Python Text
Processing with
NLTK 2.0 Cookbook

Over 80 practical recipes for using Python's NLTK suite of
libraries to maximize your Natural Language Processing
capabilities.

Jacob Perkins

open source

community experience distilled

PUBLISHING

BIRMINGHAM - MUMBAI

Python Text Processing with NLTK 2.0
Cookbook

Copyright © 2010 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be
caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: November 2010

Production Reference: 1031110

Published by Packt Publishing Ltd.
32 Lincoln Road

Olton

Birmingham, B27 6PA, UK.

ISBN 978-1-849513-60-9
www . packtpub.com

Cover Image by Sujay Gawand (sujay0000@gmail . com)

Credits

Author
Jacob Perkins

Reviewers
Patrick Chan

Herjend Teny

Acquisition Editor
Steven Wilding

Development Editor
Maitreya Bhakal

Technical Editors
Bianca Sequeira

Aditi Suvarna

Copy Editor
Laxmi Subramanian

Indexer
Tejal Daruwale

Editorial Team Leader
Aditya Belpathak

Project Team Leader
Priya Mukheriji

Project Coordinator
Shubhanjan Chatterjee

Proofreader
Joanna McMahon

Graphics
Nilesh Mohite

Production Coordinator
Adline Swetha Jesuthas

Cover Work
Adline Swetha Jesuthas

About the Author

Jacob Perkins has been an avid user of open source software since high school, when
he first built his own computer and didn't want to pay for Windows. At one point he had
five operating systems installed, including Red Hat Linux, OpenBSD, and BeOS.

While at Washington University in St. Louis, Jacob took classes in Spanish and poetry
writing, and worked on an independent study project that eventually became his Master's
project: WUGLE—a GUI for manipulating logical expressions. In his free time, he wrote

the Gnome2 version of Seahorse (a GUI for encryption and key management), which has
since been translated into over a dozen languages and is included in the default Ghome
distribution.

After receiving his MS in Computer Science, Jacob tried to start a web development
studio with some friends, but since no one knew anything about web development,

it didn't work out as planned. Once he'd actually learned about web development, he
went off and co-founded another company called Weotta, which sparked his interest in
Machine Learning and Natural Language Processing.

Jacob is currently the CTO/Chief Hacker for Weotta and blogs about what he's learned
along the way at http://streamhacker.com/. He is also applying this knowledge to
produce text processing APls and demos at http://text-processing.com/. This book
is a synthesis of his knowledge on processing text using Python, NLTK, and more.

Thanks to my parents for all their support, even when they don't understand
what I'm doing; Grant for sparking my interest in Natural Language
Processing; Les for inspiring me to program when | had no desire to; Arnie
for all the algorithm discussions; and the whole Wernick family for feeding
me such good food whenever | come over.

About the Reviewers

Patrick Chan is an engineer/programmer in the telecommunications industry. He is an
avid fan of Linux and Python. His less geekier pursuits include Toastmasters, music, and
running.

Herjend Teny graduated from the University of Melbourne. He has worked mainly in
the education sector and as a part of research teams. The topics that he has worked

on mainly involve embedded programming, signal processing, simulation, and some
stochastic modeling. His current interests now lie in many aspects of web programming,
using Django. One of the books that he has worked on is the Python Testing: Beginner's
Guide.

I'd like to thank Patrick Chan for his help in many aspects, and his crazy and
odd ideas. Also to Hattie, for her tolerance in letting me do this review until
late at night. Thank you!!

Table of Contents

Preface 1
Chapter 1: Tokenizing Text and WordNet Basics 7
Introduction 7
Tokenizing text into sentences 8
Tokenizing sentences into words 9
Tokenizing sentences using regular expressions 11
Filtering stopwords in a tokenized sentence 13
Looking up synsets for a word in WordNet 14
Looking up lemmas and synonyms in WordNet 17
Calculating WordNet synset similarity 19
Discovering word collocations 21
Chapter 2: Replacing and Correcting Words 25
Introduction 25
Stemming words 25
Lemmatizing words with WordNet 28
Translating text with Babelfish 30
Replacing words matching regular expressions 32
Removing repeating characters 34
Spelling correction with Enchant 36
Replacing synonyms 39
Replacing negations with antonyms 41
Chapter 3: Creating Custom Corpora 45
Introduction 45
Setting up a custom corpus 46
Creating a word list corpus 48

Creating a part-of-speech tagged word corpus 50

Table of Contents

Creating a chunked phrase corpus 54
Creating a categorized text corpus 58
Creating a categorized chunk corpus reader 61
Lazy corpus loading 68
Creating a custom corpus view 70
Creating a MongoDB backed corpus reader 74
Corpus editing with file locking 77
Chapter 4: Part-of-Speech Tagging 81
Introduction 82
Default tagging 82
Training a unigram part-of-speech tagger 85
Combining taggers with backoff tagging 88
Training and combining Ngram taggers 89
Creating a model of likely word tags 92
Tagging with regular expressions 94
Affix tagging 96
Training a Brill tagger 98
Training the TnT tagger 100
Using WordNet for tagging 103
Tagging proper names 105
Classifier based tagging 106
Chapter 5: Extracting Chunks 111
Introduction 111
Chunking and chinking with regular expressions 112
Merging and splitting chunks with regular expressions 117
Expanding and removing chunks with regular expressions 121
Partial parsing with regular expressions 123
Training a tagger-based chunker 126
Classification-based chunking 129
Extracting named entities 133
Extracting proper noun chunks 135
Extracting location chunks 137
Training a named entity chunker 140
Chapter 6: Transforming Chunks and Trees 143
Introduction 143
Filtering insignificant words 144
Correcting verb forms 146
Swapping verb phrases 149
Swapping noun cardinals 150
Swapping infinitive phrases 151

Table of Contents

Singularizing plural nouns 153
Chaining chunk transformations 154
Converting a chunk tree to text 155
Flattening a deep tree 157
Creating a shallow tree 161
Converting tree nodes 163
Chapter 7: Text Classification 167
Introduction 167
Bag of Words feature extraction 168
Training a naive Bayes classifier 170
Training a decision tree classifier 177
Training a maximum entropy classifier 180
Measuring precision and recall of a classifier 183
Calculating high information words 187
Combining classifiers with voting 191
Classifying with multiple binary classifiers 193
Chapter 8: Distributed Processing and Handling Large Datasets 201
Introduction 202
Distributed tagging with execnet 202
Distributed chunking with execnet 206
Parallel list processing with execnet 209
Storing a frequency distribution in Redis 211
Storing a conditional frequency distribution in Redis 215
Storing an ordered dictionary in Redis 218
Distributed word scoring with Redis and execnet 221
Chapter 9: Parsing Specific Data 227
Introduction 227
Parsing dates and times with Dateutil 228
Time zone lookup and conversion 230
Tagging temporal expressions with Timex 233
Extracting URLs from HTML with Ixml 234
Cleaning and stripping HTML 236
Converting HTML entities with BeautifulSoup 238
Detecting and converting character encodings 240
Appendix: Penn Treebank Part-of-Speech Tags 243

Index 247

Preface

Natural Language Processing is used everywhere—in search engines, spell checkers, mobile
phones, computer games, and even in your washing machine. Python's Natural Language
Toolkit (NLTK) suite of libraries has rapidly emerged as one of the most efficient tools for
Natural Language Processing. You want to employ nothing less than the best techniques in
Natural Language Processing—and this book is your answer.

Python Text Processing with NLTK 2.0 Cookbook is your handy and illustrative guide, which
will walk you through all the Natural Language Processing techniques in a step-by-step
manner. It will demystify the advanced features of text analysis and text mining using the
comprehensive NLTK suite.

This book cuts short the preamble and lets you dive right into the science of text processing
with a practical hands-on approach.

Get started off with learning tokenization of text. Receive an overview of WordNet and how

to use it. Learn the basics as well as advanced features of stemming and lemmatization.
Discover various ways to replace words with simpler and more common (read: more searched)
variants. Create your own corpora and learn to create custom corpus readers for data stored
in MongoDB. Use and manipulate POS taggers. Transform and normalize parsed chunks to
produce a canonical form without changing their meaning. Dig into feature extraction and text
classification. Learn how to easily handle huge amounts of data without any loss in efficiency
or speed.

This book will teach you all that and beyond, in a hands-on learn-by-doing manner. Make
yourself an expert in using the NLTK for Natural Language Processing with this handy
companion.

Preface

What this book covers

Chapter 1, Tokenizing Text and WordNet Basics, covers the basics of tokenizing text
and using WordNet.

Chapter 2, Replacing and Correcting Words, discusses various word replacement and
correction techniques. The recipes cover the gamut of linguistic compression, spelling
correction, and text normalization.

Chapter 3, Creating Custom Corpora, covers how to use corpus readers and create
custom corpora. At the same time, it explains how to use the existing corpus data that
comes with NLTK.

Chapter 4, Part-of-Speech Tagging, explains the process of converting a sentence,
in the form of a list of words, into a list of tuples. It also explains taggers, which
are trainable.

Chapter 5, Extracting Chunks, explains the process of extracting short phrases from a
part-of-speech tagged sentence. It uses Penn Treebank corpus for basic training and testing
chunk extraction, and the CoNLL 2000 corpus as it has a simpler and more flexible format
that supports multiple chunk types.

Chapter 6, Transforming Chunks and Trees, shows you how to do various transforms on both
chunks and trees. The functions detailed in these recipes modify data, as opposed to learning
from it.

Chapter 7, Text Classification, describes a way to categorize documents or pieces of text and,
by examining the word usage in a piece of text, classifiers decide what class label should be
assigned to it.

Chapter 8, Distributed Processing and Handling Large Datasets, discusses how to use
execnet to do parallel and distributed processing with NLTK. It also explains how to use the
Redis data structure server/database to store frequency distributions.

Chapter 9, Parsing Specific Data, covers parsing specific kinds of data, focusing primarily on
dates, times, and HTML.

Appendix, Penn Treebank Part-of-Speech Tags, lists a table of all the part-of-speech tags that
occur in the treebank corpus distributed with NLTK.

Preface

What you need for this book

In the course of this book, you will need the following software utilities to try out various code
examples listed:

e NLTK

e MongoDB
e PyMongo
e Redis

o redis-py

e execnet

e Enchant

e PyEnchant

e PyYAML
e dateutil
e chardet

e BeautifulSoup
e Ixml

e SimpleParse

e mxBase

e Jockfile

Who this book is for

This book is for Python programmers who want to quickly get to grips with using the

NLTK for Natural Language Processing. Familiarity with basic text processing concepts

is required. Programmers experienced in the NLTK will find it useful. Students of linguistics
will find it invaluable.

Conventions

In this book, you will find a number of styles of text that distinguish between different kinds
of information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text are shown as follows: "Now we want to split para into sentences. First we
need to import the sentence tokenization function, and then we can call it with the paragraph
as an argument."

Preface
A block of code is set as follows:

>>> para = "Hello World. It's good to see you. Thanks for buying this
book. "

>>> from nltk.tokenize import sent tokenize
>>> sent_tokenize (para)

New terms and important words are shown in bold.

Warnings or important notes appear in a box like this.

Q Tips and tricks appear like this.

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or may have disliked. Reader feedback is important for us to develop
titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedbackepacktpub.com, and
mention the book title via the subject of your message.

If there is a book that you need and would like to see us publish, please send us a note in
the SUGGEST A TITLE form on www . packtpub. com or e-mail suggest@packtpub.com

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www . packtpub.com/authors.

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Downloading the example code for this book

You can download the example code files for all Packt books you have
%@‘ purchased from your account at http://www.PacktPub. com. If you

purchased this book elsewhere, you can visit http: //www.PacktPub.

com/support and register to have the files e-mailed directly to you.

Preface

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the code—
we would be grateful if you would report this to us. By doing so, you can save other readers
from frustration and help us improve subsequent versions of this book. If you find any errata,
please report them by visiting http: //www.packtpub.com/support, selecting your book,
clicking on the errata submission form link, and entering the details of your errata. Once
your errata are verified, your submission will be accepted and the errata will be uploaded on
our website, or added to any list of existing errata, under the Errata section of that title. Any
existing errata can be viewed by selecting your title from http://www.packtpub.com/
support.

Piracy

Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyrightepacktpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you valuable
content.

Questions

You can contact us at questions@packtpub.com if you are having a problem with any
aspect of the book, and we will do our best to address it.

Tokenizing Text and
WordNet Basics

In this chapter, we will cover:

» Tokenizing text into sentences

» Tokenizing sentences into words

» Tokenizing sentences using regular expressions
» Filtering stopwords in a tokenized sentence

» Looking up synsets for a word in WordNet

» Looking up lemmas and synonyms in WordNet
» Calculating WordNet synset similarity

» Discovering word collocations

Introduction

NLTK is the Natural Language Toolkit, a comprehensive Python library for natural language
processing and text analytics. Originally designed for teaching, it has been adopted in the
industry for research and development due to its usefulness and breadth of coverage.

This chapter will cover the basics of tokenizing text and using WordNet. Tokenization is a
method of breaking up a piece of text into many pieces, and is an essential first step for
recipes in later chapters.

Tokenizing Text and WordNet Basics

WordNet is a dictionary designed for programmatic access by natural language processing
systems. NLTK includes a WordNet corpus reader, which we will use to access and explore
WordNet. We'll be using WordNet again in later chapters, so it's important to familiarize
yourself with the basics first.

Tokenizing text into sentences

Tokenization is the process of splitting a string into a list of pieces, or tokens. We'll start by
splitting a paragraph into a list of sentences.

Getting ready

Installation instructions for NLTK are available at http://www.nltk.org/download and
the latest version as of this writing is 2.0b9. NLTK requires Python 2.4 or higher, but is not
compatible with Python 3.0. The recommended Python version is 2.6.

Once you've installed NLTK, you'll also need to install the data by following the instructions
athttp://www.nltk.org/data. We recommend installing everything, as we'll be using

a number of corpora and pickled objects. The data is installed in a data directory, which on
Mac and Linux/Unix is usually /usr/share/nltk_data, or on Windows is C:\nltk data
Make sure that tokenizers/punkt.zip is in the data directory and has been unpacked so
that there's a file at tokenizers/punkt/english.pickle

Finally, to run the code examples, you'll need to start a Python console. Instructions on
how to do so are available at http://www.nltk.org/getting-started. For Mac
with Linux/Unix users, you can open a terminal and type python.

How to do it...

Once NLTK is installed and you have a Python console running, we can start by creating a
paragraph of text:

>>> para = "Hello World. It's good to see you. Thanks for buying this
book. "

Now we want to split para into sentences. First we need to import the sentence tokenization
function, and then we can call it with the paragraph as an argument.

>>> from nltk.tokenize import sent tokenize

>>> sent_tokenize (para)

['Hello World.', "It's good to see you.", 'Thanks for buying this
book. ']

So now we have a list of sentences that we can use for further processing.

—e1]

Chapter 1

sent tokenize uses an instance of PunktSentenceTokenizer from the nltk.
tokenize.punkt module. This instance has already been trained on and works well for
many European languages. So it knows what punctuation and characters mark the end of a
sentence and the beginning of a new sentence.

There's more...

The instance used in sent_tokenize () is actually loaded on demand from a pickle
file. So if you're going to be tokenizing a lot of sentences, it's more efficient to load the
PunktSentenceTokenizer once, and call its tokenize () method instead.

>>> import nltk.data
>>> tokenizer = nltk.data.load('tokenizers/punkt/english.pickle')
>>> tokenizer.tokenize (para)

['Hello World.', "It's good to see you.", 'Thanks for buying this
book. ']

Other languages

If you want to tokenize sentences in languages other than English, you can load one of the
other pickle files in tokenizers/punkt and use it just like the English sentence tokenizer.
Here's an example for Spanish:

>>> spanish tokenizer = nltk.data.load('tokenizers/punkt/spanish.
pickle')
>>> spanish tokenizer.tokenize('Hola amigo. Estoy bien.')

In the next recipe, we'll learn how to split sentences into individual words. After that, we'll
cover how to use regular expressions for tokenizing text.

Tokenizing sentences into words

In this recipe, we'll split a sentence into individual words. The simple task of creating a list of
words from a string is an essential part of all text processing.

Tokenizing Text and WordNet Basics

How to do it...

Basic word tokenization is very simple: use the word tokenize () function:

>>> from nltk.tokenize import word tokenize
>>> word_tokenize ('Hello World.')
['Hello', 'World', '.'l]

word_ tokenize () is a wrapper function that calls tokenize () on an instance of the
TreebankWordTokenizer. It's equivalent to the following:

>>> from nltk.tokenize import TreebankWordTokenizer
>>> tokenizer = TreebankWordTokenizer ()

>>> tokenizer.tokenize('Hello World.')

['Hello', 'World', '.']

It works by separating words using spaces and punctuation. And as you can see, it does not
discard the punctuation, allowing you to decide what to do with it.

There's more...

Ignoring the obviously named WhitespaceTokenizer and SpaceTokenizer, there are two
other word tokenizers worth looking at: PunktWordTokenizer and WordPunctTokenizer.
These differ from the TreebankWordTokenizer by how they handle punctuation and
contractions, but they all inherit from TokenizerI. The inheritance tree looks like this:

Tokenizerl
tokenize(s)

PunktWordTokenizer | | TreebankWordTokenizer

RegexpTokenizer
V4 A

WordPunctTokenizer | | WhitespaceTokenizer

Chapter 1

Contractions

TreebankWordTokenizer uses conventions found in the Penn Treebank corpus, which we'll
be using for training in Chapter 4, Part-of-Speech Tagging and Chapter 5, Extracting Chunks.
One of these conventions is to separate contractions. For example:

>>> word_tokenize("can't")
[lcall "Il't"]

If you find this convention unacceptable, then read on for alternatives, and see the next recipe
for tokenizing with regular expressions.

PunktWordTokenizer

An alternative word tokenizer is the PunktWordTokenizer. It splits on punctuation, but
keeps it with the word instead of creating separate tokens.

>>> from nltk.tokenize import PunktWordTokenizer
>>> tokenizer = PunktWordTokenizer ()
>>> tokenizer.tokenize("Can't is a contraction.")

['Can', "'t", 'is', 'a', 'contraction.']

WordPunctTokenizer

Another alternative word tokenizer is WordPunctTokenizer. It splits all punctuations into
separate tokens.

>>> from nltk.tokenize import WordPunctTokenizer
>>> tokenizer = WordPunctTokenizer ()

>>> tokenizer.tokenize("Can't is a contraction.")
['Can', "', 't', 'is', 'a', ‘'contraction', '.']

For more control over word tokenization, you'll want to read the next recipe to learn how to use
regular expressions and the RegexpTokenizer for tokenization.

Tokenizing sentences using regular

expressions

Regular expression can be used if you want complete control over how to tokenize text. As
regular expressions can get complicated very quickly, we only recommend using them if the
word tokenizers covered in the previous recipe are unacceptable.

Tokenizing Text and WordNet Basics

Getting ready

First you need to decide how you want to tokenize a piece of text, as this will determine how
you construct your regular expression. The choices are:

» Match on the tokens
» Match on the separators, or gaps

We'll start with an example of the first, matching alphanumeric tokens plus single quotes so
that we don't split up contractions.

How to do it...

We'll create an instance of the RegexpTokenizer, giving it a regular expression string to
use for matching tokens.

>>> from nltk.tokenize import RegexpTokenizer
>>> tokenizer = RegexpTokenizer ("[\w']l+")

>>> tokenizer.tokenize("Can't is a contraction.")
["Can't", 'is', 'a', 'contraction']

There's also a simple helper function you can use in case you don't want to instantiate
the class.

>>> from nltk.tokenize import regexp tokenize
>>> regexp_ tokenize("Can't is a contraction.", "[\w']+")
["Can't", 'is', 'a', 'contraction']

Now we finally have something that can treat contractions as whole words, instead of splitting
them into tokens.

The RegexpTokenizer works by compiling your pattern, then calling re.findall () on
your text. You could do all this yourself using the re module, but the RegexpTokenizer
implements the TokenizerI interface, just like all the word tokenizers from the previous
recipe. This means it can be used by other parts of the NLTK package, such as corpus
readers, which we'll cover in detail in Chapter 3, Creating Custom Corpora. Many corpus
readers need a way to tokenize the text they're reading, and can take optional keyword
arguments specifying an instance of a TokenizerI subclass. This way, you have the ability to
provide your own tokenizer instance if the default tokenizer is unsuitable.

Chapter 1

RegexpTokenizer can also work by matching the gaps, instead of the tokens. Instead
of using re.findall (), the RegexpTokenizer will use re.split (). Thisis how the
BlanklineTokenizer in nltk.tokenize is implemented.

Simple whitespace tokenizer
Here's a simple example of using the RegexpTokenizer to tokenize on whitespace:

>>> tokenizer = RegexpTokenizer ('\s+', gaps=True)
>>> tokenizer.tokenize("Can't is a contraction.")
["Can't", 'is', 'a', 'contraction.']

Notice that punctuation still remains in the tokens.

See also

For simpler word tokenization, see the previous recipe.

Filtering stopwords in a tokenized sentence

Stopwords are common words that generally do not contribute to the meaning of a sentence,
at least for the purposes of information retrieval and natural language processing. Most
search engines will filter stopwords out of search queries and documents in order to save
space in their index.

Getting ready

NLTK comes with a stopwords corpus that contains word lists for many languages. Be sure to
unzip the datafile so NLTK can find these word lists in nltk data/corpora/stopwords/.

How to do it...

We're going to create a set of all English stopwords, then use it to filter stopwords from a
sentence.

>>> from nltk.corpus import stopwords

>>> english stops = set (stopwords.words('english'))

>>> words = ["Can't", 'is', 'a',6 'contraction']

>>> [word for word in words if word not in english stops]
["Can't", 'contraction']

Tokenizing Text and WordNet Basics

The stopwords corpus is an instance of nltk.corpus.reader.WordListCorpusReader.
As such, it has a words () method that can take a single argument for the file ID, which in this
case is 'english', referring to a file containing a list of English stopwords. You could also
call stopwords.words () with no argument to get a list of all stopwords in every language
available.

There's more...

You can see the list of all English stopwords using stopwords.words ('english') or by
examining the word list file at n1tk_data/corpora/stopwords/english. There are also
stopword lists for many other languages. You can see the complete list of languages using the
fileids () method:

>>> stopwords.fileids ()

['danish', 'dutch', 'english', 'finnish', 'french', 'german',
'hungarian', 'italian', 'norwegian', 'portuguese',6 'russian',
'spanish', 'swedish', 'turkish']

Any of these fileids can be used as an argument to the words () method to get a list of
stopwords for that language.

If you'd like to create your own stopwords corpus, see the Creating a word list corpus recipe
in Chapter 3, Creating Custom Corpora, to learn how to use the WordListCorpusReader.
We'll also be using stopwords in the Discovering word collocations recipe, later in this chapter.

Looking up synsets for a word in WordNet

WordNet is a lexical database for the English language. In other words, it's a dictionary
designed specifically for natural language processing.

NLTK comes with a simple interface for looking up words in WordNet. What you get is a list of
synset instances, which are groupings of synonymous words that express the same concept.
Many words have only one synset, but some have several. We'll now explore a single synset,
and in the next recipe, we'll look at several in more detail.

Chapter 1

Getting ready

Be sure you've unzipped the wordnet corpus in nltk data/corpora/wordnet. This will
allow the WordNetCorpusReader to access it.

How to do it...

Now we're going to lookup the synset for cookbook, and explore some of the properties and
methods of a synset.

>>> from nltk.corpus import wordnet

>>> syn = wordnet.synsets ('cookbook') [0]
>>> syn.name

'cookbook.n.01'

>>> syn.definition

'a book of recipes and cooking directions'

You can look up any word in WordNet using wordnet . synsets (word) to get a list of
synsets. The list may be empty if the word is not found. The list may also have quite a few
elements, as some words can have many possible meanings and therefore many synsets.

There's more...

Each synset in the list has a number of attributes you can use to learn more about it.
The name attribute will give you a unique name for the synset, which you can use to get
the synset directly.

>>> wordnet.synset ('cookbook.n.01"')
Synset ('cookbook.n.01")

The definition attribute should be self-explanatory. Some synsets also have an examples
attribute, which contains a list of phrases that use the word in context.

>>> wordnet.synsets ('cooking') [0] .examples

['cooking can be a great art', 'people are needed who have experience
in cookery', 'he left the preparation of meals to his wife']
Hypernyms

Synsets are organized in a kind of inheritance tree. More abstract terms are known as
hypernyms and more specific terms are hyponyms. This tree can be traced all the way up
to a root hypernym.

]

Tokenizing Text and WordNet Basics

Hypernyms provide a way to categorize and group words based on their similarity to each
other. The synset similarity recipe details the functions used to calculate similarity based on
the distance between two words in the hypernym tree.

>>> syn.hypernyms ()
[Synset ('reference book.n.01')]
>>> syn.hypernyms () [0] . hyponyms ()

[Synset ('encyclopedia.n.01'), Synset('directory.n.0l1'),

Synset ('source_book.n.01'), Synset ('handbook.n.01'),

Synset ('instruction book.n.01'), Synset ('cookbook.n.01'),

Synset ('annual.n.02'), Synset('atlas.n.02'), Synset ('wordbook.n.01'")]

>>> syn.root_ hypernyms ()
[Synset ('entity.n.01"')]

As you can see, reference book is a hypernym of cookbook, but cookbook is only one of
many hyponyms of reference book. All these types of books have the same root hypernym,
entity, one of the most abstract terms in the English language. You can trace the entire
path from ent ity down to cookbook using the hypernym paths () method.

>>> syn.hypernym paths ()

[[Synset ('entity.n.01'), Synset('physical entity.n.01'),

Synset ('object.n.01'), Synset('whole.n.02'), Synset('artifact.n.01'),
Synset ('creation.n.02'), Synset('product.n.02'), Synset('work.n.02'),
Synset ('publication.n.01'), Synset('book.n.01'), Synset ('reference
book.n.01'), Synset ('cookbook.n.01')]]

This method returns a list of lists, where each list starts at the root hypernym and ends with
the original Synset. Most of the time you'll only get one nested list of synsets.

Part-of-speech (POS)
You can also look up a simplified part-of-speech tag.

>>> Syn.pos
lnl

There are four common POS found in WordNet.

Part-of-speech Tag
Noun n
Adjective a
Adverb r
Verb v

These POS tags can be used for looking up specific synsets for a word. For example, the
word great can be used as a noun or an adjective. In WordNet, great has one noun synset
and six adjective synsets.

6]

Chapter 1

>>> len (wordnet.synsets ('great'))

7

>>> len (wordnet.synsets('great', pos='n'))
1

>>> len (wordnet.synsets('great', pos='a'))
6

These POS tags will be referenced more in the Using WordNet for Tagging recipe of
Chapter 4, Part-of-Speech Tagging.

In the next two recipes, we'll explore lemmas and how to calculate synset similarity. In
Chapter 2, Replacing and Correcting Words, we'll use WordNet for lemmatization, synonym
replacement, and then explore the use of antonyms.

Looking up lemmas and synonyms

in WordNet

Building on the previous recipe, we can also look up lemmas in WordNet to find synonyms of a
word. A lemma (in linguistics) is the canonical form, or morphological form, of a word.

How to do it...

In the following block of code, we'll find that there are two lemmas for the cookbook synset
by using the 1emmas attribute:

>>> from nltk.corpus import wordnet

>>> syn = wordnet.synsets ('cookbook') [0]
>>> lemmas = syn.lemmas

>>> len(lemmas)

2

>>> lemmas [0] .name

' cookbook'

>>> lemmas [1] .name

'cookery book'

>>> lemmas [0] .synset == lemmas[1l].synset
True

[}

Tokenizing Text and WordNet Basics

As you can see, cookery book and cookbook are two distinct 1emmas in the same
synset. In fact, a lemma can only belong to a single synset. In this way, a synset represents
a group of lemmas that all have the same meaning, while a lemma represents a distinct
word form.

Since lemmas in a synset all have the same meaning, they can be treated as synonyms. So if
you wanted to get all synonyms for a synset, you could do:

>>> [lemma.name for lemma in syn.lemmas]
['cookbook!', 'cookery book']

All possible synonyms

As mentioned before, many words have multiple synsets because the word can have
different meanings depending on the context. But let's say you didn't care about the context,
and wanted to get all possible synonyms for a word.

>>> synonyms = []

>>> for syn in wordnet.synsets ('book') :
for lemma in syn.lemmas:

C synonyms . append (lemma .name)

>>> len (synonyms)

38

As you can see, there appears to be 38 possible synonyms for the word book. But in fact,
some are verb forms, and many are just different usages of book. Instead, if we take the set
of synonyms, there are fewer unique words.

>>> len(set (synonyms))
25

Antonyms

Some lemmas also have antonyms. The word good, for example, has 27 synsets, five of
which have 1lemmas with antonyms.

>>> gn2 = wordnet.synset ('good.n.02')
>>> gn2.definition
'moral excellence or admirableness'

>>> evil = gn2.lemmas[0] .antonyms () [0]
>>> evil.name
'evil!

>>> evil.synset.definition

]

Chapter 1

'the quality of being morally wrong in principle or practice'

>>> gal = wordnet.synset('good.a.01"')

>>> gal.definition

'having desirable or positive qualities especially those suitable for
a thing specified!

>>> bad = gal.lemmas[0] .antonyms () [0]

>>> bad.name

'bad'

>>> bad.synset.definition

'having undesirable or negative qualities'

The antonyms () method returns a list of Lemmas. In the first case here, we see that the
second synset for good as a noun is defined as moral excellence, and its first antonym
is evil, defined as morally wrong. In the second case, when good is used as an adjective
to describe positive qualities, the first antonym is bad, which describes negative qualities.

See also

In the next recipe, we'll learn how to calculate synset similarity. Then in Chapter 2, Replacing
and Correcting Words, we'll revisit lemmas for lemmatization, synonym replacement, and
antonym replacement.

Calculating WordNet synset similarity

Synsets are organized in a hypernym tree. This tree can be used for reasoning about the
similarity between the synsets it contains. Two synsets are more similar, the closer they are
in the tree.

How to do it...

If you were to look at all the hyponyms of reference book (which is the hypernym of
cookbook) you'd see that one of them is instruction book. These seem intuitively very
similar to cookbook, so let's see what WordNet similarity has to say about it.

>>> from nltk.corpus import wordnet

>>> cb = wordnet.synset ('cookbook.n.01"')

>>> i1b = wordnet.synset ('instruction book.n.01')
>>> cb.wup_similarity(ib)

0.91666666666666663

So they are over 91% similar!

Tokenizing Text and WordNet Basics

wup_similarity is short for Wu-Palmer Similarity, which is a scoring method based on
how similar the word senses are and where the synsets occur relative to each other in the
hypernym tree. One of the core metrics used to calculate similarity is the shortest path
distance between the two synsets and their common hypernym.

>>> ref = cb.hypernyms () [0]

>>> cb.shortest path distance (ref)
1

>>> ib.shortest path distance (ref)

>>> cb.shortest path distance(ib)
2

So cookbook and instruction book must be very similar, because they are only one step
away from the same hypernym, reference book, and therefore only two steps away from
each other.

Let's look at two dissimilar words to see what kind of score we get. We'll compare dog with
cookbook, two seemingly very different words.

>>> dog = wordnet.synsets('dog') [0]
>>> dog.wup similarity (cb)
0.38095238095238093

Wow, dog and cookbook are apparently 38% similar! This is because they share common
hypernyms farther up the tree.

>>> dog.common hypernyms (cb)
[Synset ('object.n.01'), Synset('whole.n.02'), Synset ('physical
entity.n.01'), Synset('entity.n.01')]

Comparing verbs

The previous comparisons were all between nouns, but the same can be done for verbs
as well.

>>> cook = wordnet.synset ('cook.v.01')
>>> bake = wordnet.synset ('bake.v.02"')
>>> cook.wup_ similarity (bake)

0.75

Chapter 1

The previous synsets were obviously handpicked for demonstration, and the reason is that
the hypernym tree for verbs has a lot more breadth and a lot less depth. While most nouns
can be traced up to object, thereby providing a basis for similarity, many verbs do not share
common hypernyms, making WordNet unable to calculate similarity. For example, if you were
to use the synset for bake.v.01 here, instead of bake.v. 02, the return value would be
None. This is because the root hypernyms of the two synsets are different, with no overlapping
paths. For this reason, you also cannot calculate similarity between words with different parts
of speech.

Path and LCH similarity

Two other similarity comparisons are the path similarity and Leacock Chodorow (LCH)
similarity.

>>> cb.path_similarity(ib)
0.33333333333333331

>>> cb.path_similarity (dog)
0.071428571428571425

>>> cb.lch_similarity(ib)
2.5389738710582761

>>> cb.lch_similarity (dog)
0.99852883011112725

As you can see, the number ranges are very different for these scoring methods, which is why
we prefer the wup similarity () method.

The recipe on Looking up synsets for a word in WordNet, discussed earlier in this chapter, has
more details about hypernyms and the hypernym tree.

Discovering word collocations

Collocations are two or more words that tend to appear frequently together, such as "United
States". Of course, there are many other words that can come after "United", for example
"United Kingdom", "United Airlines", and so on. As with many aspects of natural language
processing, context is very important, and for collocations, context is everything!

In the case of collocations, the context will be a document in the form of a list of words.
Discovering collocations in this list of words means that we'll find common phrases that occur
frequently throughout the text. For fun, we'll start with the script for Monty Python and the
Holy Grail.

s

Tokenizing Text and WordNet Basics

Getting ready

The script for Monty Python and the Holy Grail is found in the webtext corpus, so be sure
that it's unzipped in nltk data/corpora/webtext/.

How to do it...

We're going to create a list of all lowercased words in the text, and then produce a
BigramCollocationFinder, which we can use to find bigrams, which are pairs of words.
These bigrams are found using association measurement functions found in the nltk.
metrics package.

>>> from nltk.corpus import webtext

>>> from nltk.collocations import BigramCollocationFinder
>>> from nltk.metrics import BigramAssocMeasures

>>> words = [w.lower() for w in webtext.words('grail.txt')]
>>> bcf = BigramCollocationFinder.from words (words)

>>> bcf.nbest (BigramAssocMeasures.likelihood ratio, 4)
[(rrr, 's'), (tarthur', ':'), ('#', '1'), ("'", '£')]

Well that's not very useful! Let's refine it a bit by adding a word filter to remove punctuation
and stopwords.

>>> from nltk.corpus import stopwords

>>> stopset = set (stopwords.words('english'))

>>> filter stops = lambda w: len(w) < 3 or w in stopset

>>> bef.apply word filter(filter stops)

>>> bcf.nbest (BigramAssocMeasures.likelihood ratio, 4)

[('black', 'knight'), ('clop', 'clop'), ('head', 'knight'), ('mumble’',
'mumble!')]

Much better—we can clearly see four of the most common bigrams in Monty Python and the
Holy Grail. If you'd like to see more than four, simply increase the number to whatever you
want, and the collocation finder will do its best.

The BigramCollocationFinder constructs two frequency distributions: one for each
word, and another for bigrams. A frequency distribution, or FregDist in NLTK, is basically
an enhanced dictionary where the keys are what's being counted, and the values are the
counts. Any filtering functions that are applied, reduce the size of these two FregDists by
eliminating any words that don't pass the filter. By using a filtering function to eliminate all
words that are one or two characters, and all English stopwords, we can get a much cleaner
result. After filtering, the collocation finder is ready to accept a generic scoring function for
finding collocations. Additional scoring functions are covered in the Scoring functions section
further in this chapter.

=

Chapter 1

In addition to BigramCollocationFinder, there's also TrigramCollocationFinder,
for finding triples instead of pairs. This time, we'll look for trigrams in Australian singles ads.

>>> from nltk.collocations import TrigramCollocationFinder
>>> from nltk.metrics import TrigramAssocMeasures

>>> words = [w.lower() for w in webtext.words('singles.txt')]
>>> tcf = TrigramCollocationFinder.from words (words)

>>> tcf.apply word filter(filter stops)

>>> tcf.apply freq filter(3)

>>> tcf.nbest (TrigramAssocMeasures.likelihood ratio, 4)
[("long', 'term',K 'relationship')]

Now, we don't know whether people are looking for a long-term relationship or not, but clearly
it's an important topic. In addition to the stopword filter, we also applied a frequency filter
which removed any trigrams that occurred less than three times. This is why only one result
was returned when we asked for four—because there was only one result that occurred more
than twice.

Scoring functions

There are many more scoring functions available besides 1ikelihood ratio (). But other
than raw_freq (), you may need a bit of a statistics background to understand how they
work. Consult the NLTK API documentation for NgramAssocMeasures inthe nltk.metrics
package, to see all the possible scoring functions.

Scoring ngrams
In addition to the nbest () method, there are two other ways to get ngrams (a generic term
for describing bigrams and trigrams) from a collocation finder.

1. above score(score fn, min_ score) can be used to get all ngrams with scores
that are at least min_score. The min_score that you choose will depend heavily on
the score fn you use.

2. score_ngrams (score_fn) will return a list with tuple pairs of (ngram, score).
This can be used to inform your choice for min_score in the previous step.

The nltk.metrics module will be used again in Chapter 7, Text Classification.

Replacing and
Correcting Words

In this chapter, we will cover:

» Stemming words

» Lemmatizing words with WordNet

» Translating text with Babelfish

» Replacing words matching regular expressions
» Removing repeating characters

» Spelling correction with Enchant

» Replacing synonyms

» Replacing negations with antonyms

Introduction

In this chapter, we will go over various word replacement and correction techniques. The
recipes cover the gamut of linguistic compression, spelling correction, and text normalization.
All of these methods can be very useful for pre-processing text before search indexing,
document classification, and text analysis.

Stemming words

Stemming is a technique for removing affixes from a word, ending up with the stem. For
example, the stem of "cooking" is "cook", and a good stemming algorithm knows that the

"ing" suffix can be removed. Stemming is most commonly used by search engines for indexing
words. Instead of storing all forms of a word, a search engine can store only the stems, greatly
reducing the size of index while increasing retrieval accuracy.

Replacing and Correcting Words

One of the most common stemming algorithms is the Porter Stemming Algorithm, by Martin
Porter. It is designed to remove and replace well known suffixes of English words, and its
usage in NLTK will be covered next.

The resulting stem is not always a valid word. For example, the
s stem of "cookery" is "cookeri". This is a feature, not a bug.

How to do it...

NLTK comes with an implementation of the Porter Stemming Algorithm, which is very easy
to use. Simply instantiate the PorterStemmer class and call the stem () method with the
word you want to stem.

>>> from nltk.stem import PorterStemmer
>>> stemmer = PorterStemmer ()

>>> stemmer.stem('cooking')

'cook'

>>> stemmer.stem('cookery')

'cookeri’

The PorterStemmer knows a number of regular word forms and suffixes, and uses

that knowledge to transform your input word to a final stem through a series of steps. The
resulting stem is often a shorter word, or at least a common form of the word, that has the
same root meaning.

There are other stemming algorithms out there besides the Porter Stemming Algorithm, such
as the Lancaster Stemming Algorithm, developed at Lancaster University. NLTK includes

it as the LancasterStemmer class. At the time of writing, there is no definitive research
demonstrating the superiority of one algorithm over the other. However, Porter Stemming

is generally the default choice.

Chapter 2

All the stemmers covered next inherit from the StemmerI interface, which defines the
stem () method. The following is an inheritance diagram showing this:

Stemmerl
stem()

PorterStemmer f | LancasterStemmer |

\

RegexpStemmer | | SnowbaIIStemmer|

LancasterStemmer

The LancasterStemmer functions just like the PorterStemmer, but can produce slightly
different results. It is known to be slightly more aggressive than the PorterStemmer.

>>> from nltk.stem import LancasterStemmer

>>> stemmer = LancasterStemmer ()
>>> stemmer.stem('cooking')
'cook!

>>> stemmer.stem('cookery')
'cookery!'

RegexpStemmer

You can also construct your own stemmer using the RegexpStemmer. It takes a single regular
expression (either compiled or as a string) and will remove any prefix or suffix that matches.

>>> from nltk.stem import RegexpStemmer
>>> stemmer = RegexpStemmer ('ing')

>>> stemmer.stem('cooking')

'cook!

>>> stemmer.stem('cookery')

'cookery!'

>>> stemmer.stem('ingleside')

'leside!

A RegexpStemmer should only be used in very specific cases that are not covered by the
PorterStemmer Or LancasterStemmer.

e

Replacing and Correcting Words

SnowballStemmer

New in NLTK 2.0b9 is the SnowballStemmer, which supports 13 non-English languages.
To use it, you create an instance with the name of the language you are using, and then call
the stem () method. Here is a list of all the supported languages, and an example using the
Spanish SnowballStemmer:

>>> from nltk.stem import SnowballStemmer
>>> SnowballStemmer.languages

('danish', 'dutch', 'finnish', 'french', 'german',6 'hungarian',
'italian', 'norwegian',6 'portuguese', 'romanian', 'russian',
'spanish', 'swedish')

>>> spanish stemmer = SnowballStemmer ('spanish')
>>> spanish stemmer.stem('hola')
u'hol!

In the next recipe, we will cover lemmatization, which is quite similar to stemming, but
subtly different.

Lemmatizing words with WordNet

Lemmatization is very similar to stemming, but is more akin to synonym replacement. A
lemma is a root word, as opposed to the root stem. So unlike stemming, you are always
left with a valid word which means the same thing. But the word you end up with can be
completely different. A few examples will explain lemmatization...

Getting ready

Be sure you have unzipped the wordnet corpus in nltk data/corpora/wordnet. This will
allow the WordNetLemmatizer to access WordNet. You should also be somewhat familiar
with the part-of-speech tags covered in the Looking up synsets for a word in WordNet recipe of
Chapter 1, Tokenizing Text and WordNet Basics.

How to do it...

We will use the WordNetLemmatizer to find lemmas:

>>> from nltk.stem import WordNetLemmatizer
>>> lemmatizer = WordNetLemmatizer ()

>>> lemmatizer.lemmatize ('cooking')
'cooking'

=]

Chapter 2

>>> lemmatizer.lemmatize ('cooking', pos='v')
'cook!

>>> lemmatizer.lemmatize ('cookbooks!')

' cookbook!

The WordNetLemmatizer is a thin wrapper around the WordNet corpus, and uses the
morphy () function of the WordNetCorpusReader to find a lemma. If no lemma is found,
the word is returned as it is. Unlike with stemming, knowing the part of speech of the word is
important. As demonstrated previously, "cooking" does not have a lemma unless you specify
that the part of speech (pos) is a verb. This is because the default part of speech is a noun,
and since "cooking" is not a noun, no lemma is found. "Cookbooks", on the other hand, is a
noun, and its lemma is the singular form, "cookbook".

There's more...

Here's an example that illustrates one of the major differences between stemming
and lemmatization:

>>> from nltk.stem import PorterStemmer
>>> stemmer = PorterStemmer ()

>>> stemmer.stem('believes')

'believ'

>>> lemmatizer.lemmatize('believes')
'belief!

Instead of just chopping off the "es" like the PorterStemmer, the WordNetLemmatizer
finds a valid root word. Where a stemmer only looks at the form of the word, the lemmatizer
looks at the meaning of the word. And by returning a lemma, you will always get a valid word.

Combining stemming with lemmatization

Stemming and lemmatization can be combined to compress words more than either process
can by itself. These cases are somewhat rare, but they do exist:

>>> stemmer.stem('buses')

'buse'’

>>> lemmatizer.lemmatize ('buses')
'bus'’

>>> stemmer.stem('bus')

!bul

Replacing and Correcting Words

In this example, stemming saves one character, lemmatizing saves two characters, and
stemming the lemma saves a total of three characters out of five characters. That is nearly a
60% compression rate! This level of word compression over many thousands of words, while
unlikely to always produce such high gains, can still make a huge difference.

In the previous recipe, we covered stemming basics and WordNet was introduced in the
Looking up synsets for a word in WordNet and Looking up lemmas and synonyms in WordNet
recipes of Chapter 1, Tokenizing Text and WordNet Basics. Looking forward, we will cover the
Using WordNet for Tagging recipe in Chapter 4, Part-of-Speech Tagging.

Translating text with Babelfish

Babelfish is an online language translation API provided by Yahoo. With it, you can translate
text in a source language to a target language. NLTK comes with a simple interface for
using it.

Getting ready

Be sure you are connected to the internet first. The babelfish.translate () function
requires access to Yahoo's online APl in order to work.

How to do it...

To translate your text, you first need to know two things:

1. The language of your text or source language.
2. The language you want to translate to or target language.

Language detection is outside the scope of this recipe, so we will assume you already know
the source and target languages.

>>> from nltk.misc import babelfish

>>> babelfish.translate ('cookbook', 'english', 'spanish')

'libro de cocina'

>>> babelfish.translate('libro de cocina', 'spanish', 'english')
'kitchen book'

>>> babelfish.translate ('cookbook', 'english', 'german')
'Kochbuch'

>>> babelfish.translate ('kochbuch', 'german', 'english')

'cook book!

NED

Chapter 2

% You cannot translate using the same language for both source and target.
s Attempting to do so will raise a BabelfishChangedError.

The translate () function is a small function that sends a url1ib request to
http://babelfish.yahoo.com/translate_txt, and then searches the
response for the translated text.

If Yahoo, for whatever reason, had changed their HTML response
, tothe pointthat translate () cannot identify the translated
% text, a BabelfishChangedError will be raised. This is unlikely
T~ to happen, but if it does, you may need to upgrade to a newer
version of NLTK and/or report the error.

There is also a fun function called babelize () that translates back and forth between the
source and target language until there are no more changes.

>>> for text in babelfish.babelize ('cookbook', 'english', 'spanish'):
print text

cookbook

libro de cocina

kitchen book

libro de la cocina

book of the kitchen

Available languages

You can see all the languages available for translation by examining the available
languages attribute.

>>> babelfish.available languages
['Portuguese', 'Chinese', 'German', 'Japanese', 'French',6 'Spanish',
'Russian', 'Greek', 'English', 'Korean',6K 'Italian']

The lowercased version of each of these languages can be used as a source or target
language for translation.

Replacing and Correcting Words

Replacing words matching regular

expressions

Now we are going to get into the process of replacing words. Where stemming and
lemmatization are a kind of linguistic compression, and word replacement can be thought
of as error correction, or text normalization.

For this recipe, we will be replacing words based on regular expressions, with a focus on
expanding contractions. Remember when we were tokenizing words in Chapter 1, Tokenizing
Text and WordNet Basics and it was clear that most tokenizers had trouble with contractions?
This recipe aims to fix that by replacing contractions with their expanded forms, such as by
replacing "can't" with "cannot", or "would've" with "would have".

Getting ready

Understanding how this recipe works will require a basic knowledge of regular expressions and
the re module. The key things to know are matching patterns and the re . subn () function.

How to do it...

First, we need to define a number of replacement patterns. This will be a list of tuple pairs,
where the first element is the pattern to match on, and the second element is the replacement.

Next, we will create a RegexpReplacer class that will compile the patterns, and provide a
replace () method to substitute all found patterns with their replacements.

The following code can be found in the replacers.py module and is meant to be imported,
not typed into the console:

import re

replacement patterns = [
(r'won\'t', 'will not'),
r'can\'t', 'cannot'),
r'i\'m', 'i am'),
r'ain\'t', 'is not'),
\'11', '"\g<l> will'),
\w+)n\'t', '\g<l> not'),
\'ve', '\g<l> have'),
\'s', '\g<l> is'),
\w+)\'re', '\g<l> are'),
\'d', '\g<l> would')

]

class RegexpReplacer (object) :

=

Chapter 2

def init (self, patterns=replacement patterns) :
self .patterns = [(re.compile(regex), repl) for (regex, repl) in
patterns]

def replace(self, text):

s = text

for (pattern, repl) in self.patterns:
(s, count) = re.subn(pattern, repl, s)

return s

Here is a simple usage example:

>>> from replacers import RegexpReplacer

>>> replacer = RegexpReplacer ()

>>> replacer.replace("can't is a contraction")

'cannot is a contraction'

>>> replacer.replace ("I should've done that thing I didn't do")
'T should have done that thing I did not do'

RegexpReplacer.replace () works by replacing every instance of a replacement pattern
with its corresponding substitution pattern. In replacement patterns, we have defined
tuplessuch as (r' (\w+)\'ve', '\g<l> have'). The first element matches a group of
ASCII characters followed by 've. By grouping the characters before the 've in parenthesis,
a match group is found and can be used in the substitution pattern with the \g<1> reference.
So we keep everything before 've, then replace 've with the word have. This is how
"should've" can become "should have".

There's more...

This replacement technique can work with any kind of regular expression, not just
contractions. So you could replace any occurrence of "&" with "and", or eliminate all
occurrences of "-" by replacing it with the empty string. The RegexpReplacer can
take any list of replacement patterns for whatever purpose.

Replacement before tokenization
Let us try using the RegexpReplacer as a preliminary step before tokenization:

>>> from nltk.tokenize import word tokenize
>>> from replacers import RegexpReplacer
>>> replacer = RegexpReplacer ()

>>> word tokenize("can't is a contraction")

['eca', "n't", 'is', 'a', 'contraction']
>>> word tokenize(replacer.replace("can't is a contraction"))
['can', 'mot', 'is', 'a', 'contraction']

s

Replacing and Correcting Words

Much better! By eliminating the contractions in the first place, the tokenizer will produce
cleaner results. Cleaning up text before processing is a common pattern in natural
language processing.

See also

For more information on tokenization, see the first three recipes in Chapter 1, Tokenizing
Text and WordNet Basics. For more replacement techniques, continue reading the rest of
this chapter.

Removing repeating characters

In everyday language, people are often not strictly grammatical. They will write things like

"l looooooove it" in order to emphasize the word "love". But computers don't know that
"looooooove" is a variation of "love" unless they are told. This recipe presents a method for
removing those annoying repeating characters in order to end up with a "proper" English word.

Getting ready

As in the previous recipe, we will be making use of the re module, and more specifically,
backreferences. A backreference is a way to refer to a previously matched group in a regular
expression. This is what will allow us to match and remove repeating characters.

How to do it...

We will create a class that has the same form as the RegexpReplacer from the previous
recipe. It will have a replace () method that takes a single word and returns a more correct
version of that word, with dubious repeating characters removed. The following code can be
found in replacers.py and is meant to be imported:

import re

class RepeatReplacer (object) :
def init (self):
self.repeat regexp = re.compile(r' (\w*) (\w)\2 (\w*) ')
self.repl = r'\1\2\3"

def replace(self, word):
repl word = self.repeat regexp.sub(self.repl, word)
if repl word != word:
return self.replace(repl word)

else:
return repl word

Chapter 2

And now some example use cases:

>>> from replacers import RepeatReplacer
>>> replacer = RepeatReplacer ()
>>> replacer.replace ('looooove')

'love!

>>> replacer.replace ('oooooh')
!ohl

>>> replacer.replace('goose')
'gose'

RepeatReplacer starts by compiling a regular expression for matching and defining a
replacement string with backreferences. The repeat regexp matches three groups:

1. Zero or more starting characters (\w~*).
2. Asingle character (\w), followed by another instance of that character \ 2.
3. Zero or more ending characters (\w*).

The replacement string is then used to keep all the matched groups, while discarding the
backreference to the second group. So the word "looooove" gets split into (1) (o) o (oocove)
and then recombined as "loooove", discarding the second "o". This continues until only one "0"
remains, when repeat regexp no longer matches the string, and no more characters

are removed.

In the preceding examples, you can see that the RepeatReplacer is a bit too greedy and
ends up changing "goose" into "gose". To correct this issue, we can augment the replace ()
function with a WordNet lookup. If WordNet recognizes the word, then we can stop replacing
characters. Here is the WordNet augmented version:

import re
from nltk.corpus import wordnet
class RepeatReplacer (object) :
def init_ (self):
self.repeat regexp = re.compile(r' (\w*) (\w)\2 (\w*)')
self.repl = r'\1\2\3"
def replace(self, word):
if wordnet.synsets (word) :
return word
repl _word = self.repeat regexp.sub(self.repl, word)

if repl_word != word:
return self.replace(repl word)
else:

return repl word

Replacing and Correcting Words

Now, "goose" will be found in WordNet, and no character replacement will take place. And
"oooooh" will become "ooh" instead of "oh", because "ooh" is actually a word in WordNet,
defined as an expression of admiration or pleasure.

Read the next recipe to learn how to correct misspellings. And for more on WordNet, refer to
the WordNet recipes in Chapter 1, Tokenizing Text and WordNet Basics. We will also be using
WordNet for antonym replacement later in this chapter.

Spelling correction with Enchant

Replacing repeating characters is actually an extreme form of spelling correction. In this
recipe, we will take on the less extreme case of correcting minor spelling issues using
Enchant—a spelling correction API.

Getting ready

You will need to install Enchant, and a dictionary for it to use. Enchant is an offshoot
of the "Abiword" open source word processor, and more information can be found at
http://www.abisource.com/projects/enchant/.

For dictionaries, aspell is a good open source spellchecker and dictionary that can be found
athttp://aspell.net/.

Finally, you will need the pyenchant library, which can be found at http://www.rfk.id.au/
software/pyenchant/. You should be able to install it with the easy install command
that comes with python-setuptools, such as by doing sudo easy install pyenchant

on Linux or Unix.

How to do it...

We will create a new class called SpellingReplacer in replacers.py, and this time
the replace () method will check Enchant to see whether the word is valid or not. If not, we
will look up suggested alternatives and return the best match using nltk.metrics.edit
distance():

import enchant
from nltk.metrics import edit distance

class SpellingReplacer (object) :
def init (self, dict name='en', max dist=2):
self.spell dict = enchant.Dict (dict name)
self .max dist = 2

NEQ

Chapter 2

def replace(self, word):
if self.spell dict.check (word) :
return word
suggestions = self.spell dict.suggest (word)

if suggestions and edit distance (word, suggestions[0]) <=
self .max dist:

return suggestions|[0]
else:
return word

The preceding class can be used to correct English spellings as follows:

>>> from replacers import SpellingReplacer
>>> replacer = SpellingReplacer ()

>>> replacer.replace ('cookbok')

' cookbook'

SpellingReplacer starts by creating a reference to an enchant dictionary. Then, in the
replace () method, it first checks whether the given word is present in the dictionary or
not. If it is, no spelling correction is necessary, and the word is returned. But if the word is

not found, it looks up a list of suggestions and returns the first suggestion, as long as its edit
distance is less than or equal to max_dist. The edit distance is the number of character
changes necessary to transform the given word into the suggested word. max_dist then acts
as a constraint on the Enchant suggest () function to ensure that no unlikely replacement
words are returned. Here is an example showing all the suggestions for "languege", a
misspelling of "language":

>>> import enchant

>>> d = enchant.Dict('en')

>>> d.suggest ('languege')

['language', 'languisher', 'languish', 'languor',6 'languid']

Except for the correct suggestion, "language", all the other words have an edit distance of
three or greater.

There's more...

You can use language dictionaries other than 'en', such as 'en_GB', assuming the
dictionary has already been installed. To check which other languages are available, use
enchant.list languages():

>>> enchant.list languages()
['en AU', 'en GB', 'en US', 'en ZA', 'en CA', 'en']

Eis

Replacing and Correcting Words

X If you try to use a dictionary that doesn't exist, you will get enchant .
DictNotFoundError. You can first check whether the dictionary exists
e using enchant .dict_exists (), which will return True if the named
dictionary exists, or False otherwise.

en_GB dictionary

Always be sure to use the correct dictionary for whichever language you are doing spelling
correction on. 'en_US' can give you different results than 'en_GB', such as for the word
"theater". "Theater" is the American English spelling, whereas the British English spelling
is "Theatre":

>>> import enchant

>>> dUS = enchant.Dict('en US')

>>> dUS.check('theater')

True

>>> dGB = enchant.Dict('en GB')

>>> dGB.check ('theater')

False

>>> from replacers import SpellingReplacer
>>> us_replacer = SpellingReplacer('en US')
>>> us_replacer.replace('theater')
'theater’

>>> gb replacer = SpellingReplacer('en GB')
>>> gb replacer.replace('theater')
'theatre’

Personal word lists

Enchant also supports personal word lists. These can be combined with an existing
dictionary, allowing you to augment the dictionary with your own words. So let us say you had
a file named mywords . txt that had nltk on one line. You could then create a dictionary
augmented with your personal word list as follows:

>>> d = enchant.Dict('en US')
>>> d.check('nltk')

False

>>> d = enchant.DictWithPWL('en US', 'mywords.txt')
>>> d.check ('nltk"')

True

NED

Chapter 2

To use an augmented dictionary with our SpellingReplacer, we can create a subclass in
replacers.py that takes an existing spelling dictionary.

class CustomSpellingReplacer (SpellingReplacer) :
def init (self, spell dict, max dist=2):
self.spell dict = spell dict
self.max dist = max dist

This CustomSpellingReplacer will not replace any words that you put into mywords . txt.

>>> from replacers import CustomSpellingReplacer
>>> d = enchant.DictWithPWL('en US', 'mywords.txt')
>>> replacer = CustomSpellingReplacer (d)

>>> replacer.replace('nltk')

'nltk!

The previous recipe covered an extreme form of spelling correction by replacing repeating
characters. You could also do spelling correction by simple word replacement as discussed
in the next recipe.

Replacing synonyms

It is often useful to reduce the vocabulary of a text by replacing words with common
synonyms. By compressing the vocabulary without losing meaning, you can save memory in
cases such as frequency analysis and text indexing. Vocabulary reduction can also increase
the occurrence of significant collocations, which was covered in the Discovering word
collocations recipe of Chapter 1, Tokenizing Text and WordNet Basics.

Getting ready

You will need to have a defined mapping of a word to its synonym. This is a simple controlled
vocabulary. We will start by hardcoding the synonyms as a Python dictionary, then explore
other options for storing synonym maps.

How to do it...

We'll first create a WordReplacer class in replacers.py that takes a word replacement
mapping:
class WordReplacer (object) :
def init (self, word map) :
self.word map = word map
def replace(self, word):
return self.word map.get (word, word)

Replacing and Correcting Words

Then we can demonstrate its usage for simple word replacement:

>>> from replacers import wordReplacer

>>> replacer = WordReplacer ({'bday': 'birthday'})
>>> replacer.replace('bday')

'birthday'

>>> replacer.replace ('happy"')

"happy!

WordReplacer is simply a class wrapper around a Python dictionary. The replace ()
method looks up the given word in its word_map and returns the replacement synonym
if it exists. Otherwise, the given word is returned as is.

If you were only using the word map dictionary, you would have no need for the
WordReplacer class, and could instead call word _map.get () directly. But WordReplacer
can act as a base class for other classes that construct the word map from various file
formats. Read on for more information.

Hardcoding synonyms as a Python dictionary is not a good long-term solution. Two better
alternatives are to store the synonyms in a CSV file or in a YAML file. Choose whichever format
is easiest for whoever will be maintaining your synonym vocabulary. Both of the classes
outlined in the following section inherit the replace () method from WordReplacer.

CSV synonym replacement

The CsvWordReplacer class extends WordReplacer in replacers.py in order to
construct the word_map from a CSV file:

import csv

class CsvWordReplacer (WordReplacer) :
def init_ (self, fname):
word map = {}
for line in csv.reader (open (fname)) :
word, syn = line
word map [word] = syn
super (CsvWordReplacer, self)._ init__ (word_map)

=)

Chapter 2

Your CSV file should be two columns, where the first column is the word, and the second
column is the synonym meant to replace it. If this file is called synonyms . csv and the first
line is bday, birthday, then you can do:

>>> from replacers import CsvWordReplacer

>>> replacer = CsvWordReplacer ('synonyms.csv')
>>> replacer.replace('bday')

'birthday’

>>> replacer.replace ('happy"')

"happy!

YAML synonym replacement

If you have PyYAML installed, you can create a YamlWordReplacer in replacers.py.
Download and installation instructions for PyYYAML are located at http://pyyaml.org/
wiki/PyYAML.

import yaml
class YamlWordReplacer (WordReplacer) :
def init_ (self, fname):
word map = yaml.load (open (fname))
super (YamlWordReplacer, self). init (word map)

Your YAML file should be a simple mapping of "word: synonym", such as bday: birthday.
Note that the YAML syntax is very particular, and the space after the colon is required. If the
file is named synonyms.yaml, you can do:

>>> from replacers import YamlWordReplacer

>>> replacer = YamlWordReplacer ('synonyms.yaml')

>>> replacer.replace('bday')

'birthday'

>>> replacer.replace ('happy"')

'happy'

You can use the WordReplacer to do any kind of word replacement, even spelling correction
for more complicated words that can't be automatically corrected, as we did in the previous
recipe. In the next recipe, we will cover antonym replacement.

Replacing negations with antonyms

The opposite of synonym replacement is antonym replacement. An antonym is the opposite
meaning of a word. This time, instead of creating custom word mappings, we can use
WordNet to replace words with unambiguous antonyms. Refer to the Looking up lemmas
and synonyms in WordNet recipe in Chapter 1, Tokenizing Text and WordNet Basics for more
details on antonym lookups.

@l

Replacing and Correcting Words

How to do it...

Let us say you have a sentence such as "let's not uglify our code". With antonym replacement,
you can replace "not uglify" with "beautify", resulting in the sentence "let's beautify our code".
To do this, we will need to create an AntonymReplacer in replacers.py as follows:

from nltk.corpus import wordnet
class AntonymReplacer (object) :
def replace(self, word, pos=None) :
antonyms = set ()
for syn in wordnet.synsets (word, pos=pos):
for lemma in syn.lemmas:
for antonym in lemma.antonyms () :
antonyms.add (antonym.name)
if len(antonyms) == 1:
return antonyms.pop ()
else:
return None

def replace negations(self, sent):
i, 1 = 0, len(sent)
words = []
while i < 1:
word = sent[i]

if word == 'not' and i+l < 1:
ant = self.replace(sent[i+1])
if ant:

words . append (ant)
i+= 2
continue
words . append (word)
i+=1
return words

Now we can tokenize the original sentence into ["let's", 'not', 'uglify', 'our',
'code'], and pass this to the replace negations () function. Here are some examples:

>>> from replacers import AntonymReplacer

>>> replacer = AntonymReplacer ()

>>> replacer.replace('good')

>>> replacer.replace('uglify')

'beautify’

>>> sent = ["let's", 'not', 'uglify', 'our',6 'code'l
>>> replacer.replace negations (sent)

["let's", 'beautify', 'our', 'code'l

=

Chapter 2

The AntonymReplacer has two methods: replace () and replace negations (). The
replace () method takes a single word and an optional part of speech tag, then looks up
the synsets for the word in WordNet. Going through all the synsets and every lemma of each
synset, it creates a set of all antonyms found. If only one antonym is found, then it is an
unambiguous replacement. If there is more than one antonym found, which can happen quite
often, then we don't know for sure which antonym is correct. In the case of multiple antonyms
(or no antonyms), replace () returns None since it cannot make a decision.

In replace negations (), we look through a tokenized sentence for the word "not". If
"not" is found, then we try to find an antonym for the next word using replace (). If we find
an antonym, then it is appended to the list of words, replacing "not" and the original word.
All other words are appended as it is, resulting in a tokenized sentence with unambiguous
negations replaced by their antonyms.

There's more...

Since unambiguous antonyms aren't very common in WordNet, you may want to create a
custom antonym mapping the same way we did for synonyms. This AntonymWordReplacer
could be constructed by inheriting from both WordReplacer and AntonymReplacer:

class AntonymWordReplacer (WordReplacer, AntonymReplacer) :
pass

The order of inheritance is very important, as we want the initialization and replace ()
function of WordReplacer combined with the replace negations () function from
AntonymReplacer. The result is a replacer that can do the following:

>>> from replacers import AntonymWordReplacer

>>> replacer = AntonymWordReplacer ({'evil': 'good'})

>>> replacer.replace negations(['good', 'is', 'not', 'evil'])
['good', 'is', 'good']

Of course, you could also inherit from CsviWordReplacer or YamlWordReplacer instead
of WordReplacer if you want to load the antonym word mappings from a file.

See also

The previous recipe covers the WordReplacer from the perspective of synonym replacement.
And in Chapter 1, Tokenizing Text and WordNet Basics Wordnet usage is covered in detail

in the Looking up synsets for a word in Wordnet and Looking up lemmas and synonyms in
Wordnet recipes.

Creating Custom
Corpora

In this chapter, we will cover:

» Setting up a custom corpus

» Creating a word list corpus

» Creating a part-of-speech tagged word corpus
» Creating a chunked phrase corpus

» Creating a categorized text corpus

» Creating a categorized chunk corpus reader
» Lazy corpus loading

» Creating a custom corpus view

» Creating a MongoDB backed corpus reader

» Corpus editing with file locking

Introduction

In this chapter, we'll cover how to use corpus readers and create custom corpora. At the same
time, you'll learn how to use the existing corpus data that comes with NLTK. This information
is essential for future chapters when we'll need to access the corpora as training data. We'll
also cover creating custom corpus readers, which can be used when your corpus is not in a
file format that NLTK already recognizes, or if your corpus is not in files at all, but instead is
located in a database such as MongoDB.

Creating Custom Corpora

Setting up a custom corpus

A corpus is a collection of text documents, and corpora is the plural of corpus. So a custom
corpus is really just a bunch of text files in a directory, often alongside many other directories
of text files.

Getting ready

You should already have the NLTK data package installed, following the instructions at
http://www.nltk.org/data. We'll assume that the data is installed to C: \nltk data
on Windows, and /usr/share/nltk_data on Linux, Unix, or Mac OS X.

How to do it...

NLTK defines a list of data directories, or paths, in nltk.data.path. Our custom corpora
must be within one of these paths so it can be found by NLTK. So as not to conflict with the
official data package, we'll create a custom nltk data directory in our home directory.
Here's some Python code to create this directory and verify that it is in the list of known
paths specified by nl1tk.data.path:

>>> import os, os.path

>>> path = os.path.expanduser('~/nltk data')
>>> if not os.path.exists(path):

. os.mkdir (path)

>>> os.path.exists (path)

True

>>> import nltk.data

>>> path in nltk.data.path

True

If the last line, path in nltk.data.path, is True, then you should now have a nltk
data directory in your home directory. The path should be $UserProfile%\nltk data on
Windows, or ~/nltk_data on Unix, Linux, or Mac OS X. For simplicity, I'll refer to the directory
as ~/nltk data.

If the last line does not return True, try creating the nltk_ data directory
manually in your home directory, then verify that the absolute path is in
nltk.data.path. It's essential to ensure that this directory exists and is
innltk.data.path before continuing. Once you have your nltk data
% directory, the convention is that corpora reside in a corpora subdirectory.
Create this corpora directory within the n1tk data directory, so that
the path is ~/nltk_data/corpora. Finally, we'll create a subdirectory in
corpora to hold our custom corpus. Let's call it cookbook, giving us the full
path of ~/nltk data/corpora/cookbook.

=)

Chapter 3

Now we can create a simple word list file and make sure it loads. In Chapter 2, Replacing and
Correcting Words, Spelling correction with Enchant recipe, we created a word list file called
mywords . txt. Put this file into ~/nltk data/corpora/cookbook/. Now we can use
nltk.data.load () to load the file

>>> import nltk.data
>>> nltk.data.load('corpora/cookbook/mywords.txt', format='raw')
'nltk\n'

We need to specify format="'raw' sincenltk.data.load () doesn't
% know how to interpret . txt files. As we'll see, it does know how to interpret a
T~ number of other file formats.

The nltk.data.load () function recognizes a number of formats, such as 'raw',
'pickle’', and 'yaml'. If no format is specified, then it tries to guess the format based

on the file's extension. In the previous case, we have a . txt file, which is not a recognized
extension, so we have to specify the 'raw' format. But if we used a file that ended in .yaml,
then we would not need to specify the format.

Filenames passed in tonltk.data.load () can be absolute or relative paths. Relative
paths must be relative to one of the paths specified in nltk.data.path. The file is found
using nltk.data.find (path), which searches all known paths combined with the relative
path. Absolute paths do not require a search, and are used as is.

For most corpora access, you won't actually need to use nltk.data.load, as that will

be handled by the CorpusReader classes covered in the following recipes. But it's a good
function to be familiar with for loading .pickle files and .yaml files, plus it introduces the
idea of putting all of your data files into a path known by NLTK.

Loading a YAML file

If you put the synonyms . yaml file from the Chapter 2, Replacing and Correcting Words,
Replacing synonyms recipe, into ~/nltk data/corpora/cookbook (next to mywords.
txt), you can use nltk.data.load () to load it without specifying a format.

>>> import nltk.data
>>> nltk.data.load ('corpora/cookbook/synonyms.yaml')
{'bday': 'birthday'}

This assumes that PyYAML is installed. If not, you can find download and installation
instructions at http://pyyaml.org/wiki/PyYAML

Creating Custom Corpora

In the next recipes, we'll cover various corpus readers, and then in the Lazy corpus loading
recipe, we'll use the LazyCorpusLoader, which expects corpus data to be in a corpora
subdirectory of one of the paths specified by nltk.data.path.

Creating a word list corpus

The WordListCorpusReader is one of the simplest CorpusReader classes. It provides
access to a file containing a list of words, one word per line. In fact, you've already used it
when we used the stopwords corpus in the Filtering stopwords in a tokenized sentence and
Discovering word collocations recipes in Chapter 1, Tokenizing Text and WordNet Basics.

Getting ready

We need to start by creating a word list file. This could be a single column CSV file, or just a
normal text file with one word per line. Let's create a file named wordlist that looks like this:

nltk
corpus
corpora
wordnet

How to do it...

Now we can instantiate a WordListCorpusReader that will produce a list of words from our
file. It takes two arguments: the directory path containing the files, and a list of filenames. If
you open the Python console in the same directory as the files, then ' . ' can be used as the
directory path. Otherwise, you must use a directory path such as: 'nltk data/corpora/
cookbook'.

>>> from nltk.corpus.reader import WordListCorpusReader
>>> reader = WordListCorpusReader('.',6 ['wordlist'l])
>>> reader.words ()

['nltk', 'corpus', 'corpora',6 'wordnet']

>>> reader.fileids()

['wordlist']

=

Chapter 3

WordListCorpusReader inherits from CorpusReader, which is a common base class for
all corpus readers. CorpusReader does all the work of identifying which files to read, while
WordListCorpus reads the files and tokenizes each line to produce a list of words. Here's

an inheritance diagram:

CorpusReader
fileids()

WordListCorpusReader

words()

When you call the words () function, it calls nltk.tokenize.line tokenize () onthe
raw file data, which you can access using the raw () function.

>>> reader.raw()
'nltk\ncorpus\ncorpora\nwordnet\n'

>>> from nltk.tokenize import line tokenize
>>> line tokenize (reader.raw())

['nltk', 'corpus', 'corpora', 'wordnet']

There's more...

The stopwords corpus is a good example of a multi-file WordListCorpusReader. In
Chapter 1, Tokenizing Text and WordNet Basics, in the Filtering stopwords in a tokenized
sentence recipe, we saw that it had one word list file for each language, and you could access
the words for that language by calling stopwords .words (fileid). If you want to create
your own multi-file word list corpus, this is a great example to follow.

Names corpus

Another word list corpus that comes with NLTK is the names corpus. It contains two files:
female.txt and male. txt, each containing a list of a few thousand common first names
organized by gender.

>>> from nltk.corpus import names
>>> names.fileids ()

["female.txt', 'male.txt']

>>> len (names.words ('female.txt'))
5001

Creating Custom Corpora

>>> len (names.words ('male.txt'))
2943

English words

NLTK also comes with a large list of English words. There's one file with 850 basic words,
and another list with over 200,000 known English words.

>>> from nltk.corpus import words
>>> words.fileids()

['en', 'en-basic']

>>> len (words.words ('en-basic'))
850

>>> len(words.words('en'))

234936

In Chapter 1, Tokenizing Text and WordNet Basics, the Filtering stopwords in a tokenized
sentence recipe, has more details on using the stopwords corpus. In the following recipes,
we'll cover more advanced corpus file formats and corpus reader classes.

Creating a part-of-speech tagged word

corpus

Part-of-speech tagging is the process of identifying the part-of-speech tag for a word. Most of
the time, a tagger must first be trained on a training corpus. How to train and use a tagger is
covered in detail in Chapter 4, Part-of-Speech Tagging, but first we must know how to create
and use a training corpus of part-of-speech tagged words.

Getting ready

The simplest format for a tagged corpus is of the form "word/tag". Following is an excerpt from
the brown corpus:

The/at-tl expense/nn and/cc time/nn involved/vbn are/ber astronomical/
i3 /.

Each word has a tag denoting its part-of-speech. For example, nn refers to a noun, while a tag
that starts with vb is a verb.

Chapter 3

How to do it...

If you were to put the previous excerpt into a file called brown . pos, you could then create a
TaggedCorpusReader and do the following:

>>> from nltk.corpus.reader import TaggedCorpusReader

>>> reader = TaggedCorpusReader('.',6 r'.*\.pos')

>>> reader.words ()

['The', 'expense', 'and', 'time', 'involved',K ‘'are', ...]

>>> reader.tagged words ()

[('"The', 'AT-TL'), ('expense', 'NN'), ('and',6 'CC'), ..]

>>> reader.sents ()

[['The', 'expense',K 'and', 'time',6 'involved', 'are', 'astronomical',
']

>>> reader.tagged_sents ()

[[('The', 'AT-TL'), ('expense', 'NN'), ('and', 'CC'), ('time', 'NN'),
('involved', 'VBN'), ('are', 'BER'), ('astronomical', 'JdJd'), ('.',
o)1l

>>> reader.paras ()

[[['The', 'expense', 'and', 'time', 'involved',K 'are',K ‘'astronomical',
o111

>>> reader.tagged paras/()

[[[('The', 'AT-TL'), ('expense', 'NN'), ('and', 'CC'), ('time', 'NN'),
('involved', 'VBN'), ('are', 'BER'), ('astronomical', 'dJd'), ('.',
L) 111

This time, instead of naming the file explicitly, we use a regular expression, r' . *\ .pos"',
to match all files whose name ends with . pos. We could have done the same thing as we
did with the WordListCorpusReader, and pass ['brown.pos'] as the second
argument, but this way you can see how to include multiple files in a corpus without
naming each one explicitly.

Creating Custom Corpora

TaggedCorpusReader provides a number of methods for extracting text from a corpus. First,
you can get a list of all words, or a list of tagged tokens. A tagged token is simply a tuple of
(word, tag).Next, you can get a list of every sentence, and also every tagged sentence,
where the sentence is itself a list of words or tagged tokens. Finally, you can get a list of
paragraphs, where each paragraph is a list of sentences, and each sentence is a list of words
or tagged tokens. Here's an inheritance diagram listing all the major methods:

CorpusReader
fileids()

|

TaggedCorpusReader

words()
sents()
paras()
tagged_words()
tagged_sents()
tagged_paras()

The functions demonstrated in the previous diagram all depend on tokenizers for splitting
the text. TaggedCorpusReader tries to have good defaults, but you can customize them by
passing in your own tokenizers at initialization time.

Customizing the word tokenizer

The default word tokenizer is an instance of nltk. tokenize.WhitespaceTokenizer. If
you want to use a different tokenizer, you can pass that in as word tokenizer.

>>> from nltk.tokenize import SpaceTokenizer

>>> reader = TaggedCorpusReader('.',6 r'.*\.pos',6 word_
tokenizer=SpaceTokenizer ())

>>> reader.words ()

['The', 'expense',K 'and', 'time', 'involved',K ‘'are', ...]

Chapter 3

Customizing the sentence tokenizer

The default sentence tokenizer is an instance of nltk.tokenize.RegexpTokenize
with '\n"' to identify the gaps. It assumes that each sentence is on a line all by itself, and
individual sentences do not have line breaks. To customize this, you can pass in your own
tokenizer as sent _tokenizer.

>>> from nltk.tokenize import LineTokenizer

>>> reader = TaggedCorpusReader('.', r'.*\.pos',6 sent
tokenizer=LineTokenizer ())

>>> reader.sents ()
[['The', 'expense', 'and', 'time', 'involved', 'are', 'astronomical',

|.|]]

Customizing the paragraph block reader

Paragraphs are assumed to be split by blank lines. This is done with the default para_
block reader, whichis nltk.corpus.reader.util.read blankline block. There
are a number of other block reader functions in nltk.corpus.reader.util, whose
purpose is to read blocks of text from a stream. Their usage will be covered in more detail in
the later recipe, Creating a custom corpus view, where we'll create a custom corpus reader.

Customizing the tag separator

If you don't want to use ' /' as the word/tag separator, you can pass an alternative string to
TaggedCorpusReader for sep. The default is sep="/", but if you want to split words and
tags with ' | ', such as 'word |tag', then you should pass in sep="| '.

Simplifying tags with a tag mapping function
If you'd like to somehow transform the part-of-speech tags, you can pass in a tag _mapping

function at initialization, then call one of the tagged_* functions with simplify
tags=True. Here's an example where we lowercase each tag:

>>> reader = TaggedCorpusReader('.', r'.*\.pos',6 tag mapping
function=lambda t: t.lower())

>>> reader.tagged words (simplify tags=True)

[('"The', 'at-tl'), ('expense', 'nn'), ('and', 'cc'), ..]

Calling tagged_words () without simplify tags=True would produce the same result as
if you did not pass in a tag_mapping function.

There are also a number of tag simplification functions defined innltk.tag.simplify.
These can be useful for reducing the number of different part-of-speech tags.

>>> from nltk.tag import simplify

>>> reader = TaggedCorpusReader('.', r'.*\.pos',6 tag mapping
function=simplify.simplify brown tag)

>>> reader.tagged words (simplify tags=True)

Creating Custom Corpora

[('"The', 'DET'), ('expense', 'N'), ('and', 'CNJ'), ...]

>>> reader = TaggedCorpusReader('.',6 r'.*\.pos', tag_mapping
function=simplify.simplify tag)

>>> reader.tagged words (simplify tags=True)

[("The', 'A'), ('expense', 'N'), ('and', 'C"), ...]

See also

Chapter 4, Part-of-Speech Tagging will cover part-of-speech tags and tagging in much more
detail. And for more on tokenizers, see the first three recipes of Chapter 1, Tokenizing Text
and WordNet Basics.

In the next recipe, we'll create a chunked phrase corpus, where each phrase is also
part-of-speech tagged.

Creating a chunked phrase corpus

A chunk is a short phrase within a sentence. If you remember sentence diagrams from grade
school, they were a tree-like representation of phrases within a sentence. This is exactly what
chunks are: sub-trees within a sentence tree, and they will be covered in much more detail in
Chapter 5, Extracting Chunks. Following is a sample sentence tree with three noun phrase
(NP) chunks shown as sub-trees.

s

NP have VBP trimmed VBN about IN NP x NP said VBD ..
Earier MR staff-reduction NN moves NNS 300 CD jobs NNS the DT spokesman NN

This recipe will cover how to create a corpus with sentences that contain chunks.

Getting ready

Here is an excerpt from the tagged treebank corpus. It has part-of-speech tags, as in
the previous recipe, but it also has square brackets for denoting chunks. This is the same
sentence as in the previous tree diagram, but in text form:

[Earlier/JJR staff-reduction/NN moves/NNS] have/VBP trimmed/VBN about/
IN [300/CD jobs/NNS] ,/, [the/DT spokesman/NN] said/VBD ./.

In this format, every chunk is a noun phrase. Words that are not within brackets are part of
the sentence tree, but are not part of any noun phrase sub-tree.

Chapter 3

How to do it...

Put this excerpt into a file called treebank . chunk, and then do the following:

>>> from nltk.corpus.reader import ChunkedCorpusReader

>>> reader = ChunkedCorpusReader('.',6 r'.*\.chunk')

>>> reader.chunked words ()

[Tree ('NP', [('Earlier', 'JJR'), ('staff-reduction', 'NN'), ('moves',
'NNS')1), ('have', 'VBP'), ...]

>>> reader.chunked sents ()

[Tree('S', [Tree('NP', [('Earlier', 'JJR'), ('staff-reduction', 'NN'),
('moves', 'NNS')]), ('have', 'VBP'), ('trimmed', 'VBN'), ('about',
'"IN'), Tree('NP', [('300', 'CD'), ('jobs', 'NNS')I1), (',', ','),
Tree('NP', [('the', 'DT'), ('spokesman', 'NN')]), ('said', 'VBD'),
(r.r, L))l

>>> reader.chunked paras ()

[[Tree('S', [Tree('NP', [('Earlier', 'JJR'), ('staff-reduction',
'NN'), ('moves', 'NNS')]), ('have', 'VBP'), ('trimmed', 'VBN'),
('about', 'IN'), Tree('NP', [('300', 'CD'), ('jobs', 'NNS')I1), (',',
', "), Tree('NP', [('the', 'DT'), ('spokesman', 'NN')]), ('said',
'"VBD'), ('.', '.")1)]]

The ChunkedCorpusReader provides the same methods as the TaggedCorpusReader

for getting tagged tokens, along with three new methods for getting chunks. Each chunk is
represented as an instance of nltk.tree.Tree. Sentence level trees look like Tree ('S"',
[...]1) while noun phrase trees look like Tree ('NP', [...]).Inchunked sents(),
you get a list of sentence trees, with each noun-phrase as a sub-tree of the sentence. In
chunked words (), you get a list of noun phrase trees alongside tagged tokens of words that

were not in a chunk. Here's an inheritance diagram listing the major methods:

CorpusReader
fileids()

|

ChunkedCorpusReader

words()

sents()

paras()
tagged_words()
tagged_sents()
tagged_paras()
chunked_words()
chunked_sents()
chunked_paras()

Creating Custom Corpora

You can draw a Tree by calling the draw () method. Using the corpus reader

defined earlier, you could do reader.chunked sents () [0] .draw () to
’ get the same sentence tree diagram shown at the beginning of this recipe.

ChunkedCorpusReader is similar to the TaggedCorpusReader from the last recipe.

It has the same default sent tokenizer and para_block reader, but instead of a
word_tokenizer, it uses a str2chunktree () function. The defaultis nltk.chunk.
util.tagstr2tree (), which parses a sentence string containing bracketed chunks into a
sentence tree, with each chunk as a noun phrase sub-tree. Words are split by whitespace, and
the default word/tag separator is ' /'. If you want to customize the chunk parsing, then you
can pass in your own function for str2chunktree ().

An alternative format for denoting chunks is called OB tags. 10B tags are similar to part-of-
speech tags, but provide a way to denote the inside, outside, and beginning of a chunk. They
also have the benefit of allowing multiple different chunk phrase types, not just noun phrases.
Here is an excerpt from the con112000 corpus. Each word is on its own line with a part-of-
speech tag followed by an IOB tag.

Mr. NNP B-NP
Meador NNP I-NP
had VBD B-VP
been VBN I-VP
executive JJ B-NP
vice NN I-NP
president NN I-NP
of IN B-PP
Balcor NNP B-NP

. O

B-NP denotes the beginning of a noun phrase, while I-NP denotes that the word is inside of
the current noun phrase. B-vP and I-VP denote the beginning and inside of a verb phrase. 0
ends the sentence.

To read a corpus using the 10B format, you must use the Conl1ChunkCorpusReader. Each
sentence is separated by a blank line, but there is no separation for paragraphs. This means
that the para_* methods are not available. If you put the previous IOB example text into a file
named conll.iob, you can create and use a ConllChunkCorpusReader with the code we
are about to see. The third argument to Conl1ChunkCorpusReader should be a tuple or list
specifying the types of chunks in the file, which in this case is ('NP', 'VP', 'PP').

5]

>>> from nltk.corpus.reader import ConllChunkCorpusReader

>>> conllreader = ConllChunkCorpusReader('.', r'.*\.iob', ('NP',
'VP', 'PP'))

>>> conllreader.chunked words ()

[Tree('NP', [('Mr.', 'NNP'), ('Meador', 'NNP')]), Tree('VP',
[(thad', 'VBD'), ('been', 'VBN')]1), ...]

>>> conllreader.chunked sents()

[Tree('S', [Tree('NP', [('Mr.', 'NNP'), ('Meador', 'NNP')]),
Tree('VP', [('had', 'VBD'), ('been', 'VBN')]), Tree('NP',
[('executive', 'dJd'), ('vice', 'NN'), ('president', 'NN')]),
Tree('PP', [('of', 'IN')]), Tree('NP', [('Balcor', 'NNP')]), ('.'

L))

>>> conllreader.iob_ words ()

[("Mr.', 'NNP', 'B-NP'), ('Meador', 'NNP', 'I-NP'), ...]

>>> conllreader.iob_ sents()

([('Mr.', 'NNP', 'B-NP'), ('Meador',6 'NNP', 'I-NP'), ('had’',
'VBD', 'B-VP'), ('been', 'VBN', 'I-VP'), ('executive', 'JJ', 'B-
NP'), ('vice', 'NN', 'I-NP'), ('president', 'NN', 'I-NP'), ('of',
'IN', 'B-PP'), ('Balcor', 'NNP', 'B-NP'), ('.', '.', '0')]]

The previous code also shows the iob_words () and iob_sents () methods, which
return lists of three tuples of (word, pos, iob).The inheritance diagram for

Chapter 3

’

ConllChunkCorpusReader looks like the following, with most of the methods implemented

by its superclass, Conl1lCorpusReader:

CorpusReader
fileids()

|

ConliCorpusReader

words()

sents()
tagged_words()
tagged_sents()
chunked_words()
chunked_sents()
iob_words()
iob_sents()

I

| ConliChunkCorpusReader |

Creating Custom Corpora

Tree leaves

When it comes to chunk trees, the leaves of a tree are the tagged tokens. So if you want to get
a list of all the tagged tokens in a tree, call the 1eaves () method.

>>> reader.chunked words () [0] .leaves ()

[("Earlier', 'JJR'), ('staff-reduction', 'NN'), ('moves', 'NNS')]
>>> reader.chunked sents() [0] .leaves ()

[("Earlier', 'JJR'), ('staff-reduction', 'NN'), ('moves', 'NNS'),
('have', 'VBP'), ('trimmed', 'VBN'), ('about', 'IN'), ('300',
'¢cb'), ('jobs', 'NNS'), (',', ','), ('the', 'DT'), ('spokesman',
'NN'), ('said', 'VBD'), ('.', '.")]

>>> reader.chunked paras () [0] [0] .leaves ()

[('Earlier', 'JJR'), ('staff-reduction', 'NN'), ('moves', 'NNS'),
('have', 'VBP'), ('trimmed', 'VBN'), ('about', 'IN'), ('300',
'cD'), ('jobs', 'NNS'), (',', ','), ('the', 'DT'), ('spokesman',
'NN'), ('said', 'VBD'), ('.', '.")]

Treebank chunk corpus

The nltk.corpus.treebank chunk corpus uses ChunkedCorpusReader to provide
part-of-speech tagged words and noun phrase chunks of Wall Street Journal headlines.
NLTK comes with a 5% sample from the Penn Treebank Project. You can find out more at
http://www.cis.upenn.edu/~treebank/home.html.

CoNLL2000 corpus

CoNLL stands for the Conference on Computational Natural Language Learning. For the
year 2000 conference, a shared task was undertaken to produce a corpus of chunks based
on the Wall Street Journal corpus. In addition to noun phrases (NP), it also contains verb
phrases (VP) and prepositional phrases (PP). This chunked corpus is available as nltk.
corpus.conll2000, which is an instance of Conl1ChunkCorpusReader. You can read
more at http://www.cnts.ua.ac.be/conl12000/chunking/.

Chapter 5, Extracting Chunks will cover chunk extraction in detail. Also see the previous
recipe for details on getting tagged tokens from a corpus reader.

Creating a categorized text corpus

If you have a large corpus of text, you may want to categorize it into separate sections. The
brown corpus, for example, has a number of different categories.

>>> from nltk.corpus import brown
>>> brown.categories ()

NED

Chapter 3

['adventure', 'belles lettres', 'editorial', 'fiction',
'government', 'hobbies', 'humor', 'learned', 'lore', 'mystery',
'news', 'religion',6 'reviews', 'romance', 'science fiction']

In this recipe, we'll learn how to create our own categorized text corpus.

Getting ready

The easiest way to categorize a corpus is to have one file for each category. Following are two
excerpts from the movie reviews corpus:

movie pos.txt
the thin red line is flawed but it provokes

movie neg.txt

a big-budget and glossy production can not make up for a lack of
spontaneity that permeates their tv show .

With these two files, we'll have two categories: pos and neg.

How to do it...

We'll use the CategorizedPlaintextCorpusReader, which inherits from both
PlaintextCorpusReader and CategorizedCorpusReader. These two superclasses
require three arguments: the root directory, the £ileids, and a category specification.

>>> from nltk.corpus.reader import
CategorizedPlaintextCorpusReader

>>> reader = CategorizedPlaintextCorpusReader('.', r'movie .*\.
txt', cat_pattern=r'movie (\w+)\.txt")

>>> reader.categories ()

['neg', 'pos']

>>> reader.fileids(categories=['neg'])

['movie neg.txt']

>>> reader.fileids (categories=['pos'])

['movie pos.txt']

s

Creating Custom Corpora

The first two arguments to CategorizedPlaintextCorpusReader are the root

directory and £ileids, which are passed on to the PlaintextCorpusReader to read

in the files. The cat_pattern keyword argument is a regular expression for extracting the
category names from the £ileids. In our case, the category is the part of the fileid after
movie and before .txt. The category must be surrounded by grouping parenthesis.

cat_pattern is passed to CategorizedCorpusReader, which overrides the common
corpus reader functions such as fileids (), words (), sents (), and paras () to accept
a categories keyword argument. This way, you could get all the pos sentences by calling
reader.sents (categories=['pos']). CategorizedCorpusReader also provides
the categories () function, which returns a list of all known categories in the corpus.

CategorizedPlaintextCorpusReader is an example of using multiple-inheritance to join
methods from multiple superclasses, as shown in the following diagram:

CorpusReader CategorizedCorpusReader

fileids() categories()

T fileids()

PlaintextCorpusReader

words()
sents() <]—{ CategorizedPlaintextCorpusReader

paras()

Instead of cat_pattern, you could pass in a cat_map, which is a dictionary mapping
a fileidto a list of category labels.

>>> reader = CategorizedPlaintextCorpusReader('.', r'movie .*\.
txt', cat map={'movie pos.txt': ['pos'], 'movie neg.txt':
['neg']l})

>>> reader.categories ()
[lnegl, lposl]

&)

Chapter 3

Category file
A third way of specifying categories is to use the cat_file keyword argument to specify a

filename containing a mapping of £ileid to category. For example, the brown corpus has a
file called cats. txt that looks like this:

ca44 news
cb0l editorial

The reuters corpus has files in multiple categories, and its cats. txt looks like this:

test/14840 rubber coffee lumber palm-oil veg-oil
test/14841 wheat grain

Categorized tagged corpus reader

The brown corpus reader is actually an instance of CategorizedTaggedCorpusReader,
which inherits from CategorizedCorpusReader and TaggedCorpusReader.

Just like in CategorizedPlaintextCorpusReader, it overrides all the methods of
TaggedCorpusReader to allow a categories argument, so you can call brown.

tagged sents (categories=['news']) to get all the tagged sentences from

the news category. You can use the CategorizedTaggedCorpusReader just like
CategorizedPlaintextCorpusReader for your own categorized and tagged text corpora.

Categorized corpora

The movie reviews corpus reader is an instance of
CategorizedPlaintextCorpusReader, as is the reuters corpus reader. But where the
movie reviews corpus only has two categories (neg and pos), reuters has 90 categories.
These corpora are often used for training and evaluating classifiers, which will be covered in
Chapter 7, Text Classification.

In the next recipe, we'll create a subclass of CategorizedCorpusReader and
ChunkedCorpusReader for reading a categorized chunk corpus. Also see Chapter 7,
Text Classification in which we use categorized text for classification.

Creating a categorized chunk corpus reader

NLTK provides a CategorizedPlaintextCorpusReader and
CategorizedTaggedCorpusReader, but there's no categorized corpus reader for chunked
corpora. So in this recipe, we're going to make one.

[ei-

Creating Custom Corpora

Getting ready

Refer to the earlier recipe, Creating a chunked phrase corpus, for an explanation

of ChunkedCorpusReader, and to the previous recipe for details on
CategorizedPlaintextCorpusReader and CategorizedTaggedCorpusReader,
both of which inherit from CategorizedCorpusReader.

How to do it...

We'll create a class called CategorizedChunkedCorpusReader that inherits from both
CategorizedCorpusReader and ChunkedCorpusReader. It is heavily based on the
CategorizedTaggedCorpusReader, and also provides three additional methods for
getting categorized chunks. The following code is found in catchunked.py:

from nltk.corpus.reader import CategorizedCorpusReader,
ChunkedCorpusReader

class CategorizedChunkedCorpusReader (CategorizedCorpusReader,
ChunkedCorpusReader) :
def init (self, *args, **kwargs):
CategorizedCorpusReader._ init (self, kwargs)
ChunkedCorpusReader. init (self, *args, **kwargs)

def resolve(self, fileids, categories):
if fileids is not None and categories is not None:
raise ValueError('Specify fileids or categories, not both')
if categories is not None:
return self.fileids(categories)
else:
return fileids

All of the following methods call the corresponding function in ChunkedCorpusReader with
the value returned from _resolve (). We'll start with the plain text methods.

def raw(self, fileids=None, categories=None) :
return ChunkedCorpusReader.raw(self, self. resolve(fileids,
categories))

def words(self, fileids=None, categories=None) :
return ChunkedCorpusReader.words (self, self. resolve(fileids,
categories))

def sents(self, fileids=None, categories=None) :
return ChunkedCorpusReader.sents(self, self. resolve(fileids,
categories))

def paras(self, fileids=None, categories=None) :

&

Chapter 3

return ChunkedCorpusReader.paras (self, self. resolve(fileids,
categories))

Next comes the tagged text methods.

def tagged words (self, fileids=None, categories=None, simplify
tags:False):_ B
return ChunkedCorpusReader.tagged_words (
self, self. resolve(fileids, categories), simplify tags)

def tagged sents(self, fileids=None, categories=None, simplify
tags=False) :
return ChunkedCorpusReader.tagged sents (
self, self. resolve(fileids, categories), simplify tags)

def tagged paras(self, fileids=None, categories=None, simplify
tags:False):_ B
return ChunkedCorpusReader.tagged _paras (
self, self. resolve(fileids, categories), simplify tags)

And finally, the chunked methods, which is what we've really been after.

def chunked words(self, fileids=None, categories=None) :
return ChunkedCorpusReader.chunked words (
self, self. resolve(fileids, categories))

def chunked sents(self, fileids=None, categories=None) :
return ChunkedCorpusReader.chunked sents (
self, self. resolve(fileids, categories))

def chunked paras(self, fileids=None, categories=None) :
return ChunkedCorpusReader.chunked paras (
self, self. resolve(fileids, categories))

All these methods together give us a complete CategorizedChunkedCorpusReader.

Creating Custom Corpora

CategorizedChunkedCorpusReader overrides all the ChunkedCorpusReader

methods to take a categories argument for locating fileids. These fileids

are found with the internal _resolve () function. This _resolve () function makes

use of CategorizedCorpusReader.fileids () toreturn £fileids for a given list

of categories. If no categories are given, resolve () just returns the given

fileids, which could be None, in which case all files are read. The initialization of both
CategorizedCorpusReader and ChunkedCorpusReader is what makes this all possible.
If you look at the code for CategorizedTaggedCorpusReader, you'll see it's very similar.
The inheritance diagram looks like this:

CorpusReader CategorizedCorpusReader
fileids() categories|()
Tx fileids()
ChunkedCorpusReader
words()
sents()
paras()

tagged_words()
tagged_sents()
tagged_paras()
chunked_words()
chunked_sents()
chunked_paras()

>

| CategorizedChunkedCorpusReader

Here's some example code for using the treebank corpus. All we're doing is making
categories out of the fileids, but the point is that you could use the same techniques
to create your own categorized chunk corpus.

>>> import nltk.data

>>> from catchunked import CategorizedChunkedCorpusReader

>>> path = nltk.data.find('corpora/treebank/tagged')

>>> reader = CategorizedChunkedCorpusReader (path, r'wsj .*\.pos',

cat_pattern=r'wsj_ (.*)\.pos')

>>> len(reader.categories()) == len(reader.fileids())
True

>>> len(reader.chunked sents(categories=['0001']))

16

=

Chapter 3

We use nltk.data.find () to search the data directories to get a
FileSystemPathPointer to the treebank corpus. All the treebank tagged files start
with wsj_ followed by a number, and end with .pos. The previous code turns that file number
into a category.

There's more...

As covered in the Creating a chunked phrase corpus recipe, there's an alternative format and
reader for a chunk corpus using IOB tags. To have a categorized corpus of I0B chunks, we
have to make a new corpus reader.

Categorized Conll chunk corpus reader

Here's a subclass of CategorizedCorpusReader and ConllChunkReader
called CategorizedConllChunkCorpusReader. It overrides all methods of
ConllCorpusReader that take a £ileids argument, so the methods can also take
a categories argument. The ConllChunkCorpusReader is just a small subclass
of ConllCorpusReader that handles initialization; most of the work is done in
ConllCorpusReader. This code can also be found in catchunked.py

from nltk.corpus.reader import CategorizedCorpusReader,
ConllCorpusReader, ConllChunkCorpusReader

class CategorizedConllChunkCorpusReader (CategorizedCorpusReader,
ConllChunkCorpusReader) :

def init (self, *args, **kwargs):
CategorizedCorpusReader. init (self, kwargs)
ConllChunkCorpusReader. init (self, *args, **kwargs)

def _resolve(self, fileids, categories):
if fileids is not None and categories is not None:
raise ValueError ('Specify fileids or categories, not both')
if categories is not None:
return self.fileids(categories)
else:

return fileids

All the following methods call the corresponding method of Conl1CorpusReader with the
value returned from _resolve (). We'll start with the plain text methods.

def raw(self, fileids=None, categories=None) :

return ConllCorpusReader.raw(self, self. resolve(fileids,
categories))

def words(self, fileids=None, categories=None) :

Creating Custom Corpora

return ConllCorpusReader.words (self, self. resolve(fileids,
categories))

def sents(self, fileids=None, categories=None) :

return ConllCorpusReader.sents(self, self. resolve(fileids,
categories))

The CconllCorpusReader does not recognize paragraphs, so there are no * paras ()
methods. Next are the tagged and chunked methods.

def tagged words (self, fileids=None, categories=None) :

return ConllCorpusReader.tagged words (self, self.
resolve(fileids, categories))

def tagged sents(self, fileids=None, categories=None) :

return ConllCorpusReader.tagged sents(self, self.
resolve(fileids, categories))

def chunked words (self, fileids=None, categories=None, chunk
types=None) : B B
return ConllCorpusReader.chunked words (
self, self. resolve(fileids, categories), chunk types)

def chunked sents(self, fileids=None, categories=None, chunk
types=None) :
return ConllCorpusReader.chunked sents(
self, self. resolve(fileids, categories), chunk types)

For completeness, we must override the following methods of the ConllCorpusReader:

def parsed sents(self, fileids=None, categories=None, pos_in
tree=None) :
return ConllCorpusReader.parsed sents (
self, self. resolve(fileids, categories), pos_in tree)

def srl spans(self, fileids=None, categories=None) :
return ConllCorpusReader.srl spans(self, self.
resolve(fileids, categories))

def srl instances(self, fileids=None, categories=None, pos_in
tree=None, flatten=True) :

return ConllCorpusReader.srl_ instances (

self, self. resolve(fileids, categories), pos_in tree,
flatten)

(&)

def iob_words(self, fileids=None, categories=None) :

return ConllCorpusReader.iob words (self, self.
resolve(fileids, categories))

def iob_sents(self, fileids=None, categories=None) :

return ConllCorpusReader.iob sents(self, self.
resolve(fileids, categories))

The inheritance diagram for this class is as follows:

CorpusReader CategorizedCorpusReader

fileids() categories()

Zr fileids()

ConliCorpusReader

words()

sents()

tagged words()
tagged_sents()
chunked_words()
chunked_sents()
iob_words()
iob_sents()

I

| ConliChunkCorpusReader |

| CategorizedConliIChunkedCorpusReader

Chapter 3

Following is some example code using the con112000 corpus. Like with treebank, we're

using the £ileids for categories. The ConllChunkCorpusReader requires a third

argument to specify the chunk types. These chunk_types are used to parse the 10B
tags. As you learned in the Creating a chunked phrase corpus recipe, the con112000 corpus

recognizes three chunk types:

» NP for noun phrases
» VP for verb phrases

» PP for prepositional phrases

>>> import nltk.data

>>> from catchunked import CategorizedConllChunkCorpusReader

&7}

Creating Custom Corpora

>>> path = nltk.data.find('corpora/conll2000")

>>> reader = CategorizedConllChunkCorpusReader (path, r'.*\.txt',
('NP','VP','PP'), cat pattern=r'(.*)\.txt'")

>>> reader.categories ()

['test', 'train']

>>> reader.fileids()

['test.txt', 'train.txt']
>>> len(reader.chunked sents (categories=['test']))
2012

In the Creating a chunked phrase corpus recipe in this chapter, we covered both
the ChunkedCorpusReader and ConllChunkCorpusReader. And in the
previous recipe, we covered CategorizedPlaintextCorpusReader and
CategorizedTaggedCorpusReader, Which share the same superclass used by
CategorizedChunkedCorpusReader and CategorizedConllChunkReader—
CategorizedCorpusReader

Lazy corpus loading

Loading a corpus reader can be an expensive operation due to the number of files, file sizes,
and various initialization tasks. And while you'll often want to specify a corpus reader in a
common module, you don't always need to access it right away. To speed up module import
time when a corpus reader is defined, NLTK provides a LazyCorpusLoader class that can
transform itself into your actual corpus reader as soon as you need it. This way, you can define
a corpus reader in a common module without it slowing down module loading.

How to do it...

LazyCorpusLoader requires two arguments: the name of the corpus and the corpus
reader class, plus any other arguments needed to initialize the corpus reader class.

The name argument specifies the root directory name of the corpus, which must be within a
corpora subdirectory of one of the paths in nltk.data.path. See the first recipe of this
chapter, Setting up a custom corpus, for more details on nltk.data.path.

For example, if you have a custom corpora named cookbook in your local nltk data
directory, its path would be ~/nltk data/corpora/cookbook. You'd then pass
'cookbook' 10 LazyCorpusLoader as the name, and LazyCorpusLoader will look in
~/nltk_data/corpora for a directory named ' cookbook'.

&)

Chapter 3

The second argument to LazyCorpusLoader is reader_ cls, which should be the name
of a subclass of CorpusReader, such as WordListCorpusReader. You will also need

to pass in any other arguments required by the reader c1s for initialization. This will be
demonstrated as follows, using the same wordlist file we created in the earlier recipe,
Creating a word list corpus. The third argument to LazyCorpusLoader is the list of
filenames and £ileids that will be passed in to WordListCorpusReader at initialization.

>>> from nltk.corpus.util import LazyCorpusLoader

>>> from nltk.corpus.reader import WordListCorpusReader
>>> reader = LazyCorpusLoader ('cookbook', WordListCorpusReader,
['wordlist'])

>>> isinstance (reader, LazyCorpusLoader)

True

>>> reader.fileids()

['wordlist']

>>> isinstance (reader, LazyCorpusLoader)

False

>>> isinstance (reader, WordListCorpusReader)

True

LazyCorpusLoader stores all the arguments given, but otherwise does nothing until you try
to access an attribute or method. This way initialization is very fast, eliminating the overhead
of loading the corpus reader immediately. As soon as you do access an attribute or method, it
does the following:

1. Callsnltk.data.find('corpora/%s' % name) to find the corpus data
root directory.
2. Instantiate the corpus reader class with the root directory and any other arguments.
3. Transforms itself into the corpus reader class.
So in the previous example code, before we call reader.fileids (), reader is

an instance of LazyCorpusLoader, but after the call, reader is an instance of
WordListCorpusReader

All of the corpora included with NLTK and defined in n1tk.corpus are initially an instance of
LazyCorpusLoader. Here's some code from nltk. corpus defining the treebank corpora.

treebank = LazyCorpusLoader (

'treebank/combined', BracketParseCorpusReader, r'wsj .*\.mrg',

[}

Creating Custom Corpora

tag mapping function=simplify wsj tag)
treebank chunk = LazyCorpusLoader (
'treebank/tagged', ChunkedCorpusReader, r'wsj .*\.pos',

sent tokenizer=RegexpTokenizer (r' (?<=/\.)\s* (2! [*\[1*\]1)",
gaps=True) ,

para block reader=tagged treebank para block reader)
treebank raw = LazyCorpusLoader (

'treebank/raw', PlaintextCorpusReader, r'wsj .*'")

As you can see, any number of additional arguments can be passed through by
LazyCorpusLoader t0 its reader cls.

Creating a custom corpus view

A corpus view is a class wrapper around a corpus file that reads in blocks of tokens as
needed. Its purpose is to provide a view into a file without reading the whole file at once (since
corpus files can often be quite large). If the corpus readers included by NLTK already meet

all your needs, then you do not have to know anything about corpus views. But, if you have a
custom file format that needs special handling, this recipe will show you how to create and
use a custom corpus view. The main corpus view class is St reamBackedCorpusView, which
opens a single file as a stream, and maintains an internal cache of blocks it has read.

Blocks of tokens are read in with a block reader function. A block can be any piece of text,
such as a paragraph or a line, and tokens are parts of a block, such as individual words.

In the Creating a part-of-speech tagged word corpus recipe, we discussed the default
para_block_ reader function of the TaggedCorpusReader, which reads lines from

a file until it finds a blank line, then returns those lines as a single paragraph token. The
actual block reader function is: nltk.corpus.reader.util.read blankline block.
TaggedCorpusReader passes this block reader function into a TaggedCorpusView
whenever it needs to read blocks from a file. TaggedCorpusView is a subclass of
StreamBackedCorpusView that knows to split paragraphs of "word/tag" into (word,
tag) tuples.

How to do it...

We'll start with the simple case of a plain text file with a heading that should be ignored by the
corpus reader. Let's make a file called heading text.txt that looks like this:

A simple heading

Here is the actual text for the corpus.
Paragraphs are split by blanklines.
This is the 3rd paragraph.

[

Chapter 3

Normally we'd use the PlaintextCorpusReader but, by default, it will treat A simple
heading as the first paragraph. To ignore this heading, we need to subclass the
PlaintextCorpusReader SO we can override its CorpusView class variable with our
own StreamBackedCorpusView subclass. This code is found in corpus . py

from nltk.corpus.reader import PlaintextCorpusReader
from nltk.corpus.reader.util import StreamBackedCorpusView

class IgnoreHeadingCorpusView (StreamBackedCorpusView) :
def init (self, *args, **kwargs):
StreamBackedCorpusView. init (self, *args, **kwargs)
open self. stream
self. open()
skip the heading block
self.read block(self._ stream)
reset the start position to the current position in the
stream

self. filepos = [self. stream.tell()]

class IgnoreHeadingCorpusReader (PlaintextCorpusReader) :
CorpusView = IgnoreHeadingCorpusView

To demonstrate that this works as expected, here's the code showing that the default
PlaintextCorpusReader finds four paragraphs, while our IgnoreHeadingCorpusReader
only has three paragraphs.

>>> from nltk.corpus.reader import PlaintextCorpusReader

>>> plain = PlaintextCorpusReader('.', ['heading text.txt'])

>>> len(plain.paras())

4

>>> from corpus import IgnoreHeadingCorpusReader

>>> reader = IgnoreHeadingCorpusReader('.',6 ['heading text.txt'])
>>> len(reader.paras())

The PlaintextCorpusReader by design has a CorpusView class variable that can be
overridden by subclasses. So we do just that, and make our IgnoreHeadingCorpusView
the CorpusView.

Creating Custom Corpora

& Most corpus readers do not have a CorpusView class variable because they
i require very specific corpus views.

The IgnoreHeadingCorpusView is a subclass of StreamBackedCorpusView that does
the following on initialization:

1. Open the file using self. open/(). This function is defined by
StreamBackedCorpusView, and sets the internal instance variable
self. streamto the opened file.

2. Read one block with read_blankline block (), which will read the heading
as a paragraph, and move the stream's file position forward to the next block.

3. Reset the start file position to the current position of self. stream. self.
filepos is an internal index of where each block is in the file.

Here's a diagram illustrating the relationships between the classes:

AbstractLazySequence

CorpusReader _len_()
Iterate_from()

| PlaintextCorpusReader | - StreamBackedCorpusView
| CorpusView

AN read_block()
| IgnoreHeadingCorpusReader }H IgnoreHeadingCorpusView |
CorpusView

Corpus views can get a lot fancier and more complicated, but the core concept is the same:
read blocks from a stream to return a list of tokens. There are a number of block readers
provided in nltk.corpus.reader.util, but you can always create your own. If you

do want to define your own block reader function, then you have two choices on how to
implement it:

1. Define it as a separate function and pass it in to StreamBackedCorpusView as
block_reader. This is a good option if your block reader is fairly simple, reusable,
and doesn't require any outside variables or configuration.

=

Chapter 3

2. Subclass streamBackedCorpusView and override the read block () method.
This is what many custom corpus views do because the block reading is highly
specialized and requires additional functions and configuration, usually provided by
the corpus reader when the corpus view is initialized.

Block reader functions

Following is a survey of most of the included block readers in nltk.corpus.reader.util.
Unless otherwise noted, each block reader function takes a single argument: the streamto
read from.

» read whitespace block () will read 20 lines from the stream, splitting each line
into tokens by whitespace.

» read wordpunct block () reads 20 lines from the stream, splitting each line
using nltk.tokenize.wordpunct tokenize ().

» read line block() reads 20 lines from the stream and returns them as a list,
with each line as a token.

» read blankline block () will read lines from the stream until it finds a blank
line. It will then return a single token of all lines found combined into a single string.

» read regexp block () takes two additional arguments, which must be regular
expressions that can be passed to re .match ():a start_re and end_re. start_
re matches the starting line of a block, and end re matches the ending line of the
block. end_re defaults to None, in which case the block will end as soon as a new
start_re match is found. The return value is a single token of all lines in the block
joined into a single string.

Pickle corpus view

If you want to have a corpus of pickled objects, you can use the PickleCorpusView, a
subclass of StreamBackedCorpusView found in nltk.corpus.reader.util. Afile
consists of blocks of pickled objects, and can be created with the PickleCorpusView.
write () class method, which takes a sequence of objects and an output file, then pickles
each object using pickle.dump () and writes it to the file. It overrides the read block ()
method to return a list of unpickled objects from the stream, using pickle.load ().

Creating Custom Corpora

Concatenated corpus view

Also found in nltk.corpus.reader.util is the ConcatenatedCorpusView. This class
is useful if you have multiple files that you want a corpus reader to treat as a single file. A
ConcatenatedCorpusView is created by giving it a list of corpus_views, which are then
iterated over as if they were a single view.

The concept of block readers was introduced in the Creating a part-of-speech tagged word
corpus recipe in this chapter.

Creating a MongoDB backed corpus reader

All the corpus readers we've dealt with so far have been file-based. That is in part due to the
design of the CorpusReader base class, and also the assumption that most corpus data will
be in text files. But sometimes you'll have a bunch of data stored in a database that you want
to access and use just like a text file corpus. In this recipe, we'll cover the case where you

have documents in MongoDB, and you want to use a particular field of each document as your
block of text.

Getting ready

MongoDB is a document-oriented database that has become a popular alternative to
relational databases such as MySQL. The installation and setup of MongoDB is outside the
scope of this book, but you can find instructions at http: //www.mongodb.org/display/
DOCS/Quickstart.

You'll also need to install PyMongo, a Python driver for MongoDB. You should be able to do
this with either easy install or pip, by doing sudo easy install pymongo Or sudo
pip install pymongo.

The code in the How to do it... section assumes that your database is on localhost
port 27017, which is the MongoDB default configuration, and that you'll be using the
test database with a collection named corpus that contains documents with a text
field. Explanations for these arguments are available in the PyMongo documentation at
http://api.mongodb.org/python/.

Chapter 3

How to do it...

Since the CorpusReader class assumes you have a file-based corpus, we can't directly
subclass it. Instead, we're going to emulate both the StreamBackedCorpusView and
PlaintextCorpusReader. StreamBackedCorpusView is a subclass of nltk.util.
AbstractLazySequence, SO we'll subclass AbstractLazySequence to create a
MongoDB view, and then create a new class that will use the view to provide functionality
similar to the PlaintextCorpusReader. This code is found in mongoreader . py.

import pymongo

from nltk.data import LazyLoader

from nltk.tokenize import TreebankWordTokenizer
from nltk.util import AbstractLazySequence, LazyMap,
LazyConcatenation

class MongoDBLazySequence (AbstractLazySequence) :
def _ init_ (self, host='localhost', port=27017, db='test',
collection='corpus', field='text'):
self.conn = pymongo.Connection (host, port)
self.collection = self.conn[db] [collection]
self.field = field

def len (self):

return self.collection.count ()

def iterate_ from(self, start):
f = lambda d: d.get(self.field, ''")
return iter (LazyMap(f, self.collection.find(fields=[self.
field], skip=start)))
class MongoDBCorpusReader (object) :
def _ init_ (self, word tokenizer=TreebankWordTokenizer(),
sent tokenizer=LazyLoader ('tokenizers/punkt/english.
pickle'),
**kwargs) :
self. seq = MongoDBLazySequence (**kwargs)
self. word tokenize = word tokenizer.tokenize
self. sent tokenize = sent tokenizer.tokenize
def text (self):
return self. seg
def words (self) :
return LazyConcatenation(LazyMap (self. word tokenize, self.
text ()))
def sents(self):

return LazyConcatenation(LazyMap (self. sent tokenize, self.
text ()))

Creating Custom Corpora

AbstractLazySequence is an abstract class that provides read-only, on-demand
iteration. Subclasses must implementthe len () and iterate from(start)
methods, while it provides the rest of the list and iterator emulation methods. By creating
the MongoDBLazySequence subclass as our view, we can iterate over documents in the
MongoDB collection on-demand, without keeping all the documents in memory. LazyMap
is a lazy version of Python's built-in map () function, and is used in iterate from() to
transform the document into the specific field that we're interested in. It's also a subclass of
AbstractLazySequence.

The MongoDBCorpusReader creates an internal instance of MongoDBLazySequence for
iteration, then defines the word and sentence tokenization methods. The text () method
simply returns the instance of MongoDBLazySequence, which results in a lazily evaluated list
of each text field. The words () method uses LazyMap and LazyConcatenation to return

a lazily evaluated list of all words, while the sents () method does the same for sentences.
The sent_tokenizer is loaded on demand with LazyLoader, which is a wrapper around
nltk.data.load(), analogous to LazyCorpusLoader. LazyConcatentationisa
subclass of AbstractLazySequence t00, and produces a flat list from a given list of lists
(each list may also be lazy). In our case, we're concatenating the results of LazyMap to ensure
we don't return nested lists.

All of the parameters are configurable. For example, if you had a db named website, with a
collection named comments, whose documents had a £ield called comment, you could
create a MongoDBCorpusReader as follows:

>>> reader = MongoDBCorpusReader (db='website',
collection='comments', field='comment')

You can also pass in custom instances for word tokenizer and sent tokenizer, as
long as the objects implement the nltk.tokenize.TokenizerI interface by providing a
tokenize (text) method.

Corpus views were covered in the previous recipe, and tokenization was covered in Chapter 1,
Tokenizing Text and WordNet Basics.

7@

Chapter 3

Corpus editing with file locking

Corpus readers and views are all read-only, but there may be times when you want to add to
or edit the corpus files. However, modifying a corpus file while other processes are using it,
such as through a corpus reader, can lead to dangerous undefined behavior. This is where file
locking comes in handy.

Getting ready

You must install the lockfile library using sudo easy install lockfile or sudo pip
install lockfile. This library provides cross-platform file locking, and so will work on
Windows, Unix/Linux, Mac OX, and more. You can find detailed documentation on lockfile
athttp://packages.python.org/lockfile/.

For the following code to work, you must also have Python 2.6. Versions 2.4 and earlier do not
support the with keyword.

How to do it...

Here are two file editing functions: append line () and remove line (). Bothtryto
acquire an exclusive lock on the file before updating it. An exclusive lock means that these
functions will wait until no other process is reading from or writing to the file. Once the lock
is acquired, any other process that tries to access the file will have to wait until the lock is
released. This way, modifying the file will be safe and not cause any undefined behavior in
other processes. These functions can be found in corpus. py.

import lockfile, tempfile, shutil

def append line(fname, line):
with lockfile.FileLock (fname) :
fp = open(fname, 'a+')
fp.write(line)
fp.write('\n"')
fp.close()

def remove line(fname, line):

with lockfile.FileLock (fname) :
tmp = tempfile.TemporaryFile ()
fp = open(fname, 'r+')
write all lines from orig file, except if matches given line
for 1 in fp:
if l.strip() != line:
tmp.write (1)

Creating Custom Corpora

reset file pointers so entire files are copied

fp.seek (0)

tmp.seek (0)

copy tmp into fp, then truncate to remove trailing line(s)
shutil.copyfileobj (tmp, £fp)

fp.truncate ()

fp.close()

tmp.close ()

The lock acquiring and releasing happens transparently when you do with lockfile.
FileLock (fname).

. Instead of using with lockfile.FileLock (fname), you can also get a
% lock by calling 1lock = lockfile.FileLock (fname), then call lock.
A acquire () to acquire the lock, and lock.release () to release the lock.
This alternative usage is compatible with Python 2.4.

You can use these functions as follows:

>>> from corpus import append line, remove line
>>> append line('test.txt', 'foo')
>>> remove_ line('test.txt',K 'foo')

In append_1line (), a lock is acquired, the file is opened in append mode, the text is written
along with an end-of-line character, and then the file is closed, releasing the lock.

A lock acquired by 1ockfile only protects the file from other processes that
. also use lockfile. In other words, just because your Python process has
~ a lock with 1ockfile, doesn't mean a non-Python process can't modify the
Q file. For this reason, it's best to only use 1lockfile with files that will not
be edited by any non-Python processes, or Python processes that do not use
lockfile.

@

Chapter 3

The remove line () function is a bit more complicated. Because we're removing a line and
not a specific section of the file, we need to iterate over the file to find each instance of the
line to remove. The easiest way to do this while writing the changes back to the file, is to use
a TemporaryFile to hold the changes, then copy that file back into the original file using
shutil.copyfileobj ().

These functions are best suited for a word list corpus, or some other corpus type with
presumably unique lines, that may be edited by multiple people at about the same time,
such as through a web interface. Using these functions with a more document-oriented
corpus such as brown, treebank, or con112000, is probably a bad idea.

(7]

Part-of-Speech

In this chapter, we will cover:

Default tagging

Training a unigram part-of-speech tagger
Combining taggers with backoff tagging
Training and combining Ngram taggers
Creating a model of likely word tags
Tagging with regular expressions

Affix tagging

Training a Brill tagger

Training the TnT tagger

Using WordNet for tagging

Tagging proper names

Classifier-based tagging

Tagging

Part-of-Speech Tagging

Introduction

Part-of-speech tagging is the process of converting a sentence, in the form of a list of
words, into a list of tuples, where each tuple is of the form (word, tag).The tagisa
part-of-speech tag and signifies whether the word is a noun, adjective, verb, and so on.

Most of the taggers we will cover are trainable. They use a list of tagged sentences

as their training data, such as what you get from the tagged_sents () function of a
TaggedCorpusReader (see the Creating a part-of-speech tagged word corpus recipe in
Chapter 3, Creating Custom Corpora for more details). With these training sentences, the
tagger generates an internal model that will tell them how to tag a word. Other taggers use
external data sources or match word patterns to choose a tag for a word.

All taggers in NLTK are in the nltk. tag package and inherit from the TaggerI base
class. TaggerI requires all subclasses to implement a tag () method, which takes a list
of words as input, and returns a list of tagged words as output. TaggerI also provides an
evaluate () method for evaluating the accuracy of the tagger (covered at the end of the
Default tagging recipe). Many taggers can also be combined into a backoff chain, so that if
one tagger cannot tag a word, the next tagger is used, and so on.

Part-of-speech tagging is a necessary step before chunking, which is covered in Chapter 5,
Extracting Chunks. Without the part-of-speech tags, a chunker cannot know how to extract
phrases from a sentence. But with part-of-speech tags, you can tell a chunker how to identify
phrases based on tag patterns.

Default tagging

Default tagging provides a baseline for part-of-speech tagging. It simply assigns the same
part-of-speech tag to every token. We do this using the DefaultTagger.

Getting ready

We are going to use the treebank corpus for most of this chapter because it's a common
standard and is quick to load and test. But everything we do should apply equally well to
brown, con112000, and any other part-of-speech tagged corpus.

How to do it...

The DefaultTagger takes a single argument—the tag you want to apply. We will give it 'NN',
which is the tag for a singular noun.

>>> from nltk.tag import DefaultTagger
>>> tagger = DefaultTagger ('NN')

[

Chapter 4

>>> tagger.tag(['Hello', 'World'])
[('Hello', 'NN'), ('World', 'NN')]

Every tagger has a tag () method that takes a list of tokens, where each token is a single
word. This list of tokens is usually a list of words produced by a word tokenizer (see Chapter 1,
Tokenizing Text and WordNet Basics for more on tokenization). As you can see, tag () returns
a list of tagged tokens, where a tagged token is a tuple of (word, tag).

DefaultTagger is a subclass of SequentialBackoffTagger. Every subclass of
SequentialBackoffTagger must implement the choose tag () method, which takes
three arguments:

1. The list of tokens.
2. The index of the current token whose tag we want to choose.
3. The history, which is a list of the previous tags.

SequentialBackoffTagger implements the tag () method, which calls the
choose_ tag () of the subclass for each index in the tokens list, while accumulating a
history of the previously tagged tokens. This history is the reason for the Sequential in
SequentialBackoffTagger. We will get to the Backoff portion of the name in the
Combining taggers with backoff tagging recipe. The following is a diagram showing the
inheritance tree:

Taggerl

tag()
evaluate()

AN

SequentialBackoffTagger

choose_tag()
/\

DefaultTagger

The choose tag () method of DefaultTagger is very simple—it returns the tag we gave it
at initialization time. It does not care about the current token or the history.

&)

Part-of-Speech Tagging

There's more...

There are a lot of different tags you could give to the DefaultTagger. You can find a
complete list of possible tags for the treebank corpus at http://www.ling.upenn.
edu/courses/Fall 2003/1ing001/penn treebank pos.html. These tags are also
documented in Appendix, Penn Treebank Part-of-Speech Tags.

Evaluating accuracy

To know how accurate a tagger is, you can use the evaluate () method, which takes a list
of tagged tokens as a gold standard to evaluate the tagger. Using our default tagger created
earlier, we can evaluate it against a subset of the treebank corpus tagged sentences.

>>> from nltk.corpus import treebank

>>> test sents = treebank.tagged sents() [3000:]
>>> tagger.evaluate(test sents)
0.14331966328512843

So by just choosing 'NN' for every tag, we can achieve 14% accuracy testing on %th of the
treebank corpus. We will be reusing these same test_sents for evaluating more taggers
in upcoming recipes.

Batch tagging sentences

TaggerlI also implements a batch_tag () method that can be used to tag a list of
sentences, instead of a single sentence. Here's an example of tagging two simple sentences:

>>> tagger.batch tag([['Hello', 'world', '.'l, ['How',6K 'are',6 'you',
'2r11)

[[('Hello', 'NN'), ('world', 'NN'), ('.', 'NN')], [('How', 'NN'),
(larel’ !NNI)I (!youil INN!)’ (l?l’ !NNI)]]

The result is a list of two tagged sentences, and of course every tag is NN because we are
using the DefaultTagger. The batch tag () method can be quite useful if you have many
sentences you wish to tag all at once.

Untagging a tagged sentence

Tagged sentences can be untagged using nltk.tag.untag (). Calling this function with a
tagged sentence will return a list of words without the tags.

>>> from nltk.tag import untag
>>> untag([('Hello', 'NN'), ('World', 'NN')])
['Hello', 'World']

=

Chapter 4

For more on tokenization, see Chapter 1, Tokenizing Text and WordNet Basics. And to learn
more about tagged sentences, see the Creating a part-of-speech tagged word corpus recipe
in Chapter 3, Creating Custom Corpora. For a complete list of part-of-speech tags found in
the treebank corpus, see Appendix, Penn Treebank Part-of-Speech Tags.

Training a unigram part-of-speech tagger

A unigram generally refers to a single token. Therefore, a unigram tagger only uses a single
word as its context for determining the part-of-speech tag.

The UnigramTagger inherits from NgramTagger, which is a subclass of ContextTagger,
which inherits from SequentialBackoffTagger. In other words, the UnigramTagger is a
context-based tagger whose context is a single word, or unigram.

How to do it...

UnigramTagger can be trained by giving it a list of tagged sentences at initialization.

>>> from nltk.tag import UnigramTagger
>>> from nltk.corpus import treebank

>>> train sents = treebank.tagged sents() [:3000]

>>> tagger = UnigramTagger (train sents)

>>> treebank.sents () [0]

['Pierre', 'Vinken', ',', '61', 'years', 'old', ',', 'will', 'join',
'the', 'board', 'as', 'a', 'nonexecutive', 'director', 'Nov.', '29',
!'!]

>>> tagger.tag(treebank.sents () [0])

[('Pierre', 'NNP'), ('Vinken', 'NNP'), (',', ',"'), ('61', 'CD'),
('years', 'NNS'), ('old', 'gg'), (',', ',"), ('will', 'MD'), ('join',
'VvB'), ('the', 'DT'), ('board', 'NN'), ('as', 'IN'), ('a', 'DT'"),
('nonexecutive', 'JJ'), ('director', 'NN'), ('Nov.', 'NNP'), ('29',
'cd'), (., ton)]

We use the first 3,000 tagged sentences of the t reebank corpus as the training set to
initialize the UnigramTagger. Then we see the first sentence as a list of words, and can
see how it is transformed by the tag () function into a list of tagged tokens.

&1

Part-of-Speech Tagging

The UnigramTagger builds a context model from the list of tagged sentences. Because
UnigramTagger inherits from ContextTagger, instead of providing a choose tag ()
method, it must implement a context () method, which takes the same three arguments as
choose_tag(). The result of context () is, in this case, the word token. The context token
is used to create the model, and also to look up the best tag once the model is created. Here's
an inheritance diagram showing each class, starting at SequentialBackoffTagger:

SequentialBackoffTagger
choose_tag()

|

ContextTagger

context()
/\

| NgramTagger |
AN

| UnigramTagger |

Let's see how accurate the UnigramTagger is on the test sentences (see the previous
recipe for how test_sents is created).

>>> tagger.evaluate (test sents)
0.85763004532700193

It has almost 86% accuracy for a tagger that only uses single word lookup to determine
the part-of-speech tag. All accuracy gains from here on will be much smaller.

The model building is actually implemented in ContextTagger. Given the list of tagged
sentences, it calculates the frequency that a tag has occurred for each context. The tag
with the highest frequency for a context is stored in the model.

~[ee]

Chapter 4

Overriding the context model

All taggers that inherit from ContextTagger can take a pre-built model instead of training
their own. This model is simply a Python dict mapping a context key to a tag. The context
keys will depend on what the ContextTagger subclass returns from its context ()

method. For UnigramTagger, context keys are individual words. But for other NgramTagger
subclasses, the context keys will be tuples.

Here's an example where we pass a very simple model to the UnigramTagger instead of a
training set:

>>> tagger = UnigramTagger (model={'Pierre': 'NN'})

>>> tagger.tag(treebank.sents() [0])

[('Pierre', 'NN'), ('Vinken', None), (',', None), ('61', None),
('years', None), ('old', None), (',', None), ('will',6 None), ('join',
None), ('the', None), ('board', None), ('as', None), ('a', None),
('nonexecutive', None), ('director', None), ('Nov.', None), ('29',
None), ('.', None)]

Since the model only contained the context key, 'Pierre', only the first word got a tag.
Every other word got None as the tag since the context word was not in the model. So unless
you know exactly what you are doing, let the tagger train its own model instead of passing in
your own.

One good case for passing a self-created model to the UnigramTagger is for when you
have a dictionary of words and tags, and you know that every word should always map to its
tag. Then, you can put this UnigramTagger as your first backoff tagger (covered in the next
recipe), to look up tags for unambiguous words.

Minimum frequency cutoff

The ContextTagger uses frequency of occurrence to decide which tag is most likely for a
given context. By default, it will do this even if the context word and tag occurs only once. If
you would like to set a minimum frequency threshold, then you can pass a cutoff value to
the UnigramTagger.

>>> tagger = UnigramTagger (train sents, cutoff=3)
>>> tagger.evaluate (test sents)
0.775350744657889

In this case, using cutof f£=3 has decreased accuracy, but there may be times when a cutoff
is a good idea.

7}

Part-of-Speech Tagging

See also

In the next recipe, we will cover backoff tagging to combine taggers. And in the Creating a
model of likely word tags recipe, we will learn how to statistically determine tags for very
common words.

Combining taggers with backoff tagging

Backoff tagging is one of the core features of SequentialBackoffTagger. It allows you
to chain taggers together so that if one tagger doesn't know how to tag a word, it can pass the
word on to the next backoff tagger. If that one can't do it, it can pass the word on to the next
backoff tagger, and so on until there are no backoff taggers left to check.

How to do it...

Every subclass of SequentialBackoffTagger can take a backoff keyword argument
whose value is another instance of a SequentialBackof fTagger. So we will use the
DefaultTagger from the Default tagging recipe as the backof f to the UnigramTagger
from the Training a unigram part-of-speech tagger recipe. Refer to both recipes for details on
train sentsand test_ sents.

>>> taggerl = DefaultTagger ('NN')

>>> tagger2 = UnigramTagger (train_sents, backoff=taggerl)
>>> tagger2.evaluate (test_sents)

0.87459529462551266

By using a default tag of NN whenever the UnigramTagger is unable to tag a word, we have
increased the accuracy by almost 2%!

When a SequentialBackoffTagger is initialized, it creates an internal list of backoff
taggers with itself as the first element. If a backof £ tagger is given, then the backoff tagger's
internal list of taggers is appended. Here's some code to illustrate this:

>>> taggerl. taggers == [taggerl]

True

>>> tagger2. taggers == [tagger2, taggerl]
True

Chapter 4

The taggers is the internal list of backoff taggers that the SequentialBackoffTagger
uses when the tag () method is called. It goes through its list of taggers, calling choose
tag () on each one. As soon as a tag is found, it stops and returns that tag. This means that
if the primary tagger can tag the word, then that's the tag that will be returned. But if it returns
None, then the next tagger is tried, and so on until a tag is found, or else None is returned. Of
course, None will never be returned if your final backoff tagger is a DefaultTagger.

There's more...

While most of the taggers included in NLTK are subclasses of SequentialBackoffTagger,
not all of them are. There's a few taggers that we will cover in later recipes that cannot be
used as part of a backoff tagging chain, such as the BrillTagger. However, these taggers
generally take another tagger to use as a baseline, and a SequentialBackoffTagger is
often a good choice for that baseline.

Pickling and unpickling a trained tagger

Since training a tagger can take a while, and you generally only need to do the training once,
pickling a trained tagger is a useful way to save it for later usage. If your trained tagger is
called tagger, then here's how to dump and load it with pickle:

>>> import pickle

>>> f = open('tagger.pickle', 'w')
>>> pickle.dump (tagger, £f)

>>> f.close()

>>> f = open('tagger.pickle', 'r')
>>> tagger = pickle.load(f)

If your tagger pickle file is located in a NLTK data directory, you could also use nltk.data.
load ('tagger.pickle') to load the tagger.

In the next recipe, we will combine more taggers with backoff tagging. Also see the previous
two recipes for details on the DefaultTagger and UnigramTagger.

Training and combining Ngram taggers

In addition to UnigramTagger, there are two more NgramTagger subclasses:
BigramTagger and TrigramTagger. BigramTagger USeS the previous tag as part of
its context, while TrigramTagger uses the previous two tags. An ngram is a subsequence
of n items, so the BigramTagger looks at two items (the previous tag and word), and the
TrigramTagger looks at three items.

]

Part-of-Speech Tagging

These two taggers are good at handling words whose part-of-speech tag is context dependent.
Many words have a different part-of-speech depending on how they are used. For example,
we have been talking about taggers that "tag" words. In this case, "tag" is used as a verb. But
the result of tagging is a part-of-speech tag, so "tag" can also be a noun. The idea with the
NgramTagger subclasses is that by looking at the previous words and part-of-speech tags,
we can better guess the part-of-speech tag for the current word.

Getting ready

Refer to the first two recipes of this chapter for details on constructing train sents and
test sents.

How to do it...

By themselves, BigramTagger and TrigramTagger perform quite poorly. This is partly
because they cannot learn context from the first word(s) in a sentence.

>>> from nltk.tag import BigramTagger, TrigramTagger
>>> bitagger = BigramTagger (train_sents)

>>> bitagger.evaluate (test_sents)
0.11336067342974315

>>> tritagger = TrigramTagger (train_ sents)

>>> tritagger.evaluate (test_ sents)
0.0688107058061731

Where they can make a contribution is when we combine them with backoff tagging. This
time, instead of creating each tagger individually, we will create a function that will take
train_sents, a list of SequentialBackoffTagger classes, and an optional final backoff
tagger, and then train each tagger with the previous tagger as a backoff. Here's code from
tag util.py:

def backoff tagger (train_sents, tagger_ classes, backoff=None) :
for cls in tagger classes:
backoff = cls(train_sents, backoff=backoff)
return backoff

And to use it, we can do the following:

>>> from tag util import backoff tagger

>>> backoff = DefaultTagger ('NN')

>>> tagger = backoff tagger (train_ sents, [UnigramTagger, BigramTagger,
TrigramTagger], backoff=backoff)

>>> tagger.evaluate(test_ sents)

0.88163177206993304

5]

Chapter 4

So we have gained almost 1% accuracy by including the BigramTagger and
TrigramTagger in the backoff chain. For corpora other than treebank, the accuracy
gain may be more significant.

The backoff tagger function creates an instance of each tagger class in the list, giving it
the train sents and the previous tagger as a backoff. The order of the list of tagger classes
is quite important—the first class in the list will be trained first, and be given the initial backoff
tagger. This tagger will then become the backoff tagger for the next tagger class in the list. The
final tagger returned will be an instance of the last tagger class in the list. Here's some code
to clarify this chain:

>>> tagger. taggers[-1] == backoff

True

>>> isinstance(tagger. taggers[0], TrigramTagger)
True

>>> isinstance(tagger. taggers[1l], BigramTagger)
True

So we end up with a TrigramTagger, whose first backoff is a BigramTagger. Then the next
backoff will be a UnigramTagger, whose backoff is the DefaultTagger.

The backoff tagger function doesn't just work with NgramTagger classes. It can be used
for constructing a chain containing any subclasses of SequentialBackoffTagger.

BigramTagger and TrigramTagger, because they are subclasses of NgramTagger and
ContextTagger, can also take a model and cutoff argument, just like the UnigramTagger.
But unlike for UnigramTagger, the context keys of the model must be 2-tuples, where the
first element is a section of the history, and the second element is the current token. For

the BigramTagger, an appropriate context key looks like ((prevtag,), word), and for
TrigramTagger it looks like ((prevtagl, prevtag2), word).

Quadgram Tagger

The NgramTagger class can be used by itself to create a tagger that uses Ngrams longer
than three for its context key.

>>> from nltk.tag import NgramTagger

>>> quadtagger = NgramTagger (4, train sents)
>>> quadtagger.evaluate (test_sents)
0.058191236779624435

Part-of-Speech Tagging

It's even worse than the TrigramTagger! Here's an alternative implementation of a
QuadgramTagger that we can include in a list to backof£_tagger. This code can be
found in taggers.py:

from nltk.tag import NgramTagger

class QuadgramTagger (NgramTagger) :
def init_ (self, *args, **kwargs):
NgramTagger. init_ (self, 4, *args, **kwargs)

This is essentially how BigramTagger and TrigramTagger are implemented; simple
subclasses of NgramTagger that pass in the number of ngrams to look at in the history
argument of the context () method.

Now let's see how it does as part of a backoff chain:

>>> from taggers import QuadgramTagger
>>> quadtagger = backoff tagger (train sents, [UnigramTagger,
BigramTagger, TrigramTagger, QuadgramTagger], backoff=backoff)

>>> quadtagger.evaluate (test_sents)
0.88111374919058927

It's actually slightly worse than before when we stopped with the TrigramTagger. So the
lesson is that too much context can have a negative effect on accuracy.

The previous two recipes cover the UnigramTagger and backoff tagging.

Creating a model of likely word tags

As mentioned earlier in this chapter in the Training a unigram part-of-speech tagger recipe,
using a custom model with a UnigramTagger should only be done if you know exactly what
you are doing. In this recipe, we are going to create a model for the most common words,
most of which always have the same tag no matter what.

[

Chapter 4

How to do it...

To find the most common words, we can use nltk.probability.FregDist to count word
frequencies in the treebank corpus. Then, we can create a ConditionalFreqgDist for
tagged words, where we count the frequency of every tag for every word. Using these counts,
we can construct a model of the 200 most frequent words as keys, with the most frequent tag
for each word as a value. Here's the model creation function defined in tag util.py:

from nltk.probability import FregDist, ConditionalFregDist

def word tag model (words, tagged words, limit=200) :
fd = FregDist (words)

most freq = fd.keys () [:1imit]
cfd = ConditionalFreqgDist (tagged words)
return dict ((word, cfd[word].max()) for word in most freq)

And to use it with a UnigramTagger, we can do the following;:

>>> from tag util import word tag model

>>> from nltk.corpus import treebank

>>> model = word tag model (treebank.words (), treebank.tagged words())
>>> tagger = UnigramTagger (model=model)

>>> tagger.evaluate (test sents)

0.55972372113101665

An accuracy of almost 56% is ok, but nowhere near as good as the trained UnigramTagger.
Let's try adding it to our backoff chain:

>>> default tagger = DefaultTagger ('NN')

>>> likely tagger = UnigramTagger (model=model, backoff=default tagger)
>>> tagger = backoff tagger (train sents, [UnigramTagger, BigramTagger,
TrigramTagger], backoff=likely tagger)

>>> tagger.evaluate (test sents)

0.88163177206993304

The final accuracy is exactly the same as without the 1ikely tagger. This is because the
frequency calculations we did to create the model are almost exactly what happens when we
train a UnigramTagger.

55}

Part-of-Speech Tagging

The word tag model () function takes a list of all words, a list of all tagged words, and
the maximum number of words we want to use for our model. We give the list of words to a
FregDist, which counts the frequency of each word. Then we get the top 200 words from
the FregDist by calling £4.keys (), which returns all words ordered by highest frequency
to lowest. We give the list of tagged words to a ConditionalFregDist, which creates a
FregDist of tags for each word, with the word as the condition. Finally, we return a dict of
the top 200 words mapped to their most likely tag.

There's more...

It may seem useless to include this tagger as it does not change the accuracy. But the point of
this recipe is to demonstrate how to construct a useful model for a UnigramTagger. Custom
model construction is a way to create a manual override of trained taggers that are otherwise
black boxes. And by putting the likely tagger in the front of the chain, we can actually improve
accuracy a little bit:

>>> tagger = backoff tagger (train sents, [UnigramTagger, BigramTagger,
TrigramTagger], backoff=default tagger)

>>> likely tagger = UnigramTagger (model=model, backoff=tagger)

>>> likely tagger.evaluate(test sents)

0.88245197496222749

Putting custom model taggers at the front of the backoff chain gives you complete control
over how specific words are tagged, while letting the trained taggers handle everything else.

The Training a unigram part-of-speech tagger recipe has details on the UnigramTagger
and a simple custom model example. See the earlier recipes Combining taggers with
backoff tagging and Training and combining Ngram taggers for details on backoff tagging.

Tagging with regular expressions

You can use regular expression matching to tag words. For example, you can match
numbers with \d to assign the tag CD (which refers to a Cardinal number). Or you could
match on known word patterns, such as the suffix "ing". There's lot of flexibility here, but
be careful of over-specifying since language is naturally inexact, and there are always
exceptions to the rule.

=

Chapter 4

Getting ready

For this recipe to make sense, you should be familiar with regular expression syntax and
Python's re module.

How to do it...

The RegexpTagger expects a list of 2-tuples, where the first element in the tuple is a
regular expression, and the second element is the tag. The following patterns can be
found in tag util.py:

patterns = [
(r'*\d+s', 'cp'),
(r'.*ings$', 'VBG'), # gerunds, i.e. wondering
(r'.*ments$', 'NN'), # i.e. wonderment
(r'.*fuls', 'JJ') # i.e. wonderful

]
Once you have constructed this list of patterns, you can pass it into RegexpTagger.

>>> from tag util import patterns

>>> from nltk.tag import RegexpTagger
>>> tagger = RegexpTagger (patterns)
>>> tagger.evaluate(test_sents)
0.037470321605870924

So it's not too great with just a few patterns, but since RegexpTagger is a subclass of
SequentialBackoffTagger, it can be useful as part of a backoff chain, especially if you
are able to come up with more word patterns.

The RegexpTagger saves the patterns given at initialization, then on each call to choose
tag (), it iterates over the patterns and returns the tag for the first expression that matches
the current word using re .match (). This means that if you have two expressions that could
match, the tag of the first one will always be returned, and the second expression won't even
be tried.

There's more...

The RegexpTagger can replace the DefaultTagger if you give it a pattern such as
(r'.*', 'NN').This pattern should, of course, be last in the list of patterns, otherwise
no other patterns will match.

[55]-

Part-of-Speech Tagging

In the next recipe, we will cover the Af f ixTagger, which learns how to tag based on prefixes
and suffixes of words. And see the Default tagging recipe for details on the DefaultTagger.

Affix tagging

The AffixTagger is another ContextTagger subclass, but this time the context is either
the prefix or the suffix of a word. This means the Af fixTagger is able to learn tags based on
fixed-length substrings of the beginning or ending of a word.

How to do it...

The default arguments for an Af f ixTagger specify three-character suffixes, and that words
must be at least five characters long, If a word is less than five characters long, then None is
returned as the tag.

>>> from nltk.tag import AffixTagger
>>> tagger = AffixTagger (train sents)
>>> tagger.evaluate (test sents)
0.27528599179797109

So it does ok by itself with the default arguments. Let's try it by specifying three-character
prefixes:

>>> prefix tagger = AffixTagger (train sents, affix length=3)
>>> prefix tagger.evaluate(test sents)
0.23682279300669112

To learn on two-character suffixes, the code looks like this:

>>> suffix tagger = AffixTagger (train sents, affix length=-2)
>>> suffix tagger.evaluate(test sents)
0.31953377940859057

A positive value for affix_length means that the Af£ixTagger will learn word prefixes,
essentially word [:affix length].Ifthe affix length is negative, then suffixes are
learned using word [affix length:].

5]

Chapter 4

There's more...

You can combine multiple affix taggers in a backoff chain if you want to learn about multiple
character length affixes. Here's an example of four Aff ixTagger classes learning about two
and three-character prefixes and suffixes:

>>> pre3 tagger = AffixTagger (train sents, affix length=3)

>>> pre3 tagger.evaluate(test sents)

0.23682279300669112

>>> pre2 tagger = AffixTagger (train sents, affix length=2,

backoff=pre3 tagger)

>>> pre2 tagger.evaluate(test sents)

0.29816533563565722

>>> suf2 tagger = AffixTagger (train sents, affix length=-2,
backoff=pre2 tagger)

>>> suf2 tagger.evaluate(test sents)

0.32523203108137277

>>> suf3 tagger = AffixTagger (train sents, affix length=-3,
backoff=suf2 tagger)

>>> suf3 tagger.evaluate(test sents)

0.35924886682495144

As you can see, the accuracy goes up each time.

* The preceding ordering is not the best, nor is it the worst. | will leave it
to you to explore the possibilities and discover the best backoff chain of
"~ AffixTagger and affix length values.

Min stem length

AffixTagger also takes amin_stem length keyword argument with a default value of 2.
If the word length is less than min_stem_length plus the absolute value of affix length,
then None is returned by the context () method. Increasing min stem length forces

the AffixTagger to only learn on longer words, while decreasing min_stem_length will
allow it to learn on shorter words. Of course, for shorter words, the affix length could be
equal to or greater than the word length, and AffixTagger would essentially be acting like a
UnigramTagger.

You can manually specify prefixes and suffixes using regular expressions, as shown in the
previous recipe. The Training a unigram part-of-speech tagger and Training and combining
Ngram taggers recipes have details on NgramTagger subclasses, which are also subclasses
of ContextTagger.

o7}

Part-of-Speech Tagging

Training a Brill tagger

The BrillTagger is a transformation-based tagger. It is the first tagger that is not a subclass
of SequentialBackoffTagger. Instead, the BrillTagger uses a series of rules to
correct the results of an initial tagger. These rules are scored based on how many errors they
correct minus the number of new errors they produce.

How to do it...

Here's a function from tag util.py thattrains a BrillTagger using
FastBrillTaggerTrainer. ltrequires an initial tagger and train_ sents

from nltk.tag import brill

def train brill tagger(initial tagger, train sents, **kwargs):

sym_bounds = [(1,1), (2,2), (1,2), (1,3)]
asym bounds = [(-1,-1), (1,1)]
templates = [

brill.SymmetricProximateTokensTemplate (brill.ProximateTagsRule,
*sym bounds) ,
brill.SymmetricProximateTokensTemplate (brill.ProximateWordsRule,
*sym_bounds) ,
brill.ProximateTokensTemplate (brill.ProximateTagsRule, *asym
bounds) ,
brill.ProximateTokensTemplate (brill.ProximateWordsRule, *asym
bounds)
1
trainer = brill.FastBrillTaggerTrainer(initial tagger, templates,
deterministic=True)
return trainer.train(train sents, **kwargs)

To use it, we can create our initial tagger from a backoff chain of NgramTagger
classes, then pass that into the train brill tagger () function to geta
BrillTagger back.

DefaultTagger ('NN')
>>> initial tagger = backoff tagger(train sents, [UnigramTagger,
BigramTagger, TrigramTagger], backoff=default tagger)

>>> default tagger

>>> initial tagger.evaluate (test sents)

0.88163177206993304

>>> from tag util import train brill tagger

>>> brill tagger = train brill tagger(initial tagger, train sents)
>>> brill tagger.evaluate (test sents)

0.88327217785452194

5]

Chapter 4

So the BrillTagger has slightly increased accuracy over the initial tagger.

The FastBrillTaggerTrainer takes an initial tagger and a list of templates.
These templates must implement the BrillTemplateTI interface. The two template
implementations included with NLTK are ProximateTokensTemplate and
SymmetricProximateTokensTemplate. Each template is used to generate a list of
BrillRule subclasses. The actual class of the rules produced is passed in to the template
at initialization. The basic workflow looks like this:

FastBrillTaggerTrainer

train) 0000 Feo--------- BrillTagger
0

<<uses>> <<uses>>1
'

BrillTemplatel ------------- BrillRule
< <generates>>

The two BrillRule subclasses used are ProximateTagsRule and
ProximateWordsRule, which are both subclasses of ProximateTokensRule.
ProximateTagsRule looks at surrounding tags to do error correction, and
ProximateWordsRule looks at the surrounding words.

The bounds that we pass in to each template are lists of (start, end) tuples that get
passed in to each rule as conditions. The conditions tell the rule which tokens it can look at.
For example, if the condition is (1, 1), then the rule will only look at the next token. But if the
condition is (1, 2), then the rule will look at both the next token and the token after it. For
(-1, -1) the rule will look only at the previous token.

ProximateTokensTemplate produces ProximateTokensRule that look at each token for
its given conditions to do error correction. Positive and negative conditions must be explicitly
specified. SymmetricProximateTokensTemplate, on the other hand, produces pairs of
ProximateTokensRule, where one rule uses the given conditions, and the other rule uses
the negative of the conditions. So when we pass a list of positive (start, end) tuplestoa
SymmetricProximateTokensTemplate, it will also produce a ProximateTokensRule
that uses (-start, -end).Thisis why it's symmetric—it produces rules that look on both
sides of the token.

R Unlike with ProximateTokensTemplate, you should not give
% negative bounds to SymmetricProximateTokensTemplate,
since it will produce those itself. Only use positive number bounds
with SymmetricProximateTokensTemplate.

Part-of-Speech Tagging

There's more...

You can control the number of rules generated using the max_rules keyword argument to
the FastBrillTaggerTrainer.train () method. The default value is 200. You can also
control the quality of rules used with the min_score keyword argument. The default value is
2, though 3 can be a good choice as well.

% Increasing max_rules ormin_score will greatly increase training time,
i without necessarily increasing accuracy. Change these values with care.

Tracing
You can watch the FastBrillTaggerTrainer do its work by passing trace=1 into the
constructor. This can give you output such as:

Training Brill tagger on 3000 sentences...
Finding initial useful rules...
Found 10709 useful rules.

Selecting rules...

This means it found 10709 rules with a score of at least min_score, and then it selects the
best rules, keeping no more than max_rules.

The default is trace=0, which means the trainer will work silently without printing its status.

The Training and combining Ngram taggers recipe details the construction of the initial
tagger used previously, and the Default tagging recipe explains the default_ tagger.

Training the TnT tagger

TnT stands for Trigrams'n'Tags. It is a statistical tagger based on second order Markov
models. You can read the original paper that lead to the implementation at http://acl.
ldc.upenn.edu/A/A00/A00-1031.pdf

How to do it...

The TnT tagger has a slightly different API than previous taggers we have encountered. You
must explicitly call the train () method after you have created it. Here's a basic example:

>>> from nltk.tag import tnt
>>> tnt tagger = tnt.TnT()

100

Chapter 4

>>> tnt tagger.train(train sents)
>>> tnt tagger.evaluate(test sents)
0.87580401467731495

It's quite a good tagger all by itself, only slightly less accurate than the BrillTagger from
the previous recipe. But if you do not call train () before evaluate (), you will get an
accuracy of 0%.

TnT maintains a number of internal FregDist and ConditionalFregDist instances
based on the training data. These frequency distributions count unigrams, bigrams, and
trigrams. Then, during tagging, the frequencies are used to calculate the probabilities of
possible tags for each word. So instead of constructing a backoff chain of NgramTagger
subclasses, the TnT tagger uses all the ngram models together to choose the best tag. It also
tries to guess the tags for the whole sentence at once, by choosing the most likely model for
the entire sentence, based on the probabilities of each possible tag.

. Training is fairly quick, but tagging is significantly slower than
% the other taggers we have covered. This is due to all the floating
i point math that must be done to calculate the tag probabilities

of each word.

There's more...

TnT accepts a few optional keyword arguments. You can pass in a tagger for unknown
words as unk. If this tagger is already trained, then you must also pass in Trained=True.
Otherwise it will call unk.train (data) with the same data you pass in to the train ()
method. Since none of the previous taggers have a public train () method, we recommend
always passing Trained=True if you also pass an unk tagger. Here's an example using a
DefaultTagger, which does not require any training:

>>> from nltk.tag import DefaultTagger

>>> unk = DefaultTagger ('NN')

>>> tnt_ tagger = tnt.TnT (unk=unk, Trained=True)
>>> tnt tagger.train(train_ sents)

>>> tnt tagger.evaluate(test sents)
0.89272609540254699

Part-of-Speech Tagging

So we got an almost 2% increase in accuracy! You must use a tagger that can tag a single
word without having seen that word before. This is because the unknown tagger's tag ()
method is only called with a single word sentence. Other good candidates for an unknown
tagger are RegexpTagger or AffixTagger. Passing in a UnigramTagger that's been
trained on the same data is pretty much useless, as it will have seen the exact same words,
and therefore have the same unknown word blind spots.

Controlling the beam search

Another parameter you can modify for TnT is N, which controls the number of possible
solutions the tagger maintains while trying to guess the tags for a sentence. N defaults to
1,000. Increasing it will greatly increase the amount of memory used during tagging, without
necessarily increasing accuracy. Decreasing N will decrease memory usage, but could also
decrease accuracy. Here's what happens when you set N=100:

>>> tnt_tagger = tnt.TnT(N=100)

>>> tnt_tagger.train(train_sents)
>>> tnt_tagger.evaluate(test_sents)
0.87580401467731495

So the accuracy is exactly the same, but we use significantly less memory to achieve it.
However, don't assume that accuracy will not change if you decrease N; experiment with
your own data to be sure.

Capitalization significance

You can pass C=True if you want capitalization of words to be significant. The default is
C=False, which means all words are lowercased. The documentation on C says that treating
capitalization as significant probably will not increase accuracy. In my own testing, there was a
very slight (< 0.01%) increase in accuracy with C=True, probably because case-sensitivity can
help identify proper nouns.

We covered the DefaultTagger in the Default tagging recipe, backoff tagging in

the Combining taggers with backoff tagging recipe, NgramTagger subclasses in the
Training a unigram part-of-speech tagger and Training combining Ngram taggers recipes,
RegexpTagger in the Tagging with regular expressions recipe, and the AffixTagger
in the Affix tagging recipe.

102

Chapter 4

Using WordNet for tagging

If you remember from the Looking up synsets for a word in Wordnet recipe in

Chapter 1, Tokenizing Text and WordNet Basics, WordNet synsets specify a part-of-speech
tag. It's a very restricted set of possible tags, and many words have multiple synsets with
different part-of-speech tags, but this information can be useful for tagging unknown words.
WordNet is essentially a giant dictionary, and it's likely to contain many words that are not in
your training data.

Getting ready

First, we need to decide how to map WordNet part-of-speech tags to the Penn Treebank part-
of-speech tags we have been using. The following is a table mapping one to the other. See the
Looking up synsets for a word in Wordnet recipe in Chapter 1, Tokenizing Text and WordNet
Basics for more details. The "s", which was not shown before, is just another kind of adjective,
at least for tagging purposes.

WordNet Tag Treebank Tag
n NN

a JJ

S JJ

r RB

v VB

How to do it...

Now we can create a class that will look up words in WordNet, then chose the most common tag
from the synsets it finds. The WordNet Tagger defined next can be found in taggers.py:

from nltk.tag import SequentialBackoffTagger
from nltk.corpus import wordnet

from nltk.probability import FregDist

class WordNetTagger (SequentialBackoffTagger) :

>>> wt = WordNetTagger ()

>>> wt.tag(['food', 'is', ‘'great'])

[('food', 'NN'), ('is', 'VB'), ('great',K 'JJ')]

T

def _ init_ (self, *args, **kwargs):
SequentialBackoffTagger. init (self, *args, **kwargs)

self.wordnet tag map = {

Part-of-Speech Tagging

'm': 'NN',
's': 'adr,
rat: 'agr,
'r': 'RB',
'v': 'VB'

}

def choose tag(self, tokens, index, history):
word = tokens [index]
fd = FregDist ()
for synset in wordnet.synsets (word) :
fd.inc (synset.pos)
return self.wordnet tag map.get (fd.max())

The WordNetTagger simply counts the number of each part-of-speech tag found in the
synsets for a word. The most common tag is then mapped to a treebank tag using an
internal mapping. Here's some sample usage code:

>>> from taggers import WordNetTagger
>>> wn_tagger = WordNetTagger ()

>>> wn_tagger.evaluate (train sents)
0.18451574615215904

So it's not too accurate, but that's to be expected. We only have enough information to
produce four different kinds of tags, while there are 36 possible tags in treebank. And
many words can have different part-of-speech tags depending on their context. But if we put
the WordNetTagger at the end of an NgramTagger backoff chain, then we can improve
accuracy over the DefaultTagger.

>>> from tag util import backoff tagger

>>> from nltk.tag import UnigramTagger, BigramTagger, TrigramTagger
>>> tagger = backoff tagger(train sents, [UnigramTagger, BigramTagger,
TrigramTagger], backoff=wn tagger)

>>> tagger.evaluate (test sents)

0.88564644938484782

See also

The Looking up synsets for a word in Wordnet recipe in Chapter 1, Tokenizing Text and
WordNet Basics details how to use the wordnet corpus and what kinds of part-of-speech
tags it knows about. And in the Combining taggers with backoff tagging and Training and
combining Ngram taggers recipes, we went over backoff tagging with ngram taggers.

Chapter 4

Tagging proper names

Using the included names corpus, we can create a simple tagger for tagging names as
proper nouns.

How to do it...

The NamesTagger is a subclass of SequentialBackoffTagger as it's probably only usefu
near the end of a backoff chain. At initialization, we create a set of all names in the names
corpus, lowercasing each name to make lookup easier. Then we implement the choose

tag () method, which simply checks if the current word is in the names_set. If it is, we return
the tag NNP (which is the tag for proper nouns). If it isn't, we return None so the next tagger in
the chain can tag the word. The following code can be found in taggers.py:

from nltk.tag import SequentialBackoffTagger

from nltk.corpus import names

class NamesTagger (SequentialBackoffTagger) :

def _ init_ (self, *args, **kwargs):
SequentialBackoffTagger. init (self, *args, **kwargs)
self.name_set = set([n.lower() for n in names.words()])

def choose tag(self, tokens, index, history):
word = tokens [index]

if word.lower() in self.name set:
return 'NNP'
else:

return None

NamesTagger should be pretty self-explanatory. Its usage is also simple:

>>> from taggers import NamesTagger
>>> nt = NamesTagger ()

>>> nt.tag(['Jacob'])

[("Jacob', 'NNP')]

It's probably best to use the NamesTagger right before a DefaultTagger, so it's at the end
of a backoff chain. But it could probably go anywhere in the chain since it's unlikely to mistag
a word.

Part-of-Speech Tagging

The Combining taggers with backoff tagging recipe goes over the details of using
SequentialBackoffTagger subclasses.

Classifier based tagging

The ClassifierBasedPOSTagger uses classification to do part-of-speech tagging.
Features are extracted from words, then passed to an internal classifier. The classifier
classifies the features and returns a label; in this case, a part-of-speech tag. Classification
will be covered in detail in Chapter 7, Text Classification.

ClassifierBasedPOSTagger is a subclass of ClassifierBasedTagger that
implements a feature detector that combines many of the techniques of previous taggers into
a single feature set. The feature detector finds multiple length suffixes, does some regular
expression matching, and looks at the unigram, bigram, and trigram history to produce a fairly
complete set of features for each word. The feature sets it produces are used to train the
internal classifier, and are used for classifying words into part-of-speech tags.

How to do it...

Basic usage of the ClassifierBasedPOSTagger is much like any other
SequentialBackoffTaggger. You pass in training sentences, it trains an internal classifier,
and you get a very accurate tagger.

>>> from nltk.tag.sequential import ClassifierBasedPOSTagger
>>> tagger = ClassifierBasedPOSTagger (train=train sents)

>>> tagger.evaluate (test sents)

0.93097345132743359

Notice a slight modification to initialization—train_ sents must be passed
s in as the train keyword argument.

ClassifierBasedPOSTagger inherits from ClassifierBasedTagger and only
implements a feature_detector () method. All the training and tagging is done in
ClassifierBasedTagger. It defaults to training a NaiveBayesClassifier with the
given training data. Once this classifier is trained, it is used to classify word features produced
by the feature detector () method.

106

Chapter 4

. TheClassifierBasedTagger is often the most accurate tagger, but it's
also one of the slowest taggers. If speed is an issue, you should stick with a
e BrillTagger based on a backoff chain of NgramTagger subclasses and
other simple taggers.

The ClassifierBasedTagger also inherits from FeatursetTaggerI (which is just an
empty class), creating an inheritance tree that looks like this:

Taggerl
tag()
evaluate()
SequentialBackoffTagger
FeaturesetTaggerl
choose_tag()

ClassifierBasedTagger

feature_detector()

|

| ClassifierBasedPOSTagger

You can use a different classifier instead of NaiveBayesClassifier by passing in your own
classifier builder function. For example, to use a MaxentClassifier, you would do
the following;:

>>> from nltk.classify import MaxentClassifier

>>> me_tagger = ClassifierBasedPOSTagger (train=train sents,
classifier builder=MaxentClassifier.train)

>>> me_tagger.evaluate (test sents)
0.93093028275415501

The MaxentClassifier takes even longer to train than
NaiveBayesClassifier. If you have scipy and numpy installed, training
’ will be faster than normal, but still slower than NaiveBayesClassifier.

Part-of-Speech Tagging

Custom feature detector
If you want to do your own feature detection, there are two ways to do it.

1. Subclass ClassifierBasedTagger and implementa feature detector ()
method.

2. Pass a method as the feature detector keyword argument into
ClassifierBasedTagger at initialization.

Either way, you need a feature detection method that can take the same arguments as
choose_tag(): tokens, index, and history. But instead of returning a tag, you return a
dict of key-value features, where the key is the feature name, and the value is the feature
value. A very simple example would be a unigram feature detector (found in tag _util.py).

def unigram feature detector(tokens, index, history):
return {'word': tokens [index] }

Then using the second method, you would pass the following into ClassifierBasedTagger
as feature_ detector:

>>> from nltk.tag.sequential import ClassifierBasedTagger
>>> from tag util import unigram feature detector

>>> tagger = ClassifierBasedTagger (train=train sents, feature
detector=unigram feature detector)

>>> tagger.evaluate (test sents)
0.87338657457371038

Cutoff probability

Because a classifier will always return the best result it can, passing in a backoff tagger

is useless unless you also pass in a cutoff_prob to specify the probability threshold for
classification. Then, if the probability of the chosen tag is less than cutoff_prob, the
backoff tagger will be used. Here's an example using the DefaultTagger as the backoff,
and setting cutoff probto 0.3:

>>> default = DefaultTagger ('NN')

>>> tagger = ClassifierBasedPOSTagger (train=train sents,
backoff=default, cutoff prob=0.3)

>>> tagger.evaluate (test sents)
0.93110295704726964

So we get a slight increase in accuracy if the ClassifierBasedPOSTagger uses the
DefaultTagger whenever its tag probability is less than 30%.

108

Chapter 4

Pre-trained classifier

If you want to use a classifier that's already been trained, then you can pass that in to
ClassifierBasedTagger Or ClassifierBasedPOSTagger as classifier. Inthis
case, the classifier builder argumentis ignored and no training takes place. However,
you must ensure that the classifier has been trained on and can classify feature sets
produced by whatever feature detector () method you use.

Chapter 7, Text Classification will cover classification in depth.

Extracting Chunks

In this chapter, we will cover:

» Chunking and chinking with regular expressions

» Merging and splitting chunks with regular expressions

» Expanding and removing chunks with regular expressions
» Partial parsing with regular expressions

» Training a tagger-based chunker

» Classification-based chunking

» Extracting named entities

» Extracting proper noun chunks

» Extracting location chunks

» Training a named entity chunker

Introduction

Chunk extraction or partial parsing is the process of extracting short phrases from a
part-of-speech tagged sentence. This is different than full parsing, in that we are interested
in standalone chunks or phrases instead of full parse trees. The idea is that meaningful
phrases can be extracted from a sentence by simply looking for particular patterns of
part-of-speech tags.

As in Chapter 4, Part-of-Speech Tagging, we will be using the Penn Treebank corpus for basic
training and testing chunk extraction. We will also be using the CoNLL 2000 corpus as it has
a simpler and more flexible format that supports multiple chunk types (refer to the Creating a
chunked phrase corpus recipe in Chapter 3, Creating Custom Corpora for more details on the
conll2000 corpus and IOB tags).

Extracting Chunks

Chunking and chinking with regular

expressions

Using modified regular expressions, we can define chunk patterns. These are patterns of
part-of-speech tags that define what kinds of words make up a chunk. We can also define
patterns for what kinds of words should not be in a chunk. These unchunked words are
known as chinks.

A ChunkRule specifies what to include in a chunk, while a ChinkRule specifies what to
exclude from a chunk. In other words, chunking creates chunks, while chinking breaks up
those chunks.

Getting ready

We first need to know how to define chunk patterns. These are modified regular expressions
designed to match sequences of part-of-speech tags. An individual tag is specified by
surrounding angle brackets, such as <NN> to match a noun tag. Multiple tags can then be
combined, as in <DT><NN> to match a determiner followed by a noun. Regular expression
syntax can be used within the angle brackets to match individual tag patterns, so you can
do <NN. *> to match all nouns including NN and NNS. You can also use regular expression
syntax outside of the angle brackets to match patterns of tags. <DT>?<NN. * >+ will match
an optional determiner followed by one or more nouns. The chunk patterns are converted
internally to regular expressions using the tag_pattern2re pattern() function:

>>> from nltk.chunk import tag pattern2re pattern
>>> tag pattern2re pattern('<DT>?<NN.*>+"')
" (<(DT) >) ? (< (NN [\\{\\}<>1#%)>) +!

You don't have to use this function to do chunking, but it might be useful or interesting to see
how your chunk patterns convert to regular expressions.

How to do it...

The pattern for specifying a chunk is to use surrounding curly braces, such as {<DT><NN>}.
To specify a chink, you flip the braces, as in } <VB>{. These rules can be combined into a
grammar for a particular phrase type. Here's a grammar for noun-phrases that combines
both a chunk and a chink pattern, along with the result of parsing the sentence "The book
has many chapters":

>>> from nltk.chunk import RegexpParser
>>> chunker = RegexpParser (r'"''
. NP:
{<DT><NN. *><.*>*<NN. *>}
}<VB.*>{

Chapter 5

!l!)
>>> chunker.parse([('the', 'DT'), ('book', 'NN'),

('has', 'VBZ'), ('many', 'JJd'), ('chapters', 'NNS')])
Tree('S', [Tree('NP', [('the', 'DT'), ('book', 'NN')]),
('has', 'VBZ'), Tree('NP', [('many', 'JJ'), ('chapters',
'NNS')1)1)

The grammar tells the RegexpParser that there are two rules for parsing NP chunks. The
first chunk pattern says that a chunk starts with a determiner followed by any kind of noun.
Then any number of other words is allowed, until a final noun is found. The second pattern
says that verbs should be chinked, thus separating any large chunks that contain a verb.
The result is a tree with two noun-phrase chunks: "the book" and "many chapters".

Tagged sentences are always parsed into a Tree (found in the
nltk.tree module). The top node of the Tree is'S', which

stands for sentence. Any chunks found will be subtrees whose
o nodes will refer to the chunk type. In this case, the chunk type
is 'NP' for noun-phrase. Trees can be drawn calling the draw ()
method, asin t .draw ().

Here's what happens, step-by-step:

1. The sentence is converted into a flat Tree, as shown in the following figure:

]

| e
the DT book NN has VBZ many JJ chapters NNS

The Tree is used to create a ChunkString.

RegexpParser parses the grammar to create a NP RegexpChunkParser with the
given rules.

4. A chunkRule is created and applied to the ChunkString, which matches the entire
sentence into a chunk, as shown in the following figure:

]

I
CHUNK

e
the DT book NN has VBZ many JJ chapters NNS

Extracting Chunks

5. AcChinkRule is created and applied to the same ChunkString, which splits
the big chunk into two smaller chunks with a verb between them, as shown in
the following figure:

S

B e
CHUNK has VBZ CHUNK

/\‘\'\ A
the DT book NN many JJ chapters NNS

6. The ChunkString is converted back to a Tree, now with two NP chunk subtrees, as
shown in the following figure:

]

]
NP has VBZ NP

/\\ A
the DT book NN many JJ chapters NNS

You can do this yourself using the classes in nltk.chunk.regexp. ChunkRule and
ChinkRule are both subclasses of RegexpChunkRule and require two arguments: the
pattern, and a description of the rule. ChunkString is an object that starts with a flat tree,
which is then modified by each rule when it is passed in to the rule's apply () method. A
ChunkString is converted back to a Tree with the to_chunkstruct () method. Here's
the code to demonstrate it:

>>> from nltk.chunk.regexp import ChunkString, ChunkRule, ChinkRule
>>> from nltk.tree import Tree

>>> t = Tree('S', [('the', 'DT'), ('book', 'NN'), ('has', 'VBZ'),
('many', 'JJd'), ('chapters', 'NNS')])

>>> cs = ChunkString(t)

>>> CS

<ChunkString: '<DT><NN><VBZ><JJ><NNS>'>

>>> ur = ChunkRule ('<DT><NN.*><.*>*<NN.*>',6 'chunk determiners and
nouns')

>>> ur.apply(cs)

>>> Cs
<ChunkString: '{<DT><NN><VBZ><JJ><NNS>}"'>
>>> ir = ChinkRule('<VB.*>', 'chink verbs')

>>> ir.apply(cs)

>>> C8

<ChunkString: '{<DT><NN>}<VBZ>{<JJ><NNS>}'>

>>> cs.to_ chunkstruct ()

Tree('S', [Tree('CHUNK', [('the', 'DT'), ('book', 'NN')]), ('has',
'VBZ'), Tree('CHUNK', [('many', 'JJ'), ('chapters', 'NNS')1)])

The preceding tree diagrams can be drawn at each step by calling cs.to_chunkstruct () .
draw ().

114

Chapter 5

There's more...

You will notice that the subtrees from the ChunkString are tagged as ' CHUNK' and not
'NP'. That's because the previous rules are phrase agnostic; they create chunks without
needing to know what kind of chunks they are.

Internally, the RegexpParser creates a RegexpChunkParser for each chunk phrase type.
So if you are only chunking NP phrases, there will only be one RegexpChunkParser. The
RegexpChunkParser gets all the rules for the specific chunk type, and handles applying the
rules in order and converting the ' CHUNK' trees to the specific chunk type, such as 'NP'.

Here's some code to illustrate the usage of RegexpChunkParser. We pass the previous
two rules into the RegexpChunkParser, and then parse the same sentence tree we
created before. The resulting tree is just like what we got from applying both rules in
order, except ' CHUNK' has been replaced with 'NP' in the two subtrees. This is because
RegexpChunkParser defaults to chunk node='NP'.

>>> from nltk.chunk import RegexpChunkParser

>>> chunker = RegexpChunkParser ([ur, ir])

>>> chunker.parse (t)

Tree('S', [Tree('NP', [('the', 'DT'), ('book', 'NN')]), ('has',
'VBZ'), Tree('NP', [('many', 'JdJ'), ('chapters', 'NNS')])])

Different chunk types

If you wanted to parse a different chunk type, then you could pass that in as chunk node
to RegexpChunkParser. Here's the same code we have just seen, but instead of 'NP'
subtrees, we will call them 'cp' for custom phrase.

>>> from nltk.chunk import RegexpChunkParser
>>> chunker = RegexpChunkParser ([ur, ir], chunk node='CP')
>>> chunker.parse (t)

Tree('S', [Tree('CP', [('the', 'DT'), ('book', 'NN')]),
(‘has', 'VBZ'), Tree('CP', [('many', 'JJ'), ('chapters',
'NNS')1)1)

RegexpParser does this internally when you specify multiple phrase types. This will be
covered in Partial parsing with regular expressions.

Alternative patterns

The same parsing results can be obtained by using two chunk patterns in the grammar, and
discarding the chink pattern:

>>> chunker = RegexpParser (r'''
. NP:
{<DT><NN.*>}
{<JT><NN.*>}

Extracting Chunks

!l!)
>>> chunker.parse (t)
Tree('S', [Tree('NP', [('the', 'DT'), ('book', 'NN')]), ('has',
'VBZ'), Tree('NP', [('many',6 'JJ'), ('chapters', 'NNS')])])

In fact, you could reduce the two chunk patterns into a single pattern.

>>> chunker = RegexpParser (r'''
. NP:
{ (<DT>|<JJ>) <NN. *>}
)
>>> chunker.parse (t)
Tree('S', [Tree('NP', [('the', 'DT'), ('book', 'NN')]), ('has',
'VBZ'), Tree('NP', [('many', 'JJ'), ('chapters', 'NNS')])])

How you create and combine patterns is really up to you. Pattern creation is a process of trial
and error, and entirely depends on what your data looks like and which patterns are easiest
to express.

Chunk rule with context

You can also create chunk rules with a surrounding tag context. For example, if your pattern
is <DT>{ <NN> }, which will be parsed into a ChunkRuleWithContext. Any time there's a
tag on either side of the curly braces, you will get a ChunkRuleWithContext instead of a
ChunkRule. This can allow you to be more specific about when to parse particular kinds
of chunks.

Here's an example of using ChunkWithContext directly. It takes four arguments: the left
context, the pattern to chunk, the right context, and a description:

>>> from nltk.chunk.regexp import ChunkRuleWithContext

>>> ctx = ChunkRuleWithContext ('<DT>', '<NN.*>', '<.*>',6 'chunk nouns
only after determiners')

>>> cs = ChunkString(t)

>>> CS

<ChunkString: '<DT><NN><VBZ><JJ><NNS>'>

>>> ctx.apply(cs)

>>> CS

<ChunkString: '<DT>{<NN>}<VBZ><JJ><NNS>"'>

>>> cs.to chunkstruct ()

Tree('S', [('the', 'DT'), Tree('CHUNK', [('book', 'NN')]), ('has',
'VBZ'), ('many', 'dJ'), ('chapters', 'NNS')])

Chapter 5

This example only chunks nouns that follow a determiner, therefore ignoring the noun that
follows an adjective. Here's how it would look using the RegexpParser:

>>> chunker = RegexpParser (r'''
. NP:
<DT>{<NN.*>}
r)
>>> chunker.parse (t)
Tree('S', [('the', 'DT'), Tree('NP', [('book', 'NN')]), ('has',
'VBZ'), ('many', 'dJd'), ('chapters', 'NNS')])

In the next recipe, we will cover merging and splitting chunks.

Merging and splitting chunks with regular

expressions

In this recipe, we will cover two more rules for chunking. A MergeRule can merge two chunks
together based on the end of the first chunk and the beginning of the second chunk. A
SplitRule will split a chunk into two based on the specified split pattern.

How to do it...

A SplitRule is specified with two opposing curly braces surrounded by a pattern on either
side. To split a chunk after a noun, you would do <NN. *>} { <. *>. A MergeRule is specified
by flipping the curly braces, and will join chunks where the end of the first chunk matches
the left pattern, and the beginning of the next chunk matches the right pattern. To merge two
chunks where the first ends with a noun and the second begins with a noun, you would use
<NN.*>{}<NN. *>.

. The order of rules is very important and re-ordering can affect the
% results. The RegexpParser applies the rules one at a time from
s top to bottom, so each rule will be applied to the ChunkString

resulting from the previous rule.

Extracting Chunks

Here's an example of splitting and merging, starting with the sentence tree as shown next:

]

the DT sushiNN rollNN was VBD filled VBN with IN the DT fish NN

1. The whole sentence is chunked, as shown in the following diagram:

S

|
CHUNK

the DT sushiNN roll NN was VBD filled VBN with IN the DT fish NN

2. The chunk is split into multiple chunks after every noun, as shown in the
following tree:

T
CHUNK CHUNK CHUNK

T T | T
the DT sushiNN rollNN wasVBD filed VBN with IN the DT fish NN

3. Each chunk with a determiner is split into separate chunks, creating four chunks
where there were three:

e T
CHUNK CHUNK CHUNK CHUNK

T T | e T T
the DT sushiNN roll NN was VBD filled VBN with IN the DT fish NN

4. Chunks ending with a noun are merged with the next chunk if it begins with a noun,
reducing the four chunks back down to three, as shown in the following diagram:

S
- N T
CHUNK CHUNK CHUNK

the DT sushi NN roll NN was VBD filled VBN with IN the DT fish NN

Using the RegexpParser, the code looks like this:

>>> chunker = RegexpParser (r'''
. NP:
{<DT><.*>*<NN.*>}
<NN.*>}{<.*>

Chapter 5

<.*>}{<DT>
<NN.*>{}<NN.*>
)
>>> sent = [('the', 'DT'), ('sushi', 'NN'), ('roll', 'NN'),
('was', 'VBD'), ('filled', 'VBN'), ('with', 'IN'), ('the',
'DT'), ('fish', 'NN')]
>>> chunker.parse (sent)

Tree('S', [Tree('NP', [('the', 'DT'), ('sushi', 'NN'),
('roll', 'NN')]), Tree('NP', [('was', 'VBD'), ('filled',
'VBN'), ('with', 'IN')]), Tree('NP', [('the', 'DT'),

('fish', 'NN')1)1)

And the final tree of NP chunks is shown in the following diagram:

S

. N T
NP NP NP

the DT sushiNN rollNN was VBD filled VBN withIN the DT fish NN

The MergeRule and SplitRule classes take three arguments: the left pattern, right
pattern, and a description. The RegexpParser takes care of splitting the original patterns on
the curly braces to get the left and right sides, but you can also create these manually. Here's
a step-by-step walkthrough of how the original sentence is modified by applying each rule:

>>> from nltk.chunk.regexp import MergeRule, SplitRule

>>> c¢s = ChunkString(Tree('S', sent))

>>> CS

<ChunkString: '<DT><NN><NN><VBD><VBN><IN><DT><NN>'>

>>> ur = ChunkRule('<DT><.*>*<NN.*>', 'chunk determiner to noun')

>>> ur.apply(cs)

>>> CS8
<ChunkString: '{<DT><NN><NN><VBD><VBN><IN><DT><NN>}'>
>>> srl = SplitRule('<NN.*>', '<.*>' 6 'gplit after noun')

>>> srl.apply(cs)

>>> C8
<ChunkString: '{<DT><NN>}{<NN>}{<VBD><VBN><IN><DT><NN>}"'>
>>> sr2 = SplitRule('<.*>', '<DT>', 'split before determiner')

>>> sr2.apply(cs)

>>> C8
<ChunkString: '{<DT><NN>}{<NN>}{<VBD><VBN><IN>}{<DT><NN>}"'>
>>> mr = MergeRule ('<NN.*>', '<NN.*>', 'merge nouns')

>>> mr.apply(cs)

Extracting Chunks

>>> CS8
<ChunkString: '{<DT><NN><NN>}{<VBD><VBN><IN>}{<DT><NN>}"'>
>>> cs.to chunkstruct ()

Tree('S', [Tree('CHUNK', [('the', 'DT'), ('sushi', 'NN'),
('roll', 'NN')]), Tree('CHUNK', [('was', 'VBD'),
('filled', 'VBN'), ('with', 'IN')]), Tree('CHUNK',
[("the', 'DT'), ('fish', 'NN')1)1)

The parsing of the rules and splitting of left and right patterns is done in the static parse ()
method of the RegexpChunkRule superclass. This is called by the RegexpParser to get the
list of rules to pass in to the RegexpChunkParser. Here are some examples of parsing the
patterns used before:

>>> from nltk.chunk.regexp import RegexpChunkRule
>>> RegexpChunkRule.parse (' {<DT><.*>*<NN.*>}"')
<ChunkRule: '<DT><.*>*<NN.*>'>

>>> RegexpChunkRule.parse('<.*>}{<DT>")

<SplitRule: '<.*>', '<DT>'>
>>> RegexpChunkRule.parse ('<NN.*>{}<NN.*>"')
<MergeRule: '<NN.*>', '<NN.*>'>

Rule descriptions

Descriptions for each rule can be specified with a comment string after the rule (a comment
string must start with #). If no comment string is found, the rule's description will be empty.
Here's an example:

>>> RegexpChunkRule.parse (' {<DT><.*>*<NN.*>} # chunk everything').
descr ()

'chunk everything'
>>> RegexpChunkRule.parse (' {<DT><.*>*<NN.*>}"') .descr ()

Comment string descriptions can also be used within grammar strings that are passed
t0 RegexpParser.

The previous recipe goes over how to use ChunkRule and how rules are passed in
to RegexpChunkParser.

120

Chapter 5

Expanding and removing chunks with

regular expressions

There are three RegexpChunkRule subclasses that are not supported by
RegexpChunkRule.parse () and therefore must be created manually if you want to use
them. These rules are:

1. ExpandLeftRule: Adds unchunked (chink) words to the left of a chunk
to the chunk.

2. ExpandRightRule: Adds unchunked (chink) words to the right of a chunk
to the chunk.

3. UnChunkRule: Unchunk any matching chunk.

How to do it...

ExpandLeftRule and ExpandRightRule both take two patterns along with a description
as arguments. For ExpandLeftRule, the first pattern is the chink we want to add to the
beginning of the chunk, while the right pattern will match the beginning of the chunk we want
to expand. With ExpandRightRule, the left pattern should match the end of the chunk we
want to expand, and the right pattern matches the chink we want to add to the end of the
chunk. The idea is similar to the MergeRule, but in this case we are merging chink words
instead of other chunks.

UnChunkRule is the opposite of ChunkRule. Any chunk that exactly matches the
UnChunkRule pattern will be unchunked, and become a chink. Here's some code
demonstrating usage with the RegexpChunkParser:

>>> from nltk.chunk.regexp import ChunkRule, ExpandLeftRule,
ExpandRightRule, UnChunkRule

>>> from nltk.chunk import RegexpChunkParser

>>> ur = ChunkRule ('<NN>', 'single noun')

>>> el = ExpandLeftRule('<DT>', '<NN>',6 'get left determiner')

>>> er = ExpandRightRule('<NN>', '<NNS>', 'get right plural noun')
>>> un = UnChunkRule ('<DT><NN.*>*', 'unchunk everything')

>>> chunker = RegexpChunkParser ([ur, el, er, unl])

>>> gent = [('the', 'DT'), ('sushi', 'NN'), ('rolls', 'NNS')]

>>> chunker.parse (sent)

Tree('S', [('the', 'DT'), ('sushi', 'NN'), ('rolls', 'NNS')])

You will notice the end result is a flat sentence, which is exactly what we started with. That's
because the final UnChunkRule undid the chunk created by the previous rules. Read on to
see the step-by-step procedure of what happened.

Extracting Chunks

The preceding rules were applied in the following order, starting with the sentence tree

shown below:

]

the DT sushi NN

rolls NNS

1. Make single nouns into a chunk, as shown in the following diagram:

]

the DT CHUNK

|
sushi NN

rolls NNS

2. Expand left determiners into chunks that begin with a noun, as shown in the

following diagram:

CHUNK

//\-\
the DT sushi NN

rolls NNS

3. Expand right plural nouns into chunks that end with a noun, chunking the whole
sentence as shown in the following diagram:

S

|
CHUNK

the DT sushi NN

rolls NNS

4. Unchunk every chunk that is a determiner + noun + plural noun, resulting in the
original sentence tree, as shown in the following diagram:

122

S

the DT sushi NN

rolls NNS

Chapter 5

Here's the code showing each step:

>>> from nltk.chunk.regexp import ChunkString
>>> from nltk.tree import Tree

>>> c¢s = ChunkString(Tree('S', sent))
>>> CsS

<ChunkString: '<DT><NN><NNS>'>

>>> ur.apply(cs)

>>> CsS

<ChunkString: '<DT>{<NN>}<NNS>'>

>>> el.apply(cs)

>>> CsS

<ChunkString: '{<DT><NN>}<NNS>'>

>>> er.apply(cs)

>>> CsS

<ChunkString: '{<DT><NN><NNS>}'>

>>> un.apply(cs)

>>> CsS

<ChunkString: '<DT><NN><NNS>'>

There's more...

In practice, you can probably get away with only using the previous four rules: ChunkRule,
ChinkRule, MergeRule, and SplitRule. But if you do need very fine-grained control
over chunk parsing and removing, now you know how to do it with the expansion and
unchunk rules.

See also

The previous two recipes covered the more common chunk rules that are supported by
RegexpChunkRule.parse () and RegexpParser

Partial parsing with regular expressions

So far, we have only been parsing noun-phrases. But RegexpParser supports grammar with
multiple phrase types, such as verb-phrases and prepositional-phrases. We can put the rules
we have learned to use and define a grammar that can be evaluated against the con112000
corpus, which has NP, VP, and PP phrases.

Extracting Chunks

How to do it...

We will define a grammar to parse three phrase types. For noun-phrases, we have a
ChunkRule that looks for an optional determiner followed by one or more nouns. We

then have a MergeRule for adding an adjective to the front of a noun chunk. For
prepositional-phrases, we simply chunk any IN word, such as "in" or "on". For verb-phrases,
we chunk an optional modal word (such as "should") followed by a verb.

R Each grammar rule is followed by a # comment. This comment is passed
% in to each rule as the description. Comments are optional, but they
s can be helpful notes for understanding what the rule does, and will be
included in trace output.

>>> chunker = RegexpParser (r'''
. NP:
{<DT>?<NN.*>+} # chunk optional determiner with nouns
<JJ>{}<NN.*> # merge adjective with noun chunk
PP:
{<IN>} # chunk preposition
. VP:
{<MD>?<VB.*>} # chunk optional modal with verb
XA
>>> from nltk.corpus import conll2000
>>> score = chunker.evaluate(conll2000.chunked sents())
>>> score.accuracy ()
0.61485735457576884

When we call evaluate () on the chunker, we give it a list of chunked sentences and
get back a chunkScore object, which can give us the accuracy of the chunker, along
with a number of other metrics.

The RegexpParser parses the grammar string into sets of rules, one set of rules for each
phrase type. These rules are used to create a RegexpChunkParser. The rules are parsed
using RegexpChunkRule.parse (), which returns one of the five subclasses: ChunkRule,
ChinkRule, MergeRule, SplitRule, or ChunkRuleWithContext

Now that the grammar has been translated into sets of rules, these rules are used to parse

a tagged sentence into a Tree structure. RegexpParser inherits from ChunkParserlI,
which provides a parse () method to parse the tagged words. Whenever a part of the tagged
tokens match a chunk rule, a subtree is constructed so that the tagged tokens become the
leaves of a Tree whose node string is the chunk tag. ChunkParserI also provides the
evaluate () method, which compares the given chunked sentences to the output of the
parse () method to construct and return a ChunkScore object.

124

Chapter 5

There's more...

You can also evaluate this chunker on the treebank chunk corpus.

>>> from nltk.corpus import treebank chunk

>>> treebank score = chunker.evaluate (treebank chunk.chunked sents())
>>> treebank score.accuracy ()

0.49033970276008493

The treebank_ chunk corpus is a special version of the treebank corpus that provides
a chunked_sents () method. The regular treebank corpus cannot provide that method
due to its file format.

ChunkScore metrics

ChunkScore provides a few other metrics besides accuracy. Of the chunks the chunker
was able to guess, precision tells you how many were correct. Recall tells you how well the
chunker did at finding correct chunks, compared to how many total chunks there were.

>>> score.precision ()
0.60201948127375005
>>> score.recall ()
0.60607250250584699

You can also get lists of chunks that were missed by the chunker, chunks that were
incorrectly found, correct chunks, and guessed chunks. These can be useful to figure
out how to improve your chunk grammar.

>>> len(score.missed())
47161

>>> len(score.incorrect())
47967

>>> len(score.correct())
119720

>>> len(score.guessed())
120526

As you can see by the number of incorrect chunks, and by comparing guessed () and
correct (), our chunker guessed that there were more chunks that actually existed.
And it also missed a good number of correct chunks.

Looping and tracing

If you want to apply the chunk rules in your grammar more than once, you pass loop=2 into
RegexpParser at initialization. The default is 1oop=1.

Extracting Chunks

To watch an internal trace of the chunking process, pass trace=1 into RegexpParser. To
get even more output, pass in trace=2. This will give you a printout of what the chunker is
doing as it is doing it. Rule comments/descriptions will be included in the trace output, giving
you a good idea of which rule is applied when.

If coming up with regular expression chunk patterns seems like too much work, then
read the next recipes where we will cover how to train a chunker based on a corpus
of chunked sentences.

Training a tagger-based chunker

Training a chunker can be a great alternative to manually specifying regular expression chunk
patterns. Instead of a painstaking process of trial and error to get the exact right patterns, we
can use existing corpus data to train chunkers much like we did in Chapter 4, Part-of-Speech

Tagging.

How to do it...

As with the part-of-speech tagging, we will use the treebank corpus data for training. But
this time we will use the treebank chunk corpus, which is specifically formatted to
produce chunked sentences in the form of trees. These chunked sents () will be used

by a TagChunker class to train a tagger-based chunker. The TagChunker uses a helper
function conll tag chunks () to extract a list of (pos, iob) tuples from a list of Tree.
These (pos, iob) tuples are then used to train a tagger in the same way (word, pos)
tuples were used in Chapter 4, Part-of-Speech Tagging to train part-of-speech taggers. But
instead of learning part-of-speech tags for words, we are learning 10B tags for part-of-speech
tags. Here's the code from chunkers.py:

import nltk.chunk, itertools
from nltk.tag import UnigramTagger, BigramTagger
from tag util import backoff tagger

def conll tag chunks (chunk sents) :

tagged _sents = [nltk.chunk.tree2conlltags(tree) for tree in
chunk sents]
return [[(t, c) for (w, t, c) in sent] for sent in tagged sents]

class TagChunker (nltk.chunk.ChunkParserI) :
def init_(self, train_chunks, tagger classes=[UnigramTagger,
BigramTagger]) :
train_sents = conll_tag_ chunks(train_chunks)
self.tagger = backoff tagger (train_sents, tagger_ classes)

126

Chapter 5

def parse(self, tagged sent):
if not tagged sent: return None
(words, tags) = zip(*tagged sent)
chunks = self.tagger.tag(tags)
wtc = itertools.izip (words, chunks)
return nltk.chunk.conlltags2tree([(w,t,c) for (w, (t,c)) in wtcl])

Once we have our trained TagChunker, we can then evaluate the ChunkScore the same
way we did for the RegexpParser in the previous recipes.

>>> from chunkers import TagChunker

>>> from nltk.corpus import treebank chunk

>>> train chunks = treebank chunk.chunked sents() [:3000]
>>> test chunks = treebank chunk.chunked sents () [3000:]
>>> chunker = TagChunker (train chunks)

>>> score = chunker.evaluate(test chunks)

>>> score.accuracy ()

0.97320393352514278

>>> score.precision ()

0.91665343705350055

>>> score.recall ()

0.9465573770491803

Pretty darn accurate! Training a chunker is clearly a great alternative to manually specified
grammars and regular expressions.

Recall from the Creating a chunked phrase corpus recipe in Chapter 3, Creating Custom
Corpora that the con112000 corpus defines chunks using IOB tags, which specify the type of
chunk and where it begins and ends. We can train a part-of-speech tagger on these IOB tag
patterns, and then use that to power a ChunkerI subclass. But first we need to transform

a Tree that you would get from the chunked sents () method of a corpus into a format
usable by a part-of-speech tagger. This is what conll tag chunks () does. It uses nltk.
chunk.tree2conlltags () to convert a sentence Tree into a list of 3-tuples of the form
(word, pos, iob) where pos is the part-of-speech tag and iob is an IOB tag, such as B-NpP
to mark the beginning of a noun-phrase, or I-NP to mark that the word is inside the noun-
phrase. The reverse of this method is n1tk.chunk.conlltags2tree (). Here's some code to
demonstrate these nltk . chunk functions:

>>> import nltk.chunk
>>> from nltk.tree import Tree

>>> t = Tree('S', [Tree('NP', [('the', 'DT'), ('book', 'NN')])1)

>>> nltk.chunk.tree2conlltags(t)

[('the', 'DT', 'B-NP'), ('book', 'NN', 'I-NP')]

>>> nltk.chunk.conlltags2tree([('the', 'DT', 'B-NP'), ('book', 'NN',
'I-NP') 1)

Tree('S', [Tree('NP', [('the', 'DT'), ('book', 'NN')])])

Extracting Chunks

The next step is to convert these 3-tuples into 2-tuples that the tagger can recognize. Because
the RegexpParser uses part-of-speech tags for chunk patterns, we will do that here too and
use part-of-speech tags as if they were words to tag. By simply dropping the word from
3-tuple (word, pos, iob),the conll tag chunks () function returns a list of 2-tuples
of the form (pos, iob).When given the preceding example Tree in a list, the results are in
a format we can feed to a tagger.

>>> conll tag chunks([t])
[c¢'or', 'B-NP'), ('NN', 'I-NP')]]

The final step is a subclass of ChunkParserI called TagChunker. It trains on a list of chunk
trees using an internal tagger. This internal tagger is composed of a UnigramTagger and a
BigramTagger in a backoff chain, using the backoff tagger () method created in the
Training and combining Ngram taggers recipe in Chapter 4, Part-of-Speech Tagging.

Finally, ChunkerI subclasses must implement a parse () method that expects a part-of-speech
tagged sentence. We unzip that sentence into a list of words and part-of-speech tags. The tags
are then tagged by the tagger to get 0B tags, which are then re-combined with the words and
part-of-speech tags to create 3-tuples we can pass to nltk.chunk.conlltags2tree () to
return a final Tree.

There's more...

Since we have been talking about the con11 IOB tags, let us see how the TagChunker does
on the conl112000 corpus:

>>> from nltk.corpus import conll2000

>>> conll train = conll2000.chunked sents('train.txt')
>>> conll test = conll2000.chunked sents('test.txt')
>>> chunker = TagChunker (conll train)

>>> score = chunker.evaluate(conll test)

>>> score.accuracy ()

0.89505456234037617

>>> score.precision ()

0.81148419743556754

>>> score.recall ()

0.86441916769448635

Not quite as good as on treebank chunk, but con112000 is a much larger corpus, so it's
not too surprising.

128

Chapter 5

Using different taggers

If you want to use different tagger classes with the TagChunker, you can pass them in as
tagger classes. For example, here's the TagChunker using just a UnigramTagger:

>>> from nltk.tag import UnigramTagger

>>> uni_ chunker = TagChunker (train chunks, tagger
classes=[UnigramTagger])

>>> score = uni chunker.evaluate (test chunks)
>>> score.accuracy ()
0.96749259243354657

The tagger classes will be passed directly into the backoff tagger () function,
which means they must be subclasses of SequentialBackoffTagger. In testing,
the default of tagger classes=[UnigramTagger, BigramTagger] produces the
best results.

The Training and combining Ngram taggers recipe in Chapter 4, Part-of-Speech Tagging
covers backoff tagging with a UnigramTagger and BigramTagger. ChunkScore metrics
returned by the evaluate () method of a chunker were explained in the previous recipe.

Classification-based chunking

Unlike most part-of-speech taggers, the ClassifierBasedTagger learns from features.
That means we can create a ClassifierChunker that can learn from both the words and
part-of-speech tags, instead of only the part-of-speech tags as the TagChunker does.

How to do it...

For the ClassifierChunker, we don't want to discard the words from the training
sentences, as we did in the previous recipe. Instead, to remain compatible with the 2-tuple
(word, pos) format required for training a ClassiferBasedTagger, we convert the
(word, pos, iob) 3-tuplesfromnltk.chunk.tree2conlltags () into ((word,
pos), iob) 2-tuples using the chunk trees2train chunks () function. This code
can be found in chunkers.py:

import nltk.chunk
from nltk.tag import ClassifierBasedTagger

def chunk trees2train chunks (chunk sents) :

tag sents = [nltk.chunk.tree2conlltags(sent) for sent in chunk_
sents]
return [[((w,t),c) for (w,t,c) in sent] for sent in tag sents]

Extracting Chunks

Next, we need a feature detector function to pass into ClassifierBasedTagger. Our
default feature detector function, prev_next pos_iob (), knows that the list of tokens
is really a list of (word, pos) tuples, and can use that to return a feature set suitable for a
classifier. To give the classifier as much information as we can, this feature set contains the
current, previous and next word, and part-of-speech tag, along with the previous 0B tag.

def prev_next pos_iob(tokens, index, history):
word, pos = tokens [index]

if index == 0:
prevword, prevpos, previob = ('<START>',)*3
else:

prevword, prevpos = tokens[index-1]
previob = history[index-1]

if index == len(tokens) - 1:
nextword, nextpos = ('<END>',)*2
else:
nextword, nextpos = tokens[index+1]
feats = {

'word': word,
'pos': pos,
'nextword': nextword,
'nextpos': nextpos,
'prevword': prevword,
'prevpos': prevpos,
'previob': previob

}

return feats

Now we can define the ClassifierChunker, which uses an internal
ClassifierBasedTagger with features extracted using prev_next pos iob (),

and training sentences from chunk trees2train chunks (). As a subclass of
ChunkerParserl, it implements the parse () method, which converts the ((w, t), c)
tuples produced by the internal tagger into a Tree using nltk.chunk.conlltags2tree ().

class ClassifierChunker (nltk.chunk.ChunkParserI) :
def init (self, train_ sents, feature detector=prev _next pos iob,
**kwargs) :
if not feature detector:
feature detector = self.feature detector

train_chunks = chunk_trees2train_chunks (train_sents)
self.tagger = ClassifierBasedTagger (train=train chunks,
feature detector=feature detector, **kwargs)

130

Chapter 5

def parse(self, tagged sent):
if not tagged sent: return None
chunks = self.tagger.tag(tagged sent)

return nltk.chunk.conlltags2tree([(w,t,c) for ((w,t),c) in
chunks])

Using the same train chunks and test chunks from the treebank_ chunk corpus in
the previous recipe, we can evaluate this code from chunkers.py:

>>> from chunkers import ClassifierChunker
>>> chunker = ClassifierChunker (train chunks)
>>> score = chunker.evaluate(test chunks)

>>> score.accuracy ()

0.97217331558380216

>>> score.precision ()

0.92588387933830685

>>> score.recall ()

0.93590163934426229

Compared to the TagChunker, all the scores have gone up a bit. Let us see how it does on
conll2000:

>>> chunker = ClassifierChunker (conll train)
>>> score = chunker.evaluate(conll test)

>>> score.accuracy ()

0.92646220740021534

>>> score.precision ()

0.87379243109102189

>>> score.recall ()

0.90073546206203459

This is much improved over the TagChunker.

Like the TagChunker in the previous recipe, we are training a part-of-speech tagger for IOB
tagging. But in this case, we want to include the word as a feature to power a classifier. By
creating nested 2-tuples of the form ((word, pos), iob), we can pass the word through
the tagger into our feature detector function. chunk trees2train chunks () produces
these nested 2-tuples, and prev_next pos_iob () is aware of them and uses each
element as a feature. The following features are extracted:

» The current word and part-of-speech tag
» The previous word, part-of-speech tag, and 10B tag
» The next word and part-of-speech tag

Extracting Chunks

The arguments to prev_next pos_iob () look the same as the feature detector ()
method of the ClassifierBasedTagger: tokens, index, and history. But this time,
tokens will be a list of (word, pos) 2-tuples, and history will be a list of OB tags.
The special feature values '<START>"' and '<END>"' are used if there are no previous

or next tokens.

The ClassifierChunker uses an internal ClassifierBasedTagger and

prev _next pos iob() asits default feature detector. The results from the tagger,
which are in the same nested 2-tuple form, are then reformatted into 3-tuples to return a
final Tree using nltk.chunk.conlltags2tree ().

You can use your own feature detector function by passing it in to the ClassifierChunker
as feature detector. The tokens will contain a list of (word, tag) tuples, and
history will be a list of the previous |OB tags found.

Using a different classifier builder

The ClassifierBasedTagger defaults to using NaiveBayesClassifier.train
asits classifier builder. Butyou can use any classifier you want by overriding
the classifier builder keyword argument. Here's an example using
MaxentClassifier.train:

>>> from nltk.classify import MaxentClassifier

>>> builder = lambda toks: MaxentClassifier.train(toks, trace=0, max_
iter=10, min lldelta=0.01)

>>> me chunker = ClassifierChunker (train chunks, classifier
builder=builder) a a
>>> score = me_ chunker.evaluate (test chunks)

>>> score.accuracy ()

0.9748357452655988

>>> score.precision/()

0.93794355504208615

>>> score.recall ()

0.93163934426229511

Instead of using MaxentClassifier.train directly, it has been wrapped in a 1ambda so
that its output is quiet (trace=0) and it finishes in a reasonable amount of time. As you can
see, the scores are slightly different compared to using the NaiveBayesClassifier.

132

Chapter 5

The previous recipe, Training a tagger-based chunker, introduced the idea of using a
part-of-speech tagger for training a chunker. The Classifier-based tagging recipe in
Chapter 4, Part-of-Speech Tagging describes ClassifierBasedPOSTagger, which
is a subclass of ClassifierBasedTagger. In Chapter 7, Text Classification, we will
cover classification in detail.

Extracting named entities

Named entity recoghnition is a specific kind of chunk extraction that uses entity tags instead
of, or in addition to, chunk tags. Common entity tags include PERSON, ORGANIZATION, and
LOCATION. Part-of-speech tagged sentences are parsed into chunk trees as with normal
chunking, but the nodes of the trees can be entity tags instead of chunk phrase tags.

How to do it...

NLTK comes with a pre-trained named entity chunker. This chunker has been trained on
data from the ACE program, a NIST (National Institute of Standards and Technology)
sponsored program for Automatic Content Extraction, which you can read more about here:
http://www.itl.nist.gov/iad/894.01/tests/ace/. Unfortunately, this data is not
included in the NLTK corpora, but the trained chunker is. This chunker can be used through
the ne_chunk () method in the nltk.chunk module. ne_chunk () will chunk a single
sentence into a Tree. The following is an example using ne_chunk () on the first tagged
sentence of the treebank chunk corpus:

>>> from nltk.chunk import ne chunk

>>> ne_ chunk (treebank chunk.tagged sents() [0])

Tree('S', [Tree('PERSON', [('Pierre', 'NNP')]), Tree('ORGANIZATION',
[('Vinken',6 'NNP')]1), (',', ','), ('61l', 'CD'), ('years', 'NNS'),
(told', 'agg'), (', ',"), ('will', 'MD'), ('join', 'VB'), ('the',
'DT'), ('board', 'NN'), ('as', 'IN'), ('a', 'DT'), ('nonexecutive',
'JJ'), ('director', 'NN'), ('Nov.', 'NNP'), ('29', 'CD'), ('.',

.91)

You can see two entity tags are found: PERSON and ORGANIZATION. Each of these subtrees
contain a list of the words that are recognized as a PERSON or ORGANIZATION. To extract
these named entities, we can write a simple helper method that will get the leaves of all the
subtrees we are interested in.

def sub leaves(tree, node) :

return [t.leaves() for t in tree.subtrees
(lambda s: s.node == node)]

Extracting Chunks

Then we can call this method to get all the PERSON or ORGANIZATION leaves from a tree.

>>> tree = ne_chunk (treebank chunk.tagged sents() [0])
>>> from chunkers import sub_leaves
>>> sub_leaves(tree, 'PERSON')

[[('Pierre', 'NNP')]]
>>> sub_ leaves(tree, 'ORGANIZATION')
[[('Vinken', 'NNP')]]

You may notice that the chunker has mistakenly separated "Vinken" into its own
ORGANIZATION Tree instead of including it with the PERSON Tree containing "Pierre". Such
is the case with statistical natural language processing—you can't always expect perfection.

The pre-trained named entity chunker is much like any other chunker, and in fact uses a
MaxentClassifier powered ClassifierBasedTagger to determine |IOB tags. But

instead of B-NP and I-NP IOB tags, it uses B- PERSON, I-PERSON, B-ORGANIZATION,
I-ORGANIZATION, and more. It also uses the 0 tag to mark words that are not part of a
named entity (and thus outside the named entity subtrees).

To process multiple sentences at a time, you can use batch_ne chunk (). Here's an example
where we process the first 10 sentences from treebank chunk.tagged sents () and
get the ORGANIZATION sub leaves():

>>> from nltk.chunk import batch ne chunk

>>> trees = batch ne chunk (treebank chunk.tagged sents() [:10])
>>> [sub_leaves(t, 'ORGANIZATION') for t in trees]
[[[('Vinken', 'NNP')]], [[('Elsevier', 'NNP')]1],
[[('Consolidated', 'NNP'), ('Gold', 'NNP'), ('Fields',
'NNP')11, [1, [1, [[('Inc.', 'NNP')], [('Micronite',

'NN')1], [[('New', 'NNP'), ('England', 'NNP'), ('Journal',
'NNP')]], [[('Lorillard', 'NNP')]], [], [1]

You can see there are a couple of multi-word ORGANIZATION chunks, such as "New England
Journal". There are also a few sentences that have no ORGANIZATION chunks, as indicated
by the empty lists [].

Chapter 5

Binary named entity extraction

If you don't care about the particular kind of named entity to extract, you can pass
binary=True into ne_chunk () or batch ne chunk (). Now, all named entities
will be tagged with NE:

>>> ne_ chunk (treebank chunk.tagged sents() [0], binary=True)
Tree('S', [Tree('NE', [('Pierre', 'NNP'), ('Vinken', 'NNP')]),
(v,"*, ',"), ('61', 'CcD'), ('years', 'NNS'), ('old', 'JJ'),
(v,'v ',"), (‘will', 'mMD'), ('join', 'VB'), ('the', 'DT'),
('board', 'NN'), ('as', 'IN'), ('a', 'DT'), ('nonexecutive',
'JJ'), ('director', 'NN'), ('Nov.', 'NNP') ('29', 'cDp'"),

’

(.ot eI

If we get the sub_leaves (), we can see that "Pierre Vinken" is correctly combined into
a single named entity.

>>> sub_ leaves (ne_chunk (treebank chunk.tagged sents() [0],
binary=True), 'NE')
[[('Pierre', 'NNP'), ('Vinken', 'NNP')]]

In the next recipe, we will create our own simple hamed entity chunker.

Extracting proper noun chunks

A simple way to do named entity extraction is to chunk all proper nouns (tagged with NNP). We
can tag these chunks as NAME, since the definition of a proper noun is the name of a person,
place, or thing.

How to do it...

Using the RegexpParser, we can create a very simple grammar that combines all
proper nouns into a NAME chunk. Then we can test this on the first tagged sentence
of treebank chunk to compare the results to the previous recipe.

>>> chunker = RegexpParser (r'''

. NAME:
{<NNP>+}
)
>>> sub leaves (chunker.parse (treebank chunk.tagged sents() [0]),
'NAME ')
[[('Pierre', 'NNP'), ('Vinken', 'NNP')], [('Nov.', 'NNP')]]

Although we get "Nov." as a NAME chunk, this isn't a wrong result, as "Nov." is the name
of a month.

Extracting Chunks

The NAME chunker is a simple usage of the RegexpParser, covered in Chunking and
chinking with regular expressions, Merging and splitting chunks with regular expressions,
and Partial parsing with regular expressions recipes of this chapter. All sequences of NNP
tagged words are combined into NAME chunks.

There's more...

If we wanted to be sure to only chunk the names of people, then we can build a
PersonChunker that uses the names corpus for chunking. This class can be
found in chunkers.py:

import nltk.chunk
from nltk.corpus import names

class PersonChunker (nltk.chunk.ChunkParserI) :
def init (self):
self .name_set = set (names.words())

def parse(self, tagged sent):
iobs = []
in person = False

for word, tag in tagged sent:

if word in self.name set and in person:
iobs.append((word, tag, 'I-PERSON'))

elif word in self.name set:
iobs.append((word, tag, 'B-PERSON'))
in person = True

else:
iobs.append((word, tag, '0O'))
in person = False

return nltk.chunk.conlltags2tree (iobs)

The PersonChunker iterates over the tagged sentence, checking if each word is in its names__
set (constructed from the names corpus). If the current word is in the names_set, then it uses
either the B- PERSON or I-PERSON IOB tags, depending on whether the previous word was also
in the names_set. Any word that's not in the names_set gets the 0 10B tag. When complete,
the list of IOB tags is converted to a Tree using nltk.chunk.conlltags2tree (). Using it
on the same tagged sentence as before, we get the following result:

>>> from chunkers import PersonChunker
>>> chunker = PersonChunker ()

>>> sub leaves (chunker.parse (treebank chunk.tagged sents() [0]),
'PERSON')
[[('Pierre', 'NNP')]]

136

Chapter 5

We no longer get "Nov.", but we have also lost "Vinken", as it is not found in the names corpus.
This recipe highlights some of the difficulties of chunk extraction and natural language
processing in general:

» If you use general patterns, you will get general results

» If you are looking for specific results, you must use specific data

» If your specific data is incomplete, your results will be incomplete too

The previous recipe defines the sub_leaves () method used to show the found
chunks. In the next recipe, we will cover how to find LOCATION chunks based on the
gazetteers corpus.

Extracting location chunks

To identify location chunks, we can make a different kind of ChunkParserI subclass
that uses the gazetteers corpus to identify location words. gazetteersis a
WordListCorpusReader that contains the following location words:

» Country names

» U.S. states and abbreviations
» Major U.S. cities

» Canadian provinces

» Mexican states

How to do it...

The LocationChunker, found in chunkers . py, iterates over a tagged sentence looking
for words that are found in the gazetteers corpus. When it finds one or more location
words, it creates a LOCATION chunk using I0OB tags. The helper method iob_locations ()
is where the I0B LOCATION tags are produced, and the parse () method converts these |0B
tags to a Tree.

import nltk.chunk
from nltk.corpus import gazetteers

class LocationChunker (nltk.chunk.ChunkParserI) :
def init (self):
self.locations = set (gazetteers.words())
self.lookahead 0

Extracting Chunks

for loc in self.locations:
nwords = loc.count (' ')

if nwords > self.lookahead:
self.lookahead = nwords

def iob locations(self, tagged sent):

i=0
1 = len(tagged sent)
inside = False

while 1 < 1:
word, tag = tagged sent[i]
j=1+1
k = j + self.lookahead
nextwords, nexttags = [], []
loc = False

while j < k:
if ' '.join([word] + nextwords) in self.locations:
if inside:
yield word, tag, 'I-LOCATION'
else:
yield word, tag, 'B-LOCATION'

for nword, ntag in zip (nextwords, nexttags):
yield nword, ntag, 'I-LOCATION'

loc, inside = True, True
i=7
break

if § < 1:
nextword, nexttag = tagged sent [j]
nextwords.append (nextword)
nexttags.append (nexttag)
j o+=1

else:
break

if not loc:
inside = False
i+=1
yield word, tag, 'O’

138

Chapter 5

def parse(self, tagged sent):
iobs = self.iob locations(tagged sent)
return nltk.chunk.conlltags2tree (iobs)

We can use the LocationChunker to parse the following sentence into two locations, "San
Francisco, CA is cold compared to San Jose, CA":

>>> from chunkers import LocationChunker

>>> t = loc.parse([('San', 'NNP'), ('Francisco', 'NNP'),
(rca', 'NNP'), ('is', 'BE'), ('cold', 'dJd'), ('compared',
'VBD'), ('to', 'TO'), ('San', 'NNP'), ('Jose', 'NNP'),
('CA', 'NNP')])

>>> sub leaves(t, 'LOCATION')

[[('San', 'NNP'), ('Francisco', 'NNP'), ('CA', 'NNP')],
[('San', 'NNP'), ('Jose', 'NNP'), ('CA', 'NNP')]]

And the result is that we get two LOCATION chunks, just as expected.

The LocationChunker starts by constructing a set of all locations in the gazetteers
corpus. Then it finds the maximum number of words in a single location string, so it knows
how many words it must look ahead when parsing a tagged sentence.

The parse () method calls a helper method iob_locations (), which generates 3-tuples
of the form (word, pos, iob) where iob is either 0O if the word is not a location, or
B-LOCATION Or I-LOCATION for LOCATION chunks. iob locations () finds location
chunks by looking at the current word and the next words to check if the combined word is in
the locations set. Multiple location words that are next to each other are then put into the
same LOCATION chunk, such as in the preceding example with "San Francisco" and "CA".

Like in the previous recipe, it's simpler and more convenient to construct a list of (word,
pos, 1ob) tuplesto passintonltk.chunk.conlltags2tree () toreturna Tree. The
alternative is to construct a Tree manually, but that requires keeping track of children,
subtrees, and where you currently are in the Tree.

There's more...

One of the nice aspects of this Locat ionChunker is that it doesn't care about the
part-of-speech tags. As long as the location words are found in the locations set, any
part-of-speech tag will do.

Extracting Chunks

See also

In the next recipe, we will cover how to train a named entity chunker using the ieer corpus.

Training a named entity chunker

You can train your own named entity chunker using the ieer corpus, which stands for
Information Extraction—Entity Recognition (ieer). It takes a bit of extra work though,
because the ieer corpus has chunk trees, but no part-of-speech tags for words.

How to do it...

Using the ieertree2conlltags () and ieer chunked sents () functionsin
chunkers.py, we can create named entity chunk trees from the ieer corpus to train the
ClassifierChunker created in Classification-based chunking recipe of this chapter.

import nltk.tag, nltk.chunk, itertools
from nltk.corpus import ieer

def ieertree2conlltags(tree, tag=nltk.tag.pos_tag):
words, ents = zip(*tree.pos|())
iobs = []
prev = None

for ent in ents:
if ent == tree.node:
iobs.append('0")
prev = None
elif prev == ent:
iobs.append('I-%s' % ent)
else:

iobs.append('B-%s' % ent)
prev = ent

words, tags = zip(*tag(words))
return itertools.izip(words, tags, iobs)

def ieer chunked sents(tag=nltk.tag.pos tag):
for doc in ieer.parsed docs():
tagged = ieertree2conlltags (doc.text, tag)
yield nltk.chunk.conlltags2tree (tagged)

140

Chapter 5

We will use 80 out of 94 sentences for training, and the rest for testing. Then we can see how
it does on the first sentence of the treebank chunk corpus.

>>> from chunkers import ieer_chunked sents, ClassifierChunker
>>> from nltk.corpus import treebank chunk

>>> leer chunks = list (ieer chunked sents())

>>> len(ieer_chunks)

94

>>> chunker = ClassifierChunker (ieer chunks[:80])

>>> chunker.parse (treebank chunk.tagged sents () [0])

Tree('S', [Tree('LOCATION', [('Pierre', 'NNP'), ('Vinken', 'NNP')]),
(*,*, ','"), Tree('DURATION', [('61', 'CD'), ('years', 'NNS')1),

Tree ('MEASURE', [('old', 'JJg")1), (',', ',"'), ('will', 'MD'),
('join', 'vB'), ('the', 'DT'), ('board', 'NN'), ('as', 'IN'), ('a',
'DT'), ('nonexecutive', 'JJ'), ('director', 'NN'), Tree('DATE',
[('Nov.', 'NNP'), ('29', 'CD")1), ('.', '.")1)

So it found a correct DURATION and DATE, but tagged "Pierre Vinken" as a LOCATION. Let us
see how it scores against the rest of ieer chunk trees:

>>> score = chunker.evaluate(ieer chunks[80:])
>>> score.accuracy ()

0.88290183880706252

>>> score.precision ()

0.40887174541947929

>>> score.recall ()

0.50536352800953521

Accuracy is pretty good, but precision and recall are very low. That means lots of false
negatives and false positives.

The truth is, we are not working with ideal training data. The ieer trees generated by
ieer chunked sents () are not entirely accurate. First, there are no explicit sentence
breaks, so each document is a single tree. Second, the words are not explicitly tagged,
so we have to guess using nltk.tag.pos_tag().

The ieer corpus provides a parsed_docs () method that returns a list of documents with a
text attribute. This text attribute is a document Tree that is converted to a list of 3-tuples
of the form (word, pos, iob).To getthese final 3-tuples, we must first flatten the Tree
using tree.pos (), which returns a list of 2-tuples of the form (word, entity), where
entity is either the entity tag or the top tag of the tree. Any words whose entity is the top tag
are outside the named entity chunks and get the 10B tag 0. All words that have unique entity
tags are either the beginning of or inside a named entity chunk. Once we have all the I0B
tags, then we can get the part-of-speech tags of all the words and join the words, part-of-
speech tags, and 0B tags into 3-tuples using itertools.izip ().

Extracting Chunks

There's more...

Despite the non-ideal training data, the ieer corpus provides a good place to start for training
a named entity chunker. The data comes from the New York Times and AP Newswire reports.
Each doc from ieer.parsed_docs () also contains a headline attribute that is a Tree.

>>> from nltk.corpus import ieer
>>> leer.parsed docs () [0] .headline
Tree ('DOCUMENT', ['Kenyans',6 'protest', 'tax', 'hikes'])

See also

The Extracting named entities recipe in this chapter, covers the pre-trained named entity
chunker that comes included with NLTK.

142

Transforming Chunks
and Trees

In this chapter, we will cover:

» Filtering insignificant words

» Correcting verb forms

» Swapping verb phrases

» Swapping noun cardinals

» Swapping infinitive phrases

» Singularizing plural nouns

» Chaining chunk transformations
» Converting a chunk tree to text
» Flattening a deep tree

» Creating a shallow tree

» Converting tree nodes

Introduction

Now that you know how to get chunks/phrases from a sentence, what do you do with them?
This chapter will show you how to do various transforms on both chunks and trees. The chunk
transforms are for grammatical correction and rearranging phrases without loss of meaning.
The tree transforms give you ways to modify and flatten deep parse trees.

Transforming Chunks and Trees

The functions detailed in these recipes modify data, as opposed to learning from it. That
means it's not safe to apply them indiscriminately. A thorough knowledge of the data you want
to transform, along with a few experiments, should help you decide which functions to apply
and when.

Whenever the term chunk is used in this chapter, it could refer to an actual chunk extracted
by a chunker, or it could simply refer to a short phrase or sentence in the form of a list of
tagged words. What's important in this chapter is what you can do with a chunk, not where it
came from.

Filtering insignificant words

Many of the most commonly used words are insignificant when it comes to discerning the
meaning of a phrase. For example, in the phrase "the movie was terrible", the most significant
words are "movie" and "terrible", while "the" and "was" are almost useless. You could get the
same meaning if you took them out, such as "movie terrible" or "terrible movie". Either way,
the sentiment is the same. In this recipe, we'll learn how to remove the insignificant words,
and keep the significant ones, by looking at their part-of-speech tags.

Getting ready

First, we need to decide which part-of-speech tags are significant and which are not. Looking
through the treebank corpus for stopwords yields the following table of insignificant words
and tags:

Word Tag
a DT
all PDT
an DT
and CC
or CcC
that WDT
the DT

Other than CC, all the tags end with DT. This means we can filter out insignificant words by
looking at the tag's suffix.

Chapter 6

How to do it...

In transforms.py there is a function called filter insignificant (). Ittakesa
single chunk, which should be a list of tagged words, and returns a new chunk without any
insignificant tagged words. It defaults to filtering out any tags that end with DT or CC.

def filter insignificant (chunk, tag suffixes=['DT', 'CC']):
good = []

for word, tag in chunk:
ok = True

for suffix in tag suffixes:
if tag.endswith(suffix) :
ok = False
break

if ok:
good.append ((word, tag))

return good
Now we can use it on the part-of-speech tagged version of "the terrible movie".

>>> from transforms import filter insignificant

>>> filter insignificant([('the', 'DT'), ('terrible', 'JJ'), ('movie',
'NN')])
[('terrible', 'JJ'), ('movie', 'NN')]

As you can see, the word "the" is eliminated from the chunk.

filter insignificant () iterates over the tagged words in the chunk. For each tag, it
checks if that tag ends with any of the tag suffixes. If it does, then the tagged word is
skipped. However if the tag is ok, then the tagged word is appended to a new good chunk that
is returned.

The way filter insignificant () is defined, you can pass in your own tag suffixes if DT
and CC are not enough, or are incorrect for your case. For example, you might decide that
possessive words and pronouns such as "you", "your", "their", and "theirs" are no good but DT
and CC words are ok. The tag suffixes would then be PRP and PRP$. Following is an example
of this function:

Transforming Chunks and Trees

>>> filter insignificant([('your', 'PRPS$'), ('book', 'NN'), ('is',
'VBZ'), ('great', 'JJ')], tag suffixes=['PRP', 'PRPS$'])
[('book', 'NN'), ('is', 'VBZ'), ('great',K 'JJ'")]

Filtering insignificant words can be a good complement to stopword filtering for purposes such
as search engine indexing, querying, and text classification.

See also

This recipe is analogous to the Filtering stopwords in a tokenized sentence recipe in
Chapter 1, Tokenizing Text and WordNet Basics.

Correcting verb forms

It's fairly common to find incorrect verb forms in real-world language. For example, the correct
form of "is our children learning?" is "are our children learning?". The verb "is" should only be
used with singular nouns, while "are" is for plural nouns, such as "children". We can correct
these mistakes by creating verb correction mappings that are used depending on whether
there's a plural or singular noun in the chunk.

Getting ready

We first need to define the verb correction mappings in transforms.py. We'll create two
mappings, one for plural to singular, and another for singular to plural.

plural verb forms = {
('is', 'VBZ'): ('are', 'VBP'),
('was', 'VBD'): ('were', 'VBD')
}
singular verb forms = {
(‘are', 'VBP'): ('is', 'VBZ'),
('were', 'VBD'): ('was', 'VBD')

}

Each mapping has a tagged verb that maps to another tagged verb. These initial mappings
cover the basics of mapping, is to are, was to were, and vice versa.

146

Chapter 6

How to do it...

In transforms.py there is a function called correct verbs (). Pass it a chunk with
incorrect verb forms, and you'll get a corrected chunk back. It uses a helper function
first chunk_ index () to search the chunk for the position of the first tagged word
where pred returns True.

def first chunk index(chunk, pred, start=0, step=1):
1 = len(chunk)
end = 1 if step > 0 else -1

for i in range(start, end, step):
if pred(chunk[i]) :
return i

return None

def correct verbs (chunk) :
vbidx = first chunk index(chunk, lambda (word, tag): tag.
startswith ('VB'))
if no verb found, do nothing
if vbidx is None:
return chunk

verb, vbtag = chunk [vbidx]
nnpred = lambda (word, tag): tag.startswith('NN')
find nearest noun to the right of verb
nnidx = first chunk index(chunk, nnpred, start=vbidx+1l)
if no noun found to right, look to the left
if nnidx is None:
nnidx = first chunk index(chunk, nnpred, start=vbidx-1, step=-1)
if no noun found, do nothing
if nnidx is None:
return chunk

noun, nntag = chunk[nnidx]
get correct verb form and insert into chunk
if nntag.endswith('S'):

chunk [vbidx] = plural verb forms.get((verb, vbtag), (verb, vbtag))
else:
chunk [vbidx] = singular verb forms.get ((verb, vbtag), (verb,
vbtag))

return chunk

Transforming Chunks and Trees

When we call it on a part-of-speech tagged "is our children learning" chunk, we get back the
correct form, "are our children learning".

>>> from transforms import correct verbs

>>> correct verbs([('is', 'VBZ'), ('our', 'PRP$'), ('children',
'NNS'), ('learning', 'VBG')])

[(tare', 'VBP'), ('our', 'PRPS'), ('children', 'NNS'), ('learning',
'VBG')]

We can also try this with a singular noun and an incorrect plural verb.

>>> correct verbs([('our',6 'PRP$'), ('child', 'NN'), ('were', 'VBD'),
('learning', 'VBG')])

[(tour', 'PRPS$'), ('child', 'NN'), ('was', 'VBD'), ('learning',
'VBG')]

In this case, "were" becomes "was" because "child" is a singular noun.

The correct _verbs () function starts by looking for a verb in the chunk. If no verb is found,
the chunk is returned with no changes. Once a verb is found, we keep the verb, its tag, and its
index in the chunk. Then we look on either side of the verb to find the nearest noun, starting
on the right, and only looking to the left if no noun is found on the right. If no noun is found at
all, the chunk is returned as is. But if a noun is found, then we lookup the correct verb form
depending on whether or not the noun is plural.

Recall from Chapter 4, Part-of-Speech Tagging, that plural nouns are tagged with NNS, while
singular nouns are tagged with NN. This means we can check the plurality of a noun by seeing
if its tag ends with S. Once we get the corrected verb form, it is inserted into the chunk to
replace the original verb form.

To make searching through the chunk easier, we define a function called first chunk
index (). It takes a chunk, a 1ambda predicate, the starting index, and a step increment.
The predicate function is called with each tagged word until it returns True. If it never returns
True, then None is returned. The starting index defaults to zero and the step increment

to one. As you'll see in upcoming recipes, we can search backwards by overriding start

and setting step to -1. This small utility function will be a key part of subsequent transform
functions.

The next four recipes all make use of first chunk_ index () to perform chunk
transformations.

148

Chapter 6

Swapping verb phrases

Swapping the words around a verb can eliminate the passive voice from particular phrases.
For example, "the book was great" can be transformed into "the great book".

How to do it...

In transforms.py there is a function called swap verb phrase (). It swaps the
right-hand side of the chunk with the left-hand side, using the verb as the pivot point.
It usesthe first chunk_ index () function defined in the previous recipe to find the
verb to pivot around.

def swap_verb phrase (chunk) :
find location of verb

vbpred = lambda (word, tag): tag != 'VBG' and tag.startswith('VB')
and len(tag) > 2
vbidx = first_chunk_ index(chunk, vbpred)

if vbidx is None:
return chunk

return chunk[vbidx+1:] + chunk][:vbidx]

Now we can see how it works on the part-of-speech tagged phrase "the book was great".

>>> from transforms import swap_ verb phrase

>>> swap_verb phrase([('the', 'DT'), ('book', 'NN'), ('was', 'VBD'),
('great', 'dg')l)
[('great', '3J'), ('the', 'DT'), ('book', 'NN')]

The result is "great the book". This phrase clearly isn't grammatically correct, so read on to
learn how to fix it.

Using first chunk index () from the previous recipe, we start by finding the first
matching verb that is not a gerund (a word that ends in "ing") tagged with VBG. Once we've
found the verb, we return the chunk with the right side before the left, and remove the verb.

The reason we don't want to pivot around a gerund is that gerunds are commonly used to
describe nouns, and pivoting around one would remove that description. Here's an example
where you can see how not pivoting around a gerund is a good thing:

>>> swap_verb phrase([('this', 'DT'), ('gripping', 'VBG'), ('book',
'NN'), ('is', 'VBZ'), ('fantastic', 'JJ')1])

Transforming Chunks and Trees

[('fantastic', 'dJ'), ('this', 'DT'), ('gripping', 'VBG'), ('book"',
!NNI)]

If we had pivoted around the gerund, the result would be "book is fantastic this", and we'd lose
the gerund "gripping".

There's more...

Filtering insignificant words makes the final result more readable. By filtering either before
or after swap verb phrase (), we get "fantastic gripping book" instead of "fantastic this
gripping book".

>>> from transforms import swap verb phrase, filter insignificant

>>> swap_verb phrase(filter insignificant([('this', 'DT'),
('gripping', 'VBG'), ('book', 'NN'), ('is', 'VBZ'), ('fantastic',
'JJ")1))

[('fantastic', 'JJ'), ('gripping', 'VBG'), ('book', 'NN')]

>>> filter insignificant (swap verb phrase([('this', 'DT'),
('gripping', 'VBG'), ('book', 'NN'), ('is', 'VBZ'), ('fantastic',
'JJ")1))

[('fantastic', 'JJ'), ('gripping', 'VBG'), ('book', 'NN')]

Either way, we get a shorter grammatical chunk with no loss of meaning.

See also

The previous recipe defines £irst chunk_ index (), which is used to find the verb in
the chunk.

Swapping noun cardinals

In a chunk, a cardinal word—tagged as CD—refers to a number, such as "10". These cardinals
often occur before or after a noun. For normalization purposes, it can be useful to always put
the cardinal before the noun.

How to do it...

The function swap noun cardinal () is defined in transforms.py. It swaps any cardinal
that occurs immediately after a noun with the noun, so that the cardinal occurs immediately
before the noun.

def swap noun cardinal (chunk) :
cdidx = first chunk index(chunk, lambda (word, tag): tag == 'CD')
cdidx must be > 0 and there must be a noun immediately before it
if not cdidx or not chunk[cdidx-1] [1].startswith('NN') :

150

Chapter 6

return chunk

noun, nntag = chunk[cdidx-1]
chunk [cdidx-1] = chunk[cdidx]
chunk [cdidx] = noun, nntag
return chunk

Let's try it on a date, such as "Dec 10", and another common phrase "the top 10".

>>> from transforms import swap noun cardinal

>>> swap_noun cardinal ([('Dec.', 'NNP'), ('10', 'CD')])

[(r10', 'CD'), ('Dec.', 'NNP')]

>>> swap_noun cardinal ([('the', 'DT'), ('top', 'NN'), ('10', 'CD')])
[('the', 'DT'), ('10', 'CD'), ('top', 'NN')]

The result is that the numbers are now in front of the noun, creating "10 Dec" and "the
10 top".

We start by looking for a CD tag in the chunk. If no CD is found, or if the CD is at the
beginning of the chunk, then the chunk is returned as is. There must also be a noun
immediately before the CD. If we do find a CD with a noun preceding it, then we swap
the noun and cardinal in place.

See also

The Correcting verb forms recipe defines the first chunk_ index () function, used to find
tagged words in a chunk.

Swapping infinitive phrases

An infinitive phrase has the form "A of B", such as "book of recipes". These can often be
transformed into a new form while retaining the same meaning, such as "recipes book".

How to do it...

An infinitive phrase can be found by looking for a word tagged with IN. The function
swap_infinitive phrase (), defined in transforms.py, will return a chunk that
swaps the portion of the phrase after the IN word with the portion before the IN word.

def swap_ infinitive phrase (chunk) :
inpred = lambda (word, tag): tag == 'IN' and word != 'like'
inidx = first chunk index(chunk, inpred)

Transforming Chunks and Trees

if inidx is None:
return chunk

nnpred = lambda (word, tag): tag.startswith('NN')
nnidx = first chunk index(chunk, nnpred, start=inidx, step=-1) or 0

return chunk[:nnidx] + chunk[inidx+1:] + chunk[nnidx:inidx]
The function can now be used to transform "book of recipes" into "recipes book".

>>> from transforms import swap infinitive phrase

>>> swap_infinitive phrase([('book', 'NN'), ('of', 'IN'), ('recipes',
'NNS') 1)

[('recipes', 'NNS'), ('book', 'NN')]

This function is similar to the swap_verb phrase () function described in the Swapping
verb phrases recipe. The inpred lambda is passed to first chunk index () to look for
a word whose tag is IN. Next, nnpred is used to find the first noun that occurs before the IN
word, so we can insert the portion of the chunk after the IN word between the noun and the
beginning of the chunk. A more complicated example should demonstrate this:

>>> swap_infinitive phrase([('delicious', 'JJ'), ('book', 'NN'),
('of', '"IN'), ('recipes', 'NNS')])
[('delicious', 'JJ'), ('recipes', 'NNS'), ('book', 'NN')]

We don't want the result to be "recipes delicious book". Instead, we want to insert "recipes”
before the noun "book", but after the adjective "delicious". Hence, the need to find the nnidx
occurring before the inidx.

There's more...

You'll notice that the inpred lambda checks to make sure the word is not "like". That's
because "like" phrases must be treated differently, as transforming them the same way
will result in an ungrammatical phrase. For example, "tastes like chicken" should not be
transformed into "chicken tastes":

>>> swap_infinitive phrase([('tastes', 'VBZ'), ('like', 'IN'),
(‘chicken', 'NN')1)
[('tastes', 'VBZ'), ('like', 'IN'), ('chicken', 'NN')]

152

Chapter 6

In the next recipe, we'll learn how to transform "recipes book" into the more normal form
"recipe book".

Singularizing plural nouns

As we saw in the previous recipe, the transformation process can result in phrases such as
"recipes book". This is a NNS followed by an NN, when a more proper version of the phrase
would be "recipe book", which is an NN followed by another NN. We can do another transform
to correct these improper plural nouns.

How to do it...

transforms . py defines a function called singularize plural noun (), which will
de-pluralize a plural noun (tagged with NNS) that is followed by another noun.

def singularize plural noun (chunk) :
nnspred = lambda (word, tag): tag == 'NNS'
nnsidx = first chunk index(chunk, nnspred)

if nnsidx is not None and nnsidx+1l < len(chunk) and chunk [nnsidx+1]
[1][:2] == 'NN':
noun, nnstag = chunk [nnsidx]
chunk [nnsidx] = (noun.rstrip('s'), nnstag.rstrip('S'))

return chunk
Using it on "recipes book", we get the more correct form, "recipe book".

>>> from transforms import singularize plural noun
>>> singularize plural noun([('recipes', 'NNS'), ('book', 'NN')])
[('recipe', 'NN'), ('book', 'NN')]

We start by looking for a plural noun with the tag NNS. If found, and if the next word is a noun
(determined by making sure the tag starts with NN), then we de-pluralize the plural noun by
removing an "s" from the right side of both the tag and the word.

The tag is assumed to be capitalized, so an uppercase "S" is removed from the right side of
the tag, while a lowercase "s" is removed from the right side of the word.

Transforming Chunks and Trees

The previous recipe shows how a transformation can result in a plural noun followed by a
singular noun, though this could also occur naturally in real-world text.

Chaining chunk transformations

The transform functions defined in the previous recipes can be chained together to normalize
chunks. The resulting chunks are often shorter with no loss of meaning.

How to do it...

In transforms.py is the function transform chunk (). It takes a single chunk and an
optional list of transform functions. It calls each transform function on the chunk, one at a
time, and returns the final chunk.

def transform chunk(chunk, chain=[filter insignificant, swap_verb
phrase, swap_infinitive phrase, singularize plural noun], trace=0):
for £ in chain:
chunk = f (chunk)

if trace:
print £f._name_, ':', chunk

return chunk

Using it on the phrase "the book of recipes is delicious", we get "delicious recipe book":

>>> from transforms import transform chunk

>>> transform chunk([('the', 'DT'), ('book', 'NN'), ('of', 'IN'),
('recipes', 'NNS'), ('is', 'VBZ'), ('delicious', 'dd")])
[('delicious', 'JJ'), ('recipe', 'NN'), ('book', 'NN')]

The transform chunk () function defaults to chaining the following functions in order:

» filter insignificant()

» swap_ verb phrase()

» swap_infinitive phrase ()
» singularize plural noun()

Each function transforms the chunk that results from the previous function, starting with the
original chunk.

Chapter 6

The order in which you apply transform functions can be
significant. Experiment with your own data to determine which
T~ transforms are best, and in which order they should be applied.

You can pass trace=1 into transform chunk () to get an output at each step.

>>> from transforms import transform chunk

>>> transform chunk([('the', 'DT'), ('book', 'NN'), ('of', 'IN'),
('recipes', 'NNS'), ('is', 'VBZ'), ('delicious', 'JJ')], trace=1)
filter insignificant : [('book', 'NN'), ('of', 'IN'), ('recipes',
'NNS'), ('is', 'VBZ'), ('delicious', 'JJ')]

swap_verb phrase : [('delicious', 'JJ'), ('book', 'NN'), ('of', 'IN'),
('recipes', 'NNS')]

swap_infinitive phrase : [('delicious', 'JJ'), ('recipes', 'NNS'),
('book', 'NN')]

singularize plural noun : [('delicious', 'JJ'), ('recipe', 'NN'),
('book', 'NN')]

[('delicious', 'JJ'), ('recipe', 'NN'), ('book', 'NN')]

This shows you the result of each transform function, which is then passed in to the next
transform function until a final chunk is returned.

The transform functions used were defined in the previous recipes of this chapter.

Converting a chunk tree to text

At some point, you may want to convert a Tree or sub-tree back to a sentence or chunk string.
This is mostly straightforward, except when it comes to properly outputting punctuation.

How to do it...

We'll use the first Tree of the treebank chunk as our example. The obvious first step is to
join all the words in the tree with a space.

>>> from nltk.corpus import treebank chunk

>>> tree = treebank_ chunk.chunked sents () [0]

>>> ' ' join([w for w, t in tree.leaves()])

'Pierre Vinken , 61 years old , will join the board as a nonexecutive
director Nov. 29 .!'

Transforming Chunks and Trees

As you can see, the punctuation isn't quite right. The commas and period are treated as
individual words, and so get the surrounding spaces as well. We can fix this using regular
expression substitution. This is implemented in the chunk tree to sent () function
found in transforms.py.

import re
punct_re = re.compile(r'\s([,\.;\?1)")

def chunk tree to_sent (tree, concat=' '):
s = concat.join([w for w, t in tree.leaves()])
return re.sub(punct_re, r'\g<l>', s)

Using this function results in a much cleaner sentence, with no space before each
punctuation mark:

>>> from transforms import chunk tree to_ sent

>>> chunk tree to_sent (tree)

'Pierre Vinken, 61 years old, will join the board as a nonexecutive
director Nov. 29.'

To correct the extra spaces in front of the punctuation, we create a regular expression
punct_re that will match a space followed by any of the known punctuation characters. We
have to escape both . and '?' with a '\ since they are special characters. The punctuation is
surrounded by parenthesis so we can use the matched group for substitution.

Once we have our regular expression, we define chunk tree to_sent (), whose first

step is to join the words by a concatenation character that defaults to a space. Then we can
call re.sub () to replace all the punctuation matches with just the punctuation group. This
eliminates the space in front of the punctuation characters, resulting in a more correct string.

We can simplify this function a little by using n1tk.tag.untag () to get words from the
tree's leaves, instead of using our own list comprehension.

import nltk.tag, re
punct_re = re.compile(r'\s([,\.;\?])")

def chunk tree to_sent (tree, concat=' '):
s = concat.join(nltk.tag.untag(tree.leaves()))
return re.sub(punct_re, r'\g<l>', s)

156

Chapter 6

The nltk.tag.untag() function was covered at the end of the Default tagging recipe in
Chapter 4, Part-of-Speech Tagging.

Flattening a deep tree

Some of the included corpora contain parsed sentences, which are often deep trees of nested
phrases. Unfortunately, these trees are too deep to use for training a chunker, since 0B tag
parsing is not designed for nested chunks. To make these trees usable for chunker training,
we must flatten them.

Getting ready

We're going to use the first parsed sentence of the t reebank corpus as our example. Here's
a diagram showing how deeply nested this tree is:

s
e @
NP-5B.J vp -
e e I
NP - ADJP , MD vp .
NNP NNP | NP JJ, wil VB NP PP-CLR NP-TMP
| _|’ P | 1 I e T
Pieme Vinken CD NNS od join DT NM N NP NMP CD
| | I | Il T I |
B1 years the board as DT JJ NN Nov. 29
{ | |
a nonexecutive director

You may notice that the part-of-speech tags are part of the tree structure, instead of
being included with the word. This will be handled next using the Tree . pos () method,
which was designed specifically for combining words with pre-terminal Tree nodes such
as part-of-speech tags.

How to do it...

In transforms.py there is a function named flatten deeptree (). It takes a single
Tree and will return a new Tree that keeps only the lowest level trees. It uses a helper
function £latten childtrees () to do most of the work.

from nltk.tree import Tree

def flatten childtrees(trees):
children = []

Transforming Chunks and Trees

for t in trees:
if t.height() < 3:
children.extend (t.pos())

elif t.height () == 3:
children.append (Tree (t.node, t.pos()))
else:

children.extend(flatten childtrees([c for c in t]))
return children

def flatten deeptree(tree):

return Tree(tree.node, flatten childtrees([c for ¢ in tree]))

We can use it on the first parsed sentence of the treebank corpus to get a flatter tree:

>>> from nltk.corpus import treebank
>>> from transforms import flatten deeptree

>>> flatten deeptree (treebank.parsed sents() [0])

Tree('S', [Tree('NP', [('Pierre', 'NNP'), ('Vinken', 'NNP')1), (',b',
',"), Tree('NP', [('61', 'CD'), ('years', 'NNS')]), ('old', 'JJ'),
(v,v, ',"), ('will', 'MD'), ('join', 'VB'), Tree('NP', [('the',

'DT'), ('board', 'NN')]), ('as', 'IN'), Tree('NP', [('a', 'DT'),
('nonexecutive', 'JJ'), ('director', 'NN')]), Tree('NP-TMP', [('Nov.',
'NNP'), ('29', 'CD")1), ('.', '.")])

The result is a much flatter Tree that only includes NP phrases. Words that are not part of a
NP phrase are separated. This flatter tree is shown as follows:

NP o NP odJ ,, willMD join VB NP as IN NP NP-TMP
Pieme NNP Vinken NNP 61 CD years NNS the DT board NN a DT nonexecutive JJ director NN Nov. NNP 29 CD

This Tree is quite similar to the first chunk Tree from the treebank_ chunk corpus. The
main difference is that the rightmost NP Tree is separated into two sub-trees in the previous
diagram, one of them named NP-TMP.

The first tree from treebank chunk is shown as follows for comparison:

]

|
NP - NP odM ,, wilMD join VB NP as IN NP

Pieme NMP Vinken NNP 61 CD years NNS the DT board NN a DT nonexecutive & directorNN Nov. NNP 29 CD

158

Chapter 6

The solution is composed of two functions: flatten_deeptree () returns a new Tree from
the given tree by calling flatten_childtrees () on each of the given tree's children.

flatten childtrees () is a recursive function that drills down into the Tree until it finds
child trees whose height () is equal to or less than three. A Tree whose height () is less
than three looks like this:

>>> from nltk.tree import Tree
>>> Tree('NNP', ['Pierre']) .height()
2

NNP
|

Pierre

These short trees are converted into lists of tuples using the pos () function.

>>> Tree('NNP', ['Pierre']) .pos|()
[('Pierre', 'NNP')]

Trees whose height () is equal to three are the lowest level trees that we're interested in
keeping. These trees look like this:

>>> Tree('NP', [Tree('NNP', ['Pierre']), Tree('NNP', ['Vinken']l)]).
height ()
3

NP

A
NNP NNP
| I

Pierre Vinken

When we call pos () on that tree, we get:

>>> Tree('NP', [Tree('NNP', ['Pierre']), Tree('NNP', ['Vinken'])]).
pos ()
[('Pierre', 'NNP'), ('Vinken', 'NNP')]

The recursive nature of flatten childtrees () eliminates all trees whose height is
greater than three.

Transforming Chunks and Trees

Flattening a deep Tree allows us to call nltk.chunk.util.tree2conlltags () onthe
flattened Tree, a necessary step to train a chunker. If you try to call this function before
flattening the Tree, you get a valueError exception.

>>> from nltk.chunk.util import tree2conlltags
>>> tree2conlltags (treebank.parsed sents() [0])
Traceback (most recent call last):

File "<stdin>", line 1, in <module>

File "/usr/local/lib/python2.6/dist-packages/nltk/chunk/util.py",
line 417, in tree2conlltags

raise ValueError, "Tree is too deeply nested to be printed in

CoNLL format"
ValueError: Tree is too deeply nested to be printed in CoNLL format

However, after flattening there's no problem:

>>> tree2conlltags (flatten_ deeptree (treebank.parsed sents() [0]))

[('Pierre', 'NNP', 'B-NP'), ('Vinken', 'NNP', 'I-NP'), (',', ',',
'o'), ('61', 'CD', 'B-NP'), ('years', 'NNS', 'I-NP'), ('old', 'JJ',
o'y, (*,', ',v, 'o"), ('will', 'MD', 'O'), ('join', 'VB', '0O'),
('the', 'DT', 'B-NP'), ('board', 'NN', 'I-NP'), ('as', 'IN', 'O'),
('a', 'DT', 'B-NP'), ('monexecutive', 'JJ', 'I-NP'), ('director',
'NN', 'I-NP'), ('Nov.', 'NNP', 'B-NP-TMP'), ('29', 'CD', 'I-NP-TMP'),
(r.r, v, o)]

Being able to flatten trees, opens up the possibility of training a chunker on corpora consisting

of deep parse trees.

CESS-ESP and CESS-CAT treebank
The cess_esp and cess_cat corpora have parsed sentences, but no chunked sentences.

In other words, they have deep trees that must be flattened in order to train a chunker. In fact,

the trees are so deep that a diagram can't be shown, but the flattening can be demonstrated
by showing the height () of the tree before and after flattening.

>>> from nltk.corpus import cess_esp

>>> cess_esp.parsed_sents () [0] .height ()

22

>>> flatten deeptree (cess_esp.parsed _sents() [0]) .height ()
3

160

Chapter 6

The Training a tagger-based chunker recipe in Chapter 5, Extracting Chunks covers training a
chunker using IOB tags.

Creating a shallow tree

In the previous recipe, we flattened a deep Tree by only keeping the lowest level sub-trees. In
this recipe, we'll keep only the highest level sub-trees instead.

How to do it...

We'll be using the first parsed sentence from the treebank corpus as our example. Recall
from the previous recipe that the sentence Tree looks like this:

s
. @
NP-5BJ VP -
L e I
NP - ADJP , MD VP .
MNP NNP | NP JJ o, wil VB NP PP-CLR NP-TMP
| _f P | 1 T N
Pieme Vinken CD NNS od join OT NM IN NP NNFP CD
| | | | | T | |
61 years the board as DT 4 NN Mov. 29
d nonexecutive director

The shallow_ tree () function defined in transforms.py eliminates all the nested
sub-trees, keeping only the top tree nodes.

from nltk.tree import Tree

def shallow tree(tree):
children = []

for t in tree:
if t.height() < 3:
children.extend(t.pos())
else:
children.append (Tree (t.node, t.pos()))

return Tree (tree.node, children)

Transforming Chunks and Trees
Using it on the first parsed sentence in treebank results in a Tree with only two sub-trees.

>>> from transforms import shallow tree
>>> shallow tree (treebank.parsed sents () [0])

Tree('S', [Tree('NP-SBJ', [('Pierre', 'NNP'), ('Vinken', 'NNP'), (', ',
',"), ('61', 'CcD'), ('years', 'NNS'), ('old', 'Jag'), (',', ',")1),
Tree('VP', [('will', 'MD'), ('join', 'VB'), ('the', 'DT'), ('board',
'NN'), ('as', 'IN'), ('a', 'DT'), ('nonexecutive', 'JdJ'), ('director',
'NN'), ('Nov.', 'NNP'), ('29', 'CcD")]), ('.', ' .")1)

We can visually and programmatically see the difference, as shown in the following diagram
and code:

s
. 00— @ @ @000
NP-SBJ VP -

e —
Pieme NNP Vinken NNP |, 61CD yearsNNS odJJ ,, willMD join VB the DT board NN asIN aDT nonexecutive JJ directorNN Nov. NNP 29 CD

>>> treebank.parsed_sents () [0] .height ()

7

>>> shallow_tree (treebank.parsed sents () [0]) .height ()
3

As in the previous recipe, the height of the new tree is three so it can be used for training a
chunker.

The shallow_tree () function iterates over each of the top-level sub-trees in order to
create new child trees. If the height () of a sub-tree is less than three, then that sub-tree
is replaced by a list of its part-of-speech tagged children. All other sub-trees are replaced by
a new Tree whose children are the part-of-speech tagged leaves. This eliminates all nested
sub-trees while retaining the top-level sub-trees.

This function is an alternative to flatten deeptree () from the previous recipe, for when
you want to keep the higher level tree nodes and ignore the lower level nodes.

The previous recipe covers how to flatten a Tree and keep the lowest level sub-trees, as
opposed to keeping the highest level sub-trees.

162

Chapter 6

Converting tree nodes

As you've seen in previous recipes, parse trees often have a variety of Tree node types that
are not present in chunk trees. If you want to use the parse trees to train a chunker, then
you'll probably want to reduce this variety by converting some of these tree nodes to more
common node types.

Getting ready

First, we have to decide what Tree nodes need to be converted. Let's take a look at that first
Tree again:

s

- 0

NP-SBJ VP -

e e I

NP - ADJP , MD VP .
NNP NNP | NP JJ | wil VB NP PP-CLR NP-TMP
N P 0 N e P
Pieme Vinken CD HNNS od join DT NH IN NP NNFP CD
| | | | | T | |
61 years the board as DT Jd NN MNov. 29

f | I

a nonexecutive director

Immediately you can see that there are two alternative NP sub-trees: NP-SBJ and NP-TMP.
Let's convert both of those to NP. The mapping will be as follows:

Original Node New Node
NP-SBJ NP
NP-TMP NP

How to do it...

In transforms.py there is a function convert tree nodes (). It takes two arguments:
the Tree to convert, and a node conversion mapping. It returns a new Tree with all
matching nodes replaced based on the values in the mapping.

from nltk.tree import Tree

def convert tree nodes(tree, mapping) :
children = []

for t in tree:
if isinstance(t, Tree):

Transforming Chunks and Trees

children.append(convert tree nodes(t, mapping))
else:
children.append(t)

node = mapping.get (tree.node, tree.node)
return Tree (node, children)

Using the mapping table shown earlier, we can pass it in as a dict to convert tree
nodes () and convert the first parsed sentence from treebank.

>>> from transforms import convert tree nodes

>>> mapping = {'NP-SBJ': 'NP', 'NP-TMP': 'NP'}

>>> convert tree nodes (treebank.parsed sents() [0], mapping)

Tree('S', [Tree('NP', [Tree('NP', [Tree('NNP', ['Pierre'l]l),

Tree ('NNP', ['Vinken'l)]l), Tree(',', [',']), Tree('ADJP', [Tree('NP',
[Tree('CD', ['61']), Tree('NNS', ['years'])]), Tree('dJJd', ['old']l)]),
Tree(',', [',']1)]), Tree('VP', [Tree('MD', ['will']), Tree('VP',
[Tree('VB', ['join']l), Tree('NP', [Tree('DT', ['the']l), Tree('NN',
['"board'])]), Tree('PP-CLR', [Tree('IN', ['as']), Tree('NP',

[Tree ('DT', ['a']), Tree('JJ', ['nonexecutive']), Tree('NN',
['director']l)]1)]), Tree('NP', [Tree('NNP', ['Nov.']), Tree('CD',
['29'])1)1)]1), Tree('.', ['.'1)])

In the following diagram, you can see that the NP-* sub-trees have been replaced with
NP sub-trees:

s
- @
NP VP .
T T — T [
NP . ADJP ., MD VP .
NNP NNP | NP JJ . wil VB NP PP-CLR NP
| | e, [[o, T — T
Pieme Vinken CD MNMNS od join DT NN N NP NNP CD
| | | | I | |
61 vyears the board as DT Jd NN Nov. 29
| | |
a nonexecutive director

convert tree nodes () recursively converts every child sub-tree using the mapping.
The Tree is then rebuilt with the converted nodes and children until the entire Tree has
been converted.

The result is a brand new Tree instance with new sub-trees whose nodes have been
converted.

164

Chapter 6

See also

The previous two recipes cover different methods of flattening a parse Tree, both of which
can produce sub-trees that may require mapping before using them to train a chunker.

Chunker training is covered in the Training a tagger-based chunker recipe in Chapter 5,
Extracting Chunks.

Text Classification

In this chapter, we will cover:

» Bag of Words feature extraction

» Training a naive Bayes classifier

» Training a decision tree classifier

» Training a maximum entropy classifier

» Measuring precision and recall of a classifier
» Calculating high information words

» Combining classifiers with voting

» Classifying with multiple binary classifiers

Introduction

Text classification is a way to categorize documents or pieces of text. By examining the
word usage in a piece of text, classifiers can decide what class label to assign to it. A binary
classifier decides between two labels, such as positive or negative. The text can either be
one label or the other, but not both, whereas a multi-label classifier can assign one or more
labels to a piece of text.

Classification works by learning from labeled feature sets, or training data, to later classify

an unlabeled feature set. A feature set is basically a key-value mapping of feature names to
feature values. In the case of text classification, the feature names are usually words, and the
values are all True. As the documents may have unknown words, and the number of possible
words may be very large, words that don't occur in the text are omitted, instead of including
them in a feature set with the value False.

Text Classification

An instance is a single feature set. It represents a single occurrence of a combination of
features. We will use instance and feature set interchangeably. A labeled feature set is an
instance with a known class label that we can use for training or evaluation.

Bag of Words feature extraction

Text feature extraction is the process of transforming what is essentially a list of words into a
feature set that is usable by a classifier. The NLTK classifiers expect dict style feature sets,
so we must therefore transform our text into a dict. The Bag of Words model is the simplest
method; it constructs a word presence feature set from all the words of an instance.

How to do it...

The idea is to convert a list of words into a dict, where each word becomes a key with the
value True. The bag of words () function in featx.py looks like this:

def bag of words (words) :
return dict ([(word, True) for word in words])

We can use it with a list of words, in this case the tokenized sentence "the quick brown fox":

>>> from featx import bag of words
>>> bag of words(['the', 'quick', 'brown', 'fox'])
{'quick': True, 'brown': True, 'the': True, 'fox': True}

The resulting dict is known as a bag of words because the words are not in order, and it
doesn't matter where in the list of words they occurred, or how many times they occurred. All
that matters is that the word is found at least once.

The bag _of words () function is a very simple list comprehension that constructs a dict
from the given words, where every word gets the value True.

Since we have to assign a value to each word in order to create a dict, True is a logical
choice for the value to indicate word presence. If we knew the universe of all possible words,
we could assign the value False to all the words that are not in the given list of words. But
most of the time, we don't know all possible words beforehand. Plus, the dict that would
result from assigning False to every possible word would be very large (assuming all words in
the English language are possible). So instead, to keep feature extraction simple and use less
memory, we stick with assigning the value True to all words that occur at least once. We don't
assign the value False to any words since we don't know what the set of possible words are;
we only know about the words we are given.

168

Chapter 7

In the default Bag of Words model, all words are treated equally. But that's not always a good
idea. As we already know, some words are so common that they are practically meaningless. If
you have a set of words that you want to exclude, you can use the bag of words not in
set () function in featx.py.

def bag of words not in set (words, badwords) :
return bag of words (set (words) - set (badwords))

This function can be used, among other things, to filter stopwords. Here's an example where
we filter the word "the" from "the quick brown fox":

>>> from featx import bag of words not in set

>>> bag of words not in set(['the', 'quick', 'brown',6 'fox'l],
['the'])
{'quick': True, 'brown': True, 'fox': True}

As expected, the resulting dict has "quick", "brown", and "fox", but not "the".

Filtering stopwords

Here's an example of using the bag of words not in set () function to filter all
English stopwords:

from nltk.corpus import stopwords

def bag of non stopwords (words, stopfile='english'):
badwords = stopwords.words (stopfile)
return bag of words not in set (words, badwords)

You can pass a different language filename as the stopfile keyword argument if you are
using a language other than English. Using this function produces the same result as the
previous example:

>>> from featx import bag of non stopwords
>>> bag of non stopwords(['the', 'quick',6 'brown',K 'fox'])
{'quick': True, 'brown': True, 'fox': True}

Here, "the" is a stopword, so it is not present in the returned dict.

Text Classification

Including significant bigrams

In addition to single words, it often helps to include significant bigrams. As significant bigrams
are less common than most individual words, including them in the Bag of Words can help the
classifier make better decisions. We can use the BigramCollocationFinder covered in
the Discovering word collocations recipe of Chapter 1, Tokenizing Text and WordNet Basics, to
find significant bigrams. bag_of bigrams words () found in featx.py will return a dict
of all words along with the 200 most significant bigrams.

from nltk.collocations import BigramCollocationFinder
from nltk.metrics import BigramAssocMeasures

def bag of bigrams_words (words, score_fn=BigramAssocMeasures.chi_sq,
n=200) :

bigram finder = BigramCollocationFinder.from words (words)

bigrams = bigram finder.nbest (score fn, n)

return bag_of_ words(words + bigrams)

The bigrams will be present in the returned dict as (wordl, word2) and will have the
value as True. Using the same example words as before, we get all words plus every bigram:

>>> from featx import bag of bigrams words

>>> bag of bigrams words(['the', 'quick',6 'brown',K 'fox'])
{'brown': True, ('brown', 'fox'): True, ('the',6 'quick'):
True, 'fox': True, ('quick', 'brown'): True, 'quick': True,

'the': True}

You can change the maximum number of bigrams found by altering the keyword argument n.

The Discovering word collocations recipe of Chapter 1, Tokenizing Text and WordNet Basics
covers the BigramCollocationFinder in more detail. In the next recipe, we will train a
NaiveBayesClassifier using feature sets created with the Bag of Words model.

Training a naive Bayes classifier

Now that we can extract features from text, we can train a classifier. The easiest classifier
to get started with is the NaiveBayesClassifier. It uses Bayes Theorem to predict the
probability that a given feature set belongs to a particular label. The formula is:

P(label | features) = P(label) * P(features | label) / P(features)

170

Chapter 7

» P (label) isthe prior probability of the label occurring, which is the same as
the likelihood that a random feature set will have the label. This is based on the
number of training instances with the label compared to the total number of training
instances. For example, if 60/100 training instances have the label, the prior
probability of the label is 60 percent.

» P(features | label) is the prior probability of a given feature set being
classified as that label. This is based on which features have occurred with each
label in the training data.

» P (features) is the prior probability of a given feature set occurring. This is the
likelihood of a random feature set being the same as the given feature set, and is
based on the observed feature sets in the training data. For example, if the given
feature set occurs twice in 100 training instances, the prior probability is 2 percent.

» P(label | features) tells us the probability that the given features should have
that label. If this value is high, then we can be reasonably confident that the label is
correct for the given features.

Getting ready

We are going to be using the movie reviews corpus for our initial classification examples.
This corpus contains two categories of text: pos and neg. These categories are exclusive,
which makes a classifier trained on them a binary classifier. Binary classifiers have only two
classification labels, and will always choose one or the other.

Each file in the movie reviews corpus is composed of either positive or negative movie
reviews. We will be using each file as a single instance for both training and testing the
classifier. Because of the nature of the text and its categories, the classification we will be
doing is a form of sentiment analysis. If the classifier returns pos, then the text expresses
positive sentiment, whereas if we get neg, then the text expresses negative sentiment.

How to do it...

For training, we need to first create a list of labeled feature sets. This list should be of the form

[(featureset, label)] wherethe featureset isadict, and label is the known class
label for the featureset. The label feats from corpus () function in featx.py takes a
corpus, such as movie reviews, and a feature detector function, which defaults to bag
of words. It then constructs and returns a mapping of the form {label: [featureset]}.
We can use this mapping to create a list of labeled training instances and testing instances. The
reason to do it this way is because we can get a fair sample from each label.

import collections

def label feats from corpus(corp, feature detector=bag of words) :
label feats = collections.defaultdict(list)
for label in corp.categories() :

Text Classification

for fileid in corp.fileids(categories=[labell) :
feats = feature detector(corp.words (fileids=[fileid]))
label feats[labell] .append(feats)
return label feats

Once we can get a mapping of 1abel : feature sets, we want to construct a list of labeled
training instances and testing instances. The function split label feats() in featx.
py takes a mapping returned from label feats from corpus () and splits each list of
feature sets into labeled training and testing instances.

def split label feats(lfeats, split=0.75):
train feats = []
test feats = []
for label, feats in lfeats.iteritems{() :
cutoff = int(len(feats) * split)
train feats.extend([(feat, label) for feat in
feats[:cutoff]l)

test feats.extend([(feat, label) for feat in
feats[cutoff:1])

return train feats, test feats

Using these functions with the movie reviews corpus gives us the lists of labeled feature
sets we need to train and test a classifier.

>>> from nltk.corpus import movie reviews

>>> from featx import label feats from corpus, split label feats
>>> movie reviews.categories|()

['neg', 'pos'l]

>>> lfeats = label feats from corpus(movie reviews)

>>> lfeats.keys ()

['neg', 'pos'l]

>>> train feats, test feats = split label feats(lfeats)
>>> len(train feats)

1500

>>> len(test feats)

500

So there are 1,000 pos files, 1,000 neg files, and we end up with 1,500 labeled training
instances and 500 labeled testing instances, each composed of equal parts pos and neg.
Now we can train a NaiveBayesClassifier usingits train () class method,

>>> from nltk.classify import NaiveBayesClassifier

>>> nb classifier = NaiveBayesClassifier.train(train feats)
>>> nb classifier.labels()

['neg', 'pos'l]

172

Chapter 7

Let's test the classifier on a couple of made up reviews. The classify () method takes a
single argument, which should be a feature set. We can use the same bag of words ()
feature detector on a made up list of words to get our feature set.

>>> from featx import bag of words

>>> negfeat = bag of words(['the', 'plot', 'was', 'ludicrous'])

>>> nb classifier.classify(negfeat)

'neg’

>>> posfeat = bag of words(['kate', 'winslet',6 'is', 'accessible'])
>>> nb classifier.classify(posfeat)

"pos’

The label_ feats_from_corpus () assumes that the corpus is categorized, and that a
single file represents a single instance for feature extraction. It iterates over each category
label, and extracts features from each file in that category using the feature detector ()
function, which defaults to bag_of words (). It returns a dict whose keys are the category
labels, and the values are lists of instances for that category.

If we had the 1abel feats from corpus () function, return a list of
. labeled feature sets, instead of a dict, it would be much harder to get the
% balanced training data. The list would be ordered by label, and if you took a
L slice of it, you would almost certainly be getting far more of one label than
another. By returning a dict, you can take slices from the feature sets of
each label.

Now we need to split the labeled feature sets into training and testing instances using

split label feats (). This function allows us to take a fair sample of labeled feature
sets from each label, using the split keyword argument to determine the size of the sample.
split defaults to 0. 75, which means the first three-fourths of the labeled feature sets for
each label will be used for training, and the remaining one-fourth will be used for testing.

Once we have split up our training and testing feats, we train a classifier using

the NaiveBayesClassifier.train () method. This class method builds two

probability distributions for calculating prior probabilities. These are passed in to the
NaiveBayesClassifier constructor. The label probdist contains P (label), the prior
probability for each label. The feature probdist contains P (feature name = feature
value | label).In our case, it will store P (word=True | label). Both are calculated
based on the frequency of occurrence of each label, and each feature name and value in the
training data.

Text Classification

The NaiveBayesClassifier inherits from ClassifierI, which requires subclasses to
provide a labels () method, and at least one of the classify () and prob classify ()
methods. The following diagram shows these and other methods, which will be covered shortly:

Classifierl

labels()
classify()
prob_classify()

NaiveBayesClassifier

most_informative_features()
show_most_informative_features()
train()

We can test the accuracy of the classifier using nltk.classify.util.accuracy ()
and the test_feats created previously.

>>> from nltk.classify.util import accuracy
>>> accuracy(nb_classifier, test feats)
0.72799999999999998

This tells us that the classifier correctly guessed the label of nearly 73 percent of the testing
feature sets.

Classification probability

While the classify () method returns only a single label, you can use the prob classify ()
method to get the classification probability of each label. This can be useful if you want to use
probability thresholds greater than 50 percent for classification.

>>> probs = nb classifier.prob classify(test feats[0] [0])
>>> probs.samples ()

['neg', 'pos']

>>> probs.max ()

"pos

>>> probs.prob('pos')

0.99999996464309127

>>> probs.prob('neg')

3.5356889692409258e-08

174

Chapter 7

In this case, the classifier says that the first testing instance is nearly 100 percent likely
to be pos.

Most informative features

The NaiveBayesClassifier has two methods that are quite useful for learning about your
data. Both methods take a keyword argument n to control how many results to show. The
most informative features () method returns a list of the form [(feature name,
feature value)] ordered by most informative to least informative. In our case, the feature
value will always be True.

>>> nb classifier.most informative features (n=5)
[('magnificent', True), ('outstanding', True), ('insulting',6 True),
('vulnerable', True), ('ludicrous', True)]

The show _most_informative features () method will print out the results from
most_informative features () and will also include the probability of a feature pair
belonging to each label.

>>> nb classifier.show most informative features (n=5)
Most Informative Features

magnificent = True pos : neg = 15.0 1.0
outstanding = True pos : neg = 13.6 1.0
insulting = True neg : pos = 13.0 1.0
vulnerable = True pos : neg = 12.3 1.0
ludicrous = True neg : pos = 11.8 1.0

The informativeness, or information gain, of each feature pair is based on the prior
probability of the feature pair occurring for each label. More informative features are those
that occur primarily in one label and not the other. Less informative features are those that
occur frequently in both labels.

Training estimator

During training, the NaiveBayesClassifier constructs its probability distributions using an
estimator parameter, which defaults to nltk.probability.ELEProbDist. But you can
use any estimator you want, and there are quite a few to choose from. The only constraints
are that it must inherit from nltk.probability.ProbDistI and its constructor must take
a bins keyword argument. Here's an example using the LaplaceProdDist:

>>> from nltk.probability import LaplaceProbDist

>>> nb_classifier = NaiveBayesClassifier.train(train_feats,
estimator=LaplaceProbDist)

>>> accuracy(nb_classifier, test feats)

0.71599999999999997

Text Classification

As you can see, accuracy is slightly lower, so choose your est imator carefully.

. Youcannotusenltk.probability.MLEProbDist as the estimator, or
% any ProbDistI subclass that does not take the bins keyword argument.
s Training will fail with TypeError: _ init () got an unexpected
keyword argument 'bins'.

Manual training

You don't have to use the train () class method to construct a NaiveBayesClassifier.
You can instead create the label probdist and feature probdist manually. label
probdist should be an instance of ProbDistI, and should contain the prior probabilities
for each label. feature probdist should be a dict whose keys are tuples of the form
(label, feature name) and whose values are instances of ProbDistI that have the
probabilities for each feature value. In our case, each ProbDistI should have only one value,
True=1. Here's a very simple example using manually constructed DictionaryProbDist:

>>> from nltk.probability import DictionaryProbDist

>>> label probdist = DictionaryProbDist({'pos': 0.5, 'neg': 0.5})

>>> true probdist = DictionaryProbDist ({True: 1})

>>> feature probdist = {('pos', 'yes'): true probdist, ('neg', 'no'):
true probdist}

>>> classifier = NaiveBayesClassifier (label probdist, feature

probdist)

>>> classifier.classify({'yes': True})
'pos’

>>> classifier.classify({'no': True})
'neg’

In the next recipes, we will train two more classifiers, the DecisionTreeClassifier, and
the MaxentClassifier. In the Measuring precision and recall of a classifier recipe in this
chapter, we will use precision and recall instead of accuracy to evaluate the classifiers. And
then in the Calculating high information words recipe, we will see how using only the most
informative features can improve classifier performance.

The movie reviews corpus is an instance of CategorizedPlaintextCorpusReader,
which is covered in the Creating a categorized text corpus recipe in Chapter 3, Creating
Custom Corpora.

176

Chapter 7

Training a decision tree classifier

The DecisionTreeClassifier works by creating a tree structure, where each node
corresponds to a feature name, and the branches correspond to the feature values. Tracing
down the branches, you get to the leaves of the tree, which are the classification labels.

Getting ready

For the DecisionTreeClassifier to work for text classification, you must use NLTK 2.0b9
or later. This is because earlier versions are unable to deal with unknown features. If the
DecisionTreeClassifier encountered a word/feature that it hadn't seen before, then

it raised an exception. This bug has now been fixed by yours truly, and is included in all NLTK
versions since 2.0b9.

How to do it...

Using the same train feats and test_feats we created from the movie reviews
corpus in the previous recipe, we can call the DecisionTreeClassifier.train() class
method to get a trained classifier. We pass binary=True because all of our features are
binary: either the word is present or it's not. For other classification use cases where you have
multi-valued features, you will want to stick to the default binary=False.

In this context, binary refers to feature values, and is not to be confused
with a binary classifier. Our word features are binary because the value is
R either True, or the word is not present. If our features could take more than
% two values, we would have to use binary=False. A binary classifier, on the
IS other hand, is a classifier that only chooses between two labels. In our case,
we are training a binary DecisionTreeClassifier on binary features.
But it's also possible to have a binary classifier with non-binary features, or a
non-binary classifier with binary features.

Following is the code for training and evaluating the accuracy of a
DecisionTreeClassifier

>>> from nltk.classify import DecisionTreeClassifier

>>> dt classifier = DecisionTreeClassifier.train(train feats,
binary:True, entropy cutoff=0.8, depth cutoff=5, suppo;t_cutoff=30)
>>> accuracy(dt classifier, test feats)

0.68799999999999994

Text Classification

M The DecisionTreeClassifier can take much longer to train than the
Q NaiveBayesClassifier. For that reason, the default parameters have
been overridden so it trains faster. These parameters will be explained later.

The DecisionTreeClassifier, like the NaiveBayesClassifier, is also an instance of
ClassifierI. Duringtraining, the DecisionTreeClassifier creates a tree where the
child nodes are also instances of DecisionTreeClassifier. The leaf nodes contain only

a single label, while the intermediate child nodes contain decision mappings for each feature.
These decisions map each feature value to another DecisionTreeClassifier, which itself
may contain decisions for another feature, or it may be a final leaf node with a classification
label. The train () class method builds this tree from the ground up, starting with the leaf
nodes. It then refines itself to minimize the number of decisions needed to get to a label by
putting the most informative features at the top.

To classify, the DecisionTreeClassifier looks at the given feature set and traces down
the tree, using known feature names and values to make decisions. Because we are creating
a binary tree, each DecisionTreeClassifier instance also has a default decision tree,
which it uses when a known feature is not present in the feature set being classified. This is
a common occurrence in text-based feature sets, and indicates that a known word was not in
the text being classified. This also contributes information towards a classification decision.

The parameters passed in to DecisionTreeClassifier.train () can be tweaked to
improve accuracy or decrease training time. Generally, if you want to improve accuracy, you
must accept a longer training time and if you want to decrease the training time, the accuracy
will most likely decrease as well.

Entropy cutoff

The entropy cutoff is used during the tree refinement process. If the entropy of the
probability distribution of label choices in the tree is greater than the entropy cutoff,
then the tree is refined further. But if the entropy is lower than the entropy cutoff,
then tree refinement is halted.

Entropy is the uncertainty of the outcome. As entropy approaches 1.0, uncertainty increases
and, conversely, as entropy approaches 0.0, uncertainty decreases. In other words, when
you have similar probabilities, the entropy will be high as each probability has a similar
likelihood (or uncertainty of occurrence). But the more the probabilities differ, the lower

the entropy will be.

178

Chapter 7

Entropy is calculated by giving nltk.probability.entropy () a MLEProbDist created
from a FregDist of label counts. Here's an example showing the entropy of various
FregDist values:

>>> from nltk.probability import FregDist, MLEProbDist, entropy
>>> £d = FregDist({'pos': 30, 'meg': 10})
>>> entropy (MLEProbDist (£d))
0.81127812445913283

>>> fd['neg'] = 25

>>> entropy (MLEProbDist (£d))
0.99403021147695647

>>> fd['neg'] = 30

>>> entropy (MLEProbDist (£d))

1.0

>>> fd['neg'] =1

>>> entropy (MLEProbDist (£d))
0.20559250818508304

What this all means is that if the label occurrence is very skewed one way or the other, the
tree doesn't need to be refined because entropy/uncertainty is low. But when the entropy
is greater than entropy cutoff then the tree must be refined with further decisions to
reduce the uncertainty. Higher values of entropy cutoff will decrease both accuracy
and training time.

Depth cutoff

The depth_cutoff is also used during refinement to control the depth of the tree. The

final decision tree will never be deeper than the depth cutoff. The default value is 100,
which means that classification may require up to 100 decisions before reaching a leaf node.
Decreasing the depth_cutoff will decrease the training time and most likely decrease the
accuracy as well.

Support cutoff

The support_cutoff controls how many labeled feature sets are required to refine the
tree. As the DecisionTreeClassifier refines itself, labeled feature sets are eliminated
once they no longer provide value to the training process. When the number of labeled
feature sets is less than or equal to support_cutoff, refinement stops, at least for that
section of the tree.

Another way to look at it is that support cutoff specifies the minimum number of
instances that are required to make a decision about a feature. If support cutoff is 20,
and you have less than 20 labeled feature sets with a given feature, then you don't have
enough instances to make a good decision, and refinement around that feature must come
to a stop.

Text Classification

The previous recipe covered the creation of training and test feature sets from the movie
reviews corpus. In the next recipe, we will cover training a MaxentClassifier, and in the
Measuring precision and recall of a classifier recipe in this chapter, we will use precision and
recall to evaluate all the classifiers.

Training a maximum entropy classifier

The third classifier which we will cover is the MaxentClassifier, also known as a
conditional exponential classifier. The maximum entropy classifier converts labeled feature
sets to vectors using encoding. This encoded vector is then used to calculate weights for each
feature that can then be combined to determine the most likely label for a feature set.

Getting ready

The MaxentClassifier requires the numpy package, and optionally the scipy package.
This is because the feature encodings use numpy arrays. Having scipy installed also means
you will be able to use faster algorithms that consume less memory. You can find installation
for both at http://www.scipy.org/Installing SciPy.

M Many of the algorithms can be quite memory hungry, so you may want
Q to quit all your other programs while training a MaxentClassifier,
just to be safe.

How to do it...

We will use the same train_feats and test_feats from the movie reviews corpus
that we constructed before, and call the MaxentClassifier.train() class method.

Like the DecisionTreeClassifier, MaxentClassifier.train () has its own specific
parameters that have been tweaked to speed up training. These parameters will be explained
in more detail later.

>>> from nltk.classify import MaxentClassifier

>>> me_classifier = MaxentClassifier.train(train_feats,
algorithm='iis', trace=0, max iter=1, min lldelta=0.5)
>>> accuracy(me_classifier, test feats)

0.5

The reason this classifier has such a low accuracy is because the parameters have been set
such that it is unable to learn a more accurate model. This is due to the time required to train
a suitable model using the iis algorithm. Higher accuracy models can be learned much
faster using the scipy algorithms.

180

Chapter 7

sl If training is taking a long time, you can usually cut it off manually by hitting

Q Ctrl + C. This should stop the current iteration and still return a classifier
based on whatever state the model is in.

Like the previous classifiers, MaxentClassifier inherits from ClassifierI. Depending
on the algorithm, MaxentClassifier.train () calls one of the training functions in the
nltk.classify.maxent module. If scipy is not installed, the default algorithmis iis,
and the function used is train maxent classifier with iis (). The other algorithm
that doesn't require scipy is gis, which uses the train maxent classifier with
gis () function. gis stands for General Iterative Scaling, while iis stands for Improved
Iterative Scaling. If scipy is installed, the train maxent classifier with scipy ()
function is used, and the default algorithm is cg. If megam is installed and you specify the
megam algorithm, then train maxent classifier with megam() is used.

The basic idea behind the maximum entropy model is to build some probability distributions
that fit the observed data, then choose whichever probability distribution has the highest
entropy. The gis and iis algorithms do so by iteratively improving the weights used to
classify features. This is where the max_iter and min_1ldelta parameters come into play.

The max_iter specifies the maximum number of iterations to go through and update the
weights. More iterations will generally improve accuracy, but only up to a point. Eventually, the
changes from one iteration to the next will hit a plateau and further iterations are useless.

The min_11delta specifies the minimum change in the log likelihood required to continue
iteratively improving the weights. Before beginning training iterations, an instance of the
nltk.classify.util.CutoffChecker is created. When its check () method is called,
it uses functions such asnltk.classify.util.log_likelihood () to decide whether
the cutoff limits have been reached. The log likelihood is the log (using math.log()) of

the average label probability of the training data (which is the log of the average likelihood of
a label). As the log likelihood increases, the model improves. But it too will reach a plateau
where further increases are so small that there is no point in continuing. Specifying the

min 1lldelta allows you to control how much each iteration must increase the log likelihood
before stopping iterations.

Text Classification

There's more...

Like the NaiveBayesClassifier, you can see the most informative features by calling the
show most informative features () method.

>>> me_classifier.show most informative features(n=4)
-0.740 worst==True and label is 'pos'
0.740 worst==True and label is 'neg'

0.715 bad==True and label is 'neg'

-0.715 bad==True and label is 'pos'

The numbers shown are the weights for each feature. This tells us that the word worst is
negatively weighted towards the pos label, and positively weighted towards the neg label. In
other words, if the word worst is found in the feature set, then there's a strong possibility that
the text should be classified neg.

Scipy algorithms
The algorithms available when scipy is installed are:

» CG (Conjugate gradient algorithm)—the default scipy algorithm

» BFGS (Broyden-Fletcher-Goldfarb-Shanno algorithm)—very memory hungry
» Powell

» LBFGSB (limited memory version of BFGS)

» Nelder-Mead

Here's what happens when you use the CG algorithm:

>>> me_classifier = MaxentClassifier.train(train feats,
algorithm='cg', trace=0, max iter=10)

>>> accuracy(me_classifier, test feats)
0.85599999999999998

This is the most accurate classifier so far.

182

Chapter 7

Megam algorithm

If you have installed the megam package, then you can use the megam algorithm. It's a

bit faster than the scipy algorithms and about as accurate. Installation instructions and
information can be found at http://www.cs.utah.edu/~hal/megam/. The function
nltk.classify.megam.config megam() can be used to specify where the megam
executable is found. Or, if megam can be found in the standard executable paths, NLTK will
configure it automatically.

>>> me_classifier = MaxentClassifier.train(train feats,
algorithm='megam', trace=0, max iter=10)

[Found megam: /usr/local/bin/megam]

>>> accuracy(me_classifier, test feats)
0.86799999999999999

The megam algorithm is highly recommended for its accuracy and speed of training.

See also

The Bag of Words feature extraction and the Training a naive Bayes classifier recipes in this
chapter show how to construct the training and testing features from the movie reviews

corpus. In the next recipe, we will cover how and why to evaluate a classifier using precision
and recall instead of accuracy.

Measuring precision and recall of a

classifier

In addition to accuracy, there are a number of other metrics used to evaluate classifiers.

Two of the most common are precision and recall. To understand these two metrics, we
must first understand false positives and false negatives. False positives happen when a
classifier classifies a feature set with a label it shouldn't have. False negatives happen when
a classifier doesn't assign a label to a feature set that should have it. In a binary classifier,
these errors happen at the same time.

Here's an example: the classifier classifies a movie review as pos, when it should have been
neg. This counts as a false positive for the pos label, and a false negative for the neg label.
If the classifier had correctly guessed neg, then it would count as a true positive for the neg
label, and a true negative for the pos label.

How does this apply to precision and recall? Precision is the lack of false positives, and recall
is the lack of false negatives. As you will see, these two metrics are often in competition: the
more precise a classifier is, the lower the recall, and vice versa.

Text Classification

How to do it...

Let's calculate the precision and recall of the NaiveBayesClassifier we trained in
the Training a naive Bayes classifier recipe. The precision recall () function in
classification.py looks like this:

import collections
from nltk import metrics

def precision_recall (classifier, testfeats):
refsets = collections.defaultdict (set)
testsets = collections.defaultdict (set)

for i, (feats, label) in enumerate (testfeats):
refsets[label] .add (i)
observed = classifier.classify(feats)
testsets [observed] .add (1)

precisions = {}
recalls = {}
for label in classifier.labels():

precisions[label] = metrics.precision(refsets[labell],
testsets[labell)

recalls[label] = metrics.recall (refsets[label], testsets[label])

return precisions, recalls
This function takes two arguments:

1. The trained classifier.
2. Labeled test features, also known as a gold standard.

These are the same arguments you pass to the accuracy () function. The precision

recall () returns two dictionaries; the first holds the precision for each label, and the

second holds the recall for each label. Here's an example usage with the nb_classifier

and the test_feats we created in the Training a naive Bayes classifier recipe eatlier:

>>> from classification import precision_recall
>>> nb_precisions, nb_recalls = precision_recall (nb_classifier,
feats)

>>> nb_precisions|['pos']

0.6413612565445026

>>> nb_precisions|['neg']

0.9576271186440678

>>> nb_recalls['pos']

0.97999999999999998

>>> nb_recalls['neg']

0.45200000000000001

184

Chapter 7

This tells us that while the NaiveBayesClassifier can correctly identify most of the pos
feature sets (high recall), it also classifies many of the neg feature sets as pos (low precision).
This behavior contributes to the high precision but low recall for the neg label—as the neg
label isn't given often (low recall), and when it is, it's very likely to be correct (high precision).
The conclusion could be that there are certain common words that are biased towards the
pos label, but occur frequently enough in the neg feature sets to cause mis-classifications.

To correct this behavior, we will use only the most informative words in the next recipe,
Calculating high information words.

To calculate precision and recall, we must build two sets for each label. The first set is known
as the reference set, and contains all the correct values. The second set is called the test
set, and contains the values guessed by the classifier. These two sets are compared to
calculate the precision or recall for each label.

Precision is defined as the size of the intersection of both sets divided by the size of the test
set. In other words, the percentage of the test set that was guessed correctly. In Python, the
code is float (len (reference.intersection(test))) / len(test).

Recall is the size of the intersection of both sets divided by the size of the reference set,
or the percentage of the reference set that was guessed correctly. The Python code is
float (len(reference.intersection(test))) / len(reference).

The precision recall () functionin classification.py iterates over the labeled test
features and classifies each one. We store the numeric index of the feature set (starting with
0) in the reference set for the known training label, and also store the index in the test set for
the guessed label. If the classifier guesses pos but the training label is neg, then the index is
stored in the reference set for neg and the test set for pos.

% We use the numeric index because the feature sets aren't
s hashable, and we need a unique value for each feature set.

The nltk.metrics package contains functions for calculating both precision and recall,
so all we really have to do is build the sets, then call the appropriate function.

Text Classification

Let's try it with the MaxentClassifier we trained in the previous recipe:

>>> me_precisions, me recalls = precision recall (me classifier, test_
feats)

>>> me_precisions['pos']

0.8801652892561983

>>> me_precisions['neg']

0.85658914728682167

>>> me_recalls['pos']

0.85199999999999998

>>> me_recalls['neg"']

0.88400000000000001

This classifier is much more well-rounded than the NaiveBayesClassifier. In this case,
the label bias is much less significant, and the reason is that the MaxentClassifier weighs
its features according to its own internal model. Words that are more significant are those
that occur primarily in a single label, and will get higher weights in the model. Words that are
common to both labels will get lower weights, as they are less significant.

F-measure

The F-measure is defined as the weighted harmonic mean of precision and recall. If p is the
precision, and r is the recall, the formula is:

1/ (alpha/p + (1-alpha)/r)

where alpha is a weighing constant that defaults to 0.5. You can use nltk.metrics.f
measure () to get the F-measure. It takes the same arguments as for the precision ()
and recall () functions: a reference set and a test set. It's often used instead of
accuracy to measure a classifier. However, precision and recall are found to be much

more useful metrics, as the F-measure can hide the kinds of imbalances we saw with the
NaiveBayesClassifier

In the Training a naive Bayes classifier recipe, we collected training and testing feature sets,
and trained the NaiveBayesClassifier. The MaxentClassifier was trained in the
Training a maximum entropy classifier recipe. In the next recipe, we will explore eliminating
the less significant words, and use only the high information words to create our feature sets.

186

Chapter 7

Calculating high information words

A high information word is a word that is strongly biased towards a single classification

label. These are the kinds of words we saw when we called the show_most_informative

features () method on both the NaiveBayesClassifier and the MaxentClassifier.

Somewhat surprisingly, the top words are different for both classifiers. This discrepancy is due
to how each classifier calculates the significance of each feature, and it's actually beneficial to
have these different methods as they can be combined to improve accuracy, as we will see in

the next recipe, Combining classifiers with voting.

The low information words are words that are common to all labels. It may be counter-intuitive,
but eliminating these words from the training data can actually improve accuracy, precision, and
recall. The reason this works is that using only high information words reduces the noise and
confusion of a classifier's internal model. If all the words/features are highly biased one way or
the other, it's much easier for the classifier to make a correct guess.

How to do it...

First, we need to calculate the high information words in the movie review corpus.
We can do this using the high information words () function in featx.py:

from nltk.metrics import BigramAssocMeasures
from nltk.probability import FregDist, ConditionalFregDist

def high information words(labelled words, score
fn=BigramAssocMeasures.chi sq, min score=5):

word_ fd = FregDist ()
label word fd = ConditionalFregDist ()

for label, words in labelled words:
for word in words:
word_ fd.inc (word)
label word fd[label] .inc (word)

n xx = label word fd.N()
high info words = set()

for label in label word fd.conditions() :
n xi = label word fd[label] .N()
word_scores = collections.defaultdict (int)

for word, n_ii in label word fd[label] .iteritems() :
n_ix = word_ fd[word]

score = score_fn(n ii, (n_ix, n xi), n_xx)
word_scores [word] = score
bestwords = [word for word, score in word scores.iteritems() if

score >= min_score]

Text Classification

high info words |= set (bestwords)

return high info words

It takes one argument , which is a list of 2-tuples of the form [(1abel, words)] where
label is the classification label, and words is a list of words that occur under that label. It
returns a list of the high information words, sorted from most informative to least informative.

Once we have the high information words, we use the feature detector function bag of
words in set (), also found in featx.py, which will let us filter out all low information
words.

def bag of words in set (words, goodwords) :
return bag of words (set (words) & set (goodwords))

With this new feature detector, we can call label feats from corpus () and geta new
train featsand test featsusing split label feats (). These two functions were
covered in the Training a naive Bayes classifier recipe in this chapter.

>>> from featx import high information words, bag of words in set
>>> labels = movie reviews.categories()

>>> labeled words = [(l, movie reviews.words(categories=[1])) for 1 in
labels]

>>> high info words = set (high information words (labeled words))

>>> feat det = lambda words: bag of words in set (words, high info
words)

>>> lfeats = label feats from corpus (movie reviews, feature

detector=feat det)
>>> train feats, test feats = split label feats(lfeats)

Now that we have new training and testing feature sets, let's train and evaluate a
NaiveBayesClassifier

>>> nb classifier = NaiveBayesClassifier.train(train feats)
>>> accuracy(nb classifier, test feats)

0.91000000000000003

>>> nb precisions, nb recalls = precision recall (nb classifier, test_
feats)

>>> nb precisions|['pos']

0.89883268482490275

>>> nb precisions|['neg']

0.92181069958847739

>>> nb recalls['pos']

0.92400000000000004

>>> nb recalls['neg"']

0.89600000000000002

188

Chapter 7

While the neg precision and pos recall have both decreased somewhat, neg recall
and pos precision have increased drastically. Accuracy is now a little higher than the
MaxentClassifier.

The high information words () function starts by counting the frequency of every word,
as well as the conditional frequency for each word within each label. This is why we need the
words to be labelled, so we know how often each word occurs in each label.

Once we have this FregDist and ConditionalFregDist, we can score each word on a
per-label basis. The default score fnisnltk.metrics.BigramAssocMeasures.chi
sq (), which calculates the chi-square score for each word using the following parameters:

1. n ii:The frequency of the word in the label.
2. n_ix: The total frequency of the word across all labels.
3. n_xi: The total frequency of all words that occurred in the label.
4. n xx:The total frequency for all words in all labels.
The simplest way to think about these numbers is that the closern_iiiston ix, the higher

the score. Or, the more often a word occurs in a label, relative to its overall occurrence, the
higher the score.

Once we have the scores for each word in each label, we can filter out all words whose score
is below the min_score threshold. We keep the words that meet or exceed the threshold,
and return all high scoring words in each label.

M It is recommended to experiment with different values of min_score to
Q see what happens. In some cases, less words may improve the metrics even
more, while in other cases more words is better.

There are a number of other scoring functions available in the BigramAssocMeasures
class, such as phi_sqg () for phi-square, pmi () for pointwise mutual information, and
jaccard () for using the Jaccard index. They all take the same arguments, and so can be
used interchangeably with chi sq ().

Text Classification

MaxentClassifier with high information words
Let's evaluate the MaxentClassifier using the high information words feature sets:

>>> me_classifier = MaxentClassifier.train(train feats,
algorithm='megam', trace=0, max iter=10)

>>> accuracy(me_classifier, test feats)
0.88200000000000001

>>> me_precisions, me recalls = precision recall (me classifier, test
feats)

>>> me_precisions|['pos']

0.88663967611336036

>>> me_precisions|['neg']

0.87747035573122534

>>> me_recalls['pos']

0.876

>>> me_recalls['neg"']

0.88800000000000001

As you can see, the improvements are much more modest than with the
NaiveBayesClassifier due to the fact that the MaxentClassifier already weights
all features by significance. But using only the high information words still makes a positive
difference compared to when we used all the words. And the precisions and recalls for each
label are closer to each other, giving the MaxentClassifier even more well-rounded
performance.

DecisionTreeClassifier with high information words
Now, let's evaluate the DecisionTreeClassifier:

>>> dt_classifier = DecisionTreeClassifier.train(train feats,
binary=True, depth cutoff=20, support cutoff=20, entropy cutoff=0.01)
>>> accuracy(dt _classifier, test feats)

0.68600000000000005

>>> dt precisions, dt recalls = precision recall(dt classifier, test_
feats)

>>> dt _precisions|['pos']

0.6741573033707865

>>> dt _precisions|['neg']

0.69957081545064381

>>> dt_recalls['pos']

0.71999999999999997

>>> dt_recalls['neg']

0.65200000000000002

190

Chapter 7

The accuracy is about the same, even with a larger depth _cutoff, and smaller support
cutoff and entropy cutoff. The results show that the DecisionTreeClassifier was
already putting the high information features at the top of the tree, and it will only improve if
we increase the depth significantly. But that could make training time prohibitively long.

We started this chapter with the Bag of Words feature extraction recipe. The
NaiveBayesClassifier was originally trained in the Training a naive Bayes classifier
recipe, and the MaxentClassifier was trained in the Training a maximum entropy
classifier recipe. Details on precision and recall can be found in the Measuring precision
and recall of a classifier recipe. We will be using only high information words in the next two
recipes, where we combine classifiers.

Combining classifiers with voting

One way to improve classification performance is to combine classifiers. The simplest way to
combine multiple classifiers is to use voting, and choose whichever label gets the most votes.
For this style of voting, it's best to have an odd number of classifiers so that there are no ties.
This means combining at least three classifiers together. The individual classifiers should also
use different algorithms; the idea is that multiple algorithms are better than one, and the
combination of many can compensate for individual bias.

Getting ready

As we need to have at least three trained classifiers to combine, we are going to use a
NaiveBayesClassifier,aDecisionTreeClassifier, and a MaxentClassifier,
all trained on the highest information words of the movie reviews corpus. These were all
trained in the previous recipe, so we will combine these three classifiers with voting.

How to do it...

Inthe classification.py module, there is a MaxVoteClassifier class.

import itertools
from nltk.classify import ClassifierI
from nltk.probability import FregDist

class MaxVoteClassifier (ClassifierI):
def init_ (self, *classifiers):
self. classifiers = classifiers

Text Classification

self. labels = sorted(set(itertools.chain(*[c.labels() for c in
classifiers])))

def labels(self):
return self. labels

def classify(self, feats):
counts = FreqgDist ()

for classifier in self. classifiers:
counts.inc(classifier.classify(feats))

return counts.max()

To create it, you pass in a list of classifiers that you want to combine. Once created, it works
just like any other classifier. Though it may take about three times longer to classify, it should
generally be at least as accurate as any individual classifier.

>>> from classification import MaxVoteClassifier

>>> mv_classifier = MaxVoteClassifier(nb classifier, dt classifier,
me_classifier)

>>> mv_classifier.labels ()

['neg', 'pos'l]

>>> accuracy(mv_classifier, test feats)

0.89600000000000002

>>> mv_precisions, mv_recalls = precision recall (mv_classifier, test
feats)

>>> mv_precisions|['pos']
0.8928571428571429

>>> mv_precisions|['neg']
0.89919354838709675

>>> mv_recalls['pos']
0.90000000000000002

>>> mv_recalls(['neg"']
0.89200000000000002

These metrics are about on par with the MaxentClassifier and
NaiveBayesClassifier. Some numbers are slightly better, some worse. It's likely
that a significant improvement to the DecisionTreeClassifier could produce
some better numbers.

192

Chapter 7

The MaxVoteClassifier extendsthe nltk.classify.ClassifierI interface, which
requires implementing at least two methods:

» The labels () function must return a list of possible labels. This will be the union
of the 1labels () of each classifier passed in at initialization.

» Theclassify () function takes a single feature set and returns a label. The
MaxVoteClassifier iterates over its classifiers and calls classify () on each
of them, recording their label as a vote in a FregDist. The label with the most votes
is returned using FregDist .max ().

While it doesn't check for this, the MaxVoteClassifier assumes that all the classifiers
passed in at initialization use the same labels. Breaking this assumption may lead to odd
behavior.

See also

In the previous recipe, we trained a NaiveBayesClassifier, a MaxentClassifier, and
aDecisionTreeClassifier using only the highest information words. In the next recipe,
we will use the reuters corpus and combine many binary classifiers in order to create a
multi-label classifier.

Classifying with multiple binary classifiers

So far we have focused on binary classifiers, which classify with one of two possible labels.
The same techniques for training a binary classifier can also be used to create a multi-class
classifier, which is a classifier that can classify with one of many possible labels. But there
are also cases where you need to be able to classify with multiple labels. A classifier that can
return more than one label is a multi-label classifier.

A common technique for creating a multi-label classifier is to combine many binary classifiers,
one for each label. You train each binary classifier so that it either returns a known label, or
returns something else to signal that the label does not apply. Then you can run all the binary
classifiers on your feature set to collect all the applicable labels.

Text Classification

Getting ready

The reuters corpus contains multi-labeled text that we can use for training and evaluation.

>>> from nltk.corpus import reuters
>>> len(reuters.categories())
90

We will train one binary classifier per label, which means we will end up with
90 binary classifiers.

How to do it...

First, we should calculate the high information words in the reuters corpus. This is done
with the reuters_high info words () function in featx.py.

from nltk.corpus import reuters

def reuters high info words(score fn=BigramAssocMeasures.chi sq) :
labeled words = []

for label in reuters.categories():
labeled words.append((label, reuters.words(categories=[label])))

return high information words(labeled words, score fn=score fn)

Then we need to get training and test feature sets based on those high information words.
This is done with the reuters train test feats(), alsofoundin featx.py. It defaults
to using bag of words () asits feature detector, but we will be overriding this using
bag of words_in set () to use only the high information words.

def reuters train test feats(feature detector=bag of words) :
train feats = []
test feats = []

for fileid in reuters.fileids () :
if fileid.startswith('training') :
featlist = train feats
else: # fileid.startswith('test')
featlist = test feats

feats = feature detector (reuters.words (fileid))
labels = reuters.categories(fileid)
featlist.append((feats, labels))

return train feats, test feats

Chapter 7

We can use these two functions to get a list of multi-labeled training and testing feature sets.

>>> from featx import reuters high info words, reuters train test
feats

>>> rwords = reuters_high info_words ()
>>> featdet = lambda words: bag of words_in set (words, rwords)

>>> multi train feats, multi test feats = reuters train test
feats (featdet)

Themulti train featsandmulti test feats are multi-labeled feature sets.

That means they have a list of labels, instead of a single label, and they look like the

[(featureset, [labell])], as each feature set can have one or more labels. With this
training data, we can train multiple binary classifiers. The train binary classifiers()
function in the classification.py takes a training function, a list of multi-label feature
sets, and a set of possible labels to return a dict of the label : binary classifier.

def train _binary classifiers(trainf, labelled feats, labelset):
pos_feats = collections.defaultdict (list)
neg_feats = collections.defaultdict(list)
classifiers = {}

for feat, labels in labelled feats:
for label in labels:
pos_feats[label] .append(feat)

for label in labelset - set(labels):
neg feats[label] .append(feat)

for label in labelset:

postrain = [(feat, label) for feat in pos_feats[label]]
negtrain = [(feat, '!%s' % label) for feat in neg feats[label]]
classifiers[label] = trainf (postrain + negtrain)

return classifiers

To use this function, we need to provide a training function that takes a single
argument, which is the training data. This will be a simple 1ambda wrapper around the
MaxentClassifier.train (), So we can specify extra keyword arguments.

>>> from classification import train binary classifiers

>>> trainf = lambda train feats: MaxentClassifier.train(train feats,
algorithm='megam', traceza, max_ iter=10) B

>>> labelset = set (reuters.categories())

>>> classifiers = train binary classifiers(trainf, multi train feats,
labelset)

>>> len(classifiers)

90

Text Classification

Now we can define a MultiBinaryClassifier, which takes a list of labeled classifiers
of the form [(label, classifier)] where the classifier is assumed to be a binary
classifier that either returns the 1abel, or something else if the label doesn't apply.

from nltk.classify import MultiClassifierI

class MultiBinaryClassifier (MultiClassifierI):
def init (self, *label classifiers):
self. label classifiers = dict(label classifiers)
self. labels = sorted(self. label classifiers.keys())

def labels(self):
return self. labels

def classify(self, feats):
1bls = set()

for label, classifier in self. label classifiers.iteritems():
if classifier.classify(feats) == label:
lbls.add (label)

return lbls

We can construct this class using the binary classifiers we just created.

>>> from classification import MultiBinaryClassifier
>>> multi_classifier = MultiBinaryClassifier (*classifiers.items())

To evaluate this classifier, we can use precision and recall, but not accuracy. That's because
the accuracy function assumes single values, and doesn't take into account partial matches.
For example, if the multi-classifier returns three labels for a feature set, and two of them are
correct but the third is not, then the accuracy () would mark that as incorrect. So instead
of using accuracy, we will use the masi distance, which measures partial overlap between
two sets. The lower the masi distance, the better the match. A lower average masi distance,
therefore, means more accurate partial matches. The multi metrics () function in the
classification.py calculates the precision and recall of each label, along with the
average masi distance.

import collections
from nltk import metrics

def multi metrics(multi classifier, test feats):
mds = []
refsets = collections.defaultdict (set)
testsets = collections.defaultdict (set)

for i, (feat, labels) in enumerate(test feats):
for label in labels:
refsets[label] .add (1)

guessed = multi classifier.classify(feat)

196

Chapter 7

for label in guessed:
testsets[label] .add (1)

mds . append (metrics.masi distance(set (labels), guessed))

avg_md = sum(mds) / float (len(mds))
precisions = {}
recalls = {}

for label in multi classifier.labels() :

precisions[label] = metrics.precision(refsets([labell,
testsets[labell])
recalls[label] = metrics.recall (refsets[label], testsets[label])

return precisions, recalls, avg md
Using this with the multi classifier we just created, gives us the following results:

>>> from classification import multi metrics

>>> multi precisions, multi recalls, avg md = multi metrics(multi
classifier, multi test feats)

>>> avg md

0.18191264129488705

So our average masi distance is fairly low, which means our multi-label classifier is usually
mostly accurate. Let's take a look at a few precisions and recalls:

>>> multi precisions|['zinc']

1.0

>>> multi recalls(['zinc']

0.84615384615384615

>>> len(reuters.fileids (categories=['zinc']))
34

>>> multi precisions|['sunseed']

0.5

>>> multi recalls|['sunseed']
0.20000000000000001

>>> len(reuters.fileids (categories=['sunseed']))
16

>>> multi precisions['rand']

None

>>> multi recalls['rand']

0.0

>>> len(reuters.fileids (categories=['rand']))
3

Text Classification

As you can see, there's quite a range of values. But, in general, the labels that have more
feature sets will have higher precision and recall, and those with less feature sets will have
lower performance. When there's not a lot of feature sets for a classifier to learn from, you
can't expect it to perform well.

The reuters high info words () function is fairly simple; it constructs a list of

[(label, words)] for each category of the reuters corpus, then passes it in to the
high information words () function to return a list of the most informative words in
the reuters corpus.

With the resulting set of words, we create a feature detector function using the bag of _
words_in set (). Thisis then passed in to the reuters_train test feats (), which
returns two lists, the first containing [(feats, labels)] for all the training files, and the
second list has the same for all the test files.

Next, we train a binary classifier for each label using train binary classifiers().
This function constructs two lists for each label, one containing positive training feature
sets, the other containing negative training feature sets. The Positive feature sets are those
feature sets that classify for the label. The Negative feature sets for a label comes from the
positive feature sets for all other labels. For example, a feature set that is positive for zinc
and sunseed is a negative example for all the other 88 labels. Once we have positive and
negative feature sets for each label, we can train a binary classifier for each label using the
given training function.

With the resulting dictionary of binary classifiers, we create an instance of the
MultiBinaryClassifier. This class extends the nltk.classify.MultiClassifierI
interface, which requires at least two functions:

The labels () function must return a list of possible labels.

The classify () function takes a single feature set and returns a set of labels.
To create this set, we iterate over the binary classifiers, and any time a call to the
classify () returns its label, we add it to the set. If it returns something else,
we continue.

198

Chapter 7

Finally, we evaluate the multi-label classifier using the multi metrics () function.

It is similar to the precision recall () function from the Measuring precision and
recall of a classifier recipe, but in this case we know the classifier is an instance of the
MultiClassifierI and it can therefore return multiple labels. It also keeps track of
the masi distance for each set of classification labels using the nltk.metrics.masi
distance (). Themulti metrics () function returns three values:

1. Adictionary of precisions for each label.
2. Adictionary of recalls for each label.
3. The average masi distance for each feature set.

The nature of the reuters corpus introduces the class-imbalance problem. This problem
occurs when some labels have very few feature sets, and other labels have many. The

binary classifiers that have few positive instances to train on end up with far more negative
instances, and are therefore strongly biased towards the negative label. There's nothing
inherently wrong about this, as the bias reflects the data, but the negative instances can
overwhelm the classifier to the point where it's nearly impossible to get a positive result. There
are a number of advanced techniques for overcoming this problem, but they are out of the
scope of this book.

See also

The MaxentClassifier is covered in the Training a maximum entropy classifier recipe in
this chapter. The Measuring precision and recall of a classifier recipe shows how to evaluate
a classifier, while the Calculating high information words recipe describes how to use only the
best features.

Distributed
Processing and
Handling Large

Datasets

In this chapter, we will cover:

» Distributed tagging with execnet

» Distributed chunking with execnet

» Parallel list processing with execnet

» Storing a frequency distribution in Redis

» Storing a conditional frequency distribution in Redis
» Storing an ordered dictionary in Redis

» Distributed word scoring with Redis and execnet

Distributed Processing and Handling Large Datasets

Introduction

NLTK is great for in-memory single-processor natural language processing. However, there are
times when you have a lot of data to process and want to take advantage of multiple CPUs,
multi-core CPUs, and even multiple computers. Or perhaps you want to store frequencies

and probabilities in a persistent, shared database so multiple processes can access it
simultaneously. For the first case, we'll be using execnet to do parallel and distributed
processing with NLTK. For the second case, you'll learn how to use the Redis data structure
server/database to store frequency distributions and more.

Distributed tagging with execnet

Execnet is a distributed execution library for python. It allows you to create gateways
and channels for remote code execution. A gateway is a connection from the calling
process to a remote environment. The remote environment can be a local subprocess or
an SSH connection to a remote node. A channel is created from a gateway and handles
communication between the channel creator and the remote code.

Since many NLTK processes require 100 percent CPU utilization during computation, execnet
is an ideal way to distribute that computation for maximum resource usage. You can create
one gateway per CPU core, and it doesn't matter whether the cores are in your local computer
or spread across remote machines. In many situations, you only need to have the trained
objects and data on a single machine, and can send the objects and data to the remote
nodes as needed.

Getting ready

You'll need to install execnet for this to work. It should be as simple as sudo pip install
execnet or sudo easy install execnet. The current version of execnet, as of this
writing, is 1. 0. 8. The execnet homepage, which has APl documentation and examples, is at
http://codespeak.net/execnet/.

How to do it...

We start by importing the required modules, as well as an additional module remote_ tag.
py that will be explained in the next section. We also need to import pickle SO we can
serialize the tagger. Execnet does not natively know how to deal with complex objects such
as a part-of-speech tagger, so we must dump the tagger to a string using pickle.dumps ().
We'll use the default tagger that's used by the nltk.tag.pos_tag() function, but you
could load and dump any pre-trained part-of-speech tagger as long as it implements the
Tagger]I interface.

202

Chapter 8

Once we have a serialized tagger, we start execnet by making a gateway with execnet.
makegateway (). The default gateway creates a Python subprocess, and we can call the
remote exec () method with the remote tag module to create a channel. With an open
channel, we send over the serialized tagger and then the first tokenized sentence of the
treebank corpus.

You don't have to do any special serialization of simple types
such as lists and tuples, since execnet already knows how
tad to handle serializing the built-in types.

Now if we call channel . receive (), we get back a tagged sentence that is equivalent to the
first tagged sentence in the treebank corpus, so we know the tagging worked. We end by
exiting the gateway, which closes the channel and kills the subprocess.

>>> import execnet, remote tag, nltk.tag, nltk.data
>>> from nltk.corpus import treebank

>>> import cPickle as pickle

>>> tagger = pickle.dumps(nltk.data.load(nltk.tag. POS_ TAGGER))
>>> gw = execnet.makegateway ()

>>> channel = gw.remote exec (remote_ tag)

>>> channel.send (tagger)

>>> channel.send (treebank.sents () [0])

>>> tagged sentence = channel.receive()

>>> tagged sentence == treebank.tagged sents() [0]
True

>>> gw.exit ()
Visually, the communication process looks like this:

Local Process remote_tag

—L— —L

pickled Tagger

T T
—— —
sentence

tagged sentence

203

Distributed Processing and Handling Large Datasets

The gateway's remote_exec () method takes a single argument that can be one of the
following three types:

1. Astring of code to execute remotely.

2. The name of a pure function that will be serialized and executed remotely.

3. The name of a pure module whose source will be executed remotely.

We use the third option with the remote tag.py module, which is defined as follows:

import cPickle as pickle

if _ name_ == '__ channelexec_ ':
tagger = pickle.loads (channel.receive())

for sentence in channel:
channel.send (tagger.tag(sentence))

A pure module is a module that is self-contained. It can only access Python modules that

are available where it executes, and does not have access to any variables or states that

exist wherever the gateway is initially created. To detect that the module is being executed by
execnet, you can look atthe name variable. Ifit's equalto ' channelexec ', then
it is being used to create a remote channel. This is similar to doing if = name == '
main_ ' to check if a module is being executed on the command line.

The first thing we do is call channel.receive () to get the serialized tagger, which we
load using pickle.loads (). You may notice that channel is not imported anywhere—that's
because it is included in the global namespace of the module. Any module that execnet
executes remotely has access to the channel variable in order to communicate with the
channel creator.

Once we have the tagger, we iteratively tag () each tokenized sentence that we receive
from the channel. This allows us to tag as many sentences as the sender wants to send,
as iteration will not stop until the channel is closed. What we've essentially created is a
compute node for part-of-speech tagging that dedicates 100 percent of its resources to
tagging whatever sentences it receives. As long as the channel remains open, the node is
available for processing.

Chapter 8

There's more...

This is a simple example that opens a single gateway and channel. But execnet can do a lot
more, such as opening multiple channels to increase parallel processing, as well as opening
gateways to remote hosts over SSH to do distributed processing.

Multiple channels

We can create multiple channels, one per gateway, to make the processing more parallel.
Each gateway creates a new subprocess (or remote interpreter if using an SSH gateway)
and we use one channel per gateway for communication. Once we've created two channels,
we can combine them using the MulticChannel class, which allows us to iterate over the
channels, and make a receive queue to receive messages from each channel.

After creating each channel and sending the tagger, we cycle through the channels to send an
even number of sentences to each channel for tagging. Then we collect all the responses from
the queue. A call to queue . get () will return a 2-tuple of (channel, message) in case
you need to know which channel the message came from.

R If you don't want to wait forever, you can also pass a t imeout
~ keyword argument with the maximum number of seconds you want
Q to wait, as in queue.get (timeout=4). This can be a good way
to handle network errors.

Once all the tagged sentences have been collected, we can exit the gateways. Here's the code:

>>> import itertools

>>> gwl = execnet.makegateway ()

>>> gw2 = execnet.makegateway ()

>>> chl = gwl.remote exec (remote tag)

>>> chl.send(tagger)

>>> ch2 = gw2.remote exec (remote tag)

>>> ch2.send (tagger)

>>> mch = execnet.MultiChannel ([chl, ch2])

>>> gqueue = mch.make receive queue ()

>>> channels = itertools.cycle (mch)

>>> for sentence in treebank.sents() [:4]:
channel = channels.next ()
channel.send (sentence)

>>> tagged sentences = []

>>> for i in range(4):
channel, tagged sentence = queue.get ()
tagged sentences.append (tagged sentence)

>>> len(tagged sentences)

205

Distributed Processing and Handling Large Datasets

4
>>> gwl.exit ()
>>> gw2.exit ()

Local versus remote gateways

The default gateway spec is popen, which creates a Python subprocess on the

local machine. This means execnet .makegateway () is equivalent to execnet.
makegateway ('popen'). If you have passwordless SSH access to a remote machine, then
you can create a remote gateway using execnet .makegateway (' ssh=remotehost"')
where remotehost should be the hostname of the machine. A SSH gateway spawns a new
Python interpreter for executing the code remotely. As long as the code you're using for remote
execution is pure, you only need a Python interpreter on the remote machine.

Channels work exactly the same no matter what kind of gateway is used; the only difference
will be communication time. This means you can mix and match local subprocesses with
remote interpreters to distribute your computations across many machines in a network.
There are many more details on gateways in the APl documentation at http://codespeak.
net/execnet/basics.html.

See also

Part-of-speech tagging and taggers are covered in detail in Chapter 4, Part-of-Speech
Tagging. In the next recipe, we'll use execnet to do distributed chunk extraction.

Distributed chunking with execnet

In this recipe, we'll do chunking and tagging over an execnet gateway. This will be very
similar to the tagging in the previous recipe, but we'll be sending two objects instead of one,
and we will be receiving a Tree instead of a list, which requires pickling and unpickling for
serialization.

Getting ready

As in the previous recipe, you must have execnet installed.

206

Chapter 8

How to do it...

The setup code is very similar to the last recipe, and we'll use the same pickled tagger as
well. First we'll pickle the default chunker used by nltk.chunk.ne chunk (), though any
chunker would do. Next, we make a gateway for the remote chunk module, get a channel,
and send the pickled tagger and chunker over. Then we receive back a pickled Tree,
which we can unpickle and inspect to see the result. Finally, we exit the gateway.

>>> import execnet, remote chunk

>>> import nltk.data, nltk.tag, nltk.chunk

>>> import cPickle as pickle

>>> from nltk.corpus import treebank chunk

>>> tagger = pickle.dumps(nltk.data.load(nltk.tag. POS TAGGER))

>>> chunker = pickle.dumps(nltk.data.load(nltk.chunk. MULTICLASS NE_
CHUNKER))

>>> gw = execnet.makegateway ()

>>> channel = gw.remote exec(remote chunk)

>>> channel.send (tagger)

>>> channel.send (chunker)

>>> channel.send (treebank chunk.sents() [0])

>>> chunk tree = pickle.loads (channel.receive())
>>> chunk tree

Tree('S', [Tree('PERSON', [('Pierre', 'NNP')]), Tree('ORGANIZATION',
[('Vinken',6 'NNP')]), (',', ','), ('61', 'CD'), ('years',K 'NNS'),
(told', r'gg'), (,', ',"), ('will', 'MD'), ('join', 'VB'), ('the',
'DT'), ('board', 'NN'), ('as', 'IN'), ('a', 'DT'), ('nonexecutive',
'Jgg'), ('director', 'NN'), ('Nov.', 'NNP'), ('29', 'CD'), ('.', '.")1)

>>> gw.exit ()

The communication this time is slightly different.

pickled Tagger

pickled Chunker

sentence

tree

207

Distributed Processing and Handling Large Datasets

The remote chunk.py module is just a little bit more complicated than the remote tag.
py module from the previous recipe. In addition to receiving a pickled tagger, it also expects
to receive a pickled chunker that implements the Chunker1I interface. Once it has both a
tagger and a chunker, it expects to receive any number of tokenized sentences, which it
tags and parses into a Tree. This tree is then pickled and sent back over the channel.

import cPickle as pickle

if _name == ' channelexec_ ':
tagger = pickle.loads (channel.receive())
chunker = pickle.loads (channel.receive())

for sent in channel:
tree = chunker.parse(tagger.tag(sent))
channel.send (pickle.dumps (tree))

[The Tree must be pickled because it is not a simple built-in type.]
There's more...

Note that the remote chunk module is pure. Its only external dependency is the pickle

(or cPickle) module, which is part of the Python standard library. It doesn't need to import
any NLTK modules in order to use the tagger or chunker, because all the necessary data is
pickled and sent over the channel. As long as you structure your remote code like this, with
no external dependencies, you only need NLTK to be installed on a single machine—the one
that starts the gateway and sends the objects over the channel.

Python subprocesses

If you look at your task/system monitor (or top in *nix) while running the execnet code,
you may notice a few extra python Processes. Every gateway spawns a new, self-contained,
shared-nothing Python interpreter process, which is killed when you call the exit () method.
Unlike with threads, there is no shared memory to worry about, and no global interpreter lock
to slow things down. All you have are separate communicating processes. This is true whether
the processes are local or remote. Instead of locking and synchronization, all you have to
worry about is the order in which the messages are sent and received.

See also

The previous recipe explains execnet gateways and channels in detail. In the next recipe,
we'll use execnet to process a list in parallel.

208

Chapter 8

Parallel list processing with execnet

This recipe presents a pattern for using execnet to process a list in parallel. It's a function
pattern for mapping each element in the list to a new value, using execnet to do the
mapping in parallel.

How to do it...

First, we need to decide exactly what we want to do. In this example, we'll just double integers,
but we could do any pure computation. Following is the module remote double.py, which
will be executed by execnet. It receives a 2-tuple of (i, arg), assumes arg is a number,
and sends back (i, arg*2).The need for i will be explained in the next section.

if name == ' channelexec ':
for (i, arg) in channel:

channel.send((i, arg * 2))

To use this module to double every element in a list, we import the plists module (explained
in the next section) and call plists.map () with the remote_double module, and a list of
integers to double.

>>> import plists, remote double
>>> plists.map (remote double, range(10))
[0, 2, 4, 6, 8, 10, 12, 14, 16, 18]

Communication between channels is very simple, as shown in the following diagram:

Local Process remote_double
1

index, integer
index, doubled integer
The map () function is defined in plists.py. It takes a pure module, a list of arguments,
and an optional list of 2-tuples consisting of (spec, count). The default specs are
[('popen', 2)1,which means we'll open two local gateways and channels. Once these

channels are opened, we put them into an itertools cycle, which creates an infinite iterator
that cycles back to the beginning once it hits the end.

209

Distributed Processing and Handling Large Datasets

Now we can send each argument in args to a channel for processing, and since the
channels are cycled, each channel gets an almost even distribution of arguments. This is
where i comes in—we don't know in what order we'll get the results back, so i, as the index of
each arg in the list, is passed to the channel and back so we can combine the results in the
original order. We then wait for results with a MultiChannel receive queue and insert them
into a pre-filled list that's the same length as the original args. Once we have all the expected
results, we can exit the gateways and return the results.

import itertools, execnet

def map(mod, args, specs=[('popen', 2)]):
gateways = []
channels = []

for spec, count in specs:
for i in range (count) :
gw = execnet.makegateway (spec)
gateways.append (gw)
channels.append (gw.remote exec (mod))

cyc = itertools.cycle (channels)

for i, arg in enumerate (args) :
channel = cyc.next ()
channel.send((i, arg))

mch = execnet.MultiChannel (channels)
queue = mch.make receive queue ()
1 = len(args)
results = [None] * 1
for j in range(1l):
channel, (i, result) = queue.get ()
results[i] = result
for gw in gateways:
gw.exit ()

return results

You can increase the parallelization by modifying the specs, as follows:

>>> plists.map (remote double, range(10), [('popen',6 4)])
[0, 2, 4, 6, 8, 10, 12, 14, 16, 18]

However, more parallelization does not necessarily mean faster processing. It depends on the
available resources, and the more gateways and channels you have open, the more overhead
is required. Ideally there should be one gateway and channel per CPU core.

210

Chapter 8

You can use plists.map () with any pure module as long as it receives and sends back
2-tuples where 1 is the first element. This pattern is most useful when you have a bunch
of numbers to crunch, and want to process them as quickly as possible.

The previous recipes cover execnet features in greater detail.

Storing a frequency distribution in Redis

The nltk.probability.FregDist class is used in many classes throughout NLTK for
storing and managing frequency distributions. It's quite useful, but it's all in-memory, and
doesn't provide a way to persist the data. A single FregDist is also not accessible to
multiple processes. We can change all that by building a FregDist on top of Redis.

Redis is a data structure server that is one of the more popular NoSQL databases.

Among other things, it provides a network accessible database for storing dictionaries

(also known as hash maps). Building a FregDist interface to a Redis hash map will allow
us to create a persistent FreqDist that is accessible to multiple local and remote processes
at the same time.

1
‘Q Most Redis operations are atomice, so it's even possible to have

multiple processes write to the FregDist concurrently.

Getting ready

For this and subsequent recipes, we need to install both Redis and redis-py. A quick
start install guide for Redis is available at http://code.google.com/p/redis/wiki/
QuickStart. To use hash maps, you should install at least version 2. 0. 0 (the latest version
as of this writing).

The Redis Python driver redis-py can be installed using pip install redis oreasy_
install redis. Ensure you install at least version 2. 0.0 to use hash maps. The redis-
py homepage is at http://github.com/andymccurdy/redis-py/.

Once both are installed and a redis-server process is running, you're ready to go. Let's
assume redis-server is running on localhost on port 6379 (the default host and port).

Distributed Processing and Handling Large Datasets

How to do it...

The FregDist class extends the built-in dict class, which makes a FregDist an enhanced
dictionary. The FregDist class provides two additional key methods: inc () and N (). The
inc () method takes a single sample argument for the key, along with an optional count
keyword argument that defaults to 1, and increments the value at sample by count. N ()
returns the number of sample outcomes, which is the sum of all the values in the frequency
distribution.

We can create an APIl-compatible class on top of Redis by extending a RedisHashMap (that
will be explained in the next section), then implementing the inc () and N () methods.

Since the FregDist only stores integers, we also override a few other methods to ensure
values are always integers. This RedisHashFregDist (defined in redisprob.py) uses the
hincrby command for the inc () method to increment the sample value by count, and
sums all the values in the hash map for the N () method.

from rediscollections import RedisHashMap
class RedisHashFregDist (RedisHashMap) :
def inc(self, sample, count=1):
self. r.hincrby(self. name, sample, count)
def N(self):
return int (sum(self.values()))
def getitem (self, key):
return int (RedisHashMap. getitem (self, key) or 0)
def values (self):
return [int(v) for v in RedisHashMap.values (self)]

def items (self) :
return [(k, int(v)) for (k, v) in RedisHashMap.items (self)]

We can use this class just like a FregDist. To instantiate it, we must pass a Redis
connection and the name of our hash map. The name should be a unique reference to
this particular FregDist so that it doesn't clash with any other keys in Redis.

>>> from redis import Redis

>>> from redisprob import RedisHashFregDist
>>> r = Redis()

>>> rhfd = RedisHashFregDist(r, 'test')

>>> len(rhfd)

>>> rhfd.inc('foo')
>>> rhfd['foo']

>>> rhfd.items ()
>>> len(rhfd)

Chapter 8

. The name of the hash map and the sample keys will be encoded to replace
% whitespace and & characters with _. This is because the Redis protocol
i uses these characters for communication. It's best if the name and keys don't
include whitespace to begin with.

Most of the work is done in the RedisHashMap class, found in rediscollections.py,
which extends collections.MutableMapping, then overrides all methods that require
Redis-specific commands. Here's an outline of each method that uses a specific Redis
command:

» len_ ():Usesthe hlen command to get the number of elements in the hash
map

» contains__ ():Usesthe hexists command to check if an element exists in
the hash map

» getitem__ ():Usesthe hget command to get a value from the hash map

» setitem_ ():Usesthe hset command to set a value in the hash map

» delitem__ ():Usesthe hdel command to remove a value from the hash map

» keys(): Usesthe hkeys command to get all the keys in the hash map
» values (): Uses the hvals command to get all the values in the hash map

» items ():Usesthe hgetall command to get a dictionary containing all the keys
and values in the hash map

» clear ():Usesthe delete command to remove the entire hash map from Redis

R Extending collections.MutableMapping provides a number
% of other dict compatible methods based on the previous methods,
i such as update () and setdefault (), so we don't have to
implement them ourselves.

The initialization used for the RedisHashFregDist is actually implemented here, and
requires a Redis connection and a name for the hash map. The connection and name
are both stored internally to use with all the subsequent commands. As mentioned before,
whitespace is replaced by underscore in the name and all keys, for compatibility with the
Redis network protocol.

import collections, re
white = r'[\s&]+'

def encode key (key) :

Distributed Processing and Handling Large Datasets

return re.sub(white, ' ', key.strip())

class RedisHashMap (collections.MutableMapping) :
def init (self, r, name):
self. r = ¢
self. name = encode key(name)
def iter (self):
return iter(self.items())

def len (self):

return self. r.hlen(self. name)

def contains_ (self, key):

return self. r.hexists(self. name, encode key(key))
def getitem (self, key):

return self. r.hget(self. name, encode key(key))
def setitem (self, key, val):

self. r.hset(self. name, encode key(key), val)
def delitem (self, key):

self. r.hdel(self. name, encode key(key))

def keys(self):
return self. r.hkeys(self. name)

def values (self):
return self. r.hvals(self. name)

def items(self):

return self. r.hgetall(self. name) .items()
def get(self, key, default=0):

return self [key] or default

def iteritems(self) :
return iter(self)

def clear(self):
self. r.delete(self. name)

There's more...

The RedisHashMap can be used by itself as a persistent key-value dictionary. However, while
the hash map can support a large number of keys and arbitrary string values, its storage
structure is more optimal for integer values and smaller numbers of keys. However, don't let
that stop you from taking full advantage of Redis. It's very fast (for a network server) and does
its best to efficiently encode whatever data you throw at it.

214

Chapter 8

. While Redis is quite fast for a network database, it will be
% significantly slower than the in-memory FregDist. There's no way
L around this, but while you sacrifice speed, you gain persistence and
the ability to do concurrent processing.

See also

In the next recipe, we'll create a conditional frequency distribution based on the Redis
frequency distribution created here.

Storing a conditional frequency distribution

in Redis

The nltk.probability.ConditionalFregDist class is a container for FregDist
instances, with one FregDist per condition. It is used to count frequencies that are
dependent on another condition, such as another word or a class label. We used this class
in the Calculating high information words recipe in Chapter 7, Text Classification. Here, we'll
create an APl-compatible class on top of Redis using the RedisHashFregDist from the
previous recipe.

Getting ready

As in the previous recipe, you'll need to have Redis and redis-py installed with an instance
of redis-server running.

How to do it...

We define a RedisConditionalHashFregDist class in redisprob.py that extends
nltk.probability.ConditionalFregDist and overridesthe contains ()

and _getitem () methods. We then override _ getitem () so we can create an
instance of RedisHashFreqgDist instead of a FregDist, and override __contains__ ()
so we can call encode_key () from the rediscollections module before checking if the
RedisHashFregDist exists.

from nltk.probability import ConditionalFreqgDist
from rediscollections import encode key

class RedisConditionalHashFregDist (ConditionalFregDist) :
def init (self, r, name, cond samples=None) :
self. r = r
self. name = name
ConditionalFregDist. init (self, cond samples)

Distributed Processing and Handling Large Datasets

initialize self. fdists for all matching keys
for key in self. r.keys(encode key('%s:*' % name)) :
condition = key.split(':') [1]

self [condition] # calls self. getitem (condition)

def contains_(self, condition):
return encode key(condition) in self. fdists

def getitem (self, condition):
if condition not in self. fdists:

key = '"%s:%s' % (self. name, condition)
self. fdists[condition] = RedisHashFregDist (self. r, key)

return self. fdists[condition]

def clear(self):
for fdist in self. fdists.values():
fdist.clear()

An instance of this class can be created by passing in a Redis connection and a base name.
After that, it works just like a ConditionalFregDist.

>>> from redis import Redis

>>> from redisprob import RedisConditionalHashFregDist
>>> r = Redis()

>>> rchfd = RedisConditionalHashFregDist (r, 'condhash')
>>> rchfd.N()

0

>>> rchfd.conditions ()

(]

>>> rchfd['condl'] .inc('foo'")

>>> rchfd.N()

1

>>> rchfd['condl'] ['foo']
1

>>> rchfd.conditions ()

['condl']
>>> rchfd.clear ()

Chapter 8

The RedisConditionalHashFregDist uses name prefixes to

reference RedisHashFreqgDist instances. The name passed in to the
RedisConditionalHashFregDist is a base name that is combined with each condition to
create a unique name for each RedisHashFregDist. For example, if the base name of the
RedisConditionalHashFregDist iS 'condhash', and the condition is 'condl', then
the final name for the RedisHashFregDist is 'condhash:condl'. This naming pattern is
used at initialization to find all the existing hash maps using the keys command. By searching
for all keys matching 'condhash: * ', we can identify all the existing conditions and create an
instance of RedisHashFregDist for each.

. Combining strings with colons is a common naming convention
% for Redis keys as a way to define namespaces. In our case,
S each RedisConditionalHashFregDist instance defines a
single namespace of hash maps.

The ConditionalFregDist class stores an internal dictionary at self. fdists thatis

a mapping of condition to FregDist. The RedisConditionalHashFregDist class

still uses self. fdists, butthe values are instances of RedisHashFregDist instead of
FregDist. self. fdists is created when we call ConditionalFregDist. init (),
and values are initialized as necessary inthe getitem () method.

There's more...

RedisConditionalHashFreqgDist also defines a clear () method. This is a helper
method that calls clear () on all the internal RedisHashFregDist instances. The
clear () method is not defined in ConditionalFregDist.

See also

The previous recipe covers the RedisHashFregDist in detail. Also see the Calculating
high information words recipe in Chapter 7, Text Classification, for example usage of a
ConditionalFregDist.

Distributed Processing and Handling Large Datasets

Storing an ordered dictionary in Redis

An ordered dictionary is like a normal dict, but the keys are ordered by an ordering
function. In the case of Redis, it supports ordered dictionaries whose keys are strings and
whose values are floating point scores. This structure can come in handy for cases such as
calculating information gain (covered in the Calculating high information words recipe in
Chapter 7, Text Classification) when you want to store all the words and scores for later use.

Getting ready

Again, you'll need Redis and redis-py installed, with an instance of redis-server
running.

How to do it...

The RedisOrderedDict class in rediscollections.py extends collections.
MutableMapping to get a number of dict compatible methods for free. Then it implements
all the key methods that require Redis ordered set (also known as Zset) commands.

class RedisOrderedDict (collections.MutableMapping) :
def init (self, r, name):
self. r = r
self. name = encode key (name)

def iter (self):
return iter(self.items())

def len (self):

return self._r.zcard(self._name)

def getitem (self, key):
val = self. r.zscore(self. name, encode key(key))
if val is None:
raise KeyError
else:
return val

def setitem (self, key, score):
self. r.zadd(self. name, encode key(key), score)

def _ delitem_ (self, key):by brain feels dead

self. r.zrem(self. name, encode key(key))

def keys(self, start=0, end=-1):
we use zrevrange to get keys sorted by high value instead of by
lowest

218

return self. r.zrevrange(self. name, start, end)

def values(self, start=0, end=-1):
return [v for (k, v) in self.items(start=start, end=end)]

def items (self, start=0, end=-1):

Chapter 8

return self. r.zrevrange(self. name, start, end, withscores=True)

def get(self, key, default=0):
return self [key] or default

def iteritems(self) :

return iter(self)

def clear(self):
self. r.delete(self. name)

You can create an instance of RedisOrderedDict by passing in a Redis connection and a

unigue name.

>>> from redis import Redis

>>> from rediscollections import RedisOrderedDict
>>> r = Redis()

>>> rod = RedisOrderedDict (r, 'test.txt!')
>>> rod.get ('bar')

>>> len(rod)

0

>>> rod['bar'] = 5.2

>>> rod['bar']

5.2000000000000002

>>> len(rod)

1

>>> rod.items ()

[('bar', 5.2000000000000002)]

>>> rod.clear ()

Much of the code may look similar to the RedisHashMap, which is to be expected since
they both extend collections.MutableMapping. The main difference here is that
RedisOrderedSet orders keys by floating point values, and so is not suited for arbitrary
key-value storage like the RedisHashMap. Here's an outline explaining each key method
and how it works with Redis:

» len_ ():Usesthe zcard command to get the number of elements in the
ordered set.

Distributed Processing and Handling Large Datasets

>

list ordering when you call sort () or sorted (), butit's not what we want
S

__getitem_ ():Usesthe zscore command to get the score of a key, and returns
0 if the key does not exist.

__setitem__ ():Usesthe zadd command to add a key to the ordered set with the
given score, or updates the score if the key already exists.

__delitem__ ():Usesthe zrem command to remove a key from the ordered set.

keys () : Uses the zrevrange command to get all the keys in the ordered set, sorted
by highest score. It takes two optional keyword arguments start and end to more
efficiently get a slice of the ordered keys.

values () : Extracts all the scores from the items () method.

items (): Uses the zrevrange command to get the scores of each key in order to
return a list of 2-tuples ordered by highest score. Like keys (), it takes start and
end keyword arguments to efficiently get a slice.

clear (): Uses the delete command to remove the entire ordered set from Redis.

The default ordering of items in a Redis ordered set is low-to-high, so that
the key with the lowest score comes first. This is the same as Python's default

when it comes to scoring. For storing scores, we expect items to be sorted
from high-to-low, which is why keys () and items () use zrevrange
instead of zrange.

There's more...

As mentioned previously, the keys () and items () methods take optional start and end

keyword

arguments to get a slice of the results. This makes the RedisOrderedDict optimal

for storing scores, then getting the top N keys. Here's a simple example where we assign three
word scores, then get the top two:

>>>

>>>

>>>

>>>

from redis import Redis

from rediscollections import RedisOrderedDict
r = Redis ()

rod = RedisOrderedDict (r, 'scores')

>>> rod['best'] = 10

>>> rod['worst'] = 0.1

>>> rod['middle'] = 5

>>> rod.keys ()

['best', 'middle', 'worst']

>>>

rod.keys (start=0, end=1)

['best', 'middle']

>>>

rod.clear ()

220

Chapter 8

Calculating high information words recipe in Chapter 7, Text Classification, describes
how to calculate information gain, which is a good case for storing word scores in a
RedisOrderedDict. The Storing a frequency distribution in Redis recipe introduces
Redis and the RedisHashMap.

Distributed word scoring with Redis

and execnet

We can use Redis and execnet together to do distributed word scoring. In the Calculating
high information words recipe in Chapter 7, Text Classification, we calculated the

information gain of each word in the movie reviews corpus using a FregDist and
ConditionalFregDist. Now that we have Redis, we can do the same thing using a
RedisHashFregDist and a RedisConditionalHashFregDist, then store the scores in
a RedisOrderedDict. We can use execnet to distribute the counting in order to get better
performance out of Redis.

Getting ready

Redis, redis-py, and execnet must be installed, and an instance of redis-server must
be running on localhost.

How to do it...

We start by getting a list of (label, words) tuples for each label in the movie
reviews corpus (which only has pos and neg labels). Then we get the word scores
using score_words () from the dist_ featx module. word_ scores is an instance of
RedisOrderedDict, and we can see that the total number of words is 39,764. Using the
keys () method, we can then get the top 1000 words, and inspect the top five just to see
what they are. Once we have all we want from word_scores, we can delete the keys in
Redis as we no longer need the data.

>>> from dist featx import score words

>>> from nltk.corpus import movie reviews

>>> labels = movie reviews.categories()

>>> labelled words = [(l1, movie reviews.words (categories=[1])) for 1
in labels]

>>> word scores = score words (labelled words)

>>> len(word scores)

39764

>>> topn _words = word scores.keys (end=1000)

221

Distributed Processing and Handling Large Datasets

>>> topn words[0:5]

[l l’ !bad!, l?l’ !movie!, ltl]
>>> from redis import Redis
>>> r = Redis()

>>> [r.delete(key) for key in ['word fd',6 'label word fd:neg',6 'label

word fd:pos', 'word scores']]
[True, True, True, True]

The score words () functionin dist_featx can take a while to complete, so expect to
wait a couple of minutes. The overhead of using execnet and Redis means it will take
significantly longer than a non-distributed in-memory version of the function.

The dist_featx.py module contains the score words () function, which does
the following:

1. Opens gateways and channels, sending initialization data to each.

2. Sendseach (label, words) tuple over a channel for counting.

3. Sends a done message to each channel, waits for a done reply back,
then closes the channels and gateways.

4. Calculates the score of each word based on the counts and stores in a
RedisOrderedDict.

In our case of counting words in the movie reviews corpus, calling score_words () opens

two gateways and channels, one for counting the pos words, and the other for counting the
neg words. The communication is as follows:

Local Process | remote_word_count |
T
1 1
T host, fd name, cfd name -
T o
— label, words —
T T
o L
done
done
T T

222

Chapter 8

Once the counting is finished, we can score all the words and store the results. The code
itself is as follows:

import itertools, execnet, remote word count

from
from
from
from

nltk.metrics import BigramAssocMeasures

redis import Redis

redisprob import RedisHashFregDist, RedisConditionalHashFregDist
rediscollections import RedisOrderedDict

def score words (labelled words, score_ fn=BigramAssocMeasures.chi sq,
host='localhost', specs=[('popen', 2)]):

gateways = []

channels = []

for spec, count in specs:

cyc

for i in range (count) :

gw = execnet.makegateway (spec)
gateways.append (gw)

channel = gw.remote exec (remote word count)
channel.send((host, 'word fd',6 'label word fd'))
channels.append (channel)

= itertools.cycle (channels)

for label, words in labelled words:

channel = cyc.next ()
channel.send((label, list (words)))

for channel in channels:

channel.send('done')

assert 'done' == channel.receive ()

channel .waitclose (5)

for gateway in gateways:
gateway.exit ()

r
fd

cfd
word_scores = RedisOrderedDict (r, 'word scores')
n xx = cfd.N()

Redis (host)
= RedisHashFregDist (r, 'word fd')
= RedisConditionalHashFregDist (r, 'label word fd')

for label in cfd.conditions() :
n xi = cfd[label] .N()

for word, n_ii in cfdl[label].iteritems():

n_ix = fd[word]

if n_ii and n_ix and n_xi and n_xx:
score = score_fn(n_1ii, (n_ix, n_xi), n_xx)
word_scores [word] = score

return word_scores

Note that this scoring method will only be accurate when there are two labels.

If there are more than two labels, then word scores for each label should be

stored in separate RedisOrderedDict instances, one per label.

223

Distributed Processing and Handling Large Datasets

The remote word count.py module looks as follows:

from redis import Redis
from redisprob import RedisHashFregDist, RedisConditionalHashFregDist
if _ name_ == '__ channelexec_ ':

host, fd_name, cfd_name = channel.receive ()

r = Redis (host)

fd = RedisHashFregDist (r, f£d name)

cfd = RedisConditionalHashFregDist (r, cfd_name)

for data in channel:

if data == 'done':
channel.send('done')
break

label, words = data

for word in words:
fd.inc (word)
cfd[label] .inc (word)

You'll notice this is not a pure module as it requires being able to import both

redis and redisprob. The reason is that instances of RedisHashFregDist and
RedisConditionalHashFreqgDist cannot be pickled and sent over the channel. Instead,
we send the host name and key names over the channel so we can create the instances in
the remote module. Once we have the instances, there are two kinds of data we can receive
over the channel:

1. A done message, which signals that there is no more data coming in over the
channel. We reply back with another done message, then exit the loop to close
the channel.

2. A2-tuple of (label, words), which we then iterate over to increment counts in
both the RedisHashFregDist and RedisConditionalHashFregDist.

There's more...

In this particular case, it would be faster to compute the scores without using Redis or
execnet. However, by using Redi s, we can store the scores persistently for later examination
and usage. Being able to inspect all the word counts and scores manually is a great way to learn
about your data. We can also tweak feature extraction without having to re-compute the scores.
For example, you could use featx.bag of words in set () (found in Chapter 7, Text
Classification) with the top N words from the RedisOrderedDict, where N could be 1,000,
2,000, or whatever number you want. If our data size is much greater, the benefits of execnet
will be much more apparent. Horizontal scalability using execnet or some other method to
distribute computations across many nodes becomes more valuable, as the size of the data you
need to process increases.

224

Chapter 8

See also

The Calculating high information words recipe in Chapter 7, Text Classification introduces
information gain scoring of words for feature extraction and classification. The first three
recipes of this chapter show how to use execnet, while the next three recipes describe

RedisHashFregDist, RedisConditionalHashFregDist, and RedisOrderedDict
respectively.

225

Parsing Specific Data

In this chapter, we will cover:

» Parsing dates and times with Dateutil

» Time zone lookup and conversion

» Tagging temporal expressions with Timex

» Extracting URLs from HTML with Ixml

» Cleaning and stripping HTML

» Converting HTML entities with BeautifulSoup

» Detecting and converting character encodings

Introduction

This chapter covers parsing specific kinds of data, focusing primarily on dates, times, and
HTML. Luckily, there are a number of useful libraries for accomplishing this, so we don't have
to delve into tricky and overly complicated regular expressions. These libraries can be great
complements to the NLTK:

» dateutil: Provides date/time parsing and time zone conversion

» timex: Can identify time words in text

» 1xml and BeautifulSoup: Can parse, clean, and convert HTML

» chardet: Detects the character encoding of text
The libraries can be useful for pre-processing text before passing it to an NLTK object, or

post-processing text that has been processed and extracted using NLTK. Here's an example
that ties many of these tools together.

Parsing Specific Data

Let's say you need to parse a blog article about a restaurant. You can use 1xml or
BeautifulSoup to extract the article text, outbound links, and the date and time when the
article was written. The date and time can then be parsed to a Python datetime object with
dateutil. Once you have the article text, you can use chardet to ensure it's UTF-8 before
cleaning out the HTML and running it through NLTK-based part-of-speech tagging, chunk
extraction, and/or text classification, to create additional metadata about the article. If there's
an event happening at the restaurant, you may be able to discover that by looking at the

time words identified by timex. The point of this example is that real-world text processing
often requires more than just NLTK-based natural language processing, and the functionality
covered in this chapter can help with those additional requirements.

Parsing dates and times with Dateutil

If you need to parse dates and times in Python, there is no better library than dateutil. The

parser module can parse datetime strings in many more formats than can be shown here,

while the tz module provides everything you need for looking up time zones. Combined, these
modules make it quite easy to parse strings into time zone aware datetime objects.

Getting ready

You can install dateutil using pip or easy install, thatis sudo pip install
dateutil or sudo easy install dateutil. Complete documentation can be found at
http://labix.org/python-dateutil.

How to do it...

Let's dive into a few parsing examples:

>>> from dateutil import parser

>>> parser.parse('Thu Sep 25 10:36:28 2010"')
datetime.datetime (2010, 9, 25, 10, 36, 28)

>>> parser.parse ('Thursday, 25. September 2010 10:36AM')
datetime.datetime (2010, 9, 25, 10, 36)

>>> parser.parse('9/25/2010 10:36:28")
datetime.datetime (2010, 9, 25, 10, 36, 28)

>>> parser.parse('9/25/2010")

datetime.datetime (2010, 9, 25, 0, 0)

>>> parser.parse('2010-09-25T10:36:28Z")
datetime.datetime (2010, 9, 25, 10, 36, 28, tzinfo=tzutc())

As you can see, all it takes is importing the parser module and calling the parse () function
with a datetime string. The parser will do its best to return a sensible datetime object, but
if it cannot parse the string, it will raise a ValueError.

228

Chapter 9

The parser does not use regular expressions. Instead, it looks for recognizable tokens and
does its best to guess what those tokens refer to. The order of these tokens matters, for
example, some cultures use a date format that looks like Month/Day/Year (the default order)
while others use a Day/Month/Year format. To deal with this, the parse () function takes an
optional keyword argument dayfirst, which defaults to False. If you set it to True, it can
correctly parse dates in the latter format.

>>> parser.parse('25/9/2010', dayfirst=True)
datetime.datetime (2010, 9, 25, 0, 0)

Another ordering issue can occur with two-digit years. For example, '10-9-25" is ambiguous.
Since dateutil defaults to the Month-Day-Year format, ' 10-9-25" is parsed to the year
2025. But if you pass yearfirst=True into parse (), it will be parsed to the year 2010.

>>> parser.parse('10-9-25")
datetime.datetime (2025, 10, 9, 0, 0)

>>> parser.parse('10-9-25', yearfirst=True)
datetime.datetime (2010, 9, 25, 0, 0)

The dateutil parser can also do fuzzy parsing, which allows it to ignore extraneous
characters in a datetime string. With the default value of False, parse () will raise a
ValueError when it encounters unknown tokens. But if fuzzy=True, then a datetime
object can usually be returned.

>>> try:
parser.parse('9/25/2010 at about 10:36AM')
except ValueError:
'cannot parse'
'cannot parse'
>>> parser.parse('9/25/2010 at about 10:36AM', fuzzy=True)
datetime.datetime (2010, 9, 25, 10, 36)

In the next recipe, we'll use the tz module from dateutil to do time zone lookup and
conversion.

229

Parsing Specific Data

Time zone lookup and conversion

Most datetime objects returned from the dateutil parser are naive, meaning they don't
have an explicit tzinfo, which specifies the time zone and UTC offset. In the previous recipe,
only one of the examples had a tzinfo, and that's because it's in the standard ISO format
for UTC date and time strings. UTC is the coordinated universal time, and is the same as
GMT. IS0 is the International Standards Organization, which among other things, specifies
standard date and time formatting.

Python datetime objects can either be naive or aware. If a datetime object has a tzinfo,
then it is aware. Otherwise the datetime is naive. To make a naive datetime object time
zone aware, you must give it an explicit tzinfo. However, the Python datetime library

only defines an abstract base class for t zinfo, and leaves it up to the others to actually
implement tzinfo creation. This is where the tz module of dateutil comes in—it provides
everything you need to lookup time zones from your OS time zone data.

Getting ready

dateutil should be installed using pip or easy install. You should also make sure
your operating system has time zone data. On Linux, this is usually found in /usr/share/
zoneinfo, and the Ubuntu package is called tzdata. If you have a number of files and
directories in /usr/share/zoneinfo, such as America/, Europe/, and so on, then you
should be ready to proceed. The following examples show directory paths for Ubuntu Linux.

How to do it...

Let's start by getting a UTC tzinfo object. This can be done by calling tz.tzutc (),
and you can check that the offset is 0 by calling the utcoffset () method with a UTC
datetime object.

>>> from dateutil import tz

>>> tz.tzutc ()

tzutc ()

>>> import datetime

>>> tz.tzutc () .utcoffset (datetime.datetime.utcnow())
datetime.timedelta (0)

To get tzinfo objects for other time zones, you can pass in a time zone file path to the
gettz () function.

>>> tz.gettz ('US/Pacific!')
tzfile('/usr/share/zoneinfo/US/Pacific')

>>> tz.gettz ('US/Pacific!') .utcoffset (datetime.datetime.utcnow())
datetime.timedelta (-1, 61200)

230

Chapter 9

>>> tz.gettz ('Europe/Paris')
tzfile('/usr/share/zoneinfo/Europe/Paris’)

>>> tz.gettz ('Europe/Paris') .utcoffset (datetime.datetime.utcnow())
datetime.timedelta (0, 7200)

You can see the UTC offsets are t imedelta objects, where the first number is days, and the
second number is seconds.

M If you're storing datetimes in a database, it's a good idea to store them
Q all in UTC to eliminate any time zone ambiguity. Even if the database can
recognize time zones, it's still a good practice.

To convert a non-UTC datet ime object to UTC, it must be made time zone aware. If you try

to convert a naive datetime to UTC, you'll get a ValueError exception. To make a naive
datetime time zone aware, you simply call the replace () method with the correct tzinfo.
Once a datetime object has a tzinfo, then UTC conversion can be performed by calling the
astimezone () method with tz.tzutc ().

>>> pst = tz.gettz ('US/Pacific')
>>> dt = datetime.datetime (2010, 9, 25, 10, 36)
>>> dt.tzinfo
>>> dt.astimezone (tz.tzutc())
Traceback (most recent call last):
File "/usr/lib/python2.6/doctest.py", line 1248, in run
compileflags, 1) in test.globs
File "<doctest _ main [22]>", line 1, in <module>
dt.astimezone (tz.tzutc())
ValueError: astimezone () cannot be applied to a naive datetime
>>> dt.replace(tzinfo=pst)
datetime.datetime (2010, 9, 25, 10, 36, tzinfo=tzfile('/usr/share/
zoneinfo/US/Pacific'))
>>> dt.replace (tzinfo=pst) .astimezone (tz.tzutc())
datetime.datetime (2010, 9, 25, 17, 36, tzinfo=tzutc())

The tzutc and tzfile objects are both subclasses of tzinfo. As such, they know the
correct UTC offset for time zone conversion (which is O for t zutc). A tzfile object knows
how to read your operating system's zoneinfo files to get the necessary offset data. The
replace () method of a datetime object does what its name implies—it replaces attributes.
Once a datetime has a tzinfo, the astimezone () method will be able to convert the time
using the UTC offsets, and then replace the current tzinfo with the new tzinfo.

231

Parsing Specific Data

, Note that both replace () and astimezone () return
new datetime objects. They do not modify the current
" object.

You can pass a tzinfos keyword argument into the dateutil parser to detect otherwise
unrecognized time zones.

>>> parser.parse ('Wednesday, Aug 4, 2010 at 6:30 p.m. (CDT)',
fuzzy=True)

datetime.datetime (2010, 8, 4, 18, 30)

>>> tzinfos = {'CDT': tz.gettz('US/Central')}

>>> parser.parse ('Wednesday, Aug 4, 2010 at 6:30 p.m. (CDT)',
fuzzy=True, tzinfos=tzinfos)

datetime.datetime (2010, 8, 4, 18, 30, tzinfo=tzfile('/usr/share/
zoneinfo/US/Central'))

In the first instance, we get a naive datetime since the time zone is not recognized. However,
when we pass in the tzinfos mapping, we get a time zone aware datetime.

Local time zone

If you want to lookup your local time zone, you can call tz.tzlocal (), which will use
whatever your operating system thinks is the local time zone. In Ubuntu Linux, this is usually
specified in the /etc/timezone file.

Custom offsets

You can create your own tzinfo object with a custom UTC offset using the tzof fset object.
A custom offset of one hour can be created as follows:

>>> tz.tzoffset ('custom', 3600)
tzoffset ('custom', 3600)

You must provide a name as the first argument, and the offset time in seconds as the
second argument.

The previous recipe covers parsing datetime strings with dateutil.parser.

232

Chapter 9

Tagging temporal expressions with Timex

The NLTK project has a little known contrib repository that contains, among other things,
a module called timex . py that can tag temporal expressions. A temporal expression is
just one or more time words, such as "this week", or "next month". These are ambiguous
expressions that are relative to some other point in time, like when the text was written. The
timex module provides a way to annotate text so these expressions can be extracted for
further analysis. More on TIMEX can be found at http://timex2.mitre.org/.

Getting ready

The timex.py module is part of the nltk contrib package, which is separate from the
current version of NLTK. This means you need to install it yourself, or use the timex.py
module that is included with the book's code download. You can also download timex.

py directly from http://code.google.com/p/nltk/source/browse/trunk/nltk
contrib/nltk contrib/timex.py.

If you want to install the entire n1tk_contrib package, you can check out the source at

http://nltk.googlecode.com/svn/trunk/ and do sudo python setup.py install
from within the nltk contrib folder. If you do this, you'll need to do from nltk contrib
import timex instead of just import timex as done in the following How to do it... section.

For this recipe, you have to download the t imex.py module into the same folder as the rest
of the code, so that import timex does not cause an ImportError.

You'll also need to get the egenix-mx-base package installed. This is a C extension library
for Python, so if you have all the correct Python development headers installed, you should
be able to do sudo pip install egenix-mx-base or sudo easy install egenix-mx-
base. If you're running Ubuntu Linux, you can instead do sudo apt-get install python-
egenix-mxdatetime. If none of those work, you can go to http://www.egenix.com/
products/python/mxBase/ to download the package and find installation instructions.

How to do it...

Using t imex is very simple: pass a string into the timex. tag () function and get back
an annotated string. The annotations will be XML TIMEX tags surrounding each temporal
expression.

>>> import timex

>>> timex.tag("Let's go sometime this week")
"Let's go sometime <TIMEX2>this week</TIMEX2>"

>>> timex.tag("Tomorrow I'm going to the park.")
"<TIMEX2>Tomorrow</TIMEX2> I'm going to the park."

233

Parsing Specific Data

The implementation of timex . py is essentially over 300 lines of conditional

regular expression matches. When one of the known expressions match, it creates a
RelativeDateTime object (from the mx.DateTime module). This RelativeDateTime
is then converted back to a string with surrounding TIMEX tags and replaces the original
matched string in the text.

There's more...

timex is smart enough not to tag expressions that have already been tagged, so it's ok to
pass TIMEX tagged text into the tag () function.

>>> timex.tag("Let's go sometime <TIMEX2>this week</TIMEX2>")
"Let's go sometime <TIMEX2>this week</TIMEX2>"

In the next recipe, we'll be extracting URLs from HTML, but the same modules and techniques
can be used to extract the TIMEX tagged expressions for further processing.

Extracting URLs from HTML with Ixml

A common task when parsing HTML is extracting links. This is one of the core functions of
every general web crawler. There are a number of Python libraries for parsing HTML, and 1xml
is one of the best. As you'll see, it comes with some great helper functions geared specifically
towards link extraction.

Getting ready

1xml is a Python binding for the C libraries 1ibxml2 and l1ibxslt. This makes it a very fast
XML and HTML parsing library, while still being pythonic. However, that also means you need
to install the C libraries for it to work. Installation instructions are at http://codespeak.
net/lxml/installation.html. However, if you're running Ubuntu Linux, installation is as
easy as sudo apt-get install python-1lxml.

Chapter 9

How to do it...

1xml comes with an html module designed specifically for parsing HTML. Using the
fromstring () function, we can parse an HTML string, then get a list of all the links. The
iterlinks () method generates four-tuples of the form (element, attr, link, pos):

» element: This is the parsed node of the anchor tag from which the 1ink is
extracted. If you're just interested in the 1ink, you can ignore this.

» attr: This is the attribute the 1ink came from, which is usually href.
» 1link: This is the actual URL extracted from the anchor tag.

» pos: This is the numeric index of the anchor tag in the document. The first tag has a
pos of 0, the second has a pos of 1, and so on.

Following is some code to demonstrate:

>>> from 1lxml import html

>>> doc = html.fromstring('Hello <a href="/world"sworld"')
>>> links = list(doc.iterlinks())
>>> len(links)

1

>>> (el, attr, link, pos) = links[0]
>>> attr

'href'

>>> link

' /world'

>>> pos

0

1xml parses the HTML into an ElementTree. This is a tree structure of parent nodes and
child nodes, where each node represents an HTML tag, and contains all the corresponding
attributes of that tag. Once the tree is created, it can be iterated on to find elements, such
as the a or anchor tag. The core tree handling code is in the 1xml . etree module, while
the 1xml .html module contains only HTML-specific functions for creating and iterating a
tree. For complete documentation, see the Ixml tutorial: http://codespeak.net/1lxml/
tutorial.html.

There's more...

You'll notice in the previous code that the link is relative, meaning it's not an absolute URL.
We can make it absolute by calling the make links absolute () method with a base URL
before extracting the links.

>>> doc.make links absolute('http://hello')
>>> abslinks = list(doc.iterlinks())

235

Parsing Specific Data

>>> (el, attr, link, pos) = abslinks[0]
>>> link
'http://hello/world’

Extracting links directly

If you don't want to do anything other than extract links, you can call the iterlinks ()
function with an HTML string.

>>> links = list(html.iterlinks('Hello <a href="/world"sworld'))
>>> 1links[0] [2]
' /world'

Parsing HTML from URLs or files

Instead of parsing an HTML string using the fromstring () function, you can call the
parse () function with a URL or file name. For example, html .parse ("http://my/url")
or html .parse ("/path/to/file"). The result will be the same as if you loaded the URL
or file into a string yourself, then called fromstring ().

Extracting links with XPaths
Instead of using the iterlinks () method, you can also get links using the xpath ()
method, which is a general way to extract whatever you want from HTML or XML parse trees.

>>> doc.xpath('//a/@href') [0]
'http://hello/world’

For more on XPath syntax, see http://www.w3schools.com/XPath/xpath syntax.
asp.

In the next recipe, we'll cover cleaning and stripping HTML.

Cleaning and stripping HTML

Cleaning up text is one of the unfortunate but entirely necessary aspects of text processing.
When it comes to parsing HTML, you probably don't want to deal with any embedded
JavaScript or CSS, and are only interested in the tags and text. Or you may want to remove
the HTML entirely, and process only the text. This recipe covers how to do both of these
pre-processing actions.

236

Chapter 9

Getting ready

You'll need to install 1xm1. See the previous recipe or http://codespeak.net/1lxml/
installation.html for installation instructions. You'll also need NLTK installed for
stripping HTML.

How to do it...

We can use the clean_html () function in the 1xml.html.clean module to remove
unnecessary HTML tags and embedded JavaScript from an HTML string.

>>> import 1lxml.html.clean

>>> 1lxml.html.clean.clean html ('<html><head></head><body
onload=loadfunc () >my text</body></html>")

'<divs<body>my text</body></divs'

The result is much cleaner and easier to deal with. The full module path to the
clean_html () function is used because there's also has a clean_html () function
inthe nltk.util module, but its purpose is different. The nltk.util.clean html ()
function removes all HTML tags when you just want the text.

>>> import nltk.util
>>> nltk.util.clean html ('<divs<body>my text</body></div>")
'my text'

The 1xml.html.clean html () function parses the HTML string into a tree, then iterates
over and removes all nodes that should be removed. It also cleans nodes of unnecessary
attributes (such as embedded JavaScript) using regular expression matching and substitution.

Thenltk.util.clean html () function performs a bunch of regular expression
substitutions to remove HTML tags. To be safe, it's best to strip the HTML after cleaning it to
ensure the regular expressions will match.

There's more...

The 1xml.html.clean module defines a default Cleaner class that's used when you
call clean html (). You can customize the behavior of this class by creating your own
instance and calling its clean html () method. For more details on this class, see
http://codespeak.net/1lxml/lxmlhtml.html.

237

Parsing Specific Data

The 1xml.html module was introduced in the previous recipe for parsing HTML and
extracting links. In the next recipe, we'll cover un-escaping HTML entities.

Converting HTML entities with

BeautifulSoup

HTML entities are strings such as & or &1t ;. These are encodings of normal ASCII
characters that have special uses in HTML. For example, &1t ; is the entity for <. You can't
just have < within HTML tags because it is the beginning character for an HTML tag, hence the
need to escape it and define the &1t ; entity. The entity code for & is & which, as we've
just seen, is the beginning character for an entity code. If you need to process the text within
an HTML document, then you'll want to convert these entities back to their normal characters
S0 you can recognize them and handle them appropriately.

Getting ready

You'll need to install BeautifulSoup, which you should be able to do with sudo pip
install BeautifulSoup Ofr sudo easy install BeautifulSoup. You can read more
about BeautifulSoup athttp://www.crummy.com/software/BeautifulSoup/.

How to do it...

BeautifulSoup is an HTML parser library that also contains an XML parser called
BeautifulStoneSoup. This is what we can use for entity conversion. It's quite simple:
create an instance of BeautifulStoneSoup given a string containing HTML entities and
specify the keyword argument convertEntities="html'. Convert this instance to a string,
and you'll get the ASCII representation of the HTML entities.

>>> from BeautifulSoup import BeautifulStoneSoup

>>> unicode (BeautifulStoneSoup ('<', convertEntities='html'))
u'<'
>>> unicode (BeautifulStoneSoup ('& ', convertEntities='html'))
u'é&!

It's ok to run the string through multiple times, as long as the ASCII characters are not by
themselves. If your string is just a single ASCII character for an HTML entity, that character will
be lost.

>>> unicode (BeautifulStoneSoup('<', convertEntities='html'))

u''

238

Chapter 9

>>> unicode (BeautifulStoneSoup('< ', convertEntities='html'))
ul< 1

To make sure the character isn't lost, all that's required is to have another character in the
string that is not part of an entity code.

To convert the HTML entities, BeautifulStoneSoup looks for tokens that look like

an entity and replaces them with their corresponding value in the htmlentitydefs.
name2codepoint dictionary from the Python standard library. It can do this if the entity
token is within an HTML tag, or when it's in a normal string.

BeautifulSoup is an excellent HTML and XML parser in its own right, and can be a
great alternative to 1xml. It's particularly good at handling malformed HTML. You can read
more about how to use itat http://www.crummy.com/software/BeautifulSoup/
documentation.html.

Extracting URLs with BeautifulSoup

Here's an example of using BeautifulSoup to extract URLs, like we did in the Extracting
URLs from HTML with Ixml recipe. You first create the soup with an HTML string, call the
findall () method with 'a' to get all anchor tags, and pull out the 'href ' attribute to get
the URLs.

>>> from BeautifulSoup import BeautifulSoup

>>> soup = BeautifulSoup('Hello world')
>>> [a['href'] for a in soup.findAll('a')]

[u'/world']

In the Extracting URLs from HTML with Ixml recipe, we covered how to use 1xml to extract
URLs from an HTML string, and we covered Cleaning and stripping HTML after that recipe.

239

Parsing Specific Data

Detecting and converting character

encodings

A common occurrence with text processing is finding text that has a non-standard character
encoding. Ideally, all text would be ASCII or UTF-8, but that's just not the reality. In cases when
you have non-ASCII or non-UTF-8 text and you don't know what the character encoding is, you'll
need to detect it and convert the text to a standard encoding before further processing it.

Getting ready

You'll need to install the chardet module, using sudo pip install chardet or sudo
easy install chardet. You can learn more about chardet at http://chardet.
feedparser.org/.

How to do it...

Encoding detection and conversion functions are provided in encoding.py. These are
simple wrapper functions around the chardet module. To detect the encoding of a string,
call encoding.detect (). You'll get back a dict containing two attributes: confidence
and encoding. confidence is a probability of how confident chardet is that the value for
encoding is correct.

-*- coding: utf-8 -*-
import chardet

def detect(s):
try:
return chardet.detect (s)
except UnicodeDecodeError:
return chardet.detect (s.encode('utf-8'))

def convert (s):
encoding = detect(s) ['encoding']

if encoding == 'utf-8':
return unicode (s)

else:
return unicode (s, encoding)

Here's some example code using detect () to determine character encoding:

>>> import encoding
>>> encoding.detect ('ascii')
{'confidence': 1.0, 'encoding': 'ascii'}

240

Chapter 9

>>> encoding.detect (u'abcdé')

{'confidence': 0.75249999999999995, 'encoding': 'utf-8'}
>>> encoding.detect ('\222\222\223\225")
{'confidence': 0.5, 'encoding': 'windows-1252'}

To convert a string to a standard unicode encoding, call encoding. convert (). This will
decode the string from its original encoding, then re-encode it as UTF-8.

>>> encoding.convert ('ascii')

u'ascii!

>>> encoding.convert (u'abcdé')
u'abed\\xc3\\xa9'

>>> encoding.convert ('\222\222\223\225")
u'\u2019\u2019\u201c\u2022"

The detect () function is a wrapper around chardet .detect () which can handle
UnicodeDecodeError exceptions. In these cases, the string is encoded in UTF-8 before
trying to detect the encoding.

The convert () function first calls detect () to get the encoding, then returns a
unicode string with the encoding as the second argument. By passing the encoding into
unicode (), the string is decoded from the original encoding, allowing it to be re-encoded
into a standard encoding.

There's more...

The comment at the top of the module, # -*- coding: utf-8 -*-, is a hint to the Python
interpreter, telling it which encoding to use for the strings in the code. This is helpful for when
you have non-ASCII strings in your source code, and is documented in detail at http://www.
python.org/dev/peps/pep-0263/.

Converting to ASCII

If you want pure ASCII text, with non-ASCII characters converted to ASCIl equivalents,
or dropped if there is no equivalent character, then you can use the unicodedata.
normalize () function.

>>> import unicodedata

>>> unicodedata.normalize ('NFKD', u'abcd\xe9') .encode('ascii',
'ignore"')

'abcde!

241

Parsing Specific Data

Specifying 'NFKD' as the first argument ensures the non-ASCII characters are replaced with
their equivalent ASCII versions, and the final call to encode () with 'ignore' as the second
argument will remove any extraneous unicode characters.

See also

Encoding detection and conversion is a recommended first step before doing HTML
processing with 1xml or BeautifulSoup, covered in the Extracting URLs from HTML with
Ixml and Converting HTML entities with BeautifulSoup recipes.

242

Penn Treebank
Part-of-Speech Tags

Following is a table of all the part-of-speech tags that occur in the t reebank corpus
distributed with NLTK. The tags and counts shown here were acquired using the
following code:

>>> from nltk.probability import FregDist

>>> from nltk.corpus import treebank

>>> fd = FregDist ()

>>> for word, tag in treebank.tagged words() :
fd.inc (tag)

>>> fd.items ()

The FregDist £d contains all the counts shown here for every tag in the treebank corpus.
You can inspect each tag count individually by doing £d [tag], asin £4['DT']. Punctuation
tags are also shown, along with special tags such as -NONE -, which signifies that the part-
of-speech tag is unknown. Descriptions of most of the tags can be found at http://www.
ling.upenn.edu/courses/Fall 2003/1ing001/penn treebank pos.html.

Penn Treebank Part-of-Speech Tags

Part-of-speech tag Frequency of occurrence
16
$ 724
" 694
) 4,886
-LRB- 120
-NONE- 6,592
-RRB- 126
384
563
) 712
ccC 2,265
CD 3,546
DT 8,165
EX 88
FW 4
IN 9,857
J 5,834
JIR 381
JJS 182
LS 13
MD 927
NN 13,166
NNP 9,410
NNPS 244
NNS 6,047
PDT 27
POS 824
PRP 1,716

Part-of-speech tag Frequency of occurrence
PRP$ 766
RB 2,822
RBR 136
RBS 35

RP 216
SYM 1

TO 2,179
UH 3

VB 2,554
VBD 3,043
VBG 1,460
VBN 2,134
VBP 1,321
VBZ 2,125
WDT 445
WP 241
WP$ 14

Appendix

245

Symbols

__contains__() method 213
__delitem__() method 213, 220
__getitem__() method 213, 220
__len__() method 213,219
__setitem__() method 213, 220

A

AbstractLazySequence class
working 76
accuracy() function 184
ACE 133
AffixTagger
about 96
min_stem_length keyword argument 97
working 96
anchor tag 235
AntonymReplacer class 43
antonyms
about 18, 41
negations, replacing 41, 43
antonyms() method 19
append_line() function 78
aspell 36
Automatic Content Extraction. See ACE
available_languages attribute 31

Babelfish

about 30

text, translating 30, 31
babelfish.translate() function 30
babelize() function 31
backoff_tagger function 91

Index

backoff tagging
about 88
taggers, combining 88
backreference 34
bag_of_bigrams_words() function 170
bag_of_words() function
format 168
working 168
Bag of Words model 168
bag_of_words_not_in_set() function
about 169
example 169
batch_tag() method 84
Bayes Theorem
using 170
BeautifulSoup library
about 227, 238, 239
HTML entities, converting 238
URLs, extracting 239
BigramCollocationFinder constructs
bigrams, finding 22
BigramTagger
about 90
working 90, 91
binary classifier 167, 171
binary named entity
extracting 135
block 70
block reader functions
read_blankline_block() 73
read_line_block() 73
read_regexp_block() 73
read_whitespace_block() 73
read_wordpunct_block() 73
BrillTagger
about 98

training 98, 99 working 113, 114

working 99 chunk rule
with, context 116, 117
C ChunkRule class 112
chunks
capltalization about 54,111, 144

need for 102

cardinal word 150

categorized chunk corpus reader
creating 61-64

expanding, with regular expressions 121-123
merging, with regular expressions 117-119
removing, with regular expressions 121-123
splitting, with regular expressions 117-119

categorized text corpus
creating 58, 59
category file 61
cess_cat corpora
and cess_esp corpora 160
cess_esp corpora
and cess_cat corpora 160
channel
about 202
multiple channels, creating 205
character encodings
converting 240, 241
detecting 240, 241
chardet.detect() function 241
chardet library 227
chinking
about 112
with, regular expressions 112-114
ChinkRule class 112
chinks 112
choose_tag() method
about 83
arguments 83
ChunkedCorpusReader
about 55
working 56
chunked phrase corpus
creating 54
chunk extraction 111
chunking
about 112
classification-based 129-132
looping 125
tracing 126
with, regular expressions 112-114
chunk patterns
about 112

248

types 115
ChunkScore

metrics 125
chunk transformations

chaining 154
chunk tree

converting, to text 155, 156
chunk_tree_to_sent() function

about 156

working 156
ChunkWithContext class

example 116
classification probability

getting 174, 175
ClassifierBasedPOSTagger

about 106

working 106
ClassifierBasedTagger class 129-132
ClassifierChunker class 129-132
classifiers

combining, with voting 191, 192
classify() method 174, 175
class-imbalance problem 199
clean_html() function 237
clear() method 213, 220
collocations 21
conditional exponential classifier. See

MaxentClassifier

conditional frequency distribution

storing, in Redis 215, 217
Conference on Computational Natural

Language Learning. See CoNLL

CoNLL 58
Conll chunk corpus reader

categorizing 65, 66
context model

overriding 87

convert() function 241
convert_tree_nodes() function
about 163
tree nodes, converting 163, 164
working 164
corpora
about 46
categorizing 61
corpus 46
corpus editing
and file locking 77, 78
corpus view 70
correct_verbs() function
about 147
verb forms, correcting 146, 148
working 148
CSV synonym replacement 40
CsvWordReplacer class 40
custom corpus
setting up 46, 47
custom corpus view
creating 70

D

dates
parsing, with dateutil library 228, 229
dateutil library
about 227
dates, parsing 228, 229
installing 230
times, parsing 228, 229
decision tree classifier
training 177, 178
DecisionTreeClassifier
about 177
depth cutoff 179
entropy cutoff 178, 179
evaluating 190, 191
support cutoff 179
working 178
deep tree
flattening 157-160
DefaultTagger
working 83
default tagging 82
depth_cutoff 179

detect() function 241
dict style feature sets 168
distributed chunking
execnet, used 206, 208
distributed tagging
execnet, used 202, 204

edit distance 37
Enchant
about 36
personal word list 38
en_GB Dictionary 38
entity tags 133
entropy
about 178
calculating 179
entropy_cutoff 178, 179
estimator
training 175, 176
evaluate() method 82, 84
exclusive lock 77
execnet
about 202
distributed chunking 206, 208
distributed tagging 202, 204
distributed word scoring 221-223
parallel list processing 209, 210
execnet.makegateway() function 203
ExpandLeftRule rule 121
ExpandRightRule rule 121

F

false negatives 183
false positives 183
feature detector 106
feature_detector() function 173
features 106
feature set 106, 167
filter_insignificant() function
about 145
insignificant words, filtering 144, 145
working 145
first_chunk_index() function
about 147, 148
using 149

249

flatten_childtrees() function
about 157
deep tree, flattening 159
working 159
flatten_deeptree() function
about 157, 162
deep tree, flattening 158, 159
working 159
F-measure 186
frequency distribution
about 22
storing, in Redis 211-214
full parsing 111
fuzzy parsing 229

G

gateways

about 202

local, comparing with remote 206
General Iterative Scaling. See gis
gis 181
grammar 112

H

height() function 160
high information word
about 187
measuring 188, 189
high_information_words() function
working 189
HTML entities
about 238
converting, with BeautifulSoup library 238
hypernyms 15
hyponyms 15

ieer_chunked_sents() function
about 141
using 140

ieer corpus 140

ieertree2conllitags() function
using 140

iis 181

250

Improved Iterative Scaling. See iis
infinitive phrase
about 151
swapping 151
Information Extraction—Entity Recognition.
See ieer corpus
information gain 175
inpred lambda 152
installation, NLTK 8
instance 168
International Standards Organization. See 1SO
10B tags 56
ISO 230
items() method 213, 220
iterlinks() function 235, 236

J

jaccard() function 189

Jaccard index 189

K
keys() method 213, 220

L

label_feats_from_corpus() function 171, 173
labelled feature sets 167
LancasterStemmer class 26, 27
Lancaster Stemming Algorithm 26
LazyCorpusLoader class

about 68

arguments 68

working 69
Leacock Chodorow (LCH) similarity 21
leaves() method 58
lemma

about 17,28

finding, in WordNet 17, 18
lemmatization

about 28

combining, with stemming 29, 30
links

extracting 236
local gateways

versus remote gateways 206

LocationChunker class
working 139
location chunks
extracting 137, 139
log likelihood 181
low information words 187
Ixml.html.clean_html() function 237
Ixml library
about 227,234
URLs, extracting from HTML 234
working 235

map() function 209
masi distance
using 196
MaxentClassifier
about 180
evaluating 190
requisites 180
using 107
working 181
maximum entropy classifier
training 180, 181
MaxVoteClassifier
working 193
megam algorithm
about 183
working 183
MergeRule class
about 117
working 119
MongoDB
about 74
working 76
morphy() function 29
multi-label classifier 167
about 193
classifying with 195, 196
multiple binary classifiers
creating 193, 194
multiple channels
creating 205

naive Bayes classifier

training 170-174
NaiveBayesClassifier

about 170

manual training 176

working 173, 174
NaiveBayesClassifier classifier, methods

most_informative_features() 175

show_most_informative_features() 175
NaiveBayesClassifier.train() method 173
NAME chunker 136, 139
named entities

extracting 133, 134
named entity chunker

training 140, 141
named entity recognition 133, 134
names corpus 49
NamesTagger

about 105

working 105
National Institute of Standards and

Technology. See NIST

Natural Language Toolkit. See NLTK
negations

replacing, with antonyms 41, 43
negative feature sets 198
ngram 89
NgramTagger 90
NIST 133
NLTK

about 7, 14, 202

installing 8

URL 8
nitk.data.find() function

data directories, searching 65
nitk.data.load() function 47
NLTK data package

installing 46
nitk.metrics package 23
nitk.tag package 82
nitk.tag.pos_tag() function 202
nitk.tag.untag() function 84
nltk.tokenize.punkt module 9
nitk.util.clean_html() function 237

251

non-UTC datetime object

converting, to UTC datetime object 231
noun cardinals

swapping 150

0

ordered dictionary
about 218, 219
storing, in Redis 218, 219

P

paragraph block reader

customizing 53
parallel list processing

execnet, used 209, 210
parse() method 120, 139
partial parsing

about 111

with, regular expressions 123, 124
part-of-speech tagged word corpus

creating 50, 51
part-of-speech tagging

about 50, 82

need for 82
part-of-speech tags

244

T 244

, 244

. 244

244

244

$ 244

about 82

CC 244

CD 244

DT 244

EX 244

FW 244

IN 244

JJ) 244

JIR 244

JJS 244

-LRB- 244

LS 244

MD 244

NN 244

252

NNP 244

NNPS 244

NNS 244

-NONE- 244

PDT 244

POS 244

PRP 244

PRP$ 245

RB 245

RBR 245

RBS 245

RP 245

-RRB- 244

SYM 245

TO 245

UH 245

VB 245

VBD 245

VBG 245

VBN 245

VBP 245

VBZ 245

WDT 245

WP 245

WP$ 245
path similarity 21
Penn Treebank corpus 111
P(features | label) probability 171
P(features) probability 171
phrases 111
PickleCorpusView 73
P(label | features) probability 171
P(label) probability 171
plural nouns

singularizing 153
PorterStemmer class 26, 27
Porter Stemming Algorithm 26
positive feature sets 198
POS tag

about 16

example 16
precision

about 183, 185

measuring 183, 184
precision_recall() function 184, 185
prob_classify() method 174

proper names remote_exec() method

tagging 105, 106 about 203
proper noun chunks arguments, types 204
extracting 135 remote gateways
PunktSentenceTokenizer 9 versus local gateways 206
PunktWordTokenizer 11 remove_line() function 78
pyenchant library 36 repeatitive characters
Python subprocesses 208 removing 34, 35
RepeatReplacer class 35
Q replace() method 32,43
replace_negations() method 43
QuadgramTagger re.subn() function 32
about 91 reuters corpus 194
working 92 reuters_high_info_words() function 194
working 198
R
read_blankline_block() function 73 S
read_line_block() function 73 scoring functions 23
read_regexp_block() function 73 scoring ngrams 23
read_whitespace_block() function 73 sentences
read_wordpunct_block() function 73 tagged sentence, untagging 84
recall 183,185 tagging 84
Redis tokenizing, into words 9, 10
about 211 tokenizing, regular expressions used 11, 12
conditional frequency distribution, storing sentence tokenizer
215, 217 customizing 53
distributed word scoring 221-223 SequentialBackoffTagger
frequency distribution, storing 211-214 about 88
ordered dictionary, storing 218, 219 working 88
reference set 185 shallow tree
re.findall() method 12 creating 161, 162
RegexpReplacer.replace() 33 shallow_tree() function
RegexpStemmer class 27 about 161
RegexpTagger shallow tree, creating 161, 162
about 95 working 162
working 95 show_most_informative_features() method
RegexpTokenizer 182,187
tokenizing, on whitespace 13 significant bigrams
working 12 about 170
regular expressions including 170
chinking 112-114 singularize_plural_noun() function
chunking 112-114 about 153
partial parsing 123, 124 plural nouns, singularizing 153
sentences, tokenizing 11, 12 working 153
used, in tagging 94, 95 SnowballStemmer class 28

SpaceTokenizer 10

253

SpellingReplacer class 37
spellings

correcting, with Enchant 36, 37
spicy algorithms

about 182

Broyden-Fletcher-Goldfarb-Shanno algorithm

(BFGS) 182
Conjugate gradient (CG) algorithm 182
LBFGSB (limited memory version of BFGS)
182

Nelder-Mead 182

Powell 182
split_label_feats() function 173
SplitRule class

about 117

working 119
Stemmerl interface 27
stem() method 27, 28
stemming

about 25

combining, with lemmatization 29, 30
stopfile keyword 169
stopwords

about 13, 144

filtering 169

filtering, in tokenized sentence 13
support_cutoff 179
swap_infinitive_phrase() function

about 151

infinitive phrases, swapping 152

working 152
swap_noun_cardinal() function

about 150

noun cardinals, swapping 151

working 151
swap_verb_phrase() function

about 149

verb phrases, swapping 149
synonyms

replacing 39, 40

finding, in WordNet 17, 18
synsets

about 15

finding, for word in WordNet 14, 15

254

T

tag 82
tagged corpus reader
categorizing 61
TaggedCorpusReader
creating 51
working 52
tagged sentence
untagging 84
tagged_sents() function 82
tagged token 52, 83
tagger-based chunker
training 126-128
taggers
about 82
AffixTagger 96
BigramTagger 89-91
BrillTagger 98, 99
ClassifierBasedPOSTagger 106, 107
combining, with backoff tagging 88
ContextTagger 85
DefaultTagger 82, 83
NamesTagger 105
NgramTagger 85-91
Quadgram 91, 92
RegexpTagger 95
SequentialBackoffTagger 83, 88
TnT tagger 100, 101
TrigramTagger 89
UnigramTagger 85, 86, 93
WordNetTagger 104
tagging
regular expressions, used 94, 95
WordNet, used 103, 104
tag mapping function
tags, simplifying 53
tag() method 82

tag_pattern2re_pattern() function 112

tag separator

customizing 53
t.draw() method 113
temporal expression

about 233

tagging, with timex library 233
test set 185

text
tokenizing, into sentences 8, 9
translating, with Bablefish 30, 31
text classification 167
text feature extraction 168
time
parsing, with dateutil library 228, 229
timex library
about 227
temporal expressions, tagging 233
using 233
TnT tagger
about 100
working 101
tokenization 7, 8
tokenized sentence
stopwords, filtering 13
tokens 70
trained tagger
preserving 89
unpreserving 89
transform_chunk() function
about 154
chunk transformations, chaining 154
working 154
treebank_chunk corpus 125
treebank corpus 144, 243
TreebankWordTokenizer 10, 11
tree nodes
converting 163, 164
Tree.pos() method 157
TrigramCollocationFinder 23
Trigrams’n’Tags. See TnT tagger
TrigramTagger
about 89
working 90, 91
true negative 183
true positive 183
tzfile object 231
tzinfo object
getting 230
tz.tzlocal() function 232

U

UnChunkRule rule 121
unicodedata.normalize() function 241

unigram 85
UnigramTagger

about 85, 93

training 85

working 86
unlabelled feature set 167
urllib request 31
UTC 230

\'}

values() method 213, 220
verb forms
correcting 146, 148
verb phrases
swapping 149
verbs
comparing 21
voting
classifiers, combining with 191, 192

w

WhitespaceTokenizer 10
word list corpus

creating 48, 49
WordListCorpusReader

about 48

working 49
WordNet

about 8, 14

lemma, finding 17, 18

POS tag 16

synonyms, finding 17, 18

synset similarity, comparing 19, 20

used, for tagging 103, 104

words, lemmatising 28
WordNetCorpusReader class 29
WordNetLemmatizer class 29
WordNetTagger

working 104
WordPunctTokenizer 11
WordReplacer class 40
words

lemmatising, with WordNet 28

replacing, based on regular expressions

32,33
stemming 25, 26

2595

insignificant words, filtering 144, 145
word_tag_model() function 94
word_tokenize() function

about 10

working 10
word tokenizer

customizing 52
Wu-Palmer Similarity method. See

wup_similarity() method
wup_similarity() method 20, 21

X

xpath() method
links, extracting 236

Y

YAML file
loading 47
YAML synonym replacement 41

256

