

Puppet 2.7 Cookbook

Build reliable, scalable, secure, high-performance systems
to fully utilize the power of cloud computing

John Arundel

BIRMINGHAM - MUMBAI

Puppet 2.7 Cookbook
Copyright © 2011 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly or
indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt
Publishing cannot guarantee the accuracy of this information.

First published: October 2011

Production Reference: 1171011

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-84951-538-2

www.packtpub.com

Cover Image by Sujay Gawand (sujay0000@gmail.com)

Credits

Author
John Arundel

Reviewers
Mark Phillips

Eric Stonfer

Acquisition Editors
Chaitanya Apte

Kartikey Pandey

Development Editor
Alina Lewis

Technical Editors
Priyanka S

Ankita Shashi

Project Coordinator
Michelle Quadros

Proofreader
Matthew Humphries

Indexer
Monica Ajmera

Graphics
Valentina Joseph D'silva

Production Coordinator
Prachali Bhiwandkar

Cover Work
Prachali Bhiwandkar

About the Author

John Arundel is a consultant engineer who helps people build better infrastructure. He
uses automation and configuration management to make computer systems cheaper, faster,
and more reliable. Formerly a senior enterprise systems engineer in the hosting division of
US telco Verizon, he now runs his own company, Bitfield Consulting, and says he has never
worked so hard in his life, or for less money.

Over the years John has worked with clients in the advertising and media industry, software,
finance, retail, logistics, and even the emergency services, advising on architecture,
automation, security, backups, resilience, performance, capacity planning, and regulatory
compliance. He has been a member of the Puppet community since its earliest days, and
organizes regular local sysadmin meetups and social events.

John holds a B.Sc.(Hons) in Computer Science, with a research interest in kernel resource
scheduler design, and is a certified Sun Solaris administrator, LPI (Linux Professional Institute)
graduate, and a member of the British Computer Society (MBCS). He is security-cleared to work
on computer systems for the UK nuclear industry, which is probably nothing to worry about.

He has also worked as a software developer, both professionally and for the fun of it,
contributing to several open source projects, and building a high-performance research chess
engine. He blogs regularly at http://bitfieldconsulting.com on Puppet and system
administration topics, is usually to be found on Twitter (@bitfield) complaining about
things, and often speaks at technical user groups and conferences.

In his negligible spare time, John enjoys repairing Land Rovers, playing Go, and barbecuing.
He lives in London and Cornwall.

My thanks go to Luke Kanies and the team at Puppet Labs; also to Ken
Barber, Lindsay Holmwood, Gary Larizza, Stephen Nelson-Smith, R.I.
Pienaar, Julian Simpson, Jordan Sissel, Cosimo Streppone, James Turnbull,
and Dean Wilson, who all provided valuable contributions to the book,
whether they know it or not; and for their brave self-sacrifice in the cause
of proofreading, Ian Chilton, Kris Buytaert, Stefan Goethals, and Martin
Brooks. A special mention goes to the regulars of channel #puppet, who
often helped out when things didn't work the way they were supposed to,
which was virtually all the time.

About the Reviewers

Mark Philips has had a varied career spanning Motor Manufacturer, Internet, Telco, and
Finance industries over the last 17 years. Engineering for UNIX estates from a handful of
hosts through to many thousands, Mark has strived to automate anything and everything
that had to be carried out more than once. Discovering Puppet in early 2007 was a boon
to achieving his idea of systems nirvana—simple centralized and automated configuration
management.

Mark runs an IT consultancy company, VNTX Limited, specializing in UNIX installation,
integration, automation, and performance tuning.

When he's not in front of a computer, Mark can be found out riding one of his bicycles—
training for a race, or boring his ever patient wife talking about cycling.

Eric Stonfer is a 10 year veteran of systems administration, with an emphasis on
automation and configuration systems, and has been using Puppet to manage thousands
of servers for over 3 years. In his spare time Eric is an avid home brewer.

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a
print book customer, you are entitled to a discount on the eBook copy. Get in touch with us
at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
ff Fully searchable across every book published by Packt

ff Copy and paste, print and bookmark content

ff On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access PacktLib
today and view nine entirely free books. Simply use your login credentials for immediate access.

Table of Contents
Preface	 1
Chapter 1: Puppet Infrastructure	 7

Using version control	 8
Using commit hooks	 11
Deploying changes with Rake	 13
Configuring Puppet's file server	 16
Running Puppet from cron	 18
Using autosign	 19
Pre-signing certificates	 20
Retrieving files from Puppet's filebucket	 21
Scaling Puppet using Passenger	 23
Creating decentralized Puppet architecture	 28

Chapter 2: Monitoring, Reporting, and Troubleshooting	 31
Generating reports	 32
E-mailing log messages containing specific tags	 34
Creating graphical reports	 36
Producing automatic HTML documentation	 36
Drawing dependency graphs	 38
Testing your Puppet manifests	 41
Doing a dry run	 44
Detecting compilation errors	 46
Understanding Puppet errors	 46
Logging command output	 49
Logging debug messages	 50
Inspecting configuration settings	 51
Using tags	 52
Using run stages	 54
Using environments	 56

ii

Table of Contents

Chapter 3: Puppet Language and Style	 59
Using community Puppet style	 60
Using modules	 62
Using standard naming conventions	 65
Using embedded Ruby	 67
Writing manifests in pure Ruby	 68
Iterating over multiple items	 71
Writing powerful conditional statements	 73
Using regular expressions in if statements	 75
Using selectors and case statements	 76
Testing whether values are contained in strings	 79
Using regular expression substitutions	 80

Chapter 4: Writing Better Manifests	 83
Using arrays of resources	 84
Using define resources	 85
Using dependencies	 87
Using node inheritance	 90
Using class inheritance and overriding	 92
Passing parameters to classes	 97
Writing reusable, cross-platform manifests	 98
Getting information about the environment	 101
Importing dynamic information	 102
Importing data from CSV files	 103
Passing arguments to shell commands	 106

Chapter 5: Working with Files and Packages	 109
Making quick edits to config files	 110
Using Augeas to automatically edit config files	 111
Building config files using snippets	 114
Using ERB templates	 116
Using array iteration in templates	 118
Installing packages from a third-party repository	 120
Setting up an APT package repository	 122
Setting up a gem repository	 128
Building packages automatically from source	 130
Comparing package versions	 132

Chapter 6: Users and Virtual Resources	 135
Using virtual resources	 136
Managing users with virtual resources	 139
Managing users' SSH access	 142
Managing users' customization files	 144

iii

Table of Contents

Efficiently distributing cron jobs	 146
Running a command when a file is updated	 148
Using host resources	 152
Using multiple file sources	 153
Distributing directory trees	 156
Cleaning up old files	 158
Using schedules with resources	 160
Auditing resources	 162
Temporarily disabling resources	 163
Managing timezones	 164

Chapter 7: Applications	 167
Managing Apache servers	 167
Creating Apache virtual hosts	 169
 Creating Nginx virtual hosts	 172
Creating MySQL databases and users	 175
Managing Drupal sites	 178
Managing Rails applications	 182

Chapter 8: Servers and Cloud Infrastructure	 197
Deploying a Nagios monitoring server	 198
Building high-availability services using Heartbeat	 211
Managing NFS servers and file shares	 215
Using HAProxy to load-balance multiple web servers	 218
Managing firewalls with iptables	 222
Managing EC2 instances	 232
Managing virtual machines with Vagrant	 238

Chapter 9: External Tools and the Puppet Ecosystem	 245
Creating custom Facter facts	 246
Executing commands before and after Puppet runs	 248
Generating manifests from shell sessions	 249
Generating manifests from a running system	 252
Using Puppet Dashboard	 254
Using Foreman	 258
Using MCollective	 261
Using public modules	 266
Using an external node classifier	 269
Creating your own resource types	 271
Creating your own providers	 274

Index	 279

Preface
A revolution is coming to IT operations. Configuration management tools can build
servers in seconds and automate your entire network. Tools like Puppet are essential
to take full advantage of the power of cloud computing, and build reliable, scalable,
secure, and high-performance systems.

This book takes you beyond the basics and explores the full power of Puppet, showing you
in detail how to tackle a variety of real-world problems and applications. At every step, it
shows you exactly what commands you need to type and includes complete code samples
for every recipe.

It takes the reader from rudimentary knowledge of Puppet to a more complete and expert
understanding of Puppet's latest and most advanced features, community best practices,
writing great manifests, scaling and performance, and how to extend Puppet by adding your
own providers and resources.

This book also includes real examples from production systems and techniques that are
in use in some of the world's largest Puppet installations, including a distributed Puppet
architecture and a high-performance Puppetmaster solution using Apache and Passenger.

Explore the power of Puppet with this practical guide to the world's most popular configuration
management system.

What this book covers
Chapter 1, Puppet Infrastructure introduces some key techniques for managing your
Puppet server and manifests, including version control, automated deployment, file
serving, pre-signing and autosigning certificates, scaling with Passenger, and a distributed
decentralized Puppet architecture using Git.

Preface

2

Chapter 2, Monitoring, Reporting, and Troubleshooting covers ways that Puppet can report
information about what it's doing, and the status of your systems. This includes graphical and
e-mail reports, log and debug messages, dependency graphing, testing and dry-running your
manifests, using tags, run stages, and environments, and a guide to some of Puppet's more
common error messages.

Chapter 3, Puppet Language and Style will show you examples of good programming style
in Puppet and language constructs that can help you keep your code concise and readable,
including conditionals, selectors, case statements, arrays, and regular expressions.

Chapter 4, Writing Better Manifests takes you through structuring your Puppet manifests
using node and class inheritance, resource dependencies, and parameterized classes.
You'll also see how to get data in and out of Puppet from the environment using CSV files
and shell scripts.

Chapter 5, Working with Files and Packages covers powerful techniques for managing
config files, including ERB templates, generating files from snippets, and using the Augeas
tool. You'll also see how to use Puppet to install packages from APT repositories, and how
to set up your own APT and Gem repositories.

Chapter 6, Users and Virtual Resources explains how virtual resources can help you manage
different combinations of users and packages on different machines, and shows you how to
use Puppet's resource scheduling and auditing features.

Chapter 7, Applications focuses on some specific applications that you may need to manage
with Puppet, including complete recipes for Apache and Nginx, MySQL, Drupal, and Rails.

Chapter 8, Servers and Cloud Infrastructure extends the power of Puppet to managing
virtual machines, both in the cloud and on your desktop, with recipes for Vagrant and EC2
instances. It also shows you how to set up a Nagios monitoring server, load balancing with
HAProxy, firewalls with iptables, network filesystems with NFS, and high-availability
services with Heartbeat.

Chapter 9, External Tools and the Puppet Ecosystem looks at the tools that have grown
up around Puppet and help you integrate it with the rest of your network, including Puppet
Dashboard, Foreman, and MCollective. It also introduces you to some advanced topics
including writing your own resource types, providers, and external node classifiers.

What you need for this book
To run the examples in this book, you will need a computer with Ubuntu Linux 10.04 and
Puppet installed, and an Internet connection. Though not strictly necessary, I also recommend
an espresso machine or some other form of caffeinated beverage dispenser.

Preface

3

Who this book is for
The book assumes that the reader already has a working Puppet installation and perhaps
has written some basic manifests or adapted some published modules. It also requires some
experience of Linux systems administration, including familiarity with the command line, file
system, and text editing. No programming experience is required.

Conventions
In this book, you will find a number of styles of text that distinguish between different kinds of
information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text are shown as follows: " You'll need a Puppetmaster and a set of existing
manifests in /etc/puppet."

A block of code is set as follows:

#!/bin/sh

syntax_errors=0
error_msg=$(mktemp /tmp/error_msg.XXXXXX)

if git rev-parse --quiet --verify HEAD > /dev/null
then
 against=HEAD

Any command-line input or output is written as follows:

puppet parser validate/etc/puppet/manifests/site.pp

err: Could not parse for environment production: Syntax error at end
of file at /etc/puppet/manifests/site.pp:3

New terms and important words are shown in bold. Words that you see on the screen, in
menus or dialog boxes for example, appear in the text like this: "clicking the Next button
moves you to the next screen".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Preface

4

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or may have disliked. Reader feedback is important for us to develop
titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, and
mention the book title via the subject of your message.

If there is a book that you need and would like to see us publish, please send us a note in
the SUGGEST A TITLE form on www.packtpub.com or e-mail suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased from your
account at http://www.PacktPub.com. If you purchased this book elsewhere, you can
visit http://www.PacktPub.com/support and register to have the files e-mailed directly
to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do happen.
If you find a mistake in one of our books—maybe a mistake in the text or the code—we would be
grateful if you would report this to us. By doing so, you can save other readers from frustration
and help us improve subsequent versions of this book. If you find any errata, please report them
by visiting http://www.packtpub.com/support, selecting your book, clicking on the errata
submission form link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded on our website, or added to any
list of existing errata, under the Errata section of that title. Any existing errata can be viewed by
selecting your title from http://www.packtpub.com/support.

http://www.PacktPub.com
http://www.PacktPub.com/support

Preface

5

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated material.

We appreciate your help in protecting our authors, and our ability to bring you valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with any
aspect of the book, and we will do our best to address it.

mailto:copyright@packtpub.com

1
Puppet Infrastructure

"Computers in the future may have as few as 1,000 vacuum tubes and weigh
only 1.5 tons."— Popular Mechanics, 1949

In this chapter, we will cover:

ff Using version control

ff Using commit hooks

ff Deploying changes with Rake

ff Configuring Puppet's file server

ff Running Puppet from cron

ff Using autosign

ff Pre-signing certificates

ff Retrieving files from Puppet's filebucket

ff Scaling Puppet using Passenger

ff Creating a decentralized Puppet architecture

Some of the recipes in this book represent best practices as agreed upon by the Puppet
community. Others are tips and tricks that will make it easier for you to work with Puppet, or
introduce you to features that you may not have been previously aware of. Some recipes are
short cuts which I wouldn't recommend you use as standard operating procedure, but may be
useful in emergencies. Finally, there are some experimental recipes that you may like to try, but
are only useful or applicable in very large infrastructures or otherwise unusual circumstances.

Puppet Infrastructure

8

I hope that, by reading through and thinking about the recipes presented here, you will gain a
deeper and broader understanding of how Puppet works and how you can use it to help you
build better infrastructures. Only you can decide whether a particular recipe is appropriate
for you and your organization, but I hope this collection will inspire you to experiment, find out
more, and most of all—have fun using Puppet!

You'll see that throughout the examples in this book, most of the commands
are run as the root user. If you prefer to administer systems with a normal
user account and sudo, please do it this way instead.

Because Linux distributions such as Ubuntu, Red Hat, and CentOS differ in the specific
details of package names, configuration file paths, and many other things, I have decided
that for reasons of space and clarity the best approach for this book is to pick one distribution
(Ubuntu 10.04 Lucid) and stick with it. However, Puppet runs on almost every operating
system there is, so you should have very little trouble adapting the recipes to your own
favored OS and distribution.

At the time of writing this book, Puppet 2.7 was the latest stable version available, and
consequently I have chosen that as the reference version of Puppet used. However, the
syntax of Puppet commands changes every so often; so be aware that while older versions
of Puppet are still perfectly usable, they may not support all of the features and syntax
described in this book.

Using version control

"Unix was not designed to stop you from doing stupid things, because that would
also stop you from doing clever things." —Doug Gwyn

Ever deleted something and wished you hadn't? The most important tip in this book is to put
your Puppet manifests in a version control system such as Git or Subversion. Editing the
manifests directly on the Puppetmaster is a bad idea, because your changes could get applied
before you're ready. Puppet automatically detects any changes to manifest files, so you might
find half-finished manifests being applied to your clients. This could have nasty results!

Instead, use version control (I recommend Git) and make the /etc/puppet directory on the
Puppetmaster a checkout from your repository. This gives you several advantages:

ff You don't run the risk of Puppet applying incomplete changes

ff You can undo changes and revert to any previous version of your manifest

Chapter 1

9

ff You can experiment with new features using a branch, without affecting the master
version used in production

ff If several people need to make changes to the manifests, they can make them
independently, in their own working copies, and then merge their changes later

ff You can use the log feature to see what was changed, and when (and by whom).

Getting ready
You'll need a Puppetmaster and a set of existing manifests in /etc/puppet. If you don't have
these already, refer to the Puppet documentation to find out how to install Puppet and create
your first manifests.

To put your manifests under version control, you need to import the /etc/puppet directory
from the Puppetmaster into your version control system, and make it a working copy. In this
example, we'll use a GitHub account to store the Puppet configuration.

You'll need a GitHub account (it's free to sign up) and a repository. Follow the instructions at
www.github.com to create one.

You can download the example code files for all Packt books you have
purchased from your account at http://www.PacktPub.com. If you purchased
this book elsewhere, you can visit http://www.PacktPub.com/support and
register to have the files e-mailed directly to you.

How to do it...
1.	 To turn the /etc/puppet directory on the Puppetmaster into a Git repository, run

the following commands:
root@cookbook:/etc/puppet# git init

Initialized empty Git repository in /etc/puppet/.git/

root@cookbook:/etc/puppet# git add manifests/ modules/

root@cookbook:/etc/puppet# git commit -m "initial commit"

[master (root-commit) c7a24cf] initial commit

 59 files changed, 1790 insertions(+), 0 deletions(-)

 create mode 100644 manifests/site.pp

 create mode 100644 manifests/utils.pp

...

Puppet Infrastructure

10

2.	 Connect this to your GitHub repo and push as follows:
git push -u origin master

Counting objects: 91, done.

Compressing objects: 100% (69/69), done.

Writing objects: 100% (91/91), 21.07 KiB, done.

Total 91 (delta 4), reused 0 (delta 0)

To git@github.com:bitfield/puppet-demo.git

 * [new branch] master -> master

Branch master setup to track remote branch masters from the origin.

How it works...
You've created a "master" repository (usually known as a repo for short) at GitHub which
contains your Puppet manifests. You can check out multiple copies of this in different places
and work on them before committing your changes. For example, if you had a team of system
admins, each of them could work on their own local copy of the repo.

The copy in /etc/puppet on the Puppetmaster is now just another working copy, slaved to
the GitHub repo. When you decide that you want to tell Puppet about your changes, you can
update this copy and it will pull the latest changes from GitHub.

There's more...
Now that you've set up version control, you can use the following workflow for editing your
Puppet manifests:

1.	 Make your changes in the working copy using your favorite text editor.

2.	 Commit the changes and push them to the GitHub repo, as shown in the
preceding text.

3.	 Update the Puppetmaster's working copy, using git pull.

�� Here is an example where we add a new file to the manifest, commit it, and
then update the Puppetmaster's working copy. I've made some edits to the
working copy on my laptop:
john@laptop:~$ cd puppet-work
john@laptop:~/puppet-work$ mkdir manifests
john@laptop:~/puppet-work$ touch manifests/nodes.pp
john@laptop:~/puppet-work$ git add manifests/nodes.pp
john@laptop:~/puppet-work$ git commit -m "adding nodes.pp"
[master 5c7b94c] adding nodes.pp
 0 files changed, 0 insertions(+), 0 deletions(-)
 create mode 100644 manifests/nodes.pp

Chapter 1

11

john@laptop:~/puppet-work$ git push
Counting objects: 7, done.
Compressing objects: 100% (4/4), done.
Writing objects: 100% (4/4), 409 bytes, done.
Total 4 (delta 1), reused 0 (delta 0)

To git@github.com:bitfield/puppet-demo.git
 c7a24cf..b74d452 master -> master

�� Now I'll update the working copy on the Puppetmaster:
root@cookbook:/etc/puppet# git pull
remote: Counting objects: 5, done.
remote: Compressing objects: 100% (2/2), done.
remote: Total 4 (delta 0), reused 0 (delta 0)
Unpacking objects: 100% (4/4), done.

From git@github.com:bitfield/puppet-demo.git
 26d668c..5c7b94c master -> origin/master
Updating 26d668c..5c7b94c
Fast-forward
0 files changed, 0 insertions(+), 0 deletions(-)
create mode 100644 manifests/nodes.pp

�� You can automate this process by using a tool such as Rake.

See also
ff Deploying changes with Rake in this chapter

ff Creating a decentralized Puppet architecture in this chapter

ff Using commit hooks in this chapter

Using commit hooks
It would be nice if we knew there was a syntax error in the manifest before we even
committed it. You can have Puppet check the manifest using the puppet parser
validate command:

puppet parser validate/etc/puppet/manifests/site.pp

err: Could not parse for environment production: Syntax error at end of
file at /etc/puppet/manifests/site.pp:3

This is especially useful because a mistake anywhere in the manifest will stop Puppet from
running on any node, even on nodes that don't use that particular part of the manifest. So
checking in a bad manifest can cause Puppet to stop applying updates to production for some
time, until the problem is discovered, and this could potentially have serious consequences.

Puppet Infrastructure

12

The best way to avoid this is to automate the syntax check by using a pre-commit hook in
your version control repo.

How to do it…
If you are using Git for version control, you can add a script, .git/hooks/pre-commit
that syntax checks all files about to be committed. This example is taken from the Puppet
Labs wiki:

#!/bin/sh

syntax_errors=0
error_msg=$(mktemp /tmp/error_msg.XXXXXX)

if git rev-parse --quiet --verify HEAD > /dev/null
then
 against=HEAD
else
 # Initial commit: diff against an empty tree object
 against=4b825dc642cb6eb9a060e54bf8d69288fbee4904
fi

Get list of new/modified manifest and template files to check (in
git index)
for indexfile in `git diff-index --diff-filter=AM --name-only --cached
$against | egrep '\.(pp|erb)'`
do
 # Don't check empty files
 if [`git cat-file -s :0:$indexfile` -gt 0]
 then
 case $indexfile in
 *.pp)
 # Check puppet manifest syntax
 git cat-file blob :0:$indexfile | puppet parser
 validate --ignoreimport > $error_msg ;;
 *.erb)
 # Check ERB template syntax
 git cat-file blob :0:$indexfile | erb -x -T - | ruby
 -c 2> $error_msg > /dev/null ;;
 esac
 if ["$?" -ne 0]
 then
 echo -n "$indexfile: "
 cat $error_msg
 syntax_errors=`expr $syntax_errors + 1`
 fi

Chapter 1

13

 fi
done

rm -f $error_msg

if ["$syntax_errors" -ne 0]
then
 echo "Error: $syntax_errors syntax errors found, aborting commit."
 exit 1
fi

How it works…
The commit hook script will prevent you from committing any files with syntax errors:

git commit -m "spot the deliberate mistake" manifests/site.pp

err: Could not parse for environment production: Syntax error at end of
file; expected '}' at /etc/puppet/manifests/site.pp:3

manifests/site.pp: Error: 1 syntax errors found, aborting commit.

There's more…
You can find this script, and more details about it, on the Puppet Labs wiki: http://
projects.puppetlabs.com/projects/1/wiki/Puppet_Version_Control

You can use a similar update hook to prevent broken manifests from being pushed to the
Puppetmaster: see the wiki page for details.

See also
ff Using version control in this chapter

Deploying changes with Rake
Like everyone who makes his living with a keyboard, I hate unnecessary typing. If you
are using the workflow described in the section on using version control, you can add
some automation to make this process a little easier. There are several tools that can run
commands for you on remote servers, including Capistrano and Fabric, but for this example
we'll use Rake.

Puppet Infrastructure

14

Getting ready
If you don't have Rake installed already, run the following command:

apt-get install rake

You'll need a working Internet connection.

How to do it...
1.	 Create a file in the top level of your Puppet working copy named Rakefile that

looks like this:
PUPPETMASTER = 'cookbook'
SSH = 'ssh -t -A'

task :deploy do
 sh "git push"
 sh "#{SSH} #{PUPPETMASTER} 'cd /etc/puppet && sudo git pull'"
end

2.	 When you make changes in your working copy of the Puppet manifests, you can
simply run:
$ rake deploy

3.	 Rake will take care of updating the Git repo and refreshing the Puppetmaster's
working copy for you:
$ git push

Counting objects: 4, done.

Delta compression using 2 threads.

Compressing objects: 100% (3/3), done.

Writing objects: 100% (3/3), 452 bytes, done.

Total 3 (delta 0), reused 0 (delta 0)

To ssh:/ /git@cookbook.bitfieldconsulting.com/var/git/cookbook

 561e5a6..a8b8c76 master -> master

ssh -A -l root cookbook 'cd /etc/puppet && git pull'

From ssh://cookbook.bitfieldconsulting.com/var/git/cookbook

 561e5a6..a8b8c76 master -> origin/master

Updating 561e5a6..a8b8c76

Fast-forward

 Rakefile | 6 ++++++

 1 files changed, 6 insertions(+), 0 deletions(-)

 create mode 100644 Rakefile

Chapter 1

15

4.	 You can also add a Rake task to run Puppet on the client machine:
task :apply => [:deploy] do
 client = ENV['CLIENT']
 sh "#{SSH} #{client} 'sudo puppet agent --test'" do |ok,
 status|
 puts case status.exitstatus
 when 0 then "Client is up to date."
 when 1 then "Puppet couldn't compile the manifest."
 when 2 then "Puppet made changes."
 when 4 then "Puppet found errors."
 end
 end
end

5.	 When you want to test your changes on the client machine, run the following command:
rake CLIENT=cookbook apply

6.	 Replace cookbook with the name of the client machine, or set the CLIENT
environment variable so that Rake knows which machine to run Puppet on.
info: Caching catalog for cookbook

info: Applying configuration version '1292865016'

info: Creating state file /var/lib/puppet/state/state.yaml

notice: Finished catalog run in 0.03 seconds

7.	 If you want to see what changes Puppet would make, without actually changing
anything, use the --noop flag:
task :noop => [:deploy] do
 client = ENV['CLIENT']
 sh "#{SSH} #{client} 'sudo puppet agent --test --noop'"
end

8.	 Now you can run:
$ rake noop

This will show you a preview of the changes.

How it works...
A Rakefile consists of a series of tasks, identified by the task keyword. The task definition
is a set of steps, in this case the sequence of shell commands required to push your manifest
changes to the master repo, and update the Puppetmaster's working copy.

Puppet Infrastructure

16

Tasks can be linked, so that one depends on the other. For example, in our Rakefile the
apply task is linked to deploy, so that whenever you run rake apply, Rake will make
sure the deploy task is done first, and the apply task next.

There's more...
You can extend this Rakefile to automate more tasks, including running a syntax check
on the Puppet manifests before updating them, and even bootstrapping a new machine
with Puppet. Rake is a powerful tool and can be a big help in managing a large network
with Puppet.

See also
ff Using version control in this chapter

ff Creating a decentralized Puppet architecture in this chapter

ff Using commit hooks in this chapter

Configuring Puppet's file server
Deploying configuration files is one of the most common uses of Puppet. Most non-trivial
services need some kind of configuration file, and you can have Puppet push it to the client
using a file resource as shown in the following code:

file { "/opt/nginx/conf.d/app_production.conf":
 source => "puppet:///modules/app/app_production.conf",
}

The source parameter works like this: the first part after puppet:/// is assumed to be
the name of a mount point, and the remainder is treated as a path to the file as shown.

puppet:///<mount point>/<path>

Usually the value of <mount point> is modules, as in the preceding example. In this case,
Puppet will look for the file in:

manifests/modules/app/files/app_production.conf

modules is a mount point that Puppet treats specially: it expects the next path component
to be the name of a module, and it will then look in the module's files directory for the
remainder of the path.

However, Puppet lets you create custom mount points, which can have individual access
control settings, and can be mapped to different locations on the Puppetmaster. In this recipe
we'll see how to create and configure these custom mount points.

Chapter 1

17

How to do it...
1.	 Add a stanza to the Puppetmaster's fileserver.conf, with the name of your

mount point in square brackets, and the path where Puppet should look for data,
as shown:
[san]
 path /mnt/san/mydata/puppet

2.	 In your manifest, specify a file source using your mount point name as follows:
source => "puppet:///san/admin/users.htpasswd",

and Puppet will convert this to the path:
/mnt/san/mydata/puppet/admin/users.htpasswd

One good reason to create a custom mount point like this is to add some security.
Let's say you have a top-secret password file which should only be deployed to the
web server, and no other machine needs it. If someone can run Puppet on any
machine that has a valid certificate to access the Puppetmaster, there's nothing to
stop them executing a manifest like this:
file { "/home/cracker/goodstuff/passwords.txt":
 source => "puppet:///web/passwords.txt",
}

They can easily retrieve the secret data. Indeed, anyone who can check out the
Puppet repo or who has an account on the Puppetmaster could access this file. One
way to avoid this is to put secret data into a special mount point with access control.

3.	 Add allow and deny parameters to your mount point definition in fileserver.
conf like this:
[secret]
 /data/secret
 allow web.example.com
 deny *

How it works...
In this case, only web.example.com can access the file. The default is to deny all access,
so the deny * line isn't strictly necessary, but it's good style to make it explicit. The web
server can then use a file resource as shown in the following code:

file { "/etc/passwords.txt":
 source => "puppet:///secret/passwords.txt",
}

If this manifest is executed on web.example.com, it will work, but on any other clients,
it will fail.

Puppet Infrastructure

18

There's more...
You can also specify an IP address instead of a hostname, optionally using (CIDR) Classless
Inter-Domain Routing (slash) notation or wildcards, as follows:

allow 10.0.55.0/24
allow 192.168.0.*

See also
ff Using modules section in Chapter 3

ff Distributing directory trees section in Chapter 6

ff Using multiple file sources section in Chapter 6

Running Puppet from cron
Is your Puppet sleeping on the job? By default, when you run the Puppet agent on a client,
it will become a daemon (background process), waking up every 30 minutes to check for
any manifest updates and apply them (optionally after a randomized delay using the splay
setting in puppet.conf). If you want more control over when Puppet runs, you can trigger it
using cron instead.

For example, if you have many Puppet clients, you may want to deliberately stagger the Puppet
run times to spread the load on the Puppetmaster. A simple way to do this is to set the minute
or hour of the cron job time using a hash of the client hostname.

How to do it...
Use Puppet's inline_template function, which allows you to execute Ruby code:

cron { "run-puppet":
 command => "/usr/sbin/puppet agent --test",
 minute => inline_template("<%= hostname.hash.abs % 60 %>"),
}

service { "puppet":
 ensure => stopped,
 enable => false,
}

Chapter 1

19

How it works...
Because each hostname produces a unique hash value, each client will run Puppet at a
different minute past the hour. This hashing technique is useful for randomizing any cron
jobs to improve the odds that they won't interfere with each other.

There's more...
You may find that running Puppet as a daemon leaks memory over time, or that occasionally
Puppet can get into a stuck state when communicating with the master. Running Puppet from
cron should also fix these problems.

There are other ways to trigger Puppet runs, including the MCollective tool, which we'll cover
in detail elsewhere in this book.

See also
ff Efficiently distributing cron jobs section in Chapter 6
ff Using embedded Ruby section in Chapter 3

ff Using MCollective section in Chapter 9

Using autosign
In cryptography, as in life, you have to be careful what you sign. Normally, when you introduce
a new client to the Puppetmaster, you need to generate a certificate request on the client, and
then sign it on the master. However, you can skip this step by enabling autosigning.

How to do it...
Create the file /etc/puppet/autosign.conf on the Puppetmaster with the following
contents: *.example.com

How it works...
Puppet checks any incoming certificate requests to see if they match a line from autosign.
conf. Any certificate requests from clients with a hostname matching *.example.com will
be automatically signed by the Puppetmaster.

Puppet Infrastructure

20

Important: This is a potential security problem, since it amounts to trusting
any client that can connect to the Puppetmaster. For this reason, autosigning
is not recommended. If you do use it, make sure that the Puppetmaster
is protected by a firewall that allows only approved clients or IP ranges to
connect. A more secure approach is pre-signing.

See also
ff Pre-signing certificates in this chapter

Pre-signing certificates
Because of the security implications, it's best to avoid using autosign if you can help it. In
general, if you want to automate adding a large number of clients, it's better to pre-generate
the certificates on the Puppetmaster and then push them to the client as part of the build
process. You can use puppet cert --generate <hostname> to do this.

How to do it...
1.	 Generate a pre-signed certificate for client1.example.com with the following

command:
puppet cert --generate client1.example.com

Puppet will now generate and sign a client certificate in the name of client1.
example.com.

2.	 Transfer the three required files; the private key, the client certificate, and the CA
certificate, to the new client. These are found in the following locations:
/etc/puppet/ssl/private_keys/client1.example.com.pem
/etc/puppet/ssl/certs/client1.example.com.pem
/etc/puppet/ssl/certs/ca.pem

Transfer these to the corresponding directories on the client, and it will then be
authenticated without the certificate request step. Note that the location of Puppet's
SSL certs varies according to the ssldir setting in puppet.conf.

See also
Using autosign in this chapter

Chapter 1

21

Retrieving files from Puppet's filebucket

"A Freudian slip is when you say one thing, but mean your mother."—Anon

We all make mistakes; that's why pencils have erasers. Whenever Puppet changes a file on
the client, it keeps a backup copy of the previous version. We can see this process in action if
we make a change, however small, to an existing file:

puppet agent --test

info: Caching catalog for cookbook

info: Applying configuration version '1293459139'

--- /etc/sudoers 2010-12-27 07:12:20.421896753 -0700

+++ /tmp/puppet-file20101227-1927-13hjvy6-0 2010-12-27 07:13:21.645702932
-0700

@@ -12,7 +12,7 @@

 # User alias specification

-User_Alias SYSOPS = john

+User_Alias SYSOPS = john,bob

info: FileBucket adding /etc/sudoers as {md5}
c07d0aa2d43d58ea7b5c5307f532a0b1

info: /Stage[main]/Admin::Sudoers/File[/etc/sudoers]: Filebucketed /etc/
sudoers to puppet with sum c07d0aa2d43d58ea7b5c5307f532a0b1

notice: /Stage[main]/Admin::Sudoers/File[/etc/sudoers]/content: content
changed '{md5}c07d0aa2d43d58ea7b5c5307f532a0b1' to '{md5}0d218c16bd31206e
312c885884fa947d'

notice: Finished catalog run in 0.45 seconds

The part we're interested in is this line:

info: /Stage[main]/Admin::Sudoers/File[/etc/sudoers]: Filebucketed /etc/
sudoers to puppet with sum c07d0aa2d43d58ea7b5c5307f532a0b1

Puppet creates an MD5 hash of the file's contents and uses this to create a filebucket
path, based on the first few characters of the hash. The filebucket is where Puppet keeps
backup copies of any files that it replaces, and it's located by default in /var/lib/puppet/
clientbucket.

ls /var/lib/puppet/clientbucket/c/0/7/d/0/a/a/2/
c07d0aa2d43d58ea7b5c5307f532a0b1

contents paths

Puppet Infrastructure

22

As you just saw, the # ls command listed the filenames. You will see two files in the bucket
location: contents and paths. The contents file contains, as you might expect, the original
contents of the file. The paths file contains its original path.

It's easy to find the file if you know its content hash (as we did in this case). If you don't, it's
helpful to create a table of contents of the whole filebucket by building an index file.

How to do it...
1.	 Create the index file using the following command:

find /var/lib/puppet/clientbucket -name paths -execdir cat {}
\; -execdir pwd \; -execdir date -r {} +"%F %T" \; -exec echo \; >
bucket.txt

2.	 Search the index file to find the file you're looking for:
cat bucket.txt

/etc/sudoers

/var/lib/puppet/clientbucket/c/0/7/d/0/a/a/2/
c07d0aa2d43d58ea7b5c5307f532a0b1

2010-12-27 07:13:21

/etc/sudoers

/var/lib/puppet/clientbucket/1/0/9/0/e/2/8/a/1090e28a70ebaae872c2e
c78894f49eb

2010-12-27 07:12:20

3.	 To retrieve the file once you know its bucket path, just copy the contents file to the
original filename:
cp /var/lib/puppet/clientbucket/1/0/9/0/e/2/8/a/1090e28a70ebaae8
72c2ec78894f49eb/contents /etc/sudoers

How it works...
The script will create a complete list of files in the filebucket, showing the original name of
the file, the bucket path, and the modification date (in case you need to retrieve one of several
previous versions of the file). Once you know the bucket path, then you can copy the file back
into place.

Chapter 1

23

There's more...
You can have Puppet create backup copies of the file in its original location, rather than in
the filebucket. To do this, use the backup parameter in your manifest:

file { "/etc/sudoers":
 mode => "440",
 source => "puppet:///modules/admin/sudoers",
 backup => ".bak",
}

Now, if Puppet replaces the file, it will create a backup version in the same location with the
extension .bak. To make this the default policy for all files, use:

File {
 backup => ".bak",
}

To disable backups altogether, use the following code:

 backup => false,

Scaling Puppet using Passenger
If your Puppet infrastructure's starting to creak at the seams, the culprit could be the
Puppetmaster's web server. Puppet ships with a simple web server called Webrick to handle
client connections to the Puppetmaster. Webrick is not really considered suitable for using
Puppet in production; with more than a few servers as it can bring the Puppetmaster to
its knees.

Mongrel is sometimes suggested as an alternative as it is a little better than Webrick, but not
much. In order to scale Puppet to hundreds of servers, the preferred approach is to switch to
a high-performance web server such as Apache using the Passenger (mod_rails) extension.

Puppet comes with the necessary configuration to run under Passenger, so all you need to do
is install Apache and Passenger, and add a suitable virtual host. The following example uses
Ubuntu 10.04. You can find instructions on the Puppet Labs website for how to do the same in
Red Hat Linux, CentOS, and other distributions at http://projects.puppetlabs.com/
projects/1/wiki/Using_Passenger.

Getting ready
It will be helpful if you have available the source tarball for the version of Puppet you're
running, because it provides several template files and configuration snippets which you
can use to set up Passenger. For example, if you're running Puppet 2.7.1, download this file:
http://puppetlabs.com/downloads/puppet/puppet-2.7.1.tar.gz.

Puppet Infrastructure

24

If you are using a different version, you will find a suitable download link at
http://puppetlabs.com. Unpack the source tarball with:

tar xzf puppet-2.7.1.tar.gz

How to do it...
1.	 Install Apache and Passenger, plus associated dependencies:

apt-get install apache2 libapache2-mod-passenger rails
librack-ruby libmysql-ruby

gem install rack

2.	 Create the necessary directories for Passenger to find the Puppet configuration:
/etc/puppet/rack
/etc/puppet/rack/public

These directories should be owned by root and set mode 0755.
3.	 Create the config.ru file which will tell Passenger how to start the Puppet

application. You can use the example file provided with the Puppet distribution:
cp /tmp/puppet-2.7.1/ext/rack/files/config.ru /etc/puppet/rack/

chown puppet /etc/puppet/rack/config.ru

For Puppet 2.7.1, it has the following contents:
a config.ru, for use with every rack-compatible webserver.

SSL needs to be handled outside this, though.

if puppet is not in your RUBYLIB:

$:.unshift('/opt/puppet/lib')

$0 = "master"

if you want debugging:

ARGV << "--debug"

ARGV << "--rack"

require 'puppet/application/master'

we're usually running inside a Rack::Builder.new {} block,

therefore we need to call run *here*.

run Puppet::Application[:master].run

Chapter 1

25

4.	 You now need to create a virtual host for Apache to listen on the correct port and
send requests to the Puppet application. Again, you can use the example provided
with the Puppet distribution:
cp /tmp/puppet-2.7.1/ext/rack/files/apache2.conf /etc/apache2/
sites-available/puppetmasterd

a2ensite puppetmasterd

The file contents will look something like this:
you probably want to tune these settings
PassengerHighPerformance on
PassengerMaxPoolSize 12
PassengerPoolIdleTime 1500
PassengerMaxRequests 1000
PassengerStatThrottleRate 120
RackAutoDetect Off
RailsAutoDetect Off

Listen 8140

<VirtualHost *:8140>
 SSLEngine on
 SSLProtocol -ALL +SSLv3 +TLSv1
 SSLCipherSuite ALL:!ADH:RC4+RSA:+HIGH:+MEDIUM:-LOW:-SSLv2:-EXP

 SSLCertificateFile /etc/puppet/ssl/certs/cookbook.
 bitfieldconsulting.com.pem
 SSLCertificateKeyFile /etc/puppet/ssl/private_keys/cookbook.
 bitfieldconsulting.com.pem
 SSLCertificateChainFile /etc/puppet/ssl/ca/ca_crt.pem
 SSLCACertificateFile /etc/puppet/ssl/ca/ca_crt.pem
 # If Apache complains about invalid signatures on the CRL, you
 can try disabling
 # CRL checking by commenting the next line, but this is not
 recommended.
 SSLCARevocationFile /etc/puppet/ssl/ca/ca_crl.pem
 SSLVerifyClient optional
 SSLVerifyDepth 1
 SSLOptions +StdEnvVars

 DocumentRoot /etc/puppet/rack/public/
 RackBaseURI /
 <Directory /etc/puppet/rack/>
 Options None
 AllowOverride None
 Order allow,deny
 allow from all
 </Directory>
</VirtualHost>

Puppet Infrastructure

26

5.	 Edit this file to set the values of the SSLCertificateFile and
SSLCertificateKeyFile to your own certificates (it's easiest to create these
certificates if you've already run Puppet at least once).

6.	 You will also need to enable Passenger and mod_ssl in Apache:
a2enmod passenger ssl

7.	 Add the following lines to your /etc/puppet/puppet.conf:
ssl_client_header = SSL_CLIENT_S_DN
ssl_client_verify_header = SSL_CLIENT_VERIFY

8.	 Stop your existing Puppetmaster if it is running.

9.	 Start Apache as follows:
/etc/init.d/apache2 restart

10.	 If everything has worked, you will be able to run Puppet as usual:
puppet agent --test

info: Caching catalog for cookbook.bitfieldconsulting.com

info: Applying configuration version '1294145142'

notice: Finished catalog run in 0.25 seconds

How it works...
Instead of using Puppet's built-in web server, which is rather slow and can only handle one
connection at a time, you'll now be using the high-performance multi-threaded Apache web
server. Puppet is embedded as an application using the Rack framework, which is much more
efficient. You should find that you can handle many more clients and more frequent Puppet
runs using the "Apache + Passenger" configuration, and that the impact on server memory
and performance is less than using the standard Puppetmaster daemon.

There's more...
Here is an example Puppet manifest that will implement the preceding steps for you
(on an Ubuntu system):

class puppet::passenger {
 package { ["apache2-mpm-worker",
 "libapache2-mod-passenger",
 "librack-ruby",
 "libmysql-ruby"]:
 ensure => installed,
 }

Chapter 1

27

 service { "apache2":
 enable => true,
 ensure => running,
 require => Package["apache2-mpm-worker"],
 }

 package { "rack":
 provider => gem,
 ensure => installed,
 }

 file { ["/etc/puppet/rack",
 "/etc/puppet/rack/public"]:
 ensure => directory,
 mode => "755",
 }

 file { "/etc/puppet/rack/config.ru":
 source => "puppet:///modules/puppet/config.ru",
 owner => "puppet",
 }

 file { "/etc/apache2/sites-available/puppetmasterd":
 source => "puppet:///modules/puppet/puppetmasterd.conf",
 }

 file { "/etc/apache2/sites-enabled/puppetmasterd":
 ensure => symlink,
 target => "/etc/apache2/sites-available/puppetmasterd",
 }

 exec { "/usr/sbin/a2enmod ssl":
 creates => "/etc/apache2/mods-enabled/ssl.load",
 }
}

Once you're up and running with Passenger, you can use the following command to restart the
Puppetmaster application:

 # service apache2 restart

To monitor that Passenger is running, check for the process named
ApplicationPoolServerExecutable.

You can also load-balance Passenger instances in the same way that you would for a regular
web application.

For more details, or if you run into problems, consult the Puppet-on-Passenger documentation
at: http://projects.puppetlabs.com/projects/1/wiki/Using_Passenger

Puppet Infrastructure

28

See also
ff Creating decentralized Puppet architecture in this chapter

Creating decentralized Puppet architecture

"I have the world's largest collection of seashells. I keep it scattered around the
beaches of the world... perhaps you've seen it." —Steven Wright

Some systems—notably the Mafia—run best when they're decentralized. The most common
way to use Puppet is to run a Puppetmaster server, which Puppet clients can then connect to
and receive their manifests from. However, you can run puppet apply directly on a manifest
file to have it executed as shown in the following command line. (You'll normally want to use
the -v switch to enable verbose mode, so you can see what's happening):
puppet apply -v manifest.pp

info: Applying configuration version '1294313350'

You can even supply a manifest directly on the command line:
puppet apply -e "file { '/tmp/test': ensure => present }"

notice: /Stage[main]//File[/tmp/test]/ensure: created

In other words, if you can arrange to distribute a suitable manifest file to a client machine,
you can have Puppet execute it directly without the need for a central Puppetmaster. This
removes the performance bottleneck of a single master server, and also eliminates a single
point of failure. It also avoids having to sign and exchange SSL certificates when provisioning
a new client machine.

There are many ways you could deliver the manifest file to the client, but Git (or another
version control system such as Mercurial, or Subversion) does most of the work for you.
You can edit your manifests in a local working copy, commit them to Git and push them to a
central repo, and from there they can be automatically distributed to the client machines.

Getting ready
If your Puppet manifests aren't already in Git, follow the steps in Using version control for
your Puppet manifests in this chapter.

How to do it...
1.	 Make a bare clone of your Puppet repo on the client as follows:

git clone --bare ssh://git@repo.example.com/var/git/puppet

Chapter 1

29

2.	 Copy the contents of this repo into your /etc/puppet/ directory using the
following command:
git archive --format=tar HEAD | (cd /etc/puppet && tar xf -)

3.	 Run Puppet on your site.pp file:
puppet apply -v /etc/puppet/manifests/site.pp

info: Applying configuration version '1294313353'

Once this is working, the next step is to have the configuration repo automatically
push out changes to the clients. With Git, you can do this using remotes, like so:
git remote add web ssh://git@web1.example.com/etc/puppet

If you have multiple client machines, you can add more URLs to the same remote:
git remote set-url --add webs ssh:// git@web2.example.com/etc/
puppet

git remote set-url --add webs ssh:// git@web3.example.com/etc/
puppet

...

or simply edit the Git configuration file (.git/config) like this:
[remote "web"]
 url = ssh:// git@web1.example.com/etc/puppet
 url = ssh://git@web2.example.com/etc/puppet
 url = ssh://git@web3.example.com/etc/puppet
 ...

4.	 Now you can push to any client machine, or group of machines, from the repo server
with the following command:
git push web

5.	 The final step is to have the client machine update its /etc/puppet directory
whenever it receives a push from the repo server. You can do this using a Git post-
receive hook. In your bare repo, create the file hooks/post-receive and make it
executable (mode 0755):
#!/bin/sh
git archive --format=tar HEAD | (cd /etc/puppet && tar xf -)

How it works...
Instead of contacting the Puppetmaster to receive their compiled manifest, each client
compiles its own from a local copy of the manifest source. This is updated every time you
push updates from the Git server (or from your working checkout). This is more efficient with
respect to network bandwidth, as clients don't have to contact the Puppetmaster on every
run. It also eliminates a single point of failure, as clients can be updated from anywhere.

Puppet Infrastructure

30

Using a decentralized Puppet architecture based on Git as outlined here gives you a great
deal of flexibility. You can configure access controls and permissions using SSH keys, and
allow each client machine or group only as much access as it needs. Manifests for a database
server group, for example, can be made available only to those machines that need it.

While it requires some extra work to set up, and is not necessary for most small organizations,
this way of deploying Puppet gives you extra flexibility and control for the most demanding
environments.

There's more...
If you want to have Puppet apply the changes every time they are pushed, you can edit the
post-receive script to do this, or take any other action you want. Alternatively, you could run
Puppet manually, or from cron as described earlier in this chapter— just run puppet apply.

There are a few disadvantages to using a Git-based architecture: you can't use advanced
Puppet features such as external node classifiers or stored configurations. However, when
you need to scale to a large number of nodes, this is the simplest way to do it.

You can find a more detailed discussion of this architecture in Stephen Nelson-Smith's article
at http://bitfieldconsulting.com/scaling-puppet-with-distributed-
version-control.

See also
ff Scaling Puppet using Passenger in this chapter

ff Using version control in this chapter

2
Monitoring, Reporting,

and Troubleshooting

"Found problem more than one. However, this does not mean that relevant part
is thing by mistake. Could be fertilized by special purpose in other application
program."—Error message

In this chapter, we will cover the following topics:

ff Generating reports

ff E-mailing log messages containing specific tags

ff Creating graphical reports

ff Producing automatic HTML documentation

ff Drawing dependency graphs

ff Testing your Puppet manifests

ff Doing a dry run

ff Detecting compilation errors

ff Understanding Puppet errors

ff Logging command output

ff Logging debug messages

ff Inspecting configuration settings

ff Using tags

ff Using run stages

ff Using environments

Monitoring, Reporting, and Troubleshooting

32

We've all had the experience of sitting in an exciting presentation about some new technology,
and then rushing home to play with it. Of course, once you start experimenting with it, you
immediately run into problems. What's going wrong? Why doesn't it work? How can I see
what's happening under the hood? This chapter will help you answer some of these questions,
and give you the tools to solve common Puppet problems. We'll also see how you can generate
useful reports on your Puppet infrastructure, and how Puppet can help you monitor and
troubleshoot your network as a whole.

Generating reports

"What the world really needs is more love and less paperwork."—Pearl Bailey

Truth is often the first casualty of large infrastructures. If you're managing a lot of machines,
Puppet's reporting facility can give you some valuable information on what's actually
happening out there.

How to do it…
To enable reports, just add the following to a client's puppet.conf:

report = true

How it works…
With reporting enabled, Puppet will generate a report file on the Puppetmaster, containing
data such as the following:

ff Time required to fetch configuration from the Puppetmaster

ff Total time of the run

ff Log messages output during the run

ff List of all resources in the client's manifest

ff Whether Puppet changed each resource

ff Whether a resource was out of sync with the manifest

By default, these reports are stored in /var/lib/puppet/reports, but you can specify a
different destination using the reportdir option. You can either create your own scripts to
process these reports (which are in the standard YAML format), or use a tool such as Puppet
Dashboard to get a graphical overview of your network.

Chapter 2

33

There's more…
A few tips for getting the best from Puppet's reports are explained in the following text.

Enabling reports on the command line
If you just want one report, or you don't want to enable reporting for all clients, you can add
the --report switch to the command line when you run Puppet manually:

puppet agent --test --report

You can also see some statistics about a Puppet run by supplying the --summarize switch
as follows:

puppet agent --test --summarize

info: Retrieving plugin

info: Caching catalog for cookbook.bitfieldconsulting.com

info: Applying configuration version '1306169315'

notice: Finished catalog run in 0.58 seconds

Changes:

Events:

Resources:

 Total: 7

Time:

 Config retrieval: 3.65

 Filebucket: 0.00

 Schedule: 0.00

Logging Puppet messages to syslog
Puppet can also send its log messages to the Puppetmaster's syslog, so that you can analyze
them with standard syslog tools. To enable this, set the following option in the Puppetmaster's
puppet.conf:

[master]
reports = store,log

The default report type is store (it writes the reports to /var/lib/puppet/reports), and
log tells Puppet to also send messages to the syslog.

Monitoring, Reporting, and Troubleshooting

34

See also
ff Creating graphical reports in this chapter

ff Logging debug messages in this chapter

ff Using Puppet Dashboard in Chapter 9

E-mailing log messages containing
specific tags

If, like most sysadmins, you feel like you don't get enough e-mail, you'll be looking for a way
to generate more. Another type of Puppet report is called tagmail. This will e-mail the log
messages to any address you specify.

How to do it…
1.	 Add tagmail to the comma-separated list of reports in puppet.conf:

[master]
reports = store,tagmail

2.	 Add some tags and associated e-mail addresses in the file /etc/puppet/
tagmail.conf. For example, this line will e-mail all log messages to me:
all: john@example.com

3.	 When Puppet runs, you will get an e-mail that looks like the following:
From: report@cookbook.bitfieldconsulting.com
Subject: Puppet Report for cookbook.bitfieldconsulting.com
To: john@example.com

Mon Jan 17 08:42:30 -0700 2011 //cookbook.bitfieldconsulting.com/
Puppet (info): Caching catalog for cookbook.bitfieldconsulting.com
Mon Jan 17 08:42:30 -0700 2011 //cookbook.bitfieldconsulting.com/
Puppet (info): Applying configuration version '1295278949'

How it works…
Puppet looks at each line in tagmail.conf and sends any messages matching the tag
to the e-mail address specified. The special tag all matches all messages. The tag err
matches errors as shown in the following code snippet:

err: john@example.com

Chapter 2

35

You can list as many rules as you like in the tagmail.conf file, and Puppet will send e-mails
for all rules that match. In the following example, errors go to one address, and web server
related messages go to another:

err: puppetmaster@example.com
webserver: webteam@example.com

There's more…
The tagmail reports are a powerful feature which you may need to experiment with a bit so
that you can get the most out of them. I have given a few tips to help you in the following text.

What are tags?
Tags are explained in more detail later in this book, but for reporting purposes, it's enough to
know that a tag can be the name of a node or a class. For example, the tag webserver is
matched if a machine includes the class webserver. You can also add a tag explicitly, using
the tag function as follows:

class exim {
 tag("email")
 service { "exim4":
 ensure => running,
 enable => true,
 }
}

Specifying multiple tags, or excluding tags
You can specify a comma-separated list of tags in tagmail.conf, and also exclude certain
tags by using an exclamation point (!).

all, !webserver: puppetmaster@example.com

Sending reports to multiple e-mail addresses
You can send messages to multiple, comma-separated e-mail addresses as shown in the
following code-snippet:

err: puppetmaster@example.com, sysadmin@example.com

See also
ff Generating reports in this chapter

ff Creating graphical reports in this chapter

ff Using tags in this chapter

Monitoring, Reporting, and Troubleshooting

36

Creating graphical reports
Let's face it, bosses like pretty pictures. Puppet can produce report data in a form suitable
for processing by the RRD (Round-Robin Database) graph library, to produce a graphical
representation of metrics such as the runtime on each client.

Getting ready
You will need to install the RRD tools and libraries for Ruby on your system. For Ubuntu, run
the following command:
apt-get install rrdtool librrd-ruby

How to do it…
Add the rrdgraph report type to your puppet.conf as follows:

reports = store,rrdgraph

How it works…
For each run, Puppet will record data in the client's RRD directory (the default is /var/lib/
puppet/rrd/<clientname>). It will create graphs in a PNG format for events, resources,
and retrieval time, while the raw data is available to you in the .rrd files if you want to
process it further using third-party RRD tools.

There's more…
For more detailed reporting and graphing, you can use Puppet Dashboard.

See also
ff Using Puppet dashboard in Chapter 9

Producing automatic HTML documentation

"An expert is someone who is one page ahead of you in the manual."—David Knight

Like most engineers, I never read the manual, unless and until the product actually catches
fire. However, as your manifests get bigger and more complex, it can be helpful to create
HTML documentation for your nodes and classes using Puppet's automatic documentation
tool, puppet doc.

Chapter 2

37

How to do it…
Run puppet doc over your manifest as follows:

puppet doc --all --outputdir=/var/www/html/puppet --mode rdoc
--manifestdir=/etc/puppet/manifests/

How it works…
puppet doc creates a structured HTML documentation tree in /var/www/html/puppet
similar to that produced by RDoc, the popular Ruby documentation generator. This makes
it easier to understand how different parts of the manifest relate to one another, as you can
click on an included class name and see its definition.

There's more…
puppet doc will generate basic documentation of your manifests as they are at present.
However, you can include more useful information by adding comments to your manifest files,
using the standard RDoc syntax. Here's an example of some documentation comments added
to a class:

class puppet {
 # This class sets up the Puppet client.
 #
 # ==Actions
 # Install a cron job to run Puppet.
 #
 # ==Requires

Monitoring, Reporting, and Troubleshooting

38

 # * Package["puppet"]
 #
 cron { "run-puppet":
 command => "/usr/sbin/puppet agent --test >/dev/null 2>&1",
 minute => inline_template("<%= hostname.hash.abs % 60 %>"),
 }
}

Your comments are added to the documentation for each class in the resulting HTML files as
shown in the following screenshot:

Drawing dependency graphs
Dependencies can get complicated quickly, and it's easy to end up with a circular
dependency (where A depends on B which depends on A) which will cause Puppet to
complain and stop work. Fortunately, Puppet's --graph option makes it easy to generate a
diagram of your resources and the dependencies between them, which can be a big help in
fixing such problems.

Chapter 2

39

Getting ready…
Install the graphviz package to view the diagram files as shown in the following code snippet:

apt-get install graphviz

How to do it…
1.	 Create the file /etc/puppet/modules/admin/manifests/ntp.pp with the

following code containing a circular dependency:
class admin::ntp {
 package { "ntp":
 ensure => installed,
 require => File["/etc/ntp.conf"],
 }

 service { "ntp":
 ensure => running,
 require => Package["ntp"],
 }

 file { "/etc/ntp.conf":
 source => "puppet:///modules/admin/ntp.conf",
 notify => Service["ntp"],
 require => Package["ntp"],
 }
}

2.	 Copy your existing ntp.conf file into Puppet:
cp /etc/ntp.conf /etc/puppet/modules/admin/files

3.	 Include this class on a node:
node cookbook {
 include admin::ntp
}

4.	 Run Puppet as follows:
puppet agent --test

info: Retrieving plugin

info: Caching catalog for cookbook.bitfieldconsulting.com

err: Could not apply complete catalog: Found 1 dependency cycle:
(File[/etc/ntp.conf] => Package[ntp] => File[/etc/ntp.conf]);
try using the '--graph' option and open the '.dot' files in
OmniGraffle or GraphViz

notice: Finished catalog run in 0.42 seconds

Monitoring, Reporting, and Troubleshooting

40

5.	 Run Puppet with the --graph option as suggested:
puppet agent --test --graph

6.	 Check that the graph files have been created:
ls /var/lib/puppet/state/graphs/

expanded_relationships.dot relationships.dot resources.dot

7.	 Create a graphic of the relationships graph:
dot -Tpng -o relationships.png /var/lib/puppet/state/graphs/
relationships.dot

8.	 View the graphic with the following command:
eog relationships.png

File[/etc/ntp.conf]

Package[ntp]

Service[ntp]

How it works…
When you run puppet --graph (or enable the graph option in puppet.conf) Puppet
will generate three graphs in DOT format (a graphics language).These are as follows:

ff resources.dot: shows the hierarchical structure of your classes and resources,
but without dependencies

ff relationships.dot: shows the dependencies between resources as arrows,
as in the preceding example

ff expanded_relationships.dot: is a more detailed version of the
relationships graph

The dot tool (part of the graphviz package) will convert these to an image format such as
PNG for viewing.

Chapter 2

41

In the relationships graph, each resource in your manifest is shown as a balloon, with arrowed
lines connecting them to indicate the dependencies. You can see that in our example, the
dependencies between File["/etc/ntp.conf"] and Package["ntp"] form a circle.

To fix the circular dependency problem, all you need to do is remove one of the dependency
lines and thus break the circle.

There's more…
Resource and relationship graphs can be useful even when you don't have a bug to find. If
you have a very complex network of classes and resources, studying the resources graph
can help you see where to simplify things. Similarly, when dependencies become too
complicated to understand from reading the manifest, the graphs can be a much more
useful form of documentation.

Testing your Puppet manifests

"If all else fails, immortality can always be assured by spectacular error."
—J.K. Galbraith

Trouble has a way of sneaking up on you like a bug on a windshield. The standard checks
provided by monitoring tools like Nagios don't always cover everything you want to monitor.
While metrics such as load average and disk space can be useful problem indicators', I like to
be able to get higher-level information about the applications and services my machines provide.

For example, if you are running a web application, it's not enough to know that the web server
is listening to connections on port 80 and responding with an HTTP 200 OK status. It could
just be returning the default Apache welcome page.

If your web application is an online store, for example, you might want to check the following:

ff Do we see expected text in the returned page (for example, "Welcome to FooStore")?

ff Can we log in as a user (if the application supports sessions)?

ff Can we search for a product and see the expected result?

ff Is the response time satisfactory?

This kind of monitoring—focusing on the behavior of the application, rather than operational
metrics of the server itself—is sometimes called behavior-driven monitoring.

Just as developers often use behavior-driven tests to verify that the application does what it
should when they make code changes, you can use behavior-driven monitoring to monitor it
continuously in production.

Monitoring, Reporting, and Troubleshooting

42

In fact, thanks to a tool called cucumber-nagios, you can run the same tests the developers
use. Lindsay Holmwood's wrapper for the popular Cucumber testing framework lets you run
Cucumber-based tests under Nagios as though they were standard Nagios metrics.

Getting ready
1.	 To install cucumber-nagios, you will need a few dependencies first. If you are

on Ubuntu or Debian, you will probably need to install RubyGems from source, as
cucumber-nagios needs RubyGems 1.3.6 or higher. Download the tarball from the
RubyGems site: http://rubygems.org/pages/download. Unpack it and run
ruby setup.rb to build and install the package.

2.	 Next, you need to install a few more dependencies:
apt-get install ruby1.8-dev libxml2-dev

3.	 Finally, you can install cucumber-nagios itself as follows:
gem install cucumber-nagios

How to do it…
1.	 Once RubyGems and all its dependencies have been installed, you can start writing

Cucumber tests. To do this, first use cucumber-nagios to help create a project
directory with everything you will need:
cucumber-nagios-gen project mytest

Generating with project generator:

 [ADDED] features/steps

 [ADDED] features/support

 [ADDED] .gitignore

 [ADDED] .bzrignore

 [ADDED] lib/generators/feature/%feature_name%.feature

 [ADDED] Gemfile

 [ADDED] bin/cucumber-nagios

 [ADDED] lib/generators/feature/%feature_name%_steps.rb

 [ADDED] README

Your new cucumber-nagios project can be found in /root/mytest.

Next, install the necessary RubyGems with:

 bundle install

Your project has been initialized as a git repository.

Chapter 2

43

2.	 It's a good idea to run bundle install inside the project directory, as cucumber-
nagios advises you to do. This will bundle all the dependencies for cucumber-
nagios inside the directory. Then you can move the project directory to any machine
and it will work.
cd mytest

bundle install

3.	 Now we can start writing a test. As an example, let's test the home page on Google:
cucumber-nagios-gen feature www.google.com home

Generating with feature generator:

[ADDED] features/www.google.com/home.feature

[ADDED] features/www.google.com/steps/home_steps.rb

4.	 If you edit the home.feature file, you will find that cucumber-nagios has
generated a basic initial test for you:
Feature: www.google.com
 It should be up

 Scenario: Visiting home page
 When I go to "http://www.google.com"
 Then the request should succeed

You can run this from the project directory as follows:
cucumber --require features features/www.google.com/home.feature

Feature: www.google.com

 It should be up

 Scenario: Visiting home page # features/www.google.
 com/home.feature:4

 When I go to "http://www.google.com" # features/steps/http_
 steps.rb:11

 Then the request should succeed # features/steps/http_
 steps.rb:64

1 scenario (1 passed)

2 steps (2 passed)

0m0.176s

5.	 Assuming this works (if it doesn't, call Google), all you need to do to make this feature
a Nagios check is to run it with cucumber-nagios instead of cucumber:
bin/cucumber-nagios features/www.google.com/home.feature

CUCUMBER OK - Critical: 0, Warning: 0, 2 okay | passed=2;
failed=0; nosteps=0; total=2; time=0

Monitoring, Reporting, and Troubleshooting

44

How it works…
Any script can be a Nagios monitoring plugin; it just has to return the appropriate exit status (0
for OK, 1 for warning, and 2 for critical). cucumber-nagios wraps Cucumber tests to do this,
and also prints out useful information which Nagios will report via the alert or the web interface.

There's more…
By itself, this doesn't do anything very useful. However, Cucumber lets you write quite
sophisticated interaction scripts with websites: you can fill in form fields, search, click buttons,
match text on the page, and so on. Whatever features of your web application or service you
want to monitor; first figure out what a user would do in a web browser, then automate those
steps with Cucumber to create the monitoring script.

You can find out more about how to write tests for cucumber-nagios on the Cucumber
website: http://cukes.info/

Doing a dry run

"No alarms and no surprises."—Radiohead

I hate surprises. Sometimes your Puppet manifest doesn't do exactly what you expected, or
perhaps someone else has checked in changes you didn't know about. Either way, it's good
to know exactly what Puppet is going to do before it does it.

For example, if it would update a config file and restart a production service this could result
in unplanned downtime. Also, sometimes manual configuration changes are made on a server
which Puppet would overwrite.

To avoid these problems, you can use Puppet's dry run mode (also called noop mode, for
no operation).

How to do it…
Run Puppet with the --noop switch:

puppet agent --test --noop

info: Connecting to sqlite3 database: /var/lib/puppet/state/
clientconfigs.sqlite3

info: Caching catalog for cookbook.bitfieldconsulting.com

info: Applying configuration version '1296492323'

--- /etc/exim4/exim4.conf 2011-01-17 08:13:34.349716342 -0700

Chapter 2

45

+++ /tmp/puppet-file20110131-20189-127zyug-0 2011-01-31
09:45:27.792843709 -0700

@@ -1,4 +1,5 @@

 #########

+# allow spammers to use our host as a relay

 #########

notice: /Stage[main]/Admin::Exim/File[/etc/exim4/exim4.conf]/content: is
{md5}02798714adc9c7bf82bf18892199971a, should be {md5}6f46256716c0937f3b6
ffd6776ed059b (noop)

info: /Stage[main]/Admin::Exim/File[/etc/exim4/exim4.conf]: Scheduling
refresh of Service[exim4]

notice: /Stage[main]/Admin::Exim/Service[exim4]: Would have triggered
'refresh' from 1 events

notice: Finished catalog run in 0.90 seconds

How it works…
In noop mode, Puppet does everything it would normally, with the exception of actually
making any changes to the machine. It tells you what it would have done, and you can
compare this with what you expected to happen. If there are any differences, double-check
the manifest or the current state of the machine.

In the preceding example, note that Puppet warns us it would have restarted the exim
service, due to a config file update. This may or may not be what we want, but it's useful
to know in advance. I make it a rule, when applying any non-trivial changes on production
servers, to run Puppet in noop mode first, and verify what's going to happen.

There's more…
You can also use dry run mode as a simple auditing tool. It will tell you if any changes have
been made to the machine since Puppet last applied its manifest. Some organizations require
all config changes to be made with Puppet, which is one way of implementing a change
control process. Unauthorized changes can be detected using Puppet in the dry run mode
where you can then decide whether to merge the changes back into the Puppet manifest, or
undo them.

See also
ff Auditing resources in Chapter 6

Monitoring, Reporting, and Troubleshooting

46

Detecting compilation errors

"My mechanic told me, 'I couldn't repair your brakes, so I made your horn
louder.'"—Steven Wright

Usually, when there's a problem, we'll want to stop and fix it before continuing. However,
when running in daemon mode, Puppet will ignore any compilation errors in the manifest
and just apply the last known working version from its cache. This behavior is governed by
the usecacheonfailure config setting, and its default setting, true:

puppet --genconfig |grep usecacheonfailure

 # usecacheonfailure = true

It's worth noting that when you apply manifests by hand using puppet agent --test,
this doesn't happen: Puppet will complain and refuse to do anything if there is an error in
the manifest. That's because the --test switch is shorthand for the following options:

puppet agent --onetime --verbose --ignorecache --no-daemonize --no-
usecacheonfailure

Because usecacheonfailure is on when Puppet runs as a daemon, sometimes you won't
notice mistakes in a manifest for a while, as Puppet keeps on silently running an old version
of the manifest instead of complaining.

How to do it…
If you want to change this behavior, set the following value in puppet.conf:

usecacheonfailure = false

How it works…
With this option set, Puppet will immediately complain about errors and refuse to run until
they are corrected.

Understanding Puppet errors
Stop! Error time. Puppet's error messages can be confusing, and sometimes don't contain
much helpful information about how to actually resolve the problem.

Chapter 2

47

How to do it…
Often the first step is simply to search the web for the error message text and see what
explanations you can find for the error, along with any helpful advice about fixing it. Here
are some of the most common puzzling errors, with possible explanations:

ff Could not evaluate: Could not retrieve information from
source(s)

This means you specified a source parameter for a file and Puppet couldn't find it.
Check that the file is present and has been checked in, and also that the source path
is correct.

ff change from absent to file failed: Could not set 'file on
ensure: No such file or directory

This is often caused by Puppet trying to write a file to a directory that doesn't exist.
Check that the directory either exists already or is defined in Puppet, and that the file
resource require the directory (so that the directory is always created first).

ff undefined method `closed?' for nil:NilClass

This unhelpful error message is roughly translated as "something went wrong". It
tends to be a catch-all error caused by many different problems, but you may be able
to determine what is wrong from the name of the resource, the class, or the module.
One trick is to add the --debug switch, to get more useful information:
puppet agent --test --debug

If you check your Git history to see what was touched in the most recent change, this
may be another way to identify what's upsetting Puppet.

ff Could not parse for environment --- "--- production": Syntax
error at end of file at line 1

This can be caused by mistyping command line options: for example, if you type
puppet -verbose instead of puppet --verbose. That kind of error can be
hard to see.

ff Could not request certificate: Retrieved certificate does not
match private key; please remove certificate from server and
regenerate it with the current key

Either the node's SSL host key has changed, or Puppet's SSL directory has been
deleted, or you are trying to request a certificate for a machine with the same name
as an existing node. Generally, the simplest way to fix this is to remove Puppet's
SSL directory from the client machine (usually this is /etc/puppet/ssl) and run
puppet cert --clean <nodename> on the Puppetmaster. Then run Puppet
again, and it should generate a certificate request correctly.

Monitoring, Reporting, and Troubleshooting

48

ff Could not retrieve catalog from remote server: wrong header
line format

This usually indicates an error in compiling a template. You'll see this kind of error if
you have a typo in your ERB syntax, such as in the following code snippet:

	 rails_env <%!= app_env %>

ff Duplicate definition: X is already defined in [file] at line Y;
cannot redefine at [file] line Y

This one has caused me some confusion in the past. Puppet's complaining about
a duplicate definition, and normally if you have two resources with the same
name, Puppet will helpfully tell you where they are both defined. But in this case,
it's indicating the same file and line number for both. How can one resource be a
duplicate of itself?

The answer is: if it's a define. If you create two instances of a define, you'll also
have two instances of all the resources contained within the define, and they need
to have distinct names. For example:
 define check_process() {
 exec { "is-process-running?":
 command => "/bin/ps ax |/bin/grep ${name} >/tmp/
 pslist.${name}.txt",
 }
 }

 check_process { "exim": }
 check_process { "nagios": }

puppet agent --test

info: Retrieving plugin

err: Could not retrieve catalog from remote server: Error 400 on
SERVER: Duplicate definition: Exec[is-process-running?] is already
defined in file /etc/puppet/manifests/nodes.pp at line 22; cannot
redefine at /etc/puppet/manifests/nodes.pp:22 on node cookbook.
bitfieldconsulting.com

warning: Not using cache on failed catalog

err: Could not retrieve catalog; skipping run

Because the exec resource is named is-process-running? and this stays
the same no matter what you pass to the define, Puppet will refuse to create two
instances of it. The solution is to include the name of the instance in the title of each
resource, as follows:
exec { "is-process-${name}-running?":
 command => "/bin/ps ax |/bin/grep ${name} >/tmp/
 pslist.${name}.txt",
}

Chapter 2

49

Logging command output

"Computer says no."—Little Britain

Detailed feedback on problems can be helpful. When you use exec resources to run
commands on the node, it's not always easy to find out why they haven't worked. Puppet
will give you an error message if a command returns a non-zero exit status. The error will be
similar to the following:

err: /Stage[main]//Node[cookbook]/Exec[this-will-fail]/returns: change
from notrun to 0 failed: /bin/ls file-that-doesnt-exist returned 2
instead of one of [0] at /etc/puppet/manifests/nodes.pp:10

Often we would like to see the actual output from the command that failed, rather than just
the numerical exit status. You can do this with the logoutput parameter.

How to do it…
Define an exec resource with the logoutput parameter as follows:

exec { "this-will-fail":
 command => "/bin/ls file-that-doesnt-exist",
 logoutput => on_failure,
}

How it works…
Now, if the command fails, Puppet will also print its output:

notice: /Stage[main]//Node[cookbook]/Exec[this-will-fail]/returns: /bin/
ls: cannot access file-that-doesnt-exist: No such file or directory

err: /Stage[main]//Node[cookbook]/Exec[this-will-fail]/returns: change
from notrun to 0 failed: /bin/ls file-that-doesnt-exist returned 2
instead of one of [0] at /etc/puppet/manifests/nodes.pp:11

There's more…
You can set this to be the default for all exec resources by defining the following:

Exec {
 logoutput => on_failure,
}

If you want to see the command output whether it succeeds or fails, use the following:
logoutput => true,

Monitoring, Reporting, and Troubleshooting

50

Logging debug messages
The truth will make you free. It can be very helpful when debugging problems if you can print out
information at a certain point in the manifest. This is a good way to tell, for example, if a variable
isn't defined or has an unexpected value. Sometimes it's useful just to know that a particular
piece of code has been run. Puppet's notify resource lets you print out such messages.

How to do it…
Define a notify resource in your manifest at the point you want to investigate:

notify { "Got this far!": }

How it works…
When this resource is compiled Puppet will print out the message:

notice: Got this far!

There's more…
If you're the kind of brave soul who likes experimenting, and I hope you are, you'll probably
find yourself using debug messages a lot to figure out why your code doesn't work. So knowing
how to get the most out of Puppet's debugging features can be a great help. Some of these
uses are explained in the following text.

Printing out variable values
You can reference variables in the message:

notify { "operatingsystem is $operatingsystem": }

Puppet will interpolate the values in the printout:

notice: operatingsystem is Ubuntu

Printing the full resource path
For more advanced debugging, you may want to use the parameter withpath to see in which
class the notify message was executed:

notify { "operatingsystem is $operatingsystem":
 withpath => true,
}

Chapter 2

51

Now the notify message will be prefixed with the complete resource path as shown in the
following code snippet:

notice: /Stage[main]/Nagios::Target/Notify[operatingsystem is Ubuntu]/
message: operatingsystem is Ubuntu

Logging messages on the Puppetmaster
Sometimes you just want to log a message on the Puppetmaster, without generating extra
output on the client. You can use the notice function to do this:

notice("I am running on node $fqdn")

Now when you run Puppet, you will not see any output on the client, but on the Puppetmaster
a message like this will be sent to the syslog:

Jan 31 11:51:38 cookbook puppet-master[22640]: (Scope(Node[cookbook])) I
am running on node cookbook.bitfieldconsulting.com

Inspecting configuration settings
Pop quiz, hotshot!. You already know that Puppet's configuration settings are stored in
puppet.conf, but any parameter not mentioned in that file will take a default value. How can
you see the value of any configuration parameter, regardless of whether or not it's explicitly set
in puppet.conf? The answer is to use Puppet's --genconfig switch.

How to do it…
Run the following command:

puppet --genconfig

How it works…
This will output every configuration parameter and its value (and there are lots of them). It
does, however, include helpful comments explaining what each parameter does.

To find the specific value you're interested in, you can use grep in the following manner:

puppet --genconfig |grep "reportdir ="

 reportdir = /var/lib/puppet/reports

Monitoring, Reporting, and Troubleshooting

52

Using tags
Tag, you're it! Sometimes one Puppet class needs to know about another— or, at least, to
know whether or not it's present. For example, a class that manages the firewall may need
to know whether the node is a web server.

Puppet's tagged function will tell you whether a named class or resource is present in the
catalog for this node. You can also apply arbitrary tags to a node or class and check for the
presence of these tags.

How to do it...
1.	 To help you find out if you're running on a particular node or class of node, all nodes

are automatically tagged with the node name and the names of any parent nodes it
inherits from.
node bitfield_server {
 include bitfield
}

node cookbook inherits bitfield_server {
 if tagged("cookbook") {
 notify { "this will succeed": }
 }
 if tagged("bitfield_server") {
 notify { "so will this": }
 }
}

2.	 To help you tell whether a particular class is included on this node, all nodes are
automatically tagged with the names of all the classes they include, and their
parent classes.
include apache::port8000

if tagged("apache::port8000") {
 notify { "this will succeed": }
}

if tagged("apache") {
 notify { "so will this": }
}

Chapter 2

53

3.	 If you want to set an arbitrary tag on a node, use the tag function:
tag("old-slow-server")
if tagged("old-slow-server") {
 notify { "this will succeed": }
}

4.	 If you want to set a tag on a particular resource, use the tag metaparameter:
file { "/etc/ssh/sshd_config":
 source => "puppet:///modules/admin/sshd_config",
 notify => Service["ssh"],
 tag => "security",
}

5.	 You can also use tags to determine which parts of the manifest to apply. If you use the
--tags option on the Puppet command-line, only those classes or resources tagged
with specific tags will be applied. For example, if you want to update only the exim
configuration, but not run any other parts of the manifest, use the following command:
puppet agent --test --tags exim

There's more…
You can use tags to create a collection of resources. For example if some service depends on
a large number of file snippets, you can use the following:

class firewall::service {
 service { "firewall":
 …
 }

 File <| tag == "firewall-snippet" |> ~> Service["firewall"]
}

class myapp {
 file { "/etc/firewall.d/myapp.conf":
 tag => "firewall-snippet",
 …
 }
}

Here, we've specified that the firewall service should be notified if any file resource
tagged firewall-snippet is updated. All we need to do to add a firewall config snippet for
any particular app or service is to tag it firewall-snippet, and Puppet will do the rest.

Monitoring, Reporting, and Troubleshooting

54

Although we could add notify => Service["firewall"] to each snippet resource, if
our definition of the firewall service were ever to change we would have to hunt down and
update all the snippets accordingly. The tag lets us encapsulate the logic in one place, making
future maintenance and refactoring much easier.

Using run stages

"What do you get when you play country music backwards? You get your girl back,
your dog back, your pick-up back, and you stop drinking."—Louis Saaberda

It's important to do things in the right order. A common requirement is to apply a certain
resource before all others (for example, installing a package repository), or after all others (for
example, deploying an application once its dependencies are installed). Puppet's run stages
allow you to do this.

How to do it…
1.	 Add the following to your manifest:

class install_repos {
 notify { "This will be done first": }
}

class deploy_app {
 notify { "This will be done last": }
}

stage { "first": before => Stage["main"] }
stage { "last": require => Stage["main"] }

class { "install_repos": stage => "first" }
class { "deploy_app": stage => "last" }

2.	 Run Puppet as follows:
puppet agent --test

info: Retrieving plugin

info: Caching catalog for cookbook.bitfieldconsulting.com

info: Applying configuration version '1303127505'

notice: This will be done first

notice: /Stage[first]/Beginning/Notify[This will be done first]/
message: defined 'message' as 'This will be done first'

notice: This will be done last

notice: /Stage[last]/End/Notify[This will be done last]/message:
defined 'message' as 'This will be done last'

notice: Finished catalog run in 0.59 seconds

Chapter 2

55

How it works…
1.	 We declared the classes for the things we want done first and last.

class install_repos {
 notify { "This will be done first": }
}	

class deploy_app {
 notify { "This will be done last": }
}

2.	 Then we created a run stage named first:
stage { "first": before => Stage["main"] }

The parameter before specifies that everything in stage first must be done before
anything in stage main (the default stage).

3.	 Then we created a run stage named last:
stage { "last": require => Stage["main"] }

The parameter require specifies that stage main must be completed before any
resource in stage last.

4.	 Finally, we included the two classes install_repos and deploy_app, specifying
that they should be part of stages first and last respectively:
class { "install_repos": stage => "first" }
class { "deploy_app": stage => "last" }

Note that we used the keyword class, rather than include, just like when we were
passing parameters to classes. You can think of stage as a parameter that can
always be passed to any class.

5.	 Puppet will now apply the stages in the following order:

i.	 first

ii.	 main

iii.	 last

There's more…
In fact, you can define as many run stages as you like, and set up any ordering for them.
This can simplify a complicated manifest, which would otherwise require a lot of explicit
dependencies between resources, to a great extent. If you can divide all the resources into
groups A and B, and everything in A must be done before B, it's a prime candidate for using
run stages.

Monitoring, Reporting, and Troubleshooting

56

Gary Larizza has written a helpful introduction to using run stages, with some real-world
examples, at http://glarizza.posterous.com/using-run-stages-with-puppet.

Using environments

A Zen student went up to a hot dog vendor and said: "Make me one with
everything."—Joke

Context is important. If you want to test Puppet manifests before putting them into production,
you can use Puppet's environment feature to do this. This lets you apply a different manifest
depending on the environment setting of the client machine. For example, you might define
the following environments:

ff development

ff staging

ff production

You can set up environments in your puppet.conf file. In this example, we'll add a
development environment, pointing to a different set of manifests.

How to do it…
Add the following lines to puppet.conf:

[development]
manifest = /etc/puppet/env/development/manifests/site.pp
modulepath = /etc/puppet/env/development/modules:/etc/puppet/modules

How it works…
You can put your environment manifests anywhere you like, as long as you set the manifest
parameter to point to the top-level site.pp file. In this example we've put the manifests
for this environment in /etc/puppet/env/development. Similarly, you need to set
modulepath to the location of your modules directory for that environment.

In the preceding example, the modulepath also includes /etc/puppet/modules; this is
so that if Puppet doesn't find a module in your development environment, it will also look for
it in the default environment. This means you only need to put the modules you're working on
into the development environment.

The default environment is production, so if you run Puppet without specifying an
environment, that's what you'll get.

Chapter 2

57

There's more…
If you are using a version control system such as Git, your environments can be Git branches.
Once you have finished testing and staging a new module, you can merge it into the Git master
branch for use in production. You can read more about this strategy for using environments
in R.I. Pienaar's article: http://www.devco.net/archives/2009/10/10/puppet_
environments.php.

You can specify the environment of a client machine in several ways. You can use the
--environment switch when running Puppet as follows:

puppet agent --test --environment=development

Alternatively, you can specify it in the client's puppet.conf:

[main]
environment=development

If you are using an external node classifier script (described elsewhere in this book), this can
also specify the client's environment.

You can also have a different fileserver.conf for each environment (see the section on
configuring Puppet's file server). To do this, set the variable fileserverconfig for each
environment in the Puppetmaster's puppet.conf file as follows:

[development]
fileserverconfig = /etc/puppet/fileserver.conf.development

[production]
fileserverconfig = /etc/puppet/fileserver.conf.production

For more information, see the Puppet Labs page on using environments: http://
projects.puppetlabs.com/projects/1/wiki/Using_Multiple_Environments

See also
ff Using version control in Chapter 1

ff Using modules in Chapter 3

ff Using an external node classifier in Chapter 9

3
Puppet Language

and Style

"Computer language design is just like a stroll in the park. Jurassic Park, that is."
—Larry Wall

In this chapter we will cover the following topics:

ff Using community Puppet style

ff Using modules

ff Using standard naming conventions

ff Using embedded Ruby

ff Writing manifests in pure Ruby

ff Iterating over multiple items

ff Writing powerful conditional statements

ff Using regular expressions in if statements

ff Using selectors and case statements

ff Testing if values are contained in strings

ff Using regular expression substitutions

"Elegance is not a dispensable luxury, but a factor that decides between success
and failure."—Edsger W. Dijkstra

In this chapter you'll learn to write elegant Puppet manifests. By elegant in this context I mean
readable, efficient, and consistent code which conforms to community usage.

Puppet Language and Style

60

We'll look at how to organize and structure your code into modules following community
conventions, so that other people will find it easy to read and maintain your code. I'll also
show you some powerful features of the Puppet language which will let you write concise,
yet expressive, manifests.

Using community Puppet style

"A society made up of individuals who were all capable of original thought would
probably be unendurable." —H. L. Mencken

Sometimes going along with the crowd is a good idea. If other people need to read or maintain
your manifests, or if you want to share code with the community, it's a good idea to follow the
existing style conventions as closely as possible.

How to do it…
1.	 Always quote your resource names; for example, use package { "exim4": and

not package { exim4:

Some characters like hyphens and spaces can confuse Puppet's parser, and to be
on the safe side it's wise to put all names consistently in double quotes.

2.	 Always quote parameter values that are not reserved words in Puppet; for example:
name => "Nucky Thompson",

mode => "0700",

owner => "deploy",

but
ensure => installed,

enable => true,

ensure => running,

Always include curly braces ({}) around variable names when referring to them in
strings. For example:
source => "puppet:///modules/webserver/${brand}.conf",

Otherwise Puppet's parser has to guess which characters should be part of the variable
name and which belong to the surrounding string. Curly braces make it explicit.

Chapter 3

61

3.	 Always end lines that declare parameters with a comma, even if it is the last parameter:
service { "memcached":
 ensure => running,
 enable => true,
}

Very often, when you edit the file, you'll want to append an extra parameter to it
and forget to add the necessary comma!

4.	 When declaring a resource with a single parameter, make the declaration on one
line and with no trailing comma as follows:
package { "puppet": ensure => installed }

5.	 Where there is more than one parameter, give each parameter its own line:
package { "rake":
 ensure => installed,
 provider => gem,
 require => Package["rubygems"],
}

When declaring symlinks, use ensure => link as follows:

file { "/etc/php5/cli/php.ini":
 ensure => link,
 target => "/etc/php.ini",
}

6.	 To make the code easier to read, line up the parameter arrows in line with the
longest parameter, as shown in the following code:
file { "/var/www/${app}/shared/config/rvmrc":
 owner => "deploy",
 group => "deploy",
 content => template("rails/rvmrc"),
 require => File["/var/www/${app}/shared/config"],
}

The arrows should be aligned for each resource, but not across the whole file; otherwise
it can make it difficult for you to cut and paste code from one file to another.

There's more…
The Puppet community maintains a style guide document on the Puppet Labs site:
http://projects.puppetlabs.com/projects/puppet/wiki/Style_Guide

Puppet Language and Style

62

Tim Sharpe has written a puppet-lint tool that you can use to check your manifests
for style guide compliance. Run gem install puppet-lint to use it, or have a look
at https://github.com/rodjek/puppet-lint for more details.

Using modules
Shamed by your Puppet code? Do people blench and look away when they see your
manifests? One of the most important things you can do to make your Puppet manifests
clearer and more maintainable is to organize them into modules.

A module is simply a way of grouping related things; for example, a webserver module might
include everything necessary to be a webserver such as Apache configuration files, virtual
host templates, and the Puppet code necessary to deploy these.

Separating things into modules makes it easier to re-use and share code; it's also the most
logical way to organize your manifests. In this example we'll create a module to manage
memcached, a memory caching system commonly used with web applications.

How to do it…
1.	 Find your modulepath; this is set in puppet.conf but the default value is /etc/

puppet/modules. If you are using version control for your Puppet manifests, as
I recommend you do, then use the directory in your working copy which will be
deployed to /etc/puppet/modules instead.
puppet --genconfig |grep modulepath

modulepath = /etc/puppet/modules:/usr/share/puppet/modules

Create a subdirectory in the module path named memcached:

cd /etc/puppet/modules

mkdir memcached

Inside this, create manifests and files directories:

cd memcached

mkdir manifests files

In the manifests directory, create another file init.pp with the
following contents:

class memcached {
 package { "memcached":
 ensure => installed,
 }

Chapter 3

63

 file { "/etc/memcached.conf":
 source => "puppet:///modules/memcached/memcached.conf",
 }

 service { "memcached":
 ensure => running,
 enable => true,
 require => [Package["memcached"],
 File["/etc/memcached.conf"]],
 }
}

Changing to the files directory, create the file memcached.conf with the
following contents:

-m 64
-p 11211
-u nobody
-l 127.0.0.1

2.	 To use your new module, add this to your node definition:
node cookbook {
 include memcached
}

3.	 Run Puppet to test the new configuration:
puppet agent --test

info: Retrieving plugin

info: Caching catalog for cookbook.bitfieldconsulting.com

info: Applying configuration version '1300361964'

notice: /Stage[main]/Memcached/Package[memcached]/ensure: ensure
changed 'purged' to 'present'

...

info: /Stage[main]/Memcached/File[/etc/memcached.conf]:
Filebucketed /etc/memcached.conf to puppet with sum a977521922a151
c959ac953712840803

notice: /Stage[main]/Memcached/File[/etc/memcached.conf]/content:
content changed '{md5}a977521922a151c959ac953712840803' to '{md5}
f5c0bb01a24a5b3b86926c7b067ea6ba'

notice: Finished catalog run in 20.68 seconds

4.	 Check that the new service is running:
service memcached status

 * memcached is running

Puppet Language and Style

64

How it works…
Modules have a specific directory structure. Not all of these directories need to be present,
but if they are, this is how they should be organized:

MODULEPATH/
 MODULE_NAME/
 files/
 templates/
 manifests/
 ...
 README

The memcached class is defined in the file memcached.pp, which will be imported by Puppet
automatically. Now we can include it on nodes:

include memcached

Inside the memcached class, we refer to the memcached.conf file:

file { "/etc/memcached.conf":
 source => "puppet:///modules/memcached/memcached.conf",
}

As we saw in the section on Puppet's file server and custom mount points, the source
parameter in the preceding code tells Puppet to look for the file in the following path:

MODULEPATH/
 memcached/
 files/
 memcached.conf

There's more...
Learn to love modules, because they'll make your Puppet life a lot easier. They're not
complicated. However, practice and experience will help you judge when things should
be grouped into modules, and how best to arrange your module structure. Some tips
which may help you on the way, have been explained in the following text.

Templates
If you need to use a template as part of the module, place it in the MODULE_NAME/
templates directory and refer to it as follows:

file { "/etc/memcached.conf":
 content => template("memcached/memcached.conf"),
}

Chapter 3

65

Puppet will look for the file in:

MODULEPATH/
 memcached/
 templates/
 memcached.conf

Facts, functions, types, and providers
Modules can also contain custom facts, custom functions, custom types, and providers. For
more information about these, see the chapter on external tools and the Puppet ecosystem.

puppet-module
You can also use the puppet-module gem to generate the directory layout for new modules,
rather than doing it by hand. See the section Using public modules in Chapter 9 for more details.

Third-party modules
You can download modules provided by other people and use them in your own manifests
just like the modules you create. For more on this, see the section Using public modules
in Chapter 9.

Module organization
For more details on how to organize your modules, go to the Puppet Labs site:
http://docs.puppetlabs.com/guides/modules.html.

See also
ff Configuring Puppet's file server in Chapter 1

ff Creating custom Facter facts in Chapter 9

ff Using public modules in Chapter 9

ff Creating your own resource types in Chapter 9

ff Creating your own providers in Chapter 9

Using standard naming conventions

"There are only two hard problems in computer science: cache invalidation, naming
things, and off-by-one errors."— Phil Karlton

Choosing appropriate and informative names for your modules and classes will be a big help
when it comes to maintaining your code. This is even more true if other people need to read
and work on your manifests.

Puppet Language and Style

66

How to do it…
1.	 Name modules after the software or service they manage: for example, apache

or haproxy.

Name classes within modules after the function or service they provide to the
module: for example, apache::vhosts or rails::dependencies.

If a class within a module disables the service provided by that module, name
it as disabled. For example, a class that disables Apache should be named
apache::disabled.

2.	 If a node provides multiple services, have the node definition include one module
or class named for each service. For example:
node server014 inherits server {
 include puppet::server
 include mail::server
 include repo::gem
 include repo::apt
 include zabbix
}

3.	 The module that manages users should be named user.

4.	 Within the user module, declare your virtual users within the class user::virtual.

5.	 Within the user module, subclasses for particular groups of users should be named
after the group such as user::sysadmins, or user::contractors.

6.	 When you need to override a class for some specific node or service, inherit that
class and prefix the name of the subclass with the node. For example, if your node
cartman needs a special SSH configuration, and you want to override the ssh class,
do it as follows:
class cartman_ssh inherits ssh {
 [override config here]
}

7.	 When using Puppet to deploy configuration files for different services, name the file
after the service, but with a suffix indicating what kind of file it is. For example:

�� Apache init script—apache.init

�� Log rotation configuration snippet for Rails—rails.logrotate

�� Nginx vhost file for mywizzoapp—mywizzoapp.vhost.nginx

�� MySQL configuration for standalone server—standalone.mysql

If you need to manage, for example, different Ruby versions, name the class after the
version it is responsible for, such as ruby192 or ruby186.

Chapter 3

67

There's more…
The Puppet community maintains a set of best practice guidelines for your Puppet
infrastructure which includes some hints on naming: http://projects.puppetlabs.
com/projects/1/wiki/Puppet_Best_Practice.

Some people prefer to include multiple classes on a node by using a comma-separated list,
rather than separate include statements. For example:

node server014 inherits server {
 include puppet::server,
 mail::server,
 repo::gem,
 repo::apt,
 zabbix
}

This is a matter of style, but I prefer to use separate include statements, one to a line,
because it makes it easier to copy and move around class inclusions between nodes without
having to tidy up the commas and indentation every time.

I mentioned inheritance in a couple of the preceding examples. If you're not sure what this is,
don't worry: I'll explain it in detail in the next chapter.

Using embedded Ruby

"Ruby, like fire, is a very useful friend, and a very dangerous enemy."—Mikkel Bruun

Templates are a powerful way of using embedded Ruby to help build configuration files
dynamically and iterate over arrays. However, you can embed Ruby in your manifests directly
without having to use a separate file, by calling the inline_template function.

How to do it…
Pass your Ruby code to inline_template within the Puppet manifest as follows:

cron { "nightly-job":
 command => "/usr/local/bin/nightly-job",
 hour => "0",
 minute => inline_template("<%= hostname.hash.abs % 60 %>"),
}

Puppet Language and Style

68

How it works…
Anything inside the string passed to inline_template is executed as if it were an ERB
template. That is, anything inside the <%= and %> delimiters will be executed as Ruby code,
and the rest will be treated as a string.

See also
ff Using ERB templates in Chapter 5

ff Using array iteration in templates in Chapter 5

Writing manifests in pure Ruby
¿ Hablas español? Learning languages can be fun, but not everyone wants to do it. Puppet
has sometimes been criticized for requiring you to write manifests in its own dedicated
configuration language, rather than an existing general-purpose language such as Ruby.

Not everyone considers this a drawback. The computer scientist Dennis Ritchie remarked:

"A language that doesn't have everything is actually easier to program in than
some that do."

Whatever your views, this criticism no longer applies—Puppet has experimental support for
writing manifests in Ruby, which is quite usable in production even though it is still at a fairly
early stage. You can mix and match Ruby and Puppet files within your manifests; Puppet will
determine the language based on the file extension: .rb for Ruby files, .pp for Puppet files.

The domain-specific language (DSL) for writing manifests in Ruby looks very similar to the
standard Puppet language. In the following example I'll show you how to turn a typical Puppet
manifest into Ruby. The original manifest in Puppet's language is as follows:

class admin::exim {
 package { "exim4": ensure => installed }

 service { "exim4":
 ensure => running,
 require => Package["exim4"],
 }

 file { "/etc/exim4/exim4.conf":
 content => template("admin/exim4.conf"),
 notify => Service["exim4"],
 require => Package["exim4"],
 }
}

Chapter 3

69

How to do it…
Create the file /etc/puppet/modules/admin/manifests/exim.rb with the following
contents:

hostclass "admin::exim" do
 package "exim4", :ensure => :installed

 service "exim4",
 :ensure => :running,
 :require => "Package[exim4]"

 file "/etc/exim4/exim4.conf",
 :content => template(["admin/exim4.conf"]),
 :notify => "Service[exim4]",
 :require => "Package[exim4]"
end

Include this class on a node and run Puppet.

How it works…
1.	 The keyword hostclass declares a class, just like class in Puppet: hostclass

admin::exim do

2.	 We then have a do … end block which is the equivalent of curly braces in Puppet.

3.	 Resources are declared by calling a function named after the resource type: for
example, package or service: package "exim4", :ensure => :installed

4.	 Parameters are passed to the function as a comma-separated list, with the
parameter names quoted or given a leading colon to make them a Ruby
symbol::ensure => :running,

Again built-in Puppet names such as :installed or :running are Ruby symbols.

5.	 When we need to refer to resources to indicate a relationship, as with :require,
the resource identifier is given as a string with the resource type capitalized and the
name in square brackets: require => "Package[exim4]"

We can call a function like template by just using its name and round brackets, and
passing its arguments as an array delimited by square brackets::content =>
template(["admin/exim4.conf"]),.

Puppet Language and Style

70

There's more…
The Ruby DSL is at an early stage. It's fun to experiment with, but unless there are really
compelling reasons for using Ruby, I'd stick to the standard Puppet language for now. It's quite
possible that in the future the Ruby DSL will become widely used, but in the meantime, you'll
find life easier without it. If you do want to use it, however, the following text contains a couple
of handy hints.

Variables
While you can use Ruby variables just as you normally would in a Ruby program, you can
access your Puppet variables by using scope.lookupvar as follows:

notice("I am running on node %s" % scope.lookupvar("fqdn"))

gives:

notice: I am running on node cookbook.bitfieldconsulting.com

To set a variable so that it is in scope within your Puppet manifest, use scope.setvar
as follows:

require 'time'
scope.setvar("now", Time.now)
notice("At the third stroke, the time sponsored by Bitfield
Consulting will be: %s" % scope.lookupvar("now"))

The preceding code results in the following:

notice: At the third stroke, the time sponsored by Bitfield Consulting
will be: Wed Mar 23 05:58:16 -0600 2011

Documentation
You can find more about how to use the Ruby DSL, including more advanced topics such
as virtual resources and collections, on the Puppet Labs site: http://projects.
puppetlabs.com/projects/1/wiki/Ruby_Dsl.

Ken Barber has supplied some syntax examples giving a direct comparison between Puppet
and Ruby DSL constructs at https://github.com/bobsh/puppet-rubydsl-examples.

Finally, James Turnbull has written a blog post showing a more advanced use of Ruby to
connect to a MySQL server: http://www.puppetlabs.com/blog/using-ruby-in-
the-puppet-ruby-dsl/.

Chapter 3

71

Iterating over multiple items
It's one darned thing after another! Arrays are a powerful feature in Puppet; wherever you
want to perform the same operation on a list of things, an array may able to help. You can
create an array just by putting its contents in square brackets:

$lunch = ["franks", "beans", "mustard"]

How to do it…
Add the following code to your manifest:

$packages = ["ruby1.8-dev",
 "ruby1.8",
 "ri1.8",
 "rdoc1.8",
 "irb1.8",
 "libreadline-ruby1.8",
 "libruby1.8",
 "libopenssl-ruby"]

package { $packages: ensure => installed }

Run Puppet, and note that each package should now be installed.

How it works…
Where Puppet encounters an array as the name of a resource, it creates a resource for
each element in the array. In the preceding example, a new package resource is created
for each of the packages in the $packages array, with the same parameters (ensure =>
installed). This is a very compact way of instantiating lots of similar resources.

There's more…
If you thought arrays were exciting, wait till you hear about hashes.

Hashes
A hash is like an array, but each of the elements can be stored and looked up by name.
For example:

$interface = { name => 'eth0',
 address => '192.168.0.1' }

Puppet Language and Style

72

notice("Interface ${interface[name]} has address
${interface[address]}")

Interface eth0 has address 192.168.0.1

Hash values can be anything that you can assign to a variable: strings, function calls,
expressions, or even other hashes or arrays.

Creating arrays with the split function
You can declare literal arrays using square brackets, as follows:

define lunchprint() {
 notify { "Lunch included $name": }
}

$lunch = ["egg", "beans", "chips"]
lunchprint { $lunch: }

Lunch included egg
Lunch included beans
Lunch included chips

But Puppet can also create arrays for you from strings, using the split function, as follows:

$menu = "egg beans chips"
$items = split($menu, ' ')
lunchprint { $items: }

Lunch included egg
Lunch included beans
Lunch included chips

Note that split takes two arguments; the first being the string it has to split. The second is
the character to split on; in this example, a single space. As Puppet works its way through the
string, when it encounters a space, it will interpret it as the end of one item and the beginning
of the next. So, given the string "egg beans chips", this will be split into three items.

The character to split on can be any character, or a string:

$menu = "egg and beans and chips"
$items = split($menu, ' and ')

It can also be a regular expression; for example, a set of alternatives separated by a |
(pipe) character:

$lunch = "egg:beans,chips"
$items = split($lunch, ':|,')

Chapter 3

73

Writing powerful conditional statements
Life is full of choices. Puppet's if statement allows you to change the manifest based on the
value of a variable or an expression. With it, you can apply different resources or parameter
values depending on certain facts about the node such as the operating system, or the
memory size. You can also set variables within the manifest that can change the behavior
of included classes. For example, nodes in data center A might need to use different DNS
servers as compared to nodes in data center B, or you might need to include one set of
classes for an Ubuntu system, and a different set for other systems.

How to do it…
Add the following code to your manifest:

if $lsbdistid == "Ubuntu" {
 notice("Running on Ubuntu")
} else {
 notice("Non-Ubuntu system detected. Please upgrade to Ubuntu
immediately.")
}

How it works…
Puppet treats whatever follows the if keyword as an expression and evaluates it. If the
expression is evaluated as true, Puppet will execute the code within the curly braces.

Optionally, you can add an else branch, which will be executed if the expression is evaluated
as false.

There's more…
You can write very complicated if statements in Puppet, but I recommend you don't. Very
often, it's better to change your design (for example, using a template) rather than use if.
While looking through some of my production manifests for examples, I was surprised to find
that I haven't used if at all in many thousands of lines of code. Still, your mileage may vary,
so here are some more tips on using if.

elsif
You can add further tests using the elsif keyword, as follows:

if $lsbdistid == "Ubuntu" {
 notice("Running on Ubuntu")
} elsif $lsbdistid == "Debian" {
 notice("Close enough…")

Puppet Language and Style

74

} else {
 notice("Non-Ubuntu system detected. Please upgrade to Ubuntu
immediately.")
}

Comparisons
You can check if two values are equal using the == syntax, as in our example:

if $lsbdistid == "Ubuntu" {
 ...
}

Or, you can check if they are not equal using != as follows:

if $lsbdistid != "CentOS" {
 ...
}

You can also compare numeric values using < and > as follows:

if $uptime_days > 365 {
 notice("Really .. there have been kernel security patches out
there for ages, you will so be 0wned!")
}

To test if a value is greater (or less) than or equal to another value, use <= or >=:

if $lsbmajdistrelease <= 9 {
 ...
}

Combining expressions
You can put together the kind of simple expressions described in the preceding code snippets
into more complex, logical expressions using and, or, and not as follows:

if ($uptime_days > 365) and ($lsbdistid == "Ubuntu") {
 ...
}

if ($role == "webserver") and (($datacenter == "A") or ($datacenter
== "B")) {
 ...
}

Chapter 3

75

See also
ff Using regular expressions in if statements in this chapter

ff Testing if values are contained in strings in this chapter

ff Using selectors and case statements in this chapter

Using regular expressions in if statements

"Some people, when confronted with a problem think; 'I know, I'll use regular
expressions.' Now they have two problems."—Jamie Zawinski

Another kind of expression you can test in if statements and other conditionals is the
regular expression. A regular expression is a powerful way of comparing strings using
pattern matching.

How to do it…
Add the following to your manifest:

if $lsbdistdescription =~ /LTS/ {
 notice("Looks like you are using a Long Term Support version of
 Ubuntu.")
} else {
 notice("You might want to upgrade to a Long Term Support version
 of Ubuntu...")
}

How it works…
Puppet treats the text supplied between the forward slashes as a regular expression that
specifies what the text to be matched is. If the match as a whole succeeds, the if expression
will be true and so the code between the first set of curly braces will be executed.

If you wanted instead to do something and the text does not match, use !~ rather than =~
as shown in the following code snippet:

if $lsbdistdescription !~ /LTS/ {

Puppet Language and Style

76

There's more…
As Jamie Zawinski hinted, regular expressions are very powerful, but can be difficult to
understand and debug. If you find yourself using a regular expression so complex that
you can't see what it does at a glance, think about simplifying your design to make it
easier. However, one particularly useful feature of regular expressions is the ability to
capture patterns.

Capturing patterns
You can not only match text using a regular expression, but also capture the matched text
and store it in a variable:

$input = "Puppet is better than manual configuration"
if $input =~ /(.*) is better than (.*)/ {
 notice("You said '$0'. Looks like you're comparing $1 to $2!")
}

You said 'Puppet is better than manual configuration'. Looks like you're
comparing Puppet to manual configuration!

The variable $0 stores the whole matched text (assuming the overall match succeeded).
If you put brackets around any part of the regular expression, that creates a group and any
matched groups will also be stored in variables. The first matched group will be $1, the
second $2, and so on, as in the preceding example.

Regular expression syntax
Puppet uses a subset of Ruby's regular expression syntax, so the following link may be
helpful if you're not already familiar with regular expressions: http://gnosis.cx/
publish/programming/regular_expressions.html.

See also
ff Using regular expression substitutions in this chapter

Using selectors and case statements

"Smarts is the most exclusive club in town. Everyone welcome."—Sign

Sometimes it's important to be selective. Although you could write any conditional statement
using if, Puppet provides a couple of extra forms to help you express conditionals more
easily such as the selector and the case statement.

Chapter 3

77

How to do it…
1.	 Add the following to your manifest:

$systemtype = $operatingsystem ? {
 "Ubuntu" => "debianlike",
 "Debian" => "debianlike",
 "RedHat" => "redhatlike",
 "Fedora" => "redhatlike",
 "CentOS" => "redhatlike",
 default => "redhatlike",
}

notify { "You have a ${systemtype} system": }

2.	 Next, add the following to your manifest:
class debianlike {
 notify { "Special manifest for Debian-like systems": }
}

class redhatlike {
 notify { "Special manifest for RedHat-like systems": }
}

case $operatingsystem {
 "Ubuntu",
 "Debian": {
 include debianlike
 }
 "RedHat",
 "Fedora",
 "CentOS": {
 include redhatlike
 }
}

How it works…
Our example demonstrates both the selector and the case statement, so let's see in detail
how each of them works.

ff Selector

In the first example, we used a selector (the ? operator) to choose a value for the
$systemtype variable depending on the value of $operatingsystem. This is
similar to the ternary operator in C or Ruby, but instead of choosing between two
possible values, you can have as many values as you like.

Puppet Language and Style

78

Puppet will compare the value of $operatingsystem to each of the possible
values we have supplied such as Ubuntu, Debian, and so on. These values could
be regular expressions (for a partial string match, or to use wildcards, for example),
but in our case we have just used literal strings. As soon as it finds a match, the
selector expression returns whatever value is associated with the matching string.
If the value of $operatingsystem is Fedora, for example, the selector expression
will return the string redhatlike and so this will be assigned to the variable
$systemtype.

ff Case statement

Unlike selectors, the case statement does not return a value. case statements
are handy when you want to execute different code depending on the value of
some expression. In our second example, we used the case statement to include
either the class debianlike, or the class redhatlike, depending on the value
of $operatingsystem.

Again, Puppet compares the value of $operatingsystem to a list of potential
matches. These could be regular expressions, or strings, or as in our example,
comma-separated lists of strings. When it finds a match, the associated code
between curly braces is executed. So if the value of $operatingsystem is
Ubuntu, then the code include debianlike will be executed.

There's more…
Once you've got to grips with basic use of selectors and case statements, you may find the
following tips useful.

Regular expressions
As with if statements, you can use regular expressions with selectors and case statements,
and you can also capture the values of matched groups and refer to them using $1, $2, and
so on.

case $lsbdistdescription {
 /Ubuntu (.+)/: {
 notify { "You have Ubuntu version $1": }
 }
 /CentOS (.+)/: {
 notify { "You have CentOS version $1": }
 }
}

Chapter 3

79

Defaults
Both selectors and case statements let you specify a default value, which is chosen if
none of the other options match:

$lunch = "Sausage and chips"
$lunchtype = $lunch ? {
 /chips/ => "unhealthy",
 /salad/ => "healthy",
 default => "unknown",
}

notify { "Your lunch was ${lunchtype}": }

Your lunch was unhealthy

Testing whether values are contained
in strings

Want to know what's in and what's out? Puppet's in keyword can help, with expressions
such as the following:

if "foo" in $bar

This will be evaluated as true if the string foo is a substring of $bar. If $bar is an array,
and if foo is an element of the array, the expression is true. If $bar is a hash, the
expression is true if foo is one of the keys of $bar.

How to do it…
1.	 Add the following code to your manifest:

if $operatingsystem in ["Ubuntu", "Debian"] {
 notify { "Debian-type operating system detected": }
} elsif $operatingsystem in ["RedHat", "Fedora", "SuSE", "CentOS"
] {
 notify { "RedHat-type operating system detected": }
} else {
 notify { "Some other operating system detected": }
}

2.	 Run Puppet:
puppet agent --test

Debian-type operating system detected

Puppet Language and Style

80

There's more…
in expressions can be used not just for if statements or other conditionals, but anywhere
an expression can be used. For example, you can assign the result to a variable as follows:

$debianlike = $operatingsystem in ["Debian", "Ubuntu"]

if $debianlike {
 $ntpservice = "ntp"
} else {
 $ntpservice = "ntpd"
}

Using regular expression substitutions

"Change is inevitable, except from vending machines."—Robert C. Gallagher

Puppet's regsubst function provides an easy way to manipulate text, search and replace
within strings, or extract patterns from strings. We commonly need to do this with data
obtained from a fact for example, or from external programs.

In this example we'll see how to use regsubst to extract the first three octets of an IP
address (the network part, assuming it's a Class C address).

How to do it…
1.	 Add the following to your manifest:

$class_c = regsubst($ipaddress, "(.*)\..*", "\1.0")
notify { $ipaddress: }
notify { $class_c: }

2.	 Run Puppet:
notice: 10.0.2.15

notice: 10.0.2.0

How it works…
regsubst takes at least three parameters: source, pattern, and replacement. In our
example, we specified the source string as $ipaddress, which happens to be:

10.0.2.15

We also specified the pattern as (.*)\..* and the replacement as \1.0

Chapter 3

81

The pattern will match the whole IP address, capturing the first three octets in round
brackets. The captured text will be available as \1 for use in the replacement string.

The whole of the matched text (in this case the whole string) is replaced with replacement.
This is \1 (the captured text from the source string) followed by the string .0, which
evaluates to: 10.0.2.0

There's more...
pattern can be any regular expression, using the same (Ruby) syntax as regular
expressions in if statements.

See also
ff Importing dynamic information in Chapter 4

ff Getting information about the environment in Chapter 4

ff Using regular expressions in if statements in this chapter

4
Writing Better

Manifests

"There are only two kinds of programming languages: those people always bitch
about and those nobody uses."—Bjarne Stroustrup

In this chapter we will cover the following topics:

ff Using arrays of resources

ff Using define resources

ff Using dependencies

ff Using node inheritance

ff Using class inheritance and overriding

ff Passing parameters to classes

ff Writing reusable, cross-platform manifests

ff Getting information from the environment

ff Importing dynamic information

ff Importing data from CSV files

ff Passing arguments to shell commands

Writing Better Manifests

84

Your Puppet manifest is the living documentation for your entire infrastructure. Keeping it tidy
and well organized is a great way to make it easier to maintain and understand. Puppet gives
you a number of tools to do this, including the following:

ff Arrays

ff Defines

ff Dependencies

ff Inheritance

ff Class parameters

We'll see how to use all of these and more. As you read through the chapter, try out the
examples, and look through your own manifests to see where these features might help you
simplify and improve your Puppet code.

Using arrays of resources
Anything you can do to a resource, you can do to an array of resources. Use this idea to re-
factor your manifests to make them shorter and clearer.

How to do it…
1.	 Identify a class in your manifest where you have several instances of the same kind

of resource—for example, packages:
package { "sudo" : ensure => installed }
package { "unzip" : ensure => installed }
package { "locate" : ensure => installed }
package { "lsof" : ensure => installed }
package { "cron" : ensure => installed }
package { "rubygems" : ensure => installed }

2.	 Group them together and replace them with a single package resource using an
array as follows:
package { ["cron",
 "locate",
 "lsof",
 "rubygems"
 "screen",
 "sudo"
 "unzip"]:
 ensure => installed,
}

Chapter 4

85

How it works…
Most of Puppet's resource types can accept an array instead of a single name, and will
create one instance for each of the elements in the array. All the parameters you provide for
the resource (for example, ensure => installed) will be assigned to each of the new
resource instances.

See also
ff Iterating over multiple items in Chapter 3

Using define resources

"Girl number twenty unable to define a horse!" said Mr. Gradgrind.—Charles
Dickens, 'Hard Times'

Unless you know how to define what you want, you won't get it. In the preceding example, we
saw how to reduce redundant code by grouping identical resources into arrays. However, this
technique is limited to resources where all the parameters are the same. When you have a set
of resources that have some parameters in common and some different, you need to use a
define resource to group them together.

How to do it…
1.	 Add the following to your manifest:

define tmpfile() {
 file { "/tmp/$name":
 content => "Hello, world",
 }
}

tmpfile { ["a", "b", "c"]: }

2.	 Run Puppet:
notice: /Stage[main]//Node[cookbook]/Tmpfile[a]/File[/tmp/a]/
ensure: defined content as '{md5}bc6e6f16b8a077ef5fbc8d59d0b931b9'

notice: /Stage[main]//Node[cookbook]/Tmpfile[b]/File[/tmp/b]/
ensure: defined content as '{md5}bc6e6f16b8a077ef5fbc8d59d0b931b9'

notice: /Stage[main]//Node[cookbook]/Tmpfile[c]/File[/tmp/c]/
ensure: defined content as '{md5}bc6e6f16b8a077ef5fbc8d59d0b931b9'

Writing Better Manifests

86

How it works…
You can think of a define as being like a cookie-cutter. It describes a pattern that Puppet
can use to create lots of similar resources. Any time you declare a tmpfile instance in your
manifest, Puppet will insert all the resources contained in the tmpfile definition.

In our example, the definition of tmpfile contains a single file resource, whose content
is "Hello, world", and whose path is /tmp/${name}. If you declared an instance of
tmpfile with the name foo as follows:

tmpfile { "foo": }

then, Puppet would create a file with the path /tmp/foo. In other words, ${name} in
the definition will be replaced by the name of any actual instance that Puppet is asked to
create. It's almost as though we created a new kind of resource: a tmpfile, which has one
parameter: its name.

Just like with regular resources, we don't have to pass just one name: we can provide an array of
names and Puppet will create a number of tmpfile instances, as in the preceding example.

There's more…
In the preceding example, we created a define where the only parameter that varies
between instances is the name. But we can add whatever parameters we want, so long
as we declare them in the definition:

define tmpfile($greeting) {
 file { "/tmp/$name":
 content => $greeting,
 }
}

and pass values to them when we declare an instance of the resource as follows:

tmpfile{ "foo": greeting => "Hello, world" }

You can declare multiple parameters as a comma-separated list:

define webapp($domain, $path, $platform) {
 ...
}

webapp { "mywizzoapp":
 domain => "mywizzoapp.com",
 path => "/var/www/apps/mywizzoapp",
 platform => "Rails",
}

Chapter 4

87

This is a powerful technique for abstracting out everything that's common to certain
resources, and keeping it in one place so that you Don't Repeat Yourself. In the preceding
example, there might be many individual resources contained within webapp: packages,
config files, source code checkouts, virtual hosts, and so on. But all of them are the same for
every instance of webapp except the parameters we provide. These might be referenced in a
template, for example, to set the domain for a virtual host.

Using dependencies

"Remove wrapper, open mouth, insert muffin, eat."—Instructions on 7-11
muffin packaging

To make sure things happen in the right order, you can specify in Puppet that one resource
depends on another; for example, you need to install package X before you can start the
service it provides, so you would mark the service as dependent on the package. Puppet will
sort out the required order to meet all the dependencies.

In some configuration management systems, resources are applied in the order you write
them - in other words, the ordering is implicit. That's not the case with Puppet, where
resources are applied in a more or less random (but consistent) order unless you state an
explicit ordering using dependencies. Some people prefer the implicit approach, because you
can write the resource definitions in the order that they need to be done, and that's the way
they'll be executed.

On the other hand, in many cases the ordering of resources doesn't matter. With an implicit-
style system, you can't tell whether resource B is listed after resource A because B depends
on A, or because it just happens to have been written in that order. That makes refactoring
more difficult, as moving resources around may break some implicit dependency.

Puppet makes you do a little more work by specifying the dependencies up front, but the
resulting code is clearer and easier to maintain. Let's look at an example.

How to do it…
1.	 Create a new file /etc/puppet/modules/admin/manifests/ntp.pp with the

following contents:
class admin::ntp {
 package { "ntp":
 ensure => installed,
 }

 service { "ntp":
 ensure => running,

Writing Better Manifests

88

 require => Package["ntp"],
 }

 file { "/etc/ntp.conf":
 source => "puppet:///modules/admin/ntp.conf",
 notify => Service["ntp"],
 require => Package["ntp"],
 }
}

2.	 Copy your existing ntp.conf file into Puppet as follows:
cp /etc/ntp.conf /etc/puppet/modules/admin/files

3.	 Add the admin::ntp class to your server in nodes.pp:
node cookbook {
 include admin::ntp
}

4.	 Now remove the existing ntp.conf file:
rm /etc/ntp.conf

5.	 Run Puppet:
puppet agent --test

info: Retrieving plugin

info: Caching catalog for cookbook.bitfieldconsulting.com

info: Applying configuration version '1302960655'

notice: /Stage[main]/Admin::Ntp/File[/etc/ntp.conf]/ensure:
defined content as '{md5}3386aaad98dd5e0b28428966dac9e1f5'

info: /Stage[main]/Admin::Ntp/File[/etc/ntp.conf]: Scheduling
refresh of Service[ntp]

notice: /Stage[main]/Admin::Ntp/Service[ntp]: Triggered 'refresh'
from 1 events

notice: Finished catalog run in 2.36 seconds

How it works…
This example demonstrates two kinds of dependencies: require, and notify. In the first
case, the ntp service requires the ntp package to be applied first:

service { "ntp":
 ensure => running,
 require => Package["ntp"],
}

Chapter 4

89

In the second case, the NTP config file is set to notify the ntp service; in other words, if the
file changes, Puppet should restart the ntp service to pick up its new configuration:

file { "/etc/ntp.conf":
 source => "puppet:///modules/admin/ntp.conf",
 notify => Service["ntp"],
 require => Package["ntp"],
}

This implies that the service depends on the file as well as on the package, and so Puppet will
be able to apply all three resources in the correct order as follows:

Package["ntp"] -> File["/etc/ntp.conf"] ~> Service["ntp"]

In fact, this is another way to specify the same dependency chain. Adding the preceding
line to your manifest will have the same effect as the require and notify parameters in
our example (the -> means require, while ~> means notify). However, I prefer to use
require and notify because the dependencies are defined as part of the resource, so it's
easier to see what's going on. For complex chains of dependencies, though, you may want to
use the -> notation instead.

There's more…
You can also specify that a resource depends on a certain class:

require => Class["my-apt-repo"]

You can specify dependencies not just between resources and classes, but between
collections:

Yumrepo <| |> -> Package <| provider == yum |>

is a powerful way to express that all yumrepo resources should be applied before all
package resources whose provider is yum.

Historical note: In versions of Puppet prior to 2.7, the catalog was applied
in a non-deterministic way, which means that resources could be applied in
a different order every time Puppet runs. This could cause some interesting
issues, as a Puppet manifest that worked without errors on one machine
could fail on another. This is no longer the case, and as Puppet Labs put it,
Puppet will now "either succeed reliably, or fail reliably". If you are using an
earlier version and having this problem, upgrading should fix it.

Writing Better Manifests

90

Using node inheritance
It's a brave (or foolish) sysadmin who puts all her servers in one basket. Let's say you have
dedicated servers hosted with three different providers: WreckSpace, GoDodgy, and VerySlow.
They have different data centers and geographical locations, so you will need to make small
modifications to your config for servers hosted with each provider. You have several different
types of servers, but they are distributed randomly across the three providers.

One way to implement this in Puppet would be to set a variable in the node definition that tells
the node where it is:

node webserver127 {
 $provider = "VerySlow"
 include admin::basics
 include admin::ssh
 include admin::ntp
 include puppet::client
 include backup::client
 include webserver
}

node loadbalancer5 {
 $provider = "WreckSpace"
 include admin::basics
 include admin::ssh
 include admin::ntp
 include puppet::client
 include backup::client
 include loadbalancer
}

As you can see, this results in a lot of duplication. It would be much easier if we simply
defined a kind of node that is a WreckSpace server, for example, and then we could create
nodes which inherit from that node, including only the classes that determine what it does:
loadbalancer or webserver.

How to do it…
1.	 Create a base class for all your nodes, which contains only the classes that every

node has as follows:
node server {
 include admin::basics
 include admin::ssh
 include admin::ntp
 include puppet::client
 include backup::client
}

Chapter 4

91

2.	 Create three different subclasses of this server node, each with the appropriate
provider variable:
node wreckspace_server inherits server {
 $provider = "WreckSpace"
}

node gododgy_server inherits server {
 $provider = "GoDodgy"
}

node veryslow_server inherits server {
 $provider = "VerySlow"
}

3.	 Now, let's say you need to create a new web server in VerySlow. To do this, just
inherit from veryslow_server:
node webserver904 inherits veryslow_server {
 include webserver
}

How it works…
When one node inherits from another, it picks up the entire configuration that the parent node
had. You can then add anything which makes this particular node different.

You can have a node inherit from a node that inherits from another node, and so on. You can't
inherit from more than one node though—so you can't have, for example:

node movable_server inherits gododgy_server, veryslow_server,
wreckspace_server {
 # This won't work
}

There's more…
Just as with a normal node definition, you can specify a list of node names that will all inherit
the same definition:

node webserver1, webserver2, webserver3 inherits wreckspace_server {
 ...
}

Alternatively, you can also have a regular expression that will match multiple servers:

node /webserver\d+.veryslow.com/ inherits veryslow_server {
 ...

}

Writing Better Manifests

92

See also
ff Using class inheritance and overriding in this chapter

Using class inheritance and overriding
Just as nodes can inherit from other nodes, to save you duplicating lots of stuff for nodes that
are very similar, the same idea works for classes.

For example, imagine you have a class apache which manages the Apache web server, and
you want to set up a new Apache machine but with a slightly different config file - perhaps
listening on a different port.

You could duplicate the whole of the apache class, except for the config file. Alternatively, you
could take the config file out of the apache class and create two new classes, each of which
includes the base apache class and adds a different version of the config file.

A cleaner way is to inherit from the apache class, but override just the config file.

Getting ready…
1.	 Create the directory structure for a new apache module:

mkdir /etc/puppet/modules/apache

mkdir /etc/puppet/modules/apache/manifests

mkdir /etc/puppet/modules/apache/files

2.	 Create the file /etc/puppet/modules/apache/manifests/init.pp with the
following contents:
class apache {
 package { "apache2-mpm-worker": ensure => installed }

 service { "apache2":
 enable => true,
 ensure => running,
 require => Package["apache2-mpm-worker"],
 }

 file { "/etc/apache2/ports.conf":
 source => "puppet:///modules/apache/port80.conf.apache",
 notify => Service["apache2"],
 }
}

Chapter 4

93

3.	 Install the Apache package, if it's not already present, and copy the included ports.
conf file into Puppet:
apt-get install apache2-mpm-worker

cp /etc/apache2/ports.conf /etc/puppet/modules/apache/files/
port80.conf.apache

4.	 Add the apache class to a node as follows:
node cookbook {
 include apache
}

5.	 Run Puppet to verify that the manifest works.

How to do it…
1.	 Create a new version of port80.conf.apache named port8000.conf.apache

with the following changes:
NameVirtualHost *:8000
Listen 8000

2.	 Now add a new file /etc/puppet/modules/apache/manifests/port8000.pp
with the following contents:
class apache::port8000 inherits apache {
 File["/etc/apache2/ports.conf"] {
 source => "puppet:///modules/apache/port8000.conf.apache",
 }
}

3.	 Change your node to include the apache::port8000 class instead of apache:
node cookbook {
 include apache::port8000
}

4.	 Run Puppet to check that it makes the required changes:
puppet agent --test

info: Retrieving plugin

info: Caching catalog for cookbook.bitfieldconsulting.com

info: Applying configuration version '1302970905'

--- /etc/apache2/ports.conf 2010-11-18 14:16:23.000000000 -0700

+++ /tmp/puppet-file20110416-6165-pzeivi-0 2011-04-16
10:21:47.204294334 -0600

@@ -5,8 +5,8 @@

 # Debian etch). See /usr/share/doc/apache2.2-common/NEWS.Debian.

Writing Better Manifests

94

gz and

 # README.Debian.gz

-NameVirtualHost *:80

-Listen 80

+NameVirtualHost *:8000

+Listen 8000

 <IfModule mod_ssl.c>

 # If you add NameVirtualHost *:443 here, you will also have
to change

info: FileBucket adding /etc/apache2/ports.conf as {md5}38b31d2032
6f3640a8dfbe1ff5d1c4ad

info: /Stage[main]/Apache/File[/etc/apache2/ports.conf]:
Filebucketed /etc/apache2/ports.conf to puppet with sum
38b31d20326f3640a8dfbe1ff5d1c4ad

notice: /Stage[main]/Apache/File[/etc/apache2/ports.conf]/content:
content changed '{md5}38b31d20326f3640a8dfbe1ff5d1c4ad' to '{md5}4
1d9d446f779c55f13c5fe5a7477d943'

info: /Stage[main]/Apache/File[/etc/apache2/ports.conf]:
Scheduling refresh of Service[apache2]

notice: /Stage[main]/Apache/Service[apache2]: Triggered 'refresh'
from 1 events

notice: Finished catalog run in 4.85 seconds

How it works…
Let's take another look at the new class:

class apache::port8000 inherits apache {
 File["/etc/apache2/ports.conf"] {
 source => "puppet:///modules/apache/port8000.conf.apache",
 }
}

You can see that after the class name we have inherits apache. This will make the class
an exact copy of apache, except for the changes that follow.

The following code snippet:

File["/etc/apache2/ports.conf"] {

specifies that we want to make changes to the file resource named /etc/apache2/
ports.conf in the parent class (note that File is capitalized, meaning that we're referring
to an existing resource rather than defining a new one).

Chapter 4

95

The following code snippet:

 source => "puppet:///modules/apache/port8000.conf.apache",

means that we are going to override the source parameter of the parent class's resource
with a new value. The result will be exactly the same as if we had copied the whole class
definition from apache but changed the value of source:

class apache {
 package { "apache2-mpm-worker": ensure => installed }

 service { "apache2":
 enable => true,
 ensure => running,
 require => Package["apache2-mpm-worker"],
 }

 file { "/etc/apache2/ports.conf":
 source => "puppet:///modules/apache/port8000.conf.apache",
 notify => Service["apache2"],
 }
}

There's more…
Overriding inherited classes may seem complicated at first. Once you get the idea, though,
it's actually quite simple. It's a great way to make your manifests more readable because it
removes lots of duplication, and focuses only on the parts that differ. Here are some more
ways to use overriding.

Undefining parameters
Sometimes you don't want to change the value of a parameter, you just want to remove its
value altogether. To do this, use the value undef. The result will be as though the parameter
had never been defined in the first place.

class apache::norestart inherits apache {
 File["/etc/apache2/ports.conf"] {
 notify => undef,
 }
}

Writing Better Manifests

96

Adding extra values using the +> operator
Similarly, instead of replacing a value, you may want to add more values to those defined in
the parent class. The plusignment operator +> will do this:

class apache::ssl inherits apache {
 file { "/etc/ssl/certs/cookbook.pem":
 source => "puppet:///modules/apache/cookbook.pem",
 }

 Service["apache2"] {
 require +> File["/etc/ssl/certs/cookbook.pem"],
 }
}

The +> operator adds a value (or an array of values surrounded by square brackets) to the
value defined in the parent class. In this case, what we end up with is the equivalent of this:

service { "apache2":
 enable => true,
 ensure => running,
 require => [Package["apache2-mpm-worker"], File["/etc/ssl/certs/
 cookbook.pem"]],
}

Disabling resources
One of the most common uses for inheritance and overrides is to disable services or other
resources:

class apache::disabled inherits apache {
 Service["apache2"] {
 enable => false,
 ensure => stopped,
 }
}

See also
ff Using node inheritance in this chapter

ff Passing parameters to classes in this chapter

ff Using standard naming conventions in Chapter 3

Chapter 4

97

Passing parameters to classes
Sometimes it's very useful to parameterize some aspect of a class. For example, you might
need to manage different versions of a gem package, and rather than making separate
classes for each that differ only in the version number, or using inheritance and overrides,
you can pass in the version number as a parameter.

How to do it…
1.	 Declare the parameter as part of the class definition as follows:

class eventmachine($version) {
 package { "eventmachine":
 provider => gem,
 ensure => $version,
 }
}

2.	 Then use the following syntax to include the class on a node:
class { "eventmachine": version => "0.12.8" }

How it works…
The class definition:

class eventmachine($version) {

is just like a normal class definition except it specifies that the class takes one parameter:
$version. Inside the class, we've defined a package resource as follows:

 package { "eventmachine":
 provider => gem,
 ensure => $version,
 }

This is a gem package, and we're requesting to install version $version.

When you include the class on a node, instead of the usual syntax:

include eventmachine

there's a class statement as follows:

class { "eventmachine": version => "0.12.8" }

This has the same effect, but also sets a value for the parameter $version.

Writing Better Manifests

98

There's more…
You can specify multiple parameters for a class:

class mysql($package, $socket, $port) {

and supply them in the same way:

class { "mysql":
 package => "percona-sql-server-5.0",
 socket => "/var/run/mysqld/mysqld.sock",
 port => "3306",
}

You can also give default values for some of your parameters:

class mysql($package, $socket, $port = "3306") {

or all, as shown in the following code snippet:

class mysql(
 package = "percona-sql-server-5.0",
 socket = "/var/run/mysqld/mysqld.sock",
 port = "3306") {

Unlike a define, only one instance of a parameterized class can exist on a node. So where
you need to have several different instances of the resource, use a define instead.

See also
ff Using node inheritance in this chapter

ff Using class inheritance and overriding in this chapter

Writing reusable, cross-platform manifests
Every system administrator dreams of a unified, homogeneous infrastructure, of identical
machines all running the same version of the same OS. As in other areas of life, however, the
reality is often messy and doesn't conform to the plan.

You are probably responsible for a bunch of assorted servers of varying age and architecture,
running different kernels from different OS distributions, often scattered across different data
centers and ISPs.

This situation should strike terror into the hearts of sysadmins of the "SSH in a for loop"
persuasion, because executing the same commands on every server can have different,
unpredictable, and even dangerous results.

Chapter 4

99

We should certainly strive to bring older servers up to date and get everything as far as
possible working on a single reference platform to make administration simpler, cheaper, and
more reliable. But until we get there, Puppet makes coping with heterogeneous environments
slightly easier.

How to do it…
1.	 If you have servers in different data centers that need slightly different network

configuration, for example, use the node inheritance technique to encapsulate the
differences:
node wreckspace_server inherits server {
 include admin::wreckspace_specific
}

2.	 Where you need to apply the same manifest to servers with different OS distributions,
the main differences will probably be the names of packages and services, and the
location of config files. Try to capture all these differences into a single class, using
selectors to set global variables:
$ssh_service = $operatingsystem? {
 /Ubuntu|Debian/ => "ssh",
 default => "sshd",
}

Then you needn't worry about the differences in any other part of the manifest; when
you refer to something, use the variable in confidence that it will point to the right
thing in each environment:
 service { $ssh_service:
 ensure => running,
 }

3.	 Often we need to cope with mixed architectures; this can affect the paths to
shared libraries, and also may require different versions of packages. Again, try to
encapsulate all the required settings in a single architecture class which sets
global variables:
$libdir = $architecture ? {
 x86_64 => "/usr/lib64",
 default => "/usr/lib",
}

Then you can use these wherever an architecture-dependent value is required, in
your manifests or even in templates:
; php.ini
[PHP]
; Directory in which the loadable extensions (modules) reside.
extension_dir = <%= libdir %>/php/modules

Writing Better Manifests

100

How it works...
The advantage of this approach (which could be called "top-down") is that you only need to
make your choices once. The alternative, bottom-up approach, would be to have a selector or
case statement everywhere a setting is used:

 service { $operatingsystem? {
 /Ubuntu|Debian/ => "ssh",
 default => "sshd" }:
 ensure => running,
 }

This not only results in lots of duplication, but makes the code harder to read. And when a
new operating system is added to the mix, you'll need to make changes throughout the whole
manifest, instead of just in one place.

There's more…
If you are writing a module for public distribution (for example on Puppet Forge), you can make
it much more valuable by making it as cross-platform as possible. As far as you can, test it on
lots of different distributions, platforms, and architectures, and add the appropriate variables
so it works everywhere.

If you use a public module and adapt it to your own environment, consider updating the public
version with your changes if you think they might be helpful to other people.

Even if you are not thinking of publishing a module, bear in mind that it may be in production
use for a long time and may have to adapt to many changes in the environment. If it's
designed to cope with this from the start, it'll make life easier for you - or whoever ends up
maintaining your code.

"Always code as if the guy who ends up maintaining your code will be a violent
psychopath who knows where you live."—Dave Carhart

See also
ff Using node inheritance in this chapter

ff Using class inheritance and overriding in this chapter

ff Using public modules in Chapter 9

Chapter 4

101

Getting information about the environment

"In Paris they simply stared when I spoke to them in French. I never did succeed in
making those idiots understand their language."—Mark Twain

Local knowledge can be very useful. Often in a Puppet manifest, you need to know some
local information about the machine you're on. Facter is the tool that accompanies Puppet to
provide a standard way of getting information ('facts') from the environment about things like:

ff Operating system

ff Memory size

ff Architecture

ff Processor count

To see a complete list of the facts available on your system, run the
command: # facter
While it can be handy to get this information from the command line,
the real power of Facter lies in being able to access these facts in your
Puppet manifests.

How to do it…
1.	 Reference a Facter fact in your manifest like any other variable as follows:

notify { "This is $operatingsystem version
$operatingsystemrelease, on $architecture architecture, kernel
version $kernelversion": }

2.	 When Puppet runs, it will fill in the appropriate values for the current node:
notice: This is Ubuntu version 10.04, on i386 architecture,
kernel version 2.6.32

How it works…
Facter provides an abstraction layer for Puppet, and a standard way for manifests to get
information about their environment. When you refer to a fact in a manifest, Puppet will query
Facter to get the current value, and insert it into the manifest.

Writing Better Manifests

102

There's more…
You can also use facts in ERB templates. For example, you might want to insert the node's
hostname into a file, or change a config setting for an application based on the memory size
of the node. When you use fact names in templates, remember that they don't need a dollar
sign, because this is Ruby, not Puppet:

$KLogPath <%= case kernelversion when "2.6.31" then "/var/run/rsyslog/
kmsg" else "/proc/kmsg" end %>

See also
ff Creating custom Facter facts in Chapter 9

Importing dynamic information
Even though some system administrators like to wall themselves off from the rest of the office
using piles of old printers, we all need to exchange information with other departments from
time to time. For example, you may need to insert data into your Puppet manifests which is
derived from some outside source. The generate function is very useful for this.

Getting ready…
Create the script /usr/local/bin/latest-puppet.rb on the Puppetmaster with the
following contents:

#!/usr/bin/ruby

require 'open-uri'

page = open("http://www.puppetlabs.com/misc/download-options/").read
print page.match(/stable version is ([\d\.]*)/)[1]

How to do it…
1.	 Add the following to your manifest:

$latestversion = generate("/usr/local/bin/latest-puppet.rb")
notify { "The latest stable Puppet version is ${latestversion}.
You're using ${puppetversion}.": }

2.	 Run Puppet:
puppet agent --test

notice: The latest stable Puppet version is 2.6.5. You're
using 2.6.3.

Chapter 4

103

How it works…
The generate function runs the specified script or program on the Puppetmaster (not
the client) and returns the result - in this case, the version number of the latest stable
Puppet release.

I don't recommend you run this script in production, as Puppet Labs have a habit of
rearranging their web site, but you get the idea. Anything a script can do, print, fetch, or
calculate - for example the results of a database query - can be brought into your manifest
using generate.

It's worth remembering that, just as with embedded Ruby calls in templates, the generate
function is run on the Puppetmaster and not on the node that is running Puppet. I once made
this mistake by calling /bin/hostname in a template and finding to my surprise that all my
nodes were apparently named puppet.

When you need to get information specifically about the node, this is best done with a
custom fact.

There's more…
If you need to pass arguments to the executable called by generate, add them as extra
arguments to the function call as follows:

$latestpuppet = generate("/usr/local/bin/latest-version.rb", "puppet")
$latestmc = generate("/usr/local/bin/latest-version.rb",
"mcollective")

Puppet will try to protect you from malicious shell calls by restricting the characters you can
use in a call to generate, so shell pipelines aren't allowed, for example. The simplest and
safest thing to do is to put all your logic into a script and then call that script.

See also
ff Creating custom Facter facts in Chapter 9

ff Importing data from CSV files in this chapter

Importing data from CSV files
Want to know something? When you need to look up some value in a table, you could do
it with lengthy case statements or selectors, but a neater way is to use the extlookup
function. This queries an external CSV file on the Puppetmaster and returns the matching
piece of data.

Writing Better Manifests

104

Grouping all such data into a single file and moving it outside the Puppet manifests makes
it easier to maintain, as well as easier to share with other people: a development team can
manage the things Puppet needs to know about their application, for example, by deploying a
suitable CSV file as part of the release. Puppet just needs to know where to find the file, and
extlookup will do the rest.

Getting ready…
1.	 Create the file /var/www/apps/common.csv with the following contents:

path,/var/www/apps/%{name}
railsversion,3
domain,www.%{name}.com

2.	 Create the file /var/www/apps/myapp.csv with the following contents:
railsversion,2

How to do it…
1.	 Add the following to your manifest:

$extlookup_datadir = "/var/www/apps/"
$extlookup_precedence = ["%{name}", "common"]

class app($name) {
 $railsversion = extlookup("railsversion")
 $path = extlookup("path")
 $domain = extlookup("domain")
 notify { "App data: Path ${path}, Rails version
 ${railsversion}, domain ${domain}": }
}

class { "app": name => "myapp" }

2.	 Run Puppet:
puppet agent --test

info: Retrieving plugin

info: Caching catalog for cookbook.bitfieldconsulting.com

info: Applying configuration version '1303129760'

notice: App data: Path /var/www/apps/myapp, Rails version 2,
domain www.myapp.com

notice: /Stage[main]/App/Notify[App data: Path /var/www/apps/
myapp, Rails version 2, domain www.myapp.com]/message: defined
'message' as 'App data: Path /var/www/apps/myapp, Rails version 2,
domain www.myapp.com'

notice: Finished catalog run in 0.58 seconds

Chapter 4

105

How it works…
1.	 The first thing we do is define the variable $extlookup_datadir, which tells

extlookup what directory to look for data files in. You would normally set this in
site.pp or wherever you define global variables:
$extlookup_datadir = "/var/www/apps/"

2.	 Then, we tell extlookup what data files to look at, in order of precedence:
$extlookup_precedence = ["%{name}", "common"]

This can be an array of any length. When we make an extlookup query, Puppet
will try each of the files in order until it finds one that has the requested value. The
file names can contain variables. In this example, we've used %{name}, so we're
expecting a variable called $name to be set when we call extlookup and Puppet will
use its value as the first filename to look for.

3.	 Next, inside the app class, we call extlookup to get a value:
 $railsversion = extlookup("railsversion")

The extlookup machinery now looks for a CSV file to read the data from. It looks in
the $extlookup_datadir directory (in this case /var/www/apps) for a file named
%{name}.csv (in this case myapp.csv). So it reads the file /var/www/apps/
myapp.csv which contains railsversion,2

We've found the required value (2), so extlookup returns it.

4.	 The next extlookup call isn't so lucky:
 $path = extlookup("path")

Again, extlookup looks first in myapp.csv, but it doesn't find a value matching
path. So it moves on to the next file listed in $extlookup_precedence, which is
common.csv:
path,/var/www/apps/%{name}
railsversion,3
domain,www.%{name}.com

Thankfully, this does match, so Puppet returns the value /var/www/
apps/%{name}, which in this case evaluates to /var/www/apps/myapp.

You can see that this allows us to have a set of default values in common.csv that each app
may choose to override in its own myapp.csv file. extlookup will keep on querying the
files listed in $extlookup_precedence until it finds the value requested. As myapp.csv is
listed first, any setting in it will take precedence over settings in common.csv.

Writing Better Manifests

106

There's more…
You can also specify default values in the extlookup call, to be used if no suitable data is
found in the CSV files:

 $path = extlookup("path", "/var/www/misc")

You can also specify a CSV file to be consulted first, before anything in $extlookup_
precedence:

 $path = extlookup("path", "/var/www/misc", "paths")

This will look in paths.csv for the data, and if it doesn't find it, will move on to the files listed
in $extlookup_precedence as usual.

The values in your CSV files can also refer to variables, as we did here:

domain,www.%{name}.com

You can use any variable that's in scope, including Facter facts:

domain,%{fqdn}

R.I. Pienaar's article "Complex data and Puppet" is an excellent introduction to extlookup:
http://www.devco.net/archives/2009/08/31/complex_data_and_puppet.php.

Jordan Sissel has written about configuring your whole infrastructure using extlookup:
http://sysadvent.blogspot.com/2010/12/day-12-scaling-operability-
with-truth.html.

See also
ff Importing dynamic information in this chapter

ff Creating custom Facter facts in Chapter 9

Passing arguments to shell commands
If you need to insert values into a command line, they often need to be quoted, especially if
they contain spaces. The shellquote function will take any number of arguments, including
arrays, and quote each of the arguments and return them all as a space-separated string that
you can pass to commands.

In this example, we would like to set up an exec resource which will rename a file, but both
the source and the target name contain spaces, so they need to be correctly quoted in the
command line.

Chapter 4

107

How to do it…
1.	 Add the following to your manifest:

$source = "Hello Jerry"
$target = "Hello... Newman"
$argstring = shellquote($source, $target)
$command = "/bin/mv ${argstring}"
notify { $command: }

2.	 Run Puppet:
notice: /bin/mv "Hello Jerry" "Hello... Newman"

How it works…
1.	 First we define the $source and $target variables, which are the two filenames we

want to use in the command line as follows:
$source = "Hello Jerry"
$target = "Hello... Newman"

2.	 Then we call shellquote to concatenate these variables into a quoted, space-
separated string.
$argstring = shellquote($source, $target)

3.	 Then we put together the final command line:
$command = "/bin/mv ${argstring}"

4.	 The result is:
/bin/mv "Hello Jerry" "Hello... Newman"

5.	 This command line can now be run with an exec resource.What would happen if
we didn't use shellquote?
$source = "Hello Jerry"
$target = "Hello... Newman"
$command = "/bin/mv ${source} ${target}"
notify { $command: }

notice: /bin/mv Hello Jerry Hello... Newman

This won't work because mv expects space-separated arguments, so will interpret
this as a request to move three files Hello, Jerry, and Hello... into a directory
named Newman, which probably isn't what we want.

5
Working with

Files and Packages

"If builders built buildings the way programmers wrote programs, then the first
woodpecker that came along would destroy civilization."—Gerald Weinberg

In this chapter we will cover the following topics:

ff Making quick edits to config files

ff Using Augeas to automatically edit config files

ff Building config files using snippets

ff Using ERB templates

ff Using array iteration in templates

ff Installing packages from a third-party repository

ff Setting up an APT package repository

ff Setting up a gem repository

ff Building packages automatically from source

ff Comparing package versions

Almost everything you'll do as a Puppet administrator involves either files or packages.
They are the most important kinds of resources in Puppet and this chapter will help you
to understand them thoroughly, and learn some useful features and patterns to help you
make better use of them.

Working with Files and Packages

110

In this chapter we'll see how to make small edits to files, how to make larger changes in a
structured way using the Augeas tool, how to construct files from concatenated snippets, and
how to generate files from templates. We'll also learn how to install packages from additional
repositories, and how to create those repositories.

Making quick edits to config files
Did you know Puppet can do micro-surgery? Often we don't want to have to put a whole config
file into Puppet just to add one setting—especially if the file is managed by someone else and
we can't overwrite it. What would be useful is a simple recipe to add a line to a config file if it's
not already present: for example, adding a module name to /etc/modules to tell the kernel
to load that module at boot.

You can use an exec resource to do jobs like this: this example shows how to use exec to
append a line to a text file.

How to do it…
1.	 Create the file /etc/puppet/manifests/utils.pp with the following content:

define append_if_no_such_line($file, $line) {
 exec { "/bin/echo '$line' >> '$file'":
 unless => "/bin/grep -Fx '$line' '$file'",
 }
}

2.	 Add this line to /etc/puppet/manifests/site.pp:
import "utils.pp"

3.	 Now add this to your manifest:
append_if_no_such_line { "enable-ip-conntrack":
 file => "/etc/modules",
 line => "ip_conntrack",
}

4.	 Run Puppet:
puppet agent --test

info: Retrieving plugin

info: Caching catalog for cookbook.bitfieldconsulting.com

info: Applying configuration version '1303649606'

notice: /Stage[main]//Node[cookbook]/Append_if_no_such_
line[enable-ip-conntrack]/Exec[/bin/echo 'ip_conntrack' >> '/etc/
modules']/returns: executed successfully

notice: Finished catalog run in 1.22 seconds

Chapter 5

111

How it works…
The exec resource will append the specified text in $line to the file $file, provided it's not
already present:

 exec { "/bin/echo '$line' >> '$file'":
 unless => "/bin/grep -Fx '$line' '$file'",

This append_if_no_such_line resource is now available for you to use in your manifest.
In this example, we've used it to ensure that the /etc/modules file (which specifies what
kernel modules to load at boot time) contains the following line:

ip_conntrack

There's more…
You can use similar define functions to perform other minor operations on text files. For
example, the following code snippet will enable you to search and replace within a file:

define replace_matching_line($match, $replace) {
 exec { "/usr/bin/ruby -i -p -e 'sub(%r{$match}, \"$replace\")'
 $name":
 onlyif => "/bin/grep -E '$match' $name",
 logoutput => on_failure,
 }
}

replace_matching_line { "/etc/apache2/apache2.conf":
 match => "LogLevel .*",
 replace => "LogLevel debug",
}

See also
ff Using Augeas to automatically edit config files in this chapter

Using Augeas to automatically edit
config files

Of course, the great thing about standards is that there are so many of them. Sometimes
it seems like every application config file format is slightly different, and writing regular
expressions to parse and modify all of them can be a tiresome business.

Working with Files and Packages

112

Thankfully, Augeas is here to help. Augeas is a tool which aims to simplify working with
different config file formats, by presenting them all as a simple tree of values. Puppet's
Augeas support allows you to create augeas resources which can make the required
config changes intelligently and automatically.

Getting ready…
Before we can use Augeas, we need to install it. The following Puppet code will add Augeas
to your setup.

1.	 Create the file /etc/puppet/modules/admin/manifests/augeas.pp with
the following contents:
class admin::augeas {
 package { ["augeas-lenses",
 "augeas-tools",
 "libaugeas0",
 "libaugeas-ruby1.8"]:
 ensure => "present"
 }
}

2.	 Include the following class on a node:
node cookbook {
 include admin::augeas
}

3.	 Run Puppet:
puppet agent --test

info: Retrieving plugin

info: Caching catalog for cookbook.bitfieldconsulting.com

info: Applying configuration version '1303657095'

notice: /Stage[main]/Admin::Augeas/Package[augeas-tools]/ensure:
ensure changed 'purged' to 'present'

notice: Finished catalog run in 21.96 seconds

How to do it…
1.	 Create the file /etc/puppet/modules/admin/manifests/ipforward.pp

with the following contents:
class admin::ipforward {
 augeas { "enable-ip-forwarding":
 context => "/files/etc/sysctl.conf",

Chapter 5

113

 changes => [
 "set net.ipv4.ip_forward 1",
],
 }
}

2.	 Include this class on a node:
node cookbook {
 include admin::augeas
 include admin::ipforward
}

3.	 Run Puppet:
puppet agent --test

info: Retrieving plugin

info: Caching catalog for cookbook.bitfieldconsulting.com

info: Applying configuration version '1303729376'

notice: /Stage[main]/Admin::Ipforward/Augeas[enable-ip-
forwarding]/returns: executed successfully

notice: Finished catalog run in 3.53 seconds

4.	 Check that the setting has been correctly applied with the following command:
sysctl -p |grep forward

net.ipv4.ip_forward = 1

How it works…
This is what is going on in the preceding code:

1.	 We declare an augeas resource named enable-ip-forwarding:
 augeas { "enable-ip-forwarding":

2.	 We specify that we want to make changes in the context of the
file /etc/sysctl.conf:
 context => "/files/etc/sysctl.conf",

3.	 The parameter changes is passed an array of settings that we want to
make (in this case only one):
 changes => [
 "set net.ipv4.ip_forward 1",
],

In general Augeas changes take the following form:
set <parameter> <value>

Working with Files and Packages

114

Augeas uses a set of translation files called lenses to enable it to write these settings
in the appropriate format for the given config file. In this case, the setting will be
translated into a line such as the following in /etc/sysctl.conf:
net.ipv4.ip_forward=1

There's more…
The /etc/sysctl.conf file is used as the example because it can contain a wide variety
of kernel settings, and you may want to change these settings for all sorts of different
purposes and in different Puppet classes. You might want to enable IP forwarding for a
router class as in the preceding example, but you might also want to tune the value of net.
core.somaxconn for a load-balancer class.

This means that simply "Puppetizing" the /etc/sysctl.conf file and distributing it as a text
file won't work, because you might have several different and conflicting versions, depending
on the setting you want to modify. Augeas is the right solution here because you can define
augeas resources in different places which modify the same file, such that they won't conflict.

Augeas is a powerful tool that ships with lenses for most of the standard Linux config files,
and you can write your own for rare or proprietary config formats if you need to manage
these. For more about using Puppet and Augeas, visit the page on the Puppet Labs wiki:
http://projects.puppetlabs.com/projects/1/wiki/Puppet_Augeas.

Building config files using snippets
How do you eat an elephant? One bite at a time. Sometimes you have a situation where you
want to build up a single config file from various snippets managed by different classes. For
example, you might have two or three services that require rsync modules to be configured,
so you can't distribute a single rsyncd.conf. Although you could use Augeas, there's a
simple way to concatenate config snippets together into a single file using an exec resource.

How to do it…
1.	 Create the file /etc/puppet/modules/admin/manifests/rsyncdconf.pp

with the following contents:
class admin::rsyncdconf {
 file { "/etc/rsyncd.d":
 ensure => directory,
 }

 exec { "update-rsyncd.conf":
 command => "/bin/cat /etc/rsyncd.d/*.conf > /etc/
 rsyncd.conf",

Chapter 5

115

 refreshonly => true,
 }
}

2.	 Add the following to your manifest:
class myapp::rsync {
 include admin::rsyncdconf

 file { "/etc/rsyncd.d/myapp.conf":
 ensure => present,
 source => "puppet:///modules/myapp/myapp.rsync",
 require => File["/etc/rsyncd.d"],
 notify => Exec["update-rsyncd.conf"],
 }
}

include myapp::rsync

3.	 Create the file /etc/puppet/modules/myapp/files/myapp.rsync with the
following contents:
[myapp]
 uid = myappuser
 gid = myappuser
 path = /opt/myapp/shared/data
 comment = Data for myapp
 list = no
 read only = no
 auth users = myappuser

4.	 Run Puppet:
puppet agent --test

info: Retrieving plugin

info: Caching catalog for cookbook.bitfieldconsulting.com

info: Applying configuration version '1303731804'

notice: /Stage[main]/Admin::Rsyncdconf/File[/etc/rsyncd.d]/ensure:
created

notice: /Stage[main]/Myapp::Rsync/File[/etc/rsyncd.d/myapp.conf]/
ensure: defined content as '{md5}e1e57cf38bb88a7b4f2fd6eb1ea2823a'

info: /Stage[main]/Myapp::Rsync/File[/etc/rsyncd.d/myapp.conf]:
Scheduling refresh of Exec[update-rsyncd.conf]

notice: /Stage[main]/Admin::Rsyncdconf/Exec[update-rsyncd.conf]:
Triggered 'refresh' from 1 events

notice: Finished catalog run in 1.01 seconds

Working with Files and Packages

116

How it works…
The admin::rsyncdconf class creates a directory for rsync config snippets to be placed
into as follows:

file { "/etc/rsyncd.d":
 ensure => directory,
}

When you create a config snippet (such as in myapp::rsync), all you need to do is require
the directory— require => File["/etc/rsyncd.d"],and notify the exec resource that
updates the main config file as follows: notify => Exec["update-rsyncd.conf"],.

This exec resource will then be run every time one of the following snippets is updated:

exec { "update-rsyncd.conf":
 command => "/bin/cat /etc/rsyncd.d/*.conf > /etc/rsyncd.conf",
 refreshonly => true,
}

The preceding code snippet will concatenate all the snippets in /etc/rsyncd.d into
rsyncd.conf.

The reason this is useful is that you can have many different snippet resources spread
throughout different classes and modules, all of which will eventually be combined into a
single rsyncd.conf file, but you can keep the code to combine this in one place.

There's more…
This is a useful pattern whenever you have a service like rsync that has a single config
file which may contain distinct snippets. In effect, it gives you the functionality of Apache's
conf.d or PHP's php-ini.d directories.

See also
ff Using tags in Chapter 5

Using ERB templates
A template is a text file with a college degree. It can do calculations, execute Ruby code, or
reference the values of variables from your Puppet manifests. Anywhere you might deploy a
text file using Puppet, you can use a template instead. In the simplest case, a template can
just be a static text file. More usefully, you can insert variables into it using ERB (embedded
Ruby) syntax. For example:

<%= name %>, this is a very large drink.

Chapter 5

117

If the template is used in a context where the variable $name contains Zaphod
Beeblebrox, the template will evaluate as follows:

Zaphod Beeblebrox, this is a very large drink.

This simple technique is very useful for generating lots of files that only differ in the values
of one or two variables such as virtual hosts— and for inserting values into a script such
as database names and passwords. In this example, we'll use an ERB template to insert a
password into a backup script.

How to do it…
1.	 Create the file /etc/puppet/modules/admin/templates/backup-mysql.sh

with the following content:
#!/bin/sh
/usr/bin/mysqldump -uroot -p<%= mysql_password %> --all-databases
| /bin/gzip > /backup/mysql/all-databases.sql.gz

2.	 Add the following to your manifest:
 $mysql_password = "secret"
 file { "/usr/local/bin/backup-mysql":
 content => template("admin/backup-mysql.sh"),
 mode => "755",
 }

3.	 Run Puppet:
puppet agent --test

info: Retrieving plugin

info: Caching catalog for cookbook.bitfieldconsulting.com

info: Applying configuration version '1308670971'

notice: /Stage[main]//Node[cookbook]/File[/usr/local/bin/backup-
mysql]/ensure: defined content as '{md5}5853b6d4dd72420e341fa7ecb8
91ad43'

notice: Finished catalog run in 0.96 seconds

4.	 Check that Puppet has correctly inserted the password into the template:
cat /usr/local/bin/backup-mysql

#!/bin/sh

/usr/bin/mysqldump -uroot -psecret --all-databases | /bin/gzip > /
backup/mysql/all-databases.sql.gz

Working with Files and Packages

118

How it works…
Wherever a variable is referenced in the template, such as <%= mysql_password %>
Puppet will replace it with the corresponding value: secret.

There's more…
In the example, we only used one variable in the template, but you can have as many as you
like. These can also be facts, such as the following:

ServerName <%= fqdn %>

or Ruby expressions such as:

MAILTO=<%= emails.join(',') %>

or any Ruby code you want such as:

ServerAdmin <%= sitedomain == 'coldcomfort.com' ? 'seth@coldcomfort.
com' : 'flora@poste.com' %>

See also
ff Using array iteration in templates in this chapter

Using array iteration in templates
In the preceding example we saw that you can use Ruby to interpolate different values in
templates depending on the result of an expression. You can also use a loop to generate
content based on; the elements of an array:

How to do it…
1.	 Add the following to your manifest:

$ipaddresses = ['192.168.0.1',
 '158.43.128.1',
 '10.0.75.207']

file { "/tmp/addresslist.txt":
 content => template("admin/addresslist.erb")
}

Chapter 5

119

2.	 Create the file /etc/puppet/modules/admin/templates/addresslist.erb
with the following contents:
<% ipaddresses.each do |ip| -%>
IP address <%= ip %> is present.
<% end -%>

3.	 Run Puppet:
puppet agent --test

info: Retrieving plugin

info: Caching catalog for cookbook.bitfieldconsulting.com

info: Applying configuration version '1304766335'

notice: /Stage[main]//Node[cookbook]/File[/tmp/addresslist.txt]/
ensure: defined content as '{md5}7ad1264ebdae101bb5ea0afef474b3ed'

notice: Finished catalog run in 0.64 seconds

4.	 Check the contents of the generated file as follows:
cat /tmp/addresslist.txt

IP address 192.168.0.1 is present.

IP address 158.43.128.1 is present.

IP address 10.0.75.207 is present.

How it works…
1.	 In the first line of the template, we reference the array ipaddresses, and call the

corresponding each method as follows:
<% ipaddresses.each do |ip| -%>

2.	 In Ruby, this creates a loop that will execute once for each element of the array. Each
time round the loop, the variable ip will be set to the value of the current element.

3.	 In our example, the ipaddresses array contains three elements, so the following
line will be executed three times, once for each element:
IP address <%= ip %> is present.

4.	 This will result in three output lines:
IP address 192.168.0.1 is present.
IP address 158.43.128.1 is present.
IP address 10.0.75.207 is present.

Working with Files and Packages

120

5.	 The final line ends the loop as follows:
<% end -%>

6.	 Note that the first and last lines end with -%>, instead of just %> as we saw before.
The effect of the - is to suppress the newline that would otherwise be generated,
giving us an unwanted blank line in the file.

There's more…
Templates can also iterate over hashes, or arrays of hashes as follows:

$interfaces = [{ name => 'eth0',
 ip => '192.168.0.1' },
 { name => 'eth1',
 ip => '158.43.128.1' },
 { name => 'eth2',
 ip => '10.0.75.207' }]

<% interfaces.each do |interface| -%>
Interface <%= interface['name'] %> has the address <%= interface['ip']
%>.
<% end -%>

Interface eth0 has the address 192.168.0.1.
Interface eth1 has the address 158.43.128.1.
Interface eth2 has the address 10.0.75.207.

See also
ff Using ERB templates in this chapter

Installing packages from a third-party
repository

Most often, you will want to install packages from the main distribution repository, so a simple
package resource will do:

package { "exim4": ensure => installed }

Sometimes, though, you need a package which is only found in a third-party repository (an
Ubuntu PPA, for example). Or it might be that you need a more recent version of a package
than that provided by the distribution, which is available from a third party.

Chapter 5

121

On a manually administered machine, you would normally do this by adding the repository
source configuration to /etc/apt/sources.list.d (and, if necessary, a GPG key for the
repository) before installing the package. We can automate this process easily with Puppet.

How to do it…
1.	 Add the following to your manifest:

package { "python-software-properties": ensure => installed }

exec { "/usr/bin/add-apt-repository ppa:mathiaz/puppet-backports":
 creates => "/etc/apt/sources.list.d/mathiaz-puppet-backports-
 lucid.list",
 require => Package["python-software-properties"],
}

2.	 Run Puppet:
puppet agent --test

info: Retrieving plugin

info: Caching catalog for cookbook.bitfieldconsulting.com

info: Applying configuration version '1304773240'

notice: /Stage[main]//Node[cookbook]/Exec[/usr/bin/add-apt-
repository ppa:mathiaz/puppet-backports]/returns: executed
successfully

notice: Finished catalog run in 5.97 seconds

How it works…
1.	 The python-software-properties package provides the command add-apt-

repository, which simplifies the process of adding extra repositories as follows:
package { "python-software-properties": ensure => installed }

2.	 We then call this command in the exec resource to add the required configuration:
exec { "/usr/bin/add-apt-repository ppa:mathiaz/puppet-backports":

3.	 To ensure that the exec resource is not run every time Puppet runs, we specify a file
that the command creates, so that Puppet will skip exec if this file already exists:
 creates => "/etc/apt/sources.list.d/mathiaz-puppet-backports-
 lucid.list",

You might want to combine this with purging unwanted repository definitions in /
etc/apt/sources.list.d, as described in the section on recursive file resources.

Working with Files and Packages

122

There's more...
This method of repository handling is specific to Debian and Ubuntu systems, which as we've
said is our reference platform for the book. If you're on a RedHat-based system, you can use
yumrepo resources to manage RPM repositories directly.

See also
ff Distributing directory trees in Chapter 6

Setting up an APT package repository
Running your own package repository has several advantages. You can distribute your own
packages with it. You can control the versions of upstream or third-party packages that you
put into it. And you can locate it close to where your servers are, to avoid the problem of slow
or unreliable mirror sites.

Even if you don't need to create your own packages, you may want to download the required
versions of your critical dependency packages and store them in your own repo, thus
preventing any surprises when things change upstream (for example, your distro version
could reach end-of-life and the repos could be turned off).

It also makes it easier to auto-update packages within Puppet. You may occasionally need
to update a package (for example, when a security update is available), so it's convenient to
specify ensure => latest in the package definition. But when you don't control the repo,
this puts you at risk of an unexpected upgrade which breaks something in your system.

Your own repository gives you the best of both worlds: you can auto-update the package in
Puppet, but since it comes from your repository, a new version will only be available when
you put one there. You can test the version from upstream before making it available in your
production repository.

Getting ready…
You will need the apache module from the section, Using ERB templates, in this chapter.
So create this if you don't already have it.

In the example, I've called the repository packages.bitfieldconsulting.com,
because that's what mine is called. You'll probably want to use a different name, so
replace it throughout the example with the name of your repo.

Chapter 5

123

How to do it…
1.	 Create a new repo module:

mkdir /etc/puppet/modules/repo

mkdir /etc/puppet/modules/repo/manifests

mkdir /etc/puppet/modules/repo/files

2.	 Create the file /etc/puppet/modules/repo/manifests/bitfield-server.
pp with the following contents:
class repo::bitfield-server {
 include apache

 package { "reprepro": ensure => installed }

 file { ["/var/apt",
 "/var/apt/conf"]:
 ensure => directory,
 }

 file { "/var/apt/conf/distributions":
 source => "puppet:///modules/repo/distributions",
 require => File["/var/apt/conf"],
 }

 file { "/etc/apache2/sites-available/apt-repo":
 source => "puppet:///modules/repo/apt-repo.conf",
 require => Package["apache2-mpm-worker"],
 }

 file { "/etc/apache2/sites-enabled/apt-repo":
 ensure => symlink,
 target => "/etc/apache2/sites-available/apt-repo",
 require => File["/etc/apache2/sites-available/apt-repo"],
 notify => Service["apache2"],
 }
}

3.	 Create the file /etc/puppet/modules/repo/files/distributions with the
following contents:
Origin: Bitfield Consulting
Label: bitfield
Suite: stable
Codename: lucid
Architectures: amd64 i386
Components: main non-free contrib
Description: Custom and cached packages for Bitfield Consulting

Working with Files and Packages

124

4.	 Create the file /etc/puppet/modules/repo/files/apt-repo.conf with the
following contents:
<VirtualHost *:80>
 DocumentRoot /var/apt
 ServerName packages.bitfieldconsulting.com
 ErrorLog /var/log/apache2/packages.bitfieldconsulting.com.
 error.log

 LogLevel warn

 CustomLog /var/log/apache2/packages.bitfieldconsulting.com.
 access.log combined
 ServerSignature On

 # Allow directory listings so that people can browse the
 repository from their browser too
 <Directory "/var/apt">
 Options Indexes FollowSymLinks MultiViews
 DirectoryIndex index.html
 AllowOverride Options
 Order allow,deny
 allow from all
 </Directory>

 # Hide the conf/ directory for all repositories
 <Directory "/var/apt/conf">
 Order allow,deny
 Deny from all
 Satisfy all
 </Directory>

 # Hide the db/ directory for all repositories
 <Directory "/var/apt/db">
 Order allow,deny
 Deny from all
 Satisfy all
 </Directory>
</VirtualHost>

5.	 Add the following to the manifest for a node:
include repo::bitfield-server

6.	 Run Puppet:
puppet agent --test

info: Retrieving plugin

info: Caching catalog for cookbook.bitfieldconsulting.com

Chapter 5

125

info: Applying configuration version '1304775601'

notice: /Stage[main]/Repo::Bitfield-server/File[/var/apt]/ensure:
created

notice: /Stage[main]/Repo::Bitfield-server/File[/var/apt/conf]/
ensure: created

notice: /Stage[main]/Repo::Bitfield-server/File[/var/apt/conf/
distributions]/ensure: defined content as '{md5}65dc791b876f53318a
35fcc42c770283'

notice: /Stage[main]/Repo::Bitfield-server/Package[reprepro]/
ensure: created

notice: /Stage[main]/Repo::Bitfield-server/File[/etc/apache2/
sites-enabled/apt-repo]/ensure: created

notice: /Stage[main]/Repo::Bitfield-server/File[/etc/apache2/
sites-available/apt-repo]/ensure: defined content as '{md5}2da4686
957e5acf49220047fe6f6e6e1'

info: /Stage[main]/Repo::Bitfield-server/File[/etc/apache2/sites-
enabled/apt-repo]: Scheduling refresh of Service[apache2]

notice: /Stage[main]/Apache/Service[apache2]: Triggered 'refresh'
from 1 events

notice: Finished catalog run in 16.32 seconds

How it works…
Actually, you don't need very much to create an APT repository. It works over HTTP, so you just
need an Apache virtual host. You can put the actual package files anywhere you like, as long
as there is a conf/distributions file which will give APT information about the repository.

1.	 The first part of the bitfield-server class ensures we have Apache set up:
class repo::bitfield-server {
 include apache

2.	 The reprepro tool is useful for managing the repository itself (for example, adding
new packages):
 package { "reprepro": ensure => installed }

3.	 We create the root directory of the repository in /var/apt, along with the conf/
distributions file:
 file { ["/var/apt",
 "/var/apt/conf"]:
 ensure => directory,
 }

Working with Files and Packages

126

 file { "/var/apt/conf/distributions":
 source => "puppet:///modules/repo/distributions",
 require => File["/var/apt/conf"],
 }

4.	 The remainder of the class deploys the Apache virtual host file to enable it to serve
requests on packages.bitfieldconsulting.com as follows:
file { "/etc/apache2/sites-available/apt-repo":
 source => "puppet:///modules/repo/apt-repo.conf",
 require => Package["apache2-mpm-worker"],
}

file { "/etc/apache2/sites-enabled/apt-repo":
 ensure => symlink,
 target => "/etc/apache2/sites-available/apt-repo",
 require => File["/etc/apache2/sites-available/apt-repo"],
 notify => Service["apache2"],
}

There's more…
Of course, a repository isn't much good without any packages in it. In this section we'll
see how to add packages, and also how to configure machines to download packages
from your repository.

Adding packages
To add a package to your repository, download it and then use reprepro to add it:

cd /tmp
wget http://archive.ubuntu.com/ubuntu/pool/main/n/ntp/ntp_4.2.4p8+dfsg-
1ubuntu2.1_i386.deb
cd /var/apt
reprepro includedeb lucid /tmp/ntp_4.2.4p8+dfsg-1ubuntu2.1_i386.deb
Exporting indices...

Configuring nodes to use the repository
1.	 Create the file /etc/puppet/modules/repo/manifests/bitfield.pp with the

following contents (replacing the IP address with that of your repository server):
class repo::bitfield {
 host { "packages.bitfieldconsulting.com":
 ip => "10.0.2.15",
 ensure => present,
 target => "/etc/hosts",
 }

Chapter 5

127

 file { "/etc/apt/sources.list.d/bitfield.list":
 content => "deb http://packages.bitfieldconsulting.com/
 lucid main\n",
 require => Host["packages.bitfieldconsulting.com"],
 notify => Exec["bitfield-update"],
 }

 exec { "bitfield-update":
 command => "/usr/bin/apt-get update",
 require => File["/etc/apt/sources.list.d/bitfield.
 list"],
 refreshonly => true,
 }
}

If you have a DNS server or control of your DNS zone, you can skip the host entry.

2.	 Apply this class to a node as follows:
node cookbook {
 include repo::bitfield
}

3.	 Test whether the ntp package shows up as available from your repository:
apt-cache madison ntp

 ntp | 1:4.2.4p8+dfsg-1ubuntu2.1 | http://us.archive.ubuntu.
 com/ubuntu/ lucid-updates/main Packages

 ntp | 1:4.2.4p8+dfsg-1ubuntu2.1 | http://packages.
 bitfieldconsulting.com/ lucid/main Packages

 ntp | 1:4.2.4p8+dfsg-1ubuntu2 | http://us.archive.ubuntu.
 com/ubuntu/ lucid/main Packages

 ntp | 1:4.2.4p8+dfsg-1ubuntu2 | http://us.archive.ubuntu.
 com/ubuntu/ lucid/main Sources

 ntp | 1:4.2.4p8+dfsg-1ubuntu2.1 | http://us.archive.ubuntu.
 com/ubuntu/ lucid-updates/main Sources

Signing your packages
For production use, you should sign your packages and repository with a GPG key; for
information about how to set this up, see Sander Marechal's useful article on setting up and
managing APT repositories at http://www.jejik.com/articles/2006/09/setting_
up_and_managing_an_apt_repository_with_reprepro/.

Working with Files and Packages

128

Setting up a gem repository
It's every system administrator's dream: yet another incompatible packaging system. If
you manage Ruby or Rails applications, you'll need to deal with Rubygems. Maintaining
your own gem repository has many of the same advantages as having an APT repository.
You can control availability and package versions, and you can also use it to distribute your
own gems if you need to.

How to do it…
1.	 Create the file /etc/puppet/modules/repo/manifests/gem-server.pp with

the following contents:
class repo::gem-server {
 include apache

 file { "/etc/apache2/sites-available/gemrepo":
 source => "puppet:///modules/repo/gemrepo.conf",
 require => Package["apache2-mpm-worker"],
 notify => Service["apache2"],
 }

 file { "/etc/apache2/sites-enabled/gemrepo":
 ensure => symlink,
 target => "/etc/apache2/sites-available/gemrepo",
 require => File["/etc/apache2/sites-available/gemrepo"],
 notify => Service["apache2"],
 }

 file { "/var/gemrepo":
 ensure => directory,
 }
}

2.	 Create the file /etc/puppet/modules/repo/files/gemrepo.conf with the
following contents:
<VirtualHost *:80>
 ServerAdmin john@bitfieldconsulting.com
 ServerName gems.bitfieldconsulting.com
 ErrorLog logs/gems.bitfieldconsulting.com-error_log
 CustomLog logs/gems.bitfieldconsulting.com-access_log common

 Alias / /var/gemrepo/
 <Location />
 Options Indexes
 </Location>
</VirtualHost>

Chapter 5

129

3.	 Add the following to your manifest:
node cookbook {
 include repo::gem-server
}

4.	 Run Puppet:
puppet agent --test

info: Retrieving plugin

info: Caching catalog for cookbook.bitfieldconsulting.com

info: Applying configuration version '1304949279'

notice: /Stage[main]/Repo::Gem-server/File[/etc/apache2/
sites-available/gemrepo]/ensure: defined content as '{md5}
ae1fd948098f14503de02441d02a825d'

info: /Stage[main]/Repo::Gem-server/File[/etc/apache2/sites-
available/gemrepo]: Scheduling refresh of Service[apache2]

notice: /Stage[main]/Repo::Gem-server/File[/etc/apache2/sites-
enabled/gemrepo]/ensure: created

info: /Stage[main]/Repo::Gem-server/File[/etc/apache2/sites-
enabled/gemrepo]: Scheduling refresh of Service[apache2]

notice: /Stage[main]/Apache/Service[apache2]: Triggered 'refresh'
from 2 events

notice: /Stage[main]/Repo::Gem-server/File[/var/gemrepo]/ensure:
created

notice: Finished catalog run in 6.52 seconds

How it works…
The principle is exactly the same as in the APT repository example. We define a directory
where the gem repository will live, and a virtual host definition in Apache to enable it to
serve requests for gems.bitfieldconsulting.com.

There's more…
Again, your gem repository will be more useful if you put something in it. We'll find out how to
do that in the following text. We will also show you how to configure your nodes to access the
gem repository.

Adding gems
Adding new gems to your repository is simple. Put the gem file in /var/gemrepo/gems and
run this command in the /var/gemrepo directory:

gem generate_index

Working with Files and Packages

130

Using the gem repo
As with the APT repository, make sure that your nodes know about the hostname gems.
bitfieldconsulting.com, either by deploying a host entry with Puppet, or configuring
it in DNS.

Then you can specify a package in Puppet as follows:

package { "json":
 provider => "gem",
 source => "http://gems.bitfieldconsulting.com ",
}

Building packages automatically from
source

Tarballs can seriously damage your health. While using a distro or third-party package, or
rolling your own package is always preferable to building software from source, sometimes it
has to be done. Creating Debian packages (or any other flavor of packages) can be a lengthy
and error-prone process, and there may not always be the time or budget available to do this.

If you have to build a program from source, Puppet can at least help with this process. The
general procedure is to automate what you would otherwise do manually:

ff Download the source tarball

ff Unpack the tarball

ff Configure and build the program

ff Install the program

In this example we'll build OpenSSL from source (though for production you should use the
distro package, but it makes a useful demonstration).

How to do it…
1.	 Add the following to your manifest:

exec { "build-openssl":
 cwd => "/root",
 command => "/usr/bin/wget ftp://ftp.openssl.org/source/
 openssl-0.9.8p.tar.gz && /bin/tar xvzf openssl-0.9.8p.tar.
 gz && cd openssl-0.9.8p && ./Configure linux-generic32 &&
 make install",
 creates => "/usr/local/ssl/bin/openssl",
 logoutput => on_failure,
 timeout => 0,
}

Chapter 5

131

2.	 Run Puppet (it may take a while!):
puppet agent --test

info: Retrieving plugin

info: Caching catalog for cookbook.bitfieldconsulting.com

info: Applying configuration version '1304954159'

notice: /Stage[main]//Node[cookbook]/Exec[build-openssl]/returns:
executed successfully

notice: Finished catalog run in 554.00 seconds

How it works…
The exec command is in five separate stages, delimited by && operators. This means that
should any sub-command fail, the whole command will stop and fail. It's a useful construct
where you want to make sure each sub-command has succeeded before going on to the next.

1.	 The first stage downloads the source tarball:
/usr/bin/wget ftp://ftp.openssl.org/source/openssl-0.9.8p.tar.gz

2.	 The second stage unpacks it:
/bin/tar xvzf openssl-0.9.8p.tar.gz

3.	 The third stage changes working directory to the source tree:
cd openssl-0.9.8p

4.	 The fourth stage runs the configure script (this is usually where you will need to
specify any options or customizations):
./Configure linux-generic32

5.	 The final stage builds and installs the software:
make install

6.	 So that this lengthy process isn't run every time Puppet runs, we specify a file that the
build creates:
creates => "/usr/local/ssl/bin/openssl",

If you need to force a rebuild for whatever reason, remove this file.

7.	 Things don't always compile first time. In case of problems, we specify the logoutput
parameter which will show us what the build process is complaining about:
 logoutput => on_failure,

8.	 Finally, because the compilation may take a while, we set a zero timeout parameter
(Puppet times out exec commands after 5 minutes by default):
 timeout => 0,

Working with Files and Packages

132

There's more…
If you have to build quite a few packages from source, it may be worth converting the
preceding recipe into a define function, so that you can use more or less the same
code to build each package.

Comparing package versions
Package version numbers are odd things. They look like decimal numbers, but they're not —a
version number is often in the form 2.6.4, for example. If you need to compare one version
number with another, you can't do a straightforward string comparison: 2.6.4 would be
interpreted as greater than 2.6.12. A numeric comparison won't work because they're not
valid numbers.

Puppet's versioncmp function comes to the rescue. If you pass it two things that look like
version numbers, it will compare them and return a value indicating which is the greater:

versioncmp(A, B)

returns the following:

ff 0 if A and B are equal

ff Greater than 1 if A is higher than B

ff Less than 0 if A is less than B

How to do it…
1.	 Add the following to your manifest:

$app_version = "1.2.2"
$min_version = "1.2.10"

if versioncmp($app_version, $min_version) >= 0 {
 notify { "Version OK": }
} else {
 notify { "Upgrade needed": }
}

2.	 Run Puppet:
notice: Upgrade needed

3.	 Now change the value of $app_version:
$app_version = "1.2.14"

4.	 Run Puppet again:
notice: Version OK

Chapter 5

133

How it works…
We've specified that the minimum acceptable version ($min_version) is 1.2.10. So in
the preceding example, we want to compare it with an $app_version of 1.2.2. A simple
alphabetic comparison of these two strings (in Ruby, for example) would give the wrong result,
but versioncmp correctly determines that 1.2.2 is less than 1.2.10 and alerts us that we
need to upgrade.

In the second example, $app_version is now 1.2.14 which versioncmp correctly
recognizes as greater than $min_version and so we get the message Version OK.

6
Users and Virtual

Resources

"How good the design is doesn't matter near as much as whether the design is
getting better or worse. If it is getting better, day by day, I can live with it forever.
If it is getting worse, I will die." — Kent Beck

In this chapter, we will cover the following topics:

ff Using virtual resources

ff Managing users with virtual resources

ff Managing users' SSH access

ff Managing users' customization files

ff Efficiently distributing cron jobs

ff Running a command when a file is updated

ff Using host resources

ff Using multiple file sources

ff Distributing directory trees

ff Cleaning up old files

ff Using schedules with resources

ff Auditing resources

ff Temporarily disabling resources

ff Managing timezones

Users and Virtual Resources

136

Users can be a real pain. I don't mean the people, though doubtless that's sometimes true.
But keeping UNIX user accounts and file permissions in sync across a network of machines,
some of them running different operating systems, can be very challenging without some kind
of centralized configuration management.

Consider a situation where a new developer has joined the organization. He needs an account
on every machine along with sudo privileges and group memberships, and also needs his
SSH key authorized for a bunch of different accounts. The sysadmin who has to take care of
this manually, will be at the job all day. A sysadmin who uses Puppet will be done in minutes,
heading out for an early lunch.

In this chapter, we'll look at some handy patterns and techniques for managing users and
their associated resources. We'll also see how to schedule resources in Puppet, how to
spread cron jobs around the clock for efficiency, how to handle time zones and /etc/hosts
entries, and how to have Puppet collect audit data, so you know when someone's messing
with your machines.

Using virtual resources
What are virtual resources and why do we need them? Let's look at a typical situation, where
virtual resources might come in useful.

You are responsible for two applications, facesquare and twitstagram. Both are web
apps running on Apache. The definition for facesquare might look something like the
following:

class app::facesquare
{
 package { "apache2-mpm-worker": ensure => installed }

}

The definition for twitstagram might look like the following:

class app::twitstagram
{
 package { "apache2-mpm-worker": ensure => installed }

}

Chapter 6

137

All is well until you need to consolidate both apps onto a single server as follows:

node micawber
{
 include app::facesquare
 include app::twitstagram
}

Now Puppet will complain, because you tried to define two resources with the same name:
apache2-mpm-worker. The following error will be shown:

err: Could not retrieve catalog from remote server: Error 400 on SERVER:
Duplicate definition: Package[apache2-mpm-worker] is already defined in
file /etc/puppet/modules/app/manifests/facesquare.pp at line 2; cannot
redefine at /etc/puppet/modules/app/manifests/twitstagram.pp:2 on node
cookbook.bitfieldconsulting.com

You could remove the duplicate package definition from one of the classes, but then it would
fail if you tried to include the app class on another server that didn't already have Apache.

You can get round this problem by putting the Apache package in its own class and then using
include apache; Puppet doesn't mind you including the same class multiple times. But this
has the disadvantage that every potentially conflicting resource must have its own class.

Virtual resources to the rescue. A virtual resource is just like a normal resource, except that it
starts with an @ character, shown as follows:

@package { "apache2-mpm-worker": ensure => installed }

You can think of it as being like an 'FYI' resource: I'm just telling you about this resource, and
I don't actually want you to do anything with it yet. Puppet will read and remember virtual
resource definitions, but won't actually create the resource until you say so.

To create the resource, use the realize function as follows:

realize(Package["apache2-mpm-worker"])

You can call realize as many times as you want on the resource and it won't result in a
conflict. So, virtual resources are the way to go when several different classes all require the
same resource and they may need to co-exist on the same node.

How to do it…
1.	 Create a new module app:

mkdir -p /etc/puppet/modules/app/manifests

Users and Virtual Resources

138

2.	 Create the file /etc/puppet/modules/app/manifests/facesquare.pp with
the following contents:
class app::facesquare
{
 realize(Package["apache2-mpm-worker"])
}

3.	 Create the file /etc/puppet/modules/app/manifests/twitstagram.pp with
the following contents:
class app::twitstagram
{
 realize(Package["apache2-mpm-worker"])
}

4.	 Create the file /etc/puppet/modules/admin/manifests/virtual-
packages.pp with the following contents:
class admin::virtual-packages
{
 @package { "apache2-mpm-worker": ensure => installed }
}

5.	 Include the following on the node:
node cookbook
{
 include admin::virtual-packages
 include app::facesquare
 include app::twitstagram
}

6.	 Run Puppet.

How it works…
You define the package as a virtual resource in one place, the admin::virtual-packages
class. All nodes can include this class and you can put all your virtual packages in it. None of
them will actually be installed on a node, until you call realize:

class admin::virtual-packages
{
 @package { "apache2-mpm-worker": ensure => installed }
}

Chapter 6

139

Every class that needs the Apache package can call realize on the following virtual
resource:

class app::twitstagram
{
 realize(Package["apache2-mpm-worker"])
}

Puppet knows that because you made the resource virtual, you intended multiple references
to the same package, and didn't just accidentally create two resources with the same name.
So, it does the right thing.

There's more…
To realize virtual resources, you can also use the collection syntax:

Package <| title = "apache2-mpm-worker" |>

The advantage of this syntax is that you're not restricted to the resource name; you could also
use a tag, for example:

Package <| tag = "security" |>

Or, you can just specify all instances of the resource type, by leaving the query section blank
as follows:

Package <| |>

See also
Managing users with virtual resources in this chapter.

Managing users with virtual resources
Users are an excellent example of where virtual resources can come in handy. Consider the
following setup. You have three users: John, Graham, and Steven. To simplify administration of
a large number of machines, you have defined classes for two kinds of users: developers and
sysadmins. All machines need to include sysadmins, but only some machines need developer
access:

node server
{
 include user::sysadmins
}

Users and Virtual Resources

140

node webserver inherits server
{
 include user::developers
}

John is a sysadmin, and Steven is a developer, but Graham is both, so Graham needs to be
in both groups. This will cause a conflict on a web server as we end up with two definitions of
the user Graham.

To avoid this situation, it's common practice to make all users virtual, defined in a single
class user::virtual, which every machine includes, and then realizing the users where
they are needed.

How to do it…
1.	 Create a user module as follows:

mkdir -p /etc/puppet/modules/user/manifests

2.	 Create the file /etc/puppet/modules/user/manifests/virtual.pp with
the following contents:
class user::virtual
{
 @user { "john": }
 @user { "graham": }
 @user { "steven": }
}

3.	 Create the file /etc/puppet/modules/user/manifests/developers.pp
with the following contents:
class user::developers
{
 realize(User["graham"],
 User["steven"])
}

4.	 Create the file /etc/puppet/modules/user/manifests/sysadmins.pp with
the following contents:
class user::sysadmins
{
 realize(User["john"],
 User["graham"])
}

Chapter 6

141

5.	 Add the following to a node:
include user::virtual
include user::sysadmins
include user::developers

6.	 Run Puppet:

puppet agent --test

info: Retrieving plugin

info: Caching catalog for cookbook.bitfieldconsulting.com

info: Applying configuration version '1305554239'

notice: /Stage[main]/User::Virtual/User[john]/ensure: created

notice: /Stage[main]/User::Virtual/User[steven]/ensure: created

notice: /Stage[main]/User::Virtual/User[graham]/ensure: created

notice: Finished catalog run in 2.36 seconds

How it works…
Every node should include the user::virtual class, as part of your basic housekeeping
configuration, which is inherited by all servers. This class will define all users in your
organization or site. This should also include any users who exist only to run applications or
services (such as, apache or git, for example).

You can then organise your users into groups (not in the sense of UNIX groups, but perhaps as
different teams or job roles) such as developers and sysadmins. The class for a group will
realize whichever users are included in it, shown as follows:

class user::sysadmins
{
 realize(User["john"],
 User["graham"])
}

You can then include these groups wherever they are needed, without worrying about conflicts
caused by multiple definitions of the same user.

See also
ff Using virtual resources in this chapter.

ff Managing users' customization files in this chapter.

Users and Virtual Resources

142

Managing users' SSH access
The only secure server is one that's turned off. Nonetheless, a good approach to access
control for servers is to use named user accounts with passphrase-protected SSH keys, rather
than having users share an account with a widely-known password. Puppet makes this easy to
manage, thanks to the built-in ssh_authorized_key type.

To combine this with virtual users, as described in the previous section, you can create a
define, which includes both the user and the ssh_authorized_key. This will also be
useful for adding customization files and other per-user resources.

How to do it…
1.	 Change the user::virtual class that you created in the section on managing

users with virtual resources, to the following:
class user::virtual
{
 define ssh_user($key)
 {
 user { $name:
 ensure => present,
 managehome => true,
 }

 ssh_authorized_key { "${name}_key":
 key => $key,
 type => "ssh-rsa",
 user => $name,
 }
 }

 @ssh_user { "phil":
 key => "AAAAB3NzaC1yc2EAAAABIwAAAIEA3ATqENg+GW
 ACa2BzeqTdGnJhNoBer8x6pfWkzNzeM8Zx7/2Tf2pl7kHdbsiT
 XEUawqzXZQtZzt/j3Oya+PZjcRpWNRzprSmd2UxEEPTqDw9LqY5S2B8og/
 NyzWaIYPsKoatcgC7VgYHplcTbzEhGu8BsoEVBGYu3IRy5RkAcZik=",
 }
}

2.	 Include the following on a node:
realize(User::Virtual::Ssh_user["phil"])

Chapter 6

143

3.	 Run Puppet:

puppet agent --test

info: Retrieving plugin

info: Caching catalog for cookbook.bitfieldconsulting.com

info: Applying configuration version '1305561740'

notice: /Stage[main]/User::Virtual/User::Virtual::Ssh_user[phil]/
User[phil]/ensure: created

notice: /Stage[main]/User::Virtual/User::Virtual::Ssh_user[phil]/
Ssh_authorized_key[phil_key]/ensure: created

notice: Finished catalog run in 1.04 seconds

How it works…
We've created a new define called ssh_user, which includes both the user resource itself,
and the associated ssh_authorized_key, shown as follows:

define ssh_user($key)
{
 user { $name:
 ensure => present,
 managehome => true,
 }

 ssh_authorized_key { "${name}_key":
 key => $key,
 type => "ssh-rsa",
 user => $name,
 }
}

Then we create a virtual instance of ssh_user for the user phil:

@ssh_user { "phil":
 key => "AAAAB3NzaC1yc2EAAAABIwAAAIEA3ATqENg+GWACa
 2BzeqTdGnJhNoBer8x6pfWkzNzeM8Zx7/2Tf2pl7kHdbsiTXEUawq
 zXZQtZzt/j3Oya+PZjcRpWNRzprSmd2UxEEPTqDw9LqY5S2B8og/
 NyzWaIYPsKoatcgC7VgYHplcTbzEhGu8BsoEVBGYu3IRy5RkAcZik=",
}

Recall that because the resource is virtual, Puppet will take note of it but won't actually create
anything until realize is called.

Finally, we added the following to the node:

realize(User::Virtual::Ssh_user["phil"])

This actually creates the user and the authorized_keys file containing the user's public key.

Users and Virtual Resources

144

There's more…
To use this idea with the organization of users into group classes that we saw in the previous
section, modify the classes like the following:

class user::sysadmins
{
 search User::Virtual

 realize(Ssh_user["john"],
 Ssh_user["graham"])
}

The search, User::Virtual is just to save on clutter; it allows you to refer to Ssh_user
directly without prefixing it with User::Virtual:: every time.

You may get an error like the following:

err: /Stage[main]/User::Virtual/User::Virtual::Ssh_user[graham]/Ssh_
authorized_key[graham_key]: Could not evaluate: No such file or directory
- /home/graham/.ssh

It may be because you previously created the graham user without having Puppet manage the
home directory. In this situation, Puppet will not automatically create the .ssh directory for the
authorized_keys file. Run the following command:

userdel graham

To fix the problem, run Puppet again.

Managing users' customization files
Users, like cats, often feel the need to mark their territory. Unlike cats, users tend to
customize their shell environments, terminal colors, aliases, and so on. This is usually
achieved by a number of dotfiles in their home directory: for example, .bash_profile.

You can add this to your Puppet-based user management by modifying the
user::virtual::ssh_user class, so that it can optionally include any dotfiles that are
present in the Puppet repository.

How to do it…
1.	 Modify the user::virtual class as follows:

class user::virtual
{
 define user_dotfile($username)

Chapter 6

145

 {
 file { "/home/${username}/.${name}":
 source => "puppet:///modules/user/${username}-
 ${name}",
 owner => $username,
 group => $username,
 }
}

 define ssh_user($key, $dotfile = false)
 {
 user { $name:
 ensure => present,
 managehome => true,
 }

 ssh_authorized_key { "${name}_key":
 key => $key,
 type => "ssh-rsa",
 user => $name,
 }

 if $dotfile {
 user_dotfile { $dotfile:
 username => $name,
 }
 }
 }

 @ssh_user { "john":
 key => "AAAAB3NzaC1yc2EAAAABIwAAAIEA3ATqENg
 +GWACa2BzeqTdGnJhNoBer8x6pfWkzNzeM8Zx7/2Tf2pl7kHdbsi
 TXEUawqzXZQtZzt/j3Oya+PZjcRpWNRzprSmd2UxEEPTqDw9LqY5S2B8
 og/NyzWaIYPsKoatcgC7VgYHplcTbzEhGu8BsoEVBGYu3IRy5RkAcZik=",
 dotfile => ["bashrc", "bash_profile"],
 }
}

2.	 Create the file /etc/puppet/modules/user/files/john-bashrc with the
following contents:
export PATH=$PATH:/var/lib/gems/1.8/bin

3.	 Create the file /etc/puppet/modules/user/files/john-bash_profile
with the following contents:
. ~/.bashrc

4.	 Run Puppet.

Users and Virtual Resources

146

How it works…
We've added a new define, user_dotfile. This will be called once for each dotfile
that the user wants to have. In the example, john has two dotfiles: .bashrc and .bash_
profile. These are declared as follows:

@ssh_user { "john":
 key => ...
 dotfile => ["bashrc", "bash_profile"],
}

You can supply either a single dotfile, or a list of them in array form, as shown previously.

For each dotfile, user_dotfile will look for a corresponding source file in the modules/
user/files directory. For example, with the bashrc dotfile, Puppet will look for the
following:

modules/user/files/john-bashrc

This will be copied to the node as the following:

/home/john/.bashrc

See also
Managing users with virtual resources in this chapter.

Efficiently distributing cron jobs
When you have many servers executing the same cron job, it's usually a good idea not to run
them all at the same time. If all the jobs access a common server, it may put too much load
on that server, and even if they don't, all the servers will be busy at the same time, which may
affect their capacity to provide other services.

Puppet's inline_template function allows us to use some Ruby logic to set different
runtimes for the job, depending on the hostname.

How to do it…
1.	 Add the following to a node:

define cron_random($command, $hour)
{
 cron { $name:
 command => $command,

Chapter 6

147

 minute => inline_template("<%= (hostname+name).hash.abs %
 60 %>"),
 hour => $hour,
 ensure => "present",
 }
}

cron_random { "hello-world":
 command => "/bin/echo 'Hello world'",
 hour => 2,
}

cron_random { "hello-world-2":
 command => "/bin/echo 'Hello world'",
 hour => 1,
}

2.	 Run Puppet:
puppet agent --test

info: Retrieving plugin

info: Caching catalog for cookbook.bitfieldconsulting.com

info: Applying configuration version '1305713506'

notice: /Stage[main]//Node[cookbook]/Cron_random[hello-world]/
Cron[hello-world]/ensure: created

notice: /Stage[main]//Node[cookbook]/Cron_random[hello-world-2]/
Cron[hello-world-2]/ensure: created

notice: Finished catalog run in 1.07 seconds

3.	 Check the crontab to see how the jobs have been configured:

crontab -l

HEADER: This file was autogenerated at Fri Jul 29 10:58:45 +0000
2011 by puppet.

HEADER: While it can still be managed manually, it is definitely
not recommended.

HEADER: Note particularly that the comments starting with
'Puppet Name' should

HEADER: not be deleted, as doing so could cause duplicate cron
jobs.

Puppet Name: hello-world

25 2 * * * /bin/echo 'Hello world'

Puppet Name: hello-world-2

49 1 * * * /bin/echo 'Hello world'

Users and Virtual Resources

148

How it works…
We want to choose a 'random' minute for each cron job; that is, not genuinely random (or it
would change every time Puppet runs), but more or less guaranteed to be different for each
cron job on each host.

We can do this by using Ruby's hash method, which computes a numerical value from any
object, in this case a string. The value will be the same each time, so although the value
looks random, it will not change when Puppet runs again.

hash will generate a large integer, and we want values between 0 and 59, so we use the Ruby
% (modulo) operator to restrict the result to this range. Although there are only 60 possible
values, the hash function is designed to produce as uniform an output as possible, so there
should be very few collisions and the minute values should be well-distributed.

We want the value to be different on different machines, so we use the hostname in
computing the hash value. However, we also want the value to be different for different jobs
on the same machine, so we combine the hostname with the name variable, which will be the
name of the cron job (hello-world, for example).

There's more…
In this example, we only randomized the minute of the cron job, and supplied the hour as
part of the definition. If you sometimes need to specify the day of the week as well, you could
add it as an optional parameter for cron_random with a default value, shown as follows:

define cron_random($command, $hour, $weekday = "*") {

If you also wanted to randomize the hour (for example, for jobs that could run at any time
of the day and need to be distributed across all 24 hours evenly) you could modify cron_
random as follows:

hour => inline_template("<%= (hostname+name).hash.abs % 24 %>"),

See also
Running Puppet from cron in Chapter 1.

Running a command when a file is updated
It's a very common pattern to have Puppet take some action whenever a particular file is
updated. For example, in the rsync config snippet example, each snippet file called an exec
to update the main rsyncd.conf file when it changed.

Chapter 6

149

An exec resource will normally be run every time Puppet runs, unless you specify one of the
following parameters:

ff creates

ff onlyif

ff unless

ff refreshonly => true

The refreshonly parameter means that the exec should only be run if it receives a
notify from another resource (such as a file, for example).

Getting ready…
Install the nginx package (actually, we just want the stock config file, but this is the easiest
way to get it):

apt-get install nginx

How to do it…
1.	 Create a new module nginx with the usual directory structure as follows:

mkdir /etc/puppet/modules/nginx

mkdir /etc/puppet/modules/nginx/files

mkdir /etc/puppet/modules/nginx/manifests

2.	 Create the file /etc/puppet/modules/nginx/manifests/nginx.pp with the
following contents:
class nginx {
 package { "nginx": ensure => installed }

 service { "nginx":
 enable => true,
 ensure => running,
 }

 exec { "reload nginx":
 command => "/usr/sbin/service nginx reload",
 require => Package["nginx"],
 refreshonly => true,
 }

 file { "/etc/nginx/nginx.conf":
 source => "puppet:///modules/nginx/nginx.conf",
 notify => Exec["reload nginx"],
 require => Package["nginx"],
 }
}

Users and Virtual Resources

150

3.	 Copy the nginx.conf file into the new module:
cp /etc/nginx/nginx.conf /etc/puppet/modules/nginx/files

4.	 Add the following to your manifest:
include nginx

5.	 Make a test change to Puppet's copy of the nginx.conf file:
echo \# >>/etc/puppet/modules/nginx/files/nginx.conf

6.	 Run Puppet:

puppet agent --test

info: Retrieving plugin

info: Caching catalog for cookbook.bitfieldconsulting.com

info: Applying configuration version '1303745502'

--- /etc/nginx/nginx.conf 2010-02-15 00:16:47.000000000 -0700

+++ /tmp/puppet-file20110425-31239-158xcst-0 2011-04-25
09:39:49.586322042 -0600

@@ -48,3 +48,4 @@

 # proxy on;

 # }

 # }

+#

info: FileBucket adding /etc/nginx/nginx.conf as {md5}7bf139588b5e
cd5956f986c9c1442d44

info: /Stage[main]/Nginx/File[/etc/nginx/nginx.conf]:
Filebucketed /etc/nginx/nginx.conf to puppet with sum
7bf139588b5ecd5956f986c9c1442d44

notice: /Stage[main]/Nginx/File[/etc/nginx/nginx.conf]/content:
content changed '{md5}7bf139588b5ecd5956f986c9c1442d44' to '{md5}
d28d08925174c3f6917a78797c4cd3cc'

info: /Stage[main]/Nginx/File[/etc/nginx/nginx.conf]: Scheduling
refresh of Exec[reload nginx]

notice: /Stage[main]/Nginx/Exec[reload nginx]: Triggered 'refresh'
from 1 events

notice: Finished catalog run in 1.69 seconds

How it works…
With most services, you'd simply define a service resource, which gets a notify from the
config file. This causes Puppet to restart the service, so that it can pick up the changes.

Chapter 6

151

However, nginx sometimes doesn't restart properly, especially when restarted by Puppet, and
so I cooked up this remedy for one site to have Puppet run /etc/init.d/nginx reload
instead of restarting it. Here's how it works.

The exec resource has the refreshonly parameter set to true as follows:

exec { "reload nginx":
 command => "/usr/sbin/service nginx reload",
 require => Package["nginx"],
 refreshonly => true,
 }

So, it will only run if it receives a notify.

The config file resource supplies the necessary notify if it's changed:

file { "/etc/nginx/nginx.conf":
 source => "puppet:///modules/nginx/nginx.conf",
 notify => Exec["reload nginx"],
 }

Whenever Puppet needs to update this file, it will also run the exec, which will call the
following command to pick up the changes.:

/usr/sbin/service nginx reload

If a service supports the reload command, this will send the daemon a signal to re-read its
config files without interrupting service.

In fact, in this example, it would be better to define a new restart command for the nginx
service, such as the following:

service { "nginx":
 restart => "/etc/init.d/nginx reload",
}

But I wanted to share with you some real code that I wrote which demonstrates the notify
-> Exec technique, and at the time either I didn't know about restart or it didn't exist yet.
As a general pattern, though, you'll find it useful for any situation, where an action needs to be
taken when a file is updated.

There's more…
You can use a similar pattern anywhere some action needs to be taken every time a resource
is updated. Possible uses might include the following:

ff Triggering service reloads

ff Running a syntax check before restarting a service

Users and Virtual Resources

152

ff Concatenating config snippets
ff Running tests
ff Chaining execs

If you have several commands that all need to be run when a single file is updated, it might be
easier to have all the commands subscribe to the file, rather than have the file notify the
commands. The effect is the same.

Using host resources

"I am not a number." — Number Six, "The Prisoner"

It's a common practice to move machines around, especially on cloud infrastructure, so the IP
of a particular machine may change quite often. Because of this, it's obviously a bad idea to
hard-code IP addresses into your configuration. Where one machine needs to access another,
for example, an app server accessing a database server: it's better to use a hostname than an
IP address.

But how to map names to IP addresses? This is often done with DNS, but small organizations
may not have a DNS server, and large organizations may make it so time-consuming and
bureaucratic to implement DNS changes that no one bothers. Also, DNS information can
propagate to machines at different times, so to ensure quick and consistent address updates,
one approach is to use local /etc/hosts entries, controlled by Puppet.

How to do it…
1.	 Add the following to your manifest:

host { "www.bitfieldconsulting.com":
 ip => "109.74.195.241",
 target => "/etc/hosts",
 ensure => present,
}

2.	 Run Puppet:
puppet agent --test

info: Retrieving plugin

info: Caching catalog for cookbook.bitfieldconsulting.com

info: Applying configuration version '1305716418'

notice: /Stage[main]//Node[cookbook]/Host[www.bitfieldconsulting.
com]/ensure: created

info: FileBucket adding /etc/hosts as {md5}977bf5811de978b7f041301
9e77b4abe

notice: Finished catalog run in 0.21 seconds

Chapter 6

153

How it works...
Puppet will check the target file to see if the host entry already exists, and if not, add it, or if it
exists with a different address, Puppet will update it.

Although there are other possible targets than /etc/hosts, this is the default, and the only
one you're likely to need. I think it's a good practice to specify it explicitly even so, as relying on
default behavior has a tendency to make the code fragile.

There's more...
Organizing your host resources into classes can be helpful. For example, you could put the
host resources for all your DB servers into one class called admin::dbhosts, which is
included by all web servers.

When machines may need to be defined in multiple classes (for example, a database server
might also be a repository server), virtual resources can solve this problem. For example, you
could define all your hosts as virtual in a single class as follows:

class admin::allhosts
{
 @host { "db1.bitfieldconsulting.com":}
}

Then realize the hosts that you need in the various classes:

class admin::dbhosts
{
 realize(Host["db1.bitfieldconsulting.com"])
}

class admin::repohosts
{
 realize(Host["db1.bitfieldconsulting.com"])
}

Using multiple file sources
A neat feature of Puppet's file resource is that you can specify multiple sources for the file.
Puppet will look for each of them in order. If the first isn't found, it moves on to the next, and
so on. You can use this to specify a default substitute if the particular file isn't present, or even
a series of increasingly generic substitutes.

Users and Virtual Resources

154

How to do it…
1.	 Add the following class to your manifest:

class mysql::app-config($app)
{
 file { "/etc/my.cnf":
 source => ["puppet:///modules/admin/${app}.my.cnf",
 "puppet:///modules/admin/generic.my.cnf",],
 }
}

2.	 Create the file /etc/puppet/modules/admin/files/minutespace.my.cnf
with the following contents:
MinuteSpace config file

3.	 Create the file /etc/puppet/modules/admin/files/generic.my.cnf with the
following contents:
Generic config file

4.	 Add the following to a node:
class { "mysql::app-config": app => "minutespace" }

5.	 Run Puppet:
puppet agent --test

info: Retrieving plugin

info: Caching catalog for cookbook.bitfieldconsulting.com

info: Applying configuration version '1305897071'

notice: /Stage[main]/Mysql::App-config/File[/etc/my.cnf]/ensure:
defined content as '{md5}24f04b960f4d33c70449fbc4d9f708b6'

notice: Finished catalog run in 0.35 seconds

6.	 Check that Puppet has deployed the app-specific config file:
cat /etc/my.cnf

MinuteSpace config file

7.	 Now change the node definition to:
class { "mysql::app-config": app => "shreddit" }

8.	 Run Puppet again:

puppet agent --test

info: Retrieving plugin

info: Caching catalog for cookbook.bitfieldconsulting.com

Chapter 6

155

info: Applying configuration version '1305897864'

--- /etc/my.cnf 2011-05-20 13:17:56.006239489 +0000

+++ /tmp/puppet-file20110520-15575-1icobgs-0 2011-05-20
13:24:25.030296062 +0000

@@ -1 +1 @@

-# MinuteSpace config file

+# Generic config file

info: FileBucket adding /etc/my.cnf as {md5}24f04b960f4d33c70449fb
c4d9f708b6

info: /Stage[main]/Mysql::App-config/File[/etc/
my.cnf]: Filebucketed /etc/my.cnf to puppet with sum
24f04b960f4d33c70449fbc4d9f708b6

notice: /Stage[main]/Mysql::App-config/File[/etc/my.cnf]/content:
content changed '{md5}24f04b960f4d33c70449fbc4d9f708b6' to '{md5}
b3a6e744c3ab78dfb20e46ff55f6c33c'

notice: Finished catalog run in 0.93 seconds

How it works…
We've defined the /etc/my.cnf file as having two sources that are as follows:

file { "/etc/my.cnf":
 source => ["puppet:///modules/admin/${app}.my.cnf",
 "puppet:///modules/admin/generic.my.cnf",],
 }

The value of $app will be passed in by anyone using the class. In the first example, we passed
in a value of minutespace:

class { "mysql::app-config": app => "minutespace" }

Puppet will look first of all for modules/admin/files/minutespace.my.cnf. This file
exists, so it will be used. So far, so normal.

Then we change the value of app to shreddit. Puppet now looks for modules/admin/
files/shreddit.my.cnf. This doesn't exist, so Puppet tries the next listed source:
modules/admin/files/generic.my.cnf. This does exist, so it will be deployed.

Users and Virtual Resources

156

There's more...
You can use this trick anywhere you have a file resource. For example, some nodes might
need machine-specific config, but not others, so you could do something like the following:

file { "/etc/stuff.cfg":
 source => ["puppet:///modules/stuff/${hostname}.cfg",
 "puppet:///modules/stuff/generic.cfg"],
 }

Then you put the normal configuration in generic.cfg. If machine cartman needs a special
config, just put it in the file cartman.cfg. This will be used in preference to the generic
file, because it is listed first in the array of sources.

See also
Passing parameters to classes in Chapter 4.

Distributing directory trees

"To understand recursion, you must first understand recursion." — Saying

When you find yourself deploying several files with Puppet, all to the same directory, it might
be worth considering a recursive file resource instead. If you set the recurse parameter
on a directory, Puppet will copy the directory to the node along with its contents and all its
subdirectories, shown as follows:

file { "/usr/lib/nagios/plugins/custom":
 source => "puppet:///modules/nagios/plugins",
 require => Package["nagios-plugins"],
 recurse => true,
 }

How to do it…
1.	 Create a suitable directory tree in the Puppet repository as follows:

mkdir /etc/puppet/modules/admin/files/tree

mkdir /etc/puppet/modules/admin/files/tree/a

mkdir /etc/puppet/modules/admin/files/tree/b

mkdir /etc/puppet/modules/admin/files/tree/c

mkdir /etc/puppet/modules/admin/files/tree/a/1

Chapter 6

157

2.	 Add the following to your manifest:
file { "/tmp/tree":
 source => "puppet:///modules/admin/tree",
 recurse => true,
 }

3.	 Run Puppet:

puppet agent --test

info: Retrieving plugin

info: Caching catalog for cookbook.bitfieldconsulting.com

info: Applying configuration version '1304768523'

notice: /Stage[main]//Node[cookbook]/File[/tmp/tree]/ensure:
created

notice: /File[/tmp/tree/a]/ensure: created

notice: /File[/tmp/tree/a/1]/ensure: created

notice: /File[/tmp/tree/b]/ensure: created

notice: /File[/tmp/tree/c]/ensure: created

notice: Finished catalog run in 1.25 seconds

How it works…
If a file resource has the recurse parameter set on it, and if it is a directory, then Puppet
will deploy not only the directory itself, but all its contents (including subdirectories and their
contents). This is a great way to put a whole tree of files onto a node, or to quickly create a
large number of paths using a single resource.

There's more…
Sometimes, you want to deploy files to an existing directory, but remove any files that aren't
managed by Puppet. For example, in Ubuntu's /etc/apt/sources.list.d directory, you
might want to make sure that there are no files present that don't come from Puppet.

The purge parameter will do this for you. Define the directory as a resource in Puppet:

file { "/etc/apt/sources.list.d":
 ensure => directory,
 recurse => true,
 purge => true,
 }

Users and Virtual Resources

158

The combination of recurse and purge will remove all files and subdirectories in /etc/
apt/sources.list.d that are not deployed by Puppet. You can then deploy your own files
to that location using a separate resource as follows:

file { "/etc/apt/sources.list.d/bitfield.list":
 content => "deb http://packages.bitfieldconsulting.com/ lucid
 main\n",
 }

If there are subdirectories, which contain files you don't want to purge, just define the
subdirectory as a Puppet resource, and it will be left alone:

file { "/etc/exim4/conf.d/acl":
 ensure => directory,
 }

Be aware that, at least in current implementations of Puppet, recursive file
copies can be quite slow and place a heavy memory load on the server. If the
data doesn't change very often, it might be better to deploy a tarball instead.

Cleaning up old files
We all have to clean house once in a while. Puppet's tidy resource will help you clean
up old or out-of-date files, reducing disk usage. For example, if you have Puppet reporting
enabled as described in the section on generating reports, you might want to regularly
delete old report files.

How to do it…
1.	 Add the following to your manifest:

tidy { "/var/lib/puppet/reports":
 age => "1w",
 recurse => true,
 }

2.	 Run Puppet:

puppet agent -–test

info: Retrieving plugin info: Caching catalog for cookbook.
bitfieldconsulting.com

notice: /Stage[main]//Node[cookbook]/Tidy[/var/lib/puppet/
reports]: Tidying File[/var/lib/puppet/reports/cookbook.
bitfieldconsulting.com/201102241546.yaml]

Chapter 6

159

notice: /Stage[main]//Node[cookbook]/Tidy[/var/lib/puppet/
reports]: Tidying File[/var/lib/puppet/reports/cookbook.
bitfieldconsulting.com/20110214727.yaml]

…

info: Applying configuration version '1306149187'

notice: /File[/var/lib/puppet/reports/cookbook.bitfieldconsulting.
com/201102241546.yaml]/ensure: removed

notice: /File[/var/lib/puppet/reports/cookbook.bitfieldconsulting.
com/201102141727.yaml]/ensure: removed …

notice: Finished catalog run in 1.48 seconds

How it works…
Puppet searches the specified path for any files matching the age parameter: in this case, 1w
(one week). It also searches subdirectories (recurse => true).

Any files matching your criteria will be deleted.

There's more…
You can specify file ages in seconds, minutes, hours, days, or weeks, by using a single
character to specify the time unit, like the following:

60s
180m
24h
30d
4w

You can specify that files greater than a given size should be removed, such as the following:

size => "100m",

This removes files of 100 megabytes and over. For kilobytes, use k, and for bytes, use b.

Please note that if you specify both age and size parameters, they
are treated as independent criteria. For example, if you specify the
following files, then Puppet will remove all files older than one day, or
over 512KB in size.

age => "1d",
size => "512k",

Users and Virtual Resources

160

Using schedules with resources
Using a schedule resource, you can control when other resources get applied. For example,
the built-in daily schedule does what you'd expect: if you specify a resource, such as the
following, then it'll be applied once a day:

exec { "/usr/bin/apt-get update":
 schedule => daily,
 }

The slightly tricky thing about schedule is that it doesn't guarantee that the resource will be
applied once a day. It's just a limit: the resource won't be applied more than once a day. When
and whether the resource is applied at all will depend on when and whether Puppet runs.

That being so, schedule is best used to restrict other resources, for example, you might
want to make sure that apt-get update hasn't run more than once an hour, or that a
maintenance job doesn't run during daytime production hours.

For this, you will need to create your own schedule resources.

How to do it…
1.	 Add the following to your manifest:

schedule { "not-in-office-hours":
 period => daily,
 range => ["17:00-23:59", "00:00-09:00"],
 repeat => 1,
 }

exec { "/bin/echo Doing maintenance!":
 schedule => "not-in-office-hours",
 }

2.	 Run Puppet.

How it works…
We've created a schedule called not-in-office-hours, which specifies the repetition
period as daily, and the allowable time range as after 5 p.m., or before 9 a.m. as follows:

period => daily,
range => ["17:00-23:59", "00:00-09:00"],

Chapter 6

161

We've also said that the maximum number of times a resource can be applied in one period
is once:

 repeat => 1,

Now, we apply that schedule to an exec resource as follows:

exec { "/bin/echo Doing maintenance!":
 schedule => "not-in-office-hours",
 }

Without the schedule parameter, this resource would run every time Puppet runs. Now,
Puppet will check the not-in-office-hours schedule to see the following:

ff Whether the time is in the permitted range

ff Whether the resource has been run the maximum permitted number of times in this
period

For example, let's consider what happens if Puppet runs every hour, on the following hours:

ff 4 p.m.: It's outside the permitted time range, so Puppet will do nothing.

ff 5 p.m.: It's inside the permitted time range, and the resource hasn't been run yet in
this period, so Puppet will apply the resource.

ff 6 p.m.: It's inside the permitted time range, but the resource has already been run
once, so it has reached its maximum repeat count. Puppet will do nothing.

And so on until the next day.

There's more…
You can increase the repeat parameter if you want to, for example, run a job no more than 6
times an hour:

period => hourly,
repeat => 6,

Remember that this won't guarantee that the job will run 6 times an hour. It just sets an upper
limit. No matter how often Puppet runs or anything else happens, the job won't run if it has
already run 6 times this hour. If Puppet only runs once a day, the job will just be run once. So,
schedule is best used for making sure that things don't happen at certain times (or don't
exceed a given frequency).

Users and Virtual Resources

162

Auditing resources
Not every problem has a technical answer. I once had to diagnose a server that was failing to
respond to `ping`, SSH, or console connections. I wasn't sure whether it was a hardware or
a network failure.

The mystery was solved when I called the site where the machine was located. They informed
me that two unidentified men had arrived earlier, gone straight to the server room, unplugged
the machine, and simply walked out of the building with it. We later found that there had been
a spate of computer thefts in the area with the same M.O.

The message here is that it's good to know who's doing what to your servers.

Dry-run mode, using the --noop switch, is a simple way to audit any changes to a machine
under Puppet's control. However, Puppet also has a dedicated audit feature, which can report
changes to resources or specific attributes.

How to do it…
Define a resource with the audit metaparameter as follows:

file { "/etc/passwd":
 audit => [owner, mode],
 }

How it works…
The audit metaparameter (a metaparameter is a parameter which can be applied to any
resource, not just to specific types) tells Puppet that you want to record and monitor certain
things about the resource. The value can be a list of the parameters you want to audit.

In this case, when Puppet runs, it will now record the owner and mode of the /etc/passwd
file. If either of these change, for example, if you run:

chmod 666 /etc/passwd

Puppet will pick up this change and log it on the next run:

notice: /Stage[main]//Node[cookbook]/File[/etc/passwd]/mode: audit
change: previously recorded value 644 has been changed to 666

Chapter 6

163

There's more…
This feature is very useful for auditing large networks for any changes to the machines, either
malicious or accidental. You can use the tagmail reports feature to automatically send
audit change notices by e-mail. It's also very handy for keeping an eye on things that aren't
managed by Puppet, for example application code on production servers. You can read more
about Puppet's auditing capability here: http://www.puppetlabs.com/blog/all-
about-auditing-with-puppet/.

If you just want to audit everything about a resource, use the following:

file { "/etc/passwd":
 audit => all,
 }

See also
ff Dry-running your Puppet manifests in Chapter 2

ff E-mailing log messages containing specific tags in Chapter 2

Temporarily disabling resources
Sometimes, you want to disable a resource for the time being, so that it doesn't interfere with
other work. For example, you might want to tweak a configuration file on the server, until you
have the exact settings you want, before checking it into Puppet. You don't want Puppet to
overwrite it with an old version in the meantime, so you can set the noop metaparameter on
the resource as follows:

noop => true,

How to do it…
1.	 Add the following to your manifest:

file { "/tmp/test.cfg":
 content => "Hello, world!\n",
 noop => true,
 }

2.	 Run Puppet:
puppet agent --test

info: Retrieving plugin

info: Caching catalog for cookbook.bitfieldconsulting.com

Users and Virtual Resources

164

info: Applying configuration version '1306159566'

notice: /Stage[main]//Node[cookbook]/File[/tmp/test.cfg]/ensure:
is absent, should be file (noop)

notice: Finished catalog run in 0.53 seconds

3.	 Now, remove the noop parameter:
file { "/tmp/test.cfg":
 content => "Hello, world!\n",
 }

4.	 Run Puppet again:

puppet agent --test

info: Retrieving plugin

info: Caching catalog for cookbook.bitfieldconsulting.com

info: Applying configuration version '1306159705'

notice: /Stage[main]//Node[cookbook]/File[/tmp/test.cfg]/ensure:
defined content as '{md5}746308829575e17c3331bbcb00c0898b'

notice: Finished catalog run in 0.52 seconds

How it works…
The first time we ran Puppet, the noop metaparameter was set to true, so for this particular
resource, it's as if you had run Puppet with the --noop flag. Puppet noted that the resource
would have been applied, but otherwise did nothing.

In the second case, with noop removed, the resource is applied as normal.

Managing timezones

"I try to take one day at a time, but sometimes several days attack at once."
— Ashleigh Brilliant

Sooner or later, you'll encounter a weird problem, which you'll eventually track down to servers
having different time zones. It's wise to avoid this kind of issue by making sure that all your
servers use the same time zone, whatever their geographical location (GMT is the logical
choice).

Unless a server is solar powered, I can't think of any reason for it to care about the time zone
it's in.

Chapter 6

165

How to do it…
1.	 Create the file /etc/puppet/modules/admin/manifests/gmt.pp with the

following contents:
class admin::gmt
{
 file { "/etc/localtime":
 ensure => link,
 target => "/usr/share/zoneinfo/GMT",
 }
}

2.	 Add the following to all nodes:
include admin::gmt

3.	 Run Puppet:

puppet agent --test

info: Retrieving plugin

info: Caching catalog for cookbook.bitfieldconsulting.com

info: Applying configuration version '1304955158'

info: FileBucket adding /etc/localtime as {md5}02b73b0cf0d96e2f75c
ae56b178bf58e

info: /Stage[main]/Admin::Gmt/File[/etc/localtime]: Filebucketed /
etc/localtime to puppet with sum 02b73b0cf0d96e2f75cae56b178bf58e

notice: /Stage[main]/Admin::Gmt/File[/etc/localtime]/ensure:
ensure changed 'file' to 'link'

notice: Finished catalog run in 1.94 seconds

There's more…
If you want to use a different timezone, choose the appropriate file in /usr/share/
zoneinfo: for example, US/Eastern.

7
Applications

"The best software in the world only sucks. The worst software is significantly worse
than that."—Luke Kanies

In this chapter we will cover the following topics:

ff Managing Apache servers

ff Creating Apache virtual hosts

ff Creating Nginx virtual hosts

ff Creating MySQL databases and users

ff Managing Drupal sites

ff Managing Rails applications

Without applications, a server is just a very expensive space heater. This chapter will present
some recipes for managing some specific applications with Puppet: MySQL, Apache, Nginx,
Rails, and Drupal. These are very popular applications, so they should be useful to you in
themselves. However, the patterns and techniques they use are applicable to almost any
software, so you can adapt them to your own purposes without much difficulty.

Managing Apache servers
Apache is a popular web server, except with those who have to configure it. Puppet can ease
the pain of managing Apache servers to a certain extent.

Applications

168

How to do it...
1.	 Create an Apache module, if you don't have one:

mkdir /etc/puppet/modules/apache

mkdir /etc/puppet/modules/apache/templates

mkdir /etc/puppet/modules/apache/manifests

2.	 Create the file /etc/puppet/modules/apache/manifests/init.pp with
the following contents:
class apache {
 package { "apache2-mpm-prefork": ensure => installed }

 service { "apache2":
 enable => true,
 ensure => running,
 require => Package["apache2-mpm-prefork"],
 }

 file { "/etc/apache2/logs":
 ensure => directory,
 require => Package["apache2-mpm-prefork"],
 }

 file { "/etc/apache2/conf.d/name-based-vhosts.conf":
 content => "NameVirtualHost *:80",
 require => Package["apache2-mpm-prefork"],
 notify => Service["apache2"],
 }
}

3.	 Add the following code to a node:
include apache

4.	 Run Puppet:
puppet agent --test

info: Retrieving plugin

info: Caching catalog for cookbook.bitfieldconsulting.com

info: Applying configuration version '1309189590'

notice: /Stage[main]/Apache/Package[apache2-mpm-prefork]/ensure:
ensure changed 'purged' to 'present'

notice: /Stage[main]/Apache/File[/etc/apache2/logs]/ensure:
created

Chapter 7

169

notice: /Stage[main]/Apache/File[/etc/apache2/conf.d/name-based-
vhosts.conf]/ensure: defined content as '{md5}78465aacbd01eb537b94
1b21ae0af8b8'

info: /Stage[main]/Apache/File[/etc/apache2/conf.d/name-based-
vhosts.conf]: Scheduling refresh of Service[apache2]

notice: Finished catalog run in 39.45 seconds

There's more...
In the next section, we'll look at how to create virtual host definitions for Apache. However, you
may find that you need special configuration options for the Apache server as a whole. You could
set these by deploying apache2.conf with Puppet, but it's neater to put a config snippet into /
etc/apache2/conf.d. For example, you could add the following to init.pp:

 define snippet() {
 file { "/etc/apache2/conf.d/${name}":
 source => "puppet:///modules/apache/${name}",
 notify => Service["apache2"],
 }
 }

and include the following code snippet on a node:

 apache::snippet { "site-specific.conf": }

Creating Apache virtual hosts
Virtual hosts are a great application for ERB templates, because they generally use similar
boilerplate code for every instance, with just one or two variables. Obviously, for certain sites
or applications you will need specific options in the virtual host definition, and this template
won't apply - but it should save you some trouble for simple sites.

How to do it…
1.	 Add this to /etc/puppet/modules/apache/manifests/init.pp:

 define site($sitedomain = "", $documentroot = "") {
 include apache

 if $sitedomain == "" {
 $vhost_domain = $name
 } else {
 $vhost_domain = $sitedomain
 }

Applications

170

 if $documentroot == "" {
 $vhost_root = "/var/www/${name}"
 } else {
 $vhost_root = $documentroot
 }

 file { "/etc/apache2/sites-available/${vhost_domain}.
 conf":
 content => template("apache/vhost.erb"),
 require => File["/etc/apache2/conf.d/name-based-
 vhosts.conf"],
 notify => Exec["enable-${vhost_domain}-vhost"],
 }

 exec { "enable-${vhost_domain}-vhost":
 command => "/usr/sbin/a2ensite ${vhost_domain}.
 conf",
 require => [File["/etc/apache2/sites-
 available/${vhost_domain}.conf"], Package["apache2-
mpm-prefork"]],
 refreshonly => true,
 notify => Service["apache2"],
 }
 }

2.	 Create the file /etc/puppet/modules/apache/templates/vhost.erb with the
following contents:
<VirtualHost *:80>
 ServerName <%= vhost_domain %>
 ServerAdmin admin@<%= vhost_domain %>
 DocumentRoot <%= vhost_root %>
 ErrorLog logs/<%= vhost_domain %>-error_log
 CustomLog logs/<%= vhost_domain %>-access_log common

 <Directory /var/www/<%= vhost_domain %>>
 Allow from all
 Options +Includes +Indexes +FollowSymLinks
 AllowOverride all
 </Directory>
</VirtualHost>

<VirtualHost *:80>
 ServerName www.<%= vhost_domain %>
 Redirect 301 / http://<%= vhost_domain %>/
</VirtualHost>

3.	 Add this to a node:
 apache::site { "keithlard.com": }

Chapter 7

171

4.	 Run Puppet:
puppet agent --test

info: Retrieving plugin

info: Caching catalog for cookbook.bitfieldconsulting.com

info: Applying configuration version '1309190720'

notice: /Stage[main]//Node[cookbook]/Apache::Site[keithlard.com]/
File[/etc/apache2/sites-available/keithlard.com.conf]/ensure:
defined content as '{md5}f2a558c02beeaed4beb7da250821b663'

info: /Stage[main]//Node[cookbook]/Apache::Site[keithlard.com]/
File[/etc/apache2/sites-available/keithlard.com.conf]: Scheduling
refresh of Exec[enable-keithlard.com-vhost]

notice: /Stage[main]//Node[cookbook]/Apache::Site[keithlard.com]/
Exec[enable-keithlard.com-vhost]: Triggered 'refresh' from 1
events

info: /Stage[main]//Node[cookbook]/Apache::Site[keithlard.
com]/Exec[enable-keithlard.com-vhost]: Scheduling refresh of
Service[apache2]

notice: /Stage[main]/Apache/Service[apache2]: Triggered 'refresh'
from 2 events

notice: Finished catalog run in 3.79 seconds

How it works…
The define function apache::site uses the vhost.erb template to generate an Apache
virtual host definition. By default, the domain of the site is assumed to be the same as the
name of the site instance, in this case, keithlard.com. So when Puppet sees the following:

apache::site { "keithlard.com": }

it will use keithlard.com as the site domain. If you want to specify a domain, add the
sitedomain parameter:

 apache::site { "networkr_production":
 sitedomain => "networkr.com",
 }

 apache::site { "networkr_staging":
 sitedomain => "staging.networkr.com",
 }

The beauty of the template system is that if you want to make a slight change to the
configuration for all sites (for example, changing the admin e-mail address) you can do
it once in the template and Puppet will update all virtual hosts accordingly.

Applications

172

Similarly, if you need to specify a different DocumentRoot for the virtual host than the
default (/var/www/${name}), just add a documentroot parameter as follows:

apache::site { "communitysafety.org":
 documentroot => "/var/apps/commsafe",
}

There's more…
In the preceding example, we only used one variable in the template, but you can have as
many as you like. These can also be facts such as:

ServerName <%= fqdn %>

or Ruby expressions:

ServerAdmin<%= emails["admin"] %>

or any Ruby code you want such as:

ServerAdmin <%= vhost_domain == 'coldcomfort.com' ? 'seth@coldcomfort.
com' : 'flora@poste.com' %>

See also
ff Using array iteration in templates in Chapter 5

 Creating Nginx virtual hosts
Nginx is a fast, lightweight web server that has replaced Apache in many contexts, especially
for running web applications. However, the configuration language is not a great improvement
in clarity over Apache's. Also, much of the documentation is only available in Russian,
which explains why you see so many copies around of "Understanding Russian for Nginx
Administrators".

Getting ready…
You'll need the Nginx module we used in the section, Running a command when a file is
updated. You'll also need to turn off the Apache server if you created one in the section on
Managing Apache servers in this chapter using the following command:

service apache2 stop

Chapter 7

173

How to do it…
1.	 Add this to /etc/puppet/modules/nginx/manifests/init.pp:

define site($sitedomain = "") {
 include nginx

 if $sitedomain == "" {
 $vhost_domain = $name
 } else {
 $vhost_domain = $sitedomain
 }

 file { "/etc/nginx/sites-available/${vhost_domain}.conf":
 content => template("nginx/vhost.erb"),
 require => Package["nginx"],
 }

 file { "/etc/nginx/sites-enabled/${vhost_domain}.conf":
 ensure => link,
 target => "/etc/nginx/sites-available/${vhost_domain}.
 conf",
 require => File["/etc/nginx/sites-available/${vhost_
 domain}.conf"],
 notify => Exec["reload nginx"],
 }
}

2.	 Create the file /etc/puppet/modules/nginx/templates/vhost.erb with the
following contents:
server {
 listen 80;
 server_name <%= vhost_domain %>;

 access_log /var/log/nginx/<%= vhost_domain %>-access_log;
 root /var/www/<%= vhost_domain %>;
}

3.	 Create the directory /var/www/bbqrecipes.com and place an index.html file in
it with a suitable message such as:
Welcome to the BBQ Recipes site!

4.	 Add the following to a node:
nginx::site { "bbqrecipes.com": }

Applications

174

5.	 Run Puppet:
puppet agent –test

info: Retrieving plugin info: Caching catalog for cookbook.
bitfieldconsulting.com info: Applying configuration version
'1309198476'

notice: /Stage[main]/Nginx/Package[nginx]/ensure: ensure changed
'purged' to 'present'

notice: /Stage[main]//Node[cookbook]/Nginx::Site[bbqrecipes.com]/
File[/etc/nginx/sites-available/bbqrecipes.com.conf]/ensure:
defined content as '{md5}fa92d2e7543b378e26827a063be34a31'

notice: /Stage[main]//Node[cookbook]/Nginx::Site[bbqrecipes.com]/
File[/etc/nginx/sites-enabled/bbqrecipes.com.conf]/ensure: created

info: /Stage[main]//Node[cookbook]/Nginx::Site[bbqrecipes.com]/
File[/etc/nginx/sites-enabled/bbqrecipes.com]: Scheduling refresh
of Exec[reload nginx]

notice: /Stage[main]/Nginx/Service[nginx]/ensure: ensure changed
'stopped' to 'running'

notice: /Stage[main]/Nginx/Exec[reload nginx]: Triggered 'refresh'
from 1 event

notice: Finished catalog run in 21.45 seconds

How it works…
Puppet inserts the site domain into the boilerplate code in the template file via the variable
vhost_domain. This is all Nginx needs to know in order to respond to requests on the
domain and serve files from the appropriate root directory in the file system.

There's more…
Unlike Apache, Nginx doesn't support dynamic modules (yet). This means if you want to add
support for some special feature that isn't included by default, you need to recompile Nginx
yourself. The right thing would be to build Nginx with the options that you want, and then
create a package from this that you can serve from your own repository (as described in the
section, Setting up an APT package repository).

However, some Puppet administrators skip this step and simply pull down and build the Nginx
source on the target server. To do this, use an exec with a similar pattern to that in the section
on 'Building packages automatically from source'. In an Agile development environment, which
often means one where the management changes its mind about the product every few days,
this kind of approach can be quicker and cheaper than continually repackaging.

Chapter 7

175

See also
ff Managing Rails applications in this chapter

Creating MySQL databases and users
MySQL is a very widely used database server, and it's fairly certain you'll need to install and
configure a MySQL server at some point. This recipe will show you how to do that, as well as
how to automatically create databases and users for applications.

Getting ready…
1.	 If you don't already have a MySQL module, let's create one:

mkdir /etc/puppet/modules/mysql

mkdir /etc/puppet/modules/manifests

mkdir /etc/puppet/modules/files

2.	 Create the file /etc/puppet/modules/mysql/manifests/server.pp with the
following contents:
class mysql::server {
 package { "mysql-server": ensure => installed }

 service { "mysql":
 enable => true,
 ensure => running,
 require => Package["mysql-server"],
 }

 file { "/etc/mysql/my.cnf":
 owner => "mysql", group => "mysql",
 source => "puppet:///mysql/my.cnf",
 notify => Service["mysql"],
 require => Package["mysql-server"],
 }

 exec { "set-mysql-password":
 unless => "/usr/bin/mysqladmin -uroot -p${mysql_password}
 status",
 command => "/usr/bin/mysqladmin -uroot password ${mysql_
 password}",
 require => Service["mysql"],
 }
}

Applications

176

3.	 Create the file /etc/puppet/modules/mysql/files/my.cnf with the following
contents:
[client]
port = 3306
socket = /var/run/mysqld/mysqld.sock

[mysqld_safe]
socket = /var/run/mysqld/mysqld.sock
nice = 0

[mysqld]
user = mysql
socket = /var/run/mysqld/mysqld.sock
port = 3306
datadir = /var/lib/mysql

!includedir /etc/mysql/conf.d/

4.	 Add this to /etc/puppet/manifests/site.pp:
$mysql_password = "secret"

5.	 Run Puppet:
puppet agent --test

info: Retrieving plugin

info: Caching catalog for cookbook.bitfieldconsulting.com

info: Applying configuration version '1309448283'

notice: /Stage[main]/Mysql::Server/Package[mysql-server]/ensure:
ensure changed 'purged' to 'present'

notice: /Stage[main]/Mysql::Server/File[/etc/mysql/my.cnf]/owner:
owner changed 'root' to 'mysql'

notice: /Stage[main]/Mysql::Server/File[/etc/mysql/my.cnf]/group:
group changed 'root' to 'mysql'

info: /Stage[main]/Mysql::Server/File[/etc/mysql/my.cnf]:
Scheduling refresh of Service[mysql]

info: /Stage[main]/Mysql::Server/File[/etc/mysql/my.cnf]:
Scheduling refresh of Service[mysql]

notice: /Stage[main]/Mysql::Server/Service[mysql]/enable: enable
changed 'false' to 'true'

notice: /Stage[main]/Mysql::Server/Service[mysql]: Triggered
'refresh' from 2 events

notice: Finished catalog run in 61.78 seconds

Chapter 7

177

How to do it…
1.	 Add the following to /etc/puppet/modules/mysql/manifests/server.pp:

define db($user, $password) {
 include mysql::server

 exec { "create-${name}-db":
 unless => "/usr/bin/mysql -u${user} -p${password}
 ${name}",
 command => "/usr/bin/mysql -uroot -p${mysql_password} -e
 \"create database ${name}; grant all on ${name}.* to
 ${user}@localhost identified by '$password'; flush
 privileges;\"",
 require => Service["mysql"],
 }
}

2.	 Add this to a node as follows:
mysql::server::db { "johnstest":
 user => "john",
 password => "johnstest",
}

3.	 Run Puppet:
puppet agent --test

info: Retrieving plugin

info: Caching catalog for cookbook.bitfieldconsulting.com

info: Applying configuration version '1309449259'

notice: /Stage[main]//Node[cookbook]/Mysql::Server::Db[johnstest]/
Exec[create-johnstest-db]/returns: executed successfully

notice: Finished catalog run in 1.61 seconds

4.	 Check that the database has been created with the correct user and permissions:
mysql -ujohn -pjohnstest johnstest

Reading table information for completion of table and column names

You can turn off this feature to get a quicker startup with -A

Welcome to the MySQL monitor. Commands end with ; or \g.

Your MySQL connection id is 36

Server version: 5.1.41-3ubuntu12.10 (Ubuntu)

Type 'help;' or '\h' for help. Type '\c' to clear the current
input statement.

mysql>

Applications

178

How it works…
The mysql::server class installs and configures MySQL with a root password that you can
set in your site.pp file. The define function, mysql::server::db allows us to create a
database with a given name, and an associated MySQL user that can access the database.
For example, a typical web application might have a database named after the application,
and a special username the application will use to log in to the database.

There's more…
To create more databases, just add more mysql::server::db instances:

mysql::server::db { ["test1", "test2", "test3"]:
 user => "john",
 password => "johnstest",
}

Managing Drupal sites
Drupal is a content management system that lets you build websites quickly by plugging
together canned modules, and makes it relatively easy for users to create and edit their own
content. It's particularly suited to management with Puppet because there is a powerful
command-line tool, drush, which you can use to install and manage Drupal sites.

If we combine the automation power of drush with the recipes that we already created for
MySQL databases and Apache virtual hosts, we can build a recipe that installs everything
necessary for a Drupal site with a single resource.

Getting ready…
1.	 Create a new drupal module as follows:

mkdir /etc/puppet/modules/drupal

mkdir /etc/puppet/modules/drupal/manifests

2.	 Create the file /etc/puppet/modules/drupal/manifests/init.pp with the
following contents:
class drupal {
 $drupalversion = "7.2"

 exec { "download-drush":
 cwd => "/root",
 command => "/usr/bin/wget http://ftp.drupal.org/files/
 projects/drush-7.x-4.4.tar.gz ",
 creates => "/root/drush-7.x-4.4.tar.gz",

Chapter 7

179

 require => Package["php5-mysql"],
 }

 exec { "install-drush":
 cwd => "/usr/local",
 command => "/bin/tar xvzf /root/drush-7.x-4.4.tar.gz",
 creates => "/usr/local/drush",
 require => Exec["download-drush"],
 }

 file { "/usr/local/bin/drush":
 ensure => link,
 target => "/usr/local/drush/drush",
 require => Exec["install-drush"],
 }

 exec { "install-drupal":
 cwd => "/var/www",
 command => "/usr/local/drush/drush dl drupal-
 ${drupalversion}",
 creates => "/var/www/drupal-${drupalversion}",
 require => Exec["install-drush"],
 }

 file { "/var/www/drupal":
 ensure => link,
 target => "/var/www/drupal-${drupalversion}",
 require => Exec["install-drupal"],
 }

 package { ["libapache2-mod-php5",
 "php5-mysql"]: ensure => installed }

 exec { "enable-mod-php5":
 command => "/usr/bin/a2enmod php5",
 creates => "/etc/apache2/mods-enabled/php5.conf",
 require => Package["libapache2-mod-php5"],
 }
}

How to do it…
1.	 Add the following to init.pp within the drupal class:

define site($password, $sitedomain = "") {
 include drupal

 if $sitedomain == "" {
 $drupal_domain = $name

Applications

180

 } else {
 $drupal_domain = $sitedomain
 }

 $dbname = regsubst($drupal_domain, "\.", "")
 mysql::server::db { $dbname:
 user => $dbname,
 password => $password,
 }

 exec { "site-install-${name}":
 cwd => "/var/www/drupal",
 command => "/usr/local/bin/drush site-install -y --site-
 name=${name} --sites-subdir=${drupal_domain} --db-url=mysq
 l://${dbname}:${password}@localhost/${dbname}",
 creates => "/var/www/drupal/sites/${drupal_domain}",
 require => [File["/var/www/drupal"], Exec["install-
 drupal"], Mysql::Server::Db[$dbname]],
 logoutput => on_failure,
 }

 apache::site { $drupal_domain:
 documentroot => "/var/www/drupal",
 }
}

2.	 Add the following to a node:
drupal::site { "crispinfo.com":
 password => "crunch",
}

3.	 Run Puppet:
puppet agent --test

info: Retrieving plugin

info: Caching catalog for cookbook.bitfieldconsulting.com

info: Applying configuration version '1309783783'

notice: /Stage[main]//Node[cookbook]/Drupal::Site[crispinfo.com]/
Mysql::Server::Db[crispinfocom]/Exec[create-crispinfocom-db]/
returns: executed successfully

notice: /Stage[main]//Node[cookbook]/Drupal::Site[crispinfo.com]/
Apache::Site[crispinfo.com]/File[/etc/apache2/sites-available/
crispinfo.com.conf]/ensure: defined content as '{md5}15c5bbffa6128
fce0b8a3996914af549'

Chapter 7

181

info: /Stage[main]//Node[cookbook]/Drupal::Site[crispinfo.com]/
Apache::Site[crispinfo.com]/File[/etc/apache2/sites-available/
crispinfo.com.conf]: Scheduling refresh of Exec[enable-crispinfo.
com-vhost]

notice: /Stage[main]//Node[cookbook]/Drupal::Site[crispinfo.com]/
Apache::Site[crispinfo.com]/Exec[enable-crispinfo.com-vhost]:
Triggered 'refresh' from 1 events

info: /Stage[main]//Node[cookbook]/Drupal::Site[crispinfo.com]/
Apache::Site[crispinfo.com]/Exec[enable-crispinfo.com-vhost]:
Scheduling refresh of Service[apache2]

notice: /Stage[main]/Apache/Service[apache2]: Triggered 'refresh'
from 1 events

notice: /Stage[main]//Node[cookbook]/Drupal::Site[crispinfo.com]/
Exec[site-install-crispinfo.com]/returns: executed successfully

notice: Finished catalog run in 22.51 seconds

4.	 Create an /etc/hosts entry pointing crispinfo.com to the node you're using (if
it's not already set in DNS) as follows:
10.0.2.15 crispinfo.com

5.	 Check the site in a web browser to make sure everything has been properly created.
You should see the Drupal login prompt as shown in the following screenshot:

Applications

182

The default administrator login created by drush site-install is username admin and
password admin. Obviously you should set a stronger password for production sites (see the
drush documentation for how to do this on the command line).

How it works…
Magic! Specifically—the drupal class first installs drush, and then uses it to install the Drupal
core code (you can change the version used by altering the value of $drupalversion).

The drupal::sitedefine runs drush site-install for each site you want to create.
In our example, we created a site called crispinfo.com and passed in the database
password; drush does the rest.

drupal::site also creates the necessary Apache vhost for our site (using the recipe
Creating Apache virtual hosts in this chapter) and a MySQL database (using the recipe
Creating MySQL databases and users in this chapter).

There's more…
drush can do a great deal to help you manage Drupal sites, including updating Drupal core
code, installing modules and themes, managing users, and backing up your databases. You
can find out more about drush at http://drush.ws/.

Managing Rails applications
Rails is an enormously popular web app framework (in the sense that it's widely used, rather
than that people like it). So it's probable that you'll be called upon to manage it at some point.
The recipe presented here contains most of what you'll need to prepare a server to have a
Rails application installed on it. This recipe assumes that you'll be using Nginx and Passenger
as the web server, though you can easily modify the recipe to use Apache instead.

How to do it…
1.	 Create the directory structure for a rails module:

mkdir /etc/puppet/modules/rails

mkdir /etc/puppet/modules/rails/manifests

mkdir /etc/puppet/modules/rails/templates

mkdir /etc/puppet/modules/rails/files

Chapter 7

183

2.	 Create the file /etc/puppet/modules/rails/manifests/init.pp with
the following contents:
class rails {
 include rails::passenger

 package { "bundler":
 provider => gem,
 ensure => installed,
 }

 define app($sitedomain) {
 include rails

 file { "/opt/nginx/sites-available/${name}.conf":
 content => template("rails/app.conf.erb"),
 require => File["/opt/nginx/sites-available"],
 }

 file { "/opt/nginx/sites-enabled/${name}.conf":
 ensure => link,
 target => "/opt/nginx/sites-available/${name}.conf",
 require => File["/opt/nginx/sites-enabled"],
 notify => Exec["reload-nginx"],
 }

 file { "/opt/nginx/conf/includes/${name}.conf":
 source => ["puppet:///modules/rails/${name}.conf",
 "puppet:///modules/rails/empty.conf"],
 notify => Exec["reload-nginx"],
 }

 file { ["/var/www",
 "/var/www/${name}",
 "/var/www/${name}/releases",
 "/var/www/${name}/shared",
 "/var/www/${name}/shared/config",
 "/var/www/${name}/shared/log",
 "/var/www/${name}/shared/system"]:
 ensure => directory,
 mode => 775,
 owner => "www-data",
 group => "www-data",
 }
 }
}

Applications

184

3.	 Create the file /etc/puppet/modules/rails/manifests/passenger.pp with
the following contents:
class rails::passenger {
 $passenger_version = "3.0.7"
 $passenger_dependencies = ["build-essential",
 "libcurl4-openssl-dev",
 "libssl-dev",
 "ruby",
 "rubygems"]

 package { $passenger_dependencies: ensure => installed }

 exec { "install-passenger":
 command => "/usr/bin/gem install passenger
 --version=${passenger_version}",
 unless => "/usr/bin/gem list | /bin/grep passenger |/bin/
 grep ${passenger_version}",
 require => [Package["rubygems"], Package[$passenger_
 dependencies]],
 timeout => "-1",
 }

 exec { "install-passenger-nginx-module":
 command => "/usr/lib/ruby/gems/1.8/gems/passenger-
 ${passenger_version}/bin/passenger-install-nginx-module
 --auto --auto-download --prefix=/opt/nginx",
 creates => "/opt/nginx/sbin/nginx",
 require => Exec["install-passenger"],
 timeout => "-1",
 }

 file { ["/opt/nginx",
 "/opt/nginx/conf",
 "/opt/nginx/conf/includes",
 "/opt/nginx/sites-enabled",
 "/opt/nginx/sites-available",
 "/var/log/nginx"]:
 ensure => directory,
 owner => "www-data",
 group => "www-data",
 }

 file { "/opt/nginx/sites-enabled/default":
 ensure => absent,
 require => Exec["install-passenger-nginx-module"],
 }

Chapter 7

185

 file { "/opt/nginx/conf/nginx.conf":
 content => template("rails/nginx.conf.erb"),
 notify => Exec["reload-nginx"],
 require => Exec["install-passenger-nginx-module"],
 }

 file { "/etc/init.d/nginx":
 source => "puppet:///modules/rails/nginx.init",
 mode => "700",
 require => Exec["install-passenger-nginx-module"],
 }

 service { "nginx":
 enable => true,
 ensure => running,
 require => File["/etc/init.d/nginx"],
 }

 exec { "reload-nginx":
 command => "/opt/nginx/sbin/nginx -t && /etc/init.d/
 nginx reload",
 refreshonly => true,
 require => Exec["install-passenger-nginx-module"],
 }
}

4.	 Create the file /etc/puppet/modules/rails/templates/app.conf.erb
with the following contents:
server {
 listen 80;
 root /var/www/<%= name %>/current/public;
 server_name <%= sitedomain %>;
 access_log /var/log/nginx/<%= name %>.access.log;
 error_log /var/log/nginx/<%= name %>.error.log;

 passenger_enabled on;
 passenger_min_instances 1;
}

passenger_pre_start http://<%= sitedomain %>;

5.	 Create the file /etc/puppet/modules/rails/templates/nginx.conf.erb
with the following contents:
events {
 worker_connections 1024;
 use epoll;
}

Applications

186

http {
 passenger_root /usr/lib/ruby/gems/1.8/gems/passenger-<%=
 passenger_version %>;

 server_names_hash_bucket_size 64;

 sendfile on;
 tcp_nopush on;
 tcp_nodelay off;

 client_body_temp_path /var/spool/nginx-client-body 1 2;

 client_max_body_size 100m;

 include /opt/nginx/conf/mime.types;
 default_type application/octet-stream;

 log_format main '$remote_addr - $remote_user [$time_local] '
 '"$request" $status $body_bytes_sent "$http_
 referer" '
 '"$http_user_agent" "$http_x_forwarded_for"' ;

 access_log /var/log/nginx/access.log main;

 gzip on;
 gzip_http_version 1.0;
 gzip_comp_level 2;
 gzip_proxied any;
 gzip_min_length 1100;
 gzip_buffers 16 8k;
 gzip_types text/plain text/html text/css application/x-
 javascript text/xml application/xml application/xml+rss text/
 javascript;
 gzip_disable "MSIE [1-6].(?!.*SV1)";
 gzip_vary on;

 include /opt/nginx/sites-enabled/*;
}

6.	 Create the file /etc/puppet/modules/rails/files/nginx.init with the
following contents:
#!/bin/sh

BEGIN INIT INFO
Provides: nginx
Required-Start: $all
Required-Stop: $all

Chapter 7

187

Default-Start: 2 3 4 5
Default-Stop: 0 1 6
Short-Description: starts the nginx web server
Description: starts nginx using start-stop-daemon
END INIT INFO

PATH=/usr/local/sbin:/usr/local/bin:/sbin:/bin:/usr/sbin:/usr/bin
DAEMON=/opt/nginx/sbin/nginx
NAME=nginx
DESC=nginx

test -x $DAEMON || exit 0

Include nginx defaults if available
if [-f /etc/default/nginx] ; then
 . /etc/default/nginx
fi

set -e

Return LSB status, grabbed from a newer lsb-base
status_of_proc () {
 local pidfile daemon name status

 pidfile=
 OPTIND=1
 while getopts p: opt ; do
 case "$opt" in
 p) pidfile="$OPTARG";;
 esac
 done
 shift $(($OPTIND - 1))

 if [-n "$pidfile"]; then
 pidfile="-p $pidfile"
 fi
 daemon="$1"
 name="$2"

 status="0"
 pidofproc $pidfile $daemon >/dev/null || status="$?"
 if ["$status" = 0]; then
 log_success_msg "$name is running"
 return 0
 else
 log_failure_msg "$name is not running"
 return $status
 fi
}

Applications

188

. /lib/lsb/init-functions

case "$1" in
 start)
 echo -n "Starting $DESC: "
 start-stop-daemon --start --quiet --pidfile /var/run/$NAME.pid \
 --exec $DAEMON -- $DAEMON_OPTS || true
 echo "$NAME."
 ;;
 stop)
 echo -n "Stopping $DESC: "
 start-stop-daemon --stop --quiet --pidfile /var/run/$NAME.pid \
 --exec $DAEMON || true
 echo "$NAME."
 ;;
 restart|force-reload)
 echo -n "Restarting $DESC: "
 start-stop-daemon --stop --quiet --pidfile \
 /var/run/$NAME.pid --exec $DAEMON || true
 sleep 1
 start-stop-daemon --start --quiet --pidfile \
 /var/run/$NAME.pid --exec $DAEMON -- $DAEMON_OPTS || true
 echo "$NAME."
 ;;
 reload)
 echo -n "Reloading $DESC configuration: "
 start-stop-daemon --stop --signal HUP --quiet --pidfile /
 var/run/$NAME.pid \
 --exec $DAEMON || true
 echo "$NAME."
 ;;
 status)
 status_of_proc -p /var/run/$NAME.pid "$DAEMON" nginx && exit
 0 || exit $?
 ;;
 *)
 N=/etc/init.d/$NAME
 echo "Usage: $N {start|stop|restart|reload|force-
 reload|status}" >&2
 exit 1
 ;;
esac

exit 0

Chapter 7

189

7.	 Add the following to a node:
rails::app { "furiouspigs":
 sitedomain => "furiouspigs.com",
}

8.	 Run Puppet:
puppet agent --test

info: Retrieving plugin

info: Caching catalog for cookbook.bitfieldconsulting.com

info: Applying configuration version '1309960678'

notice: /Stage[main]/Rails::Passenger/File[/opt/nginx]/ensure:
created

notice: /Stage[main]/Rails::Passenger/File[/opt/nginx/sites-
enabled]/ensure: created

notice: /Stage[main]//Node[cookbook]/Rails::App[furiouspigs]/
File[/opt/nginx/sites-enabled/furiouspigs.conf]/ensure: created

notice: /Stage[main]/Rails::Passenger/File[/opt/nginx/conf]/
ensure: created

notice: /Stage[main]/Rails::Passenger/File[/opt/nginx/conf/
includes]/ensure: created

notice: /Stage[main]//Node[cookbook]/Rails::App[furiouspigs]/
File[/opt/nginx/conf/includes/furiouspigs.conf]/ensure: defined
content as '{md5}d41d8cd98f00b204e9800998ecf8427e'

notice: /Stage[main]/Rails::Passenger/File[/opt/nginx/sites-
available]/ensure: created

notice: /Stage[main]//Node[cookbook]/Rails::App[furiouspigs]/
File[/opt/nginx/sites-available/furiouspigs.conf]/ensure: defined
content as '{md5}c1a4c2bc4e7381b1c2f88dfee004a594'

notice: /Stage[main]/Rails::Passenger/Exec[install-passenger]/
returns: executed successfully

notice: /Stage[main]/Rails::Passenger/Exec[install-passenger-
nginx-module]/returns: executed successfully

--- /opt/nginx/conf/nginx.conf 2011-07-06 14:04:33.231999538
+0000

+++ /tmp/puppet-file20110706-5343-k8ouds-0 2011-07-06
14:04:34.246867124 +0000

...

info: /Stage[main]/Rails::Passenger/File[/opt/nginx/conf/nginx.
conf]: Filebucketed /opt/nginx/conf/nginx.conf to puppet with sum
34d60856b6570e9d59cd6eecde5da000

Applications

190

notice: /Stage[main]/Rails::Passenger/File[/opt/nginx/conf/nginx.
conf]/content: content changed '{md5}34d60856b6570e9d59cd6eecde5
da000' to '{md5}72132deeb45e6ee5b83cd246dffefc5f'

info: /Stage[main]/Rails::Passenger/File[/opt/nginx/conf/nginx.
conf]: Scheduling refresh of Exec[reload-nginx]

notice: /Stage[main]/Rails::Passenger/Exec[reload-nginx]:
Triggered 'refresh' from 1 events

notice: Finished catalog run in 398.73 seconds

How it works…
This is a longer and more complicated recipe than many in this book and hence is explained
in greater detail. If you find this tiresome, just go ahead and use the recipe without worrying
about how it works. You can come back to the explanation later when you want to learn more.

The aim of all the preceding code is to enable you to write this:

rails::app { "furiouspigs":
 sitedomain => "furiouspigs.com",
}

That requires quite a bit of work behind the scenes. We have to install Nginx with the
Passenger module, configure it, add a virtual host for the application, include any application-
specific configuration such as redirects and asset servers, install Ruby and Rubygems,
Bundler, and create all the directories required for the application to be deployed.

Nginx and Passenger
Here's a breakdown of the passenger.pp file, that takes care of installing everything relating
to Nginx and Passenger. It's worth recalling that Nginx doesn't have the concept of dynamic
modules like Apache does, so you can't just install the distribution Nginx and some package
that adds Passenger capability. Nginx has to be compiled together with any modules that you
want to include in it.

Fortunately, the nice people at Phusion have provided a script to do that for us (passenger-
install-nginx-module). Once you've installed the Passenger gem, this script will take
care of the rest. So the first thing we need to do is install the Passenger gem as follows:

class rails::passenger {
 $passenger_version = "3.0.7"
 $passenger_dependencies = ["build-essential",
 "libcurl4-openssl-dev",
 "libssl-dev",
 "ruby",
 "rubygems"]

Chapter 7

191

 package { $passenger_dependencies: ensure => installed }

 exec { "install-passenger":
 command => "/usr/bin/gem install passenger
 --version=${passenger_version}",
 unless => "/usr/bin/gem list | /bin/grep passenger |/bin/grep
${passenger_version}",
 require => [Package["rubygems"], Package[$passenger_
 dependencies]],
 timeout => "-1",
 }

We set the Passenger version to be installed in $passenger_version because Nginx needs
to know the path where Passenger is installed, and that varies with the version number. So we
will refer back to the $passenger_version variable in the template for nginx.conf.

The next step is to run the passenger-install-nginx-module script:

 exec { "install-passenger-nginx-module":
 command => "/usr/lib/ruby/gems/1.8/gems/passenger-${passenger_
 version}/bin/passenger-install-nginx-module --auto --auto-
 download --prefix=/opt/nginx",
 creates => "/opt/nginx/sbin/nginx",
 require => Exec["install-passenger"],
 timeout => "-1",
 }

You'll notice that the path to the gem is hard-wired here to /usr/lib/
ruby/gems/1.8/gems. That's a bit fragile—in most of my production
infrastructures I use RVM for managing Ruby versions and gemsets, and
that takes care of things like this. However, adding RVM makes this recipe
even more complicated, so I've supplied it as a side dish, in the There's
more... section. Once you're familiar with this recipe, you can start adapting it
to your own purposes, including RVM integration.

It also means that this recipe won't work if you're using Ruby 1.9, which by the time you
read this you may well be. If so, or if you run into other problems with this part of the recipe,
just run gem contents passenger by hand and see where the passenger-install-
nginx-module script ends up.

Next, we create some of the directory structure for the Nginx configuration files:

 file { ["/opt/nginx",
 "/opt/nginx/conf",
 "/opt/nginx/conf/includes",

Applications

192

 "/opt/nginx/sites-enabled",
 "/opt/nginx/sites-available",
 "/var/log/nginx"]:
 ensure => directory,
 owner => "www-data",
 group => "www-data",
 }

We want to remove the default Nginx virtual host, which otherwise might interfere with the
virtual hosts we're going to create. This is done as follows

 file { "/opt/nginx/sites-enabled/default":
 ensure => absent,
 require => Exec["install-passenger-nginx-module"],
 }

In fact, this isn't necessary when you build Nginx from source, or via Passenger as we do
here, but if you want to adapt this recipe to use the distribution Nginx package, this will
come in useful.

Next is the main Nginx configuration file:

 file { "/opt/nginx/conf/nginx.conf":
 content => template("rails/nginx.conf.erb"),
 notify => Exec["reload-nginx"],
 require => Exec["install-passenger-nginx-module"],
 }

This is made into a template in nginx.conf.erb because we need to insert the Passenger
version we defined earlier on as follows:

 passenger_root /usr/lib/ruby/gems/1.8/gems/passenger-<%= passenger_
 version %>;

Otherwise, it's a reasonably standard Nginx configuration, and you can add in any special
parameters that you might need for your server.

Because we're not using the distro package, we need to supply an init script (minimally
adapted from the Ubuntu version):

 file { "/etc/init.d/nginx":
 source => "puppet:///modules/rails/nginx.init",
 mode => "700",
 require => Exec["install-passenger-nginx-module"],
 }

Chapter 7

193

We want the Nginx service to run as follows:

 service { "nginx":
 enable => true,
 ensure => running,
 require => File["/etc/init.d/nginx"],
 }

And to make sure broken configuration changes won't bring the server down, there's a
configuration-check-and-reload resource that is notified by the configuration files:

 exec { "reload-nginx":
 command => "/opt/nginx/sbin/nginx -t && /etc/init.d/nginx
 reload",
 refreshonly => true,
 require => Exec["install-passenger-nginx-module"],
 }

Rails
Having set up Passenger and Nginx, we can go on to the requirements for Rails:

class rails {
 include rails::passenger

 package { "bundler":
 provider => gem,
 ensure => installed,
 }
}

Bundler is a tool for managing an application or gem's dependencies. Instead of having to
specify and install all the dependent gems manually or via Puppet, a better way is to have
Bundler do this as part of your Rails deployment. For example, note that we don't install
the rails gem; it will usually either be supplied ready-frozen in the applications vendor
directory, or installed by Bundler. If you're not using Bundler, or you have some extra
dependencies for your Rails setup, install them here.

The main part of the rails class is the define function app, which will be instantiated once
for each application that you want to manage:

 define app($sitedomain) {
 include rails

The first thing that's installed is the Nginx virtual host file for the app, which is generated from
the app.conf.erb template:

 file { "/opt/nginx/sites-available/${name}.conf":
 content => template("rails/app.conf.erb"),

Applications

194

 require => File["/opt/nginx/sites-available"],
 }

 file { "/opt/nginx/sites-enabled/${name}.conf":
 ensure => link,
 target => "/opt/nginx/sites-available/${name}.conf",
 require => File["/opt/nginx/sites-enabled"],
 notify => Exec["reload-nginx"],
 }

The virtual host template is pretty minimal:

server {
 listen 80;
 root /var/www/<%= name %>/current/public;
 server_name <%= sitedomain %>;
 access_log /var/log/nginx/<%= name %>.access.log;
 error_log /var/log/nginx/<%= name %>.error.log;

 passenger_enabled on;
 passenger_min_instances 1;
}

passenger_pre_start http://<%= sitedomain %>;

Often an app will need specific Nginx directives, such as redirects. You can include these by
adding a file called files/furiouspigs.conf in the Rails module. This bit of code will
find such a file and include it:

 file { "/opt/nginx/conf/includes/${name}.conf":
 source => ["puppet:///modules/rails/${name}.conf",
 "puppet:///modules/rails/empty.conf"],
 notify => Exec["reload-nginx"],
 }

Note the use of multiple sources for this file, with the second source being empty.conf. This
makes sure that if there isn't an app-specific config file present, Puppet won't complain.

Finally we make sure that the standard Rails directory structure is in place ready for deployment
with the appropriate permissions for the www-data user. If you deploy the application and run
Nginx as a different user, replace www-data with your username throughout.

 file { ["/var/www",
 "/var/www/${name}",
 "/var/www/${name}/releases",
 "/var/www/${name}/shared",
 "/var/www/${name}/shared/config",
 "/var/www/${name}/shared/log",

Chapter 7

195

 "/var/www/${name}/shared/system"]:
 ensure => directory,
 mode => 775,
 owner => "www-data",
 group => "www-data",
 }
 }
}

There's more…
Here are a few other things you might like to consider when managing Rails applications
with Puppet.

RVM
As I mentioned, RVM can be a great solution to the problem of managing multiple Rubies,
multiple gemsets, smoothly upgrading Ruby, and so on. Of course, it brings its own interesting
problems with it - among them that RVM is under active development and subject to change.
However, on balance it cures more pain than it causes. It is recommended that you use RVM
for production Rails sites, perhaps with something similar to this:

class rails::rvm {
 package { ["autoconf",
 "bison",
 "curl",
 "libreadline-dev",
 "subversion",
 "zlib1g-dev"]: ensure => installed }

 file { "/usr/local/bin/rvm-install-system-wide":
 source => "puppet:///modules/rails/rvm-install-system-wide",
 mode => "700",
 }

 exec { "install-rvm":
 command => "/usr/local/bin/rvm-install-system-wide",
 creates => "/usr/local/bin/rvm",
 require => [Package["curl"], Package["subversion"], File["/usr/
 local/bin/rvm-install-system-wide"]],
 logoutput => on_failure,
 }

 append_if_no_such_line { "setup-rvm-shell-environment":
 file => "/etc/bash.bashrc",
 line => "[[-s /usr/local/rvm/scripts/rvm]] && . /usr/local/
 rvm/scripts/rvm",
 }
}

Applications

196

The rvm-install-system-wide script comes from the RVM website: https://rvm.
beginrescueend.com/install/rvm.

Log rotation
In production you'll probably want to add logrotate snippets to take care of the logs
generated by Nginx and Rails, to make sure they don't gradually fill up your disks. They
have been omitted in this recipe, again for reasons of simplicity and space.

Databases
This recipe doesn't create any databases or users for the Rails application; depending on
whether your developers are using MySQL, Postgres, MongoDB, or something else, you'll need to
add that yourself. If it's MySQL, you can adapt the recipe Creating MySQL databases and users.

SSL certificates
Some applications will require an SSL certificate and vhost for secure URLs, for example,
to handle payments. These are outside the scope of this recipe, but you shouldn't find it
too difficult to add the necessary code. You could add an optional parameter to the define
function rails::app, for instance:

define app($sitedomain, $ssl = false) {

and then handle it as follows:

if $ssl {
 file { "/etc/ssl/certs/${name}.crt":
 source => "puppet:///modules/rails/${name}.crt",
 }
}

Then, just instantiate your application with the following:

rails::app { "irritatedbadgers":
 sitedomain => "irritatedbadgers.com",
 ssl => true,
}

8
Servers and Cloud

Infrastructure

"Rest is not idleness, and to lie sometimes on the grass under trees on a summer's
day, listening to the murmur of the water, or watching the clouds float across the
sky, is by no means a waste of time."—J. Lubbock

In this chapter we will cover the following topics:

ff Deploying a Nagios monitoring server

ff Building high-availability services using Heartbeat

ff Managing NFS servers and file shares

ff Using HAProxy to load-balance multiple web servers

ff Managing firewalls with iptables

ff Managing EC2 instances

ff Managing virtual machines with Vagrant

As powerful as Puppet is for managing the configuration of a single server, its true benefits
become apparent only when controlling networks of many machines. In this chapter we'll
explore ways of using Puppet to help you monitor your infrastructure, create high-availability
clusters, share files across your network, set up automated firewalls, use load-balancing to
get more out of the machines you have, and create new virtual machines in the cloud and
on the desktop.

Servers and Cloud Infrastructure

198

Deploying a Nagios monitoring server

"My roommate lost his pet elephant. It's in the apartment somewhere."
—Steven Wright

We can't keep an eye on everything. Question: How do you know when one of your servers
goes down? The wrong answer is, "My client calls me and tells me the server is down." But
you'd be surprised how many organizations don't have any kind of automated monitoring of
their systems. It's very simple to set up. There are several excellent free and open-source
monitoring tools available, including Nagios, Icinga, Zabbix, and Zenoss. Nagios has been
around the longest and is among the most sophisticated, although it has a (partly deserved)
reputation for being difficult to configure.

This recipe will show you how to build a Nagios-based monitoring server using Puppet and
also how to have Puppet configure each of your boxes to be monitored by Nagios.

Getting ready…
You'll need the apache module that we created in the section Managing Apache servers
in Chapter 7.

How to do it…
1.	 Create a nagios module:

mkdir /etc/puppet/modules/nagios

mkdir /etc/puppet/modules/nagios/files

mkdir /etc/puppet/modules/nagios/manifests

2.	 Create the file /etc/puppet/modules/nagios/manifests/server.pp with the
following contents:
class nagios::server {
 include apache

 package { ["nagios3",
 "nagios-images",
 "nagios-nrpe-plugin"]:
 ensure => installed,
 }

 service { "nagios3":
 ensure => running,
 enable => true,

Chapter 8

199

 require => Package["nagios3"],
 }

 exec { "nagios-config-check":
 command => "/usr/sbin/nagios3 -v /etc/nagios3/nagios.
 cfg && /usr/sbin/service nagios3 restart",
 refreshonly => true,
 }

 file { "/etc/apache2/sites-available/nagios.conf":
 source => "puppet:///modules/nagios/nagios.conf",
 notify => Service["apache2"],
 require => Package["apache2-mpm-prefork"],
 }

 file { "/etc/apache2/sites-enabled/nagios.conf":
 ensure => symlink,
 target => "/etc/apache2/sites-available/nagios.conf",
 require => Package["apache2-mpm-prefork"],
 }

 file { ["/etc/nagios3/generic-service_nagios2.cfg",
 "/etc/nagios3/services_nagios2.cfg",
 "/etc/nagios3/hostgroups_nagios2.cfg",
 "/etc/nagios3/extinfo_nagios2.cfg",
 "/etc/nagios3/localhost_nagios2.cfg",
 "/etc/nagios3/contacts_nagios2.cfg",
 "/etc/nagios3/conf.d"
]:
 ensure => absent,
 force => true,
 }

 define nagios-config() {
 file { "/etc/nagios3/${name}":
 source => "puppet:///modules/nagios/${name}",
 require => Package["nagios3"],
 notify => Exec["nagios-config-check"],
 }
 }

 nagios-config { ["htpasswd.nagios",
 "nagios.cfg",
 "cgi.cfg",
 "hostgroups.cfg",
 "hosts.cfg",

Servers and Cloud Infrastructure

200

 "host_templates.cfg",
 "service_templates.cfg",
 "services.cfg",
 "timeperiods.cfg",
 "contacts.cfg",
 "commands.cfg"]: }

 file { "/var/lib/nagios3": # see http://bugs.debian.org/cgi-
 bin/bugreport.cgi?bug=478889
 mode => 751,
 require => Package["nagios3"],
 notify => Service["nagios3"],
 }

 file { "/var/lib/nagios3/rw": # see http://bugs.debian.org/
 cgi-bin/bugreport.cgi?bug=478889
 mode => 2710,
 require => Package["nagios3"],
 notify => Service["nagios3"],
 }
}

3.	 Create the file /etc/puppet/modules/nagios/files/nagios.cfg with the
following contents:
Config files to read
cfg_file=/etc/nagios3/commands.cfg
cfg_file=/etc/nagios3/service_templates.cfg
cfg_file=/etc/nagios3/host_templates.cfg
cfg_file=/etc/nagios3/timeperiods.cfg
cfg_file=/etc/nagios3/contacts.cfg
cfg_file=/etc/nagios3/hostgroups.cfg
cfg_file=/etc/nagios3/hosts.cfg
cfg_file=/etc/nagios3/services.cfg

Nagios settings
log_file=/var/log/nagios3/nagios.log
illegal_macro_output_chars=`~$&|'"<>
check_result_path=/var/lib/nagios3/spool/checkresults
nagios_user=nagios
nagios_group=nagios
command_file=/var/lib/nagios3/rw/nagios.cmd
lock_file=/var/run/nagios3/nagios3.pid
p1_file=/usr/lib/nagios3/p1.pl
check_external_commands=1
resource_file=/etc/nagios3/resource.cfg

Chapter 8

201

4.	 Create the file /etc/puppet/modules/nagios/files/service_templates.
cfg with the following contents:
define service{
 name generic_service ; The 'name'
 of this service template
 active_checks_enabled 1 ; Active service
 checks are enabled
 passive_checks_enabled 1 ; Passive service
 checks are enabled/accepted
 parallelize_check 1 ; Active service
 checks should be parallelized (disabling this can lead to
 major performance problems)
 obsess_over_service 1 ; We should obsess
 over this service (if necessary)
 check_freshness 0 ; Default is to NOT
 check service 'freshness'
 notifications_enabled 1 ; Service
 notifications are enabled
 event_handler_enabled 1 ; Service event
 handler is enabled
 flap_detection_enabled 1 ; Flap detection is
 enabled
 failure_prediction_enabled 1 ; Failure prediction
 is enabled
 process_perf_data 1 ; Process performance
 data
 retain_status_information 1 ; Retain status
 information across program restarts
 retain_nonstatus_information 1 ; Retain non-status
 information across program restarts
 notification_interval 0 ; Only send
 notifications on status change by default.
 is_volatile 0
 check_period 24x7
 normal_check_interval 5
 retry_check_interval 2
 max_check_attempts 3
 notification_period 24x7
 notification_options c,r
 contact_groups sysadmin
 register 0 ; DONT REGISTER THIS
 DEFINITION - ITS NOT A REAL SERVICE, JUST A TEMPLATE!
}

Defaults
define service {

Servers and Cloud Infrastructure

202

 name every_5_mins
 normal_check_interval 5
 use generic_service
 register 0
}

define service {
 name every_hour
 normal_check_interval 60
 use generic_service
 register 0
}

define service {
 name every_day
 normal_check_interval 1440
 use generic_service
 register 0
}

5.	 Create the file /etc/puppet/modules/nagios/files/services.cfg with the
following contents:
define service {
 hostgroup_name all
 service_description Disk
 check_command check_nrpe!check_all_disks!20%!10%
 use every_day
}

define service {
 hostgroup_name all
 service_description Load
 check_command check_nrpe!check_load!10,10,10!15,15,15
 use every_hour
}

6.	 Create the file /etc/puppet/modules/nagios/files/cgi.cfg with the
following contents:
main_config_file=/etc/nagios3/nagios.cfg
physical_html_path=/usr/share/nagios3/htdocs
url_html_path=/nagios3
show_context_help=1
use_pending_states=1
nagios_check_command=/usr/lib/nagios/plugins/check_nagios /var/
cache/nagios3/status.dat 5 '/usr/sbin/nagios3'

Chapter 8

203

use_authentication=1
use_ssl_authentication=0
authorized_for_system_information=nagios
authorized_for_configuration_information=nagios
authorized_for_system_commands=nagios
authorized_for_all_services=nagios
authorized_for_all_hosts=nagios
authorized_for_all_service_commands=nagios
authorized_for_all_host_commands=nagios
default_statusmap_layout=5
default_statuswrl_layout=4
ping_syntax=/bin/ping -n -U -c 5 $HOSTADDRESS$
refresh_rate=90
escape_html_tags=1
action_url_target=_blank
notes_url_target=_blank
lock_author_names=1

7.	 Create the file /etc/puppet/modules/nagios/files/host_templates.cfg
with the following contents:
define host{
 name generic_host
 check_command check-host-alive
 max_check_attempts 3
 checks_enabled 1
 failure_prediction_enabled 1
 retain_status_information 1
 retain_nonstatus_information 1
 notification_interval 0
 notification_options d,u,r
 check_interval 300
 contact_groups sysadmin
 register 0
}

8.	 Create the file /etc/puppet/modules/nagios/files/contacts.cfg with the
following contents (use your own e-mail address, or at least that of someone who
won't mind getting a lot of e-mail from your monitoring server):
define contact {
 contact_name helen
 alias Helen Highwater
 service_notification_period 24x7
 host_notification_period 24x7

Servers and Cloud Infrastructure

204

 service_notification_options w,u,c,r
 host_notification_options d,r
 service_notification_commands notify-service-by-email
 host_notification_commands notify-host-by-email
 email helen@example.com
}

define contactgroup {
 contactgroup_name sysadmin
 alias Sysadmins
 members helen
}

9.	 Create the file /etc/puppet/modules/nagios/files/hostgroups.cfg with
the following contents:
define hostgroup {
 hostgroup_name all
 alias All Servers
 members *
}

10.	 Create the file /etc/puppet/modules/nagios/files/timeperiods.cfg with
the following contents:
define timeperiod {
 timeperiod_name 24x7
 alias 24 Hours A Day, 7 Days A Week
 sunday 00:00-24:00
 monday 00:00-24:00
 tuesday 00:00-24:00
 wednesday 00:00-24:00
 thursday 00:00-24:00
 friday 00:00-24:00
 saturday 00:00-24:00
}

11.	 Create the file /etc/puppet/modules/nagios/files/hosts.cfg with the
following contents (replace with your own server details):
define host {
 host_name cookbook
 address cookbook.bitfieldconsulting.com
 use generic_host
}

Chapter 8

205

12.	 Create the file /etc/puppet/modules/nagios/files/commands.cfg with the
following contents:
define command {
 command_name check_nrpe
 command_line $USER1$/check_nrpe -H $HOSTADDRESS$ -c $ARG1$
 -a $ARG2$ $ARG3$ $ARG4$ $ARG5$
 }

define command{
 command_name check-host-alive
 command_line $USER1$/check_ping -H '$HOSTADDRESS$' -w
 5000,100% -c 5000,100% -p 1
 }

define command{
 command_name check_all_disks
 command_line /usr/lib/nagios/plugins/check_disk -w '$ARG1$'
 -c '$ARG2$' -e
 }

define command{
 command_name notify-host-by-email
 command_line /usr/bin/printf "%b" "***** Nagios *****\n\
 nNotification Type: $NOTIFICATIONTYPE$\nHost: $HOSTNAME$\
 nState: $HOSTSTATE$\nAddress: $HOSTADDRESS$\nInfo:
 $HOSTOUTPUT$\n\nDate/Time: $LONGDATETIME$\n" | /usr/bin/mail
 -s "** $NOTIFICATIONTYPE$ Host Alert: $HOSTNAME$ is
 $HOSTSTATE$ **" $CONTACTEMAIL$
 }

define command{
 command_name notify-service-by-email
 command_line /usr/bin/printf "%b" "***** Nagios
 *****\n\nNotification Type: $NOTIFICATIONTYPE$\n\nService:
 $SERVICEDESC$\nHost: $HOSTALIAS$\nAddress: $HOSTADDRESS$\
 nState: $SERVICESTATE$\n\nDate/Time: $LONGDATETIME$\n\
 nAdditional Info:\n\n$SERVICEOUTPUT$" | /usr/bin/mail -s "**
 $NOTIFICATIONTYPE$ Service Alert: $HOSTALIAS$/$SERVICEDESC$ is
 $SERVICESTATE$ **" $CONTACTEMAIL$
 }

13.	 Create the file /etc/puppet/modules/nagios/files/nagios.conf with the
following contents (replace the ServerName with your own server):
ScriptAlias /cgi-bin/nagios3 /usr/lib/cgi-bin/nagios3
ScriptAlias /nagios3/cgi-bin /usr/lib/cgi-bin/nagios3
Alias /nagios3/stylesheets /etc/nagios3/stylesheets
Alias /nagios3 /usr/share/nagios3/htdocs

Servers and Cloud Infrastructure

206

Alias / /usr/share/nagios3/htdocs/

<DirectoryMatch (/usr/share/nagios3/htdocs|/usr/lib/cgi-bin/
nagios3|/etc/nagios3/stylesheets)>
 Options FollowSymLinks

 DirectoryIndex index.html

 AllowOverride AuthConfig
 Order Allow,Deny
 Allow From All

 AuthName "Nagios Access"
 AuthType Basic
 AuthUserFile /etc/nagios3/htpasswd.nagios
 require valid-user
</DirectoryMatch>

<VirtualHost *:80>
 ServerName nagios.bitfieldconsulting.com
 ErrorLog /var/log/apache2/nagios-error_log
 CustomLog /var/log/apache2/nagios-access_log common
 DocumentRoot /usr/share/nagios3
</VirtualHost>

14.	 Create the password file to control access to the Nagios web interface:
htpasswd -c /etc/puppet/modules/nagios/files/htpasswd.nagios
nagios

Password: (type password)

15.	 If the program htpasswd isn't on your system, run the following command:
apt-get install apache2-utils

16.	 Create an /etc/hosts entry or DNS record for the ServerName you specified in the
preceding code; in this case:
nagios.bitfieldconsulting.com

17.	 Include the following in the node definition for your Nagios server:
include nagios::server

18. Create the file /etc/puppet/modules/nagios/files/nrpe.cfg with the
following contents (replace the allowed_hosts setting with the name or IP address
of your monitoring server):
log_facility=daemon
pid_file=/var/run/nagios/nrpe.pid
server_port=5666

Chapter 8

207

nrpe_user=nagios
nrpe_group=nagios
allowed_hosts=cookbook.bitfieldconsulting.com
dont_blame_nrpe=1
debug=0
command_timeout=60
connection_timeout=300
command[check_load]=/usr/lib/nagios/plugins/check_load -w $ARG1$
-c $ARG2$
command[check_all_disks]=/usr/lib/nagios/plugins/check_disk -w
$ARG1$ -c $ARG2$ -e -A -i '.gvfs'

19.	 Create the file /etc/puppet/modules/nagios/manifests/target.pp with the
following contents:
class nagios::target {
 package { ["nagios-nrpe-server",
 "nagios-plugins",
 "nagios-plugins-basic",
 "nagios-plugins-standard",
 "nagios-plugins-extra"]:
 ensure => installed,
 }

 service { "nagios-nrpe-server":
 enable => true,
 ensure => running,
 pattern => "/usr/sbin/nrpe",
 require => Package["nagios-nrpe-server"],
 }

 file { "/etc/nagios/nrpe.cfg":
 source => "puppet:///modules/nagios/nrpe.cfg",
 require => Package["nagios-nrpe-server"],
 notify => Service["nagios-nrpe-server"],
 }
}

20.	 Include this class on the nodes you want to monitor (this should also include the
Nagios server itself):
include nagios::target

21.	 Run Puppet on the Nagios server as follows:
puppet agent --test

Servers and Cloud Infrastructure

208

22.	 Go to the web interface in your browser (log in with the username nagios and the
password you set in the preceding code) and check that you see the Nagios welcome
screen as shown in the following screenshot:

23.	 Go to the Host detail screen and you should see your target nodes listed.

24.	 Click on the name of a node and then select "Schedule a check of all services on this
host" from the Host commands menu.

Chapter 8

209

25.	 Tick the box that says "Force check" and click "Commit". It will take a few seconds for
Nagios to run the checks. Go to the "Service detail" screen and you should see the
services listed in green like this:

How it works...
Although this recipe is quite a lengthy one, the Puppet manifest itself is pretty simple; there's
nothing here that we haven't used already in other recipes.

Servers and Cloud Infrastructure

210

Essentially, what we're doing is installing the Nagios package itself, configuring a virtual host
for Apache to serve it, and deploying a bunch of config files for Nagios that tell it what hosts to
check, which services to check, and other assorted things.

On the client side, each node that's monitored by Nagios needs the nagios-nrpe-server
package installed (NRPE is the protocol that Nagios uses to securely execute commands
on remote servers) and a configuration file that tells the NRPE server which commands are
allowed to be executed.

You should be aware that the dont_blame_nrpe setting in nrpe.cfg is
a potential security hole, as it allows remote execution of commands with
user-supplied arguments. This is a very useful feature, as it means you can
alter alert thresholds or other parameters without having to reconfigure
every monitored machine. However, if you don't need this feature, it's safer to
disable dont_blame_nrpe.

There's more…
The tricky thing with Nagios is getting it set up and running in the first place. Although the
monitoring configuration presented here is very basic (just disk space and CPU load checking),
you can use this working Nagios setup as a starting point to add more service checks and
more hosts. Here are some things that you might like to add:

ff Host groups (for example, web servers or database servers): You can configure a
check to apply to all members of a host group automatically.

ff Website checks: The check_http plugin that comes with Nagios is quite
sophisticated, and can handle redirects, SSL, authentication, and matching text from
a web page.

ff Process checks: It's common to want to monitor a specific process on a box. Use the
check_procs plugin for this.

ff Different check frequencies: I've defined the service templates every_hour,
every_day, and every_5_mins in service_templates.cfg; you may want to
add some new ones.

ff New time periods: Currently the only one defined in timeperiods.cfg is 24x7,
but you may want to create your own. For example, if your database maintenance
jobs run from midnight to 1 a.m., you could define a time period that excludes those
hours, so that you don't get false alarms on the database server.

To find out more about how to configure Nagios, have a look at the documentation at
http://nagios.sourceforge.net/docs/nagioscore/3/en/toc.html.

Chapter 8

211

There is also some built-in support for Nagios in Puppet; you can have Puppet generate host
and service definitions automatically from your manifests, which is a powerful and useful
feature. Although I use this on some production sites, I have had to regretfully exclude
coverage of it from this book for space reasons. If you want to find out about this, check
the official Puppet documentation and also Mike Gurski's excellent article on the subject:
http://blog.gurski.org/index.php/2010/01/28/automatic-monitoring-
with-puppet-and-nagios/.

Building high-availability services
using Heartbeat

"Even in the future, nothing works!"—'Spaceballs'

Sooner or later, everything breaks. High-availability services are those that can survive the
failure of an individual machine or network connection. The primary technique for high
availability is redundancy, otherwise known as throwing hardware at the problem. Although
the eventual failure of an individual server is certain, the simultaneous failure of two servers
is unlikely enough that this provides a good level of redundancy for most applications.

One of the simplest ways to build a redundant pair of servers is to have them share an
IP address using Heartbeat. Heartbeat is a daemon which runs on both machines and
exchanges regular messages—heartbeats—between the two. One server is the primary, and
normally has the resource: in this case, an IP address. If the secondary server fails to detect a
heartbeat from the primary, it can take over the address, ensuring continuity of service.

In this recipe we'll set up two machines in this configuration using Puppet, and I'll explain how
to use it to provide a high-availability service.

How to do it…
1.	 Create a heartbeat module as follows:

mkdir /etc/puppet/modules/heartbeat

mkdir /etc/puppet/modules/heartbeat/manifests

mkdir /etc/puppet/modules/heartbeat/files

2.	 Create the file /etc/puppet/modules/heartbeat/manifests/init.pp with
the following contents:
class heartbeat {
 package { "heartbeat":
 ensure => installed,
 }

Servers and Cloud Infrastructure

212

 service { "heartbeat":
 ensure => running,
 require => Package["heartbeat"],
 }

 exec { "reload-heartbeat":
 command => "/usr/sbin/service heartbeat reload",
 refreshonly => true,
 }

 file { "/etc/ha.d/authkeys":
 source => "puppet:///modules/heartbeat/authkeys",
 mode => "600",
 require => Package["heartbeat"],
 notify => Exec["reload-heartbeat"],
 }

 file { "/etc/ha.d/haresources":
 source => "puppet:///modules/heartbeat/haresources",
 notify => Exec["reload-heartbeat"],
 require => Package["heartbeat"],
 }

 file { "/etc/ha.d/ha.cf":
 source => "puppet:///modules/heartbeat/ha.cf",
 notify => Exec["reload-heartbeat"],
 require => Package["heartbeat"],
 }
}

3.	 Create the file /etc/puppet/modules/heartbeat/files/haresources with
the following contents. Substitute for cookbook the name of your primary server.
This should be whatever is returned by uname -n on the server. For 10.0.2.100
substitute the IP address you want to share between the two machines. This should
be an address that is currently unused on your network. Heartbeat will assign it to the
interface listed at the end (eth0:1 in this case).
cookbook IPaddr::10.0.2.100/24/eth0:1

4.	 Create the file /etc/puppet/modules/heartbeat/files/authkeys with the
following contents (replace topsecretpassword with a password of your own
choosing):
auth 1
1 sha1 topsecretpassword

Chapter 8

213

5.	 Create the file /etc/puppet/modules/heartbeat/files/ha.cf with the
following contents. Replace the two IP addresses with the main addresses of your
two machines. Similarly, replace cookbook and cookbook2 with the node names
of your machines (whatever is returned by uname -n).
autojoin none
ucast eth0 10.0.2.15
ucast eth0 10.0.2.16
keepalive 1
deadtime 10
warntime 5
udpport 694
auto_failback on
node cookbook
node cookbook2
use_logd yes

6.	 Run Puppet on each of the two servers:
puppet agent --test

info: Retrieving plugin

info: Caching catalog for cookbook.bitfieldconsulting.com

info: Applying configuration version '1311440876'

notice: /Stage[main]/Heartbeat/Package[heartbeat]/ensure: created

notice: /Stage[main]/Heartbeat/File[/etc/ha.d/authkeys]/ensure:
defined content as '{md5}e908c869aabe519aa69acc9e51da3399'

info: /Stage[main]/Heartbeat/File[/etc/ha.d/authkeys]: Scheduling
refresh of Exec[reload-heartbeat]

notice: /Stage[main]/Heartbeat/File[/etc/ha.d/ha.cf]/ensure:
defined content as '{md5}a8d3fdd62a1172cdff150fc1d86d8a6b'

info: /Stage[main]/Heartbeat/File[/etc/ha.d/ha.cf]: Scheduling
refresh of Exec[reload-heartbeat]

notice: /Stage[main]/Heartbeat/File[/etc/ha.d/haresources]/ensure:
defined content as '{md5}0f25aefe7f6c4c8e81b3bb6c86a42d60'

info: /Stage[main]/Heartbeat/File[/etc/ha.d/haresources]:
Scheduling refresh of Exec[reload-heartbeat]

notice: /Stage[main]/Heartbeat/Exec[reload-heartbeat]: Triggered
'refresh' from 3 events

notice: Finished catalog run in 27.01 seconds

7.	 On the primary node, check that it has the resource:
cl_status rscstatus -m

This node is holding all resources.

Servers and Cloud Infrastructure

214

8.	 On the secondary, you should see this:
cl_status rscstatus -m

This node is holding none resources.

9.	 Stop the Heartbeat service on the primary node:
service heartbeat stop

10.	 The secondary node should now be holding the resource:
cl_status rscstatus -m
This node is holding all resources.

How it works…
The Heartbeat daemon runs on each machine, listening for heartbeats from the other. If the
primary detects that the secondary has gone down, nothing happens. On the other hand,
if the secondary detects that the primary has gone down, it fails over (takes over) the IP
address. When the primary comes back up, the secondary will relinquish the address again
(if auto_failback is set to on). In some cases, for example if you're sharing the IP address
between a master and slave database server, you may not want this behavior, in which case
set auto_failback to off.

There's more…
Now that you have a shared IP address (really a misnomer, since the address is not 'shared',
but swaps between one server and the other) you can use it to provide a high-availability
service on this address. For example, if the servers are hosting a website, you can set the DNS
record for the website to point to the shared address. When the primary server goes down, the
secondary will take over and continue responding to HTTP requests on the address.

If you're using an SSL site, you will need to configure the SSL virtual host
with the shared IP address, or it won't be able to respond to requests on
that IP. Also, if the website uses sessions, any sessions on the primary
server will be lost following a failover, unless the sessions are stored in
a separate shared database.

A shared IP address is a great way of pairing redundant load balancers (see the section on
haproxy). You can also use it to provide redundant Puppetmaster machines. A suitable
pattern is presented on the Puppet Labs site: http://projects.puppetlabs.com/
projects/1/wiki/High_Availability_Patterns.

Chapter 8

215

Managing NFS servers and file shares

"There are three kinds of death in this world. There's heart death, there's brain
death, and there's being off the network."—Guy Almes

NFS (the Network File System) is a way of mounting a shared directory from a remote server.
For example, a pool of web servers might all mount the same NFS share to serve static assets
such as images and stylesheets. Although NFS is old technology, it's still widely used, so
here's a recipe that will show you how to create an NFS server and share files from it.

How to do it…
1.	 Create an nfs module:

mkdir /etc/puppet/modules/nfs

mkdir /etc/puppet/modules/nfs/manifests

2.	 Create the file /etc/puppet/modules/nfs/manifests/init.pp with the
following contents:
class nfs {
 package { "nfs-kernel-server": ensure => installed }

 service { "nfs-kernel-server":
 ensure => running,
 enable => true,
 hasrestart => true,
 require => Package["nfs-kernel-server"],
 }

 file { "/etc/exports.d":
 ensure => directory,
 }

 exec { "update-etc-exports":
 command => "/bin/cat /etc/exports.d/* >/etc/exports",
 notify => Service["nfs-kernel-server"],
 refreshonly => true,
 }

 define share($path, $allowed, $options = "") {
 include nfs

 file { $path:
 ensure => directory,
 }

Servers and Cloud Infrastructure

216

 file { "/etc/exports.d/${name}":
 content => "${path} ${allowed}(${options})\n",
 notify => Exec["update-etc-exports"],
 }
 }
}

3.	 Add the following to the node you want to export an NFS share from (change the IP
address range to one suitable for your network):
nfs::share { "data":
 path => "/data",
 allowed => "10.0.2.0/24",
 options => "rw,sync,no_root_squash",
}

nfs::share { "data2":
 path => "/data2",
 allowed => "10.0.2.0/24",
 options => "rw,sync,no_root_squash",
}

4.	 Run Puppet:
puppet agent --test

info: Retrieving plugin

info: Caching catalog for cookbook.bitfieldconsulting.com

info: Applying configuration version '1311526219'

notice: /Stage[main]/Nfs/Package[nfs-kernel-server]/ensure:
created

notice: /Stage[main]/Nfs/Service[nfs-kernel-server]/ensure: ensure
changed 'stopped' to 'running'

notice: /Stage[main]//Node[cookbook]/Nfs::Share[data2]/File[/
data2]/ensure: created

notice: /Stage[main]//Node[cookbook]/Nfs::Share[data2]/File[/etc/
exports.d/data]/ensure: defined content as '{md5}408f8b40815ff4b6e
ec2f324ca7eafc4'

info: /Stage[main]//Node[cookbook]/Nfs::Share[data]/File[/etc/
exports.d/data]: Scheduling refresh of Exec[update-etc-exports]

notice: /Stage[main]//Node[cookbook]/Nfs::Share[data2]/
File[/etc/exports.d/data2]/ensure: defined content as '{md5}
ec2f324ca7eafc4408f8b40815ff4b6e'

info: /Stage[main]//Node[cookbook]/Nfs::Share[data2]/File[/etc/
exports.d/data2]: Scheduling refresh of Exec[update-etc-exports]

Chapter 8

217

notice: /Stage[main]/Nfs/Exec[update-etc-exports]: Triggered
'refresh' from 2 events

info: /Stage[main]/Nfs/Exec[update-etc-exports]: Scheduling
refresh of Service[nfs-kernel-server]

notice: /Stage[main]/Nfs/Service[nfs-kernel-server]/ensure: ensure
changed 'stopped' to 'running'

notice: /Stage[main]/Nfs/Service[nfs-kernel-server]: Triggered
'refresh' from 1 events

notice: Finished catalog run in 3.13 seconds

5.	 Test the export settings by mounting one of the shares from another server as
follows:
mkdir /mnt/data

mount cookbook:/data /mnt/data

ls /mnt/data

How it works…
The nfs class installs and starts the nfs-kernel-server service, which listens for network
connections to the file share. It also defines the nfs::share resource, which you can use
anywhere in your manifests to export a directory via NFS:

nfs::share { "data":
 path => "/data",
 allowed => "10.0.2.0/24",
 options => "rw,sync,no_root_squash",
}

The name of the resource is whatever label you want to give it: data, in this case. The path
specifies the directory to share. The allowed parameter can be a CIDR network address
(as here), an IP address, a hostname, or a whitespace-separated list of addresses and
hostnames. Only the specified hosts will be allowed to mount the resource.

The options parameter specifies the options to NFS (as they appear in the /etc/exports
file; see man exports for precise details).

Note that we use the same snippet pattern as we did in the rsyncd.conf example. Any
instance of nfs::share creates a file snippet in /etc/exports.d, which also triggers an
exec to concatenate all the snippets into /etc/exports and bounce the NFS service to pick
up the changes.

There's more…
NFS shares should only be used for data that's not critical to your application, because the NFS
server creates a single point of failure. For a clustered file system, check out GlusterFS instead.

Servers and Cloud Infrastructure

218

Using HAProxy to load-balance multiple
web servers

"The inside of a computer is as dumb as hell but it goes like mad!"—Richard Feynman

Back in the day, the way to speed up slow web servers was to add more cores. I recall one
employer buying a monster 24-core Sun box the size of a Hummer. We had to have the data
center door widened to get it in.

Scaling websites nowadays is still a matter of adding cores, but they either come in their
own little beige boxes, as commodity hardware, or you rent them as as a wholesale compute
resource from a cloud provider. In order to group all these cores together to serve a single
website, we use load balancers.

Once, a load balancer was a big box that sat in a rack and cost eighty thousand dollars.
Although you can still buy those, for most organizations a software load balancer solution
using commodity Linux servers is a better value proposition.

HAProxy is the software load balancer of choice for most people: fast, powerful, and highly
configurable. In this recipe, I'll show you how to build an HAProxy server to load-balance web
requests across two existing backend servers.

How to do it…
1.	 Create a loadbalancer module:

mkdir /etc/puppet/modules/loadbalancer

mkdir /etc/puppet/modules/loadbalancer/manifests

mkdir /etc/puppet/modules/loadbalancer/files

2.	 Create the file /etc/puppet/modules/loadbalancer/manifests/init.pp
with the following contents:
class loadbalancer {
 package { "haproxy": ensure => installed }

 file { "/etc/default/haproxy":
 source => "puppet:///modules/loadbalancer/haproxy.
 defaults",
 require => Package["haproxy"],
 }

 service { "haproxy":
 ensure => running,

Chapter 8

219

 enable => true,
 require => Package["haproxy"],
 }

 file { "/etc/haproxy/haproxy.cfg":
 source => "puppet:///modules/loadbalancer/haproxy.cfg",
 require => Package["haproxy"],
 notify => Service["haproxy"],
 }
}

3.	 Create the file /etc/puppet/modules/loadbalancer/files/haproxy.
defaults with the following contents:
Don't edit this file - it's managed by Puppet
Set ENABLED to 1 if you want the init script to start haproxy.
ENABLED=1
Add extra flags here.
#EXTRAOPTS="-de -m 16"

4.	 Create the file /etc/puppet/modules/loadbalancer/files/haproxy.cfg
with the following contents. In the myapp section, replace the IP address in each
server line with the IP address of your backend server, and the :8000 port number
with the port number where your server is listening.
global
 daemon
 user haproxy
 group haproxy
 pidfile /var/run/haproxy.pid

defaults
 log global
 stats enable
 mode http
 option httplog
 option dontlognull
 option dontlog-normal
 retries 3
 option redispatch
 contimeout 4000
 clitimeout 60000
 srvtimeout 30000

listen stats :8080
 mode http

Servers and Cloud Infrastructure

220

 stats uri /
 stats auth haproxy:topsecret

listen myapp 0.0.0.0:80
 balance leastconn
 server myapp1 10.0.2.30:8000 check maxconn 100
 server myapp2 10.0.2.40:8000 check maxconn 100

5.	 Include the following on your HAProxy node:
include loadbalancer

6.	 Run Puppet:
puppet agent --test

info: Retrieving plugin

info: Caching catalog for cookbook.bitfieldconsulting.com

info: Applying configuration version '1311616315'

notice: /Stage[main]/Loadbalancer/Package[haproxy]/ensure: ensure
changed 'purged' to 'present'

--- /etc/haproxy/haproxy.cfg 2009-11-06 17:59:44.000000000
+0000

+++ /tmp/puppet-file20110725-16369-1b85cr8-0 2011-07-25
18:09:03.749146699 +0000

@@ -1,86 +1,28 @@

-# this config needs haproxy-1.1.28 or haproxy-1.2.1

...

info: /Stage[main]/Loadbalancer/File[/etc/haproxy/haproxy.
cfg]: Filebucketed /etc/haproxy/haproxy.cfg to puppet with sum
c3bfb0c86138552475dea458e8ab36f3

notice: /Stage[main]/Loadbalancer/File[/etc/haproxy/haproxy.cfg]/
content: content changed '{md5}c3bfb0c86138552475dea458e8ab36f3'
to '{md5}fa5fac3cf31f043f0120d0d45cef3f54'

info: /Stage[main]/Loadbalancer/File[/etc/haproxy/haproxy.cfg]:
Scheduling refresh of Service[haproxy]

notice: /Stage[main]/Loadbalancer/Service[haproxy]/ensure: ensure
changed 'stopped' to 'running'

notice: /Stage[main]/Loadbalancer/Service[haproxy]: Triggered
'refresh' from 1 events

--- /etc/default/haproxy 2009-11-06 17:59:21.000000000 +0000

+++ /tmp/puppet-file20110725-16369-1ndfrti-0 2011-07-25
18:09:05.749136866 +0000

@@ -1,4 +1,5 @@

Chapter 8

221

 # Set ENABLED to 1 if you want the init script to start haproxy.

-ENABLED=0

+ENABLED=1

 # Add extra flags here.

 #EXTRAOPTS="-de -m 16"

+

notice: /Stage[main]/Loadbalancer/File[/etc/default/haproxy]/
content: content changed '{md5}a1f2deb7c7a10e55dc7c971a2288f5d4'
to '{md5}2217d74d66bd72630268598b1f11f173'

notice: Finished catalog run in 22.21 seconds

7.	 Check the HAProxy stats interface in your web browser to make sure everything is
OK (note that my Backend servers are shown as DOWN because those VMs aren't
running: when I start them, HAProxy will detect this automatically and mark them up).

Servers and Cloud Infrastructure

222

How it works…
The haproxy daemon listens for incoming requests and distributes them to the pool of
backend servers (myapp1 and myapp2 in our example). If one backend server becomes
overloaded, HAProxy will avoid sending it more traffic until it recovers. This helps prevent
the drastic slowdown as a single web server becomes overloaded and queues up more and
more requests that it can't serve. If a server fails altogether, HAProxy won't send it any more
requests until it becomes available again.

The stats interface will show you how your backend servers are performing, how many
sessions they are handling, whether HAProxy has marked them up or down, and so on.

There's more…
If you want to add more backends to handle increased demand, just add more server lines
to haproxy.cfg. If you find that the existing servers are getting swamped, try decreasing the
per-server maxconn setting a little. HAProxy has a vast range of configuration parameters that
you can explore: see the HAProxy documentation at http://haproxy.1wt.eu/#docs.

If you need SSL capabilities, you can put Nginx in front of HAProxy to handle this.

Although it's most often used as a web server, HAProxy can proxy a lot more than just HTTP.
It can handle any TCP traffic, so you can use it to load-balance MySQL servers, SMTP, video
servers, or anything you like.

Managing firewalls with iptables

"Programming can be fun, so can cryptography; however they should not be
combined."—Kreitzberg and Shneiderman

The programming language C has been described as a 'write-only' language; it's so terse and
efficient that it can be difficult to understand even code that you've written yourself. The same
might be said of iptables, the Linux kernel's built-in packet filtering firewall. Raw iptables
rules look something like this:

iptables -A INPUT -d 10.0.2.15/32 -p tcp -m tcp --dport 80 -j ACCEPT

Unless you derive a sense of machismo from mastering apparently meaningless strings of line
noise, which admittedly is an occupational disease of UNIX sysadmins, it would be nice to be
able to express firewall rules in a more symbolic and readable way. Puppet can help, because
we can use it to abstract away some of the implementation detail of iptables and define
firewall rules by reference to the services they control:

iptables::role { "web-server": }

Chapter 8

223

Getting ready…
You will need the append_if_no_such_line utility function we created in the section,
Making quick edits to config files in Chapter 5.

How to do it…
1.	 Create an iptables module:

mkdir /etc/puppet/modules/iptables

mkdir /etc/puppet/modules/iptables/manifests

mkdir /etc/puppet/modules/iptables/files

2.	 Create the file /etc/puppet/modules/iptables/manifests/init.pp with
the following contents:
class iptables {
 file { ["/root/iptables",
 "/root/iptables/hosts",
 "/root/iptables/roles"]:
 ensure => directory,
 }

 file { "/root/iptables/roles/common":
 source => "puppet:///modules/iptables/common.role",
 notify => Exec["run-iptables"],
 }

 file { "/root/iptables/names":
 source => "puppet:///modules/iptables/names",
 notify => Exec["run-iptables"],
 }

 file { "/root/iptables/iptables.sh":
 source => "puppet:///modules/iptables/iptables.sh",
 mode => "755",
 notify => Exec["run-iptables"],
 }

 file { "/root/iptables/hosts/${hostname}":
 content => "export MAIN_IP=${ipaddress}\n",
 replace => false,
 require => File["/root/iptables/hosts"],
 notify => Exec["run-iptables"],
 }

Servers and Cloud Infrastructure

224

 exec { "run-iptables":
 cwd => "/root/iptables",
 command => "/usr/bin/test -f hosts/${hostname} && /
 root/iptables/iptables.sh && /sbin/iptables-save >/etc/
 iptables.rules",
 refreshonly => true,
 }

 append_if_no_such_line { "restore iptables rules":
 file => "/etc/network/interfaces",
 line => "pre-up iptables-restore < /etc/iptables.rules",
 }

 define role() {
 include iptables

 file { "/root/iptables/roles/${name}":
 source => "puppet:///modules/iptables/${name}.role",
 replace => false,
 require => File["/root/iptables/roles"],
 notify => Exec["run-iptables"],
 }

 append_if_no_such_line { "${name} role":
 file => "/root/iptables/hosts/${hostname}",
 line => ". `dirname \$0`/roles/${name}",
 require => File["/root/iptables/hosts/${hostname}"],
 notify => Exec["run-iptables"],
 }
 }
}

3.	 Create the file /etc/puppet/modules/iptables/files/iptables.sh with the
following contents:
Server names and ports
. `dirname $0`/names

Interfaces (override in host-specific file if necessary)
export EXT_INTERFACE=eth0

Flush and remove all chains
iptables -P INPUT ACCEPT
iptables -P OUTPUT ACCEPT
iptables -F
iptables -X

Chapter 8

225

Allow all traffic on loopback interface
iptables -I INPUT 1 -i lo -j ACCEPT
iptables -I OUTPUT 1 -o lo -j ACCEPT

Allow established and related connections
iptables -I INPUT 2 -m state --state ESTABLISHED,RELATED -j ACCEPT
iptables -I OUTPUT 2 -m state --state ESTABLISHED,RELATED -j
ACCEPT

Include machine specific settings
HOST_RULES=`dirname $0`/hosts/`hostname -s`
[-f ${HOST_RULES}] && . ${HOST_RULES}
["${MAIN_IP}" == ""] && (echo No MAIN_IP was set, please set
the primary IP address in ${HOST_RULES}. ; exit 1)

Include common settings
. `dirname $0`/roles/common

Drop all non-matching packets
iptables -A INPUT -j LOG --log-prefix "INPUT: "
iptables -A INPUT -j DROP
iptables -A OUTPUT -j LOG --log-prefix "OUTPUT: "
iptables -A OUTPUT -j DROP

echo -e "Test remote login and then:\n iptables-save >/etc/
iptables.rules"

4.	 Create the file /etc/puppet/modules/iptables/files/names with
the following contents:
Servers
export PUPPETMASTER=10.0.2.15

Well-known ports
export DNS=53
export FTP=21
export GIT=9418
export HEARTBEAT=694
export IMAPS=993
export IRC=6667
export MONIT=2828
export MYSQL=3306
export MYSQL_MASTER=3307
export NRPE=5666
export NTP=123
export POSTGRES=5432
export PUPPET=8140

Servers and Cloud Infrastructure

226

export RSYNCD=873
export SMTP=25
export SPHINX=3312
export SSH=22
export STARLING=3307
export SYSLOG=514
export WEB=80
export WEB_SSL=443
export ZABBIX=10051

5.	 Create the file /etc/puppet/modules/iptables/files/common.role with
the following contents:
Common rules for all hosts
iptables -A INPUT -p tcp -m tcp -d ${MAIN_IP} --dport ${SSH} -j
ACCEPT

iptables -A INPUT -p ICMP --icmp-type echo-request -j ACCEPT
iptables -A OUTPUT -p ICMP --icmp-type echo-request -j ACCEPT

iptables -A OUTPUT -p tcp --dport ${SSH} -j ACCEPT
iptables -A OUTPUT -p tcp --dport ${SMTP} -j ACCEPT
iptables -A OUTPUT -p udp --dport ${NTP} -j ACCEPT
iptables -A OUTPUT -p tcp --dport ${NTP} -j ACCEPT
iptables -A OUTPUT -p udp --dport ${DNS} -j ACCEPT
iptables -A OUTPUT -p tcp --dport ${WEB} -j ACCEPT
iptables -A OUTPUT -p tcp --dport ${WEB_SSL} -j ACCEPT
iptables -A OUTPUT -p tcp -d ${PUPPETMASTER} --dport ${PUPPET} -j
ACCEPT
iptables -A OUTPUT -p tcp --dport ${MYSQL} -j ACCEPT

Drop some commonly probed ports
iptables -A INPUT -p tcp --dport 23 -j DROP # telnet
iptables -A INPUT -p tcp --dport 135 -j DROP # epmap
iptables -A INPUT -p tcp --dport 139 -j DROP # netbios
iptables -A INPUT -p tcp --dport 445 -j DROP # Microsoft DS
iptables -A INPUT -p udp --dport 1433 -j DROP # SQL server
iptables -A INPUT -p tcp --dport 1433 -j DROP # SQL server
iptables -A INPUT -p udp --dport 1434 -j DROP # SQL server
iptables -A INPUT -p tcp --dport 1434 -j DROP # SQL server
iptables -A INPUT -p tcp --dport 2967 -j DROP # SSC-agent

Chapter 8

227

6.	 Create the file /etc/puppet/modules/iptables/files/web-server.role
with the following contents:
Access to web
iptables -A INPUT -p tcp -d ${MAIN_IP} --dport ${WEB} -j ACCEPT

Send mail from web applications
iptables -A OUTPUT -p tcp --dport ${SMTP} -j ACCEPT

7.	 Create the file /etc/puppet/modules/iptables/files/puppet-server.
role with the following contents:
Access to puppet
iptables -A INPUT -p tcp -d ${MAIN_IP} --dport ${PUPPET} -j ACCEPT

8.	 Include the following on your Puppetmaster node:
iptables::role { "web-server": }
iptables::role { "puppet-server": }

9.	 Run Puppet:
puppet agent --test

info: Retrieving plugin

info: Caching catalog for cookbook.bitfieldconsulting.com

info: Applying configuration version '1311682880'

notice: /Stage[main]/Iptables/File[/root/iptables]/ensure: created

notice: /Stage[main]/Iptables/File[/root/iptables/names]/ensure:
defined content as '{md5}9bb004a7d2c6d70616b149d044c22669'

info: /Stage[main]/Iptables/File[/root/iptables/names]: Scheduling
refresh of Exec[run-iptables]

notice: /Stage[main]/Iptables/File[/root/iptables/hosts]/ensure:
created

notice: /Stage[main]/Iptables/File[/root/iptables/hosts/cookbook]/
ensure: defined content as '{md5}d00bc730514bbb74cdef3dad70058a81'

info: /Stage[main]/Iptables/File[/root/iptables/hosts/cookbook]:
Scheduling refresh of Exec[run-iptables]

notice: /Stage[main]//Node[cookbook]/Iptables::Role[web-server]/
Append_if_no_such_line[web-server role]/Exec[/bin/echo '. `dirname
$0`/roles/web-server' >> '/root/iptables/hosts/cookbook']/returns:
executed successfully

info: /Stage[main]//Node[cookbook]/Iptables::Role[web-server]/
Append_if_no_such_line[web-server role]/Exec[/bin/echo '. `dirname
$0`/roles/web-server' >> '/root/iptables/hosts/cookbook']:
Scheduling refresh of Exec[run-iptables]

notice: /Stage[main]//Node[cookbook]/Iptables::Role[puppet-
server]/Append_if_no_such_line[puppet-server role]/Exec[/bin/echo

Servers and Cloud Infrastructure

228

'. `dirname $0`/roles/puppet-server' >> '/root/iptables/hosts/
cookbook']/returns: executed successfully

info: /Stage[main]//Node[cookbook]/Iptables::Role[puppet-server]/
Append_if_no_such_line[puppet-server role]/Exec[/bin/echo '.
`dirname $0`/roles/puppet-server' >> '/root/iptables/hosts/
cookbook']: Scheduling refresh of Exec[run-iptables]

notice: /Stage[main]/Iptables/File[/root/iptables/roles]/ensure:
created

notice: /Stage[main]//Node[cookbook]/Iptables::Role[puppet-
server]/File[/root/iptables/roles/puppet-server]/ensure: defined
content as '{md5}c30a13f7792525c181e14e78c9a510cd'

info: /Stage[main]//Node[cookbook]/Iptables::Role[puppet-server]/
File[/root/iptables/roles/puppet-server]: Scheduling refresh of
Exec[run-iptables]

notice: /Stage[main]//Node[cookbook]/Iptables::Role[web-server]/
File[/root/iptables/roles/web-server]/ensure: defined content as
'{md5}11e5747cb2737903ffc34133f5fe2452'

info: /Stage[main]//Node[cookbook]/Iptables::Role[web-server]/
File[/root/iptables/roles/web-server]: Scheduling refresh of
Exec[run-iptables]

notice: /Stage[main]/Iptables/File[/root/iptables/roles/common]/
ensure: defined content as '{md5}116f57d4e31f3e0b351da6679dca15e3'

info: /Stage[main]/Iptables/File[/root/iptables/roles/common]:
Scheduling refresh of Exec[run-iptables]

notice: /Stage[main]/Iptables/File[/root/iptables/iptables.sh]/
ensure: defined content as '{md5}340ff9fb5945e9fc7dd78b21f45dd823'

info: /Stage[main]/Iptables/File[/root/iptables/iptables.sh]:
Scheduling refresh of Exec[run-iptables]

notice: /Stage[main]/Iptables/Exec[run-iptables]: Triggered
'refresh' from 8 events

notice: /Stage[main]/Iptables/Append_if_no_such_line[restore
iptables rules]/Exec[/bin/echo 'pre-up iptables-restore < /etc/
iptables.rules' >> '/etc/network/interfaces']/returns: executed
successfully

notice: Finished catalog run in 4.86 seconds

10.	 Check that the required rules have been installed as follows:
iptables -nL
Chain INPUT (policy ACCEPT)
target prot opt source destination
ACCEPT all -- 0.0.0.0/0 0.0.0.0/0
ACCEPT all -- 0.0.0.0/0 0.0.0.0/0 state
RELATED,ESTABLISHED

Chapter 8

229

ACCEPT tcp -- 0.0.0.0/0 10.0.2.15 tcp
dpt:80
ACCEPT tcp -- 0.0.0.0/0 10.0.2.15 tcp
dpt:8140
ACCEPT tcp -- 0.0.0.0/0 10.0.2.15 tcp
dpt:22
ACCEPT icmp -- 0.0.0.0/0 0.0.0.0/0 icmp
type 8
DROP tcp -- 0.0.0.0/0 0.0.0.0/0 tcp
dpt:23
DROP tcp -- 0.0.0.0/0 0.0.0.0/0 tcp
dpt:135
DROP tcp -- 0.0.0.0/0 0.0.0.0/0 tcp
dpt:139
DROP tcp -- 0.0.0.0/0 0.0.0.0/0 tcp
dpt:445
DROP udp -- 0.0.0.0/0 0.0.0.0/0 udp
dpt:1433
DROP tcp -- 0.0.0.0/0 0.0.0.0/0 tcp
dpt:1433
DROP udp -- 0.0.0.0/0 0.0.0.0/0 udp
dpt:1434
DROP tcp -- 0.0.0.0/0 0.0.0.0/0 tcp
dpt:1434
DROP tcp -- 0.0.0.0/0 0.0.0.0/0 tcp
dpt:2967
LOG all -- 0.0.0.0/0 0.0.0.0/0 LOG
flags 0 level 4 prefix `INPUT: '
DROP all -- 0.0.0.0/0 0.0.0.0/0

Chain FORWARD (policy ACCEPT)
target prot opt source destination

Chain OUTPUT (policy ACCEPT)
target prot opt source destination
ACCEPT all -- 0.0.0.0/0 0.0.0.0/0
ACCEPT all -- 0.0.0.0/0 0.0.0.0/0 state
RELATED,ESTABLISHED
ACCEPT tcp -- 0.0.0.0/0 0.0.0.0/0 tcp
dpt:25
ACCEPT icmp -- 0.0.0.0/0 0.0.0.0/0 icmp
type 8
ACCEPT tcp -- 0.0.0.0/0 0.0.0.0/0 tcp
dpt:22
ACCEPT tcp -- 0.0.0.0/0 0.0.0.0/0 tcp
dpt:25

Servers and Cloud Infrastructure

230

ACCEPT udp -- 0.0.0.0/0 0.0.0.0/0 udp
dpt:123
ACCEPT tcp -- 0.0.0.0/0 0.0.0.0/0 tcp
dpt:123
ACCEPT udp -- 0.0.0.0/0 0.0.0.0/0 udp
dpt:53
ACCEPT tcp -- 0.0.0.0/0 0.0.0.0/0 tcp
dpt:80
ACCEPT tcp -- 0.0.0.0/0 0.0.0.0/0 tcp
dpt:443
ACCEPT tcp -- 0.0.0.0/0 10.0.2.15 tcp
dpt:8140
ACCEPT tcp -- 0.0.0.0/0 0.0.0.0/0 tcp
dpt:3306
LOG all -- 0.0.0.0/0 0.0.0.0/0 LOG
flags 0 level 4 prefix `OUTPUT: '
DROP all -- 0.0.0.0/0 0.0.0.0/0

How it works…
In order to create a suitable set of firewall rules, we need to know the main IP address of the
machine in question, and also what services it is running. We also want to add some common
rules that all machines will have (allow SSH, for example), and to run a series of iptables
commands that will activate the rules we've generated. Having done this, we want to save the
rules so that they can be reactivated at boot time. So here's how it's all done.

First, we create a names file that defines shell variables for some commonly-used ports. This
means when we define firewall rules we can refer to a named variable like ${MYSQL} instead
of the numeric value 3306 for the MySQL port.

The common.role file contains some useful rules for all machines. Modify these to suit your
own installation (for example, you might allow SSH access only from specific IP ranges).

The web-server.role and puppet-server.role files contain rules for these specific
roles. Add more files to define the roles you need on your network: for example, database
servers, application workers, DNS servers, and so on. The rules are in the following format:

iptables -A INPUT -p tcp -d ${MAIN_IP} --dport ${WEB} -j ACCEPT

Usually, the only part you need to modify is the ${WEB}: substitute another named port such
as ${POSTGRES}, defined in the names file. Add more definitions to the names file if you
need them.

The iptables.sh script reads all of these other files and executes the required iptables
commands. Puppet executes this script whenever any of the dependent files change, so all
you need to do to refresh the firewall is to check in a change and run Puppet.

Chapter 8

231

Puppet also saves the current ruleset to /etc/iptables.rules. In order to reload the
ruleset when the machine boots, Puppet adds a line to the /etc/network/interfaces
file to do this:

pre-up iptables-restore < /etc/iptables.rules

What all this means is that you can create a suitable firewall for a machine simply by including
a line like this in the relevant module:

iptables::role { "web-server": }

Once the firewall is activated, any packets that don't match the rules will be blocked and logged
in /var/log/messages. Check this file to help troubleshoot any problems with the firewall.

There's more…
If you have certain specific machines that will be referenced in your rules (for example, your
monitoring server) you can add it to the names file like this:

MONITOR=10.0.2.15

Then in a suitable place (such as common.role) you can allow access from this machine to,
for example, the NRPE port:

iptables -A INPUT -p tcp -m tcp -d ${MAIN_IP} -s ${MONITOR} --dport
${NRPE} -j ACCEPT

You can also do this for database servers and anything else where you need to reference a
specific address, network, or IP range in a .role file.

Dynamically generating the firewall ruleset like this can be very useful for cloud infrastructures
where the list of servers is constantly changing as new ones are created and destroyed. All
you need to do to have any resource trigger a firewall rebuild is to add:

notify => Exec["run-iptables"],

So you might have a "master server list" that you maintain in version control or update
automatically from a cloud API such as Rackspace or Amazon EC2. This list might be a file
resource in Puppet that can trigger a firewall rebuild, so every time you check in a change
to the master list, every machine that runs Puppet will update its firewall accordingly.

Of course, such a high degree of automation means that you need to be quite careful about
what you check in, or you can take your whole infrastructure offline by mistake.

A good way to test changes is to use a Git branch for your Puppet manifests, which is only
applied on one or two servers. Once you have verified that the changes are good you can
merge them into the master branch and roll them out.

Servers and Cloud Infrastructure

232

Managing EC2 instances

"The most amazing achievement of the computer software industry is its continuing
cancellation of the steady and staggering gains made by the computer hardware
industry."—Henry Petroski

If you think your computer's gotten slower in recent years, you're probably right. For many
applications, you can no longer squeeze all the computing power you need into a single beige
box under your desk. To address this issue, computing power has become a commodity you
can buy online.

Amazon doesn't just sell books anymore: they also sell jewelry, motorcycles, leaf blowers, and
more usefully for our present purposes, computing power. You can sign up for Amazon Web
Services with a credit card and proceed to create as many server instances as you like, for
which you pay by the hour. If you just want to test the water, you can run a Micro instance for
up to a year for free. If you're looking at moving some parts of your infrastructure into public
cloud, this is a great way to experiment.

This recipe will show you a simple way to provision an EC2 instance automatically and build
it with Puppet. Although there are more powerful ways to do this, including using MCollective,
for teaching purposes we're going to do the bare minimum necessary to get an instance
running and apply a Puppet manifest to it. You can use this as a foundation for adding your
own refinements and improvements once you've got the basic idea.

Getting ready…
You'll need an Amazon Web Services (AWS) account if you don't already have one. You can
sign up here: http://aws-portal.amazon.com/gp/aws/developer/subscription/
index.html?productCode=AmazonEC2.

You'll need the AWS access key ID and secret access key corresponding to your account. You
can find these on this page: http://aws-portal.amazon.com/gp/aws/developer/
account/index.html?action=access-key.

You'll also need your SSH Keypair for accessing EC2 instances. To find this, log in to the AWS
Management Console at https://console.aws.amazon.com/ec2/home.

Select the Amazon EC2 tab, and click Key Pairs under the Network & Security heading in the
navigation section.

Click Create key pair and then download the keypair file when prompted. Save this
somewhere safe, and set the file permissions to mode 0600 as follows:

chmod 600 bitfield.pem

Chapter 8

233

How to do it…
1.	 Create a fog module:

mkdir /etc/puppet/modules/fog

mkdir /etc/puppet/modules/fog/manifests

mkdir /etc/puppet/modules/fog/files

2.	 Create the file /etc/puppet/modules/fog/manifests/init.pp with the
following contents:
class fog {
 package { "fog":
 ensure => installed,
 provider => gem,
 }

 file { "/usr/local/etc/fog_credentials":
 source => "puppet:///modules/fog/fog_credentials",
 }

 file { "/usr/local/bin/boot-ec2":
 source => "puppet:///modules/fog/boot-ec2.rb",
 mode => "755",
 }

 file { "/usr/local/bin/bootstrap-ec2":
 source => "puppet:///modules/fog/bootstrap-ec2.sh",
 mode => "755",
 }
}

3.	 Create the file /etc/puppet/modules/fog/files/boot-ec2.rb with the
following contents (change the :private_key_path argument to point to your
own AWS private key file):
#!/usr/bin/ruby
require 'rubygems'
require 'fog'

HOSTNAME = 'devbox'
@server = ''
Fog.credentials_path = '/usr/local/etc/fog_credentials'

def command(cmdline)
 puts "Running command: #{cmdline}"
 res = @server.ssh("sudo #{cmdline}")[0]

Servers and Cloud Infrastructure

234

 puts res.stdout
 puts res.stderr
end

def create()
 puts "Bootstrapping instance..."
 connection = Fog::Compute.new({ :provider => 'AWS' })
 @server = connection.servers.bootstrap(:key_name =>
 'bitfield',
 :private_key_path =>
 '~/bitfield.pem',
 :username => 'ubuntu')
 @server.wait_for { ready? }
 @server.reload
 puts "Instance name: #{@server.dns_name}"
 puts "Setting hostname..."
 @server.ssh("sudo hostname #{HOSTNAME}")
end

def copy_bootstrap_files()
 puts "Copying bootstrap files..."
 @server.scp("puppet.tar.gz", "/tmp")
 @server.scp("/usr/local/bin/bootstrap-ec2", "/tmp")
end

def bootstrap()
 puts "Bootstrapping..."
 command("sudo sh /tmp/bootstrap-ec2")
end

create()
copy_bootstrap_files()
bootstrap()

4.	 Create the file /etc/puppet/modules/fog/files/bootstrap-ec2.sh with the
following contents:
#!/bin/bash
apt-get update
apt-get -y install puppet
apt-get -y install git-core
cd /root
tar xzf /tmp/puppet.tar.gz
puppet --modulepath=/root/puppet/modules /root/puppet/manifests/
site.pp

Chapter 8

235

5.	 Create the file /etc/puppet/modules/fog/files/fog_credentials with the
following contents (replace with your own AWS credentials):
:default:
 :aws_access_key_id: AKIAI5RGMC3QRPO3AJWR
 :aws_secret_access_key: iygf2+7SfKV/OlEyrh+otazeVin9G3XXrvJYKx8E

6.	 Add the following node definition, which will be applied to the EC2 instance:
node devbox {
 file { "/etc/motd":
 content => "Puppet power!\n",
 }
}

7.	 Add the following to a node:
include fog

8.	 Run Puppet:
puppet agent --test

info: Retrieving plugin

info: Caching catalog for cookbook.bitfieldconsulting.com

info: Applying configuration version '1313160844'

notice: /Stage[main]/Fog/Package[fog]/ensure: ensure changed
'purged' to 'present'

notice: /Stage[main]/Fog/File[/usr/local/bin/bootstrap-ec2]/
ensure: defined content as '{md5}5bc2ffb3b5aa94b33b17d419625ecbab'

notice: /Stage[main]/Fog/File[/usr/local/bin/boot-ec2]/ensure:
defined content as '{md5}dadc835c6e52c89cb928d60db7677713'

notice: /Stage[main]/Fog/File[/usr/local/etc/fog_credentials]/
ensure: defined content as '{md5}3b140aedac170bbfcc2837077e03bb93'

notice: Finished catalog run in 1.67 seconds

9.	 Create a Puppet tarball in your working directory for distribution to the EC2 instance.
The simplest way to do this is to tar up your existing Puppet repo or checkout:
cd /etc

tar czf /tmp/puppet.tar.gz --exclude .git puppet

cd -

mv /tmp/puppet.tar.gz .

10.	 Run the boot-ec2 script:
boot-ec2

Bootstrapping instance...

Instance name: ec2-107-20-59-174.compute-1.amazonaws.com

Servers and Cloud Infrastructure

236

Setting hostname...

Copying bootstrap files...

Bootstrapping...

Running command: sudo sh /tmp/bootstrap.sh

sudo: unable to resolve host devbox

sudo: unable to resolve host devbox

...

notice: //Node[devbox]/File[/etc/motd]/content: defined content as
'unknown checksum'

11.	 Log in to the instance to check your manifest has been applied properly:
ssh -i bitfield.pem ubuntu@ec2-107-20-59-174.compute-1.
amazonaws.com

Puppet power!

ubuntu@devbox:~$

12.	 You've got a Puppet-controlled cloud server! If you want ten more instances, run the
script ten more times. Don't forget to shut your instances down after you're finished
using them. You can do this from the AWS Management Console.

How it works…
Fog is a Ruby library for managing cloud resources, including EC2 and other providers such
as Rackspace. Although you can use Amazon's own ec2-tools scripts to start and manage
instances, using Fog makes it much easier to move your instances to another provider,
and you don't need to install Java or other dependencies for ec2-tools. Having built EC2
infrastructure both ways, I can confidently say that I prefer using Fog, despite the fact that it
has almost no documentation (Amazon actually has too much).

In the boot-ec2 script, we've used Fog to create a new EC2 instance using our credentials,
and to transfer a copy of the Puppet manifest onto it. We then copy the bootstrap-ec2
script which installs Puppet and applies the manifest.

In this example, the manifest is pretty simple:

file { "/etc/motd":
 content => "Puppet power!\n",
}

You can easily change it to be, for example, the same as for your production app server. This
would be a good way of quickly deploying a large pool of app servers behind a physical load
balancer, for example, to handle a sudden spike in demand. Alternatively, you can use EC2
instances as test or staging servers—it's up to you.

Chapter 8

237

There's more...
There's no limit to the number of instances you can deploy with EC2—except perhaps the
limit imposed by your credit card. So you could try modifying the script shown here to start
a number of instances, set by a command-line argument.

You might also want different types of instances—web servers and queue worker servers,
for example. You could modify the boot script to take an argument specifying the instance
type to start.

The script shown here has an important limitation in that it supplies the instance with a
snapshot of your Puppet manifest, in the form of a tarball. Obviously, as you make changes to
your Puppet manifest, that won't be reflected on the instance. For the purposes of simplicity,
the example in this recipe just uses Puppet to build the server initially; and it doesn't run the
Puppet daemon or connect to a Puppetmaster server.

This is often fine for EC2 instances that are short-lived and only spun up for specific purposes.
If you need servers that run for a longer time or you need to be able to push changes out to
them with Puppet, you'll need to modify the script to have the instance contact your Puppet
server. To solve the problem of signing certificates, you might pre-generate the certificate and
deploy it to the instance along with the bootstrap script, for example. Alternatively, you could
have the script log in to your Puppet server and sign the instance's certificate request via SSH
or MCollective. The mechanism can be as simple or as sophisticated as you like.

You might also want to be able to use other cloud providers, such as Rackspace or
Linode. To do this, you will need to make small modifications to the script. Consult the Fog
documentation for more information on this at http://fog.io.

You can also use Puppet's new Cloud Provisioner extension to manage
your EC2 instances; for more on this see the Puppet Labs page at
http://docs.puppetlabs.com/guides/cloud_pack_
getting_started.html.

See also
ff Managing virtual machines with Vagrant in this chapter

Servers and Cloud Infrastructure

238

Managing virtual machines with Vagrant

"In 1974 computers were oppressive devices in far-off air-conditioned places. Now
you can be oppressed in your own living room."—Ted Nelson

While it's great to be able to deploy virtual machines in the cloud, running them on your own
desktop is sometimes even more convenient, especially for testing. If every developer can
have a clone of the production system in a VM on her own machine, she's less likely to run
into problems when deploying for real. Similarly, if every sysadmin can test his configuration
management changes on a private VM, it's a great way to catch issues before they affect
customers.

For some years tools like VirtualBox and VMware have been available to do this. However,
desktop cloud has really taken off with the arrival of Vagrant, a tool for managing and
provisioning VM environments automatically. Vagrant drives VirtualBox to automate the
process of creating a VM, provisioning it with Chef or Puppet, setting up networking, port
forwarding, and packaging running VMs into images for others to use.

You can use Vagrant to manage your development VMs on your own desktop, or on a shared
machine such as a continuous integration server. For example, you might use a CI tool such
as Jenkins to boot a VM with Vagrant, deploy your app, and then run your tests against it as
though it were in production.

How to do it…
1.	 Create a vagrant module:

mkdir /etc/puppet/modules/vagrant

mkdir /etc/puppet/modules/vagrant/manifests

mkdir /etc/puppet/modules/vagrant/files

2.	 Create the file /etc/puppet/modules/vagrant/manifests/init.pp with
the following contents:
class vagrant {
 $virtualbox_deps = ["libgl1-mesa-glx",
 "libqt4-network",
 "libqt4-opengl",
 "libqtcore4",
 "libqtgui4",
 "libsdl1.2debian",
 "libxmu6",
 "libxt6",
 "gawk",
 "linux-headers-${kernelrelease}"]

Chapter 8

239

 package { $virtualbox_deps: ensure => installed }

 exec { "download-virtualbox":
 cwd => "/root",
 command => "/usr/bin/wget http://download.virtualbox.org/
 virtualbox/4.1.0/virtualbox-4.1_4.1.0-73009~Ubuntu~lucid_
 i386.deb",
 creates => "/root/virtualbox-4.1_4.1.0-73009~Ubuntu~lucid_
 i386.deb",
 timeout => "-1",
 }

 exec { "install-virtualbox":
 command => "/usr/bin/dpkg -i /root/virtualbox-4.1_4.1.0-
 73009~Ubuntu~lucid_i386.deb",
 unless => "/usr/bin/dpkg -l |/bin/grep virtualbox-4.1",
 require => [Exec["download-virtualbox"],
 Package[$virtualbox_deps]],
 }

 $vagrant_deps = ["build-essential",
 "rubygems"]

 package { $vagrant_deps: ensure => installed }

 exec { "install-rubygems-update":
 command => "/usr/bin/gem install -v 1.8.6 rubygems-
 update",
 unless => "/usr/bin/gem -v |/bin/grep 1.8.6",
 require => Package["rubygems"],
 }

 exec { "run-rubygems-update":
 command => "/var/lib/gems/1.8/bin/update_rubygems",
 unless => "/usr/bin/gem -v |/bin/grep 1.8.6",
 require => Exec["install-rubygems-update"],
 }

 package { "vagrant":
 provider => gem,
 ensure => installed,
 require => [Package["build-essential"], Exec["run-
 rubygems-update"]],
 }

 define devbox($vm_user) {
 include vagrant

 $vm_dir = "/home/${vm_user}/${name}"

 file { [$vm_dir,

Servers and Cloud Infrastructure

240

 "${vm_dir}/data"]:
 ensure => directory,
 owner => $vm_user,
 }

 file { "${vm_dir}/Vagrantfile":
 source => "puppet:///modules/vagrant/devbox.
 Vagrantfile",
 require => File[$vm_dir],
 }
 }
}

3.	 Create the file /etc/puppet/modules/vagrant/files/devbox.Vagrantfile
with the following contents:
Vagrant::Config.run do |config|
 config.vm.box = "lucid32"
 config.vm.box_url = "http://files.vagrantup.com/lucid32.box"
 config.vm.forward_port "http", 80, 8080
 config.vm.share_folder "v-data", "/vagrant_data", "./data"

 config.vm.customize do |vm|
 vm.name = "devbox"
 end

 config.vm.provision :puppet,:module_path => "puppet/modules-0"
 do |puppet|
 puppet.manifests_path = "puppet/manifests"
 puppet.manifest_file = "site.pp"
 end
end

4.	 Include the following on the node where you want to run the VM (replace john with
your own username).
vagrant::devbox { "devbox":
 vm_user => "john",
}

5.	 Add a node definition for devbox:
node devbox {
 group { "puppet": ensure => present }

 file { "/etc/motd":
 content => "Puppet power!\n",
 }
}

Chapter 8

241

6.	 Run Puppet:
puppet agent --test

7.	 You should find a directory devbox created in your home directory. In this directory,
either check out your Puppet repository to a directory named puppet, or make a
symlink to an existing Puppet checkout:
cd ~/devbox

git clone git@github.com:Example/Puppet.git puppet

or

ln -s /etc/puppet ~/devbox/puppet

8.	 In the devbox directory, run the following command line:
vagrant up

[default] Box lucid32 was not found. Fetching box from specified
URL...

[default] Downloading with Vagrant::Downloaders::HTTP...

[default] Downloading box: http://files.vagrantup.com/lucid32.box

[default] Extracting box...

[default] Verifying box...

[default] Cleaning up downloaded box...

[default] Importing base box 'lucid32'...

[default] Matching MAC address for NAT networking...

[default] Clearing any previously set forwarded ports...

[default] Forwarding ports...

[default] -- http: 80 => 8080 (adapter 1)

[default] -- ssh: 22 => 2222 (adapter 1)

[default] Creating shared folders metadata...

[default] Running any VM customizations...

[default] Booting VM...

[default] Waiting for VM to boot. This can take a few minutes.

[default] VM booted and ready for use!

[default] Mounting shared folders...

[default] -- v-root: /vagrant

[default] -- v-data: /vagrant_data

[default] -- manifests: /tmp/vagrant-puppet/manifests

[default] Running provisioner: Vagrant::Provisioners::Puppet...

[default] Running Puppet with site.pp...

Servers and Cloud Infrastructure

242

[default] stdin: is not a tty

[default] notice: /Stage[main]//Node[devbox]/File[/etc/motd]/
ensure: defined content as '{md5}0bdeca690dbb409d48391f3772d389b7'

[default]

[default] notice: /Group[puppet]/ensure: created

[default]

[default] notice: Finished catalog run in 0.36 seconds

[default]

Log into the devbox VM to test it:
vagrant ssh

Puppet power!

Last login: Thu Jul 21 13:07:53 2011 from 10.0.2.2

vagrant@devbox:~$ logout

Connection to 127.0.0.1 closed.

How it works…
The vagrant class installs Vagrant and VirtualBox and all their dependencies. It also makes
the devbox define available. You can then use it to create multiple devbox instances for
multiple users on a machine. An instance of devbox such as:

vagrant::devbox { "app-foo-devbox":
 vm_user => "john",
}

will create a Vagrant project directory named app-foo-devbox (a directory containing a
Vagrantfile that specifies a virtual machine definition) in the user's (in this case john)
home directory.

When Vagrant boots the VM for the first time, it's configured to look in a subdirectory of the
project directory named puppet for the Puppet manifest to provision the machine. This
can be a symlink to your Puppet working copy, or a standalone Puppet manifest just for the
devbox—whatever you like, so long as Vagrant can find it.

Once the VM has been provisioned, it's ready for use. Just run vagrant up to start the
machine, vagrant ssh to log into it, and vagrant halt to stop it.

By the way, the puppet group resource in the node definition is there to work around a bug
in Vagrant's Puppet provisioning that may be fixed by the time you read this. Vagrant is under
active development so one or two things may not work exactly as they do here: if in doubt,
check the documentation link at the end of this recipe.

Chapter 8

243

You may find that the VM does not boot fully sometimes, and Vagrant just times out waiting
for it. This seems to be due to a bug that may be fixed by the time you read this. If not, you can
work around the problem by adding the following code snippet to the Vagrantfile:

config.vm.boot_mode = :gui

and restarting the VM. It will now boot in GUI mode, with a console window. Log in via this
window as user vagrant, with password vagrant, and run the following command:

sudo /etc/init.d/networking restart

You should find that Vagrant now completes the provisioning phase and that vagrant ssh
will work.

There's more…
In this example we just configured devbox with a simple manifest that adds a message to the
/etc/motd file. To make this more useful, have devbox pick up the same manifest as the
real server you'll be deploying to. For example:

node production, devbox {
 include myapp::production
}

Thus, any changes you make to the production server config will be reflected in the machine
you run your tests on, so that you can pick up problems before deploying. Similarly, if you
need to make a config change to support a new feature, you can test it on the VM first to see
if anything doesn't work.

If you want to suspend or shut down your VM while you're not using it, run:

vagrant suspend

or

vagrant halt

To wipe the VM completely, so that you can test re-provisioning it, for example, run:

vagrant destroy

The Vagrant maintainers have done a great job of making it very straightforward to
use, but you can read more about Vagrant if you need to at the documentation site:
http://vagrantup.com/docs/index.html.

9
External Tools and

the Puppet Ecosystem

"Unix is the answer, but only if you phrase the question very carefully."—Belinda Asbell

In this chapter we will cover the following topics:

ff Creating custom Facter facts

ff Executing commands before and after Puppet runs

ff Generating manifests from shell sessions

ff Generating manifests from a running system

ff Using Puppet Dashboard

ff Using Foreman

ff Using MCollective

ff Using public modules

ff Using an external node classifier

ff Creating your own resource types

ff Creating your own providers

Puppet is a useful tool by itself, but you can get much greater benefits from using Puppet in
combination with other tools and frameworks. We'll look at some of these in this chapter,
from tools for getting data into Puppet - Facter, cft, and puppet resource—to tools for
managing and reporting the data that comes out of Puppet—Foreman and Puppet Dashboard.

External Tools and the Puppet Ecosystem

246

You'll also learn how to extend Puppet by creating your own custom resource types and
implementing them on different platforms, how to use an external node classifier script to
integrate Puppet with databases such as LDAP, how to use public modules from Puppet Forge,
and how Puppet plays with the systems management framework MCollective.

Creating custom Facter facts
While Facter's built-in facts are useful, it's actually quite easy to add your own facts. For
example, if you have machines in different data centers or hosting providers, you can add
a custom fact for this so that Puppet can determine if any local settings need to be applied
(for example, local DNS servers).

Getting ready...
1.	 Enable the pluginsync option in puppet.conf:

[main]
pluginsync = true

2.	 Create a directory for the fact. This should be called lib/facter, and placed in
a suitable module directory. For example, you might use the directory modules/
admin/lib/facter. Any custom facts you create can then be placed in this
directory and Puppet will sync them to clients.

How to do it…
1.	 Create a text file named hello.rb with the following contents:

Facter.add(:hello) do
 setcode do
 "Hello, world"
 end
end

2.	 Run Puppet on a client. This should sync the fact to the client machine:
puppet agent --test

info: Retrieving plugin

notice: /File[/var/lib/puppet/lib/facter/hello.rb]/ensure: defined
content as '{md5}7314e71d35db83b563a253e741121b1d'

Chapter 9

247

info: Loading downloaded plugin /var/lib/puppet/lib/facter/hello.rb

info: Loading facts in hello

info: Loading facts in hello

info: Loading facts in hello

info: Loading facts in hello

info: Connecting to sqlite3 database: /var/lib/puppet/state/
clientconfigs.sqlite3

info: Caching catalog for cookbook.bitfieldconsulting.com

info: Applying configuration version '1297258039'

notice: Finished catalog run in 0.57 seconds

3.	 Test the fact by running Facter directly as follows:
facter hello

Hello, world

4.	 Now you can reference the fact in a Puppet manifest:
notify { $hello: }

5.	 When you run Puppet, the value returned by the fact will be inserted as follows:
notice: Hello, world

How it works...
The built-in facts in Facter are defined in the same way as the custom fact that we just
created. This architecture makes it very easy to add or modify facts, and provides a standard
way for you to read information about the host into your Puppet manifests.

Facts can contain any Ruby code, and the last value evaluated inside the setcode do …
end block will be the value returned by the fact. For example, you could make a more useful
fact that returns the number of users currently logged in:

Facter.add(:users) do
 setcode do
 %x{/usr/bin/who |wc -l}.chomp
 end
end

The output is:

notice: 2 users logged in

External Tools and the Puppet Ecosystem

248

There's more...
You can extend the use of facts to build a completely 'nodeless' Puppet configuration: in other
words, Puppet can decide what resources to apply to a machine based solely on the results of
facts. Jordan Sissel has written about this approach at http://www.semicomplete.com/
blog/geekery/puppet-nodeless-configuration.html.

There are many examples of custom facts available on the web, including Cosimo Streppone's
article on deriving data-center location from IP addresses at http://my.opera.com/
cstrep/blog/puppet-custom-facts-and-master-less-puppet-deployment.

Executing commands before and after
Puppet runs

If you need to have a command executed before each Puppet run, you can do this using
the prerun_command configuration setting. Similarly, you can use postrun_command to
execute a command after the run has completed. This mechanism gives you a powerful hook
to integrate Puppet with other software, or even trigger events on other machines.

The prerun and postrun commands must succeed (that is, return a zero exit status), or
Puppet will report an error. This enables you to have any command failures reported using
Puppet's reporting mechanism, for example.

How to do it…
Set prerun_command or postrun_command in puppet.conf to the commands you want
to run:

prerun_command = /usr/local/bin/before-puppet-run.sh
postrun_command = /usr/local/bin/after-puppet-run.sh

There's more…
You can use prerun and postrun commands to integrate Puppet with Ubuntu's etckeeper
system. Etckeeper is a version control system for tracking changes to files in the /etc
directory. To do this, define these commands in puppet.conf:

prerun_command=/etc/puppet/etckeeper-commit-pre
postrun_command=/etc/puppet/etckeeper-commit-post

Chapter 9

249

Generating manifests from shell sessions

"I object to being called a chess genius, because I consider myself to be an all around
genius who just happens to play chess, which is rather different."—Bobby Fischer

We're not all geniuses. If you know exactly what needs to be done to install some application
or service, you can create the Puppet manifest right away. Often, though, you need to
experiment a little bit first, to find out what packages you need to install, what config files need
to be edited, and so on. You can record your shell session using the script command and
then work from the session file to develop the Puppet manifest, and this can be very helpful.

But wouldn't it be wonderful if there was a tool that could read your session file and generate
the Puppet manifest for you? It so happens that cft (pronounced 'sift') does just this. Once
you activate it, cft watches your shell session and remembers any packages you install, any
services that you configure, any files that you create or edit, and so on. When you're done, it
generates a complete Puppet manifest that will reproduce all the changes you just made.

Getting ready…
1.	 Currently full cft support is only available for Red Hat / CentOS distributions; a port

to Debian / Ubuntu is in progress, though, and should soon be completed. If you're
using Red Hat or CentOS, then, installation is easy:
yum install cft

2.	 For Debian / Ubuntu systems, follow the instructions here: http://fmtyewtk.
blogspot.com/2011/01/porting-cft-to-debian.html.

How to do it…
1.	 In this example we'll use cft to monitor the installation of the NTP package, and then

generate a manifest to do the same thing.
cft begin ntp

apt-get install ntp

Reading package lists... Done

Building dependency tree

Reading state information... Done

Suggested packages:

 ntp-doc

The following NEW packages will be installed:

 ntp

0 upgraded, 1 newly installed, 0 to remove and 385 not upgraded.

External Tools and the Puppet Ecosystem

250

Need to get 517kB of archives.

After this operation, 1,323kB of additional disk space will be
used.

Get:1 http://us.archive.ubuntu.com/ubuntu/ lucid/main ntp
1:4.2.4p8+dfsg-1ubuntu2 [517kB]

Fetched 517kB in 5s (101kB/s)

Selecting previously deselected package ntp.

(Reading database ... 135278 files and directories currently
installed.)

Unpacking ntp (from .../ntp_1%3a4.2.4p8+dfsg-1ubuntu2_i386.deb)
...

Processing triggers for man-db ...

Processing triggers for ureadahead ...

ureadahead will be reprofiled on next reboot

Setting up ntp (1:4.2.4p8+dfsg-1ubuntu2) ...

 * Starting NTP server ntpd

vi /etc/ntp.conf

service ntp restart

 * Stopping NTP server ntpd
[OK]

 * Starting NTP server ntpd

cft finish ntp

cft manifest ntp

class ntp {

 package { 'ntp':

 ensure => '1:4.2.4p8+dfsg-1ubuntu2'

 }

 service { 'ntp':

 enable => 'true',

 ensure => 'running'

 }

 file { '/etc/ntp.conf':

 group => 'root',

 owner => 'root',

 mode => '0644',

 source => '/tmp/cft/ntp/after/etc/ntp.conf'

 }

}

Chapter 9

251

How it works…
The first line tells cft to start recording changes to the system, and store them in a session
named ntp—# cft begin ntp.

Then, when you install the ntp package, cft records this fact. The package install scripts
start the service and configure it to start at boot, so cft records this too. Finally, it notices
that you edited the file /etc/ntp.conf, and saves a copy of this for later.

When you run the command # cft finish ntp it stops recording changes. You can now
generate the manifest, which is the Puppet equivalent of your console session with
the command # cft manifest ntp.

As you can see, the generated manifest contains the package declaration (triggered by
apt-get install ntp):

package { 'ntp':
ensure => '1:4.2.4p8+dfsg-1ubuntu2'
}

It also contains the service declaration that reproduces the effect of the package install
scripts, starting the service and enabling it on boot:

service { 'ntp':
enable => 'true',
ensure => 'running'
}

This declaration would also have been generated if you configured the service manually, with
the following command:

service ntp start

update-rc.d ntp defaults

The final part of the manifest encapsulates the changes to the ntp.conf file. cft doesn't
know what changes you made, but only that the file was changed, so it takes a copy of the
whole file and makes this available for you to distribute from Puppet:

file { '/etc/ntp.conf':
group => 'root',
owner => 'root',
mode => '0644',
source => '/tmp/cft/ntp/after/etc/ntp.conf'
}

When you add this manifest to Puppet, you will need to also copy the ntp.conf file from the
path shown (/tmp/cft/ntp/after/etc/ntp.conf), place this somewhere appropriate in
your module tree, and then update the source parameter accordingly.

External Tools and the Puppet Ecosystem

252

There's more…
cft is a powerful tool for quickly prototyping Puppet manifests. You could take a newly built
box, work on it all day under cft getting everything installed and working, and then generate
the Puppet manifest that encodes your entire session. This will need some editing, of course,
but it's much faster than writing the manifests from scratch.

Generating manifests from a running system
While cft generates Puppet manifests from a system administrator's console session,
puppet resource generates Puppet manifests from the existing configuration of a system. For
example, you can have puppet resource generate a manifest that creates all the users
found on the system. This is very useful for taking a snapshot of a working system and getting
its configuration quickly into Puppet.

How to do it…
1.	 To generate the manifest for a particular user, run:

puppet resource user john

user { 'john':

 password_min_age => '0',

 password_max_age => '99999',

 uid => '1002',

 password => '!',

 gid => '1001',

 groups => ['git'],

 ensure => 'present',

 comment => 'John Arundel',

 home => '/home/john',

 shell => '/bin/bash'

}

2.	 For a particular service, run:
puppet resource service ntp

service { 'ntp':

 ensure => 'running',

 enable => 'true'

}

Chapter 9

253

3.	 For a package, run:
puppet resource package exim4

package { 'exim4':

 ensure => '4.71-3ubuntu1'

}

There's more…
You can use puppet resource to examine each of the resource types available in Puppet.
In the preceding examples, we generated a manifest for a specific instance of the resource
type, but you can also use puppet resource to dump all instances of the resource:

puppet resource user

user { 'Debian-exim':

 ensure => 'present',

 uid => '117',

 gid => '124',

 home => '/var/spool/exim4',

 password => '!',

 password_min_age => '0',

 password_max_age => '99999',

 shell => '/bin/false'

}

user { 'avahi':

 ensure => 'present',

 uid => '104',

 gid => '111',

 home => '/var/run/avahi-daemon',

 password => '*',

 password_min_age => '0',

 comment => 'Avahi mDNS daemon,,,',

 password_max_age => '99999',

 shell => '/bin/false'

}

...

This will generate a lot of output!

External Tools and the Puppet Ecosystem

254

Using Puppet Dashboard
Puppet Dashboard is a useful tool for managing Puppet installations, especially large ones,
and being able to see node information and reports through a web interface. It can show you
which of your nodes have run Puppet recently, how long the runs took, whether any nodes are
reporting errors, and whether any nodes have not run Puppet in a while.

Getting ready…
1.	 Download the Puppet Dashboard package from the Puppet Labs site at

http://www.puppetlabs.com/misc/download-options/ and unpack it.
The installation instructions are contained in a README.markdown file inside
the package, but you will probably need to install some or all of the following
dependencies:
apt-get install -y build-essential irb libmysql-ruby
libmysqlclient-dev libopenssl-ruby libreadline-ruby mysql-server
rake rdoc ri ruby ruby-dev

2.	 Create a MySQL database and user for the Puppet Dashboard application (use a
different password):
mysql -uroot

Welcome to the MySQL monitor. Commands end with ; or \g.

Your MySQL connection id is 39

Server version: 5.1.41-3ubuntu12.9 (Ubuntu)

Type 'help;' or '\h' for help. Type '\c' to clear the current
input statement.

mysql> create database dashboard;

Query OK, 1 row affected (0.00 sec)

mysql> grant all on dashboard.* to dashboard@localhost identified
by 'topsecret';

Query OK, 0 rows affected (0.01 sec)

mysql> flush privileges;

Query OK, 0 rows affected (0.00 sec)

Chapter 9

255

3.	 Copy the example database.yml file supplied with Puppet Dashboard to reflect
these settings as follows:
cd puppetlabs-puppet-dashboard-071acf4

cp config/database.yml.example config/database.yml

vi config/database.yml

production:

 database: dashboard

 username: dashboard

 password: topsecret

 encoding: utf8

 adapter: mysql

4.	 Use the included Rake task to build the initial database as follows:
rake RAILS_ENV=production db:migrate

How to do it…
1.	 Start the built-in webserver:

script/server -e production

=> Booting WEBrick

=> Rails 2.3.5 application starting on http://0.0.0.0:3000

=> Call with -d to detach

=> Ctrl-C to shutdown server

[2011-02-21 09:54:32] INFO WEBrick 1.3.1

[2011-02-21 09:54:32] INFO ruby 1.8.7 (2010-01-10) [i486-linux]

[2011-02-21 09:54:37] INFO WEBrick::HTTPServer#start: pid=16570
port=3000

Using a web browser, connect to localhost:3000

External Tools and the Puppet Ecosystem

256

2.	 You should see the Puppet Dashboard interface, as shown in the following
screenshot:

3.	 You now need to configure your Puppetmaster to send reports to Puppet Dashboard.
To do this, add the http report type to the reports setting in puppet.conf:
reports = http,log

4.	 Restart the Puppet server to enable the new report.

5.	 Run Puppet on a node:
puppet agent --test

Chapter 9

257

6.	 Click the Nodes link in Puppet Dashboard. You should see a green bar on the graph
indicating a successful Puppet run as shown in the following screenshot:

How it works…
When Puppet runs on a node, it sends a report to Puppet Dashboard using the reporting
facility. Puppet Dashboard then stores this data and uses it to display graphs and summaries
of Puppet activity on all your nodes.

There's more…
You can also use Puppet Dashboard to create new nodes and classes, and control which
classes are included on which nodes. In effect, it becomes a web interface for your Puppet
manifests so that you can edit them through a web browser rather than having to edit the text
files directly. This is an attractive feature, especially if you want people in other teams and
departments to be able to manage their own Puppet configurations.

External Tools and the Puppet Ecosystem

258

To get this functionality in Puppet Dashboard, you need to configure Puppet to use it as an
external node classifier; which we'll cover in the section on using an external node classifier
to manage nodes.

See also
ff Generating reports in Chapter 2

ff Creating graphical reports with RRD in Chapter 2

ff Using an external node classifier in this chapter

Using Foreman
Foreman is a web-based Puppet management tool like Puppet Dashboard, but more
ambitious. Foreman can manage not only Puppet reporting, nodes and manifest configuration,
but also provision new machines for you. If you need to build large numbers of servers
automatically, or if you frequently rebuild servers, Foreman will help with this process.

Getting ready…
1.	 Add the Foreman package repo to your system, following the instructions at

http://theforeman.org/projects/foreman/wiki/Installation_
instructions.

2.	 Install the Foreman package as follows:
apt-get update

apt-get install foreman

3.	 You will be prompted to select a database, so choose mysql, pgsql, or sqlite
depending which one you want to use.

4.	 Install one of the following packages depending which database you selected in
the previous step:
apt-get install foreman-mysql

apt-get install foreman-pgsql

apt-get install foreman-sqlite3

5.	 Copy the file /etc/foreman/extras/puppet/foreman/files/foreman-
report.rb to your Puppet custom report directory (usually /usr/lib/
ruby/1.8./puppet/reports) and name it foreman.rb as follows:
cp /etc/foreman/extras/puppet/foreman/files/foreman-report.rb /
usr/lib/ruby/1.8/puppet/reports/foreman.rb

Chapter 9

259

6.	 Edit the foreman.rb file to set the URL of your Foreman server as follows:
URL of your Foreman installation
$foreman_url="http://cookbook.bitfieldconsulting.com:3000"

7.	 Edit your puppet.conf and add the foreman report type to the list of enabled
reports:
[master]
reports = store,log,foreman

8.	 Restart the Puppet server to enable this new report.

How to do it…
1.	 Start the Foreman server:

/usr/share/foreman/script/server -e production

2.	 Browse to the web interface at the URL you previously set at http://cookbook.
bitfieldconsulting.com:3000.

You should see Foreman's initial welcome page as shown in the following screenshot:

External Tools and the Puppet Ecosystem

260

3.	 Now run Puppet on a client:
puppet agent --test

Go to the Reports section in the Foreman web interface. You should see a report for
the client where you just ran Puppet as shown in the following screenshot:

4.	 Go to the Dashboard page and you will see an OVERVIEW of all your clients (just one
in this case, but you get the idea).

Chapter 9

261

There's more…
We've only touched on the basics of Foreman here. Now that you've got it set up, you can
experiment with the different reports, graphs, and other information available in Foreman.
These become more valuable when you have many hosts to look after, and want to see
statistics about how Puppet is running across the whole network.

The other major feature of Foreman is provisioning: it can use PXEboot and Kickstart to build
virtual or physical servers from scratch, sign your Puppet certificates automatically, and run
Puppet to bring the machine up to production status. For more information about how to do
this, see the Foreman documentation: http://theforeman.org/projects/foreman/
wiki/Unattended_installations.

If you decide to use Foreman in production, it's probably worthwhile
setting up an Apache virtual host for it rather than using the Webrick
server that ships with Foreman. Webrick is useful for testing, but it's
not really a production-grade web server.

Using MCollective
The Marionette Collective (MCollective for short) is a tool for system administration. It
can run commands on large numbers of servers in parallel, and uses a broadcast architecture
so that you can administer a large network without the need for a central master server or
asset database.

Each server runs an MCollective daemon that listens for requests, and can execute
commands locally or return information about the server. This can be used to filter the list of
target servers. So, for example, you could use MCollective to execute a given command on all
servers that match certain criteria.

You can think of MCollective as a complement to Puppet (though it also works fine with Chef
and other configuration management systems). For example, your provisioning process for
a new node might require firewall changes on other machines, permissions granted on a
database server, and so on, which is not very easy to do with Puppet. Although you could
automate specific jobs using shell scripts and SSH, MCollective provides a powerful and
flexible way to solve this general problem.

 Getting ready...
1.	 MCollective uses the ActiveMQ message broker framework (actually, any STOMP-

compliant middleware, but ActiveMQ is a popular choice), which in turn requires Java,
so if you don't have Java already installed on your system, install it:
apt-get install gcj-4.4-jre-headless

External Tools and the Puppet Ecosystem

262

2.	 Go to the ActiveMQ download page and get the latest stable "Unix distribution"
tarball: http://activemq.apache.org/download.html.

3.	 Install the stomp gem as follows:
gem install stomp

4.	 Download the latest stable MCollective .deb packages from: http://www.
puppetlabs.com/misc/download-options/.

5.	 Install the packages as follows:
dpkg -i mcollective_1.0.1-1_all.deb mcollective-client_1.0.1-1_
all.deb mcollective-common_1.0.1-1_all.deb

6.	 Download the tarball of the same release from the MCollective downloads page
(because it contains an example ActiveMQ configuration file).

7.	 Edit the MCollective server.cfg file:
vi /etc/mcollective/server.cfg

8.	 Set the plugin.stomp.host parameter to the name of your server (where you're
running ActiveMQ):
plugin.stomp.host = cookbook.bitfieldconsulting.com

9.	 Make the same change in the MCollective client.cfg file:
vi /etc/mcollective/client.cfg

10.	 Unpack the MCollective tarball and copy the example ActiveMQ configuration
into place:
tar xvzf mcollective-1.0.1.tgz

cp mcollective-1.0.1/ext/activemq/examples/single-broker/
activemq.xml /etc/mcollective

11.	 Edit the configuration file to set the password of the mcollective user to the same
as it is in server.cfg:
vi /etc/mcollective/activemq.xml

12.	 Unpack the ActiveMQ tarball and start the server using the following config file:
tar xvzf apache-activemq-5.4.2-bin.tar.gz

apache-activemq-5.4.2/bin/activemq start xbean:/etc/mcollective/
activemq.xml

INFO: Using default configuration

(you can configure options in one of these file: /etc/default/
activemq /root/.activemqrc)

INFO: Invoke the following command to create a configuration file

bin/activemq setup [/etc/default/activemq | /root/.activemqrc]

Chapter 9

263

INFO: Using java '/usr/bin/java'

INFO: Starting - inspect logfiles specified in logging.properties
and log4j.properties to get details

INFO: pidfile created : '/root/apache-activemq-5.4.2/data/
activemq.pid' (pid '3322')

13.	 Start the MCollective server:
service mcollective start

Starting mcollective: *

How to do it…
1.	 Check that MCollective and ActiveMQ are set up and working by running:

mc-ping

cookbook time=68.82 ms

---- ping statistics ----

1 replies max: 68.82 min: 68.82 avg: 68.82

2.	 If you don't see any results, check that the mcollectived daemon is running, and
that a Java process is also running for ActiveMQ.

3.	 Run mc-inventory against your machine to see what information MCollective
knows about it:
mc-inventory cookbook

Inventory for cookbook:

 Server Statistics:

 Version: 1.0.1

 Start Time: Mon Mar 07 11:44:53 -0700 2011

 Config File: /etc/mcollective/server.cfg

 Process ID: 4220

 Total Messages: 14

 Messages Passed Filters: 6

 Messages Filtered: 5

 Replies Sent: 5

 Total Processor Time: 0.8 seconds

 System Time: 0.47 seconds

 Agents:

External Tools and the Puppet Ecosystem

264

 discovery rpcutil

 Configuration Management Classes:

 Facts:

 mcollective => 1

4.	 Create a new custom fact for the server by adding the following code snippet to /
etc/mcollective/facts.yaml:
purpose: webserver

5.	 Now use MCollective to search for all machines matching this fact:
mc-find-hosts --with-fact purpose=webserver

cookbook

How it works…
MCollective is a broadcast framework; when you issue a request like mc-find-hosts,
MCollective sends a message out to all clients asking, "Does anyone match this filter?" All
clients that match the filter will send a reply, and MCollective gathers the results and prints
them out for you.

You can install a number of plugins and agents for specific tasks (for example, running
Puppet). These are installed on the clients, and MCollective handles the communications
involved in sending the command out to all matching machines, and collating any results.

There's more…
Even though we've only taken a few steps with MCollective, it's clearly a powerful tool for both
gathering information about servers, and executing commands on a list of servers that can be
selected by facts. For example, you could get a list of all machines that haven't run Puppet in
the last 24 hours. Or, you could take some action on all webservers, or all machines with an
x86_64 architecture.

MCollective itself only provides a framework for such applications. There are a variety of
plugins available which do useful things, and writing your own plugins is easy. In this example
we'll use the package plugin that allows you to query and operate on packages.

Installing an MCollective plugin
1.	 Clone the MCollective plugins repository from GitHub:

git clone https://github.com/puppetlabs/mcollective-plugins.git

Chapter 9

265

2.	 Copy the plugin files into place as follows:
cd mcollective-plugins

cp agent/package/mc-package /usr/bin

cp agent/package/puppet-package.rb /usr/share/mcollective/
plugins/mcollective/agent/package.rb

cp agent/package/package.ddl /usr/share/mcollective/plugins/
mcollective/agent

3.	 Restart MCollective:
service mcollective restart

4.	 Run mc-inventory to check that the plugin appears in the list of agents:
mc-inventory cookbook

Inventory for cookbook:

 Server Statistics:

 Version: 1.0.1

 Start Time: Tue Mar 08 08:28:29 -0700 2011

 Config File: /etc/mcollective/server.cfg

 Process ID: 6047

 Total Messages: 1

 Messages Passed Filters: 1

 Messages Filtered: 0

 Replies Sent: 0

 Total Processor Time: 0.04 seconds

 System Time: 0.02 seconds

 Agents:

 discovery package rpcutil

 Configuration Management Classes:

 Facts:

 mcollective => 1

 purpose => webserver

5.	 Try the mc-package command to verify that it works with the following command:
mc-package status apache2

Do you really want to operate on packages unfiltered? (y/n): y

External Tools and the Puppet Ecosystem

266

 * [==
>] 1 / 1

cookbook version = apache2-2.2.14-
5ubuntu8.4

---- package agent summary ----

 Nodes: 1 / 1

 Versions: 1 * 2.2.14-5ubuntu8.4

 Elapsed Time: 0.58 s

The package agent provides a powerful way to check package versions across
your whole network, or only on certain machines, and install or update packages
as necessary. For more details about this and other MCollective plugins, check the
wiki page at: http://projects.puppetlabs.com/projects/mcollective-
plugins/wiki.

For more information on MCollective, see the main page at: http://docs.
puppetlabs.com/mcollective/.

Using public modules

"Plagiarize, plagiarize, plagiarize / Only be sure always to call it, please 'research' "
—Tom Lehrer, 'Lobachevsky'

If in doubt, steal. In many cases when you write a Puppet module to manage some software or
service, you don't have to start from scratch. Community-contributed modules are available at
the Puppet Forge site for many popular applications. Sometimes, a community module will be
exactly what you need and you can download and start using it right away. In other cases, you
will need to make some modifications to suit your particular needs and environment.

If you are new to Puppet, it can be a great help to have some existing code to start with.
On the other hand, community modules are often written to be as general and portable as
possible, and the extra code required can make them harder to understand.

In general I would not recommend treating Puppet Forge as a source of 'drop-in' modules
that you can deploy without reading or understanding the code. This introduces an external
dependency to your Puppet infrastructure, and doesn't help advance your understanding and
experience of Puppet. Rather, I would use it as a source of inspiration, help, and examples. A
module taken from Puppet Forge should be a jumping-off point for you to develop and improve
your own modules.

Be aware that a given module may not work on your Linux distribution. Check the README file
that comes with the module to see if your operating system is supported.

Chapter 9

267

Getting ready...
1.	 The easiest way to use Puppet Forge modules is to install the puppet-module tool:

gem install puppet-module

Fetching: puppet-module-0.3.2.gem (100%)

**

 Thank you for installing puppet-module from Puppet Labs!

 * Usage instructions: read "README.markdown" or run `puppet-
module usage`

 * Changelog: read "CHANGES.markdown" or run `puppet-module
changelog`

 * Puppet Forge: visit http://forge.puppetlabs.com/

**

Successfully installed puppet-module-0.3.2

1 gem installed

Installing ri documentation for puppet-module-0.3.2...

Installing RDoc documentation for puppet-module-0.3.2...

2.	 Run puppet-module to see the available commands:
puppet-module

Tasks:

 puppet-module build [PATH_TO_MODULE] # Build a
module for release

 puppet-module changelog # Display
the changelog for this tool

 puppet-module changes [PATH_TO_MODULE] # Show
modified files in an installed m...

 puppet-module clean # Clears
module cache for all repositories

 puppet-module generate USERNAME-MODNAME # Generate
boilerplate for a new module

 puppet-module help [TASK] # Describe
available tasks or one speci...

 puppet-module install MODULE_NAME_OR_FILE [OPTIONS] # Install a
module (eg, 'user-modname')...

External Tools and the Puppet Ecosystem

268

 puppet-module repository # Show
currently configured repository

 puppet-module search TERM # Search
the module repository for a mo...

 puppet-module usage # Display
detailed usage documentation ...

 puppet-module version # Show the
version information for this...

Options:

 -c, [--config=CONFIG] # Configuration file

 # Default: /etc/puppet/puppet.conf

How to do it…
In this example, we'll use puppet-module to find and install a module to manage the Tomcat
application server.

1.	 Search for a suitable module as follows:
puppet-module search tomcat

=====================================

Searching http://forge.puppetlabs.com

2 found.

camptocamp/tomcat (0.0.1)

jeffmccune/tomcat (1.0.1)

2.	 In this example we'll install the Jeff McCune version:
cd /etc/puppet/modules

puppet-module install jeffmccune/tomcat

Installed "jeffmccune-tomcat-1.0.1" into directory:
jeffmccune-tomcat

3.	 The module is now ready to use in your manifests: looking at the source code will
show you how to do this.

How it works…
The puppet-module tool simply automates the process of searching and downloading
modules from the Puppet Forge site. You can browse the site to see what's available at:
http://forge.puppetlabs.com/.

Chapter 9

269

There's more…
Not all publically available modules are on Puppet Forge. Some other great places to look are
on GitHub:

https://github.com/camptocamp

https://github.com/example42

Dean Wilson maintains an excellent repository of Puppet patterns, tips, and recipes, at the
Puppet Cookbook website: http://puppetcookbook.com/.

Using an external node classifier
When Puppet runs on a node, it needs to know which classes should be applied to that node.
For example, if it is a web server node, it might need to include an apache class. The normal
way to map nodes to classes is in the Puppet manifest itself, for example in a nodes.pp file:

node web1 {
 include apache
}

Alternatively, you can use an external node classifier to do this job. An external node classifier
is any executable program that can accept a node name and return a list of classes for that
node. It could be a simple shell script, for example, or a wrapper around a more complicated
program or API that can decide how to map nodes to classes.

Getting ready…
1.	 Set the following variables in your puppet.conf:

[master]
external_nodes = /usr/local/bin/puppet_node_classifier
node_terminus = exec

How to do it…
1.	 Create this simple example script as /usr/local/bin/puppet_node_

classifier:
#!/bin/bash
if ["$1" == "cookbook.bitfieldconsulting.com"]; then
 cat <<"END"

classes:

External Tools and the Puppet Ecosystem

270

 - admin::sudoers
 - admin::exim
 - puppet
 - nagios::target

environment: production
parameters:
 location: Bitfield HQ
END

else
 exit 1
fi

2.	 Make the script executable:
chmod 755 /usr/local/bin/puppet_node_classifier

3.	 Run Puppet:
puppet agent --test

info: Retrieving plugin

info: Caching catalog for cookbook.bitfieldconsulting.com

info: Applying configuration version '1299677816'

notice: Finished catalog run in 1.19 seconds

How it works…
Puppet calls the script you specify as external_nodes in puppet.conf and passes the
name of the node as the command-line argument. In our example script, we check this
argument and if it is equal to cookbook.bitfieldconsulting.com, we output a list of
classes in the required format for Puppet. Otherwise, the script exits with status 1 (indicating
to Puppet that the node was not found).

The script also sets the value of environment (see the section on using environments for
an explanation of this parameter). The variable location is also set to Bitfield HQ—this
means nothing to Puppet, but the variable will be defined in scope in your manifest, so you
could use it to determine DNS resolver settings, for example. You can set any variables you
like here.

Obviously, this script is not terribly useful since it just outputs a predetermined list of classes.
A more sophisticated script might check a database to find the class list, or look up the node
in a hash or an external text file. Hopefully, this example is enough to get you started writing
your own external node classifier.

Chapter 9

271

There's more…
One of the major uses for external node classification is to connect Puppet with an LDAP
directory. Many large organizations have an LDAP infrastructure, and you can set this up so
that Puppet can get information on nodes from the LDAP directory, and other LDAP clients can
also get information about the nodes managed by Puppet.

For more information about how to do this, see the "Puppet and LDAP" page at:
http://projects.puppetlabs.com/projects/puppet/wiki/LDAP_Nodes.

This feature is also used by Puppet Dashboard and Foreman to manage the relationship
between nodes and classes via a web interface—they act as external node classifiers.

Creating your own resource types
It's time to get creative. You'll know about various different resource types in Puppet:
packages, files, users, and so on. Usually, you can do everything you need to do by using
either combinations of these built-in resources, or a custom define that you can use
more or less in the same way as a resource (see Chapter 4, Writing Better Manifests for
information on define).

However, if you need to create your own resource type, Puppet makes it quite easy. The
native types are written in Ruby, and you will need a basic familiarity with Ruby in order to
create your own.

Let's refresh our memory on the distinction between types and providers. A type describes
a resource and the parameters it can have (for example, the package type). A provider tells
Puppet how to implement a resource for a particular platform or situation (for example, the
apt/dpkg providers implement package for Debian-like systems).

A single type (package) can have many providers (apt, yum, fink, and so on). If you don't
specify a provider when declaring a resource, Puppet will choose the most appropriate one
given the environment.

In this section we'll see how to create a custom type to manage Git repositories, and in the
next section, we'll write a provider to implement this type.

Getting ready…
1.	 Enable pluginsync in your puppet.conf, if you haven't already:

[main]
pluginsync = true

External Tools and the Puppet Ecosystem

272

2.	 Create a custom module for your plugins and types in your Puppet repository, if
you haven't already:
cd /etc/puppet/modules

mkdir custom

3.	 Within the module, create a lib/puppet/type directory:
cd custom

mkdir -p lib/puppet/type

How to do it…
1.	 Create a file in the type directory named gitrepo.rb with the following contents:

Puppet::Type.newtype(:gitrepo) do
 ensurable

 newparam(:source) do
 isnamevar
 end

 newparam(:path)
end

How it works…
The first line registers a new type named gitrepo:

Puppet::Type.newtype(:gitrepo) do

The ensurable line automatically gives the type a property ensure, like Puppet's built-in
resources.

 ensurable

We'll now give the type some parameters. For the moment, all we need is a source
parameter for the Git source URL, and a path parameter to tell Puppet where the repository
should be created in the filesystem.

 newparam(:source) do
 isnamevar
 end

Chapter 9

273

The isnamevar declaration tells Puppet that the source parameter is the type's namevar.
So when you declare an instance of this resource, whatever name you give it will be the value
of source. For example:

gitrepo { "git://github.com/puppetlabs/puppet.git":
 path => "/home/john/work/puppet",
}

Finally, we add the path parameter:

 newparam(:path)

There's more…
Once you're familiar with creating your own resources, you can use them to replace
complicated exec resources and make your manifests more readable. However, it's a good
idea to make your resources robust and reusable by adding some documentation, and
validating your parameters.

Documentation
Our example is deliberately simple, but when you move on to developing real custom types for
your production environment, you should add documentation strings to describe what the type
and its parameters do. For example:

Puppet::Type.newtype(:gitrepo) do
 @doc = "Manages Git repos"

 ensurable

 newparam(:source) do
 desc "Git source URL for the repo"
 isnamevar
 end

 newparam(:path) do
 desc "Path where the repo should be created"
 end
end

External Tools and the Puppet Ecosystem

274

Validation
You can use parameter validation to generate useful error messages when someone tries to
pass bad values to the resource. For example, you could validate that the directory where the
repository is to be created actually exists:

 newparam(:path) do
 validate do |value|
 basepath = File.dirname(value)
 unless File.directory?(basepath)
 raise ArgumentError , "The path %s doesn't exist" %
 basepath
 end
 end
 end

You can also specify the list of allowed values that the parameter can take as follows:

newparam(:breakfast) do
 newvalues(:bacon, :eggs, :sausages)
end

Creating your own providers
In the previous section, we created a new custom type called gitrepo and told Puppet that
it takes two parameters, source and path. However, so far we haven't told Puppet how to
actually check out the repository—in other words, how to create a specific instance of this
type. That's where the provider comes in.

We saw that a type will often have several possible providers. In our example, there is only
one sensible way to instantiate a Git repo, so we'll only supply one provider: git. If you were
to generalize this type—say to just repo—it's not hard to imagine creating several different
providers depending on the type of repository; for example, git, svn, cvs, and so on.

Getting ready…
1.	 Within your custom module, create a subdirectory of lib/puppet called

provider/gitrepo:
mkdir -p lib/puppet/provider/gitrepo

2.	 In the gitrepo directory, create a file called git.rb with the following contents:
require 'fileutils'

Puppet::Type.type(:gitrepo).provide(:git) do
 commands :git => "git"

Chapter 9

275

 def create
 git "clone", resource[:source], resource[:path]
 end

 def exists?
 File.directory? resource[:path]
 end
end

How to do it…
1.	 Create an instance of your new type somewhere in your Puppet manifest as follows:

gitrepo { "https://github.com/puppetlabs/puppet.git":
 path => "/tmp/puppet",
 ensure => present,
}

2.	 Now run Puppet, and your new type will be loaded and instantiated:
puppet agent --test

info: Retrieving plugin

notice: /File[/var/lib/puppet/lib/puppet]/ensure: created

notice: /File[/var/lib/puppet/lib/puppet/provider]/ensure: created

notice: /File[/var/lib/puppet/lib/puppet/provider/gitrepo]/ensure:
created

notice: /File[/var/lib/puppet/lib/puppet/provider/gitrepo/git.rb]/
ensure: defined content as '{md5}a12870d89a4b517e48fe417ce2e12ac2'

notice: /File[/var/lib/puppet/lib/puppet/type]/ensure: created

notice: /File[/var/lib/puppet/lib/puppet/type/gitrepo.rb]/ensure:
defined content as '{md5}90d5809e1d01dc9953464e8d431c9639'

info: Loading downloaded plugin /var/lib/puppet/lib/puppet/
provider/gitrepo/git.rb

info: Loading downloaded plugin /var/lib/puppet/lib/puppet/type/
gitrepo.rb

info: Redefining gitrepo in Puppet::Type

info: Caching catalog for cookbook.bitfieldconsulting.com

info: Applying configuration version '1299850325'

notice: /Stage[main]//Node[cookbook]/Gitrepo[https://github.com/
puppetlabs/puppet.git]/ensure: created

notice: Finished catalog run in 74.43 seconds

External Tools and the Puppet Ecosystem

276

Note: due to a bug in Puppet, when you first create your new type, you
may need to run puppet agent twice: once to load the type definition,
and again to actually create the instance. If you see the following
message:
err: /Stage[main]//Node[cookbook]/Gitrepo[https://
github.com/puppetlabs/puppet.git]: Could not
evaluate: No ability to determine if gitrepo exists

you've been bitten by the bug—just run Puppet again and it should work.
By the time you read this it may well have been fixed.

How it works…
First we register this as a provider for the gitrepo type as follows:

Puppet::Type.type(:gitrepo).provide(:git) do

When you declare an instance of the type in your manifest, Puppet will first of all check
whether the instance already exists:

def exists?
 File.directory? resource[:path]
end

We implement a method exists? that will be called by Puppet to make this check. It returns
true if a directory exists matching the path parameter of the instance.

If exists? returns true, then Puppet will take no further action. If not, Puppet will try to
create the resource by calling the create method:

def create
 git "clone", resource[:source], resource[:path]
end

In this case, the create method does a git clone on the Git source provided (in the
source parameter) into the path specified by the path parameter.

There's more…
You can see that custom types and providers in Puppet are very powerful. In fact, they can
do anything—at least, anything that Ruby can do. If you are managing some parts of your
infrastructure with complicated define and exec resources, you may want to consider
replacing these with a custom type. In fact, it's worth looking around to see if someone else
has already done this before implementing your own.

Chapter 9

277

Our example was very simple, and there is much more to learn about writing your own
types. If you're going to distribute your code for others to use, or even if you aren't, it's a
good idea to include tests with it. Puppet Labs has some useful pages on type development:
http://docs.puppetlabs.com/guides/custom_types.html and http://
projects.puppetlabs.com/projects/1/wiki/Development_Practical_Types.
For information on writing tests to Puppet Labs standards, see http://projects.
puppetlabs.com/projects/1/wiki/Development_Writing_Tests.

For an excellent, easy-to-follow introduction to type development, see James Turnbull's article
"Creating Puppet types and providers is easy…" at http://www.kartar.net/2010/02/
puppet-types-and-providers-are-easy/.

Dean Wilson also has a very instructive example of a custom type to manage APT sources:
https://github.com/deanwilson/puppet-aptsourced.

Symbols
$extlookup_precedence 106
$name 117
$source variable 107
$target variable 107
--graph option 38
--noop flag 15, 164
--noop switch 162
--summarize switch 33
--test switch 46

A
ActiveMQ 261
admin::dbhosts class 153
age parameter 159
allow parameter 17
Amazon Web Services. See AWS
apache class 92, 269
apache module 92, 122, 198
Apache servers

managing 167
managing, steps 168, 169

Apache virtual hosts
creating 169
creating, steps 169, 170
working 171, 172

app class 137
append_if_no_such_line resource 111
APT package repository

packages, adding 126
setting up 122-125
signing up 127
using, by configuring nodes 126

arguments
passing, to shell commands 106, 107

array iteration
using, in templates 118-120

Arrays 71
arrays of resources

using 84, 85
audit metaparameter 162
Augeas

used, for editing config files automatically
111-114

augeas resources 112
authorized_keys file 143
automatic HTML documentation

producing 36-38
autosign

pre-signing certificates 20
using 19
using, steps 19
working 19

AWS 232

B
backup parameter 23
behavior-driven monitoring 41
Bundler tool 193

C
case statements

about 100
using 76-78

certificates
pre-signing 20
pre-signing, steps 20

Index

[280]

cft tool 252
check_http plugin 210
chess genius 249
classes

parameters, passing 97, 98
class inheritance

using 92-95
Classless Inter-Domain Routing CIDR) 18
class statement 97
command

running, on file updation 148-151
command line

reports, enabling 33
command output

logging 49
commit hooks

using 11, 13
common.role file 230
community Puppet style

using 60, 61
comparisons 74
compilation errors

detecting 46
config files

about 44, 150
building, snippets used 114-116
editing automatically, Augeas used 111-114
quick edits, making 110, 111

configuration settings
inspecting 51-53

create method 276
cron

Puppet, running from 18
cron jobs

about 18
distributing 146
distributing, steps 146, 148

cross-platform manifests
writing 98-100

CSV files
data, importing from 103-106

cucumber-nagios 42
customization files, users

managing 144, 146

D
data

importing, from CSV files 103-106
debug messages

full resource path, printing 50
logging 50
Puppetmaster, messages logging on 51
variable values, printing out 50

define function 111, 171, 178, 193
define resources

about 85
using 85-87

deny parameter 17
dependencies

using 87, 89
dependency graphs

drawing 38, 40, 41
directory trees

distributing 156
distributing, steps 156, 157
working 157, 158

distro 130
documentroot parameter 172
domain-specific language (DSL) 68
dont_blame_nrpe setting 210
dot tool 40
drupal module 178
Drupal sites

managing 178
managing, steps 178-182

drush command-line tool 178
dry run mode 44
dynamic information

importing 102, 103

E
EC2 instances

managing 232, 236
edits

creating, to config files 110, 111
else branch 73
elsif keyword 73

[281]

embedded Ruby
using 67
using, steps 67
working 68

environment feature
using 56, 57

ERB (embedded Ruby) syntax 116
ERB templates

using 116-118
Etckeeper 248
exec resource 111
exim configuration 53
expressions

combining 74
external node classifier

using 269, 270
extlookup call 106
extlookup function 103

F
Facter 101, 102
Facter facts

creating 246
creating, steps 246, 247
working 247

file shares
managing 215, 217

firewalls
managing, with iptables 222, 223, 230, 231

Foreman
about 258-260
features 261
report 259

G
gem package 97
gem repository

about 128
gems, adding 129
setting up 128, 129
using 130

generate function 102, 103
graphical reports

creating 36
graphviz package 39

H
HAProxy

using, to balance multiple web servers 218-
222

using, to load multiple web servers 218-222
hash 71
hash function 148
heartbeat

used, for building high-availability services
211-214

high-availability services
building, heartbeat used 211-214

host resources
using 152
using, steps 152
working 153

I
if statement 73
init script 192
inline_template function 146
iptables

firewalls, managing with 222, 223, 230, 231
iptables module 223
isnamevar declaration 273

J
job

cron job 18

K
keyword

elseif keyword 73

L
lenses 114
loadbalancer module 218
log messages

of specific tags, emailing 34, 35
logoutput parameter 49, 131
logrotate snippets 196

[282]

M
manifests

documentation 70
Ruby variables 70
writing, in Ruby 68
writing in Ruby, steps 69
writing in Ruby, working 69

Marionette Collective. See MCollective
master repository

inline_template function 10
MCollective

about 261, 263
plugin, installing 264, 266
using 263
working 264

MCollective tool 19
mc-package command 265
memcached class 64
modules

about 16, 62
facts 65
functions 65
organization 65
providers 65
puppet-module 65
templates 64, 65
third-party modules 65
types 65
using, steps 62, 63
working 64

Mongrel 23
multiple file sources

using 153
using, steps 154
working 155

multiple web servers
balancing, HAProxy used 218-222
loading, HAProxy used 218-222

mysql::server class 178
MySQL databases and users

creating, steps 175-178

N
nagios module 198
Nagios monitoring server

deploying 198
deploying, steps 198-205

name variable 148
Network File System (NFS) 215
nfs class 217
nfs-kernel-server service 217
nfs module 215
NFS servers

managing 215, 217
Nginx 172
Nginx virtual hosts

creating, steps 172-174
node inheritance

using 90, 91
noop metaparameter 163
noop mode 44
noop parameter 164
notify message 50
notify parameter 89
notify resource 50
NRPE 210
ntp package 88

O
old files

cleaning up 158, 159
options parameter 217
overriding

extra values adding, +> operator used 96
parameters, undefining 95
resources, disabling 96
using 92-95

P
package agent 266
package plugin 264

[283]

packages
building automatically, from source 130,

131
installing, from third party repository 120,

121, 122
package versions

comparing 132
parameters

passing, to classes 97, 98
passenger

used, for scaling Puppet 23-27
passenger-install-nginx-module script 191
path parameter 276
paths file 22
patterns

capturing 76
Phusion 190
post-receive script 30
postrun command 248
prerun command

about 248
configuration 248

providers 271
creating 274-276

public modules
using 266, 268

Puppet
autosign, using 19
changes, deploying with rake 13
commit hooks, using 11, 13
decentralized Puppet architecture, creating

28, 30
inline_template function 18
Puppet filebucket, files retrieving from 21,

22
Puppets file server, configuring 16, 17
running, from cron 18
running from cron, steps 19
scaling, passenger used 23-27
version control, using 8, 9

Puppet Dashboard
about 32, 254
external node classifier 258
package, downloading 254
using, steps 255-257
working 257

puppet doc 37
Puppet errors 46
puppet-lint tool 62
Puppet manifests

generating, from running system 252, 253
testing 41-44

Puppet messages
logging, to syslog 33

puppet-module 65
puppet-module tool 267, 268
puppet parser validate command 11
puppet resource 252, 253
Puppet runs

commands, excuting after 248
commands, executing before 248

Puppets filebucket
files, retrieving from 21, 22

Puppets file server
configuring 16, 17
configuring, steps 17
working 18

python-software-properties package 121

R
Rails 193, 194
Rails applications

databases 196
log rotation 196
managing 182
managing, steps 182-188
Nginx and Passenger 190-192
Rails 193, 194
RVM 195
SSL certificates 196
working 190

rails class 193
rails module 182
rake

changes, deploying with 13, 15
working 15

Rakefile 16
realize function 137
recurse parameter 156, 157
refreshonly parameter 149

[284]

refreshonly parameter set 151
regsubst function 80
regular expression

about 75, 78
substitutions, using 80
syntax 76

reload command 151
repeat count 161
repeat parameter 161
repo. See master repository
reports

enabling, on command line 33
generating 32
sending, to multiple e-mail addresses 35

resources
auditing 162
audit metaparameter 162
disabling, temporarily 163
schedules, using with 160, 161

resource types
creating 271

restart command 151
reusable

writing 98-100
RRD(Round-Robin Database) 36
rsync config snippets 116
Ruby

writing in 68
writing in, steps 69
writing in, working 69

run stages
using 54, 55

RVM 195, 196

S
schedules

using, with resources 160, 161
script command 249
selectors

using 76-78
setcode do...end block 247
shell commands

arguments, passing 106, 107
shellquote function 106

shell sessions
manifests, generating 249-252

sitedomain parameter 171
size parameter 159
snippets

used, for building config files 114-116
source parameter 95, 251
split function 72

used, for creating split arrays 72
SSH access, users

managing 142-144
ssh_authorized_key type 142
SSL certificates 196
standard naming conventions

using 65
using, steps 66

STOMP-compliant middleware 261
style conventions 60
symlink 241
syslog

Puppet messages, logging 33

T
tag function 53
tagged function 52
tagmail 34
tagmail.conf 34
tagmail.conf file 35
tag metaparameter 53
templates

array iteration, using 118-120
third-party modules 65
third party repository

packages, installing from 120-122
timezones

managing 164
managing, steps 165

tmpfile definition 86
tmpfile instance 86
type 271

U
update hook 13
user::virtual::ssh_user class 144

[285]

facesquare 136
realize function 137
twitstagram 136
users, manging with 139-141
using 136-138

W
Webrick 23
webserver module 62

Y
YAML format 32
yumrepo resources 122

user::virtual class 140, 142
users

managing, with virtual resources 139-141

V
vagrant

virtual machines, managing with 238-243
vagrant class 242
version control

using 8, 9
working 10, 11

vhost 196
vhost.erb template 171
virtual machines

managing, with vagrant 238-243
virtual resources

admin::virtual-packages class 138
app class 137

Thank you for buying
Puppet 2.7 Cookbook

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective MySQL
Management" in April 2004 and subsequently continued to specialize in publishing highly focused
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our
unique business model allows us to bring you more focused information, giving you more of what
you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality, cutting-
edge books for communities of developers, administrators, and newbies alike. For more
information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licences, and offering information to
anybody from advanced developers to budding web designers. The Open Source brand also runs
Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open Source project
about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would like to
discuss it first before writing a formal book proposal, contact us; one of our commissioning editors
will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Zenoss Core Network and
System Monitoring
ISBN: 978-1-847194-28-2 Paperback: 280 pages

A step-by-step guide to configuring, using, and adapting
this free Open Source network monitoring system - with
a Foreword by Mark R. Hinkle, V

1.	 Discover, manage, and monitor IT resources

2.	 Build custom event processing and alerting rules

3.	 Configure Zenoss Core via an easy to use
web interface

4.	 Drag and drop dashboard portlets with Google
Maps integration

Visual SourceSafe 2005
Software Configuration
Management in Practice
ISBN: 978-1-904811-69-5 Paperback: 404 pages

Best practice management and development of Visual
Studio .NET 2005 applications with this easy-to-use SCM
tool from Microsoft

1.	 SCM fundamentals and strategies clearly
explained

2.	 Real-world SOA example: a hotel reservation
system

3.	 SourceSafe best practices across the complete
lifecycle

Please check www.PacktPub.com for information on our titles

Zenoss Core 3.x Network and
System Monitoring
ISBN: 978-1-84951-158-2 Paperback: 312 pages

Implement Zenoss core and fit it into your security
management environment using this easy-to-understand
tutorial guide

1.	 Designed to quickly acquaint you with the core
feature so you can customize Zenoss Core to
your needs

2.	 Discover, manage, and monitor IT resources

3.	 Write custom device reports to extract, display,
and analyze monitoring data

Cacti 0.8 Network Monitoring
ISBN: 978-1-847195-96-8 Paperback: 132 pages

Monitor your network with ease!

1.	 Install and setup Cacti to monitor your network and
assign permissions to this setup in no time at all

2.	 Create, edit, test, and host a graph template to
customize your output graph

3.	 Create new data input methods, SNMP, and Script
XML data query

4.	 Full of screenshots and step-by-step instructions
to monitor your network with Cacti

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Puppet Infrastructure
	Using version control
	Using commit hooks
	Deploying changes with Rake
	Configuring Puppet's file server
	Running Puppet from cron
	Using autosign
	Pre-signing certificates
	Retrieving files from Puppet's filebucket
	Scaling Puppet using Passenger
	Creating decentralized Puppet architecture

	Chapter 2: Monitoring, Reporting, and Troubleshooting
	Generating reports
	E-mailing log messages containing
specific tags
	Creating graphical reports
	Producing automatic HTML documentation
	Drawing dependency graphs
	Testing your Puppet manifests
	Doing a dry run
	Detecting compilation errors
	Understanding Puppet errors
	Logging command output
	Logging debug messages
	Inspecting configuration settings
	Using tags
	Using run stages
	Using environments

	Chapter 3: Puppet Language and Style
	Using community Puppet style
	Using modules
	Using standard naming conventions
	Using embedded Ruby
	Writing manifests in pure Ruby
	Iterating over multiple items
	Writing powerful conditional statements
	Using regular expressions in if statements
	Using selectors and case statements
	Testing whether values are contained
in strings
	Using regular expression substitutions

	Chapter 4: Writing Better Manifests
	Using arrays of resources
	Using define resources
	Using dependencies
	Using node inheritance
	Using class inheritance and overriding
	Passing parameters to classes
	Writing reusable, cross-platform manifests
	Getting information about the environment
	Importing dynamic information
	Importing data from CSV files
	Passing arguments to shell commands

	Chapter 5: Working with Files and Packages
	Making quick edits to config files
	Using Augeas to automatically edit
config files
	Building config files using snippets
	Using ERB templates
	Using array iteration in templates
	Installing packages from a third-party
repository
	Setting up an APT package repository
	Setting up a gem repository
	Building packages automatically from source
	Comparing package versions

	Chapter 6: Users and Virtual Resources
	Using virtual resources
	Managing users with virtual resources
	Managing users' SSH access
	Managing users' customization files
	Efficiently distributing cron jobs
	Running a command when a file is updated
	Using host resources
	Using multiple file sources
	Distributing directory trees
	Cleaning up old files
	Using schedules with resources
	Auditing resources
	Temporarily disabling resources
	Managing timezones

	Chapter 7: Applications
	Managing Apache servers
	Creating Apache virtual hosts
	 Creating Nginx virtual hosts
	Creating MySQL databases and users
	Managing Drupal sites
	Managing Rails applications

	Chapter 8: Servers and Cloud Infrastructure
	Deploying a Nagios monitoring server
	Building high-availability services
using Heartbeat
	Managing NFS servers and file shares
	Using HAProxy to load-balance multiple
web servers
	Managing firewalls with iptables
	Managing EC2 instances
	Managing virtual machines with Vagrant

	Chapter 9: External Tools and the Puppet Ecosystem
	Creating custom Facter facts
	Executing commands before and after
Puppet runs
	Generating manifests from shell sessions
	Generating manifests from a running system
	Using Puppet Dashboard
	Using Foreman
	Using MCollective
	Using public modules
	Using an external node classifier
	Creating your own resource types
	Creating your own providers

	Index

