, 257
Set-User cmdlet 90, 91, 180, 316
Set-WebServicesVirtualDirectory 223
Shared mailboxes 96
shell sessions

-Append parameter 78
-Path parameter 78

460

logging, to transcript 77, 79
Start-Transcript cmdlet 77, 78
Stop-Transcript cmdlet 78

shell variables
$$ 423
$? 423
$^ 423
$_ 423
$Args 423
$Error 423
$Exbin 423
$ExScripts 424
$False 424
$ForEach 424
$Home 424
$Host 424
$Input 424
$MaximumHistoryCount 424
$Null 424
$Profile 424
$PSHome 424
$Pwd 424
$True 424

shortcut
[adsi] shortcut 425
[array] shortcut 425
[bool] shortcut 425
[byte] shortcut 425
[datetime] shortcut 425
[decimal] shortcut 425
[double] shortcut 425
[hashtable] shortcut 425
[long] shortcut 425
[string] shortcut 425
[switch] shortcut 425

ShouldProcess method 411
Single Copy Clusters (SCC)

about 276
smtp.contoso.com 241
SMTP e-mails

-Attachment parameter 74
command output, sending in message body

74
messages, sending with attachments 74
Send-MailMessage cmdlet 74
sending, through PowerShell 72

SoftDelete 410
Sort-Object cmdlet 26
SourceItems property 350
SourceRootFolder parameter 204
spam confidence levels (SCL) 273
SSLOffloading 226
Standby Continuous Replication (SCR) 292
Start-Service cmdlet 363
Start-Transcript cmdlet 77, 78
StartDagServerMaintenance.ps1 428
StateOrProvince property 433, 435
Stop-Transcript cmdlet 78
StopDagServerMaintenance.ps1 428
StopProcessingRules parameter 115
storage quotas

for mailboxes, setting 148
StoreMailbox cmdlet 141
StreetAddress property 433, 435
Subject Alternative Names (SANs) 321
SubjectContainsWords property 251
SubjectOrBodyMatchesPatterns parameter

252
Subject property 402
subject property 438
Suspend-MailboxDatabaseCopy cmdlet 293,

295
Suspend-MailboxRestoreRequest 204
s variable 361
switch keyword 36
switch statement 36
switch statements 34

T
TargetIsArchive parameter 204
TargetRootFolder parameter 204
tasks

with scripting agent, automating 79, 80
Test-ActiveSyncConnectivity 382
Test-CalendarConnectivity 383
Test-Connection cmdlet 365
Test-EcpConnectivity 383
Test-ImapConnectivity 383
Test-MapiConnectivity cmdlet 380
Test-MRSHealth cmdlet 382
Test-OutlookWebServices 383
Test-OwaConnectivity 383

461

Test-ReplicationHealth cmdlet 300
Test-ServiceHealth 363
Test-WebServicesConnectivity 383
text files

reports, exporting to 68-72
theTest-Path cmdlet 50
thumbnailPhoto attribute 119, 120
TimeSpan object 292, 379
Title property 433, 435
ToMB method 22
to property 438
ToRecipients property 394
TotalItemSize properties 124
tracking logs

messaging 260
Transport Layer Security (TLS) 384
transport limits

configuring 243
configuring, steps 243, 244

transport queues
messaging 264- 268

TransportRuleAction cmdlet 247
TransportRule cmdlet 250
transport rules

deleting 252
disabling 252
enabling 252
managing 247
managing, steps 247
modifying 251, 252
regular expressions 252
working 247, 248, 249, 250, 251

TransportServer cmdlet 255
Transport servers

troubleshooting 383, 384
Troubleshoot-DatabaseLatency.ps1 428
Troubleshoot-DatabaseSpace.ps1 428

U
user access

to public folders, managing 207-210
User Account Control (UAC) 76

UserAccountControl property 171
user accounts

disabled user accounts, removing from distri-
bution groups 170, 171

user photos
importing, in active directory 119,-122

UserPrincipalName property 433, 435

V
Value property 29
variables

creating 20, 21
expansion, in strings 23
strongly typed variables 23, 24
working with 20

ViewEntireForest parameter 66

W
WhenMailboxCreated property 145
Where-Object cmdlet 17-19, 101, 251, 271,

356
Where-Object filter 259
while loop 128
Win32_LogicalDisk WMI class 369
Win32_OperatingSystem class 376
Win32_Processor class 372, 373
Win32_Service WMI class 361
word phrase search

(not defined) property 438
about 437, 438
attachments property 437
Bcc property 438
body property 438
Cc property 437
examples 438, 439
from property 438
participants property 438
retention policy property 438
subject property 438
to property 438

Write-Output cmdlet 44

Thank you for buying
Microsoft Exchange 2010 PowerShell Cookbook

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective MySQL
Management" in April 2004 and subsequently continued to specialize in publishing highly focused
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution-based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our
unique business model allows us to bring you more focused information, giving you more of what
you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.PacktPub.com.

About Packt Enterprise
In 2010, Packt launched two new brands, Packt Enterprise and Packt Open Source, in order
to continue its focus on specialization. This book is part of the Packt Enterprise brand, home
to books published on enterprise software – software created by major vendors, including (but
not limited to) IBM, Microsoft and Oracle, often for use in other corporations. Its titles will offer
information relevant to a range of users of this software, including administrators, developers,
architects, and end users.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should be
sent to author@packtpub.com. If your book idea is still at an early stage and you would like to
discuss it first before writing a formal book proposal, contact us; one of our commissioning editors
will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Microsoft SQL Server 2008
R2 Administration Cookbook
ISBN: 978-1-84968-144-5 Paperback: 468 pages

Over 70 practical recipes for administering a high-
performance SQL Server 2008 R2 system with this book
and eBook

1.	 Provides Advanced Administration techniques for
SQL Server 2008 R2 as a book or eBook

2.	 Covers the essential Manageability,
Programmability, and Security features

3.	 Emphasizes important High Availability features
and implementation

4.	 Explains how to maintain and manage the SQL
Server data platform effectively

Microsoft Data Protection
Manager 2010
ISBN: 978-1-84968-202-2 Paperback: 360 pages

A practical step-by-step guide to planning deployment,
installation, configuration, and troubleshooting of Data
Protection Manager 2010 with this book and eBook

1.	 A step-by-step guide to backing up your business
data using Microsoft Data Protection Manager
2010 in this practical book and eBook

2.	 Discover how to back up and restore Microsoft
applications that are critical in many of today's
businesses

3.	 Understand the various components and features
of Data Protection Manager 2010

Please check www.PacktPub.com for information on our titles

Microsoft Dynamics Sure
Step 2010
ISBN: 978-1-84968-110-0 Paperback: 360 pages

The smart guide to the successful delivery of Microsoft
Dynamics Business Solutions using Microsoft Dynamics
Sure Step 2010 with this book and eBook

1.	 Learn how to effectively use Microsoft Dynamics
Sure Step to implement the right Dynamics
business solution with quality, on-time and on-
budget results

2.	 Leverage the Decision Accelerator offerings
in Microsoft Dynamics Sure Step to create
consistent selling motions while helping your
customer ascertain the best solution to fit their
requirements

Microsoft Forefront UAG
2010 Administrator's
Handbook
ISBN: 978-1-84968-162-9 Paperback: 484 pages

Take full command of Microsoft Forefront Unified Access
Gateway to secure your business applications and
provide dynamic remote access with DirectAccess with
this book and eBook

1.	 Maximize your business results by fully
understanding how to plan your UAG integration

2.	 Consistently be ahead of the game by taking
control of your server with backup and advanced
monitoring

3.	 An essential tutorial for new users and a great
resource for veterans

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: PowerShell Key Concepts
	Introduction
	Understanding command syntax
	and parameters
	Using the help system
	Understanding the pipeline
	Working with variables and objects
	Formatting output
	Working with arrays and hash tables
	Looping through items
	Using flow control statements
	Creating custom objects
	Creating PowerShell functions
	Creating and running scripts
	Setting up a profile

	Chapter 2: Exchange Management Shell Common Tasks
	Introduction
	Using command discovery through the
	Exchange Management Console
	Manually configuring remote PowerShell
	connections
	Transferring files through remote
	shell connections
	Dealing with concurrent pipelines in
	remote PowerShell
	Managing domains or an entire forest
	using recipient scope
	Using explicit credentials with PowerShell
	cmdlets
	Exporting reports to text and CSV files
	Sending SMTP e-mails through PowerShell
	Scheduling scripts to run at a later time
	Logging shell sessions to a transcript
	Automating tasks with the scripting agent
	Scripting an Exchange server Installation

	Chapter 3: Managing Recipients
	Introduction
	Adding, modifying, and removing mailboxes
	Working with contacts
	Managing distribution groups
	Managing resource mailboxes
	Creating recipients in bulk using a CSV file
	Working with recipient filters
	Adding and removing recipient
	e-mail addresses
	Hiding recipients from address lists
	Configuring recipient moderation
	Configuring message delivery restrictions
	Managing automatic replies and out
	of office settings for a user
	Adding, modifying, and removing
	server-side inbox rules
	Managing mailbox folder permissions
	Importing user photos into Active Directory

	Chapter 4: Managing Mailboxes
	Introduction
	Performing some basic steps
	Reporting on the mailbox size
	Working with move requests and performing
	mailbox moves
	Importing and exporting mailboxes
	Deleting messages from mailboxes
	Managing disconnected mailboxes
	Generating mailbox folder reports
	Reporting on mailbox creation time
	Checking mailbox logon statistics
	Setting storage quotas for mailboxes
	Finding inactive mailboxes
	Detecting and fixing corrupt mailboxes
	Restoring deleted items from mailboxes

	Chapter 5: Distribution Groups and Address Lists
	Introduction
	Reporting on distribution group membership
	Adding members to a distribution group
	from an external file
	Previewing dynamic distribution group
	membership
	Excluding hidden recipients from a dynamic
	distribution group
	Converting and upgrading distribution
	groups
	Allowing managers to modify group
	membership
	Removing disabled user accounts from
	distribution groups
	Working with distribution group naming
	policies
	Working with distribution group membership
	approval
	Creating address lists
	Exporting address list membership to
	a CSV file
	Configuring hierarchical address books

	Chapter 6: Mailbox and Public Folder Databases
	Introduction
	Managing the mailbox and the public folder
	databases
	Moving databases and logs to another
	location
	Configuring the mailbox and public folder
	database limits
	Reporting on mailbox database size
	Finding the total number of mailboxes
	in a database
	Determining the average mailbox size
	per database
	Reporting on database backup status
	Restoring data from a recovery database
	Configuring public folder replication
	Managing user access to public folders
	Reporting on public folder statistics

	Chapter 7: Managing Client Access
	Introduction
	Creating an RPC Client Access array
	Configuring the CAS server used
	by RPC clients
	Configuring RPC encryption requirements
	Managing ActiveSync, OWA, POP3,
	and IMAP4 mailbox settings
	Setting internal and external CAS URLs
	Managing Outlook Anywhere settings
	Blocking Outlook clients from connecting
	to Exchange
	Reporting on active OWA and RPC
	connections
	Controlling ActiveSync device access
	Reporting on ActiveSync devices

	Chapter 8: Managing Transport Servers
	Introduction
	Managing connectors
	Configuring transport limits
	Allowing application servers to relay mail
	Managing transport rules
	Working with custom DSN messages
	Managing connectivity and protocol logs
	Message tracking logs
	Working with messages in transport queues
	Searching anti-spam agent logs
	Implementing a header firewall

	Chapter 9: High Availability
	Introduction
	Building a Windows NLB cluster for
	CAS servers
	Creating a Database Availability Group
	Adding mailbox servers to a Database
	Availability Group
	Configuring Database Availability Group
	network settings
	Adding mailbox copies to a Database
	Availability Group
	Activating mailbox database copies
	Working with lagged database copies
	Reseeding a database copy
	Performing maintenance on Database
	Availability Group members
	Reporting on database status, redundancy,
	and replication

	Chapter 10: Exchange Security
	Introduction
	Granting users full access permissions
	to mailboxes
	Finding users with full access to mailboxes
	Sending e-mail messages as another
	user or group
	Working with Role Based Access
	Control (RBAC)
	Creating a custom RBAC role for
	administrators
	Creating a custom RBAC role for end users
	Troubleshooting Role Based Access Control
	Generating a certificate request
	Installing certificates and enabling services
	Importing certificates on multiple
	exchange servers

	Chapter 11: Compliance and Audit Logging
	Introduction
	Managing archive mailboxes
	Configuring archive mailbox quotas
	Creating retention tags and policies
	Applying retention policies to mailboxes
	Placing mailboxes on retention hold
	Performing a discovery search
	Placing mailboxes on litigation hold
	Enabling mailbox audit logging
	Generating mailbox audit log reports
	Configuring Administrator Audit Logging
	Searching administrator audit logs

	Chapter 12: Server Monitoring and Troubleshooting
	Introduction
	Managing and monitoring services
	Verifying server connectivity
	Working with the event logs
	Reporting on disk usage
	Checking CPU utilization
	Monitoring memory utilization
	Reporting on Exchange Server uptime
	Troubleshooting the Mailbox role
	Troubleshooting the Client Access
	Server role
	Troubleshooting Transport servers
	Verifying certificate health

	Chapter 13: Scripting with the Exchange Web Services Managed API
	Introduction
	Getting connected to EWS
	Sending e-mail messages with EWS
	Working with impersonation
	Searching mailboxes
	Retrieving the headers of an e-mail message
	Deleting e-mail items from a mailbox
	Creating calendar items
	Exporting attachments from a mailbox
	Exchange Management Shell reference
	Advanced Query Syntax

	Index

