PyGTK 2.0 Tutorial

John Finlay

PyGTK 2.0 Tutorial
by John Finlay

Published April 13, 2005

This tutorial describes the use of the Python PyGTK module.

Table of Contents

L Nt OdUCHION e 1
1L EXPloning PYGT K oo 2

2. GEettiNg Started i 4
2.1 Hello World in PYyGTK ..o 6

2.2. Theory of Signals and Callbacks. ... 8

2.3 BV 10

2.4. Stepping Through HelloWorld e 12

3. MOVING ON o 16
3.1. Moreon Signal Handlers 16

3.2. AnUpgraded Hello WOrld 16

4. Packing WILQetSo 19
4.1. Theory of Packing BOXeS.t e 19

4.2. Details Of BOXESttt 19

4.3. Packing Demonstration Programc.ouriiiit i 22

4.4, Packing Using Tables 27

4.5. Table Packing EXampleo 29

B WiIdget OVeIVIBW . .. e e e e 32
5.1, Widget HierarChy ... e 32

5.2. Widgets WithOUt WINAOWS e e e 35

6. The BUtton WIdget e 36
6.1. Normal BUttONS 36

6.2. TOGQIe BULIONS e e 40

6.3. ChecCk BULIONS 43

6.4. RadioO BUMIONS e 45

7. A USIMENES o o 49
7.1. Creating an AdjuStmeNnt 49

7.2. Using Adjustments the Easy Way. 49

7.3. Adjustment Internals e 50

8. RANGE Wi g OIS ..ot e 52
8.1. Scrollbar WIdgets 52

8.2. Scale WIdQets . ..o 52
8.2.1. Creatinga Scale WIdget. e 52

8.2.2. Methods and Signals (well, methods, atleast)................................. 53

8.3. Common Range Methods. 53
8.3.1. Setting the Update POlICY s 53

8.3.2. Getting and Setting AdJUSIMENES 54

8.4. Key and MouSe BiNAINGSot 54

8.5. Range Widget Exampleo 55

9. Miscellaneous WIdQetSot 62
0.0, LabEls .. 62

0.2, AT O S . 66

9.3. The TOOIIPS ObJECLo e 68

0.4, ProgresSs Barst 71

0.5, DIAlOgS ..o 76

0.6, IMAGES ..ottt e 76
0.6. L. PIXMAPS ..ottt 80

0. 7. RUIBIS o e 87

0.8. StatUShars 91

0.0, Xt ENtIES ..t 93
9.10. SPIN BUHONS e 96
0.11. CombO WG . ..ot 103
0.12. CalBNUAr ..ot 105

PyGTK 2.0

Tutorial

9.13. Color SEIECHON ...\ 113
9.14. File SElECtIONS e 117
9.15. Font Selection Dialog oot 120
10. Container WIgetSot 123
10.1. The EVENIBOX ...ttt e 123
10.2. The Alignment Widget e e e 124
10.3. FIXEd CONtAINGT ...ttt e e e e e e 125
10.4. Layout CONAINETottt ettt e 127
10,5, FramMES ..o 130
10.6. ASPECE Frameso 133
10.7. Paned WINAow WIdQetS.ot e e 135
10.8. VIBWPOIS .ottt 138
10.9. Scrolled WINAOWSo e e e e 139
10.10. BUTON BOXESottt e e e e e 142
10.00. TOOIDAr .. 146
10.12. NOtebOOKS ... 152
10.13. Plugs @nd SOCKELS.ottt e e e 159
10130, PIUGS ettt 159
10.13.2. SOCKELS ..o 160

11 MenU WIdQet ... 164
11.1. Manual Menu Creationt e 164
11.2. Manual Menu EXample 167
11.3. USINg HEMEFACIONY ... o e 169
11.4. ltem Factory EXample 169
12, DraWing ArBattt ittt e e e e e e 173
12.1. GraphiCs CONtEXLot et e e e 174
12.2. Drawing Methods 178
13, TeXtVIeW WG ..o 187
13.1. TeXtVIEW OVEIVIEW . ..ottt et et et et e et e e e e e 187
13,2, XV WS oottt 187
13,3, TexXt BUIferS ..o 194
13.3.1. TextBuffer Status Information.............. i 194
13.3.2. Creating TEXTILEISot e e 195
13.3.3. Text Insertion, Retrievaland Deletion 196
13.3.4. TeXtMaArKSo 197
13.3.5. Creating and Applying TeXITagS.« o vt 198
13.3.6. Inserting Imagesand Widgets 199

134, Tt OIS o 200
13.4.1. Textlter AttribULES o 201
13.4.2. Text Attributes ata Textlter ... 201
13.4.3. Copying a TexXtiter e 202
13.4.4. Retrieving Textand ObJecCts. 202
13.4.5. Checking Conditionsata Textlter i 203
13.4.6. Checking Location in Textotii e 204
13.4.7. Moving Through TeXtt e 205
13.4.8. Moving to a Specific LoCationt 206
13.4.9. Searching in TeXto e 206

135, TeXt MarKS .. 207
13.6. TextTagsand Tag Tableso e 208
136,01, TEXETAGS -« e oevett ettt ettt e e e 208
13.6.2. Text Tag Tables 211

13.7. ATextView Example 211
14, Tree VIeW WIdQ et ..o e e e 214
LA 1. OVEIVIEW ..ottt ettt e e e e e e e e e 214

PyGTK 2.0 Tuto-

rial

14.2. The TreeModel Interface and Data Stores 218
14.2.0. INtrodUCHION ... 218
14.2.2. Creating TreeStore and ListStore Objects.......... ...t 218
14.2.3. Referring to TreeModel ROWS.o i e 219
14.2.4. AddiNg ROWS ... 222
14.2.5. ReEMOVING ROWS . ..o e e e 224
14.2.6. Managing ROW Data.ottt e 224
14.2.7. Python Protocol SUPPOIL. 230
14.2.8. TreeModel Signals 232
14.2.9. Sorting TreeModel ROWSot e 232
14,3, TrEEVIBWS .ottt ettt et e e e e 234
14.3.1. Creating @ TreeVIBWo\ttt e e 234
14.3.2. Getting and Setting the TreeView Model......... iiiiiiiii.. 234
14.3.3. Setting TreeView Properties 235
14.4. CellRENUEIEIS 236
T @ =Y T 236
14.4.2. CellRENAEIETN TYPES . . . oottt ettt e et e e e e 237
14.4.3. CellRenderer Propertiesot e 237
14.4.4. CellRenderer Attributes. 239
14.4.5. Cell Data FUNCLION e 240
14.4.6. CellRendererText Markup.ot e 242
14.4.7. Editable TeXt CellS oo 243
14.4.8. Activatable Toggle Cellso 244
14.4.9. Editable and Activatable Cell Example Programc.oo... 245
14.5. TreeVIeWCOIUMNS e e e e 248
14.5.1. Creating TreeVIiewWCOIUMNS.ot 248
14.5.2. Managing CellRENAErerSt e 249
14.6. Manipulating Tre€VIBWSottt e e 250
14.6.1. Managing ColUMNSt 250
14.6.2. Expanding and Collapsing Child Rows.......... i, 251
14.7. TreeVIew Signals 251
14.8. TreeSeIeCHONSo 252
14.8.1. Getting the TreeSelection. e 252
14.8.2. TreeSelection MOAES.ot e e 252
14.8.3. Retrieving the Selection.o 253
14.8.4. Using a TreeSelection Function. i 254
14.8.5. Selecting and Unselecting ROWS. 255
14.9. TreeView Drag and Dropot e e 256
14.9.1. Drag and Drop ReOrdering.vueintni e 256
14.9.2. External Drag and DrOp.o .ottt 256
14.9.3. TreeView Drag and Drop Example 258
14.10. TreeModelSort and TreeModelFilter. e 261
14.10.1. TreeModelSOort 262
14.10.2. TreeModelFilter 263
14.11. The Generic TreeModel. e 267
14.11.1. GenericTreeModel OVEIVIEW.ot e 267
14.11.2. The GenericTreeModel Interface......... 268
14.11.3. Adding and RemoVviNg ROWS.t e 274
14.11.4. Memory Management.t 276
14.11.5. Other Interfaces.ot 277
14.11.6. Applying The GenericTreeModel. ... i, 278
14.12. The Generic CellReNderer. e 278
15. New Widgets in PYyGTK 2.2 279
15.0. Clipboards 279

PyGTK 2.0

Tutorial

15.1.1. Creating A Clipboard 279
15.1.2. Using Clipboards with Entry, Spinbutton and TextView. 279
15.1.3. Setting Dataon a Clipboard. i 280
15.1.4. Retrieving the Clipboard Contents 281
15.1.5. AClipboard EXample 282

16. New Widgets in PYGTK 2.4 ... e e 284
16.1. The Action and ActionGroup ObJECES.ttt e 285
16.0. 0. ACHIONS .o e 285
16.1.2. ACHIONGIOUPS . ..ottt et et e e ettt e e e 295
16.2. ComboBox and ComboBoxEntry Widgets 299
16.2.1. ComboBOX WIdQetS 299
16.2.2. ComboBOXENtry WIdgetsS 304
16.3. ColorButton and FontButton Widgetst 307
16.3.1. ColorButton WIdgetst e 307
16.3.2. FontButton WIdgets 309
16.4. EntryCompletion ODJECESo 311
16.5. EXpander WIdgetso 313
16.6. File Selections using FileChooser-based Widgets. ..., 315
16.7. ThEe UIMANAGET . ..ot 319
16.7.0. OVEIVIEW ..ttt e e e e e e e e e 319
16.7.2. Creating a UIManager.ortii e e e 320
16.7.3. Adding and Removing ACtiONGIOUPS.ottt e 320
16.7.4. UL DESCIIPLONS ...ttt e e e e e 321
16.7.5. Adding and Removing Ul DescCriptionst 323
16.7.6. Accessing UL WIAgetso e 325
16.7.7. A Simple UIManager Example. 326
16.7.8. Merging Ul DesCriptioNSttt 327
16.7.9. UIManager SignalSot 330

17. Undocumented WIdQets.ottt 332
17.0. Accel Label ... 332
17.2. OptON MENU ..ot e e e 332
17.3. MeNU BIMS .. 332
17.3.1. Check Menu [temo e 332
17.3.2. Radio MeNU IteMo 332
17.3.3. Separator Menu temo 332
17.3.4. Tearoff Menu ltem 332
174, CUIVES . 332
17.5. MeSsage Dialogo.o o 332
17.6. GamMmMa CUIVE ..ttt et et e e e e e e e 332
18. Setting Widget ADULESo 333
18.1. Widget Flag Methods 333
18.2. Widget Display Methods 334
18.3. WiIdget ACCERIBIAtOISottt e e e 335
18.4. Widget Name Methods e e 336
18.5. WIdget StYleS ..o 336
19. Timeouts, IO and Idle FUNCLIONS. e 339
190, TIMEOULS ..ottt ettt e e e e e e e e 339
19.2. MONItONING IO ..o 339
19.3. 1dle FUNCLIONS ... e e 340
20. Advanced Event and Signal Handling. o 342
20.1. Signal Methods e 342
20.1.1. Connecting and Disconnecting Signal Handlers. 342
20.1.2. Blocking and Unblocking SignalHandlers.................. 343
20.1.3. Emitting and Stopping Signals e 343

Vi

PyGTK 2.0

Tutorial

20.2. Signal Emission and Propagationc.ouuiitiit i 343

21. Managing SeleCtionSo 345
21.1. Selection OVEIVIEW e e e e e e e e 345
21.2. Retrieving the Selection. 345
21.3. Supplying the Selection. i 350

22. Drag-and-drop (DND)ottt 354
22.1. DND OVEIVIBW ..ottt et e ettt e e e e e e e e e e e e 354
22.2. DND PrOPeItIES ..ottt e e 354
22.3. DND MethOOS ...\ttt 355
22.3.1. Setting Up the Source Widgetot 355

22.3.2. Signals Onthe Source Widgett 356

22.3.3. Setting Up a Destination Widget 356

22.3.4. Signals On the Destination Widget. ... 358

23, GTKIS IC IS . e 363
23.1. Functions FOr rC Fileso 363
23.2. GTK'src File Format i 364
23.3. Example rcfile o 365

24. Scribble, A Simple Example Drawing Program, 369
24.1. Scribble OVeIVIEW 369
24.2. BEvent Handling i 369
24.2.1. Scribble - EventHandling.............o i 375

24.3. The DrawingArea Widget, ANd Drawing.ottt 377

25. Tips For Writing PYGTK Applications e 381
26. CONHDULING ..ot e 382
2. CreditS . 383
27.0. PYGTK CreditS ...ttt e e e e e e e 383
27.2. 0riginal GTK+ Credits ...t e e e 383

28. Tutorial Copyright and Permissions NOtiCet e 385
A GTK SIgNAIS o 386
AL GEKOD Bt ..ot 386

A2, GEKWIAGEE .o 386

A3, GEKDAIA .ttt 388

A, GEKCONTAINET .. e 388

AL, GtKCalendar 388

A.B. GIKEdItable 389

A7, GIKNOtEDOOK . .. 389

A8, GEKLIST o 389

A9, GtKMeNUSheEll ... 390
AL0. GEKTOOIDAr ... 390
ALL GEKBULION . e 390
A2, G EIM 390
AL3. GEKWINAOW .o 391
A14. GtkHandIeBOX 391
A.15. GKTOgOIEBULION 391
ALB. GEKMeENUIEM . 391
A.17. GtkCheckMenultem 391
A8, GKINPUIDIAIOG . ..ot e 391
A.19. GIKCOIOrSEIECHION 392
A.20. GEKSTatUSBAr . ..o 392
A2L. GEKCUIVE .o e e 392
A22, GHKAGJUSTIMENT .. 392

B. Code EXamPIES ... 393
B.1. SCHibbIEeSIMPIE.DY ... 393
C.CNaANGELOG . oot 396

List of Figures

2.1. Simple PYGTK WINAOW e e e e e 4
2.2. Hello World Example Program e e e e 8
3.1. Upgraded Hello World EXample. e e e 18
4.1. Packing: FIve Variationst e e 19
4.2. Packing with Spacing and Padding. 21
4.3. Packing with pack_end(). 21
4.4. Packingusing a Table 29
6.1. Button with Pixmap and Label 37
6.2. Toggle BUtton EXamPleo e 41
6.3. Check BUtton EXamPIe 43
6.4. Radio BUttONS EXAMPIE e 46
8.1. Range Widgets Example. 55
9.1, Label EXampIes . ..o 63
9.2. Arrows BUttONS EXAMPIESo 67
9.3, TOOIIPS EXaMIE ... 69
9.4. ProgressBar EXample. 72
9.5. Example Images in BULLONS. 77
9.6. Pixmap ina Button Example. 81
9.7. Wheelbarrow Example Shaped WINdoOWw. e 83
9.8, RUIEIS EXAMPIE . . .o 88
9.9. Statushar Example 92
9.10. ENtry EXaMPIE ... 94
9.11. Spin BUtON EXamMpIeo 100
9.12. Calendar EXampPle 107
9.13. Color Selection Dialog EXample. ... e 114
9.14. File Selection EXample 118
9.15. Font Selection DIialogo .o e 120
10.1. Event BOX EXample . ..o 123
10.2. FiXed EXamMPIe ..o 125
10.3. LayoUt EXAmMpIe ..o 128
10.4. Frame EXample 131
10.5. Aspect Frame EXample.o 134
10.6. Paned Example.o 136
10.7. Scrolled WIndow EXample 140
10.8. Toolbar EXample e 152
10.9. NOteboOoK EXampIle e 155
11.2. Menu EXample ... 167
11.2. Item Factory EXampleo 169
12.1. Drawing Area EXampleo 182
13.1. Basic TextView EXample 189
13.2. TeXtVIEW EXAmMPIE ..o 211
14.1. Basic TreeView Example Programt e 217
14.2. TreeViewColumns with CellRenderers. e 236
14.3. CellRenderer Data FUNCLION. e e 240
14.4. File Listing Example Using Cell Data FUNCtionso 242
14.5. CellRendererText MarkUpot e e e e e e 243
14.6. Editable and Activatable Cells. 248
14.7. Expander Arrow in Second COIUMN.o e 250
14.8. TreeView Drag and Drop Example. e 261
14.9. TreeModelSort EXample 263
14.10. TreeModelFilter Visibility Example i e 265
14.11. Generic TreeModel Example Program. ... e 273

viii

PyGTK 2.0

Tutorial
15.1. Clipboard Example Program. e e 283
16.1. Simple Action EXampleo 287
16.2. Basic Action Example 290
16.3. ACLIONS EXAMIe .. 294
16.4. ACtioNGroup EXamPle 299
16.5. Basic COMDOBOX 300
16.6. ComboBox with Wrapped Layout. e 303
16.7. Basic COMBOBOXENTIY 305
16.8. ColorBuUtton EXamMPIe 308
16.9. FontBUtton EXampleo 310
16.10. ENtryCompPletiont e 312
16.11. EXpander WIAQeLo e 315
16.12. File Selection Example. 317
16.13. Simple UIManager EXample. e 326
16.14. UIMerge EXample 329
21.1. Get Selection EXample. 348
21.2. Set Selection EXample. 351
22.1. Drag and Drop EXample. 359
24.1. Scribble Drawing Program Example 369
24.2. Simple Scribble EXample. 375

List of Tables

22.1. Source Widget Signals. . ..
22.2. Destination Widget Signals

Chapter 1. Introduction

PyGTK 2.0 is a set of Python modules which provide a Python interface to GTK+ 2.X. Throughout the rest of this
document PyGTK refers to the 2.X version of PyGTK and GTK and GTK+ refer to the 2.X version of GTK+. The
primary web site for PyGTK is www.pygtk.offipttp://www.pygtk.org] The primary author of PyGTK is:

» James Henstridge james@daa.confnaailto:james@daa.com.au]

who is assisted by the developers listed in the AUTHORS file in the PyGTK distribution and the PyGTK community.

Python is an extensible, object-oriented interpreted programming language which is provided with a rich set of
modules providing access to a large number of operating system services, internet services (such as HTML, XML,
FTP, etc.), graphics (including OpenGL, TK, etc.), string handling functions, mail services (IMAP, SMTP, POP3, etc.),
multimedia (audio, JPEG) and cryptographic services. In addition there are many other modules available from third
parties providing many other services. Python is licensed under terms similar to the LGPL license and is available for
Linux, Unix , Windows and Macintosh operating systems. More information on Python is available at www.python.org

. The primary Author of Python is:

* Guido van Rossum guido@python.drgailto:guido@python.org]
GTK (GIMP Toolkit) is a library for creating graphical user interfaces. It is licensed using the LGPL license, so you
can develop open software, free software, or even commercial non-free software using GTK without having to spend

anything for licenses or royalties.

It's called the GIMP toolkit because it was originally written for developing the GNU Image Manipulation Program
(GIMP), but GTK has now been used in a large number of software projects, including the GNU Network Object
Model Environment (GNOME) project. GTK is built on top of GDK (GIMP Drawing Kit) which is basically a
wrapper around the low-level functions for accessing the underlying windowing functions (Xlib in the case of the X
windows system). The primary authors of GTK are:

» Peter Mattis petm@xcf.berkeley.effnailto:petm@xcf.berkeley.edu]

» Spencer Kimball spencer@xcf.berkeley.¢aailto:spencer@xcf.berkeley.edu]

 Josh MacDonald jmacd@xcf.berkeley.ddhailto:;jmacd@xcf.berkeley.edu]

GTK is currently maintained by:

* Owen Taylor otaylor@redhat.cofmailto:otaylor@redhat.com]

 Tim Janik timj@gtk.ordmailto:timj@gtk.org]

url(http://www.pygtk.org)
url(mailto:james@daa.com.au)
url(mailto:guido@python.org)
url(mailto:petm@xcf.berkeley.edu)
url(mailto:spencer@xcf.berkeley.edu)
url(mailto:jmacd@xcf.berkeley.edu)
url(mailto:otaylor@redhat.com)
url(mailto:timj@gtk.org)

Introduction

GTK is essentially an object oriented application programmers interface (API). Although written completely in C, it
is implemented using the idea of classes and callback functions (pointers to functions).

There is also a third component called GLib which contains a few replacements for some standard calls, as well as some
additional functions for handling linked lists, etc. The replacement functions are used to increase GTK’s portability, as
some of the functions implemented here are not available or are nonstandard on other unixeg ssicarasr ().

Some also contain enhancements to the libc versions, sughm@alloc that has enhanced debugging utilities.

In version 2.0, GLib has picked up the type system which forms the foundation for GTK’s class hierarchy, the signal
system which is used throughout GTK, a thread API which abstracts the different native thread APIs of the various
platforms and a facility for loading modules.

As the last component, GTK uses the Pango library for internationalized text output.

This tutorial describes the Python interface to GTK+ and is based on the GTK+ 2.0 Tutorial written by Tony Gale and
lan Main. This tutorial attempts to document as much as possible of PyGTK, but is by no means complete.

This tutorial assumes some understanding of Python, and how to create and run Python programs. If you are not
familiar with Python, please read the Python Tutoftattp://www.python.org/doc/current/tut/tut.htmfirst. This

tutorial does not assume an understanding of GTK; if you are learning PyGTK to learn GTK, please comment on
how you found this tutorial, and what you had trouble with. This tutorial does not describe how to compile or install
Python, GTK+ or PyGTK.

This tutorial is based on:

* GTK+ 2.0 through GTK+ 2.4
e Python 2.2
* PyGTK 2.0 through PyGTK 2.4
The examples were written and tested on a RedHat 9.0 system.
This documentis a "work in progress". Please look for updates on www.pygfkttpg/www.pygtk.org/pygtktutorial]

I would very much like to hear of any problems you have learning PyGTK from this document, and would appreciate
input as to how it may be improved. Please see the section on Contributing for further information. If you encounter
bugs please file a bug at bugzilla.gnome Jintp://bugzilla.gnome.orghgainst the pygtk project. The information at
www.pygtk.org[http://www.pygtk.org/feedback.htmbout Bugzilla may help.

The PyGTK 2.0 Reference Manual is available at http://www.pygtk.org/pygtkreference. It describes in detail the
PyGTK classes.

The PyGTK website (www.pygtk.orghttp://www.pygtk.org) contains other resources useful for learning about
PyGTK including a link to the extensive FA{ttp://www.async.com.br/faq/pygtkdnd other articles and tutorials
and an active maillist and IRC channel (see www.pygtk[bttp://www.pygtk.org/feedback.htmfpr details).

1.1. Exploring PyGTK

Johan Dabhlin has written a small Python prograaygtkconsole.py[examples/pygtkconsole.pylhat runs on Linux

and allows interactive exploration of PyGTK. The program provides a Python-like interactive interpreter interface that
communicates with a child process that executes that entered commands. The PyGTK modules are loaded by default.
A simple example session is:

url(http://www.python.org/doc/current/tut/tut.html)
url(http://www.pygtk.org/pygtktutorial)
url(http://bugzilla.gnome.org)
url(http://www.pygtk.org/feedback.html)
url(http://www.pygtk.org/pygtkreference)
url(http://www.pygtk.org)
url(http://www.async.com.br/faq/pygtk/)
url(http://www.pygtk.org/feedback.html)
file:url(examples/pygtkconsole.py)

Introduction

moe: 96:1095% pygtkconsole.py
Python 2.2.2, PyGTK 1.99.14 (Gtk+ 2.0.6)
Interactive console to manipulate GTK+ widgets.
>>> w=Window()
>>> p=Button('Hello’)
>>> w.add(b)
>>> def hello(b):
print "Hello, World!"

>>> p.connect(clicked’, hello)
5

>>> w.show_all()

>>> Hello, World!

Hello, World!

Hello, World!

>>> b.set_label("Hi There")
>>>

This creates a window containing a button which prints a message ('Hello, World!") when clicked. This program
makes it easy to try out various GTK widgets and PyGTK interfaces.

| also use a program that was developed by Brian McErlean as ActiveState recipgi®fi:0aspn.activestate.com/ASPN/Cookbool
with some mods to make it run with PyGTK 2.X. | callgpython.py [examples/gpython.py]it works similar to the
pygtkconsole.py[examples/pygtkconsole.ppfogram.

Note

Both of these programs are known not to work on Microsoft Windows because they rely on Unix specific
interfaces.

url(http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/65109)
file:url(examples/gpython.py)
file:url(examples/pygtkconsole.py)

Chapter 2. Getting Started

To begin our introduction to PyGTK, we'll start with the simplest program possible. This progoase.py
[examples/base.pywill create a 200x200 pixel window and has no way of exiting except to be killed by using
the shell.

1 #lusr/bin/env python

2

3 # example base.py

4

5 import pygtk

6 pygtk.require('2.0")

7 import gtk

8

9 class Base:

10 def __init__(self):

11 self.window = gtk.Window(gtk. WINDOW_TOPLEVEL)
12 self.window.show()
13

14 def main(self):

15 gtk.main()

16

17 print __name__

18 if __name__ =="_main__"
19 base = Base()
20 base.main()

You can run the above program using:

python base.py

If base.py[examples/base.py$ made executable and can be found in y®ATH it can be run using:

base.py

Line 1 will invoke python to rurbase.py[examples/base.pyi this case. Lines 5-6 help differentiate between various
versions of PyGTK that may be installed on your system. These lines specify that we want to use PyGTK version
2.0 which covers all versions of PyGTK with the major number 2. This prevents the program from using the earlier
version of PyGTK if it happens to be installed on your system. Lines 18-20 check if thame__ variable is

" main__" which indicates that the program is being run directly from python and not being imported into a
running python interpreter. In this case the program creates a new instance of the Base class and saves a reference to
it in the variable base. It then invokes the metinoain () to start the GTK+ event processing loop.

A window similar toFigure 2.1, “Simple PyGTK Windowshould popup on your display.

file:url(examples/base.py)
file:url(examples/base.py)
file:url(examples/base.py)

Getting Started

Figure 2.1. Simple PyGTK Window

=[Blx

|

The first line allows the prograrhase.py[examples/base.pytp be invoked from a Linux or Unix shell program
assuming thapython is found yourPATH This line will be the first line in all the example programs.

Lines 5-7 import the PyGTK 2 module and initializes the GTK+ environment. The PyGTK module defines the python
interfaces to the GTK+ functions that will be used in the program. For those familiar with GTK+ the initialization
includes calling thgtk_init () function. This sets up a few things for us such as the default visual and color map,
default signal handlers, and checks the arguments passed to your application on the command line, looking for one or
more of the following:

» --gtk-module

* --g-fatal-warnings

 --gtk-debug

 --gtk-no-debug

* --gdk-debug

» --gdk-no-debug

» ——display
* --sync

e --name
» --class

file:url(examples/base.py)

Getting
Started

It removes these from the argument list, leaving anything it does not recognize for your application to parse or ignore.
These are a set of standard arguments accepted by all GTK+ applications.

Lines 9-15 define a python class namidse that defines a class instance initialization methodnit ().

The __init__ () function creates a top level window (line 11) and directs GTK+ to display it (line 12). The
gtk.Window is created in line 11 with the argumegtk. WINDOW_TOPLEVELthat specifies that we want the
window to undergo window manager decoration and placement. Rather than create a window of 0x0 size, a window
without children is set to 200x200 by default so you can still manipulate it.

Lines 14-15 define theain () method that calls the PyGTHain () function that, in turn, invokes the GTK+ main
event processing loop to handle mouse and keyboard events as well as window events.

Lines 18-20 allow the program to start automatically if called directly or passed as an argument to the python
interpreter; in these cases the program name contained in the python variatdene _ will be the string

" _main__" and the code in lines 18-20 will be executed. If the program is loaded into a running python interpreter
using an import statement, lines 18-20 will not be executed.

Line 19 creates an instance of tBase class called base. gtk.Window is created and displayed as a result.
Line 20 calls themain () method of theBase class which starts the GTK+ event processing loop. When control

reaches this point, GTK+ will sleep waiting for X events (such as button or key presses), timeouts, or file 10
notifications to occur. In our simple example, however, events are ignored.

2.1. Hello World in PyGTK

Now for a program with a widget (a button). It's the PyGTK version of the classic hello world prodrelioyorld.py
[examples/helloworld.py).

1 #lusr/bin/env python

2

3 # example helloworld.py

4

5 import pygtk

6 pygtk.require('2.0")

7 import gtk

8

9 class HelloWorld:

10

11 # This is a callback function. The data arguments are ignored
12 # in this example. More on callbacks below.

13 def hello(self, widget, data=None):

14 print "Hello World"

15

16 def delete_event(self, widget, event, data=None):

17 # If you return FALSE in the "delete_event" signal handler,
18 # GTK will emit the "destroy" signal. Returning TRUE means
19 # you don’'t want the window to be destroyed.

20 # This is useful for popping up 'are you sure you want to quit?’
21 # type dialogs.
22 print "delete event occurred"
23
24 # Change FALSE to TRUE and the main window will not be destroyed
25 # with a "delete_event".

file:url(examples/helloworld.py)

Getting

Started

26 return False

27

28 # Another callback

29 def destroy(self, widget, data=None):

30 gtk.main_quit()

31

32 def __init__ (self):

33 # create a new window

34 self.window = gtk.Window(gtk. WINDOW_TOPLEVEL)

35

36 # When the window is given the "delete_event" signal (this is given

37 # by the window manager, usually by the "close" option, or on the

38 # titlebar), we ask it to call the delete_event () function

39 # as defined above. The data passed to the callback

40 # function is NULL and is ignored in the callback function.

41 self.window.connect("delete_event", self.delete_event)

42

43 # Here we connect the "destroy" event to a signal handler.

44 # This event occurs when we call gtk _widget_destroy() on the window,

45 # or if we return FALSE in the "delete_event" callback.

46 self.window.connect("destroy"”, self.destroy)

47

48 # Sets the border width of the window.

49 self.window.set_border_width(10)

50

51 # Creates a new button with the label "Hello World".

52 self.button = gtk.Button("Hello World")

53

54 # When the button receives the "clicked" signal, it will call the

55 # function hello() passing it None as its argument. The hello()

56 # function is defined above.

57 self.button.connect(“clicked”, self.hello, None)

58

59 # This will cause the window to be destroyed by calling

60 # gtk_widget_destroy(window) when “clicked". Again, the destroy

61 # signal could come from here, or the window manager.

62 self.button.connect_object("clicked”, gtk.Widget.destroy,
self.window)

63

64 # This packs the button into the window (a GTK container).

65 self.window.add(self.button)

66

67 # The final step is to display this newly created widget.

68 self.button.show()

69

70 # and the window

71 self.window.show()

72

73 def main(self):

74 # All PyGTK applications must have a gtk.main(). Control ends here

75 # and waits for an event to occur (like a key press or mouse event).

76 gtk.main()

77

78 # If the program is run directly or passed as an argument to the python

7

Getting Started

79 # interpreter then create a HelloWorld instance and show it

80 if _name__ =="_ main_"
81 hello = HelloWorld()
82 hello.main()

Figure 2.2, “Hello World Example Progranshows the window created telloworld.py [examples/helloworld.py]

Figure 2.2. Hello World Example Program
=//=l[x]
Hello Wnrld|

The variables and functions that are defined in the PyGTK module are namgtk.as . For example, the
helloworld.py [examples/helloworld.pyprogram uses:

False
gtk.mainquit()
gtk.Window()
gtk.Button()

from the PyGTK module. In future sections | will not specify the gtk module prefix but it will be assumed. The
example programs will of course use the module prefixes.

2.2. Theory of Signals and Callbacks

file:url(examples/helloworld.py)
file:url(examples/helloworld.py)

Getting Started

Note

In GTK+ version 2.0, the signal system has been moved from GTK to GLib. We won't go into details about
the extensions which the GLib 2.0 signal system has relative to the GTK+ 1.2 signal system. The differences
should not be apparent to PyGTK users.

Before we look in detail ahelloworld.py [examples/helloworld.py]we’ll discuss signals and callbacks. GTK+ is
an event driven toolkit, which means it will sleepgtk.main () until an event occurs and control is passed to the
appropriate function.

This passing of control is done using the idea of "signals”. (Note that these signals are not the same as the Unix system
signals, and are not implemented using them, although the terminology is almost identical.) When an event occurs,
such as the press of a mouse button, the appropriate signal will be "emitted" by the widget that was pressed. This is
how GTK+ does most of its useful work. There are signals that all widgets inherit, such as "destroy", and there are
signals that are widget specific, such as "toggled" on a toggle button.

To make a button perform an action, we set up a signal handler to catch these signals and call the appropriate function.
This is done by using &tkWidget (from theGObject class) method such as:

handler_id = object.connect(name, func, func_data)

where object is th&tkWidget instance which will be emitting the signal, and the first argunmamhe is a string
containing the name of the signal you wish to catch. The second argufueat, is the function you wish to be
called when it is caught, and the thifdnc_data , the data you wish to pass to this function. The method returns a
handler_id that can be used to disconnect or block the handler.

The function specified in the second argument is called a "callback function”, and should generally be of the form:

def callback_func(widget, callback data):

where the first argument will be a pointer to thiglget that emitted the signal, and the secoadlipack _data)
a pointer to the data given as the last argument tetmmect () method as shown above.

If the callback function is an object method then it will have the general form:

def callback_meth(self, widget, callback data):

where self is the object instance invoking the method. This is the form used inh&ileworld.py [exam-
ples/helloworld.pyexample program.

file:url(examples/helloworld.py)
file:url(examples/helloworld.py)

Getting Started

Note

The above form for a signal callback function declaration is only a general guide, as some widget specific
signals generate different calling parameters.

Another call used in thiaelloworld.py [examples/helloworld.pygxample is:

handler_id = object.connect_object(hame, func, slot_object)

connect_object () is the same asonnect () except a callback function only uses one argument and a callback
method, two arguments:

def callback_func(object)
def callback_meth(self, object)

whereobject is usually a widgetconnect_object () allows the PyGTK widget methods that only take a single
argumentgelf)to be used as signal handlers.

2.3. Events

In addition to the signal mechanism described above, there is a set of events that reflect the X event mechanism.
Callbacks may also be attached to these events. These events are:

event
button_press_event
button_release_event
scroll_event
motion_notify_event
delete_event
destroy_event
expose_event

key press_event

key release_event
enter_notify_event
leave_notify_event
configure_event
focus_in_event
focus_out_event
map_event
unmap_event
property_notify_event
selection_clear_event
selection_request_event
selection_notify_event
proximity_in_event
proximity out_event
visibility _notify_event
client_event

10

file:url(examples/helloworld.py)

Getting Started

no_expose_event
window_state_event

In order to connect a callback function to one of these events you use the neetioetct () , as described above,
using one of the above event names asdae parameter. The callback function (or method) for events has a slightly
different form than that for signals:

def callback_func(widget, event, callback data):

def callback_meth(self, widget, event, callback data):

GdkEvent is a python object type whose type attribute will indicate which of the above events has occurred. The
other attributes of the event will depend upon the type of the event. Possible values for the types are:

NOTHING

DELETE

DESTROY

EXPOSE
MOTION_NOTIFY
BUTTON_PRESS
_2BUTTON_PRESS
_3BUTTON_PRESS
BUTTON_RELEASE
KEY_PRESS
KEY_RELEASE
ENTER_NOTIFY
LEAVE_NOTIFY
FOCUS_CHANGE
CONFIGURE

MAP

UNMAP
PROPERTY_NOTIFY
SELECTION_CLEAR
SELECTION_REQUEST
SELECTION_NOTIFY
PROXIMITY_IN
PROXIMITY_OUT
DRAG_ENTER
DRAG_LEAVE
DRAG_MOTION
DRAG_STATUS
DROP_START
DROP_FINISHED
CLIENT_EVENT
VISIBILITY_NOTIFY
NO_EXPOSE
SCROLL
WINDOW_STATE

11

Getting Started

SETTING

These values are accessed by prefacing the event type with gtk.gdk. for expkogtk. DRAG_ENTER .

So, to connect a callback function to one of these events we would use something like:

button.connect("button_press_event", button_press_callback)

This assumes that button isGtkButton widget. Now, when the mouse is over the button and a mouse button is
pressed, the functidoutton_press_callback will be called. This function may be defined as:

def button_press_callback(widget, event, data):

The value returned from this function indicates whether the event should be propagated further by the GTK+ event
handling mechanism. Returnififue indicates that the event has been handled, and that it should not propagate
further. Returningralse continues the normal event handling. &epter 20Advanced Event and Signal Handling

for more details on this propagation process.

The GDK selection and drag-and-drop APls also emit a number of events which are reflected in GTK+ by signals. See
Section 22.3.2, “Signals On the Source Widgatit Section 22.3.4, “Signals On the Destination Widdet” details
on the signatures of the callback functions for these signals:

selection_received
selection_get
drag_begin_event
drag_end_event
drag_data_delete
drag_motion
drag_drop
drag_data_get
drag_data_received

2.4. Stepping Through Hello World

Now that we know the theory behind this, let’s clarify by walking through the exarhplloworld.py [exam-
ples/helloworld.pyprogram.

Lines 9-76 define thélellowWorld class that contains all the callbacks as object methods and the object instance
initialization method. Let’s examine the callback methods.

Lines 13-14 define thiello () callback method that will be called when the button is “clicked”. When called the
method, prints "Hello World" to the console. We ignore the object instance, the widget and the data parameters in this
example, but most callbacks use them. Tata is defined with a default value done because PyGTK will not

pass a data value if it is not included in thennect () call; this would trigger an error since the callback is expecting
three parameters and may receive only two. Defining a default value of None allows the callback to be called with two

12

file:url(examples/helloworld.py)

Getting Started

or three parameters without error. In this case the data parameter could have been left out $ielbe tlfpmethod
will always be called with just two parameters (never called with user data). The next example will uisdahe
argument to tell us which button was pressed.

def hello(self, widget, data=None):
print "Hello World"

The next callback (lines 16-26) is a bit special. The "delete_event" occurs when the window manager sends this event
to the application. We have a choice here as to what to do about these events. We can ignore them, make some sort of
response, or simply quit the application.

The value you return in this callback lets GTK+ know what action to take. By returning TRUE, we let it know that we
don’t want to have the "destroy" signal emitted, keeping our application running. By returning FALSE, we ask that
"destroy" be emitted, which in turn will call our "destroy" signal handler. Note the comments have been removed for
clarity.

def delete_event(widget, event, data=None):
print "delete event occurred"
return False

Thedestroy () callback method (lines 28-30) causes the program to quit by callikagnain_quit (0. This
function tells GTK+ that it is to exit frongtk.main () when control is returned to it.

def destroy(widget, data=None):
print "destroy signal occurred”
gtk.main_quit()

Lines 32-71 define thelelloWorld object instance initialization method init__ () that creates the window and
widgets used by the program.

Line 34 creates a new window, but it is not displayed until we direct GTK+ to show the window near the end of our
program. The window reference is saved in an object instance attribute (self.window) for later access.

self.window = gtk.Window(gtk. WINDOW_TOPLEVEL)

Lines 41 and 46 illustrate two examples of connecting a signal handler to an object, in this cagadtwe . Here,

the "delete_event" and "destroy" signals are caught. The first is emitted when we use the window manager to kill the
window, or when we use thetkWidget destroy () method call. The second is emitted when, in the "delete_event"
handler, we returirALSE

self.window.connect("delete_event", self.delete_event)
self.window.connect("destroy", self.destroy)

13

Getting
Started

Line 49 sets an attribute of a container object (in this casevihdow) to have a blank area along the inside of it
10 pixels wide where no widgets will be placed. There are other similar methods that we will looKlaapter 18,
Setting Widget Attributes

self.window.set_border_width(10)

Line 52 creates a new button and saves a reference tcsélirbutton . The button will have the label "Hello
World" when displayed.

self.button = gtk.Button("Hello World")

In line 57 we attach a signal handler to the button so when it emits the "clicked" signakelbar () callback method
is called. We are not passing any datd#dlo () so we just pasblone as the data. Obviously, the "clicked" signal
is emitted when we click the button with our mouse pointer. The user data parameteNealeiés not required and
could be removed. The callback would then be called with one less parameter.

self.button.connect(“clicked", self.hello, None)

We are also going to use this button to exit our program. Line 62 illustrates how the "destroy” signal may come from
either the window manager, or from our program. When the button is "clicked", same as above, it dadiéoth€)

callback first, and then the following one in the order they are set up. You may have as many callbacks as you need,
and all will be executed in the order you connected them.

Since we want to use thetkWidget destroy () method that accepts one argument (the widget to be destroyed
- in this case thevindow), we use theonnect_object () method and pass it the reference to the window. The
connect_object () method arranges to pass thindow as the first callback argument instead of the button.

When thegtk.Widget destroy () method is called it will cause the "destroy" signal to be emitted from the window
which will in turn cause thélelloWorld destroy () method to be called to end the program.

self.button.connect_object("clicked", gtk.Widget.destroy, self.window)

Line 65 is a packing call, which will be explained in depth later o€ apter 4Packing Widgets But it is fairly easy

to understand. It simply tells GTK+ that the button is to be placed in the window where it will be displayed. Note that

a GTK+ container can only contain one widget. There are other widgets, described later, that are designed to layout
multiple widgets in various ways.

self.window.add(self.button)

Now we have everything set up the way we want it to be. With all the signal handlers in place, and the button placed
in the window where it should be, we ask GTK+ (lines 66 and 69) to "show" the widgets on the screen. The window

14

Getting Started

widget is shown last so the whole window will pop up at once rather than seeing the window pop up, and then the
button forming inside of it. Although with such a simple example, you'd never notice.

self.button.show()

self.window.show()

Lines 73-75 define thmain () method which calls thgtk.main () function

def main(self):
gtk.main()

Lines 80-82 allow the program to run automatically if called directly or as an argument of the python interpreter. Line
81 creates an instance of tHelloworld class and saves a reference to it inlielo variable. Line 82 calls the
HelloWorld classmain () method to start the GTK+ event processing loop.

if _name__ =="_main__"
hello = HellowWorld()
hello.main()

Now, when we click the mouse button on a GTK+ button, the widget emits a "clicked" signal. In order for us to use
this information, our program sets up a signal handler to catch that signal, which dispatches the function of our choice.
In our example, when the button we created is "clicked" ltblbo () method is called with thdlone argument, and

then the next handler for this signal is called. The next handler calls the wddgeby () function with the window

as its argument thereby causing the window to emit the "destroy" signal, which is caught, and ddéd@vorld

destroy () method

Another course of events is to use the window manager to kill the window, which will cause the "delete_event" to be
emitted. This will call our "delete_event" handler. If we retdiRUEhere, the window will be left as is and nothing

will happen. ReturningrALSEwill cause GTK+ to emit the "destroy"” signal that causesHleloWorld "destroy"
callback to be called, exiting GTK.

15

Chapter 3. Moving On
3.1. More on Signal Handlers

Lets take another look at the connect() call.

object.connect(name, func, func_data)

The return value from aonnect () call is an integer tag that identifies your callback. As stated above, you may have
as many callbacks per signal and per object as you need, and each will be executed in turn, in the order they were
attached.

This tag allows you to remove this callback from the list by using:

object.disconnect(id)

So, by passing in the tag returned by one of the signal connect methods, you can disconnect a signal handler.

You can also temporarily disable signal handlers with thgignal_handler_block () and
signal_handler_unblock () pair of methods.

object.signal_handler_block(handler_id)

object.signal_handler_unblock(handler_id)

3.2. An Upgraded Hello World

1 #lusr/bin/env python

2

3 # example helloworld2.py

4

5 import pygtk

6 pygtk.require(’2.0’)

7 import gtk

8

9 class HelloWorld2:

10

11 # Our new improved callback. The data passed to this method
12 # is printed to stdout.

13 def callback(self, widget, data):

14 print "Hello again - %s was pressed" % data
15

16 # another callback

17 def delete_event(self, widget, event, data=None):

16

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
but |
69
70

Moving
On

gtk.main_quit()
return False

def __init__ (self):

Create a new window
self.window = gtk.Window(gtk. WINDOW_TOPLEVEL)

This is a new call, which just sets the title of our
new window to "Hello Buttons!"
self.window.set _title("Hello Buttons!")

Here we just set a handler for delete_event that immediately
exits GTK.
self.window.connect("delete_event", self.delete_event)

Sets the border width of the window.
self.window.set_border_width(10)

We create a box to pack widgets into. This is described in detail
in the "packing" section. The box is not really visible, it

is just used as a tool to arrange widgets.

self.box1 = gtk.HBox(False, 0)

Put the box into the main window.
self.window.add(self.box1)

Creates a new button with the label "Button 1".
self.buttonl = gtk.Button("Button 1")

Now when the button is clicked, we call the "callback" method
with a pointer to "button 1" as its argument
self.buttonl.connect(“clicked", self.callback, "button 1")

Instead of add(), we pack this button into the invisible
box, which has been packed into the window.
self.box1.pack_start(self.buttonl, True, True, 0)

Always remember this step, this tells GTK that our preparation for
this button is complete, and it can now be displayed.
self.button1.show()

Do these same steps again to create a second button
self.button2 = gtk.Button("Button 2")

Call the same callback method with a different argument,
passing a pointer to "button 2" instead.
self.button2.connect("clicked", self.callback, "button 2")
self.box1.pack_start(self.button2, True, True, 0)

The order in which we show the buttons is not really important,

recommend showing the window last, so it all pops up at once.
self.button2.show()

17

Moving On

71 self.box1.show()

72 self.window.show()
73

74 def main():

75 gtk.main()

76

77 if _name__ =="_main_"
78 hello = HelloWorld2()

79 main()

Runninghelloworld2.py [examples/helloworld2.pyproduces the window illustrated Figure 3.1, “Upgraded Hello
World Example”

Figure 3.1. Upgraded Hello World Example

=8]x]

Button 1 |Elu’rt|:|n E|

You'll notice this time there is no easy way to exit the program, you have to use your window manager or command
line to kill it. A good exercise for the reader would be to insert a third "Quit" button that will exit the program. You
may also wish to play with the options fack_start () while reading the next section. Try resizing the window,

and observe the behavior.

A short commentary on the code differences from the first helloworld program is in order.
As noted above there is no "destroy" event handler in the upgraded helloworld.

Lines 13-14 define a callback method which is similar tohbfo () callback in the first helloworld. The difference
is that the callback prints a message including data passed in.

Line 27 sets a title string to be used on the titlebar of the windowKggae 3.1, “Upgraded Hello World Example”

Line 39 creates a horizontal bogtk.HBox) to hold the two buttons that are created in lines 45 and 60. Line 42 adds
the horizontal box to the window container.

Lines 49 and 64 connect tioallback () method to the "clicked" signal of the buttons. Each button sets up a different
string to be passed to tlallback () method when invoked.

Lines 53 and 66 pack the buttons into the horizontal box. Lines 57 and 70 ask GTK to display the buttons.

Lines 71-72 ask GTK to display the box and the window respectively.

18

file:url(examples/helloworld2.py)

Chapter 4. Packing Widgets

When creating an application, you'll want to put more than one widget inside a window. Our first helloworld example
only used one widget so we could simply use gik.Container add () method to "pack” the widget into the
window. But when you want to put more than one widget into a window, how do you control where that widget is
positioned? This is where packing comes in.

4.1. Theory of Packing Boxes

Most packing is done by creating boxes. These are invisible widget containers that we can pack our widgets into which
come in two forms, a horizontal box, and a vertical box. When packing widgets into a horizontal box, the objects are
inserted horizontally from left to right or right to left depending on the call used. In a vertical box, widgets are packed
from top to bottom or vice versa. You may use any combination of boxes inside or beside other boxes to create the
desired effect.

To create a new horizontal box, we use a callgté.HBox (), and for vertical boxesgtk.VBox () . The
pack_start () andpack _end () methods are used to place objects inside of these containerpatkestart ()

method will start at the top and work its way down in a vbox, and pack left to right in an hboxpddie end ()
method will do the opposite, packing from bottom to top in a vbox, and right to left in an hbox. Using these methods
allows us to right justify or left justify our widgets and may be mixed in any way to achieve the desired effect. We will
usepack_start () in most of our examples. An object may be another container or a widget. In fact, many widgets
are actually containers themselves, including the button, but we usually only use a label inside a button.

By using these calls, GTK knows where you want to place your widgets so it can do automatic resizing and other nifty
things. There are also a number of options as to how your widgets should be packed. As you can imagine, this method
gives us a quite a bit of flexibility when placing and creating widgets.

4.2. Details of Boxes

Because of this flexibility, packing boxes in GTK can be confusing at first. There are a lot of options, and it's not
immediately obvious how they all fit together. In the end, however, there are basically five differentSiyles.4.1,
“Packing: Five Variationsillustrates the result of running the progrgrackbox.py [examples/packbox.pydith an
argument of 1:

Figure 4.1. Packing: Five Variations

19

file:url(examples/packbox.py)

Packing Widgets

box.pack (button, True, Fal5e~,| El]|
box.pack | (button, | True, | True, |) |

HBox(True, 0)

box.pack | (button, | True, | False, |) |
box.pack | (button, | True, | True, |) |
[A

Each line contains one horizontal box (hbox) with several buttons. The call to pack is shorthand for the call to pack
each of the buttons into the hbox. Each of the buttons is packed into the hbox the same way (i.e., same arguments to
thepack_start () method).

This is an example of the pack_start() method.

box.pack_start(child, expand, fill, padding)

box is the box you are packing the object into; the first argument istild object to be packed. The objects will
all be buttons for now, so we'll be packing buttons into boxes.

Theexpand argument tgpack start () andpack_end () controls whether the widgets are laid out in the box to

fill in all the extra space in the box so the box is expanded to fill the area allottedTiui {; or the box is shrunk

to just fit the widgetsKalse). Setting expand téalse will allow you to do right and left justification of your
widgets. Otherwise, they will all expand to fit into the box, and the same effect could be achieved by using only one
of pack_start () or pack_end ().

Thefill argument to the pack methods control whether the extra space is allocated to the objects themmselyes (
or as extra padding in the box around these objéeiise). It only has an effect if the expand argument is alsoe .

Python allows a method or function to be defined with default argument values and argument keywords. Throughout
this tutorial I'll show the definition of the functions and methods with defaults and keywords bolded as applicable. For
example thepack _start () method is defined as:

box.pack_start(child , expand =True, fill =True, padding =0)

20

Packing Widgets

box.pack _end(child , expand =True, fill =True, padding =0)

child , expand , fill and padding are keywords. Thexpand , fill and padding arguments have the
defaults shown. Thehild argument must be specified.

When creating a new box, the function looks like this:

hbox = gtk.HBox(homogeneous =False, spacing =0)

vbox = gtk.VBox(homogeneous =False, spacing =0)

The homogeneous argument tagtk.HBox () andgtk.VBox () controls whether each object in the box has the
same size (i.e., the same width in an hbox, or the same height in a vbox). If it is set, the pack routines function
essentially as if the expand argument was always turned on.

What's the difference betweepacing (setwhen the box is created) goadding (set when elements are packed)?
Spacing is added between objects, and padding is added on either side of anFopjeetd.2, “Packing with Spacing
and PaddingTllustrates the difference; pass an argument of gaokbox.py [examples/packbox.py]

Figure 4.2. Packing with Spacing and Padding

True, | False,

True, | d) |

...........................

bux.packf| (button, | True,

HBox(False, 0)
box.pack (button, | True, | False, | 10)

box.pack (button, | True, | True, 10)

Figure 4.3, “Packing with pack_end()llustrates the use of thpack _end () method (pass an argument of 3 to
packbox.py [examples/packbox.py] The label "end" is packed with theack_end () method. It will stick to the
right edge of the window when the window is resized.

Figure 4.3. Packing with pack_end()

21

file:url(examples/packbox.py)
file:url(examples/packbox.py)

Packing
Widgets

packbox.py

| (button, | False, | False, |) |

4.3. Packing Demonstration Program

Here[examples/packbox.py$ the code used to create the above images. It's commented fairly heavily so | hope you
won’t have any problems following it. Run it yourself and play with it.

#!/usr/bin/env python

example packbox.py

1

2

3

4

5 import pygtk
6 pygtk.require(’2.0)

7 import gtk

8 import sys, string

9

10 # Helper function that makes a new hbox filled with button-labels. Arguments
11 # for the variables we're interested are passed in to this function. We do

12 # not show the box, but do show everything inside.

13
14 def make_box(homogeneous, spacing, expand, fill, padding):
15
16 # Create a new hbox with the appropriate homogeneous

17 # and spacing settings

18 box = gtk.HBox(homogeneous, spacing)

19

20 # Create a series of buttons with the appropriate settings
21 button = gtk.Button("box.pack™)

22 box.pack_start(button, expand, fill, padding)

23 button.show()

24

25 button = gtk.Button("(button,")

26 box.pack_start(button, expand, fill, padding)

27 button.show()

28

29 # Create a button with the label depending on the value of
30 # expand.

31 if expand == True:

32 button = gtk.Button("True,")
33 else:

34 button = gtk.Button("False,")
35

22

file:url(examples/packbox.py)

36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89

Packing
Widgets

box.pack_start(button, expand, fill, padding)
button.show()

This is the same as the button creation for "expand"
above, but uses the shorthand form.

button = gtk.Button(("False,", "True,"[fill==True])
box.pack_start(button, expand, fill, padding)
button.show()

padstr = "%d)" % padding

button = gtk.Button(padstr)
box.pack_start(button, expand, fill, padding)
button.show()

return box

class PackBox1:

def delete_event(self, widget, event, data=None):
gtk.main_quit()
return False

def __init__ (self, which):

Create our window
self.window = gtk.Window(gtk. WINDOW_TOPLEVEL)

You should always remember to connect the delete_event signal
to the main window. This is very important for proper intuitive

behavior

self.window.connect("delete_event", self.delete_event)
self.window.set_border_width(10)

We create a vertical box (vbox) to pack the horizontal boxes into.
This allows us to stack the horizontal boxes filled with buttons one
on top of the other in this vbox.

box1 = gtk.VBox(False, 0)

which example to show. These correspond to the pictures above.
if which == 1:

create a new label.

label = gtk.Label("HBox(False, 0)")

Align the label to the left side. We’ll discuss this method
and others in the section on Widget Attributes.
label.set_alignment(0, 0)

Pack the label into the vertical box (vbox box1). Remember that
widgets added to a vbox will be packed one on top of the other in

order.
box1.pack_start(label, False, False, 0)

Show the label
label.show()

23

90

91

92

93

94

95

96

97

98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143

Packing
Widgets

Call our make box function - homogeneous = False, spacing = 0,
expand = False, fill = False, padding = 0

box2 = make_box(False, 0, False, False, 0)

box1.pack_start(box2, False, False, 0)

box2.show()

Call our make box function - homogeneous = False, spacing = 0,
expand = True, fill = False, padding = 0

box2 = make_box(False, 0, True, False, 0)

box1.pack_start(box2, False, False, 0)

box2.show()

Args are: homogeneous, spacing, expand, fill, padding
box2 = make_box(False, 0, True, True, 0)
box1.pack_start(box2, False, False, 0)

box2.show()

Creates a separator, we'll learn more about these later,
but they are quite simple.
separator = gtk.HSeparator()

Pack the separator into the vbox. Remember each of these
widgets is being packed into a vbox, so they'll be stacked
vertically.

box1.pack_start(separator, False, True, 5)

separator.show()

Create another new label, and show it.
label = gtk.Label("HBox(True, 0)")
label.set_alignment(0, 0)
box1.pack_start(label, False, False, 0)
label.show()

Args are: homogeneous, spacing, expand, fill, padding
box2 = make_box(True, 0, True, False, 0)
box1.pack_start(box2, False, False, 0)

box2.show()

Args are: homogeneous, spacing, expand, fill, padding
box2 = make_box(True, 0, True, True, 0)
box1.pack_start(box2, False, False, 0)

box2.show()

Another new separator.

separator = gtk.HSeparator()

The last 3 arguments to pack_start are:
expand, fill, padding.
boxl.pack_start(separator, False, True, 5)
separator.show()

elif which == 2:

Create a new label, remember box1 is a vbox as created
near the beginning of __init_ ()

label = gtk.Label("HBox(False, 10)")

label.set_alignment(0, 0)

24

Packing

Widgets
144 box1.pack_start(label, False, False, 0)
145 label.show()
146
147 # Args are: homogeneous, spacing, expand, fill, padding
148 box2 = make_box(False, 10, True, False, 0)
149 box1.pack_start(box2, False, False, 0)
150 box2.show()
151
152 # Args are: homogeneous, spacing, expand, fill, padding
153 box2 = make_box(False, 10, True, True, 0)
154 box1.pack_start(box2, False, False, 0)
155 box2.show()
156
157 separator = gtk.HSeparator()
158 # The last 3 arguments to pack_start are:
159 # expand, fill, padding.
160 box1.pack_start(separator, False, True, 5)
161 separator.show()
162
163 label = gtk.Label("HBox(False, 0)")
164 label.set_alignment(0, 0)
165 box1.pack_start(label, False, False, 0)
166 label.show()
167
168 # Args are: homogeneous, spacing, expand, fill, padding
169 box2 = make_box(False, 0, True, False, 10)
170 box1.pack_start(box2, False, False, 0)
171 box2.show()
172
173 # Args are: homogeneous, spacing, expand, fill, padding
174 box2 = make_box(False, 0, True, True, 10)
175 box1.pack_start(box2, False, False, 0)
176 box2.show()
177
178 separator = gtk.HSeparator()
179 # The last 3 arguments to pack_start are:
180 # expand, fill, padding.
181 box1.pack_start(separator, False, True, 5)
182 separator.show()
183
184 elif which ==
185
186 # This demonstrates the ability to use pack_end() to
187 # right justify widgets. First, we create a new box as before.
188 box2 = make_box(False, 0, False, False, 0)
189
190 # Create the label that will be put at the end.
191 label = gtk.Label("end")
192 # Pack it using pack _end(), so it is put on the right
193 # side of the hbox created in the make_box() call.
194 box2.pack_end(label, False, False, 0)
195 # Show the label.
196 label.show()
197

25

198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251

Packing

Widgets
Pack box2 into box1
box1.pack_start(box2, False, False, 0)
box2.show()
A separator for the bottom.
separator = gtk.HSeparator()
This explicitly sets the separator to 400 pixels wide by 5
pixels high. This is so the hbox we created will also be 400
pixels wide, and the "end" label will be separated from the
other labels in the hbox. Otherwise, all the widgets in the
hbox would be packed as close together as possible.
separator.set_size request(400, 5)
pack the separator into the vbox (box1) created near the start
#of __init_ ()
boxl.pack_start(separator, False, True, 5)
separator.show()
Create another new hbox.. remember we can use as many as we need!
quitbox = gtk.HBox(False, 0)
Our quit button.
button = gtk.Button("Quit")
Setup the signal to terminate the program when the button is clicked
button.connect("clicked", lambda w: gtk.main_quit())
Pack the button into the quitbox.
The last 3 arguments to pack_start are:
expand, fill, padding.
quitbox.pack_start(button, True, False, 0)
pack the quitbox into the vbox (box1)
box1.pack_start(quitbox, False, False, 0)
Pack the vbox (box1) which now contains all our widgets, into the
main window.
self.window.add(box1)
And show everything left
button.show()
quitbox.show()
box1.show()
Showing the window last so everything pops up at once.
self.window.show()
def main():
And of course, our main loop.
gtk.main()
Control returns here when main_quit() is called
return O
if _name_ ==" main__ "
if len(sys.argv) = 2:
sys.stderr.write("usage: packbox.py num, where num is 1, 2, or 3.\n")

26

Packing Widgets

252 sys.exit(1)
253 PackBox1(string.atoi(sys.argv[1]))
254 main()

A brief tour of thepackbox.py [examples/packbox.pydode starts with lines 14-50 which define a helper function
make_box () that creates a horizontal box and populates it with buttons according to the specified parameters. A
reference to the horizontal box is returned.

Lines 52-241 define theackBox1 class initialization method init__ () that creates a window and a child vertical

box that is populated with a different widget arrangement depending on the argument passed to it. If a 1 is passed,
lines 75-138 create a window displaying the five unique packing arrangements that are available when varying the
homogeneous, expand and fill parameters. If a 2 is passed, lines 140-182 create a window displaying the various
combinations of fill with spacing and padding. Finally, if a 3 is passed, lines 188-214 create a window displaying the
use of thepack_start () method to left justify the buttons armmhck _end () method to right justify a label. Lines
215-235 create a horizontal box containing a button that is packed into the vertical box. The button "clicked" signal is
connected to the PyGTHiain_quit () function to terminate the program.

Lines 250-252 check the command line arguments and exit the program usBygtérit () function if there isn't
exactly one argument. Line 253 creates a PackBox1 instance. Line 254 invokeaith@ function to start the GTK
event processing loop.

In this example program, the references to the various widgets (except the window) are not saved in the object instance
attributes because they are not needed later.

4.4. Packing Using Tables

Let's take a look at another way of packing - Tables. These can be extremely useful in certain situations.
Using tables, we create a grid that we can place widgets in. The widgets may take up as many spaces as we specify.

The first thing to look at, of course, is tiggk. Table () function:

table = gtk.Table(rows =1, columns =1, homogeneous =False)

The first argument is the number of rows to make in the table, while the second, obviously, is the number of columns.

Thehomogeneous argument has to do with how the table’s boxes are sizeldortiogeneous is True , the table
boxes are resized to the size of the largest widget in the tabtmnifbgeneous is False , the size of a table boxes
is dictated by the tallest widget in its same row, and the widest widget in its column.

The rows and columns are laid out from 0 to n, where n was the number specified in thegtaMable (). So, if
you specify rows = 2 and columns = 2, the layout would look something like this:

0 1 2
0+ + +

| I |
j [— S SR +

| I |
Pl S R +

27

file:url(examples/packbox.py)

Packing Widgets

Note that the coordinate system starts in the upper left hand corner. To place a widget into a box, use the following
method:

table.attach(child , left_attach , right_attach , top_attach , bottom_attach ,
xoptions =EXPANDIFILL, yoptions =EXPANDIFILL, xpadding =0, ypadding =0)

The table instance is the table you created withTable (). The first parameter ("child") is the widget you wish
to place in the table.

The left_attach , fight_attach , top_attach andbottom_attach arguments specify where to place

the widget, and how many boxes to use. If you want a button in the lower right table entry of our 2x2 table, and want it
to fill that entry ONLY, left_attach would be = 1right_attach =2,top_attach =1,bottom_attach

=2.

Now, if you wanted a widget to take up the whole top row of our 2x2 table, you'dlefeattach =0,
right_attach =2,top_attach =0, bottom_attach =1.

The xoptions andyoptions are used to specify packing options and may be bitwise OR’ed together to allow
multiple options.

These options are:

FILL If the table cell is larger than the widget, aRtLL is specified, the widget will expand to
use all the room available in the cell.
SHRINK If the table widget was allocated less space then was requested (usually by the user resizing

the window), then the widgets would normally just be pushed off the bottom of the window
and disappear. BHRINKis specified, the widgets will shrink with the table.
EXPAND This will cause the table cell to expand to use up any remaining space allocated to the table.

Padding is just like in boxes, creating a clear area around the widget specified in pixels.

We also haveset_row_spacing () andset_col_spacing () methods. These add spacing between the rows at
the specified row or column.

table.set_row_spacing(row, spacing)
and
table.set_col_spacing(column , spacing)

Note that for columns, the space goes to the right of the column, and for rows, the space goes below the row.

You can also set a consistent spacing of all rows and/or columns with:

table.set_row_spacings(spacing)

28

Packing
Widgets

and,

table.set_col_spacings(spacing)

Note that with these calls, the last row and last column do not get any spacing.

4.5. Table Packing Example

The example progranable.py [examples/table.pyinakes a window with three buttons in a 2x2 table. The first two
buttons will be placed in the upper row. A third, quit button, is placed in the lower row, spanning both columns.
Figure 4.4, “Packing using a Tablélustrates the resulting window:

Figure 4.4. Packing using a Table

=/l

H

buttan 1 |huth:|n &
=it

Here's the source code:

#!/usr/bin/env python
example table.py

1
2
3
4
5 import pygtk

6 pygtk.require(’2.0’)

7 import gtk

8

9 class Table:

10 # Our callback.

11 # The data passed to this method is printed to stdout
12 def callback(self, widget, data=None):

13 print "Hello again - %s was pressed" % data
14

15 # This callback quits the program

16 def delete_event(self, widget, event, data=None):
17 gtk.main_quit()

18 return False

19

20 def __init__ (self):

21 # Create a new window

29

file:url(examples/table.py)

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75

Packing

Widgets

self.window = gtk.Window(gtk. WINDOW_TOPLEVEL)

Set the window title

self.window.set_title("Table")

Set a handler for delete_event that immediately

exits GTK.

self.window.connect("delete_event", self.delete_event)

Sets the border width of the window.
self.window.set_border_width(20)

Create a 2x2 table

table = gtk.Table(2, 2, True)

Put the table in the main window

self.window.add(table)

Create first button

button = gtk.Button("button 1")

When the button is clicked, we call the "callback" method
with a pointer to "button 1" as its argument
button.connect("clicked", self.callback, "button 1")

Insert button 1 into the upper left quadrant of the table

table.attach(button, 0, 1, 0, 1)

button.show()

Create second button

button = gtk.Button("button 2")

When the button is clicked, we call the "callback" method
with a pointer to "button 2" as its argument
button.connect(“clicked", self.callback, "button 2")

Insert button 2 into the upper right quadrant of the table

table.attach(button, 1, 2, 0, 1)

button.show()

Create "Quit" button
button = gtk.Button("Quit")

When the button is clicked, we call the main_quit function

and the program exits

button.connect("clicked", lambda w: gtk.main_quit())

Insert the quit button into the both lower quadrants of the table

table.attach(button, 0, 2, 1, 2)

button.show()

30

Packing Widgets

76

77 table.show()

78 self.window.show()
79

80 def main():
81 gtk.main()
82 return O

83

84 if name_ ==" main__ "
85 Table()

86 main()

TheTable class is defined in line 9-78. Lines 12-13 define ¢h#back () method which is called when two of
the buttons are "clicked". The callback just prints a message to the console indicating which button was pressed using
the passed in string data.

Lines 16-18 define theelete_event () method which is called when the window is slated for deletion by the
window manager.

Lines 20-78 define th&able instance initialization method init_ () . It creates a window (line 22), sets the
window title (line 25), connects theelete_event () callback to the "delete_event" signal (line 29), and sets the
border width (line 32). Agtk.Table s created in line 35 and added to the window in line 38.

The two upper buttons are created (lines 41 and 55), their “clicked" signals are connectechitbtiek () method
(lines 45 and 59), and attached to the table in the first row (lines 49 and 61). Lines 66-72 create the "Quit" button,
connect its "clicked" signal to thmain_quit () function and attach it to the table spanning the whole second row.

31

Chapter 5. Widget Overview

The general steps to using a widget in PyGTK are:

invoke gtk.* - one of various functions to create a new widget. These are all detailed in this section.

Connect all signals and events we wish to use to the appropriate handlers.

Set the attributes of the widget.
» Pack the widget into a container using the appropriate call such as gtk.Container.add() or gtk.Box.pack_start() .
* gtk.Widget.show() the widget.

show/() lets GTK know that we are done setting the attributes of the widget, and it is ready to be displayed. You may
also useytk.Widget.hide () to make it disappear again. The order in which you show the widgets is not important,
but I suggest showing the window last so the whole window pops up at once rather than seeing the individual widgets
come up on the screen as they're formed. The children of a widget (a window is a widget too) will not be displayed
until the window itself is shown using ttehow() method.

5.1. Widget Hierarchy

For your reference, here is the class hierarchy tree used to implement widgets. (Deprecated widgets and auxiliary
classes have been omitted.)

gobject.GObject

|

+gtk.Object

| +gtk.Widget

| | +gtk.Misc

| | | +gtk.Label

| 1] ‘otk.AccelLabel
| | +gtk.Arrow

| ‘gtk.Image
gtk.Container
+gtk.Bin

| +gtk.Alignment
+gtk.Frame

| ‘gtk.AspectFrame
+gtk.Button

| +gtk.ToggleButton

| | ‘gtk.CheckButton

| | ‘gtk.RadioButton

| +gtk.ColorButton

| +gtk.FontButton

| ‘gtk.OptionMenu
+gtk.Item

| +gtk.Menultem

| +gtk.CheckMenultem
| | ‘gtk.RadioMenultem
| +gtk.ImageMenultem
| +gtk.SeparatorMenultem

I
|
||+
|11
|11
|11
|11
|11
|11
|11
|11
|11
|11
|11
|11
|11
|11
|11
|11
|1

32

~ Widget
Qverview

| | ‘gtk.TearoffMenultem
| +gtk.Window

| | +gtk.Dialog

| | | +gtk.ColorSelectionDialog
| | | +gtk.FileChooserDialog
| || +gtk.FileSelection

| | | +gtk.FontSelectionDialog
| | | +otk.InputDialog

| || ‘gtk.MessageDialog

| | ‘gtk.Plug

| +gtk.ComboBox

| | ‘gtk.ComboBoxEntry

| +gtk.EventBox

| +gtk.Expander

| +gtk.HandleBox

| +gtk.Toolltem

| | +gtk.ToolButton

| | | +gtk.ToggleToolButton
| 11| ‘gtk.RadioToolButton
| | ‘gtk.SeparatorTooltem
| +gtk.ScrolledwWindow

| ‘gtk.Viewport

+gtk.Box

| +gtk.ButtonBox

| | +gtk.HButtonBox

| | ‘gtk.VButtonBox

| +gtk.VBox

| | +gtk.ColorSelection

| | +gtk.FontSelection

| | ‘gtk.GammaCurve

| ‘gtk.HBox

| +gtk.Combo

| ‘gtk.Statusbar
+gtk.Fixed

+gtk.Paned

| +gtk.HPaned

| ‘gtk.VPaned
+gtk.Layout
+gtk.MenuShell

| +gtk.MenuBar

| ‘gtk.Menu
+gtk.Notebook
+gtk.Socket

+gtk.Table

+gtk. TextView
+gtk.Toolbar
‘gtk.TreeView
gtk.Calendar
+gtk.DrawingArea

| ‘gtk.Curve

+gtk.Entry

| ‘gtk.SpinButton
+gtk.Ruler

| +gtk.HRuler

|1
|11
|11
|11
|1
|11
|11
|11
|11
|11
|11
|1
|11
|11
|11
|1
|11
|11
|11
|11
|11
|11
|11
|11
|11
|11
|11
|1
|11
|11
|11
|1
|11
|11
|11
|11
|11
|11
|11
|11
|11
|11
|11
|1
|11
|11
|11
||+
| |
|
|
|
|
|

33

~ Widget
Qverview

| ‘gtk.VRuler
+gtk.Range
| +gtk.Scale
| | +gtk.HScale

| | ‘gtk.VScale

| ‘gtk.Scrollbar

| +gtk.HScrollbar

| ‘gtk.VScrollbar
+gtk.Separator

| +gtk.HSeparator

| ‘gtk.VSeparator
+gtk.Invisible
+gtk.Progress

| | | ‘gtk.ProgressBar

| +gtk.Adjustment

| +gtk.CellRenderer

| | +gtk.CellRendererPixbuf
| | +gtk.CellRendererText
| | +gtk.CellRendererToggle
| +otk.FileFilter

| +gtk.ItemFactory

| +gtk.Tooltips

| ‘gtk.TreeViewColumn
+gtk.Action

| +gtk.ToggleAction

| | ‘gtk.RadioAction
+gtk.ActionGroup
+gtk.EntryCompletion
+gtk.lconFactory
+gtk.lconTheme
+gtk.IMContext

| +gtk.IMContextSimple

| ‘gtk.IMMulticontext
+gtk.ListStore
+gtk.RcStyle
+gtk.Settings
+gtk.SizeGroup
+gtk.Style

+gtk. TextBuffer
+gtk.TextChildAnchor
+gtk. TextMark

+gtk. TextTag
+gtk.TextTagTable

+gtk. TreeModelFilter
+gtk. TreeModelSort
+gtk.TreeSelection
+gtk.TreeStore
+gtk.UIManager
+gtk.WindowGroup
+gtk.gdk.DragContext
+gtk.gdk.Screen
+gtk.gdk.Pixbuf
+gtk.gdk.Drawable

| +gtk.gdk.Pixmap

34

Widget Overview

+gtk.gdk.Image
+gtk.gdk.PixbufAnimation
+gtk.gdk.Device

gobject.GObject

|

+gtk.CellLayout
+gtk.Editable
+gtk.CellEditable
+gtk.FileChooser
+gtk. TreeModel
+gtk.TreeDragSource
+gtk.TreeDragDest
+gtk.TreeSortable

5.2. Widgets Without Windows

The following widgets do not have an associated window. If you want to capture events, you'll have to use the
EventBox . See the section on tt&/entBox widget.

gtk.Alignment
gtk.Arrow
gtk.Bin

gtk.Box
gtk.Button
gtk.CheckButton
gtk.Fixed
gtk.Image
gtk.Label
gtk.Menultem
gtk.Notebook
gtk.Paned
gtk.RadioButton
gtk.Range
gtk.ScrolledwWindow
gtk.Separator
gtk.Table
gtk.Toolbar
gtk.AspectFrame
gtk.Frame
gtk.VBox
gtk.HBox
gtk.VSeparator
gtk.HSeparator

We'll further our exploration of PyGTK by examining each widget in turn, creating a few simple example programs
to display them.

35

Chapter 6. The Button Widget

6.1. Normal Buttons

We've almost seen all there is to see of the button widget. It's pretty simple. You can ugk.Betton () function

to create a button with a label by passing a string parameter, or to create a blank button by not specifying a label string.
It's then up to you to pack a label or pixmap into this new button. To do this, create a new box, and then pack your
objects into this box using the usysck_start () method, and then use thed () method to pack the box into the
button.

The function to create a button is:

button = gtk.Button (label =None, stock =None)

if label text is specified it is used as the text on the button. If stock is specified it is used to select a stock icon and text
label for the button. The stock items are:

STOCK_DIALOG_INFO
STOCK_DIALOG_WARNING
STOCK_DIALOG_ERROR
STOCK_DIALOG_QUESTION
STOCK_DND
STOCK_DND_MULTIPLE
STOCK_ADD
STOCK_APPLY
STOCK_BOLD
STOCK_CANCEL
STOCK_CDROM
STOCK_CLEAR
STOCK_CLOSE
STOCK_CONVERT
STOCK_COPY
STOCK_CUT
STOCK_DELETE
STOCK_EXECUTE
STOCK_FIND
STOCK_FIND_AND_REPLACE
STOCK_FLOPPY
STOCK_GOTO_BOTTOM
STOCK_GOTO_FIRST
STOCK_GOTO_LAST
STOCK_GOTO_TOP
STOCK_GO_BACK
STOCK_GO_DOWN
STOCK_GO_FORWARD
STOCK_GO_UP
STOCK_HELP
STOCK_HOME
STOCK_INDEX

36

_._The Button
Widget

STOCK_ITALIC
STOCK_JUMP_TO
STOCK_JUSTIFY_CENTER
STOCK_JUSTIFY_FILL
STOCK_JUSTIFY_LEFT
STOCK_JUSTIFY_RIGHT
STOCK_MISSING_IMAGE
STOCK_NEW

STOCK_NO

STOCK_OK

STOCK_OPEN
STOCK_PASTE
STOCK_PREFERENCES
STOCK_PRINT
STOCK_PRINT_PREVIEW
STOCK_PROPERTIES
STOCK_QUIT
STOCK_REDO
STOCK_REFRESH
STOCK_REMOVE
STOCK_REVERT_TO_SAVED
STOCK_SAVE
STOCK_SAVE_AS
STOCK_SELECT_COLOR
STOCK_SELECT_FONT
STOCK_SORT_ASCENDING
STOCK_SORT_DESCENDING
STOCK_SPELL_CHECK
STOCK_STOP
STOCK_STRIKETHROUGH
STOCK_UNDELETE
STOCK_UNDERLINE
STOCK_UNDO
STOCK_YES
STOCK_ZOOM_100
STOCK_ZOOM_FIT
STOCK_ZOOM_IN
STOCK_ZOOM_OUT

Thebuttons.py [examples/buttons.pyjrogram provides an example of usigil.Button () to create a button with

an image and a label in it. I've broken up the code to create a box from the rest so you can use it in your programs.
There are further examples of using images later in the tutdfigure 6.1, “Button with Pixmap and Labethows

the window containing a button with both a pixmap and a label:

Figure 6.1. Button with Pixmap and Label

37

file:url(examples/buttons.py)

Th
Button Widget ©

The source code for tHauttons.py [examples/buttons.pyjrogram is:

1 #lusr/bin/env python

2

3 # example-start buttons buttons.py
4

5 import pygtk

6 pygtk.require(’2.0’)

7 import gtk

8

9 # Create a new hbox with an image and a label packed into it
10 # and return the box.

11

12 def xpm_label_box(parent, xpm_filename, label_text):
13 # Create box for xpm and label

14 box1l = gtk.HBox(False, 0)

15 box1.set_border_width(2)

16

17 # Now on to the image stuff

18 image = gtk.Image()

19 image.set_from_file(xpm_filename)

20

21 # Create a label for the button

22 label = gtk.Label(label_text)

23

24 # Pack the pixmap and label into the box
25 box1.pack_start(image, False, False, 3)
26 box1.pack_start(label, False, False, 3)

27

28 image.show()

29 label.show()

30 return box1

31

32 class Buttons:

33 # Our usual callback method

34 def callback(self, widget, data=None):

35 print "Hello again - %s was pressed" % data
36

37 def __init__ (self):

38 # Create a new window

39 self.window = gtk.Window(gtk. WINDOW_TOPLEVEL)
40

41 self.window.set _title("Image’d Buttons!")
42

38

file:url(examples/buttons.py)

Th
Button Widget ©

43 # It's a good idea to do this for all windows.

44 self.window.connect("destroy", lambda wid: gtk.main_quit())
45 self.window.connect("delete_event", lambda al,a2:gtk.main_quit())
46

a7 # Sets the border width of the window.

48 self.window.set_border_width(10)

49

50 # Create a new button

51 button = gtk.Button()

52

53 # Connect the "clicked" signal of the button to our callback
54 button.connect("clicked", self.callback, "cool button™)

55

56 # This calls our box creating function

57 box1 = xpm_label_box(self.window, "info.xpm", "cool button™)
58

59 # Pack and show all our widgets

60 button.add(box1)

61

62 box1.show()

63 button.show()

64

65 self.window.add(button)

66 self.window.show()

67

68 def main():

69 gtk.main()

70 return O

71

72 if _name__ =="_main__"

73 Buttons()

74 main()

Lines 12-34 define thepm_label_box () helper function which creates a horizontal box with a border width of 2
(lines 14-15), populates it with an image (lines 22-23) and a label (line 26).

Lines 36-70 define th®uttons class. Lines 41-70 define the instance initialization method which creates a
window (line 43), sets the title (line 45), connects the "delete_event" and "destroy" signals (lines 48-49). Line 55
creates the button without a label. Its "clicked" signal gets connected teathmck () method in line 58. The
xpm_label_box () function is called in line 61 to create the image and label to put in the button in line 64.

Thexpm_label_box () function could be used to pack xpm’s and labels into any widget that can be a container.

The Button widget has the following signals:

pressed - emitted when pointer button is pressed within Button widget
released - emitted when pointer button is released within Button widget

clicked - emitted when pointer button is pressed and then released within
Button widget

39

_._The Button
Widget

enter - emitted when pointer enters Button widget

leave - emitted when pointer leaves Button widget

6.2. Toggle Buttons

Toggle buttons are derived from normal buttons and are very similar, except they will always be in one of two states,
alternated by a click. They may be depressed, and when you click again, they will pop back up. Click again, and they
will pop back down.

Toggle buttons are the basis for check buttons and radio buttons, as such, many of the calls used for toggle buttons are
inherited by radio and check buttons. | will point these out when we come to them.

Creating a new toggle button:

toggle_button = gtk.ToggleButton(label =None)

As you can imagine, these work identically to the normal button widget calls. If no label is specified the button will
be blank. The label text will be parsed for’_’-prefixed mnemonic characters.

To retrieve the state of the toggle widget, including radio and check buttons, we use a construct as shown in our
example below. This tests the state of the toggle, by callingéteactive () method of the toggle button object.

The signal of interest to us that is emitted by toggle buttons (the toggle button, check button, and radio button widgets)
is the "toggled" signal. To check the state of these buttons, set up a signal handler to catch the toggled signal, and
access the object attributes to determine its state. The callback will look something like:

def toggle_button_callback(widget, data):
if widget.get_active():
If control reaches here, the toggle button is down
else:
If control reaches here, the toggle button is up

To force the state of a toggle button, and its children, the radio and check buttons, use this method:

toggle_button.set_active(is_active)

The above method can be used to set the state of the toggle button, and its children the radio and check buttons.
Specifying aTRUEor FALSEfor theis_active argument indicates whether the button should be down (depressed)
or up (released). When the toggle button is created its default is BAIOCBE

Note that when you use theet_active () method, and the state is actually changed, it causes the "clicked" and
"toggled" signals to be emitted from the button.

40

Th
Button Widget ©

toggle_button.get_active()

This method returns the current state of the toggle button as a bobiRdBor FALSE value.

Thetogglebutton.py[examples/togglebutton.ppfogram provides a simple example using toggle buttBitgure 6.2,
“Toggle Button Examplefllustrates the resulting window with the second toggle button active:

Figure 6.2. Toggle Button Example

= =13

H

toggle button 1

ltowale button 2

it

The source code for the program is:

#!/usr/bin/env python
example togglebutton.py

pygtk.require('2.0")

1

2

3

4

5 import pygtk
6

7 import gtk
8

©

class ToggleButton:

10 # Our callback.

11 # The data passed to this method is printed to stdout
12 def callback(self, widget, data=None):

13
print "%s was toggled %s" % (data, ("OFF", "ON")[widget.get_active()])
14
15 # This callback quits the program
16 def delete_event(self, widget, event, data=None):
17 gtk.main_quit()
18 return False
19
20 def __init__ (self):
21 # Create a new window
22 self.window = gtk.Window(gtk. WINDOW_TOPLEVEL)

41

file:url(examples/togglebutton.py)

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76

Th
Button Widget ©

Set the window title
self.window.set_title("Toggle Button")

Set a handler for delete_event that immediately
exits GTK.
self.window.connect("delete_event", self.delete_event)

Sets the border width of the window.
self.window.set_border_width(20)

Create a vertical box
vbox = gtk.VBox(True, 2)

Put the vbox in the main window
self.window.add(vbox)

Create first button
button = gtk.ToggleButton("toggle button 1")

When the button is toggled, we call the "callback" method
with a pointer to "button" as its argument
button.connect("toggled"”, self.callback, "toggle button 1")

Insert button 1

vbox.pack_start(button, True, True, 2)

button.show()

Create second button

button = gtk.ToggleButton("toggle button 2")

When the button is toggled, we call the "callback" method
with a pointer to "button 2" as its argument
button.connect("toggled”, self.callback, "toggle button 2")

Insert button 2

vbox.pack_start(button, True, True, 2)

button.show()

Create "Quit" button
button = gtk.Button("Quit")

When the button is clicked, we call the main_quit function
and the program exits
button.connect("clicked”, lambda wid: gtk.main_quit())

Insert the quit button
vbox.pack_start(button, True, True, 2)

button.show()
vbox.show()

42

Th
Button Widget ©

77 self.window.show()
78

79 def main():

80 gtk.main()

81 return O

82

83 if _name__ =="_ main_"
84 ToggleButton()

85 main()

The interesting lines are 12-13 which define tadlback () method that prints the toggle button label and its state
when itis toggled. Lines 45 and 59 connect the "toggled" signal of the toggle buttonsdalltreck () method.

6.3. Check Buttons

Check buttons inherit many properties and methods from the the toggle buttons above, but look a little different. Rather
than being buttons with text inside them, they are small squares with the text to the right of them. These are often used
for toggling options on and off in applications.

The creation method is similar to that of the normal button.

check_button = gtk.CheckButton(label =None)

If thelabel argumentis specified the method creates a check button with a label besidel@b&he text is parsed
for '_’-prefixed mnemonic characters.

Checking and setting the state of the check button are identical to that of the toggle button.

The checkbutton.py [examples/checkbutton.pyjrogram provides an example of the use of the check buttons.
Figure 6.3, “Check Button Examplélustrates the resulting window:

Figure 6.3. Check Button Example

=Bl

H

[check button 2

Cluit

43

file:url(examples/checkbutton.py)

Th
Button Widget ©

The source code for theheckbutton.py [examples/checkbutton.ppfogram is:

#1/usr/bin/env python
example checkbutton.py

1
2
3
4
5 import pygtk

6 pygtk.require(’2.0’)

7 import gtk

8

9 class CheckButton:

10 # Our callback.

11 # The data passed to this method is printed to stdout
12 def callback(self, widget, data=None):

13
print "%s was toggled %s" % (data, ("OFF", "ON")[widget.get_active()])
14
15 # This callback quits the program
16 def delete_event(self, widget, event, data=None):
17 gtk.main_quit()
18 return False
19
20 def __init__ (self):
21 # Create a new window
22 self.window = gtk.Window(gtk. WINDOW_TOPLEVEL)
23
24 # Set the window title
25 self.window.set_title("Check Button")
26
27 # Set a handler for delete_event that immediately
28 # exits GTK.
29 self.window.connect("delete_event", self.delete_event)
30
31 # Sets the border width of the window.
32 self.window.set_border_width(20)
33
34 # Create a vertical box
35 vbox = gtk.VBox(True, 2)
36
37 # Put the vbox in the main window
38 self.window.add(vbox)
39
40 # Create first button
41 button = gtk.CheckButton("check button 1")
42
43 # When the button is toggled, we call the "callback" method
44 # with a pointer to "button" as its argument
45 button.connect("toggled”, self.callback, "check button 1")
46
47
48 # Insert button 1
49 vbox.pack_start(button, True, True, 2)
50

44

file:url(examples/checkbutton.py)

The Button

Widget
51 button.show()
52
53 # Create second button
54
55 button = gtk.CheckButton("check button 2")
56
57 # When the button is toggled, we call the "callback" method
58 # with a pointer to "button 2" as its argument
59 button.connect("toggled”, self.callback, "check button 2")
60 # Insert button 2
61 vbox.pack_start(button, True, True, 2)
62
63 button.show()
64
65 # Create "Quit" button
66 button = gtk.Button("Quit")
67
68 # When the button is clicked, we call the mainquit function
69 # and the program exits
70 button.connect("clicked", lambda wid: gtk.main_quit())
71
72 # Insert the quit button
73 vbox.pack_start(button, True, True, 2)
74
75 button.show()
76 vbox.show()
77 self.window.show()
78

79 def main():
80 gtk.main()
81 return O

82

83 if _name__ ==" main__ "
84 CheckButton()

85 main()

6.4. Radio Buttons

Radio buttons are similar to check buttons except they are grouped so that only one may be selected/depressed at a
time. This is good for places in your application where you need to select from a short list of options.

Creating a new radio button is done with this call:

radio_button = gtk.RadioButton(group =None, label =None)

You'll notice the extra argument to this call. Radio buttons requiggaup to operate properly. The first call to
gtk.RadioButton () should passlone as the first argument and a new radio button group will be created with the
new radio button as its only member.

45

Th
Button Widget ©

To add more radio buttons to a group, pass in a reference to a radio butgmoup in subsequent calls to
gtk.RadioButton 0.

If alabel argument is specified the text will be parsed for’_’-prefixed mnemonic characters.

It is also a good idea to explicitly set which button should be the default depressed button with:

radio_button.set_active(is_active)

This is described in the section on toggle buttons, and works in exactly the same way. Once the radio buttons are
grouped together, only one of the group may be active at a time. If the user clicks on one radio button, and then on
another, the first radio button will first emit a "toggled"” signal (to report becoming inactive), and then the second will
emit its "toggled" signal (to report becoming active).

The example programadiobuttons.py [examples/radiobuttons.pygfeates a radio button group with three buttons.
Figure 6.4, “Radio Buttons Exampldiustrates the resulting window:
Figure 6.4. Radio Buttons Example

| racio H{EEIET

{ ' radio buttoni

{) radio buttons

close

The source code for the example program is:

1 #Yusr/bin/env python

2

3 # example radiobuttons.py
4

5 import pygtk

6 pygtk.require(’2.0")

7 import gtk

8

9 class RadioButtons:

10
11

def callback(self, widget, data=None):

print "%s was toggled %s" % (data, ("OFF", "ON")[widget.get_active()])

46

file:url(examples/radiobuttons.py)

Th
Button Widget ©

12
13 def close_application(self, widget, event, data=None):
14 gtk.main_quit()
15 return False
16
17 def __init_ (self):
18 self.window = gtk.Window(gtk.WINDOW_TOPLEVEL)
19
20 self.window.connect("delete_event", self.close_application)
21
22 self.window.set _title("radio buttons")
23 self.window.set_border_width(0)
24
25 box1 = gtk.VBox(False, 0)
26 self.window.add(box1)
27 box1.show()
28
29 box2 = gtk.VBox(False, 10)
30 box2.set_border_width(10)
31 box1.pack_start(box2, True, True, 0)
32 box2.show()
33
34 button = gtk.RadioButton(None, "radio buttonl")
35 button.connect("toggled”, self.callback, "radio button 1")
36 box2.pack_start(button, True, True, 0)
37 button.show()
38
39 button = gtk.RadioButton(button, "radio button2")
40 button.connect("toggled”, self.callback, "radio button 2")
41 button.set_active(True)
42 box2.pack_start(button, True, True, 0)
43 button.show()
44
45 button = gtk.RadioButton(button, "radio button3")
46 button.connect("toggled”, self.callback, "radio button 3")
a7 box2.pack_start(button, True, True, 0)
48 button.show()
49
50 separator = gtk.HSeparator()
51 box1.pack_start(separator, False, True, 0)
52 separator.show()
53
54 box2 = gtk.VBox(False, 10)
55 box2.set_border_width(10)
56 box1.pack_start(box2, False, True, 0)
57 box2.show()
58
59 button = gtk.Button("close")
60
button.connect_object("clicked", self.close_application, self.window,
61 None)
62 box2.pack_start(button, True, True, 0)
63 button.set_flags(gtk. CAN_DEFAULT)
64 button.grab_default()

47

The Button

Widget
65 button.show()
66 self.window.show()

67

68 def main():
69 gtk.main()
70 return O

71

72 if _name__ =="_main_"
73 RadioButtons()

74 main()

The code is fairly straight forward. Lines 63-64 make the "close" button the default widget so that pressing the "Enter"
key when the window is active causes the "close" button to emit the "clicked" signal.

48

Chapter 7. Adjustments

GTK has various widgets that can be visually adjusted by the user using the mouse or the keyboard, such as the range
widgets, described in the Range Widgets section. There are also a few widgets that display some adjustable portion of
a larger area of data, such as the text widget and the viewport widget.

Obviously, an application needs to be able to react to changes the user makes in range widgets. One way to do this
would be to have each widget emit its own type of signal when its adjustment changes, and either pass the new value
to the signal handler, or require it to look inside the widget’s data structure in order to ascertain the value. But you may
also want to connect the adjustments of several widgets together, so that adjusting one adjusts the others. The most
obvious example of this is connecting a scrollbar to a panning viewport or a scrolling text area. If each widget has its
own way of setting or getting the adjustment value, then the programmer may have to write their own signal handlers
to translate between the output of one widget's signal and the "input" of another’s adjustment setting method.

GTK solves this problem using th&djustment object, which is not a widget but a way for widgets to store and

pass adjustment information in an abstract and flexible form. The most obvious éshustment is to store

the configuration parameters and values of range widgets, such as scrollbars and scale controls. However, since
Adjustment s are derived fronDbject , they have some special powers beyond those of normal data structures.
Most importantly, they can emit signals, just like widgets, and these signals can be used not only to allow your program
to react to user input on adjustable widgets, but also to propagate adjustment values transparently between adjustable
widgets.

You will see how adjustments fit in when you see the other widgets that incorporate them: Progress Bars, Viewports,
Scrolled Windows, and others.

7.1. Creating an Adjustment

Many of the widgets which use adjustment objects do so automatically, but some cases will be shown in later examples
where you may need to create one yourself. You create an adjustment using:

adjustment = gtk.Adjustment(value =0, lower =0, upper =0, step_incr =0
page_incr =0, page_size =0)

1

Thevalue argumentis the initial value you want to give to tdiustment , usually corresponding to the topmost

or leftmost position of an adjustable widget. Thever argument specifies the lowest value whichaldgistment

can hold. Thestep_incr argument specifies the "smaller" of the two increments by which the user can change the
value, while thepage_incr is the "larger” one. Thpage size argument usually corresponds somehow to the
visible area of a panning widget. Thipper argument is used to represent the bottom most or right most coordinate
in a panning widget’s child. Therefore it is not always the largest numbevé#ha¢ can take, since thgage_size

of such widgets is usually non-zero.

7.2. Using Adjustments the Easy Way

The adjustable widgets can be roughly divided into those which use and require specific units for these values, and
those which treat them as arbitrary numbers. The group which treats the values as arbitrary numbers includes the range
widgets (scrollbars and scales, the progress bar widget, and the spin button widget). These widgets are all the widgets
which are typically "adjusted” directly by the user with the mouse or keyboard. They will treat the lower and upper
values of an adjustment as a range within which the user can manipulate the adjustment’s value. By default, they will
only modify the value of an adjustment.

49

Adjustments

The other group includes the text widget, the viewport widget, the compound list widget, and the scrolled window
widget. All of these widgets use pixel values for their adjustments. These are also all widgets which are typically
"adjusted" indirectly using scrollbars. While all widgets which use adjustments can either create their own adjustments
or use ones you supply, you'll generally want to let this particular category of widgets create its own adjustments.
Usually, they will eventually override all the values except the value itself in whatever adjustments you give them, but
the results are, in general, undefined (meaning, you'll have to read the source code to find out, and it may be different
from widget to widget).

Now, you're probably thinking, since text widgets and viewports insist on setting everything except the value of their
adjustments, while scrollbars will only touch the adjustment’s value, if you share an adjustment object between a
scrollbar and a text widget, manipulating the scrollbar will automagically adjust the text widget? Of course it will!
Just like this:

creates its own adjustments

viewport = gtk.Viewport()

uses the newly-created adjustment for the scrollbar as well
vscrollbar = gtk.VScrollbar(viewport.get_vadjustment())

7.3. Adjustment Internals

Ok, you say, that's nice, but what if | want to create my own handlers to respond when the user adjusts a range widget
or a spin button, and how do | get at the value of the adjustment in these handlers? To answer these questions and
more, let’s start by taking a look at the attributes @t Adjustment itself:

lower

upper

value
step_increment
page_increment
page_size

Given agtk.Adjustment instanceadj , each of the attributes are retrieved or setdjlower , adj.value
etc.

Since, when you set the value of an adjustment, you generally want the change to be reflected by every widget that
uses this adjustment, PyGTK provides a method to do this:

adjustment.set_value(value)

As mentioned earlierAdjustment is a subclass oDbject just like all the various widgets, and thus it is

able to emit signals. This is, of course, why updates happen automagically when you share an adjustment object
between a scrollbar and another adjustable widget; all adjustable widgets connect signal handlers to their adjustment’s
value_changed signal, as can your program. Here’s the definition of this signal callback:

50

Adjustments

def value_changed(adjustment):

The various widgets that use tleljustment object will emit this signal on an adjustment whenever they change

its value. This happens both when user input causes the slider to move on a range widget, as well as when the program
explicitly changes the value with treet_value () method. So, for example, if you have a scale widget, and you

want to change the rotation of a picture whenever its value changes, you would create a callback like this:

def cb_rotate_picture(adj, picture):

set_picture_rotation (picture, adj.value)

and connect it to the scale widget’s adjustment like this:

adj.connect("value_changed", cb_rotate picture, picture)

What about when a widget reconfigures thgper orlower fields of its adjustment, such as when a user adds more
text to a text widget? In this case, it emits the changed signal, which looks like this:

def changed(adjustment):

Range widgets typically connect a handler to this signal, which changes their appearance to reflect the change - for
example, the size of the slider in a scrollbar will grow or shrink in inverse proportion to the difference between the
lower and upper values of its adjustment.

You probably won't ever need to attach a handler to this signal, unless you're writing a new type of range widget.

However, if you change any of the values iddjustment directly, you should emit this signal on it to reconfigure
whatever widgets are using it, like this:

adjustment.emit("changed")

51

Chapter 8. Range Widgets

The category of range widgets includes the ubiquitous scrollbar widget and the less common "scale" widget.
Though these two types of widgets are generally used for different purposes, they are quite similar in function and
implementation. All range widgets share a set of common graphic elements, each of which has its own X window and
receives events. They all contain a "trough" and a "slider" (what is sometimes called a "thumbwheel" in other GUI
environments). Dragging the slider with the pointer moves it back and forth within the trough, while clicking in the
trough advances the slider towards the location of the click, either completely, or by a designated amount, depending
on which mouse button is used.

As mentioned irChapter 7 Adjustmentsbove, all range widgets are associated witlAdjustment object, from
which they calculate the length of the slider and its position within the trough. When the user manipulates the slider,
the range widget will change the value of the adjustment.

8.1. Scrollbar Widgets

These are your standard, run-of-the-mill scrollbars. These should be used only for scrolling some other widget, such
as a list, a text box, or a viewport (and it's generally easier to use the scrolled window widget in most cases). For other
purposes, you should use scale widgets, as they are friendlier and more featureful.

There are separate types for horizontal and vertical scrollbars. There really isn’t much to say about these. You create
them with the following methods:

hscrollbar = gtk.HSscrollbar(adjustment =None)

vscrollbar = gtk.VSscrollbar(adjustment =None)

and that's about it. Thadjustment argument can either be a reference to an exidiigstment (seeChapter 7,
Adjustmentl or nothing, in which case one will be created for you. Specifying nothing might be useful in the case,
where you wish to pass the newly-created adjustment to the constructor function of some other widget which will
configure it for you, such as a text widget.

8.2. Scale Widgets

Scale widgets are used to allow the user to visually select and manipulate a value within a specific range. You might
want to use a scale widget, for example, to adjust the magnification level on a zoomed preview of a picture, or to
control the brightness of a color, or to specify the number of minutes of inactivity before a screensaver takes over the
screen.

8.2.1. Creating a Scale Widget

As with scrollbars, there are separate widget types for horizontal and vertical scale widgets. (Most programmers seem
to favour horizontal scale widgets.) Since they work essentially the same way, there’s no need to treat them separately
here. The following methods create vertical and horizontal scale widgets, respectively:

vscale = gtk.VScale(adjustment =None)

hscale = gtk.HScale(adjustment =None)

52

Range Widgets

Theadjustment argument can either be an adjustment which has already been creatgtkwAitijustment ()

, or nothing, in which case, an anonymofidjustment is created with all of its values set to 0.0 (which isn’t
very useful in this case). In order to avoid confusing yourself, you probably want to create your adjustment with a
page_size of 0.0 so that itsipper value actually corresponds to the highest value the user can select. (If you're
already thoroughly confused, re&@hapter 7 Adjustmentsgain for an explanation of what exactly adjustments do
and how to create and manipulate them.)

8.2.2. Methods and Signals (well, methods, at least)

Scale widgets can display their current value as a number beside the trough. The default behaviour is to show the
value, but you can change this with this method:

scale.set_draw_value(draw_value)

As you might have guessediiaw_value is eitherTRUEor FALSE, with predictable consequences for either one.

The value displayed by a scale widget is rounded to one decimal point by default, as is the value field in its
Adjustment . You can change this with:

scale.set_digits(digits)

wheredigits is the number of decimal places you want. You can set digits to anything you like, but no more than
13 decimal places will actually be drawn on screen.

Finally, the value can be drawn in different positions relative to the trough:

scale.set_value pos(pos)

The argumenpos can take one of the following values:

POS_LEFT
POS_RIGHT
POS_TOP
POS_BOTTOM

If you position the value on the "side" of the trough (e.g., on the top or bottom of a horizontal scale widget), then it
will follow the slider up and down the trough.

8.3. Common Range Methods

TheRange widget class is fairly complicated internally, but, like all the "base class" widgets, most of its complexity
is only interesting if you want to hack on it. Also, almost all of the methods and signals it defines are only really used
in writing derived widgets. There are, however, a few useful methods that will work on all range widgets.

53

Range Widgets

8.3.1. Setting the Update Policy

The "update policy" of a range widget defines at what points during user interaction it will change the value field of
its Adjustment and emit the "value_changed" signal on tAdjustment . The update policies are:

UPDATE_CONTINUOUS
This is the default. The "value_changed" signal is emitted continu-
ously, i.e., whenever the slider is moved by even the tiniest amount.

UPDATE_DISCONTINUOUS
The "value_changed" signal is only emitted once the slider has
stopped moving and the user has released the mouse button.

UPDATE_DELAYED
The "value_changed" signal is emitted when the user releases the
mouse button, or if the slider stops moving for a short period of
time.

The update policy of a range widget can be set by passing it to this method:

range.set_update_policy(policy)

8.3.2. Getting and Setting Adjustments

Getting and setting the adjustment for a range widget "on the fly" is done, predictably, with:

adjustment = range.get_adjustment()

range.set_adjustment(adjustment)

Theget_adjustment () method returns a reference to thdiustment to which range is connected.

Theset_adjustment () method does absolutely nothing if you pass it #tfustment thatrange is already

using, regardless of whether you changed any of its fields or not. If you pass itAdjestment , it will unreference

the old one if it exists (possibly destroying it), connect the appropriate signals to the new one, and will recalculate the
size and/or position of the slider and redraw if necessary. As mentioned in the section on adjustments, if you wish to
reuse the sam&djustment , when you modify its values directly, you should emit the "changed" signal on it, like
this:

adjustment.emit("changed")

8.4. Key and Mouse Bindings

All of the GTK+ range widgets react to mouse clicks in more or less the same way. Clicking button-1 in the trough
will cause its adjustmentigage_increment to be added or subtracted fromuslue , and the slider to be moved

54

Range Widgets

accordingly. Clicking mouse button-2 in the trough will jump the slider to the point at which the button was clicked.
Clicking any button on a scrollbar’s arrows will cause its adjustment’s value to cls@geincrement at atime.

Scrollbars are not focusable, thus have no key bindings. The key bindings for the other range widgets (which are, of
course, only active when the widget has focus) do not differentiate between horizontal and vertical range widgets.

All range widgets can be operated with the left arrow, right arrow, up arrow and down arrow keys, as well as with the
Page UpandPage Downkeys. The arrows move the slider btep_increment , while Page UpandPage Down
move it bypage_increment

The user can also move the slider all the way to one end or the other of the trough using the keyboard. This is done
with theHome andEnd keys.

8.5. Range Widget Example

The example programrgngewidgets.py[examples/rangewidgets.pyjuts up a window with three range widgets all
connected to the same adjustment, and a couple of controls for adjusting some of the parameters mentioned above and
in the section on adjustments, so you can see how they affect the way these widgets work for thEigges.8.1,

“Range Widgets Exampldflustrates the result of running the program:

Figure 8.1. Range Widgets Example

55

file:url(examples/rangewidgets.py)

Range
Widgets

range controls

Ll

acale Walue Position: Top

L

Geale Update Policy: Continuous

1

acale Digits:
o

Gk
acrollbar Fage Size:
* | 1]

Cluit

Therangewidgets.py[examples/rangewidgets.pgburce code is:

1 #!/usr/bin/env python
2

3 # example rangewidgets.py
4

5 import pygtk

6 pygtk.require(’2.0’)
7 import gtk

8

9

10

Convenience functions

11 def make_menu_item(name, callback, data=None):

12 item = gtk.Menultem(name)

13 item.connect("activate”, callback, data)
14 item.show()

15 return item

16

56

file:url(examples/rangewidgets.py)

Range
Widgets

17 def scale_set default_values(scale):

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70

scale.set_update_policy(gtk. UPDATE_CONTINUOUS)
scale.set_digits(1)
scale.set_value_pos(gtk.POS_TOP)
scale.set_draw_value(True)

class RangeWidgets:

def cb_pos_menu_select(self, item, pos):
Set the value position on both scale widgets
self.hscale.set_value_pos(pos)
self.vscale.set_value pos(pos)

def cb_update_menu_select(self, item, policy):
Set the update policy for both scale widgets
self.hscale.set_update_policy(policy)
self.vscale.set_update_policy(policy)

def cb_digits_scale(self, ad)):
Set the number of decimal places to which adj->value is rounded
self.hscale.set_digits(adj.value)
self.vscale.set_digits(adj.value)

def cb_page_size(self, get, set):
Set the page size and page increment size of the sample
adjustment to the value specified by the "Page Size" scale
set.page_size = get.value
set.page_incr = get.value
Now emit the "changed" signal to reconfigure all the widgets that
are attached to this adjustment
set.emit("changed")

def cb_draw_value(self, button):
Turn the value display on the scale widgets off or on depending
on the state of the checkbutton
self.hscale.set_draw_value(button.get_active())
self.vscale.set_draw_value(button.get_active())

makes the sample window

def __ init__ (self):
Standard window-creating stuff
self.window = gtk.Window (gtk. WINDOW_TOPLEVEL)
self.window.connect("destroy"”, lambda w: gtk.main_quit())
self.window.set _title("range controls")

box1 = gtk.VBox(False, 0)
self.window.add(box1)
box1.show()

box2 = gtk.HBox(False, 10)
box2.set_border_width(10)
box1.pack_start(box2, True, True, 0)
box2.show()

57

71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124

Range
Widgets

value, lower, upper, step_increment, page_increment, page_size
Note that the page_size value only makes a difference for

scrollbar widgets, and the highest value you'll get is actually

(upper - page_size).

adjl = gtk.Adjustment(0.0, 0.0, 101.0, 0.1, 1.0, 1.0)

self.vscale = gtk.VScale(adjl)
scale_set_default_values(self.vscale)
box2.pack_start(self.vscale, True, True, 0)
self.vscale.show()

box3 = gtk.VBox(False, 10)
box2.pack_start(box3, True, True, 0)
box3.show()

Reuse the same adjustment

self.hscale = gtk.HScale(adj1)
self.hscale.set_size request(200, 30)
scale_set_default_values(self.hscale)
box3.pack_start(self.hscale, True, True, 0)
self.hscale.show()

Reuse the same adjustment again

scrollbar = gtk.HScrollbar(adjl)

Notice how this causes the scales to always be updated
continuously when the scrollbar is moved
scrollbar.set_update_policy(gtk. UPDATE_CONTINUOUS)
box3.pack_start(scrollbar, True, True, 0)

scrollbar.show()

box2 = gtk.HBox(False, 10)
box2.set_border_width(10)
box1.pack_start(box2, True, True, 0)
box2.show()

A checkbutton to control whether the value is displayed or not
button = gtk.CheckButton("Display value on scale widgets")
button.set_active(True)

button.connect("toggled”, self.cb_draw_value)
box2.pack_start(button, True, True, 0)

button.show()

box2 = gtk.HBox(False, 10)
box2.set_border_width(10)

An option menu to change the position of the value
label = gtk.Label("Scale Value Position:")
box2.pack_start(label, False, False, 0)

label.show()

opt = gtk.OptionMenu()
menu = gtk.Menu()

item = make_menu_item ("Top", self.cb_pos_menu_select, gtk.POS_TOP)

58

125
126
127
128
129
130
131

132
133
134

135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176

Range
Widgets

item =

item =

menu.append(item)

item = make_menu_item ("Bottom", self.cb_pos_menu_select,
gtk.POS_BOTTOM)
menu.append(item)

make_menu_item ("Left", self.cb_pos_menu_select, gtk.POS_LEFT)
menu.append(item)

make_menu_item ("Right", self.cb_pos_menu_select, gtk.POS_RIGHT)
menu.append(item)

opt.set_menu(menu)
box2.pack_start(opt, True, True, 0)
opt.show()

box1.pack_start(box2, True, True, 0)
box2.show()

box2 = gtk.HBox(False, 10)
box2.set_border_width(10)

Yet another option menu, this time for the update policy of the
scale widgets

label = gtk.Label("Scale Update Policy:")

box2.pack_start(label, False, False, 0)

label.show()

opt = gtk.OptionMenu()
menu = gtk.Menu()

item = make_menu_item("Continuous", self.cb_update_menu_select,
gtk. UPDATE_CONTINUOUS)
menu.append(item)

item = make_menu_item ("Discontinuous”, self.cb_update_menu_select,
gtk. UPDATE_DISCONTINUOUS)
menu.append(item)

item = make_menu_item ("Delayed", self.cb_update_menu_select,
gtk UPDATE_DELAYED)
menu.append(item)

opt.set_menu(menu)
box2.pack_start(opt, True, True, 0)
opt.show()

box1.pack_start(box2, True, True, 0)
box2.show()

box2 = gtk.HBox(False, 10)
box2.set_border_width(10)

59

177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229

Range
Widgets

An HScale widget for adjusting the number of digits on the
sample scales.

label = gtk.Label("Scale Digits:")

box2.pack_start(label, False, False, 0)

label.show()

adj2 = gtk.Adjustment(1.0, 0.0, 5.0, 1.0, 1.0, 0.0)
adj2.connect("value_changed", self.cb_digits_scale)
scale = gtk.HScale(adj2)

scale.set_digits(0)

box2.pack_start(scale, True, True, 0)

scale.show()

box1.pack_start(box2, True, True, 0)
box2.show()

box2 = gtk.HBox(False, 10)
box2.set_border_width(10)

And, one last HScale widget for adjusting the page size of the
scrollbar.

label = gtk.Label("Scrollbar Page Size:")

box2.pack_start(label, False, False, 0)

label.show()

adj2 = gtk.Adjustment(1.0, 1.0, 101.0, 1.0, 1.0, 0.0)
adj2.connect("value_changed", self.cb_page_size, adjl)
scale = gtk.HScale(adj2)

scale.set_digits(0)

box2.pack_start(scale, True, True, 0)

scale.show()

box1.pack_start(box2, True, True, 0)
box2.show()

separator = gtk.HSeparator()
box1.pack_start(separator, False, True, 0)
separator.show()

box2 = gtk.VBox(False, 10)
box2.set_border_width(10)
box1.pack_start(box2, False, True, 0)
box2.show()

button = gtk.Button("Quit")

button.connect("clicked", lambda w: gtk.main_quit())
box2.pack_start(button, True, True, 0)
button.set_flags(gtk. CAN_DEFAULT)
button.grab_default()

button.show()

self.window.show()

230 def main():

60

Range Widgets

231 gtk.main()
232 return O

233

234 if _name__ =="_ main__ "
235 RangeWidgets()

236 main()

You will notice that the program does not call tt@nnect () method for the "delete_event", but only for the "destroy"
signal. This will still perform the desired operation, because an unhandled "delete_event" will result in a "destroy"
signal being given to the window.

61

Chapter 9. Miscellaneous Widgets
9.1. Labels

Labels are used alotin GTK, and are relatively simglabels emit no signals as they do not have an associated X
window. If you need to catch signals, or do clipping, place it insiventBox (seeSection 10.1, “The EventBo)”
widget or aButton (seeSection 6.1, “Normal Button3'widget.

To create a new label, use:

label = gtk.Label(str)

The sole argument is the string you wish the label to display. To change the label's text after creation, use the method:

label.set_text(str)

label is the label you created previously, asill is the new string. The space needed for the new string will be
automatically adjusted if needed. You can produce multi-line labels by putting line breaks in the label string.

To retrieve the current string, use:

str = label.get_text()

label is the label you've created, astt is the return string. Thiabel text can be justified using:

label.set_justify(jtype)

Values forjtype are:

JUSTIFY_LEFT # the default
JUSTIFY_RIGHT
JUSTIFY_CENTER
JUSTIFY_FILL # does not work

The label widget is also capable of line wrapping the text automatically. This can be activated using:

label.set_line_wrap(wrap)

62

~Miscellaneous
W|(J\élets

Thewrap argument takes @RUEor FALSE value.

If you want your label underlined, then you can set a pattern on the label:

label.set_pattern(pattern)

The pattern argument indicates how the underlining should look. It consists of a string of underscore and space
characters. An underscore indicates that the corresponding character in the label should be underlined. For example,
the string”__ _ " would underline the first two characters and fourth and fifth characters. If you simply want to
have an underlined accelerator ("mnemonic") in your label, you shouldets¢éext with_mnemonic (str),

notset pattern ().

Thelabel.py [examples/label.pyprogram is a short example to illustrate these methods. This example makes use of
theFrame (seeSection 10.5, “Frame$tvidget to better demonstrate the label styles. You can ignore this for now as
theFrame widget is explained later on.

In GTK+ 2.0, label text can contain markup for font and other text attribute changes, and labels may be selectable (for
copy-and-paste). These advanced features won't be explained here.

Figure 9.1, “Label Examplestiustrates the result of running the example program:

Figure 9.1. Label Examples

63

file:url(examples/label.py)

laneous VViIcIngCeetls-

L

Mormal Label Line wrapped label
This is a Normal label | This is an example of a line-wrapped label. It should not be
Multidine Label taking up the entire width allocated to it, but

This is a Multidine label. automatically wraps the words to fit. The time has come, for

all good men, to come to the aid of their party. The sixth

Second line ST "

. sheik's six sheep's sick.
Third line _

It supports multiple paragraphs correctly, and correctly

LE‘fE JHEIifiEd LabE|_ | adds many extra spaces.
ps 1s 3 LelJUSHIEd | Eijeg, wrapped label

: : This is an example of a line-wrapped, filled label. It should be
Third line) :) : :

taking up the entire width allocated to it. Hereis a

Right Justified Label sentence to prove my point. Here is another sentence. Here

This is a Right-Justified comes the sun, do de do de do.

Multiine label. | This is a new paragraph.
Fourth line, (k) = This is another newer, longer, better paragraph. It is coming
to an end, unfortunately.

Underined label
This label is underined!
This one is underlined in quite a funky fashion A

Thelabel.py [examples/label.py§ource code is:

1 #!/usr/bin/env python

2

3 # example label.py

4

5 import pygtk
6 pygtk.require(’2.0’)

7 import gtk

8

9 class Labels:

10 def _ init__ (self):

11 self.window = gtk.Window(gtk. WINDOW_TOPLEVEL)
12 self.window.connect("destroy"”, lambda w: gtk.main_quit())
13

14 self.window.set_title("Label")

15 vbox = gtk.VBox(False, 5)

16 hbox = gtk.HBox(False, 5)

17 self.window.add(hbox)

18 hbox.pack_start(vbox, False, False, 0)

64

file:url(examples/label.py)

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64

65
66
67
68
69
70
71

laneous Vwisgceetls-

self.window.set_border_width(5)

frame = gtk.Frame("Normal Label")
label = gtk.Label("This is a Normal label")

frame.add(label)

vbox.pack_start(frame, False, False, 0)

frame = gtk.Frame("Multi-line Label")
label = gtk.Label("This is a Multi-line label.\nSecond line\n"

frame.add(label)

"Third line")

vbox.pack_start(frame, False, False, 0)

frame = gtk.Frame("Left Justified Label")
label = gtk.Label("This is a Left-Justified\n"

"Multi-line label.\nThird line")

label.set_justify(gtk. JUSTIFY_LEFT)

frame.add(label)

vbox.pack_start(frame, False, False, 0)

frame = gtk.Frame("Right Justified Label")
label = gtk.Label("This is a Right-Justified\nMulti-line label.\n"

"Fourth line, (j/k)")

label.set_justify(gtk. JUSTIFY_RIGHT)

frame.add(label)

vbox.pack_start(frame, False, False, 0)

vbox = gtk.VBox(False, 5)

hbox.pack_start(vbox, False, False, 0)

frame = gtk.Frame("Line wrapped label")

label = gtk.Label("This is an example of a line-wrapped label. It "

"should not be taking up the entire
"width allocated to it, but automatically "
"wraps the words to fit. "

"The time has come, for all good men, to come to "
"the aid of their party. "

"The sixth sheik’s six sheep’s sick.\n"

" It supports multiple paragraphs correctly, "
"and correctly adds "

"many extra spaces. ")

label.set_line_wrap(True)

frame.add(label)

vbox.pack_start(frame, False, False, 0)

frame = gtk.Frame("Filled, wrapped label")

label = gtk.Label("This is

an example of a line-wrapped, filled label.
"It should be taking "

"up the entire width allocated to it.
"Here is a sentence to prove "

"my point. Here is another sentence. "

"Here comes the sun, do de do de do.\n"

" This is a new paragraph.\n"

This is another newer, longer, better "

65

~Miscellaneous
W|(J\élets

72 "paragraph. It is coming to an end, "
73 "unfortunately.")
74 label.set_justify(gtk. JUSTIFY_FILL)
75 label.set_line_wrap(True)
76 frame.add(label)
77 vbox.pack_start(frame, False, False, 0)
78
79 frame = gtk.Frame("Underlined label")
80 label = gtk.Label("This label is underlined\n"
81 "This one is underlined in quite a funky fashion")
82 label.set_justify(gtk. JUSTIFY_LEFT)
83 label.set_pattern(
84
" ~ _ . n
85 frame.add(label)
86 vbox.pack_start(frame, False, False, 0)
87 self.window.show_all ()
88

89 def main():
20 gtk.main()
91 return O

92

93 if _name__ =="_ main_"
94 Labels()

95 main()

Note that the "Filled, wrapped label" is not fill justified.

9.2. Arrows

The Arrow widget draws an arrowhead, facing in a number of possible directions and having a number of possible
styles. It can be very useful when placed on a button in many applications. Likalieé widget, it emits no signals.

There are only two calls for manipulating &nrow widget:

arrow = gtk.Arrow(arrow_type , shadow_type)

arrow.set(arrow_type , shadow_type)

The first creates a new arrow widget with the indicated type and appearance. The second allows these values to be
altered retrospectively. Trerow_type argument may take one of the following values:

ARROW_UP
ARROW_DOWN
ARROW_LEFT
ARROW_RIGHT

66

laneous VViIéSgCeetls-

These values obviously indicate the direction in which the arrow will point. shtaglow_type argument may take
one of these values:

SHADOW_IN

SHADOW_OUT # the default
SHADOW_ETCHED_IN
SHADOW_ETCHED_OUT

The arrow.py [examples/arrow.pykexample program briefly illustrates their usdzigure 9.2, “Arrows Buttons
Examples’illustrates the result of running the program:

Figure 9.2. Arrows Buttons Examples

The source code farrow.py [examples/arrow.pyis:

#1/usr/bin/env python
example arrow.py

1
2
3
4
5 import pygtk

6 pygtk.require(’2.0’)

7 import gtk

8

9 # Create an Arrow widget with the specified parameters
10 # and pack it into a button

11 def create_arrow_button(arrow_type, shadow_type):

12 button = gtk.Button();

13 arrow = gtk.Arrow(arrow_type, shadow_type);

14 button.add(arrow)

15 button.show()

16 arrow.show()
17 return button
18

19 class Arrows:
20 def _ init__ (self):

21 # Create a new window

22 window = gtk.Window(gtk. WINDOW_TOPLEVEL)
23

24 window.set _title("Arrow Buttons")

25

26 # It's a good idea to do this for all windows.

67

file:url(examples/arrow.py)
file:url(examples/arrow.py)

~Miscellaneous
W|(J\élets

27 window.connect("destroy”, lambda x: gtk.main_quit())

28

29 # Sets the border width of the window.

30 window.set_border_width(10)

31

32 # Create a box to hold the arrows/buttons

33 box = gtk.HBox(False, 0)

34 box.set_border_width(2)

35 window.add(box)

36

37 # Pack and show all our widgets

38 box.show()

39

40 button = create_arrow_button(gtk. ARROW_UP, gtk. SHADOW_IN)

41 box.pack_start(button, False, False, 3)

42

43 button = create_arrow_button(gtk. ARROW_DOWN, gtk. SHADOW_OUT)
44 box.pack_start(button, False, False, 3)

45

46 button = create_arrow_button(gtk. ARROW _LEFT, gtk. SHADOW_ETCHED_IN)
47 box.pack_start(button, False, False, 3)

48

49 button = create_arrow_button(gtk. ARROW_RIGHT, gtk. SHADOW_ETCHED_OUT)
50 box.pack_start(button, False, False, 3)

51

52 window.show()

53

54 def main():
55 gtk.main()
56 return O

57

58 if _name__ =="_ main__"
59 Arrows()

60 main()

9.3. The Tooltips Object

Tooltips are the little text strings that pop up when you leave your pointer over a button or other widget for a few
seconds.

Widgets that do not receive events (widgets that do not have their own window) will not work with tooltips.

The first call you will use creates a new tooltip. You only need to do this once for a set of tooltips as the
gtk.Tooltips object this function returns can be used to create multiple tooltips.

tooltips = gtk.Tooltips()

Once you have created a new tooltip, and the widget you wish to use it on, simply use this call to set it:

68

laneous Vwisgceetls-

tooltips.set_tip(widget , tip_text , tip_private =None)

The objecttooltips is the tooltip you've already created. The first argumenid¢et) is the widget you
wish to have this tooltip pop up for; the seconip (text), the text you wish it to display. The last argument
(tip_private) is a text string that can be used as an identifier.

Thetooltip.py [examples/tooltip.pyExample program modifies tle@row.py [examples/arrow.pyprogram to add a

tooltip for each buttonFigure 9.3, “Tooltips Exampleillustrates the resulting display with the tooltip for the second
arrow button displayed:

Figure 9.3. Tooltips Example

ITDDmpﬂ

A _A =
SHADOW_OUT

The source code fdooltip.py [examples/tooltip.pyis:

#!/usr/bin/env python
example tooltip.py

1
2
3
4
5 import pygtk

6 pygtk.require(’2.0")

7 import gtk

8

9 # Create an Arrow widget with the specified parameters
10 # and pack it into a button

11 def create_arrow_button(arrow_type, shadow_type):

12 button = gtk.Button()

13 arrow = gtk.Arrow(arrow_type, shadow_type)

14 button.add(arrow)

15 button.show()

16 arrow.show()
17 return button
18

19 class Tooltips:
20 def __init__(self):

21 # Create a new window

22 window = gtk.Window(gtk. WINDOW_TOPLEVEL)
23

24 window.set_title("Tooltips")

69

file:url(examples/tooltip.py)
file:url(examples/arrow.py)
file:url(examples/tooltip.py)

~Miscellaneous
W|(J\élets

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67

if name_ ==" main__ "
tt = Tooltips()
main()

It's a good idea to do this for all windows.
window.connect("destroy", lambda w: gtk.main_quit())

Sets the border width of the window.
window.set_border_width(10)

Create a box to hold the arrows/buttons
box = gtk.HBox(False, 0)
box.set_border_width(2)

window.add(box)

create a tooltips object
self.tooltips = gtk.Tooltips()

Pack and show all our widgets
box.show()

button = create_arrow_button(gtk. ARROW_UP, gtk. SHADOW _IN)
box.pack_start(button, False, False, 3)
self.tooltips.set_tip(button, "SHADOW _IN")

button = create_arrow_button(gtk. ARROW_DOWN, gtk. SHADOW_OUT)
box.pack_start(button, False, False, 3)
self.tooltips.set_tip(button, "SHADOW_OUT")

button = create_arrow_button(gtk. ARROW_LEFT, gtk. SHADOW_ETCHED_IN)
box.pack_start(button, False, False, 3)
self.tooltips.set_tip(button, "SHADOW_ETCHED_IN")

button = create_arrow_button(gtk. ARROW_RIGHT, gtk. SHADOW_ETCHED_OUT)
box.pack_start(button, False, False, 3)
self.tooltips.set_tip(button, "SHADOW_ETCHED_OUT")

window.show()

def main():
gtk.main()
return O

There are other methods that can be used with tooltips. | will just list them with a brief description of what they do.

tooltips.enable()

Enable a disabled set of tooltips.

70

~Miscellaneous
W|(J\élets

tooltips.disable()

Disable an enabled set of tooltips.

tooltips.set_delay(delay)

Sets how many milliseconds you have to hold your pointer over the widget before the tooltip will pop up. The default
is 500 milliseconds (half a second).

And that's all the methods associated with tooltips. More than you'll ever want to know :-)

9.4. Progress Bars

Progress bars are used to show the status of an operation. They are pretty easy to use, as you will see with the code
below. But first lets start out with the call to create a new progress bar.

progressbar = gtk.ProgressBar(adjustment =None)

Theadjustment argument specifies an adjustment to use withpitoggressbar . If not specified an adjustment
will be created. Now that the progress bar has been created we can use it.

progressbar.set_fraction(fraction)

Theprogressbar object is the progress bar you wish to operate on, and the argufrestiqn) is the amount
"completed”, meaning the amount the progress bar has been filled from 0-100%. This is passed to the method as a real
number ranging from 0 to 1.

A progress bar may be set to one of a number of orientations using the method:

progressbar.set_orientation(orientation)
The orientation argument may take one of the following values to indicate the direction in which the progress
bar moves:

PROGRESS_LEFT_TO_RIGHT
PROGRESS_RIGHT_TO_LEFT
PROGRESS_BOTTOM_TO_TOP
PROGRESS_TOP_TO_BOTTOM

71

~Miscellaneous
W|(J\élets

As well as indicating the amount of progress that has occurred, the progress bar may be set to just indicate that there is
some activity. This can be useful in situations where progress cannot be measured against a value range. The following
function indicates that some progress has been made.

progressbar.pulse()

The step size of the activity indicator is set using the following function where fraction is between 0.0 and 1.0.

progressbar.set_pulse_step(fraction)

When not in activity mode, the progress bar can also display a configurable text string within its trough, using the
following method:

progresshar.set_text(text)

Note
Note thatset_text () doesn't support thprintf ()-like formatting of the GTK+ 1.2 Progressbar.
You can turn off the display of the string by callisgt_text () again with no argument.

The current text setting of a progressbar can be retrieved with the following method:

text = progressbar.get_text()

Progress Bars are usually used with timeouts or other such functionStfapéer 19Timeouts, 10 and Idle Functiops
to give the illusion of multitasking. All will employ theet_fraction () or pulse () methods in the same manner.

The progressbar.py [examples/progressbar.ppfogram provides an example of the progress bar, updated using

timeouts. This code also shows you how to reset the ProgressHgare 9.4, “ProgressBar Examplélustrates
the resulting display:

Figure 9.4. ProgressBar Example

72

file:url(examples/progressbar.py)

laneous VViIéSgCeetls-

Fra |_1_rE' ssBar

S0Mme te|~<t

[activity mode

[~ FRight to Left

close

The source code fgerogressbar.py[examples/progressbar. pig}

#!/usr/bin/env python
example progressbar.py

1
2
3
4
5 import pygtk

6 pygtk.require(’2.0’)

7 import gtk, gobject

8

9 # Update the value of the progress bar so that we get
10 # some movement

11 def progress_timeout(pbobj):

12 if pbobj.activity_check.get_active():

13 pbobj.pbar.pulse()

14 else:

15 # Calculate the value of the progress bar using the
16 # value range set in the adjustment object

17 new_val = pbobj.pbar.get_fraction() + 0.01

18 if new_val > 1.0:

19 new_val = 0.0

20 # Set the new value

21 pbobj.pbar.set_fraction(new_val)

22

23 # As this is a timeout function, return TRUE so that it
24 # continues to get called

25 return True

26

27 class ProgressBar:

28 # Callback that toggles the text display within the progress
29 # bar trough

30 def toggle_show_text(self, widget, data=None):

31 if widget.get_active():

73

file:url(examples/progressbar.py)

32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85

laneous VM(IngCeetls-

self.pbar.set_text("some text")
else:
self.pbar.set_text("")

Callback that toggles the activity mode of the progress
bar
def toggle_activity_mode(self, widget, data=None):
if widget.get_active():
self.pbar.pulse()
else:
self.pbar.set_fraction(0.0)

Callback that toggles the orientation of the progress bar
def toggle_orientation(self, widget, data=None):
if self.pbar.get_orientation() == gtk. PROGRESS_LEFT_TO_RIGHT:
self.pbar.set_orientation(gtk. PROGRESS_RIGHT_TO_LEFT)
elif self.pbar.get_orientation() == gtk. PROGRESS_RIGHT_TO_ LEFT:
self.pbar.set_orientation(gtk. PROGRESS_LEFT_TO_RIGHT)

Clean up allocated memory and remove the timer
def destroy_progress(self, widget, data=None):
gobject.source_remove(self.timer)
self.timer = 0
gtk.main_quit()

def __init__(self):
self.window = gtk.Window(gtk. WINDOW_TOPLEVEL)
self.window.set_resizable(True)

self.window.connect("destroy", self.destroy_progress)
self.window.set _title("ProgressBar")
self.window.set_border_width(0)

vbox = gtk.VBox(False, 5)
vbox.set_border_width(10)
self.window.add(vbox)
vbox.show()

Create a centering alignment object
align = gtk.Alignment(0.5, 0.5, 0, 0)
vbox.pack_start(align, False, False, 5)
align.show()

Create the ProgressBar
self.pbar = gtk.ProgressBar()

align.add(self.pbar)
self.pbar.show()

Add a timer callback to update the value of the progress bar
self.timer = gobject.timeout_add (100, progress_timeout, self)

separator = gtk.HSeparator()
vbox.pack_start(separator, False, False, 0)

74

~Miscellaneous
W|(J\élets

86 separator.show()

87

88 # rows, columns, homogeneous

89 table = gtk.Table(2, 2, False)

90 vbox.pack_start(table, False, True, 0)

91 table.show()

92

93 # Add a check button to select displaying of the trough text
94 check = gtk.CheckButton("Show text")

95 table.attach(check, 0, 1, 0O, 1,

96 gtk.EXPAND | gtk.FILL, gtk.EXPAND | gtk.FILL,
97 5, 5)

98 check.connect(“clicked", self.toggle_show_text)

99 check.show()

100

101 # Add a check button to toggle activity mode

102 self.activity check = check = gtk.CheckButton("Activity mode")
103 table.attach(check, 0, 1, 1, 2,

104 gtk.EXPAND | gtk.FILL, gtk.EXPAND | gtk.FILL,
105 5, 5)

106 check.connect("clicked", self.toggle_activity _mode)

107 check.show()

108

109 # Add a check button to toggle orientation

110 check = gtk.CheckButton("Right to Left")

111 table.attach(check, 0, 1, 2, 3,

112 gtk.EXPAND | gtk.FILL, gtk.EXPAND | gtk.FILL,
113 5, 5)

114 check.connect("clicked", self.toggle orientation)

115 check.show()

116

117 # Add a button to exit the program

118 button = gtk.Button("close")

119 button.connect("clicked", self.destroy_progress)

120 vbox.pack_start(button, False, False, 0)

121

122 # This makes it so the button is the default.

123 button.set_flags(gtk. CAN_DEFAULT)

124

125 # This grabs this button to be the default button. Simply hitting
126 # the "Enter" key will cause this button to activate.

127 button.grab_default ()

128 button.show()

129

130 self.window.show()

131

132 def main():
133 gtk.main()
134 return O

135

136 if __name__ =="__main__"
137 ProgressBar()

138 main()

75

~Miscellaneous
W|(J\élets

9.5. Dialogs

The Dialog widget is very simple, and is actually just a window with a few things pre-packed into it for you. It
simply creates a window, and then packéBox into the top, which contains a separator and theRBox called the
"action_area".

TheDialog widget can be used for pop-up messages to the user, and other similar tasks. It is really basic, and there
is only one function for the dialog box, which is:

dialog = gtk.Dialog(title =None, parent =None, flags =0, buttons =None)

wheretitle is the text to be used in the titlebgrarent is the main application window arfthgs set various
modes of operation for the dialog:

DIALOG_MODAL - make the dialog modal
DIALOG_DESTROY_WITH_PARENT - destroy dialog when its parent is destroyed
DIALOG_NO_SEPARATOR - omit the separator between the vbox and the action_area

Thebuttons argument is a tuple of button text and response pairs. All arguments have defaults and can be specified
using keywords.

This will create the dialog box, and it is now up to you to use it. You could pack a button in the action_area:

button = ...
dialog.action_area.pack_start(button, TRUE, TRUE, 0)
button.show()

And you could add to thebox area by packing, for instance, a label in it, try something like this:

label = gtk.Label("Dialogs are groovy")
dialog.vbox.pack_start(label, TRUE, TRUE, 0)
label.show()

As an example in using the dialog box, you could put two buttons iratlien_area , a Cancel button and an
Ok button, and a label in thébox area, asking the user a question or giving an error, etc. Then you could attach a
different signal to each of the buttons and perform the operation the user selects.

If the simple functionality provided by the default vertical and horizontal boxes in the two areas doesn't give you
enough control for your application, then you can simply pack another layout widget into the boxes provided. For
example, you could pack a table into the vertical box.

9.6. Images

Images are data structures that contain pictures. These pictures can be used in various places.

76

~Miscellaneous
W|(J\élets

Images can be created frorRixbufs , Pixmaps , image files (e.g. XPM, PNG, JPEG, TIFF, etc.) and even
animation files.

Images are created using the function:

image = gtk.Image()

The image is then loaded using one of the following methods:

image.set_from_pixbuf(pixbuf)

image.set_from_pixmap(pixmap , mask)

image.set_from_image(image)

image.set_from_file(filename)

image.set_from_stock (stock_id , size)

image.set_from_icon_set(icon_set , size)

image.set_from_animation(animation)
Where pixbuf is a gtk.gdk.Pixbuf ; pixmap and mask are gtk.gdk.Pixmaps ; image is a
gtk.gdk.Image ; stock_id is the name of agtk.Stockltem ; icon_set is agtklconSet ; and,
animation is agtk.gdk.PixbufAnimation . thesize argument is one of:

ICON_SIZE_MENU
ICON_SIZE_SMALL_TOOLBAR
ICON_SIZE_LARGE_TOOLBAR
ICON_SIZE_BUTTON
ICON_SIZE_DND
ICON_SIZE_DIALOG

The easiest way to create an image is usingstie from_file () method which automatically determines the
image type and loads it.

The program images.py [examples/images.py]illustrates loading various image typesgoglie.gif
[examples/goalie.gif] apple-red.png [examples/apple-red.png] chaos.jpg [examples/chaos.jpg]
important.tif [examples/important.tif] soccerball.gif [examples/soccerball.g)f]into images which
are then put into buttons:

Figure 9.5. Example Images in Buttons

77

file:url(examples/images.py)
file:url(examples/goalie.gif)
file:url(examples/apple-red.png)
file:url(examples/chaos.jpg)
file:url(examples/important.tif)
file:url(examples/soccerball.gif)

laneous VViIcIngCeetls-

The source code is:

#!/usr/bin/env python

example images.py

pygtk.require(’2.0")

1

2

3

4

5 import pygtk
6

7 import gtk
8

9 class ImagesExample:

10 # when invoked (via signal delete_event), terminates the application.
11 def close_application(self, widget, event, data=None):

12 gtk.main_quit()

13 return False

14

15 # is invoked when the button is clicked. It just prints a message.
16 def button_clicked(self, widget, data=None):

17 print "button %s clicked" % data

18

19 def __init__(self):

20

create the main window, and attach delete_event signal to terminating
21 # the application

22 window = gtk.Window(gtk. WINDOW_TOPLEVEL)
23 window.connect("delete_event", self.close_application)
24 window.set_border_width(10)

25 window.show()

26

27 # a horizontal box to hold the buttons

28 hbox = gtk.HBox()

29 hbox.show()

30 window.add(hbox)

31

32 pixbufanim = gtk.gdk.PixbufAnimation("goalie.qgif")
33 image = gtk.Image()

34 image.set_from_animation(pixbufanim)

78

laneous VM(IngCeetls-

35 image.show()

36 # a button to contain the image widget

37 button = gtk.Button()

38 button.add(image)

39 button.show()

40 hbox.pack_start(button)

41 button.connect("clicked", self.button_clicked, "1")
42

43 # create several images with data from files and load images into
44 # buttons

45 image = gtk.Image()

46 image.set_from_file("apple-red.png")

47 image.show()

48 # a button to contain the image widget

49 button = gtk.Button()

50 button.add(image)

51 button.show()

52 hbox.pack_start(button)

53 button.connect("clicked", self.button_clicked, "2")
54

55 image = gtk.Image()

56 image.set_from_file("chaos.jpg")

57 image.show()

58 # a button to contain the image widget

59 button = gtk.Button()

60 button.add(image)

61 button.show()

62 hbox.pack_start(button)

63 button.connect("clicked", self.button_clicked, "3")
64

65 image = gtk.Image()

66 image.set_from_file("important.tif")

67 image.show()

68 # a button to contain the image widget

69 button = gtk.Button()

70 button.add(image)

71 button.show()

72 hbox.pack_start(button)

73 button.connect("clicked", self.button_clicked, "4")
74

75 image = gtk.Image()

76 image.set_from_file("soccerball.gif")

77 image.show()

78 # a button to contain the image widget

79 button = gtk.Button()

80 button.add(image)

81 button.show()

82 hbox.pack_start(button)

83 button.connect("clicked", self.button_clicked, "5")
84

85

86 def main():
87 gtk.main()
88 return O

79

laneous VVil(IngCeetls-

89

90 if __name__ =="_main__"
91 ImagesExample()

92 main()

9.6.1. Pixmaps

Pixmaps are data structures that contain pictures. These pictures can be used in various places, but most commonly
as icons on the X desktop, or as cursors.

A pixmap which only has 2 colors is called a bitmap, and there are a few additional routines for handling this common
special case.

To understand pixmaps, it would help to understand how X window system works. Under X, applications do not need
to be running on the same computer that is interacting with the user. Instead, the various applications, called "clients",
all communicate with a program which displays the graphics and handles the keyboard and mouse. This program
which interacts directly with the user is called a "display server" or "X server." Since the communication might take
place over a network, it's important to keep some information with the X sePiemaps , for example, are stored in

the memory of the X server. This means that once pixmap values are set, they don’t need to keep getting transmitted
over the network; instead a command is sent to "display pixmap number XYZ here." Even if you aren’t using X with
GTK+ currently, using constructs suchRismaps will make your programs work acceptably under X.

To use pixmaps in PyGTK, we must first buildjk.gdk.Pixmap using gtk.gdk functions in PyGTKRixmaps
can either be created from in-memory data, or from data read from a file. We'll go through each of the calls to create
a pixmap.

pixmap = gtk.gdk.pixmap_create_from_data(window , data , width , height , depth , |,
fg, bg)

This routine is used to createpixmap from data in memory with the color depth given tepth . If depth is
-1 the color depth is derived from the depthwihdow . Each pixel usedepth bits of data to represent the color.
Width andheight are in pixels. Thavindow argument must refer to a realizgtk.gdk.Window , since a
pixmap’s resources are meaningful only in the context of the screen where it is to be disgtayaddbg are the
foreground and background colors of the pixmap.

Pixmaps can be created from XPM files using:

pixmap, mask = gtk.gdk.pixmap_create_from_xpm(window , transparent_color
filename)

1o

XPM format is a readable pixmap representation for the X Window System. It is widely used and many different
utilities are available for creating image files in this format. In gfiemap_create_from_xpm () function the

first argument is gtk.gdk.Window type. (Most GTK+ widgets have an underlyigtk.gdk.Window which

can be retrieved by using the widget’s window attribute.) The file, specifididdmame , must contain an image

in the XPM format and the image is loaded into fiigmap structure. Thanask is a bitmap that specifies which

bits of pixmap are opaque; it is created by the function. All other pixels are colored using the color specified by
transparent_color . An example using this function is below.

80

~Miscellaneous
W|(J\élets

Pixmaps can also be created from data in memory using the function:

pixmap, mask = gtk.gdk.pixmap_create_from_xpm_d(window , transparent_color
data)

’ 5

Small images can be incorporated into a program as data in the XPM format using the above function. A pixmap is
created using this data, instead of reading it from a file. An example of such data is:

xpm_data = [

"16 16 3 1",

" ¢ None",

¢ #000000000000",
"X ¢ #FFFFFFFFFFFF",

TOXXXXXXX. ",
TOXRXXXXXX.
TORXXXXXX.
TORKXXXXX.
TOXXXXXXX.
TOXXXXXXX.
TOXXXXXXX, ",

The final way to create a blank pixmap suitable for drawing operations is:

pixmap = gtk.gdk.Pixmap(window , width , height , depth =-1)

window is either agtk.gdk.Window . or None. If window is agtk.gdk.Window thendepth can be -1to
indicate that the depth should be determined from the windowinflow is None then thedepth must be specified.

The pixmap.py [examples/pixmap.pyprogram is an example of using a pixmap in a butteigure 9.6, “Pixmap in
a Button Example’shows the result:

Figure 9.6. Pixmap in a Button Example

81

file:url(examples/pixmap.py)

laneous VViIéSgCeetls-

HE
0l

The source code is:

1
2
3
4
5
6
7
8

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

#!/usr/bin/env python
example pixmap.py

import pygtk
pygtk.require(’2.0")
import gtk

XPM data of Open-File icon
Xpm_data = [

"16 16 3 1",

" ¢ None",

¢ #000000000000",

"X ¢ #FFFFFFFFFFFF",

OXXXXXXX,
OXXXXXXX,
TOUXXXXXXX.
OXXXXXXX.
TOXXKXXXXX.
TOUXXKXXXXX.
OXXXXXXX,

class PixmapExample:

when invoked (via signal delete_event), terminates the application.
def close_application(self, widget, event, data=None):

gtk.main_quit()
return False

is invoked when the button is clicked.

def button_clicked(self, widget, data=None):

print "button clicked"”

def __init__ (self):

82

It just prints a message.

~Miscellaneous
W|(J\élets

44
create the main window, and attach delete_event signal to terminating
45 # the application
46 window = gtk.Window(gtk.WINDOW_TOPLEVEL)
47 window.connect("delete_event", self.close_application)
48 window.set_border_width(10)
49 window.show()
50
51 # now for the pixmap from XPM data
52 pixmap, mask = gtk.gdk.pixmap_create_from_xpm_d(window.window,
53 None,
54 Xpm_data)
55
56 # an image widget to contain the pixmap
57 image = gtk.Image()
58 image.set_from_pixmap(pixmap, mask)
59 image.show()
60
61 # a button to contain the image widget
62 button = gtk.Button()
63 button.add(image)
64 window.add(button)
65 button.show()
66
67 button.connect("clicked", self.button_clicked)
68

69 def main():
70 gtk.main()
71 return O

72

73 if _name__ ==" main__"
74 PixmapExample()

75 main()

A disadvantage of using pixmaps is that the displayed object is always rectangular, regardless of the image. We would
like to create desktops and applications with icons that have more natural shapes. For example, for a game interface,
we would like to have round buttons to push. The way to do this is using shaped windows.

A shaped window is simply a pixmap where the background pixels are transparent. This way, when the background
image is multi-colored, we don’t overwrite it with a rectangular, non-matching border around our icon. The
wheelbarrow.py [examples/wheelbarrow.pygxample program displays a full wheelbarrow image on the desktop.
Figure 9.7, “Wheelbarrow Example Shaped Wind@skdws the wheelbarrow over a terminal window:

Figure 9.7. Wheelbarrow Example Shaped Window

83

file:url(examples/wheelbarrow.py)

laneous Vwisgceetls-

=
138
134
140
144
14z
143
144
145
145
147
145
143

Wirn
Win
W1n

HUW, HSEL_EVETI LS LY
dow, conhect("bul
dow, show()

ow for the pixm:
Te = window, get_
= stwle.black_qg:

gdk_pixmap, mask =

pix
pix

Wwindow, get_wineg
WheelbarrowFuyl®
map = gtk.CtkPi:
map. show()

[- -

The source code favheelbarrow.py [examples/wheelbarrow.pyg:

1
2
3
4
5
6
7
8

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

#!/usr/bin/env python

example wheelbarrow.py

import pygtk
pygtk.require(’2.0")

import gtk

XPM
WheelbarrowFull_xpm = [
"48 48 64 1",

" ¢ None",

" ¢ #DF7DCF3CC71B",
"X c #965875D669A6",
"o c #71C671C671C6",
"O c #A699A289A699",
"+ C #965892489658",
"@ c #8E38410330C2",
"# c #D75C7DF769A6",
"$ c #F7DECF3CC71B",
"% c #96588A288E38",
"& C #A69992489E79",
" c #8E3886178E38",
"= ¢ #104008200820",
¢ #596510401040",
" c #C71B30C230C2",
" c #C71B9A699658",
"> C #618561856185",
c #20811C712081",
"< ¢ #104000000000",
"1 c #861720812081",
"2 c #DF7D4D344103",
"3 Cc #79E769A671C6",
"4 C #861782078617",
"5 ¢ #41033CF34103",
"6 ¢ #000000000000",
"7 C #49241C711040",

84

file:url(examples/wheelbarrow.py)

38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91

laneous VM(IngCeetls-

SOSO<OXN—-XTJQ FQUWOT T TTDODSOOO0®

C #492445144924",
¢ #082008200820",
Cc #69A618611861",
c #B6DA71C65144",
c #410330C238E3",
¢ #CF3CBAEABGDA",
C #71C6451430C2",
¢ #EFBEDB6CD75C",
c #28A208200820",
c #186110401040",
c #596528A21861",
Cc #71C661855965",
¢ #A69996589658",
c #30C228A230C2",
c #BEFBA289AEBA",
C #596545145144",
c #30C230C230C2",
c #8E3882078617",
c #208118612081",
c #38E30C300820",
c #30C2208128A2",
c #38E328A238E3",
C #514438E34924",
C #618555555965",
c #30C2208130C2",
c #38E328A230C2",
C #28A228A228A2",
c #41032CB228A2",

"M c #104010401040",

"N Cc #492438E34103",

"B Cc #28A2208128A2",

"V c #A699596538E3",

"C c #30C21C711040",

"Z ¢ #30C218611040",

"A ¢ #965865955965",

"S c #618534D32081",

"D c #38E31C711040",

"F ¢ #082000000820",

" .X00
" +@#$%0&

" *=_ 0+
" >,<12#:34
" 45671#:X3 "
" +89<02qwo

"e* >.67;r0
"ty> 459@>+&&

"$2u+ ><ipas8* '
"%$;=* *3:. Xa.dfg> "
"Ohs$;ya *3d.a8j,Xe.d3g8+

" Oh$;ka *3d$a8lz,xxc:.e3g54

" Oh$;kO *pd$%svbzz,sxxxxfX..&wn>

" Oh$@mO *3dthwlsslszjzxxxxxxx3:td8M4

" Oh$@g& *3d$XNIvvvllim,mNwxxxxxxxfa.:,B*

85

laneous Vwisgceetls-

92 " Oh$@,0d.czllllizZimmgV@V#V @fxxxxxxxf:%j5& ",

93 " Oh$1hd5llISHICCZrV#r#:#2 AXXXXXXXXxcdwM* "

94 " 0Xg6c.%8vwIlZZiggApA:mg:Xxcpexxxxxfdc9*

95 " 2r<6gde3bllZZrVi7TS@SV77A::gApxxxxxxfdcM ",

96 " 5,0-6MN.dfmZZrrSS:#riirDSAX@ Af5xxxxxfevo”,

97 " +A26jguXxXtAZZZC7iDICCrVVii7Cmmmxxxxxx%3g",
98 " *#16jszN..3DZZZZrCVSA2rZrV7Dmmwxxxx&en",
99 " p2yFvzssXe:fCZZCiiD7iiZDiDSSZwwxx8e*>",

100 " OAl<jzxwwc:$d%NDZZZZCCCZCCZZCmxxfd.B ",
101 " 3206Bwxxszx%et.eaAp77m77mmmf3&eeeg* ",
102 " @26MvzxNzvlbwfpdettttttttttt.c,n& ",

103 " *.16=IsNwwNwgsvslbwwvccec3pcfu<o ",

104 " p;<69BvwwsszsllIbBIllNu<5+

105 " OSO0y6FBIvvvzvzss,u=Blllj=54

106 " c1-699BIvillllu7k96MMMg4

107 " *10y8n6FjviliiB<166668

108 " S-kg+>666<M<996-y6n<8*

109 " p71=4 m69996kD8Z-66698&&

110 " &i0ycm6n4 ogk17,0<66664g

111 " N-k-<> >=01-kuu666>

112 " ,6ky& &46-10ul,66,

113 " Ou0<> 066y<ulw<66&

114 " *kk5 >66By7=xu664

115 " <<M4 466lj<Mxu660

116 " *>> +66uv,zZN666*

117 " 566,xxj669

118 " 4666FF666>

119 " >966666M

120 " oM6668+

121 " *4

122 "

123 " "

124]

125

126 class WheelbarrowExample:

127 # When invoked (via signal delete_event), terminates the application
128 def close_application(self, widget, event, data=None):
129 gtk.main_quit()

130 return False

131

132 def __init__ (self):

133 # Create the main window, and attach delete_event signal to terminate
134 # the application. Note that the main window will not have a titlebar
135 # since we're making it a popup.

136 window = gtk.Window(gtk. WINDOW_POPUP)

137 window.connect("delete_event", self.close_application)
138 window.set_events(window.get_events() | gtk.gdk.BUTTON_PRESS_ MASK)
139 window.connect("button_press_event", self.close_application)
140 window.show()

141

142 # Now for the pixmap and the image widget

143 pixmap, mask = gtk.gdk.pixmap_create_from_xpm_d(
144 window.window, None, WheelbarrowFull_xpm)
145 image = gtk.Image()

86

~Miscellaneous
W|(J\élets

146 image.set_from_pixmap(pixmap, mask)

147 image.show()

148

149 # To display the image, we use a fixed widget to place the image
150 fixed = gtk.Fixed()

151 fixed.set_size_request(200, 200)

152 fixed.put(image, 0, 0)

153 window.add(fixed)

154 fixed.show()

155

156 # This masks out everything except for the image itself
157 window.shape_combine_mask(mask, 0, 0)

158

159 # show the window

160 window.set_position(gtk. WIN_POS_CENTER_ALWAYS)
161 window.show()

162

163 def main():
164 gtk.main()
165 return O

166

167 if _name__ ==" main__"
168 WheelbarrowExample()
169 main()

To make the wheelbarrow image sensitive, we attached the "button_press_event" signal to make the program exit.
Lines 138-139 make the picture sensitive to a mouse button being pressed and contiesethagpplication 0
method.

9.7. Rulers

Ruler widgets are used to indicate the location of the mouse pointer in a given window. A window can have a
horizontal ruler spanning across the width and a vertical ruler spanning down the height. A small triangular indicator
on the ruler shows the exact location of the pointer relative to the ruler.

A ruler must first be created. Horizontal and vertical rulers are created using the functions:

hruler = gtk.HRuler() # horizontal ruler

vruler = gtk.VRuler() # vertical ruler

Once a ruler is created, we can define the unit of measurement. Units of measure for rulerPicéalis, INCHES
or CENTIMETERSThis is set using the method:

ruler.set_metric(metric)

The default measure RIXELS.

87

~Miscellaneous
W|(J\élets

ruler.set_metric(gtk.PIXELS)

Other important characteristics of a ruler are how to mark the units of scale and where the position indicator is initially
placed. These are set for a ruler using the method:

ruler.set_range(lower , upper , position , max_size)

Thelower andupper arguments define the extent of the ruler, amak_size is the largest possible number that
will be displayed. Position defines the initial position of the pointer indicator within the ruler.

A vertical ruler can span an 800 pixel wide window thus:

vruler.set_range(0, 800, 0, 800)

The markings displayed on the ruler will be from 0 to 800, with a number for every 100 pixels. If instead we wanted
the ruler to range from 7 to 16, we would code:

vruler.set_range(7, 16, 0, 20)

The indicator on the ruler is a small triangular mark that indicates the position of the pointer relative to the ruler.
If the ruler is used to follow the mouse pointer, the "motion_notify_event" signal should be connected to the
"motion_notify_event" method of the ruler. We need to setup a "motion_notify_event" callback for the area and
useconnect_object () to get the ruler to emit a "motion_notify_signal":

def motion_notify(ruler, event):
return ruler.emit("motion_notify _event", event)

area.connect_object("motion_notify_event", motion_notify, ruler)

Therulers.py [examples/rulers.pygxample program creates a drawing area with a horizontal ruler above it and a

vertical ruler to the left of it. The size of the drawing area is 600 pixels wide by 400 pixels high. The horizontal ruler

spans from 7 to 13 with a mark every 100 pixels, while the vertical ruler spans from 0 to 400 with a mark every 100
pixels. Placement of the drawing area and the rulers is done using aFahlee 9.8, “Rulers Exampldllustrates the

result:

Figure 9.8. Rulers Example

88

file:url(examples/rulers.py)

laneous Vwisgceetls-

/Bl

|?IIIIIIIII|BIIIIIIIIIlglIIIIIIII|1II:|IIIIIIII|141IIIIIII|1IEIIIIIIII|

=

oo —

P T AT Y [T AN TN (T AN T (T

L N
|||||||

Therulers.py [examples/rulers.pygource code is:

#1/usr/bin/env python
example rulers.py

pygtk.require(’2.0")

1

2

3

4

5 import pygtk
6

7 import gtk
8
9

class RulersExample:
10 XSIZE = 400

89

file:url(examples/rulers.py)

laneous Vwisgceetls-

11 YSIZE = 400

12

13 # This routine gets control when the close button is clicked

14 def close_application(self, widget, event, data=None):

15 gtk.main_quit()

16 return False

17

18 def __init__ (self):

19 window = gtk.Window(gtk.WINDOW_TOPLEVEL)

20 window.connect("delete_event", self.close_application)

21 window.set_border_width(10)

22

23 # Create a table for placing the ruler and the drawing area
24 table = gtk.Table(3, 2, False)

25 window.add(table)

26

27 area = gtk.DrawingArea()

28 area.set_size request(self.XSIZE, self.YSIZE)

29 table.attach(area, 1, 2, 1, 2,

30 gtk.EXPAND|gtk.FILL, gtk.FILL, O, O)

31 area.set_events(gtk.gdk.POINTER_MOTION_MASK |

32 gtk.gdk.POINTER_MOTION_HINT_MASK)

33

34 # The horizontal ruler goes on top. As the mouse moves across the
35 # drawing area, a motion_notify_event is passed to the

36 # appropriate event handler for the ruler.

37 hrule = gtk.HRuler()

38 hrule.set_metric(gtk.PIXELS)

39 hrule.set_range(7, 13, 0, 20)

40 def motion_notify(ruler, event):

41 return ruler.emit("motion_notify_event", event)

42 area.connect_object("motion_notify_event", motion_notify, hrule)
43 table.attach(hrule, 1, 2, 0, 1,

44 gtk. EXPAND|gtk.SHRINK|gtk.FILL, gtk.FILL, 0, 0)
45

46 # The vertical ruler goes on the left. As the mouse moves across
47 # the drawing area, a motion_notify_event is passed to the
48 # appropriate event handler for the ruler.

49 vrule = gtk.VRuler()

50 vrule.set_metric(gtk.PIXELS)

51 vrule.set_range(0, self.YSIZE, 10, self.YSIZE)

52 area.connect_object("motion_notify_event", motion_notify, vrule)
53 table.attach(vrule, O, 1, 1, 2,

54 gtk.FILL, gtk.EXPAND|gtk.SHRINK|gtk.FILL, O, 0)
55

56 # Now show everything

57 area.show()

58 hrule.show()

59 vrule.show()

60 table.show()

61 window.show()

62

63 def main():
64 gtk.main()

90

~Miscellaneous
W|(J\élets

65 return O

66

67 if _name__ =="_main__"
68 RulersExample()

69 main()

Lines 42 and 52 connect theotion_notify () callback to the area but passihgule in line 42 andvrule in
line 52 as user data. Theotion_notify () callback will be called twice each time the mouse moves - once with
hrule and once withrule

9.8. Statusbars

Statusbars are simple widgets used to display a text message. They keep a stack of the messages pushed onto
them, so that popping the current message will re-display the previous text message.

In order to allow different parts of an application to use the same statusbar to display messages, the statusbar widget
issues Context Identifiers which are used to identify different "users". The message on top of the stack is the one
displayed, no matter what context it is in. Messages are stacked in last-in-first-out order, not context identifier order.

A statusbar is created with a call to:

statusbar = gtk.Statusbar()

A new Context Identifier is requested using a call to the following method with a short textual description of the
context:

context_id = statusbar.get_context_id(context_description)

There are three additional methods that operate on statusbars:

message_id = statusbar.push(context_id , text)
statusbar.pop(context_id)

statusbar.remove(context id , message id)

The first,push (), is used to add a new message tostsusbar . It returns anessage_id , which can be passed
later to theremove () method to remove the message with the combinatiessage_id andcontext_id from
thestatusbar s stack.

Thepop () method removes the message highest in the stack with the givetext_id

Thestatusbar.py [examples/statusbar.pgkample program creates a statusbar and two buttons, one for pushing items
onto the statusbar, and one for popping the last item baclEmftire 9.9, “Statusbar Examplélustrates the result:

91

file:url(examples/statusbar.py)

laneous VViIéSgCeetls-

Figure 9.9. Statusbar Example

PyGTE Statushar Examd|=1Ed

Iterm 13
push iterm
pop last item
The statusbar.py source code is:
1 #Yusr/bin/env python
2
3 # example statusbar.py
4
5 import pygtk
6 pygtk.require(’2.0")
7 import gtk
8
9 class StatusbarExample:
10 def push_item(self, widget, data):
11 buff = " Item %d" % self.count
12 self.count = self.count + 1
13 self.status_bar.push(data, buff)
14 return
15
16 def pop_item(self, widget, data):
17 self.status_bar.pop(data)
18 return
19
20 def __init_ (self):
21 self.count = 1
22 # create a new window
23 window = gtk.Window(gtk. WINDOW_TOPLEVEL)
24 window.set_size_request(200, 100)
25 window.set _title("PyGTK Statusbar Example")
26 window.connect("delete_event", lambda w,e: gtk.main_quit())
27
28 vbox = gtk.VBox(False, 1)
29 window.add(vbox)
30 vbox.show()
31
32 self.status_bar = gtk.Statusbar()
33 vbox.pack_start(self.status_bar, True, True, 0)
34 self.status_bar.show()
35

92

~Miscellaneous
W|(J\élets

36 context_id = self.status_bar.get_context_id("Statusbar example")
37

38 button = gtk.Button("push item")

39 button.connect("clicked", self.push_item, context_id)

40 vbox.pack_start(button, True, True, 2)

41 button.show()

42

43 button = gtk.Button("pop last item")

44 button.connect("clicked", self.pop_item, context_id)

45 vbox.pack_start(button, True, True, 2)

46 button.show()

47

48 # always display the window as the last step so it all splashes on
49 # the screen at once.

50 window.show()

51

52 def main():
53 gtk.main()
54 return O

55

56 if _name__ =="_ main__"
57 StatusbarExample()

58 main()

9.9. Text Entries

TheEntry widget allows text to be typed and displayed in a single line text box. The text may be set with method
calls that allow new text to replace, prepend or append the current contentswittiie widget.

The function for creating aBntry widget is:

entry = gtk.Entry(max=0)

If the max argument is given it sets a limit on the length of the text withinEmgry . If maxis O then there is no
limit.

The maximum length of the entry can be changed using the method:

entry.set_max_length(max)

The next method alters the text which is currently within Erdry widget.

entry.set_text(text)

93

~Miscellaneous
W|(J\élets

Theset _text () method sets the contents of thatry widget totext , replacing the current contents. Note that
the clas€Entry implements thdeditable interface (yesgobject supports Java-like interfaces) which contains
some more functions for manipulating the contents. For example, the method:

entry.insert_text(text , position =0)
insertstext at the given position within thentry .
The contents of th&ntry can be retrieved by using a call to the following method. This is useful in the callback

methods described below.

text = entry.get_text()

If we don’t want the contents of tHentry to be changed by someone typing into it, we can change its editable state.

entry.set_editable(is_editable)

The above method allows us to toggle the editable state dEiiy widget by passing in aRUEor FALSE value
for theis_editable argument.

If we are using thé&ntry where we don’t want the text entered to be visible, for example when a password is being
entered, we can use the following method, which also takes a boolean flag.

entry.set_visibility(visible)

A region of the text may be set as selected by using the following method. This would most often be used after setting
some default text in akntry , making it easy for the user to remove it.

entry.select_region(start , end)

If we want to be notified when the user has entered text, we can connect to the "activate" or "changed" signal. Activate
is raised when the user hits the enter key withinEméry widget. Changed is raised when the any change is made
to the text, e.g. for every character entered or removed.

The entry.py [examples/entry.pygxample program illustrates the use of Bntry widget. Figure 9.10, “Entry
Example”shows the result of running the program:

Figure 9.10. Entry Example

94

file:url(examples/entry.py)

laneous VViIéSgCeetls-

=[Bl[x]

hella weorldd

[+ Editakle [+ \isible

A Close

Theentry.py [examples/entry.py§ource code is:

1
2
3
4
5
6
7
8

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

#!/usr/bin/env python
example entry.py
import pygtk
pygtk.require(’2.0")
import gtk

class EntryExample:
def enter_callback(self, widget, entry):

entry text = entry.get_text()
print "Entry contents: %s\n" % entry_text

def entry toggle_editable(self, checkbutton, entry):

entry.set_editable(checkbutton.get_active())

def entry_toggle_visibility(self, checkbutton, entry):

entry.set_visibility(checkbutton.get_active())

def __init__ (self):

create a new window

window = gtk.Window(gtk.WINDOW_TOPLEVEL)
window.set_size_request(200, 100)

window.set _title("GTK Entry")
window.connect("delete_event", lambda w,e: gtk.main_quit())

vbox = gtk.VBox(False, 0)
window.add(vbox)
vbox.show()

entry = gtk.Entry()

entry.set_max_length(50)

entry.connect("activate"”, self.enter_callback, entry)
entry.set_text("hello™)

entry.insert_text(" world", len(entry.get_text()))
entry.select_region(0, len(entry.get_text()))
vbox.pack_start(entry, True, True, 0)

entry.show()

95

file:url(examples/entry.py)

~Miscellaneous
W|(J\élets

39

40 hbox = gtk.HBox(False, 0)

41 vbox.add(hbox)

42 hbox.show()

43

44 check = gtk.CheckButton("Editable™)

45 hbox.pack_start(check, True, True, 0)

46 check.connect("toggled", self.entry_toggle editable, entry)
a7 check.set_active(True)

48 check.show()

49

50 check = gtk.CheckButton("Visible")

51 hbox.pack_start(check, True, True, 0)

52 check.connect("toggled”, self.entry_toggle_visibility, entry)
53 check.set_active(True)

54 check.show()

55

56 button = gtk.Button(stock=gtk.STOCK_CLOSE)

57 button.connect("clicked", lambda w: gtk.main_quit())
58 vbox.pack_start(button, True, True, 0)

59 button.set_flags(gtk. CAN_DEFAULT)

60 button.grab_default()

61 button.show()

62 window.show()

63

64 def main():
65 gtk.main()
66 return O

67

68 if __name__ =="_main__"
69 EntryExample()

70 main()

9.10. Spin Buttons

The SpinButton widget is generally used to allow the user to select a value from a range of numeric values. It
consists of a text entry box with up and down arrow buttons attached to the side. Selecting one of the buttons causes
the value to "spin" up and down the range of possible values. The entry box may also be edited directly to enter a
specific value.

The SpinButton allows the value to have zero or more decimal places and to be incremented/decremented in
configurable steps. The action of holding down one of the buttons optionally results in an acceleration of change in
the value according to how long it is depressed.

TheSpinButton uses arAdjustment (seeChapter 7 Adjustmentsobject to hold information about the range of
values that the spin button can take. This makes for a powsduButton widget.

Recall that amAdjustment widget is created with the following function, which illustrates the information that it
holds:

96

~Miscellaneous
W|(J\élets

adjustment = gtk.Adjustment(value =0, lower =0, upper =0, step_incr =0, ,
page_incr =0, page_size =0)
These attributes of aAdjustment are used by th&pinButton in the following way:

value initial value for the Spin Button

lower lower range value

upper upper range value

step_increment value to increment/decrement when pressing mouse button-1 on a button

page_increment value to increment/decrement when pressing mouse button-2 on a button

page_size unused

Additionally, mouse button-3 can be used to jump directly toupper orlower values when used to select one of
the buttons. Lets look at how to creat&ginButton

spin_button = gtk.SpinButton(adjustment =None, climb_rate =0.0, digits =0)

The climb_rate argument take a value between 0.0 and 1.0 and indicates the amount of acceleration that the
SpinButton has. Thedigits argument specifies the number of decimal places to which the value will be
displayed.

A SpinButton can be reconfigured after creation using the following method:

spin_button.configure(adjustment , climb_rate , digits)

Thespin_button argument specifies tH&pinButton widget that is to be reconfigured. The other arguments are
as specified above.
Theadjustment can be set and retrieved independently using the following two methods:
spin_button.set_adjustment(adjustment)
adjustment = spin_button.get_adjustment()

The number of decimal places can also be altered using:

spin_button.set_digits(digits)

The value that &pinButton s currently displaying can be changed using the following method:

97

~Miscellaneous
W|(J\élets

spin_button.set_value(value)

The current value of &pinButton can be retrieved as either a floating point or integer value with the following
methods:

float_value = spin_button.get_value()

int_value = spin_button.get_value_as_int()

If you want to alter the value of 8pinButton relative to its current value, then the following method can be used:

spin_button.spin(direction , increment)

Thedirection parameter can take one of the following values:

SPIN_STEP_FORWARD
SPIN_STEP_BACKWARD
SPIN_PAGE_FORWARD
SPIN_PAGE_BACKWARD
SPIN_HOME

SPIN_END
SPIN_USER_DEFINED

This method packs in quite a bit of functionality, which | will attempt to clearly explain. Many of these settings use
values from théddjustment object that is associated withSpinButton

SPIN_STEP_FORWARRNd SPIN_STEP_BACKWARDhange the value of th8pinButton by the amount
specified byincrement , unlessincrement is equal to 0, in which case the value is changed by the value of
step_increment in the Adjustment

SPIN_PAGE_FORWARI@RNd SPIN_PAGE_BACKWARDBImply alter the value of theSpinButton by
increment

SPIN_HOMEsets the value of thBpinButton to the bottom of théAdjustment range.
SPIN_ENDsets the value of th8pinButton to the top of theAdjustment range.
SPIN_USER_DEFINEDsimply alters the value of thBpinButton by the specified amount.

We move away from methods for setting and retrieving the range attributes $pthButton now, and move onto
methods that effect the appearance and behavior @piveButton widget itself.

The first of these methods is used to constrain the text box &pireButton such that it may only contain a numeric
value. This prevents a user from typing anything other than numeric values into the text bSpiaBatton

98

_Miscellaneous
Wld\élets

spin_button.set_numeric(numeric)

numeric is TRUEto constrain the text entry to numeric valued=#{L SE to unconstrain the text entry.

You can set whether 8pinButton will wrap around between the upper and lower range values with the following
method:

spin_button.set_wrap(wrap)

TheSpinButton will wrap whenwrap is set toTRUE

You can set aSpinButton to round the value to the nearestep _increment , which is set within the
Adjustment object used with theSpinButton . This is accomplished with the following method when
shap_to_ticks is TRUE

spin_button.set_snap_to_ticks(snap_to_ticks)

The update policy of &pinButton can be changed with the following method:

spin_button.set_update_policy(policy)

The possible values of policy are:

UPDATE_ALWAYS

UPDATE_IF_VALID

These policies affect the behavior oSainButton when parsing inserted text and syncing its value with the values
of the Adjustment

In the case ofJPDATE_IF_VALID the SpinButton value only gets changed if the text input is a numeric value
that is within the range specified by tAeljustment . Otherwise the text is reset to the current value.

In case olUPDATE_ALWAY®Be ignore errors while converting text into a numeric value.

Finally, you can explicitly request thatgpinButton update itself:

spin_button.update()

99

laneous VM(IngCeetls-

The spinbutton.py [examples/spinbutton.pydxample program illustrates the use of spinbuttons including setting a
number of characteristic&igure 9.11, “Spin Button Exampleshows the result of running the example program:

Figure 9.11. Spin Button Example

=13

i

Mot accelerated

Day : Month @ ear .
25 [3] |1 [3] [pooz |5

Accelerated
Walue : Diggits :
|33 6234 ERE

[Snap to 0.5-ticks

[+ Mumeric only input mode

Walue a3 [nt Walue a5 Float |

291234

Cloze |

The spinbutton.py [examples/spinbutton.pyource code is:

#!/usr/bin/env python
example spinbutton.py
import pygtk

pygtk.require('2.0%)
import gtk

O©CoO~NOOOUITA,WNPEP

class SpinButtonExample:

10 def toggle_snap(self, widget, spin):

11 spin.set_snap_to_ticks(widget.get_active())
12

13 def toggle _numeric(self, widget, spin):

14 spin.set_numeric(widget.get_active())

15

16 def change_digits(self, widget, spin, spinl):
17 spinl.set_digits(spin.get_value_as_int())

100

file:url(examples/spinbutton.py)
file:url(examples/spinbutton.py)

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71

laneous VM(IngCeetls-

def get value(self, widget, data, spin, spin2, label):

if data == 1:
buf = "%d" % spin.get_value_as_int()
else:
buf = "%0.*f" % (spin2.get_value_as_int(),
spin.get_value())
label.set_text(buf)

def __init__(self):

window = gtk.Window(gtk. WINDOW_TOPLEVEL)
window.connect("destroy", lambda w: gtk.main_quit())
window.set _title("Spin Button")

main_vbox = gtk.VBox(False, 5)
main_vbox.set_border_width(10)
window.add(main_vbox)

frame = gtk.Frame("Not accelerated")
main_vbox.pack_start(frame, True, True, 0)

vbox = gtk.VBox(False, 0)
vbox.set_border_width(5)
frame.add(vbox)

Day, month, year spinners
hbox = gtk.HBox(False, 0)
vbox.pack_start(hbox, True, True, 5)

vbox2 = gtk.VBox(False, 0)
hbox.pack_start(vbox2, True, True, 5)

label = gtk.Label("Day :")
label.set_alignment(0, 0.5)
vbox2.pack_start(label, False, True, 0)

adj = gtk.Adjustment(1.0, 1.0, 31.0, 1.0, 5.0, 0.0)
spinner = gtk.SpinButton(adj, 0, 0)
spinner.set_wrap(True)

vbox2.pack_start(spinner, False, True, 0)

vbox2 = gtk.VBox(False, 0)
hbox.pack_start(vbox2, True, True, 5)

label = gtk.Label("Month :")
label.set_alignment(0, 0.5)
vbox2.pack_start(label, False, True, 0)

adj = gtk.Adjustment(1.0, 1.0, 12.0, 1.0, 5.0, 0.0)
spinner = gtk.SpinButton(adj, 0, 0)
spinner.set_wrap(True)

vbox2.pack_start(spinner, False, True, 0)

vbox2 = gtk.VBox(False, 0)

101

72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125

laneous VM(IngCeetls-

hbox.pack_start(vbox2, True, True, 5)

label = gtk.Label("Year :")
label.set_alignment(0, 0.5)
vbox2.pack_start(label, False, True, 0)

adj = gtk.Adjustment(1998.0, 0.0, 2100.0, 1.0, 100.0, 0.0)
spinner = gtk.SpinButton(adj, 0, 0)
spinner.set_wrap(False)

spinner.set_size_request(55, -1)
vbox2.pack_start(spinner, False, True, 0)

frame = gtk.Frame("Accelerated")
main_vbox.pack_start(frame, True, True, 0)

vbox = gtk.VBox(False, 0)
vbox.set_border_width(5)
frame.add(vbox)

hbox = gtk.HBox(False, 0)
vbox.pack_start(hbox, False, True, 5)

vbox2 = gtk.VBox(False, 0)
hbox.pack_start(vbox2, True, True, 5)

label = gtk.Label("Value :")
label.set_alignment(0, 0.5)
vbox2.pack_start(label, False, True, 0)

adj = gtk.Adjustment(0.0, -10000.0, 10000.0, 0.5, 100.0, 0.0)
spinnerl = gtk.SpinButton(adj, 1.0, 2)
spinnerl.set_wrap(True)

spinnerl.set_size_request(100, -1)
vbox2.pack_start(spinnerl, False, True, 0)

vbox2 = gtk.VBox(False, 0)
hbox.pack_start(vbox2, True, True, 5)

label = gtk.Label("Digits :")
label.set_alignment(0, 0.5)
vbox2.pack_start(label, False, True, 0)

adj = gtk.Adjustment(2, 1, 5, 1, 1, 0)

spinner2 = gtk.SpinButton(adj, 0.0, 0)

spinner2.set_wrap(True)

adj.connect("value_changed", self.change_digits, spinner2, spinnerl)
vbox2.pack_start(spinner2, False, True, 0)

hbox = gtk.HBox(False, 0)
vbox.pack_start(hbox, False, True, 5)

button = gtk.CheckButton("Snap to 0.5-ticks")
button.connect("clicked", self.toggle _snap, spinnerl)
vbox.pack_start(button, True, True, 0)

102

laneous Vwisgceetls-

126 button.set_active(True)

127

128 button = gtk.CheckButton("Numeric only input mode")
129 button.connect("clicked", self.toggle_numeric, spinnerl)
130 vbox.pack_start(button, True, True, 0)

131 button.set_active(True)

132

133 val_label = gtk.Label(")

134

135 hbox = gtk.HBox(False, 0)

136 vbox.pack_start(hbox, False, True, 5)

137 button = gtk.Button("Value as Int")

138 button.connect("clicked", self.get_value, 1, spinnerl, spinner2,
139 val_label)

140 hbox.pack_start(button, True, True, 5)

141

142 button = gtk.Button("Value as Float")

143 button.connect("clicked", self.get value, 2, spinnerl, spinner2,
144 val_label)

145 hbox.pack_start(button, True, True, 5)

146

147 vbox.pack_start(val_label, True, True, 0)

148 val_label.set_text("0")

149

150 hbox = gtk.HBox(False, 0)

151 main_vbox.pack_start(hbox, False, True, 0)

152

153 button = gtk.Button("Close")

154 button.connect("clicked", lambda w: gtk.main_quit())
155 hbox.pack_start(button, True, True, 5)

156 window.show_all()

157

158 def main():
159 gtk.main()
160 return O

161

162 if _name__ ==" main__"
163 SpinButtonExample()
164 main()

9.11. Combo Widget

Note
The Combowidget is deprecated in PyGTK 2.4 and above.

The Combowidget is another fairly simple widget that is really just a collection of other widgets. From the user’s
point of view, the widget consists of a text entry box and a pull down menu from which the user can select one of a set
of predefined entries. Alternatively, the user can type a different option directly into the text box.

The Combohas two principal parts that you really care abouteatry and alist . These are accessed using the
attributes:

103

~Miscellaneous
W|(J\élets

combo.entry

combo.list

First off, to create £&ombaq use:

combo = gtk.Combo()

Now, if you want to set the string in the entry section of the combo, this is done by manipulating the entry widget
directly:

combo.entry.set_text(text)

To set the values in the popdowst , one uses the method:

combo.set_popdown_strings(strings)

Before you can do this, you have to assemble a list of the strings that you want.

Here’s a typical code segment for creating a set of options:

slist = ["String 1", "String 2", "String 3", "String 4"]

combo.set_popdown_strings(slist)

At this point you have set up a workigomba There are a few aspects of its behavior that you can change. These
are accomplished with the methods:

combo.set_use_arrows(val)
combo.set_use_arrows_always(val)

combo.set_case_sensitive(val)

The set_use_arrows () method lets the user change the value in the entry using the up/down arrow keys when
val is set toTRUE This doesn't bring up the list, but rather replaces the current text in the entry with the next list
entry (up or down, as your key choice indicates). It does this by searching in the list for the item corresponding to the
current value in thentry and selecting the previous/next item accordingly. Usually ie@tny the arrow keys

104

~Miscellaneous
W|(J\élets

are used to change focus (you can do that anyway Ugibg. Note that when the current item is the last of the list
and you press arrow-down it changes the focus (the same applies with the first item and arrow-up).

If the current value in thentry is not in the list, then theet_use_arrows () method is disabled.

The set_use_arrows_always () method, wherval is TRUE similarly allows the use of the up/down arrow
keys to cycle through the choices in the dropdown list, except that it wraps around the values in the list, completely
disabling the use of the up and down arrow keys for changing focus.

Theset_case_sensitive () method toggles whether or not GTK+ searches for entries in a case sensitive manner.
This is used when th€ombowidget is asked to find a value from the list using the current entry in the text box.
This completion can be performed in either a case sensitive or insensitive manner, depending upon the setting of this
method. TheCombowidget can also simply complete the current entry if the user presses the key combination MOD-
1-Tab. MOD-1 is often mapped to th< key, by thexmodmap utility. Note, however that some window managers

also use this key combination, which will override its use within GTK.

Now that we have a combo, tailored to look and act how we want it, all that remains is being able to get data from the
combo. This is relatively straightforward. The majority of the time, all you are going to care about getting data from
is the entry. The entry is accessed simplycasbo.entry . The two principal things that you are going to want to

do with it are attach to the "activate" signal, which indicates that the user has pres$&etihe or Enter key, and

read the text. The first is accomplished using something like:

combo.entry.connect("activate”, my_callback, my_data)

Getting the text at any arbitrary time is accomplished by simply using the entry method:

string = combo.entry.get_text()

That's about all there is to it. There is a method:

combo.disable_activate()

that will disable the activate signal on the entry widget in the combo. Personally, | can't think of why you'd want to
use it, but it does exist.

9.12. Calendar

TheCalendar widgetis an effective way to display and retrieve monthly date related information. Itis a very simple
widget to create and work with.
Creating agtk.Calendar ~ widget is as simple as:

calendar = gtk.Calendar()

The calendar will display the current month and year by default.

105

laneous VM(IngCeetls-

There might be times where you need to change a lot of information within this widget and the following methods
allow you to make multiple changes tcCalendar widget without the user seeing multiple on-screen updates.

calendar.freeze()

calendar.thaw()

They work just like the freeze/thaw methods of every other widget.

The Calendar widget has a few options that allow you to change the way the widget both looks and operates by
using the method:

calendar.display_options(flags)

Theflags argument can be formed by combining either of the following five options using the logical bitwise OR
() operation:

CALENDAR_SHOW_HEADING this option specifies that the month and year should be shown when
drawing the calendar.
CALENDAR_SHOW_DAY_NAMES this option specifies that the three letter descriptions should be displayed

for each day (e.g. Mon,Tue, etc.).

CALENDAR_NO_MONTH_CHANGE this option states that the user should not and can not change the currently
displayed month. This can be good if you only need to display a
particular month such as if you are displaying 12 calendar widgets for
every month in a particular year.

CALENDAR_SHOW_WEEK_NUMBERS this option specifies that the number for each week should be displayed
down the left side of the calendar. (e.g. Jan 1 = Week 1,Dec 31 = Week
52).

CALENDAR_WEEK_START_MONDAY this option states that the calender week will start on Monday instead of
Sunday which is the default. This only affects the order in which days
are displayed from left to right. Note that in PyGTK 2.4 and above this
option is deprecated.

The following methods are used to set the the currently displayed date:

result = calendar.select_month(month, year)

calendar.select_day(day)

The return value from theelect month () method is a boolean value indicating whether the selection was
successful.

With theselect_day () method the specified day number is selected within the current month, if that is possible. A
day value of 0 will deselect any current selection.

In addition to having a day selected, any humber of days in the month may be "marked". A marked day is highlighted
within the calendar display. The following methods are provided to manipulate marked days:

106

~Miscellaneous
W|(J\élets

result = calendar.mark_day(day)
result = calendar.unmark_day(day)

calendar.clear_marks()

mark_day () andunmark_day () return a boolean indicating whether the method was successful. Note that marks
are persistent across month and year changes.

The finalCalendar widget method is used to retrieve the currently selected date, month and/or year.

year, month, day = calendar.get_date()

The Calendar widget can generate a number of signals indicating date selection and change. The names of these
signals are self explanatory, and are:

month_changed
day_selected

day_selected _double_click
prev_month

next_month

prev_year

next_year

That just leaves us with the need to put all of this together intocilendar.py [examples/calendar.pygxample
program. Figure 9.12, “Calendar Exampldiustrates the program operation:

Figure 9.12. Calendar Example

107

file:url(examples/calendar.py)

laneous VVil(IngCeetls-

= |[= alendar Exar ple M=
Calendar
Flags
4 Movermber v 4 200 7 Show Heading
Sun Mon Tue Wed Thy Fri Sat [7 Show Day Names
A et :
[iMo Konth Ch
3 4 5 8§ 7 8 8 R
?g ?? ?2 ?3 ?‘,_.‘.? ?5 ?5 |_ Show YWeek Mumbers
reo 78 1e 2 27 FEOZ3 [Week Start Monicay
gf Zy 28 27 28 28 50
Faont...
Sighal events
Signal: day_selected: 112652002
Presious signal: day_selected: 11.,30/2002
Second previous signal: month_changed: 1200172002
Clozse

The calendar.py [examples/calendar.pgpurce code is:

#!/usr/bin/env python

example calendar.py

#

Copyright (C) 1998 Cesar Miquel, Shawn T. Amundson, Mattias Gronlund
Copyright (C) 2000 Tony Gale

Copyright (C) 2001-2004 John Finlay

#

This program is free software; you can redistribute it and/or modify

10 # it under the terms of the GNU General Public License as published by
11 # the Free Software Foundation; either version 2 of the License, or

12 # (at your option) any later version.

13 #

14 # This program is distributed in the hope that it will be useful,

15 # but WITHOUT ANY WARRANTY; without even the implied warranty of
16 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

O©CoO~NOUITA,WNBE

108

file:url(examples/calendar.py)

laneous VM(IngCeetls-

17 # GNU General Public License for more details.

18 #

19 # You should have received a copy of the GNU General Public License
20 # along with this program; if not, write to the Free Software

21 # Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
22

23 import pygtk

24 pygtk.require(’2.0")

25 import gtk, pango

26 import time

27

28 class CalendarExample:

29 DEF_PAD = 10

30 DEF_PAD_SMALL =5

31 TM_YEAR_BASE = 1900

32

33 calendar_show_header = 0

34 calendar_show_days = 1

35 calendar_month_change = 2

36 calendar_show_week = 3

37

38 def calendar_date _to_string(self):

39 year, month, day = self.window.get date()

40 mytime = time.mktime((year, month+1, day, 0, 0, 0, 0O, O, -1))
41 return time.strftime("%x", time.localtime(mytime))
42

43 def calendar_set_signal_strings(self, sig_str):

44 prev_sig = self.prev_sig.get()

45 self.prev2_sig.set_text(prev_sig)

46

a7 prev_sig = self.last_sig.get()

48 self.prev_sig.set_text(prev_sig)

49 self.last_sig.set_text(sig_str)

50

51 def calendar_month_changed(self, widget):

52 buffer = "month_changed: %s" % self.calendar_date to_string()
53 self.calendar_set_signal_strings(buffer)

54

55 def calendar_day_selected(self, widget):

56 buffer = "day_selected: %s" % self.calendar_date_to_string()
57 self.calendar_set_signal_strings(buffer)

58

59 def calendar_day_selected_double_click(self, widget):
60 buffer = "day_selected_double_click: %s"

61 buffer = buffer % self.calendar_date_to_string()
62 self.calendar_set_signal_strings(buffer)

63

64 year, month, day = self.window.get_date()

65

66 if self.marked_date[day-1] == 0:

67 self.window.mark_day(day)

68 self.marked_date[day-1] = 1

69 else:

70 self.window.unmark_day(day)

109

71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124

laneous VM(IngCeetls-

self.marked_date[day-1] = 0

def calendar_prev_month(self, widget):
buffer = "prev_month: %s" % self.calendar_date to_string()
self.calendar_set_signal_strings(buffer)

def calendar_next_month(self, widget):
buffer = "next_month: %s" % self.calendar_date_to_string()
self.calendar_set_signal_strings(buffer)

def calendar_prev_year(self, widget):
buffer = "prev_year: %s" % self.calendar_date_to_string()
self.calendar_set_signal_strings(buffer)

def calendar_next_year(self, widget):
buffer = "next_year: %s" % self.calendar_date_to_string()
self.calendar_set_signal_strings(buffer)

def calendar_set_flags(self):
options = 0
for i in range(5):
if self.settings]i]:
options = options + (1<<i)
if self.window:
self.window.display_options(options)

def calendar_toggle_flag(self, toggle):
j=0
for i in range(5):
if self.flag_checkboxes[i] == toggle:
j=i

self.settings[j] = not self.settings|j]
self.calendar_set flags()

def calendar_font_selection_ok(self, button):
self.font = self.font_dialog.get_font_name()
if self.window:
font_desc = pango.FontDescription(self.font)
if font_desc:
self.window.modify_font(font_desc)

def calendar_select_font(self, button):
if not self.font_dialog:
window = gtk.FontSelectionDialog("Font Selection Dialog")
self.font_dialog = window

window.set_position(gtk. WIN_POS_MOUSE)
window.connect("destroy", self.font_dialog_destroyed)
window.ok_button.connect("clicked",

self.calendar_font_selection_ok)
window.cancel_button.connect_object("clicked",

110

laneous VM(IngCeetls-

125 lambda wid: wid.destroy(),
126 self.font_dialog)
127 window = self.font_dialog

128 if not (window.flags() & gtk.VISIBLE):

129 window.show()

130 else:

131 window.destroy()

132 self.font_dialog = None

133

134 def font_dialog_destroyed(self, data=None):

135 self.font_dialog = None

136

137 def __init__ (self):

138 flags = [

139 "Show Heading",

140 "Show Day Names",

141 "No Month Change",

142 "Show Week Numbers",

143]

144 self.window = None

145 self.font = None

146 self.font_dialog = None

147 self.flag_checkboxes = 5*[None]

148 self.settings = 5*[0]

149 self.marked_date = 31*[0]

150

151 window = gtk.Window(gtk. WINDOW_TOPLEVEL)
152 window.set _title("Calendar Example")

153 window.set_border_width(5)

154 window.connect("destroy”, lambda x: gtk.main_quit())
155

156 window.set_resizable(False)

157

158 vbox = gtk.VBox(False, self.DEF_PAD)

159 window.add(vbox)

160

161 # The top part of the window, Calendar, flags and fontsel.
162 hbox = gtk.HBox(False, self.DEF_PAD)

163 vbox.pack_start(hbox, True, True, self. DEF_PAD)
164 hbbox = gtk.HButtonBox()

165 hbox.pack_start(hbbox, False, False, self. DEF_PAD)
166 hbbox.set_layout(gtk. BUTTONBOX_SPREAD)

167 hbbox.set_spacing(5)

168

169 # Calendar widget

170 frame = gtk.Frame("Calendar")

171 hbbox.pack_start(frame, False, True, self.DEF_PAD)
172 calendar = gtk.Calendar()

173 self.window = calendar

174 self.calendar_set flags()

175 calendar.mark_day(19)

176 self.marked_date[19-1] = 1

177 frame.add(calendar)

178 calendar.connect("month_changed", self.calendar_month_changed)

111

179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232

laneous Vwisgceetls-

calendar.connect("day_selected", self.calendar_day_selected)
calendar.connect("day_selected_double_click",
self.calendar_day_selected_double_click)
calendar.connect("prev_month", self.calendar_prev_month)
calendar.connect("next_month", self.calendar_next_month)
calendar.connect("prev_year", self.calendar_prev_year)
calendar.connect("next_year", self.calendar_next_year)

separator = gtk.VSeparator()
hbox.pack_start(separator, False, True, 0)

vbox2 = gtk.VBox(False, self.DEF_PAD)
hbox.pack_start(vbox2, False, False, self. DEF_PAD)

Build the Right frame with the flags in

frame = gtk.Frame("Flags")
vbox2.pack_start(frame, True, True, self. DEF_PAD)
vbox3 = gtk.VBox(True, self. DEF_PAD_SMALL)
frame.add(vbox3)

for i in range(len(flags)):
toggle = gtk.CheckButton(flags][i])
toggle.connect("toggled”, self.calendar_toggle flag)
vbox3.pack_start(toggle, True, True, 0)
self.flag_checkboxes[i] = toggle

Build the right font-button

button = gtk.Button("Font...")
button.connect("clicked”, self.calendar_select_font)
vbox2.pack_start(button, False, False, 0)

Build the Signal-event part.
frame = gtk.Frame("Signal events")
vbox.pack_start(frame, True, True, self. DEF_PAD)

vbox2 = gtk.VBox(True, self. DEF_PAD_SMALL)
frame.add(vbox2)

hbox = gtk.HBox (False, 3)
vbox2.pack_start(hbox, False, True, 0)
label = gtk.Label("Signal:")
hbox.pack_start(label, False, True, 0)
self.last_sig = gtk.Label(")
hbox.pack_start(self.last_sig, False, True, 0)

hbox = gtk.HBox (False, 3)
vbox2.pack_start(hbox, False, True, 0)

label = gtk.Label("Previous signal:")
hbox.pack_start(label, False, True, 0)
self.prev_sig = gtk.Label("™)
hbox.pack_start(self.prev_sig, False, True, 0)

hbox = gtk.HBox (False, 3)
vbox2.pack_start(hbox, False, True, 0)

112

~Miscellaneous
W|(J\élets

233 label = gtk.Label("Second previous signal:")
234 hbox.pack_start(label, False, True, 0)

235 self.prev2_sig = gtk.Label("™)

236 hbox.pack_start(self.prev2_sig, False, True, 0)
237

238 bbox = gtk.HButtonBox ()

239 vbox.pack_start(bbox, False, False, 0)

240 bbox.set_layout(gtk. BUTTONBOX_END)

241

242 button = gtk.Button("Close")

243 button.connect("clicked", lambda w: gtk.main_quit())
244 bbox.add(button)

245 button.set_flags(gtk. CAN_DEFAULT)

246 button.grab_default()

247

248 window.show_all()

249

250 def main():
251 gtk.main()
252 return O

253

254 if _name__ ==" main__"
255 CalendarExample()

256 main()

9.13. Color Selection

The color selection widget is, not surprisingly, a widget for interactive selection of colors. This composite widget lets
the user select a color by manipulating RGB (Red, Green, Blue) and HSV (Hue, Saturation, Value) triples. This is
done either by adjusting single values with sliders or entries, or by picking the desired color from a hue-saturation
wheel/value bar. Optionally, the opacity of the color can also be set.

The color selection widget currently emits only one signal, "color_changed", which is emitted whenever the current
color in the widget changes, either when the user changes it or if it's set explicitly througkttiomlor () method.

Lets have a look at what the color selection widget has to offer us. The widget comes in two flavors:
gtk.ColorSelection andgtk.ColorSelectionDialog

colorsel = gtk.ColorSelection()

You'll probably not be using this constructor directly. It creates an orfPalorSelection widget which you'll
have to parent yourself. ThH@olorSelection widget inherits from th&/Box widget.

colorseldlg = gtk.ColorSelectionDialog(title)

wheretitle is a string to be used in the titlebar of the dialog.

113

~Miscellaneous
W|(J\élets

This is the most common color selection constructor. It creafada@ SelectionDialog . It consists of &rame
containing aColorSelection widget, anHSeparator and anHBox with three buttons, Ok, Cancel and Help.
You can reach these buttons by accessingthéutton , cancel_button andhelp_button attributes of the
ColorSelectionDialog , (i.e. colorseldlg.ok_button). The ColorSelection widget is accessed
using the attributeolorsel

colorsel = colorseldlg.colorsel

TheColorSelection widget has a number of methods that change its characteristics or provide access to the color
selection.

colorsel.set_has_opacity control(has_opacity)

The color selection widget supports adjusting the opacity of a color (also known as the alpha channel). This is disabled
by default. Calling this method withas_opacity = set toTRUEenables opacity. Likewiséas_opacity set to
FALSEwill disable opacity.

colorsel.set_current_color(color)
colorsel.set_current_alpha(alpha)
You can set the current color explicitly by calling thet_current_color () method with agtk.gdk.Color

Setting the opacity (alpha channel) is done withdbe current_alpha () method. Thealpha value should be
between 0 (fully transparent) and 65636 (fully opaque).

color = colorsel.get_current_color()
alpha = colorsel.get_current_alpha()

When you need to query the current color, typically when you've received a "color_changed" signal, you use these
methods.

The colorsel.py[examples/colorsel.py@xample program demonstrates the use ofGhmrSelectionDialog

The program displays a window containing a drawing area. Clicking on it opens a color selection dialog, and changing
the color in the color selection dialog changes the background deilgure 9.13, “Color Selection Dialog Example”
illustrates this program in action:

Figure 9.13. Color Selection Dialog Example

114

file:url(examples/colorsel.py)

laneous V%Ijsgceetlé

Hue: ISE E Bed: |255
Saturation: |81 E Green: |223
alue: |255 E Elue: |174

Calar Marme: I#FFD FAE

1

Falette

H TR

I | T EEm T oE

X Concel | &P ok

The source code farolorsel.py[examples/colorsel.pyi$:

#!/usr/bin/env python

example colorsel.py

1

2

3

4

5 import pygtk
6 pygtk.require(’2.0)

7 import gtk

8

9 class ColorSelectionExample:

10 # Color changed handler

11 def color_changed_cb(self, widget):

12 # Get drawingarea colormap

13 colormap = self.drawingarea.get_colormap()

14

15 # Get current color

16 color = self.colorseldlg.colorsel.get_current_color()
17

115

file:url(examples/colorsel.py)

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71

laneous VM(IngCeetls-

Set window background color
self.drawingarea.modify_bg(gtk. STATE_NORMAL, color)

Drawingarea event handler
def area_event(self, widget, event):
handled = False

Check if we've received a button pressed event
if event.type == gtk.gdk.BUTTON_PRESS:
handled = True

Create color selection dialog
if self.colorseldlg == None:
self.colorseldlg = gtk.ColorSelectionDialog(
"Select background color")

Get the ColorSelection widget
colorsel = self.colorseldlg.colorsel

colorsel.set_previous_color(self.color)
colorsel.set_current_color(self.color)
colorsel.set_has_palette(True)

Connect to the "color_changed" signal
colorsel.connect("color_changed", self.color_changed_cb)
Show the dialog

response = self.colorseldlg.run()

if response -- gtk. RESPONSE_OK:
self.color = colorsel.get_current_color()
else:
self.drawingarea.modify_bg(gtk. STATE_NORMAL, self.color)

self.colorseldlg.hide()
return handled

Close down and exit handler

def destroy_ window(self, widget, event):
gtk.main_quit()
return True

def __init__(self):
self.colorseldlg = None
Create toplevel window, set title and policies
window = gtk.Window(gtk. WINDOW_TOPLEVEL)
window.set _title("Color selection test")
window.set_resizable(True)

Attach to the "delete" and "destroy" events so we can exit
window.connect("delete_event", self.destroy_window)

Create drawingarea, set size and catch button events
self.drawingarea = gtk.DrawingArea()

116

laneous VM(IngCeetls-

72
73
self.color = self.drawingarea.get_colormap().alloc_color(0, 65535, 0)
74
75 self.drawingarea.set_size_request(200, 200)
76 self.drawingarea.set_events(gtk.gdk.BUTTON_PRESS MASK)
77 self.drawingarea.connect("event", self.area_event)
78
79 # Add drawingarea to window, then show them both
80 window.add(self.drawingarea)
81 self.drawingarea.show()
82 window.show()
83

84 def main():
85 gtk.main()
86 return O

87

88 if _name__ =="_ main__"
89 ColorSelectionExample()
20 main()

9.14. File Selections

The file selection widget is a quick and simple way to display a File dialog box. It comes complete with Ok, Cancel,
and Help buttons, a great way to cut down on programming time.
To create a new file selection box use:

filesel = gtk.FileSelection(titte =None)

To set the filename, for example to bring up a specific directory, or give a default filename, use this method:

filesel.set_filename(filename)

To grab the filename text that the user has entered or clicked on, use this method:

filename = filesel.get_filename()

There are also references to the widgets contained within the file selection widget. These are the filesel attributes:

filesel.dir_list
filesel.file_list
filesel.selection_entry
filesel.selection_text

117

~Miscellaneous
W|(J\élets

filesel.main_vbox
filesel.ok_button
filesel.cancel_button
filesel.help_button
filesel.history_pulldown
filesel.history_menu
filesel.fileop_dialog
filesel.fileop_entry
filesel.fileop_file
filesel.fileop_c_dir
filesel.fileop_del_file
filesel.fileop_ren_file
filesel.button_area
filesel.action_area

Most likely you will want to use thek_button , cancel_button , andhelp_button attributes to connect their
widget signals to callbacks.

Thefilesel.py [examples/filesel.pyéxample program illustrates the use of the FileSelection widget. As you will see,
there is nothing much to creating a file selection widget. While in this example the Help button appears on the screen,
it does nothing as there is not a signal attached to Eigure 9.14, “File Selection Exampleshows the resulting
display:

Figure 9.14. File Selection Example

118

file:url(examples/filesel.py)

laneous VViIcIngCeetls-

 File zelection
Mew Folder Celete File Fername File
fuztbin | -
Faolders = Files ﬂ
F Zipgrep
¥ Zipinfo
Wi1f Zipnote
" | Zipsplit
| zless
Zmare
Zhew
. —
zaoelim ﬂ
| |4 |]
Selection: Msrbin
penguin.png

¥ Cancel | &P ok

The source code for filesel.py is:

#!/usr/bin/env python
example filesel.py

1
2
3
4
5 import pygtk

6 pygtk.require(’2.0’)

7 import gtk

8

9 class FileSelectionExample:

10 # Get the selected filename and print it to the console
11 def file_ok_sel(self, w):

12 print "%s" % self.filew.get_filename()
13

14 def destroy(self, widget):

15 gtk.main_quit()

16

17 def __init_ (self):

119

~Miscellaneous
W|(J\élets

18 # Create a new file selection widget

19 self.filew = gtk.FileSelection("File selection")

20

21 self.filew.connect("destroy", self.destroy)

22 # Connect the ok _button to file_ok_sel method

23 self.filew.ok button.connect("clicked", self.file_ok_sel)
24

25 # Connect the cancel_button to destroy the widget
26 self.filew.cancel_button.connect("clicked",

27 lambda w: self.filew.destroy())
28

29 # Lets set the filename, as if this were a save dialog,
30 # and we are giving a default filename

31 self.filew.set_filename("penguin.png")

32

33 self.filew.show()

34

35 def main():
36 gtk.main()
37 return O

38

39 if _ _name__ ==" main__ "
40 FileSelectionExample()
41 main()

9.15. Font Selection Dialog

The Font Selection Dialog allows a user to interactively select a font for use within your program. The dialog contains
aFontSelection widget and OK and Cancel buttons. An Apply button is also available in the dialog but is initially
hidden. The Font Selection Dialog allows a user to select a font from the available system fonts (the same ones that
can be retrieved usingsfonts).

Figure 9.15, “Font Selection Dialogllustrates thé-ontSelectionDialog display:

Figure 9.15. Font Selection Dialog

120

~Miscellaneous
W|(J\élets

Font Selection Dialog .

Family: ~ Style: _ sSize:
EERETE A1 | marmal = | 12
fiil Italic El_ =
open look cursar Bold 10
open look glyph Bold Italic 11 J
SaNS
serif -
song i J >
starbats .
starmath ﬂ E N ﬂ
Erewiew:

abcdefghijk ABCDEF GHIJE

¥ Cancel ‘ &J ok

The dialog contains a set of three notebook pages that provide:

* an interface to select the font, font style and font size
« detailed information about the currently selected font
« an interface to the font filter mechanism that restricts the fonts available for selection

The function to create BontSelectionDialog is:

fontseldlg = gtk.FontSelectionDialog(title)

Thetitle s a string that will be used to set the titlebar text.

A Font Selection Dialog instance has several attributes:

fontsel
main_vbox
action_area
ok_button
apply_button

121

~Miscellaneous
W|(J\élets

cancel_button

The fontsel attribute provides a reference to the Font Selection widgetain_vbox is a reference to the
gtk.VBox containing thefontsel and theaction_area in the dialog. Theaction_area attribute is

a reference to thetk.HButtonBox that contains the OK, Apply and Cancel buttons. Tdile button
cancel_button and apply_button attributes provide references to the OK, Apply and Cancel buttons that
can be used to set connections to the button signalsapply_button reference can also be usedstwow() the
Apply button.

You can set the initial font to be displayed in thomtseldlg by using the method:

fontseldlg.set_font_name(fontname)

Thefontname argument is the name of a completely specified or partially specified system font. For example:

partially specifies the initial font.

The font name of the currently selected font can be retrieved using the method:

font_name = fontseldlg.get _font name()

The Font Selection Dialog has a Preview area that displays text using the currently selected font. The text that is used
in the Preview area can be set with the method:

fontseldlg.set_preview_text(text)

The preview text can be retrieved with the method:

text = fontseldlg.get_preview_text()

The calendar.py [examples/calendar.pyxample program uses a Font Selection Dialog to select the font to display

the calendar information. Lines 105-110 define a callback that retrieves the font name from the Font Selection Dialog
and uses it to set the font for the calendar widget. Lines 112-131 defines the method that creates the Font Selection
Dialog, sets up the callbacks for the OK and Cancel buttons and displays the dialog.

122

file:url(examples/calendar.py)

Chapter 10. Container Widgets
10.1. The EventBox

Some GTK widgets don’t have associated X windows, so they just draw on their parents. Because of this, they cannot
receive events and if they are incorrectly sized, they don't clip so you can get messy overwriting, etc. If you require
more from these widgets, theventBox is for you.

At first glance, theeventBox widget might appear to be totally useless. It draws nothing on the screen and responds
to no events. However, it does serve a function - it provides an X window for its child widget. This is important
as many GTK widgets do not have an associated X window. Not having an X window saves memory and improves
performance, but also has some drawbacks. A widget without an X window cannot receive events, does not perform
any clipping on its contents and cannot set its background color. Although the BeemtBox emphasizes the
event-handling function, the widget can also be used for clipping. (and more, see the example below).

To create a neieventBox widget, use:

event_box = gtk.EventBox()

A child widget can then be added to tleigent_box :

event box.add(widget)

The eventbox.py [examples/eventbox.py@xample program demonstrates both uses oEaentBox - a label is

created that is clipped to a small box, has a green background and is set up so that a mouse-click on the label causes
the program to exit. Resizing the window reveals varying amounts of the IBiggire 10.1, “Event Box Example”
illustrates the programs display:

Figure 10.1. Event Box Example

=1ES

e to guit, guit, quit,

The source code faventbox.py[examples/eventbox.pys:

#!/usr/bin/env python
example eventbox.py

import pygtk
pygtk.require(’2.0")

OO~ WN PP

123

file:url(examples/eventbox.py)
file:url(examples/eventbox.py)

. . Con-
tainer Widgets

7 import gtk

8

9 class EventBoxExample:

10 def __init__ (self):

11 window = gtk.Window(gtk. WINDOW_TOPLEVEL)

12 window.set _title("Event Box")

13 window.connect("destroy", lambda w: gtk.main_quit())

14 window.set_border_width(10)

15

16 # Create an EventBox and add it to our toplevel window
17 event_box = gtk.EventBox()

18 window.add(event_box)

19 event_box.show()

20

21 # Create a long label

22 label = gtk.Label("Click here to quit, quit, quit, quit, quit”)
23 event_box.add(label)

24 label.show()

25

26 # Clip it short.

27 label.set_size_request(110, 20)

28

29 # And bind an action to it

30 event_box.set_events(gtk.gdk.BUTTON_PRESS_MASK)
31 event_box.connect("button_press_event", lambda w,e: gtk.main_quit())
32

33 # More things you need an X window for ...

34 event_box.realize()

35 event_box.window.set_cursor(gtk.gdk.Cursor(gtk.gdk.HAND1))
36

37 # Set background color to green

38 event_box.modify_bg(gtk. STATE_NORMAL,

39 event_box.get_colormap().alloc_color("green"))
40

41 window.show()

42

43 def main():

44 gtk.main()

45 return O

46

47 if _name_ ==" main__ "

48 EventBoxExample()

49 main()

10.2. The Alignment widget

The Alignment
the Alignment

widget allows you to place a widget within its window at a position and size relative to the size of
widget itself. For example, it can be very useful for centering a widget within the window.

There are only two calls associated with tdggnment widget:

124

) Container
Widgets

alignment = gtk.Alignment(xalign =0.0, vyalign =0.0, xscale =0.0, yscale =0.0)

alignment.set(xalign , yalign , xscale , yscale)

The gtk.Alignment () function creates a newlignment widget with the specified parameters. Téet ()
method allows the alignment parameters of an exisiilignment widget to be altered.

All four alignment parameters are floating point numbers which can range from 0.0 to 1.0. The
xalign and yalign arguments affect the position of the widget placed within ttk.Alignment
[http://www.pygtk.org/pygtk2reference/class-gtkalignment.htmifiget. The align properties specify the frac-

tion of free space that will be placed above or to the left of the child widget. The values range from Ofi@€no
space above or to the left of the child) to 1.0 fadle space above or to the left of the child). Of course, if the scale
properties are both set to 1.0, the alignment properties have no effect since the child widget will expand to fill the
available space.

Thexscale andyscale arguments specify the fraction fsfee space absorbed by the child widget. The values can
range from 0.0 (meaning the child absorbs none) to 1.0 (meaning the child absorbs afre¢ #pace).

A child widget can be added to thidignment widget using:

alignment.add(widget)

For an example of using alignment widget, refer to therogressbar.py[examples/progressbar.pggkample for
the Progress Bar widget.

10.3. Fixed Container

TheFixed container allows you to place widgets at a fixed position within it's window, relative to it's upper left hand
corner. The position of the widgets can be changed dynamically.

There are only three calls associated with the fixed widget:

fixed = gtk.Fixed()
fixed.put(widget , X, y)

fixed.move(widget , X, y)

The functiongtk.Fixed () allows you to create a nefsixed container.
Theput () method places widget in the container fixed at the position specifiaddngdy .
Themove() method allows the specified widget to be moved to a new position.

Thefixed.py [examples/fixed.py&xample illustrates how to use théed containerFigure 10.2, “Fixed Example”
shows the result:

125

url(http://www.pygtk.org/pygtk2reference/class-gtkalignment.html)
file:url(examples/progressbar.py)
file:url(examples/fixed.py)

. . Con-
tainer Widgets

Figure 10.2. Fixed Example

Fixed Co ntainer SI=1Ed

Fress rne|
Fress rne|

FPress me

The source code fdixed.py [examples/fixed.py]

#!/usr/bin/env python

example fixed.py

pygtk.require('2.0")

1

2

3

4

5 import pygtk
6

7 import gtk
8

9 class FixedExample:

10 # This callback method moves the button to a new position
11 # in the Fixed container.

12 def move_button(self, widget):

13 self.x = (self.x+30)%300

14 self.y = (self.y+50)%300

15 self.fixed.move(widget, self.x, self.y)

16

17 def __init__ (self):

18 self.x = 50

19 self.y = 50

126

file:url(examples/fixed.py)

Container

Widgets
20
21 # Create a new window
22 window = gtk.Window(gtk. WINDOW_TOPLEVEL)
23 window.set _title("Fixed Container")
24
25 # Here we connect the "destroy" event to a signal handler
26 window.connect("destroy", lambda w: gtk.main_quit())
27
28 # Sets the border width of the window.
29 window.set_border_width(10)
30
31 # Create a Fixed Container
32 self.fixed = gtk.Fixed()
33 window.add(self.fixed)
34 self.fixed.show()
35
36 for i in range(1, 4):
37 # Creates a new button with the label "Press me"
38 button = gtk.Button("Press me")
39
40 # When the button receives the "clicked" signal, it will call the
41 # method move_button().
42 button.connect("clicked", self.move_button)
43
44 # This packs the button into the fixed containers window.
45 self.fixed.put(button, i*50, i*50)
46
a7 # The final step is to display this newly created widget.
48 button.show()
49
50 # Display the window
51 window.show()
52

53 def main():

54 # Enter the event loop
55 gtk.main()

56 return O

57

58 if _name__ =="_ main__"
59 FixedExample()

60 main()

10.4. Layout Container

TheLayout container is similar to th€ixed container except that it implements an infinite (where infinity is less
than 232) scrolling area. The X window system has a limitation where windows can be at most 32767 pixels wide or
tall. TheLayout container gets around this limitation by doing some exotic stuff using window and bit gravities, so
that you can have smooth scrolling even when you have many child widgets in your scrolling area.

A Layout container is created using:

127

) Container
Widgets

layout = gtk.Layout(hadjustment =None, vadjustment =None)

objects (se€hapter 7 Adjustmentsthat theLayout

As you can see, you can optionally specify thdjustment
objects, new ones will be created.

widget will use for its scrolling. If you don't specify th&djustment

You can add and move widgets in thayout container using the following two methods:

layout.put(child_widget , x, V)

layout.move(child_widget , x, y)

The size of thd.ayout container can be set and retrieved using the next methods:

layout.set_size(width , height)

size = layout.get_size()

The final four methods for use withayout widgets are for manipulating the horizontal and vertical adjustment

widgets:

hadj = layout.get_hadjustment()

vadj = layout.get_vadjustment()

layout.set_hadjustment(adjustment)

layout.set_vadjustment(adjustment)

Thelayout.py [examples/layout.pygéxample program creates three buttons and puts them in a layout widget. when a
button is clicked, it is moved to a random location in the lay&igure 10.3, “Layout Exampléeflustrates the starting

display of the program:

Figure 10.3. Layout Example

128

file:url(examples/layout.py)

. . Con-
tainer Widgets

Layout Example E|=ET

Fress Me | Fress Me =l

A L

Thelayout.py [examples/layout.py§ource code is:

#!/usr/bin/env python

example layout.py

1

2

3

4

5 import pygtk
6 pygtk.require(’2.0)

7 import gtk

8 import random

9

10 class LayoutExample:

11 def WindowDeleteEvent(self, widget, event):

12 # return false so that window will be destroyed
13 return False

14

15 def WindowDestroy(self, widget, *data):

16 # exit main loop

17 gtk.main_quit()

18

19 def ButtonClicked(self, button):

20 # move the button

21 self.layout.move(button, random.randint(0,500),

129

file:url(examples/layout.py)

) Container
Widgets

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71

random.randint(0,500))

def __init__ (self):

create the top level window

window = gtk.Window(gtk. WINDOW_TOPLEVEL)

window.set _title("Layout Example")

window.set_default_size(300, 300)

window.connect("delete-event”, self.WindowDeleteEvent)

window.connect("destroy", self.WindowDestroy)

create the table and pack into the window

table = gtk.Table(2, 2, False)

window.add(table)

create the layout widget and pack into the table

self.layout = gtk.Layout(None, None)

self.layout.set_size(600, 600)

table.attach(self.layout, 0, 1, 0, 1, gtk.FILL|gtk.EXPAND,
gtk.FILL|gtk. EXPAND, 0, 0)

create the scrollbars and pack into the table

vScrollbar = gtk.VScrollbar(None)

table.attach(vScrollbar, 1, 2, 0, 1, gtk.FILL|gtk.SHRINK,
gtk.FILL|gtk.SHRINK, 0, 0)

hScrollbar = gtk.HScrollbar(None)

table.attach(hScrollbar, 0, 1, 1, 2, gtk.FILL|gtk. SHRINK,
gtk.FILL|gtk.SHRINK, 0, 0)

tell the scrollbars to use the layout widget's adjustments

vAdjust = self.layout.get_vadjustment()

vScrollbar.set_adjustment(vAdjust)

hAdjust = self.layout.get_hadjustment()

hScrollbar.set_adjustment(hAdjust)

create 3 buttons and put them into the layout widget

button = gtk.Button("Press Me")

button.connect(“clicked”, self.ButtonClicked)

self.layout.put(button, 0, 0)

button = gtk.Button("Press Me")

button.connect("clicked", self.ButtonClicked)

self.layout.put(button, 100, 0)

button = gtk.Button("Press Me")

button.connect("clicked", self.ButtonClicked)

self.layout.put(button, 200, 0)

show all the widgets

window.show_all()

def main():
enter the main loop
gtk.main()
return O

if _name__ =="_ main__"
LayoutExample()
main()

130

) Container
Widgets

10.5. Frames

Frames can be used to enclose one or a group of widgets with a box which can optionally be labeled. The position of
the label and the style of the box can be altered to suit.

A Frame can be created with the following function:

frame = gtk.Frame(label =None)

Thelabel is by default placed in the upper left hand corner of the frame. Specifying a value of None ffab¢he
argument or specifying ntabel argument will result in no label being displayed. The text of the label can be
changed using the method.

frame.set_label(label)

The position of the label can be changed using this method:

frame.set_label_align(xalign , yalign)

xalign andyalign take values between 0.0 and 1xXalign indicates the position of the label along the top
horizontal of the frameyalign is not currently used. The default valuexalign is 0.0 which places the label at
the left hand end of the frame.

The next method alters the style of the box that is used to outline the frame.

frame.set_shadow_type(type)

Thetype argument can take one of the following values:

SHADOW_NONE
SHADOW_IN

SHADOW_OUT

SHADOW_ETCHED_IN # the default
SHADOW_ETCHED_OUT

Theframe.py [examples/frame.py&éxample illustrates the use of the Frame widdgégure 10.4, “Frame Example”
shows the resulting display:

Figure 10.4. Frame Example

131

file:url(examples/frame.py)

. . Con-
tainer Widgets

|Frame Example

GTK Frame Widget

The source code dfame.py [examples/frame.pyik:

#!/usr/bin/env python
example frame.py

pygtk.require(’2.0")

1

2

3

4

5 import pygtk
6

7 import gtk
8

9 class FrameExample:
10 def __init_ (self):

11 # Create a new window

12 window = gtk.Window(gtk. WINDOW_TOPLEVEL)

13 window.set_title("Frame Example")

14

15 # Here we connect the "destroy" event to a signal handler
16 window.connect("destroy", lambda w: gtk.main_quit())
17 window.set_size_request(300, 300)

18

19 # Sets the border width of the window.

20 window.set_border_width(10)

21

132

file:url(examples/frame.py)

Container

Widgets
22 # Create a Frame
23 frame = gtk.Frame()
24 window.add(frame)
25
26 # Set the frame’s label
27 frame.set_label("GTK Frame Widget")
28
29 # Align the label at the right of the frame
30 frame.set_label_align(1.0, 0.0)
31
32 # Set the style of the frame
33 frame.set_shadow_type(gtk. SHADOW_ETCHED_OUT)
34 frame.show()
35
36 # Display the window
37 window.show()
38

39 def main():

40 # Enter the event loop
41 gtk.main()

42 return O

43

44 if _name__ =="_ main__"
45 FrameExample()

46 main()

The calendar.py [examples/calendar.pylabel.py [examples/label.pyand spinbutton.py [examples/spinbutton.py]
examples also use Frames.

10.6. Aspect Frames

The aspect frame widget is like a frame widget, except that it also enforces the aspect ratio (that is, the ratio of the
width to the height) of the child widget to have a certain value, adding extra space if necessary. This is useful, for
instance, if you want to preview a larger image. The size of the preview should vary when the user resizes the window,
but the aspect ratio needs to always match the original image.

To create a new aspect frame use:

aspect_frame = gtk.AspectFrame(label =None, xalign =0.5, vyalign =0.5, ,,
ratio =1.0, obey child =TRUE)

label specifies the text to be displayed as the labekalign and yalign specify alignment as with
gtk.Alignment [http://mww.pygtk.org/pygtk2reference/class-gtkalignment.htmidigets. If obey child is
TRUE the aspect ratio of a child widget will match the aspect ratio of the ideal size it requests. Otherwise, it is
given byratio

To change the options of an existing aspect frame, you can use:

133

file:url(examples/calendar.py)
file:url(examples/label.py)
file:url(examples/spinbutton.py)
url(http://www.pygtk.org/pygtk2reference/class-gtkalignment.html)

. . Con-
tainer Widgets

aspect_frame.set(xalign =0.0, vyalign =0.0, ratio =1.0, obey child =TRUE)

As an example, thaspectframe.py[examples/aspectframe.pyogram uses afispectFrame to present a drawing
area whose aspect ratio will always be 2:1, no matter how the user resizes the top-level irigdoe/10.5, “Aspect
Frame Examplefllustrates the display of the program:

Figure 10.5. Aspect Frame Example

A Spe ct Frame M |[=ET

el

The source code faspectframe.py[examples/aspectframe.pigl

#!/usr/bin/env python
example aspectframe.py
import pygtk

pygtk.require(’2.0")
import gtk

O©CoO~NOOOUTA,WNPE

class AspectFrameExample:

10 def __init__ (self):

11 window = gtk.Window(gtk. WINDOW_TOPLEVEL);
12 window.set _title("Aspect Frame")

13 window.connect("destroy", lambda x: gtk.main_quit())
14 window.set_border_width(10)

15

134

file:url(examples/aspectframe.py)
file:url(examples/aspectframe.py)

Container

Widgets
16 # Create an aspect_frame and add it to our toplevel window
17 aspect_frame = gtk.AspectFrame("2x1", # label
18 0.5, # center x
19 0.5, # center y
20 2, # xsizelysize = 2
21 False) # ignore child’s aspect
22 window.add(aspect_frame)
23 aspect_frame.show()
24
25 # Now add a child widget to the aspect frame
26 drawing_area = gtk.DrawingArea()
27
28 # Ask for a 200x200 window, but the AspectFrame will give us a 200x100
29 # window since we are forcing a 2x1 aspect ratio
30 drawing_area.set_size request(200, 200)
31 aspect_frame.add(drawing_area)
32 drawing_area.show()
33 window.show()
34

35 def main():
36 gtk.main()
37 return O

38

39 if _name__ =="_main__"
40 AspectFrameExample()
41 main()

10.7. Paned Window Widgets

The paned window widgets are useful when you want to divide an area into two parts, with the relative size of the
two parts controlled by the user. A groove is drawn between the two portions with a handle that the user can drag to
change the ratio. The division can either be horizort#gned) or vertical YPaned).

To create a new paned window, call one of:

hpane = gtk.HPaned()

vpane = gtk.VPaned()

After creating the paned window widget, you need to add child widgets to its two halves. To do this, use the methods:

paned.add1(child)

paned.add2(child)

Theadd1l () method adds thehild widget to the left or top half of the paned window. Taad2 () method adds the
child widget to the right or bottom half of the paned window.

135

. . Con-
tainer Widgets

Thepaned.py[examples/paned.pygxample program creates part of the user interface of an imaginary email program.

A window is divided into two portions vertically, with the top portion being a list of email messages and the bottom
portion the text of the email message. Most of the program is pretty straightforward. A couple of points to note: text
can’'t be added to a Text widget until it is realized. This could be done by callingetiize () method, but as a
demonstration of an alternate technique, we connect a handler to the "realize" signal to add the text. Also, we need to
add theSHRINK option to some of the items in the table containing the text window and its scrollbars, so that when
the bottom portion is made smaller, the correct portions shrink instead of being pushed off the bottom of the window.
Figure 10.6, “Paned Examplshows the result of running the program:

| Faned Windaow

Figure 10.6. Paned Example

Meszages

Message #0

Messane #1

Fron: pathfinderi@nasa.goy
To: momiEnasa.goy
Subject: Made it!

-Fath

e just got in this morning. The weather has been
great - clear but cold, and there are lots of fun sights.
Sojourter says hi. See you soon.

The source code of thganed.py[examples/paned.pyjrogram is:

1 #Yusr/bin/env python

136

file:url(examples/paned.py)
file:url(examples/paned.py)

Boo~wouoswn

11
12
13
14

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

46
47
48
49
50
51
52
53

. . Con-
tainer Widgets

example paned.py

import pygtk
pygtk.require(’2.0")
import gtk, gobject

class PanedExample:
Create the list of "messages”
def create_list(self):
Create a new scrolled window, with scrollbars only if needed
scrolled_window = gtk.ScrolledWindow()

scrolled_window.set_policy(gtk.POLICY_AUTOMATIC, gtk.POLICY_AUTOMATIC)

model = gtk.ListStore(gobject. TYPE_STRING)
tree_view = gtk.TreeView(model)
scrolled_window.add_with_viewport (tree_view)
tree_view.show()

Add some messages to the window
for i in range(10):
msg = "Message #%d" % i
iter = model.append()
model.set(iter, 0, msg)

cell = gtk.CellRendererText()
column = gtk.TreeViewColumn("Messages", cell, text=0)
tree_view.append_column(column)

return scrolled_window

Add some text to our text widget - this is a callback that is invoked
when our window is realized. We could also force our window to be
realized with gtk.Widget.realize(), but it would have to be part of a
hierarchy first
def insert_text(self, buffer):
iter = buffer.get_iter_at_offset(0)
buffer.insert(iter,
"From: pathfinder@nasa.gov\n"
"To: mom@nasa.govin"
"Subject: Made ithn"
"
"We just got in this morning. The weather has been\n"

"great - clear but cold, and there are lots of fun sights.\n"
"Sojourner says hi. See you soon.\n"
" -Path\n")

Create a scrolled text area that displays a "message"
def create_text(self):

view = gtk.TextView()

buffer = view.get_buffer()

scrolled_window = gtk.ScrolledWindow()

137

Container

Widgets

54

scrolled_window.set_policy(gtk.POLICY_AUTOMATIC, gtk.POLICY_AUTOMATIC)
55 scrolled_window.add(view)
56 self.insert_text(buffer)
57 scrolled_window.show_all()
58 return scrolled_window
59
60 def __init__ (self):
61 window = gtk.Window(gtk.WINDOW_TOPLEVEL)
62 window.set _title("Paned Windows")
63 window.connect("destroy", lambda w: gtk.main_quit())
64 window.set_border_width(10)
65 window.set_size_request(450, 400)
66
67 # create a vpaned widget and add it to our toplevel window
68 vpaned = gtk.VPaned()
69 window.add(vpaned)
70 vpaned.show()
71
72 # Now create the contents of the two halves of the window
73 list = self.create_list()
74 vpaned.add1(list)
75 list.show()
76
77 text = self.create_text()
78 vpaned.add2(text)
79 text.show()
80 window.show()
81

82 def main():
83 gtk.main()
84 return O

85

86 if _name__ =="_main__"
87 PanedExample()

88 main()

10.8. Viewports

It is unlikely that you will ever need to use théewport widget directly. You are much more likely to use the
ScrolledWindow widget *seeSection 10.9, “Scrolled Window$Wwhich in turn uses th¥iewport

A viewport widget allows you to place a larger widget within it such that you can view a part of it at a time. It uses
Adjustment object (seeChapter 7 Adjustmentsto define the area that is currently in view.

A Viewport is created with the function:

viewport = gtk.Viewport(hadjustment =None, vadjustment =None)

138

) Container
Widgets

As you can see you can specify the horizontal and verAcd@istment objects that the widget is to use when you
create the widget. It will create its own if you padene as the value of the arguments or pass no arguments.

You can get and set the adjustments after the widget has been created using the following four methods:

viewport.get_hadjustment()
viewport.get_vadjustment()
viewport.set_hadjustment(adjustment)

viewport.set_vadjustment(adjustment)

The only other viewport method is used to alter its appearance:

viewport.set_shadow_type(type)

Possible values for thgpe parameter are:

SHADOW_NONE
SHADOW_IN
SHADOW_OUT
SHADOW_ETCHED_IN
SHADOW_ETCHED_OUT

10.9. Scrolled Windows

Scrolled windows are used to create a scrollable area with another widget inside it. You may insert any type of widget
into a scrolled window, and it will be accessible regardless of the size by using the scrollbars.
The following function is used to create a new scrolled window.

scrolled_window = gtk.ScrolledWindow(hadjustment =None, vadjustment =None)

Where the first argument is the adjustment for the horizontal direction, and the second, the adjustment for the vertical
direction. These are almost always selimne or not specified.

scrolled_window.set_policy(hscrollbar_policy , vscrollbar_policy)

This method sets the policy to be used with respect to the scrollbars. The first argument sets the policy for the horizontal
scrollbar, and the second, the policy for the vertical scrollbar.

139

. . Con-
tainer Widgets

The policy may be one d?OLICY_AUTOMATIGr POLICY_ALWAYSPOLICY_AUTOMATIGwill automatically
decide whether you need scrollbars, where@ ICY_ALWAY Svill always leave the scrollbars there.

You can then place your object into the scrolled window using the following method.

scrolled_window.add_with_viewport(

Thescrolledwin.py [examples/scrolledwin.py@xample program packs a table with 100 toggle buttons into a scrolled
window. I've only commented on the parts that may be new to yBigure 10.7, “Scrolled Window Example”

illustrates the program display:

child)

Figure 10.7. Scrolled Window Example

acrolledWindow example

button (0,00 button (1,00 button (2,03 buti
button (0,13 button (1,13 button (2,13 buti
button (0,23 button £1,2) button £2,23 bt
button (0,33 [[button (1,33 E
button (0,45 fbutton (1,4 button (2,43 butd
button (0,5 button £1,5) button £2,5) bt
button (06| button (1,63 button (2,63 buti
Al | Ll
close

The source code for thecrolledwin.py [examples/scrolledwin.pyjrogram is:

1 #!/usr/bin/env python

2

3 # example scrolledwin.py
4

5 import pygtk

140

file:url(examples/scrolledwin.py)
file:url(examples/scrolledwin.py)

6

7

8

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

. . Con-
tainer Widgets

pygtk.require(’2.0")
import gtk

class ScrolledWindowExample:
def destroy(self, widget):
gtk.main_quit()

def __init__ (self):
Create a new dialog window for the scrolled window to be
packed into.
window = gtk.Dialog()
window.connect("destroy”, self.destroy)
window.set_title("ScrolledWindow example™)
window.set_border_width(0)
window.set_size_request(300, 300)

create a new scrolled window.
scrolled_window = gtk.ScrolledWindow()
scrolled_window.set_border_width(10)

the policy is one of POLICY AUTOMATIC, or POLICY_ALWAYS.

POLICY_AUTOMATIC will automatically decide whether you need

scrollbars, whereas POLICY_ALWAYS will always leave the scrollbars

there. The first one is the horizontal scrollbar, the second, the

vertical.

scrolled_window.set_policy(gtk.POLICY_AUTOMATIC, gtk.POLICY_ALWAYS)

The dialog window is created with a vbox packed into it.
window.vbox.pack_start(scrolled_window, True, True, 0)
scrolled_window.show()

create a table of 10 by 10 squares.
table = gtk.Table(10, 10, False)

set the spacing to 10 on x and 10 on y
table.set_row_spacings(10)
table.set_col_spacings(10)

pack the table into the scrolled window
scrolled_window.add_with_viewport(table)
table.show()

this simply creates a grid of toggle buttons on the table
to demonstrate the scrolled window.
for i in range(10):
for j in range(10):
buffer = "button (%d,%d)" % (i, j)
button = gtk.ToggleButton(buffer)
table.attach(button, i, i+1, j, j+1)
button.show()

Add a "close" button to the bottom of the dialog
button = gtk.Button("close")
button.connect_object("clicked", self.destroy, window)

141

Container

Widgets
60
61 # this makes it so the button is the default.
62 button.set_flags(gtk. CAN_DEFAULT)
63 window.action_area.pack_start(button, True, True, 0)
64
65 # This grabs this button to be the default button. Simply hitting
66 # the "Enter" key will cause this button to activate.
67 button.grab_default()
68 button.show()
69 window.show()
70

71 def main():
72 gtk.main()
73 return O

74

75 if _name__ =="_ main__"
76 ScrolledWindowExample()
77 main()

Try resizing the window. You'll notice how the scrollbars react. You may also wish to use the
set_size_request () method to set the default size of the window or other widgets.

10.10. Button Boxes

ButtonBoxes are a convenient way to quickly layout a group of buttons. They come in both horizontal and vertical
flavors. You create a neButtonBox with one of the following calls, which create a horizontal or vertical box,
respectively:

hbutton_box = gtk.HButtonBox()

vbutton_box = gtk.VButtonBox()
The only methods pertaining to button boxes effect how the buttons are laid out.

The layout of the buttons within the box is set using:

button_box.set_layout(layout_style)

Thelayout_style argument can take one of the following values:

BUTTONBOX_DEFAULT_STYLE
BUTTONBOX_SPREAD
BUTTONBOX_EDGE
BUTTONBOX_START
BUTTONBOX_END

142

) Container
Widgets

The currentayout_style setting can be retrieved using:

layout_style = button_box.get_layout()

Buttons are added toButtonBox using the usuaContainer method:

button_box.add(widget)

The buttonbox.py [examples/buttonbox.pypxample program illustrates all the different layout settings for
ButtonBoxes . The resulting display is:

143

file:url(examples/buttonbox.py)

. . Con-
tainer Widgets

M=1Ed

Haorizontal Button Boxes

Spread Cspacing 407
- Dok | X cancel (0] Help ‘
Edge {spacing 300
&P ox ‘ X Concel (0] Heip ‘
Start (spacing 200

&P ox ‘ ¥ carcel ‘ (] Help ‘

End {spacing 103

&P ox ‘ ¥ carcel ‘ (0] Help ‘

ertical Button Boxes

Spread Cspacing 5 rEdge (spacing 307 Start Cspacing 207 End {spacing 2073

For P ox P ok For

x Cancel

x Cancel x Cancel

x Cancel

(0] He & e
@ = @ Help @ Help

The source code for thHauttonbox.py [examples/buttonbox.pyjrogram is:

144

file:url(examples/buttonbox.py)

. . Con-
tainer Widgets

1 #!usr/bin/env python

2

3 # example buttonbox.py
4

5 import pygtk

6 pygtk.require(’2.0’)

7 import gtk

8

9 class ButtonBoxExample:

10 # Create a Button Box with the specified parameters
11 def create_bbox(self, horizontal, title, spacing, layout):
12 frame = gtk.Frame(title)

13

14 if horizontal:

15 bbox = gtk.HButtonBox()

16 else:

17 bbox = gtk.VButtonBox()

18

19 bbox.set_border_width(5)

20 frame.add(bbox)

21

22 # Set the appearance of the Button Box

23 bbox.set_layout(layout)

24 bbox.set_spacing(spacing)

25

26 button = gtk.Button(stock=gtk.STOCK_OK)

27 bbox.add(button)

28

29 button = gtk.Button(stock=gtk. STOCK_CANCEL)
30 bbox.add(button)

31

32 button = gtk.Button(stock=gtk. STOCK_HELP)

33 bbox.add(button)

34

35 return frame

36

37 def __init_ (self):

38 window = gtk.Window(gtk. WINDOW_TOPLEVEL)
39 window.set _title("Button Boxes")

40

41 window.connect("destroy”, lambda x: gtk.main_quit())
42

43 window.set_border_width(10)

44

45 main_vbox = gtk.VBox(False, 0)

46 window.add(main_vbox)

47

48 frame_horz = gtk.Frame("Horizontal Button Boxes")
49 main_vbox.pack_start(frame_horz, True, True, 10)
50

51 vbox = gtk.VBox(False, 0)

52 vbox.set_border_width(10)

53 frame_horz.add(vbox)

145

Container

Widgets
54
55 vbox.pack_start(self.create_bbox(True, "Spread (spacing 40)",
56 40, gtk. BUTTONBOX_SPREAD),
57 True, True, 0)
58
59 vbox.pack_start(self.create_bbox(True, "Edge (spacing 30)",
60 30, gtk. BUTTONBOX_EDGE),
61 True, True, 5)
62
63 vbox.pack_start(self.create_bbox(True, "Start (spacing 20)",
64 20, gtk. BUTTONBOX_START),
65 True, True, 5)
66
67 vbox.pack_start(self.create_bbox(True, "End (spacing 10)",
68 10, gtk.BUTTONBOX_END),
69 True, True, 5)
70
71 frame_vert = gtk.Frame("Vertical Button Boxes")
72 main_vbox.pack_start(frame_vert, True, True, 10)
73
74 hbox = gtk.HBox(False, 0)
75 hbox.set_border_width(10)
76 frame_vert.add(hbox)
77
78 hbox.pack_start(self.create_bbox(False, "Spread (spacing 5)",
79 5, gtk. BUTTONBOX_SPREAD),
80 True, True, 0)
81
82 hbox.pack_start(self.create_bbox(False, "Edge (spacing 30)",
83 30, gtk. BUTTONBOX_EDGE),
84 True, True, 5)
85
86 hbox.pack_start(self.create_bbox(False, "Start (spacing 20)",
87 20, gtk. BUTTONBOX_START),
88 True, True, 5)
89
90 hbox.pack_start(self.create_bbox(False, "End (spacing 20)",
91 20, gtk.BUTTONBOX_END),
92 True, True, 5)
93
94 window.show_all()
95

96 def main():

97 # Enter the event loop
98 gtk.main()

99 return O

100

101 if _name__ ==" main__"™
102 ButtonBoxExample()

103 main()

146

) Container
Widgets

10.11. Toolbar

Toolbars are usually used to group some number of widgets in order to simplify customization of their look and
layout. Typically a toolbar consists of buttons with icons, labels and tooltips, but any other widget can also be put
inside a toolbar. Finally, items can be arranged horizontally or vertically and buttons can be displayed with icons,
labels, or both.

Creating a toolbar is (as one may already suspect) done with the following function:

toolbar = gtk.Toolbar()

After creating a toolbar one can append, prepend and insert items (that means simple text strings) or elements (that
means any widget types) into the toolbar. To describe an item we need a label text, a tooltip text, a private tooltip text,
an icon for the button and a callback for it. For example, to append or prepend an item you may use the following
methods:

toolbar.append_item(text , tooltip_text , tooltip_private_text , icon , |
callbback , user_data =None)
toolbar.prepend_item(text , tooltip_text , tooltip_private_text , icon , |

callback , user_data)

If you want to use thénsert_item () method, the only additional parameter which must be specified is the position
in which the item should be inserted, thus:

toolbar.insert_item(text , tooltip_text , tooltip_private_text , icon , callback ,
user_data , position)

To simplify adding spaces between toolbar items, you may use the following methods:

toolbar.append_space()
toolbar.prepend_space()

toolbar.insert_space(position)

If it's required, the orientation of a toolbar, its style and whether tooltips are available can be changed "on the fly"
using the following methods:

toolbar.set_orientation(orientation)

toolbar.set_style(style)

147

. . Con-
tainer Widgets

toolbar.set_tooltips(enable)

Where orientation is one of ORIENTATION_HORIZONTALor ORIENTATION_VERTICAL The style
is used to set appearance of the toolbar items by using on@ G®LBAR_ICONS TOOLBAR_TEXT or

TOOLBAR_BOTHheenable argument is eitheFRUEor FALSE

To show some other things that can be done with a toolbar, let's takdhizar.py [examples/toolbar.pyéxample

program (we'll interrupt the listing with some additional explanations):

1 #lusr/bin/env python

2

3 # example toolbar.py

4

5 import pygtk

6 pygtk.require(’2.0’)

7 import gtk

8

9 class ToolbarExample:

10 # This method is connected to the Close button or
11 # closing the window from the WM

12 def delete_event(self, widget, event=None):
13 gtk.main_quit()

14 return False

15

The above beginning seems should be familiar to you if it's not your first PyGTK program. There is one additional
thing though, we import a nice XPM picturgtk.xpm [examples/gtk.xpmio serve as an icon for all of the buttons.
Line 10 starts théToolbarExample class and lines 12-14 define the callback method which will terminate the

program.
16 # that's easy... when one of the buttons is toggled, we just
17 # check which one is active and set the style of the toolbar
18 # accordingly
19 def radio_event(self, widget, toolbar):
20 if self.text_button.get_active():
21 toolbar.set_style(gtk. TOOLBAR_TEXT)
22 elif self.icon_button.get_active():
23 toolbar.set_style(gtk. TOOLBAR_ICONS)
24 elif self.both_button.get_active():
25 toolbar.set_style(gtk. TOOLBAR_BOTH)
26
27 # even easier, just check given toggle button and enable/disable
28 # tooltips
29 def toggle_event(self, widget, toolbar):
30 toolbar.set_tooltips(widget.get_active())
31

148

file:url(examples/toolbar.py)
file:url(examples/gtk.xpm)

. . Con-
tainer Widgets

Lines 19-30 are two callback methods that will be called when one of the buttons on a toolbar is pressed. You should
already be familiar with things like this if you've already used toggle buttons (and radio buttons).

32 def __init_ (self):

33 # Here is our main window (a dialog) and a handle for the handlebox
34 # Ok, we need a toolbar, an icon with a mask (one for all of
35 # the buttons) and an icon widget to put this icon in (but

36 # we’'ll create a separate widget for each button)

37 # create a new window with a given title, and nice size

38 dialog = gtk.Dialog()

39 dialog.set_title("GTKToolbar Tutorial")

40 dialog.set_size _request(450, 250)

41 dialog.set_resizable(True)

42

43 # typically we quit if someone tries to close us

44 dialog.connect("delete_event", self.delete_event)

45

46 # to make it nice we’'ll put the toolbar into the handle box,
a7 # so that it can be detached from the main window

48 handlebox = gtk.HandleBox()

49 dialog.vbox.pack_start(handlebox, False, False, 5)

50

The above should be similar to any other PyGTK application. Just initializationTafcdbarExample object
instance creating the window, etc. There is only one thing that probably needs some explanation: a handle box. A
handle box is just another box that can be used to pack widgets in to. The difference between it and typical boxes is
that it can be detached from a parent window (or, in fact, the handle box remains in the parent, but it is reduced to a
very small rectangle, while all of its contents are reparented to a new freely floating window). It is usually nice to have
a detachable toolbar, so these two widgets occur together quite often.

51 # toolbar will be horizontal, with both icons and text, and
52 # with 5pxl spaces between items and finally,

53 # we'll also put it into our handlebox

54 toolbar = gtk.Toolbar()

55 toolbar.set_orientation(gtk. ORIENTATION_HORIZONTAL)
56 toolbar.set_style(gtk. TOOLBAR_BOTH)

57 toolbar.set_border_width(5)

58 handlebox.add(toolbar)

59

Well, what we do above is just a straightforward initialization of the toolbar widget.

60 # our first item is <close> button

61 iconw = gtk.Image() # icon widget

62 iconw.set_from_file("gtk.xpm")

63 close_button = toolbar.append_item(

64 "Close", # button label

65 "Closes this app", # this button’s tooltip

149

66
67
68
69

. . Con-
tainer Widgets

"Private", # tooltip private info

iconw, # icon widget

self.delete_event) # a signal
toolbar.append_space() # space after item

In the above code you see the simplest case: adding a button to toolbar. Just before appending a new item, we have to
construct an image widget to serve as an icon for this item; this step will have to be repeated for each new item. Just
after the item we also add a space, so the following items will not touch each other. As you appéhd_item ()

method returns a reference to our newly created button widget, so that we can work with it in the normal way.

71
72
73
74
75
76
77
78
79
80
81
82
83
84
85

now, let's make our radio buttons group...
iconw = gtk.Image() # icon widget
iconw.set_from_file("gtk.xpm")
icon_button = toolbar.append_element(
gtk. TOOLBAR_CHILD_RADIOBUTTON, # type of element

None, # widget

"Icon”, # label

"Only icons in toolbar", # tooltip

"Private”, # tooltip private string
iconw, # icon
self.radio_event, # signal

toolbar) # data for signal

toolbar.append_space()
self.icon_button = icon_button

Here we begin creating a radio buttons group. To do this we useppend_element () method. In fact,

using this method one can also add simple items or even sppges (= gtk. TOOLBAR_CHILD_SPACE or

gtk. TOOLBAR_CHILD_BUTTON). In the above case we start creating a radio group. In creating other radio buttons
for this group a reference to the previous button in the group is required, so that a list of buttons can be easily
constructed (se&ection 6.4, “Radio Buttonsgarlier in this tutorial). We also save a reference to the button in
theToolbarExample instance for later access.

86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101

following radio buttons refer to previous ones
iconw = gtk.Image() # icon widget
iconw.set_from_file("gtk.xpm")
text_button = toolbar.append_element(
gtk. TOOLBAR_CHILD_RADIOBUTTON,
icon_button,
"Text",
"Only texts in toolbar",
"Private",
iconw,
self.radio_event,
toolbar)
toolbar.append_space()
self.text_button = text_button

iconw = gtk.Image() # icon widget

150

Container

Widgets
102 iconw.set_from_file("gtk.xpm")
103 both_button = toolbar.append_element(
104 gtk. TOOLBAR_CHILD_RADIOBUTTON,
105 text_button,
106 "Both",
107 “Icons and text in toolbar",
108 "Private",
109 iconw,
110 self.radio_event,
111 toolbar)
112 toolbar.append_space()
113 self.both_button = both_button
114 both_button.set_active(True)

115

We create the other radiobuttons the same way except we pass one of the created radio group buttons to the
append_element () method to specify the radio group.

In the end we have to set the state of one of the buttons manually (otherwise they all stay in active state, preventing us
from switching between them).

116 # here we have just a simple toggle button
117 iconw = gtk.Image() # icon widget

118 iconw.set_from_file("gtk.xpm")

119 tooltips_button = toolbar.append_element(
120 gtk. TOOLBAR_CHILD_TOGGLEBUTTON,
121 None,

122 "Tooltips",

123 "Toolbar with or without tips",

124 "Private”,

125 iconw,

126 self.toggle_event,

127 toolbar)

128 toolbar.append_space()

129 tooltips_button.set_active(True)

130

A toggle button can be created in the obvious way (if one knows how to create radio buttons already).

131 # to pack a widget into toolbar, we only have to

132 # create it and append it with an appropriate tooltip

133 entry = gtk.Entry()

134 toolbar.append_widget(entry, "This is just an entry", "Private")
135

136 # well, it isn’'t created within the toolbar, so we must still show it
137 entry.show()

138

151

) Container
Widgets

As you see, adding any kind of widget to a toolbar is simple. The one thing you have to remember is that this widget
must be shown manually (contrary to items which will be shown together with the toolbar).

139 # that's it ! let's show everything.
140 toolbar.show()

141 handlebox.show()

142 dialog.show()

143

144 def main():

145 # rest in gtk_main and wait for the fun to begin!
146 gtk.main()

147 return O

148

149 if _name__ =="_ main__"

150 ToolbarExample()

151 main()

Line 142 ends th&oolbarExample class definition. Lines 144-147 define thein () function which just calls
thegtk.main () function to start the event processing loop. Lines 149-151 arrange to créat#tmrExample

instance and then enter the event processing loop. So, here we are at the end of toolbar tutorial. Of course, to appreciate
it in full you need also this nice XPM icogtk.xpm [examples/gtk.xpm]Figure 10.8, “Toolbar Examplélustrates

the resulting display:

Figure 10.8. Toolbar Example

kEToaolbar Tutn:l' ri':su.l

Ce®

Close [con Text Both Tooltips

152

file:url(examples/gtk.xpm)

) Container
Widgets

10.12. Notebooks

The NoteBook Widget is a collection of "pages" that overlap each other; each page contains different information
with only one page visible at a time. This widget has become more common lately in GUI programming, and it is a
good way to show blocks of similar information that warrant separation in their display.

The first function call you will need to know, as you can probably guess by now, is used to create a hew notebook
widget.

notebook = gtk.Notebook()

Once the notebook has been created, there are a number of methods that operate on the notebook widget. Let’s look
at them individually.

The first one we will look at is how to position the page indicators. These page indicators or "tabs" as they are referred
to, can be positioned in four ways: top, bottom, left, or right.

notebook.set_tab_pos(pos)

pos will be one of the following, which are pretty self explanatory:

POS_LEFT
POS_RIGHT
POS_TOP
POS_BOTTOM

POS_TORSs the default.

Next we will look at how to add pages to the notebook. There are three ways to add pageseBaok . Let’s look
at the first two together as they are quite similar.

notebook.append_page(child , tab_label)

notebook.prepend_page(child , tab_label)

These methods add pages to the notebook by inserting them from the back of the notebook (append), or the front of
the notebook (prependthild is the widget that is placed within the notebook page, tahd label s the label

for the page being added. Theild widget must be created separately, and is typically a set of options setup within
one of the other container widgets, such as a table.

The final method for adding a page to the notebook contains all of the properties of the previous two, but it allows you
to specify what position you want the page to be in the notebook.

153

) Container
Widgets

notebook.insert_page(child , tab_label , position)

The parameters are the sameappend () andprepend () except it contains an extra paramefasition . This

parameter is used to specify what place this page will be inserted into; the first page having position zero.

Now that we know how to add a page, lets see how we can remove a page from the notebook.
notebook.remove_page(page_num)

This method takes the page specifieddagie _num and removes it from the widget pointed to bgtebook .

To find out what the current page is in a notebook use the method:

page = notebook.get current_page()

These next two methods are simple calls to move the notebook page forward or backward. Simply provide the
respective method call with the notebook widget you wish to operate on.

notebook.next_page()

notebook.prev_page()

154

) Container
Widgets

Note

When thenotebook is currently on the last page, andxt_page () is called, nothing happens. Likewise,
if the notebook is on the first page, angrev_page () is called, nothing happens.

This next method sets the "active" page. If you wish the notebook to be opened to page 5 for example, you would use
this method. Without using this method, the notebook defaults to displaying the first page.

notebook.set_current_page(page_num)

The next two methods add or remove the notebook page tabs and the notebook border respectively.

notebook.set_show_tabs(show_tabs)

notebook.set_show_border(show_border)

The next method is useful when the you have a large number of pages, and the tabs don't fit on the page. It allows the
tabs to be scrolled through using two arrow buttons.

notebook.set_scrollable(scrollable)

show_tabs , show_border andscrollable can be eitheTRUEor FALSE

Now let’s look at an example. Theotebook.py[examples/notebook.pyjrogram creates a window with a notebook

and six buttons. The notebook contains 11 pages, added in three different ways, appended, inserted, and prepended.
The buttons allow you rotate the tab positions, add or remove the tabs and border, remove a page, change pages in
both a forward and backward manner, and exit the progFigure 10.9, “Notebook Exampléflustrates the program

display:

Figure 10.9. Notebook Example

155

file:url(examples/notebook.py)

. . Con-
tainer Widgets

 hotehao k. P 5:,.;

FFage 5
FFage 3
FFage 2
FFPage 1
Fage 1
Fage 2
A page
Fage 3
Fage 4
Fage 5

FPrepend Frame 2

FPrepend Frame 2

cloze | next page | prev page |iak position:

tabsharder anfoff

FEMOWVE page

The source code farotebook.py[examples/notebook.pys:

1
2
3
4
5
6
7
8

9
10
11
12
13
14
15
16
17
18
19
20
21
22

#!/usr/bin/env python

example notebook.py
import pygtk
pygtk.require(’2.0°)
import gtk

class NotebookExample:

This method rotates the position of the tabs

def rotate_book(self, button, notebook):
notebook.set_tab_pos((notebook.get tab_pos()+1) %4)

Add/Remove the page tabs and the borders

def tabsborder_book(self, button, notebook):

tval = False

bval = False

if self.show_tabs == False:
tval = True

if self.show_border == False:

bval = True

156

file:url(examples/notebook.py)

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76

. . Con-
tainer Widgets

notebook.set_show_tabs(tval)

self.show_tabs = tval

notebook.set_show_border(bval)

self.show_border = bval

Remove a page from the notebook
notebook):
page = notebook.get_current_page()

def remove_book(self, button,

notebook.remove_page(page)
Need to refresh the widget --

This forces the widget to redraw itself.
notebook.queue_draw_area(0,0,-1,-1)

def delete(self, widget, event=None):

gtk.main_quit()
return False

def __init__ (self):

window = gtk.Window(gtk. WINDOW_TOPLEVEL)
window.connect("delete_event", self.delete)

window.set_border_width(10)

table = gtk.Table(3,6,False)

window.add(table)

Create a new notebook,
notebook = gtk.Notebook()

notebook.set_tab_pos(gtk.POS_TOP)

place the position of the tabs

table.attach(notebook, 0,6,0,1)

notebook.show()
self.show_tabs = True
self.show_border = True

Let's append a bunch of pages to the notebook

for i in range(5):

bufferf = "Append Frame %d" % (i+1)

bufferl = "Page %d" % (i+1)

frame = gtk.Frame(bufferf)
frame.set_border_width(10)

frame.set_size_request(100, 75)

frame.show()

label = gtk.Label(bufferf)

frame.add(label)
label.show()

label = gtk.Label(bufferl)

notebook.append_page(frame, label)

Now let's add a page to a specific spot
checkbutton = gtk.CheckButton("Check me please!")
checkbutton.set_size request(100, 75)

checkbutton.show ()

157

. . Con-
tainer Widgets

77

78 label = gtk.Label("Add page")

79 notebook.insert_page(checkbutton, label, 2)

80

81 # Now finally let's prepend pages to the notebook
82 for i in range(5):

83 bufferf = "Prepend Frame %d" % (i+1)

84 bufferl = "PPage %d" % (i+1)

85

86 frame = gtk.Frame(bufferf)

87 frame.set_border_width(10)

88 frame.set_size_request(100, 75)

89 frame.show()

90

91 label = gtk.Label(bufferf)

92 frame.add(label)

93 label.show()

94

95 label = gtk.Label(bufferl)

96 notebook.prepend_page(frame, label)

97

98 # Set what page to start at (page 4)

99 notebook.set_current_page(3)

100

101 # Create a bunch of buttons

102 button = gtk.Button("close")

103 button.connect("clicked”, self.delete)

104 table.attach(button, 0,1,1,2)

105 button.show()

106

107 button = gtk.Button("next page")

108 button.connect("clicked”, lambda w: notebook.next_page())
109 table.attach(button, 1,2,1,2)

110 button.show()

111

112 button = gtk.Button("prev page")

113 button.connect("clicked”, lambda w: notebook.prev_page())
114 table.attach(button, 2,3,1,2)

115 button.show()

116

117 button = gtk.Button("tab position")

118 button.connect("clicked", self.rotate_book, notebook)
119 table.attach(button, 3,4,1,2)

120 button.show()

121

122 button = gtk.Button("tabs/border on/off")

123 button.connect("clicked", self.tabsborder_book, notebook)
124 table.attach(button, 4,5,1,2)

125 button.show()

126

127 button = gtk.Button("remove page")

128 button.connect("clicked", self.remove_book, notebook)
129 table.attach(button, 5,6,1,2)

130 button.show()

158

. . Con-
tainer Widgets

131

132 table.show()
133 window.show()
134

135 def main():
136 gtk.main()
137 return O

138

139 if _name_ ==" main__ "
140 NotebookExample()

141 main()

I hope this helps you on your way with creating notebooks for your PyGTK applications.

10.13. Plugs and Sockets

Plugs andSockets cooperate to embed the user interface from one process into another process. This can also be
accomplished using Bonobo.

10.13.1. Plugs

A Plug encapsulates a user interface provided by one application so that it can be embedded in another application’s
user interface. The "embedded" signal alerts the plug application that the plug has been embedded in the other
application’s user interface.

A Plug is created using the following function:

plug = gtk.Plug(socket_id)

which creates a ne®Rlug and embeds it in th8ocket identified bysocket_id . If socket_id is OL, the plug
is left "unplugged"” and can later be plugged intB@cket using theSocket add_id () method.

ThePlug method:

id = plug.get_id()

returns the window ID of @lug , that can be used to embed it insid&Sacket using theSocket add_id ()
method.

Theplug.py [examples/plug.pygxample program illustrates the use of a Plug:

1 #!/usr/bin/python
2

3 import pygtk

4 pygtk.require('2.0)
5 import gtk,sys

159

file:url(examples/plug.py)

) Container
Widgets

6

7 Wid = 0L

8 if len(sys.argv) == 2:

9 Wid = long(sys.argv[1])

11 plug = gtk.Plug(Wid)
12 print "Plug ID=", plug.get_id()

14 def embed_event(widget):
15 print "I (",widget,”) have just been embedded!"

17 plug.connect("embedded”, embed_event)
19 entry = gtk.Entry()
20 entry.set_text("hello")

21 def entry_point(widget):
22 print "You've changed my text to '%s™ % widget.get_text()

24 entry.connect("changed", entry_point)
25 plug.connect("destroy”, gtk.mainquit)

27 plug.add(entry)
28 plug.show_all()

31 gtk.mainloop()

The program is invoked like:

plug.py [windowID]

wherewindowID is the ID of aSocket to connect thé’lug to.

10.13.2. Sockets

A Socket provides the widget to embedRiug widget from another application into your GUI transparently. An
application creates 8ocket widget and, passes that widget’s window ID to another application, which then creates
aPlug using that window ID as a parameter. Any widgets contained ifPthg appear inside the first application’s
window.

TheSocket window ID is obtained by using theocket methodget_id (). Before using this method, tf&ocket
must be realized, and added to its parent.

160

. . Con-
tainer Widgets

Note

If you pass the window ID of th&ocket to another process that will creatdPbug in the Socket , you
must make sure that tf&ocket widget is not destroyed until th&iug is created.

When GTK+ is notified that the embedded window has been destroyed, then it will dest®ydket as well. You
should always, therefore, be prepared for your sockets to be destroyed at any time when the main event loop is running.
Destroying a&Socket will cause an embedddelug to be destroyed as well.

The communication between%ocket and aPlug follows the XEmbed protocol. This protocol has also been
implemented in other toolkits, e.g. Qt, allowing the same level of integration when embedding a Qt widget in GTK or
vice versa.

Create a new emptgocket :

socket = gtk.Socket()

TheSocket must be contained in a toplevel window before you invokesattié id () method:

socket.add_id(window_id)

which adds an XEMBED client, such asPdug , to theSocket . The client may be in the same process or in a
different process.
To embed @lug in aSocket , you can either create thilug with:

plug = gtk.Plug(OL)

and then pass the number returned byRhey get id () method to theSocket add_id () method:

socket.add_id(plug)

or you can invoke th&ocket get id () method:

window_id = socket.get_id()

to get the window ID for the socket, and then create the plug with:

plug = gtk.Plug(window_id)

161

) Container
Widgets

TheSocket must have already be added into a toplevel window before you can make this call.

Thesocket.py[examples/socket.pygxample program illustrates the use Backet :

#!/usr/bin/python
import string
import pygtk
pygtk.require(’2.0")
import gtk,sys

9 window = gtk.Window()
10 window.show()

12 socket = gtk.Socket()
13 socket.show()
14 window.add(socket)

16 print "Socket ID=", socket.get_id()
17 window.connect("destroy”, gtk.mainquit)

19 def plugged_event(widget):
20 print "l (",widget,") have just had a plug inserted!"

22 socket.connect("plug-added"”, plugged_event)

24 if len(sys.argv) == 2:
25 socket.add_id(long(sys.argv[1]))

27 gtk.mainloop()

To run the example you can either rplug.py [examples/plug.pyfirst:

$ python plug.py
Plug ID= 20971522

and copy the output ID to the first arg eécket.py[examples/socket.py]

$ python socket.py 20971522

Socket ID= 48234523

| (<gtk.Plug object (GtkPlug) at 0x3008dd78>) have just been embedded!

I (<gtk.Socket object (GtkSocket) at 0x3008ddf0>) have just had a plug
inserted!

Or you can rursocket.py[examples/socket.py]

162

file:url(examples/socket.py)
file:url(examples/plug.py)
file:url(examples/socket.py)
file:url(examples/socket.py)

) Container
Widgets

$ python socket.py
Socket ID= 20971547

and then rumplug.py [examples/plug.py]copying across the window ID:

$ python plug.py

20971547

I (<gtk.Socket object (GtkSocket) at 0x3008ddf0>) have just had a plug
inserted!

Plug ID= 48234498

163

file:url(examples/plug.py)

Chapter 11. Menu Widget

There are two ways to create menus: there’s the easy way, and there’s the hard way. Both have their uses, but you can
usually use thétemFactory (the easy way). The "hard" way is to create all the menus using the calls directly. The
easy way is to use thgtk.ltemFactory calls. This is much simpler, but there are advantages and disadvantages

to each approach.

Note
In PyGTK 2.4 ItemFactory is deprecated - use the UlManager instead.

The ltemFactory is much easier to use, and to add new menus to, although writing a few wrapper functions to
create menus using the manual method could go a long way towards usability. Withrttiactory , it is not
possible to add images or the character '/’ to the menus.

11.1. Manual Menu Creation

In the true tradition of teaching, we’ll show you the hard way first. :)

There are three widgets that go into making a menubar and submenus:

* a menu item, which is what the user wants to select, e.g., "Save"
* a menu, which acts as a container for the menu items, and
* a menubar, which is a container for each of the individual menus.

This is slightly complicated by the fact that menu item widgets are used for two different things. They are both the
widgets that are packed into the menu, and the widget that is packed into the menubar, which, when selected, activates
the menu.

Let’s look at the functions that are used to create menus and menubars. This first function is used to create a new

menubar:

menu_bar = gtk.MenuBar()

This rather self explanatory function creates a new menubar. You usgkii@ontainer add () method to pack
this into a window, or th@tk.Box pack methods to pack it into a box - the same as buttons.

menu = gtk.Menu()

This function returns a reference to a new menu; it is never actually shown (witthtve() method), it is just a
container for the menu items. | hope this will become more clear when you look at the example below.

The next function is used to create menu items that are packed into the menu (and menubar):

menu_item = gtk.Menultem(label =None)

164

. M
Widget end

Thelabel , if any, will be parsed for mnemonic characters. This call is used to create the menu items that are to be
displayed. Remember to differentiate between a "menu" as createdtkiMenu () and a "menu item" as created

by thegtk.Menultem () functions. The menu item will be an actual button with an associated action, whereas a
menu will be a container holding menu items.

Once you've created a menu item you have to put it into a menu. This is done usiagpted () method. In order
to capture when the item is selected by the user, we need to connect to the "activate" signal in the usual way. So, if we
wanted to create a standard File menu, with the options Open, Save, and Quit, the code would look something like:

file_menu = gtk.Menu() # Don't need to show menus

Create the menu items
open_item = gtk.Menultem("Open")
save_item = gtk.Menultem("Save")
quit_item = gtk.Menultem("Quit")

Add them to the menu
file_menu.append(open_item)
file_menu.append(save_item)
file_menu.append(quit_item)

Attach the callback functions to the activate signal
open_item.connect_object("activate”, menuitem_response, "file.open")
save_item.connect_object("activate”, menuitem_response, "file.save")

We can attach the Quit menu item to our exit function
quit_item.connect_object ("activate”, destroy, "file.quit")

We do need to show menu items
open_item.show()

save_item.show()

quit_item.show()

At this point we have our menu. Now we need to create a menubar and a menu item for the File entry, to which we
add our menu. The code looks like this:

menu_bar = gtk.MenuBar()
window.add(menu_bar)
menu_bar.show()

file_item = gtk.Menultem("File")
file_item.show()

Now we need to associate the menu Witk _item . This is done with the method:

menu_item.set_submenu(submenu)

165

. M
Widget end

So, our example would continue with:

file_item.set_submenu(file_menu)

All that is left to do is to add the menu to the menubar, which is accomplished using the method:

menu_bar.append(child)

which in our case looks like this:

menu_bar.append(file_item)

If we wanted the menu right justified on the menubar, such as help menus often are, we can use the following method
(again orfile_item in the current example) before attaching it to the menubar.

menu_item.set_right_justified(right_justified)

Here is a summary of the steps needed to create a menu bar with menus attached:

» Create a hnew menu usimgk.Menu ()

» Use multiple calls tajtk.Menultem () for each item you wish to have on your menu. And useahpend ()
method to put each of these new items on to the menu.

» Create a menu item usirgik.Menultem (). This will be the root of the menu, the text appearing here will be
on the menubar itself.

» Use theset_submenu () method to attach the menu to the root menu item (the one created in the above step).

» Create a new menubar usigtk.MenuBar (). This step only needs to be done once when creating a series of
menus on one menu bar.

» Use theappend () method to put the root menu onto the menubar.

Creating a popup menu is nearly the same. The difference is that the menu is not posted "automatically" by a menubar,
but explicitly by calling thepopup () method from a button-press event, for example. Take these steps:

» Create an event handling callback. It needs to have the format:

def handler(widget, event):

 and it will use the event to find out where to pop up the menu.

166

. M
Widget end

« In the event handler, if the event is a mouse button press, treat event as a button event (which it is) and use it as
shown in the sample code to pass information togbeup () method.

 Bind that event handler to a widget with:

widget.connect_object("event”, handler, menu)

» where widget is the widget you are binding to, handler is the handling function, and menu is a menu created with
gtk.Menu (). This can be a menu which is also posted by a menu bar, as shown in the sample code.

11.2. Manual Menu Example

That should about do it. Let's take a look at tmenu.py [examples/menu.pydéxample program to help clarify the
conceptsFigure 11.1, “Menu Examplellustrates the program display:

Figure 11.1. Menu Example

| GTK Menu Test

Root Menu |

press me

Themenu.py [examples/menu.pyjrogram source code is:

#!/usr/bin/env python
example menu.py

1
2
3
4
5 import pygtk

6 pygtk.require(’2.0")

7 import gtk

8

9 class MenuExample:
10 def __init__ (self):

11 # create a new window

12 window = gtk.Window(gtk.WINDOW_TOPLEVEL)

13 window.set_size_request(200, 100)

14 window.set _title("GTK Menu Test")

15 window.connect("delete_event", lambda w,e: gtk.main_quit())
16

17 # Init the menu-widget, and remember -- never

167

file:url(examples/menu.py)
file:url(examples/menu.py)

Menu

Widget
18 # show() the menu widget!!
19 # This is the menu that holds the menu items, the one that
20 # will pop up when you click on the "Root Menu" in the app
21 menu = gtk.Menu()
22
23 # Next we make a little loop that makes three menu-entries for
24 # "test-menu”. Notice the call to gtk menu_append. Here we are
25 # adding a list of menu items to our menu. Normally, we'd also
26 # catch the "clicked" signal on each of the menu items and setup a
27 # callback for it, but it's omitted here to save space.
28 for i in range(3):
29 # Copy the names to the buf.
30 buf = "Test-undermenu - %d" % i
31
32 # Create a new menu-item with a name...
33 menu_items = gtk.Menultem(buf)
34
35 # ...and add it to the menu.
36 menu.append(menu_items)
37
38 # Do something interesting when the menuitem is selected
39 menu_items.connect("activate”, self.menuitem_response, buf)
40
41 # Show the widget
42 menu_items.show()
43
44 # This is the root menu, and will be the label
45 # displayed on the menu bar. There won't be a signal handler attached,
46 # as it only pops up the rest of the menu when pressed.
47 root_menu = gtk.Menultem("Root Menu")
48
49 root_menu.show()
50
51 # Now we specify that we want our newly created "menu” to be the
52 # menu for the "root menu"
53 root_menu.set_submenu(menu)
54
55 # A vbox to put a menu and a button in:
56 vbox = gtk.VBox(False, 0)
57 window.add(vbox)
58 vbox.show()
59
60 # Create a menu-bar to hold the menus and add it to our main window
61 menu_bar = gtk.MenuBar()
62 vbox.pack_start(menu_bar, False, False, 2)
63 menu_bar.show()
64
65 # Create a button to which to attach menu as a popup
66 button = gtk.Button("press me")
67 button.connect_object("event", self.button_press, menu)
68 vbox.pack_end(button, True, True, 2)
69 button.show()
70
71 # And finally we append the menu-item to the menu-bar -- this is the

168

Menu Widget

72 # "root" menu-item | have been raving about =)

73 menu_bar.append (root_menu)

74

75 # always display the window as the last step so it all splashes on
76 # the screen at once.

77 window.show()

78

79 # Respond to a button-press by posting a menu passed in as widget.
80 #

81 # Note that the "widget" argument is the menu being posted, NOT
82 # the button that was pressed.

83 def button_press(self, widget, event):

84 if event.type == gtk.gdk.BUTTON_PRESS:

85 widget.popup(None, None, None, event.button, event.time)
86 # Tell calling code that we have handled this event the buck
87 # stops here.

88 return True

89 # Tell calling code that we have not handled this event pass it on.
90 return False

91

92 # Print a string when a menu item is selected

93 def menuitem_response(self, widget, string):

94 print "%s" % string

95

96 def main():
97 gtk.main()
98 return O

99

100 if __name__ =="__main__"
101 MenuExample()

102 main()

You may also set a menu item to be insensitive and, using an accelerator table, bind keys to menu callbacks.

11.3. Using ItemFactory

Now that we've shown you the hard way, here’s how you do it usingytkdtemFactory calls.

11.4. Item Factory Example

Theitemfactory.py [examples/itemfactory.py@xample program uses tiggk.ItemFactory . Figure 11.2, “Item
Factory Examplelllustrates the program display:

Figure 11.2. Iltem Factory Example

169

file:url(examples/itemfactory.py)

. M
Widget end

M=1ES

|

e Options

|
T
]

The source code fatemfactory.py [examples/itemfactory.pyi$:

1
2
3
4
5
6
7
8

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

#!/usr/bin/env python
example itemfactory.py

import pygtk
pygtk.require(’2.0")
import gtk

class ltemFactoryExample:
Obligatory basic callback
def print_hello(self, w, data):
print "Hello, World!"

This is the ItemFactoryEntry structure used to generate new menus.
Iltem 1: The menu path. The letter after the underscore indicates an
accelerator key once the menu is open.

Iltem 2. The accelerator key for the entry

Item 3: The callback.

Item 4: The callback action. This changes the parameters with

which the callback is called. The default is O.

Item 5: The item type, used to define what kind of an item it is.
Here are the possible values:

NULL -> "<|tem>"

-> "<Jtem>"

"<Title>" -> create a title item

"<ltem>" -> create a simple item

"<Checkltem>" -> create a check item

"<Toggleltem>" -> create a toggle item

170

file:url(examples/itemfactory.py)

30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83

Menu

Widget
"<Radioltem>" -> create a radio item
<path> -> path of a radio item to link against
"<Separator>" -> create a separator
"<Branch>" -> create an item to hold sub items (optional)
"<LastBranch>" -> create a right justified branch

def get_main_menu(self, window):

accel_group = gtk.AccelGroup()

This function initializes the item factory.

Param 1: The type of menu - can be MenuBar, Menu,

or OptionMenu.

Param 2: The path of the menu.

Param 3: A reference to an AccelGroup. The item factory sets up
the accelerator table while generating menus.
item_factory = gtk.ltemFactory(gtk.MenuBar, "<main>", accel_group)

This method generates the menu items. Pass to the item factory
the list of menu items
item_factory.create_items(self.menu_items)

Attach the new accelerator group to the window.
window.add_accel_group(accel_group)

need to keep a reference to item_factory to prevent its destruction
self.item_factory = item_factory

Finally, return the actual menu bar created by the item factory.
return item_factory.get widget("<main>")

def __ init__ (self):

self.menu_items = (

("/_File", None, None, 0, "<Branch>"),

("/File/_New", "<control>N", self.print_hello, 0, None),
("/File/_Open", "<control>0", self.print_hello, 0, None),
("/File/_Save", "<control>S", self.print_hello, 0, None),
("/File/Save _As", None, None, 0, None),

("/File/sepl", None, None, 0, "<Separator>"),
("/File/Quit", "<control>Q", gtk.main_quit, 0, None),

("/_Options", None, None, 0, "<Branch>"),

("/Options/Test", None, None, 0, None),

("/_Help", None, None, 0, "<LastBranch>"),
("/_Help/About", None, None, 0, None),

)

window = gtk.Window(gtk. WINDOW_TOPLEVEL)
window.connect("destroy", lambda w: gtk.main_quit(), "WM destroy")
window.set_title("ltem Factory")

window.set_size_request(300, 200)

main_vbox = gtk.VBox(False, 1)
main_vbox.set_border_width(1)
window.add(main_vbox)
main_vbox.show()

menubar = self.get_main_menu(window)

171

Menu Widget

84

85 main_vbox.pack_start(menubar, False, True, 0)
86 menubar.show()

87 window.show()

88

89 def main():
90 gtk.main()
91 return O

92

93 if _name__ =="_ main__ "
94 ItemFactoryExample()
95 main()

For now, there’s only this example. An explanation and lots 'o’ comments will follow later.

172

Chapter 12. Drawing Area

The DrawingArea widget wraps agtk.gdk.Window which is a subclass ofgtk.gdk.Drawable

(as is agtk.gdk.Pixmap). In effect the DrawingArea provides a simple 'canvas’ area (the wrapped
gtk.gdk.Window) that can be drawn on using the methods ofgtiegdk.Drawable class.

A DrawingArea is created using the constructor:

drawing_area = gtk.DrawingAreay()

A DrawingArea is initially created with a size of (0, 0) so you should use the following method to make the
drawing_area visible by setting its width and height to useful values greater than zero:

drawing_area.set_size_request(width , height)

To draw on aDrawingArea you must retrieve the wrappek.gdk.Window using thewindow attribute of the
DrawingArea as follows:

drawable = drawing_area.window

Then you can draw odrawable using thegtk.gdk.Drawable methods described i8ection 12.2, “Drawing
Methods”.

173

Drawing Area

Note

TheDrawingArea must be realized (i.e. the Widget methadalize () or show() have been called) to
have an associatefdk.gdk.Window that can be used for drawing.

12.1. Graphics Context

A variety of methods are available to draw onto tiik.gdk.Window of a DrawingArea . All these methods
require a graphics contexgtk.gdk.GC) to encapsulate, as attributes, the information required for drawing. The
attributes of ggtk.gdk.GC are:

background
cap_style
clip_mask
clip_x_origin
clip_y origin
fill

font
foreground
function
graphics_exposures
join_style
line_style
line_width
stipple
sub_window
tile
ts_x_origin
ts_y_origin

background specifies an allocategtk.gdk.Color that is used to draw the background color.
foreground specifies an allocategtk.gdk.Color that is used to draw the foreground color.

A gtk.gdk.Color represents a color that may be allocated or unallocated. An unallocated color can be created
using the constructor:

color = gtk.gdk.Color(red =0, green =0, blue =0, pixel =0)

wherered , green andblue are integers in the range of 0 to 6553%xel is not usually specified because it is
overwritten when the color is allocated.

Alternatively, an unallocategtk.gdk.Color can be created using the function:

color = gtk.gdk.color_parse(spec)

wherespec is a color specification string that can be either:

174

Drawing Area

» acolor name (e.g. "red", "orange", "navajo white" as defined in the X Windowgfiléxt), or

» a hexadecimal string starting with '# and containing three sets of hex digits of the same length (1, 2, 3 or 4 digits).
For example, "#FOA", "#FFO0AA", "#FFFOO0OAAA" and "#FFFFOOO0OAAAA" all represent the same color.

A gtk.gdk.Color representing an allocated color is created usinggtkeydk.Colormap alloc_color 0
method which has three signatures:

color = colormap.alloc_color(color , writeable =FALSE, best _match =TRUE)
color = colormap.alloc_color(spec, writeable =FALSE, best match =TRUE)
color = colormap.alloc_color(red, green, blue , writeable =FALSE,, ,

best_match =TRUE)

color is an unallocatedytk.gdk.Color . spec is a color specification string as described above for the
gtk.gdk.color_parse () function. red , green andblue are integer color values as described for the
gtk.gdk.Color () constructor. You can optionally specify whether the allocated color should be writeable (i.e.
can be changed later but cannot be shared) or whether a best match with existing colors should be made if the exact
color is not available.

For example:

navajowhite = colormap.alloc('navajo white’)

cyan = colormap.alloc(0, 65535, 65535)

red = colormap.alloc_color('#FF0000’, True, True)

The colormap associated with a widget can be retrieved using the method:

colormap = widget.get_colormap()

cap_style specifies the line ending style that is used when drawing the end of a line that is not joined to another
line. The available cap styles are:

CAP_NOT_LAST draws line ends the same @AP_BUTTfor lines of non-zero width. For zero
width lines, the final point on the line will not be drawn.

CAP_BUTT the ends of the lines are drawn squared off and extending to the coordinates of the
end point.

CAP_ROUND the ends of the lines are drawn as semicircles with the diameter equal to the line

width and centered at the end point.
CAP_PROJECTING the ends of the lines are drawn squared off and extending half the width of the line
beyond the end point.

clip_mask specifies ajtk.gdk.Pixmap that is used to clip the drawing in tlidgawing_area

175

Drawing Area

clip_x_origin andclip_y_origin specify the origin x and y values relative to the upper left corner of the
drawing_area for clipping.

fill specifies the fill style to be used when drawing. The available fill styles are:
SOLID draw with the foreground color.
TILED draw with a tiled pixmap.
STIPPLED draw using the stipple bitmap. Pixels corresponding to bits in the stipple bitmap

that are set will be drawn in the foreground color; pixels corresponding to bits that
are not set will be left untouched.

OPAQUE_STIPPLED draw using the stipple bitmap. Pixels corresponding to bits in the stipple bitmap
that are set will be drawn in the foreground color; pixels corresponding to bits that
are not set will be drawn with the background color.

font is agtk.gdk.Font that is used as the default font for drawing text.

Note
The use of thdont attribute is deprecated.

function specifies how the bit values for the source pixels are combined with the bit values for destination pixels
to produce the resulting pixels bits. The sixteen values here correspond to the 16 different possible 2x2 truth tables
but only a couple of these values are usually useful. For color images, only COPY, XOR and INVERT are generally
useful while for bitmaps, AND and OR are also useful. The function values are:

COPY
INVERT

XOR

CLEAR

AND
AND_REVERSE
AND_INVERT
NOOP

OR

EQUIV
OR_REVERSE
COPY_INVERT
OR_INVERT
NAND

SET

graphics_exposures specifies whether graphics exposures are enafiBiB or disabled FALSE). When
graphics_exposures is TRUE a failure when copy pixels in a drawing operation will cause an expose event to
be issued. If the copy succeeds, a noexpose event is issued.

join_style specifies the style of joint to be used when lines meet at an angle. The available styles are:

JOIN_MITER the sides of each line are extended to meet at an angle.
JOIN_ROUND the sides of the two lines are joined by a circular arc.
JOIN_BEVEL the sides of the two lines are joined by a straight line which makes an equal angle

with each line.

176

Drawing
Area

line_style specifies the style that a line will be drawn with. The available styles are:

LINE_SOLID lines are drawn as continuous segments.

LINE_ON_OFF_DASH even segments are drawn; odd segments are not drawn.

LINE_DOUBLE_DASH even segments are normally. Odd segments are drawn in the background color if
the fill style isSOLID, or in the background color masked by the stipple if the fill
style isSTIPPLED.

line_width specifies the width that lines will be drawn with.

stipple specifies thegtk.gdk.Pixmap that will be used for stippled drawing when tfik is set to either
STIPPLED or OPAQUE_STIPPLED

sub_window specifies the mode of drawing intogék.gdk.Window that has childytk.gdk.Window s. The
possible values adub_window are:

CLIP_BY_CHILDREN only draw onto the window itself but not its child windows
INCLUDE_INFERIORS draw onto the window and its child windows.

tile specifies thegtk.gdk.Pixmap to used for tiled drawing when tHgl is set toTILED .

ts_x_origin andts_y_origin specify the tiling/stippling origin (the starting position for the stippling bitmap
or tiling pixmap).

A new Graphics Context is created by a call to gtle. gdk.Drawable.new_gc () method:

gc = drawable.new_gc(foreground =None, background =None, font =None,

function =-1, fill =-1, tile =None,

stipple =None, clip_mask =None, subwindow_mode =-1,
ts_x_origin =-1, ts_y_ origin =-1, clip_x_origin =1,
clip_y_origin =-1, graphics_exposures =-1,
line_width =-1, line_style =-1, cap_style =-1
join_style =-1)

In order for a new Graphics Context to be created with this method, the drawable must be:

» agtk.gdk.Window which has been realized (created), or;

» agtk.gdk.Pixmap associated with a realizeytk.gdk.Window

177

Drawing Area

The various attributes of the Graphics Context have default values if not setmethegc () method. If you want to
set the GC attributes using thew_gc () method, it's much easier to use the Python keyword arguments.

The individual attributes of gtk.gdk.GC can also be set by assigning a value to the GC object attribute. For
example:

gc.cap_style = CAP_BUTT
gc.line_width = 10

gc.fill = SOLD
gc.foreground = mycolor

or by using the following methods:

gc.set_foreground(color)
gc.set_background(color)
gc.set_function(function)
gc.set_fill(fill)

gc.set_tile(tile)
gc.set_stipple(stipple)
gc.set_ts_origin(x, y)
gc.set_clip_origin(x, y)
gc.set_clip_mask(mask)
gc.set_clip_rectangle(rectangle)
gc.set_subwindow(mode)
gc.set_exposures(exposures)
gc.set_line_attributes(line_width, line_style, cap_style, join_style)

The dash pattern to be used whenlthe_style isLINE_ON_OFF_DASHrLINE_DOUBLE_DASHan be set
using the following method:

gc.set_dashes(offset, dash_list)

whereoffset is the index of the starting dash valuedash_list ~ anddash_list s a list or tuple containing
numbers of pixels to be drawn or skipped to form the dashes. The dashes are drawn starting with the number of pixels
at the offset position; then the next number of pixels is skipped; and then the next number is drawn; and so on rotating
through all the dash_list numbers and starting over when the end is reached. For example, if the dash_listis (2, 4, 8,
16) and the offset is 1, the dashes will be drawn as: draw 4 pixels, skip 8 pixels, draw 16 pixels, skip 2 pixels, draw 4
pixels and so on.

A copy of an existinggtk.gdk.GC can be made using the method:

gc.copy(src_gc)

The attributes ofc will then be the same asc_gc .

178

Drawing Area

12.2. Drawing Methods

There are a general set of methods that can be used to draw onto the drawing area 'canvas’. These drawing methods
can be used for angtk.gdk.Drawable subclass (either gtk.gdk.Window or agtk.gdk.Pixmap). The
drawing methods are:

drawable.draw_point(gc, X, Y)

gc is the Graphics Context to be used to do the drawing.

x andy are the coordinates of the point.

drawable.draw_line(gc, x1, yl, x2, y2)

gc is the Graphics Context.

x1 andyl specify the starting point of the lin@2 andy2 specify the ending point of the line.

drawable.draw_rectangle(gc, filed |, x, y, width , height)

wheregc is the Graphics Context.

filled is a boolean indicating the rectangle should be filled with the foreground coldRWEor not filled, if
FALSE

x andy are the top left corner of the rectangle.

width andheight are the width and height of the rectangle.

drawable.draw_arc(gc, filled , x, y, width , height , anglel , angle2)

gc is the Graphics Context.
filled is aboolean indicating the arc should be filled with the foreground colBR@Eor not filled, if FALSE

x andy are the top left corner of the bounding rectanglgidth andheight are the width and height of the
bounding rectangle.

anglel is the start angle of the arc, relative to the 3 o’clock position, counter-clockwise, in 1/64ths of a degree.

angle2 is the end angle of the arc, relativednglel , in 1/64ths of a degree counter clockwise.

drawable.draw_polygon(gc, filled , points)

179

Drawing Area

gc is the Graphics Context.
filled is a boolean indicating the polygon should be filled with the foreground cold®Eor not filled, if FALSE

points is a list of coordinate pairs in tuples e.g. [(0,0), (2,5), (3,7), (4,11)] of the points to be drawn as a connected
polygon.

drawable.draw_string(font , gc, x, y, string)

drawable.draw_text(font , gc, x, y, string)

font isthegtk.gdk.Font to use to render the string.
gc is the Graphics Context.
x andy are the coordinates of the point to start rendering the string i.e the left baseline.

string is the string of characters to render.

Note

Both thedraw_string () anddraw_text () methods are deprecated - uspango.Layout instead
with thedraw_layout () method.

drawable.draw_layout(gc, X, y, layout)

gc is the Graphics Context.
x andy are the coordinates of the point to start rendering the layout.

layout is thepango.Layout thatis to be rendered.

drawable.draw_drawable(gc, src, xsrc , ysrc , xdest , ydest , width , height)

gc is the Graphics Context.

src is the source drawable.

xsrc andysrc are the coordinates of the top left rectangle in the source drawable.
xdest andydest are the coordinates of the top left corner in the drawing area.

width andheight are the width and height of the source drawable area to be copieddeeativable . If width
or height is -1 then the full width or height of thérawable is used.

drawable.draw_image(gc, image, xsrc , ysrc , xdest , ydest , width , height)

180

Drawing Area

gc is the Graphics Context.

image is the source image.

xsrc andysrc are the coordinates of the top left rectangle in the source drawable.
xdest andydest are the coordinates of the top left corner in the drawing area.

width andheight are the width and height of the source drawable area to be copieddoethvable . If width
or height is -1 then the full width or height of thimmage is used.

drawable.draw_points(gc, points)

gc is the Graphics Context.

points is a list or tuple of coordinate pairs in tuples e.g. [(0,0), (2,5), (3,7), (4,11)] of the points to be drawn.

drawable.draw_segments(gc, segs)

gc is the Graphics Context.

segs is a list or tuple of start and end coordinate pairs in tuples e.g. [(0,0, 1,5), (2,5, 1,7), (3,7, 1,11), (4,11, 1,13)]
of the line segments to be drawn.

drawable.draw_lines(gc, points)

gc is the Graphics Context.

points s a list or tuple of coordinate pairs in tuples e.g. [(0,0), (2,5), (3,7), (4,11)] of the points to be connected
with lines.

drawable.draw_rgb_image(gc, X, Yy, width , height , dith , rgb_buf , rowstride)
drawable.draw_rgb_32_image(gc, X, y, width , height , dith , buf, rowstride)

drawable.draw_gray_image(gc, X, Yy, width , height , dith , buf, rowstride)

gc is the Graphics Context.
x andy are the top left corner of the image bounding rectangle.
width andheight are the width and height of the image bounding rectangle.

dith is the dither mode as described below

181

Drawing Area

For thedraw_rgb_image () method,rgb_buf is the RGB Image data packed in a string as a sequence of 8-bit
RGB pixel triplets. For thalraw_rgb_32_image () method,buf is the RGB Image data packed in a string as a
sequence of 8-bit RGB pixel triplets with 8-bit padding (4 characters per RGB pixel). Fdraie gray _image ()
methodbuf is the gray image data packed in a string as 8-bit pixel data.

rowstride is the number of characters from the start of one row to the start of the next row of the im-
age. rowstride usually defaults to: 3 *width for the draw_rgb_image () method; 4 *width for the
draw_rgb_32_image (); and,width forthedraw_gray image () method. Ifrowstride is O the line will be
replicatecheight times.

Thedither modes are:

RGB_DITHER_NONE # Never use dithering.
RGB_DITHER_NORMAL # Use dithering in 8 bits per pixel (and below) only.

RGB_DITHER_MAX # Use dithering in 16 bits per pixel and below.

The drawingarea.py [examples/drawingarea.pygxample program demonstrates the use of most of the
DrawingArea methods. It also puts thBrawingArea inside aScrolledWindow and adds horizontal
and verticaRuler widgets.Figure 12.1, “Drawing Area Examplehows the program in operation:

Figure 12.1. Drawing Area Example

Image

Ents Line Lines

E

off

| —

E_' 'tangles Arcs Pixmap

D_- |

e

T <
L)«)

182

file:url(examples/drawingarea.py)

Drawing
Area

The drawingarea.py [examples/drawingarea.pgpurce code is below and uses titk.xpm [examples/gtk.xpm]
pixmap:

#!/usr/bin/env python
example drawingarea.py

import pygtk
pygtk.require('2.0%)
import gtk

import operator

9 import time

10 import string

1
2
3
4
5
6
7
8

11

12 class DrawingAreaExample:

13 def __init__ (self):

14 window = gtk.Window(gtk. WINDOW_TOPLEVEL)

15 window.set_title("Drawing Area Example")

16 window.connect("destroy”, lambda w: gtk.main_quit())

17 self.area = gtk.DrawingArea()

18 self.area.set_size_request(400, 300)

19 self.pangolayout = self.area.create_pango_layout("")

20 self.sw = gtk.ScrolledWindow()

21 self.sw.add_with_viewport(self.area)

22 self.table = gtk.Table(2,2)

23 self.hruler = gtk.HRuler()

24 self.vruler = gtk.VRuler()

25 self.hruler.set_range(0, 400, 0, 400)

26 self.vruler.set_range(0, 300, 0, 300)

27 self.table.attach(self.hruler, 1, 2, 0, 1, yoptions=0)

28 self.table.attach(self.vruler, 0, 1, 1, 2, xoptions=0)

29 self.table.attach(self.sw, 1, 2, 1, 2)

30 window.add(self.table)

31 self.area.set_events(gtk.gdk.POINTER_MOTION_MASK |
32 gtk.gdk.POINTER_MOTION_HINT_MASK)
33 self.area.connect("expose-event"”, self.area_expose_ch)
34 def motion_notify(ruler, event):

35 return ruler.emit("motion_notify_event", event)

36 self.area.connect_object("motion_notify_event", motion_notify,
37 self.hruler)

38 self.area.connect_object("motion_notify_event", motion_notify,
39 self.vruler)

40 self.hadj = self.sw.get_hadjustment()

41 self.vadj = self.sw.get_vadjustment()

42 def val_cb(adj, ruler, horiz):

43 if horiz:

44 span = self.sw.get_allocation()[3]

45 else:

46 span = self.sw.get_allocation()[2]

a7 l,u,p,m = ruler.get_range()

48 v = adj.value

49 ruler.set_range(v, v+span, p, m)

50 while gtk.events_pending():

183

file:url(examples/drawingarea.py)
file:url(examples/gtk.xpm)

51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104

Drawing
Area

de

—h

gtk.main_iteration()

self.hadj.connect('value-changed’, val_cb, self.hruler, True)
self.vadj.connect('value-changed’, val_cb, self.vruler, False)
def size_allocate_cb(wid, allocation):

X, Y, w, h = allocation

l,u,p,m = self.hruler.get_range()

m = max(m, w)

self.hruler.set_range(l, I+w, p, m)

l,u,p,m = self.vruler.get_range()

m = max(m, h)

self.vruler.set_range(l, I+h, p, m)
self.sw.connect('size-allocate’, size allocate_cb)
self.area.show()
self.hruler.show()
self.vruler.show()
self.sw.show()
self.table.show()
window.show()

area_expose_cb(self, area, event):
self.style = self.area.get_style()
self.gc = self.style.fg_gc[gtk. STATE_NORMAL]
self.draw_point(10,10)
self.draw_points(110, 10)
self.draw_line(210, 10)
self.draw_lines(310, 10)
self.draw_segments(10, 100)
self.draw_rectangles(110, 100)
self.draw_arcs(210, 100)
self.draw_pixmap(310, 100)
self.draw_polygon(10, 200)
self.draw_rgb_image(110, 200)
return True

def draw_point(self, x, y):

self.area.window.draw_point(self.gc, x+30, y+30)
self.pangolayout.set_text("Point")
self.area.window.draw_layout(self.gc, x+5, y+50, self.pangolayout)
return

def draw_points(self, x, y):

points = [(x+10,y+10), (x+10,y), (x+40,y+30),

(x+30,y+10), (x+50,y+10)]
self.area.window.draw_points(self.gc, points)
self.pangolayout.set_text("Points")
self.area.window.draw_layout(self.gc, x+5, y+50, self.pangolayout)
return

def draw_line(self, x, y):

self.area.window.draw_line(self.gc, x+10, y+10, x+20, y+30)
self.pangolayout.set_text("Line")
self.area.window.draw_layout(self.gc, x+5, y+50, self.pangolayout)
return

184

105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158

Drawing
Area

def draw_lines(self, X, y):
points = [(x+10,y+10), (x+10,y), (x+40,y+30),

(x+30,y+10), (x+50,y+10)]
self.area.window.draw_lines(self.gc, points)
self.pangolayout.set_text("Lines")
self.area.window.draw_layout(self.gc, x+5, y+50, self.pangolayout)
return

def draw_segments(self, x, y):
segments = ((x+20,y+10, x+20,y+70), (x+60,y+10, x+60,y+70),
(x+10,y+30 , x+70,y+30), (x+10, y+50 , x+70, y+50))
self.area.window.draw_segments(self.gc, segments)
self.pangolayout.set_text("Segments")
self.area.window.draw_layout(self.gc, x+5, y+80, self.pangolayout)
return

def draw_rectangles(self, X, y):
self.area.window.draw_rectangle(self.gc, False, X, y, 80, 70)
self.area.window.draw_rectangle(self.gc, True, x+10, y+10, 20, 20)
self.area.window.draw_rectangle(self.gc, True, x+50, y+10, 20, 20)
self.area.window.draw_rectangle(self.gc, True, x+20, y+50, 40, 10)
self.pangolayout.set_text("Rectangles")
self.area.window.draw_layout(self.gc, x+5, y+80, self.pangolayout)
return

def draw_arcs(self, x, y):
self.area.window.draw_arc(self.gc, False, x+10, y, 70, 70,

0, 360*64)
self.area.window.draw_arc(self.gc, True, x+30, y+20, 10, 10,
0, 360*64)
self.area.window.draw_arc(self.gc, True, x+50, y+20, 10, 10,
0, 360*64)
self.area.window.draw_arc(self.gc, True, x+30, y+10, 30, 50,

210*64, 120*64)
self.pangolayout.set_text("Arcs")
self.area.window.draw_layout(self.gc, x+5, y+80, self.pangolayout)
return

def draw_pixmap(self, x, y):
pixmap, mask = gtk.gdk.pixmap_create_from_xpm(
self.area.window, self.style.bg[gtk. STATE_NORMAL], "gtk.xpm")

self.area.window.draw_drawable(self.gc, pixmap, 0, 0, x+15, y+25,

-1, -1)
self.pangolayout.set_text("Pixmap")
self.area.window.draw_layout(self.gc, x+5, y+80, self.pangolayout)
return

def draw_polygon(self, x, y):
points = [(x+10,y+60), (x+10,y+20), (x+40,y+70),

(x+30,y+30), (x+50,y+40)]
self.area.window.draw_polygon(self.gc, True, points)
self.pangolayout.set_text("Polygon™)
self.area.window.draw_layout(self.gc, x+5, y+80, self.pangolayout)

185

Drawing Area

159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181

return

def draw_rgb_image(self, x, y):
b = 80*3*80*['\0’]
for i in range(80):
for j in range(80):
b[3*80*i+3*j] = chr(255-3*)
b[3*80*i+3*j+1] = chr(255-3*abs(i-j))
b[3*80*+3*j+2] = chr(255-3%))
buff = string.join(b,)
self.area.window.draw_rgb_image(self.gc, x, y, 80, 80,
gtk.gdk.RGB_DITHER_NONE, buff, 80*3)
self.pangolayout.set_text("RGB Image")
self.area.window.draw_layout(self.gc, x+5, y+80, self.pangolayout)
return

def main():
gtk.main()
return O

if _name__ =="_ main__"
DrawingAreaExample()
main()

186

Chapter 13. TextView Widget
13.1. TextView Overview

TextView widgets and their associated objeciexXtBuffer s, TextMark s, Textlter s, TextTag s and
TextTagTable s) provide a powerful framework for multiline text editing.

A TextBuffer (seeSection 13.3, “Text Bufferg"contains the text which is displayed by one or moextView
widgets.

Within GTK+ 2.0, text is encoded in UTF-8 which means that one character may be encoded as multiple bytes. Within
aTextBuffer itis necessary to differentiate between the character counts (called offsets) and the byte counts (called
indexes).

Textlters provide a volatile representation of the position inTaxtBuffer between two characters.
Textlters are valid until the number of characters in thextBuffer =~ changes; i.e. any time characters are
inserted or deleted fromBextBuffer all Textlters will become invalid.Textlters are the primary way to
specify locations in &extBuffer for manipulating text.

TextMarks are provided to allow preservation dextBuffer positions across buffer modifications. A mark

is like a Textlter (seeSection 13.4, “Text Iter9”in that it represents a position between two characters in a
TextBuffer) but if the text surrounding the mark is deleted the mark remains where the deleted text once was.
Likewise, if text is inserted at the mark the mark ends up either to the left or right of the inserted text depending on the
gravity of the mark - right gravity leaves the mark to the right of the inserted text while left gravity leaves it to the left.
TextMark s (seeSection 13.5, “Text Mark9’may be named or anonymous if not given a name. HacttBuffer

has two predefined namé@@éxtMark s (se€Section 13.5, “Text Markg"calledinsert andselection_bound

These refer to the insertion point and the boundary of the selection (the selection is betweeserthe and the
selection_bound marks).

TextTag s (seeSection 13.6.1, “Text Tag¥'are objects that specify a set of attributes that can be applied to a range
of text in aTextBuffer . EachTextBuffer has aTextTagTable (seeSection 13.6.2, “Text Tag Tables”

which contains the tags that are available in that buffextTagTable s can be shared betwe@&extBuffer sto

provide commonalityTextTag s are generally used to change the appearance of a range of text but can also be used
to prevent a range of text from being edited.

13.2. TextViews

There is only one function for creating a n@wextView widget.

textview = gtk.TextView(buffer =None)

When aTextView is created it will create an associatédxtBuffer andTextTagTable by default. If you
want to use an existinfiextBuffer in aTextView specify it in the above method. To change TrextBuffer
used by arextView use the following method:

textview.set_buffer(buffer)

Use the following method to retrieve a reference toTe&tBuffer from aTextView :

187

TextView Widget

buffer = textview.get_buffer()

A TextView widget doesn't have scrollbars to adjust the view in case the text is larger than the window. To provide
scrollbars, you add théextView to aScrolledWindow (seeSection 10.9, “Scrolled Window}”

A TextView can be used to allow the user to edit a body of text, or to display multiple lines of read-only text to the

user. To switch between these modes of operation, the use the following method:

textview.set_editable(setting)

Thesetting argument is & RUEor FALSE value that specifies whether the user is permitted to edit the contents
of the TextView widget. The editable mode of th€extView can be overridden in text ranges within the
TextBuffer by TextTag s.

You can retrieve the current editable setting using the method:

setting = textview.get_editable()

When theTextView is not editable, you probably should hide the cursor using the method:

textview.set_cursor_visible(setting)

Thesetting argumentis & RUEor FALSEvalue that specifies whether the cursor should be visibleTEx@/iew
can wrap lines of text that are too long to fit onto a single line of the display window. Its default behavior is to not
wrap lines. This can be changed using the next method:

textview.set_wrap_mode(wrap_mode)

This method allows you to specify that the text widget should wrap long lines on word or character boundaries. The
word_wrap argumentis one of:

gtk WRAP_NONE
gtk WRAP_CHAR
gtk WRAP_WORD

The default justification of the text inBextView can be set and retrieved using the methods:

textview.set_justification(justification)

188

TextView Widget

justification = textview.get_justification()

wherejustification is one of:

gtk.JUSTIFY_LEFT
gtk.JUSTIFY_RIGHT
gtk JUSTIFY_CENTER

Note

Thejustification will be JUSTIFY_LEFT ifthewrap_mode is WRAP_NONHags in the associated
TextBuffer may override the default justification.

Other default attributes that can be set and retrievediex&View are: left margin, right margin, tabs, and paragraph
indentation using the following methods:

textview.set_left_margin(left_margin)
left_margin = textview.get_left_margin()

textview.set_right_margin(right_margin)
right_margin = textview.get_right_margin()

textview.set_indent(indent)
indent = textview.get_indent()

textview.set_pixels_above_lines(pixels_above_line)
pixels_above_line = textview.get_pixels_above_lines()

textview.set_pixels_below_lines(pixels_below_line)
pixels_below_line = textview.get pixels_below_lines()

textview.set_pixels_inside_wrap(pixels_inside_wrap)
pixels_inside_wrap = textview.get_pixels_inside_wrap()

textview.set_tabs(tabs)
tabs = textview.get_tabs()

left_ margin , right_ margin , indent , pixels_above_lines , pixels_below_lines and
pixels_inside_wrap are specified in pixels. These default values may be overridden by tags in the asso-
ciatedTextBuffer . tabs is apango.TabArray

Thetextview-basic.py[examples/textview-basic.pgkample program illustrates basic use of TextView widget:

Figure 13.1. Basic TextView Example

189

file:url(examples/textview-basic.py)

TextView Widget

TextView Widget Basic Example

vhow = gtk WBos() ﬂ
vhiow . show)
hbox pack_start{vhox, gtk FALSE, gtk FALSE, 0%
radio = gtk.RadioButtondMNone, "JUSTIFY__LEFT™)
vhoy pack_startiradio, gtk . FALSE, gtk TRUE, 0}
radio.connect! "toggled”, self new _justification, textview,
gtk JUSTIFY_LEFT)
radio.set_active{gtk TRUE)
raddio.show)
tadio = gtk FRadioButtondradio, "JUSTIFY __RIGHT™
vhow pack_startiradio, gtk . FALSE, gtk TRUE, 0}
radio.connect! "toggled”, self new _justification, textview,
gtk JUSTIFY_RIGHT)
raddio.show)
tadio = gtk.RadioButtondradio, "JUSTIFY__CENTER™)
vhow pack_startiradio, gtk FALSE, gtk TRLUE, 07 J
radio.connecty "toggled”, self new _justification, textview,
gtk JUSTIFY_CEMNTER)

raddio.show)
zernarator = itk HSanaratord ﬂ
[7 Editaile (O WRAP_NONE () JUSTIFY_LEFT
[¥ Cursor Visible () WRAP_CHAR (" JUSTIFY_RIGHT
[~ iLeft Margin: (&8 WRAP_WORD (8 JUSTIFY_CENTER
[Right Margin
cloge

The source code for the program is:

#!/usr/bin/env python
example textview-basic.py

1
2
3
4
5 import pygtk

6 pygtk.require(’2.0’)

7 import gtk

8

9 class TextViewExample:

10 def toggle_editable(self, checkbutton, textview):
11 textview.set_editable(checkbutton.get_active())
12

190

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

TextView Widget

def toggle cursor_visible(self, checkbutton, textview):
textview.set_cursor_visible(checkbutton.get_active())

def toggle_left_margin(self, checkbutton, textview):
if checkbutton.get_active():
textview.set_left_margin(50)
else:
textview.set_left_margin(0)

def toggle_right_margin(self, checkbutton, textview):
if checkbutton.get_active():
textview.set_right_margin(50)
else:
textview.set_right_margin(0)

def new_wrap_mode(self, radiobutton, textview, val):
if radiobutton.get_active():
textview.set_wrap_mode(val)

def new_justification(self, radiobutton, textview, val):
if radiobutton.get_active():
textview.set_justification(val)

def close_application(self, widget):
gtk.main_quit()

def __init__(self):
window = gtk.Window(gtk. WINDOW_TOPLEVEL)
window.set_resizable(True)
window.connect("destroy", self.close_application)
window.set _title("TextView Widget Basic Example")
window.set_border_width(0)

box1l = gtk.VBox(False, 0)
window.add(box1)
box1.show()

box2 = gtk.VBox(False, 10)
box2.set_border_width(10)
box1.pack_start(box2, True, True, 0)
box2.show()

sw = gtk.ScrolledWindow()
sw.set_policy(gtk.POLICY_AUTOMATIC, gtk.POLICY_AUTOMATIC)
textview = gtk.TextView()

textbuffer = textview.get_buffer()

sw.add(textview)

sw.show()

textview.show()

box2.pack_start(sw)
Load the file textview-basic.py into the text window
infile = open("textview-basic.py", "r")

191

67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109

110
111
112
113
114

115
116
117
118

TextView Widget

if infile:
string = infile.read()
infile.close()

textbuffer.set_text(string)

hbox = gtk.HButtonBox()
box2.pack_start(hbox, False, False, 0)
hbox.show()

vbox = gtk.VBox()

vbox.show()

hbox.pack_start(vbox, False, False, 0)

check button to toggle editable mode

check = gtk.CheckButton("Editable")
vbox.pack_start(check, False, False, 0)
check.connect("toggled”, self.toggle editable, textview)
check.set_active(True)

check.show()

check button to toggle cursor visiblity

check = gtk.CheckButton("Cursor Visible")
vbox.pack_start(check, False, False, 0)
check.connect("toggled", self.toggle_cursor_visible, textview)
check.set_active(True)

check.show()

check button to toggle left margin

check = gtk.CheckButton("Left Margin™)
vbox.pack_start(check, False, False, 0)
check.connect("toggled”, self.toggle_left_margin, textview)
check.set_active(False)

check.show()

check button to toggle right margin

check = gtk.CheckButton("Right Margin")
vbox.pack_start(check, False, False, 0)
check.connect("toggled”, self.toggle_right_margin, textview)
check.set_active(False)

check.show()

radio buttons to specify wrap mode

vbox = gtk.VBox()

vbox.show()

hbox.pack_start(vbox, False, False, 0)

radio = gtk.RadioButton(None, "WRAP__NONE")
vbox.pack_start(radio, False, True, 0)

radio.connect("toggled”, self.new_wrap_mode, textview, gtk WRAP_NONE)
radio.set_active(True)
radio.show()
radio = gtk.RadioButton(radio, "WRAP__ CHAR")
vbox.pack_start(radio, False, True, 0)

radio.connect("toggled”, self.new_wrap_mode, textview, gtk. WRAP_CHAR)
radio.show()
radio = gtk.RadioButton(radio, "WRAP__ WORD")
vbox.pack_start(radio, False, True, 0)

192

TextView Widget

radio.connect("toggled”, self.new_wrap_mode, textview, gtk WRAP_WORD)

119 radio.show()

120

121 # radio buttons to specify justification

122 vbox = gtk.VBox()

123 vbox.show()

124 hbox.pack_start(vbox, False, False, 0)

125 radio = gtk.RadioButton(None, "JUSTIFY__ LEFT")
126 vbox.pack_start(radio, False, True, 0)

127 radio.connect("toggled”, self.new_justification, textview,
128 gtk JUSTIFY_LEFT)

129 radio.set_active(True)

130 radio.show()

131 radio = gtk.RadioButton(radio, "JUSTIFY__ RIGHT")
132 vbox.pack_start(radio, False, True, 0)

133 radio.connect("toggled”, self.new_justification, textview,
134 gtk JUSTIFY_RIGHT)

135 radio.show()

136 radio = gtk.RadioButton(radio, "JUSTIFY__ CENTER")
137 vbox.pack_start(radio, False, True, 0)

138 radio.connect("toggled”, self.new_justification, textview,
139 gtk JUSTIFY_CENTER)

140 radio.show()

141

142 separator = gtk.HSeparator()

143 box1.pack_start(separator, False, True, 0)

144 separator.show()

145

146 box2 = gtk.VBox(False, 10)

147 box2.set_border_width(10)

148 box1.pack_start(box2, False, True, 0)

149 box2.show()

150

151 button = gtk.Button("close")

152 button.connect("clicked", self.close_application)

153 box2.pack_start(button, True, True, 0)

154 button.set_flags(gtk. CAN_DEFAULT)

155 button.grab_default()

156 button.show()

157 window.show()

158

159 def main():
160 gtk.main()
161 return O

162

163 if __name__ =="__main__"
164 TextViewExample()

165 main()

Lines 10-34 define the callbacks for the radio and check buttons used to change the default attribuTesiibe .
Lines 55-63 create &crolledWindow to contain thelextView . TheScrolledWindow is packed into &Box

193

TextView Widget

with the check and radio buttons created in lines 72-140. TebéBuffer associated with th€extView is loaded
with the contents of the source file in lines 64-70.

13.3. Text Buffers

A TextBuffer is the core component of the PyGTK text editing system. It contains the textetkt@ag s in a
TextTagTable and theTextMark s which together describe how the text is to be displayed and allow a user to
interactively modify the text and text display. As noted in the previous secfimxtBuffer is associated with one

or moreTextView s which display th&@extBuffer contents.

A TextBuffer can be created automatically whefi@xtView is created or it can be created with the function:

textbuffer = TextBuffer(table =None)

wheretable is aTextTagTable . If table is not specified (or iNone) a TextTagTable will be created for
the TextBuffer

There are a large number of methods that can be used to:

* insert and remove text from a buffer
* create, delete and manipulate marks

» manipulate the cursor and the selection

create, apply and remove tags
« specify and manipulatéextiter s

* get status information

13.3.1. TextBuffer Status Information

You can retrieve the number of lines inextbuffer by using the method:

line_count = textbuffer.get_line_count()

Likewise you can get the number of characters intéhbuffer using:

char_count = textbuffer.get_char_count()

When thetextbuffer contents are changed the modified flag in the textbuffer is set. The status of the modified flag
can be retrieved using the method:

194

TextView Widget

modified = textbuffer.get_modified()

If the program saves the contents of the textbuffer the following method can be used to reset the modified flag:

textbuffer.set_modified(setting)

13.3.2. Creating Textlters

A Textlter is used to specify a location withinTeextBuffer ~ between two character$extBuffer methods
that manipulate text useextiter s to specify where the method is to be appli€dxtiter s have a large number
of methods that will be described in th@extlter s section.

The basicTextBuffer = methods used to crealextlter s are:

iter = textbuffer.get_iter_at_offset(char_offset)

iter = textbuffer_get_iter_at line(line_number)

iter = textbuffer.get_iter_at line_offset(line_number , line_offset)

iter = textbuffer.get_iter_at_mark(mark)
get_iter_at_offset () creates an iter that is just aftelnar_offset chars from the start of the textbuffer.
get_iter_at_line () creates an iter that is just before the first characténg number
get_iter_at line_offset () creates an iter that is just after tlge_offset character idine_number

get_iter_at_mark () creates an iter that is at the same position as the givaat .

The following methods create one or mdrextiter s at specific buffer locations:

startiter = textbuffer.get_start_iter()
enditer = textbuffer_get_end_iter()
startiter, enditer = textbuffer.get_bounds()

start, end = textbuffer.get_selection_bounds()

get_start_iter () creates an iter that is just before the first character in the textbuffer.

get_end_iter () creates an iter that is just after the last character in the textbuffer.

195

TextView Widget

get_bounds () creates a tuple of two iters that are just before the first character and just after the last character in the
textbuffer respectively.

get_selection_bounds () creates a tuple of two iters that have the same location asndeat and
selection_bound marks in the textbuffer.

13.3.3. Text Insertion, Retrieval and Deletion

The text in aTextBuffer can be set using the method:

textbuffer.set_text(text)

This method replaces the current contents of textbuffer teith .

The most general method to insert characters in a textbuffer is:

textbuffer.insert(iter , text)

which insertg¢ext at the textbuffer location specified litgr

If you want to simulate the insertion of text by an interactive user use the method:

result = textbuffer.insert_interactive(iter , text , default_editable)

which insertgext in the textbuffer at the location specified ibgr but only if the location is editable (i.e. does not
have a tag that specifies the text is non-editable) andéfeult_editable value isTRUE The result indicates
whether the text was inserted.

default_editable indicates the editability of text that doesn't have a tag affecting editability;
default_editable is usually determined by a call to tHiextView get_editable () method.

Other methods that insert text are:

textbuffer.insert_at_cursor(text)

result = textbuffer.insert_at_cursor_interactive(text , default_editable)
textbuffer.insert_range(iter , start , end)

result = textbuffer.insert_range_interactive(iter , start , end,,
default_editable)

insert_at_cursor () is a convenience method that inserts text at the current cursar{) location.

196

TextView Widget

insert_range () copies text, pixbufs and tags betwestart andend from aTextBuffer (if different from
textbuffer the tag table must be the same) and inserts the copy into textbuféer ak location.

The interactive versions of these methods operate the same way except they will only insert if the location is editable.

Finally, text can be inserted and have tags applied at the same time using the methods:

textbuffer.insert_with_tags(iter, text, tagl, tag2, ...)

textbuffer.insert_with_tags_by name(iter, text, tagnamel, tagnamez, ...)

insert_with_tags () inserts theext in the textbuffer at the location specified igr and applies the given
tags.
insert_with_tags_by name () does that same thing but allows you to specify the tags using the tag name.

The text in a textbuffer can be deleted by using the methods:

textbuffer.delete(start , end)

result = textbuffer.delete_interactive(start , end, default_editable)

delete () removes the text between thtart andend Textlter locations in textbuffer.

delete_interactive () removes all the editable (as determined by the applicable text tags and the
default_editable argument) text betweestart andend.

You can retrieve a copy of the text from a textbuffer by using the methods:

text = textbuffer.get_text(start , end, include_hidden_chars =TRUE)

text = textbuffer.get_slice(start , end, include_hidden_chars =TRUE)

get text () returns a copy of théext in textbuffer betweerstart andend; undisplayed text is excluded if
include_hidden_chars is FALSE Characters which represent embedded images or widgets are excluded.

get _slice () is the same aget_text () except that the returnetxt includes a OxFFFC character for each
embedded image or widget.

13.3.4. TextMarks

TextMark s are similar toTextlter s in that they specify a location inEextBuffer ~ between two characters.
However,TextMark s maintain their location information across buffer modifications. TéMark methods will
be described in th&extMark s section.

A textbuffer contains two built-in marks: thiesert (cursor) mark and theelection_bound mark. The
insert mark is the default location for the insertion of text and fetection_bound mark combines with
theinsert mark to define a selection range.

197

TextView Widget

The built-in marks can be retrieved by using the methods:

insertmark = textbuffer.get_insert()

selection_boundmark = textbuffer.get_selection_bound()

Theinsert andselection_bound marks can be placed simultaneously at a location by using the method:

textbuffer.place_cursor(where)

where is a textiter specifying the location. Tisace cursor () method is needed to avoid temporarily creating a
selection if the marks were moved individually.

TextMark s are created by using the method:

mark = textbuffer.create_mark(mark_name, where, left_gravity =FALSE)

wheremark_name is the name assigned to the created mark (caNdree to create an anonymous markjhere
is the textiter specifying the location of the mark in textbuffer &ftl gravity indicates where the mark will be
located after text is inserted at the mark (lefTRUEor right if FALSE).

A mark can be moved in the textbuffer by using the methods:
textbuffer.move_mark(mark, where)

textbuffer.move_mark by name(name, where)

mark specifies the mark to be movechame specifies the name of the mark to be movedhere is a textiter
specifying the new location.
A mark can be deleted from a textbuffer by using the methods:

textbuffer.delete_mark(mark)

textbuffer.delete_mark_by name(name)

A mark can be retrieved by name using the method:

mark = textbuffer.get_mark(name)

198

TextView Widget

13.3.5. Creating and Applying TextTags

TextTag s contain one or more attributes (e.g. foreground and background colors, font, editability) that can be applied
to one or more ranges of text inf@xtBuffer . The attributes that can be specifiedtgxtTag properties will be
described irSection 13.6.1, “Text Tags”

A TextTag can be created with attributes and installed in TextTagTable of a TextBuffer by using the
convenience method:

tag = textbuffer.create_tag(name=None, attrl=vall, attr2=val2, ...)

wherename is a string specifying the name of the taghtwne if the tag is an anonymous tag and the keyword-value
pairs specify the attributes that the tag will have. SeéldwTag > section for information on what attributes can be
set by theTextTag properties.

A tag can be applied to a range of text in a textbuffer by using the methods:

textbuffer.apply_tag(tag , start , end)

textbuffer.apply _tag_by name(name, start , end)

tag is the tag to be applied to the textame is the name of the tag to be appliestart andend are textiters that
specify the range of text that thhag is to be applied to.

A tag can be removed from a range of text by using the methods:
textbuffer.remove_tag(tag , start , end)
textbuffer.remove_tag_by name(name, start , end)

All tags for a range of text can be removed by using the method:

textbuffer.remove_all_tags(start , end)

13.3.6. Inserting Images and Widgets

In addition to text arextBuffer ~ can contain pixbuf images and an anchor location for widgets. A widget can be
added to &extView at an anchor location. A different widget can be added in 8apottView which displays a
buffer with an anchor.

A pixbuf can be inserted by using the method:

textbuffer.insert_pixbuf(iter , pixbuf)

199

TextView Widget

whereiter specifies the location in theextbuffer to insert thepixbuf . The image will be counted as one
character and will be represented imyet_slice () return (but left out of aget_text () return) as the Unicode
character "OXFFFC".

A GTK+ widget can be inserted in BextView at a buffer location specified with BextChildAnchor . The

TextChildAnchor will be counted as one character and represented as "OxFFFC" similar to a pixbuf.

The TextChildAnchor can be created and inserted in the buffer by using the convenience method:

anchor = text_buffer.create_child_anchor(iter)

whereiter is the location for the child_anchor.

A TextChildAnchor can also be created and inserted in two operations as:

anchor = gtk.TextChildAnchor()

text_buffer.insert_child_anchor(iter , anchor)

Then the widget can be added to fhextView at an anchor location using the method:

text_view.add_child_at_anchor(child , anchor)

The list of widgets at a particular buffer anchor can be retrieved using the method:

widget_list = anchor.get_widgets()

A widget can also be added torextView using the method:

text_view.add_child_in_window(child , which_window , xpos, ypos)

where thechild widget is placed inwhich_window at the location specified bwpos and ypos .
which_window indicates in which of the windows that make up TextView the widget is to be placed:

gtk. TEXT_WINDOW_TOP

gtk. TEXT_WINDOW_BOTTOM
gtk. TEXT_WINDOW_LEFT

gtk. TEXT_WINDOW_RIGHT
gtk. TEXT_WINDOW_TEXT
gtk. TEXT_WINDOW_WIDGET

200

TextView Widget

13.4. Text Iters

Textlters represent a position between two characters Tre@tBuffer . Textlters are usually created by
using aTextBuffer ~ method. Textlters are invalidated when the number of characters TreatBuffer is
changed (except for thEextlter that is used for the insertion or deletion). Inserting or deleting pixbufs or anchors
also counts as @extlter invalidating change.

There are a large number of methods associated viligxHiter object. They are grouped together in the following
sections by similar function.

13.4.1. Textlter Attributes

TheTextBuffer that contains th@extlter can be retrieved using the method:

buffer = iter.get_buffer()

The following methods can be used to get the location offéneiter in the TextBuffer

offset = iter.get_offset() # returns offset in buffer of iter
line_number = iter.get_line() # returns number of line at iter
line_offset = iter.get_line_offset() # returns iter offset in line

numchars = iter.get_chars_in_line() # returns number of chars in line

13.4.2. Text Attributes at a Textlter

ThePangoLanguage used at a given iter location in tHeextBuffer is obtained by calling the method:

language = iter.get_language()

The more general method used to get the text attributeaxtdter s location is:

result = iter.get_attributes(values)

whereresult indicates whether the givemalues (TextAttributes object) were modified. The given
values are obtained by using tHeextView method:

values = textview.get_default_attributes()

201

TextView Widget

The following attributes are accessible from extAttributes

object (not implemented in PyGTK <=1.99.15):

bg_color

fg_color

bg_stipple
fg_stipple

rise

underline
strikethrough
draw_bg
justification
direction

font

font_scale
left_margin
right_margin
pixels_above_lines
pixels_below_lines
pixels_inside_wrap
tabs

wrap_mode
language

invisible
bg_full_height
editable

realized

padl

pad2

pad3

pad4

background color
foreground color

background stipple bitmap
foreground stipple bitmap
offset of text above baseline

style of underline

whether text is strikethrough
TRUEIf some tags affect the drawing of the background

style of justification

which direction the text runs
PangoFontDescription in use

scale of the font in use
location of left margin
location of right margin
pixels spacing above a line
pixel spacing below a line

pixel spacing between wrapped lines

PangoTabArray in use

mode of wrap in use

PangoLanguage in use

whether text is invisible (not implemented in GTK+ 2.0)
whether background is fit to full line height

whether the text is editable

text is realized

13.4.3. Copying a Textlter

A Textlter can be duplicated using the method:

iter_copy = iter.copy()

13.4.4. Retrieving Text and Objects

Various amounts of text andextBuffer =~ objects can be retrieved from BextBuffer using the following

methods:

char = iter.get_char() # returns char or O if at end of buffer

text = start.get_slice(

text = start.get_text(

end) # returns the text between start and end iters

end) # returns the text between start and end iters

pixbuf = iter.get_pixbuf() # returns the pixbuf at the location (or None)

202

TextView Widget

anchor = iter.get_child_anchor() # returns the child anchor (or None)
mark_list = iter.get_marks() # returns a list of marks

tag_list = iter.get_toggled_tags()
returns a list of tags that are toggled on or off

tag_list = iter.get_tags() # returns a prioritized list of tags

13.4.5. Checking Conditions at a Textlter

Tag conditions at th&extlter location can be checked using the following methods:

result = iter.begins_tag(tag =None) # TRUE if tag is toggled on at iter

result = iter.ends_tag(tag =None) # TRUE if tag is toggled off at iter

result = iter.toggles_tag(tag =None) # TRUE if tag is toggled on or off at iter
result = iter.has_tag(tag) # TRUE if tag is active at iter

These methods retuffRUEIf the giventag satisfies the condition dter . If the tag is None for the first three

methods then the result TRUEIf any tag satisfies the condition idér

The following methods indicate whether the text atTlextiter location is editable or allows text insertion:
result = iter.editable()

result = iter.can_insert(default_editability)

Theeditable () method indicates whether titer is in an editable range of text while tban_insert () method
indicates whether text can be insertedtet considering the default editability of theextView , TextBuffer
and applicable tags. Thdefault_editability is usually determined by calling the method:

default_editability = textview.get_editable()

The equivalence of twdextlter s can be determined with the method:

are_equal = lhs.equal(rhs)

Two Textlter s can be compared with the method:

203

TextView Widget

result = Ihs.compare(rhs)

result will be: -1if lns islessthamhs ; 0if lIhns equalshs ; and, 1 iflhs is greater thamhs .

To determine whether®extlter is located between two giverextlter s use the method:

result = iter.in_range(start , end)

result is TRUEIf iter is betweerstart andend. Note:start andend must be in ascending order. This can
be guaranteed using the method:

first.order(second)

which will reorder theTextlter offsets so thatirst is beforesecond .

13.4.6. Checking Location in Text

The location of al'extlter with respect to the text in@extBuffer can be determined by the following methods:

result = iter.starts_word()
result = iter.ends_word()
result = iter.inside_word()
result = iter.starts_sentence()
result = iter.ends_sentence()
result = iter.inside_sentence()
result = starts_line()

result = iter.ends_line()

result returnsTRUEIf the Textlter is at the given text location. These methods are somewhat self-explanatory.
The definition of the text components and their boundaries is determined by the language usetkatithe
Note that a line is a collection of sentences similar to a paragraph.

The following methods can be used to determineTeatiter is at the start or end of thieextBuffer

result = iter.is_start()

204

TextView Widget

result = iter.is_end()

result is TRUEIf the Textlter s at the start or end of thEextBuffer

Since aTextBuffer may contain multiple characters which are effectively viewed as one cursor position (e.g.
carriage return-linefeed combination or letter with an accent mark) it's possible fhaextter could be in a
location which is not a cursor position. The following method indicates whetfiextter is at a cursor position:

result = iter.is_cursor_position()

13.4.7. Moving Through Text

Textlter s can be moved throughTextBuffer in various text unit strides. The definition of the text units is set
by thePangoLanguage in use at thelextlter location. The basic methods are:

result = iter.forward_char() # forward by one character

result = iter.backward_char() # backward by one character

result = iter.forward_word_end() # forward to the end of the word

result = iter.backward_word_start() # backward to the start of the word

result = iter.forward_sentence_end() # forward to the end of the sentence
result = iter.backward_sentence_start() # backward to the start of the sentence
result = iter.forward_line() # forward to the start of the next line

result = iter.backward_line() # backward to the start of the previous line

result = iter.forward_to _line_end() # forward to the end of the line

result = iter.forward_cursor_position() # forward by one cursor position

result = iter.backward_cursor_position() # forward by one cursor position

result is TRUEIf the Textlter was moved and~ALSE if the Textlter is at the start or end of the
TextBuffer

All of the above methods (excefarward_to _line_end ()) have corresponding methods that take a count (that
can be positive or negative) to move thextlter in multiple text unit strides:

result = iter.forward_chars(count)

result = iter.backward_chars(count)

205

TextView Widget

result = iter.forward_word_ends(count)

result = iter.backward_word_starts(count)

result = iter.forward_sentence_ends(count)
result = iter.backward_sentence_starts(count)
result = iter.forward_lines(count)

result = iter.backward_lines(count)

result = iter.forward_cursor_positions(count)
result = iter.backward_cursor_positions(count)

13.4.8. Moving to a Specific Location

A Textlter can be moved to a specific location in thextBuffer using the following methods:

iter.set_offset(char_offset) # move to given character offset
iter.set_line(line_number) # move to start of given line
iter.set_line_offset(char_on_line)

move to given character offset in current line

iter.forward_to_end() # move to end of the buffer
In addition, aTextlter ~ can be moved to a location where a tag is toggled on or off by using the methods:
result = iter.forward_to_tag_toggle(tag)

result = iter.backward_to_tag_taoggle(tag)

result is TRUEIf the Textlter =~ was moved to a new location whetag is toggled. Iftag is None then the
Textlter will be moved to the next location where any tag is toggled.

13.4.9. Searching in Text

A search for a string in aextBuffer is done using the methods:

match_start, match_end = iter.forward_search(str , flags , limit =None)

206

TextView Widget

match_start, match_end = iter.backward_search(str , flags , limit =None)

Thereturn value is a tuple containingextlter s that indicate the location of the first character of the match and
the first character after the matchktr is the character string to be locateitags modifies the conditions of the
searchflag values can be:

gtk TEXT_SEARCH_VISIBLE_ONLY # invisible characters are ignored

gtk. TEXT_SEARCH_TEXT_ONLY # pixbufs and child anchors are ignored

limit is an optionalTextlter that bounds the search range.

13.5. Text Marks

A TextMark indicates a location in &extBuffer between two characters that is preserved across buffer
modifications. TextMark s are created, moved and deleted usingTieetBuffer =~ methods as described in the
TextBuffer section.

A TextBuffer has two built-inTextMark s named: insert and selection_bound which refer to the
insertion point and the boundary of the selection (these may refer to the same location).
The name of &extMark can be retrieved using the method:

name = textmark.get_name()

By default marks other than insert are not visible (displayed as a vertical bar). The visibility of a mark can be set and
retrieved using the methods:

setting = textmark.get_visible()

textmark.set_visible(setting)

wheresetting is TRUEIf the mark is visible.

TheTextBuffer that contains &extMark can be obtained using the method:

buffer = textmark.get_buffer()

You can determine whetherf@xtMark has been deleted using the method:

setting = textmark.get_deleted()

207

TextView Widget

The left gravity of aTextMark can be retrieved using the method:

setting = textmark.get_left_gravity()

The left gravity of aTextMark indicates where the mark will end up after an insertion. If left gravityRUEthe
mark will be to the left of the insertion; FALSE to the right of the insertion.

13.6. Text Tags and Tag Tables

TextTags specify attributes that can be applied to a range of text in a TextBuffer. TeatBuffer has a
TextTagTable that contains th@extTag s that can be applied within thEextBuffer . TextTagTable s
can be used with more than omextBuffer to provide consistent text styles.

13.6.1. Text Tags

TextTag s can be named or anonymousTAxtTag is created using the function:

tag = gtk.TextTag(name=None)

If name is not specified or ifNone the tag will be anonymous. TextTag s can also be created using the
TextBuffer convenience methocreate tag () which also allows you specify thag attributes and adds the
tag to the buffer’s tag table (se®ection 13.3, “Text Bufferg”

The attributes that can be contained ilextTag are:

208

TextView Widget

name
background
foreground
background-gdk
foreground-gdk
background-stipple
foreground-stipple
font

font-desc

family

style

variant

weight

stretch
size
size-points
scale

pixels-above-lines
pixels-below-lines
pixels-inside-wrap
editable
wrap-mode

justification
direction
left-margin
indent
strikethrough
right-margin
underline
rise

background-full-height

language

tabs
invisible

Read / Write
Write

Write

Read / Write
Read / Write
Read / Write
Read / Write
Read / Write
Read / Write
Read / Write
Read / Write
Read / Write
Read / Write

Read / Write
Read / Write
Read / Write
Read / Write

Read / Write
Read / Write
Read / Write
Read / Write
Read / Write

Read / Write
Read / Write
Read / Write
Read / Write
Read / Write
Read / Write
Read / Write
Read / Write

Read / Write

Read / Write

Read / Write
Read / Write

Name of the text tagNone if anonymous.

Background color as a string

Foreground color as a string

Background color as a GdkColor

Foreground color as a GdkColor

Bitmap to use as a mask when drawing the text background

Bitmap to use as a mask when drawing the text foreground

Font description as a string, e.g. "Sans ltalic 12"

Font description as a PangoFontDescription

Name of the font family, e.g. Sans, Helvetica, Times, Monospace

Font style as a PangoStyle, e.g. pango.STYLE_ITALIC.

Font variant as a PangoVariant, e.g. pango.VARIANT_SMALL_CAPS.
Font weight as an integer, see predefined values in PangoWeight; for
example, pango.WEIGHT_BOLD.

Font stretch as a PangoStretch, e.g. pango.STRETCH_CONDENSED.
Font size in Pango units.

Font size in points

Font size as a scale factor relative to the default font size. This properly
adapts to theme changes etc. so is recommended. Pango predefines some
scales such as pango.SCALE_X_LARGE.

Pixels of blank space above paragraphs

Pixels of blank space below paragraphs

Pixels of blank space between wrapped lines in a paragraph

Whether the text can be modified by the user

Whether to wrap lines never, at word boundaries, or at character
boundaries

Left, right, or center justification

Text direction, e.g. right-to-left or left-to-right

Width of the left margin in pixels

Amount to indent the paragraph, in pixels

Whether to strike through the text

Width of the right margin in pixels

Style of underline for this text

Offset of text above the baseline (below the baseline if rise is negative)
in pixels

Whether the background color fills the entire line height or only the
height of the tagged characters

The language this text is in, as an 1SO code. Pango can use this as a
hint when rendering the text. If you don’t understand this parameter, you
probably don’t need it.

Custom tabs for this text

Whether this text is hidden. Not implemented in GTK+ 2.0

The attributes can be set by using the method:

tag.set_property(name, value)

Wherename s a string containing the name of the property aatlie is what the property should be set to.

Likewise the attribute value can be retrieved with the method:

209

TextView Widget

value = tag.get property(name)

Since the tag does not have a value set for every attribute there are a set of boolean properties that indicate whether the
attribute has been set in the tag:

background-set Read / Write
foreground-set Read / Write
background-stipple-set Read / Write
foreground-stipple-set Read / Write
family-set Read / Write
style-set Read / Write
variant-set Read / Write
weight-set Read / Write
stretch-set Read / Write
size-set Read / Write
scale-set Read / Write
pixels-above-lines-set Read / Write
pixels-below-lines-set Read / Write
pixels-inside-wrap-set Read / Write
editable-set Read / Write
wrap-mode-set Read / Write
justification-set Read / Write
direction-set Read / Write
left-margin-set Read / Write
indent-set Read / Write
strikethrough-set Read / Write
right-margin-set Read / Write
underline-set Read / Write
rise-set Read / Write
background-full-height-set Read / Write
language-set Read / Write
tabs-set Read / Write
invisible-set Read / Write

Therefore to obtain the attribute from a tag, you have to first check whether the attribute has been set in the tag. For
example to get a valid justification attribute you may have to do something like:

if tag.get_property(“justification-set"):
justification = tag.get_property(“justification")

The priority of a tag is by default the order in which they are added t@theTagTable . The higher priority tag
takes precedence if multiple tags try to set the same attribute for a range of text. The priority can be obtained and set
with the methods:

priority = tag.get_priority()

210

TextView Widget

tag.set_priority(priority)

The priority of a tag must be between 0 and one less thamekETagTable size.

13.6.2. Text Tag Tables

A TextTagTable will be created by default when BextBuffer is created. ATextTagTable can also be
created with the function:

table = TextTagTable()

A TextTag can be added to@extTagTable using the method:

table.add(tag)

Thetag must not be in théable and must not have the same name as another tag in the table.

You can find alextTag inaTextTagTable using the method:

tag = table.lookup(name)

The method returns thleg in the table with the givename or None if no tag has thahame.

A TextTag can be removed fromBextTagTable with the method:

table.remove(tag)

The size of thdextTagTable can be obtained with the method:

size = table.get_size()

13.7. A TextView Example

The testtext.py [examples/testtext.py@xample program (derived from thesttext.c program included in the
GTK+ 2.0.x distribution) demonstrates the use of TextView widget and its associated object®extBuffer s,
Textlter s, TextMark s, TextTag s, TextTagTable s. Figure 13.2, “TextView Example’llustrates its
operation:

211

file:url(examples/testtext.py)

TextView Widget

Figure 13.2. TextView Example

|tIE!:E:‘L'[IE!:=-=1 - Unfitled #4

=13

File Edit Settings Atftributes Test
~ Dragme around -
Euttan Tin ton window | Drag me arourd —
Button E in buffer | Button Fin buffer | Button G in buffer |@99 Hr H e |I|:| Wl
ol - _ _ Butto
1 foo foo Hello dhis-ssame text we are using 1o text word wrap. It has punctuation! ge ——
Buttc®: P10 - BN Bytton B in text window
—— 1LY [TR s : < LE-'Ht of it. This line really does contain some tex 2
1. More text! More text! More text!
J J 3
German (Deutsch Siid) Griil Gott Greek (B hhrpircies I e goe Hebrew: 0TI
Hetrew punctuatin:un{l_i';lllﬁqﬂ EE?} Japanese { H ZIK%} Thiai {E‘I’fﬂﬂﬁ‘ﬁ_l} Thai wrong spell
- Drag me arund
ng (791D T uaenaed w9 lng
A ! Centered text! 4
B 5 1Y I Ll | YWord wrapped, Right-to-left Quote g
5 e £ E
L -;_.IL_-_-U-_Ier Sl e
<l oot oo (5] B gm Lol Il sd et o
| ‘ngrmgtgmrrwrﬁr;ﬁﬁuj -
£
ST .aﬂdfuujﬁ_allfawjub&fﬂu FHAR
<
7 Faragraph with negative indentation. blah blah blak blah blak. The quick brown fox jum 7
ped over the lazy dog.
g ella ok, ;b blzh blah bizh blah blah bizh blah blah bizh blah blah &
g W00 W00 W00 W00 WOO W00 W0 Woo wo0 %o WO Woo Woo Woo woo g
SRR r.ttor W in bottom window ﬂ

The testtext.py [examples/testtext.pyprogram defines a number of classes in addition to the application class
TestText :

212

file:url(examples/testtext.py)

TextView Widget

e Buffer class, lines 99-496, is subclassed from gie TextBuffer type. It provides the editing buffer
capabilities used by théiew objects.

* View class, lines 498-1126, is subclassed fromgtieWindow type and wraps gtk.TextView object that
uses aBuffer object instead of gtk. TextBuffer object. It provides a window and the visual display of the
contents of Buffer object as well as a menubar.

 FileSel class, lines 73-97, is subclassed from tit&.FileSelection type to provide selection of
filenames for thduffer contents.

» Stack class to provide simple stack objects.

The color cycle display is implemented by using text tags applied to a section of text in a buffer. Lines 109-115 (in
the__init__ () method) create these tags and lines 763-ti®4 épply_colors () method) apply the color tags

to a section of text two characters at a time. Lines 202-239 provide the metbmids €ycle_timeout 0,
set_colors () andcycle colors () that produce the color cycle display when enabled. Color cycling is
enabled by setting (line 220) tliereground_gdk property of the individuatolor_tags (which also sets the
foreground_set property). Color cycling is disabled by setting fleeeground_set property toFALSE (line

222). The colors are periodically changed by shiftingsteet_hue (line 237)

A new Buffer is filled with example content when the Test->Example menu item is selected (the
fill_example_buffer () method in lines 302-372). The example buffer contains text of various colors,
styles and languages and pixbufs. Thi¢ tags () method (lines 260-300) sets up a varietyleitTag s for use

with the example text. The event signal of these tags is connected taghevent_handler () method (lines
241-256) to illustrate button and motion event capture.

The TextView wrap mode is set to WRAP_WORD (line 580) and rextView border windows are displayed

by setting their sizes in lines 587-588 and line 596-597. The left and right border windows are used to display
line numbers and the top and bottom border windows display the tab locations when custom tabs are set. The
border windows are updated when an "expose-event" signal is received bgxtédew (lines 590 and 599). The
line_numbers_expose () method (lines 1079-1116) determines whether the left or right border window has an
expose event and if so calculates the size of the expose area. Then the location of the line start and the line number
for each line in the exposed area is calculated imgitie lines () method (lines 1057-1077). The line numbers are

then drawn in the border window at the location (transformed by line 1109).

The custom tab locations are displayed in the top and bottom border windows in a similar fashion (lines 1013-
1055). They are displayed only when the cursor is moved inside a range of text that has the custom tab attribute
set. This is detected by handling the "mark-set" signal incilmsor_set_handler () method (lines 999-1011)

and invalidating the top and bottom border windows if the mark set iset mark.

Movable widgets are added to\dew with the do_add_children () method (lines 892-899) which calls the
add_movable_children () method (lines 874-890). The children ayiik.Label s that can be dragged around
inside the various windows that are part ofextView widget.

Likewise, widgets are added to th&extView windows of a View and the Buffer by using the
do_add focus_children () method (lines 901-949).

213

Chapter 14. Tree View Widget

The TreeView widget displays lists and trees displaying multiple columns. It replaces the previous set of List,
CList , Tree andCTree widgets with a much more powerful and flexible set of objects that use the Model-View-
Controller (MVC) principle to provide the following features:

« two pre-defined models: one for lists and one for trees

» multiple views of the same model are automatically updated when the model changes

« selective display of the model data

» use of model data to customize the TreeView display on a row-by-row basis

« pre-defined data rendering objects for displaying text, images and boolean data

» stackable models for providing sorted and filtered views of the underlying model data

* reorderable and resizeable columns

 automatic sort by clicking column headers

* drag and drop support

* support for custom models entirely written in Python

« support for custom cell renderers entirely written in Python

Of course, all this capability comes at the price of a significantly more complex set of objects and interfaces that
appear overwhelming at first. In the rest of this chapter we’'ll explore the TreeView objects and interfaces to reach an
understanding of common usage. The more esoteric aspects, you'll have to explore on your own.

We'll start with a quick overview tour of the objects and interfaces and then dive infbrdeModel interface and
the predefinedlistStore ~ andTreeStore classes.

14.1. Overview

A TreeView widget is the user interface object that displays the data stored in an object that implements the
TreeModel interface. Two base tree model classes are provided in PyGTK 2.0:

» theTreeStore that provides hierarchical data storage organized as tree rows with columnar data. Each tree row
can have zero or more child rows. All rows must have the same number of columns.

« theListStore that provides tabular data storage organized in rows and columns similar to a table in a relational
database. TheistStore s really a simplified version of &reeStore where the rows have no children. It
has been created to provide a simpler (and presumably more efficient) interface to this common data model. And,

The two additional tree models stack on top of (or interpose on) the base models:
» theTreeModelSort that provides a model where the data of the underlying tree model is maintained in a sorted
order. And,

* theTreeModelFilter that provides a model containing a subset of the data in the underlying model. Note this
model is available only in PyGTK 2.4 and above.

214

) ' T
View Widget ree

A TreeView displays all of the rows of areeModel but may display only some of the columns. Also the columns
may be presented in a different order thanTheeModel stores them.

The TreeView uses TreeViewColumn objects to organize the display of the columnar data. Each
TreeViewColumn displays one column with an optional header that may contain the data from several
TreeModel columns. The individualTreeViewColumn s are packed (similar t¢HBox containers) with
CellRenderer objects to render the display of the associated data frdme@aModel row and column location.
There are three predefin€zllRenderer classes:

* theCellRendererPixbuf that renders a pixbuf image into the cells ofr@eViewColumn

* theCellRendererText that renders a string into the cells of eeeViewColumn . It will convert the column
datato a string format if needed i.e. if displaying a model column containing float da@eliRendererText
will convert it to a string before rendering it.

» the CellRendererToggle that renders a boolean value as a toggle button into the cells of a
TreeViewColumn

A TreeViewColumn can contain sever&ellRenderer objects to provide a column that, for example, may have
an image and text packed together.

Finally, theTreelter , TreeRowReference andTreeSelection objects provide a transient pointerto arow in
aTreeModel , a persistent pointer to a row irfaeeModel and an object managing the selections TrreeView .

A TreeView display is composed using the following general operations not necessarily in this order:
» A tree model object is created usually_stStore or TreeStore with one or more columns of a specified
data type.
» The tree model may be populated with one or more rows of data.
« A TreeView widget is created and associated with the tree model.

» One or morélreeViewColumn s are created and inserted in fheeView . Each of these will present a single
display column.

» For eachlreeViewColumn one or moreCellRenderer s are created and added to ffreeViewColumn

» The attributes of eacBellRenderer are set to indicate from which column of the tree model to retrieve the
attribute data. for example the text to be rendered. This allow€éli®enderer to render each column in a
row differently.

e TheTreeView is inserted and displayed invdlindow or ScrolledWindow

» The data in the tree model is manipulated programmatically in response to user actionsregWew will
automatically track the changes.

215

) ' T
View Widget ree

The example prograrhasictreeview.py[examples/basictreeview.pitlustrates the creation and display of a simple
TreeView :

1 #lusr/bin/env python

2

3 # example basictreeview.py

4

5 import pygtk

6 pygtk.require('2.0")

7 import gtk

8

9 class BasicTreeViewExample:

10

11 # close the window and quit

12 def delete_event(self, widget, event, data=None):

13 gtk.main_quit()

14 return False

15

16 def __init__(self):

17 # Create a new window

18 self.window = gtk.Window(gtk.WINDOW_TOPLEVEL)
19

20 self.window.set _title("Basic TreeView Example™)

21

22 self.window.set_size request(200, 200)

23

24 self.window.connect("delete_event", self.delete_event)
25

26 # create a TreeStore with one string column to use as the model
27 self.treestore = gtk.TreeStore(str)

28

29 # we’'ll add some data now - 4 rows with 3 child rows each
30 for parent in range(4):

31 piter = self.treestore.append(None, ['parent %i’ % parent])
32 for child in range(3):

33 self.treestore.append(piter, ['child %i of parent %i’ %
34 (child, parent)])
35

36 # create the TreeView using treestore

37 self.treeview = gtk.TreeView(self.treestore)

38

39 # create the TreeViewColumn to display the data
40 self.tvcolumn = gtk.TreeViewColumn('Column 0’)
41
42 # add tvcolumn to treeview
43 self.treeview.append_column(self.tvcolumn)
44
45 # create a CellRendererText to render the data
46 self.cell = gtk.CellRendererText()
47
48 # add the cell to the tvcolumn and allow it to expand
49 self.tvcolumn.pack_start(self.cell, True)

50

216

file:url(examples/basictreeview.py)

tTree View

Widge
51 # set the cell "text" attribute to column O - retrieve text
52 # from that column in treestore
53 self.tvcolumn.add_attribute(self.cell, 'text’, 0)
54
55 # make it searchable
56 self.treeview.set_search_column(0)
57
58 # Allow sorting on the column
59 self.tvcolumn.set_sort_column_id(0)
60
61 # Allow drag and drop reordering of rows
62 self.treeview.set_reorderable(True)
63
64 self.window.add(self.treeview)
65
66 self.window.show_all()
67
68 def main():
69 gtk.main()
70
71 if _name__ =="_ main__ "
72 tvexample = BasicTreeViewExample()
73 main()

In real programs th&reeStore would likely be populated with data after theeeView is displayed due to some
user action. We'll look at the details of tHeeeView interfaces in more detail in the sections to corfigure 14.1,
“Basic TreeView Example Progranshows the window created by thasictreeview.py[examples/basictreeview.py]
program after a couple of parent rows have been expanded.

Figure 14.1. Basic TreeView Example Program

217

file:url(examples/basictreeview.py)

tTree View

lhd Basic TreeView E [Ci=il

Column 0

Widge

¥ parent O
child 0 of parent 0
child 1 of parent 0
child 2 of parent 0
[parent 1

= parent 2
child 0 of parent 2
child 1 of parent 2
child 2 of parent 2
[parent 3

L)

Next let’s examine th@reeModel interface and the models that implement it.

14.2. The TreeModel Interface and Data Stores
14.2.1. Introduction

TheTreeModel interface is implemented by all tieeeeModel subclasses and provides methods to:

« retrieve the characteristics of the data store such as the number of columns and the type of data in a column.
* retrieve alreelter (a transient reference) that points at a row in the model

* retrieve information about a node (or row) such as the number of its child nodes, a list of its child nodes, the
contents of its columns and a pointer to its parent node

provide notification offreeModel data changes

14.2.2. Creating TreeStore and ListStore Objects

The base data store classésstStore andTreeStore provide the means to define and manage the rows and
columns of data in the tree model. The constructors of both these objects require the column types to be specified as
any of:

218

) Tree View
Widget

 Python types such as the built-in types: int, str, long, float and object
* PyGTK types such aButton , VBox, gdk.Rectangle , gdk.Pixbuf
» GObject types (GTK+ GTypes) specified either as GObject Type constants or as strings. Most GTypes are
mapped to a Python type:

* gobject. TYPE_CHAR or 'gchar’

 gobject. TYPE_UCHAR or 'guchar’

 gobject. TYPE_BOOLEAN or 'gboolean’

 gobject. TYPE_INT or 'gint’

e gobject. TYPE_UINT or 'guint’

 gobject. TYPE_LONG or 'glong

 gobject. TYPE_ULONG or 'gulong

« gobject. TYPE_INT64 or 'gint64’

 gobject. TYPE_UINT®64 or 'guint64’

 gobject. TYPE_FLOAT or 'gfloat’

 gobject. TYPE_DOUBLE or 'gdouble’

« gobject. TYPE_STRING or 'gchararray’

« gobject. TYPE_OBJECT or 'GObject

For example to createldstStore or TreeStore with rows containing gdk.Pixbuf | an integer, a string and
boolean you could do something like:

liststore = ListStore(gtk.gdk.Pixbuf, int, str, 'gboolean’)

treestore = TreeStore(gtk.gdk.Pixbuf, int, str, 'gboolean’)

Once alListStore or TreeStore is created and its columns defined, they cannot be changed or modified. It's
also important to realize that there is no preset relation between the column&éediew and the columns of

its TreeModel . That is, the fifth column of data in @&reeModel may be displayed in the first column of one
TreeView and in the third column in another. So you don’t have to worry about how the data will be displayed when
creating the data store.

If these two data stores do not fit your application it is possible to define your own custom data store in Python as long
as it implements the TreeModel interface. I'll talk more about this lat&dation 14.11, “The Generic TreeModel”

14.2.3. Referring to TreeModel Rows

Before we can talk about managing the data rows ireeStore or ListStore ~ we need a way of specifying
which row we want to deal with. PyGTK has three ways of referringrmeeModel rows: a tree path, @reelter
and aTreeRowReference

219

) Tree View
Widget

14.2.3.1. Tree Paths

A tree path is a int, string or tuple representation of the location of a row in the store. An int value specifies the top
level row in the model starting from 0. For example, a tree path value of 4 would specify the fifth row in the store. By
comparison, a string representation of the same row would be "4" and the tuple representation would be (4,). This is
sufficient for specifying any row in kistStore but for a TreeStore we have to be able to represent the child rows.
For these cases we have to use either the string or tuple representations.

Since aTreeStore can have an arbitrarily deep hierarchy the string representation specifies the path from the top
level to the designated row using ints separated by the ":" character. Similarly, the tuple representation specifies the
tree path starting from the top level to the row as a sequence of ints. For example, valid tree path string representations
are: "0:2" (specifies the row that is the third child of the first row) and "4:0:1" (specifies the row that is the second
child of the first child of the fifth row). By comparison the same tree paths are represented by the tuples (0, 2) and (4,
0, 1) respectively.

A tree path provides the only way to map fronTeeeView row to aTreeModel row because the tree path of a
TreeView row is the same as the tree path of the correspontiregModel row. There are also some problems
with tree paths:

* atree path can specify a row that doesn’t exist in the ListStore or TreeStore.

* atree path can point to a different data row after inserting or deleting a row lrist®tore or TreeStore

PyGTK uses the tuple representation when returning tree paths but will accept any of the three forms for a tree path
representation. You should use the tuple representation for a tree path for consistency.

A tree path can be retrieved fronTaeelter using theget_path () method:

path = store.get_path(iter)

whereiter isaTreelter pointing at a row in store anglath is the row’s tree path as a tuple.

14.2.3.2. Treelters

A Treelter is an object that provides a transient referenceltiseéstore or TreeStore row. If the contents of
the store change (usually because a row is added or deletetiethiéer s can become invalid. AreeModel that
supports persistent Treelters should setgtheTREE_MODEL_ITERS_PERSIST flag. An application can check
for this flag using theget_flags () method.

A Treelter is created by one of th@reeModel methods that are applicable to bolreeStore and

ListStore objects:

treeiter = store.get_iter(path)

wheretreeiter points at the row at the tree pgthth . The ValueError exception is raised if the tree path is invalid.

treeiter = store.get_iter_first()

220

) Tree View
Widget

wheretreeiter is a Treelter pointing at the row at tree path (@rgeiter will be None if the store is empty.

treeiter = store.iter_next(iter)

wheretreeiter isaTreelter that points at the next row at the same level asTieelter specified byiter
treeiter will be None if there is no next rowiter is also invalidated).

The following methods are useful only for retrievindeeelter ~ from aTreeStore

treeiter = treestore.iter_children(parent)

wheretreeiter is aTreelter pointing at the first child row of the row specified by theselter parent .
treeiter will be None if there is no child.

treeiter = treestore.iter_nth_child(parent , n)

wheretreeiter isaTreelter pointing at the child row (with the indax) of the row specified by th&reelter
parent . parent may beNone to retrieve a top level rowtreeiter will be None if there is no child.

treeiter = treestore.iter_parent(child)

wheretreeiter isaTreelter pointing at the parent row of the row specified by Threelter child . treeiter
will be None if there is no child.

A tree path can be retrieved fromTaeelter using theget_path () method:

path = store.get_path(iter)

whereiter isaTreeiter pointing at a row in store angath is the row’s tree path as a tuple.

14.2.3.3. TreeRowReferences

A TreeRowReference is a persistent reference to a row of data in a store. While the tree path (i.e. the location)
of the row might change as rows are added to or deleted from the stofEselbBowReference will point at the
same data row as long as it exists.

221

) Tree View
Widget

Note
TreeRowReference s are only available in PyGTK 2.4 and above.

You can create areeRowReference using its constructor:

treerowref = TreeRowReference(model , path)

wheremodel is theTreeModel containing the row angath is the tree path of the row to track. path isn't a
valid tree path fomodel , None is returned.

14.2.4. Adding Rows
14.2.4.1. Adding Rows to a ListStore

Once you have histStore you'll need to add data rows using one of the following methods:

iter = append(row=None)
iter = prepend(row =None)
iter = insert(position , row=None)
iter = insert_before(sibling , row=None)
iter = insert_after(sibling , row=None)
Each of these methods inserts a row at an implied or specified position insf8tore . Theappend () and

prepend () methods use implied positions: after the last row and before the first row, respectivelinséhe ()
method takes an integer (the paramegtesition) that specifies the location where the row will be inserted. The
other two methods take Breelter (sibling) that references a row in thdstStore to insert the row before

or after.

Therow parameter specifies the data that should be inserted in the row after it is created. i None or not
specified, an empty row will be created.rtfw is specified it must be a tuple or list containing as many items as the
number of columns in theistStore . The items must also match the data type of their respetistStore
columns.

All methods return dreelter that points at the newly inserted row. The following code fragment illustrates the
creation of dListStore and the addition of data rows to it:

liststore = gtk.ListStore(int, str, gtk.gdk.Color)

liststore.append([0, red’,colormap.alloc_color('red’)])

liststore.append([1,'green’,colormap.alloc_color('green’)])

iter = liststore.insert(1, (2,’blue’,colormap.alloc_color(’blue’)))

iter = liststore.insert_after(iter,
[3,’yellow’,colormap.alloc_color(’blue’)])

222

) Tree View
Widget

14.2.4.2. Adding Rows to a TreeStore

Adding a row to alreeStore is similar to adding a row to histStore except that you also have to specify a
parent row (using dreelter) to add the new row to. ThEreeStore methods are:

iter = append(parent , row=None)

iter = prepend(parent , row=None)

iter = insert(parent , position , row=None)

iter = insert_before(parent , sibling , row=None)
iter = insert_after(parent , sibling , row=None)

If parent is None, the row will be added to the top level rows.

Each of these methods inserts a row at an implied or specified position ifr¢le&Store . The append () and
prepend () methods use implied positions: after the last child row and before the first child row, respectively. The
insert () method takes an integer (the parameiesition) that specifies the location where the child row will be
inserted. The other two methods tak&meelter (sibling) that references a child row in thiegeeStore to

insert the row before or after.

Therow parameter specifies the data that should be inserted in the row after it is created. i§ None or not
specified, an empty row will be created.rtfw is specified it must be a tuple or list containing as many items as the
number of columns in th@reeStore . The items must also match the data type of their respettieeStore
columns.

All methods return dreelter that points at the newly inserted row. The following code fragment illustrates the
creation of aTreeStore and the addition of data rows to it:

folderpb = gtk.gdk.pixbuf_from_file('folder.xpm’)

filepb = gtk.gdk.pixbuf_from_file('file.xpm’)

treestore = gtk.TreeStore(int, str, gtk.gdk.Pixbuf)

iter0 = treestore.append(None, [1,(0,),folderpb])
treestore.insert(iter0, 0, [11,’(0,0)"filepb])
treestore.append(iter0, [12,'(0,1)" filepb])

iterl = treestore.insert_after(None, iterO, [2,'(1,),folderpb])
treestore.insert(iterl, 0, [22,’(1,1)"filepb])
treestore.prepend(iterl, [21,’(1,0) ,filepb])

14.2.4.3. Large Data Stores

When alListStore or TreeStore contains a large number of data rows, adding new rows can become very slow.
There are a few things that you can do to mitigate this problem:

« If adding a large number of rows disconnect fireeModel from its TreeView (using theset_model ()
method with themodel parameter set thone) to avoidTreeView updates for each row entered.

223

) Tree View
Widget

« Likewise, disable sorting (using ttset_default_sort_func () method with thesort_func set toNone)
while adding a large nhumber of rows.

« Limit the number offTreeRowReference s in use since they update their path with each addition or removal.

» Set theTreeView "fixed-height-mode" property ttRUEmMaking all rows have the same height and avoiding the
individual calculation of the height of each row. Only available in PyGTK 2.4 and above.

14.2.5. Removing Rows

14.2.5.1. Removing Rows From a ListStore

You can remove a data row fromL#stStore by using theemove () method:

treeiter = liststore.remove(iter)

whereiter isaTreelter pointing at the row to remove. The returnBceelter (treeiter) points at the next
row or is invalid ifiter ~was pointing at the last row.

Theclear () method removes all rows from ttéstStore

liststore.clear()

14.2.5.2. Removing Rows From a TreeStore

The methods for removing data rows frorTeeeStore are similar to theistStore methods:

result = treestore.remove(iter)
treestore.clear()

whereresult is TRUEf the row was removed ariter points at the next valid row. Otherwigesult isFALSE
anditer is invalidated.

14.2.6. Managing Row Data
14.2.6.1. Setting and Retrieving Data Values

The methods for accessing the data valueslifstStore andTreeStore have the same format. All store data

manipulations use @reelter to specify the row that you are working with. Once you havieéeelter it can be
used to retrieve the values of a row column usinggee value () method:

value = store.get_value(iter , column)

224

) Tree View
Widget

whereiter is aTreelter pointing at a rowcolumn is a column number istore , and,value is the value
stored at the row-column location.

If you want to retrieve the values from multiple columns in one call usgyéig) method:

values = store.get(iter, column, ...)

whereiter isaTreelter pointing at a rowcolumn is a column number istore , and,... represents zero or
more additional column numbers andlues is a tuple containing the retrieved data values. For example to retrieve
the values in columns 0 and 2:

val0, val2 = store.get(iter, 0, 2)

Note
Theget () method is only available in PyGTK 2.4 and above.

Setting a single column value is effected usinggbe value () method:

store.set_value(iter , column, value)

whereiter (aTreelter) andcolumn (an int) specify the row-column location Btore andcolumn is the
column number wherealue is to be setvalue must be the same data type asst@e column.

If you wish to set the value of more than one column in a row at a time, usseth@ method:

store.set(iter , ...)

whereiter specifies the store row and is one or more column number - value pairs indicating the column and
and value to set. For example, the following call:

store.set(iter, 0, 'Foo’, 5, 'Bar’, 1, 123)

sets the first column to 'Foo’, the sixth column to 'Bar’ and the second column to 123 gidlee row specified by
iter

14.2.6.2. Rearranging ListStore Rows

Individual ListStore ~ rows can be moved using one of the following methods that are available in PyGTK 2.2 and
above:

225

) Tree View
Widget

liststore.swap(a, b)
liststore.move_after(iter , position)
liststore.move_before(iter , position)

swap() swaps the locations of the rows referenced by theelter s a and b. move_after () and
move_before () move the row referenced by thEreelter iter after or before the row referenced by the
Treelter position . If position is None, move_after () will place the row at the beginning of the store
while move_before (), at the end of the store.

If you want to completely rearrange théstStore data rows, use the following method:

liststore.reorder(new_order)

wherenew_order is a list of integers that specify the new row order as:

new_order [newpos] = oldpos

For example, ifiststore contained four rows:

The method call:

liststore.reorder([2, 1, 3, 0])

would produce the resulting order:

‘three’
WO’
four’
‘one

’

226

) ' T
View Widget ree

Note
These methods will only rearrange unsortéstStore s.

If you want to rearrange rows in PyGTK 2.0 you have to remove and insert rows using the methods described in
Section 14.2.4, “Adding RowsidndSection 14.2.5, “Removing Rows”

14.2.6.3. Rearranging TreeStore Rows

The methods used to rearranbeeStore rows are similar to theistStore methods except they only affect the
child rows of an implied parent row - it is not possible to, say, swap rows with different parent rows.:

treestore.swap(a, b)
treestore.move_after(iter , position)
treestore.move_before(iter , position)

swap() swaps the locations of the child rows referenced by the Treddtarsdb. a andb must both have the same
parent rowmove_after () andmove_before () move the row referenced by tAeeelter iter after or before
the row referenced by thEreelter position . iter andposition must both have the same parent row. If
position isNone, move_after () will place the row at the beginning of the store whil@ve _before (), at the
end of the store.

The reorder () method requires an additional parameter specifying the parent row whose child rows will be
reordered:

treestore.reorder(parent , new_order)

wherenew_order is a list of integers that specify the new child row order of the parent row specified by the
Treelter parent as:

new_order [newpos] = oldpos

For example, itreestore contained four rows:

‘parent’
‘one
‘two’
‘three’
four’

The method call:

treestore.reorder(parent, [2, 1, 3, 0])

227

) Tree View
Widget

would produce the resulting order:

‘parent’
‘three’
‘two’
'four’
‘one

Note

These methods will only rearrange unsorfedeStore s.

14.2.6.4. Managing Multiple Rows

One of the trickier aspects of dealing witlistStore s andTreeStore s is the operation on multiple rows, e.g.
moving multiple rows, say, from one parent row to another or removing rows based on certain criteria. The difficulty
arises from the need to us@eeelter that may become invalid as the result of the operationLid6tore s and
TreeStore s the Treelters are persistent as can be checked by usingthitags () method and testing for the

gtk. TREE_MODEL_ITERS PERSIST flag. However the stackableeeModelFilter andTreeModelSort

classes do not have persist@neelter s.

Assuming thaffreelter s don't persist how do we move all the child rows from one parent row to another? We have
to:

* iterate over the parent’s children

* retrieve each row’s data

» remove each child row

* insert a new row with the old row data in the new parent’s list

We can’t rely on theemove () method to return a validreelter so we’'ll just ask for the first child iter until it
returnsNone. A possible function to move child rows is:

def move_child_rows(treestore, from_parent, to_parent):
n_columns = treestore.get_n_columns()
iter = treestore.iter_children(from_parent)
while iter:
values = treestore.get(iter, *range(n_columns))
treestore.remove(iter)
treestore.append(to_parent, values)
iter = treestore.iter_children(from_parent)
return

The above function covers the simple case of moving all child rows of a single parent row but what if you want to
remove all rows in th@reeStore based on some match criteria, say the first column value? Here you might think
that you could use thivreach () method to iterate over all the rows and remove the matching ones:

228

) ' T
View Widget ree

store.foreach(func , user data)

wherefunc is a function that is invoked for each store row and has the signature:

def func(model, path, iter , user _data):

wheremodel is theTreeModel data storepath isthe tree path of arow imodel ,iter isaTreelter pointing
atpath anduser_data is the passed in data. fiinc returnsTRUEtheforeach () method will cease iterating
and return.

The problem with that is that changing the contents of the store whilloteach () method is iterating over it may
have unpredictable results. Using tfoeeeach () method to create and save TreeRowReferences to the rows to be
removed and then removing them after fbeeach () method completes would be a good strategy except that it
doesn’t work for PyGTK 2.0 and 2.2 wheTeeeRowReference s are not available.

A reliable strategy that covers all the PyGTK variants is to usefdheach () method to gather the tree paths of
rows to be removed and then remove them in reverse order to preserve the validity of the tree paths. An example code
fragment utilizing this strategy is:

match if the value in the first column is >= the passed in value
data is a tuple containing the match value and a list to save paths
def match_value_cb(model, path, iter, data):
if model.get value(iter, 0) >= data[0]:
data[1].append(path)
return False # keep the foreach going

pathlist = []
treestore.foreach(match_value_cb, (10, pathlist))

foreach works in a depth first fashion

pathlist.reverse()

for path in pathlist:
treestore.remove(treestore.get_iter(path))

If you want to search &reeStore for the first row that matches some criteria, you probably want to do the iteration
yourself using something like:

treestore = TreeStore(str)

def match_func(model, iter, data):
column, key = data # data is a tuple containing column number, key
value = model.get_value(iter, column)
return value == key

def search(model, iter, func, data):

229

) Tree View
Widget

while iter:
if func(model, iter, data):
return iter
result = search(model, model.iter_children(iter), func, data)
if result: return result
iter = model.iter_next(iter)
return None

match_iter = search(treestore, treestore.iter_children(None),
match_func, (0, 'foo’))

Thesearch () function iterates recursively over the row (specifieditey) and its siblings and their child rows in
a depth first fashion looking for a row that has a column matching the given key string. The search terminates when a
row is found.

14.2.7. Python Protocol Support

The classes that implement tieeeModel interface reeStore and ListStore and in PyGTK 2.4, also
the TreeModelSort and TreeModelFilter) support the Python mapping and iterator protocols. The iterator
protocol allows you to use the Pythdter () function on aTreeModel to create an iterator to be used to iterate
over the top level rows in th&reeModel . A more useful capability is to iterate using tfer statement or a list
comprehension. For example:

liststore = gtk.ListStore(str, str)
add some rows to liststore

for looping
for row in liststore:
do individual row processing

list comprehension returning a list of values in the first column
values = [r[0] for r in liststore]

Other parts of the mapping protocols that are supported are deingo delete a row in the model and extracting
a PyGTKTreeModelRow from the model using a key value that is a tree pati@elter . For example, the
following statements all return the first row infaeeModel and the final statement deletes the first child row of the
first row:

row = model[0]

row = model['0’]
row = model["0"]
row = model[(0,)]

i = model.get_iter(0)
row = model[i]
del model[(0,0)]

230

) Tree View
Widget

In addition, you can set the values in an existing row similar to the following:

liststore = gtk.ListStore(str, int, object)

liststore[0] = ['Button’, 23, gtk.Button('Label’)]

A PyGTK TreeModelRow object supports the Python sequence and iterator protocols. You can get an iterator to
iterate over the column values in the row or use the for statement or list comprehension as WekkModelRow
uses the column number as the index to extract a value. For example:

liststore = gtk.ListStore(str, int)
liststore.append([Random string’, 514])

row = liststore[0]
valuel = row[1]
valueO = liststore['0"][0]
for value in row:

print value
valo, vall = row

Using the example from the previous section to iterate overe@Store to locate a row containing a particular
value, the code becomes:

treestore = TreeStore(str)

def match_func(row, data):
column, key = data # data is a tuple containing column number, key
return row[column] == key

def search(rows, func, data):

if not rows: return None

for row in rows:
if func(row, data):

return row

result = search(row.iterchildren(), func, data)
if result: return result

return None

match_row = search(treestore, match_func, (0, 'foo’))

You can also set a value in an existing column using:

231

) ' T
View Widget ree

treestore[(1,0,1)][1] = 'abc’

The TreeModelRow also supports thdel statement and conversion to lists and tuples using the PYigton ()
andtuple () functions. As illustrated in the above example TreeModelRow has theterchildren () method
that returns an iterator for iterating over the child rows of TheeModelRow .

14.2.8. TreeModel Signals

Your application can track changes im@eModel by connecting to the signals that are emitted byTtteeModel :

"row-changed", "row-deleted", "row-inserted", "row-has-child-toggled" and "rows-reordered". These signals are used
by aTreeView to track changes in itfreeModel .

If you connect to these signals in your application, you may see clusters of signals when some methods are called. For
example the call to add the first child row to a parent row:

treestore.append(parent, ['qwe’, 'asd’, 123])

will cause the following signal emissions:

* "row-inserted" where the inserted row will be empty.

* "row-has-child-toggled" sincparent didn’t previously have any child rows.

« "row-changed" for the inserted row when setting the value 'qwe’ in the first column.

* "row-changed" for the inserted row when setting the value 'asd in the second column.
* "row-changed" for the inserted row when setting the value 123 in the third column.

Note that you can't retrieve the row order in the "rows-reordered" callback since the new row order is passed as an
opaque pointer to an array of integers.

See the PyGTK Reference Manyhttp://mwww.pygtk.org/pygtk2reference/class-gtktreemodel.hfiojmore infor-
mation on theTreeModel signals.

14.2.9. Sorting TreeModel Rows
14.2.9.1. The TreeSortable Interface

The ListStore and TreeStore objects implement th@reeSortable interface that provides methods for
controlling the sorting offreeModel rows. The key element of the interface is a "sort column ID" which is an
arbitrary integer value referring to a sort comparison function and associated user data. A sort column ID must be
greater than or equal to zero. A sort column ID is created by using the method:

treesortable.set_sort_func(sort_column_id , sort func , user_data =None)

232

url(http://www.pygtk.org/pygtk2reference/class-gtktreemodel.html)

) Tree View
Widget

wheresort_column_id is a programmer assigned integer valgett func is a function or method used to
compare rows andser_data is context datasort_func has the signature:

def sort_func_function(model, iterl, iter2, data)
def sort_func_method(self, model, iterl, iter2, data)

wheremodel is theTreeModel containing the rows pointed to by tHeeelter siterl anditer2 anddata
isuser_data . sort_ func should return: -1 if théterl row should precede thger2 row; O, if the rows are
equal; and, 1 if théter2 row should precede thigerl row. The sort comparison function should always assume
that the sort order igtk. SORT_ASCENDING as the sort order will be taken into account by TheeSortable
implementations.

The same sort comparison function can be used for multiple sort column IDs by varying the user_data to provide
context information. For example, tlhwser_data specified in theset_sort_ func () method could be the index
of the column to extract the sort data from.

Once a sort column ID is created a store can use it for sorting by calling the method:

treesortable.set_sort_column_id(sort_column_id , order)

whereorder is the sort order eithegtk. SORT_ASCENDING or gtk. SORT_DESCENDING

The sort column ID of -1 means that the store should use the default sort function that is set using the method:

treesortable.set_default_sort_func(sort func , user_data =None)

You can check if a store has a default sort function using the method:

result = treesortable.has_default_sort_func()

which returnsTRUEif a default sort function has been set.

Once a sort column ID has been set ofiraeModel implementing theTreeSortable interface it cannot be
returned to the original unsorted state. You can change the sort function or use a default sort function but you cannot
set theTreeModel to have no sort function.

14.2.9.2. Sorting in ListStores and TreeStores

When aListStore or TreeStore object is created it automatically sets up sort column IDs corresponding to
the columns in the store using the column index number. For examplist$tore with three columns would

have three sort column IDs (0, 1, 2) setup automatically. These sort column IDs are associated with an internal sort
comparison function that handles the fundamental types:

233

) Tree View
Widget

'gboolean’
. str

e int

* long

* float

Initially a ListStore or TreeStore is set with a sort column ID of -2 that indicates that no sort function is being
used and that the store is unsorted. Once you set a sort column IRistStore or TreeStore you cannot set
it back to -2.

If you want to maintain the default sort column IDs you can set up a sort column ID well out of the range of the
number of columns such as 1000 and up. Then you can switch between the default sort function and your application
sort functions as needed.

14.3. TreeViews

A TreeView is basically a container for thEreeViewColumn andCellRenderer objects that do the actual
display of the data store data. It also provides an interface to the displayed data rows and to the characteristics that
control the data display.

14.3.1. Creating a TreeView

A TreeView is created using its constructor:

treeview = gtk.TreeView(model =None)

wheremodel is an object implementing th&reeModel interface (usually d.istStore or TreeStore). If
model is None or not specified th@reeView will not be associated with a data store.

14.3.2. Getting and Setting the TreeView Model

The tree model providing the data store foFr@eView can be retrieved using thigeet_ model () method:

model = treeview.get_model()

A TreeModel may be simultaneously associated with more thanTneeView which automatically changes its
display when th&reeModel data changes. While BreeView always displays all of the rows of its tree model,
it may display only some of the tree model columns. This means thaffteeView s associated with the same
TreeModel may provide completely different views of the same data.

It's also important to realize that there is no preset relation between the column&éediew and the columns
of its TreeModel . That is, the fifth column of data in BreeModel may be displayed in the first column of one
TreeView and in the third column in another.

A TreeView can change its tree model using g#et_model () method:

234

) Tree View
Widget

treeview.set_model(model =None)

wheremodel is an object implementing thiEreeModel
is None, the current model is discarded.

interface (e.gListStore andTreeStore). If model

14.3.3. Setting TreeView Properties

TheTreeView has a number of properties that can be managed using its methods:

"enable-search” Read-Write If TRUE the user can search through columns interactively. Default is
TRUE

"expander-column” Read-Write The column for the expander. Default is 0

"fixed-height-mode" Read-Write If TRUE assume all rows have the same height thereby speeding up
display. Available in GTK+ 2.4 and above. DefaultHALSE

"hadjustment” Read-Write The horizontalAdjustment for the widget. New one created by
default.

"headers-clickable" Write If TRUE the column headers respond to click events. DefaldkSE

"headers-visible" Read-Write If TRUE show the column header buttons. DefaulfRUE

"model" Read-Write The model for the tree view. Default iéone

"reorderable” Read-Write If TRUE the view is reorderable. Default FALSE

"rules-hint” Read-Write If TRUE hint to the theme engine to draw rows in alternating colors.
Default isFALSE

"search-column" Read-Write The model column to search when searching through code. Default is -1.

"vadjustment"” Read-Write The verticalAdjustment for the widget. New one created by default.

The corresponding methods are:

enable_search = treeview.get_enable_search()
treeview.set_enable_search(

enable_search)

column = treeview.get_expander_column()
treeview.set_expander_column(

column)

hadjustment = treeview.get_hadjustment()

treeview.set_hadjustment(

treeview.set_headers_clickable(

adjustment)

active)

headers_visible = treeview.get_headers_visible()
treeview.set_headers_visible(

headers_visible)

reorderable = treeview.get_reorderable()

treeview.set_reorderable(

riles_hint = treeview.get_rules_hint()
treeview.set_rules_hint(

setting

reorderable)

)

column = treeview.get_search_column()
treeview.set_search_column(

column)

235

) Tree View
Widget

vadjustment = treeview.get_vadjustment()
treeview.set_vadjustment(adjustment)

Most of these are obvious from the description. However, the "enable-search” property requires the "search-column’
property to be set to the number of a valid column in the tree model. Then when the user Gassels+f a search
dialog is popped up that the user can type in. The first matching row will be automatically selected as the user types.

Likewise, the "headers-clickable" property really just sets the “clickable" property of the underlying
TreeViewColumn s. A TreeViewColumn will not be sortable unless the tree model implements the
TreeSortable interface and theTreeViewColumn set_sort_column_id () method has been called
with a valid column number.

The "reorderable" property enables the user to reorderTiteeView model by dragging and dropping the
TreeView rows displayed.

The "rules-hint" property should only be set if you have lots of columns and think that alternating colors may help the
user.

14.4. CellRenderers
14.4.1. Overview

TreeViewColumn s andCellRenderer s work together to display a column of data inTeeeView . The
TreeViewColumn provides the column title and a vertical space for @ellRenderer s to render a portion

of the data from th@reeView data store. ACellRenderer handles the rendering of each row and column data
within the confines of th@reeViewColumn . A TreeViewColumn can contain more than origellRenderer

to provide a row display similar to ahiBox. A common use of multipleCellRenderer s is to combine a
CellRendererPixbuf and aCellRendererText in one column.

An example illustrating the layout of twbreeViewColumn s: one with two CellRenderer s and one with one
CellRenderer is shown inFigure 14.2, “TreeViewColumns with CellRenderers”

Figure 14.2. TreeViewColumns with CellRenderers

?ixbuf and Text | Text Only

= Open Open a File
[New New File

F'lint Print FiIEJ

The application of eachCellRenderer is indicated with a different background color: vyellow for the
CellRendererPixbuf , cyan for oneCellRendererText , and pink for the otheCellRendererText
Note that theCellRendererPixbuf and the firstCellRendererText are in the same column headed by the

236

) Tree View
Widget

"Pixbuf and Text" header. The background color of @&llIRendererText rendering "Print File" is the default
color to show the application area in a single row.

Figure 14.2, “TreeViewColumns with CellRendererstas created by thetreeviewcolumn.py [exam-
ples/treeviewcolumn.pyjrogram.

14.4.2. CellRenderer Types

The type ofCellRenderer needed is determined by the type of tree model data display required; PyGTK has three
pre-definedCellRenderer s:

CellRendererPixbuf

renders pixbuf images either created by the program or one of the stock
items.

CellRendererText

renders text strings, and numbers that can be converted to a string
(including ints, floats, booleans).

CellRendererToggle
renders a boolean value as a toggle button or a radio button

14.4.3. CellRenderer Properties

The properties of &€ellRenderer determine how the data will be rendered:

"mode" Read-Write The editable mode of theCellRenderer . One of:
gtk. CELL_RENDERER_MODE_INERTgtk.CELL_RENDERER_MODE_ACTIVA
or gtk. CELL_ RENDERER_MODE_EDITABLE

"visible" Read-Write If TRUEthe cell is displayed

"xalign" Read-Write The fraction offree space to the left of the cell in the range 0.0 to 1.0.
"yalign” Read-Write The fraction offree space above the cell in the range 0.0 to 1.0.
"xpad" Read-Write The amount of padding to the left and right of the cell.

"ypad" Read-Write The amount of padding above and below cell.

"width" Read-Write The fixed width of the cell.

"height" Read-Write The fixed height of the cell.

"is-expander" Read-Write If TRUEthe row has children

"is-expanded" Read-Write If TRUEthe row has children and it is expanded to show the children.
"cell-background" Write The background color of the cell as a string.

"cell-background-gdk" Read-Write The background color of the cell as gtk.gdk.Color
"cell-background-set” Read-Write If TRUEthe cell background color is set by this cellrenderer

The above properties are available for@#lIRenderer subclasses. The individu@leliRenderer types also
have their own properties.

The CellRendererPixbuf has these properties:

237

file:url(examples/treeviewcolumn.py)

) Tree View
Widget

"pixbuf" Read-Write
"pixbuf-expander-open” Read-Write
"pixbuf-expander-closed"Read-Write

"stock-id" Read-Write
"stock-size" Read-Write
"stock-detail" Read-Write

TheCellRendererText

"text" Read-Write
"markup” Read-Write
"attributes” Read-Write
"background" Write

"foreground” Write

"background-gdk" Read-Write
"foreground-gdk" Read-Write
"font" Read-Write
"font-desc” Read-Write
"family" Read-Write
"style" Read-Write
"variant" Read-Write
"weight" Read-Write
"stretch” Read-Write
"size" Read-Write
"size-points"” Read-Write
"scale" Read-Write
"editable" Read-Write
"strikethrough" Read-Write
"underline” Read-Write
"rise" Read-Write
"language” Read-Write

"single-paragraph-mode"Read-Write

"background-set” Read-Write
"foreground-set" Read-Write
"family-set" Read-Write
"style-set” Read-Write
"variant-set" Read-Write
"weight-set” Read-Write
"stretch-set” Read-Write
"size-set" Read-Write
"scale-set" Read-Write
"editable-set" Read-Write
"strikethrough-set" Read-Write
"underline-set" Read-Write
"rise-set" Read-Write
"language-set" Read-Write

The pixbuf to render - overridden by "stock-id"
Pixbuf for open expander.

Pixbuf for closed expander.

The stock ID of the stock icon to render

The size of the rendered icon

Render detail to pass to the theme engine

has a large number of properties mostly dealing with style specification:

Text to render

Marked up text to render.

A list of style attributes to apply to the text of the renderer.

Background color as a string

Foreground color as a string

Background color as gtk.gdk.Color

Foreground color as gtk.gdk.Color

Font description as a string

Font description as pango.FontDescription

Name of the font family, e.g. Sans, Helvetica, Times, Monospace

Font style

Font variant

Font weight

Font stretch

Font size

Font size in points

Font scaling factor

If TRUEthe text can be modified by the user

If TRUEstrike through the text

Style of underline for this text

Offset of text above the baseline (below the baseline if rise is negative)
The language this text is in, as an ISO code. Pango can use this as a
hint when rendering the text. If you don’'t understand this parameter, you
probably don’t need it. GTK+ 2.4 and above.

If TRUE keep all text in a single paragraph. GTK+ 2.4 and above.

If TRUEapply the background color
If TRUEapply the foreground color
If TRUEapply the font family

If TRUEapply the font style

If TRUEapply the font variant

If TRUEapply the font weight

If TRUEapply the font stretch

If TRUEapply the font size

If TRUEscale the font

If TRUEapply the text editability

If TRUEapply the strikethrough

If TRUEapply the text underlining

If TRUEapply the rise

If TRUEapply the language used to render the text. GTK+ 2.4 and above.

238

Tree Vi
Widget ree View

Almost everyCellRendererText property has an associated boolean property (with the "-set" suffix) that indicates
if the property is to be applied. This allows you to set a property globally and selectively enable and disable its
application.

TheCellRendererToggle has the following properties:

"activatable" Read-Write If TRUE the toggle button can be activated

"active" Read-Write If TRUE the button is active.

"radio" Read-Write If TRUE draw the toggle button as a radio button

"inconsistent” Read-Write If TRUE the button is in an inconsistent state. GTK+ 2.2 and above.
The properties can be set for all rows by using tjobject.set_property () method. See thé&reeviewcol-

umn.py [examples/treeviewcolumn.ppfogram for an example using this method.

14.4.4. CellRenderer Attributes

An attribute associates a tree model column wi@eliRenderer property; theCellRenderer sets the property
from the row’s column value before rendering the cell. This allows you to customize the cell display using tree model
data. An attribute can be added to the current set by using:

treeviewcolumn.add_attribute(cell_renderer , attribute , column)

where the property specified laytribute is set for thecell_renderer from column . For example:

treeviewcolumn.add_attribute(cell, "cell-background"”, 1)

sets theCellRenderer background to the color specified by the string in the second column of the data store.

To clear all attributes and set several new attributes at once use:

treeviewcolumn.set_attributes(cell_renderer .

where the attributes ofell_renderer are set by key-value pairs: property=column. For example, for a
CellRendererText

treeviewcolumn.set_attributes(cell, text=0, cell_background=1, xpad=3)

sets, for each row, the text from the first column, the background color from the second column and the horizontal
padding from the fourth column. See ttieeviewcolumn.py[examples/treeviewcolumn.ppfogram for an example
using these methods.

The attributes of €ellRenderer can be cleared using:

239

file:url(examples/treeviewcolumn.py)
file:url(examples/treeviewcolumn.py)
file:url(examples/treeviewcolumn.py)

) Tree View
Widget

treeviewcolumn.clear_attributes(cell_renderer)

14.4.5. Cell Data Function

If setting attributes is not sufficient for your needs you can set a function to be called for each row to set the properties
for thatCellRenderer using:

treeviewcolumn.set_cell_data_func(cell_renderer , func , data =None)

wherefunc has the signature:

def func(column, cell_renderer, tree_model, iter, user_data)

where column is the TreeViewColumn containing cell_renderer , tree_model is the data store and
iter isaTreelter pointing at a row intree_model . user_data is the value ofdata that was passed to
set_cell_data_func 0.

In func you set whatever properties you wanta@ll_renderer . For example the following code fragment sets
the text property to display PyGTK objects as an ID string.

def obj_id_str(treeviewcolumn, cell_renderer, model, iter):
pyobj = model.get_value(iter, 0)
cell.set_property('text’, str(pyobj))
return

treestore = gtk.TreeStore(object)

win = gtk.Window()

treeview = gtk.TreeView(treestore)
win.add(treeview)

cell = CellRendererText()

tvcolumn = gtk TreeViewColumn('Object ID’, cell)
treeview.append_column(tvcolumn)

iter = treestore.append(None, [win])

iter = treestore.append(iter, [treeview])
iter = treestore.append(iter, [tvcolumn])
iter = treestore.append(iter, [cell])

iter = treestore.append(None, [treestore])

The resulting display should be something Ifkgure 14.3, “CellRenderer Data Function”

240

i T
View Widget ree

Figure 14.3. CellRenderer Data Function

'~ ISR - © %

Object ID

* <gtk.Window object (GtkWindow) at OxB17a%9a4>
= «gth. TreeView object (GtkTreeView) at Ox826bc4c>
= «gtk.TreeViewColumn object (GtkTreeViewColumn) at Ox8275ffc>
<gtk.CellRendererText object (GtkCellRendererText) at Ox827407c>
L-:gl’k.TrEESTUFE object (GtkTreeStore) at Ox826bd64> J

Another use of a cell data function is to control the formatting of a numerical text display e.g. a float value. A
CellRendererText will display and automatically convert a float to a string but with a default format "%f".

With cell data functions you can even generate the cell data for the columns from external data. For example the
filelisting.py [examples/filelisting.pyJprogram uses &.istStore with just one column that holds a list of file
names. ThelreeView displays columns that include a pixbuf, the file name and the file's size, mode and time
of last change. The data is generated by the following cell data functions:

def file_pixbuf(self, column, cell, model, iter):
filename = os.path.join(self.dirname, model.get_value(iter, 0))
filestat = statcache.stat(filename)
if stat.S_ISDIR(filestat.st_mode):

pb = folderpb
else:

pb = filepb
cell.set_property(’pixbuf’, pb)
return

def file_name(self, column, cell, model, iter):
cell.set_property('text’, model.get_value(iter, 0))
return

def file_size(self, column, cell, model, iter):
filename = os.path.join(self.dirname, model.get_value(iter, 0))
filestat = statcache.stat(filename)
cell.set_property('text’, filestat.st_size)
return

def file_mode(self, column, cell, model, iter):
filename = os.path.join(self.dirname, model.get_value(iter, 0))
filestat = statcache.stat(filename)
cell.set_property(‘text’, oct(stat.S_IMODE(filestat.st_mode)))
return

241

file:url(examples/filelisting.py)

) Tree View
Widget

def file_last_changed(self, column, cell, model, iter):
filename = os.path.join(self.dirname, model.get_value(iter, 0))
filestat = statcache.stat(filename)
cell.set_property('text’, time.ctime(filestat.st_mtime))
return

These cell data functions retrieve the file information using the name, extract the needed data and set the cell 'text’ or
'pixbuf’ property with the dataFigure 14.4, “File Listing Example Using Cell Data Functiorssiows the example
program in action:

Figure 14.4. File Listing Example Using Cell Data Functions

|

Mame Size Mode |Last Changed

24 .. 4096 0755 Sat May 1 13:09:07 2004
_1DPsS 4096 0755 SatMay 1 13:45:32 2004
El FlexLexer.h 5826 0644 Fri Jan 24 16:05:45 2003
_IGL 4096 0755 Sat May 1 13:45:41 2004
El Imlib.h 5964 0644 Fri Jan 24 14:44:27 2003
El Imlib_private.h 4790 0644 Fr Jan 24 14:44:27 2003
El Imlib_types.h 5132 0644 Fri Jan 24 14:44:27 2003
_IMmm 4096 0755 SatMay 1 13:45:12 2004
_1sDL 4096 0755 SatMay 1 13:46:03 2004
_IX11 4096 0755 Sat May 1 13:45:34 2004
_1¥m 8192 0755 SatMay 1 13:45:13 2004
El _G_config.h 2647 0644 Thu Mar 13 15:00:22 2003
El a.out.h 83 0644 Thu Mar 13 15:01:10 2003

L E

14.4.6. CellRendererText Markup

A CellRendererText can use Pango markup (by setting the "markup" property) instead of a plain text string
to encode various text attributes and provide a rich text display with multiple font style changes. See the Pango

242

url(http://www.pygtk.org/pygtk2reference/pango-markup.html)
url(http://www.pygtk.org/pygtk2reference/pango-markup.html)

) Tree View
Widget

Markup [http://www.pygtk.org/pygtk2reference/pango-markup.htméference in the PyGTK Reference Manual
[http:/mww. pygtk.org/pygtk2referencédr details on the Pango markup language.

The following code fragment illustrates the use of the "markup" property:

liststore = gtk.ListStore(str)

cell = gtk.CellRendererText()
tvcolumn = gtk.TreeViewColumn('Pango Markup’, cell, markup=0)

liststore.append(['Pango markup can’
' change\n<i>style</i> <big>size</big>, <u>underline,’

<s>strikethrough</s></u>\n’

‘and <big>font family ’

'e.g. URW Chancery L</big>\nred’

' foreground and cyan background"])

produces a display similar feigure 14.5, “CellRendererText Markup”

Figure 14.5. CellRendererText Markup

Pango markup can change

style size, underline, strkethreugh,

and font family e.q. URW Chancery L
Lred foreground and gyan backgmunu

If you create pango markup on the fly you have to be careful to replace the characters that are special to the markup
language: "<", ">", "&". The Python library functioogi.escape () can do these basic conversions.

14.4.7. Editable Text Cells

cells can be made editable to allow a user to edit the contents of the cell that is selected by

CellRendererText
clicking it or pressing one of th®eturn, Enter, Spaceor Shift+Spacekeys. A CellRendererText is made

editable for all rows by setting its "editable" propertytRUEas follows:

cellrenderertext.set_property('editable’, True)

243

url(http://www.pygtk.org/pygtk2reference/pango-markup.html)
url(http://www.pygtk.org/pygtk2reference/pango-markup.html)
url(http://www.pygtk.org/pygtk2reference)

) Tree View
Widget

Individual cells can be set editable by adding an attribute td teeViewColumn using theCellRendererText
similar to:

treeviewcolumn.add_attribute(cellrenderertext, "editable", 2)

which sets the "editable" property to the value contained in the third column of the data store.

Once the cell editing completes, your application should handle the "edited" signal to retrieve the new text and set the
associated data store value. Otherwise the cell value reverts to its original value. The signature of the "edited" signal
handler is:

def edited_cb(cell , path, new_text , user_data)

wherecell is theCellRendererText , path is the tree path (as a string) to the row containing the edited cell,
new_text is the edited text andser_data is context data. Since tHereeModel is needed to uspath to set
new_text inthe data store you probably want to passTheeModel asuser_data intheconnect () method:

cellrenderertext.connect('edited’, edited_ch, model)

If you have two or more editable cells in a row, you could pass TheeModel column number as part of
user_data as well as th@reeModel :

cellrenderertext.connect(edited’, edited_chb, (model, col_num))

Then you can set the new text in the "edited" handler similar to this example ukistéore

def edited_cb(cell, path, new_text, user_data):
liststore, column = user_data
liststore[path][column] = new_text
return

14.4.8. Activatable Toggle Cells

CellRendererToggle buttons can be made activatable by setting the "activatable" propeffgWkE Similar to
editableCellRendererText cells the "activatable" property can be set for the ef@ie#RendererToggle set
of cells using theset_property () method or for individual cells by adding an attribute to TreeViewColumn
containing theCellRendererToggle

cellrenderertoggle.set_property(activatable’, True)

244

) ' T
View Widget ree

treeviewcolumn.add_attribute(cellrenderertoggle, "activatable”, 1)

The setting of the individual toggle buttons can be derived from the value§ieeModel column by adding an
attribute, for example:

treeviewcolumn.add_attribute(cellrenderertoggle, "active", 2)

You should connect to the "toggled" signal to get notification of user clicks on the toggle buttons so that your
application can change the value in the data store. For example:

cellrenderertoggle.connect("toggled”, toggled_cb, (model, column))

The callback has the signature:

def toggled_cb(cellrenderertoggle , path , user _data)

wherepath is the tree path, as a string, pointing to the row containing the toggle that was clicked. You should pass
the TreeModel and possibly the column index as partusier_data to provide the necessary context for setting
the data store values. For example, your application can toggle the data store value as follows:

def toggled_cb(cell, path, user_data):
model, column = user_data
model[path][column] = not model[path][column]
return

If your application wants to display the toggle buttons as radio buttons and have only one be set, it will have to scan
the data store to deactivate the active radio button and then set the toggled button. For example:

def toggled_cb(cell, path, user_data):
model, column = user_data
for row in model:
row[column] = False
model[path][column] = True
return

takes the lazy approach of setting all data store valuBat&GEbefore setting the value ToRUEfor the row specified
by path .

14.4.9. Editable and Activatable Cell Example Program

245

) ' T
View Widget ree

The cellrenderer.pfexamples/cellrenderer.ppfogram illustrates the application of editaklellRendererText
and activatabl€ellRendererToggle cells in aTreeStore

O©CoO~NOUITAWNE

#!/usr/bin/env python

vim: ts=4:sw=4:tw=78:nowrap

""" Demonstration using editable and activatable CellRenderers """
import pygtk

pygtk.require("2.0")

import gtk, gobject

tasks = {
"Buy groceries": "Go to Asda after work",
"Do some programming": "Remember to update your software",
"Power up systems": "Turn on the client but leave the server",
"Watch some tv": "Remember to catch ER"

}

class GUI_Controller:

" The GUI class is the controller for our application ™"

def __init_ (self):
setup the main window
self.root = gtk.Window(type=gtk. WINDOW_TOPLEVEL)
self.root.set_title("CellRenderer Example")
self.root.connect("destroy”, self.destroy_ch)
Get the model and attach it to the view
self.mdl = Store.get_model()
self.view = Display.make_view(self.mdl)
Add our view into the main window
self.root.add(self.view)
self.root.show_all()
return

def destroy_cb(self, *kw):
""" Destroy callback to shutdown the app ™"
gtk.main_quit()
return

def run(self):
" run is called to set off the GTK mainloop ™"
gtk.main()
return

class InfoModel:
""" The model class holds the information we want to display ™"
def __init__ (self):
""" Sets up and populates our gtk.TreeStore
self.tree_store = gtk.TreeStore(gobject. TYPE_STRING,
gobject. TYPE_BOOLEAN)
places the global people data into the list
we form a simple tree.
for item in tasks.keys():
parent = self.tree_store.append(None, (item, None))
self.tree_store.append(parent, (tasks[item],None))
return
def get_model(self):

246

file:url(examples/cellrenderer.py)

51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74

76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104

) ' T
View Widget ree

""" Returns the model
if self.tree_store:
return self.tree_store
else:
return None

class DisplayModel:
""" Displays the Info_Model model in a view ™"
def make_view(self, model):

"™ Form a view for the Tree Model "™

self.view = gtk.TreeView(model)

setup the text cell renderer and allows these

cells to be edited.

self.renderer = gtk.CellRendererText()
self.renderer.set_property('editable’, True)
self.renderer.connect(’'edited’, self.col0_edited_cb, model)

The toggle cellrenderer is setup and we allow it to be

changed (toggled) by the user.

self.rendererl = gtk.CellRendererToggle()
self.rendererl.set_property('activatable’, True)
self.rendererl.connect('toggled’, self.coll_toggled cb, model)

Connect columnO of the display with column O in our list model

The renderer will then display whatever is in column O of

de

de

if _name__ ==' main__":

—h

—+

our model .
self.columnO = gtk.TreeViewColumn("Name", self.renderer, text=0)

The columns active state is attached to the second column
in the model. So when the model says True then the button
will show as active e.g on.

self.columnl = gtk.TreeViewColumn("Complete"”, self.rendererl)
self.columnl.add_attribute(self.rendererl, "active", 1)
self.view.append_column(self.columnO)
self.view.append_column(self.columnl)

return self.view

col0_edited_ch(self, cell, path, new_text, model):

Called when a text cell is edited. It puts the new text

in the model so that it is displayed properly.

print "Change '%s’ to '%s™ % (model[path][0], new_text)
model[path][0] = new_text

return

coll _toggled_cb(self, cell, path, model):

Sets the toggled state on the toggle button to true or false.
model[path][1] = not model[path][1]

print "Toggle '%s’ to: %s" % (model[path][0], model[path][1],)
return

Store = InfoModel()

75

247

tTree View

Widge
105 Display = DisplayModel()
106 myGUI = GUI_Controller()
107 myGUL.run()

The program provides editable cells in the first column and activatable cells in the second column. Lines 64-66 create
an editableCellRendererText and connect the "edited" signal to thel0_edited cb () callback (lines 87-

94) that changes the appropriate row column value inTiteeStore . Likewise lines 70-72 create an activatable
CellRendererToggle and connect the "toggled" signal to tbell_toggled_cb () callback (lines 95-101) to

change the appropriate row value. When an editable or activatable cell is changed, a message is printed to indicate
what the change was.

Figure 14.6, “Editable and Activatable Cellglustrates the cellrenderer.dgxamples/cellrenderer.pyjrogram in
operation.

Figure 14.6. Editable and Activatable Cells

L d CellRenderer Example = ==

Name Complete

[Buy groceries
= Do some programming

Remember to update your software

O & O R

= Power up systems

Turn on the client but leave the server

[Watch some tv]
14.5. TreeViewColumns
14.5.1. Creating TreeViewColumns
A TreeViewColumn is created using the constructor:
treeviewcolumn = gtk.TreeViewColumn(titte =None, cell_renderer=None y e)
wheretitle is the string to be used as the column header labelcalhidrenderer is the firstCellRenderer
to pack in the column. Additional arguments that are passed to the constructor are keyword values (in the format

attribute=column) that set attributes cell_renderer . For example:

248

file:url(examples/cellrenderer.py)

) Tree View
Widget

treeviewcolumn = gtk.TreeViewColumn('States’, cell, text=0, foreground=1)

creates dreeViewColumn with the CellRendererText cell retrieving its text from the first column of the tree
model and the text color from the second column.

14.5.2. Managing CellRenderers

A CellRenderer can be added to&reeViewColumn using one of the methods:

treeviewcolumn.pack_start(cell , expand)
treeviewcolumn.pack_end(cell , expand)

pack start () andpack_end () addcell to the start or end, respectively, of theeeViewColumn . If expand
is TRUE cell will share in any available extra space allocated byTieeViewColumn

Theget_cell_renderers () method:

cell_list = treeviewcolumn.get_cell_renderers()

returns a list of all the&CellRenderer s in the column.

Theclear () method removes all th€ellRenderer attributes from th&@reeViewColumn

treeviewcolumn.clear()

There are a large number of other methods available foregViewColumn - mostly dealing with setting and
getting properties. See the PyGTK Reference Maiftuid://www.pygtk.org/pygtk2reference/index.htnfitir more
information on theTreeViewColumn properties. The capability of using the built-in sorting facility is set using the
method:

treeviewcolumn.set_sort_column_id(sort_column_id)

setssort_column_id as the tree model sort column ID to use when sorting TheeView display. This
method also sets the "clickable" property of the column that allows the user to click on the column header to
activate the sorting. When the user clicks on the column headefrde/iewColumn sort column ID is set

as theTreeModel sort column ID and thdreeModel rows are resorted using the associated sort comparison
function. The automatic sorting facility also toggles the sort order of the column and manages the display of the
sort indicator. Seé&ection 14.2.9, “Sorting TreeModel Rowf3r more information on sort column IDs and sort
comparison functions. Typically when using_&tStore or TreeStore the default sort column ID (i.e. the
column index) of th&reeModel column associated with thereeViewColumn is set as thdreeViewColumn

sort column ID.

249

url(http://www.pygtk.org/pygtk2reference/index.html)

) Tree View
Widget

If you use theTreeViewColumn headers for sorting by using tiset_sort_column_id () method, you don’t
need to use th&reeSortable set_sort_column_id () method.

You can track the sorting operations or use a header click for your own purposes by connecting to the "clicked" signal
of theTreeView column. The callback function should be defined as:

def callback(treeviewcolumn, user_data, ...)

14.6. Manipulating TreeViews
14.6.1. Managing Columns

TheTreeViewColumn sinaTreeView can be retrieved singly or as a list using the methods:

treeviewcolumn = treeview.get_column(n)
columnlist = treeview.get_columns()

wheren is the index (starting from 0) of the column to retrieve. A column can be removed using the method:

treeview.remove_column(column)

wherecolumn is aTreeViewColumn in treeview

Rows that have child rows are displayed in freeView with an expander arrow (séggure 14.3, “CellRenderer
Data Function) that the user clicks on to hide or reveal the child row(s). The column that the expander arrow is
displayed in can be changed using the method:

treeview.set_expander_column(column)

wherecolumn is aTreeViewColumn in treeview. This method is useful when you want the first column to not
indent. For exampldrigure 14.7, “Expander Arrow in Second Columtilistrates the expander arrow in the second
column:

Figure 14.7. Expander Arrow in Second Column

250

) Tree View
Widget

v d TreeViewColumn Example = T (P

Part No. | Description

456 = Thingamabob

456-1 Thingamabob Frammer
456-2 = Thingamabob Mongo
456-2-1 Thingamabob Mongo Spring

- =)

14.6.2. Expanding and Collapsing Child Rows

All the rows displayed in &reeView can be programmatically expanded or collapsed using the following methods:

treeview.expand_all()
treeview.collapse_all()

These methods are useful if you want to initialize rreeView display to a known state. Individual rows can be
expanded or collapsed using:

treeview.expand_row(path , open_all)
treeview.collapse_row(path)

wherepath is the tree path to a row in treeview, andopen_all is TRUEall descendant rows gfath are
expanded; otherwise just the immediate children are expanded.

You can determine if a row is expanded using the method:

is_expanded = treeview.row_expanded(path)

14.7. TreeView Signals

TreeView s emit a large number of signals that you can use to track changes in the view of the model. The signals
generally fall into the following categories:

251

) Tree View
Widget

» expanding and collapsing rows: "row-collapsed”, "row-expanded", "test-collapse-row", "test-expand-row" and
"expand-collapse-cursor-row"

» the cursor: "cursor-changed”, "expand-collapse-cursor-row"”, "move-cursor”, "select-cursor-parent”, "select-
cursor-row" and "toggle-cursor-row"

« selection: "select-all", "select-cursor-parent”, "select-cursor-row" and "unselect-all".
» miscellaneous: "columns-changed", "row-activated”, "set-scroll-adjustments" and "start-interactive-search".

The "test-collapse-row" and "test-expand-row" signals are emitted before a row is collapsed or expanded. The return
value from your callback can cancel or allow the operatidiRUEto allow andFALSEto cancel.

def callback(treeview, iter, path, user_data)

whereiter isaTreelter andpath is atree path pointing at the row ander_data is the data specified in the
connect () method.

The "row-activated" signal is emitted when a double click occurs on a row or a hon-editable row is selected and one
of the keys:Space Shift+Space Return or Enter is pressed.

The rest of the signals are emitted after ffreeView has changed. The cursor is the row outlined by a box. In
most cases moving the cursor also moves the selection. The cursor can be moved indepen@mttyobyDown
or Control+Up and various other key combinations.

See the PyGTK Reference Mandiattp://www.pygtk.org/pygtk2reference/class-gtktreeview.htimtjmore informa-
tion on theTreeView signals.

14.8. TreeSelections
14.8.1. Getting the TreeSelection

TreeSelection s are objects that manage selections imMraeView . When aTreeView is created a
TreeSelection is automatically created as well. TAeeeSelection can be retrieved from th€reeView
using the method:

treeselection = treeview.get_selection()

You can retrieve th@reeView associated with @&reeSelection by calling the method:

treeview = treeselection.get_treeview()

14.8.2. TreeSelection Modes

TheTreeSelection supports the following selection modes:

252

url(http://www.pygtk.org/pygtk2reference/class-gtktreeview.html)

) Tree View
Widget

gtk. SELECTION_NONE
No selection is allowed.

gtk.SELECTION_SINGLE
A single selection is allowed by clicking.

gtk.SELECTION_BROWSE
A single selection allowed by browsing with the pointer.

gtk.SELECTION_MULTIPLE
Multiple items can be selected at once.

You can retrieve the current selection mode by calling the method:

mode = treeselection.get_mode()

The mode can be set using:

treeselection.set_mode(mode)

wheremode is one of the above selection modes.

14.8.3. Retrieving the Selection

The method to use to retrieve the selection depends on the current selection mode. If the selection mode is
Otk.SELECTION_SINGLE or gtk. SELECTION_BROWSE you should use the following method:

(model, iter) = treeselection.get_selected()

that returns a 2-tuple containimgodel , theTreeModel used by th@reeView associated witkreeselection
anditer ,aTreelter pointing at the selected row. If no row is selected tiien is None. If the selection mode
is gtk. SELECTION_MULTIPLE a TypeError exception is raised.

If you have aTreeView using thegtk. SELECTION_MULTIPLE selection mode then you should use the method:

(model, pathlist) = treeselection.get_selected_rows()

that returns a 2-tuple containing the tree model and a list of the tree paths of the selected rows. This method is not
available in PyGTK 2.0 so you'll have to use a helper function to retrieve the list by using:

treeselection.selected_foreach(func , data =None)

253

) Tree View
Widget

wherefunc is a function that is called on each selected row wlita . The signature ofunc is:

def func(model, path , iter , data)

wheremodel is theTreeModel , path is the tree path of the selected row dtet is aTreelter pointing at
the selected row.

This method can be used to simulate et selected row () method as follows:

def foreach_cb(model, path, iter, pathlist):
list.append(path)

def my_get_selected_rows(treeselection):
pathlist = []
treeselection.selected_foreach(foreach_ch, pathlist)
model = sel.get_treeview().get_model()
return (model, pathlist)

Theselected_foreach () method cannot be used to modify the tree model or the selection though you can change
the data in the rows.

14.8.4. Using a TreeSelection Function

If you want ultimate control over row selection you can set a function to be called before a row is selected or unselected
by using the method:

treeselection.set_select_function(func , data)

wherefunc is a callback function andata is user data to be passedftmc when it is called.func has the
signature:

def func(selection , model, path , is_selected , user_data)

whereselection is theTreeSelection , model is theTreeModel used with thélreeView associated with
selection , path is the tree path of the selected rasy, selected is TRUEIf the row is currently selected and
user_data isdata . func should returnTRUEIf the row’s selection status should be toggled.

Setting a select function is useful if:

254

) ' T
View Widget ree

» you want to control the selection or unselection of a row based on some additional context information. You will
need to indicate in some way that the selection change can’'t be made and perhaps why. For example, you can
visually differentiate the row or pop upMessageDialog

 you need to maintain your own list of selected or unselected rows though this can also be done by connecting to
the "changed" signal but with more effort.

 you want to do some additional processing before a row is selected or unselected. For example change the look of
the row or modify the row data.

14.8.5. Selecting and Unselecting Rows

You can change the selection programmatically using the following methods:

treeselection.select_path(path)
treeselection.unselect_path(path)
treeselection.select_iter(iter)
treeselection.unselect_iter(iter)

These methods select or unselect a single row that is specified by gétther, a tree path oiter , a Treelter
pointing at the row. The following methods select or unselect several rows at once:

treeselection.select_all()
treeselection.unselect_all()

treeselection.select_range(start_path , end_path)
treeselection.unselect_range(start_path , end_path)

The select_all () method requires that the selection mode dik.SELECTION_MULTIPLE as does the
select range () method. Theunselect all () andunselect_range () methods will function with any
selection mode. Note that thmselect_all () method is not available in PyGTK 2.0

You can check if a row is selected by using one of the methods:

result = treeselection.path_is_selected(path)
result = treeselection.iter_is_selected(iter)

that returnTRUEIf the row specified byath oriter is currently selected. You can retrieve a count of the number
of selected rows using the method:

count = treeselection.count_selected_rows()

255

) Tree View
Widget

This method is not available in PyGTK 2.0 so you'll have to simulate it usingéhected foreach () method
similar to the simulation of thget_selected_rows () method inSection 21.2, “Retrieving the SelectionFor
example:

def foreach_cb(model, path, iter, counter):
counter[0] += 1

def my_count_selected_rows(treeselection):
counter = [0]
treeselection.selected_foreach(foreach_cb, counter)
return counter[0]

14.9. TreeView Drag and Drop
14.9.1. Drag and Drop Reordering

Reordering of theTreeView rows (and the underlying tree model rows is enabled by using the
set_reorderable () method mentioned above. Theet reorderable () method sets the "reorderable"
property to the specified value and enables or disables the internal drag and dngedfew rows. When the
“reorderable" property i§RUEa user can dragreeView rows and drop them at a new location. This action causes
the underlyingTreeModel rows to be rearranged to match. Drag and drop reordering of rows only works with
unsorted stores.

14.9.2. External Drag and Drop

If you want to control the drag and drop or deal with drag and drop from external sources, you'll have to enable and
control the drag and drop using the following methods:

treeview.enable_model_drag_source(start_button_mask , targets , actions)
treeview.enable_model_drag_dest(targets , actions)
These methods enable using rows as a drag source and a drop site respstaitelyutton_mask is a modifier

mask (see the gtk.gtk Constants referefiten://www.pygtk.org/pygtk2reference/gdk-constants.html#gdk-modifier-
constantsfin the PyGTK Reference Manudhttp://www.pygtk.org/pygtk2reference/index.htinthat specifies the

buttons or keys that must be pressed to start the drag operatogets is a list of 3-tuples that describe the

target information that can be given or received. For a drag and drop to succeed at least one of the targets must match
in the drag source and drag destination (e.g. the "STRING" target). Each target 3-tuple contains the target name,
flags (a combination ajtk. TARGET_SAME_APPandgtk. TARGET_SAME_WIDGETor neither) and a unique int
identifier.actions describes what the result of the operation should be:

gtk.gdk.ACTION_DEFAULT , gtk.gdk.ACTION_COPY
Copy the data.

256

url(http://www.pygtk.org/pygtk2reference/gdk-constants.html#gdk-modifier-constants)
url(http://www.pygtk.org/pygtk2reference/index.html)

) ' T
View Widget ree

gtk.gdk.ACTION_MOVE
Move the data, i.e. first copy it, then delete it from the source
using theDELETEtarget of the X selection protocol.

gtk.gdk. ACTION_LINK
Add a link to the data. Note that this is only useful if source
and destination agree on what it means.

gtk.gdk. ACTION_PRIVATE
Special action which tells the source that the destination will
do something that the source doesn’t understand.

otk.gdk. ACTION_ASK
Ask the user what to do with the data.

For example to set up a drag drop destination:

treeview.enable_model_drag_dest([('text/plain’, 0, 0)],
gtk.gdk. ACTION_DEFAULT | gtk.gdk. ACTION_MOVE)

Then you'll have to handle the/idget "drag-data-received" signal to receive that dropped data - perhaps replacing
the data in the row it was dropped on. The signature for the callback for the "drag-data-received" signal is:

def callback(widget , drag_context , X, y, selection_data , info , timestamp)

wherewidget is theTreeView , drag_context is aDragContext containing the context of the selection,
andy are the position where the drop occurredlection_data is the SelectionData containing the data,
info is the ID integer of the typdjmestamp is the time when the drop occurred. The row can be identified by
calling the method:

drop_info = treeview.get_dest_row_at_pos(X, Y)

where K, y) is the position passed to the callback function andp_info is a 2-tuple containing the path of a

row and a position constant indicating where the drop is with respect to thgthwWwREE_VIEW_DROP_BEFORE

gtk. TREE_VIEW_DROP_AFTER gtk. TREE_VIEW_DROP_INTO_OR_BEFORIErgtk. TREE_VIEW_DROP_INTO_OR_AFT
The callback function could be something like:

treeview.enable_model_drag_dest([('text/plain’, 0, 0)],
gtk.gdk.ACTION_DEFAULT | gtk.gdk.ACTION_MOVE)
treeview.connect("drag-data-received", drag_data_received_cb)

def drag_data_received_ch(treeview, context, X, y, selection, info,
timestamp):
drop_info = treeview.get_dest_row_at pos(X, y)
if drop_info:
model = treeview.get_model()

257

) ' T
View Widget ree

path, position = drop_info
data = selection.data
do something with the data and the model

return

If a row is being used as a drag source it must handléNffdget "drag-data-get" signal that populates a selection
with the data to be passed back to the drag drop destination with a callback function with the signature:

def callback(widget , drag_context , selection_data , info , timestamp)

The parameters toallback are similar to those of the "drag-data-received"” callback function. Since the callback is

not passed a tree path or any easy way of retrieving information about the row being dragged, we assume that the row
being dragged is selected and the selection mogtkiSELECTION_SINGLE or gtk. SELECTION_BROWSEso

we can retrieve the row by getting tieeeSelection and retrieving the tree model affdeelter pointing at

the row. For example, text from a row could be passed in the drag drop by:

treestore = gtk.TreeStore(str, str)

treeview.enable_model_drag_source(gtk.gdk.BUTTON1_MASK,
[Ctext/plain’, 0, 0)],
gtk.gdk. ACTION_DEFAULT | gtk.gdk. ACTION_MOVE)
treeview.connect("drag-data-get", drag_data_get cb)

def drag_data_get_ch(treeview, context, selection, info, timestamp):
treeselection = treeview.get_selection()
model, iter = treeselection.get_selected()
text = model.get_value(iter, 1)
selection.set('text/plain’, 8, text)
return

TheTreeView can be disabled as a drag source and drop destination by using the methods:

treeview.unset_rows_drag_source()
treeview.unset_rows_drag_dest()

14.9.3. TreeView Drag and Drop Example

A simple example program is needed to pull together the pieces of code described above. This example (tree-
viewdnd.py[examples/treeviewdnd.py]s a list that URLs can be dragged from and dropped on. Also the URLs

258

file:url(examples/treeviewdnd.py)
file:url(examples/treeviewdnd.py)

) ' T
View Widget ree

in the list can be reordered by dragging and dropping withimtleeView . A couple of buttons are provided to clear
the list and to clear a selected item.

1
2
3
4
5
6
7
8

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

#!/usr/bin/env python
example treeviewdnd.py

import pygtk
pygtk.require('2.0%)
import gtk

class TreeViewDnDExample:

TARGETS = |
(MY_TREE_MODEL_ROW’, gtk. TARGET_SAME_WIDGET, 0),
(‘text/plain’, 0, 1),
(TEXT’, 0, 2),
(STRING', 0, 3),
]
close the window and quit
def delete_event(self, widget, event, data=None):
gtk.main_quit()
return False

def clear_selected(self, button):
selection = self.treeview.get_selection()
model, iter = selection.get_selected()
if iter:
model.remove(iter)
return

def __init__ (self):
Create a new window
self.window = gtk.Window(gtk. WINDOW_TOPLEVEL)

self.window.set_title("URL Cache")
self.window.set_size request(200, 200)
self.window.connect("delete_event", self.delete_event)

self.scrolledwindow = gtk.ScrolledWindow()
self.vbox = gtk.VBox()

self.hbox = gtk.HButtonBox()
self.vbox.pack_start(self.scrolledwindow, True)
self.vbox.pack_start(self.hbox, False)

self.b0 = gtk.Button('Clear All’)

self.bl = gtk.Button('Clear Selected’)
self.hbox.pack_start(self.b0)
self.hbox.pack_start(self.b1)

create a liststore with one string column to use as the model
self.liststore = gtk.ListStore(str)

259

Tree

View Widget

51

52 # create the TreeView using liststore

53 self.treeview = gtk.TreeView(self.liststore)

54

55 # create a CellRenderer to render the data

56 self.cell = gtk.CellRendererText()

57

58 # create the TreeViewColumns to display the data

59 self.tvcolumn = gtk.TreeViewColumn('URL’, self.cell, text=0)

60

61 # add columns to treeview

62 self.treeview.append_column(self.tvcolumn)

63 self.b0.connect_object('clicked’, gtk.ListStore.clear,
self.liststore)

64 self.bl.connect(’clicked’, self.clear_selected)

65 # make treeview searchable

66 self.treeview.set_search_column(0)

67

68 # Allow sorting on the column

69 self.tvcolumn.set_sort_column_id(0)

70

71 # Allow enable drag and drop of rows including row move

72 self.treeview.enable_model_drag_source(gtk.gdk.BUTTON1_ MASK,

73 self. TARGETS,

74 gtk.gdk.ACTION_DEFAULT]|

75 gtk.gdk.ACTION_MOVE)

76 self.treeview.enable_model_drag_dest(self. TARGETS,

77 gtk.gdk.ACTION_DEFAULT)

78

79 self.treeview.connect("drag_data_get", self.drag_data_get_data)

80 self.treeview.connect("drag_data_received",

81 self.drag_data_received_data)

82

83 self.scrolledwindow.add(self.treeview)

84 self.window.add(self.vbox)

85 self.window.show_all()

86

87 def drag_data_get_data(self, treeview, context, selection, target_id,

88 etime):

89 treeselection = treeview.get_selection()

20 model, iter = treeselection.get_selected()

91 data = model.get_value(iter, 0)

92 selection.set(selection.target, 8, data)

93

94 def drag_data_received_data(self, treeview, context, X, y, selection,

95 info, etime):

96 model = treeview.get_model()

97 data = selection.data

98 drop_info = treeview.get_dest_row_at_pos(x, V)

99 if drop_info:

100 path, position = drop_info

101 iter = model.get_iter(path)

102 if (position == gtk. TREE_VIEW_DROP_BEFORE

103 or position == gtk. TREE_VIEW_DROP_INTO_OR_BEFORE):

260

tTree View

Widge
104 model.insert_before(iter, [data])
105 else:
106 model.insert_after(iter, [data])
107 else:
108 model.append([data])
109 if context.action == gtk.gdk.ACTION_MOVE:
110 context.finish(True, True, etime)
111 return
112
113 def main():
114 gtk.main()
115
116 if __name__ =="__main__"
117 treeviewdndex = TreeViewDnDExample()
118 main()

The result of running the example program treeviewdndexamples/treeviewdnd.py3$ illustrated inFigure 14.8,
“TreeView Drag and Drop Example”

Figure 14.8. TreeView Drag and Drop Example

™ URL Cache M= [e

LRL

k

http://bugzilla.gnome.org/

http: /fwww.gtk.org/
http: /fwww.gnome.org/
http: //xml.openoffice.org/

http:/f/www.conglomerate.org/

1]]
L Clear All Clear Selected

The key to allowing both external drag and drop and internal row reordering is the organization of the targets (the
TARGETSttribute - line 11). An application specific targhtY_TREE_MODEL_R®Di¥/created and used to indicate

a drag and drop within th€reeView by setting thegtk. TARGET_SAME_WIDGETflag. By setting this as the first

target the drag destination will attempt to match it first with the drag source targets. Next the source drag actions must
includegtk.gdk. ACTION_MOVE andgtk.gdk. ACTION_DEFAULT (see lines 72-75). When the destination is
receiving the data from the source, if tBeagContext action isgtk.gdk. ACTION_MOVE the source is told

to delete the data (in this case the row) by calling BragContext methodfinish () (see lines 109-110). The
TreeView provides a number of internal functions that we are leveraging to drag, drop and delete the data.

261

file:url(examples/treeviewdnd.py)

tTree View

Widge
14.10. TreeModelSort and TreeModelFilter
The TreeModelSort and TreeModelFilter objects are tree models that interpose between the base

TreeModel (either aTreeStore or alListStore) and theTreeView to provide a modified model while

still retaining the original structure of the base model. These interposing models implemdmeéhdodel and
TreeSortable interfaces but do not provide any methods for inserting or removing rows in the model; you have to
insert or remove rows from the underlying store. TineeModelSort provides a model where the rows are always
sorted while théfreeModelFilter provides a model containing a subset of the rows of the base model.

These models can be chained to an arbitrary length if desired; Tee@ModelFilter could have a child
TreeModelSort that could have a childreeModelFilter , and so on. As long as there isTaceStore

or ListStore as the anchor of the chain it should just work. In PyGTK 2.0 and 2.Z'teeModelSort and
TreeModelFilter objects do not support tHEreeModel Python mapping protocol.

14.10.1. TreeModelSort

The TreeModelSort maintains a sorted model of the child model specified in its constructor. The main use of a
TreeModelSort s to provide multiple views of a model that can be sorted differently. If you have multiple views
of the same model then any sorting activity is reflected in all the views. By usinyée®odelSort the base store

is left in its original unsorted state and the sort models absorb all the sorting activity. To cigaeModelSort

use the constructor:

treemodelsort = gtk.TreeModelSort(child_model)

wherechild_model is aTreeModel . Most of the methods of &reeModelSort deal with converting tree
paths and'reelter s from the child model to the sorted model and back:

sorted_path = treemodelsort.convert_child_path_to_path(child_path)
child_path = treemodelsort.convert_path_to_child_path(sorted_path)

These path conversion methods retbiane if the given path cannot be converted to a path in the sorted model or the
child model respectively. ThE&reelter conversion methods are:

sorted_iter = treemodelsort.convert_child_iter_to_iter(sorted_iter N
child_iter)
child_iter = treemodelsort.convert_iter_to_child_iter(child_iter , sorted_iter)

TheTreelter conversion methods duplicate the converted argument (its both the return value and the first argument)
due to backward compatibility issues; you should set the first argumehtsrte and just use the return value. For
example:

sorted_iter = treemodelsort.convert_child_iter_to_iter(None, child_iter)
child_iter = treemodelsort.convert_iter_to_child_iter(None, sorted_iter)

262

Tree Vi
Widget ree View

Like the path conversion methods, these methods réone if the givenTreelter cannot be converted.

You can retrieve the chil@ireeModel using theget_model () method.

A simple example program usingfreeModelSort objects is treemodelsort.pjexamples/treemodelsort.py]
Figure 14.9, “TreeModelSort Examplélustrates the result of running the program and adding six rows:

Figure 14.9. TreeModelSort Example

TreeModelSort Exam| = M X TreeModelSort Exam| = ™
0-1000 ~|0-1000000 |-10000-100(—] | 0-1000 |0-1000000 |-10000-10000 —
110 402699 5367 478 948689 -8574
158 803371 f708 400 928810 -1066
400 928810 -1066 994 813492 -151
478 948689 -8574 982 105496 3004
ag82 105496 3904 110 402699 5367
994 813492 -151 ~||/158 803371 7708 |
« LI 1KY |l

Add a Row Add a Row |

TreeModelSort Exam| = &

0-1000 |0-1000000 ~ |-10000-100(—

982 105496 3904

110 402699 5367

158 803371 7708

994 813492 -151

400 928810 -1066

478 948689 8574 ~|

o |
Add a Row |

Each of the columns in the windows can be clicked to change the sort order independent of the other windows. When
the "Add a Row" button is clicked a new row is added to the hastStore and the new row is displayed in each
TreeView as the selected row.

263

file:url(examples/treemodelsort.py)

) ' T
View Widget ree

14.10.2. TreeModelFilter

Note
The TreeModelFilter is available in PyGTK 2.4 and above.
A TreeModelFilter object provides several ways of modifying the view of the baezModel including:
« displaying a subset of the rows in the child model either based on boolean data in a "visible column”, or based on
the boolean return value of a "visible function” that takes the child modElealter pointing at a row in the

child model and user data. In both cases if the boolean valliRi$Ethe row will be displayed; otherwise, the
row will be hidden.

* using a virtual root node to provide a view of a subtree of the children of a row in the child model. This only makes
sense if the underlying store isTaeeStore

« synthesizing the columns and data of a model based on the data in the child model. For example, you can provide
a column where the data is calculated from data in several child model columns.

A TreeModelFilter object is created using tieeeModel method:

treemodelfilter = treemodel.filter_new(root =None)

whereroot is a tree path irtreemodel specifying the virtual root for the model dfone if the root node of
treemodel s to be used.

By setting a "virtual root" when creating tAigeeModelFilter , you can limit the model view to the child rows of
“root" row in the child model hierarchy. This, of course is only useful when the child model is basédea%tore

For example, you might want to provide a view of the parts list that makes up a CDROM drive separate from the full
parts list of a computer.

The visibility modes are mutually exclusive and can only be set once i.e. once a visibility function or column is set it

cannot be changed and the alternative mode cannot be set. The simplest visibility mode extracts a boolean value from
a column in the child model to determine if the row should be displayed. The visibility columns is set using:

treemodelfilter.set_visible _column(column)

wherecolumn is the number of the column in the childeeModel to extract the boolean values from. For example,
the following code fragment uses the values in the third column to set the visibility of the rows:

treestore = gtk.TreeStore(str, str, "gboolean")

modelfilter = treestore.filter_new()
modelfilter.set_visible_column(2)

264

) Tree View
Widget

Thus any rows irireestore that have a value oFRUEin the third column will be displayed.

If you have more complicated visibility criteria setting a visibility function should provide sufficient power:

treemodelfilter.set_visible_func(func , data =None)

wherefunc is the function called for each child model row to determine if it should be displayedatad is user
data passed tiunc . func should returnTRUEIf the row should be displayed. The signaturdwic is:

def func(model, iter , user _data)

wheremodel is the childTreeModel ,iter isaTreelter pointing at a row irmodel anduser_data is the
passed irdata .

If you make a change to the visibility criteria you should call:

treemodelfilter.refilter()

to force a refiltering of the child model rows.

For example, the following code fragment illustratégeeModelFilter that displays rows based on a comparison

between the value in the third column and the contents of the user data:

def match_type(model, iter, udata):
value = model.get_value(iter, 2)
return value in udata

show_vals = [[OPEN’, 'NEW’, 'RESQ’]
liststore = gtk.ListStore(str, str, str)

modelfilter = liststore.filter_new()
modelfilter.set_visible_func(match_type, show_vals)

The program treemodelfilter.pfexamples/treemodelfilter.pyijlustrates the use of theet visible func 0
method.Figure 14.10, “TreeModelFilter Visibility Exampleshows the result of running the program.

Figure 14.10. TreeModelFilter Visibility Example

265

file:url(examples/treemodelfilter.py)

) Tree View
Widget

ad TreeModelFilter Exam
Eug No. | Status [Description ﬂ

138104 RESO gtk_widget_style_get_property is not wrapped
138163 WERI NOTA gtk.main_iteration(TRUE) unblocks evenr
138476 RESO gtk.Layout is needed by gnome.canvas but is r
138487 RESO PyGTK Tutorial: in Calendar sample date string
138576 RESO gtk.lconSet now has 2 constructors in gtk.defs,
138619 UNCO codegen/definitions.py could use some refactor
138772 RESO Callback parameters to input_add are incorrect
138804 UNCO In gtk2.4, gdk_font_get_display and gdk_pixma
138944 UNCO Cannot import gtk when pygtk installed using 'n
139128 UNCO All constructors should be defined as construct
139130 NEW GtkEntry's constructor needs to be rewritten
139312 MNEED gtk.gdk.Window.get_screen method undocumel
139921 RESO Support tp_new

140071 MNEW Register custom widget classes.

140665 RFS0O TvneFrror when creating user defined sionals h ﬂ

.

RES0O NEED VERI I UNCO J

By toggling the buttons at the bottom the contents oftheeView are changed to display only the rows that match
one of the active buttons.

A modify function gives you another level of control over fheeView display to the point where you can synthesize
one or more (or even all) columns that are represented byreresModelFilter . You still have to use a base child
model that is &reeStore or ListStore to determine the number of rows and the hierarchy but the columns can
be anything you specify in the method:

treemodelfilter.set_modify_func(types , func , data =None)

wheretypes is a sequence (list or tuple) specifying the column types being represémied,is a function called to
return the value for a row and column addta is an argument to be passedtmc . The signature ofunc is:

266

) Tree View
Widget

def func(model, iter , column, user data)

wheremodel is the TreeModelFilter , iter is aTreelter that points to a row in modetolumn is the
number of the column that a value is needed for aser_data is the parametedata . func must return a value
matching the type focolumn .

A modify function is useful where you want to provide a column of data that needs to be generated using the data in
the child model columns. For example if you had a column containing birth dates and wanted to provide a column
displaying ages, a modify function could generate the age information using the birth date and the current date. Another
example would be to decide what image to display based on some analysis of the data (say, a filename) in a column.
This effect can also be achieved using TieeViewColumn set_cell _data_func () method.

Usually within the modify function, you will have to convert theeeModelFilter Treelter to aTreelter
in the child model using:

child_iter = treemodelfilter.convert_iter_to_child_iter(filter_iter)

Of course, you'll also need to retrieve the child model using:

child_model = treemodelfilter.get_model()

These give you access to the child model row and its values for generating the value for the specified
TreeModelFilter row and column. There’s also a method to convert a childelter to a filter model
Treelter and methods to convert filter model paths to and from child tree paths:

filter_iter = treemodelfilter.convert_child_iter_to_iter(child_iter)
child_path = treemodelfilter.convert_path_to_child_path(filter_path)
filter_path = treemodelfilter.convert_child_path_to_path(child_path)

Of course, you can combine the visibility modes and the modify function to both filter rows and synthesize columns.
To get even more control over the view you would have to use a custeeModel .

14.11. The Generic TreeModel

When you find that the standafdeeModel s are not sufficiently powerful for your application needs, you can use

the GenericTreeModel to build your own custonTreeModel in Python. Creating &enericTreeModel

may be useful when there are performance issues with the stafik8tore andListStore objects or when

you want to directly interface to an external data source (say, a database or filesystem) to save copying the data into
and out of alreeStore or ListStore

14.11.1. GenericTreeModel Overview

267

) Tree View
Widget

With the GenericTreeModel you build and manage your data model and provide external access though the
standardTreeModel interface by defining a set of class methods. PyGTK implement3tbeModel interface
and arranges for yourreeModel methods to be called to provide the actual model data.

The implementation details of your model should be kept completely hidden from the external application. This means
that the way that your model identifies, stores and retrieves data is unknown to the application. In general the only
information that is saved outside yo@enericTreeModel are the row references that are wrapped by the external
Treelter s. And these references are not visible to the application.

Let's examine in detail th&enericTreeModel interface that you have to provide.

14.11.2. The GenericTreeModel Interface

TheGenericTreeModel interface consists of the following methods that must be implemented in your custom tree
model:

def on_get_flags(self)

def on_get_n_columns(self)

def on_get_column_type(self, index)
def on_get _iter(self, path)

def on_get_path(self, rowref)

def on_get_value(self, rowref, column)
def on_iter_next(self, rowref)

def on_iter_children(self, parent)
def on_iter_has_child(self, rowref)
def on_iter_n_children(self, rowref)
def on_iter_nth_child(self, parent, n)
def on_iter_parent(self, child)

You should note that these methods support all offleModel interface including:

def get flags()

def get_n_columns()

268

Theon_get flags

View Widget

Tree

def get_column_type(index)

def get_iter(path)

def get_iter_from_string(path_string)

def get_string_from_iter(iter)

def get_iter_root()

def get_iter_first()

def get_path(iter)

def get_value(iter, column)

def iter_next(iter)

def iter_children(parent)

def iter_has_child(iter)

def iter_n_children(iter)

def iter_nth_child(parent, n)

def iter_parent(child)

def get(iter, column, ...)

def foreach(func, user_data)

gtk. TREE_MODEL_ITERS_PERSIST

gtk. TREE_MODEL_LIST_ONLY

To illustrate the use of th&enericTreeModel

() method should return a value that is a combination of:

269

I'll change thefilelisting.py [examples/filelisting.pylexample
program and show how the interface methods are created. filEfisting-gtm.py [examples/filelisting-gtm.py]
program displays the files in a folder with a pixbuf indicating if the file is a folder or not, the file name, the file
size, mode and time of last change.

s survive all signals emitted by the tree.

The model is a list only, and never has children

file:url(examples/filelisting.py)
file:url(examples/filelisting-gtm.py)

) Tree View
Widget

If your model has row references that are valid over row changes (reorder, addition, deletion)
then set gtk. TREE_MODEL_ITERS_PERSIST. Likewise if your model is a list only then set
otk. TREE_MODEL_LIST_ONLY. Otherwise, return 0 if your model doesn't have persistent row references
and it's a tree model. For our example, the model is a list with persiSretiter s.

def on_get flags(self):
return gtk. TREE_MODEL_LIST_ONLY|gtk. TREE_MODEL_ITERS_PERSIST

Theon_get _n_columns () method should return the number of columns that your model exports to the application.
Our example maintains a list of column types so we return the length of the list:

class FileListModel(gtk.GenericTreeModel):

column_types = (gtk.gdk.Pixbuf, str, long, str, str)

def on_get_n_columns(self):
return len(self.column_types)

Theon_get_column_type () method should return the type of the column with the specifiddx . This method
is usually called from &reeView when its model is set. You can either create a list or tuple containing the column
data type info or generate it on-the-fly. In our example:

def on_get_column_type(self, n):
return self.column_types[n]

TheGenericTreeModel interface converts the Python type to a GType so the following code:

flm = FileListModel()
print fim.on_get_column_type(1), fim.get_column_type(1)

would print;

<type ’'str'’> <GType gchararray (64)>

The following methods use row references that are kept as private dafa@éeler . The application can't see the

row reference in &reelter so you can use any unique item you want as a row reference. For example in a model
containing rows as tuples you could use the tuple id as the row reference. Another example would be to use a filename
as the row reference in a model representing files in a directory. In both these cases, the row reference is unchanged
by model changes so ti@eelter s could be flagged as persistent. The PyG3éhericTreeModel application

interface will extract your row references frofneelter s and wrap your row referencesTneelter s as needed.

In the following methodsowref refers to an internal row reference.

270

) ' T
View Widget ree

Theon_get_iter () method should return an rowref for the tree path specifiegdtly . The tree path will always
be represented using a tuple. Our example uses the file name string as the rowref. The file names are kept in a list in
the model so we take the first index of the path as an index to the file name:

def on_get _iter(self, path):
return self.files[path[0]]

You have to be consistent in your row reference usage since you’ll get a row reference back in method calls from
the GenericTreeModel methods that takelreelter arguments: on_get _path (), on_get value (),
on_iter_next (), on_iter_children 0, on_iter_has_child 0, on_iter_n_children 0.
on_iter_nth_child () andon_iter_parent 0.

Theon_get path () method should return a tree path given a rowref. For example, continuing the above example
where the file name is used as the rowref, you could definerthget_path () method as:

def on_get_path(self, rowref):
return self.files.index(rowref)

This method finds the index of the list containing the file nameoimref . It's obvious from this example that a
judicious choice of row reference will make the implementation more efficient. You could, for example, use a Python
dict to maprowref to a path.

The on_get_value () method should return the data stored at the row and column specifiedwrgf and
column . For our example:

def on_get_value(self, rowref, column):
fname = os.path.join(self.dirname, rowref)
try:
filestat = statcache.stat(fname)
except OSError:
return None
mode = filestat.st_mode
if column is O:
if stat.S_ISDIR(mode):
return folderpb
else:
return filepb
elif column is 1:
return rowref
elif column is 2:
return filestat.st_size
elif column is 3:
return oct(stat.S_IMODE(mode))
return time.ctime(filestat.st_mtime)

has to extract the associated file information and return the appropriate value depending on which column is specified.

271

) ' T
View Widget ree

Theon_iter_next () method should return a row reference to the row (at the same level) after the row specified by
rowref . For our example:

def on_iter_next(self, rowref):
try:
i = self.files.index(rowref)+1
return self.files]i]
except IndexError:
return None

The index of theowref file name is determined and the next file name is returnédbme is returned if there is no
next file.

The on_iter_children () method should return a row reference to the first child row of the row specified by
rowref . If rowref is None, a reference to the first top level row is returned. If there is no child Kowe is
returned. For our example:

def on_iter_children(self, rowref):
if rowref:
return None
return self.files[O]

Since the model is a list model only the top lewelwref =None) can have child rowaNone is returned ifrowref
contains a file name.

Theon_iter_has_child () method should returmRUEIf the row specified byowref has child rowsfFALSE
otherwise. Our example returBA\LSE since no row can have a child:

def on_iter_has_child(self, rowref):
return False

Theon_iter_n_children () method should return the number of child rows that the row specified\yef
has. Ifrowref is None, the number of top level rows is returned. Our example returnsdwifef is notNone:

def on_iter_n_children(self, rowref):
if rowref:
return O
return len(self.files)

The on_iter_nth_child () method should return a row reference to the nth child row of the row specified by
parent . If parent is None, a reference to the nth top level row is returned. Our example returns the nth top level
row reference iparent is None. OtherwiseNone is returned:

def on_iter_nth_child(self, rowref, n):

272

) Tree View
Widget

if rowref:
return None
try:
return self.files[n]
except IndexError:
return None

Theon_iter_parent () method should return a row reference to the parent row of the row specifiexiogf .
If rowref points to a top level roniNone should be returned. Our example always retuiMaomie assuming that
rowref must point to a top level row:

def on_iter_parent(child):
return None

This example is put together in the filelisting-gtm jexamples/filelisting-gtm.pyprogram. Figure 14.11, “Generic
TreeModel Example Progranshows the result of running the program.

Figure 14.11. Generic TreeModel Example Program

273

file:url(examples/filelisting-gtm.py)

) Tree View
Widget

Last Changed

Name

El COPYRIGHTjai.txt 4675
El ControlPanel.html 446
El INSTALL-jai.txt 19512
El LICENSE 14380
El LICENSE-jai.txt 10351
El README 10088
El README-jai.txt 70632
El THIRDPARTYLICENSEREADME.txt 10129
El UNINSTALLHai 596
El Welcome.html 959
__Ihin 4096
El jai-1_1_2-lib-linux-i586-jre.bin 2674187
_ljavaws 4096
_lib 4096
_Iman 4096
_1plugin 4096

0644
0644

0755
0644
0755
0755
0755
0755

Thu Jul 10 19:08:13 2003
Tue Feb 24 07:53:03 2004
Thu Jul 10 19:08:12 2003
Tue Feb 24 07:46:45 2004
Thu Jul 10 19:08:13 2003
Tue Feb 24 07:46:45 2004
Thu Jul 10 19:08:13 2003
Tue Feb 24 07:46:45 2004
Thu Jul 10 19:08:12 2003
Tue Feb 24 07:46:45 2004
Wed Apr 28 13:05:48 2004
Wed Apr 28 13:06:57 2004
Wed Apr 28 13:06:30 2004
Wed Apr 28 13:06:30 2004
Wed Apr 28 13:05:54 2004
Wed Apr 28 13:05:54 2004

| »

&

14.11.3. Adding and Removing Rows

The filelisting-gtm.py [examples/filelisting-gtm.pyJprogram calculates the list of file names while creating a
FileListModel instance. If you want to check for new files periodically and add or remove files from the model
you could either create a neiileListModel for the same folder or you could add methods to add and remove
rows in the model. Depending on the type of model you are creating you would need to add methods similar to those

in the TreeStore andListStore models:

e insert ()
* insert_before 0

* insert_after 0

274

file:url(examples/filelisting-gtm.py)

) ' T
View Widget ree

* prepend ()
* append ()
* remove ()
e clear ()

Of course not all or any of these need to be implemented. You can create your own methods that are more closely
related to your model.

Using the above example program to illustrate adding methods for removing and adding files, let's implement the
methods:

def remove(iter)

def add(filename)

The remove () method removes the file specified igr . In addition to removing the row from the model the
method also should remove the file from the folder. Of course, if the user doesn’t have the permissions to remove the
file then the row shouldn’t be removed either. For example:

def remove(self, iter):
path = self.get_path(iter)
pathname = self.get_pathname(path)
try:
if os.path.exists(pathname):
os.remove(pathname)
del self.files[path[0]]
self.row_deleted(path)
except OSError:
pass
return

The method is passedlaeelter that has to be converted to a path to use to retrieve the file path using the method
get_pathname (). It's possible that the file has already been removed so we check if it exists before trying to remove
it. If an OSError exception is thrown during the file removal it's probably because the file is a directory or the user
doesn’t have sufficient privilege to remove it. Finally, the file is removed and the "row-deleted" signal is emitted from
therows_deleted () method. The "file-deleted" signal notifies theeeView s using the model that the model has
changed so that they can update their internal state and display the revised model.

Theadd () method needs to create a file with the given name in the current folder. If the file was created its name is
added to the list of files in the model. For example:

def add(self, filename):
pathname = os.path.join(self.dirname, filename)
if os.path.exists(pathname):
return
try:
fd = file(pathname, 'w’)
fd.close()

275

) Tree View
Widget

self.dir_ctime = os.stat(self.dirname).st_ctime
files = self.files[1:] + [filename]
files.sort()
self.files = ['.."] + files
path = (self files.index(filename),)
iter = self.get_iter(path)
self.row_inserted(path, iter)
except OSError:
pass
return

This simple example makes sure that the file doesn’t exist then tries to open the file for writing. If successful, the file
is closed and the file name sorted into the list of files. The pathTagelter for the added file row are retrieved to

use in theow_inserted () method that emits the "row-inserted" signal. The "row-inserted" signal is used to notify
theTreeView s using the model that they need to update their internal state and revise their display.

The other methods mentioned above (for examgigend andprepend) don’'t make sense for the example since
the model keeps the file list sorted.

Other methods that may be worth implementing ifraeModel subclassing th&enericTreeModel are:

» set value ()

reorder ()

* swap()

move_after ()
* move_before ()

Implementing these methods is similar to the above methods. You have to synchronize the model with the external state
and then notify th@reeView s if the model has changed. The following methods are used to notifiréed/iew s
of model changes by emitting the appropriate signal:

def row_changed(path, iter)

def row_inserted(path, iter)

def row_has_child_toggled(path, iter)
def row_deleted(path)

def rows_reordered(path, iter, new_order)

14.11.4. Memory Management

One of the problems with th@enericTreeModel is thatTreelter s hold areference to a Python object returned
from your custom tree model. Since tlieeelter may be created and initialized in C code and live on the stack,

276

) Tree View
Widget

it's not possible to know when thEreelter has been destroyed and the Python object reference is no longer being
used. Therefore, the Python object referenced Trelter has by default its reference count incremented but

it is not decremented when thgeelter is destroyed. This ensures that the Python object will not be destroyed
while being used by areelter and possibly cause a segfault. Unfortunately the extra reference counts lead to the
situation that, at best, the Python object will have an excessive reference count and, at worst, it will never be freed
even when it is not being used. The latter case leads to memory leaks and the former to reference leaks.

To provide for the situation where the cust@meeModel holds a reference to the Python object until it is no longer
available (i.e. thdreelter s invalid because the model has changed) and there is no need to leak references, the
GenericTreeModel has the "leak-references" property. By default "leak-referenceBRIigEto indicate that the
GenericTreeModel will leak references. If "leak-references" is setRALSE, the reference count of the Python
object will not be incremented when referenced ifiraelter . This means that your custofreeModel must

keep areference to all Python objects usetirgelter s until the model is destroyed. Unfortunately, even this cannot
protect against buggy code that attempts to use a Seresdter on a differentGenericTreeModel . To protect
against that case your application would have to keep references to all Python objects referencebréeitera

for anyGenericTreeModel instance. Of course, this ultimately has the same result as leaking references.

In PyGTK 2.4 and above thavalidate_iters () anditer_is_valid () methods are available to help manage
theTreelter s and their Python object references:
generictreemodel.invalidate_iters()

result = generictreemodel.iter_is_valid(iter)

These are particularly useful when the "leak-references" property is sSEAtSE Tree models derived from
GenericTreeModel are protected from problems with out of daleeelters because the iters are automat-
ically checked for validity with the tree model.

If a custom tree model doesn't support persistent iters gtle TREE_MODEL_ITERS_PERSIST is not set in the

return from theTreeModel.get_flags () method), it can call thevalidate_iters () method to invalidate

all its outstandingTreelter s when it changes the model (e.g. after inserting a new row). The tree model can
also dispose of any Python objects, that were referencélitdmsiter s, after calling thenvalidate iters 0
method.

Applications can use thiger_is_valid () method to determine if @reelter s still valid for the custom tree
model.

14.11.5. Other Interfaces

The ListStore and TreeStore models support theTreeSortable , TreeDragSource and

TreeDragDest interfaces in addition to th@reeModel interface. TheGenericTreeModel only sup-

ports theTreeModel interface. | believe that this is because of the direct reference of the model at the C level by
TreeView s and theTreeModelSort andTreeModelFilter models. To create and uSeeelter s requires

C glue code to interface with the Python custom tree model that has the data. That glue code is provided by the
GenericTreeModel and there appears to be no alternative purely Python way of doing it because¢vew s

and the other models call the GtkTreeModel functions in C passing their reference to the custom tree model.

The TreeSortable interface would need C glue code as well to work with the defardeViewColumn sort
mechanism as explained Bection 14.2.9, “Sorting TreeModel RowsHowever a custom model can do its own
sorting and an application can manage the use of sort criteria by handliigab®iewColumn header clicks and
calling the custom tree model sort methods. The model completes the updateToéthéew s by emitting the

277

Widge

tTree View

"rows-reordered” signal using thieeeModel ’s rows_reordered () method. Thus th&enericTreeModel
probably doesn’t need to implement theeeSortable interface.

Likewise, theGenericTreeModel

doesn’t have to implement théreeDragSource and TreeDragDest

interfaces because the custom tree model can implement its own drag and drop interfaces and the application can
handle the appropriafereeView signals and call the custom tree model methods as needed.

14.11.6. Applying The GenericTreeModel

| believe that theGenericTreeModel

should only be used as a last resort. There are powerful mechanisms in

the standard group ofreeView objects that should be sufficient for most applications. Undoubtedly there are
applications which may require the use of tenericTreeModel but you should attempt to first use the following

instead:

Cell Data Functions

TreeModelFilter

As illustrated inSection 14.4.5, “Cell Data Functiontell data func-
tions can be used to modify and even synthesize the data for a
TreeView column display. You can effectively create as many dis-
play columns with generated data as you wish. This gives you a great
deal of control over the presentation of data from an underlying data
source.

In PyGTK 2.4, the TreeModelFilter as described in
Section 14.10.2, “TreeModelFiltegrovides a great degree of control
over the display of the columns and rows of a chilceeModel
including presenting just the child rows of a row. Data columns can be
synthesized similar to using Cell Data Functions but here the model
appears to be @areeModel with the number and type of columns
specified whereas a cell data function leaves the model columns
unchanged and just modifies the display ifraeView .

If a GenericTreeModel must be used you should be aware that:

* the entireTreeModel interface must be created and made to work as documented. There are subtleties that can
lead to bugs. By contrast, the stand@rédeModel s are thoroughly tested.

» managing the references of Python objects usedi@elter s can be difficult especially for long running

programs with lots of variety of display.

 an interface has to be developed for adding, deleting and changing the contents of rows. There is some

awkwardness with the mapping ofeelter

s to the Python objects and model rows in this interface.

« there is significant effort in developing sortable and drag and drop interfaces. The application probably needs to
be involved in making these interfaces fully functional.

14.12. The Generic CellRenderer

278

Chapter 15. New Widgets in PyGTK 2.2

The Clipboard object was added in PyGTK 2.2. ThetkClipboard was available in GTK+ 2.0 but
was not wrapped by PyGTK 2.0 because it was not a com@&bject . Some new objects were added to
the gtk.gdk module in PyGTK 2.2 but they will not be described in this tutorial. See the PyGTK 2 Refer-
ence Manualhttp://www.pygtk.org/pygtk2reference/index.htnfir more information on thgtk.gdk.Display ,
gtk.gdk.DisplayManager andgtk.gdk.Screen objects.

15.1. Clipboards

A Clipboard provides a storage area for sharing data between processes or between different widgets in the same
process. Eacllipboard is identified by a string name encoded agdk.Atom . You can use any name you want

to identify aClipboard and a new one will be created if it doesn't exist. If you want to shatdigboard with

other processes each process will need to knovCtigboard ’'s name.

Clipboard s are built on theSelectionData and selection interfaces. The defa@lipboard used

by the TextView , Label and Entry widgets is "CLIPBOARD". Other common clipboards are "PRI-
MARY" and "SECONDARY" that correspond to the primary and secondary selections (Win32 ignores these).
These can also be specified using th&k.gdk.Atom objects: gtk.gdk.SELECTION_CLIPBOARD
gtk.gdk.SELECTION_PRIMARY and gtk.gdk.SELECTION_SECONDARY . See the gtk.gdk.Atom refer-
ence documentatidittp://www.pygtk.org/pygtk2reference/class-gdkatom. htimt]more information.

15.1.1. Creating A Clipboard

A Clipboard is created using the constructor:

clipboard = gtk.Clipboard(display , selection)

where display is the gtk.gdk.Display associated with th&€lipboard named byselection . The
following convenience function create<éipboard using the defaulgjtk.gdk.Display

clipboard = gtk.clipboard_get(selection)

Finally, aClipboard can also be created using thédget method:

clipboard = widget.get_clipboard(selection)

The widget must be realized and be part of a toplevel window hierarchy.

15.1.2. Using Clipboards with Entry, Spinbutton and
TextView

279

url(http://www.pygtk.org/pygtk2reference/index.html)
url(http://www.pygtk.org/pygtk2reference/index.html)
url(http://www.pygtk.org/pygtk2reference/class-gdkatom.html)
url(http://www.pygtk.org/pygtk2reference/class-gdkatom.html)

New Widgets in
PYyGTK 2.

Entry ,SpinButton andTextView widgets have popup menus that provide the ability to cut and copy the selected
text to and paste from the "CLIPBOARD" clipboard. In addition key bindings are set to allow keyboard accelerators
to cut, copy and paste. Cut is activated@yntrol +X; copy, byControl+C; and, paste, bZontrol+V.

The widgets Entry andSpinButton) implement theEditable interface that has the following methods to cut,
copy and paste to and from the "CLIPBOARD" clipboard:

editable.cut_clipboard()
editable.copy_clipboard()
editable.paste_clipboard()

A Label that is selectable (the "selectable" propertyTRUB also supports copying the selected text to the
"CLIPBOARD" clipboard using a popup menu or tG@entrol +C keyboard accelerator.
TextBuffer s have similar methods though they also allow specifying the clipboard to use:

textbuffer.copy_clipboard(clippboard)

The selection text will be copied to tiidipboard specified byclipboard

textbuffer.cut_clipboard(clipboard , default_editable)

The selected text will be copied tipboard . If default_editable is TRUEthe selected text will also be
deleted from th&extBuffer . Otherwisecut_clipboard () will act like thecopy_clipboard () method.

textbuffer.paste_clipboard(clipboard , override_location , default_editable)
If default_editable is TRUE the contents ofclipboard will be inserted into theTextBuffer
at the location specified by th&extlter override_location . If default_editable is FALSE,
paste_clipboard () will not insert the contents o€lipboard . If override_location is None the

contents otlipboard will be inserted at the cursor location.

TextBuffer s also have two methods to manage a sélgdboard s that are automatically set with the contents
of the current selection:

textbuffer.add_selection_clipboard(clipboard)
textbuffer.remove_selection_clipboard(clipboard)

When aTextBuffer is added to &extView the "PRIMARY" clipboard is automatically added to the selection
clipboards. Your application can add other clipboards (for example, the "CLIPBOARD" clipboard).

15.1.3. Setting Data on a Clipboard

280

New Widgets in
PyGTK 2.2

You can set th€lipboard data programmatically using either of:

clipboard.set_with_data(targets , get func , clear_func , user_data)

clipboard.set_text(text , len =-1)

The set_with_data () method indicates which selection data targets are supported and provides functions
(get_func andclear_func) that are called when the data is asked for or the clipboard data is changed.
user_data is passedtget func orclear func when calledtargets is alist of 3-tuples containing:

* a string representing a target supported by the clipboard.
« aflags value used for drag and drop - use 0.
 an application assigned integer that is passed as a parameter to a signal handler to help identify the target type.

The signatures ajet_func andclear_func are:

def get_func(clipboard, selectiondata, info, data):

def clear_func(clipboard, data):

whereclipboard s theClipboard , selectiondata is aSelectionData object to set the data imfo
is the application assigned integer associated with a targetjatad is user_data

set_text () is a convenience method that uses $be with_data () method to set text data onGlipboard
with the targets: "STRING", "TEXT", "COMPOUND_TEXT", and "UTF8_STRING". It uses internal get and clear
functions to manage the datet_text () is equivalent to the following:

def my_set_text(self, text, len=-1):
targets = [("STRING", 0, 0),
("TEXT", 0, 1),
("COMPOUND_TEXT", 0, 2),
("UTF8_STRING", 0, 3)]
def text_get_func(clipboard, selectiondata, info, data):
selectiondata.set_text(data)
return
def text_clear_func(clipboard, data):
del data
return
self.set_with_data(targets, text_get func, text clear_func, text)
return

Once data is set on a clipboard, it will be available until the application is finished or the clipboard data is changed.

To provide the behavior typical of cut to a clipboard, your application will have to delete the selected text or object
after copying it to the clipboard.

281

New Widgets in
PyGTK 2.2

15.1.4. Retrieving the Clipboard Contents

The contents of &€lipboard can be retrieved using the following method:

clipboard.request_contents(target , callback , user_data =None)

The contents specified karget are retrieved asynchronously in the function specifiedcéiiback which is
called withuser_data . The signature ofallback is:

def callback(clipboard, selectiondata, data):

where selectiondata is a SelectionData object containing the contents alipboard . data is
user_data . The request_contents () method is the most general way of retrieving the contents of a
Clipboard . The following convenience method retrieves the text contentCiijpdooard

clipboard.request_text(callback , user_data =None)

The text string is returned to the callback function instead®ékectiondata object. You can check which targets
are available on th€lipboard by using the method:

clipboard.request_targets(callback , user_data =None)

The targets are returned as a tuplgtif.gdk.Atom objects to the callback function.

Two convenience methods are provided to returrGhligboard contents synchronously:

selectiondata = clipboard.wait_for_contents(target)

text = clipboard.wait_for_text()

15.1.5. A Clipboard Example

To illustrate the use of @lipboard the clipboard.pyexamples/clipboard.pydxample program tracks the text items

that are cut or copied to the "CLIPBOARD" clipboard and saves the last ten clipboard entries. There are ten buttons
that provide access to the text of the saved entries. The button label display the first sixteen characters of the saved
text and the tooltips display the targets that the entry originally had. When an entry button is clicked the text window

is loaded with the associated saved text which is editable. The button below the text window saves the current text
window contents to the clipboard.

Figure 15.1, “Clipboard Example Prograntiustrates the clipboard.pjexamples/clipboard.py@xample program in
operation:

282

file:url(examples/clipboard.py)
file:url(examples/clipboard.py)

New Widgets in
PyGTK 2.2

Figure 15.1. Clipboard Example Program

ad Clipboard Example A o
Writing class-gt Wntmg class-gtkruler.html for refentry(class-gtkruler)
Writing class-gtkscale.html for refentry(class-gtkscale)
The following op [Writing class-gtkscrollbar.html for refentry(class-gtkscrollb
=Tdl
ATOM ing class-gtkscrolledwindow.html for refentry(class-gtk
COMPOUND_TEXT plledwindow)
INTEGER ing class-gtkselectiondata.html for refentry(class-gtkse
MULTIFLE iondata)
STRING ing class-gtkseparator.html for refentry(class-gtksepara
TARGETS
TIMESTAMP fing class-gtkseparatormenuitem.html for refentry(class-
UTFE_STRING separatormenuitem)Writing class-gtkseparatortoolitem. h
text/_moz_htmlcontext {for refentry(class-gtkseparatortoolitem)Writing class-gtk
text/_moz_htmlinfo |ings.html for refentry(class-gtksettings)
text/html (]
text/unicode _
| Copy to Clipboard

The example program polls the clipboard every 1.5 seconds to see if the contents have changed. The program
could be changed to duplicate the complete set of target contents and then take ownership of the clipboard using
theset_with_data () method. Later, when another program sets the contents of the clipboaotkanefunc

will be called and it can be used to reload the clipboard contents and retake the clipboard ownership.

283

Chapter 16. New Widgets in PyGTK 2.4

Quite a few new widgets and support objects were added in PyGTK 2.4 including:
» Action , RadioAction , ToggleAction - objects that represent actions that a user can take. Actions contain
information to be used to create proxy widgets (for example, icons, menu items and toolbar items).

» ActionGroup - an object containing Actions that have some relationship, for example, actions to open, close
and print a document.

» Border - an object containing the values for a border.
e ColorButton - a button used to launch a ColorSelectionDialog.
» ComboBox- a widget providing a list of items to choose from. It replaces@mptionMenu .

» ComboBoxEntry - a widget providing a text entry field with a dropdown list of items to choose from. It replaces
theComba

» EntryCompletion - an object providing completion for dntry widget.
* Expander - a container that can show and hide its child in response to its button click.

» FileChooser - an interface for choosing files.

* FileChooserWidget - a widget implementing theFileChooser interface. It replaces the
FileSelection widget.
* FileChooserDialog - a dialog used for "File/Open" and "File/Save" actions. It replaces the

FileSelectionDialog
* FileFilter - an object used to filter files based on an internal set of rules.
» FontButton - a button that launches th®ntSelectionDialog
* Iconinfo - an object containing information about an icon inleanTheme .
» IconTheme - an object providing lookup of icons by name and size.

» Toolltem , ToolButton , RadioToolButton , SeparatorToolltem , ToggleToolButton - widgets
that can be added toToolbar . These replace the previotlisolbar items.

» TreeModelFilter - an object providing a powerful mechanism for revising the representation of an underlying
TreeModel . This is described isection 14.10.2, “TreeModelFilter”

» UlManager - an object providing a way to construct menus and toolbars from an XML Ul description. It also
has methods to manage the merging and separation of multiple Ul descriptions.

284

New Widgets in
PyGTK 2.4

16.1. The Action and ActionGroup Objects

TheAction andActionGroup objects work together to provide the images, text, callbacks and accelerators for
your application menus and toolbars. THBVianager usesAction s andActionGroup s to build the menubars

and toolbars automatically based on a XML specification. It's much easier to create and populate menus and toolbars
using theUIManager described in a later section. The following sections onAlsdon and ActionGroup

objects describe how to directly apply these objects but | recommend usibjNtemager whenever possible.

16.1.1. Actions

An Action object represents an action that the user can take using an application user interface. It contains
information used by proxy Ul elements (for exampéenultem s or Toolbar items) to present the action to the
user. There are two subclasse®\ction

ToggleAction
An Action that can be toggled between two states.

RadioAction
An Action that can be grouped so that only one can be active.

For example, the standard File->Quit menu item can be represented with an icon, mnemonic text and accelerator.
When activated, the menu item triggers a callback that could exit the application. LikeWedkmar Quit button
could share the icon, mnemonic text and callback. Both of these Ul elements could be proxies of tAetiame

OrdinaryButton , ToggleButton andRadioButton widgets can also act as proxies for Aotion though
there is no support for these in thkManager .

16.1.1.1. Creating Actions

An Action can be created using the constructor:

action = gtk.Action(name, label , tooltip , stock id)

name is a string used to identify th&ction in anActionGroup orin aUlManager specificationlabel and
tooltip are strings used as the label and tooltip in proxy widgetsbiél is None then thestock _id must be
a string specifying a Stock Item to get the label fromtolltip is None theAction will not have a tooltip.

As we'll see inSection 16.1.2, “ActionGroupst's much easier to create Action objects using AaionGroup
convenience methods:

actiongroup.add_actions(entries , user_data =None)
actiongroup.add_toggle_actions(entries , user_data =None)
actiongroup.add_radio_actions(entries , value =0, on_change =None,, ,

user_data=None)

More about these later but first I'll describe how to useAation with aButton to illustrate the basic operations
of connecting a\ction to a proxy widget.

285

New Widgets in
PYyGTK 2.

16.1.1.2. Using Actions

The basic procedure for using dction with a Button proxy is illustrated by the simpleaction.jgxam-
ples/simpleaction.pygxample program. ThButton is connected to thAction using the method:

action.connect_proxy(proxy)

where proxy is aMenultem , Toolltem orButton widget.

An Action has one signal the "activate” signal that is triggered wher\ttimn is activated usually as the result
of a proxy widget being activated (for exampldaolButton s clicked). You just have connect a callback to this
signal to handle the activation of any of the proxy widgets.

The source code for the simpleaction[pyamples/simpleaction.pgxample program is:

#!/usr/bin/env python

1

2

3 import pygtk

4 pygtk.require('2.0”)
5 import gtk

6

7

8

class SimpleAction:
def __init_ (self):

9 # Create the toplevel window

10 window = gtk.Window()

11 window.set_size_request(70, 30)

12 window.connect('destroy’, lambda w: gtk.main_quit())

13

14 # Create an accelerator group

15 accelgroup = gtk.AccelGroup()

16 # Add the accelerator group to the toplevel window

17 window.add_accel_group(accelgroup)

18

19 # Create an action for quitting the program using a stock item
20 action = gtk.Action('Quit’, None, None, gtk. STOCK_QUIT)
21 # Connect a callback to the action

22 action.connect(’activate’, self.quit_cb)

23

24 # Create an ActionGroup named SimpleAction

25 actiongroup = gtk.ActionGroup(’SimpleAction’)

26 # Add the action to the actiongroup with an accelerator
27 # None means use the stock item accelerator

28 actiongroup.add_action_with_accel(action, None)

29

30 # Have the action use accelgroup

31 action.set_accel_group(accelgroup)

32

33 # Connect the accelerator to the action

34 action.connect_accelerator()

35

36 # Create the button to use as the action proxy widget

286

file:url(examples/simpleaction.py)
file:url(examples/simpleaction.py)

New Widgets in

PyGTK 2.
37 quitbutton = gtk.Button()
38 # add it to the window
39 window.add(quitbutton)
40
41 # Connect the action to its proxy widget
42 action.connect_proxy(quitbutton)
43
44 window.show_all()
45 return
46
a7 def quit_cb(self, b):
48 print 'Quitting program’
49 gtk.main_quit()
50
51 if _name__ == main__":
52 sa = SimpleAction()
53 gtk.main()

The example creates afiction (line 20) that uses a Stock Item to provide the label text with mnemonic,
icon, accelerator and translation domain. If a Stock Item is not used you'll need to specify a label instead.
Line 22 connects the "activate" signal attion to the self.quit_cb () method so that it is invoked when

the Action is activated byquitbutton . Line 42 connectgjuitbutton to action as a proxy widget.
When quitbutton is clicked it will activateaction and thereby invoke theelf.quit_cb () method. The
simpleaction.pyexamples/simpleaction.pygxample uses quite a bit of code (lines 15, 17, 31 and 34 to setup the
accelerator for th8utton . The procedure is similar favienultem s andToolbar Toolltem s.

Figure 16.1, “Simple Action Exampleshows the simpleaction.ggxamples/simpleaction.pgxample in operation.

Figure 16.1. Simple Action Example

16.1.1.3. Creating Proxy Widgets

In the previous section we saw that an existing widget could be connectedfictian as a proxy. In this section
we’ll see how a proxy widget can be created usingAbon methods:

menuitem = action.create_menu_item()

toolitem = action.create_tool_item()

287

file:url(examples/simpleaction.py)
file:url(examples/simpleaction.py)

New Widgets in
PYyGTK 2.

The basicaction.pyexamples/basicaction.py@xample illustrates aenultem , ToolButton and aButton
sharing arAction . TheMenultem and theToolButton are created using the above methods. The basicaction.py
[examples/basicaction.pgkample program source code is:

O©CoO~NOUITA,WNBE

#!/usr/bin/env python

import pygtk
pygtk.require(’2.0")
import gtk

class BasicAction:
def __init__ (self):

Create the toplevel window
window = gtk.Window()
window.connect('destroy’, lambda w: gtk.main_quit())
vbox = gtk.VBox()
vbox.show()
window.add(vbox)

Create an accelerator group

accelgroup = gtk.AccelGroup()

Add the accelerator group to the toplevel window
window.add_accel_group(accelgroup)

Create an action for quitting the program using a stock item

action = gtk.Action('Quit’, ’_Quit me!’, 'Quit the Program’,
gtk.STOCK_QUIT)

action.set_property('short-label’, ’_Quit’)

Connect a callback to the action

action.connect('activate’, self.quit_cb)

Create an ActionGroup named BasicAction
actiongroup = gtk.ActionGroup('BasicAction’)

Add the action to the actiongroup with an accelerator
None means use the stock item accelerator
actiongroup.add_action_with_accel(action, None)

Have the action use accelgroup
action.set_accel_group(accelgroup)

Create a MenuBar

menubar = gtk.MenuBar()
menubar.show()
vbox.pack_start(menubar, False)

Create the File Action and Menultem
file_action = gtk.Action(File’, ’_File’, None, None)
actiongroup.add_action(file_action)

file_menuitem = file_action.create_menu_item()
menubar.append(file_menuitem)

Create the File Menu
file_menu = gtk.Menu()

288

file:url(examples/basicaction.py)
file:url(examples/basicaction.py)

New Widgets in

PyGTK 2.4
50 file_menuitem.set_submenu(file_menu)
51
52 # Create a proxy Menultem
53 menuitem = action.create_menu_item()
54 file_menu.append(menuitem)
55
56 # Create a Toolbar
57 toolbar = gtk.Toolbar()
58 toolbar.show()
59 vbox.pack_start(toolbar, False)
60
61 # Create a proxy Toolltem
62 toolitem = action.create_tool_item()
63 toolbar.insert(toolitem, 0)
64
65 # Create and pack a Label
66 label = gtk.Label(™

67 Select File->Quit me! or

68 click the toolbar Quit button or
69 click the Quit button below or
70 press Control+q

71 to quit.

72"

73 label.show()

74 vbox.pack_start(label)

75

76 # Create a button to use as another proxy widget
77 quitbutton = gtk.Button()

78 # add it to the window

79 vbox.pack_start(quitbutton, False)

80

81 # Connect the action to its proxy widget

82 action.connect_proxy(quitbutton)

83 # Have to set tooltip after toolitem is added to toolbar
84 action.set_property('tooltip’, action.get_property('tooltip’))
85 tooltips = gtk.Tooltips()

86 tooltips.set_tip(quitbutton, action.get_property(’tooltip’))
87

88 window.show()

89 return

90

91 def quit_cb(self, b):

92 print 'Quitting program’

93 gtk.main_quit()

94

95 if __name__ =="'__main__"

96 ba = BasicAction()

97 gtk.main()

This example introduces afxctionGroup to hold theAction s used in the programSection 16.1.2, “Action-
Groups”will go into more detail on the use dfctionGroup s.

289

New Widgets in
PyGTK 2.4

The code in lines 9-14 sets up a top level window containin@Bax. Lines 16-35 set up the "Quitiction similar

to that in the simpleaction.pgxamples/simpleaction.py@xample program and add it with tiggk. STOCK_QUIT
Stock Item accelerator (line 32) to the "BasicActiokttionGroup (created in line 29). Note that, unlike the sim-
pleaction.pyjexamples/simpleaction.p@xample program, you don’t have to call tbennect_accelerator 0
method for the action since it is called automatically whendteate_menu_item () method is called in line 53.

Lines 38-40 create BlenuBar and pack it into th&/Box. Lines 43-44 create afiction (file_action) for the
File menu and add it tactiongroup . The File and Quit menu items are created in lines 45 and 53 and added to
menubar andfile_menu respectively in lines 46 and 54.

Likewise aToolbar is created and added to th8ox in lines 57-59. The proxyoolltem is created and added
to toolbar in lines 62-63. Note thé\ction tooltip must be set (line 84) after theoolltem is added to the
Toolbar for it to be used. Also th8utton tooltip must be added manually (lines 84-86).

Figure 16.2, “Basic Action Exampledisplays the basicaction.dgxamples/basicaction.pygxample program in
operation:

Figure 16.2. Basic Action Example

Select File->Quit me! or

click the toolbar Quit button or
click the Quit button below or
press Control+q

to quit.

L Quit J

A proxy widget can be disconnected fromAction by using the method:

action.disconnect_proxy(proxy)

16.1.1.4. Action Properties

An Action has a number of properties that control the display and function of its proxy widgets. The most important
of these are the "sensitive" and "visible" properties. The "sensitive" property determines the sensitivity of the proxy
widgets. If "sensitive" iFALSE the proxy widgets are not activatable and will usually be displayed "grayed out".

290

file:url(examples/simpleaction.py)
file:url(examples/simpleaction.py)
file:url(examples/simpleaction.py)
file:url(examples/basicaction.py)

New Widgets in
PyGTK 2.4

Likewise, the "visible" property determines whether the proxy widgets will be visible. Aetion ’s "visible"
property isFALSEits proxy widgets will be hidden.

As we’ll see in the next section, @cttion ’s sensitivity or visibility is also controlled by the sensitivity or visibility of
theActionGroup it belongs to. Therefore, for action to be sensitive (or visible) both it and ikstionGroup
must be sensitive (or visible). To determine the effective sensitivity or visibility oAetion you should use the
following methods:

result = action.is_sensitive()

result = action.is_visible()

The name assigned to &ttion is contained in its "name" property which is set whenAlotion s created. You
can retrieve that name using the method:

name = action.get_name()

Other properties that control the display of the proxy widgets dhetion include:

"hide-if-empty"
If TRUE empty menu proxies for this action are hidden.

"is-important"
If TRUE Toolltem proxies for this action show text in
gtk. TOOLBAR_BOTH_HORIZmode.

"visible-horizontal"
If TRUE theToolltem s visible when the toolbar is in a horizon-

tal orientation.

"visible-vertical"
If TRUE theToolltem is visible when the toolbar is in a vertical
orientation.

Other properties of interest include:

"label"
The label used for menu items and buttons that activate this action.
"short-label"
A shorter label that may be used on toolbar buttons and buttons.
"stock-id"
The Stock Item to be used to retrieve the icon, label and accelerator to be used in
widgets representing this action.
"tooltip"

A tooltip for this action.

201

New Widgets in
PyGTK 2.4

Note that the basicaction.pgxamples/basicaction.pgkample program overrides thgk. STOCK_QUIT label with

" Quit me!" and sets the "short-label" property to " Quit". The short label is used forabButton and the
Button labels but the full label is used for thdenultem label. Also note that the tooltip cannot be set on a
Toolltem until it is added to & oolbar

16.1.1.5. Actions and Accelerators

An Action has three methods that are used to set up an accelerator:

action.set_accel_group(accel_group)
action.set_accel_path(accel_path)

action.connect_accelerator()

These, in conjunction with thgtk.ActionGroup.add_action_with_accel () method, should cover most
cases of accelerator set up.

An AccelGroup must always be set for aAction . The set_accel_path () method is called by the

gtk.ActionGroup.add_action_with_accel () method. If set_accel path () is used the ac-
celerator path should match the default format: “"<Actions>/actiongroup_name/action_name". Finally, the
connect_accelerator () method is called to complete the accelerator set up.
Note
An Action must have anAccelGroup and an accelerator path associated with it before
connect_accelerator () is called.
Since theconnect_accelerator () method can be called several times (i.e. once for each proxy widget), the
number of calls is counted so that an equal numbeatisfonnect_accelerator () calls must be made before

removing the accelerator.

As illustrated in the previous example programs, Ation accelerator can be used by all the proxy wid-
gets. AnAction should be part of arictionGroup in order to use the default accelerator path that has
the format: "<Actions>/actiongroup_name/action_name". The easiest way to add an accelerator is to use the
gtk.ActionGroup.add_action_with_accel () method and the following general procedure:

» Create arAccelGroup and add it to the top level window.

» Create a nevActionGroup

» Create arAction specifying a Stock Item with an accelerator.

* Add the Action to the ActionGroup using thegtk.ActionGroup.add_action_with_accel 0
method specifyingNone to use the Stock Item accelerator or an accelerator string acceptable to
gtk.accelerator_parse 0.

» Set theAccelGroup fortheAction using thegtk.Action.set_accel_group () method.

» Complete the accelerator set up usinggtieAction.connect_accelerator () method.

292

file:url(examples/basicaction.py)

New Widgets in
PYyGTK 2.

Any proxy widgets created by or connected to Aaion will use the accelerator.

16.1.1.6. Toggle Actions

As mentioned previously fioggleAction is a subclass ofiction that can be toggled between two states. The
constructor for aoggleAction takes the same parameters a®\ation

toggleaction = gtk.ToggleAction(name, label , tooltip , stock_ id)

In addition to theAction methods the followingoggleAction methods:

toggleaction.set_active(is_active)
is_active = toggleaction.get_active()

set and get the current statetofigleaction .is_active is aboolean value.

You can connect to the "toggled" signal specifying a callback with the signature:

def toggled_cb(toggleaction , user_data)

The "toggled" signal is emitted when th®ggleAction changes state.
A Menultem proxy widget of arToggleAction will be displayed like &&heckMenultem by default. To have the
proxy Menultem displayed like &RadioMenultem set the "draw-as-radio" property T\RUEusing the method:

toggleaction.set_draw_as_radio(draw_as_radio)

You can use the following method to determine whetherTibhggleAction ~ Menultem s will be displayed like
RadioMenultem s:

draw_as_radio = toggleaction.get_draw_as_radio()

16.1.1.7. Radio Actions

A RadioAction is a subclass ofoggleAction that can be grouped so that only dRadioAction is active
at a time. The corresponding proxy widgets areRaglioMenultem andRadioToolButton

The constructor for &adioAction takes the same arguments asfation with the addition of a unique integer
value that is used to identify the actiRadioAction in a group:

293

New Widgets in
PyGTK 2.4

radioaction = gtk.RadioAction(name, label , tooltip , stock id , value)

The group for &RadioAction can be set using the method:

radioaction.set_group(group)

wheregroup is anotherRadioAction that radioaction should be grouped with. The group containing a
RadioAction can be retrieved using the method:

group = radioaction.get_group()

that returns a list of the group &adioAction objects that includesadioaction

The value of the currently active group member can retrieved using the method:

active_value = radioaction.get_current_value()

You can connect a callback to the "changed" signal to be notified when the active membeRaidibéction
group has been changed. Note that you only have to connect to oneRé&di@Action objects to track changes.
The callback signature is:

def changed_cb(radioaction , current , user_data)

wherecurrent is the currently activ&kadioAction in the group.

16.1.1.8. An Actions Example

The actions.pyexamples/actions.pygxample program illustrates the use of thetion , ToggleAction and
RadioAction objects.Figure 16.3, “Actions Exampledisplays the example program in operation:

Figure 16.3. Actions Example

294

file:url(examples/actions.py)

New Widgets in
PyGTK 2.4

actions.py

File Sound Radio Band

EE Mute AM FM |55B

Sound is not muted
Radio band is S5B

Quit

This example is similar enough to the basicactiong@yamples/basicaction.pygxample program that a detailed
description is not necessary.

16.1.2. ActionGroups

As mentioned in the previous section, relatdction objects should be added to &ttionGroup to provide
common control over their visibility and sensitivity. For example, in a text processing application the menu items
and toolbar buttons for specifying the text justification could be contained ActionGroup . A user interface is
expected to have multiplactionGroup objects that cover various aspects of the application. For example, global
actions like creating new documents, opening and saving a document and quitting the application likely form one
ActionGroup while actions such as modifying the view of the document would form another.

16.1.2.1. Creating ActionGroups

An ActionGroup s created using the constructor:

actiongroup = gtk.ActionGroup(name)

wherename is a unique name for thActionGroup . The name should be unique because it is used to form the
default accelerator path for isction objects.

TheActionGroup name can be retrieved using the method:

name = actiongroup.get_name()

or by retrieving the contents of the "name" property.

16.1.2.2. Adding Actions

As illustrated inSection 16.1.1, “Actionsan existingAction can be added to afictionGroup using one of the
methods:

295

file:url(examples/basicaction.py)

New Widgets in

PyGTK 2.4
actiongroup.add_action(action)
actiongroup.add_action_with_accel(action , accelerator)

whereaction is theAction to be added andccelerator is a string accelerator specification acceptable to
gtk.accelerator_parse (). If accelerator is None the accelerator (if any) associated with the "stock-id"
property ofaction will be used. As previously noted tlaeld_action_wih_accel () method is preferred if you
want to use accelerators.

The ActionGroup offers three convenience methods that make the job of creating and ailtting objects to
anActionGroup much easier:

actiongroup.add_actions(entries , user_data =None)
actiongroup.add_toggle_actions(entries , user_data =None)
actiongroup.add_radio_actions(entries , value =0, on_change =None,

user_data =None)

Theentries parameter is a sequence of action entry tuples that provide the information used to create the actions that
are added to thActionGroup . TheRadioAction with the value ofvalue is initially set active.on_change

is a callback that is connected to the "changed" signal of theRiaslioAction in the group. The signature of
on_changed is:

def on_changed cb(radioaction , current , user _data)

The entry tuples foAction objects contain:

» The name of the action. Must be specified.
» The stock id for the action. Optional with a default valueNafne if a label is specified.
» The label for the action. Optional with a default valueNaine if a stock id is specified.

» The accelerator for the action, in the format understood bgttkheaccelerator_parse () function. Optional
with a default value oNone.

* The tooltip for the action. Optional with a default valueNidne.

 The callback function invoked when the action is activated. Optional with a default vaNienf.

296

New Widgets in
PyGTK 2.4

You must minimally specify a value for thame field and a value in either tretock id field or thelabel field.
If you specify a label then you can specifjone for the stock id if you aren’t using one. For example the following
method call:

actiongroup.add_actions([('quit’, gtk. STOCK_QUIT, '_Quit me!, None,
'Quit the Program’, quit_cb)])

adds an action tactiongroup for exiting a program.
The entry tuples for th&oggleAction objects are similar to th&ction entry tuples except there is an additional

optionalflag field containing a boolean value indicating whether the action is active. The default valueflagthe
field is FALSE For example the following method call:

actiongroup.add_toggle_actions([‘mute, None, ’'_Mute’, '<control>m’,
'Mute the volume’, mute_ch, True)])

adds aroggleAction toactiongroup and sets it to be initially active.
The entry tuples for th®adioAction objects are similar to thAction entry tuples but specify walue field
instead of acallback field:

» The name of the action. Must be specified.

 The stock id for the action. Optional with a default valueNaine if a label is specified.

» The label for the action.Optional with a default valueNaine if a stock id is specified.

» The accelerator for the action, in the format understood bgttkhaccelerator_parse () function. Optional
with a default value oNone.

 The tooltip for the action. Optional with a default valueNidne.

» The value to set on the radio action. Optional with a default val@e &hould always be specified in applications.

297

New Widgets in
PyGTK 2.4

For example the following code fragment:

radioactionlist = [(am’, None, '_AM’, '<control>a’, 'AM Radio’, 0)
('fm’, None, '_FM’, '<control>f', 'FM Radio’, 1)
('ssb’, None, '_SSB’, '<control>s’, 'SSB Radio’, 2)]

actiongroup.add_radio_actions(radioactionlist, 0, changed_cb)

creates thre®adioAction objects and sets the initial active action to 'am’ and the callback that is invoked when
any of the actions is activated ¢hanged_cb .

16.1.2.3. Retrieving Actions

An Action can be retrieved by name from >ionGroup by using the method:

action = actiongroup.get_action(action_name)

A list of all the Action objects contained in aActionGroup can be retrieved using the method:

actionlist = actiongroup.list_actions()

16.1.2.4. Controlling Actions

The sensitivity and visibility of alAction objects in arActionGroup can be controlled by setting the associated
property values. The following convenience methods get and set the properties:

is_sensitive = actiongroup.get_sensitive()
actiongroup.set_sensitive(sensitive)

is_visible = actiongroup.get_visible()
actiongroup.set_visible(visible)

Finally you can remove aAction from anActionGroup using the method:

actiongroup.remove_action(action)

16.1.2.5. An ActionGroup Example

The actiongroup.pjexamples/actiongroup.pgkample program duplicates the menubar and toolbar of the actions.py
[examples/actions.pyxample program using thctionGroup methods. In addition the program provides buttons
to control the sensitivity and visibility of the menu items and toolbar iteffigure 16.4, “ActionGroup Example”
illustrates the program in operation:

298

file:url(examples/actiongroup.py)
file:url(examples/actions.py)

New Widgets in
PyGTK 2.4

Figure 16.4. ActionGroup Example

T Eon

EE Mute AM | FM 55B

Sound is not muted
Radio band is AM

Sensitive Visible

16.1.2.6. ActionGroup Signals

Your application can track the connection and removal of proxy widgets tAdtien objects in amActionGroup
using the "connect-proxy" and disconnect-proxy" signals. The signatures of your signal handler callbacks should be:

def connect_proxy_cb(actiongroup , action , proxy , user_params)

def disconnect_proxy_cb(actiongroup , action , proxy , user_params)

For example, you might want to track these changes to make some additional changes to the properties of the new proxy
widget when it is connected or to update some other part of the user interface when a proxy widget is disconnected.

The "pre-activate" and "post-activate" signals allow your application to do some additional processing immediately
before or after an action is activated. The signatures of the signal handler callbacks should be:

def pre_activate_cb(actiongroup, action, user_params)

def post_activate_cb(actiongroup, action, user_params)

These signals are mostly used by tbéManager to provide global notification for allAction objects in
ActionGroup objects used by it.

16.2. ComboBox and ComboBoxEntry Widgets
16.2.1. ComboBox Widgets

TheComboBoxreplaces th©ptionMenu with a powerful widget that usestaeeModel (usually alistStore)
to provide the list items to display. Tli&omboBoximplements th€ellLayout interface that provides a number of

299

New Widgets in
PYyGTK 2.

methods for managing the display of the list items. One or mi@iéRenderers can be packed into@omboBox
to customize the list item display.

16.2.1.1. Basic ComboBox Use

The easy way to create and populat@@mboBoxis to use the convenience function:

combobox = gtk.combo_box_new_text()

This function creates @omboBoxand its associateldstStore and packs it with &£ellRendererText . The
following convenience methods are used to populate or remove the contentsCafitimBox and itsListStore

combobox.append_text(text)
combobox.prepend_text(text)
combobox.insert_text(position , text)
combobox.remove_text(position)

wheretext is the string to be added to ti@mboBoxandposition is the index whergéext is to be inserted or
removed. In most cases the convenience function and methods are all you need.

The example program comboboxbasic[pyamples/comboboxbasic.pgitmonstrates the use of the above function
and methodskFigure 16.5, “Basic ComboBoxllustrates the program in operation:

Figure 16.5. Basic ComboBox

Elueberry

Grape
Peach

Raisin

Unfortunately, thesTk+ developers did not provide a convenience method to retrieve the active text. That would seem
to be a useful method. You'll have to create your own similar to:

300

file:url(examples/comboboxbasic.py)

New Widgets in
PyGTK 2.4

def get_active_text(combobox):
model = combobox.get_model()
active = combobox.get_active()
if active < O:
return None
return model[active][0]

The index of the active item is retrieved using the method:

active = combobox.get_active()

The active item can be set using the method:

combobox.set_active(index)

whereindex is an integer larger than -2. ifidex is -1 there is no active item and the ComboBox display will be
blank. Ifindex is less than -1, the call will be ignored.iffdex is greater than -1 the list item with that index value
will be displayed.

You can connect to the "changed" signal damboBoxto be notified when the active item has been changed. The
signature of the "changed" handler is:

def changed_cb(combobox, ...):

where... represents the zero or more arguments passed B8@Hgect.connect () method.

16.2.1.2. Advanced ComboBox Use

Creating aComboBox using thegtk.combo_box_new_text () function is roughly equivalent to the following
code:

liststore = gtk.ListStore(str)
combobox = gtk.ComboBox(liststore)
cell = gtk.CellRendererText()
combobox.pack_start(cell, True)
combobox.add_attribute(cell, 'text’, 0)

To make use of the power of the varioiseeModel and CellRenderer objects you need to construct a
ComboBoxusing the constructor:

301

New Widgets in
PyGTK 2.4

combobox = gtk.ComboBox(model =None)

wheremodel is aTreeModel . If you create &ComboBox without associating &reeModel , you can add one
later using the method:

combobox.set_model(model)

The associatedireeModel can be retrieved using the method:

model = combobox.get_model()

Some of the things you can do withtComboBoxare:

» Share the samé&reeModel with otherComboBoxes andlreeView s.

Display images and text in thteomboBox ist items.

» Use an existingreeStore orListStore as the model for th€omboBoxlist items.

Use aTreeModelSort to provide a sorte€omboBoxlist.

Use aTreeModelFilter to use a subtree of reeStore as the source for @omboBoxlist items.

Use aTreeModelFilter to use a subset of the rows inMraeeStore or ListStore as theComboBoxlist
items.

Use a cell data function to modify or synthesize the display for list items.

302

New Widgets in
PyGTK 2.4

The use of th@reeModel andCellRenderer objects is detailed iChapter 14Tree View Widget

The ComboBox list items can be displayed in a grid if you have a large number of items to display. Otherwise the
list will have scroll arrows if the entire list cannot be displayed. The following method is used to set the number of
columns to display:

combobox.set_wrap_width(width)

wherewidth is the number of columns of the grid displaying the list items. For example, the comboboxwrap.py
[examples/comboboxwrap.pyrogram displays a list of 50 items in 5 column§&igure 16.6, “ComboBox with
Wrapped Layoutillustrates the program in operation:

Figure 16.6. ComboBox with Wrapped Layout

vl=mTx

ItemQ ™

ltem O lteml Iltem2 I|tem3 I|tem4

ltem5 ltem6 Iltem7 Iltem& I|tem?9

Iltem 10 Item 11 Item 12 Item 13 [|tem 14
Iltem 15 Item 16 Item 17 Item 18 I|tem 19
Iltem 20 Item 21 Item 22 Item 23 [|tem 24
Iltem 25 Item 26 Item 27 Item 28 I|tem 29
Iltem 30 Item 31 Item 32 Item 33 [|tem 34
Item 35 Item 36 Item 37 Item 38 I|tem 39

ltem 40 ltem 4l Item 42 Item 43 Iltem 44

ltem 45 ltem 46 Item 47 Iltem 48 Item 49

With a large number of items, say more than 50, the use ofs#tewrap_width () method will have poor
performance because of the computation for the grid layout. To get a feel for the affect modify the comboboxwrap.py
[examples/comboboxwrap.pprogram line 18 to display 150 items.

for n in range(150):

303

file:url(examples/comboboxwrap.py)
file:url(examples/comboboxwrap.py)

New Widgets in
PyGTK 2.4

Run the program and get a time estimate for startup. Then modify it by commenting out line 17:

#combobox.set_wrap_width(5)

Run and time it again. It should start up significantly faster. My experience is about 20 times faster.

In addition to theget_active () method described above, you can retrievieeelter pointing at the active row
by using the method:

iter = combobox.get_active_iter()

You can also set the active list item using@reelter with the method:

combobox.set_active_iter(iter)

Theset_row_span_column () andset_column_span_column () methods are supposed to allow the specifi-
cation of aTreeModel column number that contains the number of rows or columns that the list item is supposed to
span in a grid layout. Unfortunately, in GTK+ 2.4 these methods are broken.

Since the ComboBox implements the CellLayout interface which has similar capabilities as the
TreeViewColumn (see Section 14.5, “TreeViewColumnsfor more information). Briefly, the interface pro-
vides:

combobox.pack_start(cell , expand =True)
combobox.pack_end(cell , expand =True)
combobox.clear()

The first two methods pack @ellRenderer into the ComboBox and theclear () method clears all attributes
from all CellRenderer s.

The following methods:

comboboxentry.add_attribute(cell , attribute , column)

comboboxentry.set_attributes(cell , ...)
set attributes for theCellRenderer specified bycell . The add_attribute () method takes a string
attribute name (e.g. 'text’) and an integeolumn number of the column in th&reeModel to use to set
attribute . The additional arguments to tiset_attributes () method araattribute=column pairs (e.g
text=1).

16.2.2. ComboBoxEntry Widgets

304

New Widgets in
PyGTK 2.4

TheComboBoxEntry widget replaces th€ombowidget. It is subclassed from tli@omboBoxwidget and contains
a childEntry widget that has its contents set by selecting an item in the dropdown list or by direct text entry either
from the keyboard or by pasting fromGlipboard or a selection.

16.2.2.1. Basic ComboBoxEntry Use

Like theComboBox, theComboBoxEntry can be created using the convenience function:

comboboxentry = gtk.combo_box_entry _new_text()

The ComboBoxEntry should be populated using th€omboBox convenience methods described in
Section 16.2.1.1, “Basic ComboBox Use”

Since aComboBoxEntry widget is aBin widget its childEntry widget is available using the "child" attribute or
theget_child () method:

entry = comboboxentry.child
entry = comboboxentry.get_child()

You can retrieve th&ntry text using itsget_text () method.

Like the ComboBox, you can track changes in the active list item by connecting to the "changed" signal. Unfortu-
nately, this doesn'’t help track changes to the text irBhey child that are direct entry. When a direct entry is made

to the childEntry widget the "changed" signal will be emitted but the index returned bgéteactive () method

will be -1. To track all changes to thentry text, you'll have to use thEntry "changed" signal. For example:

def changed_cb(entry):
print entry.get_text()

comboboxentry.child.connect('changed’, changed_cb)

will print out the text after every change in the chitthtry widget. For example, the comboboxentrybasic.py
[examples/comboboxentrybasic.pgtogram demonstrates the use of the convenience Rigure 16.7, “Basic
ComboBoxEntry'illustrates the program in operation:

Figure 16.7. Basic ComboBoxEntry

305

file:url(examples/comboboxentrybasic.py)

New Widgets in
PyGTK 2.4

Elueberry

Apple

Cherry
Elueberry
Grape
Peach

Raisin

Note that when th&ntry text is changed due to the selection of a dropdown list item the "changed" handler is called
twice: once when the text is cleared; and, once when the text is set with the selected list item text.

16.2.2.2. Advanced ComboBoxEntry Use

The constructor for a ComboBoxEntry is:

comboboxentry = gtk.ComboBoxEntry(model =None, column =-1)

wheremodel is aTreeModel andcolumn is the number of the column imodel to use for setting the list items.
If column is not specified the default value is -1 which means the text column is unset.

Creating aComboBoxEntry using the convenience functigitk.combo_box_entry _new_text () is equiva-
lent to the following:

liststore = gtk.ListStore(str)
comboboxentry = gtk.ComboBoxEntry(liststore, 0)

The ComboBoxEntry adds a couple of methods that are used to set and retrievied¢b®lodel column number
to use for setting the list item strings:

comboboxentry.set_text_column(text_column)
text_column = comboboxentry.get_text column()

The text column can also be retrieved and set using the "text-column" propertySe8den 16.2.1.2, “Advanced
ComboBox Use’for more information on the advanced use of @@nboBoxEntry .

306

New Widgets in
PyGTK 2.4

Note

Your application must set the text column for tBemboBoxEntry to set theEntry contents from the
dropdown list. The text column can only be set once, either by using the constructor or by using the
set_text column () method.

When aComboBoxEntry is created it is packed with a ne@ellRendererText which is not accessible. The
‘text’ attribute for theCellRendererText has to be set as a side effect of setting the text column using the
set_text column () method. You can pack addition@ellRenderer s into aComboBoxEntry for display in

the dropdown list. SeSection 16.2.1.2, “Advanced ComboBox Udel more information.

16.3. ColorButton and FontButton Widgets
16.3.1. ColorButton Widgets

A ColorButton widget provides a convenient way of displaying a color in a button that can be clicked to
open aColorSelectionDialog . It's useful for displaying and setting colors in a user preference dialog. A
ColorButton takes care of setting up, displaying and retrieving the result@blarSelectionDialog A
ColorButton is created using the constructor:

colorbutton = gtk.ColorButton(color =gtk.gdk.Color(0,0,0))

The initial color can be specified using tbelor parameter or set later using the method:

colorbutton.set_color(color)

The title for theColorSelectionDialog that is displayed when the button is clicked can be set and retrieved
using the methods:

colorbutton.set_title(title)

title = colorbutton.get _title()

The opacity of the color is set using the alpha channel. The following methods get and set the color opacity in the
range from O (transparent) to 65535 (opaque):

alpha = colorbutton.get_alpha()

colorbutton.set_alpha(alpha)

By default the alpha is ignored because the "use_alpha" propef§LSE The value of the "use_alpha" property
can be set and retrieved using the method:

307

New Widgets in
PyGTK 2.4

colorbutton.set_use_alpha(use_alpha)

use_alpha = colorbutton.get_use_alpha()

If "use_alpha" isTRUEthe ColorSelectionDialog displays a slider for setting the opacity and displays the
color using a checkerboard background.

You can track changes in the selected color by connecting to the "color-set" signal that is emitted when the user sets
the color. The signal callback signature is:

def color_set_cb(colorbutton, user_data):

The example program colorbutton.fgxamples/colorbutton.pyiflustrates the use of @olorButton . Figure 16.8,
“ColorButton Exampleshows the program in operation.

Figure 16.8. ColorButton Example

colorbutto

Foreground Color:

Select a Color

-/ Hue: |59 |5 Red: |230 |5
o Saturation: |87 |+ Green: 225 |-
Value: |90 |5 Blue: |29 |

Opacity: | | 127

Color Name: [#E6E11D

& cancel ‘ @gﬁ

308

file:url(examples/colorbutton.py)

New Widgets in
PYyGTK 2.

16.3.2. FontButton Widgets

Like theColorButton , theFontButton is a convenience widget that provides a display of the currently selected
font and, when clicked, opensFontSelectionDialog . A FontButton takes care of setting up, displaying
and retrieving the result of BontSelectionDialog . A FontButton is created using the constructor:

fontbutton = gtk.FontButton(fontname =None)

wherefontname is a string specifying the current font for tlv@ntSelectionDialog . For example the font
name can be specified like 'Sans 12’, 'Sans Bold 14’, or 'Monospace lItalic 14’. You need to specify the font family
and size at minimum.

The current font can also be set and retrieved using the following methods:

result = fontbutton.set_font_name(fontname)

fontname = fontbutton.get font_name()

whereresult returnsTRUEor FALSE to indicate whether the font was successfully set. FbatButton has

a number of properties and associated methods that affect the display of the current forkontBatton . The
"show-size" and show-style" properties contain boolean values that control whether the font size and style will be
displayed in the button label. The following methods set and retrieve the value of these properties:

fontbutton.set_show_style(show_style)
show_style = fontbutton.get_show_style()

fontbutton.set_show_size(show_size)
show_size = fontbutton.get_show_size()

Alternatively, you can have the current font size and style used by the label to directly illustrate the font selection. The
"use-size" and "use-font" properties and the associated methods:

fontbutton.set_use_font(use_font)
use_font = fontbutton.get_use_font()

fontbutton.set_use_size(use_size)
use_size = fontbutton.get_use_size()

Using the current font in the label seems like a useful illustration technique in spite of the inevitable changes in size of
the button but using the selected size doesn’'t seem as useful especially when using really large or small font sizes. Note
if you set "use-font" or "use-size" fbRUEand later set them BALSE, the last set font and size will be retained. For
example, if "use-font" and "use-size" afRUEand the current font islonospace lItalic 20 , theFontButton

label is displayed usinlylonospace lItalic 20 ; then if "use-font" and "use-size" are setRALSE and then the

309

New Widgets in
PyGTK 2.4

current font is changed t8ans 12 the label will still be displayed iMonospace Italic 20 . Use the example
program fontbutton.pjexamples/fontbutton.pytp see how this works.

Finally, the title of theFontSelectionDialog can be set and retrieved using the methods:
fontbutton.set _title(title)

titte = fontbutton.get _title()

Like the ColorButton , you can track changes in the current font by connecting to the "font-set" signal that is
emitted when the user sets the font. The signal callback signature is:

def font_set_cb(fontbutton, user_data):

The example program fontbutton.pgxamples/fontbutton.pyilustrates the use of &ontButton . You can set

the "use-font", "use-size", "show-size" and "show-style" properties using toggle buftnse 16.9, “FontButton
Example”shows the program in operation.

Figure 16.9. FontButton Example

310

file:url(examples/fontbutton.py)
file:url(examples/fontbutton.py)

New Widgets in
PyGTK 2.4

fontbutton.py
Current Font: TR/ Chancery L Medium Italic 16

I use_font I use_size I show_style show_size

Select a font

Eamily: Style: Size:

Vonospace [o i

Nimbus Mono L Italic E B

Nimbus Roman No9 L Bold

13

J 14
5ans
16

Serif
Standard Symbols L | | |

Preview:

abcdefghijk ABCDEFGHIJK

& Cancel

16.4. EntryCompletion Objects

An EntryCompletion is an object that is used with &ntry widget to provide completion functionality. As the
user types into th&ntry the EntryCompletion will popup a window with a set of strings matching tBatry
text.

An EntryCompletion is created using the constructor:

completion = gtk.EntryCompletion()

You can use th&ntry methodset_completion () to associate akntryCompletion with anEntry :

311

New Widgets in
PyGTK 2.4

entry.set_completion(completion)

The strings used by tHentryCompletion ~ for matching are retrieved fromfaeeModel (usually alistStore)
that must be set using the method:

completion.set_model(model)

The EntryCompletion implements theCellLayout interface that is similar to th&reeViewColumn in
managing the display of thereeModel data. The following convenience method sets ufeatryCompletion
in the most common configuration - a list of strings:

completion.set_text_column(column)

This method is equivalent to the following:

cell = CellRendererText()
completion.pack_start(cell)
completion.add_attribute(cell, 'text’, column)

To set the number of characters that must be entered befoEmthgCompletion starts matching you can use the
method:

completion.set_minimum_key_length(length)

The example program entrycompletion.pjexamples/entrycompletion.py]ldemonstrates the use of the
EntryCompletion . Figure 16.10, “EntryCompletionllustrates the program in operation.

Figure 16.10. EntryCompletion

312

file:url(examples/entrycompletion.py)

New Widgets in
PyGTK 2.4

Typea, b, cord
for completion

The example program starts with a small number of completion strings that can be increased by typing into the entry
field and pressing thEnter key. If the string is unique it is added to the list of completion strings.

The built-in match function is a case insensitive string comparison function. If you need a more specialized match
function, you can use the following method to install your own match function:

completion.set_match_func(func , user_data)

The signature ofunc is:

def func(completion, key string, iter, data):

wherekey_string contains the current contents of tBatry , iter is aTreelter pointing at a row in the
associatedreeModel , anddata isuser_data .func should returifRUEIf the row’s completion string should
be displayed.

The simple example code snippet below uses a match function to display completion names that begin with the entry
contents and have the given suffix, in this case, a name endipgdn for aPNGfile.

completion.set_match_func(end_match, (0, '.png’))

def end_match(completion, entrystr, iter, data):
column, suffix = data
model = completion.get_model()
modelstr = model[iter][column]
return modelstr.startswith(entrystr) and modelstr.endswith(suffix)

For example if the user types 'foo’ and the completion model contains strings like 'foobar.png’, smiley.png’, 'foot.png’
and 'foo.tif’, the 'foobar.png’ and 'foot.png’ strings would be displayed as completions.

313

New Widgets in
PYyGTK 2.

16.5. Expander Widgets

The Expander widget is a fairly simple container widget that can reveal or hide its child widget by clicking on a
triangle similar to the triangle in @reeView . A newExpander is created using the constructor:

expander = gtk.Expander(label =None)

wherelabel is a string to be used as the expander labelabiel is None or not specified, no label is created.
Alternatively, you can use the function:

expander = gtk.expander_new_with_mnemonic(label =None)

that sets the character in label preceded by an underscore as a mnemonic keyboard accelerator.

TheExpander widget uses th€ontainer API to add and remove its child widget:

expander.add(widget)

expander.remove(widget)

The child widget can be retrieved using B "child" attribute or theget_child () method.

The setting that controls the interpretation of label underscores can be retrieved and changed using the methods:

use_underline = expander.get_use_underline()

expander.set_use_underline(use_underline)

If you want to use Pango markup (see the Pango Markup refefatipe//www.pygtk.org//pygtk2reference/pango-
markup-language.htmfpr more detail) in the label string, use the following methods to set and retrieve the setting of
the "use-markup" property:

expander.set_use_markup(use_markup)

use_markup = expander.get_use_markup()

Finally, you can use any widget as the label widget using the following method:

expander.set_label_widget(label_widget)

314

url(http://www.pygtk.org//pygtk2reference/pango-markup-language.html)

New Widgets in
PYyGTK 2.

This allows you, for example, to use &Box packed with anmage and aLabel as theExpander label.

The state of thé&xpander can be retrieved and set using the methods:

expanded = expander.get_expanded()

expander.set_expanded(expanded)

If expanded is TRUEthe child widget is revealed.

In most cases thExpander automatically does exactly what you want when revealing and hiding the child widget.

In some cases your application might want to create a child widget at expansion time. The "notify::expanded" signal
can be used to track changes in the state of the expander triangle. The signal handler can then create or change the
child widget as needed.

The example program expanderfgxamples/expander.pylemonstrates the use of tkxpander . Figure 16.11,
“Expander Widget'illustrates the program in operation:

Figure 16.11. Expander Widget

?[5 Folder Timeé

Em Aug 2 14:30:43 zuﬂ

The program createslaabel containing the current time and shows it when the expander is expanded.

16.6. File Selections using FileChooser-based
Widgets

The new way to select files in PyGTK 2.4 is to use the variants oFtleChooser widget. The two objects that
implement this new interface in PyGTK 2.4 d@#eChooserWidget andFileChooserDialog . The latter is

the complete dialog with the window and easily defined buttons. The former is a widget useful for embedding within
another widget.

Both theFileChooserWidget andFileChooserDialog possess the means for navigating the filesystem tree
and selecting files. The view of the widgets depends on the action used to open a widget.

To create a new file chooser dialog to select an existing file (as in typical File->Open option of a typical application),
use:
chooser = |

gtk.FileChooserDialog(title =None, action =gtk.FILE_ CHOOSER_ACTION_OPEN,

buttons =(gtk.STOCK_CANCEL,gtk. RESPONSE_CANCEL,gtk.STOCK_OPEN,gtk. RESPONSE_OK))

315

file:url(examples/expander.py)

New Widgets in
PyGTK 2.4

To create a new file chooser dialog to select a new file name (as in the typical File->Save as option of a typical
application), use:

chooser = |
gtk.FileChooserDialog(titte =None, action =gtk.FILE_CHOOSER_ACTION_SAVE,

«—
buttons =(gtk.STOCK_CANCEL,gtk. RESPONSE_CANCEL,gtk.STOCK_OPEN,gtk. RESPONSE_OK))

In the above examples, the two buttons (the stock Cancel and Open items) are created and connected to their respective
responses (stock Cancel and OK responses).
To set the folder displayed in the file chooser, use the method:

chooser.set_current_folder(pathname)

To set the suggested file name as if it was typed by a user (the typical File->Save Assituation), use the method:

chooser.set_current_name(name)

The above method does not require the filename to exist. If you want to preselect a particular existing file (as in the
File->Open situation), you should use the method:

chooser.set_filename(filename)

To obtain the filename that the user has entered or clicked on, use this method:

filename = chooser.get_filename()

It is possible to allow multiple file selections (only for te&k.FILE_ CHOOSER_ACTION_OPENaction) by using
the method:

chooser.set_select_multiple(select_multiple)

where select_mutiple should beTRUEto allow multiple selections. In this case, you will need to use the
following method to retrieve a list of the selected filenames:

filenames = chooser.get_filenames()

316

New Widgets in
PyGTK 2.4

An important feature of all file choosers is the ability to add file selection filters. The filter may be added by the
method:

chooser.add_filter(filter)
In the example abovéiter must be an instance of théleFilter class.
The left panel of the file chooser lists some shortcut folders such as Home, Filesystem, CDROM, etc. You may add a

folder to the list of these shortcuts and remove it from the list by using these methods:

chooser.add_shortcut_folder(folder)
chooser.remove_shortcut_folder(folder)

wherefolder is the pathname of folder. THaechooser.py[examples/filechooser.pgxample program illustrates
the use of the filechooser widgeEigure 16.12, “File Selection Examplshows the resulting display:

Figure 16.12. File Selection Example

317

file:url(examples/filechooser.py)

New Widgets in

PYyGTK 2.

Home

Filesystem

2.0

demo

dp Add

@ Hemaove

J usrl sharel gtl-:—}!.{]”demn

'~ IR

mle lmmm el AiF

& Cancel

Mame - | Modified
alphatest.png 027257200
apple-red.png 02/25/200:
background.jpg 02/25/200:
floppybuddy.qif 02/25/200:
| gnome-applets.png 02/25/200:
gnome-calendar.png 02/25/200:
‘| gnome-foot. png 02,/25/200:
gnome-gimp.png 02/25/200:
gnome-gmush.png 02/25/200:
gnome-gsame.png 02/25/200:
gnu-keys.png 02/25/200:

A lali=Nalatat

Image:

=L

L

The source code for thidechooser.py[examples/filechooser.pglxample program is:

1
2
3
4
5
6
7
8
9
10

#!/usr/bin/env python

example filechooser.py

import pygtk

pygtk.require(’2.0")

import gtk

Check for new pygtk: this is new class in PyGtk 2.4

318

file:url(examples/filechooser.py)

New Widgets in
PyGTK 2.4

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

if gtk.pygtk version < (2,3,90):
print "PyGtk 2.3.90 or later required for this example"
raise SystemExit

dialog = gtk.FileChooserDialog("Open..",
None,
gtk.FILE_CHOOSER_ACTION_OPEN,
(gtk.STOCK_CANCEL, gtk.RESPONSE_CANCEL,
gtk. STOCK_OPEN, gtk. RESPONSE_OK))
dialog.set_default_response(gtk. RESPONSE_OK)

filter = gtk.FileFilter()
filter.set_name("All files")
filter.add_pattern("*")
dialog.add_filter(filter)

filter = gtk.FileFilter()
filter.set_name("Images")
filter.add_mime_type("image/png")
filter.add_mime_type("image/jpeg")
filter.add_mime_type("image/qif")
filter.add_pattern("*.png")
filter.add_pattern("*.jpg")
filter.add_pattern("*.gif")
filter.add_pattern("*.tif")
filter.add_pattern("*.xpm")
dialog.add_filter(filter)

response = dialog.run()
if response == gtk. RESPONSE_OK:
print dialog.get_filename(), 'selected’
elif response == gtk. RESPONSE_CANCEL.:
print 'Closed, no files selected’
dialog.destroy()

16.7. The UlManager
16.7.1. Overview

TheUIManager provides a way to create menus and toolbars from an XML-like descriptionUTWianager uses
ActionGroup objects to manage th&ction objects providing the common substructure for the menu and toolbar

items.

Using theUIManager you can dynamically merge and demerge multiple Ul descriptions and actions. This allows
you to modify the menus and toolbars when the mode changes in the application (for example, changing from text
editing to image editing), or when new plug-in features are added or removed from your application.

A UlManager can be used to create the menus and toolbars for an application user interface as follows:

» Create dJIManager instance

319

New Widgets in
PyGTK 2.4

Extract theAccelGroup from theUIManager and add it to the top levéVindow

Create théActionGroup instances and populate them with the appropatiion instances.

Add theActionGroup instances to th&)IManager in the order that théction instances should be found.

Add the Ul XML descriptions to th&JIManager . Make sure that alictions referenced by the descriptions
are available in th&IManager ActionGroup instances.

Extract references to the menubar, menu and toolbar widgets by name for use in building the user interface.

Dynamically modify the user interface by adding and removing Ul descriptions and by adding, rearranging and
removing the associatekctionGroup instances.

16.7.2. Creating a UIManager

A UlManager instance is created by the constructor:

uimamager = gtk.UIManager()

A newUIManager is created with an associatédcelGroup that can be retrieved using the method:

accelgroup = uimanager.get_accel_group()

TheAccelGroup should be added to the top level window of the application so thadthien accelerators can
be used by your users. For example:

window = gtk.Window()

uimanager = gtk.UIManager()

accelgroup = uimanager.get_accel_group()
window.add_accel_group(accelgroup)

16.7.3. Adding and Removing ActionGroups

As described inSection 16.1.2, “ActionGroups”ActionGroups can be populated wittActions by us-
ing the add_actions (), add_toggle_actions () and add_radio_actions () convenience methods. An
ActionGroup can be used bydIManager after it has been added to AstionGroup list by using the method:

uimanager.insert_action_group(action_group , pos)

wherepos is the index of the position whergction_group should be inserted. AJIManager may contain
severalActionGroups with duplicateAction names. The order of thActionGroup objects is important

320

New Widgets in
PyGTK 2.4

because the lookup of dction stops when the firshction with the given name is encountered. This means that
actions in earlieActionGroup objects mask those in lat&ctionGroup objects.

The actions referenced in a Ul XML description must be addeditMeanager before the description can be added
to theUIManager .
An ActionGroup can be removed fromdIManager by using the method:

uimanager.remove_action_group(action_group)

A list of the ActionGroup objects associated withdManager can be retrieved using the method:

actiongrouplist = uimanager.get_action_groups()

16.7.4. Ul Descriptions

The Ul descriptions accepted bifManager are simple XML definitions with the following elements:

ui
The root element of a Ul description. It can be omitted. Can comtanubar, popup,
toolbar andacceleratorelements.

menubar
A top level element describing lenuBar structure that can contaienultem, sepa-
rator, placeholderandmenu elements. It has an optionahmeattribute. Ifnameis not
specified, "menubar" is used as the name.

popup
A top level element describing a popigenu structure that can contaimenuitem,
separator, placeholder, andmenu elements. It has an optionadmeattribute. Ifnameis
not specified, "popup” is used as the name.

toolbar
A top level element describing®oolbar structure that can containolitem, separator
and placeholder elements. It has an optionabmeattribute. If nameis not specified,
"toolbar” is used as the name.

placeholder

An element identifying a position inmenubar, toolbar, popup or menu. A placeholder

can containmenuitem, separator, placeholder, and menu elements. Placeholder
elements are used when merging Ul descriptions to allow, for example, a menu to be
built up from Ul descriptions using commataceholdernames. It has an optionabhme
attribute. Ifnameis not specified, "placeholder" is used as the name.

321

New Widgets in
PYyGTK 2.

menu

menuitem

toolitem

separator

accelerator

An element describing Benu structure that can contaimenuitem, separator, place-
holder, andmenu elements. Amenu element has a required attribigetion that names
anAction object to be used to create thMenu. It also has optionahameand position
attributes. Ifnameis not specified, thaction name is used as the name. Tjhesition
attribute can have either the value "top" or "bottom" with "bottom" the defaglbgition
is not specified.

An element describing Benultem . A menuitem element has a required attrib@etion
that names adction object to be used to create tMenultem . It also has optional
nameandpositionattributes. Ifnameis not specified, thactionname is used as the name.
Thepositionattribute can have either the value "top" or "bottom" with "bottom" the default
if positionis not specified.

An element describing a toolbdoolltem . A toolitem element has a required attribute
actionthat names aAction objectto be used to create theolbar . It also has optional
nameandpositionattributes. Ifnameis not specified, thactionname is used as the name.
Thepositionattribute can have either the value "top" or "bottom" with "bottom" the default
if positionis not specified.

An element describing 8eparatorMenultem or a SeparatorToolltem as ap-
propriate.

An element describing a keyboard accelerator. a&aelerator element has a required
attributeactionthat names aAction object that defines the accelerator key combination
and is activated by the accelerator. It also has an optioaaeattribute. Ifnameis not
specified, thectionname is used as the name.

For example, a Ul description that could be used to create an interface similar thiguire 16.4, “ActionGroup

Example”is:

<ui>

<menubar name="MenuBar">
<menu action="File">
<menuitem action="Quit"/>

</menu>

<menu action="Sound">
<menuitem action="Mute"/>

</menu>

<menu action="RadioBand">
<menuitem action="AM"/>
<menuitem action="FM"/>
<menuitem action="SSB"/>

</menu>
</menubar>

<toolbar name="Toolbar">
<toolitem action="Quit"/>

<separator/>

<toolitem action="Mute"/>
<separator name="sep1"/>

322

New Widgets in
PyGTK 2.4

<placeholder name="RadioBandItems">
<toolitem action="AM"/>
<toolitem action="FM"/>
<toolitem action="SSB"/>
</placeholder>
</toolbar>
</ui>

Note that this description just uses thetion attribute names for the names of most elements rather than specifying
nameattributes. Also | would recommend not specifying theslement as it appears to be unnecessary.

The widget hierarchy created using a Ul description is very similar to the XML element hierarchy except that
placeholderelements are merged into their parents.

A widget in the hierarchy created by a Ul description can be accessed using its path which is composed of the name of
the widget element and its ancestor elements joined by slash (/") characters. For example using the above description
the following are valid widget paths:

/MenuBar

/MenuBar/File/Quit
/MenuBar/RadioBand/SSB
/Toolbar/Mute
/Toolbar/RadioBanditems/FM

Note that theplaceholder name must be included in the path. Usually you just access the top level widgets (for
example, "/MenuBar" and "/Toolbar") but you may need to access a lower level widget to, for example, change a

property.

16.7.5. Adding and Removing Ul Descriptions

Once aJIManager is set up with arActionGroup a Ul description can be added and merged with the existing Ul
by using one of the following methods:

merge_id = uimanager.add_ui_from_string(buffer)

merge_id = uimanager.add_ui_from_file(filename)

wherebuffer is a string containing a Ul description afitbthname s the file containing a Ul description. Both
methods return anerge_id which is a unique integer value. If the method fails, GError exception is raised.
Themerge_id can be used to remove the Ul description fromth®anager by using the method:

uimanager.remove_ui(merge_id)

323

New Widgets in
PyGTK 2.4

The same methods can be used more than once to add additional Ul descriptions that will be merged to provide
a combined XML Ul description. Merged Uls will be discussed in more detabéction 16.7.8, “Merging Ul
Descriptions”section.

A single Ul element can be added to the current Ul description by using the method:

uimanager.add_ui(merge_id , path , name, action , type , top)

wheremerge_id is a unique integer valupath is the path where the new element should be adagtthn is the
name of arAction or None to add aseparator, type is the element type to be added aong is a boolean value.
If top is TRUEthe element will be added before its siblings, otherwise it is added after.

merge_id should be obtained from the method:

merge_id = uimanager.new_merge_id()

The integer values returned from thew_merge_id () method are monotonically increasing.

path is a string composed of the name of the element and the names of its ancestor elements separated by slash ("/")
characters but not including the optional root node "/ui". For example, "/MenuBar/RadioBand" is the patmefihe
element named "RadioBand" in the following Ul description:

<menubar name="MenuBar">
<menu action="RadioBand">
</menu>

</menubar>

The value otype must be one of:

gtk.UI_MANAGER_AUTO
The type of the Ul element (menuitem, toolitem or sepa-
rator) is set according to the context.

gtk.UI_MANAGER_MENUBAR

A menubar.
gtk.Ul_MANAGER_MENU

A menu.
gtk.Ul_MANAGER_TOOLBAR

A toolbar.

gtk.Ul_MANAGER_PLACEHOLDER
A placeholder.

gtk.Ul_MANAGER_POPUP
A popup menu.

324

New Widgets in
PYyGTK 2.

gtk.Ul_ MANAGER_MENUITEM
A menuitem.

gtk.Ul_MANAGER_TOOLITEM
A toolitem.

gtk.UI_MANAGER_SEPARATOR
A separator.

gtk.Ul_MANAGER_ACCELERATOR
An accelerator.

add_ui () fails silently if the element is not added. Usiadd_ui () is so low level that you should always try to use
the convenience methodsld_ui_from_string () andadd_ui_from_file () instead.

Adding a Ul description or element causes the widget hierarchy to be updated in an idle function. You can make sure
that the widget hierarchy has been updated before accessing it by calling the method:

uimanager.ensure_update()

16.7.6. Accessing Ul Widgets

You access a widget in the Ul widget hierarchy by using the method:

widget = uimanager.get_widget(path)

wherepath is a string containing the name of the widget element and it's ancestors as descr8ssdiam 16.7.4,
“Ul Descriptions”

For example, given the following Ul description:

<menubar name="MenuBar">
<menu action="File">
<menuitem action="Quit"/>
</menu>
<menu action="Sound">
<menuitem action="Mute"/>
</menu>
<menu action="RadioBand">
<menuitem action="AM"/>
<menuitem action="FM"/>
<menuitem action="SSB"/>
</menu>
</menubar>
<toolbar name="Toolbar">
<toolitem action="Quit"/>
<separator/>
<toolitem action="Mute"/>
<separator name="sepl"/>

325

New Widgets in
PyGTK 2.4

<placeholder name="RadioBandItems">
<toolitem action="AM"/>
<toolitem action="FM"/>
<toolitem action="SSB"/>
</placeholder>
</toolbar>

added to theUIManager uimanager , you can access thiglenuBar and Toolbar for use in an application
Window by using the following code fragment:

window = gtk.Window()

vbox = gtk.VBox()

menubar = uimanager.get_widget(’/MenuBar’)
toolbar = uimanager.get_widget('/Toolbar’)
vbox.pack_start(meunbar, False)
vbox.pack_start(toolbar, False)

Likewise the lower level widgets in the hierarchy are accessed by using their paths. For example the
RadioToolButton named "SSB" is accessed as follows:

ssb = uimanager.get_widget('/Toolbar/RadioBandltems/SSB’)

As a convenience all the top level widgets of a type can be retrieved using the method:

toplevels = uimanager.get_toplevels(type)

wheretype specifies the type of widgets to return using a combination of the ftagsJl_ MANAGER_MENUBAR
gtk.Ul_MANAGER_TOOLBARand gtk.Ul_MANAGER_POPUP You can use thgtk.Widget.get name 0
method to determine which top level widget you have.

You can retrieve théction that is used by the proxy widget associated with a Ul element by using the method:

action = uimanager_get_action(path)

wherepath is a string containing the path to a Ul elementimanager . If the element has no associatkdtion |,
None is returned.

16.7.7. A Simple UIManager Example

A simple example program illustrating the use bfiManager is uimanager.py[examples/uimanager.py]
Figure 16.13, “Simple UIManager Exampl#fustrates the program in operation.

326

file:url(examples/uimanager.py)

New Widgets in
PYyGTK 2.

Figure 16.13. Simple UIManager Example

T Eon

EE Mute AM | FM 55B

Sound is not muted
Radio band is AM

Sensitive Visible

The uimanager.pjexamples/uimanager.pgkample program uses the XML descriptiorSafction 16.7.6, “Accessing

Ul Widgets”. The text of the two labels are changed in response to the activation of the "VaggleAction and
"AM", "FM" and "SSB" RadioAction s. All the actions are contained in a singletionGroup allowing the
sensitivity and visibility of all the action proxy widgets to be toggled on and off by using the "Sensitive" and "Visible"
toggle buttons. The use of tidaceholderelement will be described iSection 16.7.8, “Merging Ul Descriptions”

16.7.8. Merging Ul Descriptions

The merging of Ul descriptions is done based on the name of the XML elements. As noted above the individual
elements in the hierarchy can be accessed using a pathname consisting of the element name and the names of
its ancestors. For example, using the Ul descriptiorSection 16.7.4, “Ul Descriptionsthe "AM" toolitem

element has the pathname "/Toolbar/RadioBanditems/AM" while the "Fidhuitem element has the pathname
"/MenuBar/RadioBand/FM".

If a Ul description is merged with that Ul description the elements are added as siblings to the existing elements. For
example, if the Ul description:

<menubar name="MenuBar">
<menu action="File">
<menuitem action="Save" position="top"/>
<menuitem action="New" position="top"/>
</menu>
<menu action="Sound">
<menuitem action="Loudness"/>
</menu>
<menu action="RadioBand">
<menuitem action="CB"/>
<menuitem action="Shortwave"/>
</menu>
</menubar>
<toolbar name="Toolbar">
<toolitem action="Save" position="top"/>
<toolitem action="New" position="top"/>
<separator/>

327

file:url(examples/uimanager.py)

New Widgets in
PYyGTK 2.

<toolitem action="Loudness"/>
<separator/>
<placeholder name="RadioBandItems">
<toolitem action="CB"/>
<toolitem action="Shortwave"/>
</placeholder>
</toolbar>

is added to our example Ul description:

<menubar name="MenuBar">
<menu action="File">
<menuitem action="Quit"/>
</menu>
<menu action="Sound">
<menuitem action="Mute"/>
</menu>
<menu action="RadioBand">
<menuitem action="AM"/>
<menuitem action="FM"/>
<menuitem action="SSB"/>
</menu>
</menubar>
<toolbar name="Toolbar">
<toolitem action="Quit"/>
<separator/>
<toolitem action="Mute"/>
<separator name="sepl"/>
<placeholder name="RadioBandltems">
<toolitem action="AM"/>
<toolitem action="FM"/>
<toolitem action="SSB"/>
</placeholder>
</toolbar>

the following merged Ul description will be created:

<menubar name="MenuBar">

<menu name="File" action="File">
<menuitem name="New" action="New"/>
<menuitem name="Save" action="Save"/>
<menuitem name="Quit" action="Quit"/>

</menu>

<menu name="Sound" action="Sound">
<menuitem name="Mute" action="Mute"/>
<menuitem name="Loudness" action="Loudness"/>

</menu>

<menu name="RadioBand" action="RadioBand">
<menuitem name="AM" action="AM"/>

328

New Widgets in
PyGTK 2.4

<menuitem name="FM" action="FM"/>
<menuitem name="SSB" action="SSB"/>
<menuitem name="CB" action="CB"/>
<menuitem name="Shortwave" action="Shortwave"/>
</menu>
</menubar>
<toolbar name="Toolbar">
<toolitem name="New" action="New"/>
<toolitem name="Save" action="Save"/>
<toolitem name="Quit" action="Quit"/>
<separator/>
<toolitem name="Mute" action="Mute"/>
<separator name="sepl"/>
<placeholder name="RadioBandItems">
<toolitem name="AM" action="AM"/>
<toolitem name="FM" action="FM"/>
<toolitem name="SSB" action="SSB"/>
<toolitem name="CB" action="CB"/>
<toolitem name="Shortwave" action="Shortwave"/>
</placeholder>
<separator/>
<toolitem name="Loudness" action="Loudness"/>
<separator/>
</toolbar>

Examining the merged XML you can see that the "New" and "Saweriuitem elements have been merged before the
"Quit" element as a result of the "position” attribute being set to "top” which means the element should be prepended.
Likewise, the "New" and "Savedbolitem elements have been prepended to "Toolbar". Note that the "New" and "Save"
elements are reversed by the merging process.

The "Loudnesstoolitem element is appended to the "Toolbar" elements and appears last in the merged Ul description
even though it's not last in its Ul description. The "RadioBandItepiateholder element in both Ul descriptions
combines the "CB" and "Shortwaveabolitem elements with the "AM", "FM", and "SSB" elements. If the
"RadioBandItemsplaceholder element was not used the "CB" and "Shortwave" elements would have been placed
after the "Loudness" element.

A representation of the Ul description used byldanager can be retrieved using the method:

uidesc = uimanager.get_ui()

The uimerge.pyexamples/uimerge.pygxample program demonstrates the merging of the above Ul descriptions.
Figure 16.14, “UlMerge Exampléaflustrates the unmerged and merged Uls:

Figure 16.14. UlMerge Example

329

file:url(examples/uimerge.py)

New Widgets in
PyGTK 2.4

uimerge.py
File Sound Radio Band

Mute AM FM 55B

Quit
Sound is not muted
Radio band i1s AM
[Sensitive [+ Visible

e,
b
uimer Je.py

File Sound RadioBand

[3 Mute AM FM SSB

MNew Save Quit
Sound is not muted
Radio band is AM
¥ Sensitive [+ Visible

b

The example program uses thrketionGroup objects:

» Action objects for the "File", "Sound" and "Radio Band" menus
» Action objects for the "Quit", "Mute", "AM", "FM", "SSB" and "Radio Band" menus
» Action objects for the "Loudness”, "CB" and "Shortwave" elements

The "Sensitive" and VisibleToggleButton widgets control the sensitivity and visibility of only the second
ActionGroup

16.7.9. UIManager Signals

The UIManager has a couple of interesting signals that your application can connect to. The "actions-changed"
signal is emitted when afxctionGroup is added or removed from@dManager . The signature of the callback is:

def callback(uimanager , ...)

The "add-widget" signal is emitted when a pra¥enuBar or Toolbar widget is created. The callback signature
is:

330

New Widgets in
PyGTK 2.4

def callback(uimanager , widget , ...)

wherewidget is the newly created widget.

331

Chapter 17. Undocumented Widgets

These all require authors! :) Please consider contributing to our tutorial.

If you must use one of these widgets that are undocumented, | strongly suggest you take a look at the *.c files in the
PyGTK distribution. PyGTK’s method names are very descriptive. Once you have an understanding of how things
work, it's not difficult to figure out how to use a widget simply by looking at its method definitions. This, along with

a few examples from others’ code, and it should be no problem.

When you do come to understand all the methods of a new undocumented widget, please consider writing a tutorial
on it so others may benefit from your time.

17.1. Accel Label
17.2. Option Menu

17.3. Menu ltems
17.3.1. Check Menu Item
17.3.2. Radio Menu Item
17.3.3. Separator Menu Item

17.3.4. Tearoff Menu Item
17.4. Curves
17.5. Message Dialog

17.6. Gamma Curve

332

Chapter 18. Setting Widget Attributes

This describes the methods used to operate on widgets (and objects). These can be used to set style, padding, size, etc.

The method:

widget.activate()

causes the widget to emit the "activate" signal.

The method:

widget.set_sensitive(sensitive)

sets the sensitivity of the widget (i.e. does it react to eventsenkitive is TRUEthe widget will receive events;
if FALSEthe widget will not receive events. A widget that is insensitive is usually displayed "grayed out".

The method:

widget.set_size request(width , height)

sets the widget size to the givendth andheight

18.1. Widget Flag Methods

The methods:

widget.set_flags(flags)
widget.unset_flags(flags)

flags = widget.flags()

set, unset and get tlgk.Object andgtk.Widget flags.flags can be any of the standard flags:

IN_DESTRUCTION
FLOATING
RESERVED_1
RESERVED_2
TOPLEVEL
NO_WINDOW
REALIZED
MAPPED

333

Setting Widget
Attributes

VISIBLE

SENSITIVE
PARENT_SENSITIVE
CAN_FOCUS
HAS_FOCUS
CAN_DEFAULT
HAS_DEFAULT
HAS_GRAB
RC_STYLE
COMPOSITE_CHILD
NO_REPARENT
APP_PAINTABLE
RECEIVES_DEFAULT
DOUBLE_BUFFERED

The method:

widget.grab_focus()

allows a widget to grab the focus assuming that it hasdAdl FOCU$ag set.

18.2. Widget Display Methods

The methods:

widget.show()
widget.show_all()
widget.hide()
widget.hide_all()
widget.realize()
widget.unrealize()
widget.map()

widget.unmap()

manage the display of theidget .
Theshow() method arranges to display the widget by usingréfadize () andmap() methods.

Thehide () method arranges to remove the widget from the display and also unmaps it usimgrtap() method if
necessary.

334

Setting Widget
Attributes

Theshow_all () andhide_all () methods arrange to show or hide the widget and all its children.
Therealize () method arranges to allocate resources to the widget including its window.

Theunrealize () method releases the widget window and other resources. Unrealizing a widget will also hide and
unmap it.

Themap() method arranges to allocate space on the display for the widget; this only applies to widgets that need to be
handled by the window manager. Mapping a widget will also cause it to be realized if necessary.

Theunmap() method removes a widget from the display and will also hide it if necessary.

18.3. Widget Accelerators

The following methods:

widget.add_accelerator(accel_signal , accel_group , accel_key , accel_mods ,, ,
accel_flags)

widget.remove_accelerator(accel_group , accel_key , accel_mods)

add and remove accelerators frongtk.AcceleratorGroup that must be attached to the top level widget to

handle the accelerators.
Theaccel_signal is a signal that is valid for thevidget to emit.
Theaccel_key is a keyboard key to use as the accelerator.

Theaccel_mods are modifiers to add to theccel_key (e.g.Shift, Control, etc.):

SHIFT_MASK
LOCK_MASK
CONTROL_MASK
MOD1_MASK
MOD2_MASK
MOD3_MASK
MOD4_MASK
MOD5_MASK
BUTTON1_MASK
BUTTON2_MASK
BUTTON3_MASK
BUTTON4_MASK
BUTTON5_MASK
RELEASE_MASK

Theaccel_flags set options about how the accelerator information is displayed. Valid values are:

ACCEL_VISIBLE # display the accelerator key in the widget display

335

Setting Widget
Attributes

ACCEL_LOCKED # do not allow the accelerator display to change

An accelerator group is created by the function:

accel_group = gtk.AccelGroup()

Theaccel_group is attached to a top level widget with the following method:

window.add_accel_group(accel_group)

An example of adding an accelerator:

menu_item.add_accelerator("activate", accel_group,
ord('Q’), gtk.gdk. CONTROL_MASK, gtk.ACCEL_VISIBLE)

18.4. Widget Name Methods

The following widget methods set and get the name of a widget:

widget.set name(name)

name = widget.get_name()

nameis the string that will be associated with thidget . This is useful for specifying styles to be used with specific
widgets within an application. The name of the widget can be used to narrow the application of the style as opposed
to using the widget's class. S&hapter 23GTK's rc Filesfor more details.

18.5. Widget Styles

The following methods get and set the style associated with a widget:

widget.set_style(style)

style = widget.get_style()

The following function:

336

Setting Widget
Attributes

style = get_default_style()

gets the default style.

A style contains the graphics information needed by a widget to draw itself in its various states:

STATE_NORMAL # The state during normal operation.

STATE_ACTIVE # The widget is currently active, such as a button pushed
STATE_PRELIGHT # The mouse pointer is over the widget.
STATE_SELECTED # The widget is selected

STATE_INSENSITIVE # The widget is disabled

A style contains the following attributes:

fg # a list of 5 foreground colors - one for each state

bg # a list of 5 background colors

light # a list of 5 colors - created during set_style() method
dark # a list of 5 colors - created during set_style() method
mid # a list of 5 colors - created during set_style() method
text # a list of 5 colors

base # a list of 5 colors

text_aa # a list of 5 colors halfway between text/base

black # the black color
white # the white color
font_desc # the default pango font description

xthickness #
ythickness #

fg_gc # a list of 5 graphics contexts - created during set_style() method
bg_gc # a list of 5 graphics contexts - created during set_style() method
light gc # a list of 5 graphics contexts - created during set_style() method
dark_gc # a list of 5 graphics contexts - created during set_style() method
mid_gc # a list of 5 graphics contexts - created during set_style() method
text_gc # a list of 5 graphics contexts - created during set_style() method
base _gc # a list of 5 graphics contexts - created during set_style() method
black_gc # a list of 5 graphics contexts - created during set_style() method
white_gc # a list of 5 graphics contexts - created during set_style() method

bg pixmap # a list of 5 GdkPixmaps

Each attribute can be accessed directly similatyte.black andstyle.fg_gc[gtk. STATE_NORMAL]

attributes are read-only except fetyle.black , Style.white , Style.black_gc andstyle.white_gc

An existing style can be copied for later modification by using the method:

337

LAl

Setting Widget
Attributes

new_style = style.copy()

which copies thetyle attributes except for the graphics context lists and the light, dark and mid color lists.

The current style of a widget can be retrieved with:

style = widget.get_style()

To change the style of a widget (e.g. to change the widget foreground color), the following widget methods should be
used:

widget.modify_fg(state, color)
widget.modify_bg(state, color)
widget.modify_text(state, color)
widget.modify _base(state, color)
widget.modify_font(font_desc)
widget.set_style(style)

Setting thestyle will allocate the style colors and create the graphics contexts. Most widgets will automatically
redraw themselves after the style is changedtyfe is None then the widget style will revert to the default style.

Not all style changes will affect the widget. For example, changind #iteel (seeSection 9.1, “Labelg’widget
background color will not change the label background color becauskaie widget does not have its own
gtk.gdk.Window . The background of the label is dependent on the background color of the label’s parent. The use
of anEventBox to hold a Label will allow the Label background color to be set. Seetion 10.1, “The EventBox”

for an example.

338

Chapter 19. Timeouts, 10 and Idle
Functions

19.1. Timeouts

You may be wondering how you make GTK do useful work whemain (). Well, you have several options. Using the
following gobject module function you can create a timeout function that will be called every "interval" milliseconds.

source_id = gobject.timeout_add(interval , function , ..)

Theinterval argument is the number of milliseconds between calls to your functionfuftion argument
is the callback you wish to have called. Any arguments after the second are passed to the function as data. The return
value is an integer "source_id" which may be used to stop the timeout by calling:

gobject.source_remove(source_id)

You may also stop the timeout callback function from being called again by returning zétALSE from your
callback. If you want your callback to be called again, it should reTlRUVE

Your callback should look something like this:

def timeout_callback(...):

The number of arguments to the callback should match the number of data arguments spdaifieduin add ().

19.2. Monitoring 10

You can check for the ability to read from or write to a file (either a Python file or a lower level OS file) and then
automatically invoke a callback. This is especially useful for networking applications. The gobject module function:

source_id = gobject.io_add_watch(source , condition , callback)

where the first argumens@urce) is the open file (Python file object or lower level file descriptor integer) you wish to
have watched. Thgobject.io_add_watch () function uses the lower level file descriptor integer internally but
the function will extract it from the Python file object using tileno () method as needed. The second argument
(condition) specifies what you want to look for. This may be one of:

gobject.IO_IN - There is data ready for reading from your file.

gobject.IO_OUT - The file is ready for writing.

339

Timeouts, 10 and
Idle Functions

gobject.IO_PRI - There is urgent data to read.
gobject.IO_ERR - Error condition.

gobject.IO_HUP - Hung up (the connection has been broken, usually for
pipes and sockets).

These are defined in the gobject module. As I'm sure you've figured out already, the third argumenéltiak
you wish to have called when the above conditions are satisfied.

The return valusource_id may be used to stop the monitoring of the file by using the following function:

gobject.source_remove(source_id)

The callback function should be similar to:

def input_callback(source , condition):

wheresource andcondition are as specified above. The source value will be the lower level file descriptor
integer and not the Python file object (i.e. the value that is returned from the Python file rfilgthod ()).

You may also stop the callback function from being called again by returning zérAldBE from your callback. If
you want your callback to be called again, it should reflRUE

19.3. Idle Functions

What if you have a function which you want to be called when nothing else is happening ? Use the function:

source_id = gobject.idle_add(callback , ...)

Any arguments beyond the first (indicated with ...) are passed taitisack in order. Thesource_id s returned
to provide a reference to the handler.

This function causes GTK to call the specifiellback function whenever nothing else is happening.

Thecallback signature is:

def callback(...):

where the arguments passed to talback are the same as those specified in gobject.idle_add 0
function. As with the other callback functions, returniRgLSE will stop the idle callback from being called and
returningTRUEcauses the callback function to be run at the next idle time.

340

Timeouts, 10 and
Idle Functions

An idle function can be removed from the queue by calling the function:

gobject.source_remove(source_id)

with thesource_id returned from thegobject.idle_add () function.

341

Chapter 20. Advanced Event and Signal
Handling

20.1. Signal Methods

The signal methods amgobject. GObject methods that are inherited by tiggk.Object s including all the
GTK+ widgets.

20.1.1. Connecting and Disconnecting Signal Handlers

handler_id = object.connect(name, cb, cb_args)

handler_id = object.connect_after(name, cb, cb_args)

handler_id = object.connect_object(name, cb, slot object , Cb_args)
handler_id = object.connect_object_after(name, cb, slot_object , Ccb_args)
object.disconnect(handler_id)

The first four methods connect a signal handtdr)(to agtk.Object (object) for the given signal name. and

return ahandler_id that identifies the connectioob_args is zero or more arguments that will be passed last (in
order) tocb. Theconnect_after () andconnect_object_after () methods will have their signal handlers

called after other signal handlers (including the default handlers) connected to the same object and signal name. Each
object signal handler has its own set of arguments that it expects. You have to refer to the GTK+ documentation
to figure out what arguments need to be handled by a signal handler though information for the common widgets is
available inAppendix A,GTK Signals The general signal handler is similar to:

def signal_handler(object , ..., cb_args):

Signal handlers that are defined as part of a Python object class (specifiedonttext () methods aself.cb)
will have an additional argument passed as the first argument - the object insédince

signal_handler(self, object , ..., cb_args)

The connect_object () and connect_object_after () methods call the signal handler with the
slot_object substituted in place of thebject as the first argument:

def signal_handler(slot_object Y e func_args):

def signal_handler(self, slot_object func_args):

342

A
Event an‘?i’aé‘uaﬁ%
Handling

The disconnect () method destroys the connection between a signal handler and an object signal. The
handler_id specifies which connection to destroy.

20.1.2. Blocking and Unblocking Signal Handlers

The following methods:

object.handler_block(handler_id)

object.handler_unblock(handler_id)

block and unblock the signal handler specifiedhandler_id . When a signal handler is blocked it will not be
invoked when the signal occurs.

20.1.3. Emitting and Stopping Signals

The following methods:

object.emit(name, ...)

object.emit_stop_by name(name)

emit and stop the signalame respectively. Emitting the signal causes its default and user defined handlers to be run.
Theemit_stop_by name () method will abort the current signal name emission.

20.2. Signal Emission and Propagation

Signal emission is the process whereby GTK+ runs all handlers for a specific object and signal.

First, note that the return value from a signal emission is the return value of the last handler executed. Since event
signals are all of typdRUN_LAST this will be the default (GTK+ supplied) handler, unless you connect with the
connect_after () method.

The way an event (say "button_press_event") is handled, is:

Start with the widget where the event occurred.

Emit the generic "event" signal. If that signal handler returns a valddRfE stop all processing.
» Otherwise, emit a specific, "button_press_event" signal. If that refURWUE stop all processing.
» Otherwise, go to the widget's parent, and repeat the above two steps.

 Continue until some signal handler retuffRUE or until the top-level widget is reached.

Some consequences of the above are:

343

A
Event an%’@.ﬁﬁ%
Handling

e Your handler’s return value will have no effect if there is a default handler, unless you connect with
connect_after ().

« To prevent the default handler from being run, you need to connect withnect () and use
emit_stop_by name () - the return value only affects whether the signal is propagated, not the current
emission.

344

Chapter 21. Managing Selections
21.1. Selection Overview

One type of interprocess communication supported by X and GTK+ is selections. A selection identifies a chunk of
data, for instance, a portion of text, selected by the user in some fashion, for instance, by dragging with the mouse.
Only one application on a display (the owner) can own a particular selection at one time, so when a selection is
claimed by one application, the previous owner must indicate to the user that selection has been relinquished. Other
applications can request the contents of a selection in different forms, called targets. There can be any number of
selections, but most X applications only handle one, the primary selection.

In most cases, it isn't necessary for a PyGTK application to deal with selections itself. The standard widgets, such as
theEntry (seeSection 9.9, “Text Entrieg'widget, already have the capability to claim the selection when appropriate
(e.g., when the user drags over text), and to retrieve the contents of the selection owned by another widget or another
application (e.g., when the user clicks the second mouse button). However, there may be cases in which you want to
give other widgets the ability to supply the selection, or you wish to retrieve targets not supported by default.

A fundamental concept needed to understand selection handling is that of the atom. An atom is an integer that uniquely
identifies a string (on a certain display). Certain atoms are predefined by the X server, GTK.

21.2. Retrieving the Selection

Retrieving the selection is an asynchronous process. To start the process, you call:

result = widget.selection_convert(selection , target , time =0)

This converts theselection into the form specified byarget . selection is an atom corresponding to the
selection type; the common selections are the strings:

PRIMARY

SECONDARY

If at all possible, theime field should be the time from the event that triggeredslection . This helps make

sure that events occur in the order that the user requested them. However, if it is not available (for instance, if the
conversion was triggered by a "clicked" signal), then you can use 0 which means use the currergdirte. is

TRUEIf the conversion succeedddALSE otherwise.

When the selection owner responds to the request, a "selection_received" signal is sent to your application. The
handler for this signal receivesgk.SelectionData object, which has the following attributes:

selection
target
type
format
data

345

. an-
aging Selec’%{lons

selection andtarget are the values you gave in yoselection_convert () method.

type is an atom that identifies the type of data returned by the selection owner. Some possible values are "STRING",
a string of latin-1 characters, "ATOM", a series of atoms, "INTEGER", an integer, "image/x-xpixmap", etc. Most
targets can only return one type.

The list of standard atoms in X and GTK+ is:

PRIMARY
SECONDARY

ARC

ATOM

BITMAP

CARDINAL
COLORMAP
CURSOR
CUT_BUFFERO
CUT_BUFFER1
CUT_BUFFER2
CUT_BUFFER3
CUT_BUFFER4
CUT_BUFFER5
CUT_BUFFERS6
CUT_BUFFER7
DRAWABLE

FONT

INTEGER

PIXMAP

POINT

RECTANGLE
RESOURCE_MANAGER
RGB_COLOR_MAP
RGB_BEST_MAP
RGB_BLUE_MAP
RGB_DEFAULT_MAP
RGB_GRAY_MAP
RGB_GREEN_MAP
RGB_RED_MAP
STRING

VISUALID

WINDOW
WM_COMMAND
WM_HINTS
WM_CLIENT_MACHINE
WM_ICON_NAME
WM_ICON_SIZE
WM_NAME
WM_NORMAL_HINTS
WM_SIZE_HINTS
WM_ZOOM_HINTS
MIN_SPACE
NORM_SPACE
MAX_SPACE END_SPACE,

346

_Managing
Selections

SUPERSCRIPT_X
SUPERSCRIPT_Y
SUBSCRIPT_X
SUBSCRIPT_Y
UNDERLINE_POSITION
UNDERLINE_THICKNESS
STRIKEOUT_ASCENT
STRIKEOUT_DESCENT
ITALIC_ANGLE
X_HEIGHT
QUAD_WIDTH

WEIGHT

POINT_SIZE
RESOLUTION
COPYRIGHT

NOTICE

FONT_NAME
FAMILY_NAME
FULL_NAME
CAP_HEIGHT
WM_CLASS
WM_TRANSIENT_FOR
CLIPBOARD

format gives the length of the units (for instance characters) in bits. Usually, you don’t care about this when receiving
data.

data is the returned data in the form of a string.

PyGTK wraps all received data into a string. This makes it easy to handle string targets. To retrieve targets of other
types (e.g. ATOM or INTEGER) the program must extract the information from the returned string. PyGTK provides
two methods to retrieve text and a list of targets from the selection data:

text = selection_data.get_text()

targets = selection_data.get_targets()

wheretext is a string containing the text of the selection d@athets is a list of the targets supported by the
selection.

Given agtk.SelectionData containing a list of targets the method:

has_text = selection_data.targets_include_text()

will return TRUEIf one or more of the targets can provide text.

347

. an-
aging Selec’%{lons

The getselection.py[examples/getselection.py@xample program demonstrates the retrieving of a "STRING" or
"TARGETS" target from the primary selection and printing the corresponding data to the console when the associated
button is "clicked". Figure 21.1, “Get Selection Exampl#ustrates the program display:

Figure 21.1. Get Selection Example

Get String Target

Get Targets

The source code for thgetselection.pyjexamples/getselection.ppgfogram is:

#!/usr/bin/env python

example getselection.py

1

2

3

4

5 import pygtk
6 pygtk.require(’2.0)

7 import gtk

8

9 class GetSelectionExample:

10 # Signal handler invoked when user clicks on the
11 # "Get String Target" button

12 def get_stringtarget(self, widget):

13 # And request the "STRING" target for the primary selection
14 ret = widget.selection_convert("PRIMARY", "STRING")

15 return

16

17 # Signal handler invoked when user clicks on the "Get Targets" button
18 def get_targets(self, widget):

19 # And request the "TARGETS" target for the primary selection
20 ret = widget.selection_convert("PRIMARY", "TARGETS")

21 return

22

23 # Signal handler called when the selections owner returns the data
24 def selection_received(self, widget, selection_data, data):

25 # Make sure we got the data in the expected form

26 if str(selection_data.type) == "STRING":

27 # Print out the string we received

28 print "STRING TARGET: %s" % selection_data.get_text()
29

30 elif str(selection_data.type) == "ATOM":

31 # Print out the target list we received

32 targets = selection_data.get_targets()

33 for target in targets:

34 name = str(target)

348

file:url(examples/getselection.py)
file:url(examples/getselection.py)

“Managing
Selections

35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84

if name != None:
print "%s" % name
else:
print "(bad target)"
else:
print "Selection was not returned as \"STRING\" or \"ATOM\"!"

return False

def __init_ (self):
Create the toplevel window
window = gtk.Window(gtk. WINDOW_TOPLEVEL)
window.set _title("Get Selection")
window.set_border_width(10)
window.connect("destroy”, lambda w: gtk.main_quit())

vbox = gtk.VBox(False, 0)
window.add(vbox)
vbox.show()

Create a button the user can click to get the string target
button = gtk.Button("Get String Target")

eventbox = gtk.EventBox()

eventbox.add(button)

button.connect_object("clicked", self.get_stringtarget, eventbox)
eventbox.connect("selection_received", self.selection_received)
vbox.pack_start(eventbox)

eventbox.show()

button.show()

Create a button the user can click to get targets

button = gtk.Button("Get Targets")

eventbox = gtk.EventBox()

eventbox.add(button)

button.connect_object("clicked", self.get_targets, eventbox)
eventbox.connect("selection_received", self.selection_received)
vbox.pack_start(eventbox)

eventbox.show()

button.show()

window.show()

def main():
gtk.main()
return O

if _name__ =="_main__"
GetSelectionExample()
main()

349

“Managing
Selections

Lines 30-38 handle the retrieval of the "TARGETS" selection data and print the list of target names. The buttons are
enclosed in their own eventboxes because a selection must be associatedjtkifdeWindow and buttons are
"windowless" widgets in GTK+2.0.

21.3. Supplying the Selection

Supplying the selection is a bit more complicated. You must register handlers that will be called when your selection
is requested. For each selection-target pair you will handle, you make a call to:

widget.selection_add_target(selection , target , info)

widget , selection , andtarget identify the requests this handler will manage. When a request for a selection
is received, the "selection_get" signal will be calledo is an integer that can be used as an enumerator to identify
the specific target within the callback.

The callback has the signature:

def selection_get(widget, selection_data, info, time):

The gtk.SelectionData is the same as above, but this time, we're responsible for filling in the figjus ,

format anddata . (Theformat field is actually important here - the X server uses it to figure out whether the
data needs to be byte-swapped or not. Usually it will be 8 - i.e. a character - or 32 - i.e. a integer.) This is done by
calling the method:

selection_data.set(type , format , data)

This PyGTK method can only handle string data sodhta must be loaded into a Python string fatmat ~ will

be whatever the appropriate size is (e.g. 32 for atoms and integers, 8 for strings). Thedytbion or StringlO

modules can be used to convert non-string data to string data. For example, you can convert a list of integers to a string
and set theelection_data by:

ilist = [1, 2, 3, 4, 5]
data = apply(struct.pack, ['%di'%len(ilist)] + ilist)
selection_data.set("INTEGER", 32, data)

The following method sets the selection data from the given string:

selection_data.set_text(str , len)

350

. an-
aging Selec’%{lons

When prompted by the user, you claim ownership of the selection by calling:

result = widget.selection_owner_set(selection , time =0L)

result will be TRUEIf program successfully claimed tiselection . If another application claims ownership of
theselection , you will receive a "selection_clear_event".

As an example of supplying the selection, thetselection.py[examples/setselection.pyrogram adds selection
functionality to a toggle button enclosed ingtk.EventBox . (The gtk.Eventbox is needed because the
selection must be associated witlgik.gdk.Window and agtk.Button is a "windowless" object in GTK+

2.0.) When the toggle button is depressed, the program claims the primary selection. The only target supported (aside
from certain targets like "TARGETS" supplied by GTK+ itself), is the "STRING" target. When this target is requested,

a string representation of the time is returneligure 21.2, “Set Selection Exampl#fustrates the program display

when the program has taken the primary selection ownership:

Figure 21.2. Set Selection Example

|Clairn Selection

Thesetselection.pyjexamples/setselection.pgburce code is:

#!/usr/bin/env python
example setselection.py

1
2
3
4
5 import pygtk

6 pygtk.require(’2.0’)

7 import gtk

8 import time

9

10 class SetSelectionExample:

11 # Callback when the user toggles the selection

12 def selection_toggled(self, widget, window):

13 if widget.get_active():

14 self.have_selection = window.selection_owner_set("PRIMARY")
15 # if claiming the selection failed, we return the button to

16 # the out state

17 if not self.have_selection:

18 widget.set_active(False)

19 else:

20 if self.have_selection:

21 # Not possible to release the selection in PyGTK

22 # just mark that we don’t have it

351

file:url(examples/setselection.py)
file:url(examples/setselection.py)

. an-
aging Selec’%{lons

23 self.have_selection = False
24 return
25
26 # Called when another application claims the selection
27 def selection_clear(self, widget, event):
28 self.have_selection = False
29 widget.set_active(False)
30 return True
31
32 # Supplies the current time as the selection.
33 def selection_handle(self, widget, selection_data, info, time_stamp):
34 current_time = time.time()
35 timestr = time.asctime(time.localtime(current_time))
36
37 # When we return a single string, it should not be null terminated.
38 # That will be done for us
39 selection_data.set_text(timestr, len(timestr))
40 return
41
42 def __init__ (self):
43 self.have_selection = False
44 # Create the toplevel window
45 window = gtk.Window(gtk. WINDOW_TOPLEVEL)
46 window.set _title("Set Selection™)
a7 window.set_border_width(10)
48 window.connect("destroy”, lambda w: gtk.main_quit())
49 self.window = window
50 # Create an eventbox to hold the button since it no longer has
51 # a GdkWindow
52 eventbox = gtk.EventBox()
53 eventbox.show()
54 window.add(eventbox)
55
56 # Create a toggle button to act as the selection
57 selection_button = gtk.ToggleButton("Claim Selection")
58 eventbox.add(selection_button)
59
60
selection_button.connect("toggled"”, self.selection_toggled, eventbox)
61
eventbox.connect_object("selection_clear_event", self.selection_clear,
62 selection_button)
63
64 eventbox.selection_add_target("PRIMARY", "STRING", 1)
65 eventbox.selection_add_target("PRIMARY", "COMPOUND_TEXT", 1)
66 eventbox.connect("selection_get", self.selection_handle)
67 selection_button.show()
68 window.show()
69
70 def main():
71 gtk.main()
72 return O
73
74 if _name__ ==" main__ "

352

“Managing
Selections

75 SetSelectionExample()
76 main()

353

Chapter 22. Drag-and-drop (DND)

PyGTK has a high level set of functions for doing inter-process communication via the drag-and-drop system. PyGTK
can perform drag-and-drop on top of the low level Xdnd and Motif drag-and-drop protocols.

22.1. DND Overview

An application capable of drag-and-drop first defines and sets up the widget(s) for drag-and-drop. Each widget can be
a source and/or destination for drag-and-drop. Note that these widgets must have an associated X Window.

Source widgets can send out drag data, thus allowing the user to drag things off of them, while destination widgets can
receive drag data. Drag-and-drop destinations can limit who they accept drag data from, e.g. the same application or
any application (including itself).

Sending and receiving drop data makes use of signals. Dropping an item to a destination widget requires both a data
request (for the source widget) and data received signal handler (for the target widget). Additional signal handers can
be connected if you want to know when a drag begins (at the very instant it starts), to when a drop is made, and when
the entire drag-and-drop procedure has ended (successfully or not).

Your application will need to provide data for source widgets when requested, that involves having a drag data request
signal handler. For destination widgets they will need a drop data received signal handler.

So atypical drag-and-drop cycle would look as follows:

» Drag begins. Source can get "drag-begin" signal. Can set up drag icon, etc.

» Drag moves over a drop area. Destination can get "drag-motion" signal.

 Drop occurs. Destination can get "drag-drop" signal. Destination should ask for source data.

» Drag data request (when a drop occurs). Source can get "drag-data-get" signal.

» Drop data received (may be on same or different application). Destination can get "drag-data-received" signal.
» Drag data delete (if the drag was a move). Source can get "drag-data-delete" signal

» Drag-and-drop procedure done. Source can receive "drag-end" signal.

There are a few minor steps that go in between here and there, but we will get into detail about that later.

22.2. DND Properties

Drag data has the following properties:

* Drag action type (IidCTION_COPYACTION_MOVE
« Client specified arbitrary drag-and-drop type (a name and number pair).

» Sent and received data format type.

354

Drag-and-dro
(DND)g P

Drag actions are quite obvious, they specify if the widget can drag with the specified action(s), e.g.
gtk.gdk.ACTION_COPY and/or gtk.gdk.ACTION_MOVE . An gtk.gdk.ACTION_COPY would be a
typical drag-and-drop without the source data being deleted witilgdk. ACTION_MOVE would be just like
otk.gdk.ACTION_COPY but the source data will be 'suggested’ to be deleted after the received signal handler is
called. There are additional drag actions includgig.gdk. ACTION_LINK which you may want to look into
when you get to more advanced levels of drag-and-drop.

The client specified arbitrary drag-and-drop type is much more flexible, because your application will be defining and

checking for that specifically. You will need to set up your destination widgets to receive certain drag-and-drop types

by specifying a name and/or number. It would be more reliable to use a name since another application may just
happen to use the same number for an entirely different meaning.

Sent and received data format typssléction targetcome into play only in your request and received data handler
functions. The ternselection targets somewhat misleading. It is a term adapted from GTK+ selection (cut/copy and
paste). Whaselection targetictually means is the data’s format type (iggk.gdk.Atom | integer, or string) that

is being sent or received. Your request data handler function needs to specify theetigoti¢n targgtof data that it
sends out and your received data handler needs to handle thes&ypetion targetof data received.

22.3. DND Methods
22.3.1. Setting Up the Source Widget

The methoddrag_source_set () specifies a set of target types for a drag operation on a widget.

widget.drag_source_set(start_button_mask , targets , actions)

The parameters signify the following:

» widget specifies the drag source widget

start_button_mask specifies a bitmask of buttons that can start the drag BUJJJ.TON1 _MASK
* targets specifies a list of target data types the drag will support

 actions specifies a bitmask of possible actions for a drag from this window

355

Drag-and-dro
(DND)g P

Thetargets parameter is a list of tuples each similar to:

(target, flags, info)

target specifies a string representing the drag type.

flags restrict the drag scopflags can be set to 0 (no limitation of scope) or the following flags:

gtk TARGET_SAME_APP # Target will only be selected for drags within a single
application.

gtk. TARGET_SAME_WIDGET # Target will only be selected for drags within a
single widget.

info is an application assigned integer identifier.
If a widget is no longer required to act as a source for drag-and-drop operations, the dratiagburce_unset ()

can be used to remove a set of drag-and-drop target types.

widget.drag_source_unset()

22.3.2. Signals On the Source Widget

The source widget is sent the following signals during a drag-and-drop operation.

Table 22.1. Source Widget Signals

drag_begin def drag_begin_cb(widget, drag_context, data):

drag_data_get def drag_data_get_cb(widget, drag_context, selection_data, info, time,
data):

drag_data_delete def drag_data_delete_cb(widget, drag_context, data):

drag_end def drag_end_cb(widget, drag_context, data):

The "drag-begin" signal handler can be used to set up some inital conditions such as a drag icon using
one of the Widget methods: drag_source_set icon (), drag_source_set_icon_pixbuf 0,
drag_source_set_icon_stock (). The "drag-end’ signal handler can be used to undo the actions of the
"drag-begin” signal ahndler.

The "drag-data-get" signal handler should return the drag data matching the target spedifiled byt fills in the
gtk.gdk.SelectionData with the drag data.

The "drag-delete” signal handler is used to delete the drag datayfkrgalk. ACTION_MOVE action after the data
has been copied.

22.3.3. Setting Up a Destination Widget

356

Drag-and-dro
(DND)g P

Thedrag_dest_set () method specifies that this widget can receive drops and specifies what types of drops it can
receive.

drag_dest _unset () specifies that the widget can no longer receive drops.

widget.drag_dest_set(flags , targets , actions)

widget.drag_dest_unset()

flags specifies what actions GTK+ should take on behalf of widget for drops on it. The possible vaflagsof
are:

gtk. DEST_DEFAULT_MOTION
If set for a widget, GTK+, during a drag over this wid-
get will check if the drag matches this widget's list
of possible targets and actions. GTK+ will then call
drag_status () as appropriate.

gtk. DEST_DEFAULT_HIGHLIGHT
If set for a widget, GTK+ will draw a highlight on this
widget as long as a drag is over this widget and the widget
drag format and action is acceptable.

gtk.DEST_DEFAULT_DROP

If set for a widget, when a drop occurs, GTK+ will check
if the drag matches this widget's list of possible targets
and actions. If so, GTK+ will caldrag_get_data ()

on behalf of the widget. Whether or not the drop is
succesful, GTK+ will caldrag_finish (). If the action
was a move and the drag was succesful, fiebEwill be
passed for thelelete parameter talrag_finish ().

gtk.DEST_DEFAULT_ALL
If set, specifies that all default actions should be taken.

targets is a list of target information tuples as described above.

actions is a bitmask of possible actions for a drag onto this widget. The possible values that can be or'd for actions
are:

gtk.gdk. ACTION_DEFAULT
gtk.gdk. ACTION_COPY
gtk.gdk. ACTION_MOVE
gtk.gdk. ACTION_LINK
gtk.gdk. ACTION_PRIVATE
gtk.gdk. ACTION_ASK

targets and actions are ignored if flags does not containgtk. DEST_DEFAULT_MOTION or
gtk. DEST_DEFAULT_DROP In that case the application must handle the "drag-motion" and "drag-drop"
signals.

357

Drag-and-dro
(DND)g P

The "drag-motion" handler must determine if the drag data is appropriate by matching the destination targets with
thegtk.gdk.DragContext targets and optionally by examining the drag data by callinglitag_get data ()

method. Theagtk.gdk.DragContext . drag_status () method must be called to update tirag_context
status.
The "drag-drop" handler must determine the matching target using the Wildget dest_find_target 0

method and then ask for the drag data using the Widgeg_get data () method. The data will be available
in the "drag-data-received" handler.

Thedragtargets.py [examples/dragtargets.pgfogram prints out the targets of a drag operation in a label:

#!/usr/local/env python

1

2

3 import pygtk

4 pygtk.require(’2.0")
5 import gtk

6

7

8

def motion_ch(wid, context, X, y, time):
context.drag_status(gtk.gdk. ACTION_COPY, time)

9 return True

10

11 def drop_cb(wid, context, x, y, time):

12 l.set_text('\n’.join([str(t) for t in context.targets]))
13 return True

14

15 w = gtk.Window()

16 w.set_size request(200, 150)

17 w.drag_dest_set(0, [], 0)

18 w.connect(’drag_motion’, motion_cb)

19 w.connect('drag_drop’, drop_cb)

20 w.connect('destroy’, lambda w: gtk.main_quit())
21 | = gtk.Label()

22 w.add(l)

23 w.show_all()

25 gtk.main()

The program creates a window and then sets it as a drag destination for no targets and actions by setting the flags
to zero. Themotion_cb () anddrop_cb () handlers are connected to the "drag-motion" and "drag-drop" signals
respectively. Thenotion_cb () handler just sets the drag status for the drag context so that a drop will be enabled.
The drop_cb () sets the label text to a string containing the drag targets and ignores the data so the drop never
completes.

22.3.4. Signals On the Destination Widget

The destination widget is sent the following signals during a drag-and-drop operation.

Table 22.2. Destination Widget Signals

358

file:url(examples/dragtargets.py)

Drag-
and-drop (DND

drag_motion def drag_motion_cb(widget, drag_context, x, y, time, data):
drag_drop def drag_drop_cb(widget, drag_context, X, y, time, data):
drag_data_received def drag_data_received_cb(widget, drag_context, x, y, selection_data,

info, time, data):

Thedragndrop.py [examples/dragndrop.pgxample program demonstrates the use of drag and drop in one applica-
tion. A button with a xpm pixmap (igtkxpm.py [examples/gtkxpm.pylis the source for the drag; it provides both

text and xpm data. A layout widget is the destination for the xpm drop while a button is the destination for the text
drop. Figure 22.1, “Drag and Drop Examplélustrates the program display after an xpm drop has been made on the
layout and a text drop has been made on the button:

Figure 22.1. Drag and Drop Example

| dragndro ;:i B 5,.;

- | -
wed Moy 28 01:16:58 20071

Thedragndrop.py [examples/dragndrop.pgpurce code is:

1 #usr/bin/env python

2

3 # example dragndrop.py
4

5 import pygtk

6 pygtk.require(’2.0")

359

file:url(examples/dragndrop.py)
file:url(examples/gtkxpm.py)
file:url(examples/dragndrop.py)

Drag-
and-drop (DND

7 import gtk

8 import string, time

9

10 import gtkxpm

11

12 class DragNDropExample:

13 HEIGHT = 600

14 WIDTH = 600

15 TARGET_TYPE_TEXT = 80

16 TARGET_TYPE_PIXMAP = 81

17 fromimage = [("text/plain”, 0, TARGET_TYPE_TEXT),

18 ("image/x-xpixmap", 0, TARGET_TYPE_PIXMAP)]
19 toButton = [("text/plain”, 0, TARGET_TYPE_TEXT)]

20 toCanvas = [("image/x-xpixmap", 0, TARGET_TYPE_PIXMAP)]
21

22 def layout_resize(self, widget, event):

23 X, ¥, width, height = widget.get_allocation()

24 if width > self.lwidth or height > self.lheight:

25 self.lwidth = max(width, self.lwidth)

26 self.lheight = max(height, self.lheight)

27 widget.set_size(self.lwidth, self.lheight)

28

29 def makeLayout(self):

30 self.lwidth = self WIDTH

31 self.lheight = self. HEIGHT

32 box = gtk.VBox(False,0)

33 box.show()

34 table = gtk.Table(2, 2, False)

35 table.show()

36 box.pack_start(table, True, True, 0)

37 layout = gtk.Layout()

38 self.layout = layout

39 layout.set_size(self.lwidth, self.lheight)

40 layout.connect("size-allocate”, self.layout_resize)

41 layout.show()

42 table.attach(layout, 0, 1, 0, 1, gtk.FILL|gtk. EXPAND,
43 gtk.FILL|gtk. EXPAND, 0, 0)

44 # create the scrollbars and pack into the table

45 vScrollbar = gtk.VScrollbar(None)

46 vScrollbar.show()

47 table.attach(vScrollbar, 1, 2, 0, 1, gtk.FILL|gtk. SHRINK,
48 gtk.FILL|gtk.SHRINK, 0, 0)

49 hScrollbar = gtk.HScrollbar(None)

50 hScrollbar.show()

51 table.attach(hScrollbar, 0, 1, 1, 2, gtk.FILL|gtk.SHRINK,
52 gtk.FILL|gtk.SHRINK,

53 0, 0)

54 # tell the scrollbars to use the layout widget's adjustments
55 vAdjust = layout.get_vadjustment()

56 vScrollbar.set_adjustment(vAdjust)

57 hAdjust = layout.get_hadjustment()

58 hScrollbar.set_adjustment(hAdjust)

59 layout.connect("drag_data_received", self.receiveCallback)
60 layout.drag_dest_set(gtk. DEST_DEFAULT_MOTION |

360

61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94

Drag-
and-drop (DND

gtk. DEST_DEFAULT_HIGHLIGHT |
gtk.DEST_DEFAULT_DROP,
self.toCanvas, gtk.gdk.ACTION_COPY)
self.addimage(gtkxpm.gtk_xpm, 0, 0)
button = gtk.Button("Text Target")
button.show()
button.connect("drag_data_received", self.receiveCallback)
button.drag_dest_set(gtk. DEST_DEFAULT_MOTION |
gtk. DEST_DEFAULT_HIGHLIGHT |
gtk. DEST_DEFAULT_DROP,
self.toButton, gtk.gdk. ACTION_COPY)
box.pack_start(button, False, False, 0)
return box

de

—h

addimage(self, xpm, xd, yd):

hadj = self.layout.get_hadjustment()

vadj = self.layout.get_vadjustment()

style = self.window.get_style()

pixmap, mask = gtk.gdk.pixmap_create_from_xpm_d(
self.window.window, style.bg[gtk. STATE_NORMAL], xpm)

image = gtk.Image()

image.set_from_pixmap(pixmap, mask)

button = gtk.Button()

button.add(image)

button.connect("drag_data_get", self.sendCallback)

button.drag_source_set(gtk.gdk.BUTTON1_MASK, self.fromimage,

gtk.gdk.ACTION_COPY)

button.show_all()

have to adjust for the scrolling of the layout - event location

is relative to the viewable not the layout size

self.layout.put(button, int(xd+hadj.value), int(yd+vadj.value))

return

def sendCallback(self, widget, context, selection, targetType, eventTime):

95

96

97

98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113

if targetType == self. TARGET_TYPE_TEXT:
now = time.time()
str = time.ctime(now)
selection.set(selection.target, 8, str)
elif targetType == self. TARGET_TYPE_PIXMAP:
selection.set(selection.target, 8,
string.join(gtkxpm.gtk_xpm, \n’))

def receiveCallback(self, widget, context, x, y, selection, targetType,
time):
if targetType == self TARGET_TYPE_TEXT:
label = widget.get_children()[0]
label.set_text(selection.data)
elif targetType == self. TARGET_TYPE_PIXMAP:
self.addImage(string.split(selection.data, \n"), x, y)

def __init__ (self):
self.window = gtk.Window(gtk. WINDOW_TOPLEVEL)
self.window.set_default_size(300, 300)

361

Drag-and-dro
G g p

(DND)
114 self.window.connect("destroy"”, lambda w: gtk.main_quit())
115 self.window.show()
116 layout = self.makeLayout()
117 self.window.add(layout)

118
119 def main():
120 gtk.main()

121

122 if _name_ ==" main__ "
123 DragNDropExample()
124 main()

362

Chapter 23. GTK’s rc Files

GTK+ has its own way of dealing with application defaults, by using rc files. These can be used to set the colors of
just about any widget, and can also be used to tile pixmaps onto the background of some widgets.

23.1. Functions For rc Files

When your application starts, you should include a call to:

rc_parse(filename)

Passing in thdilename of your rc file. This will cause GTK+ to parse this file, and use the style settings for the
widget types defined there.

If you wish to have a special set of widgets that can take on a different style from others, or any other logical division
of widgets, use a call to:

widget.set name(name)

Your newly createdvidget will be assigned theame you give. This will allow you to change the attributes of this
widget by name through the rc file.

If we use a call something like this:

button = gtk.Button("Special Button")

button.set_name("special button")

Then thisbutton is given the name "special button" and may be addressed by name in the rc file as "special
button.GtkButton". [--- Verify ME!]

Section 23.3, “Example rc fildjelow, sets the properties of the main window, and lets all children of that main window
inherit the style described by the "main button" style. The code used in the application is:

window = gtk.Window(gtk. WINDOW_TOPLEVEL)

window.set_name("main window")

And then the style is defined in the rc file using:

widget "main window.*GtkButton*" style "main_button

363

GTK's rc Files

Which sets all thdButton (seeChapter 6,The Button Widgetvidgets in the "main window" to the "main_buttons"
style as defined in the rc file.

As you can see, this is a fairly powerful and flexible system. Use your imagination as to how best to take advantage of
this.

23.2. GTK'’s rc File Format

The format of the GTK+ rc file is illustrated i8ection 23.3, “Example rc filebelow. This is theestgtkrc file
from the GTK+ distribution, but I've added a few comments and things. You may wish to include this explanation in
your application to allow the user to fine tune his application.

There are several directives to change the attributes of a widget.

 fg - Sets the foreground color of a widget.

* bg - Sets the background color of a widget.

* bg_pixmap - Sets the background of a widget to a tiled pixmap.
» font - Sets the font to be used with the given widget.

In addition to this, there are several states a widget can be in, and you can set different colors, pixmaps and fonts for
each state. These states are:

NORMAL

The normal state of a widget, without the mouse over top of it, and not being pressed, etc.
PRELIGHT

When the mouse is over top of the widget, colors defined using this state will be in effect.
ACTIVE

When the widget is pressed or clicked it will be active, and the attributes assigned by this

tag will be in effect.
INSENSITIVE

When a widget is set insensitive, and cannot be activated, it will take these attributes.
SELECTED

When an object is selected, it takes these attributes.

364

. GTK'’s
rc Files

When using the "fg" and "bg" keywords to set the colors of widgets, the format is:

fg[<STATE>] = { Red, Green, Blue }

WhereSTATEis one of the above states (PRELIGHT, ACTIVE, etc), andRleel, Green andBlue are values in

the range of 0 - 1.0, { 1.0, 1.0, 1.0 } being white. They must be in float form, or they will register as 0, so a straight
"1" will not work, it must be "1.0". A straight "0" is fine because it doesn’t matter if it's not recognized. Unrecognized
values are set to 0.

bg_pixmap is very similar to the above, except the colors are replaced by a filename.
pixmap_path is a list of paths separated by ":"'s. These paths will be searched for any pixmap you specify.

The "font" directive is simply:

font = ""

The only hard part is figuring out tHent string. Usingxfontsel or a similar utility should help.

The "widget_class" sets the style of a class of widgets. These classes are listed in the widget oveSeioms.1,
“Widget Hierarchy”

The "widget" directive sets a specifically named set of widgets to a given style, overriding any style set for the given
widget class. These widgets are registered inside the application usiagttimame () method. This allows you to
specify the attributes of a widget on a per widget basis, rather than setting the attributes of an entire widget class. |
urge you to document any of these special widgets so users may customize them.

When the keyworgarent is used as an attribute, the widget will take on the attributes of its parent in the application.

When defining a style, you may assign the attributes of a previously defined style to this new one.

style "main_button" = "button"

{

bg[PRELIGHT] = { 0.75, 0, 0 }
}

This example takes the "button" style, and creates a new "main_button" style simply by changing the font and prelight
background color of the "button” style.

Of course, many of these attributes don't apply to all widgets. It's a simple matter of common sense really. Anything
that could apply, should.

23.3. Example rc file

pixmap_path "<dir 1>:<dir 2>:<dir 3>:..."
#

365

. GTK'’s
rc Files

pixmap_path "/usr/include/X11R6/pixmaps:/home/imain/pixmaps"
#

style <name> [= <name>]

#{

<option>

#}

#

widget <widget_set> style <style name>

widget_class <widget_class_set> style <style_name>

Here is a list of all the possible states. Note that some do not apply to
certain widgets.

#

NORMAL - The normal state of a widget, without the mouse over top of
it, and not being pressed, etc.

#

PRELIGHT - When the mouse is over top of the widget, colors defined
using this state will be in effect.

#

ACTIVE - When the widget is pressed or clicked it will be active, and
the attributes assigned by this tag will be in effect.

#

INSENSITIVE - When a widget is set insensitive, and cannot be

activated, it will take these attributes.

#

SELECTED - When an object is selected, it takes these attributes.

#

Given these states, we can set the attributes of the widgets in each of
these states using the following directives.

#

fg - Sets the foreground color of a widget.

fg - Sets the background color of a widget.

bg_pixmap - Sets the background of a widget to a tiled pixmap.

font - Sets the font to be used with the given widget.

#

This sets a style called "button". The name is not really important, as
it is assigned to the actual widgets at the bottom of the file.

style "window"

{

#This sets the padding around the window to the pixmap specified.
#bg_pixmap[<STATE>] = "<pixmap filename>"
bg_pixmap[NORMAL] = "warning.xpm"

}

style "scale"

{
#Sets the foreground color (font color) to red when in the "NORMAL"
#state.
fg[NORMAL] = { 1.0, 0, 0}

#Sets the background pixmap of this widget to that of its parent.

366

. GTK'’s
rc Files

bg_pixmap[NORMAL] = "<parent>"
}

style "button”

{
This shows all the possible states for a button. The only one that
doesn’t apply is the SELECTED state.

fg[PRELIGHT] = { 0, 1.0, 1.0 }
bg[PRELIGHT] = { 0, 0, 1.0 }
bg[ACTIVE] = { 1.0, 0, 0 }
fg[ACTIVE] = { 0, 1.0, 0 }
bgINORMAL] = { 1.0, 1.0, 0 }
fgINORMAL] = { .99, 0, .99 }
bg[INSENSITIVE] = { 1.0, 1.0, 1.0 }
fg[INSENSITIVE] = { 1.0, 0, 1.0 }

}

In this example, we inherit the attributes of the "button" style and then
override the font and background color when prelit to create a new
"main_button" style.

style "main_button" = "button"

{

bg[PRELIGHT] = { 0.75, 0, 0 }
}

style "toggle_button" = "button"

{
fgINORMAL] = { 1.0, 0, 0 }
fg[ACTIVE] = { 1.0, 0, 0 }

This sets the background pixmap of the toggle_button to that of its
parent widget (as defined in the application).
bg_pixmap[NORMAL] = "<parent>"

}

style "text"

{
bg_pixmap[NORMAL] = "marble.xpm"

fgINORMAL] = { 1.0, 1.0, 1.0 }
}

style "ruler"

{

}

pixmap_path "~/.pixmaps"

These set the widget types to use the styles defined above.

The widget types are listed in the class hierarchy, but could probably be
just listed in this document for the users reference.

367

GTK's rc Files

widget_class "GtkWindow" style "window"
widget_class "GtkDialog" style "window"

widget_class "GtkFileSelection" style "window"
widget_class "*Gtk*Scale" style "scale"

widget_class "*GtkCheckButton*" style "toggle button"
widget_class "*GtkRadioButton*" style "toggle button"
widget_class "*GtkButton*" style "button"
widget_class "*Ruler" style "ruler”

widget_class "*GtkText" style "text"

This sets all the buttons that are children of the "main window" to
the main_button style. These must be documented to be taken advantage of.
widget "main window.*GtkButton*" style "main_button"

368

Chapter 24. Scribble, A Simple Example
Drawing Program

24.1. Scribble Overview

In this section, we will build a simple drawing program. In the process, we will examine how to handle mouse events,
how to draw in a window, and how to do drawing better by using a backing pixmap.

Figure 24.1. Scribble Drawing Program Example

scribblesimple.py M |[=1|ET

it

24.2. Event Handling

The GTK+ signals we have already discussed are for high-level actions, such as a menu item being selected. However,
sometimes it is useful to learn about lower-level occurrences, such as the mouse being moved, or a key being pressed.
There are also GTK+ signals corresponding to these low-level events. The handlers for these signals have an extra
parameter which is gtk.gdk.Event object containing information about the event. For instance, motion event
handlers are passedgtk.gdk.Event object containing EventMotion information which has (in part) attributes

like:

type
window
time

X

y

369

_ Scribble,

A Simple Exam-

Ble Drawing Pro-
ram

State

window is the window in which the event occurred.
x andy give the coordinates of the event.

type will be set to the event type, in this caBB®DTION_NOTIFY The types (in module gtk.gdk) are:

NOTHING a special code to indicate a null event.

DELETE the window manager has requested that the toplevel window be
hidden or destroyed, usually when the user clicks on a special
icon in the title bar.

DESTROY the window has been destroyed.

EXPOSE all or part of the window has become visible and needs to be
redrawn.

MOTION_NOTIFY the pointer (usually a mouse) has moved.

BUTTON_PRESS a mouse button has been pressed.

_2BUTTON_PRESS a mouse button has been double-clicked (clicked twice within

a short period of time). Note that each click also generates a
BUTTON_PRESS event.

_3BUTTON_PRESS a mouse button has been clicked 3 times in a short period of
time. Note that each click also generates a BUTTON_PRESS event.

BUTTON_RELEASE a mouse button has been released.

KEY_PRESS a key has been pressed.

KEY_RELEASE a key has been released.

ENTER_NOTIFY the pointer has entered the window.

LEAVE_NOTIFY the pointer has left the window.

FOCUS_CHANGE the keyboard focus has entered or left the window.

CONFIGURE the size, position or stacking order of the window has

changed.

Note that GTK+ discards these events for GDK_WINDOW_CHILD

windows.
MAP the window has been mapped.
UNMAP the window has been unmapped.

370

_ Scribble,

A Simple Exam-

Ble Drawing Pro-
ram

PROPERTY_NOTIFY a property on the window has been changed or deleted.
SELECTION_CLEAR the application has lost ownership of a selection.
SELECTION_REQUEST another application has requested a selection.
SELECTION_NOTIFY a selection has been received.

PROXIMITY_IN an input device has moved into contact with a sensing surface
(e.g. a touchscreen or graphics tablet).

PROXIMITY_OUT an input device has moved out of contact with a sensing R
surface.

DRAG_ENTER the mouse has entered the window while a drag is in progress.
DRAG_LEAVE the mouse has left the window while a drag is in progress.
DRAG_MOTION the mouse has moved in the window while a drag is in progress.
DRAG_STATUS the status of the drag operation initiated by the window has —
changed.

DROP_START a drop operation onto the window has started.

DROP_FINISHED the drop operation initiated by the window has completed.
CLIENT_EVENT a message has been received from another application.
VISIBILITY_NOTIFY the window visibility status has changed.

NO_EXPOSE indicates that the source region was completely available N
when parts

of a drawable were copied. This is not very useful.

SCROLL ?
WINDOW_STATE ?
SETTING ?

state specifies the modifier state when teeent occurred (that is, it specifies which modifier keys and mouse
buttons were pressed). It is the bitwid®of some of the following (in module gtk.gdk):

SHIFT_MASK
LOCK_MASK
CONTROL_MASK
MOD1_MASK
MOD2_MASK
MOD3_MASK
MOD4_MASK

371

_ Scribble,

A Simple Exam-

Ble Drawing Pro-
ram

MOD5_MASK

BUTTON1_MASK
BUTTON2_MASK
BUTTON3_MASK
BUTTON4_MASK
BUTTON5_MASK

As for other signals, to determine what happens when an event occurs we cadhtiect () method. But we also
need to let GTK+ know which events we want to be notified about. To do this, we call the method:

widget.set_events(events)

Theevents argument specifies the events we are interested in. It is the bi@Reé constants that specify different
types of events. For future reference, the event types (in module gtk.gdk) are:

EXPOSURE_MASK
POINTER_MOTION_MASK
POINTER_MOTION_HINT_MASK
BUTTON_MOTION_MASK
BUTTON1_MOTION_MASK
BUTTON2_MOTION_MASK
BUTTON3_MOTION_MASK
BUTTON_PRESS_MASK
BUTTON_RELEASE_MASK
KEY_PRESS_MASK
KEY_RELEASE_MASK
ENTER_NOTIFY_MASK
LEAVE_NOTIFY_MASK
FOCUS_CHANGE_MASK
STRUCTURE_MASK
PROPERTY_CHANGE_MASK
VISIBILITY_NOTIFY_MASK
PROXIMITY_IN_MASK
PROXIMITY_OUT_MASK
SUBSTRUCTURE_MASK

There are a few subtle points that have to be observed when callingtthevents () method. First, it must be called
before the X window for a PyGTK widget is created. In practical terms, this means you should call it immediately
after creating the widget. Second, the widget must be one which will be realized with an associated X window. For
efficiency, many widget types do not have their own window, but draw in their parent’s window. These widgets include:

gtk.Alignment
gtk.Arrow
gtk.Bin
gtk.Box
gtk.Image
gtk.Item

372

_ Scribble,

A Simple Exam-

Ble Drawing Pro-
ram

gtk.Label
gtk.Layout
gtk.Pixmap
gtk.ScrolledwWindow
gtk.Separator
gtk.Table
gtk.AspectFrame
gtk.Frame
gtk.VBox
gtk.HBox
gtk.VSeparator
gtk.HSeparator

To capture events for these widgets, you need to ugvantBox widget. SeeSection 10.1, “The EventBoxtidget
for details.

The event attributes that are set by PyGTK for each type of event are:

every event type
window
send_event
NOTHING
DELETE
DESTROY # no additional attributes
EXPOSE area
count
MOTION_NOTIFY time
X
y
pressure
xtilt
yilt
state
is_hint
source
deviceid
X_root
y_root

BUTTON_PRESS
_2BUTTON_PRESS
_3BUTTON_PRESS
BUTTON_RELEASE time

X

y

pressure

xtilt

yilt

state

373

_ Scribble,

A Simple Exam-

Ble Drawing Pro-
ram

button
source
deviceid
X_root
y_root

KEY_PRESS

KEY_RELEASE time
state
keyval
string

ENTER_NOTIFY
LEAVE_NOTIFY subwindow
time
X
y
X_root
y_root
mode
detail
focus
state

FOCUS_CHANGE _in

CONFIGURE X

MAP
UNMAP # no additional attributes

PROPERTY_NOTIFY atom
time
state

SELECTION_CLEAR
SELECTION_REQUEST

SELECTION_NOTIFY selection
target
property
requestor
time

PROXIMITY_IN

PROXIMITY_OUT time
source
deviceid

DRAG_ENTER

DRAG_LEAVE

DRAG_MOTION

374

_ Scribble,

A Simple Exam-

Ble Drawing Pro-
ram

DRAG_STATUS

DROP_START
DROP_FINISHED context
time
X_root
y_root
CLIENT_EVENT message_type
data_format
data
VISIBILTY_NOTIFY state
NO_EXPOSE # no additional attributes

24.2.1. Scribble - Event Handling

For our drawing program, we want to know when the mouse button is pressed and when the mouse is moved, so we
specify POINTER_MOTION_MASKNdBUTTON_PRESS_MASK/e also want to know when we need to redraw

our window, so we specifEXPOSURE_MASHKIthough we want to be notified via a Configure event when our
window size changes, we don’t have to specify the corresporg@liit)l CTURE_MASI&g, because it is automatically
specified for all windows.

It turns out, however, that there is a problem with just specif@INTER_MOTION_MASKThis will cause the

server to add a new motion event to the event queue every time the user moves the mouse. Imagine that it takes us 0.1
seconds to handle a motion event, but the X server queues a new motion event every 0.05 seconds. We will soon get
way behind the users drawing. If the user draws for 5 seconds, it will take us another 5 seconds to catch up after they
release the mouse button! What we would like is to only get one motion event for each event we process. The way to
do this is to speciffPOINTER_MOTION_HINT_MASK

When we speciffPOINTER_MOTION_HINT_MASKhe server sends us a motion event the first time the pointer
moves after entering our window, or after a button press or release event. Subsequent motion events will be suppressed
until we explicitly ask for the position of the pointer using t.gdk.Window method:

X, ¥, mask = window.get_pointer()

window is agtk.gdk.Window object.x andy are the coordinates of the pointer amdsk is the modifier mask
to detect which keys are pressed. (There gtlaWidget method,get_pointer () which provides the same
information as thetk.gdk.Window get_pointer () method but it does not return the mask information)

Thescribblesimple.py[examples/scribblesimple.pgkample program demonstrates the basic use of events and event
handlersFigure 24.2, “Simple Scribble Examplélustrates the program in action:

Figure 24.2. Simple Scribble Example

375

file:url(examples/scribblesimple.py)

_ Scribble,

A Simple Exam-

Ble Drawing Pro-
ram

scribblesimple. oy

It

The event handlers are connected to the drawing_area by the following lines:

92 # Signals used to handle backing pixmap

93 drawing_area.connect("expose_event", expose_event)

94 drawing_area.connect("configure_event", configure_event)

95

96 # Event signals

97 drawing_area.connect("motion_notify_event", motion_notify_event)

98 drawing_area.connect("button_press_event", button_press_event)

99

100 drawing_area.set_events(gtk.gdk. EXPOSURE_MASK

101 | gtk.gdk.LEAVE_NOTIFY_MASK

102 | gtk.gdk.BUTTON_PRESS_MASK

103 | gtk.gdk.POINTER_MOTION_MASK

104 | gtk.gdk.POINTER_MOTION_HINT_MASK)
The button_press_event () and motion_notify_event () event handlers irscribblesimple.py [exam-

ples/scribblesimple.pydre:

57 def button_press_event(widget, event):

58 if event.button == 1 and pixmap != None:
59 draw_brush(widget, event.x, event.y)
60 return True

61

62 def motion_notify_event(widget, event):

63 if event.is_hint:

64 X, y, state = event.window.get_pointer()

376

file:url(examples/scribblesimple.py)

_ Scribble,

A Simple Exam-

Ble Drawing Pro-
ram

65 else:

66 X = event.x

67 y = eventy

68 state = event.state

69

70 if state & gtk.gdk.BUTTON1_MASK and pixmap != None:
71 draw_brush(widget, x, y)

72

73 return True

Theexpose_event () andconfigure_event () handlers will be described later.

24.3. The DrawingArea Widget, And Drawing

We now turn to the process of drawing on the screen. The widget we use for thiBisihimgArea (seeChapter 12,
Drawing Areg widget. A drawing area widget is essentially an X window and nothing more. It is a blank canvas in
which we can draw whatever we like. A drawing area is created using the call:

darea = gtk.DrawingArea()

A default size for the widget can be specified by calling:

darea.set_size_request(width , height)

This default size can be overridden, as is true for all widgets, by callingehesize_request () method, and
that, in turn, can be overridden if the user manually resizes the the window containing the drawing area.

It should be noted that when we creat®ewingArea widget, we are completely responsible for drawing the
contents. If our window is obscured then uncovered, we get an exposure event and must redraw what was previously
hidden.

Having to remember everything that was drawn on the screen so we can properly redraw it can, to say the least, be a
nuisance. In addition, it can be visually distracting if portions of the window are cleared, then redrawn step by step.
The solution to this problem is to use an offscreen backing pixmap. Instead of drawing directly to the screen, we draw
to an image stored in server memory but not displayed, then when the image changes or new portions of the image are
displayed, we copy the relevant portions onto the screen.

To create an offscreen pixmap, we call the function:

pixmap = gtk.gdk.Pixmap(window , width , height , depth =-1)

Thewindow parameter specifiesgik.gdk.Window that thispixmap takes some of its properties fromvidth
andheight specify the size of thpixmap . depth specifies the color depth, that is the number of bits per pixel,
for the new window. If thedepth is specified as -1 or omitted, it will match the depth of window.

377

_ Scribble,

A Simple Exam-

Ble Drawing Pro-
ram

We create the pixmap in our "configure_event" handler. This event is generated whenever the window changes size,
including when it is originally created.

32 # Create a new backing pixmap of the appropriate size
33 def configure_event(widget, event):

34 global pixmap

35

36 X, Y, width, height = widget.get_allocation()

37 pixmap = gtk.gdk.Pixmap(widget.window, width, height)
38 pixmap.draw_rectangle(widget.get_style().white_gc,

39 True, 0, 0, width, height)

40

41 return True

The call todraw_rectangle () clears the pixmap initially to white. We'll say more about that in a moment.

Our exposure event handler then simply copies the relevant portion of the pixmap onto the drawing area (widget) using
thedraw_pixmap () method. (We determine the area we need to redraw by usirgythd.area attribute of the
exposure event):

43 # Redraw the screen from the backing pixmap
44 def expose_event(widget, event):

45 X , Y, width, height = event.area

46
widget.wina?w.draw_drawable(widget.get_style().fg_gc[gtk.STATE_NORMAL],

a7 pixmap, X, VY, X, y, width, height)

48 return False

We've now seen how to keep the screen up to date with our pixmap, but how do we actually draw interesting stuff on
our pixmap? There are a large number of calls in PyGTK for drawing on drawables. A drawable is simply something

that can be drawn upon. It can be a window, a pixmap, or a bitmap (a black and white image). We've already seen two
such calls abovajraw_rectangle () anddraw_pixmap (). The complete list is:

drawable.draw_point(gc, X, Y)

drawable.draw_line(gc, x1, yl, x2, y2)

drawable.draw_rectangle(gc, fil , x, y, width , height)

drawable.draw_arc(gc, fil , x, y, width , height , anglel , angle2)
drawable.draw_polygon(gc, fill , points)

drawable.draw_drawable(gc, src, xsrc , ysrc , xdest , ydest , width , height)
drawable.draw_points(gc, points)

drawable.draw_lines(gc, points)

378

_ Scribble,

A Simple Exam-

Ble Drawing Pro-
ram

drawable.draw_segments(gc, segments)
drawable.draw_rgb_image(gc, X, Yy, width , height , dither , buffer , rowstride)
drawable.draw_rgb_32_image(gc, X, Yy, width , height , dither , buffer , rowstride)

drawable.draw_gray_image(gc, X, Yy, width , height , dither , buffer , rowstride)

The drawing area methods are the same as the drawable drawing methods so you can use the methods described
in Section 12.2, “Drawing Methoddor further details on these methods. These methods all share the same first
arguments. The first argument is a graphics congxj.(

A graphics context encapsulates information about things such as foreground and background color and line width.
PyGTK has a full set of functions for creating and modifying graphics contexts, but to keep things simple we'll just
use predefined graphics contexts. Saetion 12.1, “Graphics Contexsection for more information on graphics
contexts. Each widget has an associated style. (Which can be modifiegthkrca file, seeChapter 23GTK's rc

Files)) This, among other things, stores a number of graphics contexts. Some examples of accessing these graphics
contexts are:

widget.get_style().white_gc
widget.get_style().black gc
widget.get_style().fg_gc[STATE_NORMAL]

widget.get_style().bg_gc[STATE_PRELIGHT]

The fieldsfg_gc , bg_gc,dark_gc , andlight gc are indexed by a parameter which can take on the values:

STATE_NORMAL,
STATE_ACTIVE,
STATE_PRELIGHT,
STATE_SELECTED,
STATE_INSENSITIVE

For instance, foSTATE_SELECTEDRhe default foreground color is white and the default background color, dark
blue.

Our functiondraw_brush (), which does the actual drawing on the pixmap, is then:

50 # Draw a rectangle on the screen
51 def draw_brush(widget, X, y):

52 rect = (int(x-5), int(y-5), 10, 10)
53 pixmap.draw_rectangle(widget.get_style().black_gc, True,
54 rect[0], rect[1], rect[2], rect[3])

379

_ Scribble,

A Simple Exam-

Ble Drawing Pro-
ram

55 widget.queue_draw_area(rect[0], rect[1], rect[2], rect[3])

After we draw the rectangle representing the brush onto the pixmap, we call the function:

widget.queue_draw_area(X, Yy, width , height)

which notifies X that the area given needs to be updated. X will eventually generate an expose event (possibly

combining the areas passed in several caltréov ()) which will cause our expose event handler to copy the relevant
portions to the screen.

We have now covered the entire drawing program except for a few mundane details like creating the main window.

380

Chapter 25. Tips For Writing PyGTK
Applications

This section is simply a gathering of wisdom, general style guidelines and hints to creating good PyGTK applications.
Currently this section is very short, but | hope it will get longer in future editions of this tutorial.

381

Chapter 26. Contributing

This document, like so much other great software out there, was created for free by volunteers. If you are at all
knowledgeable about any aspect of PyGTK that does not already have documentation, please consider contributing to

this document.

If you do decide to contribute, please mail your text to John Finlay (finlay@moerakjmaitto:finlay@moeraki.com]
Also, be aware that the entirety of this document is free, and any addition by you provide must also be free. That is,
people may use any portion of your examples in their programs, and copies of this document may be distributed at

will, etc.

Thank you.

382

url(mailto:finlay@moeraki.com)

Chapter 27. Credits
27.1. PyGTK Credits

Thanks to:

Nathan Hurst for th@lugs andSockets section.
Alex Roitman for theFileChooser section.

Steve George for the example program illustrating editallellRendererText and activatable
CellRendererToggle

27.2. Original GTK+ Credits

The following credits are from the original GTK+ 1.2 and GTK+ 2.0 Tutorials (from which this tutorial has mostly
copied verbatim):

Bawer Dagdeviren, chameleOn@geocities.¢orailto:chameleOn@geocities.coffoy the menus tutorial.

Raph Levien, raph@acm.ofgailto:raph@acm.orgior hello world ala GTK, widget packing, and general all
around wisdom. He’s also generously donated a home for this tutorial.

Peter Mattis, petm@xcf.berkeley.efmailto:petm@xcf.berkeley.eddpr the simplest GTK program.. and the
ability to make it :)

Werner Koch werner.koch@guug.fimailto: werner.koch@guug.ddpr converting the original plain text to
SGML, and the widget class hierarchy.

Mark Crichton crichton@expert.cc.purdue.gohailto:crichton@expert.cc.purdue.edat the menu factory code,
and the table packing tutorial.

Owen Taylor owtl@-cornell.edmailto:owtl @cornell.edufor the EventBox widget section (and the patch to the
distro). He’s also responsible for the selections code and tutorial, as well as the sections on writing your own GTK
widgets, and the example application. Thanks a lot Owen for all you help!

Mark VanderBoom mvboom42@calvin.edimailto: mvboom42@calvin.edufor his wonderful work on the
Notebook, Progress Bar, Dialogs, and File selection widgets. Thanks a lot Mark! You've been a great help.

Tim Janik timj@gtk.org[mailto:timj@gtk.org] for his great job on the Lists Widget. His excellent work on
automatically extracting the widget tree and signal information from GTK. Thanks Tim :)

Rajat Datta rajat@ix.netcom.cdmailto:rajat@ix.netcom.confpr the excellent job on the Pixmap tutorial.
Michael K. Johnson johnsonm@redhat.cprailto:;johnsonm@redhat.corfdr info and code for popup menus.

David Huggins-Daines bn711@freenet.carletofntailto:bn711@freenet.carleton.da} the Range Widgets and
Tree Widget sections.

Stefan Mars mars@lysator.liu.se for the CList section.

383

url(mailto:chamele0n@geocities.com)
url(mailto:raph@acm.org)
url(mailto:petm@xcf.berkeley.edu)
url(mailto: werner.koch@guug.de)
url(mailto:crichton@expert.cc.purdue.edu)
url(mailto:owt1@cornell.edu)
url(mailto: mvboom42@calvin.edu)
url(mailto:timj@gtk.org)
url(mailto:rajat@ix.netcom.com)
url(mailto:johnsonm@redhat.com)
url(mailto:bn711@freenet.carleton.ca)

Credits

» David A. Wheeler dwheeler@ida.ofgailto:dwheeler@ida.orgfor portions of the text on GLib and various
tutorial fixups and improvements. The GLib text was in turn based on material developed by Damon Chaplin
DAChaplin@msn.com

 David King for style checking the entire document.
And to all of you who commented on and helped refine this document.

Thanks.

384

url(mailto:dwheeler@ida.org)

Chapter 28. Tutorial Copyright and
Permissions Notice

The PyGTK Tutorial is Copyright (C) 2001-2005 John Finlay.
The GTK Tutorial is Copyright (C) 1997 lan Main.
Copyright (C) 1998-1999 Tony Gale.

Permission is granted to make and distribute verbatim copies of this manual provided the copyright notice and this
permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this document under the conditions for verbatim
copying, provided that this copyright notice is included exactly as in the original, and that the entire resulting derived
work is distributed under the terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this document into another language, under the above
conditions for modified versions.

If you are intending to incorporate this document into a published work, please contact the maintainer, and we will
make an effort to ensure that you have the most up to date information available.

There is no guarantee that this document lives up to its intended purpose. This is simply provided as a free resource. As
such, the authors and maintainers of the information provided within can not make any guarantee that the information
is even accurate.

385

Appendix A. GTK Signals

As PyGTK is an object oriented widget set, it has a hierarchy of inheritance. This inheritance mechanism applies for
signals. Therefore, you should refer to the widget hierarchy tree when using the signals listed in this section.

A.1l. GtkObject

destroy(object, data)

A.2. GtkWidget

show(GtkWidget, data)

hide(widget, data)

map(widget, data)

unmap(widget, data)

realize(widget, data)
unrealize(widget, data)

draw(widget, area, data)
draw-focus(widget, data)
draw-default(widget, data)
size-request(widget, requisition, data)
size-allocate(widget, allocation, data)
state-changed(widget, state, data)
parent-set(widget, object, data)
style-set(widget, style, data)

add-accelerator(widget, accel_signal_id, accel_group, accel_key, accel_mods,
accel_flags, data)

remove-accelerator(widget, accel_group, accel_key, accel_mods, data)
bool = event(widget, event, data)

bool = button-press-event(widget, event, data)

386

TK
Signals G

bool = button-release-event(widget, event, data)
bool = motion-notify-event(widget, event, data)
bool = delete-event(widget, event, data)

bool = destroy-event(widget, event, data)

bool = expose-event(widget, event, data)

bool = key-press-event(widget, event, data)

bool = key-release-event(widget, event, data)

bool = enter-notify-event(widget, event, data)

bool = leave-notify-event(widget, event, data)

bool = configure-event(widget, event, data)

bool = focus-in-event(widget, event, data)

bool = focus-out-event(widget, event, data)

bool = map-event(widget, event, data)

bool = unmap-event(widget, event, data)

bool = property-notify-event(widget, event, data)
bool = selection-clear-event(widget, event, data)
bool = selection-request-event(widget, event, data)
bool = selection-notify-event(widget, event, data)
selection-get(widget, selection_data, info, time, data)
selection-received(widget, selection_data, time, data)
bool = proximity-in-event(widget, event, data)

bool = proximity-out-event(widget, event, data)
drag-begin(widget, context, data)

drag-end(widget, context, data)
drag-data-delete(widget, context, data)
drag-leave(widget, context, time, data)

bool = drag-motion(widget, context, X, y, time, data)

387

GTK Signals

bool = drag-drop(widget, context, x, y, time, data)
drag-data-get(widget, context, selection_data, info, time, data)

drag-data-received(widget, context, info, time, selection_data,
info, time, data)

bool = client-event(widget, event, data)
bool = no-expose-event(widget, event, data)
bool = visibility-notify-event(widget, event, data)

debug-msg(widget, string, data)

A.3. GtkData

disconnect(data_obj, data)

A.4. GtkContainer

add(container, widget, data)
remove(container, widget, data)
check-resize(container, data)

direction = focus(container, direction, data)

set-focus-child(container, widget, data)

A.5. GtkCalendar

month-changed(calendar, data)
day-selected(calendar, data)
day-selected-double-click(calendar, data)
prev-month(calendar, data)

next-month(calendar, data)

388

TK
Signals G

prev-year(calendar, data)

next-year(calendar, data)

A.6. GtkEditable

changed(editable, data)

insert-text(editable, new_text, text length, position, data)
delete-text(editable, start_pos, end_pos, data)
activate(editable, data)

set-editable(editable, is_editable, data)
move-cursor(editable, x, y, data)
move-word(editable, num_words, data)
move-page(editable, x, y, data)
move-to-row(editable, row, data)
move-to-column(editable, column, data)
kill-char(editable, direction, data)
kill-word(editable, drirection, data)
kill-line(editable, direction, data)
cut-clipboard(editable, data)
copy-clipboard(editable, data)

paste-clipboard(editable, data)

A.7. GtkNotebook

switch-page(noteboook, page, page_num, data)

A.8. GtkList

389

TK
Signals G

selection-changed(list, data)
select-child(list, widget, data)

unselect-child(list, widget, data)

A.9. GtkMenuShell

deactivate(menu_shell, data)
selection-done(menu_shell, data)
move-current(menu_shell, direction, data)
activate-current(menu_shell, force_hide, data)

cancel(menu_shell, data)

A.10. GtkToolbar

orientation-changed(toolbar, orientation, data)

style-changed(toolbar, toolbar_style, data)

A.11. GtkButton

pressed(button, data)
released(button, data)
clicked(button, data)
enter(button, data)

leave(button, data)

A.12. Gtkltem

select(item, data)

390

GTK Signals

deselect(item, data)

toggle(item, data)

A.13. GtkWindow

set-focus(window, widget, data)

A.14. GtkHandleBox

child-attached(handle_box, widget, data)

child-detached(handle_box, widget, data)

A.15. GtkToggleButton

toggled(toggle_button, data)

A.16. GtkMenultem

activate(menu_item, data)

activate-item(menu_item, data)

A.17. GtkCheckMenultem

toggled(check_menu_item, data)

A.18. GtkinputDialog

enable-device(input_dialog, deviceid, data)

391

GTK Signals

disable-device(input_dialog, deviceid, data)

A.19. GtkColorSelection

color-changed(color_selection, data)

A.20. GtkStatusBar

text-pushed(statusbar, context_id, text, data)

text-popped(statusbar, context_id, text, data)

A.21. GtkCurve

curve-type-changed(curve, data)

A.22. GtkAdjustment

changed(adjustment, data)

value-changed(adjustment, data)

392

Appendix B. Code Examples
B.1. scribblesimple.py

#!/usr/bin/env python
example scribblesimple.py

GTK - The GIMP Toolkit

Copyright (C) 1995-1997 Peter Mattis, Spencer Kimball and Josh MacDonald
Copyright (C) 2001-2002 John Finlay

#

9 # This library is free software; you can redistribute it and/or

10 # modify it under the terms of the GNU Library General Public

11 # License as published by the Free Software Foundation; either

12 # version 2 of the License, or (at your option) any later version.

13 #

14 # This library is distributed in the hope that it will be useful,

15 # but WITHOUT ANY WARRANTY; without even the implied warranty of

16 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 # Library General Public License for more details.

18 #

19 # You should have received a copy of the GNU Library General Public

20 # License along with this library; if not, write to the

21 # Free Software Foundation, Inc., 59 Temple Place - Suite 330,

22 # Boston, MA 02111-1307, USA.

25 import gtk

27 # Backing pixmap for drawing area
28 pixmap = None

30 # Create a new backing pixmap of the appropriate size
31 def configure_event(widget, event):

32 global pixmap

33

34 X, ¥, width, height = widget.get_allocation()

35 pixmap = gtk.gdk.Pixmap(widget.window, width, height)
36 pixmap.draw_rectangle(widget.get_style().white_gc,
37 True, 0, 0, width, height)

38

39 return True

40

41 # Redraw the screen from the backing pixmap

42 def expose_event(widget, event):

43 X , Y, width, height = event.area

44
widget.window.draw_drawable(widget.get_style().fg_gc[gtk. STATE_NORMAL],
45 pixmap, X, Y, X, y, width, height)

46 return False

47

393

Examples Code

48 # Draw a rectangle on the screen
49 def draw_brush(widget, X, y):

50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101

def

def

def

rect = (x - 5,y -5, 10, 10)

pixmap.draw_rectangle(widget.get_style().black_gc, True,
rect[0], rect[1], rect[2], rect[3])

widget.queue_draw_area(rect[0], rect[1], rect[2], rect[3])

button_press_event(widget, event):

if event.button == 1 and pixmap != None:
draw_brush(widget, event.x, event.y)

return True

motion_notify_event(widget, event):
if event.is_hint:
X, Y, state = event.window.get_pointer()

else:
X = event.x
y = eventy

state = event.state

if state & gtk.gdk.BUTTON1_MASK and pixmap != None:
draw_brush(widget, X, y)

return True

main():
window = gtk.Window(gtk. WINDOW_TOPLEVEL)
window.set_name ("Test Input")

vbox = gtk.VBox(False, 0)
window.add(vbox)
vbox.show()

window.connect("destroy", gtk.mainquit)

Create the drawing area

drawing_area = gtk.DrawingArea()
drawing_area.set_size request(200, 200)
vbox.pack_start(drawing_area, True, True, 0)

drawing_area.show()

Signals used to handle backing pixmap
drawing_area.connect("expose_event", expose_event)
drawing_area.connect("configure_event", configure_event)

Event signals
drawing_area.connect("motion_notify_event", motion_notify_event)
drawing_area.connect("button_press_event", button_press_event)

drawing_area.set_events(gtk.gdk. EXPOSURE_MASK
| gtk.gdk.LEAVE_NOTIFY_MASK
| gtk.gdk.BUTTON_PRESS_MASK
| gtk.gdk.POINTER_MOTION_MASK

394

Code Examples

102 | gtk.gdk.POINTER_MOTION_HINT_MASK)
103

104 # .. And a quit button

105 button = gtk.Button("Quit")

106 vbox.pack_start(button, False, False, 0)

107

108 button.connect_object("clicked", lambda w: w.destroy(), window)
109 button.show()

110

111 window.show()

112

113 gtk.main()

114

115 return O

116

117 if _name__ ==" main__"™
118 main()

395

Appendix C. ChangelLog

24
2005-04-13 John Finlay <finlay@moeraki.com>
* pygtk2-tut.xml: Set version number and pubdate.
* Copyright.xml: Update date.

* Replace gtk.TRUE and gtk.FALSE. Fix misc. other deprecations.
2005-03-31 John Finlay <finlay@moeraki.com>

* ComboBoxAndComboBoxEntry.xml: Convenience function is
gtk.combo_box_entry _new_tekt((brett@belizebotanic.ojg

2005-02-28 John Finlay <finlay@moeraki.com>

* GettingStarted.xml (Stepping add print statement to destroy
handler for illustrative purposesRédolfo Gouveip

2.3
2004-12-24 John Finlay <finlay@moeraki.com>

* pygtk2-tut.xml: Set version number and pubdate. Add revhistory.
* UlManager.xml: Add.
2004-12-13 John Finlay <finlay@moeraki.com>
* MovingOn.xml: Remove reference to WINODW_DIALOGIéns Knutson
2004-12-08 John Finlay <finlay@moeraki.com>
* DragAndDrop.xml Patch from Rafael Villar Burke
2004-12-01 John Finlay <finlay@moeraki.com>
* Scribble.xml Patch by Rafael Villar Burke.
2004-11-29 John Finlay <finlay@moeraki.com>

* ComboBoxAndComboBoxEntry.xml Patch by Rafael Villar Burke.
* TimeoutslOAndldleFunctions.xml Patch by Rafael Villar Burke.

* AdvancedEventAndSignalHandling.xml Add parameter tags to function
and method defs. Patch by Rafael Villar Burke.

2004-11-20 John Finlay <finlay@moeraki.com>

* ColorButtonAndFontButton.xml:
* SettingWidgetAttributes.xml: Fix xml tags. Rafael Villar Burké

396

Changelog

2004-10-31 John Finlay <finlay@moeraki.com>
* ExpanderWidget.xml
* GenericTreeModel.xml
* CellRenderers.xml Fixes by Rafael Villar Burke.
2004-10-28 John Finlay <finlay@moeraki.com>
* TreeViewWidget.xml Fixes by Rafael Villar Burke.
2004-10-24 John Finlay <finlay@moeraki.com>
* ContainerWidgets.xml Many fixes by Rafael Villar Burke.
* MiscellaneaousWidgets.xml Many fixes by Rafael Villar Burke.

2004-10-13 John Finlay <finlay@moeraki.com>

* PackingWidgets.xml ButtonWidget.xml Fix typos per kraai
Fixes #155318.

2004-09-20 John Finlay <finlay@moeraki.com>
* TextViewWidget.xml Minor fixes by Rafael Villar Burke.

* ActionsAndActionGroups.xml Add.
* NewlnPyGTK2.4.xml Include ActionsAndActionGroups.xml

2004-09-12 John Finlay <finlay@moeraki.com>

* TreeModel.xml (sec-ManagingRowDajaMinor fix. Patch by
Rafael Villar Burke

2004-09-08 John Finlay <finlay@moeraki.com>

* ContainerWidgets.xml (sec-AspectFramgs
(sec-Alignment Fix link to Ref manual.

2004-08-31 John Finlay <finlay@moeraki.com>

* DrawingArea.xml Rewrite portions based on patch by Rafael Villar
Burke.

* DrawingArea.xml Add missing literal tags.
Patch by Rafael Villar Burke.

2004-08-21 John Finlay <finlay@moeraki.com>
* ColorButtonAndFontButton.xml Add.
* NewlnPyGTK24.xml Include ColorButtonAndFontButton.xml.

2004-08-19 John Finlay <finlay@moeraki.com>

397

Changelog

* Scribble.xml (sec-DrawingAreaWidgetAndDrawing
Update example description.

2004-08-16 John Finlay <finlay@moeraki.com>

* CellRenderers.xml Add cellrenderer.py example program section
* Credits.xml Credit Steve George for cellrenderer.py example
program.

2004-08-15 John Finlay <finlay@moeraki.com>

* CellRenderers.xml (Activatable Toggle Cel)sAdd info about
setting the toggle from a column#150212 (Steve George

2004-08-13 John Finlay <finlay@moeraki.com>

* TreeModel.xml Clean up Adding TreeStore rows sectioiogy Tsai
Add missing text in Large Data Stores sectiodody Tsa)

2004-08-08 John Finlay <finlay@moeraki.com>

* TreeModel.xml

* CellRenderers.xml

* GenericTreeModel.xml

* TreeViewWidget.xml

* NewWidgetsAndObjects.xml Minor rewording and addition of tags.

2004-08-06 John Finlay <finlay@moeraki.com>

* ButtonWidget.xml Fix errors in examples.

* DragAndDrop.xml Fix anchor.

* MenuWidget.xml Fix typo.

* PackingWidgets.xml Fix typo.

* MiscellaneousWidgets.xml (Dialogs) (Image$ (Pixmap$ (Rulerg
(Progressbay (Labe)

Fix faulty wording and errorsAll thanks to Marc Vernegy

2004-08-04 John Finlay <finlay@moeraki.com>

* DrawingArea.xml Update example to use rulers and scrolled
window.

* pygtk2-tut.xml Bump version number and pubdate.

2.2
2004-08-03 John Finlay <finlay@moeraki.com>

* ComboBoxAndComboBoxEntry.xml Add.
* EntryCompletion.xml Add.

* ExpanderWidget.xml Add.

398

Changelog

* NewlnPyGTK24.xml Add.

* NewWidgetsAndObject.xml Rearrange and make as a chapter.

* pygtk2-tut.xml Add NewlInPyGTK24.xml. Update date.
2004-08-02 John Finlay <finlay@moeraki.com>

* MiscellaneousWidgets.xml Change Combo Box to Combo Widget to avoid
confusion with new ComboBox widget. Add deprecation note.

2004-07-28 John Finlay <finlay@moeraki.com>

* Credits.xml Add PyGTK section with credit to Nathan Durst and
Alex Roitman.

* FileChooser.xml Create.
* NewWidgetsAndObject.xml Add include for FileChooser.xml.

* NewWidgetsAndObject.xml Create.

* pygtk2-tut.xml Add NewWidgetsAndObject.xml file. Bump version
number and set date.

2004-07-20 John Finlay <finlay@moeraki.com>

* TreeViewWidget.xml (sec-ManagingCellRendergrsix title.
More detail on set_sort_column_jd(

2004-07-12 John Finlay <finlay@moeraki.com>

* TreeViewWidget.xml (sec-CreatingTreeViewFix faulty capitalization.
(thanks to Doug Quaje

2004-07-08 John Finlay <finlay@moeraki.com>

* Adjustments.xml AdvancedEventAndSignalHandling.xml
ButtonWidget.xml ChangeLog ContainerWidgets.xml
DragAndDrop.xml DrawingArea.xml GettingStarted.xml
ManagingSelections.xml MenuWidget.xml
MiscellaneousWidgets.xml MovingOn.xml
PackingWidgets.xml RangeWidgets.xml Scribble.xml
SettingWidgetAttributes.xml TextViewWidget.xml
TimeoutslOAndldleFunctions.xml WidgetOverview.xml
Update files with example programs.

2004-07-06 John Finlay <finlay@moeraki.com>

* examples/*.py Update examples to eliminate deprecated methods
and use import pygtk.

2.1
2004-07-06 John Finlay <finlay@moeraki.com>

399

Changelog

* pygtk2-tut.xml Bump version number to 2.1 and set
pubdate.
* TreeViewWidgets.xml Revise the treeviewdnd.py example to

illustrate row reordering with external drag and drop and
add explanation.

2004-07-03 John Finlay <finlay@moeraki.com>

* TimeoutslOAndldleFunctions.xml Update descriptions to use
the gobject functions.

2004-06-30 John Finlay <finlay@moeraki.com>

* TreeViewWidget.xml Extract the CellRenderers section into
CellRenderers.xml.

* CellRenderers.xml Create and add section on editable
CellRendererText.

* TreeViewWidget.xml Extract the TreeModel section and put into
new file TreeModel.xml. Add detail to the TreeViewColumn use of
its sort column ID.

* TreeModel.xml Create and add section on sorting TreeModel rows
using the TreeSortable interface.

2004-06-27 John Finlay <finlay@moeraki.com>
* TreeViewWidget.xml (Cell Data Function Add filelisting example
using cell data functions. Add Xinclude header to include generic
tree model and cell renderer subsections.
Fix typos and errors in links. Fix bugs in example listings.
Add section on TreeModel signals.

2004-06-22 John Finlay <finlay@moeraki.com>

* Introduction.xml Add note about pygtkconsole.py and gpython.py
programs do not work on Windows. Thanks to vector180.

2004-06-14 John Finlay <finlay@moeraki.com>
* DragAndDrop.xml Fix signal lists for drag source and dest.
Add detail to the overview drag cycle. Add detail about signal

handler operation.

* DragAndDrop.xml Add small example program dragtargets.py to
print out drag targets.

2004-05-31 John Finlay <finlay@moeraki.com>

* GettingStarted.xml Change wording in helloworld.py example
program - delete_eventcomments confusing. Thanks to Ming Hua.

400

Changelog

2004-05-28 John Finlay <finlay@moeraki.com>

* TreeViewWidget.xml (TreeModelFilte} Replace ‘file’ with ‘filter’.
Thanks to Guilherme Salgado.

2004-05-27 John Finlay <finlay@moeraki.com>

* TreeViewWidget.xml (AccessingDataValugg-ix store.set example
column number wrong. Thanks to Rafael Villar Burke and Guilherme
Salgado.

(CellRendererAttributgsFix error. Thanks to Doug Quale.
(TreeModelintroduction

(PythonProtocolSupportFix grammatical and spelling errors.
Thanks to Thomas Mills Hinkle.

2004-05-25 John Finlay <finlay@moeraki.com>

* Introduction.xml Add reference links to www.pygtk.org website
and describe some of its resources.

2.0
2004-05-24 John Finlay <finlay@moeraki.com>

* TreeViewWidget.xml Add beginning of tutorial chapter.
* Introduction.xml Add reference to gpython.py program.
* pygtk2-tut.xml Bump release number to 2.0.

2004-03-31 John Finlay <finlay@moeraki.com>
* MiscellaneousWidgets.xml Fix bug in calendar.py example causing
date string to be off by one day in some time zones. Fixes #138487.
(thanks to Eduard Luhtongn

2004-01-28 John Finlay <finlay@moeraki.com>
* DrawingArea.xml Modify description of DrawingArea to clarify that
drawing is done on the wrapped gtk.gdk.Window. Modify GC description
to clarify that new GCs created from drawables. (thanks to Antoon

Pardon)

* UndocumentedWidgets.xml Remove the section on Plugs and Sockets -
now in ContainerWidgets.xml.

* ContainerWidgets.xml Add section on Plugs and Sockets written
by Nathan Hurst.

* pygtk2-tut.xml Change date and version number.

2003-11-05 John Finlay <finlay@moeraki.com>

* Introduction.xml Add reference to the PyGTK 2.0 Reference Manual.

401

Changelog

2003-11-04 John Finlay <finlay@moeraki.com>
* ContainerWidgets.xml
* RangeWidgets.xml
* WidgetOverview.xml Remove reference to testgtk.py since it doesn'’t
exist in PyGTK 2.0 thanks to Steve Chaplin
2003-10-07 John Finlay <finlay@moeraki.com>

* TextViewWidget.xml Change PANGO _ to pangoth@nks to Stephane Klgin
* pygtk2-tut.xml Change date and version number.

2003-10-06 John Finlay <finlay@moeraki.com>

* GettingStarted.xml Change third to second in description of signal
handler argumentstianks to Kyle Smidh

2003-09-26 John Finlay <finlay@moeraki.com>

* ContainerWidgets.xml Fix text layout error in frame shadow
description thanks to Steve Chap)in

2003-09-19 John Finlay <finlay@moeraki.com>
* ContainerWidgets.xml
* layout.py Use random module instead of whrandom in
layout.py example programthi@anks to Steve Chap)in
* PackingWidgets.xml
* packbox.py Use set_size_requektifistead of set_usizp(n
packbox.py exampletlfanks to Steve Chap)in

2003-07-11 John Finlay <finlay@moeraki.com>

* ContainerWidgets.xml Fix link references to class-gtkalignment to
use a ulink instead of a link.

* ChangeLog Add this change log file

* pygtk2-tut.xml Change date and add a version number. Add Changelog
as an appendix.

402

