
Python Text
Processing with
NLTK 2.0 Cookbook

Over 80 practical recipes for using Python's NLTK suite of
libraries to maximize your Natural Language Processing
capabilities.

Jacob Perkins

 BIRMINGHAM - MUMBAI

Python Text Processing with NLTK 2.0
Cookbook

Copyright © 2010 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be
caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: November 2010

Production Reference: 1031110

Published by Packt Publishing Ltd.
32 Lincoln Road
Olton
Birmingham, B27 6PA, UK.

ISBN 978-1-849513-60-9

www.packtpub.com

Cover Image by Sujay Gawand (sujay0000@gmail.com)

Credits

Author
Jacob Perkins

Reviewers
Patrick Chan

Herjend Teny

Acquisition Editor
Steven Wilding

Development Editor
Maitreya Bhakal

Technical Editors
Bianca Sequeira

Aditi Suvarna

Copy Editor
Laxmi Subramanian

Indexer
Tejal Daruwale

Editorial Team Leader
Aditya Belpathak

Project Team Leader
Priya Mukherji

Project Coordinator
Shubhanjan Chatterjee

Proofreader
Joanna McMahon

Graphics
Nilesh Mohite

Production Coordinator
Adline Swetha Jesuthas

Cover Work
Adline Swetha Jesuthas

About the Author

Jacob Perkins has been an avid user of open source software since high school, when
he first built his own computer and didn't want to pay for Windows. At one point he had
five operating systems installed, including Red Hat Linux, OpenBSD, and BeOS.

While at Washington University in St. Louis, Jacob took classes in Spanish and poetry
writing, and worked on an independent study project that eventually became his Master's
project: WUGLE—a GUI for manipulating logical expressions. In his free time, he wrote
the Gnome2 version of Seahorse (a GUI for encryption and key management), which has
since been translated into over a dozen languages and is included in the default Gnome
distribution.

After receiving his MS in Computer Science, Jacob tried to start a web development
studio with some friends, but since no one knew anything about web development,
it didn't work out as planned. Once he'd actually learned about web development, he
went off and co-founded another company called Weotta, which sparked his interest in
Machine Learning and Natural Language Processing.

Jacob is currently the CTO/Chief Hacker for Weotta and blogs about what he's learned
along the way at http://streamhacker.com/. He is also applying this knowledge to
produce text processing APIs and demos at http://text-processing.com/. This book
is a synthesis of his knowledge on processing text using Python, NLTK, and more.

Thanks to my parents for all their support, even when they don't understand
what I'm doing; Grant for sparking my interest in Natural Language
Processing; Les for inspiring me to program when I had no desire to; Arnie
for all the algorithm discussions; and the whole Wernick family for feeding
me such good food whenever I come over.

About the Reviewers

Patrick Chan is an engineer/programmer in the telecommunications industry. He is an
avid fan of Linux and Python. His less geekier pursuits include Toastmasters, music, and
running.

Herjend Teny graduated from the University of Melbourne. He has worked mainly in
the education sector and as a part of research teams. The topics that he has worked
on mainly involve embedded programming, signal processing, simulation, and some
stochastic modeling. His current interests now lie in many aspects of web programming,
using Django. One of the books that he has worked on is the Python Testing: Beginner's
Guide.

I'd like to thank Patrick Chan for his help in many aspects, and his crazy and
odd ideas. Also to Hattie, for her tolerance in letting me do this review until
late at night. Thank you!!

Table of Contents
Preface	 1
Chapter 1: Tokenizing Text and WordNet Basics	 7

Introduction	 7
Tokenizing text into sentences	 8
Tokenizing sentences into words	 9
Tokenizing sentences using regular expressions	 11
Filtering stopwords in a tokenized sentence	 13
Looking up synsets for a word in WordNet	 14
Looking up lemmas and synonyms in WordNet	 17
Calculating WordNet synset similarity	 19
Discovering word collocations	 21

Chapter 2: Replacing and Correcting Words	 25
Introduction	 25
Stemming words	 25
Lemmatizing words with WordNet	 28
Translating text with Babelfish	 30
Replacing words matching regular expressions	 32
Removing repeating characters	 34
Spelling correction with Enchant	 36
Replacing synonyms	 39
Replacing negations with antonyms	 41

Chapter 3: Creating Custom Corpora	 45
Introduction	 45
Setting up a custom corpus	 46
Creating a word list corpus	 48
Creating a part-of-speech tagged word corpus	 50

ii

Table of Contents

Creating a chunked phrase corpus	 54
Creating a categorized text corpus	 58
Creating a categorized chunk corpus reader	 61
Lazy corpus loading	 68
Creating a custom corpus view	 70
Creating a MongoDB backed corpus reader	 74
Corpus editing with file locking	 77

Chapter 4: Part-of-Speech Tagging	 81
Introduction	 82
Default tagging	 82
Training a unigram part-of-speech tagger	 85
Combining taggers with backoff tagging	 88
Training and combining Ngram taggers	 89
Creating a model of likely word tags	 92
Tagging with regular expressions	 94
Affix tagging	 96
Training a Brill tagger	 98
Training the TnT tagger	 100
Using WordNet for tagging	 103
Tagging proper names	 105
Classifier based tagging	 106

Chapter 5: Extracting Chunks	 111
Introduction	 111
Chunking and chinking with regular expressions	 112
Merging and splitting chunks with regular expressions	 117
Expanding and removing chunks with regular expressions	 121
Partial parsing with regular expressions	 123
Training a tagger-based chunker	 126
Classification-based chunking	 129
Extracting named entities	 133
Extracting proper noun chunks	 135
Extracting location chunks	 137
Training a named entity chunker	 140

Chapter 6: Transforming Chunks and Trees	 143
Introduction	 143
Filtering insignificant words	 144
Correcting verb forms	 146
Swapping verb phrases	 149
Swapping noun cardinals	 150
Swapping infinitive phrases	 151

iii

Table of Contents

Singularizing plural nouns	 153
Chaining chunk transformations	 154
Converting a chunk tree to text	 155
Flattening a deep tree	 157
Creating a shallow tree	 161
Converting tree nodes	 163

Chapter 7: Text Classification	 167
Introduction	 167
Bag of Words feature extraction	 168
Training a naive Bayes classifier	 170
Training a decision tree classifier	 177
Training a maximum entropy classifier	 180
Measuring precision and recall of a classifier	 183
Calculating high information words	 187
Combining classifiers with voting	 191
Classifying with multiple binary classifiers	 193

Chapter 8: Distributed Processing and Handling Large Datasets	 201
Introduction	 202
Distributed tagging with execnet	 202
Distributed chunking with execnet	 206
Parallel list processing with execnet	 209
Storing a frequency distribution in Redis	 211
Storing a conditional frequency distribution in Redis	 215
Storing an ordered dictionary in Redis	 218
Distributed word scoring with Redis and execnet	 221

Chapter 9: Parsing Specific Data	 227
Introduction	 227
Parsing dates and times with Dateutil	 228
Time zone lookup and conversion	 230
Tagging temporal expressions with Timex	 233
Extracting URLs from HTML with lxml	 234
Cleaning and stripping HTML	 236
Converting HTML entities with BeautifulSoup	 238
Detecting and converting character encodings	 240

Appendix: Penn Treebank Part-of-Speech Tags	 243
Index	 247

Preface
Natural Language Processing is used everywhere—in search engines, spell checkers, mobile
phones, computer games, and even in your washing machine. Python's Natural Language
Toolkit (NLTK) suite of libraries has rapidly emerged as one of the most efficient tools for
Natural Language Processing. You want to employ nothing less than the best techniques in
Natural Language Processing—and this book is your answer.

Python Text Processing with NLTK 2.0 Cookbook is your handy and illustrative guide, which
will walk you through all the Natural Language Processing techniques in a step-by-step
manner. It will demystify the advanced features of text analysis and text mining using the
comprehensive NLTK suite.

This book cuts short the preamble and lets you dive right into the science of text processing
with a practical hands-on approach.

Get started off with learning tokenization of text. Receive an overview of WordNet and how
to use it. Learn the basics as well as advanced features of stemming and lemmatization.
Discover various ways to replace words with simpler and more common (read: more searched)
variants. Create your own corpora and learn to create custom corpus readers for data stored
in MongoDB. Use and manipulate POS taggers. Transform and normalize parsed chunks to
produce a canonical form without changing their meaning. Dig into feature extraction and text
classification. Learn how to easily handle huge amounts of data without any loss in efficiency
or speed.

This book will teach you all that and beyond, in a hands-on learn-by-doing manner. Make
yourself an expert in using the NLTK for Natural Language Processing with this handy
companion.

Preface

2

What this book covers
Chapter 1, Tokenizing Text and WordNet Basics, covers the basics of tokenizing text
and using WordNet.

Chapter 2, Replacing and Correcting Words, discusses various word replacement and
correction techniques. The recipes cover the gamut of linguistic compression, spelling
correction, and text normalization.

Chapter 3, Creating Custom Corpora, covers how to use corpus readers and create
custom corpora. At the same time, it explains how to use the existing corpus data that
comes with NLTK.

Chapter 4, Part-of-Speech Tagging, explains the process of converting a sentence,
in the form of a list of words, into a list of tuples. It also explains taggers, which
are trainable.

Chapter 5, Extracting Chunks, explains the process of extracting short phrases from a
part-of-speech tagged sentence. It uses Penn Treebank corpus for basic training and testing
chunk extraction, and the CoNLL 2000 corpus as it has a simpler and more flexible format
that supports multiple chunk types.

Chapter 6, Transforming Chunks and Trees, shows you how to do various transforms on both
chunks and trees. The functions detailed in these recipes modify data, as opposed to learning
from it.

Chapter 7, Text Classification, describes a way to categorize documents or pieces of text and,
by examining the word usage in a piece of text, classifiers decide what class label should be
assigned to it.

Chapter 8, Distributed Processing and Handling Large Datasets, discusses how to use
execnet to do parallel and distributed processing with NLTK. It also explains how to use the
Redis data structure server/database to store frequency distributions.

Chapter 9, Parsing Specific Data, covers parsing specific kinds of data, focusing primarily on
dates, times, and HTML.

Appendix, Penn Treebank Part-of-Speech Tags, lists a table of all the part-of-speech tags that
occur in the treebank corpus distributed with NLTK.

Preface

3

What you need for this book
In the course of this book, you will need the following software utilities to try out various code
examples listed:

•	 NLTK

•	 MongoDB

•	 PyMongo

•	 Redis

•	 redis-py

•	 execnet

•	 Enchant

•	 PyEnchant

•	 PyYAML

•	 dateutil

•	 chardet

•	 BeautifulSoup

•	 lxml

•	 SimpleParse

•	 mxBase

•	 lockfile

Who this book is for
This book is for Python programmers who want to quickly get to grips with using the
NLTK for Natural Language Processing. Familiarity with basic text processing concepts
is required. Programmers experienced in the NLTK will find it useful. Students of linguistics
will find it invaluable.

Conventions
In this book, you will find a number of styles of text that distinguish between different kinds
of information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text are shown as follows: "Now we want to split para into sentences. First we
need to import the sentence tokenization function, and then we can call it with the paragraph
as an argument."

Preface

4

A block of code is set as follows:

 >>> para = "Hello World. It's good to see you. Thanks for buying this
book."
 >>> from nltk.tokenize import sent_tokenize
 >>> sent_tokenize(para)

New terms and important words are shown in bold.

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or may have disliked. Reader feedback is important for us to develop
titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, and
mention the book title via the subject of your message.

If there is a book that you need and would like to see us publish, please send us a note in
the SUGGEST A TITLE form on www.packtpub.com or e-mail suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Downloading the example code for this book
You can download the example code files for all Packt books you have
purchased from your account at http://www.PacktPub.com. If you
purchased this book elsewhere, you can visit http://www.PacktPub.
com/support and register to have the files e-mailed directly to you.

Preface

5

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the code—
we would be grateful if you would report this to us. By doing so, you can save other readers
from frustration and help us improve subsequent versions of this book. If you find any errata,
please report them by visiting http://www.packtpub.com/support, selecting your book,
clicking on the errata submission form link, and entering the details of your errata. Once
your errata are verified, your submission will be accepted and the errata will be uploaded on
our website, or added to any list of existing errata, under the Errata section of that title. Any
existing errata can be viewed by selecting your title from http://www.packtpub.com/
support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you valuable
content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with any
aspect of the book, and we will do our best to address it.

1
Tokenizing Text and

WordNet Basics

In this chapter, we will cover:

ff Tokenizing text into sentences

ff Tokenizing sentences into words

ff Tokenizing sentences using regular expressions

ff Filtering stopwords in a tokenized sentence

ff Looking up synsets for a word in WordNet

ff Looking up lemmas and synonyms in WordNet

ff Calculating WordNet synset similarity

ff Discovering word collocations

Introduction
NLTK is the Natural Language Toolkit, a comprehensive Python library for natural language
processing and text analytics. Originally designed for teaching, it has been adopted in the
industry for research and development due to its usefulness and breadth of coverage.

This chapter will cover the basics of tokenizing text and using WordNet. Tokenization is a
method of breaking up a piece of text into many pieces, and is an essential first step for
recipes in later chapters.

Tokenizing Text and WordNet Basics

8

WordNet is a dictionary designed for programmatic access by natural language processing
systems. NLTK includes a WordNet corpus reader, which we will use to access and explore
WordNet. We'll be using WordNet again in later chapters, so it's important to familiarize
yourself with the basics first.

Tokenizing text into sentences
Tokenization is the process of splitting a string into a list of pieces, or tokens. We'll start by
splitting a paragraph into a list of sentences.

Getting ready
Installation instructions for NLTK are available at http://www.nltk.org/download and
the latest version as of this writing is 2.0b9. NLTK requires Python 2.4 or higher, but is not
compatible with Python 3.0. The recommended Python version is 2.6.

Once you've installed NLTK, you'll also need to install the data by following the instructions
at http://www.nltk.org/data. We recommend installing everything, as we'll be using
a number of corpora and pickled objects. The data is installed in a data directory, which on
Mac and Linux/Unix is usually /usr/share/nltk_data, or on Windows is C:\nltk_data.
Make sure that tokenizers/punkt.zip is in the data directory and has been unpacked so
that there's a file at tokenizers/punkt/english.pickle.

Finally, to run the code examples, you'll need to start a Python console. Instructions on
how to do so are available at http://www.nltk.org/getting-started. For Mac
with Linux/Unix users, you can open a terminal and type python.

How to do it...
Once NLTK is installed and you have a Python console running, we can start by creating a
paragraph of text:

>>> para = "Hello World. It's good to see you. Thanks for buying this
book."

Now we want to split para into sentences. First we need to import the sentence tokenization
function, and then we can call it with the paragraph as an argument.

>>> from nltk.tokenize import sent_tokenize
>>> sent_tokenize(para)
['Hello World.', "It's good to see you.", 'Thanks for buying this
book.']

So now we have a list of sentences that we can use for further processing.

Chapter 1

9

How it works...
sent_tokenize uses an instance of PunktSentenceTokenizer from the nltk.
tokenize.punkt module. This instance has already been trained on and works well for
many European languages. So it knows what punctuation and characters mark the end of a
sentence and the beginning of a new sentence.

There's more...
The instance used in sent_tokenize() is actually loaded on demand from a pickle
file. So if you're going to be tokenizing a lot of sentences, it's more efficient to load the
PunktSentenceTokenizer once, and call its tokenize() method instead.

>>> import nltk.data
>>> tokenizer = nltk.data.load('tokenizers/punkt/english.pickle')
>>> tokenizer.tokenize(para)
['Hello World.', "It's good to see you.", 'Thanks for buying this
book.']

Other languages
If you want to tokenize sentences in languages other than English, you can load one of the
other pickle files in tokenizers/punkt and use it just like the English sentence tokenizer.
Here's an example for Spanish:

>>> spanish_tokenizer = nltk.data.load('tokenizers/punkt/spanish.
pickle')
>>> spanish_tokenizer.tokenize('Hola amigo. Estoy bien.')

See also
In the next recipe, we'll learn how to split sentences into individual words. After that, we'll
cover how to use regular expressions for tokenizing text.

Tokenizing sentences into words
In this recipe, we'll split a sentence into individual words. The simple task of creating a list of
words from a string is an essential part of all text processing.

Tokenizing Text and WordNet Basics

10

How to do it...
Basic word tokenization is very simple: use the word_tokenize() function:

>>> from nltk.tokenize import word_tokenize
>>> word_tokenize('Hello World.')
['Hello', 'World', '.']

How it works...
word_tokenize() is a wrapper function that calls tokenize() on an instance of the
TreebankWordTokenizer. It's equivalent to the following:

>>> from nltk.tokenize import TreebankWordTokenizer
>>> tokenizer = TreebankWordTokenizer()
>>> tokenizer.tokenize('Hello World.')
['Hello', 'World', '.']

It works by separating words using spaces and punctuation. And as you can see, it does not
discard the punctuation, allowing you to decide what to do with it.

There's more...
Ignoring the obviously named WhitespaceTokenizer and SpaceTokenizer, there are two
other word tokenizers worth looking at: PunktWordTokenizer and WordPunctTokenizer.
These differ from the TreebankWordTokenizer by how they handle punctuation and
contractions, but they all inherit from TokenizerI. The inheritance tree looks like this:

Chapter 1

11

Contractions
TreebankWordTokenizer uses conventions found in the Penn Treebank corpus, which we'll
be using for training in Chapter 4, Part-of-Speech Tagging and Chapter 5, Extracting Chunks.
One of these conventions is to separate contractions. For example:

>>> word_tokenize("can't")
['ca', "n't"]

If you find this convention unacceptable, then read on for alternatives, and see the next recipe
for tokenizing with regular expressions.

PunktWordTokenizer
An alternative word tokenizer is the PunktWordTokenizer. It splits on punctuation, but
keeps it with the word instead of creating separate tokens.

>>> from nltk.tokenize import PunktWordTokenizer
>>> tokenizer = PunktWordTokenizer()
>>> tokenizer.tokenize("Can't is a contraction.")
['Can', "'t", 'is', 'a', 'contraction.']

WordPunctTokenizer
Another alternative word tokenizer is WordPunctTokenizer. It splits all punctuations into
separate tokens.

>>> from nltk.tokenize import WordPunctTokenizer
>>> tokenizer = WordPunctTokenizer()
>>> tokenizer.tokenize("Can't is a contraction.")
['Can', "'", 't', 'is', 'a', 'contraction', '.']

See also
For more control over word tokenization, you'll want to read the next recipe to learn how to use
regular expressions and the RegexpTokenizer for tokenization.

Tokenizing sentences using regular
expressions

Regular expression can be used if you want complete control over how to tokenize text. As
regular expressions can get complicated very quickly, we only recommend using them if the
word tokenizers covered in the previous recipe are unacceptable.

Tokenizing Text and WordNet Basics

12

Getting ready
First you need to decide how you want to tokenize a piece of text, as this will determine how
you construct your regular expression. The choices are:

ff Match on the tokens

ff Match on the separators, or gaps

We'll start with an example of the first, matching alphanumeric tokens plus single quotes so
that we don't split up contractions.

How to do it...
We'll create an instance of the RegexpTokenizer, giving it a regular expression string to
use for matching tokens.

>>> from nltk.tokenize import RegexpTokenizer
>>> tokenizer = RegexpTokenizer("[\w']+")
>>> tokenizer.tokenize("Can't is a contraction.")
["Can't", 'is', 'a', 'contraction']

There's also a simple helper function you can use in case you don't want to instantiate
the class.

>>> from nltk.tokenize import regexp_tokenize
>>> regexp_tokenize("Can't is a contraction.", "[\w']+")
["Can't", 'is', 'a', 'contraction']

Now we finally have something that can treat contractions as whole words, instead of splitting
them into tokens.

How it works...
The RegexpTokenizer works by compiling your pattern, then calling re.findall() on
your text. You could do all this yourself using the re module, but the RegexpTokenizer
implements the TokenizerI interface, just like all the word tokenizers from the previous
recipe. This means it can be used by other parts of the NLTK package, such as corpus
readers, which we'll cover in detail in Chapter 3, Creating Custom Corpora. Many corpus
readers need a way to tokenize the text they're reading, and can take optional keyword
arguments specifying an instance of a TokenizerI subclass. This way, you have the ability to
provide your own tokenizer instance if the default tokenizer is unsuitable.

Chapter 1

13

There's more...
RegexpTokenizer can also work by matching the gaps, instead of the tokens. Instead
of using re.findall(), the RegexpTokenizer will use re.split(). This is how the
BlanklineTokenizer in nltk.tokenize is implemented.

Simple whitespace tokenizer
Here's a simple example of using the RegexpTokenizer to tokenize on whitespace:

>>> tokenizer = RegexpTokenizer('\s+', gaps=True)
>>> tokenizer.tokenize("Can't is a contraction.")
 ["Can't", 'is', 'a', 'contraction.']

Notice that punctuation still remains in the tokens.

See also
For simpler word tokenization, see the previous recipe.

Filtering stopwords in a tokenized sentence
Stopwords are common words that generally do not contribute to the meaning of a sentence,
at least for the purposes of information retrieval and natural language processing. Most
search engines will filter stopwords out of search queries and documents in order to save
space in their index.

Getting ready
NLTK comes with a stopwords corpus that contains word lists for many languages. Be sure to
unzip the datafile so NLTK can find these word lists in nltk_data/corpora/stopwords/.

How to do it...
We're going to create a set of all English stopwords, then use it to filter stopwords from a
sentence.

>>> from nltk.corpus import stopwords
>>> english_stops = set(stopwords.words('english'))
>>> words = ["Can't", 'is', 'a', 'contraction']
>>> [word for word in words if word not in english_stops]
["Can't", 'contraction']

Tokenizing Text and WordNet Basics

14

How it works...
The stopwords corpus is an instance of nltk.corpus.reader.WordListCorpusReader.
As such, it has a words() method that can take a single argument for the file ID, which in this
case is 'english', referring to a file containing a list of English stopwords. You could also
call stopwords.words() with no argument to get a list of all stopwords in every language
available.

There's more...
You can see the list of all English stopwords using stopwords.words('english') or by
examining the word list file at nltk_data/corpora/stopwords/english. There are also
stopword lists for many other languages. You can see the complete list of languages using the
fileids() method:

>>> stopwords.fileids()
['danish', 'dutch', 'english', 'finnish', 'french', 'german',
'hungarian', 'italian', 'norwegian', 'portuguese', 'russian',
'spanish', 'swedish', 'turkish']

Any of these fileids can be used as an argument to the words() method to get a list of
stopwords for that language.

See also
If you'd like to create your own stopwords corpus, see the Creating a word list corpus recipe
in Chapter 3, Creating Custom Corpora, to learn how to use the WordListCorpusReader.
We'll also be using stopwords in the Discovering word collocations recipe, later in this chapter.

Looking up synsets for a word in WordNet
WordNet is a lexical database for the English language. In other words, it's a dictionary
designed specifically for natural language processing.

NLTK comes with a simple interface for looking up words in WordNet. What you get is a list of
synset instances, which are groupings of synonymous words that express the same concept.
Many words have only one synset, but some have several. We'll now explore a single synset,
and in the next recipe, we'll look at several in more detail.

Chapter 1

15

Getting ready
Be sure you've unzipped the wordnet corpus in nltk_data/corpora/wordnet. This will
allow the WordNetCorpusReader to access it.

How to do it...
Now we're going to lookup the synset for cookbook, and explore some of the properties and
methods of a synset.

>>> from nltk.corpus import wordnet
>>> syn = wordnet.synsets('cookbook')[0]
>>> syn.name
'cookbook.n.01'
>>> syn.definition
'a book of recipes and cooking directions'

How it works...
You can look up any word in WordNet using wordnet.synsets(word) to get a list of
synsets. The list may be empty if the word is not found. The list may also have quite a few
elements, as some words can have many possible meanings and therefore many synsets.

There's more...
Each synset in the list has a number of attributes you can use to learn more about it.
The name attribute will give you a unique name for the synset, which you can use to get
the synset directly.

>>> wordnet.synset('cookbook.n.01')
Synset('cookbook.n.01')

The definition attribute should be self-explanatory. Some synsets also have an examples
attribute, which contains a list of phrases that use the word in context.

>>> wordnet.synsets('cooking')[0].examples
['cooking can be a great art', 'people are needed who have experience
in cookery', 'he left the preparation of meals to his wife']

Hypernyms
Synsets are organized in a kind of inheritance tree. More abstract terms are known as
hypernyms and more specific terms are hyponyms. This tree can be traced all the way up
to a root hypernym.

Tokenizing Text and WordNet Basics

16

Hypernyms provide a way to categorize and group words based on their similarity to each
other. The synset similarity recipe details the functions used to calculate similarity based on
the distance between two words in the hypernym tree.

>>> syn.hypernyms()
[Synset('reference_book.n.01')]
>>> syn.hypernyms()[0].hyponyms()
[Synset('encyclopedia.n.01'), Synset('directory.n.01'),
Synset('source_book.n.01'), Synset('handbook.n.01'),
Synset('instruction_book.n.01'), Synset('cookbook.n.01'),
Synset('annual.n.02'), Synset('atlas.n.02'), Synset('wordbook.n.01')]
>>> syn.root_hypernyms()
[Synset('entity.n.01')]

As you can see, reference book is a hypernym of cookbook, but cookbook is only one of
many hyponyms of reference book. All these types of books have the same root hypernym,
entity, one of the most abstract terms in the English language. You can trace the entire
path from entity down to cookbook using the hypernym_paths() method.

>>> syn.hypernym_paths()
[[Synset('entity.n.01'), Synset('physical_entity.n.01'),
Synset('object.n.01'), Synset('whole.n.02'), Synset('artifact.n.01'),
Synset('creation.n.02'), Synset('product.n.02'), Synset('work.n.02'),
Synset('publication.n.01'), Synset('book.n.01'), Synset('reference_
book.n.01'), Synset('cookbook.n.01')]]

This method returns a list of lists, where each list starts at the root hypernym and ends with
the original Synset. Most of the time you'll only get one nested list of synsets.

Part-of-speech (POS)
You can also look up a simplified part-of-speech tag.

>>> syn.pos
'n'

There are four common POS found in WordNet.

Part-of-speech Tag
Noun n
Adjective a
Adverb r
Verb v

These POS tags can be used for looking up specific synsets for a word. For example, the
word great can be used as a noun or an adjective. In WordNet, great has one noun synset
and six adjective synsets.

Chapter 1

17

>>> len(wordnet.synsets('great'))
7
>>> len(wordnet.synsets('great', pos='n'))
1
>>> len(wordnet.synsets('great', pos='a'))
6

These POS tags will be referenced more in the Using WordNet for Tagging recipe of
Chapter 4, Part-of-Speech Tagging.

See also
In the next two recipes, we'll explore lemmas and how to calculate synset similarity. In
Chapter 2, Replacing and Correcting Words, we'll use WordNet for lemmatization, synonym
replacement, and then explore the use of antonyms.

Looking up lemmas and synonyms
in WordNet

Building on the previous recipe, we can also look up lemmas in WordNet to find synonyms of a
word. A lemma (in linguistics) is the canonical form, or morphological form, of a word.

How to do it...
In the following block of code, we'll find that there are two lemmas for the cookbook synset
by using the lemmas attribute:

>>> from nltk.corpus import wordnet
>>> syn = wordnet.synsets('cookbook')[0]
>>> lemmas = syn.lemmas
>>> len(lemmas)
2
>>> lemmas[0].name
'cookbook'
>>> lemmas[1].name
'cookery_book'
>>> lemmas[0].synset == lemmas[1].synset
True

Tokenizing Text and WordNet Basics

18

How it works...
As you can see, cookery_book and cookbook are two distinct lemmas in the same
synset. In fact, a lemma can only belong to a single synset. In this way, a synset represents
a group of lemmas that all have the same meaning, while a lemma represents a distinct
word form.

There's more...
Since lemmas in a synset all have the same meaning, they can be treated as synonyms. So if
you wanted to get all synonyms for a synset, you could do:

>>> [lemma.name for lemma in syn.lemmas]
['cookbook', 'cookery_book']

All possible synonyms
As mentioned before, many words have multiple synsets because the word can have
different meanings depending on the context. But let's say you didn't care about the context,
and wanted to get all possible synonyms for a word.

>>> synonyms = []
>>> for syn in wordnet.synsets('book'):
... for lemma in syn.lemmas:
... synonyms.append(lemma.name)
>>> len(synonyms)
38

As you can see, there appears to be 38 possible synonyms for the word book. But in fact,
some are verb forms, and many are just different usages of book. Instead, if we take the set
of synonyms, there are fewer unique words.

>>> len(set(synonyms))
25

Antonyms
Some lemmas also have antonyms. The word good, for example, has 27 synsets, five of
which have lemmas with antonyms.

>>> gn2 = wordnet.synset('good.n.02')
>>> gn2.definition
'moral excellence or admirableness'
>>> evil = gn2.lemmas[0].antonyms()[0]
>>> evil.name
'evil'
>>> evil.synset.definition

Chapter 1

19

'the quality of being morally wrong in principle or practice'
>>> ga1 = wordnet.synset('good.a.01')
>>> ga1.definition
'having desirable or positive qualities especially those suitable for
a thing specified'
>>> bad = ga1.lemmas[0].antonyms()[0]
>>> bad.name
'bad'
>>> bad.synset.definition
'having undesirable or negative qualities'

The antonyms() method returns a list of lemmas. In the first case here, we see that the
second synset for good as a noun is defined as moral excellence, and its first antonym
is evil, defined as morally wrong. In the second case, when good is used as an adjective
to describe positive qualities, the first antonym is bad, which describes negative qualities.

See also

In the next recipe, we'll learn how to calculate synset similarity. Then in Chapter 2, Replacing
and Correcting Words, we'll revisit lemmas for lemmatization, synonym replacement, and
antonym replacement.

Calculating WordNet synset similarity
Synsets are organized in a hypernym tree. This tree can be used for reasoning about the
similarity between the synsets it contains. Two synsets are more similar, the closer they are
in the tree.

How to do it...
If you were to look at all the hyponyms of reference book (which is the hypernym of
cookbook) you'd see that one of them is instruction_book. These seem intuitively very
similar to cookbook, so let's see what WordNet similarity has to say about it.

>>> from nltk.corpus import wordnet
>>> cb = wordnet.synset('cookbook.n.01')
>>> ib = wordnet.synset('instruction_book.n.01')
>>> cb.wup_similarity(ib)
0.91666666666666663

So they are over 91% similar!

Tokenizing Text and WordNet Basics

20

How it works...
wup_similarity is short for Wu-Palmer Similarity, which is a scoring method based on
how similar the word senses are and where the synsets occur relative to each other in the
hypernym tree. One of the core metrics used to calculate similarity is the shortest path
distance between the two synsets and their common hypernym.

>>> ref = cb.hypernyms()[0]
>>> cb.shortest_path_distance(ref)
1
>>> ib.shortest_path_distance(ref)
1
>>> cb.shortest_path_distance(ib)
2

So cookbook and instruction book must be very similar, because they are only one step
away from the same hypernym, reference book, and therefore only two steps away from
each other.

There's more...
Let's look at two dissimilar words to see what kind of score we get. We'll compare dog with
cookbook, two seemingly very different words.

>>> dog = wordnet.synsets('dog')[0]
>>> dog.wup_similarity(cb)
0.38095238095238093

Wow, dog and cookbook are apparently 38% similar! This is because they share common
hypernyms farther up the tree.

>>> dog.common_hypernyms(cb)
[Synset('object.n.01'), Synset('whole.n.02'), Synset('physical_
entity.n.01'), Synset('entity.n.01')]

Comparing verbs
The previous comparisons were all between nouns, but the same can be done for verbs
as well.

>>> cook = wordnet.synset('cook.v.01')
>>> bake = wordnet.synset('bake.v.02')
>>> cook.wup_similarity(bake)
0.75

Chapter 1

21

The previous synsets were obviously handpicked for demonstration, and the reason is that
the hypernym tree for verbs has a lot more breadth and a lot less depth. While most nouns
can be traced up to object, thereby providing a basis for similarity, many verbs do not share
common hypernyms, making WordNet unable to calculate similarity. For example, if you were
to use the synset for bake.v.01 here, instead of bake.v.02, the return value would be
None. This is because the root hypernyms of the two synsets are different, with no overlapping
paths. For this reason, you also cannot calculate similarity between words with different parts
of speech.

Path and LCH similarity
Two other similarity comparisons are the path similarity and Leacock Chodorow (LCH)
similarity.

>>> cb.path_similarity(ib)
0.33333333333333331
>>> cb.path_similarity(dog)
0.071428571428571425
>>> cb.lch_similarity(ib)
2.5389738710582761
>>> cb.lch_similarity(dog)
0.99852883011112725

As you can see, the number ranges are very different for these scoring methods, which is why
we prefer the wup_similarity() method.

See also
The recipe on Looking up synsets for a word in WordNet, discussed earlier in this chapter, has
more details about hypernyms and the hypernym tree.

Discovering word collocations
Collocations are two or more words that tend to appear frequently together, such as "United
States". Of course, there are many other words that can come after "United", for example
"United Kingdom", "United Airlines", and so on. As with many aspects of natural language
processing, context is very important, and for collocations, context is everything!

In the case of collocations, the context will be a document in the form of a list of words.
Discovering collocations in this list of words means that we'll find common phrases that occur
frequently throughout the text. For fun, we'll start with the script for Monty Python and the
Holy Grail.

Tokenizing Text and WordNet Basics

22

Getting ready
The script for Monty Python and the Holy Grail is found in the webtext corpus, so be sure
that it's unzipped in nltk_data/corpora/webtext/.

How to do it...
We're going to create a list of all lowercased words in the text, and then produce a
BigramCollocationFinder, which we can use to find bigrams, which are pairs of words.
These bigrams are found using association measurement functions found in the nltk.
metrics package.

>>> from nltk.corpus import webtext
>>> from nltk.collocations import BigramCollocationFinder
>>> from nltk.metrics import BigramAssocMeasures
>>> words = [w.lower() for w in webtext.words('grail.txt')]
>>> bcf = BigramCollocationFinder.from_words(words)
>>> bcf.nbest(BigramAssocMeasures.likelihood_ratio, 4)
[("'", 's'), ('arthur', ':'), ('#', '1'), ("'", 't')]

Well that's not very useful! Let's refine it a bit by adding a word filter to remove punctuation
and stopwords.

>>> from nltk.corpus import stopwords
>>> stopset = set(stopwords.words('english'))
>>> filter_stops = lambda w: len(w) < 3 or w in stopset
>>> bcf.apply_word_filter(filter_stops)
>>> bcf.nbest(BigramAssocMeasures.likelihood_ratio, 4)
[('black', 'knight'), ('clop', 'clop'), ('head', 'knight'), ('mumble',
'mumble')]

Much better—we can clearly see four of the most common bigrams in Monty Python and the
Holy Grail. If you'd like to see more than four, simply increase the number to whatever you
want, and the collocation finder will do its best.

How it works...
The BigramCollocationFinder constructs two frequency distributions: one for each
word, and another for bigrams. A frequency distribution, or FreqDist in NLTK, is basically
an enhanced dictionary where the keys are what's being counted, and the values are the
counts. Any filtering functions that are applied, reduce the size of these two FreqDists by
eliminating any words that don't pass the filter. By using a filtering function to eliminate all
words that are one or two characters, and all English stopwords, we can get a much cleaner
result. After filtering, the collocation finder is ready to accept a generic scoring function for
finding collocations. Additional scoring functions are covered in the Scoring functions section
further in this chapter.

Chapter 1

23

There's more...
In addition to BigramCollocationFinder, there's also TrigramCollocationFinder,
for finding triples instead of pairs. This time, we'll look for trigrams in Australian singles ads.

>>> from nltk.collocations import TrigramCollocationFinder
>>> from nltk.metrics import TrigramAssocMeasures
>>> words = [w.lower() for w in webtext.words('singles.txt')]
>>> tcf = TrigramCollocationFinder.from_words(words)
>>> tcf.apply_word_filter(filter_stops)
>>> tcf.apply_freq_filter(3)
>>> tcf.nbest(TrigramAssocMeasures.likelihood_ratio, 4)
[('long', 'term', 'relationship')]

Now, we don't know whether people are looking for a long-term relationship or not, but clearly
it's an important topic. In addition to the stopword filter, we also applied a frequency filter
which removed any trigrams that occurred less than three times. This is why only one result
was returned when we asked for four—because there was only one result that occurred more
than twice.

Scoring functions
There are many more scoring functions available besides likelihood_ratio(). But other
than raw_freq(), you may need a bit of a statistics background to understand how they
work. Consult the NLTK API documentation for NgramAssocMeasures in the nltk.metrics
package, to see all the possible scoring functions.

Scoring ngrams
In addition to the nbest() method, there are two other ways to get ngrams (a generic term
for describing bigrams and trigrams) from a collocation finder.

1.	 above_score(score_fn, min_score) can be used to get all ngrams with scores
that are at least min_score. The min_score that you choose will depend heavily on
the score_fn you use.

2.	 score_ngrams(score_fn) will return a list with tuple pairs of (ngram, score).
This can be used to inform your choice for min_score in the previous step.

See also

The nltk.metrics module will be used again in Chapter 7, Text Classification.

2
Replacing and

Correcting Words

In this chapter, we will cover:

ff Stemming words
ff Lemmatizing words with WordNet
ff Translating text with Babelfish
ff Replacing words matching regular expressions
ff Removing repeating characters
ff Spelling correction with Enchant
ff Replacing synonyms
ff Replacing negations with antonyms

Introduction
In this chapter, we will go over various word replacement and correction techniques. The
recipes cover the gamut of linguistic compression, spelling correction, and text normalization.
All of these methods can be very useful for pre-processing text before search indexing,
document classification, and text analysis.

Stemming words
Stemming is a technique for removing affixes from a word, ending up with the stem. For
example, the stem of "cooking" is "cook", and a good stemming algorithm knows that the
"ing" suffix can be removed. Stemming is most commonly used by search engines for indexing
words. Instead of storing all forms of a word, a search engine can store only the stems, greatly
reducing the size of index while increasing retrieval accuracy.

Replacing and Correcting Words

26

One of the most common stemming algorithms is the Porter Stemming Algorithm, by Martin
Porter. It is designed to remove and replace well known suffixes of English words, and its
usage in NLTK will be covered next.

The resulting stem is not always a valid word. For example, the
stem of "cookery" is "cookeri". This is a feature, not a bug.

How to do it...
NLTK comes with an implementation of the Porter Stemming Algorithm, which is very easy
to use. Simply instantiate the PorterStemmer class and call the stem() method with the
word you want to stem.

>>> from nltk.stem import PorterStemmer
>>> stemmer = PorterStemmer()
>>> stemmer.stem('cooking')
'cook'
>>> stemmer.stem('cookery')
'cookeri'

How it works...
The PorterStemmer knows a number of regular word forms and suffixes, and uses
that knowledge to transform your input word to a final stem through a series of steps. The
resulting stem is often a shorter word, or at least a common form of the word, that has the
same root meaning.

There's more...
There are other stemming algorithms out there besides the Porter Stemming Algorithm, such
as the Lancaster Stemming Algorithm, developed at Lancaster University. NLTK includes
it as the LancasterStemmer class. At the time of writing, there is no definitive research
demonstrating the superiority of one algorithm over the other. However, Porter Stemming
is generally the default choice.

Chapter 2

27

All the stemmers covered next inherit from the StemmerI interface, which defines the
stem() method. The following is an inheritance diagram showing this:

LancasterStemmer
The LancasterStemmer functions just like the PorterStemmer, but can produce slightly
different results. It is known to be slightly more aggressive than the PorterStemmer.

>>> from nltk.stem import LancasterStemmer
>>> stemmer = LancasterStemmer()
>>> stemmer.stem('cooking')
'cook'
>>> stemmer.stem('cookery')
'cookery'

RegexpStemmer
You can also construct your own stemmer using the RegexpStemmer. It takes a single regular
expression (either compiled or as a string) and will remove any prefix or suffix that matches.

>>> from nltk.stem import RegexpStemmer
>>> stemmer = RegexpStemmer('ing')
>>> stemmer.stem('cooking')
'cook'
>>> stemmer.stem('cookery')
'cookery'
>>> stemmer.stem('ingleside')
'leside'

A RegexpStemmer should only be used in very specific cases that are not covered by the
PorterStemmer or LancasterStemmer.

Replacing and Correcting Words

28

SnowballStemmer
New in NLTK 2.0b9 is the SnowballStemmer, which supports 13 non-English languages.
To use it, you create an instance with the name of the language you are using, and then call
the stem() method. Here is a list of all the supported languages, and an example using the
Spanish SnowballStemmer:

>>> from nltk.stem import SnowballStemmer
>>> SnowballStemmer.languages
('danish', 'dutch', 'finnish', 'french', 'german', 'hungarian',
'italian', 'norwegian', 'portuguese', 'romanian', 'russian',
'spanish', 'swedish')
>>> spanish_stemmer = SnowballStemmer('spanish')
>>> spanish_stemmer.stem('hola')
u'hol'

See also
In the next recipe, we will cover lemmatization, which is quite similar to stemming, but
subtly different.

Lemmatizing words with WordNet
Lemmatization is very similar to stemming, but is more akin to synonym replacement. A
lemma is a root word, as opposed to the root stem. So unlike stemming, you are always
left with a valid word which means the same thing. But the word you end up with can be
completely different. A few examples will explain lemmatization...

Getting ready
Be sure you have unzipped the wordnet corpus in nltk_data/corpora/wordnet. This will
allow the WordNetLemmatizer to access WordNet. You should also be somewhat familiar
with the part-of-speech tags covered in the Looking up synsets for a word in WordNet recipe of
Chapter 1, Tokenizing Text and WordNet Basics.

How to do it...
We will use the WordNetLemmatizer to find lemmas:

>>> from nltk.stem import WordNetLemmatizer
>>> lemmatizer = WordNetLemmatizer()
>>> lemmatizer.lemmatize('cooking')
'cooking'

Chapter 2

29

>>> lemmatizer.lemmatize('cooking', pos='v')
'cook'
>>> lemmatizer.lemmatize('cookbooks')
'cookbook'

How it works...
The WordNetLemmatizer is a thin wrapper around the WordNet corpus, and uses the
morphy() function of the WordNetCorpusReader to find a lemma. If no lemma is found,
the word is returned as it is. Unlike with stemming, knowing the part of speech of the word is
important. As demonstrated previously, "cooking" does not have a lemma unless you specify
that the part of speech (pos) is a verb. This is because the default part of speech is a noun,
and since "cooking" is not a noun, no lemma is found. "Cookbooks", on the other hand, is a
noun, and its lemma is the singular form, "cookbook".

There's more...
Here's an example that illustrates one of the major differences between stemming
and lemmatization:

>>> from nltk.stem import PorterStemmer
>>> stemmer = PorterStemmer()
>>> stemmer.stem('believes')
'believ'
>>> lemmatizer.lemmatize('believes')
'belief'

Instead of just chopping off the "es" like the PorterStemmer, the WordNetLemmatizer
finds a valid root word. Where a stemmer only looks at the form of the word, the lemmatizer
looks at the meaning of the word. And by returning a lemma, you will always get a valid word.

Combining stemming with lemmatization
Stemming and lemmatization can be combined to compress words more than either process
can by itself. These cases are somewhat rare, but they do exist:

>>> stemmer.stem('buses')
'buse'
>>> lemmatizer.lemmatize('buses')
'bus'
>>> stemmer.stem('bus')
'bu'

Replacing and Correcting Words

30

In this example, stemming saves one character, lemmatizing saves two characters, and
stemming the lemma saves a total of three characters out of five characters. That is nearly a
60% compression rate! This level of word compression over many thousands of words, while
unlikely to always produce such high gains, can still make a huge difference.

See also
In the previous recipe, we covered stemming basics and WordNet was introduced in the
Looking up synsets for a word in WordNet and Looking up lemmas and synonyms in WordNet
recipes of Chapter 1, Tokenizing Text and WordNet Basics. Looking forward, we will cover the
Using WordNet for Tagging recipe in Chapter 4, Part-of-Speech Tagging.

Translating text with Babelfish
Babelfish is an online language translation API provided by Yahoo. With it, you can translate
text in a source language to a target language. NLTK comes with a simple interface for
using it.

Getting ready
Be sure you are connected to the internet first. The babelfish.translate() function
requires access to Yahoo's online API in order to work.

How to do it...
To translate your text, you first need to know two things:

1.	 The language of your text or source language.

2.	 The language you want to translate to or target language.

Language detection is outside the scope of this recipe, so we will assume you already know
the source and target languages.

>>> from nltk.misc import babelfish
>>> babelfish.translate('cookbook', 'english', 'spanish')
'libro de cocina'
>>> babelfish.translate('libro de cocina', 'spanish', 'english')
'kitchen book'
>>> babelfish.translate('cookbook', 'english', 'german')
'Kochbuch'
>>> babelfish.translate('kochbuch', 'german', 'english')
'cook book'

Chapter 2

31

You cannot translate using the same language for both source and target.
Attempting to do so will raise a BabelfishChangedError.

How it works...
The translate() function is a small function that sends a urllib request to
http://babelfish.yahoo.com/translate_txt, and then searches the
response for the translated text.

If Yahoo, for whatever reason, had changed their HTML response
to the point that translate() cannot identify the translated
text, a BabelfishChangedError will be raised. This is unlikely
to happen, but if it does, you may need to upgrade to a newer
version of NLTK and/or report the error.

There's more...
There is also a fun function called babelize() that translates back and forth between the
source and target language until there are no more changes.

>>> for text in babelfish.babelize('cookbook', 'english', 'spanish'):
... print text
cookbook
libro de cocina
kitchen book
libro de la cocina
book of the kitchen

Available languages
You can see all the languages available for translation by examining the available_
languages attribute.

>>> babelfish.available_languages
['Portuguese', 'Chinese', 'German', 'Japanese', 'French', 'Spanish',
'Russian', 'Greek', 'English', 'Korean', 'Italian']

The lowercased version of each of these languages can be used as a source or target
language for translation.

Replacing and Correcting Words

32

Replacing words matching regular
expressions

Now we are going to get into the process of replacing words. Where stemming and
lemmatization are a kind of linguistic compression, and word replacement can be thought
of as error correction, or text normalization.

For this recipe, we will be replacing words based on regular expressions, with a focus on
expanding contractions. Remember when we were tokenizing words in Chapter 1, Tokenizing
Text and WordNet Basics and it was clear that most tokenizers had trouble with contractions?
This recipe aims to fix that by replacing contractions with their expanded forms, such as by
replacing "can't" with "cannot", or "would've" with "would have".

Getting ready
Understanding how this recipe works will require a basic knowledge of regular expressions and
the re module. The key things to know are matching patterns and the re.subn() function.

How to do it...
First, we need to define a number of replacement patterns. This will be a list of tuple pairs,
where the first element is the pattern to match on, and the second element is the replacement.

Next, we will create a RegexpReplacer class that will compile the patterns, and provide a
replace() method to substitute all found patterns with their replacements.

The following code can be found in the replacers.py module and is meant to be imported,
not typed into the console:

import re

replacement_patterns = [
 (r'won\'t', 'will not'),
 (r'can\'t', 'cannot'),
 (r'i\'m', 'i am'),
 (r'ain\'t', 'is not'),
 (r'(\w+)\'ll', '\g<1> will'),
 (r'(\w+)n\'t', '\g<1> not'),
 (r'(\w+)\'ve', '\g<1> have'),
 (r'(\w+)\'s', '\g<1> is'),
 (r'(\w+)\'re', '\g<1> are'),
 (r'(\w+)\'d', '\g<1> would')

]
class RegexpReplacer(object):

Chapter 2

33

 def __init__(self, patterns=replacement_patterns):
 self.patterns = [(re.compile(regex), repl) for (regex, repl) in
 patterns]

 def replace(self, text):
 s = text
 for (pattern, repl) in self.patterns:
 (s, count) = re.subn(pattern, repl, s)
 return s

How it works...
Here is a simple usage example:

>>> from replacers import RegexpReplacer
>>> replacer = RegexpReplacer()
>>> replacer.replace("can't is a contraction")
'cannot is a contraction'
>>> replacer.replace("I should've done that thing I didn't do")
'I should have done that thing I did not do'

RegexpReplacer.replace() works by replacing every instance of a replacement pattern
with its corresponding substitution pattern. In replacement_patterns, we have defined
tuples such as (r'(\w+)\'ve', '\g<1> have'). The first element matches a group of
ASCII characters followed by 've. By grouping the characters before the 've in parenthesis,
a match group is found and can be used in the substitution pattern with the \g<1> reference.
So we keep everything before 've, then replace 've with the word have. This is how
"should've" can become "should have".

There's more...
This replacement technique can work with any kind of regular expression, not just
contractions. So you could replace any occurrence of "&" with "and", or eliminate all
occurrences of "-" by replacing it with the empty string. The RegexpReplacer can
take any list of replacement patterns for whatever purpose.

Replacement before tokenization
Let us try using the RegexpReplacer as a preliminary step before tokenization:

>>> from nltk.tokenize import word_tokenize
>>> from replacers import RegexpReplacer
>>> replacer = RegexpReplacer()
>>> word_tokenize("can't is a contraction")
['ca', "n't", 'is', 'a', 'contraction']
>>> word_tokenize(replacer.replace("can't is a contraction"))
['can', 'not', 'is', 'a', 'contraction']

Replacing and Correcting Words

34

Much better! By eliminating the contractions in the first place, the tokenizer will produce
cleaner results. Cleaning up text before processing is a common pattern in natural
language processing.

See also

For more information on tokenization, see the first three recipes in Chapter 1, Tokenizing
Text and WordNet Basics. For more replacement techniques, continue reading the rest of
this chapter.

Removing repeating characters
In everyday language, people are often not strictly grammatical. They will write things like
"I looooooove it" in order to emphasize the word "love". But computers don't know that
"looooooove" is a variation of "love" unless they are told. This recipe presents a method for
removing those annoying repeating characters in order to end up with a "proper" English word.

Getting ready
As in the previous recipe, we will be making use of the re module, and more specifically,
backreferences. A backreference is a way to refer to a previously matched group in a regular
expression. This is what will allow us to match and remove repeating characters.

How to do it...
We will create a class that has the same form as the RegexpReplacer from the previous
recipe. It will have a replace() method that takes a single word and returns a more correct
version of that word, with dubious repeating characters removed. The following code can be
found in replacers.py and is meant to be imported:

import re

class RepeatReplacer(object):
 def __init__(self):
 self.repeat_regexp = re.compile(r'(\w*)(\w)\2(\w*)')
 self.repl = r'\1\2\3'

 def replace(self, word):
 repl_word = self.repeat_regexp.sub(self.repl, word)
 if repl_word != word:
 return self.replace(repl_word)

 else:
 return repl_word

Chapter 2

35

And now some example use cases:
>>> from replacers import RepeatReplacer
>>> replacer = RepeatReplacer()
>>> replacer.replace('looooove')
'love'
>>> replacer.replace('oooooh')
'oh'
>>> replacer.replace('goose')
'gose'

How it works...
RepeatReplacer starts by compiling a regular expression for matching and defining a
replacement string with backreferences. The repeat_regexp matches three groups:

1.	 Zero or more starting characters (\w*).
2.	 A single character (\w), followed by another instance of that character \2.
3.	 Zero or more ending characters (\w*).

The replacement string is then used to keep all the matched groups, while discarding the
backreference to the second group. So the word "looooove" gets split into (l)(o)o(ooove)
and then recombined as "loooove", discarding the second "o". This continues until only one "o"
remains, when repeat_regexp no longer matches the string, and no more characters
are removed.

There's more...
In the preceding examples, you can see that the RepeatReplacer is a bit too greedy and
ends up changing "goose" into "gose". To correct this issue, we can augment the replace()
function with a WordNet lookup. If WordNet recognizes the word, then we can stop replacing
characters. Here is the WordNet augmented version:

import re
from nltk.corpus import wordnet

class RepeatReplacer(object):
 def __init__(self):
 self.repeat_regexp = re.compile(r'(\w*)(\w)\2(\w*)')
 self.repl = r'\1\2\3'

 def replace(self, word):
 if wordnet.synsets(word):
 return word
 repl_word = self.repeat_regexp.sub(self.repl, word)

 if repl_word != word:
 return self.replace(repl_word)
 else:
 return repl_word

Replacing and Correcting Words

36

Now, "goose" will be found in WordNet, and no character replacement will take place. And
"oooooh" will become "ooh" instead of "oh", because "ooh" is actually a word in WordNet,
defined as an expression of admiration or pleasure.

See also
Read the next recipe to learn how to correct misspellings. And for more on WordNet, refer to
the WordNet recipes in Chapter 1, Tokenizing Text and WordNet Basics. We will also be using
WordNet for antonym replacement later in this chapter.

Spelling correction with Enchant
Replacing repeating characters is actually an extreme form of spelling correction. In this
recipe, we will take on the less extreme case of correcting minor spelling issues using
Enchant—a spelling correction API.

Getting ready
You will need to install Enchant, and a dictionary for it to use. Enchant is an offshoot
of the "Abiword" open source word processor, and more information can be found at
http://www.abisource.com/projects/enchant/.

For dictionaries, aspell is a good open source spellchecker and dictionary that can be found
at http://aspell.net/.

Finally, you will need the pyenchant library, which can be found at http://www.rfk.id.au/
software/pyenchant/. You should be able to install it with the easy_install command
that comes with python-setuptools, such as by doing sudo easy_install pyenchant
on Linux or Unix.

How to do it...
We will create a new class called SpellingReplacer in replacers.py, and this time
the replace() method will check Enchant to see whether the word is valid or not. If not, we
will look up suggested alternatives and return the best match using nltk.metrics.edit_
distance():

import enchant
from nltk.metrics import edit_distance

class SpellingReplacer(object):
 def __init__(self, dict_name='en', max_dist=2):
 self.spell_dict = enchant.Dict(dict_name)
 self.max_dist = 2

Chapter 2

37

 def replace(self, word):
 if self.spell_dict.check(word):
 return word
 suggestions = self.spell_dict.suggest(word)

 if suggestions and edit_distance(word, suggestions[0]) <=
 self.max_dist:
 return suggestions[0]
 else:
 return word

The preceding class can be used to correct English spellings as follows:

>>> from replacers import SpellingReplacer
>>> replacer = SpellingReplacer()
>>> replacer.replace('cookbok')
'cookbook'

How it works...
SpellingReplacer starts by creating a reference to an enchant dictionary. Then, in the
replace() method, it first checks whether the given word is present in the dictionary or
not. If it is, no spelling correction is necessary, and the word is returned. But if the word is
not found, it looks up a list of suggestions and returns the first suggestion, as long as its edit
distance is less than or equal to max_dist. The edit distance is the number of character
changes necessary to transform the given word into the suggested word. max_dist then acts
as a constraint on the Enchant suggest() function to ensure that no unlikely replacement
words are returned. Here is an example showing all the suggestions for "languege", a
misspelling of "language":

>>> import enchant
>>> d = enchant.Dict('en')
>>> d.suggest('languege')
['language', 'languisher', 'languish', 'languor', 'languid']

Except for the correct suggestion, "language", all the other words have an edit distance of
three or greater.

There's more...
You can use language dictionaries other than 'en', such as 'en_GB', assuming the
dictionary has already been installed. To check which other languages are available, use
enchant.list_languages():

>>> enchant.list_languages()
['en_AU', 'en_GB', 'en_US', 'en_ZA', 'en_CA', 'en']

Replacing and Correcting Words

38

If you try to use a dictionary that doesn't exist, you will get enchant.
DictNotFoundError. You can first check whether the dictionary exists
using enchant.dict_exists(), which will return True if the named
dictionary exists, or False otherwise.

en_GB dictionary
Always be sure to use the correct dictionary for whichever language you are doing spelling
correction on. 'en_US' can give you different results than 'en_GB', such as for the word
"theater". "Theater" is the American English spelling, whereas the British English spelling
is "Theatre":

>>> import enchant
>>> dUS = enchant.Dict('en_US')
>>> dUS.check('theater')
True
>>> dGB = enchant.Dict('en_GB')
>>> dGB.check('theater')
False
>>> from replacers import SpellingReplacer
>>> us_replacer = SpellingReplacer('en_US')
>>> us_replacer.replace('theater')
'theater'
>>> gb_replacer = SpellingReplacer('en_GB')
>>> gb_replacer.replace('theater')
'theatre'

Personal word lists
Enchant also supports personal word lists. These can be combined with an existing
dictionary, allowing you to augment the dictionary with your own words. So let us say you had
a file named mywords.txt that had nltk on one line. You could then create a dictionary
augmented with your personal word list as follows:

>>> d = enchant.Dict('en_US')
>>> d.check('nltk')
False
>>> d = enchant.DictWithPWL('en_US', 'mywords.txt')
>>> d.check('nltk')
True

Chapter 2

39

To use an augmented dictionary with our SpellingReplacer, we can create a subclass in
replacers.py that takes an existing spelling dictionary.

class CustomSpellingReplacer(SpellingReplacer):
 def __init__(self, spell_dict, max_dist=2):
 self.spell_dict = spell_dict
 self.max_dist = max_dist

This CustomSpellingReplacer will not replace any words that you put into mywords.txt.

>>> from replacers import CustomSpellingReplacer
>>> d = enchant.DictWithPWL('en_US', 'mywords.txt')
>>> replacer = CustomSpellingReplacer(d)
>>> replacer.replace('nltk')
'nltk'

See also
The previous recipe covered an extreme form of spelling correction by replacing repeating
characters. You could also do spelling correction by simple word replacement as discussed
in the next recipe.

Replacing synonyms
It is often useful to reduce the vocabulary of a text by replacing words with common
synonyms. By compressing the vocabulary without losing meaning, you can save memory in
cases such as frequency analysis and text indexing. Vocabulary reduction can also increase
the occurrence of significant collocations, which was covered in the Discovering word
collocations recipe of Chapter 1, Tokenizing Text and WordNet Basics.

Getting ready
You will need to have a defined mapping of a word to its synonym. This is a simple controlled
vocabulary. We will start by hardcoding the synonyms as a Python dictionary, then explore
other options for storing synonym maps.

How to do it...
We'll first create a WordReplacer class in replacers.py that takes a word replacement
mapping:

class WordReplacer(object):
 def __init__(self, word_map):
 self.word_map = word_map
 def replace(self, word):
 return self.word_map.get(word, word)

Replacing and Correcting Words

40

Then we can demonstrate its usage for simple word replacement:

>>> from replacers import wordReplacer
>>> replacer = WordReplacer({'bday': 'birthday'})
>>> replacer.replace('bday')
'birthday'
>>> replacer.replace('happy')
'happy'

How it works...
WordReplacer is simply a class wrapper around a Python dictionary. The replace()
method looks up the given word in its word_map and returns the replacement synonym
if it exists. Otherwise, the given word is returned as is.

If you were only using the word_map dictionary, you would have no need for the
WordReplacer class, and could instead call word_map.get() directly. But WordReplacer
can act as a base class for other classes that construct the word_map from various file
formats. Read on for more information.

There's more...
Hardcoding synonyms as a Python dictionary is not a good long-term solution. Two better
alternatives are to store the synonyms in a CSV file or in a YAML file. Choose whichever format
is easiest for whoever will be maintaining your synonym vocabulary. Both of the classes
outlined in the following section inherit the replace() method from WordReplacer.

CSV synonym replacement
The CsvWordReplacer class extends WordReplacer in replacers.py in order to
construct the word_map from a CSV file:

import csv

class CsvWordReplacer(WordReplacer):
 def __init__(self, fname):
 word_map = {}
 for line in csv.reader(open(fname)):
 word, syn = line
 word_map[word] = syn
 super(CsvWordReplacer, self).__init__(word_map)

Chapter 2

41

Your CSV file should be two columns, where the first column is the word, and the second
column is the synonym meant to replace it. If this file is called synonyms.csv and the first
line is bday, birthday, then you can do:

>>> from replacers import CsvWordReplacer
>>> replacer = CsvWordReplacer('synonyms.csv')
>>> replacer.replace('bday')
'birthday'
>>> replacer.replace('happy')
'happy'

YAML synonym replacement
If you have PyYAML installed, you can create a YamlWordReplacer in replacers.py.
Download and installation instructions for PyYAML are located at http://pyyaml.org/
wiki/PyYAML.

import yaml

class YamlWordReplacer(WordReplacer):
 def __init__(self, fname):
 word_map = yaml.load(open(fname))
 super(YamlWordReplacer, self).__init__(word_map)

Your YAML file should be a simple mapping of "word: synonym", such as bday: birthday.
Note that the YAML syntax is very particular, and the space after the colon is required. If the
file is named synonyms.yaml, you can do:

>>> from replacers import YamlWordReplacer
>>> replacer = YamlWordReplacer('synonyms.yaml')
>>> replacer.replace('bday')
'birthday'
>>> replacer.replace('happy')
'happy'

See also
You can use the WordReplacer to do any kind of word replacement, even spelling correction
for more complicated words that can't be automatically corrected, as we did in the previous
recipe. In the next recipe, we will cover antonym replacement.

Replacing negations with antonyms
The opposite of synonym replacement is antonym replacement. An antonym is the opposite
meaning of a word. This time, instead of creating custom word mappings, we can use
WordNet to replace words with unambiguous antonyms. Refer to the Looking up lemmas
and synonyms in WordNet recipe in Chapter 1, Tokenizing Text and WordNet Basics for more
details on antonym lookups.

Replacing and Correcting Words

42

How to do it...
Let us say you have a sentence such as "let's not uglify our code". With antonym replacement,
you can replace "not uglify" with "beautify", resulting in the sentence "let's beautify our code".
To do this, we will need to create an AntonymReplacer in replacers.py as follows:

from nltk.corpus import wordnet
class AntonymReplacer(object):
 def replace(self, word, pos=None):
 antonyms = set()
 for syn in wordnet.synsets(word, pos=pos):
 for lemma in syn.lemmas:
 for antonym in lemma.antonyms():
 antonyms.add(antonym.name)
 if len(antonyms) == 1:
 return antonyms.pop()
 else:
 return None

 def replace_negations(self, sent):
 i, l = 0, len(sent)
 words = []
 while i < l:
 word = sent[i]
 if word == 'not' and i+1 < l:
 ant = self.replace(sent[i+1])
 if ant:
 words.append(ant)
 i += 2
 continue
 words.append(word)
 i += 1
 return words

Now we can tokenize the original sentence into ["let's", 'not', 'uglify', 'our',
'code'], and pass this to the replace_negations() function. Here are some examples:

>>> from replacers import AntonymReplacer
>>> replacer = AntonymReplacer()
>>> replacer.replace('good')
>>> replacer.replace('uglify')
'beautify'
>>> sent = ["let's", 'not', 'uglify', 'our', 'code']
>>> replacer.replace_negations(sent)
["let's", 'beautify', 'our', 'code']

Chapter 2

43

How it works...
The AntonymReplacer has two methods: replace() and replace_negations(). The
replace() method takes a single word and an optional part of speech tag, then looks up
the synsets for the word in WordNet. Going through all the synsets and every lemma of each
synset, it creates a set of all antonyms found. If only one antonym is found, then it is an
unambiguous replacement. If there is more than one antonym found, which can happen quite
often, then we don't know for sure which antonym is correct. In the case of multiple antonyms
(or no antonyms), replace() returns None since it cannot make a decision.

In replace_negations(), we look through a tokenized sentence for the word "not". If
"not" is found, then we try to find an antonym for the next word using replace(). If we find
an antonym, then it is appended to the list of words, replacing "not" and the original word.
All other words are appended as it is, resulting in a tokenized sentence with unambiguous
negations replaced by their antonyms.

There's more...
Since unambiguous antonyms aren't very common in WordNet, you may want to create a
custom antonym mapping the same way we did for synonyms. This AntonymWordReplacer
could be constructed by inheriting from both WordReplacer and AntonymReplacer:

class AntonymWordReplacer(WordReplacer, AntonymReplacer):
 pass

The order of inheritance is very important, as we want the initialization and replace()
function of WordReplacer combined with the replace_negations() function from
AntonymReplacer. The result is a replacer that can do the following:

>>> from replacers import AntonymWordReplacer
>>> replacer = AntonymWordReplacer({'evil': 'good'})
>>> replacer.replace_negations(['good', 'is', 'not', 'evil'])
['good', 'is', 'good']

Of course, you could also inherit from CsvWordReplacer or YamlWordReplacer instead
of WordReplacer if you want to load the antonym word mappings from a file.

See also
The previous recipe covers the WordReplacer from the perspective of synonym replacement.
And in Chapter 1, Tokenizing Text and WordNet Basics Wordnet usage is covered in detail
in the Looking up synsets for a word in Wordnet and Looking up lemmas and synonyms in
Wordnet recipes.

3
Creating Custom

Corpora

In this chapter, we will cover:

ff Setting up a custom corpus

ff Creating a word list corpus

ff Creating a part-of-speech tagged word corpus

ff Creating a chunked phrase corpus

ff Creating a categorized text corpus

ff Creating a categorized chunk corpus reader

ff Lazy corpus loading

ff Creating a custom corpus view

ff Creating a MongoDB backed corpus reader

ff Corpus editing with file locking

Introduction
In this chapter, we'll cover how to use corpus readers and create custom corpora. At the same
time, you'll learn how to use the existing corpus data that comes with NLTK. This information
is essential for future chapters when we'll need to access the corpora as training data. We'll
also cover creating custom corpus readers, which can be used when your corpus is not in a
file format that NLTK already recognizes, or if your corpus is not in files at all, but instead is
located in a database such as MongoDB.

Creating Custom Corpora

46

Setting up a custom corpus
A corpus is a collection of text documents, and corpora is the plural of corpus. So a custom
corpus is really just a bunch of text files in a directory, often alongside many other directories
of text files.

Getting ready
You should already have the NLTK data package installed, following the instructions at
http://www.nltk.org/data. We'll assume that the data is installed to C:\nltk_data
on Windows, and /usr/share/nltk_data on Linux, Unix, or Mac OS X.

How to do it...
NLTK defines a list of data directories, or paths, in nltk.data.path. Our custom corpora
must be within one of these paths so it can be found by NLTK. So as not to conflict with the
official data package, we'll create a custom nltk_data directory in our home directory.
Here's some Python code to create this directory and verify that it is in the list of known
paths specified by nltk.data.path:

>>> import os, os.path
>>> path = os.path.expanduser('~/nltk_data')
>>> if not os.path.exists(path):
... os.mkdir(path)
>>> os.path.exists(path)
True
>>> import nltk.data
>>> path in nltk.data.path
True

If the last line, path in nltk.data.path, is True, then you should now have a nltk_
data directory in your home directory. The path should be %UserProfile%\nltk_data on
Windows, or ~/nltk_data on Unix, Linux, or Mac OS X. For simplicity, I'll refer to the directory
as ~/nltk_data.

If the last line does not return True, try creating the nltk_data directory
manually in your home directory, then verify that the absolute path is in
nltk.data.path. It's essential to ensure that this directory exists and is
in nltk.data.path before continuing. Once you have your nltk_data
directory, the convention is that corpora reside in a corpora subdirectory.
Create this corpora directory within the nltk_data directory, so that
the path is ~/nltk_data/corpora. Finally, we'll create a subdirectory in
corpora to hold our custom corpus. Let's call it cookbook, giving us the full
path of ~/nltk_data/corpora/cookbook.

Chapter 3

47

Now we can create a simple word list file and make sure it loads. In Chapter 2, Replacing and
Correcting Words, Spelling correction with Enchant recipe, we created a word list file called
mywords.txt. Put this file into ~/nltk_data/corpora/cookbook/. Now we can use
nltk.data.load() to load the f﻿ile.

>>> import nltk.data
>>> nltk.data.load('corpora/cookbook/mywords.txt', format='raw')
'nltk\n'

We need to specify format='raw' since nltk.data.load() doesn't
know how to interpret .txt files. As we'll see, it does know how to interpret a
number of other file formats.

How it works...
The nltk.data.load() function recognizes a number of formats, such as 'raw',
'pickle', and 'yaml'. If no format is specified, then it tries to guess the format based
on the file's extension. In the previous case, we have a .txt file, which is not a recognized
extension, so we have to specify the 'raw' format. But if we used a file that ended in .yaml,
then we would not need to specify the format.

Filenames passed in to nltk.data.load() can be absolute or relative paths. Relative
paths must be relative to one of the paths specified in nltk.data.path. The file is found
using nltk.data.find(path), which searches all known paths combined with the relative
path. Absolute paths do not require a search, and are used as is.

There's more...
For most corpora access, you won't actually need to use nltk.data.load, as that will
be handled by the CorpusReader classes covered in the following recipes. But it's a good
function to be familiar with for loading .pickle files and .yaml files, plus it introduces the
idea of putting all of your data files into a path known by NLTK.

Loading a YAML file
If you put the synonyms.yaml file from the Chapter 2, Replacing and Correcting Words,
Replacing synonyms recipe, into ~/nltk_data/corpora/cookbook (next to mywords.
txt), you can use nltk.data.load() to load it without specifying a format.

>>> import nltk.data
>>> nltk.data.load('corpora/cookbook/synonyms.yaml')
{'bday': 'birthday'}

This assumes that PyYAML is installed. If not, you can find download and installation
instructions at http://pyyaml.org/wiki/PyYAML.

Creating Custom Corpora

48

See also
In the next recipes, we'll cover various corpus readers, and then in the Lazy corpus loading
recipe, we'll use the LazyCorpusLoader, which expects corpus data to be in a corpora
subdirectory of one of the paths specified by nltk.data.path.

Creating a word list corpus
The WordListCorpusReader is one of the simplest CorpusReader classes. It provides
access to a file containing a list of words, one word per line. In fact, you've already used it
when we used the stopwords corpus in the Filtering stopwords in a tokenized sentence and
Discovering word collocations recipes in Chapter 1, Tokenizing Text and WordNet Basics.

Getting ready
We need to start by creating a word list file. This could be a single column CSV file, or just a
normal text file with one word per line. Let's create a file named wordlist that looks like this:

nltk
corpus
corpora
wordnet

How to do it...
Now we can instantiate a WordListCorpusReader that will produce a list of words from our
file. It takes two arguments: the directory path containing the files, and a list of filenames. If
you open the Python console in the same directory as the files, then '.' can be used as the
directory path. Otherwise, you must use a directory path such as: 'nltk_data/corpora/
cookbook'.

>>> from nltk.corpus.reader import WordListCorpusReader
>>> reader = WordListCorpusReader('.', ['wordlist'])
>>> reader.words()
['nltk', 'corpus', 'corpora', 'wordnet']
>>> reader.fileids()
['wordlist']

Chapter 3

49

How it works...
WordListCorpusReader inherits from CorpusReader, which is a common base class for
all corpus readers. CorpusReader does all the work of identifying which files to read, while
WordListCorpus reads the files and tokenizes each line to produce a list of words. Here's
an inheritance diagram:

When you call the words() function, it calls nltk.tokenize.line_tokenize() on the
raw file data, which you can access using the raw() function.

>>> reader.raw()
'nltk\ncorpus\ncorpora\nwordnet\n'
>>> from nltk.tokenize import line_tokenize
>>> line_tokenize(reader.raw())
['nltk', 'corpus', 'corpora', 'wordnet']

There's more...
The stopwords corpus is a good example of a multi-file WordListCorpusReader. In
Chapter 1, Tokenizing Text and WordNet Basics, in the Filtering stopwords in a tokenized
sentence recipe, we saw that it had one word list file for each language, and you could access
the words for that language by calling stopwords.words(fileid). If you want to create
your own multi-file word list corpus, this is a great example to follow.

Names corpus
Another word list corpus that comes with NLTK is the names corpus. It contains two files:
female.txt and male.txt, each containing a list of a few thousand common first names
organized by gender.

>>> from nltk.corpus import names
>>> names.fileids()
['female.txt', 'male.txt']
>>> len(names.words('female.txt'))
5001

Creating Custom Corpora

50

>>> len(names.words('male.txt'))
2943

English words
NLTK also comes with a large list of English words. There's one file with 850 basic words,
and another list with over 200,000 known English words.

>>> from nltk.corpus import words
>>> words.fileids()
['en', 'en-basic']
>>> len(words.words('en-basic'))
850
>>> len(words.words('en'))
234936

See also

In Chapter 1, Tokenizing Text and WordNet Basics, the Filtering stopwords in a tokenized
sentence recipe, has more details on using the stopwords corpus. In the following recipes,
we'll cover more advanced corpus file formats and corpus reader classes.

Creating a part-of-speech tagged word
corpus

Part-of-speech tagging is the process of identifying the part-of-speech tag for a word. Most of
the time, a tagger must first be trained on a training corpus. How to train and use a tagger is
covered in detail in Chapter 4, Part-of-Speech Tagging, but first we must know how to create
and use a training corpus of part-of-speech tagged words.

Getting ready
The simplest format for a tagged corpus is of the form "word/tag". Following is an excerpt from
the brown corpus:

The/at-tl expense/nn and/cc time/nn involved/vbn are/ber astronomical/
jj ./.

Each word has a tag denoting its part-of-speech. For example, nn refers to a noun, while a tag
that starts with vb is a verb.

Chapter 3

51

How to do it...
If you were to put the previous excerpt into a file called brown.pos, you could then create a
TaggedCorpusReader and do the following:

>>> from nltk.corpus.reader import TaggedCorpusReader
>>> reader = TaggedCorpusReader('.', r'.*\.pos')
>>> reader.words()
['The', 'expense', 'and', 'time', 'involved', 'are', ...]
>>> reader.tagged_words()
[('The', 'AT-TL'), ('expense', 'NN'), ('and', 'CC'), …]
>>> reader.sents()
[['The', 'expense', 'and', 'time', 'involved', 'are', 'astronomical',
'.']]
>>> reader.tagged_sents()
[[('The', 'AT-TL'), ('expense', 'NN'), ('and', 'CC'), ('time', 'NN'),
('involved', 'VBN'), ('are', 'BER'), ('astronomical', 'JJ'), ('.',
'.')]]
>>> reader.paras()
[[['The', 'expense', 'and', 'time', 'involved', 'are', 'astronomical',
'.']]]
>>> reader.tagged_paras()
[[[('The', 'AT-TL'), ('expense', 'NN'), ('and', 'CC'), ('time', 'NN'),
('involved', 'VBN'), ('are', 'BER'), ('astronomical', 'JJ'), ('.',
'.')]]]

How it works...
This time, instead of naming the file explicitly, we use a regular expression, r'.*\.pos',
to match all files whose name ends with .pos. We could have done the same thing as we
did with the WordListCorpusReader, and pass ['brown.pos'] as the second
argument, but this way you can see how to include multiple files in a corpus without
naming each one explicitly.

Creating Custom Corpora

52

TaggedCorpusReader provides a number of methods for extracting text from a corpus. First,
you can get a list of all words, or a list of tagged tokens. A tagged token is simply a tuple of
(word, tag). Next, you can get a list of every sentence, and also every tagged sentence,
where the sentence is itself a list of words or tagged tokens. Finally, you can get a list of
paragraphs, where each paragraph is a list of sentences, and each sentence is a list of words
or tagged tokens. Here's an inheritance diagram listing all the major methods:

There's more...
The functions demonstrated in the previous diagram all depend on tokenizers for splitting
the text. TaggedCorpusReader tries to have good defaults, but you can customize them by
passing in your own tokenizers at initialization time.

Customizing the word tokenizer
The default word tokenizer is an instance of nltk.tokenize.WhitespaceTokenizer. If
you want to use a different tokenizer, you can pass that in as word_tokenizer.

>>> from nltk.tokenize import SpaceTokenizer
>>> reader = TaggedCorpusReader('.', r'.*\.pos', word_
tokenizer=SpaceTokenizer())
>>> reader.words()
['The', 'expense', 'and', 'time', 'involved', 'are', ...]

Chapter 3

53

Customizing the sentence tokenizer
The default sentence tokenizer is an instance of nltk.tokenize.RegexpTokenize
with '\n' to identify the gaps. It assumes that each sentence is on a line all by itself, and
individual sentences do not have line breaks. To customize this, you can pass in your own
tokenizer as sent_tokenizer.

>>> from nltk.tokenize import LineTokenizer
>>> reader = TaggedCorpusReader('.', r'.*\.pos', sent_
tokenizer=LineTokenizer())
>>> reader.sents()
[['The', 'expense', 'and', 'time', 'involved', 'are', 'astronomical',
'.']]

Customizing the paragraph block reader
Paragraphs are assumed to be split by blank lines. This is done with the default para_
block_reader, which is nltk.corpus.reader.util.read_blankline_block. There
are a number of other block reader functions in nltk.corpus.reader.util, whose
purpose is to read blocks of text from a stream. Their usage will be covered in more detail in
the later recipe, Creating a custom corpus view, where we'll create a custom corpus reader.

Customizing the tag separator
If you don't want to use '/' as the word/tag separator, you can pass an alternative string to
TaggedCorpusReader for sep. The default is sep='/', but if you want to split words and
tags with '|', such as 'word|tag', then you should pass in sep='|'.

Simplifying tags with a tag mapping function
If you'd like to somehow transform the part-of-speech tags, you can pass in a tag_mapping_
function at initialization, then call one of the tagged_* functions with simplify_
tags=True. Here's an example where we lowercase each tag:

>>> reader = TaggedCorpusReader('.', r'.*\.pos', tag_mapping_
function=lambda t: t.lower())
>>> reader.tagged_words(simplify_tags=True)
[('The', 'at-tl'), ('expense', 'nn'), ('and', 'cc'), …]

Calling tagged_words() without simplify_tags=True would produce the same result as
if you did not pass in a tag_mapping_function.

There are also a number of tag simplification functions defined in nltk.tag.simplify.
These can be useful for reducing the number of different part-of-speech tags.

>>> from nltk.tag import simplify
>>> reader = TaggedCorpusReader('.', r'.*\.pos', tag_mapping_
function=simplify.simplify_brown_tag)
>>> reader.tagged_words(simplify_tags=True)

Creating Custom Corpora

54

[('The', 'DET'), ('expense', 'N'), ('and', 'CNJ'), ...]
>>> reader = TaggedCorpusReader('.', r'.*\.pos', tag_mapping_
function=simplify.simplify_tag)
>>> reader.tagged_words(simplify_tags=True)
[('The', 'A'), ('expense', 'N'), ('and', 'C'), ...]

See also

Chapter 4, Part-of-Speech Tagging will cover part-of-speech tags and tagging in much more
detail. And for more on tokenizers, see the first three recipes of Chapter 1, Tokenizing Text
and WordNet Basics.

In the next recipe, we'll create a chunked phrase corpus, where each phrase is also
part-of-speech tagged.

Creating a chunked phrase corpus
A chunk is a short phrase within a sentence. If you remember sentence diagrams from grade
school, they were a tree-like representation of phrases within a sentence. This is exactly what
chunks are: sub-trees within a sentence tree, and they will be covered in much more detail in
Chapter 5, Extracting Chunks. Following is a sample sentence tree with three noun phrase
(NP) chunks shown as sub-trees.

This recipe will cover how to create a corpus with sentences that contain chunks.

Getting ready
Here is an excerpt from the tagged treebank corpus. It has part-of-speech tags, as in
the previous recipe, but it also has square brackets for denoting chunks. This is the same
sentence as in the previous tree diagram, but in text form:

[Earlier/JJR staff-reduction/NN moves/NNS] have/VBP trimmed/VBN about/
IN [300/CD jobs/NNS] ,/, [the/DT spokesman/NN] said/VBD ./.

In this format, every chunk is a noun phrase. Words that are not within brackets are part of
the sentence tree, but are not part of any noun phrase sub-tree.

Chapter 3

55

How to do it...
Put this excerpt into a file called treebank.chunk, and then do the following:

>>> from nltk.corpus.reader import ChunkedCorpusReader
>>> reader = ChunkedCorpusReader('.', r'.*\.chunk')
>>> reader.chunked_words()
[Tree('NP', [('Earlier', 'JJR'), ('staff-reduction', 'NN'), ('moves',
'NNS')]), ('have', 'VBP'), ...]
>>> reader.chunked_sents()
[Tree('S', [Tree('NP', [('Earlier', 'JJR'), ('staff-reduction', 'NN'),
('moves', 'NNS')]), ('have', 'VBP'), ('trimmed', 'VBN'), ('about',
'IN'), Tree('NP', [('300', 'CD'), ('jobs', 'NNS')]), (',', ','),
Tree('NP', [('the', 'DT'), ('spokesman', 'NN')]), ('said', 'VBD'),
('.', '.')])]
>>> reader.chunked_paras()
[[Tree('S', [Tree('NP', [('Earlier', 'JJR'), ('staff-reduction',
'NN'), ('moves', 'NNS')]), ('have', 'VBP'), ('trimmed', 'VBN'),
('about', 'IN'), Tree('NP', [('300', 'CD'), ('jobs', 'NNS')]), (',',
','), Tree('NP', [('the', 'DT'), ('spokesman', 'NN')]), ('said',
'VBD'), ('.', '.')])]]

The ChunkedCorpusReader provides the same methods as the TaggedCorpusReader
for getting tagged tokens, along with three new methods for getting chunks. Each chunk is
represented as an instance of nltk.tree.Tree. Sentence level trees look like Tree('S',
[...]) while noun phrase trees look like Tree('NP', [...]). In chunked_sents(),
you get a list of sentence trees, with each noun-phrase as a sub-tree of the sentence. In
chunked_words(), you get a list of noun phrase trees alongside tagged tokens of words that
were not in a chunk. Here's an inheritance diagram listing the major methods:

Creating Custom Corpora

56

You can draw a Tree by calling the draw() method. Using the corpus reader
defined earlier, you could do reader.chunked_sents()[0].draw() to
get the same sentence tree diagram shown at the beginning of this recipe.

How it works...
ChunkedCorpusReader is similar to the TaggedCorpusReader from the last recipe.
It has the same default sent_tokenizer and para_block_reader, but instead of a
word_tokenizer, it uses a str2chunktree() function. The default is nltk.chunk.
util.tagstr2tree(), which parses a sentence string containing bracketed chunks into a
sentence tree, with each chunk as a noun phrase sub-tree. Words are split by whitespace, and
the default word/tag separator is '/'. If you want to customize the chunk parsing, then you
can pass in your own function for str2chunktree().

There's more...
An alternative format for denoting chunks is called IOB tags. IOB tags are similar to part-of-
speech tags, but provide a way to denote the inside, outside, and beginning of a chunk. They
also have the benefit of allowing multiple different chunk phrase types, not just noun phrases.
Here is an excerpt from the conll2000 corpus. Each word is on its own line with a part-of-
speech tag followed by an IOB tag.

Mr. NNP B-NP
Meador NNP I-NP
had VBD B-VP
been VBN I-VP
executive JJ B-NP
vice NN I-NP
president NN I-NP
of IN B-PP
Balcor NNP B-NP
. . O

B-NP denotes the beginning of a noun phrase, while I-NP denotes that the word is inside of
the current noun phrase. B-VP and I-VP denote the beginning and inside of a verb phrase. O
ends the sentence.

To read a corpus using the IOB format, you must use the ConllChunkCorpusReader. Each
sentence is separated by a blank line, but there is no separation for paragraphs. This means
that the para_* methods are not available. If you put the previous IOB example text into a file
named conll.iob, you can create and use a ConllChunkCorpusReader with the code we
are about to see. The third argument to ConllChunkCorpusReader should be a tuple or list
specifying the types of chunks in the file, which in this case is ('NP', 'VP', 'PP').

Chapter 3

57

>>> from nltk.corpus.reader import ConllChunkCorpusReader
>>> conllreader = ConllChunkCorpusReader('.', r'.*\.iob', ('NP',
'VP', 'PP'))
>>> conllreader.chunked_words()
[Tree('NP', [('Mr.', 'NNP'), ('Meador', 'NNP')]), Tree('VP',
[('had', 'VBD'), ('been', 'VBN')]), ...]
>>> conllreader.chunked_sents()
[Tree('S', [Tree('NP', [('Mr.', 'NNP'), ('Meador', 'NNP')]),
Tree('VP', [('had', 'VBD'), ('been', 'VBN')]), Tree('NP',
[('executive', 'JJ'), ('vice', 'NN'), ('president', 'NN')]),
Tree('PP', [('of', 'IN')]), Tree('NP', [('Balcor', 'NNP')]), ('.',
'.')])]
>>> conllreader.iob_words()
[('Mr.', 'NNP', 'B-NP'), ('Meador', 'NNP', 'I-NP'), ...]
>>> conllreader.iob_sents()
[[('Mr.', 'NNP', 'B-NP'), ('Meador', 'NNP', 'I-NP'), ('had',
'VBD', 'B-VP'), ('been', 'VBN', 'I-VP'), ('executive', 'JJ', 'B-
NP'), ('vice', 'NN', 'I-NP'), ('president', 'NN', 'I-NP'), ('of',
'IN', 'B-PP'), ('Balcor', 'NNP', 'B-NP'), ('.', '.', 'O')]]

The previous code also shows the iob_words() and iob_sents() methods, which
return lists of three tuples of (word, pos, iob). The inheritance diagram for
ConllChunkCorpusReader looks like the following, with most of the methods implemented
by its superclass, ConllCorpusReader:

Creating Custom Corpora

58

Tree leaves
When it comes to chunk trees, the leaves of a tree are the tagged tokens. So if you want to get
a list of all the tagged tokens in a tree, call the leaves() method.

>>> reader.chunked_words()[0].leaves()
[('Earlier', 'JJR'), ('staff-reduction', 'NN'), ('moves', 'NNS')]
>>> reader.chunked_sents()[0].leaves()
[('Earlier', 'JJR'), ('staff-reduction', 'NN'), ('moves', 'NNS'),
('have', 'VBP'), ('trimmed', 'VBN'), ('about', 'IN'), ('300',
'CD'), ('jobs', 'NNS'), (',', ','), ('the', 'DT'), ('spokesman',
'NN'), ('said', 'VBD'), ('.', '.')]
>>> reader.chunked_paras()[0][0].leaves()
[('Earlier', 'JJR'), ('staff-reduction', 'NN'), ('moves', 'NNS'),
('have', 'VBP'), ('trimmed', 'VBN'), ('about', 'IN'), ('300',
'CD'), ('jobs', 'NNS'), (',', ','), ('the', 'DT'), ('spokesman',
'NN'), ('said', 'VBD'), ('.', '.')]

Treebank chunk corpus
The nltk.corpus.treebank_chunk corpus uses ChunkedCorpusReader to provide
part-of-speech tagged words and noun phrase chunks of Wall Street Journal headlines.
NLTK comes with a 5% sample from the Penn Treebank Project. You can find out more at
http://www.cis.upenn.edu/~treebank/home.html.

CoNLL2000 corpus
CoNLL stands for the Conference on Computational Natural Language Learning. For the
year 2000 conference, a shared task was undertaken to produce a corpus of chunks based
on the Wall Street Journal corpus. In addition to noun phrases (NP), it also contains verb
phrases (VP) and prepositional phrases (PP). This chunked corpus is available as nltk.
corpus.conll2000, which is an instance of ConllChunkCorpusReader. You can read
more at http://www.cnts.ua.ac.be/conll2000/chunking/.

See also

Chapter 5, Extracting Chunks will cover chunk extraction in detail. Also see the previous
recipe for details on getting tagged tokens from a corpus reader.

Creating a categorized text corpus
If you have a large corpus of text, you may want to categorize it into separate sections. The
brown corpus, for example, has a number of different categories.

>>> from nltk.corpus import brown
>>> brown.categories()

Chapter 3

59

['adventure', 'belles_lettres', 'editorial', 'fiction',
'government', 'hobbies', 'humor', 'learned', 'lore', 'mystery',
'news', 'religion', 'reviews', 'romance', 'science_fiction']

In this recipe, we'll learn how to create our own categorized text corpus.

Getting ready
The easiest way to categorize a corpus is to have one file for each category. Following are two
excerpts from the movie_reviews corpus:

movie_pos.txt

the thin red line is flawed but it provokes .

movie_neg.txt

a big-budget and glossy production can not make up for a lack of
spontaneity that permeates their tv show .

With these two files, we'll have two categories: pos and neg.

How to do it...
We'll use the CategorizedPlaintextCorpusReader, which inherits from both
PlaintextCorpusReader and CategorizedCorpusReader. These two superclasses
require three arguments: the root directory, the fileids, and a category specification.

>>> from nltk.corpus.reader import
CategorizedPlaintextCorpusReader
>>> reader = CategorizedPlaintextCorpusReader('.', r'movie_.*\.
txt', cat_pattern=r'movie_(\w+)\.txt')
>>> reader.categories()
['neg', 'pos']
>>> reader.fileids(categories=['neg'])
['movie_neg.txt']
>>> reader.fileids(categories=['pos'])
['movie_pos.txt']

Creating Custom Corpora

60

How it works...
The first two arguments to CategorizedPlaintextCorpusReader are the root
directory and fileids, which are passed on to the PlaintextCorpusReader to read
in the files. The cat_pattern keyword argument is a regular expression for extracting the
category names from the fileids. In our case, the category is the part of the fileid after
movie_ and before .txt. The category must be surrounded by grouping parenthesis.

cat_pattern is passed to CategorizedCorpusReader, which overrides the common
corpus reader functions such as fileids(), words(), sents(), and paras() to accept
a categories keyword argument. This way, you could get all the pos sentences by calling
reader.sents(categories=['pos']). CategorizedCorpusReader also provides
the categories() function, which returns a list of all known categories in the corpus.

CategorizedPlaintextCorpusReader is an example of using multiple-inheritance to join
methods from multiple superclasses, as shown in the following diagram:

There's more...
Instead of cat_pattern, you could pass in a cat_map, which is a dictionary mapping
a fileid to a list of category labels.

>>> reader = CategorizedPlaintextCorpusReader('.', r'movie_.*\.
txt', cat_map={'movie_pos.txt': ['pos'], 'movie_neg.txt':
['neg']})
>>> reader.categories()
['neg', 'pos']

Chapter 3

61

Category file
A third way of specifying categories is to use the cat_file keyword argument to specify a
filename containing a mapping of fileid to category. For example, the brown corpus has a
file called cats.txt that looks like this:

ca44 news
cb01 editorial

The reuters corpus has files in multiple categories, and its cats.txt looks like this:

test/14840 rubber coffee lumber palm-oil veg-oil
test/14841 wheat grain

Categorized tagged corpus reader
The brown corpus reader is actually an instance of CategorizedTaggedCorpusReader,
which inherits from CategorizedCorpusReader and TaggedCorpusReader.
Just like in CategorizedPlaintextCorpusReader, it overrides all the methods of
TaggedCorpusReader to allow a categories argument, so you can call brown.
tagged_sents(categories=['news']) to get all the tagged sentences from
the news category. You can use the CategorizedTaggedCorpusReader just like
CategorizedPlaintextCorpusReader for your own categorized and tagged text corpora.

Categorized corpora
The movie_reviews corpus reader is an instance of
CategorizedPlaintextCorpusReader, as is the reuters corpus reader. But where the
movie_reviews corpus only has two categories (neg and pos), reuters has 90 categories.
These corpora are often used for training and evaluating classifiers, which will be covered in
Chapter 7, Text Classification.

See also
In the next recipe, we'll create a subclass of CategorizedCorpusReader and
ChunkedCorpusReader for reading a categorized chunk corpus. Also see Chapter 7,
Text Classification in which we use categorized text for classification.

Creating a categorized chunk corpus reader
NLTK provides a CategorizedPlaintextCorpusReader and
CategorizedTaggedCorpusReader, but there's no categorized corpus reader for chunked
corpora. So in this recipe, we're going to make one.

Creating Custom Corpora

62

Getting ready
Refer to the earlier recipe, Creating a chunked phrase corpus, for an explanation
of ChunkedCorpusReader, and to the previous recipe for details on
CategorizedPlaintextCorpusReader and CategorizedTaggedCorpusReader,
both of which inherit from CategorizedCorpusReader.

How to do it...
We'll create a class called CategorizedChunkedCorpusReader that inherits from both
CategorizedCorpusReader and ChunkedCorpusReader. It is heavily based on the
CategorizedTaggedCorpusReader, and also provides three additional methods for
getting categorized chunks. The following code is found in catchunked.py:

from nltk.corpus.reader import CategorizedCorpusReader,
ChunkedCorpusReader

class CategorizedChunkedCorpusReader(CategorizedCorpusReader,
ChunkedCorpusReader):
 def __init__(self, *args, **kwargs):
 CategorizedCorpusReader.__init__(self, kwargs)
 ChunkedCorpusReader.__init__(self, *args, **kwargs)

 def _resolve(self, fileids, categories):
 if fileids is not None and categories is not None:
 raise ValueError('Specify fileids or categories, not both')
 if categories is not None:
 return self.fileids(categories)
 else:
 return fileids

All of the following methods call the corresponding function in ChunkedCorpusReader with
the value returned from _resolve(). We'll start with the plain text methods.

 def raw(self, fileids=None, categories=None):
 return ChunkedCorpusReader.raw(self, self._resolve(fileids,
categories))

 def words(self, fileids=None, categories=None):
 return ChunkedCorpusReader.words(self, self._resolve(fileids,
categories))

 def sents(self, fileids=None, categories=None):
 return ChunkedCorpusReader.sents(self, self._resolve(fileids,
categories))

 def paras(self, fileids=None, categories=None):

Chapter 3

63

 return ChunkedCorpusReader.paras(self, self._resolve(fileids,
categories))

Next comes the tagged text methods.

 def tagged_words(self, fileids=None, categories=None, simplify_
tags=False):
 return ChunkedCorpusReader.tagged_words(
 self, self._resolve(fileids, categories), simplify_tags)

 def tagged_sents(self, fileids=None, categories=None, simplify_
tags=False):
 return ChunkedCorpusReader.tagged_sents(
 self, self._resolve(fileids, categories), simplify_tags)

 def tagged_paras(self, fileids=None, categories=None, simplify_
tags=False):
 return ChunkedCorpusReader.tagged_paras(
 self, self._resolve(fileids, categories), simplify_tags)

And finally, the chunked methods, which is what we've really been after.

 def chunked_words(self, fileids=None, categories=None):
 return ChunkedCorpusReader.chunked_words(
 self, self._resolve(fileids, categories))

 def chunked_sents(self, fileids=None, categories=None):
 return ChunkedCorpusReader.chunked_sents(
 self, self._resolve(fileids, categories))

 def chunked_paras(self, fileids=None, categories=None):
 return ChunkedCorpusReader.chunked_paras(
 self, self._resolve(fileids, categories))

All these methods together give us a complete CategorizedChunkedCorpusReader.

Creating Custom Corpora

64

How it works...
CategorizedChunkedCorpusReader overrides all the ChunkedCorpusReader
methods to take a categories argument for locating fileids. These fileids
are found with the internal _resolve() function. This _resolve() function makes
use of CategorizedCorpusReader.fileids() to return fileids for a given list
of categories. If no categories are given, _resolve() just returns the given
fileids, which could be None, in which case all files are read. The initialization of both
CategorizedCorpusReader and ChunkedCorpusReader is what makes this all possible.
If you look at the code for CategorizedTaggedCorpusReader, you'll see it's very similar.
The inheritance diagram looks like this:

Here's some example code for using the treebank corpus. All we're doing is making
categories out of the fileids, but the point is that you could use the same techniques
to create your own categorized chunk corpus.

>>> import nltk.data
>>> from catchunked import CategorizedChunkedCorpusReader
>>> path = nltk.data.find('corpora/treebank/tagged')
>>> reader = CategorizedChunkedCorpusReader(path, r'wsj_.*\.pos',
cat_pattern=r'wsj_(.*)\.pos')
>>> len(reader.categories()) == len(reader.fileids())
True
>>> len(reader.chunked_sents(categories=['0001']))
16

Chapter 3

65

We use nltk.data.find() to search the data directories to get a
FileSystemPathPointer to the treebank corpus. All the treebank tagged files start
with wsj_ followed by a number, and end with .pos. The previous code turns that file number
into a category.

There's more...
As covered in the Creating a chunked phrase corpus recipe, there's an alternative format and
reader for a chunk corpus using IOB tags. To have a categorized corpus of IOB chunks, we
have to make a new corpus reader.

Categorized Conll chunk corpus reader
Here's a subclass of CategorizedCorpusReader and ConllChunkReader
called CategorizedConllChunkCorpusReader. It overrides all methods of
ConllCorpusReader that take a fileids argument, so the methods can also take
a categories argument. The ConllChunkCorpusReader is just a small subclass
of ConllCorpusReader that handles initialization; most of the work is done in
ConllCorpusReader. This code can also be found in catchunked.py.

from nltk.corpus.reader import CategorizedCorpusReader,
ConllCorpusReader, ConllChunkCorpusReader

class CategorizedConllChunkCorpusReader(CategorizedCorpusReader,
ConllChunkCorpusReader):
 def __init__(self, *args, **kwargs):
 CategorizedCorpusReader.__init__(self, kwargs)
 ConllChunkCorpusReader.__init__(self, *args, **kwargs)

 def _resolve(self, fileids, categories):
 if fileids is not None and categories is not None:
 raise ValueError('Specify fileids or categories, not both')
 if categories is not None:
 return self.fileids(categories)
 else:
 return fileids

All the following methods call the corresponding method of ConllCorpusReader with the
value returned from _resolve(). We'll start with the plain text methods.

 def raw(self, fileids=None, categories=None):
 return ConllCorpusReader.raw(self, self._resolve(fileids,
categories))

 def words(self, fileids=None, categories=None):

Creating Custom Corpora

66

 return ConllCorpusReader.words(self, self._resolve(fileids,
categories))

 def sents(self, fileids=None, categories=None):
 return ConllCorpusReader.sents(self, self._resolve(fileids,
categories))

The ConllCorpusReader does not recognize paragraphs, so there are no *_paras()
methods. Next are the tagged and chunked methods.

 def tagged_words(self, fileids=None, categories=None):
 return ConllCorpusReader.tagged_words(self, self._
resolve(fileids, categories))

 def tagged_sents(self, fileids=None, categories=None):
 return ConllCorpusReader.tagged_sents(self, self._
resolve(fileids, categories))

 def chunked_words(self, fileids=None, categories=None, chunk_
types=None):
 return ConllCorpusReader.chunked_words(
 self, self._resolve(fileids, categories), chunk_types)

 def chunked_sents(self, fileids=None, categories=None, chunk_
types=None):
 return ConllCorpusReader.chunked_sents(
 self, self._resolve(fileids, categories), chunk_types)

For completeness, we must override the following methods of the ConllCorpusReader:

 def parsed_sents(self, fileids=None, categories=None, pos_in_
tree=None):
 return ConllCorpusReader.parsed_sents(
 self, self._resolve(fileids, categories), pos_in_tree)

 def srl_spans(self, fileids=None, categories=None):
 return ConllCorpusReader.srl_spans(self, self._
resolve(fileids, categories))

 def srl_instances(self, fileids=None, categories=None, pos_in_
tree=None, flatten=True):
 return ConllCorpusReader.srl_instances(
 self, self._resolve(fileids, categories), pos_in_tree,
flatten)

Chapter 3

67

 def iob_words(self, fileids=None, categories=None):
 return ConllCorpusReader.iob_words(self, self._
resolve(fileids, categories))

 def iob_sents(self, fileids=None, categories=None):
 return ConllCorpusReader.iob_sents(self, self._
resolve(fileids, categories))

The inheritance diagram for this class is as follows:

Following is some example code using the conll2000 corpus. Like with treebank, we're
using the fileids for categories. The ConllChunkCorpusReader requires a third
argument to specify the chunk_types. These chunk_types are used to parse the IOB
tags. As you learned in the Creating a chunked phrase corpus recipe, the conll2000 corpus
recognizes three chunk types:

ff NP for noun phrases

ff VP for verb phrases

ff PP for prepositional phrases

>>> import nltk.data
>>> from catchunked import CategorizedConllChunkCorpusReader

Creating Custom Corpora

68

>>> path = nltk.data.find('corpora/conll2000')
>>> reader = CategorizedConllChunkCorpusReader(path, r'.*\.txt',
('NP','VP','PP'), cat_pattern=r'(.*)\.txt')
>>> reader.categories()
['test', 'train']
>>> reader.fileids()
['test.txt', 'train.txt']
>>> len(reader.chunked_sents(categories=['test']))
2012

See also
In the Creating a chunked phrase corpus recipe in this chapter, we covered both
the ChunkedCorpusReader and ConllChunkCorpusReader. And in the
previous recipe, we covered CategorizedPlaintextCorpusReader and
CategorizedTaggedCorpusReader, which share the same superclass used by
CategorizedChunkedCorpusReader and CategorizedConllChunkReader—
CategorizedCorpusReader.

Lazy corpus loading
Loading a corpus reader can be an expensive operation due to the number of files, file sizes,
and various initialization tasks. And while you'll often want to specify a corpus reader in a
common module, you don't always need to access it right away. To speed up module import
time when a corpus reader is defined, NLTK provides a LazyCorpusLoader class that can
transform itself into your actual corpus reader as soon as you need it. This way, you can define
a corpus reader in a common module without it slowing down module loading.

How to do it...
LazyCorpusLoader requires two arguments: the name of the corpus and the corpus
reader class, plus any other arguments needed to initialize the corpus reader class.

The name argument specifies the root directory name of the corpus, which must be within a
corpora subdirectory of one of the paths in nltk.data.path. See the first recipe of this
chapter, Setting up a custom corpus, for more details on nltk.data.path.

For example, if you have a custom corpora named cookbook in your local nltk_data
directory, its path would be ~/nltk_data/corpora/cookbook. You'd then pass
'cookbook' to LazyCorpusLoader as the name, and LazyCorpusLoader will look in
~/nltk_data/corpora for a directory named 'cookbook'.

Chapter 3

69

The second argument to LazyCorpusLoader is reader_cls, which should be the name
of a subclass of CorpusReader, such as WordListCorpusReader. You will also need
to pass in any other arguments required by the reader_cls for initialization. This will be
demonstrated as follows, using the same wordlist file we created in the earlier recipe,
Creating a word list corpus. The third argument to LazyCorpusLoader is the list of
filenames and fileids that will be passed in to WordListCorpusReader at initialization.

>>> from nltk.corpus.util import LazyCorpusLoader
>>> from nltk.corpus.reader import WordListCorpusReader
>>> reader = LazyCorpusLoader('cookbook', WordListCorpusReader,
['wordlist'])
>>> isinstance(reader, LazyCorpusLoader)
True
>>> reader.fileids()
['wordlist']
>>> isinstance(reader, LazyCorpusLoader)
False
>>> isinstance(reader, WordListCorpusReader)
True

How it works...
LazyCorpusLoader stores all the arguments given, but otherwise does nothing until you try
to access an attribute or method. This way initialization is very fast, eliminating the overhead
of loading the corpus reader immediately. As soon as you do access an attribute or method, it
does the following:

1.	 Calls nltk.data.find('corpora/%s' % name) to find the corpus data
root directory.

2.	 Instantiate the corpus reader class with the root directory and any other arguments.

3.	 Transforms itself into the corpus reader class.

So in the previous example code, before we call reader.fileids(), reader is
an instance of LazyCorpusLoader, but after the call, reader is an instance of
WordListCorpusReader.

There's more...
All of the corpora included with NLTK and defined in nltk.corpus are initially an instance of
LazyCorpusLoader. Here's some code from nltk.corpus defining the treebank corpora.

treebank = LazyCorpusLoader(

 'treebank/combined', BracketParseCorpusReader, r'wsj_.*\.mrg',

Creating Custom Corpora

70

 tag_mapping_function=simplify_wsj_tag)

treebank_chunk = LazyCorpusLoader(

 'treebank/tagged', ChunkedCorpusReader, r'wsj_.*\.pos',

 sent_tokenizer=RegexpTokenizer(r'(?<=/\.)\s*(?![^\[]*\])',
gaps=True),

 para_block_reader=tagged_treebank_para_block_reader)

treebank_raw = LazyCorpusLoader(

 'treebank/raw', PlaintextCorpusReader, r'wsj_.*')

As you can see, any number of additional arguments can be passed through by
LazyCorpusLoader to its reader_cls.

Creating a custom corpus view
A corpus view is a class wrapper around a corpus file that reads in blocks of tokens as
needed. Its purpose is to provide a view into a file without reading the whole file at once (since
corpus files can often be quite large). If the corpus readers included by NLTK already meet
all your needs, then you do not have to know anything about corpus views. But, if you have a
custom file format that needs special handling, this recipe will show you how to create and
use a custom corpus view. The main corpus view class is StreamBackedCorpusView, which
opens a single file as a stream, and maintains an internal cache of blocks it has read.

Blocks of tokens are read in with a block reader function. A block can be any piece of text,
such as a paragraph or a line, and tokens are parts of a block, such as individual words.
In the Creating a part-of-speech tagged word corpus recipe, we discussed the default
para_block_reader function of the TaggedCorpusReader, which reads lines from
a file until it finds a blank line, then returns those lines as a single paragraph token. The
actual block reader function is: nltk.corpus.reader.util.read_blankline_block.
TaggedCorpusReader passes this block reader function into a TaggedCorpusView
whenever it needs to read blocks from a file. TaggedCorpusView is a subclass of
StreamBackedCorpusView that knows to split paragraphs of "word/tag" into (word,
tag) tuples.

How to do it...
We'll start with the simple case of a plain text file with a heading that should be ignored by the
corpus reader. Let's make a file called heading_text.txt that looks like this:

A simple heading

Here is the actual text for the corpus.

Paragraphs are split by blanklines.

This is the 3rd paragraph.

Chapter 3

71

Normally we'd use the PlaintextCorpusReader but, by default, it will treat A simple
heading as the first paragraph. To ignore this heading, we need to subclass the
PlaintextCorpusReader so we can override its CorpusView class variable with our
own StreamBackedCorpusView subclass. This code is found in corpus.py.

from nltk.corpus.reader import PlaintextCorpusReader
from nltk.corpus.reader.util import StreamBackedCorpusView

class IgnoreHeadingCorpusView(StreamBackedCorpusView):
 def __init__(self, *args, **kwargs):
 StreamBackedCorpusView.__init__(self, *args, **kwargs)
 # open self._stream
 self._open()
 # skip the heading block
 self.read_block(self._stream)
 # reset the start position to the current position in the
stream
 self._filepos = [self._stream.tell()]

class IgnoreHeadingCorpusReader(PlaintextCorpusReader):
 CorpusView = IgnoreHeadingCorpusView

To demonstrate that this works as expected, here's the code showing that the default
PlaintextCorpusReader finds four paragraphs, while our IgnoreHeadingCorpusReader
only has three paragraphs.

>>> from nltk.corpus.reader import PlaintextCorpusReader
>>> plain = PlaintextCorpusReader('.', ['heading_text.txt'])
>>> len(plain.paras())
4
>>> from corpus import IgnoreHeadingCorpusReader
>>> reader = IgnoreHeadingCorpusReader('.', ['heading_text.txt'])
>>> len(reader.paras())
3

How it works...
The PlaintextCorpusReader by design has a CorpusView class variable that can be
overridden by subclasses. So we do just that, and make our IgnoreHeadingCorpusView
the CorpusView.

Creating Custom Corpora

72

Most corpus readers do not have a CorpusView class variable because they
require very specific corpus views.

The IgnoreHeadingCorpusView is a subclass of StreamBackedCorpusView that does
the following on initialization:

1.	 Open the file using self._open(). This function is defined by
StreamBackedCorpusView, and sets the internal instance variable
self._stream to the opened file.

2.	 Read one block with read_blankline_block(), which will read the heading
as a paragraph, and move the stream's file position forward to the next block.

3.	 Reset the start file position to the current position of self._stream. self._
filepos is an internal index of where each block is in the file.

Here's a diagram illustrating the relationships between the classes:

There's more...
Corpus views can get a lot fancier and more complicated, but the core concept is the same:
read blocks from a stream to return a list of tokens. There are a number of block readers
provided in nltk.corpus.reader.util, but you can always create your own. If you
do want to define your own block reader function, then you have two choices on how to
implement it:

1.	 Define it as a separate function and pass it in to StreamBackedCorpusView as
block_reader. This is a good option if your block reader is fairly simple, reusable,
and doesn't require any outside variables or configuration.

Chapter 3

73

2.	 Subclass StreamBackedCorpusView and override the read_block() method.
This is what many custom corpus views do because the block reading is highly
specialized and requires additional functions and configuration, usually provided by
the corpus reader when the corpus view is initialized.

Block reader functions
Following is a survey of most of the included block readers in nltk.corpus.reader.util.
Unless otherwise noted, each block reader function takes a single argument: the stream to
read from.

ff read_whitespace_block() will read 20 lines from the stream, splitting each line
into tokens by whitespace.

ff read_wordpunct_block() reads 20 lines from the stream, splitting each line
using nltk.tokenize.wordpunct_tokenize().

ff read_line_block() reads 20 lines from the stream and returns them as a list,
with each line as a token.

ff read_blankline_block() will read lines from the stream until it finds a blank
line. It will then return a single token of all lines found combined into a single string.

ff read_regexp_block() takes two additional arguments, which must be regular
expressions that can be passed to re.match(): a start_re and end_re. start_
re matches the starting line of a block, and end_re matches the ending line of the
block. end_re defaults to None, in which case the block will end as soon as a new
start_re match is found. The return value is a single token of all lines in the block
joined into a single string.

Pickle corpus view
If you want to have a corpus of pickled objects, you can use the PickleCorpusView, a
subclass of StreamBackedCorpusView found in nltk.corpus.reader.util. A file
consists of blocks of pickled objects, and can be created with the PickleCorpusView.
write() class method, which takes a sequence of objects and an output file, then pickles
each object using pickle.dump() and writes it to the file. It overrides the read_block()
method to return a list of unpickled objects from the stream, using pickle.load().

Creating Custom Corpora

74

Concatenated corpus view
Also found in nltk.corpus.reader.util is the ConcatenatedCorpusView. This class
is useful if you have multiple files that you want a corpus reader to treat as a single file. A
ConcatenatedCorpusView is created by giving it a list of corpus_views, which are then
iterated over as if they were a single view.

See also
The concept of block readers was introduced in the Creating a part-of-speech tagged word
corpus recipe in this chapter.

Creating a MongoDB backed corpus reader
All the corpus readers we've dealt with so far have been file-based. That is in part due to the
design of the CorpusReader base class, and also the assumption that most corpus data will
be in text files. But sometimes you'll have a bunch of data stored in a database that you want
to access and use just like a text file corpus. In this recipe, we'll cover the case where you
have documents in MongoDB, and you want to use a particular field of each document as your
block of text.

Getting ready
MongoDB is a document-oriented database that has become a popular alternative to
relational databases such as MySQL. The installation and setup of MongoDB is outside the
scope of this book, but you can find instructions at http://www.mongodb.org/display/
DOCS/Quickstart.

You'll also need to install PyMongo, a Python driver for MongoDB. You should be able to do
this with either easy_install or pip, by doing sudo easy_install pymongo or sudo
pip install pymongo.

The code in the How to do it... section assumes that your database is on localhost
port 27017, which is the MongoDB default configuration, and that you'll be using the
test database with a collection named corpus that contains documents with a text
field. Explanations for these arguments are available in the PyMongo documentation at
http://api.mongodb.org/python/.

Chapter 3

75

How to do it...
Since the CorpusReader class assumes you have a file-based corpus, we can't directly
subclass it. Instead, we're going to emulate both the StreamBackedCorpusView and
PlaintextCorpusReader. StreamBackedCorpusView is a subclass of nltk.util.
AbstractLazySequence, so we'll subclass AbstractLazySequence to create a
MongoDB view, and then create a new class that will use the view to provide functionality
similar to the PlaintextCorpusReader. This code is found in mongoreader.py.

import pymongo
from nltk.data import LazyLoader
from nltk.tokenize import TreebankWordTokenizer
from nltk.util import AbstractLazySequence, LazyMap,
LazyConcatenation

class MongoDBLazySequence(AbstractLazySequence):
 def __init__(self, host='localhost', port=27017, db='test',
collection='corpus', field='text'):
 self.conn = pymongo.Connection(host, port)
 self.collection = self.conn[db][collection]
 self.field = field

 def __len__(self):
 return self.collection.count()

 def iterate_from(self, start):
 f = lambda d: d.get(self.field, '')
 return iter(LazyMap(f, self.collection.find(fields=[self.
field], skip=start)))

class MongoDBCorpusReader(object):
 def __init__(self, word_tokenizer=TreebankWordTokenizer(),
 sent_tokenizer=LazyLoader('tokenizers/punkt/english.
pickle'),
 **kwargs):
 self._seq = MongoDBLazySequence(**kwargs)
 self._word_tokenize = word_tokenizer.tokenize
 self._sent_tokenize = sent_tokenizer.tokenize

 def text(self):
 return self._seq

 def words(self):
 return LazyConcatenation(LazyMap(self._word_tokenize, self.
text()))

 def sents(self):
 return LazyConcatenation(LazyMap(self._sent_tokenize, self.
text()))

Creating Custom Corpora

76

How it works...
AbstractLazySequence is an abstract class that provides read-only, on-demand
iteration. Subclasses must implement the __len__() and iterate_from(start)
methods, while it provides the rest of the list and iterator emulation methods. By creating
the MongoDBLazySequence subclass as our view, we can iterate over documents in the
MongoDB collection on-demand, without keeping all the documents in memory. LazyMap
is a lazy version of Python's built-in map() function, and is used in iterate_from() to
transform the document into the specific field that we're interested in. It's also a subclass of
AbstractLazySequence.

The MongoDBCorpusReader creates an internal instance of MongoDBLazySequence for
iteration, then defines the word and sentence tokenization methods. The text() method
simply returns the instance of MongoDBLazySequence, which results in a lazily evaluated list
of each text field. The words() method uses LazyMap and LazyConcatenation to return
a lazily evaluated list of all words, while the sents() method does the same for sentences.
The sent_tokenizer is loaded on demand with LazyLoader, which is a wrapper around
nltk.data.load(), analogous to LazyCorpusLoader. LazyConcatentation is a
subclass of AbstractLazySequence too, and produces a flat list from a given list of lists
(each list may also be lazy). In our case, we're concatenating the results of LazyMap to ensure
we don't return nested lists.

There's more...
All of the parameters are configurable. For example, if you had a db named website, with a
collection named comments, whose documents had a field called comment, you could
create a MongoDBCorpusReader as follows:

>>> reader = MongoDBCorpusReader(db='website',
collection='comments', field='comment')

You can also pass in custom instances for word_tokenizer and sent_tokenizer, as
long as the objects implement the nltk.tokenize.TokenizerI interface by providing a
tokenize(text) method.

See also

Corpus views were covered in the previous recipe, and tokenization was covered in Chapter 1,
Tokenizing Text and WordNet Basics.

Chapter 3

77

Corpus editing with file locking
Corpus readers and views are all read-only, but there may be times when you want to add to
or edit the corpus files. However, modifying a corpus file while other processes are using it,
such as through a corpus reader, can lead to dangerous undefined behavior. This is where file
locking comes in handy.

Getting ready
You must install the lockfile library using sudo easy_install lockfile or sudo pip
install lockfile. This library provides cross-platform file locking, and so will work on
Windows, Unix/Linux, Mac OX, and more. You can find detailed documentation on lockfile
at http://packages.python.org/lockfile/.

For the following code to work, you must also have Python 2.6. Versions 2.4 and earlier do not
support the with keyword.

How to do it...
Here are two file editing functions: append_line() and remove_line(). Both try to
acquire an exclusive lock on the file before updating it. An exclusive lock means that these
functions will wait until no other process is reading from or writing to the file. Once the lock
is acquired, any other process that tries to access the file will have to wait until the lock is
released. This way, modifying the file will be safe and not cause any undefined behavior in
other processes. These functions can be found in corpus.py.

import lockfile, tempfile, shutil

def append_line(fname, line):
 with lockfile.FileLock(fname):
 fp = open(fname, 'a+')
 fp.write(line)
 fp.write('\n')
 fp.close()

def remove_line(fname, line):

 with lockfile.FileLock(fname):
 tmp = tempfile.TemporaryFile()
 fp = open(fname, 'r+')
 # write all lines from orig file, except if matches given line
 for l in fp:
 if l.strip() != line:
 tmp.write(l)

Creating Custom Corpora

78

 # reset file pointers so entire files are copied
 fp.seek(0)
 tmp.seek(0)
 # copy tmp into fp, then truncate to remove trailing line(s)
 shutil.copyfileobj(tmp, fp)
 fp.truncate()
 fp.close()
 tmp.close()

The lock acquiring and releasing happens transparently when you do with lockfile.
FileLock(fname).

Instead of using with lockfile.FileLock(fname), you can also get a
lock by calling lock = lockfile.FileLock(fname), then call lock.
acquire() to acquire the lock, and lock.release() to release the lock.
This alternative usage is compatible with Python 2.4.

How it works...
You can use these functions as follows:

>>> from corpus import append_line, remove_line
>>> append_line('test.txt', 'foo')
>>> remove_line('test.txt', 'foo')

In append_line(), a lock is acquired, the file is opened in append mode, the text is written
along with an end-of-line character, and then the file is closed, releasing the lock.

A lock acquired by lockfile only protects the file from other processes that
also use lockfile. In other words, just because your Python process has
a lock with lockfile, doesn't mean a non-Python process can't modify the
file. For this reason, it's best to only use lockfile with files that will not
be edited by any non-Python processes, or Python processes that do not use
lockfile.

Chapter 3

79

The remove_line() function is a bit more complicated. Because we're removing a line and
not a specific section of the file, we need to iterate over the file to find each instance of the
line to remove. The easiest way to do this while writing the changes back to the file, is to use
a TemporaryFile to hold the changes, then copy that file back into the original file using
shutil.copyfileobj().

These functions are best suited for a word list corpus, or some other corpus type with
presumably unique lines, that may be edited by multiple people at about the same time,
such as through a web interface. Using these functions with a more document-oriented
corpus such as brown, treebank, or conll2000, is probably a bad idea.

4
Part-of-Speech

Tagging

In this chapter, we will cover:

ff Default tagging

ff Training a unigram part-of-speech tagger

ff Combining taggers with backoff tagging

ff Training and combining Ngram taggers

ff Creating a model of likely word tags

ff Tagging with regular expressions

ff Affix tagging

ff Training a Brill tagger

ff Training the TnT tagger

ff Using WordNet for tagging

ff Tagging proper names

ff Classifier-based tagging

Part-of-Speech Tagging

82

Introduction
Part-of-speech tagging is the process of converting a sentence, in the form of a list of
words, into a list of tuples, where each tuple is of the form (word, tag). The tag is a
part-of-speech tag and signifies whether the word is a noun, adjective, verb, and so on.

Most of the taggers we will cover are trainable. They use a list of tagged sentences
as their training data, such as what you get from the tagged_sents() function of a
TaggedCorpusReader (see the Creating a part-of-speech tagged word corpus recipe in
Chapter 3, Creating Custom Corpora for more details). With these training sentences, the
tagger generates an internal model that will tell them how to tag a word. Other taggers use
external data sources or match word patterns to choose a tag for a word.

All taggers in NLTK are in the nltk.tag package and inherit from the TaggerI base
class. TaggerI requires all subclasses to implement a tag() method, which takes a list
of words as input, and returns a list of tagged words as output. TaggerI also provides an
evaluate() method for evaluating the accuracy of the tagger (covered at the end of the
Default tagging recipe). Many taggers can also be combined into a backoff chain, so that if
one tagger cannot tag a word, the next tagger is used, and so on.

Part-of-speech tagging is a necessary step before chunking, which is covered in Chapter 5,
Extracting Chunks. Without the part-of-speech tags, a chunker cannot know how to extract
phrases from a sentence. But with part-of-speech tags, you can tell a chunker how to identify
phrases based on tag patterns.

Default tagging
Default tagging provides a baseline for part-of-speech tagging. It simply assigns the same
part-of-speech tag to every token. We do this using the DefaultTagger.

Getting ready
We are going to use the treebank corpus for most of this chapter because it's a common
standard and is quick to load and test. But everything we do should apply equally well to
brown, conll2000, and any other part-of-speech tagged corpus.

How to do it...
The DefaultTagger takes a single argument—the tag you want to apply. We will give it 'NN',
which is the tag for a singular noun.

>>> from nltk.tag import DefaultTagger
>>> tagger = DefaultTagger('NN')

Chapter 4

83

>>> tagger.tag(['Hello', 'World'])
[('Hello', 'NN'), ('World', 'NN')]

Every tagger has a tag() method that takes a list of tokens, where each token is a single
word. This list of tokens is usually a list of words produced by a word tokenizer (see Chapter 1,
Tokenizing Text and WordNet Basics for more on tokenization). As you can see, tag() returns
a list of tagged tokens, where a tagged token is a tuple of (word, tag).

How it works...
DefaultTagger is a subclass of SequentialBackoffTagger. Every subclass of
SequentialBackoffTagger must implement the choose_tag() method, which takes
three arguments:

1.	 The list of tokens.

2.	 The index of the current token whose tag we want to choose.

3.	 The history, which is a list of the previous tags.

SequentialBackoffTagger implements the tag() method, which calls the
choose_tag() of the subclass for each index in the tokens list, while accumulating a
history of the previously tagged tokens. This history is the reason for the Sequential in
SequentialBackoffTagger. We will get to the Backoff portion of the name in the
Combining taggers with backoff tagging recipe. The following is a diagram showing the
inheritance tree:

The choose_tag() method of DefaultTagger is very simple—it returns the tag we gave it
at initialization time. It does not care about the current token or the history.

Part-of-Speech Tagging

84

There's more...
There are a lot of different tags you could give to the DefaultTagger. You can find a
complete list of possible tags for the treebank corpus at http://www.ling.upenn.
edu/courses/Fall_2003/ling001/penn_treebank_pos.html. These tags are also
documented in Appendix, Penn Treebank Part-of-Speech Tags.

Evaluating accuracy
To know how accurate a tagger is, you can use the evaluate() method, which takes a list
of tagged tokens as a gold standard to evaluate the tagger. Using our default tagger created
earlier, we can evaluate it against a subset of the treebank corpus tagged sentences.

>>> from nltk.corpus import treebank
>>> test_sents = treebank.tagged_sents()[3000:]
>>> tagger.evaluate(test_sents)
0.14331966328512843

So by just choosing 'NN' for every tag, we can achieve 14% accuracy testing on ¼th of the
treebank corpus. We will be reusing these same test_sents for evaluating more taggers
in upcoming recipes.

Batch tagging sentences
TaggerI also implements a batch_tag() method that can be used to tag a list of
sentences, instead of a single sentence. Here's an example of tagging two simple sentences:

>>> tagger.batch_tag([['Hello', 'world', '.'], ['How', 'are', 'you',
'?']])
[[('Hello', 'NN'), ('world', 'NN'), ('.', 'NN')], [('How', 'NN'),
('are', 'NN'), ('you', 'NN'), ('?', 'NN')]]

The result is a list of two tagged sentences, and of course every tag is NN because we are
using the DefaultTagger. The batch_tag() method can be quite useful if you have many
sentences you wish to tag all at once.

Untagging a tagged sentence
Tagged sentences can be untagged using nltk.tag.untag(). Calling this function with a
tagged sentence will return a list of words without the tags.

>>> from nltk.tag import untag
>>> untag([('Hello', 'NN'), ('World', 'NN')])
['Hello', 'World']

Chapter 4

85

See also

For more on tokenization, see Chapter 1, Tokenizing Text and WordNet Basics. And to learn
more about tagged sentences, see the Creating a part-of-speech tagged word corpus recipe
in Chapter 3, Creating Custom Corpora. For a complete list of part-of-speech tags found in
the treebank corpus, see Appendix, Penn Treebank Part-of-Speech Tags.

Training a unigram part-of-speech tagger
A unigram generally refers to a single token. Therefore, a unigram tagger only uses a single
word as its context for determining the part-of-speech tag.

The UnigramTagger inherits from NgramTagger, which is a subclass of ContextTagger,
which inherits from SequentialBackoffTagger. In other words, the UnigramTagger is a
context-based tagger whose context is a single word, or unigram.

How to do it...
UnigramTagger can be trained by giving it a list of tagged sentences at initialization.

>>> from nltk.tag import UnigramTagger
>>> from nltk.corpus import treebank
>>> train_sents = treebank.tagged_sents()[:3000]
>>> tagger = UnigramTagger(train_sents)
>>> treebank.sents()[0]
['Pierre', 'Vinken', ',', '61', 'years', 'old', ',', 'will', 'join',
'the', 'board', 'as', 'a', 'nonexecutive', 'director', 'Nov.', '29',
'.']
>>> tagger.tag(treebank.sents()[0])
[('Pierre', 'NNP'), ('Vinken', 'NNP'), (',', ','), ('61', 'CD'),
('years', 'NNS'), ('old', 'JJ'), (',', ','), ('will', 'MD'), ('join',
'VB'), ('the', 'DT'), ('board', 'NN'), ('as', 'IN'), ('a', 'DT'),
('nonexecutive', 'JJ'), ('director', 'NN'), ('Nov.', 'NNP'), ('29',
'CD'), ('.', '.')]

We use the first 3,000 tagged sentences of the treebank corpus as the training set to
initialize the UnigramTagger. Then we see the first sentence as a list of words, and can
see how it is transformed by the tag() function into a list of tagged tokens.

Part-of-Speech Tagging

86

How it works...
The UnigramTagger builds a context model from the list of tagged sentences. Because
UnigramTagger inherits from ContextTagger, instead of providing a choose_tag()
method, it must implement a context() method, which takes the same three arguments as
choose_tag(). The result of context() is, in this case, the word token. The context token
is used to create the model, and also to look up the best tag once the model is created. Here's
an inheritance diagram showing each class, starting at SequentialBackoffTagger:

Let's see how accurate the UnigramTagger is on the test sentences (see the previous
recipe for how test_sents is created).

>>> tagger.evaluate(test_sents)
0.85763004532700193

It has almost 86% accuracy for a tagger that only uses single word lookup to determine
the part-of-speech tag. All accuracy gains from here on will be much smaller.

There's more...
The model building is actually implemented in ContextTagger. Given the list of tagged
sentences, it calculates the frequency that a tag has occurred for each context. The tag
with the highest frequency for a context is stored in the model.

Chapter 4

87

Overriding the context model
All taggers that inherit from ContextTagger can take a pre-built model instead of training
their own. This model is simply a Python dict mapping a context key to a tag. The context
keys will depend on what the ContextTagger subclass returns from its context()
method. For UnigramTagger, context keys are individual words. But for other NgramTagger
subclasses, the context keys will be tuples.

Here's an example where we pass a very simple model to the UnigramTagger instead of a
training set:

>>> tagger = UnigramTagger(model={'Pierre': 'NN'})
>>> tagger.tag(treebank.sents()[0])
[('Pierre', 'NN'), ('Vinken', None), (',', None), ('61', None),
('years', None), ('old', None), (',', None), ('will', None), ('join',
None), ('the', None), ('board', None), ('as', None), ('a', None),
('nonexecutive', None),('director', None), ('Nov.', None), ('29',
None), ('.', None)]

Since the model only contained the context key, 'Pierre', only the first word got a tag.
Every other word got None as the tag since the context word was not in the model. So unless
you know exactly what you are doing, let the tagger train its own model instead of passing in
your own.

One good case for passing a self-created model to the UnigramTagger is for when you
have a dictionary of words and tags, and you know that every word should always map to its
tag. Then, you can put this UnigramTagger as your first backoff tagger (covered in the next
recipe), to look up tags for unambiguous words.

Minimum frequency cutoff
The ContextTagger uses frequency of occurrence to decide which tag is most likely for a
given context. By default, it will do this even if the context word and tag occurs only once. If
you would like to set a minimum frequency threshold, then you can pass a cutoff value to
the UnigramTagger.

>>> tagger = UnigramTagger(train_sents, cutoff=3)
>>> tagger.evaluate(test_sents)
0.775350744657889

In this case, using cutoff=3 has decreased accuracy, but there may be times when a cutoff
is a good idea.

Part-of-Speech Tagging

88

See also
In the next recipe, we will cover backoff tagging to combine taggers. And in the Creating a
model of likely word tags recipe, we will learn how to statistically determine tags for very
common words.

Combining taggers with backoff tagging
Backoff tagging is one of the core features of SequentialBackoffTagger. It allows you
to chain taggers together so that if one tagger doesn't know how to tag a word, it can pass the
word on to the next backoff tagger. If that one can't do it, it can pass the word on to the next
backoff tagger, and so on until there are no backoff taggers left to check.

How to do it...
Every subclass of SequentialBackoffTagger can take a backoff keyword argument
whose value is another instance of a SequentialBackoffTagger. So we will use the
DefaultTagger from the Default tagging recipe as the backoff to the UnigramTagger
from the Training a unigram part-of-speech tagger recipe. Refer to both recipes for details on
train_sents and test_sents.

>>> tagger1 = DefaultTagger('NN')
>>> tagger2 = UnigramTagger(train_sents, backoff=tagger1)
>>> tagger2.evaluate(test_sents)
0.87459529462551266

By using a default tag of NN whenever the UnigramTagger is unable to tag a word, we have
increased the accuracy by almost 2%!

How it works...
When a SequentialBackoffTagger is initialized, it creates an internal list of backoff
taggers with itself as the first element. If a backoff tagger is given, then the backoff tagger's
internal list of taggers is appended. Here's some code to illustrate this:

>>> tagger1._taggers == [tagger1]
True
>>> tagger2._taggers == [tagger2, tagger1]
True

Chapter 4

89

The _taggers is the internal list of backoff taggers that the SequentialBackoffTagger
uses when the tag() method is called. It goes through its list of taggers, calling choose_
tag() on each one. As soon as a tag is found, it stops and returns that tag. This means that
if the primary tagger can tag the word, then that's the tag that will be returned. But if it returns
None, then the next tagger is tried, and so on until a tag is found, or else None is returned. Of
course, None will never be returned if your final backoff tagger is a DefaultTagger.

There's more...
While most of the taggers included in NLTK are subclasses of SequentialBackoffTagger,
not all of them are. There's a few taggers that we will cover in later recipes that cannot be
used as part of a backoff tagging chain, such as the BrillTagger. However, these taggers
generally take another tagger to use as a baseline, and a SequentialBackoffTagger is
often a good choice for that baseline.

Pickling and unpickling a trained tagger
Since training a tagger can take a while, and you generally only need to do the training once,
pickling a trained tagger is a useful way to save it for later usage. If your trained tagger is
called tagger, then here's how to dump and load it with pickle:

>>> import pickle
>>> f = open('tagger.pickle', 'w')
>>> pickle.dump(tagger, f)
>>> f.close()
>>> f = open('tagger.pickle', 'r')
>>> tagger = pickle.load(f)

If your tagger pickle file is located in a NLTK data directory, you could also use nltk.data.
load('tagger.pickle') to load the tagger.

See also
In the next recipe, we will combine more taggers with backoff tagging. Also see the previous
two recipes for details on the DefaultTagger and UnigramTagger.

Training and combining Ngram taggers
In addition to UnigramTagger, there are two more NgramTagger subclasses:
BigramTagger and TrigramTagger. BigramTagger uses the previous tag as part of
its context, while TrigramTagger uses the previous two tags. An ngram is a subsequence
of n items, so the BigramTagger looks at two items (the previous tag and word), and the
TrigramTagger looks at three items.

Part-of-Speech Tagging

90

These two taggers are good at handling words whose part-of-speech tag is context dependent.
Many words have a different part-of-speech depending on how they are used. For example,
we have been talking about taggers that "tag" words. In this case, "tag" is used as a verb. But
the result of tagging is a part-of-speech tag, so "tag" can also be a noun. The idea with the
NgramTagger subclasses is that by looking at the previous words and part-of-speech tags,
we can better guess the part-of-speech tag for the current word.

Getting ready
Refer to the first two recipes of this chapter for details on constructing train_sents and
test_sents.

How to do it...
By themselves, BigramTagger and TrigramTagger perform quite poorly. This is partly
because they cannot learn context from the first word(s) in a sentence.

>>> from nltk.tag import BigramTagger, TrigramTagger
>>> bitagger = BigramTagger(train_sents)
>>> bitagger.evaluate(test_sents)
0.11336067342974315
>>> tritagger = TrigramTagger(train_sents)
>>> tritagger.evaluate(test_sents)
0.0688107058061731

Where they can make a contribution is when we combine them with backoff tagging. This
time, instead of creating each tagger individually, we will create a function that will take
train_sents, a list of SequentialBackoffTagger classes, and an optional final backoff
tagger, and then train each tagger with the previous tagger as a backoff. Here's code from
tag_util.py:

def backoff_tagger(train_sents, tagger_classes, backoff=None):
 for cls in tagger_classes:
 backoff = cls(train_sents, backoff=backoff)
 return backoff

And to use it, we can do the following:

>>> from tag_util import backoff_tagger
>>> backoff = DefaultTagger('NN')
>>> tagger = backoff_tagger(train_sents, [UnigramTagger, BigramTagger,
TrigramTagger], backoff=backoff)
>>> tagger.evaluate(test_sents)
0.88163177206993304

Chapter 4

91

So we have gained almost 1% accuracy by including the BigramTagger and
TrigramTagger in the backoff chain. For corpora other than treebank, the accuracy
gain may be more significant.

How it works...
The backoff_tagger function creates an instance of each tagger class in the list, giving it
the train_sents and the previous tagger as a backoff. The order of the list of tagger classes
is quite important—the first class in the list will be trained first, and be given the initial backoff
tagger. This tagger will then become the backoff tagger for the next tagger class in the list. The
final tagger returned will be an instance of the last tagger class in the list. Here's some code
to clarify this chain:

>>> tagger._taggers[-1] == backoff
True
>>> isinstance(tagger._taggers[0], TrigramTagger)
True
>>> isinstance(tagger._taggers[1], BigramTagger)
True

So we end up with a TrigramTagger, whose first backoff is a BigramTagger. Then the next
backoff will be a UnigramTagger, whose backoff is the DefaultTagger.

There's more...
The backoff_tagger function doesn't just work with NgramTagger classes. It can be used
for constructing a chain containing any subclasses of SequentialBackoffTagger.

BigramTagger and TrigramTagger, because they are subclasses of NgramTagger and
ContextTagger, can also take a model and cutoff argument, just like the UnigramTagger.
But unlike for UnigramTagger, the context keys of the model must be 2-tuples, where the
first element is a section of the history, and the second element is the current token. For
the BigramTagger, an appropriate context key looks like ((prevtag,), word), and for
TrigramTagger it looks like ((prevtag1, prevtag2), word).

Quadgram Tagger
The NgramTagger class can be used by itself to create a tagger that uses Ngrams longer
than three for its context key.

>>> from nltk.tag import NgramTagger
>>> quadtagger = NgramTagger(4, train_sents)
>>> quadtagger.evaluate(test_sents)
0.058191236779624435

Part-of-Speech Tagging

92

It's even worse than the TrigramTagger! Here's an alternative implementation of a
QuadgramTagger that we can include in a list to backoff_tagger. This code can be
found in taggers.py:

from nltk.tag import NgramTagger

class QuadgramTagger(NgramTagger):
 def __init__(self, *args, **kwargs):
 NgramTagger.__init__(self, 4, *args, **kwargs)

This is essentially how BigramTagger and TrigramTagger are implemented; simple
subclasses of NgramTagger that pass in the number of ngrams to look at in the history
argument of the context() method.

Now let's see how it does as part of a backoff chain:

>>> from taggers import QuadgramTagger
>>> quadtagger = backoff_tagger(train_sents, [UnigramTagger,
BigramTagger, TrigramTagger, QuadgramTagger], backoff=backoff)
>>> quadtagger.evaluate(test_sents)
0.88111374919058927

It's actually slightly worse than before when we stopped with the TrigramTagger. So the
lesson is that too much context can have a negative effect on accuracy.

See also
The previous two recipes cover the UnigramTagger and backoff tagging.

Creating a model of likely word tags
As mentioned earlier in this chapter in the Training a unigram part-of-speech tagger recipe,
using a custom model with a UnigramTagger should only be done if you know exactly what
you are doing. In this recipe, we are going to create a model for the most common words,
most of which always have the same tag no matter what.

Chapter 4

93

How to do it...
To find the most common words, we can use nltk.probability.FreqDist to count word
frequencies in the treebank corpus. Then, we can create a ConditionalFreqDist for
tagged words, where we count the frequency of every tag for every word. Using these counts,
we can construct a model of the 200 most frequent words as keys, with the most frequent tag
for each word as a value. Here's the model creation function defined in tag_util.py:

from nltk.probability import FreqDist, ConditionalFreqDist

def word_tag_model(words, tagged_words, limit=200):
 fd = FreqDist(words)
 most_freq = fd.keys()[:limit]
 cfd = ConditionalFreqDist(tagged_words)
 return dict((word, cfd[word].max()) for word in most_freq)

And to use it with a UnigramTagger, we can do the following:

>>> from tag_util import word_tag_model
>>> from nltk.corpus import treebank
>>> model = word_tag_model(treebank.words(), treebank.tagged_words())
>>> tagger = UnigramTagger(model=model)
>>> tagger.evaluate(test_sents)
0.55972372113101665

An accuracy of almost 56% is ok, but nowhere near as good as the trained UnigramTagger.
Let's try adding it to our backoff chain:

>>> default_tagger = DefaultTagger('NN')
>>> likely_tagger = UnigramTagger(model=model, backoff=default_tagger)
>>> tagger = backoff_tagger(train_sents, [UnigramTagger, BigramTagger,
TrigramTagger], backoff=likely_tagger)
>>> tagger.evaluate(test_sents)
0.88163177206993304

The final accuracy is exactly the same as without the likely_tagger. This is because the
frequency calculations we did to create the model are almost exactly what happens when we
train a UnigramTagger.

Part-of-Speech Tagging

94

How it works...
The word_tag_model() function takes a list of all words, a list of all tagged words, and
the maximum number of words we want to use for our model. We give the list of words to a
FreqDist, which counts the frequency of each word. Then we get the top 200 words from
the FreqDist by calling fd.keys(), which returns all words ordered by highest frequency
to lowest. We give the list of tagged words to a ConditionalFreqDist, which creates a
FreqDist of tags for each word, with the word as the condition. Finally, we return a dict of
the top 200 words mapped to their most likely tag.

There's more...
It may seem useless to include this tagger as it does not change the accuracy. But the point of
this recipe is to demonstrate how to construct a useful model for a UnigramTagger. Custom
model construction is a way to create a manual override of trained taggers that are otherwise
black boxes. And by putting the likely tagger in the front of the chain, we can actually improve
accuracy a little bit:

>>> tagger = backoff_tagger(train_sents, [UnigramTagger, BigramTagger,
TrigramTagger], backoff=default_tagger)
>>> likely_tagger = UnigramTagger(model=model, backoff=tagger)
>>> likely_tagger.evaluate(test_sents)
0.88245197496222749

Putting custom model taggers at the front of the backoff chain gives you complete control
over how specific words are tagged, while letting the trained taggers handle everything else.

See also
The Training a unigram part-of-speech tagger recipe has details on the UnigramTagger
and a simple custom model example. See the earlier recipes Combining taggers with
backoff tagging and Training and combining Ngram taggers for details on backoff tagging.

Tagging with regular expressions
You can use regular expression matching to tag words. For example, you can match
numbers with \d to assign the tag CD (which refers to a Cardinal number). Or you could
match on known word patterns, such as the suffix "ing". There's lot of flexibility here, but
be careful of over-specifying since language is naturally inexact, and there are always
exceptions to the rule.

Chapter 4

95

Getting ready
For this recipe to make sense, you should be familiar with regular expression syntax and
Python's re module.

How to do it...
The RegexpTagger expects a list of 2-tuples, where the first element in the tuple is a
regular expression, and the second element is the tag. The following patterns can be
found in tag_util.py:

patterns = [
 (r'^\d+$', 'CD'),
 (r'.*ing$', 'VBG'), # gerunds, i.e. wondering
 (r'.*ment$', 'NN'), # i.e. wonderment
 (r'.*ful$', 'JJ') # i.e. wonderful
]

Once you have constructed this list of patterns, you can pass it into RegexpTagger.

>>> from tag_util import patterns
>>> from nltk.tag import RegexpTagger
>>> tagger = RegexpTagger(patterns)
>>> tagger.evaluate(test_sents)
0.037470321605870924

So it's not too great with just a few patterns, but since RegexpTagger is a subclass of
SequentialBackoffTagger, it can be useful as part of a backoff chain, especially if you
are able to come up with more word patterns.

How it works...
The RegexpTagger saves the patterns given at initialization, then on each call to choose_
tag(), it iterates over the patterns and returns the tag for the first expression that matches
the current word using re.match(). This means that if you have two expressions that could
match, the tag of the first one will always be returned, and the second expression won't even
be tried.

There's more...
The RegexpTagger can replace the DefaultTagger if you give it a pattern such as
(r'.*', 'NN'). This pattern should, of course, be last in the list of patterns, otherwise
no other patterns will match.

Part-of-Speech Tagging

96

See also
In the next recipe, we will cover the AffixTagger, which learns how to tag based on prefixes
and suffixes of words. And see the Default tagging recipe for details on the DefaultTagger.

Affix tagging
The AffixTagger is another ContextTagger subclass, but this time the context is either
the prefix or the suffix of a word. This means the AffixTagger is able to learn tags based on
fixed-length substrings of the beginning or ending of a word.

How to do it...
The default arguments for an AffixTagger specify three-character suffixes, and that words
must be at least five characters long. If a word is less than five characters long, then None is
returned as the tag.

>>> from nltk.tag import AffixTagger
>>> tagger = AffixTagger(train_sents)
>>> tagger.evaluate(test_sents)
0.27528599179797109

So it does ok by itself with the default arguments. Let's try it by specifying three-character
prefixes:

>>> prefix_tagger = AffixTagger(train_sents, affix_length=3)
>>> prefix_tagger.evaluate(test_sents)
0.23682279300669112

To learn on two-character suffixes, the code looks like this:

>>> suffix_tagger = AffixTagger(train_sents, affix_length=-2)
>>> suffix_tagger.evaluate(test_sents)
0.31953377940859057

How it works...
A positive value for affix_length means that the AffixTagger will learn word prefixes,
essentially word[:affix_length]. If the affix_length is negative, then suffixes are
learned using word[affix_length:].

Chapter 4

97

There's more...
You can combine multiple affix taggers in a backoff chain if you want to learn about multiple
character length affixes. Here's an example of four AffixTagger classes learning about two
and three-character prefixes and suffixes:

>>> pre3_tagger = AffixTagger(train_sents, affix_length=3)
>>> pre3_tagger.evaluate(test_sents)
0.23682279300669112
>>> pre2_tagger = AffixTagger(train_sents, affix_length=2,
backoff=pre3_tagger)
>>> pre2_tagger.evaluate(test_sents)
0.29816533563565722
>>> suf2_tagger = AffixTagger(train_sents, affix_length=-2,
backoff=pre2_tagger)
>>> suf2_tagger.evaluate(test_sents)
0.32523203108137277
>>> suf3_tagger = AffixTagger(train_sents, affix_length=-3,
backoff=suf2_tagger)
>>> suf3_tagger.evaluate(test_sents)
0.35924886682495144

As you can see, the accuracy goes up each time.

The preceding ordering is not the best, nor is it the worst. I will leave it
to you to explore the possibilities and discover the best backoff chain of
AffixTagger and affix_length values.

Min stem length
AffixTagger also takes a min_stem_length keyword argument with a default value of 2.
If the word length is less than min_stem_length plus the absolute value of affix_length,
then None is returned by the context() method. Increasing min_stem_length forces
the AffixTagger to only learn on longer words, while decreasing min_stem_length will
allow it to learn on shorter words. Of course, for shorter words, the affix_length could be
equal to or greater than the word length, and AffixTagger would essentially be acting like a
UnigramTagger.

See also
You can manually specify prefixes and suffixes using regular expressions, as shown in the
previous recipe. The Training a unigram part-of-speech tagger and Training and combining
Ngram taggers recipes have details on NgramTagger subclasses, which are also subclasses
of ContextTagger.

Part-of-Speech Tagging

98

Training a Brill tagger
The BrillTagger is a transformation-based tagger. It is the first tagger that is not a subclass
of SequentialBackoffTagger. Instead, the BrillTagger uses a series of rules to
correct the results of an initial tagger. These rules are scored based on how many errors they
correct minus the number of new errors they produce.

How to do it...
Here's a function from tag_util.py that trains a BrillTagger using
FastBrillTaggerTrainer. It requires an initial_tagger and train_sents.

from nltk.tag import brill

def train_brill_tagger(initial_tagger, train_sents, **kwargs):
 sym_bounds = [(1,1), (2,2), (1,2), (1,3)]
 asym_bounds = [(-1,-1), (1,1)]
 templates = [
 brill.SymmetricProximateTokensTemplate(brill.ProximateTagsRule,
*sym_bounds),
 brill.SymmetricProximateTokensTemplate(brill.ProximateWordsRule,
*sym_bounds),
 brill.ProximateTokensTemplate(brill.ProximateTagsRule, *asym_
bounds),
 brill.ProximateTokensTemplate(brill.ProximateWordsRule, *asym_
bounds)
]
 trainer = brill.FastBrillTaggerTrainer(initial_tagger, templates,
deterministic=True)
 return trainer.train(train_sents, **kwargs)

To use it, we can create our initial_tagger from a backoff chain of NgramTagger
classes, then pass that into the train_brill_tagger() function to get a
BrillTagger back.

>>> default_tagger = DefaultTagger('NN')
>>> initial_tagger = backoff_tagger(train_sents, [UnigramTagger,
BigramTagger, TrigramTagger], backoff=default_tagger)
>>> initial_tagger.evaluate(test_sents)
0.88163177206993304
>>> from tag_util import train_brill_tagger
>>> brill_tagger = train_brill_tagger(initial_tagger, train_sents)
>>> brill_tagger.evaluate(test_sents)
0.88327217785452194

Chapter 4

99

So the BrillTagger has slightly increased accuracy over the initial_tagger.

How it works...
The FastBrillTaggerTrainer takes an initial_tagger and a list of templates.
These templates must implement the BrillTemplateI interface. The two template
implementations included with NLTK are ProximateTokensTemplate and
SymmetricProximateTokensTemplate. Each template is used to generate a list of
BrillRule subclasses. The actual class of the rules produced is passed in to the template
at initialization. The basic workflow looks like this:

The two BrillRule subclasses used are ProximateTagsRule and
ProximateWordsRule, which are both subclasses of ProximateTokensRule.
ProximateTagsRule looks at surrounding tags to do error correction, and
ProximateWordsRule looks at the surrounding words.

The bounds that we pass in to each template are lists of (start, end) tuples that get
passed in to each rule as conditions. The conditions tell the rule which tokens it can look at.
For example, if the condition is (1, 1), then the rule will only look at the next token. But if the
condition is (1, 2), then the rule will look at both the next token and the token after it. For
(-1, -1) the rule will look only at the previous token.

ProximateTokensTemplate produces ProximateTokensRule that look at each token for
its given conditions to do error correction. Positive and negative conditions must be explicitly
specified. SymmetricProximateTokensTemplate, on the other hand, produces pairs of
ProximateTokensRule, where one rule uses the given conditions, and the other rule uses
the negative of the conditions. So when we pass a list of positive (start, end) tuples to a
SymmetricProximateTokensTemplate, it will also produce a ProximateTokensRule
that uses (-start, -end). This is why it's symmetric—it produces rules that look on both
sides of the token.

Unlike with ProximateTokensTemplate, you should not give
negative bounds to SymmetricProximateTokensTemplate,
since it will produce those itself. Only use positive number bounds
with SymmetricProximateTokensTemplate.

Part-of-Speech Tagging

100

There's more...
You can control the number of rules generated using the max_rules keyword argument to
the FastBrillTaggerTrainer.train() method. The default value is 200. You can also
control the quality of rules used with the min_score keyword argument. The default value is
2, though 3 can be a good choice as well.

Increasing max_rules or min_score will greatly increase training time,
without necessarily increasing accuracy. Change these values with care.

Tracing
You can watch the FastBrillTaggerTrainer do its work by passing trace=1 into the
constructor. This can give you output such as:

Training Brill tagger on 3000 sentences...

 Finding initial useful rules...

 Found 10709 useful rules.

 Selecting rules...

This means it found 10709 rules with a score of at least min_score, and then it selects the
best rules, keeping no more than max_rules.

The default is trace=0, which means the trainer will work silently without printing its status.

See also
The Training and combining Ngram taggers recipe details the construction of the initial_
tagger used previously, and the Default tagging recipe explains the default_tagger.

Training the TnT tagger
TnT stands for Trigrams'n'Tags. It is a statistical tagger based on second order Markov
models. You can read the original paper that lead to the implementation at http://acl.
ldc.upenn.edu/A/A00/A00-1031.pdf.

How to do it...
The TnT tagger has a slightly different API than previous taggers we have encountered. You
must explicitly call the train() method after you have created it. Here's a basic example:

>>> from nltk.tag import tnt
>>> tnt_tagger = tnt.TnT()

Chapter 4

101

>>> tnt_tagger.train(train_sents)
>>> tnt_tagger.evaluate(test_sents)
0.87580401467731495

It's quite a good tagger all by itself, only slightly less accurate than the BrillTagger from
the previous recipe. But if you do not call train() before evaluate(), you will get an
accuracy of 0%.

How it works...
TnT maintains a number of internal FreqDist and ConditionalFreqDist instances
based on the training data. These frequency distributions count unigrams, bigrams, and
trigrams. Then, during tagging, the frequencies are used to calculate the probabilities of
possible tags for each word. So instead of constructing a backoff chain of NgramTagger
subclasses, the TnT tagger uses all the ngram models together to choose the best tag. It also
tries to guess the tags for the whole sentence at once, by choosing the most likely model for
the entire sentence, based on the probabilities of each possible tag.

Training is fairly quick, but tagging is significantly slower than
the other taggers we have covered. This is due to all the floating
point math that must be done to calculate the tag probabilities
of each word.

There's more...
TnT accepts a few optional keyword arguments. You can pass in a tagger for unknown
words as unk. If this tagger is already trained, then you must also pass in Trained=True.
Otherwise it will call unk.train(data) with the same data you pass in to the train()
method. Since none of the previous taggers have a public train() method, we recommend
always passing Trained=True if you also pass an unk tagger. Here's an example using a
DefaultTagger, which does not require any training:

>>> from nltk.tag import DefaultTagger
>>> unk = DefaultTagger('NN')
>>> tnt_tagger = tnt.TnT(unk=unk, Trained=True)
>>> tnt_tagger.train(train_sents)
>>> tnt_tagger.evaluate(test_sents)
0.89272609540254699

Part-of-Speech Tagging

102

So we got an almost 2% increase in accuracy! You must use a tagger that can tag a single
word without having seen that word before. This is because the unknown tagger's tag()
method is only called with a single word sentence. Other good candidates for an unknown
tagger are RegexpTagger or AffixTagger. Passing in a UnigramTagger that's been
trained on the same data is pretty much useless, as it will have seen the exact same words,
and therefore have the same unknown word blind spots.

Controlling the beam search
Another parameter you can modify for TnT is N, which controls the number of possible
solutions the tagger maintains while trying to guess the tags for a sentence. N defaults to
1,000. Increasing it will greatly increase the amount of memory used during tagging, without
necessarily increasing accuracy. Decreasing N will decrease memory usage, but could also
decrease accuracy. Here's what happens when you set N=100:

>>> tnt_tagger = tnt.TnT(N=100)
>>> tnt_tagger.train(train_sents)
>>> tnt_tagger.evaluate(test_sents)
0.87580401467731495

So the accuracy is exactly the same, but we use significantly less memory to achieve it.
However, don't assume that accuracy will not change if you decrease N; experiment with
your own data to be sure.

Capitalization significance
You can pass C=True if you want capitalization of words to be significant. The default is
C=False, which means all words are lowercased. The documentation on C says that treating
capitalization as significant probably will not increase accuracy. In my own testing, there was a
very slight (< 0.01%) increase in accuracy with C=True, probably because case-sensitivity can
help identify proper nouns.

See also
We covered the DefaultTagger in the Default tagging recipe, backoff tagging in
the Combining taggers with backoff tagging recipe, NgramTagger subclasses in the
Training a unigram part-of-speech tagger and Training combining Ngram taggers recipes,
RegexpTagger in the Tagging with regular expressions recipe, and the AffixTagger
in the Affix tagging recipe.

Chapter 4

103

Using WordNet for tagging
If you remember from the Looking up synsets for a word in Wordnet recipe in
Chapter 1, Tokenizing Text and WordNet Basics, WordNet synsets specify a part-of-speech
tag. It's a very restricted set of possible tags, and many words have multiple synsets with
different part-of-speech tags, but this information can be useful for tagging unknown words.
WordNet is essentially a giant dictionary, and it's likely to contain many words that are not in
your training data.

Getting ready
First, we need to decide how to map WordNet part-of-speech tags to the Penn Treebank part-
of-speech tags we have been using. The following is a table mapping one to the other. See the
Looking up synsets for a word in Wordnet recipe in Chapter 1, Tokenizing Text and WordNet
Basics for more details. The "s", which was not shown before, is just another kind of adjective,
at least for tagging purposes.

WordNet Tag Treebank Tag
n NN
a JJ
s JJ
r RB
v VB

How to do it...
Now we can create a class that will look up words in WordNet, then chose the most common tag
from the synsets it finds. The WordNetTagger defined next can be found in taggers.py:

from nltk.tag import SequentialBackoffTagger
from nltk.corpus import wordnet
from nltk.probability import FreqDist

class WordNetTagger(SequentialBackoffTagger):
 '''
 >>> wt = WordNetTagger()
 >>> wt.tag(['food', 'is', 'great'])
 [('food', 'NN'), ('is', 'VB'), ('great', 'JJ')]
 '''
 def __init__(self, *args, **kwargs):
 SequentialBackoffTagger.__init__(self, *args, **kwargs)
 self.wordnet_tag_map = {

Part-of-Speech Tagging

104

 'n': 'NN',
 's': 'JJ',
 'a': 'JJ',
 'r': 'RB',
 'v': 'VB'
 }
 def choose_tag(self, tokens, index, history):
 word = tokens[index]
 fd = FreqDist()
 for synset in wordnet.synsets(word):
 fd.inc(synset.pos)
 return self.wordnet_tag_map.get(fd.max())

How it works...
The WordNetTagger simply counts the number of each part-of-speech tag found in the
synsets for a word. The most common tag is then mapped to a treebank tag using an
internal mapping. Here's some sample usage code:

>>> from taggers import WordNetTagger
>>> wn_tagger = WordNetTagger()
>>> wn_tagger.evaluate(train_sents)
0.18451574615215904

So it's not too accurate, but that's to be expected. We only have enough information to
produce four different kinds of tags, while there are 36 possible tags in treebank. And
many words can have different part-of-speech tags depending on their context. But if we put
the WordNetTagger at the end of an NgramTagger backoff chain, then we can improve
accuracy over the DefaultTagger.

>>> from tag_util import backoff_tagger
>>> from nltk.tag import UnigramTagger, BigramTagger, TrigramTagger
>>> tagger = backoff_tagger(train_sents, [UnigramTagger, BigramTagger,
TrigramTagger], backoff=wn_tagger)
>>> tagger.evaluate(test_sents)
0.88564644938484782

See also

The Looking up synsets for a word in Wordnet recipe in Chapter 1, Tokenizing Text and
WordNet Basics details how to use the wordnet corpus and what kinds of part-of-speech
tags it knows about. And in the Combining taggers with backoff tagging and Training and
combining Ngram taggers recipes, we went over backoff tagging with ngram taggers.

Chapter 4

105

Tagging proper names
Using the included names corpus, we can create a simple tagger for tagging names as
proper nouns.

How to do it...
The NamesTagger is a subclass of SequentialBackoffTagger as it's probably only useful
near the end of a backoff chain. At initialization, we create a set of all names in the names
corpus, lowercasing each name to make lookup easier. Then we implement the choose_
tag() method, which simply checks if the current word is in the names_set. If it is, we return
the tag NNP (which is the tag for proper nouns). If it isn't, we return None so the next tagger in
the chain can tag the word. The following code can be found in taggers.py:

from nltk.tag import SequentialBackoffTagger
from nltk.corpus import names

class NamesTagger(SequentialBackoffTagger):
 def __init__(self, *args, **kwargs):
 SequentialBackoffTagger.__init__(self, *args, **kwargs)
 self.name_set = set([n.lower() for n in names.words()])
 def choose_tag(self, tokens, index, history):
 word = tokens[index]
 if word.lower() in self.name_set:
 return 'NNP'
 else:
 return None

How it works...
NamesTagger should be pretty self-explanatory. Its usage is also simple:

>>> from taggers import NamesTagger
>>> nt = NamesTagger()
>>> nt.tag(['Jacob'])
[('Jacob', 'NNP')]

It's probably best to use the NamesTagger right before a DefaultTagger, so it's at the end
of a backoff chain. But it could probably go anywhere in the chain since it's unlikely to mistag
a word.

Part-of-Speech Tagging

106

See also
The Combining taggers with backoff tagging recipe goes over the details of using
SequentialBackoffTagger subclasses.

Classifier based tagging
The ClassifierBasedPOSTagger uses classification to do part-of-speech tagging.
Features are extracted from words, then passed to an internal classifier. The classifier
classifies the features and returns a label; in this case, a part-of-speech tag. Classification
will be covered in detail in Chapter 7, Text Classification.

ClassifierBasedPOSTagger is a subclass of ClassifierBasedTagger that
implements a feature detector that combines many of the techniques of previous taggers into
a single feature set. The feature detector finds multiple length suffixes, does some regular
expression matching, and looks at the unigram, bigram, and trigram history to produce a fairly
complete set of features for each word. The feature sets it produces are used to train the
internal classifier, and are used for classifying words into part-of-speech tags.

How to do it...
Basic usage of the ClassifierBasedPOSTagger is much like any other
SequentialBackoffTaggger. You pass in training sentences, it trains an internal classifier,
and you get a very accurate tagger.

>>> from nltk.tag.sequential import ClassifierBasedPOSTagger
>>> tagger = ClassifierBasedPOSTagger(train=train_sents)
>>> tagger.evaluate(test_sents)
0.93097345132743359

Notice a slight modification to initialization—train_sents must be passed
in as the train keyword argument.

How it works...
ClassifierBasedPOSTagger inherits from ClassifierBasedTagger and only
implements a feature_detector() method. All the training and tagging is done in
ClassifierBasedTagger. It defaults to training a NaiveBayesClassifier with the
given training data. Once this classifier is trained, it is used to classify word features produced
by the feature_detector() method.

Chapter 4

107

The ClassifierBasedTagger is often the most accurate tagger, but it's
also one of the slowest taggers. If speed is an issue, you should stick with a
BrillTagger based on a backoff chain of NgramTagger subclasses and
other simple taggers.

The ClassifierBasedTagger also inherits from FeatursetTaggerI (which is just an
empty class), creating an inheritance tree that looks like this:

There's more...
You can use a different classifier instead of NaiveBayesClassifier by passing in your own
classifier_builder function. For example, to use a MaxentClassifier, you would do
the following:

>>> from nltk.classify import MaxentClassifier
>>> me_tagger = ClassifierBasedPOSTagger(train=train_sents,
classifier_builder=MaxentClassifier.train)
>>> me_tagger.evaluate(test_sents)
0.93093028275415501

The MaxentClassifier takes even longer to train than
NaiveBayesClassifier. If you have scipy and numpy installed, training
will be faster than normal, but still slower than NaiveBayesClassifier.

Part-of-Speech Tagging

108

Custom feature detector
If you want to do your own feature detection, there are two ways to do it.

1.	 Subclass ClassifierBasedTagger and implement a feature_detector()
method.

2.	 Pass a method as the feature_detector keyword argument into
ClassifierBasedTagger at initialization.

Either way, you need a feature detection method that can take the same arguments as
choose_tag(): tokens, index, and history. But instead of returning a tag, you return a
dict of key-value features, where the key is the feature name, and the value is the feature
value. A very simple example would be a unigram feature detector (found in tag_util.py).

def unigram_feature_detector(tokens, index, history):
 return {'word': tokens[index]}

Then using the second method, you would pass the following into ClassifierBasedTagger
as feature_detector:

>>> from nltk.tag.sequential import ClassifierBasedTagger
>>> from tag_util import unigram_feature_detector
>>> tagger = ClassifierBasedTagger(train=train_sents, feature_
detector=unigram_feature_detector)
>>> tagger.evaluate(test_sents)
0.87338657457371038

Cutoff probability
Because a classifier will always return the best result it can, passing in a backoff tagger
is useless unless you also pass in a cutoff_prob to specify the probability threshold for
classification. Then, if the probability of the chosen tag is less than cutoff_prob, the
backoff tagger will be used. Here's an example using the DefaultTagger as the backoff,
and setting cutoff_prob to 0.3:

>>> default = DefaultTagger('NN')
>>> tagger = ClassifierBasedPOSTagger(train=train_sents,
backoff=default, cutoff_prob=0.3)
>>> tagger.evaluate(test_sents)
0.93110295704726964

So we get a slight increase in accuracy if the ClassifierBasedPOSTagger uses the
DefaultTagger whenever its tag probability is less than 30%.

Chapter 4

109

Pre-trained classifier
If you want to use a classifier that's already been trained, then you can pass that in to
ClassifierBasedTagger or ClassifierBasedPOSTagger as classifier. In this
case, the classifier_builder argument is ignored and no training takes place. However,
you must ensure that the classifier has been trained on and can classify feature sets
produced by whatever feature_detector() method you use.

See also

Chapter 7, Text Classification will cover classification in depth.

5
Extracting Chunks

In this chapter, we will cover:

ff Chunking and chinking with regular expressions

ff Merging and splitting chunks with regular expressions

ff Expanding and removing chunks with regular expressions

ff Partial parsing with regular expressions

ff Training a tagger-based chunker

ff Classification-based chunking

ff Extracting named entities

ff Extracting proper noun chunks

ff Extracting location chunks

ff Training a named entity chunker

Introduction
Chunk extraction or partial parsing is the process of extracting short phrases from a
part-of-speech tagged sentence. This is different than full parsing, in that we are interested
in standalone chunks or phrases instead of full parse trees. The idea is that meaningful
phrases can be extracted from a sentence by simply looking for particular patterns of
part-of-speech tags.

As in Chapter 4, Part-of-Speech Tagging, we will be using the Penn Treebank corpus for basic
training and testing chunk extraction. We will also be using the CoNLL 2000 corpus as it has
a simpler and more flexible format that supports multiple chunk types (refer to the Creating a
chunked phrase corpus recipe in Chapter 3, Creating Custom Corpora for more details on the
conll2000 corpus and IOB tags).

Extracting Chunks

112

Chunking and chinking with regular
expressions

Using modified regular expressions, we can define chunk patterns. These are patterns of
part-of-speech tags that define what kinds of words make up a chunk. We can also define
patterns for what kinds of words should not be in a chunk. These unchunked words are
 known as chinks.

A ChunkRule specifies what to include in a chunk, while a ChinkRule specifies what to
exclude from a chunk. In other words, chunking creates chunks, while chinking breaks up
those chunks.

Getting ready
We first need to know how to define chunk patterns. These are modified regular expressions
designed to match sequences of part-of-speech tags. An individual tag is specified by
surrounding angle brackets, such as <NN> to match a noun tag. Multiple tags can then be
combined, as in <DT><NN> to match a determiner followed by a noun. Regular expression
syntax can be used within the angle brackets to match individual tag patterns, so you can
do <NN.*> to match all nouns including NN and NNS. You can also use regular expression
syntax outside of the angle brackets to match patterns of tags. <DT>?<NN.*>+ will match
an optional determiner followed by one or more nouns. The chunk patterns are converted
internally to regular expressions using the tag_pattern2re_pattern() function:

>>> from nltk.chunk import tag_pattern2re_pattern
>>> tag_pattern2re_pattern('<DT>?<NN.*>+')
'(<(DT)>)?(<(NN[^\\{\\}<>]*)>)+'

You don't have to use this function to do chunking, but it might be useful or interesting to see
how your chunk patterns convert to regular expressions.

How to do it...
The pattern for specifying a chunk is to use surrounding curly braces, such as {<DT><NN>}.
To specify a chink, you flip the braces, as in }<VB>{. These rules can be combined into a
grammar for a particular phrase type. Here's a grammar for noun-phrases that combines
both a chunk and a chink pattern, along with the result of parsing the sentence "The book
has many chapters":

>>> from nltk.chunk import RegexpParser
>>> chunker = RegexpParser(r'''
... NP:
... {<DT><NN.*><.*>*<NN.*>}
... }<VB.*>{

Chapter 5

113

... ''')
>>> chunker.parse([('the', 'DT'), ('book', 'NN'),
('has', 'VBZ'), ('many', 'JJ'), ('chapters', 'NNS')])
Tree('S', [Tree('NP', [('the', 'DT'), ('book', 'NN')]),
('has', 'VBZ'), Tree('NP', [('many', 'JJ'), ('chapters',
'NNS')])])

The grammar tells the RegexpParser that there are two rules for parsing NP chunks. The
first chunk pattern says that a chunk starts with a determiner followed by any kind of noun.
Then any number of other words is allowed, until a final noun is found. The second pattern
says that verbs should be chinked, thus separating any large chunks that contain a verb.
The result is a tree with two noun-phrase chunks: "the book" and "many chapters".

Tagged sentences are always parsed into a Tree (found in the
nltk.tree module). The top node of the Tree is 'S', which
stands for sentence. Any chunks found will be subtrees whose
nodes will refer to the chunk type. In this case, the chunk type
is 'NP' for noun-phrase. Trees can be drawn calling the draw()
method, as in t.draw().

How it works...
Here's what happens, step-by-step:

1.	 The sentence is converted into a flat Tree, as shown in the following figure:

2.	 The Tree is used to create a ChunkString.

3.	 RegexpParser parses the grammar to create a NP RegexpChunkParser with the
given rules.

4.	 A ChunkRule is created and applied to the ChunkString, which matches the entire
sentence into a chunk, as shown in the following figure:

Extracting Chunks

114

5.	 A ChinkRule is created and applied to the same ChunkString, which splits
the big chunk into two smaller chunks with a verb between them, as shown in
the following figure:

6.	 The ChunkString is converted back to a Tree, now with two NP chunk subtrees, as
shown in the following figure:

You can do this yourself using the classes in nltk.chunk.regexp. ChunkRule and
ChinkRule are both subclasses of RegexpChunkRule and require two arguments: the
pattern, and a description of the rule. ChunkString is an object that starts with a flat tree,
which is then modified by each rule when it is passed in to the rule's apply() method. A
ChunkString is converted back to a Tree with the to_chunkstruct() method. Here's
the code to demonstrate it:

>>> from nltk.chunk.regexp import ChunkString, ChunkRule, ChinkRule
>>> from nltk.tree import Tree
>>> t = Tree('S', [('the', 'DT'), ('book', 'NN'), ('has', 'VBZ'),
('many', 'JJ'), ('chapters', 'NNS')])
>>> cs = ChunkString(t)
>>> cs
<ChunkString: '<DT><NN><VBZ><JJ><NNS>'>
>>> ur = ChunkRule('<DT><NN.*><.*>*<NN.*>', 'chunk determiners and
nouns')
>>> ur.apply(cs)
>>> cs
<ChunkString: '{<DT><NN><VBZ><JJ><NNS>}'>
>>> ir = ChinkRule('<VB.*>', 'chink verbs')
>>> ir.apply(cs)
>>> cs
<ChunkString: '{<DT><NN>}<VBZ>{<JJ><NNS>}'>
>>> cs.to_chunkstruct()
Tree('S', [Tree('CHUNK', [('the', 'DT'), ('book', 'NN')]), ('has',
'VBZ'), Tree('CHUNK', [('many', 'JJ'), ('chapters', 'NNS')])])

The preceding tree diagrams can be drawn at each step by calling cs.to_chunkstruct().
draw().

Chapter 5

115

There's more...
You will notice that the subtrees from the ChunkString are tagged as 'CHUNK' and not
'NP'. That's because the previous rules are phrase agnostic; they create chunks without
needing to know what kind of chunks they are.

Internally, the RegexpParser creates a RegexpChunkParser for each chunk phrase type.
So if you are only chunking NP phrases, there will only be one RegexpChunkParser. The
RegexpChunkParser gets all the rules for the specific chunk type, and handles applying the
rules in order and converting the 'CHUNK' trees to the specific chunk type, such as 'NP'.

Here's some code to illustrate the usage of RegexpChunkParser. We pass the previous
two rules into the RegexpChunkParser, and then parse the same sentence tree we
created before. The resulting tree is just like what we got from applying both rules in
order, except 'CHUNK' has been replaced with 'NP' in the two subtrees. This is because
RegexpChunkParser defaults to chunk_node='NP'.

>>> from nltk.chunk import RegexpChunkParser
>>> chunker = RegexpChunkParser([ur, ir])
>>> chunker.parse(t)
Tree('S', [Tree('NP', [('the', 'DT'), ('book', 'NN')]), ('has',
'VBZ'), Tree('NP', [('many', 'JJ'), ('chapters', 'NNS')])])

Different chunk types
If you wanted to parse a different chunk type, then you could pass that in as chunk_node
to RegexpChunkParser. Here's the same code we have just seen, but instead of 'NP'
subtrees, we will call them 'CP' for custom phrase.

>>> from nltk.chunk import RegexpChunkParser
>>> chunker = RegexpChunkParser([ur, ir], chunk_node='CP')
>>> chunker.parse(t)
Tree('S', [Tree('CP', [('the', 'DT'), ('book', 'NN')]),
('has', 'VBZ'), Tree('CP', [('many', 'JJ'), ('chapters',
'NNS')])])

RegexpParser does this internally when you specify multiple phrase types. This will be
covered in Partial parsing with regular expressions.

Alternative patterns
The same parsing results can be obtained by using two chunk patterns in the grammar, and
discarding the chink pattern:

>>> chunker = RegexpParser(r'''
... NP:
... {<DT><NN.*>}
... {<JJ><NN.*>}

Extracting Chunks

116

... ''')
>>> chunker.parse(t)
Tree('S', [Tree('NP', [('the', 'DT'), ('book', 'NN')]), ('has',
'VBZ'), Tree('NP', [('many', 'JJ'), ('chapters', 'NNS')])])

In fact, you could reduce the two chunk patterns into a single pattern.

>>> chunker = RegexpParser(r'''
... NP:
... {(<DT>|<JJ>)<NN.*>}
... ''')
>>> chunker.parse(t)
Tree('S', [Tree('NP', [('the', 'DT'), ('book', 'NN')]), ('has',
'VBZ'), Tree('NP', [('many', 'JJ'), ('chapters', 'NNS')])])

How you create and combine patterns is really up to you. Pattern creation is a process of trial
and error, and entirely depends on what your data looks like and which patterns are easiest
to express.

Chunk rule with context
You can also create chunk rules with a surrounding tag context. For example, if your pattern
is <DT>{<NN>}, which will be parsed into a ChunkRuleWithContext. Any time there's a
tag on either side of the curly braces, you will get a ChunkRuleWithContext instead of a
ChunkRule. This can allow you to be more specific about when to parse particular kinds
of chunks.

Here's an example of using ChunkWithContext directly. It takes four arguments: the left
context, the pattern to chunk, the right context, and a description:

>>> from nltk.chunk.regexp import ChunkRuleWithContext
>>> ctx = ChunkRuleWithContext('<DT>', '<NN.*>', '<.*>', 'chunk nouns
only after determiners')
>>> cs = ChunkString(t)
>>> cs
<ChunkString: '<DT><NN><VBZ><JJ><NNS>'>
>>> ctx.apply(cs)
>>> cs
<ChunkString: '<DT>{<NN>}<VBZ><JJ><NNS>'>
>>> cs.to_chunkstruct()
Tree('S', [('the', 'DT'), Tree('CHUNK', [('book', 'NN')]), ('has',
'VBZ'), ('many', 'JJ'), ('chapters', 'NNS')])

Chapter 5

117

This example only chunks nouns that follow a determiner, therefore ignoring the noun that
follows an adjective. Here's how it would look using the RegexpParser:

>>> chunker = RegexpParser(r'''
... NP:
... <DT>{<NN.*>}
... ''')
>>> chunker.parse(t)
Tree('S', [('the', 'DT'), Tree('NP', [('book', 'NN')]), ('has',
'VBZ'), ('many', 'JJ'), ('chapters', 'NNS')])

See also
In the next recipe, we will cover merging and splitting chunks.

Merging and splitting chunks with regular
expressions

In this recipe, we will cover two more rules for chunking. A MergeRule can merge two chunks
together based on the end of the first chunk and the beginning of the second chunk. A
SplitRule will split a chunk into two based on the specified split pattern.

How to do it...
A SplitRule is specified with two opposing curly braces surrounded by a pattern on either
side. To split a chunk after a noun, you would do <NN.*>}{<.*>. A MergeRule is specified
by flipping the curly braces, and will join chunks where the end of the first chunk matches
the left pattern, and the beginning of the next chunk matches the right pattern. To merge two
chunks where the first ends with a noun and the second begins with a noun, you would use
<NN.*>{}<NN.*>.

The order of rules is very important and re-ordering can affect the
results. The RegexpParser applies the rules one at a time from
top to bottom, so each rule will be applied to the ChunkString
resulting from the previous rule.

Extracting Chunks

118

Here's an example of splitting and merging, starting with the sentence tree as shown next:

1.	 The whole sentence is chunked, as shown in the following diagram:

2.	 The chunk is split into multiple chunks after every noun, as shown in the
following tree:

3.	 Each chunk with a determiner is split into separate chunks, creating four chunks
where there were three:

4.	 Chunks ending with a noun are merged with the next chunk if it begins with a noun,
reducing the four chunks back down to three, as shown in the following diagram:

Using the RegexpParser, the code looks like this:

>>> chunker = RegexpParser(r'''
... NP:
... {<DT><.*>*<NN.*>}
... <NN.*>}{<.*>

Chapter 5

119

... <.*>}{<DT>

... <NN.*>{}<NN.*>

... ''')
>>> sent = [('the', 'DT'), ('sushi', 'NN'), ('roll', 'NN'),
('was', 'VBD'), ('filled', 'VBN'), ('with', 'IN'), ('the',
'DT'), ('fish', 'NN')]
>>> chunker.parse(sent)
Tree('S', [Tree('NP', [('the', 'DT'), ('sushi', 'NN'),
('roll', 'NN')]), Tree('NP', [('was', 'VBD'), ('filled',
'VBN'), ('with', 'IN')]), Tree('NP', [('the', 'DT'),
('fish', 'NN')])])

And the final tree of NP chunks is shown in the following diagram:

How it works...
The MergeRule and SplitRule classes take three arguments: the left pattern, right
pattern, and a description. The RegexpParser takes care of splitting the original patterns on
the curly braces to get the left and right sides, but you can also create these manually. Here's
a step-by-step walkthrough of how the original sentence is modified by applying each rule:

>>> from nltk.chunk.regexp import MergeRule, SplitRule
>>> cs = ChunkString(Tree('S', sent))
>>> cs
<ChunkString: '<DT><NN><NN><VBD><VBN><IN><DT><NN>'>
>>> ur = ChunkRule('<DT><.*>*<NN.*>', 'chunk determiner to noun')
>>> ur.apply(cs)
>>> cs
<ChunkString: '{<DT><NN><NN><VBD><VBN><IN><DT><NN>}'>
>>> sr1 = SplitRule('<NN.*>', '<.*>', 'split after noun')
>>> sr1.apply(cs)
>>> cs
<ChunkString: '{<DT><NN>}{<NN>}{<VBD><VBN><IN><DT><NN>}'>
>>> sr2 = SplitRule('<.*>', '<DT>', 'split before determiner')
>>> sr2.apply(cs)
>>> cs
<ChunkString: '{<DT><NN>}{<NN>}{<VBD><VBN><IN>}{<DT><NN>}'>
>>> mr = MergeRule('<NN.*>', '<NN.*>', 'merge nouns')
>>> mr.apply(cs)

Extracting Chunks

120

>>> cs
<ChunkString: '{<DT><NN><NN>}{<VBD><VBN><IN>}{<DT><NN>}'>
>>> cs.to_chunkstruct()
Tree('S', [Tree('CHUNK', [('the', 'DT'), ('sushi', 'NN'),
('roll', 'NN')]), Tree('CHUNK', [('was', 'VBD'),
('filled', 'VBN'), ('with', 'IN')]), Tree('CHUNK',
[('the', 'DT'), ('fish', 'NN')])])

There's more...
The parsing of the rules and splitting of left and right patterns is done in the static parse()
method of the RegexpChunkRule superclass. This is called by the RegexpParser to get the
list of rules to pass in to the RegexpChunkParser. Here are some examples of parsing the
patterns used before:

>>> from nltk.chunk.regexp import RegexpChunkRule
>>> RegexpChunkRule.parse('{<DT><.*>*<NN.*>}')
<ChunkRule: '<DT><.*>*<NN.*>'>
>>> RegexpChunkRule.parse('<.*>}{<DT>')
<SplitRule: '<.*>', '<DT>'>
>>> RegexpChunkRule.parse('<NN.*>{}<NN.*>')
<MergeRule: '<NN.*>', '<NN.*>'>

Rule descriptions
Descriptions for each rule can be specified with a comment string after the rule (a comment
string must start with #). If no comment string is found, the rule's description will be empty.
Here's an example:

>>> RegexpChunkRule.parse('{<DT><.*>*<NN.*>} # chunk everything').
descr()
'chunk everything'
>>> RegexpChunkRule.parse('{<DT><.*>*<NN.*>}').descr()
''

Comment string descriptions can also be used within grammar strings that are passed
to RegexpParser.

See also
The previous recipe goes over how to use ChunkRule and how rules are passed in
to RegexpChunkParser.

Chapter 5

121

Expanding and removing chunks with
regular expressions

There are three RegexpChunkRule subclasses that are not supported by
RegexpChunkRule.parse() and therefore must be created manually if you want to use
them. These rules are:

1.	 ExpandLeftRule: Adds unchunked (chink) words to the left of a chunk
to the chunk.

2.	 ExpandRightRule: Adds unchunked (chink) words to the right of a chunk
to the chunk.

3.	 UnChunkRule: Unchunk any matching chunk.

How to do it...
ExpandLeftRule and ExpandRightRule both take two patterns along with a description
as arguments. For ExpandLeftRule, the first pattern is the chink we want to add to the
beginning of the chunk, while the right pattern will match the beginning of the chunk we want
to expand. With ExpandRightRule, the left pattern should match the end of the chunk we
want to expand, and the right pattern matches the chink we want to add to the end of the
chunk. The idea is similar to the MergeRule, but in this case we are merging chink words
instead of other chunks.

UnChunkRule is the opposite of ChunkRule. Any chunk that exactly matches the
UnChunkRule pattern will be unchunked, and become a chink. Here's some code
demonstrating usage with the RegexpChunkParser:

>>> from nltk.chunk.regexp import ChunkRule, ExpandLeftRule,
ExpandRightRule, UnChunkRule
>>> from nltk.chunk import RegexpChunkParser
>>> ur = ChunkRule('<NN>', 'single noun')
>>> el = ExpandLeftRule('<DT>', '<NN>', 'get left determiner')
>>> er = ExpandRightRule('<NN>', '<NNS>', 'get right plural noun')
>>> un = UnChunkRule('<DT><NN.*>*', 'unchunk everything')
>>> chunker = RegexpChunkParser([ur, el, er, un])
>>> sent = [('the', 'DT'), ('sushi', 'NN'), ('rolls', 'NNS')]
>>> chunker.parse(sent)
Tree('S', [('the', 'DT'), ('sushi', 'NN'), ('rolls', 'NNS')])

You will notice the end result is a flat sentence, which is exactly what we started with. That's
because the final UnChunkRule undid the chunk created by the previous rules. Read on to
see the step-by-step procedure of what happened.

Extracting Chunks

122

How it works...
The preceding rules were applied in the following order, starting with the sentence tree
shown below:

1.	 Make single nouns into a chunk, as shown in the following diagram:

2.	 Expand left determiners into chunks that begin with a noun, as shown in the
following diagram:

3.	 Expand right plural nouns into chunks that end with a noun, chunking the whole
sentence as shown in the following diagram:

4.	 Unchunk every chunk that is a determiner + noun + plural noun, resulting in the
original sentence tree, as shown in the following diagram:

Chapter 5

123

Here's the code showing each step:

>>> from nltk.chunk.regexp import ChunkString
>>> from nltk.tree import Tree
>>> cs = ChunkString(Tree('S', sent))
>>> cs
<ChunkString: '<DT><NN><NNS>'>
>>> ur.apply(cs)
>>> cs
<ChunkString: '<DT>{<NN>}<NNS>'>
>>> el.apply(cs)
>>> cs
<ChunkString: '{<DT><NN>}<NNS>'>
>>> er.apply(cs)
>>> cs
<ChunkString: '{<DT><NN><NNS>}'>
>>> un.apply(cs)
>>> cs
<ChunkString: '<DT><NN><NNS>'>

There's more...
In practice, you can probably get away with only using the previous four rules: ChunkRule,
ChinkRule, MergeRule, and SplitRule. But if you do need very fine-grained control
over chunk parsing and removing, now you know how to do it with the expansion and
unchunk rules.

See also
The previous two recipes covered the more common chunk rules that are supported by
RegexpChunkRule.parse() and RegexpParser.

Partial parsing with regular expressions
So far, we have only been parsing noun-phrases. But RegexpParser supports grammar with
multiple phrase types, such as verb-phrases and prepositional-phrases. We can put the rules
we have learned to use and define a grammar that can be evaluated against the conll2000
corpus, which has NP, VP, and PP phrases.

Extracting Chunks

124

How to do it...
We will define a grammar to parse three phrase types. For noun-phrases, we have a
ChunkRule that looks for an optional determiner followed by one or more nouns. We
then have a MergeRule for adding an adjective to the front of a noun chunk. For
prepositional-phrases, we simply chunk any IN word, such as "in" or "on". For verb-phrases,
we chunk an optional modal word (such as "should") followed by a verb.

Each grammar rule is followed by a # comment. This comment is passed
in to each rule as the description. Comments are optional, but they
can be helpful notes for understanding what the rule does, and will be
included in trace output.

>>> chunker = RegexpParser(r'''
... NP:
... {<DT>?<NN.*>+} # chunk optional determiner with nouns
... <JJ>{}<NN.*> # merge adjective with noun chunk
... PP:
... {<IN>} # chunk preposition
... VP:
... {<MD>?<VB.*>} # chunk optional modal with verb
... ''')
>>> from nltk.corpus import conll2000
>>> score = chunker.evaluate(conll2000.chunked_sents())
>>> score.accuracy()
0.61485735457576884

When we call evaluate() on the chunker, we give it a list of chunked sentences and
get back a ChunkScore object, which can give us the accuracy of the chunker, along
with a number of other metrics.

How it works...
The RegexpParser parses the grammar string into sets of rules, one set of rules for each
phrase type. These rules are used to create a RegexpChunkParser. The rules are parsed
using RegexpChunkRule.parse(), which returns one of the five subclasses: ChunkRule,
ChinkRule, MergeRule, SplitRule, or ChunkRuleWithContext.

Now that the grammar has been translated into sets of rules, these rules are used to parse
a tagged sentence into a Tree structure. RegexpParser inherits from ChunkParserI,
which provides a parse() method to parse the tagged words. Whenever a part of the tagged
tokens match a chunk rule, a subtree is constructed so that the tagged tokens become the
leaves of a Tree whose node string is the chunk tag. ChunkParserI also provides the
evaluate() method, which compares the given chunked sentences to the output of the
parse() method to construct and return a ChunkScore object.

Chapter 5

125

There's more...
You can also evaluate this chunker on the treebank_chunk corpus.

>>> from nltk.corpus import treebank_chunk
>>> treebank_score = chunker.evaluate(treebank_chunk.chunked_sents())
>>> treebank_score.accuracy()
0.49033970276008493

The treebank_chunk corpus is a special version of the treebank corpus that provides
a chunked_sents() method. The regular treebank corpus cannot provide that method
due to its file format.

ChunkScore metrics
ChunkScore provides a few other metrics besides accuracy. Of the chunks the chunker
was able to guess, precision tells you how many were correct. Recall tells you how well the
chunker did at finding correct chunks, compared to how many total chunks there were.

>>> score.precision()
0.60201948127375005
>>> score.recall()
0.60607250250584699

You can also get lists of chunks that were missed by the chunker, chunks that were
incorrectly found, correct chunks, and guessed chunks. These can be useful to figure
out how to improve your chunk grammar.

>>> len(score.missed())
47161
>>> len(score.incorrect())
47967
>>> len(score.correct())
119720
>>> len(score.guessed())
120526

As you can see by the number of incorrect chunks, and by comparing guessed() and
correct(), our chunker guessed that there were more chunks that actually existed.
And it also missed a good number of correct chunks.

Looping and tracing
If you want to apply the chunk rules in your grammar more than once, you pass loop=2 into
RegexpParser at initialization. The default is loop=1.

Extracting Chunks

126

To watch an internal trace of the chunking process, pass trace=1 into RegexpParser. To
get even more output, pass in trace=2. This will give you a printout of what the chunker is
doing as it is doing it. Rule comments/descriptions will be included in the trace output, giving
you a good idea of which rule is applied when.

See also
If coming up with regular expression chunk patterns seems like too much work, then
read the next recipes where we will cover how to train a chunker based on a corpus
of chunked sentences.

Training a tagger-based chunker
Training a chunker can be a great alternative to manually specifying regular expression chunk
patterns. Instead of a painstaking process of trial and error to get the exact right patterns, we
can use existing corpus data to train chunkers much like we did in Chapter 4, Part-of-Speech
Tagging.

How to do it...
As with the part-of-speech tagging, we will use the treebank corpus data for training. But
this time we will use the treebank_chunk corpus, which is specifically formatted to
produce chunked sentences in the form of trees. These chunked_sents() will be used
by a TagChunker class to train a tagger-based chunker. The TagChunker uses a helper
function conll_tag_chunks() to extract a list of (pos, iob) tuples from a list of Tree.
These (pos, iob) tuples are then used to train a tagger in the same way (word, pos)
tuples were used in Chapter 4, Part-of-Speech Tagging to train part-of-speech taggers. But
instead of learning part-of-speech tags for words, we are learning IOB tags for part-of-speech
tags. Here's the code from chunkers.py:

import nltk.chunk, itertools
from nltk.tag import UnigramTagger, BigramTagger
from tag_util import backoff_tagger

def conll_tag_chunks(chunk_sents):
 tagged_sents = [nltk.chunk.tree2conlltags(tree) for tree in
chunk_sents]
 return [[(t, c) for (w, t, c) in sent] for sent in tagged_sents]

class TagChunker(nltk.chunk.ChunkParserI):
 def __init__(self, train_chunks, tagger_classes=[UnigramTagger,
BigramTagger]):
 train_sents = conll_tag_chunks(train_chunks)
 self.tagger = backoff_tagger(train_sents, tagger_classes)

Chapter 5

127

 def parse(self, tagged_sent):
 if not tagged_sent: return None
 (words, tags) = zip(*tagged_sent)
 chunks = self.tagger.tag(tags)
 wtc = itertools.izip(words, chunks)
 return nltk.chunk.conlltags2tree([(w,t,c) for (w,(t,c)) in wtc])

Once we have our trained TagChunker, we can then evaluate the ChunkScore the same
way we did for the RegexpParser in the previous recipes.

>>> from chunkers import TagChunker
>>> from nltk.corpus import treebank_chunk
>>> train_chunks = treebank_chunk.chunked_sents()[:3000]
>>> test_chunks = treebank_chunk.chunked_sents()[3000:]
>>> chunker = TagChunker(train_chunks)
>>> score = chunker.evaluate(test_chunks)
>>> score.accuracy()
0.97320393352514278
>>> score.precision()
0.91665343705350055
>>> score.recall()
0.9465573770491803

Pretty darn accurate! Training a chunker is clearly a great alternative to manually specified
grammars and regular expressions.

How it works...

Recall from the Creating a chunked phrase corpus recipe in Chapter 3, Creating Custom
Corpora that the conll2000 corpus defines chunks using IOB tags, which specify the type of
chunk and where it begins and ends. We can train a part-of-speech tagger on these IOB tag
patterns, and then use that to power a ChunkerI subclass. But first we need to transform
a Tree that you would get from the chunked_sents() method of a corpus into a format
usable by a part-of-speech tagger. This is what conll_tag_chunks() does. It uses nltk.
chunk.tree2conlltags() to convert a sentence Tree into a list of 3-tuples of the form
(word, pos, iob) where pos is the part-of-speech tag and iob is an IOB tag, such as B-NP
to mark the beginning of a noun-phrase, or I-NP to mark that the word is inside the noun-
phrase. The reverse of this method is nltk.chunk.conlltags2tree(). Here's some code to
demonstrate these nltk.chunk functions:

>>> import nltk.chunk
>>> from nltk.tree import Tree
>>> t = Tree('S', [Tree('NP', [('the', 'DT'), ('book', 'NN')])])
>>> nltk.chunk.tree2conlltags(t)
[('the', 'DT', 'B-NP'), ('book', 'NN', 'I-NP')]
>>> nltk.chunk.conlltags2tree([('the', 'DT', 'B-NP'), ('book', 'NN',
'I-NP')])
Tree('S', [Tree('NP', [('the', 'DT'), ('book', 'NN')])])

Extracting Chunks

128

The next step is to convert these 3-tuples into 2-tuples that the tagger can recognize. Because
the RegexpParser uses part-of-speech tags for chunk patterns, we will do that here too and
use part-of-speech tags as if they were words to tag. By simply dropping the word from
3-tuple (word, pos, iob), the conll_tag_chunks() function returns a list of 2-tuples
of the form (pos, iob). When given the preceding example Tree in a list, the results are in
a format we can feed to a tagger.

>>> conll_tag_chunks([t])
[[('DT', 'B-NP'), ('NN', 'I-NP')]]

The final step is a subclass of ChunkParserI called TagChunker. It trains on a list of chunk
trees using an internal tagger. This internal tagger is composed of a UnigramTagger and a
BigramTagger in a backoff chain, using the backoff_tagger() method created in the
Training and combining Ngram taggers recipe in Chapter 4, Part-of-Speech Tagging.

Finally, ChunkerI subclasses must implement a parse() method that expects a part-of-speech
tagged sentence. We unzip that sentence into a list of words and part-of-speech tags. The tags
are then tagged by the tagger to get IOB tags, which are then re-combined with the words and
part-of-speech tags to create 3-tuples we can pass to nltk.chunk.conlltags2tree() to
return a final Tree.

There's more...
Since we have been talking about the conll IOB tags, let us see how the TagChunker does
on the conll2000 corpus:

>>> from nltk.corpus import conll2000
>>> conll_train = conll2000.chunked_sents('train.txt')
>>> conll_test = conll2000.chunked_sents('test.txt')
>>> chunker = TagChunker(conll_train)
>>> score = chunker.evaluate(conll_test)
>>> score.accuracy()
0.89505456234037617
>>> score.precision()
0.81148419743556754
>>> score.recall()
0.86441916769448635

Not quite as good as on treebank_chunk, but conll2000 is a much larger corpus, so it's
not too surprising.

Chapter 5

129

Using different taggers
If you want to use different tagger classes with the TagChunker, you can pass them in as
tagger_classes. For example, here's the TagChunker using just a UnigramTagger:

>>> from nltk.tag import UnigramTagger
>>> uni_chunker = TagChunker(train_chunks, tagger_
classes=[UnigramTagger])
>>> score = uni_chunker.evaluate(test_chunks)
>>> score.accuracy()
0.96749259243354657

The tagger_classes will be passed directly into the backoff_tagger() function,
which means they must be subclasses of SequentialBackoffTagger. In testing,
the default of tagger_classes=[UnigramTagger, BigramTagger] produces the
best results.

See also

The Training and combining Ngram taggers recipe in Chapter 4, Part-of-Speech Tagging
covers backoff tagging with a UnigramTagger and BigramTagger. ChunkScore metrics
returned by the evaluate() method of a chunker were explained in the previous recipe.

Classification-based chunking
Unlike most part-of-speech taggers, the ClassifierBasedTagger learns from features.
That means we can create a ClassifierChunker that can learn from both the words and
part-of-speech tags, instead of only the part-of-speech tags as the TagChunker does.

How to do it...
For the ClassifierChunker, we don't want to discard the words from the training
sentences, as we did in the previous recipe. Instead, to remain compatible with the 2-tuple
(word, pos) format required for training a ClassiferBasedTagger, we convert the
(word, pos, iob) 3-tuples from nltk.chunk.tree2conlltags() into ((word,
pos), iob) 2-tuples using the chunk_trees2train_chunks() function. This code
can be found in chunkers.py:

import nltk.chunk
from nltk.tag import ClassifierBasedTagger

def chunk_trees2train_chunks(chunk_sents):
 tag_sents = [nltk.chunk.tree2conlltags(sent) for sent in chunk_
sents]
 return [[((w,t),c) for (w,t,c) in sent] for sent in tag_sents]

Extracting Chunks

130

Next, we need a feature detector function to pass into ClassifierBasedTagger. Our
default feature detector function, prev_next_pos_iob(), knows that the list of tokens
is really a list of (word, pos) tuples, and can use that to return a feature set suitable for a
classifier. To give the classifier as much information as we can, this feature set contains the
current, previous and next word, and part-of-speech tag, along with the previous IOB tag.

def prev_next_pos_iob(tokens, index, history):
 word, pos = tokens[index]

 if index == 0:
 prevword, prevpos, previob = ('<START>',)*3
 else:
 prevword, prevpos = tokens[index-1]
 previob = history[index-1]

 if index == len(tokens) - 1:
 nextword, nextpos = ('<END>',)*2
 else:
 nextword, nextpos = tokens[index+1]

 feats = {
 'word': word,
 'pos': pos,
 'nextword': nextword,
 'nextpos': nextpos,
 'prevword': prevword,
 'prevpos': prevpos,
 'previob': previob
 }
 return feats

Now we can define the ClassifierChunker, which uses an internal
ClassifierBasedTagger with features extracted using prev_next_pos_iob(),
and training sentences from chunk_trees2train_chunks(). As a subclass of
ChunkerParserI, it implements the parse() method, which converts the ((w, t), c)
tuples produced by the internal tagger into a Tree using nltk.chunk.conlltags2tree().

class ClassifierChunker(nltk.chunk.ChunkParserI):
 def __init__(self, train_sents, feature_detector=prev_next_pos_iob,
**kwargs):
 if not feature_detector:
 feature_detector = self.feature_detector

 train_chunks = chunk_trees2train_chunks(train_sents)
 self.tagger = ClassifierBasedTagger(train=train_chunks,
 feature_detector=feature_detector, **kwargs)

Chapter 5

131

 def parse(self, tagged_sent):
 if not tagged_sent: return None
 chunks = self.tagger.tag(tagged_sent)
 return nltk.chunk.conlltags2tree([(w,t,c) for ((w,t),c) in
chunks])

Using the same train_chunks and test_chunks from the treebank_chunk corpus in
the previous recipe, we can evaluate this code from chunkers.py:

>>> from chunkers import ClassifierChunker
>>> chunker = ClassifierChunker(train_chunks)
>>> score = chunker.evaluate(test_chunks)
>>> score.accuracy()
0.97217331558380216
>>> score.precision()
0.92588387933830685
>>> score.recall()
0.93590163934426229

Compared to the TagChunker, all the scores have gone up a bit. Let us see how it does on
conll2000:

>>> chunker = ClassifierChunker(conll_train)
>>> score = chunker.evaluate(conll_test)
>>> score.accuracy()
0.92646220740021534
>>> score.precision()
0.87379243109102189
>>> score.recall()
0.90073546206203459

This is much improved over the TagChunker.

How it works...
Like the TagChunker in the previous recipe, we are training a part-of-speech tagger for IOB
tagging. But in this case, we want to include the word as a feature to power a classifier. By
creating nested 2-tuples of the form ((word, pos), iob), we can pass the word through
the tagger into our feature detector function. chunk_trees2train_chunks() produces
these nested 2-tuples, and prev_next_pos_iob() is aware of them and uses each
element as a feature. The following features are extracted:

ff The current word and part-of-speech tag

ff The previous word, part-of-speech tag, and IOB tag

ff The next word and part-of-speech tag

Extracting Chunks

132

The arguments to prev_next_pos_iob() look the same as the feature_detector()
method of the ClassifierBasedTagger: tokens, index, and history. But this time,
tokens will be a list of (word, pos) 2-tuples, and history will be a list of IOB tags.
The special feature values '<START>' and '<END>' are used if there are no previous
or next tokens.

The ClassifierChunker uses an internal ClassifierBasedTagger and
prev_next_pos_iob() as its default feature_detector. The results from the tagger,
which are in the same nested 2-tuple form, are then reformatted into 3-tuples to return a
final Tree using nltk.chunk.conlltags2tree().

There's more...
You can use your own feature detector function by passing it in to the ClassifierChunker
as feature_detector. The tokens will contain a list of (word, tag) tuples, and
history will be a list of the previous IOB tags found.

Using a different classifier builder
The ClassifierBasedTagger defaults to using NaiveBayesClassifier.train
as its classifier_builder. But you can use any classifier you want by overriding
the classifier_builder keyword argument. Here's an example using
MaxentClassifier.train:

>>> from nltk.classify import MaxentClassifier
>>> builder = lambda toks: MaxentClassifier.train(toks, trace=0, max_
iter=10, min_lldelta=0.01)
>>> me_chunker = ClassifierChunker(train_chunks, classifier_
builder=builder)
>>> score = me_chunker.evaluate(test_chunks)
>>> score.accuracy()
0.9748357452655988
>>> score.precision()
0.93794355504208615
>>> score.recall()
0.93163934426229511

Instead of using MaxentClassifier.train directly, it has been wrapped in a lambda so
that its output is quiet (trace=0) and it finishes in a reasonable amount of time. As you can
see, the scores are slightly different compared to using the NaiveBayesClassifier.

Chapter 5

133

See also
The previous recipe, Training a tagger-based chunker, introduced the idea of using a
part-of-speech tagger for training a chunker. The Classifier-based tagging recipe in
Chapter 4, Part-of-Speech Tagging describes ClassifierBasedPOSTagger, which
is a subclass of ClassifierBasedTagger. In Chapter 7, Text Classification, we will
cover classification in detail.

Extracting named entities
Named entity recognition is a specific kind of chunk extraction that uses entity tags instead
of, or in addition to, chunk tags. Common entity tags include PERSON, ORGANIZATION, and
LOCATION. Part-of-speech tagged sentences are parsed into chunk trees as with normal
chunking, but the nodes of the trees can be entity tags instead of chunk phrase tags.

How to do it...
NLTK comes with a pre-trained named entity chunker. This chunker has been trained on
data from the ACE program, a NIST (National Institute of Standards and Technology)
sponsored program for Automatic Content Extraction, which you can read more about here:
http://www.itl.nist.gov/iad/894.01/tests/ace/. Unfortunately, this data is not
included in the NLTK corpora, but the trained chunker is. This chunker can be used through
the ne_chunk() method in the nltk.chunk module. ne_chunk() will chunk a single
sentence into a Tree. The following is an example using ne_chunk() on the first tagged
sentence of the treebank_chunk corpus:

>>> from nltk.chunk import ne_chunk
>>> ne_chunk(treebank_chunk.tagged_sents()[0])
Tree('S', [Tree('PERSON', [('Pierre', 'NNP')]), Tree('ORGANIZATION',
[('Vinken', 'NNP')]), (',', ','), ('61', 'CD'), ('years', 'NNS'),
('old', 'JJ'), (',', ','), ('will', 'MD'), ('join', 'VB'), ('the',
'DT'), ('board', 'NN'), ('as', 'IN'), ('a', 'DT'), ('nonexecutive',
'JJ'), ('director', 'NN'), ('Nov.', 'NNP'), ('29', 'CD'), ('.',
'.')])

You can see two entity tags are found: PERSON and ORGANIZATION. Each of these subtrees
contain a list of the words that are recognized as a PERSON or ORGANIZATION. To extract
these named entities, we can write a simple helper method that will get the leaves of all the
subtrees we are interested in.

def sub_leaves(tree, node):
 return [t.leaves() for t in tree.subtrees
 (lambda s: s.node == node)]

Extracting Chunks

134

Then we can call this method to get all the PERSON or ORGANIZATION leaves from a tree.

>>> tree = ne_chunk(treebank_chunk.tagged_sents()[0])
>>> from chunkers import sub_leaves
>>> sub_leaves(tree, 'PERSON')
[[('Pierre', 'NNP')]]
>>> sub_leaves(tree, 'ORGANIZATION')
[[('Vinken', 'NNP')]]

You may notice that the chunker has mistakenly separated "Vinken" into its own
ORGANIZATION Tree instead of including it with the PERSON Tree containing "Pierre". Such
is the case with statistical natural language processing—you can't always expect perfection.

How it works...
The pre-trained named entity chunker is much like any other chunker, and in fact uses a
MaxentClassifier powered ClassifierBasedTagger to determine IOB tags. But
instead of B-NP and I-NP IOB tags, it uses B-PERSON, I-PERSON, B-ORGANIZATION,
I-ORGANIZATION, and more. It also uses the O tag to mark words that are not part of a
named entity (and thus outside the named entity subtrees).

There's more...
To process multiple sentences at a time, you can use batch_ne_chunk(). Here's an example
where we process the first 10 sentences from treebank_chunk.tagged_sents() and
get the ORGANIZATION sub_leaves():

>>> from nltk.chunk import batch_ne_chunk
>>> trees = batch_ne_chunk(treebank_chunk.tagged_sents()[:10])
>>> [sub_leaves(t, 'ORGANIZATION') for t in trees]
[[[('Vinken', 'NNP')]], [[('Elsevier', 'NNP')]],
[[('Consolidated', 'NNP'), ('Gold', 'NNP'), ('Fields',
'NNP')]], [], [], [[('Inc.', 'NNP')], [('Micronite',
'NN')]], [[('New', 'NNP'), ('England', 'NNP'), ('Journal',
'NNP')]], [[('Lorillard', 'NNP')]], [], []]

You can see there are a couple of multi-word ORGANIZATION chunks, such as "New England
Journal". There are also a few sentences that have no ORGANIZATION chunks, as indicated
by the empty lists [].

Chapter 5

135

Binary named entity extraction
If you don't care about the particular kind of named entity to extract, you can pass
binary=True into ne_chunk() or batch_ne_chunk(). Now, all named entities
will be tagged with NE:

>>> ne_chunk(treebank_chunk.tagged_sents()[0], binary=True)
Tree('S', [Tree('NE', [('Pierre', 'NNP'), ('Vinken', 'NNP')]),
(',', ','), ('61', 'CD'), ('years', 'NNS'), ('old', 'JJ'),
(',', ','), ('will', 'MD'), ('join', 'VB'), ('the', 'DT'),
('board', 'NN'), ('as', 'IN'), ('a', 'DT'), ('nonexecutive',
'JJ'), ('director', 'NN'), ('Nov.', 'NNP'), ('29', 'CD'),
('.', '.')])

If we get the sub_leaves(), we can see that "Pierre Vinken" is correctly combined into
a single named entity.

>>> sub_leaves(ne_chunk(treebank_chunk.tagged_sents()[0],
binary=True), 'NE')
[[('Pierre', 'NNP'), ('Vinken', 'NNP')]]

See also
In the next recipe, we will create our own simple named entity chunker.

Extracting proper noun chunks
A simple way to do named entity extraction is to chunk all proper nouns (tagged with NNP). We
can tag these chunks as NAME, since the definition of a proper noun is the name of a person,
place, or thing.

How to do it...
Using the RegexpParser, we can create a very simple grammar that combines all
proper nouns into a NAME chunk. Then we can test this on the first tagged sentence
of treebank_chunk to compare the results to the previous recipe.

>>> chunker = RegexpParser(r'''
... NAME:
... {<NNP>+}
... ''')
>>> sub_leaves(chunker.parse(treebank_chunk.tagged_sents()[0]),
'NAME')
[[('Pierre', 'NNP'), ('Vinken', 'NNP')], [('Nov.', 'NNP')]]

Although we get "Nov." as a NAME chunk, this isn't a wrong result, as "Nov." is the name
of a month.

Extracting Chunks

136

How it works...
The NAME chunker is a simple usage of the RegexpParser, covered in Chunking and
chinking with regular expressions, Merging and splitting chunks with regular expressions,
and Partial parsing with regular expressions recipes of this chapter. All sequences of NNP
tagged words are combined into NAME chunks.

There's more...
If we wanted to be sure to only chunk the names of people, then we can build a
PersonChunker that uses the names corpus for chunking. This class can be
found in chunkers.py:

import nltk.chunk
from nltk.corpus import names

class PersonChunker(nltk.chunk.ChunkParserI):
 def __init__(self):
 self.name_set = set(names.words())

 def parse(self, tagged_sent):
 iobs = []
 in_person = False

 for word, tag in tagged_sent:
 if word in self.name_set and in_person:
 iobs.append((word, tag, 'I-PERSON'))
 elif word in self.name_set:
 iobs.append((word, tag, 'B-PERSON'))
 in_person = True
 else:
 iobs.append((word, tag, 'O'))
 in_person = False

 return nltk.chunk.conlltags2tree(iobs)

The PersonChunker iterates over the tagged sentence, checking if each word is in its names_
set (constructed from the names corpus). If the current word is in the names_set, then it uses
either the B-PERSON or I-PERSON IOB tags, depending on whether the previous word was also
in the names_set. Any word that's not in the names_set gets the O IOB tag. When complete,
the list of IOB tags is converted to a Tree using nltk.chunk.conlltags2tree(). Using it
on the same tagged sentence as before, we get the following result:

>>> from chunkers import PersonChunker
>>> chunker = PersonChunker()
>>> sub_leaves(chunker.parse(treebank_chunk.tagged_sents()[0]),
'PERSON')
[[('Pierre', 'NNP')]]

Chapter 5

137

We no longer get "Nov.", but we have also lost "Vinken", as it is not found in the names corpus.
This recipe highlights some of the difficulties of chunk extraction and natural language
processing in general:

ff If you use general patterns, you will get general results

ff If you are looking for specific results, you must use specific data

ff If your specific data is incomplete, your results will be incomplete too

See also
The previous recipe defines the sub_leaves() method used to show the found
chunks. In the next recipe, we will cover how to find LOCATION chunks based on the
gazetteers corpus.

Extracting location chunks
To identify location chunks, we can make a different kind of ChunkParserI subclass
that uses the gazetteers corpus to identify location words. gazetteers is a
WordListCorpusReader that contains the following location words:

ff Country names

ff U.S. states and abbreviations

ff Major U.S. cities

ff Canadian provinces

ff Mexican states

How to do it...
The LocationChunker, found in chunkers.py, iterates over a tagged sentence looking
for words that are found in the gazetteers corpus. When it finds one or more location
words, it creates a LOCATION chunk using IOB tags. The helper method iob_locations()
is where the IOB LOCATION tags are produced, and the parse() method converts these IOB
tags to a Tree.

import nltk.chunk
from nltk.corpus import gazetteers

class LocationChunker(nltk.chunk.ChunkParserI):
 def __init__(self):
 self.locations = set(gazetteers.words())
 self.lookahead = 0

Extracting Chunks

138

 for loc in self.locations:
 nwords = loc.count(' ')

 if nwords > self.lookahead:
 self.lookahead = nwords

 def iob_locations(self, tagged_sent):
 i = 0
 l = len(tagged_sent)
 inside = False

 while i < l:
 word, tag = tagged_sent[i]
 j = i + 1
 k = j + self.lookahead
 nextwords, nexttags = [], []
 loc = False

 while j < k:
 if ' '.join([word] + nextwords) in self.locations:
 if inside:
 yield word, tag, 'I-LOCATION'
 else:
 yield word, tag, 'B-LOCATION'

 for nword, ntag in zip(nextwords, nexttags):
 yield nword, ntag, 'I-LOCATION'

 loc, inside = True, True
 i = j
 break

 if j < l:
 nextword, nexttag = tagged_sent[j]
 nextwords.append(nextword)
 nexttags.append(nexttag)
 j += 1
 else:
 break

 if not loc:
 inside = False
 i += 1
 yield word, tag, 'O'

Chapter 5

139

 def parse(self, tagged_sent):
 iobs = self.iob_locations(tagged_sent)
 return nltk.chunk.conlltags2tree(iobs)

We can use the LocationChunker to parse the following sentence into two locations, "San
Francisco, CA is cold compared to San Jose, CA":

>>> from chunkers import LocationChunker
>>> t = loc.parse([('San', 'NNP'), ('Francisco', 'NNP'),
('CA', 'NNP'), ('is', 'BE'), ('cold', 'JJ'), ('compared',
'VBD'), ('to', 'TO'), ('San', 'NNP'), ('Jose', 'NNP'),
('CA', 'NNP')])
>>> sub_leaves(t, 'LOCATION')
[[('San', 'NNP'), ('Francisco', 'NNP'), ('CA', 'NNP')],
[('San', 'NNP'), ('Jose', 'NNP'), ('CA', 'NNP')]]

And the result is that we get two LOCATION chunks, just as expected.

How it works...
The LocationChunker starts by constructing a set of all locations in the gazetteers
corpus. Then it finds the maximum number of words in a single location string, so it knows
how many words it must look ahead when parsing a tagged sentence.

The parse() method calls a helper method iob_locations(), which generates 3-tuples
of the form (word, pos, iob) where iob is either O if the word is not a location, or
B-LOCATION or I-LOCATION for LOCATION chunks. iob_locations() finds location
chunks by looking at the current word and the next words to check if the combined word is in
the locations set. Multiple location words that are next to each other are then put into the
same LOCATION chunk, such as in the preceding example with "San Francisco" and "CA".

Like in the previous recipe, it's simpler and more convenient to construct a list of (word,
pos, iob) tuples to pass in to nltk.chunk.conlltags2tree() to return a Tree. The
alternative is to construct a Tree manually, but that requires keeping track of children,
subtrees, and where you currently are in the Tree.

There's more...
One of the nice aspects of this LocationChunker is that it doesn't care about the
part-of-speech tags. As long as the location words are found in the locations set, any
part-of-speech tag will do.

Extracting Chunks

140

See also
In the next recipe, we will cover how to train a named entity chunker using the ieer corpus.

Training a named entity chunker
You can train your own named entity chunker using the ieer corpus, which stands for
Information Extraction—Entity Recognition (ieer). It takes a bit of extra work though,
because the ieer corpus has chunk trees, but no part-of-speech tags for words.

How to do it...
Using the ieertree2conlltags() and ieer_chunked_sents() functions in
chunkers.py, we can create named entity chunk trees from the ieer corpus to train the
ClassifierChunker created in Classification-based chunking recipe of this chapter.

import nltk.tag, nltk.chunk, itertools
from nltk.corpus import ieer

def ieertree2conlltags(tree, tag=nltk.tag.pos_tag):
 words, ents = zip(*tree.pos())
 iobs = []
 prev = None

 for ent in ents:
 if ent == tree.node:
 iobs.append('O')
 prev = None
 elif prev == ent:
 iobs.append('I-%s' % ent)
 else:
 iobs.append('B-%s' % ent)
 prev = ent

 words, tags = zip(*tag(words))
 return itertools.izip(words, tags, iobs)

def ieer_chunked_sents(tag=nltk.tag.pos_tag):
 for doc in ieer.parsed_docs():
 tagged = ieertree2conlltags(doc.text, tag)
 yield nltk.chunk.conlltags2tree(tagged)

Chapter 5

141

We will use 80 out of 94 sentences for training, and the rest for testing. Then we can see how
it does on the first sentence of the treebank_chunk corpus.

>>> from chunkers import ieer_chunked_sents, ClassifierChunker
>>> from nltk.corpus import treebank_chunk
>>> ieer_chunks = list(ieer_chunked_sents())
>>> len(ieer_chunks)
94
>>> chunker = ClassifierChunker(ieer_chunks[:80])
>>> chunker.parse(treebank_chunk.tagged_sents()[0])
Tree('S', [Tree('LOCATION', [('Pierre', 'NNP'), ('Vinken', 'NNP')]),
(',', ','), Tree('DURATION', [('61', 'CD'), ('years', 'NNS')]),
Tree('MEASURE', [('old', 'JJ')]), (',', ','), ('will', 'MD'),
('join', 'VB'), ('the', 'DT'), ('board', 'NN'), ('as', 'IN'), ('a',
'DT'), ('nonexecutive', 'JJ'), ('director', 'NN'), Tree('DATE',
[('Nov.', 'NNP'), ('29', 'CD')]), ('.', '.')])

So it found a correct DURATION and DATE, but tagged "Pierre Vinken" as a LOCATION. Let us
see how it scores against the rest of ieer chunk trees:

>>> score = chunker.evaluate(ieer_chunks[80:])
>>> score.accuracy()
0.88290183880706252
>>> score.precision()
0.40887174541947929
>>> score.recall()
0.50536352800953521

Accuracy is pretty good, but precision and recall are very low. That means lots of false
negatives and false positives.

How it works...
The truth is, we are not working with ideal training data. The ieer trees generated by
ieer_chunked_sents() are not entirely accurate. First, there are no explicit sentence
breaks, so each document is a single tree. Second, the words are not explicitly tagged,
so we have to guess using nltk.tag.pos_tag().

The ieer corpus provides a parsed_docs() method that returns a list of documents with a
text attribute. This text attribute is a document Tree that is converted to a list of 3-tuples
of the form (word, pos, iob). To get these final 3-tuples, we must first flatten the Tree
using tree.pos(), which returns a list of 2-tuples of the form (word, entity), where
entity is either the entity tag or the top tag of the tree. Any words whose entity is the top tag
are outside the named entity chunks and get the IOB tag O. All words that have unique entity
tags are either the beginning of or inside a named entity chunk. Once we have all the IOB
tags, then we can get the part-of-speech tags of all the words and join the words, part-of-
speech tags, and IOB tags into 3-tuples using itertools.izip().

Extracting Chunks

142

There's more...
Despite the non-ideal training data, the ieer corpus provides a good place to start for training
a named entity chunker. The data comes from the New York Times and AP Newswire reports.
Each doc from ieer.parsed_docs() also contains a headline attribute that is a Tree.

>>> from nltk.corpus import ieer
>>> ieer.parsed_docs()[0].headline
Tree('DOCUMENT', ['Kenyans', 'protest', 'tax', 'hikes'])

See also
The Extracting named entities recipe in this chapter, covers the pre-trained named entity
chunker that comes included with NLTK.

6
Transforming Chunks

and Trees

In this chapter, we will cover:

ff Filtering insignificant words

ff Correcting verb forms

ff Swapping verb phrases

ff Swapping noun cardinals

ff Swapping infinitive phrases

ff Singularizing plural nouns

ff Chaining chunk transformations

ff Converting a chunk tree to text

ff Flattening a deep tree

ff Creating a shallow tree

ff Converting tree nodes

Introduction
Now that you know how to get chunks/phrases from a sentence, what do you do with them?
This chapter will show you how to do various transforms on both chunks and trees. The chunk
transforms are for grammatical correction and rearranging phrases without loss of meaning.
The tree transforms give you ways to modify and flatten deep parse trees.

Transforming Chunks and Trees

144

The functions detailed in these recipes modify data, as opposed to learning from it. That
means it's not safe to apply them indiscriminately. A thorough knowledge of the data you want
to transform, along with a few experiments, should help you decide which functions to apply
and when.

Whenever the term chunk is used in this chapter, it could refer to an actual chunk extracted
by a chunker, or it could simply refer to a short phrase or sentence in the form of a list of
tagged words. What's important in this chapter is what you can do with a chunk, not where it
came from.

Filtering insignificant words
Many of the most commonly used words are insignificant when it comes to discerning the
meaning of a phrase. For example, in the phrase "the movie was terrible", the most significant
words are "movie" and "terrible", while "the" and "was" are almost useless. You could get the
same meaning if you took them out, such as "movie terrible" or "terrible movie". Either way,
the sentiment is the same. In this recipe, we'll learn how to remove the insignificant words,
and keep the significant ones, by looking at their part-of-speech tags.

Getting ready
First, we need to decide which part-of-speech tags are significant and which are not. Looking
through the treebank corpus for stopwords yields the following table of insignificant words
and tags:

Word Tag
a DT
all PDT
an DT
and CC
or CC
that WDT
the DT

Other than CC, all the tags end with DT. This means we can filter out insignificant words by
looking at the tag's suffix.

Chapter 6

145

How to do it...
In transforms.py there is a function called filter_insignificant(). It takes a
single chunk, which should be a list of tagged words, and returns a new chunk without any
insignificant tagged words. It defaults to filtering out any tags that end with DT or CC.

def filter_insignificant(chunk, tag_suffixes=['DT', 'CC']):
 good = []

 for word, tag in chunk:
 ok = True

 for suffix in tag_suffixes:
 if tag.endswith(suffix):
 ok = False
 break

 if ok:
 good.append((word, tag))

 return good

Now we can use it on the part-of-speech tagged version of "the terrible movie".

>>> from transforms import filter_insignificant
>>> filter_insignificant([('the', 'DT'), ('terrible', 'JJ'), ('movie',
'NN')])
[('terrible', 'JJ'), ('movie', 'NN')]

As you can see, the word "the" is eliminated from the chunk.

How it works...
filter_insignificant() iterates over the tagged words in the chunk. For each tag, it
checks if that tag ends with any of the tag_suffixes. If it does, then the tagged word is
skipped. However if the tag is ok, then the tagged word is appended to a new good chunk that
is returned.

There's more...
The way filter_insignificant() is defined, you can pass in your own tag suffixes if DT
and CC are not enough, or are incorrect for your case. For example, you might decide that
possessive words and pronouns such as "you", "your", "their", and "theirs" are no good but DT
and CC words are ok. The tag suffixes would then be PRP and PRP$. Following is an example
of this function:

Transforming Chunks and Trees

146

>>> filter_insignificant([('your', 'PRP$'), ('book', 'NN'), ('is',
'VBZ'), ('great', 'JJ')], tag_suffixes=['PRP', 'PRP$'])
[('book', 'NN'), ('is', 'VBZ'), ('great', 'JJ')]

Filtering insignificant words can be a good complement to stopword filtering for purposes such
as search engine indexing, querying, and text classification.

See also
This recipe is analogous to the Filtering stopwords in a tokenized sentence recipe in
Chapter 1, Tokenizing Text and WordNet Basics.

Correcting verb forms
It's fairly common to find incorrect verb forms in real-world language. For example, the correct
form of "is our children learning?" is "are our children learning?". The verb "is" should only be
used with singular nouns, while "are" is for plural nouns, such as "children". We can correct
these mistakes by creating verb correction mappings that are used depending on whether
there's a plural or singular noun in the chunk.

Getting ready
We first need to define the verb correction mappings in transforms.py. We'll create two
mappings, one for plural to singular, and another for singular to plural.

plural_verb_forms = {
 ('is', 'VBZ'): ('are', 'VBP'),
 ('was', 'VBD'): ('were', 'VBD')
}

singular_verb_forms = {
 ('are', 'VBP'): ('is', 'VBZ'),
 ('were', 'VBD'): ('was', 'VBD')
}

Each mapping has a tagged verb that maps to another tagged verb. These initial mappings
cover the basics of mapping, is to are, was to were, and vice versa.

Chapter 6

147

How to do it...
In transforms.py there is a function called correct_verbs(). Pass it a chunk with
incorrect verb forms, and you'll get a corrected chunk back. It uses a helper function
first_chunk_index() to search the chunk for the position of the first tagged word
where pred returns True.

def first_chunk_index(chunk, pred, start=0, step=1):
 l = len(chunk)
 end = l if step > 0 else -1

 for i in range(start, end, step):
 if pred(chunk[i]):
 return i

 return None

def correct_verbs(chunk):
 vbidx = first_chunk_index(chunk, lambda (word, tag): tag.
startswith('VB'))
 # if no verb found, do nothing
 if vbidx is None:
 return chunk

 verb, vbtag = chunk[vbidx]
 nnpred = lambda (word, tag): tag.startswith('NN')
 # find nearest noun to the right of verb
 nnidx = first_chunk_index(chunk, nnpred, start=vbidx+1)
 # if no noun found to right, look to the left
 if nnidx is None:
 nnidx = first_chunk_index(chunk, nnpred, start=vbidx-1, step=-1)
 # if no noun found, do nothing
 if nnidx is None:
 return chunk

 noun, nntag = chunk[nnidx]
 # get correct verb form and insert into chunk
 if nntag.endswith('S'):
 chunk[vbidx] = plural_verb_forms.get((verb, vbtag), (verb, vbtag))
 else:
 chunk[vbidx] = singular_verb_forms.get((verb, vbtag), (verb,
vbtag))

 return chunk

Transforming Chunks and Trees

148

When we call it on a part-of-speech tagged "is our children learning" chunk, we get back the
correct form, "are our children learning".

>>> from transforms import correct_verbs
>>> correct_verbs([('is', 'VBZ'), ('our', 'PRP$'), ('children',
'NNS'), ('learning', 'VBG')])
[('are', 'VBP'), ('our', 'PRP$'), ('children', 'NNS'), ('learning',
'VBG')]

We can also try this with a singular noun and an incorrect plural verb.

>>> correct_verbs([('our', 'PRP$'), ('child', 'NN'), ('were', 'VBD'),
('learning', 'VBG')])
[('our', 'PRP$'), ('child', 'NN'), ('was', 'VBD'), ('learning',
'VBG')]

In this case, "were" becomes "was" because "child" is a singular noun.

How it works...
The correct_verbs() function starts by looking for a verb in the chunk. If no verb is found,
the chunk is returned with no changes. Once a verb is found, we keep the verb, its tag, and its
index in the chunk. Then we look on either side of the verb to find the nearest noun, starting
on the right, and only looking to the left if no noun is found on the right. If no noun is found at
all, the chunk is returned as is. But if a noun is found, then we lookup the correct verb form
depending on whether or not the noun is plural.

Recall from Chapter 4, Part-of-Speech Tagging, that plural nouns are tagged with NNS, while
singular nouns are tagged with NN. This means we can check the plurality of a noun by seeing
if its tag ends with S. Once we get the corrected verb form, it is inserted into the chunk to
replace the original verb form.

To make searching through the chunk easier, we define a function called first_chunk_
index(). It takes a chunk, a lambda predicate, the starting index, and a step increment.
The predicate function is called with each tagged word until it returns True. If it never returns
True, then None is returned. The starting index defaults to zero and the step increment
to one. As you'll see in upcoming recipes, we can search backwards by overriding start
and setting step to -1. This small utility function will be a key part of subsequent transform
functions.

See also
The next four recipes all make use of first_chunk_index() to perform chunk
transformations.

Chapter 6

149

Swapping verb phrases
Swapping the words around a verb can eliminate the passive voice from particular phrases.
For example, "the book was great" can be transformed into "the great book".

How to do it...
In transforms.py there is a function called swap_verb_phrase(). It swaps the
right-hand side of the chunk with the left-hand side, using the verb as the pivot point.
It uses the first_chunk_index() function defined in the previous recipe to find the
verb to pivot around.

def swap_verb_phrase(chunk):
 # find location of verb
 vbpred = lambda (word, tag): tag != 'VBG' and tag.startswith('VB')
and len(tag) > 2
 vbidx = first_chunk_index(chunk, vbpred)

 if vbidx is None:
 return chunk

 return chunk[vbidx+1:] + chunk[:vbidx]

Now we can see how it works on the part-of-speech tagged phrase "the book was great".

>>> from transforms import swap_verb_phrase
>>> swap_verb_phrase([('the', 'DT'), ('book', 'NN'), ('was', 'VBD'),
('great', 'JJ')])
[('great', 'JJ'), ('the', 'DT'), ('book', 'NN')]

The result is "great the book". This phrase clearly isn't grammatically correct, so read on to
learn how to fix it.

How it works...
Using first_chunk_index() from the previous recipe, we start by finding the first
matching verb that is not a gerund (a word that ends in "ing") tagged with VBG. Once we've
found the verb, we return the chunk with the right side before the left, and remove the verb.

The reason we don't want to pivot around a gerund is that gerunds are commonly used to
describe nouns, and pivoting around one would remove that description. Here's an example
where you can see how not pivoting around a gerund is a good thing:

>>> swap_verb_phrase([('this', 'DT'), ('gripping', 'VBG'), ('book',
'NN'), ('is', 'VBZ'), ('fantastic', 'JJ')])

Transforming Chunks and Trees

150

[('fantastic', 'JJ'), ('this', 'DT'), ('gripping', 'VBG'), ('book',
'NN')]

If we had pivoted around the gerund, the result would be "book is fantastic this", and we'd lose
the gerund "gripping".

There's more...
Filtering insignificant words makes the final result more readable. By filtering either before
or after swap_verb_phrase(), we get "fantastic gripping book" instead of "fantastic this
gripping book".

>>> from transforms import swap_verb_phrase, filter_insignificant
>>> swap_verb_phrase(filter_insignificant([('this', 'DT'),
('gripping', 'VBG'), ('book', 'NN'), ('is', 'VBZ'), ('fantastic',
'JJ')]))
[('fantastic', 'JJ'), ('gripping', 'VBG'), ('book', 'NN')]
>>> filter_insignificant(swap_verb_phrase([('this', 'DT'),
('gripping', 'VBG'), ('book', 'NN'), ('is', 'VBZ'), ('fantastic',
'JJ')]))
[('fantastic', 'JJ'), ('gripping', 'VBG'), ('book', 'NN')]

Either way, we get a shorter grammatical chunk with no loss of meaning.

See also
The previous recipe defines first_chunk_index(), which is used to find the verb in
the chunk.

Swapping noun cardinals
In a chunk, a cardinal word—tagged as CD—refers to a number, such as "10". These cardinals
often occur before or after a noun. For normalization purposes, it can be useful to always put
the cardinal before the noun.

How to do it...
The function swap_noun_cardinal() is defined in transforms.py. It swaps any cardinal
that occurs immediately after a noun with the noun, so that the cardinal occurs immediately
before the noun.

def swap_noun_cardinal(chunk):
 cdidx = first_chunk_index(chunk, lambda (word, tag): tag == 'CD')
 # cdidx must be > 0 and there must be a noun immediately before it
 if not cdidx or not chunk[cdidx-1][1].startswith('NN'):

Chapter 6

151

 return chunk

 noun, nntag = chunk[cdidx-1]
 chunk[cdidx-1] = chunk[cdidx]
 chunk[cdidx] = noun, nntag
 return chunk

Let's try it on a date, such as "Dec 10", and another common phrase "the top 10".

>>> from transforms import swap_noun_cardinal
>>> swap_noun_cardinal([('Dec.', 'NNP'), ('10', 'CD')])
[('10', 'CD'), ('Dec.', 'NNP')]
>>> swap_noun_cardinal([('the', 'DT'), ('top', 'NN'), ('10', 'CD')])
[('the', 'DT'), ('10', 'CD'), ('top', 'NN')]

The result is that the numbers are now in front of the noun, creating "10 Dec" and "the
10 top".

How it works...
We start by looking for a CD tag in the chunk. If no CD is found, or if the CD is at the
beginning of the chunk, then the chunk is returned as is. There must also be a noun
immediately before the CD. If we do find a CD with a noun preceding it, then we swap
the noun and cardinal in place.

See also
The Correcting verb forms recipe defines the first_chunk_index() function, used to find
tagged words in a chunk.

Swapping infinitive phrases
An infinitive phrase has the form "A of B", such as "book of recipes". These can often be
transformed into a new form while retaining the same meaning, such as "recipes book".

How to do it...
An infinitive phrase can be found by looking for a word tagged with IN. The function
swap_infinitive_phrase(), defined in transforms.py, will return a chunk that
swaps the portion of the phrase after the IN word with the portion before the IN word.

def swap_infinitive_phrase(chunk):
 inpred = lambda (word, tag): tag == 'IN' and word != 'like'
 inidx = first_chunk_index(chunk, inpred)

Transforming Chunks and Trees

152

 if inidx is None:
 return chunk

 nnpred = lambda (word, tag): tag.startswith('NN')
 nnidx = first_chunk_index(chunk, nnpred, start=inidx, step=-1) or 0

 return chunk[:nnidx] + chunk[inidx+1:] + chunk[nnidx:inidx]

The function can now be used to transform "book of recipes" into "recipes book".

>>> from transforms import swap_infinitive_phrase
>>> swap_infinitive_phrase([('book', 'NN'), ('of', 'IN'), ('recipes',
'NNS')])
[('recipes', 'NNS'), ('book', 'NN')]

How it works...
This function is similar to the swap_verb_phrase() function described in the Swapping
verb phrases recipe. The inpred lambda is passed to first_chunk_index() to look for
a word whose tag is IN. Next, nnpred is used to find the first noun that occurs before the IN
word, so we can insert the portion of the chunk after the IN word between the noun and the
beginning of the chunk. A more complicated example should demonstrate this:

>>> swap_infinitive_phrase([('delicious', 'JJ'), ('book', 'NN'),
('of', 'IN'), ('recipes', 'NNS')])
[('delicious', 'JJ'), ('recipes', 'NNS'), ('book', 'NN')]

We don't want the result to be "recipes delicious book". Instead, we want to insert "recipes"
before the noun "book", but after the adjective "delicious". Hence, the need to find the nnidx
occurring before the inidx.

There's more...
You'll notice that the inpred lambda checks to make sure the word is not "like". That's
because "like" phrases must be treated differently, as transforming them the same way
will result in an ungrammatical phrase. For example, "tastes like chicken" should not be
transformed into "chicken tastes":

>>> swap_infinitive_phrase([('tastes', 'VBZ'), ('like', 'IN'),
('chicken', 'NN')])
[('tastes', 'VBZ'), ('like', 'IN'), ('chicken', 'NN')]

Chapter 6

153

See also
In the next recipe, we'll learn how to transform "recipes book" into the more normal form
"recipe book".

Singularizing plural nouns
As we saw in the previous recipe, the transformation process can result in phrases such as
"recipes book". This is a NNS followed by an NN, when a more proper version of the phrase
would be "recipe book", which is an NN followed by another NN. We can do another transform
to correct these improper plural nouns.

How to do it...
transforms.py defines a function called singularize_plural_noun(), which will
de-pluralize a plural noun (tagged with NNS) that is followed by another noun.

def singularize_plural_noun(chunk):
 nnspred = lambda (word, tag): tag == 'NNS'
 nnsidx = first_chunk_index(chunk, nnspred)

 if nnsidx is not None and nnsidx+1 < len(chunk) and chunk[nnsidx+1]
[1][:2] == 'NN':
 noun, nnstag = chunk[nnsidx]
 chunk[nnsidx] = (noun.rstrip('s'), nnstag.rstrip('S'))

 return chunk

Using it on "recipes book", we get the more correct form, "recipe book".

>>> from transforms import singularize_plural_noun
>>> singularize_plural_noun([('recipes', 'NNS'), ('book', 'NN')])
[('recipe', 'NN'), ('book', 'NN')]

How it works...
We start by looking for a plural noun with the tag NNS. If found, and if the next word is a noun
(determined by making sure the tag starts with NN), then we de-pluralize the plural noun by
removing an "s" from the right side of both the tag and the word.

The tag is assumed to be capitalized, so an uppercase "S" is removed from the right side of
the tag, while a lowercase "s" is removed from the right side of the word.

Transforming Chunks and Trees

154

See also
The previous recipe shows how a transformation can result in a plural noun followed by a
singular noun, though this could also occur naturally in real-world text.

Chaining chunk transformations
The transform functions defined in the previous recipes can be chained together to normalize
chunks. The resulting chunks are often shorter with no loss of meaning.

How to do it...
In transforms.py is the function transform_chunk(). It takes a single chunk and an
optional list of transform functions. It calls each transform function on the chunk, one at a
time, and returns the final chunk.

def transform_chunk(chunk, chain=[filter_insignificant, swap_verb_
phrase, swap_infinitive_phrase, singularize_plural_noun], trace=0):
 for f in chain:
 chunk = f(chunk)

 if trace:
 print f.__name__, ':', chunk

 return chunk

Using it on the phrase "the book of recipes is delicious", we get "delicious recipe book":

>>> from transforms import transform_chunk
>>> transform_chunk([('the', 'DT'), ('book', 'NN'), ('of', 'IN'),
('recipes', 'NNS'), ('is', 'VBZ'), ('delicious', 'JJ')])
[('delicious', 'JJ'), ('recipe', 'NN'), ('book', 'NN')]

How it works...
The transform_chunk() function defaults to chaining the following functions in order:

ff filter_insignificant()

ff swap_verb_phrase()

ff swap_infinitive_phrase()

ff singularize_plural_noun()

Each function transforms the chunk that results from the previous function, starting with the
original chunk.

Chapter 6

155

The order in which you apply transform functions can be
significant. Experiment with your own data to determine which
transforms are best, and in which order they should be applied.

There's more...
You can pass trace=1 into transform_chunk() to get an output at each step.

>>> from transforms import transform_chunk
>>> transform_chunk([('the', 'DT'), ('book', 'NN'), ('of', 'IN'),
('recipes', 'NNS'), ('is', 'VBZ'), ('delicious', 'JJ')], trace=1)
filter_insignificant : [('book', 'NN'), ('of', 'IN'), ('recipes',
'NNS'), ('is', 'VBZ'), ('delicious', 'JJ')]
swap_verb_phrase : [('delicious', 'JJ'), ('book', 'NN'), ('of', 'IN'),
('recipes', 'NNS')]
swap_infinitive_phrase : [('delicious', 'JJ'), ('recipes', 'NNS'),
('book', 'NN')]
singularize_plural_noun : [('delicious', 'JJ'), ('recipe', 'NN'),
('book', 'NN')]
[('delicious', 'JJ'), ('recipe', 'NN'), ('book', 'NN')]

This shows you the result of each transform function, which is then passed in to the next
transform function until a final chunk is returned.

See also
The transform functions used were defined in the previous recipes of this chapter.

Converting a chunk tree to text
At some point, you may want to convert a Tree or sub-tree back to a sentence or chunk string.
This is mostly straightforward, except when it comes to properly outputting punctuation.

How to do it...
We'll use the first Tree of the treebank_chunk as our example. The obvious first step is to
join all the words in the tree with a space.

>>> from nltk.corpus import treebank_chunk
>>> tree = treebank_chunk.chunked_sents()[0]
>>> ' '.join([w for w, t in tree.leaves()])
'Pierre Vinken , 61 years old , will join the board as a nonexecutive
director Nov. 29 .'

Transforming Chunks and Trees

156

As you can see, the punctuation isn't quite right. The commas and period are treated as
individual words, and so get the surrounding spaces as well. We can fix this using regular
expression substitution. This is implemented in the chunk_tree_to_sent() function
found in transforms.py.

import re
punct_re = re.compile(r'\s([,\.;\?])')

def chunk_tree_to_sent(tree, concat=' '):
 s = concat.join([w for w, t in tree.leaves()])
 return re.sub(punct_re, r'\g<1>', s)

Using this function results in a much cleaner sentence, with no space before each
punctuation mark:

>>> from transforms import chunk_tree_to_sent
>>> chunk_tree_to_sent(tree)
'Pierre Vinken, 61 years old, will join the board as a nonexecutive
director Nov. 29.'

How it works...
To correct the extra spaces in front of the punctuation, we create a regular expression
punct_re that will match a space followed by any of the known punctuation characters. We
have to escape both '.' and '?' with a '\' since they are special characters. The punctuation is
surrounded by parenthesis so we can use the matched group for substitution.

Once we have our regular expression, we define chunk_tree_to_sent(), whose first
step is to join the words by a concatenation character that defaults to a space. Then we can
call re.sub() to replace all the punctuation matches with just the punctuation group. This
eliminates the space in front of the punctuation characters, resulting in a more correct string.

There's more...
We can simplify this function a little by using nltk.tag.untag() to get words from the
tree's leaves, instead of using our own list comprehension.

import nltk.tag, re
punct_re = re.compile(r'\s([,\.;\?])')

def chunk_tree_to_sent(tree, concat=' '):
 s = concat.join(nltk.tag.untag(tree.leaves()))
 return re.sub(punct_re, r'\g<1>', s)

Chapter 6

157

See also
The nltk.tag.untag() function was covered at the end of the Default tagging recipe in
Chapter 4, Part-of-Speech Tagging.

Flattening a deep tree
Some of the included corpora contain parsed sentences, which are often deep trees of nested
phrases. Unfortunately, these trees are too deep to use for training a chunker, since IOB tag
parsing is not designed for nested chunks. To make these trees usable for chunker training,
we must flatten them.

Getting ready
We're going to use the first parsed sentence of the treebank corpus as our example. Here's
a diagram showing how deeply nested this tree is:

You may notice that the part-of-speech tags are part of the tree structure, instead of
being included with the word. This will be handled next using the Tree.pos() method,
which was designed specifically for combining words with pre-terminal Tree nodes such
as part-of-speech tags.

How to do it...
In transforms.py there is a function named flatten_deeptree(). It takes a single
Tree and will return a new Tree that keeps only the lowest level trees. It uses a helper
function flatten_childtrees() to do most of the work.

from nltk.tree import Tree

def flatten_childtrees(trees):
 children = []

Transforming Chunks and Trees

158

 for t in trees:
 if t.height() < 3:
 children.extend(t.pos())
 elif t.height() == 3:
 children.append(Tree(t.node, t.pos()))
 else:
 children.extend(flatten_childtrees([c for c in t]))

 return children

def flatten_deeptree(tree):
 return Tree(tree.node, flatten_childtrees([c for c in tree]))

We can use it on the first parsed sentence of the treebank corpus to get a flatter tree:

>>> from nltk.corpus import treebank
>>> from transforms import flatten_deeptree
>>> flatten_deeptree(treebank.parsed_sents()[0])
Tree('S', [Tree('NP', [('Pierre', 'NNP'), ('Vinken', 'NNP')]), (',',
','), Tree('NP', [('61', 'CD'), ('years', 'NNS')]), ('old', 'JJ'),
(',', ','), ('will', 'MD'), ('join', 'VB'), Tree('NP', [('the',
'DT'), ('board', 'NN')]), ('as', 'IN'), Tree('NP', [('a', 'DT'),
('nonexecutive', 'JJ'), ('director', 'NN')]), Tree('NP-TMP', [('Nov.',
'NNP'), ('29', 'CD')]), ('.', '.')])

The result is a much flatter Tree that only includes NP phrases. Words that are not part of a
NP phrase are separated. This flatter tree is shown as follows:

This Tree is quite similar to the first chunk Tree from the treebank_chunk corpus. The
main difference is that the rightmost NP Tree is separated into two sub-trees in the previous
diagram, one of them named NP-TMP.

The first tree from treebank_chunk is shown as follows for comparison:

Chapter 6

159

How it works...
The solution is composed of two functions: flatten_deeptree() returns a new Tree from
the given tree by calling flatten_childtrees() on each of the given tree's children.

flatten_childtrees() is a recursive function that drills down into the Tree until it finds
child trees whose height() is equal to or less than three. A Tree whose height() is less
than three looks like this:

>>> from nltk.tree import Tree
>>> Tree('NNP', ['Pierre']).height()
2

These short trees are converted into lists of tuples using the pos() function.

>>> Tree('NNP', ['Pierre']).pos()
[('Pierre', 'NNP')]

Trees whose height() is equal to three are the lowest level trees that we're interested in
keeping. These trees look like this:

>>> Tree('NP', [Tree('NNP', ['Pierre']), Tree('NNP', ['Vinken'])]).
height()
3

When we call pos() on that tree, we get:

>>> Tree('NP', [Tree('NNP', ['Pierre']), Tree('NNP', ['Vinken'])]).
pos()
[('Pierre', 'NNP'), ('Vinken', 'NNP')]

The recursive nature of flatten_childtrees() eliminates all trees whose height is
greater than three.

Transforming Chunks and Trees

160

There's more...
Flattening a deep Tree allows us to call nltk.chunk.util.tree2conlltags() on the
flattened Tree, a necessary step to train a chunker. If you try to call this function before
flattening the Tree, you get a ValueError exception.

>>> from nltk.chunk.util import tree2conlltags
>>> tree2conlltags(treebank.parsed_sents()[0])
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "/usr/local/lib/python2.6/dist-packages/nltk/chunk/util.py",
line 417, in tree2conlltags
 raise ValueError, "Tree is too deeply nested to be printed in
CoNLL format"
ValueError: Tree is too deeply nested to be printed in CoNLL format

However, after flattening there's no problem:

>>> tree2conlltags(flatten_deeptree(treebank.parsed_sents()[0]))
[('Pierre', 'NNP', 'B-NP'), ('Vinken', 'NNP', 'I-NP'), (',', ',',
'O'), ('61', 'CD', 'B-NP'), ('years', 'NNS', 'I-NP'), ('old', 'JJ',
'O'), (',', ',', 'O'), ('will', 'MD', 'O'), ('join', 'VB', 'O'),
('the', 'DT', 'B-NP'), ('board', 'NN', 'I-NP'), ('as', 'IN', 'O'),
('a', 'DT', 'B-NP'), ('nonexecutive', 'JJ', 'I-NP'), ('director',
'NN', 'I-NP'), ('Nov.', 'NNP', 'B-NP-TMP'), ('29', 'CD', 'I-NP-TMP'),
('.', '.', 'O')]

Being able to flatten trees, opens up the possibility of training a chunker on corpora consisting
of deep parse trees.

CESS-ESP and CESS-CAT treebank
The cess_esp and cess_cat corpora have parsed sentences, but no chunked sentences.
In other words, they have deep trees that must be flattened in order to train a chunker. In fact,
the trees are so deep that a diagram can't be shown, but the flattening can be demonstrated
by showing the height() of the tree before and after flattening.

>>> from nltk.corpus import cess_esp
>>> cess_esp.parsed_sents()[0].height()
22
>>> flatten_deeptree(cess_esp.parsed_sents()[0]).height()
3

Chapter 6

161

See also

The Training a tagger-based chunker recipe in Chapter 5, Extracting Chunks covers training a
chunker using IOB tags.

Creating a shallow tree
In the previous recipe, we flattened a deep Tree by only keeping the lowest level sub-trees. In
this recipe, we'll keep only the highest level sub-trees instead.

How to do it...
We'll be using the first parsed sentence from the treebank corpus as our example. Recall
from the previous recipe that the sentence Tree looks like this:

The shallow_tree() function defined in transforms.py eliminates all the nested
sub-trees, keeping only the top tree nodes.

from nltk.tree import Tree

def shallow_tree(tree):
 children = []

 for t in tree:
 if t.height() < 3:
 children.extend(t.pos())
 else:
 children.append(Tree(t.node, t.pos()))

 return Tree(tree.node, children)

Transforming Chunks and Trees

162

Using it on the first parsed sentence in treebank results in a Tree with only two sub-trees.

>>> from transforms import shallow_tree
>>> shallow_tree(treebank.parsed_sents()[0])
Tree('S', [Tree('NP-SBJ', [('Pierre', 'NNP'), ('Vinken', 'NNP'), (',',
','), ('61', 'CD'), ('years', 'NNS'), ('old', 'JJ'), (',', ',')]),
Tree('VP', [('will', 'MD'), ('join', 'VB'), ('the', 'DT'), ('board',
'NN'), ('as', 'IN'), ('a', 'DT'), ('nonexecutive', 'JJ'), ('director',
'NN'), ('Nov.', 'NNP'), ('29', 'CD')]), ('.', '.')])

We can visually and programmatically see the difference, as shown in the following diagram
and code:

>>> treebank.parsed_sents()[0].height()
7
>>> shallow_tree(treebank.parsed_sents()[0]).height()
3

As in the previous recipe, the height of the new tree is three so it can be used for training a
chunker.

How it works...
The shallow_tree() function iterates over each of the top-level sub-trees in order to
create new child trees. If the height() of a sub-tree is less than three, then that sub-tree
is replaced by a list of its part-of-speech tagged children. All other sub-trees are replaced by
a new Tree whose children are the part-of-speech tagged leaves. This eliminates all nested
sub-trees while retaining the top-level sub-trees.

This function is an alternative to flatten_deeptree() from the previous recipe, for when
you want to keep the higher level tree nodes and ignore the lower level nodes.

See also
The previous recipe covers how to flatten a Tree and keep the lowest level sub-trees, as
opposed to keeping the highest level sub-trees.

Chapter 6

163

Converting tree nodes
As you've seen in previous recipes, parse trees often have a variety of Tree node types that
are not present in chunk trees. If you want to use the parse trees to train a chunker, then
you'll probably want to reduce this variety by converting some of these tree nodes to more
common node types.

Getting ready
First, we have to decide what Tree nodes need to be converted. Let's take a look at that first
Tree again:

Immediately you can see that there are two alternative NP sub-trees: NP-SBJ and NP-TMP.
Let's convert both of those to NP. The mapping will be as follows:

Original Node New Node
NP-SBJ NP
NP-TMP NP

How to do it...
In transforms.py there is a function convert_tree_nodes(). It takes two arguments:
the Tree to convert, and a node conversion mapping. It returns a new Tree with all
matching nodes replaced based on the values in the mapping.

from nltk.tree import Tree

def convert_tree_nodes(tree, mapping):
 children = []

 for t in tree:
 if isinstance(t, Tree):

Transforming Chunks and Trees

164

 children.append(convert_tree_nodes(t, mapping))
 else:
 children.append(t)

 node = mapping.get(tree.node, tree.node)
 return Tree(node, children)

Using the mapping table shown earlier, we can pass it in as a dict to convert_tree_
nodes() and convert the first parsed sentence from treebank.

>>> from transforms import convert_tree_nodes
>>> mapping = {'NP-SBJ': 'NP', 'NP-TMP': 'NP'}
>>> convert_tree_nodes(treebank.parsed_sents()[0], mapping)
Tree('S', [Tree('NP', [Tree('NP', [Tree('NNP', ['Pierre']),
Tree('NNP', ['Vinken'])]), Tree(',', [',']), Tree('ADJP', [Tree('NP',
[Tree('CD', ['61']), Tree('NNS', ['years'])]), Tree('JJ', ['old'])]),
Tree(',', [','])]), Tree('VP', [Tree('MD', ['will']), Tree('VP',
[Tree('VB', ['join']), Tree('NP', [Tree('DT', ['the']), Tree('NN',
['board'])]), Tree('PP-CLR', [Tree('IN', ['as']), Tree('NP',
[Tree('DT', ['a']), Tree('JJ', ['nonexecutive']), Tree('NN',
['director'])])]), Tree('NP', [Tree('NNP', ['Nov.']), Tree('CD',
['29'])])])]), Tree('.', ['.'])])

In the following diagram, you can see that the NP-* sub-trees have been replaced with
NP sub-trees:

How it works...
convert_tree_nodes() recursively converts every child sub-tree using the mapping.
The Tree is then rebuilt with the converted nodes and children until the entire Tree has
been converted.

The result is a brand new Tree instance with new sub-trees whose nodes have been
converted.

Chapter 6

165

See also
The previous two recipes cover different methods of flattening a parse Tree, both of which
can produce sub-trees that may require mapping before using them to train a chunker.
Chunker training is covered in the Training a tagger-based chunker recipe in Chapter 5,
Extracting Chunks.

7
Text Classification

In this chapter, we will cover:

ff Bag of Words feature extraction

ff Training a naive Bayes classifier

ff Training a decision tree classifier

ff Training a maximum entropy classifier

ff Measuring precision and recall of a classifier

ff Calculating high information words

ff Combining classifiers with voting

ff Classifying with multiple binary classifiers

Introduction
Text classification is a way to categorize documents or pieces of text. By examining the
word usage in a piece of text, classifiers can decide what class label to assign to it. A binary
classifier decides between two labels, such as positive or negative. The text can either be
one label or the other, but not both, whereas a multi-label classifier can assign one or more
labels to a piece of text.

Classification works by learning from labeled feature sets, or training data, to later classify
an unlabeled feature set. A feature set is basically a key-value mapping of feature names to
feature values. In the case of text classification, the feature names are usually words, and the
values are all True. As the documents may have unknown words, and the number of possible
words may be very large, words that don't occur in the text are omitted, instead of including
them in a feature set with the value False.

Text Classification

168

An instance is a single feature set. It represents a single occurrence of a combination of
features. We will use instance and feature set interchangeably. A labeled feature set is an
instance with a known class label that we can use for training or evaluation.

Bag of Words feature extraction
Text feature extraction is the process of transforming what is essentially a list of words into a
feature set that is usable by a classifier. The NLTK classifiers expect dict style feature sets,
so we must therefore transform our text into a dict. The Bag of Words model is the simplest
method; it constructs a word presence feature set from all the words of an instance.

How to do it...
The idea is to convert a list of words into a dict, where each word becomes a key with the
value True. The bag_of_words() function in featx.py looks like this:

def bag_of_words(words):
 return dict([(word, True) for word in words])

We can use it with a list of words, in this case the tokenized sentence "the quick brown fox":

>>> from featx import bag_of_words
>>> bag_of_words(['the', 'quick', 'brown', 'fox'])
{'quick': True, 'brown': True, 'the': True, 'fox': True}

The resulting dict is known as a bag of words because the words are not in order, and it
doesn't matter where in the list of words they occurred, or how many times they occurred. All
that matters is that the word is found at least once.

How it works...
The bag_of_words() function is a very simple list comprehension that constructs a dict
from the given words, where every word gets the value True.

Since we have to assign a value to each word in order to create a dict, True is a logical
choice for the value to indicate word presence. If we knew the universe of all possible words,
we could assign the value False to all the words that are not in the given list of words. But
most of the time, we don't know all possible words beforehand. Plus, the dict that would
result from assigning False to every possible word would be very large (assuming all words in
the English language are possible). So instead, to keep feature extraction simple and use less
memory, we stick with assigning the value True to all words that occur at least once. We don't
assign the value False to any words since we don't know what the set of possible words are;
we only know about the words we are given.

Chapter 7

169

There's more...
In the default Bag of Words model, all words are treated equally. But that's not always a good
idea. As we already know, some words are so common that they are practically meaningless. If
you have a set of words that you want to exclude, you can use the bag_of_words_not_in_
set() function in featx.py.

def bag_of_words_not_in_set(words, badwords):
 return bag_of_words(set(words) - set(badwords))

This function can be used, among other things, to filter stopwords. Here's an example where
we filter the word "the" from "the quick brown fox":

>>> from featx import bag_of_words_not_in_set
>>> bag_of_words_not_in_set(['the', 'quick', 'brown', 'fox'],
['the'])
{'quick': True, 'brown': True, 'fox': True}

As expected, the resulting dict has "quick", "brown", and "fox", but not "the".

Filtering stopwords
Here's an example of using the bag_of_words_not_in_set() function to filter all
English stopwords:

from nltk.corpus import stopwords

def bag_of_non_stopwords(words, stopfile='english'):
 badwords = stopwords.words(stopfile)
 return bag_of_words_not_in_set(words, badwords)

You can pass a different language filename as the stopfile keyword argument if you are
using a language other than English. Using this function produces the same result as the
previous example:

>>> from featx import bag_of_non_stopwords
>>> bag_of_non_stopwords(['the', 'quick', 'brown', 'fox'])
{'quick': True, 'brown': True, 'fox': True}

Here, "the" is a stopword, so it is not present in the returned dict.

Text Classification

170

Including significant bigrams
In addition to single words, it often helps to include significant bigrams. As significant bigrams
are less common than most individual words, including them in the Bag of Words can help the
classifier make better decisions. We can use the BigramCollocationFinder covered in
the Discovering word collocations recipe of Chapter 1, Tokenizing Text and WordNet Basics, to
find significant bigrams. bag_of_bigrams_words() found in featx.py will return a dict
of all words along with the 200 most significant bigrams.

from nltk.collocations import BigramCollocationFinder
from nltk.metrics import BigramAssocMeasures

def bag_of_bigrams_words(words, score_fn=BigramAssocMeasures.chi_sq,
n=200):
 bigram_finder = BigramCollocationFinder.from_words(words)
 bigrams = bigram_finder.nbest(score_fn, n)
 return bag_of_words(words + bigrams)

The bigrams will be present in the returned dict as (word1, word2) and will have the
value as True. Using the same example words as before, we get all words plus every bigram:

>>> from featx import bag_of_bigrams_words
>>> bag_of_bigrams_words(['the', 'quick', 'brown', 'fox'])
{'brown': True, ('brown', 'fox'): True, ('the', 'quick'):
True, 'fox': True, ('quick', 'brown'): True, 'quick': True,
'the': True}

You can change the maximum number of bigrams found by altering the keyword argument n.

See also

The Discovering word collocations recipe of Chapter 1, Tokenizing Text and WordNet Basics
covers the BigramCollocationFinder in more detail. In the next recipe, we will train a
NaiveBayesClassifier using feature sets created with the Bag of Words model.

Training a naive Bayes classifier
Now that we can extract features from text, we can train a classifier. The easiest classifier
to get started with is the NaiveBayesClassifier. It uses Bayes Theorem to predict the
probability that a given feature set belongs to a particular label. The formula is:

P(label | features) = P(label) * P(features | label) / P(features)

Chapter 7

171

ff P(label) is the prior probability of the label occurring, which is the same as
the likelihood that a random feature set will have the label. This is based on the
number of training instances with the label compared to the total number of training
instances. For example, if 60/100 training instances have the label, the prior
probability of the label is 60 percent.

ff P(features | label) is the prior probability of a given feature set being
classified as that label. This is based on which features have occurred with each
label in the training data.

ff P(features) is the prior probability of a given feature set occurring. This is the
likelihood of a random feature set being the same as the given feature set, and is
based on the observed feature sets in the training data. For example, if the given
feature set occurs twice in 100 training instances, the prior probability is 2 percent.

ff P(label | features) tells us the probability that the given features should have
that label. If this value is high, then we can be reasonably confident that the label is
correct for the given features.

Getting ready
We are going to be using the movie_reviews corpus for our initial classification examples.
This corpus contains two categories of text: pos and neg. These categories are exclusive,
which makes a classifier trained on them a binary classifier. Binary classifiers have only two
classification labels, and will always choose one or the other.

Each file in the movie_reviews corpus is composed of either positive or negative movie
reviews. We will be using each file as a single instance for both training and testing the
classifier. Because of the nature of the text and its categories, the classification we will be
doing is a form of sentiment analysis. If the classifier returns pos, then the text expresses
positive sentiment, whereas if we get neg, then the text expresses negative sentiment.

How to do it...
For training, we need to first create a list of labeled feature sets. This list should be of the form
[(featureset, label)] where the featureset is a dict, and label is the known class
label for the featureset. The label_feats_from_corpus() function in featx.py takes a
corpus, such as movie_reviews, and a feature_detector function, which defaults to bag_
of_words. It then constructs and returns a mapping of the form {label: [featureset]}.
We can use this mapping to create a list of labeled training instances and testing instances. The
reason to do it this way is because we can get a fair sample from each label.

import collections
def label_feats_from_corpus(corp, feature_detector=bag_of_words):
 label_feats = collections.defaultdict(list)
 for label in corp.categories():

Text Classification

172

 for fileid in corp.fileids(categories=[label]):
 feats = feature_detector(corp.words(fileids=[fileid]))
 label_feats[label].append(feats)
 return label_feats

Once we can get a mapping of label : feature sets, we want to construct a list of labeled
training instances and testing instances. The function split_label_feats() in featx.
py takes a mapping returned from label_feats_from_corpus() and splits each list of
feature sets into labeled training and testing instances.

def split_label_feats(lfeats, split=0.75):
 train_feats = []
 test_feats = []
 for label, feats in lfeats.iteritems():
 cutoff = int(len(feats) * split)
 train_feats.extend([(feat, label) for feat in
feats[:cutoff]])
 test_feats.extend([(feat, label) for feat in
feats[cutoff:]])
 return train_feats, test_feats

Using these functions with the movie_reviews corpus gives us the lists of labeled feature
sets we need to train and test a classifier.

>>> from nltk.corpus import movie_reviews
>>> from featx import label_feats_from_corpus, split_label_feats
>>> movie_reviews.categories()
['neg', 'pos']
>>> lfeats = label_feats_from_corpus(movie_reviews)
>>> lfeats.keys()
['neg', 'pos']
>>> train_feats, test_feats = split_label_feats(lfeats)
>>> len(train_feats)
1500
>>> len(test_feats)
500

So there are 1,000 pos files, 1,000 neg files, and we end up with 1,500 labeled training
instances and 500 labeled testing instances, each composed of equal parts pos and neg.
Now we can train a NaiveBayesClassifier using its train() class method,

>>> from nltk.classify import NaiveBayesClassifier
>>> nb_classifier = NaiveBayesClassifier.train(train_feats)
>>> nb_classifier.labels()
['neg', 'pos']

Chapter 7

173

Let's test the classifier on a couple of made up reviews. The classify() method takes a
single argument, which should be a feature set. We can use the same bag_of_words()
feature detector on a made up list of words to get our feature set.

>>> from featx import bag_of_words
>>> negfeat = bag_of_words(['the', 'plot', 'was', 'ludicrous'])
>>> nb_classifier.classify(negfeat)
'neg'
>>> posfeat = bag_of_words(['kate', 'winslet', 'is', 'accessible'])
>>> nb_classifier.classify(posfeat)
'pos'

How it works...
The label_feats_from_corpus() assumes that the corpus is categorized, and that a
single file represents a single instance for feature extraction. It iterates over each category
label, and extracts features from each file in that category using the feature_detector()
function, which defaults to bag_of_words(). It returns a dict whose keys are the category
labels, and the values are lists of instances for that category.

If we had the label_feats_from_corpus() function, return a list of
labeled feature sets, instead of a dict, it would be much harder to get the
balanced training data. The list would be ordered by label, and if you took a
slice of it, you would almost certainly be getting far more of one label than
another. By returning a dict, you can take slices from the feature sets of
each label.

Now we need to split the labeled feature sets into training and testing instances using
split_label_feats(). This function allows us to take a fair sample of labeled feature
sets from each label, using the split keyword argument to determine the size of the sample.
split defaults to 0.75, which means the first three-fourths of the labeled feature sets for
each label will be used for training, and the remaining one-fourth will be used for testing.

Once we have split up our training and testing feats, we train a classifier using
the NaiveBayesClassifier.train() method. This class method builds two
probability distributions for calculating prior probabilities. These are passed in to the
NaiveBayesClassifier constructor. The label_probdist contains P(label), the prior
probability for each label. The feature_probdist contains P(feature name = feature
value | label). In our case, it will store P(word=True | label). Both are calculated
based on the frequency of occurrence of each label, and each feature name and value in the
training data.

Text Classification

174

The NaiveBayesClassifier inherits from ClassifierI, which requires subclasses to
provide a labels() method, and at least one of the classify() and prob_classify()
methods. The following diagram shows these and other methods, which will be covered shortly:

There's more...
We can test the accuracy of the classifier using nltk.classify.util.accuracy()
and the test_feats created previously.

>>> from nltk.classify.util import accuracy
>>> accuracy(nb_classifier, test_feats)
0.72799999999999998

This tells us that the classifier correctly guessed the label of nearly 73 percent of the testing
feature sets.

Classification probability
While the classify() method returns only a single label, you can use the prob_classify()
method to get the classification probability of each label. This can be useful if you want to use
probability thresholds greater than 50 percent for classification.

>>> probs = nb_classifier.prob_classify(test_feats[0][0])
>>> probs.samples()
['neg', 'pos']
>>> probs.max()
'pos'
>>> probs.prob('pos')
0.99999996464309127
>>> probs.prob('neg')
3.5356889692409258e-08

Chapter 7

175

In this case, the classifier says that the first testing instance is nearly 100 percent likely
to be pos.

Most informative features
The NaiveBayesClassifier has two methods that are quite useful for learning about your
data. Both methods take a keyword argument n to control how many results to show. The
most_informative_features() method returns a list of the form [(feature name,
feature value)] ordered by most informative to least informative. In our case, the feature
value will always be True.

>>> nb_classifier.most_informative_features(n=5)
[('magnificent', True), ('outstanding', True), ('insulting', True),
('vulnerable', True), ('ludicrous', True)]

The show_most_informative_features() method will print out the results from
most_informative_features() and will also include the probability of a feature pair
belonging to each label.

>>> nb_classifier.show_most_informative_features(n=5)
Most Informative Features

 magnificent = True pos : neg = 15.0 : 1.0

 outstanding = True pos : neg = 13.6 : 1.0

 insulting = True neg : pos = 13.0 : 1.0

 vulnerable = True pos : neg = 12.3 : 1.0

 ludicrous = True neg : pos = 11.8 : 1.0

The informativeness, or information gain, of each feature pair is based on the prior
probability of the feature pair occurring for each label. More informative features are those
that occur primarily in one label and not the other. Less informative features are those that
occur frequently in both labels.

Training estimator
During training, the NaiveBayesClassifier constructs its probability distributions using an
estimator parameter, which defaults to nltk.probability.ELEProbDist. But you can
use any estimator you want, and there are quite a few to choose from. The only constraints
are that it must inherit from nltk.probability.ProbDistI and its constructor must take
a bins keyword argument. Here's an example using the LaplaceProdDist:

>>> from nltk.probability import LaplaceProbDist
>>> nb_classifier = NaiveBayesClassifier.train(train_feats,
estimator=LaplaceProbDist)
>>> accuracy(nb_classifier, test_feats)
0.71599999999999997

Text Classification

176

As you can see, accuracy is slightly lower, so choose your estimator carefully.

You cannot use nltk.probability.MLEProbDist as the estimator, or
any ProbDistI subclass that does not take the bins keyword argument.
Training will fail with TypeError: __init__() got an unexpected
keyword argument 'bins'.

Manual training
You don't have to use the train() class method to construct a NaiveBayesClassifier.
You can instead create the label_probdist and feature_probdist manually. label_
probdist should be an instance of ProbDistI, and should contain the prior probabilities
for each label. feature_probdist should be a dict whose keys are tuples of the form
(label, feature name) and whose values are instances of ProbDistI that have the
probabilities for each feature value. In our case, each ProbDistI should have only one value,
True=1. Here's a very simple example using manually constructed DictionaryProbDist:

>>> from nltk.probability import DictionaryProbDist
>>> label_probdist = DictionaryProbDist({'pos': 0.5, 'neg': 0.5})
>>> true_probdist = DictionaryProbDist({True: 1})
>>> feature_probdist = {('pos', 'yes'): true_probdist, ('neg', 'no'):
true_probdist}
>>> classifier = NaiveBayesClassifier(label_probdist, feature_
probdist)
>>> classifier.classify({'yes': True})
'pos'
>>> classifier.classify({'no': True})
'neg'

See also
In the next recipes, we will train two more classifiers, the DecisionTreeClassifier, and
the MaxentClassifier. In the Measuring precision and recall of a classifier recipe in this
chapter, we will use precision and recall instead of accuracy to evaluate the classifiers. And
then in the Calculating high information words recipe, we will see how using only the most
informative features can improve classifier performance.

The movie_reviews corpus is an instance of CategorizedPlaintextCorpusReader,
which is covered in the Creating a categorized text corpus recipe in Chapter 3, Creating
Custom Corpora.

Chapter 7

177

Training a decision tree classifier
The DecisionTreeClassifier works by creating a tree structure, where each node
corresponds to a feature name, and the branches correspond to the feature values. Tracing
down the branches, you get to the leaves of the tree, which are the classification labels.

Getting ready
For the DecisionTreeClassifier to work for text classification, you must use NLTK 2.0b9
or later. This is because earlier versions are unable to deal with unknown features. If the
DecisionTreeClassifier encountered a word/feature that it hadn't seen before, then
it raised an exception. This bug has now been fixed by yours truly, and is included in all NLTK
versions since 2.0b9.

How to do it...
Using the same train_feats and test_feats we created from the movie_reviews
corpus in the previous recipe, we can call the DecisionTreeClassifier.train() class
method to get a trained classifier. We pass binary=True because all of our features are
binary: either the word is present or it's not. For other classification use cases where you have
multi-valued features, you will want to stick to the default binary=False.

In this context, binary refers to feature values, and is not to be confused
with a binary classifier. Our word features are binary because the value is
either True, or the word is not present. If our features could take more than
two values, we would have to use binary=False. A binary classifier, on the
other hand, is a classifier that only chooses between two labels. In our case,
we are training a binary DecisionTreeClassifier on binary features.
But it's also possible to have a binary classifier with non-binary features, or a
non-binary classifier with binary features.

Following is the code for training and evaluating the accuracy of a
DecisionTreeClassifier:

>>> from nltk.classify import DecisionTreeClassifier
>>> dt_classifier = DecisionTreeClassifier.train(train_feats,
binary=True, entropy_cutoff=0.8, depth_cutoff=5, support_cutoff=30)
>>> accuracy(dt_classifier, test_feats)
0.68799999999999994

Text Classification

178

The DecisionTreeClassifier can take much longer to train than the
NaiveBayesClassifier. For that reason, the default parameters have
been overridden so it trains faster. These parameters will be explained later.

How it works...
The DecisionTreeClassifier, like the NaiveBayesClassifier, is also an instance of
ClassifierI. During training, the DecisionTreeClassifier creates a tree where the
child nodes are also instances of DecisionTreeClassifier. The leaf nodes contain only
a single label, while the intermediate child nodes contain decision mappings for each feature.
These decisions map each feature value to another DecisionTreeClassifier, which itself
may contain decisions for another feature, or it may be a final leaf node with a classification
label. The train() class method builds this tree from the ground up, starting with the leaf
nodes. It then refines itself to minimize the number of decisions needed to get to a label by
putting the most informative features at the top.

To classify, the DecisionTreeClassifier looks at the given feature set and traces down
the tree, using known feature names and values to make decisions. Because we are creating
a binary tree, each DecisionTreeClassifier instance also has a default decision tree,
which it uses when a known feature is not present in the feature set being classified. This is
a common occurrence in text-based feature sets, and indicates that a known word was not in
the text being classified. This also contributes information towards a classification decision.

There's more...
The parameters passed in to DecisionTreeClassifier.train() can be tweaked to
improve accuracy or decrease training time. Generally, if you want to improve accuracy, you
must accept a longer training time and if you want to decrease the training time, the accuracy
will most likely decrease as well.

Entropy cutoff
The entropy_cutoff is used during the tree refinement process. If the entropy of the
probability distribution of label choices in the tree is greater than the entropy_cutoff,
then the tree is refined further. But if the entropy is lower than the entropy_cutoff,
then tree refinement is halted.

Entropy is the uncertainty of the outcome. As entropy approaches 1.0, uncertainty increases
and, conversely, as entropy approaches 0.0, uncertainty decreases. In other words, when
you have similar probabilities, the entropy will be high as each probability has a similar
likelihood (or uncertainty of occurrence). But the more the probabilities differ, the lower
the entropy will be.

Chapter 7

179

Entropy is calculated by giving nltk.probability.entropy() a MLEProbDist created
from a FreqDist of label counts. Here's an example showing the entropy of various
FreqDist values:

>>> from nltk.probability import FreqDist, MLEProbDist, entropy
>>> fd = FreqDist({'pos': 30, 'neg': 10})
>>> entropy(MLEProbDist(fd))
0.81127812445913283
>>> fd['neg'] = 25
>>> entropy(MLEProbDist(fd))
0.99403021147695647
>>> fd['neg'] = 30
>>> entropy(MLEProbDist(fd))
1.0
>>> fd['neg'] = 1
>>> entropy(MLEProbDist(fd))
0.20559250818508304

What this all means is that if the label occurrence is very skewed one way or the other, the
tree doesn't need to be refined because entropy/uncertainty is low. But when the entropy
is greater than entropy_cutoff then the tree must be refined with further decisions to
reduce the uncertainty. Higher values of entropy_cutoff will decrease both accuracy
and training time.

Depth cutoff
The depth_cutoff is also used during refinement to control the depth of the tree. The
final decision tree will never be deeper than the depth_cutoff. The default value is 100,
which means that classification may require up to 100 decisions before reaching a leaf node.
Decreasing the depth_cutoff will decrease the training time and most likely decrease the
accuracy as well.

Support cutoff
The support_cutoff controls how many labeled feature sets are required to refine the
tree. As the DecisionTreeClassifier refines itself, labeled feature sets are eliminated
once they no longer provide value to the training process. When the number of labeled
feature sets is less than or equal to support_cutoff, refinement stops, at least for that
section of the tree.

Another way to look at it is that support_cutoff specifies the minimum number of
instances that are required to make a decision about a feature. If support_cutoff is 20,
and you have less than 20 labeled feature sets with a given feature, then you don't have
enough instances to make a good decision, and refinement around that feature must come
to a stop.

Text Classification

180

See also
The previous recipe covered the creation of training and test feature sets from the movie_
reviews corpus. In the next recipe, we will cover training a MaxentClassifier, and in the
Measuring precision and recall of a classifier recipe in this chapter, we will use precision and
recall to evaluate all the classifiers.

Training a maximum entropy classifier
The third classifier which we will cover is the MaxentClassifier, also known as a
conditional exponential classifier. The maximum entropy classifier converts labeled feature
sets to vectors using encoding. This encoded vector is then used to calculate weights for each
feature that can then be combined to determine the most likely label for a feature set.

Getting ready
The MaxentClassifier requires the numpy package, and optionally the scipy package.
This is because the feature encodings use numpy arrays. Having scipy installed also means
you will be able to use faster algorithms that consume less memory. You can find installation
for both at http://www.scipy.org/Installing_SciPy.

Many of the algorithms can be quite memory hungry, so you may want
to quit all your other programs while training a MaxentClassifier,
just to be safe.

How to do it...
We will use the same train_feats and test_feats from the movie_reviews corpus
that we constructed before, and call the MaxentClassifier.train() class method.
Like the DecisionTreeClassifier, MaxentClassifier.train() has its own specific
parameters that have been tweaked to speed up training. These parameters will be explained
in more detail later.

>>> from nltk.classify import MaxentClassifier
>>> me_classifier = MaxentClassifier.train(train_feats,
algorithm='iis', trace=0, max_iter=1, min_lldelta=0.5)
>>> accuracy(me_classifier, test_feats)
0.5

The reason this classifier has such a low accuracy is because the parameters have been set
such that it is unable to learn a more accurate model. This is due to the time required to train
a suitable model using the iis algorithm. Higher accuracy models can be learned much
faster using the scipy algorithms.

Chapter 7

181

If training is taking a long time, you can usually cut it off manually by hitting
Ctrl + C. This should stop the current iteration and still return a classifier
based on whatever state the model is in.

How it works...
Like the previous classifiers, MaxentClassifier inherits from ClassifierI. Depending
on the algorithm, MaxentClassifier.train() calls one of the training functions in the
nltk.classify.maxent module. If scipy is not installed, the default algorithm is iis,
and the function used is train_maxent_classifier_with_iis(). The other algorithm
that doesn't require scipy is gis, which uses the train_maxent_classifier_with_
gis() function. gis stands for General Iterative Scaling, while iis stands for Improved
Iterative Scaling. If scipy is installed, the train_maxent_classifier_with_scipy()
function is used, and the default algorithm is cg. If megam is installed and you specify the
megam algorithm, then train_maxent_classifier_with_megam() is used.

The basic idea behind the maximum entropy model is to build some probability distributions
that fit the observed data, then choose whichever probability distribution has the highest
entropy. The gis and iis algorithms do so by iteratively improving the weights used to
classify features. This is where the max_iter and min_lldelta parameters come into play.

The max_iter specifies the maximum number of iterations to go through and update the
weights. More iterations will generally improve accuracy, but only up to a point. Eventually, the
changes from one iteration to the next will hit a plateau and further iterations are useless.

The min_lldelta specifies the minimum change in the log likelihood required to continue
iteratively improving the weights. Before beginning training iterations, an instance of the
nltk.classify.util.CutoffChecker is created. When its check() method is called,
it uses functions such as nltk.classify.util.log_likelihood() to decide whether
the cutoff limits have been reached. The log likelihood is the log (using math.log()) of
the average label probability of the training data (which is the log of the average likelihood of
a label). As the log likelihood increases, the model improves. But it too will reach a plateau
where further increases are so small that there is no point in continuing. Specifying the
min_lldelta allows you to control how much each iteration must increase the log likelihood
before stopping iterations.

Text Classification

182

There's more...
Like the NaiveBayesClassifier, you can see the most informative features by calling the
show_most_informative_features() method.

>>> me_classifier.show_most_informative_features(n=4)
-0.740 worst==True and label is 'pos'

0.740 worst==True and label is 'neg'

0.715 bad==True and label is 'neg'

-0.715 bad==True and label is 'pos'

The numbers shown are the weights for each feature. This tells us that the word worst is
negatively weighted towards the pos label, and positively weighted towards the neg label. In
other words, if the word worst is found in the feature set, then there's a strong possibility that
the text should be classified neg.

Scipy algorithms
The algorithms available when scipy is installed are:

ff CG (Conjugate gradient algorithm)—the default scipy algorithm

ff BFGS (Broyden-Fletcher-Goldfarb-Shanno algorithm)—very memory hungry

ff Powell

ff LBFGSB (limited memory version of BFGS)

ff Nelder-Mead

Here's what happens when you use the CG algorithm:

>>> me_classifier = MaxentClassifier.train(train_feats,
algorithm='cg', trace=0, max_iter=10)
>>> accuracy(me_classifier, test_feats)
0.85599999999999998

This is the most accurate classifier so far.

Chapter 7

183

Megam algorithm
If you have installed the megam package, then you can use the megam algorithm. It's a
bit faster than the scipy algorithms and about as accurate. Installation instructions and
information can be found at http://www.cs.utah.edu/~hal/megam/. The function
nltk.classify.megam.config_megam() can be used to specify where the megam
executable is found. Or, if megam can be found in the standard executable paths, NLTK will
configure it automatically.

>>> me_classifier = MaxentClassifier.train(train_feats,
algorithm='megam', trace=0, max_iter=10)
[Found megam: /usr/local/bin/megam]
>>> accuracy(me_classifier, test_feats)
0.86799999999999999

The megam algorithm is highly recommended for its accuracy and speed of training.

See also
The Bag of Words feature extraction and the Training a naive Bayes classifier recipes in this
chapter show how to construct the training and testing features from the movie_reviews
corpus. In the next recipe, we will cover how and why to evaluate a classifier using precision
and recall instead of accuracy.

Measuring precision and recall of a
classifier

In addition to accuracy, there are a number of other metrics used to evaluate classifiers.
Two of the most common are precision and recall. To understand these two metrics, we
must first understand false positives and false negatives. False positives happen when a
classifier classifies a feature set with a label it shouldn't have. False negatives happen when
a classifier doesn't assign a label to a feature set that should have it. In a binary classifier,
these errors happen at the same time.

Here's an example: the classifier classifies a movie review as pos, when it should have been
neg. This counts as a false positive for the pos label, and a false negative for the neg label.
If the classifier had correctly guessed neg, then it would count as a true positive for the neg
label, and a true negative for the pos label.

How does this apply to precision and recall? Precision is the lack of false positives, and recall
is the lack of false negatives. As you will see, these two metrics are often in competition: the
more precise a classifier is, the lower the recall, and vice versa.

Text Classification

184

How to do it...
Let's calculate the precision and recall of the NaiveBayesClassifier we trained in
the Training a naive Bayes classifier recipe. The precision_recall() function in
classification.py looks like this:

import collections
from nltk import metrics

def precision_recall(classifier, testfeats):
 refsets = collections.defaultdict(set)
 testsets = collections.defaultdict(set)

 for i, (feats, label) in enumerate(testfeats):
 refsets[label].add(i)
 observed = classifier.classify(feats)
 testsets[observed].add(i)

 precisions = {}
 recalls = {}

 for label in classifier.labels():
 precisions[label] = metrics.precision(refsets[label],
testsets[label])
 recalls[label] = metrics.recall(refsets[label], testsets[label])

 return precisions, recalls

This function takes two arguments:

1.	 The trained classifier.

2.	 Labeled test features, also known as a gold standard.

These are the same arguments you pass to the accuracy() function. The precision_
recall() returns two dictionaries; the first holds the precision for each label, and the
second holds the recall for each label. Here's an example usage with the nb_classifier
and the test_feats we created in the Training a naive Bayes classifier recipe earlier:

>>> from classification import precision_recall
>>> nb_precisions, nb_recalls = precision_recall(nb_classifier, test_
feats)
>>> nb_precisions['pos']
0.6413612565445026
>>> nb_precisions['neg']
0.9576271186440678
>>> nb_recalls['pos']
0.97999999999999998
>>> nb_recalls['neg']
0.45200000000000001

Chapter 7

185

This tells us that while the NaiveBayesClassifier can correctly identify most of the pos
feature sets (high recall), it also classifies many of the neg feature sets as pos (low precision).
This behavior contributes to the high precision but low recall for the neg label—as the neg
label isn't given often (low recall), and when it is, it's very likely to be correct (high precision).
The conclusion could be that there are certain common words that are biased towards the
pos label, but occur frequently enough in the neg feature sets to cause mis-classifications.
To correct this behavior, we will use only the most informative words in the next recipe,
Calculating high information words.

How it works...
To calculate precision and recall, we must build two sets for each label. The first set is known
as the reference set, and contains all the correct values. The second set is called the test
set, and contains the values guessed by the classifier. These two sets are compared to
calculate the precision or recall for each label.

Precision is defined as the size of the intersection of both sets divided by the size of the test
set. In other words, the percentage of the test set that was guessed correctly. In Python, the
code is float(len(reference.intersection(test))) / len(test).

Recall is the size of the intersection of both sets divided by the size of the reference set,
or the percentage of the reference set that was guessed correctly. The Python code is
float(len(reference.intersection(test))) / len(reference).

The precision_recall() function in classification.py iterates over the labeled test
features and classifies each one. We store the numeric index of the feature set (starting with
0) in the reference set for the known training label, and also store the index in the test set for
the guessed label. If the classifier guesses pos but the training label is neg, then the index is
stored in the reference set for neg and the test set for pos.

We use the numeric index because the feature sets aren't
hashable, and we need a unique value for each feature set.

The nltk.metrics package contains functions for calculating both precision and recall,
so all we really have to do is build the sets, then call the appropriate function.

Text Classification

186

There's more...
Let's try it with the MaxentClassifier we trained in the previous recipe:

>>> me_precisions, me_recalls = precision_recall(me_classifier, test_
feats)
>>> me_precisions['pos']
0.8801652892561983
>>> me_precisions['neg']
0.85658914728682167
>>> me_recalls['pos']
0.85199999999999998
>>> me_recalls['neg']
0.88400000000000001

This classifier is much more well-rounded than the NaiveBayesClassifier. In this case,
the label bias is much less significant, and the reason is that the MaxentClassifier weighs
its features according to its own internal model. Words that are more significant are those
that occur primarily in a single label, and will get higher weights in the model. Words that are
common to both labels will get lower weights, as they are less significant.

F-measure
The F-measure is defined as the weighted harmonic mean of precision and recall. If p is the
precision, and r is the recall, the formula is:

1/(alpha/p + (1-alpha)/r)

where alpha is a weighing constant that defaults to 0.5. You can use nltk.metrics.f_
measure() to get the F-measure. It takes the same arguments as for the precision()
and recall() functions: a reference set and a test set. It's often used instead of
accuracy to measure a classifier. However, precision and recall are found to be much
more useful metrics, as the F-measure can hide the kinds of imbalances we saw with the
NaiveBayesClassifier.

See also
In the Training a naive Bayes classifier recipe, we collected training and testing feature sets,
and trained the NaiveBayesClassifier. The MaxentClassifier was trained in the
Training a maximum entropy classifier recipe. In the next recipe, we will explore eliminating
the less significant words, and use only the high information words to create our feature sets.

Chapter 7

187

Calculating high information words
A high information word is a word that is strongly biased towards a single classification
label. These are the kinds of words we saw when we called the show_most_informative_
features() method on both the NaiveBayesClassifier and the MaxentClassifier.
Somewhat surprisingly, the top words are different for both classifiers. This discrepancy is due
to how each classifier calculates the significance of each feature, and it's actually beneficial to
have these different methods as they can be combined to improve accuracy, as we will see in
the next recipe, Combining classifiers with voting.

The low information words are words that are common to all labels. It may be counter-intuitive,
but eliminating these words from the training data can actually improve accuracy, precision, and
recall. The reason this works is that using only high information words reduces the noise and
confusion of a classifier's internal model. If all the words/features are highly biased one way or
the other, it's much easier for the classifier to make a correct guess.

How to do it...
First, we need to calculate the high information words in the movie_review corpus.
We can do this using the high_information_words() function in featx.py:

from nltk.metrics import BigramAssocMeasures
from nltk.probability import FreqDist, ConditionalFreqDist

def high_information_words(labelled_words, score_
fn=BigramAssocMeasures.chi_sq, min_score=5):
 word_fd = FreqDist()
 label_word_fd = ConditionalFreqDist()

 for label, words in labelled_words:
 for word in words:
 word_fd.inc(word)
 label_word_fd[label].inc(word)

 n_xx = label_word_fd.N()
 high_info_words = set()

 for label in label_word_fd.conditions():
 n_xi = label_word_fd[label].N()
 word_scores = collections.defaultdict(int)

 for word, n_ii in label_word_fd[label].iteritems():
 n_ix = word_fd[word]
 score = score_fn(n_ii, (n_ix, n_xi), n_xx)
 word_scores[word] = score

 bestwords = [word for word, score in word_scores.iteritems() if
score >= min_score]

Text Classification

188

 high_info_words |= set(bestwords)

 return high_info_words

It takes one argument , which is a list of 2-tuples of the form [(label, words)] where
label is the classification label, and words is a list of words that occur under that label. It
returns a list of the high information words, sorted from most informative to least informative.

Once we have the high information words, we use the feature detector function bag_of_
words_in_set(), also found in featx.py, which will let us filter out all low information
words.

def bag_of_words_in_set(words, goodwords):
 return bag_of_words(set(words) & set(goodwords))

With this new feature detector, we can call label_feats_from_corpus() and get a new
train_feats and test_feats using split_label_feats(). These two functions were
covered in the Training a naive Bayes classifier recipe in this chapter.

>>> from featx import high_information_words, bag_of_words_in_set
>>> labels = movie_reviews.categories()
>>> labeled_words = [(l, movie_reviews.words(categories=[l])) for l in
labels]
>>> high_info_words = set(high_information_words(labeled_words))
>>> feat_det = lambda words: bag_of_words_in_set(words, high_info_
words)
>>> lfeats = label_feats_from_corpus(movie_reviews, feature_
detector=feat_det)
>>> train_feats, test_feats = split_label_feats(lfeats)

Now that we have new training and testing feature sets, let's train and evaluate a
NaiveBayesClassifier:

>>> nb_classifier = NaiveBayesClassifier.train(train_feats)
>>> accuracy(nb_classifier, test_feats)
0.91000000000000003
>>> nb_precisions, nb_recalls = precision_recall(nb_classifier, test_
feats)
>>> nb_precisions['pos']
0.89883268482490275
>>> nb_precisions['neg']
0.92181069958847739
>>> nb_recalls['pos']
0.92400000000000004
>>> nb_recalls['neg']
0.89600000000000002

Chapter 7

189

While the neg precision and pos recall have both decreased somewhat, neg recall
and pos precision have increased drastically. Accuracy is now a little higher than the
MaxentClassifier.

How it works...
The high_information_words() function starts by counting the frequency of every word,
as well as the conditional frequency for each word within each label. This is why we need the
words to be labelled, so we know how often each word occurs in each label.

Once we have this FreqDist and ConditionalFreqDist, we can score each word on a
per-label basis. The default score_fn is nltk.metrics.BigramAssocMeasures.chi_
sq(), which calculates the chi-square score for each word using the following parameters:

1.	 n_ii: The frequency of the word in the label.

2.	 n_ix: The total frequency of the word across all labels.

3.	 n_xi: The total frequency of all words that occurred in the label.

4.	 n_xx: The total frequency for all words in all labels.

The simplest way to think about these numbers is that the closer n_ii is to n_ix, the higher
the score. Or, the more often a word occurs in a label, relative to its overall occurrence, the
higher the score.

Once we have the scores for each word in each label, we can filter out all words whose score
is below the min_score threshold. We keep the words that meet or exceed the threshold,
and return all high scoring words in each label.

It is recommended to experiment with different values of min_score to
see what happens. In some cases, less words may improve the metrics even
more, while in other cases more words is better.

There's more...
There are a number of other scoring functions available in the BigramAssocMeasures
class, such as phi_sq() for phi-square, pmi() for pointwise mutual information, and
jaccard() for using the Jaccard index. They all take the same arguments, and so can be
used interchangeably with chi_sq().

Text Classification

190

MaxentClassifier with high information words
Let's evaluate the MaxentClassifier using the high information words feature sets:

>>> me_classifier = MaxentClassifier.train(train_feats,
algorithm='megam', trace=0, max_iter=10)
>>> accuracy(me_classifier, test_feats)
0.88200000000000001
>>> me_precisions, me_recalls = precision_recall(me_classifier, test_
feats)
>>> me_precisions['pos']
0.88663967611336036
>>> me_precisions['neg']
0.87747035573122534
>>> me_recalls['pos']
0.876
>>> me_recalls['neg']
0.88800000000000001

As you can see, the improvements are much more modest than with the
NaiveBayesClassifier due to the fact that the MaxentClassifier already weights
all features by significance. But using only the high information words still makes a positive
difference compared to when we used all the words. And the precisions and recalls for each
label are closer to each other, giving the MaxentClassifier even more well-rounded
performance.

DecisionTreeClassifier with high information words
Now, let's evaluate the DecisionTreeClassifier:

>>> dt_classifier = DecisionTreeClassifier.train(train_feats,
binary=True, depth_cutoff=20, support_cutoff=20, entropy_cutoff=0.01)
>>> accuracy(dt_classifier, test_feats)
0.68600000000000005
>>> dt_precisions, dt_recalls = precision_recall(dt_classifier, test_
feats)
>>> dt_precisions['pos']
0.6741573033707865
>>> dt_precisions['neg']
0.69957081545064381
>>> dt_recalls['pos']
0.71999999999999997
>>> dt_recalls['neg']
0.65200000000000002

Chapter 7

191

The accuracy is about the same, even with a larger depth_cutoff, and smaller support_
cutoff and entropy_cutoff. The results show that the DecisionTreeClassifier was
already putting the high information features at the top of the tree, and it will only improve if
we increase the depth significantly. But that could make training time prohibitively long.

See also
We started this chapter with the Bag of Words feature extraction recipe. The
NaiveBayesClassifier was originally trained in the Training a naive Bayes classifier
recipe, and the MaxentClassifier was trained in the Training a maximum entropy
classifier recipe. Details on precision and recall can be found in the Measuring precision
and recall of a classifier recipe. We will be using only high information words in the next two
recipes, where we combine classifiers.

Combining classifiers with voting
One way to improve classification performance is to combine classifiers. The simplest way to
combine multiple classifiers is to use voting, and choose whichever label gets the most votes.
For this style of voting, it's best to have an odd number of classifiers so that there are no ties.
This means combining at least three classifiers together. The individual classifiers should also
use different algorithms; the idea is that multiple algorithms are better than one, and the
combination of many can compensate for individual bias.

Getting ready
As we need to have at least three trained classifiers to combine, we are going to use a
NaiveBayesClassifier, a DecisionTreeClassifier, and a MaxentClassifier,
all trained on the highest information words of the movie_reviews corpus. These were all
trained in the previous recipe, so we will combine these three classifiers with voting.

How to do it...
In the classification.py module, there is a MaxVoteClassifier class.

import itertools
from nltk.classify import ClassifierI
from nltk.probability import FreqDist

class MaxVoteClassifier(ClassifierI):
 def __init__(self, *classifiers):
 self._classifiers = classifiers

Text Classification

192

 self._labels = sorted(set(itertools.chain(*[c.labels() for c in
classifiers])))

 def labels(self):
 return self._labels

 def classify(self, feats):
 counts = FreqDist()

 for classifier in self._classifiers:
 counts.inc(classifier.classify(feats))

 return counts.max()

To create it, you pass in a list of classifiers that you want to combine. Once created, it works
just like any other classifier. Though it may take about three times longer to classify, it should
generally be at least as accurate as any individual classifier.

>>> from classification import MaxVoteClassifier
>>> mv_classifier = MaxVoteClassifier(nb_classifier, dt_classifier,
me_classifier)
>>> mv_classifier.labels()
['neg', 'pos']
>>> accuracy(mv_classifier, test_feats)
0.89600000000000002
>>> mv_precisions, mv_recalls = precision_recall(mv_classifier, test_
feats)
>>> mv_precisions['pos']
0.8928571428571429
>>> mv_precisions['neg']
0.89919354838709675
>>> mv_recalls['pos']
0.90000000000000002
>>> mv_recalls['neg']
0.89200000000000002

These metrics are about on par with the MaxentClassifier and
NaiveBayesClassifier. Some numbers are slightly better, some worse. It's likely
that a significant improvement to the DecisionTreeClassifier could produce
some better numbers.

Chapter 7

193

How it works...
The MaxVoteClassifier extends the nltk.classify.ClassifierI interface, which
requires implementing at least two methods:

ff The labels() function must return a list of possible labels. This will be the union
of the labels() of each classifier passed in at initialization.

ff The classify() function takes a single feature set and returns a label. The
MaxVoteClassifier iterates over its classifiers and calls classify() on each
of them, recording their label as a vote in a FreqDist. The label with the most votes
is returned using FreqDist.max().

While it doesn't check for this, the MaxVoteClassifier assumes that all the classifiers
passed in at initialization use the same labels. Breaking this assumption may lead to odd
behavior.

See also
In the previous recipe, we trained a NaiveBayesClassifier, a MaxentClassifier, and
a DecisionTreeClassifier using only the highest information words. In the next recipe,
we will use the reuters corpus and combine many binary classifiers in order to create a
multi-label classifier.

Classifying with multiple binary classifiers
So far we have focused on binary classifiers, which classify with one of two possible labels.
The same techniques for training a binary classifier can also be used to create a multi-class
classifier, which is a classifier that can classify with one of many possible labels. But there
are also cases where you need to be able to classify with multiple labels. A classifier that can
return more than one label is a multi-label classifier.

A common technique for creating a multi-label classifier is to combine many binary classifiers,
one for each label. You train each binary classifier so that it either returns a known label, or
returns something else to signal that the label does not apply. Then you can run all the binary
classifiers on your feature set to collect all the applicable labels.

Text Classification

194

Getting ready
The reuters corpus contains multi-labeled text that we can use for training and evaluation.

>>> from nltk.corpus import reuters
>>> len(reuters.categories())
90

We will train one binary classifier per label, which means we will end up with
90 binary classifiers.

How to do it...
First, we should calculate the high information words in the reuters corpus. This is done
with the reuters_high_info_words() function in featx.py.

from nltk.corpus import reuters

def reuters_high_info_words(score_fn=BigramAssocMeasures.chi_sq):
 labeled_words = []

 for label in reuters.categories():
 labeled_words.append((label, reuters.words(categories=[label])))

 return high_information_words(labeled_words, score_fn=score_fn)

Then we need to get training and test feature sets based on those high information words.
This is done with the reuters_train_test_feats(), also found in featx.py. It defaults
to using bag_of_words() as its feature_detector, but we will be overriding this using
bag_of_words_in_set() to use only the high information words.

def reuters_train_test_feats(feature_detector=bag_of_words):
 train_feats = []
 test_feats = []

 for fileid in reuters.fileids():
 if fileid.startswith('training'):
 featlist = train_feats
 else: # fileid.startswith('test')
 featlist = test_feats

 feats = feature_detector(reuters.words(fileid))
 labels = reuters.categories(fileid)
 featlist.append((feats, labels))

 return train_feats, test_feats

Chapter 7

195

We can use these two functions to get a list of multi-labeled training and testing feature sets.

>>> from featx import reuters_high_info_words, reuters_train_test_
feats
>>> rwords = reuters_high_info_words()
>>> featdet = lambda words: bag_of_words_in_set(words, rwords)
>>> multi_train_feats, multi_test_feats = reuters_train_test_
feats(featdet)

The multi_train_feats and multi_test_feats are multi-labeled feature sets.
That means they have a list of labels, instead of a single label, and they look like the
[(featureset, [label])], as each feature set can have one or more labels. With this
training data, we can train multiple binary classifiers. The train_binary_classifiers()
function in the classification.py takes a training function, a list of multi-label feature
sets, and a set of possible labels to return a dict of the label : binary classifier.

def train_binary_classifiers(trainf, labelled_feats, labelset):
 pos_feats = collections.defaultdict(list)
 neg_feats = collections.defaultdict(list)
 classifiers = {}

 for feat, labels in labelled_feats:
 for label in labels:
 pos_feats[label].append(feat)

 for label in labelset - set(labels):
 neg_feats[label].append(feat)

 for label in labelset:
 postrain = [(feat, label) for feat in pos_feats[label]]
 negtrain = [(feat, '!%s' % label) for feat in neg_feats[label]]
 classifiers[label] = trainf(postrain + negtrain)

 return classifiers

To use this function, we need to provide a training function that takes a single
argument, which is the training data. This will be a simple lambda wrapper around the
MaxentClassifier.train(), so we can specify extra keyword arguments.

>>> from classification import train_binary_classifiers
>>> trainf = lambda train_feats: MaxentClassifier.train(train_feats,
algorithm='megam', trace=0, max_iter=10)
>>> labelset = set(reuters.categories())
>>> classifiers = train_binary_classifiers(trainf, multi_train_feats,
labelset)
>>> len(classifiers)
90

Text Classification

196

Now we can define a MultiBinaryClassifier, which takes a list of labeled classifiers
of the form [(label, classifier)] where the classifier is assumed to be a binary
classifier that either returns the label, or something else if the label doesn't apply.

from nltk.classify import MultiClassifierI

class MultiBinaryClassifier(MultiClassifierI):
 def __init__(self, *label_classifiers):
 self._label_classifiers = dict(label_classifiers)
 self._labels = sorted(self._label_classifiers.keys())

 def labels(self):
 return self._labels

 def classify(self, feats):
 lbls = set()

 for label, classifier in self._label_classifiers.iteritems():
 if classifier.classify(feats) == label:
 lbls.add(label)

 return lbls

We can construct this class using the binary classifiers we just created.

>>> from classification import MultiBinaryClassifier
>>> multi_classifier = MultiBinaryClassifier(*classifiers.items())

To evaluate this classifier, we can use precision and recall, but not accuracy. That's because
the accuracy function assumes single values, and doesn't take into account partial matches.
For example, if the multi-classifier returns three labels for a feature set, and two of them are
correct but the third is not, then the accuracy() would mark that as incorrect. So instead
of using accuracy, we will use the masi distance, which measures partial overlap between
two sets. The lower the masi distance, the better the match. A lower average masi distance,
therefore, means more accurate partial matches. The multi_metrics() function in the
classification.py calculates the precision and recall of each label, along with the
average masi distance.

import collections
from nltk import metrics

def multi_metrics(multi_classifier, test_feats):
 mds = []
 refsets = collections.defaultdict(set)
 testsets = collections.defaultdict(set)

 for i, (feat, labels) in enumerate(test_feats):
 for label in labels:
 refsets[label].add(i)

 guessed = multi_classifier.classify(feat)

Chapter 7

197

 for label in guessed:
 testsets[label].add(i)

 mds.append(metrics.masi_distance(set(labels), guessed))

 avg_md = sum(mds) / float(len(mds))
 precisions = {}
 recalls = {}

 for label in multi_classifier.labels():
 precisions[label] = metrics.precision(refsets[label],
testsets[label])
 recalls[label] = metrics.recall(refsets[label], testsets[label])

 return precisions, recalls, avg_md

Using this with the multi_classifier we just created, gives us the following results:

>>> from classification import multi_metrics
>>> multi_precisions, multi_recalls, avg_md = multi_metrics(multi_
classifier, multi_test_feats)
>>> avg_md
0.18191264129488705

So our average masi distance is fairly low, which means our multi-label classifier is usually
mostly accurate. Let's take a look at a few precisions and recalls:

>>> multi_precisions['zinc']
1.0
>>> multi_recalls['zinc']
0.84615384615384615
>>> len(reuters.fileids(categories=['zinc']))
34
>>> multi_precisions['sunseed']
0.5
>>> multi_recalls['sunseed']
0.20000000000000001
>>> len(reuters.fileids(categories=['sunseed']))
16
>>> multi_precisions['rand']
None
>>> multi_recalls['rand']
0.0
>>> len(reuters.fileids(categories=['rand']))
3

Text Classification

198

As you can see, there's quite a range of values. But, in general, the labels that have more
feature sets will have higher precision and recall, and those with less feature sets will have
lower performance. When there's not a lot of feature sets for a classifier to learn from, you
can't expect it to perform well.

How it works...
The reuters_high_info_words() function is fairly simple; it constructs a list of
[(label, words)] for each category of the reuters corpus, then passes it in to the
high_information_words() function to return a list of the most informative words in
the reuters corpus.

With the resulting set of words, we create a feature detector function using the bag_of_
words_in_set(). This is then passed in to the reuters_train_test_feats(), which
returns two lists, the first containing [(feats, labels)] for all the training files, and the
second list has the same for all the test files.

Next, we train a binary classifier for each label using train_binary_classifiers().
This function constructs two lists for each label, one containing positive training feature
sets, the other containing negative training feature sets. The Positive feature sets are those
feature sets that classify for the label. The Negative feature sets for a label comes from the
positive feature sets for all other labels. For example, a feature set that is positive for zinc
and sunseed is a negative example for all the other 88 labels. Once we have positive and
negative feature sets for each label, we can train a binary classifier for each label using the
given training function.

With the resulting dictionary of binary classifiers, we create an instance of the
MultiBinaryClassifier. This class extends the nltk.classify.MultiClassifierI
interface, which requires at least two functions:

1.	 The labels() function must return a list of possible labels.

2.	 The classify() function takes a single feature set and returns a set of labels.
To create this set, we iterate over the binary classifiers, and any time a call to the
classify() returns its label, we add it to the set. If it returns something else,
we continue.

Chapter 7

199

Finally, we evaluate the multi-label classifier using the multi_metrics() function.
It is similar to the precision_recall() function from the Measuring precision and
recall of a classifier recipe, but in this case we know the classifier is an instance of the
MultiClassifierI and it can therefore return multiple labels. It also keeps track of
the masi distance for each set of classification labels using the nltk.metrics.masi_
distance(). The multi_metrics() function returns three values:

1.	 A dictionary of precisions for each label.

2.	 A dictionary of recalls for each label.

3.	 The average masi distance for each feature set.

There's more...
The nature of the reuters corpus introduces the class-imbalance problem. This problem
occurs when some labels have very few feature sets, and other labels have many. The
binary classifiers that have few positive instances to train on end up with far more negative
instances, and are therefore strongly biased towards the negative label. There's nothing
inherently wrong about this, as the bias reflects the data, but the negative instances can
overwhelm the classifier to the point where it's nearly impossible to get a positive result. There
are a number of advanced techniques for overcoming this problem, but they are out of the
scope of this book.

See also
The MaxentClassifier is covered in the Training a maximum entropy classifier recipe in
this chapter. The Measuring precision and recall of a classifier recipe shows how to evaluate
a classifier, while the Calculating high information words recipe describes how to use only the
best features.

8
Distributed

Processing and
Handling Large

Datasets

In this chapter, we will cover:

ff Distributed tagging with execnet

ff Distributed chunking with execnet

ff Parallel list processing with execnet

ff Storing a frequency distribution in Redis

ff Storing a conditional frequency distribution in Redis

ff Storing an ordered dictionary in Redis

ff Distributed word scoring with Redis and execnet

Distributed Processing and Handling Large Datasets

202

Introduction
NLTK is great for in-memory single-processor natural language processing. However, there are
times when you have a lot of data to process and want to take advantage of multiple CPUs,
multi-core CPUs, and even multiple computers. Or perhaps you want to store frequencies
and probabilities in a persistent, shared database so multiple processes can access it
simultaneously. For the first case, we'll be using execnet to do parallel and distributed
processing with NLTK. For the second case, you'll learn how to use the Redis data structure
server/database to store frequency distributions and more.

Distributed tagging with execnet
Execnet is a distributed execution library for python. It allows you to create gateways
and channels for remote code execution. A gateway is a connection from the calling
process to a remote environment. The remote environment can be a local subprocess or
an SSH connection to a remote node. A channel is created from a gateway and handles
communication between the channel creator and the remote code.

Since many NLTK processes require 100 percent CPU utilization during computation, execnet
is an ideal way to distribute that computation for maximum resource usage. You can create
one gateway per CPU core, and it doesn't matter whether the cores are in your local computer
or spread across remote machines. In many situations, you only need to have the trained
objects and data on a single machine, and can send the objects and data to the remote
nodes as needed.

Getting ready
You'll need to install execnet for this to work. It should be as simple as sudo pip install
execnet or sudo easy_install execnet. The current version of execnet, as of this
writing, is 1.0.8. The execnet homepage, which has API documentation and examples, is at
http://codespeak.net/execnet/.

How to do it...
We start by importing the required modules, as well as an additional module remote_tag.
py that will be explained in the next section. We also need to import pickle so we can
serialize the tagger. Execnet does not natively know how to deal with complex objects such
as a part-of-speech tagger, so we must dump the tagger to a string using pickle.dumps().
We'll use the default tagger that's used by the nltk.tag.pos_tag() function, but you
could load and dump any pre-trained part-of-speech tagger as long as it implements the
TaggerI interface.

Chapter 8

203

Once we have a serialized tagger, we start execnet by making a gateway with execnet.
makegateway(). The default gateway creates a Python subprocess, and we can call the
remote_exec() method with the remote_tag module to create a channel. With an open
channel, we send over the serialized tagger and then the first tokenized sentence of the
treebank corpus.

You don't have to do any special serialization of simple types
such as lists and tuples, since execnet already knows how
to handle serializing the built-in types.

Now if we call channel.receive(), we get back a tagged sentence that is equivalent to the
first tagged sentence in the treebank corpus, so we know the tagging worked. We end by
exiting the gateway, which closes the channel and kills the subprocess.

>>> import execnet, remote_tag, nltk.tag, nltk.data
>>> from nltk.corpus import treebank
>>> import cPickle as pickle
>>> tagger = pickle.dumps(nltk.data.load(nltk.tag._POS_TAGGER))
>>> gw = execnet.makegateway()
>>> channel = gw.remote_exec(remote_tag)
>>> channel.send(tagger)
>>> channel.send(treebank.sents()[0])
>>> tagged_sentence = channel.receive()
>>> tagged_sentence == treebank.tagged_sents()[0]
True
>>> gw.exit()

Visually, the communication process looks like this:

Distributed Processing and Handling Large Datasets

204

How it works...
The gateway's remote_exec() method takes a single argument that can be one of the
following three types:

1.	 A string of code to execute remotely.

2.	 The name of a pure function that will be serialized and executed remotely.

3.	 The name of a pure module whose source will be executed remotely.

We use the third option with the remote_tag.py module, which is defined as follows:

 import cPickle as pickle

 if __name__ == '__channelexec__':
 tagger = pickle.loads(channel.receive())

 for sentence in channel:
 channel.send(tagger.tag(sentence))

A pure module is a module that is self-contained. It can only access Python modules that
are available where it executes, and does not have access to any variables or states that
exist wherever the gateway is initially created. To detect that the module is being executed by
execnet, you can look at the __name__ variable. If it's equal to '__channelexec__', then
it is being used to create a remote channel. This is similar to doing if __name__ == '__
main__' to check if a module is being executed on the command line.

The first thing we do is call channel.receive() to get the serialized tagger, which we
load using pickle.loads(). You may notice that channel is not imported anywhere—that's
because it is included in the global namespace of the module. Any module that execnet
executes remotely has access to the channel variable in order to communicate with the
channel creator.

Once we have the tagger, we iteratively tag() each tokenized sentence that we receive
from the channel. This allows us to tag as many sentences as the sender wants to send,
as iteration will not stop until the channel is closed. What we've essentially created is a
compute node for part-of-speech tagging that dedicates 100 percent of its resources to
tagging whatever sentences it receives. As long as the channel remains open, the node is
available for processing.

Chapter 8

205

There's more...
This is a simple example that opens a single gateway and channel. But execnet can do a lot
more, such as opening multiple channels to increase parallel processing, as well as opening
gateways to remote hosts over SSH to do distributed processing.

Multiple channels
We can create multiple channels, one per gateway, to make the processing more parallel.
Each gateway creates a new subprocess (or remote interpreter if using an SSH gateway)
and we use one channel per gateway for communication. Once we've created two channels,
we can combine them using the MultiChannel class, which allows us to iterate over the
channels, and make a receive queue to receive messages from each channel.

After creating each channel and sending the tagger, we cycle through the channels to send an
even number of sentences to each channel for tagging. Then we collect all the responses from
the queue. A call to queue.get() will return a 2-tuple of (channel, message) in case
you need to know which channel the message came from.

If you don't want to wait forever, you can also pass a timeout
keyword argument with the maximum number of seconds you want
to wait, as in queue.get(timeout=4). This can be a good way
to handle network errors.

Once all the tagged sentences have been collected, we can exit the gateways. Here's the code:

>>> import itertools
>>> gw1 = execnet.makegateway()
>>> gw2 = execnet.makegateway()
>>> ch1 = gw1.remote_exec(remote_tag)
>>> ch1.send(tagger)
>>> ch2 = gw2.remote_exec(remote_tag)
>>> ch2.send(tagger)
>>> mch = execnet.MultiChannel([ch1, ch2])
>>> queue = mch.make_receive_queue()
>>> channels = itertools.cycle(mch)
>>> for sentence in treebank.sents()[:4]:
... channel = channels.next()
... channel.send(sentence)
>>> tagged_sentences = []
>>> for i in range(4):
... channel, tagged_sentence = queue.get()
... tagged_sentences.append(tagged_sentence)
>>> len(tagged_sentences)

Distributed Processing and Handling Large Datasets

206

4
>>> gw1.exit()
>>> gw2.exit()

Local versus remote gateways
The default gateway spec is popen, which creates a Python subprocess on the
local machine. This means execnet.makegateway() is equivalent to execnet.
makegateway('popen'). If you have passwordless SSH access to a remote machine, then
you can create a remote gateway using execnet.makegateway('ssh=remotehost')
where remotehost should be the hostname of the machine. A SSH gateway spawns a new
Python interpreter for executing the code remotely. As long as the code you're using for remote
execution is pure, you only need a Python interpreter on the remote machine.

Channels work exactly the same no matter what kind of gateway is used; the only difference
will be communication time. This means you can mix and match local subprocesses with
remote interpreters to distribute your computations across many machines in a network.
There are many more details on gateways in the API documentation at http://codespeak.
net/execnet/basics.html.

See also

Part-of-speech tagging and taggers are covered in detail in Chapter 4, Part-of-Speech
Tagging. In the next recipe, we'll use execnet to do distributed chunk extraction.

Distributed chunking with execnet
In this recipe, we'll do chunking and tagging over an execnet gateway. This will be very
similar to the tagging in the previous recipe, but we'll be sending two objects instead of one,
and we will be receiving a Tree instead of a list, which requires pickling and unpickling for
serialization.

Getting ready
As in the previous recipe, you must have execnet installed.

Chapter 8

207

How to do it...
The setup code is very similar to the last recipe, and we'll use the same pickled tagger as
well. First we'll pickle the default chunker used by nltk.chunk.ne_chunk(), though any
chunker would do. Next, we make a gateway for the remote_chunk module, get a channel,
and send the pickled tagger and chunker over. Then we receive back a pickled Tree,
which we can unpickle and inspect to see the result. Finally, we exit the gateway.

>>> import execnet, remote_chunk
>>> import nltk.data, nltk.tag, nltk.chunk
>>> import cPickle as pickle
>>> from nltk.corpus import treebank_chunk
>>> tagger = pickle.dumps(nltk.data.load(nltk.tag._POS_TAGGER))
>>> chunker = pickle.dumps(nltk.data.load(nltk.chunk._MULTICLASS_NE_
CHUNKER))
>>> gw = execnet.makegateway()
>>> channel = gw.remote_exec(remote_chunk)
>>> channel.send(tagger)
>>> channel.send(chunker)
>>> channel.send(treebank_chunk.sents()[0])
>>> chunk_tree = pickle.loads(channel.receive())
>>> chunk_tree
Tree('S', [Tree('PERSON', [('Pierre', 'NNP')]), Tree('ORGANIZATION',
[('Vinken', 'NNP')]), (',', ','), ('61', 'CD'), ('years', 'NNS'),
('old', 'JJ'), (',', ','), ('will', 'MD'), ('join', 'VB'), ('the',
'DT'), ('board', 'NN'), ('as', 'IN'), ('a', 'DT'), ('nonexecutive',
'JJ'), ('director', 'NN'), ('Nov.', 'NNP'), ('29', 'CD'), ('.', '.')])
>>> gw.exit()

The communication this time is slightly different.

Distributed Processing and Handling Large Datasets

208

How it works...
The remote_chunk.py module is just a little bit more complicated than the remote_tag.
py module from the previous recipe. In addition to receiving a pickled tagger, it also expects
to receive a pickled chunker that implements the ChunkerI interface. Once it has both a
tagger and a chunker, it expects to receive any number of tokenized sentences, which it
tags and parses into a Tree. This tree is then pickled and sent back over the channel.

import cPickle as pickle

if __name__ == '__channelexec__':
 tagger = pickle.loads(channel.receive())
 chunker = pickle.loads(channel.receive())

 for sent in channel:
 tree = chunker.parse(tagger.tag(sent))
 channel.send(pickle.dumps(tree))

The Tree must be pickled because it is not a simple built-in type.

There's more...
Note that the remote_chunk module is pure. Its only external dependency is the pickle
(or cPickle) module, which is part of the Python standard library. It doesn't need to import
any NLTK modules in order to use the tagger or chunker, because all the necessary data is
pickled and sent over the channel. As long as you structure your remote code like this, with
no external dependencies, you only need NLTK to be installed on a single machine—the one
that starts the gateway and sends the objects over the channel.

Python subprocesses
If you look at your task/system monitor (or top in *nix) while running the execnet code,
you may notice a few extra python Processes. Every gateway spawns a new, self-contained,
shared-nothing Python interpreter process, which is killed when you call the exit() method.
Unlike with threads, there is no shared memory to worry about, and no global interpreter lock
to slow things down. All you have are separate communicating processes. This is true whether
the processes are local or remote. Instead of locking and synchronization, all you have to
worry about is the order in which the messages are sent and received.

See also
The previous recipe explains execnet gateways and channels in detail. In the next recipe,
we'll use execnet to process a list in parallel.

Chapter 8

209

Parallel list processing with execnet
This recipe presents a pattern for using execnet to process a list in parallel. It's a function
pattern for mapping each element in the list to a new value, using execnet to do the
mapping in parallel.

How to do it...
First, we need to decide exactly what we want to do. In this example, we'll just double integers,
but we could do any pure computation. Following is the module remote_double.py, which
will be executed by execnet. It receives a 2-tuple of (i, arg), assumes arg is a number,
and sends back (i, arg*2). The need for i will be explained in the next section.

if __name__ == '__channelexec__':
 for (i, arg) in channel:
 channel.send((i, arg * 2))

To use this module to double every element in a list, we import the plists module (explained
in the next section) and call plists.map() with the remote_double module, and a list of
integers to double.

>>> import plists, remote_double
>>> plists.map(remote_double, range(10))
[0, 2, 4, 6, 8, 10, 12, 14, 16, 18]

Communication between channels is very simple, as shown in the following diagram:

How it works...
The map() function is defined in plists.py. It takes a pure module, a list of arguments,
and an optional list of 2-tuples consisting of (spec, count). The default specs are
[('popen', 2)] , which means we'll open two local gateways and channels. Once these
channels are opened, we put them into an itertools cycle, which creates an infinite iterator
that cycles back to the beginning once it hits the end.

Distributed Processing and Handling Large Datasets

210

Now we can send each argument in args to a channel for processing, and since the
channels are cycled, each channel gets an almost even distribution of arguments. This is
where i comes in—we don't know in what order we'll get the results back, so i, as the index of
each arg in the list, is passed to the channel and back so we can combine the results in the
original order. We then wait for results with a MultiChannel receive queue and insert them
into a pre-filled list that's the same length as the original args. Once we have all the expected
results, we can exit the gateways and return the results.

import itertools, execnet

def map(mod, args, specs=[('popen', 2)]):
 gateways = []
 channels = []

 for spec, count in specs:
 for i in range(count):
 gw = execnet.makegateway(spec)
 gateways.append(gw)
 channels.append(gw.remote_exec(mod))

 cyc = itertools.cycle(channels)

 for i, arg in enumerate(args):
 channel = cyc.next()
 channel.send((i, arg))

 mch = execnet.MultiChannel(channels)
 queue = mch.make_receive_queue()
 l = len(args)
 results = [None] * l

 for j in range(l):
 channel, (i, result) = queue.get()
 results[i] = result

 for gw in gateways:
 gw.exit()

 return results

There's more...
You can increase the parallelization by modifying the specs, as follows:

>>> plists.map(remote_double, range(10), [('popen', 4)])
[0, 2, 4, 6, 8, 10, 12, 14, 16, 18]

However, more parallelization does not necessarily mean faster processing. It depends on the
available resources, and the more gateways and channels you have open, the more overhead
is required. Ideally there should be one gateway and channel per CPU core.

Chapter 8

211

You can use plists.map() with any pure module as long as it receives and sends back
2-tuples where i is the first element. This pattern is most useful when you have a bunch
of numbers to crunch, and want to process them as quickly as possible.

See also
The previous recipes cover execnet features in greater detail.

Storing a frequency distribution in Redis
The nltk.probability.FreqDist class is used in many classes throughout NLTK for
storing and managing frequency distributions. It's quite useful, but it's all in-memory, and
doesn't provide a way to persist the data. A single FreqDist is also not accessible to
multiple processes. We can change all that by building a FreqDist on top of Redis.

Redis is a data structure server that is one of the more popular NoSQL databases.
Among other things, it provides a network accessible database for storing dictionaries
(also known as hash maps). Building a FreqDist interface to a Redis hash map will allow
us to create a persistent FreqDist that is accessible to multiple local and remote processes
at the same time.

Most Redis operations are atomic, so it's even possible to have
multiple processes write to the FreqDist concurrently.

Getting ready
For this and subsequent recipes, we need to install both Redis and redis-py. A quick
start install guide for Redis is available at http://code.google.com/p/redis/wiki/
QuickStart. To use hash maps, you should install at least version 2.0.0 (the latest version
as of this writing).

The Redis Python driver redis-py can be installed using pip install redis or easy_
install redis. Ensure you install at least version 2.0.0 to use hash maps. The redis-
py homepage is at http://github.com/andymccurdy/redis-py/.

Once both are installed and a redis-server process is running, you're ready to go. Let's
assume redis-server is running on localhost on port 6379 (the default host and port).

Distributed Processing and Handling Large Datasets

212

How to do it...
The FreqDist class extends the built-in dict class, which makes a FreqDist an enhanced
dictionary. The FreqDist class provides two additional key methods: inc() and N(). The
inc() method takes a single sample argument for the key, along with an optional count
keyword argument that defaults to 1, and increments the value at sample by count. N()
returns the number of sample outcomes, which is the sum of all the values in the frequency
distribution.

We can create an API-compatible class on top of Redis by extending a RedisHashMap (that
will be explained in the next section), then implementing the inc() and N() methods.
Since the FreqDist only stores integers, we also override a few other methods to ensure
values are always integers. This RedisHashFreqDist (defined in redisprob.py) uses the
hincrby command for the inc() method to increment the sample value by count, and
sums all the values in the hash map for the N() method.

from rediscollections import RedisHashMap

class RedisHashFreqDist(RedisHashMap):
 def inc(self, sample, count=1):
 self._r.hincrby(self._name, sample, count)

 def N(self):
 return int(sum(self.values()))

 def __getitem__(self, key):
 return int(RedisHashMap.__getitem__(self, key) or 0)

 def values(self):
 return [int(v) for v in RedisHashMap.values(self)]

 def items(self):
 return [(k, int(v)) for (k, v) in RedisHashMap.items(self)]

We can use this class just like a FreqDist. To instantiate it, we must pass a Redis
connection and the name of our hash map. The name should be a unique reference to
this particular FreqDist so that it doesn't clash with any other keys in Redis.

>>> from redis import Redis
>>> from redisprob import RedisHashFreqDist
>>> r = Redis()
>>> rhfd = RedisHashFreqDist(r, 'test')
>>> len(rhfd)
0
>>> rhfd.inc('foo')
>>> rhfd['foo']
1
>>> rhfd.items()
>>> len(rhfd)
1

Chapter 8

213

The name of the hash map and the sample keys will be encoded to replace
whitespace and & characters with _. This is because the Redis protocol
uses these characters for communication. It's best if the name and keys don't
include whitespace to begin with.

How it works...
Most of the work is done in the RedisHashMap class, found in rediscollections.py,
which extends collections.MutableMapping, then overrides all methods that require
Redis-specific commands. Here's an outline of each method that uses a specific Redis
command:

ff __len__(): Uses the hlen command to get the number of elements in the hash
map

ff __contains__(): Uses the hexists command to check if an element exists in
the hash map

ff __getitem__(): Uses the hget command to get a value from the hash map

ff __setitem__(): Uses the hset command to set a value in the hash map

ff __delitem__(): Uses the hdel command to remove a value from the hash map

ff keys(): Uses the hkeys command to get all the keys in the hash map

ff values(): Uses the hvals command to get all the values in the hash map

ff items(): Uses the hgetall command to get a dictionary containing all the keys
and values in the hash map

ff clear(): Uses the delete command to remove the entire hash map from Redis

Extending collections.MutableMapping provides a number
of other dict compatible methods based on the previous methods,
such as update() and setdefault(), so we don't have to
implement them ourselves.

The initialization used for the RedisHashFreqDist is actually implemented here, and
requires a Redis connection and a name for the hash map. The connection and name
are both stored internally to use with all the subsequent commands. As mentioned before,
whitespace is replaced by underscore in the name and all keys, for compatibility with the
Redis network protocol.

import collections, re

white = r'[\s&]+'

def encode_key(key):

Distributed Processing and Handling Large Datasets

214

 return re.sub(white, '_', key.strip())

class RedisHashMap(collections.MutableMapping):
 def __init__(self, r, name):
 self._r = r
 self._name = encode_key(name)

 def __iter__(self):
 return iter(self.items())

 def __len__(self):
 return self._r.hlen(self._name)

 def __contains__(self, key):
 return self._r.hexists(self._name, encode_key(key))

 def __getitem__(self, key):
 return self._r.hget(self._name, encode_key(key))

 def __setitem__(self, key, val):
 self._r.hset(self._name, encode_key(key), val)

 def __delitem__(self, key):
 self._r.hdel(self._name, encode_key(key))

 def keys(self):
 return self._r.hkeys(self._name)

 def values(self):
 return self._r.hvals(self._name)

 def items(self):
 return self._r.hgetall(self._name).items()

 def get(self, key, default=0):
 return self[key] or default

 def iteritems(self):
 return iter(self)

 def clear(self):
 self._r.delete(self._name)

There's more...
The RedisHashMap can be used by itself as a persistent key-value dictionary. However, while
the hash map can support a large number of keys and arbitrary string values, its storage
structure is more optimal for integer values and smaller numbers of keys. However, don't let
that stop you from taking full advantage of Redis. It's very fast (for a network server) and does
its best to efficiently encode whatever data you throw at it.

Chapter 8

215

While Redis is quite fast for a network database, it will be
significantly slower than the in-memory FreqDist. There's no way
around this, but while you sacrifice speed, you gain persistence and
the ability to do concurrent processing.

See also
In the next recipe, we'll create a conditional frequency distribution based on the Redis
frequency distribution created here.

Storing a conditional frequency distribution
in Redis

The nltk.probability.ConditionalFreqDist class is a container for FreqDist
instances, with one FreqDist per condition. It is used to count frequencies that are
dependent on another condition, such as another word or a class label. We used this class
in the Calculating high information words recipe in Chapter 7, Text Classification. Here, we'll
create an API-compatible class on top of Redis using the RedisHashFreqDist from the
previous recipe.

Getting ready
As in the previous recipe, you'll need to have Redis and redis-py installed with an instance
of redis-server running.

How to do it...
We define a RedisConditionalHashFreqDist class in redisprob.py that extends
nltk.probability.ConditionalFreqDist and overrides the __contains__()
and __getitem__() methods. We then override __getitem__() so we can create an
instance of RedisHashFreqDist instead of a FreqDist, and override __contains__()
so we can call encode_key() from the rediscollections module before checking if the
RedisHashFreqDist exists.

from nltk.probability import ConditionalFreqDist
from rediscollections import encode_key

class RedisConditionalHashFreqDist(ConditionalFreqDist):
 def __init__(self, r, name, cond_samples=None):
 self._r = r
 self._name = name
 ConditionalFreqDist.__init__(self, cond_samples)

Distributed Processing and Handling Large Datasets

216

 # initialize self._fdists for all matching keys
 for key in self._r.keys(encode_key('%s:*' % name)):
 condition = key.split(':')[1]
 self[condition] # calls self.__getitem__(condition)

 def __contains__(self, condition):
 return encode_key(condition) in self._fdists

 def __getitem__(self, condition):
 if condition not in self._fdists:
 key = '%s:%s' % (self._name, condition)
 self._fdists[condition] = RedisHashFreqDist(self._r, key)

 return self._fdists[condition]

 def clear(self):
 for fdist in self._fdists.values():
 fdist.clear()

An instance of this class can be created by passing in a Redis connection and a base name.
After that, it works just like a ConditionalFreqDist.

>>> from redis import Redis
>>> from redisprob import RedisConditionalHashFreqDist
>>> r = Redis()
>>> rchfd = RedisConditionalHashFreqDist(r, 'condhash')
>>> rchfd.N()
0
>>> rchfd.conditions()
[]
>>> rchfd['cond1'].inc('foo')
>>> rchfd.N()
1
>>> rchfd['cond1']['foo']
1
>>> rchfd.conditions()
['cond1']
>>> rchfd.clear()

Chapter 8

217

How it works...
The RedisConditionalHashFreqDist uses name prefixes to
reference RedisHashFreqDist instances. The name passed in to the
RedisConditionalHashFreqDist is a base name that is combined with each condition to
create a unique name for each RedisHashFreqDist. For example, if the base name of the
RedisConditionalHashFreqDist is 'condhash', and the condition is 'cond1', then
the final name for the RedisHashFreqDist is 'condhash:cond1'. This naming pattern is
used at initialization to find all the existing hash maps using the keys command. By searching
for all keys matching 'condhash:*', we can identify all the existing conditions and create an
instance of RedisHashFreqDist for each.

Combining strings with colons is a common naming convention
for Redis keys as a way to define namespaces. In our case,
each RedisConditionalHashFreqDist instance defines a
single namespace of hash maps.

The ConditionalFreqDist class stores an internal dictionary at self._fdists that is
a mapping of condition to FreqDist. The RedisConditionalHashFreqDist class
still uses self._fdists, but the values are instances of RedisHashFreqDist instead of
FreqDist. self._fdists is created when we call ConditionalFreqDist.__init__(),
and values are initialized as necessary in the __getitem__() method.

There's more...
RedisConditionalHashFreqDist also defines a clear() method. This is a helper
method that calls clear() on all the internal RedisHashFreqDist instances. The
clear() method is not defined in ConditionalFreqDist.

See also
The previous recipe covers the RedisHashFreqDist in detail. Also see the Calculating
high information words recipe in Chapter 7, Text Classification, for example usage of a
ConditionalFreqDist.

Distributed Processing and Handling Large Datasets

218

Storing an ordered dictionary in Redis
An ordered dictionary is like a normal dict, but the keys are ordered by an ordering
function. In the case of Redis, it supports ordered dictionaries whose keys are strings and
whose values are floating point scores. This structure can come in handy for cases such as
calculating information gain (covered in the Calculating high information words recipe in
Chapter 7, Text Classification) when you want to store all the words and scores for later use.

Getting ready
Again, you'll need Redis and redis-py installed, with an instance of redis-server
running.

How to do it...
The RedisOrderedDict class in rediscollections.py extends collections.
MutableMapping to get a number of dict compatible methods for free. Then it implements
all the key methods that require Redis ordered set (also known as Zset) commands.

class RedisOrderedDict(collections.MutableMapping):
 def __init__(self, r, name):
 self._r = r
 self._name = encode_key(name)

 def __iter__(self):
 return iter(self.items())

 def __len__(self):
 return self._r.zcard(self._name)

 def __getitem__(self, key):
 val = self._r.zscore(self._name, encode_key(key))

 if val is None:
 raise KeyError
 else:
 return val

 def __setitem__(self, key, score):
 self._r.zadd(self._name, encode_key(key), score)

 def __delitem__(self, key):by brain feels dead

 self._r.zrem(self._name, encode_key(key))

 def keys(self, start=0, end=-1):
 # we use zrevrange to get keys sorted by high value instead of by
lowest

Chapter 8

219

 return self._r.zrevrange(self._name, start, end)

 def values(self, start=0, end=-1):
 return [v for (k, v) in self.items(start=start, end=end)]

 def items(self, start=0, end=-1):
 return self._r.zrevrange(self._name, start, end, withscores=True)

 def get(self, key, default=0):
 return self[key] or default

 def iteritems(self):

 return iter(self)

 def clear(self):
 self._r.delete(self._name)

You can create an instance of RedisOrderedDict by passing in a Redis connection and a
unique name.

>>> from redis import Redis
>>> from rediscollections import RedisOrderedDict
>>> r = Redis()
>>> rod = RedisOrderedDict(r, 'test.txt')
>>> rod.get('bar')
>>> len(rod)
0
>>> rod['bar'] = 5.2
>>> rod['bar']
5.2000000000000002
>>> len(rod)
1
>>> rod.items()
[('bar', 5.2000000000000002)]
>>> rod.clear()

How it works...
Much of the code may look similar to the RedisHashMap, which is to be expected since
they both extend collections.MutableMapping. The main difference here is that
RedisOrderedSet orders keys by floating point values, and so is not suited for arbitrary
key-value storage like the RedisHashMap. Here's an outline explaining each key method
and how it works with Redis:

ff __len__(): Uses the zcard command to get the number of elements in the
ordered set.

Distributed Processing and Handling Large Datasets

220

ff __getitem__(): Uses the zscore command to get the score of a key, and returns
0 if the key does not exist.

ff __setitem__(): Uses the zadd command to add a key to the ordered set with the
given score, or updates the score if the key already exists.

ff __delitem__(): Uses the zrem command to remove a key from the ordered set.

ff keys(): Uses the zrevrange command to get all the keys in the ordered set, sorted
by highest score. It takes two optional keyword arguments start and end to more
efficiently get a slice of the ordered keys.

ff values(): Extracts all the scores from the items() method.

ff items(): Uses the zrevrange command to get the scores of each key in order to
return a list of 2-tuples ordered by highest score. Like keys(), it takes start and
end keyword arguments to efficiently get a slice.

ff clear(): Uses the delete command to remove the entire ordered set from Redis.

The default ordering of items in a Redis ordered set is low-to-high, so that
the key with the lowest score comes first. This is the same as Python's default
list ordering when you call sort() or sorted(), but it's not what we want
when it comes to scoring. For storing scores, we expect items to be sorted
from high-to-low, which is why keys() and items() use zrevrange
instead of zrange.

There's more...
As mentioned previously, the keys() and items() methods take optional start and end
keyword arguments to get a slice of the results. This makes the RedisOrderedDict optimal
for storing scores, then getting the top N keys. Here's a simple example where we assign three
word scores, then get the top two:

>>> from redis import Redis
>>> from rediscollections import RedisOrderedDict
>>> r = Redis()
>>> rod = RedisOrderedDict(r, 'scores')
>>> rod['best'] = 10
>>> rod['worst'] = 0.1
>>> rod['middle'] = 5
>>> rod.keys()
['best', 'middle', 'worst']
>>> rod.keys(start=0, end=1)
['best', 'middle']
>>> rod.clear()

Chapter 8

221

See also

Calculating high information words recipe in Chapter 7, Text Classification, describes
how to calculate information gain, which is a good case for storing word scores in a
RedisOrderedDict. The Storing a frequency distribution in Redis recipe introduces
Redis and the RedisHashMap.

Distributed word scoring with Redis
and execnet

We can use Redis and execnet together to do distributed word scoring. In the Calculating
high information words recipe in Chapter 7, Text Classification, we calculated the
information gain of each word in the movie_reviews corpus using a FreqDist and
ConditionalFreqDist. Now that we have Redis, we can do the same thing using a
RedisHashFreqDist and a RedisConditionalHashFreqDist, then store the scores in
a RedisOrderedDict. We can use execnet to distribute the counting in order to get better
performance out of Redis.

Getting ready
Redis, redis-py, and execnet must be installed, and an instance of redis-server must
be running on localhost.

How to do it...
We start by getting a list of (label, words) tuples for each label in the movie_
reviews corpus (which only has pos and neg labels). Then we get the word_scores
using score_words() from the dist_featx module. word_scores is an instance of
RedisOrderedDict, and we can see that the total number of words is 39,764. Using the
keys() method, we can then get the top 1000 words, and inspect the top five just to see
what they are. Once we have all we want from word_scores, we can delete the keys in
Redis as we no longer need the data.

>>> from dist_featx import score_words
>>> from nltk.corpus import movie_reviews
>>> labels = movie_reviews.categories()
>>> labelled_words = [(l, movie_reviews.words(categories=[l])) for l
in labels]
>>> word_scores = score_words(labelled_words)
>>> len(word_scores)
39764
>>> topn_words = word_scores.keys(end=1000)

Distributed Processing and Handling Large Datasets

222

>>> topn_words[0:5]
['_', 'bad', '?', 'movie', 't']
>>> from redis import Redis
>>> r = Redis()
>>> [r.delete(key) for key in ['word_fd', 'label_word_fd:neg', 'label_
word_fd:pos', 'word_scores']]
[True, True, True, True]

The score_words() function in dist_featx can take a while to complete, so expect to
wait a couple of minutes. The overhead of using execnet and Redis means it will take
significantly longer than a non-distributed in-memory version of the function.

How it works...
The dist_featx.py module contains the score_words() function, which does
the following:

1.	 Opens gateways and channels, sending initialization data to each.

2.	 Sends each (label, words) tuple over a channel for counting.

3.	 Sends a done message to each channel, waits for a done reply back,
then closes the channels and gateways.

4.	 Calculates the score of each word based on the counts and stores in a
RedisOrderedDict.

In our case of counting words in the movie_reviews corpus, calling score_words() opens
two gateways and channels, one for counting the pos words, and the other for counting the
neg words. The communication is as follows:

Chapter 8

223

Once the counting is finished, we can score all the words and store the results. The code
itself is as follows:

import itertools, execnet, remote_word_count
from nltk.metrics import BigramAssocMeasures
from redis import Redis
from redisprob import RedisHashFreqDist, RedisConditionalHashFreqDist
from rediscollections import RedisOrderedDict

def score_words(labelled_words, score_fn=BigramAssocMeasures.chi_sq,
host='localhost', specs=[('popen', 2)]):
 gateways = []
 channels = []

 for spec, count in specs:
 for i in range(count):
 gw = execnet.makegateway(spec)
 gateways.append(gw)
 channel = gw.remote_exec(remote_word_count)
 channel.send((host, 'word_fd', 'label_word_fd'))
 channels.append(channel)

 cyc = itertools.cycle(channels)

 for label, words in labelled_words:
 channel = cyc.next()
 channel.send((label, list(words)))

 for channel in channels:
 channel.send('done')
 assert 'done' == channel.receive()
 channel.waitclose(5)

 for gateway in gateways:
 gateway.exit()

 r = Redis(host)
 fd = RedisHashFreqDist(r, 'word_fd')
 cfd = RedisConditionalHashFreqDist(r, 'label_word_fd')
 word_scores = RedisOrderedDict(r, 'word_scores')
 n_xx = cfd.N()

 for label in cfd.conditions():
 n_xi = cfd[label].N()

 for word, n_ii in cfd[label].iteritems():
 n_ix = fd[word]

 if n_ii and n_ix and n_xi and n_xx:
 score = score_fn(n_ii, (n_ix, n_xi), n_xx)
 word_scores[word] = score

 return word_scores

Note that this scoring method will only be accurate when there are two labels.
If there are more than two labels, then word scores for each label should be
stored in separate RedisOrderedDict instances, one per label.

Distributed Processing and Handling Large Datasets

224

The remote_word_count.py module looks as follows:

from redis import Redis
from redisprob import RedisHashFreqDist, RedisConditionalHashFreqDist

if __name__ == '__channelexec__':
 host, fd_name, cfd_name = channel.receive()
 r = Redis(host)
 fd = RedisHashFreqDist(r, fd_name)
 cfd = RedisConditionalHashFreqDist(r, cfd_name)

 for data in channel:
 if data == 'done':
 channel.send('done')
 break

 label, words = data

 for word in words:
 fd.inc(word)
 cfd[label].inc(word)

You'll notice this is not a pure module as it requires being able to import both
redis and redisprob. The reason is that instances of RedisHashFreqDist and
RedisConditionalHashFreqDist cannot be pickled and sent over the channel. Instead,
we send the host name and key names over the channel so we can create the instances in
the remote module. Once we have the instances, there are two kinds of data we can receive
over the channel:

1.	 A done message, which signals that there is no more data coming in over the
channel. We reply back with another done message, then exit the loop to close
the channel.

2.	 A 2-tuple of (label, words), which we then iterate over to increment counts in
both the RedisHashFreqDist and RedisConditionalHashFreqDist.

There's more...
In this particular case, it would be faster to compute the scores without using Redis or
execnet. However, by using Redis, we can store the scores persistently for later examination
and usage. Being able to inspect all the word counts and scores manually is a great way to learn
about your data. We can also tweak feature extraction without having to re-compute the scores.
For example, you could use featx.bag_of_words_in_set() (found in Chapter 7, Text
Classification) with the top N words from the RedisOrderedDict, where N could be 1,000,
2,000, or whatever number you want. If our data size is much greater, the benefits of execnet
will be much more apparent. Horizontal scalability using execnet or some other method to
distribute computations across many nodes becomes more valuable, as the size of the data you
need to process increases.

Chapter 8

225

See also

The Calculating high information words recipe in Chapter 7, Text Classification introduces
information gain scoring of words for feature extraction and classification. The first three
recipes of this chapter show how to use execnet, while the next three recipes describe
RedisHashFreqDist, RedisConditionalHashFreqDist, and RedisOrderedDict
respectively.

9
Parsing Specific Data

In this chapter, we will cover:

ff Parsing dates and times with Dateutil

ff Time zone lookup and conversion

ff Tagging temporal expressions with Timex

ff Extracting URLs from HTML with lxml

ff Cleaning and stripping HTML

ff Converting HTML entities with BeautifulSoup

ff Detecting and converting character encodings

Introduction
This chapter covers parsing specific kinds of data, focusing primarily on dates, times, and
HTML. Luckily, there are a number of useful libraries for accomplishing this, so we don't have
to delve into tricky and overly complicated regular expressions. These libraries can be great
complements to the NLTK:

ff dateutil: Provides date/time parsing and time zone conversion

ff timex: Can identify time words in text

ff lxml and BeautifulSoup: Can parse, clean, and convert HTML

ff chardet: Detects the character encoding of text

The libraries can be useful for pre-processing text before passing it to an NLTK object, or
post-processing text that has been processed and extracted using NLTK. Here's an example
that ties many of these tools together.

Parsing Specific Data

228

Let's say you need to parse a blog article about a restaurant. You can use lxml or
BeautifulSoup to extract the article text, outbound links, and the date and time when the
article was written. The date and time can then be parsed to a Python datetime object with
dateutil. Once you have the article text, you can use chardet to ensure it's UTF-8 before
cleaning out the HTML and running it through NLTK-based part-of-speech tagging, chunk
extraction, and/or text classification, to create additional metadata about the article. If there's
an event happening at the restaurant, you may be able to discover that by looking at the
time words identified by timex. The point of this example is that real-world text processing
often requires more than just NLTK-based natural language processing, and the functionality
covered in this chapter can help with those additional requirements.

Parsing dates and times with Dateutil
If you need to parse dates and times in Python, there is no better library than dateutil. The
parser module can parse datetime strings in many more formats than can be shown here,
while the tz module provides everything you need for looking up time zones. Combined, these
modules make it quite easy to parse strings into time zone aware datetime objects.

Getting ready
You can install dateutil using pip or easy_install, that is sudo pip install
dateutil or sudo easy_install dateutil. Complete documentation can be found at
http://labix.org/python-dateutil.

How to do it...
Let's dive into a few parsing examples:

>>> from dateutil import parser
>>> parser.parse('Thu Sep 25 10:36:28 2010')
datetime.datetime(2010, 9, 25, 10, 36, 28)
>>> parser.parse('Thursday, 25. September 2010 10:36AM')
datetime.datetime(2010, 9, 25, 10, 36)
>>> parser.parse('9/25/2010 10:36:28')
datetime.datetime(2010, 9, 25, 10, 36, 28)
>>> parser.parse('9/25/2010')
datetime.datetime(2010, 9, 25, 0, 0)
>>> parser.parse('2010-09-25T10:36:28Z')
datetime.datetime(2010, 9, 25, 10, 36, 28, tzinfo=tzutc())

As you can see, all it takes is importing the parser module and calling the parse() function
with a datetime string. The parser will do its best to return a sensible datetime object, but
if it cannot parse the string, it will raise a ValueError.

Chapter 9

229

How it works...
The parser does not use regular expressions. Instead, it looks for recognizable tokens and
does its best to guess what those tokens refer to. The order of these tokens matters, for
example, some cultures use a date format that looks like Month/Day/Year (the default order)
while others use a Day/Month/Year format. To deal with this, the parse() function takes an
optional keyword argument dayfirst, which defaults to False. If you set it to True, it can
correctly parse dates in the latter format.

>>> parser.parse('25/9/2010', dayfirst=True)
datetime.datetime(2010, 9, 25, 0, 0)

Another ordering issue can occur with two-digit years. For example, '10-9-25' is ambiguous.
Since dateutil defaults to the Month-Day-Year format, '10-9-25' is parsed to the year
2025. But if you pass yearfirst=True into parse(), it will be parsed to the year 2010.

>>> parser.parse('10-9-25')
datetime.datetime(2025, 10, 9, 0, 0)
>>> parser.parse('10-9-25', yearfirst=True)
datetime.datetime(2010, 9, 25, 0, 0)

There's more...
The dateutil parser can also do fuzzy parsing, which allows it to ignore extraneous
characters in a datetime string. With the default value of False, parse() will raise a
ValueError when it encounters unknown tokens. But if fuzzy=True, then a datetime
object can usually be returned.

>>> try:
... parser.parse('9/25/2010 at about 10:36AM')
... except ValueError:
... 'cannot parse'
'cannot parse'
>>> parser.parse('9/25/2010 at about 10:36AM', fuzzy=True)
datetime.datetime(2010, 9, 25, 10, 36)

See also
In the next recipe, we'll use the tz module from dateutil to do time zone lookup and
conversion.

Parsing Specific Data

230

Time zone lookup and conversion
Most datetime objects returned from the dateutil parser are naive, meaning they don't
have an explicit tzinfo, which specifies the time zone and UTC offset. In the previous recipe,
only one of the examples had a tzinfo, and that's because it's in the standard ISO format
for UTC date and time strings. UTC is the coordinated universal time, and is the same as
GMT. ISO is the International Standards Organization, which among other things, specifies
standard date and time formatting.

Python datetime objects can either be naive or aware. If a datetime object has a tzinfo,
then it is aware. Otherwise the datetime is naive. To make a naive datetime object time
zone aware, you must give it an explicit tzinfo. However, the Python datetime library
only defines an abstract base class for tzinfo, and leaves it up to the others to actually
implement tzinfo creation. This is where the tz module of dateutil comes in—it provides
everything you need to lookup time zones from your OS time zone data.

Getting ready
dateutil should be installed using pip or easy_install. You should also make sure
your operating system has time zone data. On Linux, this is usually found in /usr/share/
zoneinfo, and the Ubuntu package is called tzdata. If you have a number of files and
directories in /usr/share/zoneinfo, such as America/, Europe/, and so on, then you
should be ready to proceed. The following examples show directory paths for Ubuntu Linux.

How to do it...
Let's start by getting a UTC tzinfo object. This can be done by calling tz.tzutc(),
and you can check that the offset is 0 by calling the utcoffset() method with a UTC
datetime object.

>>> from dateutil import tz
>>> tz.tzutc()
tzutc()
>>> import datetime
>>> tz.tzutc().utcoffset(datetime.datetime.utcnow())
datetime.timedelta(0)

To get tzinfo objects for other time zones, you can pass in a time zone file path to the
gettz() function.

>>> tz.gettz('US/Pacific')
tzfile('/usr/share/zoneinfo/US/Pacific')
>>> tz.gettz('US/Pacific').utcoffset(datetime.datetime.utcnow())
datetime.timedelta(-1, 61200)

Chapter 9

231

>>> tz.gettz('Europe/Paris')
tzfile('/usr/share/zoneinfo/Europe/Paris')
>>> tz.gettz('Europe/Paris').utcoffset(datetime.datetime.utcnow())
datetime.timedelta(0, 7200)

You can see the UTC offsets are timedelta objects, where the first number is days, and the
second number is seconds.

If you're storing datetimes in a database, it's a good idea to store them
all in UTC to eliminate any time zone ambiguity. Even if the database can
recognize time zones, it's still a good practice.

To convert a non-UTC datetime object to UTC, it must be made time zone aware. If you try
to convert a naive datetime to UTC, you'll get a ValueError exception. To make a naive
datetime time zone aware, you simply call the replace() method with the correct tzinfo.
Once a datetime object has a tzinfo, then UTC conversion can be performed by calling the
astimezone() method with tz.tzutc().

>>> pst = tz.gettz('US/Pacific')
>>> dt = datetime.datetime(2010, 9, 25, 10, 36)
>>> dt.tzinfo
>>> dt.astimezone(tz.tzutc())
Traceback (most recent call last):
 File "/usr/lib/python2.6/doctest.py", line 1248, in __run
 compileflags, 1) in test.globs
 File "<doctest __main__[22]>", line 1, in <module>
 dt.astimezone(tz.tzutc())
ValueError: astimezone() cannot be applied to a naive datetime
>>> dt.replace(tzinfo=pst)
datetime.datetime(2010, 9, 25, 10, 36, tzinfo=tzfile('/usr/share/
zoneinfo/US/Pacific'))
>>> dt.replace(tzinfo=pst).astimezone(tz.tzutc())
datetime.datetime(2010, 9, 25, 17, 36, tzinfo=tzutc())

How it works...
The tzutc and tzfile objects are both subclasses of tzinfo. As such, they know the
correct UTC offset for time zone conversion (which is 0 for tzutc). A tzfile object knows
how to read your operating system's zoneinfo files to get the necessary offset data. The
replace() method of a datetime object does what its name implies—it replaces attributes.
Once a datetime has a tzinfo, the astimezone() method will be able to convert the time
using the UTC offsets, and then replace the current tzinfo with the new tzinfo.

Parsing Specific Data

232

Note that both replace() and astimezone() return
new datetime objects. They do not modify the current
object.

There's more...
You can pass a tzinfos keyword argument into the dateutil parser to detect otherwise
unrecognized time zones.

>>> parser.parse('Wednesday, Aug 4, 2010 at 6:30 p.m. (CDT)',
fuzzy=True)
datetime.datetime(2010, 8, 4, 18, 30)
>>> tzinfos = {'CDT': tz.gettz('US/Central')}
>>> parser.parse('Wednesday, Aug 4, 2010 at 6:30 p.m. (CDT)',
fuzzy=True, tzinfos=tzinfos)
datetime.datetime(2010, 8, 4, 18, 30, tzinfo=tzfile('/usr/share/
zoneinfo/US/Central'))

In the first instance, we get a naive datetime since the time zone is not recognized. However,
when we pass in the tzinfos mapping, we get a time zone aware datetime.

Local time zone
If you want to lookup your local time zone, you can call tz.tzlocal(), which will use
whatever your operating system thinks is the local time zone. In Ubuntu Linux, this is usually
specified in the /etc/timezone file.

Custom offsets
You can create your own tzinfo object with a custom UTC offset using the tzoffset object.
A custom offset of one hour can be created as follows:

>>> tz.tzoffset('custom', 3600)
tzoffset('custom', 3600)

You must provide a name as the first argument, and the offset time in seconds as the
second argument.

See also
The previous recipe covers parsing datetime strings with dateutil.parser.

Chapter 9

233

Tagging temporal expressions with Timex
The NLTK project has a little known contrib repository that contains, among other things,
a module called timex.py that can tag temporal expressions. A temporal expression is
just one or more time words, such as "this week", or "next month". These are ambiguous
expressions that are relative to some other point in time, like when the text was written. The
timex module provides a way to annotate text so these expressions can be extracted for
further analysis. More on TIMEX can be found at http://timex2.mitre.org/.

Getting ready
The timex.py module is part of the nltk_contrib package, which is separate from the
current version of NLTK. This means you need to install it yourself, or use the timex.py
module that is included with the book's code download. You can also download timex.
py directly from http://code.google.com/p/nltk/source/browse/trunk/nltk_
contrib/nltk_contrib/timex.py.

If you want to install the entire nltk_contrib package, you can check out the source at
http://nltk.googlecode.com/svn/trunk/ and do sudo python setup.py install
from within the nltk_contrib folder. If you do this, you'll need to do from nltk_contrib
import timex instead of just import timex as done in the following How to do it... section.

For this recipe, you have to download the timex.py module into the same folder as the rest
of the code, so that import timex does not cause an ImportError.

You'll also need to get the egenix-mx-base package installed. This is a C extension library
for Python, so if you have all the correct Python development headers installed, you should
be able to do sudo pip install egenix-mx-base or sudo easy_install egenix-mx-
base. If you're running Ubuntu Linux, you can instead do sudo apt-get install python-
egenix-mxdatetime. If none of those work, you can go to http://www.egenix.com/
products/python/mxBase/ to download the package and find installation instructions.

How to do it...
Using timex is very simple: pass a string into the timex.tag() function and get back
an annotated string. The annotations will be XML TIMEX tags surrounding each temporal
expression.

>>> import timex
>>> timex.tag("Let's go sometime this week")
"Let's go sometime <TIMEX2>this week</TIMEX2>"
>>> timex.tag("Tomorrow I'm going to the park.")
"<TIMEX2>Tomorrow</TIMEX2> I'm going to the park."

Parsing Specific Data

234

How it works...
The implementation of timex.py is essentially over 300 lines of conditional
regular expression matches. When one of the known expressions match, it creates a
RelativeDateTime object (from the mx.DateTime module). This RelativeDateTime
is then converted back to a string with surrounding TIMEX tags and replaces the original
matched string in the text.

There's more...
timex is smart enough not to tag expressions that have already been tagged, so it's ok to
pass TIMEX tagged text into the tag() function.

>>> timex.tag("Let's go sometime <TIMEX2>this week</TIMEX2>")
"Let's go sometime <TIMEX2>this week</TIMEX2>"

See also
In the next recipe, we'll be extracting URLs from HTML, but the same modules and techniques
can be used to extract the TIMEX tagged expressions for further processing.

Extracting URLs from HTML with lxml
A common task when parsing HTML is extracting links. This is one of the core functions of
every general web crawler. There are a number of Python libraries for parsing HTML, and lxml
is one of the best. As you'll see, it comes with some great helper functions geared specifically
towards link extraction.

Getting ready
lxml is a Python binding for the C libraries libxml2 and libxslt. This makes it a very fast
XML and HTML parsing library, while still being pythonic. However, that also means you need
to install the C libraries for it to work. Installation instructions are at http://codespeak.
net/lxml/installation.html. However, if you're running Ubuntu Linux, installation is as
easy as sudo apt-get install python-lxml.

Chapter 9

235

How to do it...
lxml comes with an html module designed specifically for parsing HTML. Using the
fromstring() function, we can parse an HTML string, then get a list of all the links. The
iterlinks() method generates four-tuples of the form (element, attr, link, pos):

ff element: This is the parsed node of the anchor tag from which the link is
extracted. If you're just interested in the link, you can ignore this.

ff attr: This is the attribute the link came from, which is usually href.
ff link: This is the actual URL extracted from the anchor tag.
ff pos: This is the numeric index of the anchor tag in the document. The first tag has a

pos of 0, the second has a pos of 1, and so on.

Following is some code to demonstrate:
>>> from lxml import html
>>> doc = html.fromstring('Hello world')
>>> links = list(doc.iterlinks())
>>> len(links)
1
>>> (el, attr, link, pos) = links[0]
>>> attr
'href'
>>> link
'/world'
>>> pos
0

How it works...
lxml parses the HTML into an ElementTree. This is a tree structure of parent nodes and
child nodes, where each node represents an HTML tag, and contains all the corresponding
attributes of that tag. Once the tree is created, it can be iterated on to find elements, such
as the a or anchor tag. The core tree handling code is in the lxml.etree module, while
the lxml.html module contains only HTML-specific functions for creating and iterating a
tree. For complete documentation, see the lxml tutorial: http://codespeak.net/lxml/
tutorial.html.

There's more...
You'll notice in the previous code that the link is relative, meaning it's not an absolute URL.
We can make it absolute by calling the make_links_absolute() method with a base URL
before extracting the links.

>>> doc.make_links_absolute('http://hello')
>>> abslinks = list(doc.iterlinks())

Parsing Specific Data

236

>>> (el, attr, link, pos) = abslinks[0]
>>> link
'http://hello/world'

Extracting links directly
If you don't want to do anything other than extract links, you can call the iterlinks()
function with an HTML string.

>>> links = list(html.iterlinks('Hello world'))
>>> links[0][2]
'/world'

Parsing HTML from URLs or files
Instead of parsing an HTML string using the fromstring() function, you can call the
parse() function with a URL or file name. For example, html.parse("http://my/url")
or html.parse("/path/to/file"). The result will be the same as if you loaded the URL
or file into a string yourself, then called fromstring().

Extracting links with XPaths
Instead of using the iterlinks() method, you can also get links using the xpath()
method, which is a general way to extract whatever you want from HTML or XML parse trees.

>>> doc.xpath('//a/@href')[0]
'http://hello/world'

For more on XPath syntax, see http://www.w3schools.com/XPath/xpath_syntax.
asp.

See also
In the next recipe, we'll cover cleaning and stripping HTML.

Cleaning and stripping HTML
Cleaning up text is one of the unfortunate but entirely necessary aspects of text processing.
When it comes to parsing HTML, you probably don't want to deal with any embedded
JavaScript or CSS, and are only interested in the tags and text. Or you may want to remove
the HTML entirely, and process only the text. This recipe covers how to do both of these
pre-processing actions.

Chapter 9

237

Getting ready
You'll need to install lxml. See the previous recipe or http://codespeak.net/lxml/
installation.html for installation instructions. You'll also need NLTK installed for
stripping HTML.

How to do it...
We can use the clean_html() function in the lxml.html.clean module to remove
unnecessary HTML tags and embedded JavaScript from an HTML string.

>>> import lxml.html.clean
>>> lxml.html.clean.clean_html('<html><head></head><body
onload=loadfunc()>my text</body></html>')
'<div><body>my text</body></div>'

The result is much cleaner and easier to deal with. The full module path to the
clean_html() function is used because there's also has a clean_html() function
in the nltk.util module, but its purpose is different. The nltk.util.clean_html()
function removes all HTML tags when you just want the text.

>>> import nltk.util
>>> nltk.util.clean_html('<div><body>my text</body></div>')
'my text'

How it works...
The lxml.html.clean_html() function parses the HTML string into a tree, then iterates
over and removes all nodes that should be removed. It also cleans nodes of unnecessary
attributes (such as embedded JavaScript) using regular expression matching and substitution.

The nltk.util.clean_html() function performs a bunch of regular expression
substitutions to remove HTML tags. To be safe, it's best to strip the HTML after cleaning it to
ensure the regular expressions will match.

There's more...
The lxml.html.clean module defines a default Cleaner class that's used when you
call clean_html(). You can customize the behavior of this class by creating your own
instance and calling its clean_html() method. For more details on this class, see
http://codespeak.net/lxml/lxmlhtml.html.

Parsing Specific Data

238

See also
The lxml.html module was introduced in the previous recipe for parsing HTML and
extracting links. In the next recipe, we'll cover un-escaping HTML entities.

Converting HTML entities with
BeautifulSoup

HTML entities are strings such as & or <. These are encodings of normal ASCII
characters that have special uses in HTML. For example, < is the entity for <. You can't
just have < within HTML tags because it is the beginning character for an HTML tag, hence the
need to escape it and define the < entity. The entity code for & is & which, as we've
just seen, is the beginning character for an entity code. If you need to process the text within
an HTML document, then you'll want to convert these entities back to their normal characters
so you can recognize them and handle them appropriately.

Getting ready
You'll need to install BeautifulSoup, which you should be able to do with sudo pip
install BeautifulSoup or sudo easy_install BeautifulSoup. You can read more
about BeautifulSoup at http://www.crummy.com/software/BeautifulSoup/.

How to do it...
BeautifulSoup is an HTML parser library that also contains an XML parser called
BeautifulStoneSoup. This is what we can use for entity conversion. It's quite simple:
create an instance of BeautifulStoneSoup given a string containing HTML entities and
specify the keyword argument convertEntities='html'. Convert this instance to a string,
and you'll get the ASCII representation of the HTML entities.

>>> from BeautifulSoup import BeautifulStoneSoup
>>> unicode(BeautifulStoneSoup('<', convertEntities='html'))
u'<'
>>> unicode(BeautifulStoneSoup('&', convertEntities='html'))
u'&'

It's ok to run the string through multiple times, as long as the ASCII characters are not by
themselves. If your string is just a single ASCII character for an HTML entity, that character will
be lost.

>>> unicode(BeautifulStoneSoup('<', convertEntities='html'))
u''

Chapter 9

239

>>> unicode(BeautifulStoneSoup('< ', convertEntities='html'))
u'< '

To make sure the character isn't lost, all that's required is to have another character in the
string that is not part of an entity code.

How it works...
To convert the HTML entities, BeautifulStoneSoup looks for tokens that look like
an entity and replaces them with their corresponding value in the htmlentitydefs.
name2codepoint dictionary from the Python standard library. It can do this if the entity
token is within an HTML tag, or when it's in a normal string.

There's more...
BeautifulSoup is an excellent HTML and XML parser in its own right, and can be a
great alternative to lxml. It's particularly good at handling malformed HTML. You can read
more about how to use it at http://www.crummy.com/software/BeautifulSoup/
documentation.html.

Extracting URLs with BeautifulSoup
Here's an example of using BeautifulSoup to extract URLs, like we did in the Extracting
URLs from HTML with lxml recipe. You first create the soup with an HTML string, call the
findAll() method with 'a' to get all anchor tags, and pull out the 'href' attribute to get
the URLs.

>>> from BeautifulSoup import BeautifulSoup
>>> soup = BeautifulSoup('Hello world')
>>> [a['href'] for a in soup.findAll('a')]
[u'/world']

See also
In the Extracting URLs from HTML with lxml recipe, we covered how to use lxml to extract
URLs from an HTML string, and we covered Cleaning and stripping HTML after that recipe.

Parsing Specific Data

240

Detecting and converting character
encodings

A common occurrence with text processing is finding text that has a non-standard character
encoding. Ideally, all text would be ASCII or UTF-8, but that's just not the reality. In cases when
you have non-ASCII or non-UTF-8 text and you don't know what the character encoding is, you'll
need to detect it and convert the text to a standard encoding before further processing it.

Getting ready
You'll need to install the chardet module, using sudo pip install chardet or sudo
easy_install chardet. You can learn more about chardet at http://chardet.
feedparser.org/.

How to do it...
Encoding detection and conversion functions are provided in encoding.py. These are
simple wrapper functions around the chardet module. To detect the encoding of a string,
call encoding.detect(). You'll get back a dict containing two attributes: confidence
and encoding. confidence is a probability of how confident chardet is that the value for
encoding is correct.

-*- coding: utf-8 -*-
import chardet

def detect(s):
 try:
 return chardet.detect(s)
 except UnicodeDecodeError:
 return chardet.detect(s.encode('utf-8'))

 def convert(s):
 encoding = detect(s)['encoding']

 if encoding == 'utf-8':
 return unicode(s)
 else:
 return unicode(s, encoding)

Here's some example code using detect() to determine character encoding:

>>> import encoding
>>> encoding.detect('ascii')
{'confidence': 1.0, 'encoding': 'ascii'}

Chapter 9

241

>>> encoding.detect(u'abcdé')
{'confidence': 0.75249999999999995, 'encoding': 'utf-8'}
>>> encoding.detect('\222\222\223\225')
{'confidence': 0.5, 'encoding': 'windows-1252'}

To convert a string to a standard unicode encoding, call encoding.convert(). This will
decode the string from its original encoding, then re-encode it as UTF-8.

>>> encoding.convert('ascii')
u'ascii'	
>>> encoding.convert(u'abcdé')
u'abcd\\xc3\\xa9'
>>> encoding.convert('\222\222\223\225')
u'\u2019\u2019\u201c\u2022'

How it works...
The detect() function is a wrapper around chardet.detect() which can handle
UnicodeDecodeError exceptions. In these cases, the string is encoded in UTF-8 before
trying to detect the encoding.

The convert() function first calls detect() to get the encoding, then returns a
unicode string with the encoding as the second argument. By passing the encoding into
unicode(), the string is decoded from the original encoding, allowing it to be re-encoded
into a standard encoding.

There's more...
The comment at the top of the module, # -*- coding: utf-8 -*-, is a hint to the Python
interpreter, telling it which encoding to use for the strings in the code. This is helpful for when
you have non-ASCII strings in your source code, and is documented in detail at http://www.
python.org/dev/peps/pep-0263/.

Converting to ASCII
If you want pure ASCII text, with non-ASCII characters converted to ASCII equivalents,
or dropped if there is no equivalent character, then you can use the unicodedata.
normalize() function.

>>> import unicodedata
>>> unicodedata.normalize('NFKD', u'abcd\xe9').encode('ascii',
'ignore')
'abcde'

Parsing Specific Data

242

Specifying 'NFKD' as the first argument ensures the non-ASCII characters are replaced with
their equivalent ASCII versions, and the final call to encode() with 'ignore' as the second
argument will remove any extraneous unicode characters.

See also
Encoding detection and conversion is a recommended first step before doing HTML
processing with lxml or BeautifulSoup, covered in the Extracting URLs from HTML with
lxml and Converting HTML entities with BeautifulSoup recipes.

Penn Treebank
Part-of-Speech Tags

Following is a table of all the part-of-speech tags that occur in the treebank corpus
distributed with NLTK. The tags and counts shown here were acquired using the
following code:

>>> from nltk.probability import FreqDist
>>> from nltk.corpus import treebank
>>> fd = FreqDist()
>>> for word, tag in treebank.tagged_words():
... fd.inc(tag)
>>> fd.items()

The FreqDist fd contains all the counts shown here for every tag in the treebank corpus.
You can inspect each tag count individually by doing fd[tag], as in fd['DT']. Punctuation
tags are also shown, along with special tags such as -NONE-, which signifies that the part-
of-speech tag is unknown. Descriptions of most of the tags can be found at http://www.
ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html.

Penn Treebank Part-of-Speech Tags

244

Part-of-speech tag Frequency of occurrence

16

$ 724

'' 694

, 4,886

-LRB- 120

-NONE- 6,592

-RRB- 126

. 384

: 563

`` 712

CC 2,265

CD 3,546

DT 8,165

EX 88

FW 4

IN 9,857

JJ 5,834

JJR 381

JJS 182

LS 13

MD 927

NN 13,166

NNP 9,410

NNPS 244

NNS 6,047

PDT 27

POS 824

PRP 1,716

Appendix

245

Part-of-speech tag Frequency of occurrence

PRP$ 766

RB 2,822

RBR 136

RBS 35

RP 216

SYM 1

TO 2,179

UH 3

VB 2,554

VBD 3,043

VBG 1,460

VBN 2,134

VBP 1,321

VBZ 2,125

WDT 445

WP 241

WP$ 14

Index
Symbols
__contains__() method 213
__delitem__() method 213, 220
__getitem__() method 213, 220
__len__() method 213, 219
__setitem__() method 213, 220

A
AbstractLazySequence class

working 76
accuracy() function 184
ACE 133
AffixTagger

about 96
min_stem_length keyword argument 97
working 96

anchor tag 235
AntonymReplacer class 43
antonyms

about 18, 41
negations, replacing 41, 43

antonyms() method 19
append_line() function 78
aspell 36
Automatic Content Extraction. See ACE
available_languages attribute 31

B
Babelfish

about 30
text, translating 30, 31

babelfish.translate() function 30
babelize() function 31
backoff_tagger function 91

backoff tagging
about 88
taggers, combining 88

backreference 34
bag_of_bigrams_words() function 170
bag_of_words() function

format 168
working 168

Bag of Words model 168
bag_of_words_not_in_set() function

about 169
example 169

batch_tag() method 84
Bayes Theorem

using 170
BeautifulSoup library

about 227, 238, 239
HTML entities, converting 238
URLs, extracting 239

BigramCollocationFinder constructs
bigrams, finding 22

BigramTagger
about 90
working 90, 91

binary classifier 167, 171
binary named entity

extracting 135
block 70
block reader functions

read_blankline_block() 73
read_line_block() 73
read_regexp_block() 73
read_whitespace_block() 73
read_wordpunct_block() 73

BrillTagger
about 98

248

training 98, 99
working 99

C
capitalization

need for 102
cardinal word 150
categorized chunk corpus reader

creating 61-64
categorized text corpus

creating 58, 59
category file 61
cess_cat corpora

and cess_esp corpora 160
cess_esp corpora

and cess_cat corpora 160
channel

about 202
multiple channels, creating 205

character encodings
converting 240, 241
detecting 240, 241

chardet.detect() function 241
chardet library 227
chinking

about 112
with, regular expressions 112-114

ChinkRule class 112
chinks 112
choose_tag() method

about 83
arguments 83

ChunkedCorpusReader
about 55
working 56

chunked phrase corpus
creating 54

chunk extraction 111
chunking

about 112
classification-based 129-132
looping 125
tracing 126
with, regular expressions 112-114

chunk patterns
about 112

working 113, 114
chunk rule

with, context 116, 117
ChunkRule class 112
chunks

about 54, 111, 144
expanding, with regular expressions 121-123
merging, with regular expressions 117-119
removing, with regular expressions 121-123
splitting, with regular expressions 117-119
types 115

ChunkScore
metrics 125

chunk transformations
chaining 154

chunk tree
converting, to text 155, 156

chunk_tree_to_sent() function
about 156
working 156

ChunkWithContext class
example 116

classification probability
getting 174, 175

ClassifierBasedPOSTagger
about 106
working 106

ClassifierBasedTagger class 129-132
ClassifierChunker class 129-132
classifiers

combining, with voting 191, 192
classify() method 174, 175
class-imbalance problem 199
clean_html() function 237
clear() method 213, 220
collocations 21
conditional exponential classifier. See

MaxentClassifier
conditional frequency distribution

storing, in Redis 215, 217
Conference on Computational Natural

Language Learning. See CoNLL
CoNLL 58
Conll chunk corpus reader

categorizing 65, 66
context model

overriding 87

249

convert() function 241
convert_tree_nodes() function

about 163
tree nodes, converting 163, 164
working 164

corpora
about 46
categorizing 61

corpus 46
corpus editing

and file locking 77, 78
corpus view 70
correct_verbs() function

about 147
verb forms, correcting 146, 148
working 148

CSV synonym replacement 40
CsvWordReplacer class 40
custom corpus

setting up 46, 47
custom corpus view

creating 70

D
dates

parsing, with dateutil library 228, 229
dateutil library

about 227
dates, parsing 228, 229
installing 230
times, parsing 228, 229

decision tree classifier
training 177, 178

DecisionTreeClassifier
about 177
depth cutoff 179
entropy cutoff 178, 179
evaluating 190, 191
support cutoff 179
working 178

deep tree
flattening 157-160

DefaultTagger
working 83

default tagging 82
depth_cutoff 179

detect() function 241
dict style feature sets 168
distributed chunking

execnet, used 206, 208
distributed tagging

execnet, used 202, 204

E
edit distance 37
Enchant

about 36
personal word list 38

en_GB Dictionary 38
entity tags 133
entropy

about 178
calculating 179

entropy_cutoff 178, 179
estimator

training 175, 176
evaluate() method 82, 84
exclusive lock 77
execnet

about 202
distributed chunking 206, 208
distributed tagging 202, 204
distributed word scoring 221-223
parallel list processing 209, 210

execnet.makegateway() function 203
ExpandLeftRule rule 121
ExpandRightRule rule 121

F
false negatives 183
false positives 183
feature detector 106
feature_detector() function 173
features 106
feature set 106, 167
filter_insignificant() function

about 145
insignificant words, filtering 144, 145
working 145

first_chunk_index() function
about 147, 148
using 149

250

flatten_childtrees() function
about 157
deep tree, flattening 159
working 159

flatten_deeptree() function
about 157, 162
deep tree, flattening 158, 159
working 159

F-measure 186
frequency distribution

about 22
storing, in Redis 211-214

full parsing 111
fuzzy parsing 229

G
gateways

about 202
local, comparing with remote 206

General Iterative Scaling. See gis
gis 181
grammar 112

H
height() function 160
high information word

about 187
measuring 188, 189

high_information_words() function
working 189

HTML entities
about 238
converting, with BeautifulSoup library 238

hypernyms 15
hyponyms 15

I
ieer_chunked_sents() function

about 141
using 140

ieer corpus 140
ieertree2conlltags() function

using 140
iis 181

Improved Iterative Scaling. See iis
infinitive phrase

about 151
swapping 151

Information Extraction—Entity Recognition.
See ieer corpus

information gain 175
inpred lambda 152
installation, NLTK 8
instance 168
International Standards Organization. See ISO
IOB tags 56
ISO 230
items() method 213, 220
iterlinks() function 235, 236

J
jaccard() function 189
Jaccard index 189

K
keys() method 213, 220

L
label_feats_from_corpus() function 171, 173
labelled feature sets 167
LancasterStemmer class 26, 27
Lancaster Stemming Algorithm 26
LazyCorpusLoader class

about 68
arguments 68
working 69

Leacock Chodorow (LCH) similarity 21
leaves() method 58
lemma

about 17, 28
finding, in WordNet 17, 18

lemmatization
about 28
combining, with stemming 29, 30

links
extracting 236

local gateways
versus remote gateways 206

251

LocationChunker class
working 139

location chunks
extracting 137, 139

log likelihood 181
low information words 187
lxml.html.clean_html() function 237
lxml library

about 227, 234
URLs, extracting from HTML 234
working 235

M
map() function 209
masi distance

using 196
MaxentClassifier

about 180
evaluating 190
requisites 180
using 107
working 181

maximum entropy classifier
training 180, 181

MaxVoteClassifier
working 193

megam algorithm
about 183
working 183

MergeRule class
about 117
working 119

MongoDB
about 74
working 76

morphy() function 29
multi-label classifier 167

about 193
classifying with 195, 196

multiple binary classifiers
creating 193, 194

multiple channels
creating 205

N
naive Bayes classifier

training 170-174
NaiveBayesClassifier

about 170
manual training 176
working 173, 174

NaiveBayesClassifier classifier, methods
most_informative_features() 175
show_most_informative_features() 175

NaiveBayesClassifier.train() method 173
NAME chunker 136, 139
named entities

extracting 133, 134
named entity chunker

training 140, 141
named entity recognition 133, 134
names corpus 49
NamesTagger

about 105
working 105

National Institute of Standards and
Technology. See NIST

Natural Language Toolkit. See NLTK
negations

replacing, with antonyms 41, 43
negative feature sets 198
ngram 89
NgramTagger 90
NIST 133
NLTK

about 7, 14, 202
installing 8
URL 8

nltk.data.find() function
data directories, searching 65

nltk.data.load() function 47
NLTK data package

installing 46
nltk.metrics package 23
nltk.tag package 82
nltk.tag.pos_tag() function 202
nltk.tag.untag() function 84
nltk.tokenize.punkt module 9
nltk.util.clean_html() function 237

252

non-UTC datetime object
converting, to UTC datetime object 231

noun cardinals
swapping 150

O
ordered dictionary

about 218, 219
storing, in Redis 218, 219

P
paragraph block reader

customizing 53
parallel list processing

execnet, used 209, 210
parse() method 120, 139
partial parsing

about 111
with, regular expressions 123, 124

part-of-speech tagged word corpus
creating 50, 51

part-of-speech tagging
about 50, 82
need for 82

part-of-speech tags
 244
`` 244
, 244
. 244
’’ 244
244
$ 244
about 82
CC 244
CD 244
DT 244
EX 244
FW 244
IN 244
JJ 244
JJR 244
JJS 244
-LRB- 244
LS 244
MD 244
NN 244

NNP 244
NNPS 244
NNS 244
-NONE- 244
PDT 244
POS 244
PRP 244
PRP$ 245
RB 245
RBR 245
RBS 245
RP 245
-RRB- 244
SYM 245
TO 245
UH 245
VB 245
VBD 245
VBG 245
VBN 245
VBP 245
VBZ 245
WDT 245
WP 245
WP$ 245

path similarity 21
Penn Treebank corpus 111
P(features | label) probability 171
P(features) probability 171
phrases 111
PickleCorpusView 73
P(label | features) probability 171
P(label) probability 171
plural nouns

singularizing 153
PorterStemmer class 26, 27
Porter Stemming Algorithm 26
positive feature sets 198
POS tag

about 16
example 16

precision
about 183, 185
measuring 183, 184

precision_recall() function 184, 185
prob_classify() method 174

253

proper names
tagging 105, 106

proper noun chunks
extracting 135

PunktSentenceTokenizer 9
PunktWordTokenizer 11
pyenchant library 36
Python subprocesses 208

Q
QuadgramTagger

about 91
working 92

R
read_blankline_block() function 73
read_line_block() function 73
read_regexp_block() function 73
read_whitespace_block() function 73
read_wordpunct_block() function 73
recall 183, 185
Redis

about 211
conditional frequency distribution, storing

215, 217
distributed word scoring 221-223
frequency distribution, storing 211-214
ordered dictionary, storing 218, 219

reference set 185
re.findall() method 12
RegexpReplacer.replace() 33
RegexpStemmer class 27
RegexpTagger

about 95
working 95

RegexpTokenizer
tokenizing, on whitespace 13
working 12

regular expressions
chinking 112-114
chunking 112-114
partial parsing 123, 124
sentences, tokenizing 11, 12
used, in tagging 94, 95

remote_exec() method
about 203
arguments, types 204

remote gateways
versus local gateways 206

remove_line() function 78
repeatitive characters

removing 34, 35
RepeatReplacer class 35
replace() method 32, 43
replace_negations() method 43
re.subn() function 32
reuters corpus 194
reuters_high_info_words() function 194

working 198

S
scoring functions 23
scoring ngrams 23
sentences

tagged sentence, untagging 84
tagging 84
tokenizing, into words 9, 10
tokenizing, regular expressions used 11, 12

sentence tokenizer
customizing 53

SequentialBackoffTagger
about 88
working 88

shallow tree
creating 161, 162

shallow_tree() function
about 161
shallow tree, creating 161, 162
working 162

show_most_informative_features() method
182, 187

significant bigrams
about 170
including 170

singularize_plural_noun() function
about 153
plural nouns, singularizing 153
working 153

SnowballStemmer class 28
SpaceTokenizer 10

254

SpellingReplacer class 37
spellings

correcting, with Enchant 36, 37
spicy algorithms

about 182
Broyden-Fletcher-Goldfarb-Shanno algorithm

(BFGS) 182
Conjugate gradient (CG) algorithm 182
LBFGSB (limited memory version of BFGS)

182
Nelder-Mead 182
Powell 182

split_label_feats() function 173
SplitRule class

about 117
working 119

StemmerI interface 27
stem() method 27, 28
stemming

about 25
combining, with lemmatization 29, 30

stopfile keyword 169
stopwords

about 13, 144
filtering 169
filtering, in tokenized sentence 13

support_cutoff 179
swap_infinitive_phrase() function

about 151
infinitive phrases, swapping 152
working 152

swap_noun_cardinal() function
about 150
noun cardinals, swapping 151
working 151

swap_verb_phrase() function
about 149
verb phrases, swapping 149

synonyms
replacing 39, 40
finding, in WordNet 17, 18

synsets
about 15
finding, for word in WordNet 14, 15

T
tag 82
tagged corpus reader

categorizing 61
TaggedCorpusReader

creating 51
working 52

tagged sentence
untagging 84

tagged_sents() function 82
tagged token 52, 83
tagger-based chunker

training 126-128
taggers

about 82
AffixTagger 96
BigramTagger 89-91
BrillTagger 98, 99
ClassifierBasedPOSTagger 106, 107
combining, with backoff tagging 88
ContextTagger 85
DefaultTagger 82, 83
NamesTagger 105
NgramTagger 85-91
Quadgram 91, 92
RegexpTagger 95
SequentialBackoffTagger 83, 88
TnT tagger 100, 101
TrigramTagger 89
UnigramTagger 85, 86, 93
WordNetTagger 104

tagging
regular expressions, used 94, 95
WordNet, used 103, 104

tag mapping function
tags, simplifying 53

tag() method 82
tag_pattern2re_pattern() function 112
tag separator

customizing 53
t.draw() method 113
temporal expression

about 233
tagging, with timex library 233

test set 185

255

text
tokenizing, into sentences 8, 9
translating, with Bablefish 30, 31

text classification 167
text feature extraction 168
time

parsing, with dateutil library 228, 229
timex library

about 227
temporal expressions, tagging 233
using 233

TnT tagger
about 100
working 101

tokenization 7, 8
tokenized sentence

stopwords, filtering 13
tokens 70
trained tagger

preserving 89
unpreserving 89

transform_chunk() function
about 154
chunk transformations, chaining 154
working 154

treebank_chunk corpus 125
treebank corpus 144, 243
TreebankWordTokenizer 10, 11
tree nodes

converting 163, 164
Tree.pos() method 157
TrigramCollocationFinder 23
Trigrams’n’Tags. See TnT tagger
TrigramTagger

about 89
working 90, 91

true negative 183
true positive 183
tzfile object 231
tzinfo object

getting 230
tz.tzlocal() function 232

U
UnChunkRule rule 121
unicodedata.normalize() function 241

unigram 85
UnigramTagger

about 85, 93
training 85
working 86

unlabelled feature set 167
urllib request 31
UTC 230

V
values() method 213, 220
verb forms

correcting 146, 148
verb phrases

swapping 149
verbs

comparing 21
voting

classifiers, combining with 191, 192

W
WhitespaceTokenizer 10
word list corpus

creating 48, 49
WordListCorpusReader

about 48
working 49

WordNet
about 8, 14
lemma, finding 17, 18
POS tag 16
synonyms, finding 17, 18
synset similarity, comparing 19, 20
used, for tagging 103, 104
words, lemmatising 28

WordNetCorpusReader class 29
WordNetLemmatizer class 29
WordNetTagger

working 104
WordPunctTokenizer 11
WordReplacer class 40
words

lemmatising, with WordNet 28
replacing, based on regular expressions

 32, 33
stemming 25, 26

256

insignificant words, filtering 144, 145
word_tag_model() function 94
word_tokenize() function

about 10
working 10

word tokenizer
customizing 52

Wu-Palmer Similarity method. See
wup_similarity() method

wup_similarity() method 20, 21

X
xpath() method

links, extracting 236

Y
YAML file

loading 47
YAML synonym replacement 41

