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Preface

It's hard to keep track of an industry that changes as quickly as ours. The super-
computer market is being dissolved from below by a handful of microprocessor
families. The processors in the typical home computer are faster than the super-
computers of ten years ago. Parallel processing is increasingly coming to our inex-
pensive computers. As our appetite for graphics and multimedia-oriented
programs continues to increase, more and more computing is becoming "high per-
formance computing."

On the other end of the spectrum, the fastest computers in the world are collec-
tions of hundreds or thousands of processing elements and are generally more dif-
ficult to program.

Where does the performance come from? Some of it comes from increased clock
rates. But more significantly, microprocessor architectures are borrowing and inno-
vating with techniques formerly unique to supercomputers and large mainframes.
They can execute four or more instructions at a time and are being combined to
form very powerful multiprocessors. A lot of this performance is available just for
moving your code to a new machine. Sometimes though, these processors can be
fickle performers and require your help.

Knowing how to judge the marketplace may be even more important than under-
standing how the new processors work. If you are faced with the task of interpret-
ing benchmarks to support a purchase decision, it's good to feel confident about
them. Industry benchmarks measure different things, some of which may apply to
you and some of which may not. If you decide to run your own benchmarks,
these will be your best barometer, provided that you administer them with care.

You can also tune your home-grown applications to squeeze more performance
from the hardware you already own. But just as you can't tell what string to tune
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xii Preface

by banging all of a piano's keys at once, you can't tune a program based on a sin-
gle performance measure. You need a profile that tells you how individual parts of
your program behave. This will tell you where to focus your tuning efforts. Differ-
ent flavors of applications exhibit characteristic execution profiles, revealing much
about what can be done. For instance, simple source code transformations can
make a big difference in numerically intensive applications. Ordering data access
patterns or object files in the load module can ease troublesome cache behavior,
and structuring critical branches correctly can lead to big performance gains.

Looking to the future, some applications will be good candidates for parallel com-
puters. However, to run an application on a parallel machine, or to write code for
a parallel machine, you need to think about how the program can be split into
pieces. For some applications, parallel computers are a natural, but others will
benefit very little.

Who Should Buy This Book?
This book is written for people who are interested in computer performance or
who need to understand it for their job. Those faced with purchase decisions will
find clear explanations of industry benchmarks and the benchmark process, as
well as a few pointers on what to watch for. People writing or tuning code will
learn techniques for getting the best performance from their workstations, plus an
appreciation for how their programs play to the compiler and the hardware. And,
for those who enjoy tracking computer-performance developments, this book can
serve as a reference to answer some of the how and why questions as the statistics
come in. This book could even be used by home computer users to better under-
stand their own high performance personal computers.

What's in This Book
The book consists of 16 chapters and five appendixes, divided into six parts.

Part I, Modern Computer Architecture, describes the underlying hardware you will
encounter in high performance computing.

Chapter 1, What Is High Performance Computing?, prepares the stage for the rest
of the book.

Chapter 2, High Performance Microprocessors, briefly describes developments in
computer architecture that led to the design of today's high performance proces-
sors and explains how they work.

Chapter 3, Memory, explains how computer memory systems are organized and
why a good memory system is crucial for performance.



Preface xiii

Chapter 4, Floating-Point Numbers, gives an overview of the field of numerical
analysis and introduces the issues you must face when your results need to be fast
and accurate.

Part II, Programming and Tuning Software, is a hands-on guide to the software
you will encounter in your quest for high performance. We cover compilation,
profiling, timing, and tuning, with some time out to consider what the compiler is
looking for from the programmer.

Chapter 5, What a Compiler Does, gives a tour of an optimizing compiler and
describes the techniques employed by most compilers.

Chapter 6, Timing and Profiling, tells you how you can measure the performance
of a program, subroutine, or loop. This is important if you will be benchmarking
or tuning your code.

Chapter 7, Eliminating Clutter, discusses optimization techniques for eliminating
those parts of code that add to runtime but don't contribute to the answer.

Chapter 8, Loop Optimizations, explains how you can examine and improve the
performance of the loops that generally take most of the time in a high perfor-
mance application. This chapter also describes techniques for improving the way
programs make use of the memory system.

Part III, Shared-Memory Parallel Processors, focuses on programming for symmet-
ric parallel processors. We cover the fundamentals of parallelism and its effects on
the compiler, parallel processing hardware, and programming techniques for these
systems.

Chapter 9, Understanding Parallelism, takes a break from the hands-on to explain
what parallelism is. This chapter is good background for the tuning tips in the fol-
lowing chapters, but it can also be read by itself or as a follow-up to Chapter 5.

Chapter .10, Shared-Memory Multiprocessors, describes shared-memory computers,
such as the multiprocessing workstations being offered by several vendors. These
are programmed differently from distributed-memory machines. Multiprocessing
and multithreaded applications are discussed in this chapter.

Chapter 11, Programming Shared-Memory Multiprocessors, describes the tech-
niques for using automatic parallelizing compilers and for parallelizing your appli-
cations by hand on these shared-memory multiprocessors.

Part IV, Scalable Parallel Processing, covers topics you will encounter when you
begin to work with large-scale parallel processing systems.
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Chapter 12, Large-Scale Parallel Computing, introduces the hardware architectures
and concepts you will need to use large-scale parallel processors. It includes a sur-
vey of existing processor interconnects and scalable parallel processor architec-
tures.

Chapter 13, Language Support for Performance, covers two data-parallel languages
used on large-scale parallel processors. These languages are FORTRAN-90 and
High Performance FORTRAN. An easily understandable heat-flow problem is used
to provide complete working example programs in both languages.

Chapter 14, Message Passing Environments, covers the parallel virtual machine
(PVM) and message-passing interface (MPI) environments. The heat-flow example
is continued into this chapter with complete working example codes. This chapter
also covers different models of scalable computing.

Part V, Benchmarking, describes published benchmarks and discusses benchmark-
ing strategies when you are running your own.

Chapter 15, Using Published Benchmarks, describes the meaning of MIPs,
megaflops, SPECMarks, UNPACK, and other commonly quoted measures of perfor-
mance. This chapter can be read independently of the others.

Chapter 16, Running Your Own Benchmarks, discusses benchmarking strategies at
a high level. This chapter is a good guide when you are planning a new system
acquisition and want to be sure your benchmarks are comprehensive.

Part VI, Appendixes, offers additional information on architecture and languages as
they relate to performance issues.

Appendix A, Processor Architectures, surveys a number of existing microprocessor
designs and relates them to the concepts discussed in Chapter 2.

Appendix B, Looking at Assembly Language, looks at the effect of instruction set
design and compiler technology on the ultimate machine language used on vari-
ous architectures.

Appendix C, Future Trends: Intel IA-64, gives a very brief overview of the Intel
IA-64 architecture. Not all of the details of this architecture are available at the time
of the printing of this book, but this chapter gives some insight into how this pro-
cessor will operate.

Appendix D, How FORTRAN Manages Threads at Runtime, looks at the FORTRAN
runtime environment on a parallel processing system and examines the effect of
having too many threads for the available processing resources,

Appendix E, Memory Performance, examines the performance of a simple two-
dimensional array application on several architectures.
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Most chapters are followed by a short set of exercises. Unlike the exercises in
most engineering texts, these are mostly thought experiments, without well-
defined answers. They are designed to get you thinking about the hardware on
your desk. Most of the answers depend on the particular hardware you have, and
will certainly change over time. We've written up some answers for a few common
architectures; they are available via anonymous FTP. The example programs used
throughout the book are also available via anonymous FTP.

Some related subjects fall outside the scope of this book, particularly algorithms,
graphics, and I/O performance. However, this book gives you a good foundation
for understanding these topics, as it will help you recognize the potential for per-
formance in an algorithm or method.

Changes in the Second Edition
Certainly there have been many changes in this industry since the first edition of
the book was printed. There has been a distinct shift from special purpose com-
puters to more general purpose computers. The overall performance of micropro-
cessors has increased so dramatically that "high performance computing" issues
are important even in our desktop workstations.

To address these dramatic shifts in the industry, numerous areas have been
brought up to date in this edition, including: processor architecture, memory archi-
tecture, symmetric multiprocessing, and scalable parallel processing architectures.

A number of new topics have been added to the book, including: floating-point
numbers, High Performance Fortran (HPF), Parallel Virtual Machine (PVM), and
Message Passing Interface (MPI).

When the first edition was published, FORTRAN-77 was the dominant language for
high performance computing. While FORTRAN-77 is still the primary language for
scientific computing, other languages are emerging in the high performance area
including C, HPF, and FORTRAN-90. New high performance applications are gen-
erally coded in some combination of FORTRAN and C. All of the languages are
featured in the examples throughout the book. We tend to use the best language
for each particular example. For example, most of the loop examples are in FOR-
TRAN while some of the operating system and communications examples are writ-
ten in C. The question as to which language is better is visited several times
throughout the book.
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Conventions Used in This Book
The following conventions are used in this book:

Constant Width
is used for source code samples and for quotations from source code within
the text, including variable and function names. Constant width is also used
for output printed by a computer and for the contents of files.

Constant Bold
is used for commands typed verbatim by the user.

Italic
is used for command names, directory names, and filenames. It is also used
for new terms when they are defined.

Bold
is used for vectors (in the mathematical sense) and for command options. I
admit that the difference between a mathematical vector and an array in a pro-
gram is miniscule.
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Why Worry About Performance?
Over the last decade, the definition of what is called high performance computing
has changed dramatically. In 1988, an article appeared in the Wall Street Journal
titled "Attack of the Killer Micros" that described how computing systems made up
of many small inexpensive processors would soon make large supercomputers
obsolete. At that time, a "personal computer" costing $3000 could perform 0.25
million floating-point operations per second, a "workstation" costing $20,000 could
perform 3 million floating-point operations, and a supercomputer costing $3 mil-
lion could perform 100 million floating-point operations per second. Therefore,
why couldn't we simply connect 400 personal computers together to achieve the
same performance of a supercomputer for $1.2 million?

This vision has come true in some ways, but not in the way the original propo-
nents of the "killer micro" theory envisioned. Instead, the microprocessor perfor-
mance has relentlessly gained on the supercomputer performance. This has
occurred for two reasons. First, there was much more technology "headroom" for
improving performance in the personal computer area, whereas the supercomput-
ers of the late 1980s were pushing the performance envelope. Also, once the
supercomputer companies broke through some technical barrier, the microproces-
sor companies could quickly adopt the successful elements of the supercomputer
designs a few short years later. The second and perhaps more important factor
was the emergence of a thriving personal and business computer market with
ever-increasing performance demands. Computer usage such as 3D graphics,
graphical user interfaces, multimedia, and games were the driving factors in this
market. With such a large market, available research dollars poured into develop-
ing inexpensive high performance processors for the home market. The result of
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this trend toward faster smaller computers is directly evident as former supercom-
puter manufacturers are being purchased by workstation companies (Silicon
Graphics purchased Cray, and Hewlett-Packard purchased Convex in 1996).

As a result nearly every person with computer access has some "high perfor-
mance" processing. As the peak speeds of these new personal computers increase,
these computers encounter all the performance challenges typically found on
supercomputers.

While not all users of personal workstations need to know the intimate details of
high performance computing, those who program these systems for maximum
performance will benefit from an understanding of the strengths and weaknesses
of these newest high performance systems.

Scope of High Performance Computing
High performance computing runs a broad range of systems, from our desktop
computers through large parallel processing systems. Because most high perfor-
mance systems are based on reduced instruction set computer (RISC) processors,
many techniques learned on one type of system transfer to the other systems.

High performance RISC processors are designed to be easily inserted into a multi-
ple-processor system with 2 to 64 CPUs accessing a single memory using symmet-
ric multi processing (SMP). Programming multiple processors to solve a single
problem adds its own set of additional challenges for the programmer. The pro-
grammer must be aware of how multiple processors operate together, and how
work can be efficiently divided among those processors.

Even though each processor is very powerful, and small numbers of processors
can be put into a single enclosure, often there will be applications that are so large
they need to span multiple enclosures. In order to cooperate to solve the larger
application, these enclosures are linked with a high-speed network to function as
a network of workstations (NOW). A NOW can be used individually through a
batch queuing system or can be used as a large multicomputer using a message
passing tool such as parallel virtual machine (PVM) or message-passing interface
(MPI).

For the largest problems with more data interactions and those users with compute
budgets in the millions of dollars, there is still the top end of the high performance
computing spectrum, the scalable parallel processing systems with hundreds to
thousands of processors. These systems come in two flavors. One type is pro-
grammed using message passing. Instead of using a standard local area network,
these systems are connected using a proprietary, scalable, high-bandwidth, low-
latency interconnect (how is that for marketing speak?). Because of the high per-
formance interconnect, these systems can scale to the thousands of processors
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while keeping the time spent (wasted) performing overhead communications to a
minimum.

The second type of large parallel processing system is the scalable non-uniform
memory access (NUMA) systems. These systems also use a high performance inter-
connect to connect the processors, but instead of exchanging messages, these sys-
tems use the interconnect to implement a distributed shared memory that can be
accessed from any processor using a load/store paradigm. This is similar to pro-
gramming SMP systems except that some areas of memory have slower access
than others.

Studying High Performance Computing
The study of high performance computing is an excellent chance to revisit com-
puter architecture. Once we set out on the quest to wring the last bit of perfor-
mance from our computer systems, we become more motivated to fully
understand the aspects of computer architecture that have a direct impact on the
system's performance.

Throughout all of computer history, salespeople have told us that their compiler
will solve all of our problems, and that the compiler writers can get the absolute
best performance from their hardware. This claim has never been, and probably
never will be, completely true. The ability of the compiler to deliver the peak per-
formance available in the hardware improves with each succeeding generation of
hardware and software. However, as we move up the hierarchy of high perfor-
mance computing architectures we can depend on the compiler less and less, and
programmers must take responsibility for the performance of their code.

In the single processor and SMP systems with few CPUs, one of our goals as pro-
grammers should be to stay out of the way of the compiler. Often constructs used
to improve performance on a particular architecture limit our ability to achieve
performance on another architecture. Further, these "brilliant" (read obtuse) hand
optimizations often confuse a compiler, limiting its ability to automatically trans-
form our code to take advantage of the particular strengths of the computer archi-
tecture.

As programmers, it is important to know how the compiler works so we can know
when to help it out and when to leave it alone. We also must be aware that as
compilers improve (never as much as salespeople claim) it's best to leave more
and more to the compiler.

As we move up the hierarchy of high performance computers, we need to learn
new techniques to map our programs onto these architectures, including language
extensions, library calls, and compiler directives. As we use these features, our
programs become less portable. Also, using these higher-level constructs, we must
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not make modifications that result in poor performance on the individual RISC
microprocessors that often make up the parallel processing system.

Measuring Performance
When a computer is being purchased for computationally intensive applications, it
is important to determine how well the system will actually perform this function.
One way to choose among a set of competing systems is to have each vendor loan
you a system for a period of time to test your applications. At the end of the eval-
uation period, you could send back the systems that did not make the grade and
pay for your favorite system. Unfortunately, most vendors won't lend you a system
for such an extended period of time unless there is some assurance you will even-
tually purchase the system.

More often we evaluate the system's potential performance using benchmarks.
There are industry benchmarks and your own locally developed benchmarks. Both
types of benchmarks require some careful thought and planning for them to be an
effective tool in determining the best system for your application.

The Next Step
Quite aside from economics, computer performance is a fascinating and challeng-
ing subject. Computer architecture is interesting in its own right and a topic that
any computer professional should be comfortable with. Getting the last bit of per-
formance out of an important application can be a stimulating exercise, in addition
to an economic necessity. There are probably a few people who simply enjoy
matching wits with a clever computer architecture.

What do you need to get into the game?

• A basic understanding of modern computer architecture. You don't need an
advanced degree in computer engineering, but you do need to understand the
basic terminology.

• A basic understanding of benchmarking, or performance measurement, so you
can quantify your own successes and failures and use that information to
improve the performance of your application.

This book is intended to be an easily understood introduction and overview of
high performance computing. It is an interesting field, and one that will become
more important as we make even greater demands on our most common personal
computers. In the high performance computer field, there is always a tradeoff
between the single CPU performance and the performance of a multiple processor
system. Multiple processor systems are generally more expensive and difficult to
program (unless you have this book).
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Some people claim we eventually will have single CPUs so fast we won't need to
understand any type of advanced architectures that require some skill to program.

So far in this field of computing, even as performance of a single inexpensive
microprocessor has increased over a thousandfold, there seems to be no less inter-
est in lashing a thousand of these processors together to get a. millionfold increase
in power. The cheaper the building blocks of high performance computing
become, the greater the benefit for using many processors. If at some point in the
future, we have a single processor that is faster than any of the 512-processor scal-
able systems of today, think how much we could do when we connect 512 of
those new processors together in a single system.

That's what this book is all about. If you're interested, read on.



High Performance
Microprocessors

It has been said that history is rewritten by the victors. It is clear that high perfor-
mance RISC-based microprocessors are defining the current history of high perfor-
mance computing. We begin our study with the basic building blocks of modern
high performance computing: the high performance RISC microprocessors.

A complex instruction set computer (CISC) instruction set is made up of powerful
primitives, close in functionality to the primitives of high-level languages like C or
FORTRAN. It captures the sense of "don't do in software what you can do in hard-
ware." RISC, on the other hand, emphasizes low-level primitives, far below the
complexity of a high-level language. You can compute anything you want using
either approach, though it will probably take more machine instructions if you're
using RISC. The important difference is that with RISC you can trade instruction-set
complexity for speed.

To be fair, RISC isn't really all that new. There were some important early
machines that pioneered RISC philosophies, such as the CDC 6600 (1964) and the
IBM 801 project (1975). It was in the mid-1980s, however, that RISC machines first
posed a direct challenge to the CISC installed base. Heated debate broke out—
RISC versus CISC—and even lingers today, though it is clear that the RISC*
approach is in greatest favor; late-generation CISC machines are looking more

One of the most interesting remaining topics is the definition of "RISC." Don't be fooled into thinking
there is one definition of RISC. The best I have heard so far is from John Mashey: "RISC is a label most
commonly used for a set of instruction set architecture characteristics chosen to ease the use of aggres-
sive implementation techniques found in high performance processors (regardless of RISC, CISC, or

8
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RISC-like, and some very old families of CISC, such as the DEC VAX, are being
retired.

This chapter is about CISC and RISC instruction set architectures and the differ-
ences between them. We also describe newer processors that can execute more
than one instruction at a time and can execute instructions out of order.

Why CISC?
You might ask, "If RISC is faster, why did people bother with CISC designs in the
first place?" The short answer is that in the beginning, CISC was the right way to
go; RISC wasn't always both feasible and affordable. Every kind of design incorpo-
rates trade-offs, and over time, the best systems will make them differently. In the
past, the design variables favored CISC.

Space and Time
To start, we'll ask you how well you know the assembly language for your work-
station. The answer is probably that you haven't even seen it. Why bother? Com-
pilers and development tools are very good, and if you have a problem, you can
debug it at the source level. However, 30 years ago, "respectable" programmers
understood the machine's instruction set. High-level language compilers were
commonly available, but they didn't generate the fastest code, and they weren't
terribly thrifty with memory. When programming, you needed to save both space
and time, which meant you knew how to program in assembly language. Accord-
ingly, you could develop an opinion about the machine's instruction set. A good
instruction set was both easy to use and powerful. In many ways these qualities
were the same: "powerful" instructions accomplished a lot, and saved the pro-
grammer from specifying many little steps—which, in turn, made them easy to
use. But they had other, less apparent (though perhaps more important) features
as well: powerful instructions saved memory and time.

Back then, computers had very little storage by today's standards. An instruction
that could roll all the steps of a complex operation, such as a do-loop, into single
opcode* was a plus, because memory was precious. To put some stakes in the
ground, consider the last vacuum-tube computer that IBM built, the model 704
(1956). It had hardware floating-point, including a division operation, index regis-
ters, and instructions that could operate directly on memory locations. For
instance, you could add two numbers together and store the result back into mem-
ory with a single command. The Philco 2000, an early transistorized machine
(1959), had an operation that could repeat a sequence of instructions until the

* Opcode = operation code = instruction.
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contents of a counter was decremented to zero—very much like a do-loop. These
were complex operations, even by today's standards. However, both machines had
a limited amount of memory—32-K words. The less memory your program took
up, the more you had available for data, and the less likely that you would have to
resort to overlaying portions of the program on top of one another.

Complex instructions saved time, too. Almost every large computer following the
IBM 704 had a memory system that was slower than its central processing unit
(CPU). When a single instruction can perform several operations, the overall num-
ber of instructions retrieved from memory can be reduced. Minimizing the number
of instructions was particularly important because, with few exceptions, the
machines of the late 1950s were very sequential; not until the current instruction
was completed did the computer initiate the process of going out to memory to
get the next instruction.* By contrast, modern machines form something of a
bucket brigade—passing instructions in from memory and figuring out what they
do on the way—so there are fewer gaps in processing.

If the designers of early machines had had very fast and abundant instruction
memory, sophisticated compilers, and the wherewithal to build the instruction
"bucket brigade"—cheaply—they might have chosen to create machines with sim-
ple instruction sets. At the time, however, technological choices indicated that
instructions should be powerful and thrifty with memory.

Beliefs About Complex Instruction Sets
So, given that the lot was cast in favor of complex instruction sets, computer archi-
tects had license to experiment with matching them to the intended purposes of
the machines. For instance, the do-loop instruction on the Philco 2000 looked like
a good companion for procedural languages like FORTRAN. Machine designers
assumed that compiler writers could generate object programs using these power-
ful machine instructions, or possibly that the compiler could be eliminated, and
that the machine could execute source code directly in hardware.

You can imagine how these ideas set the tone for product marketing. Up until the
early 1980s, it was common practice to equate a bigger instruction set with a more
powerful computer. When clock speeds were increasing by multiples, no increase
in instruction set complexity could fetter a new model of computer enough so that
there wasn't still a tremendous net increase in speed. CISC machines kept getting
faster, in spite of the increased operation complexity.

* In 1955, IBM began constructing a machine known as Stretch. It was the first computer to process
several instructions at a time in stages, so that they streamed in, rather than being fetched in a piece-
meal fashion. The goal was to make it 25 times faster than the then brand-new IBM 704. It was six
years before the first Stretch was delivered to Los Alamos National Laboratory. It was indeed faster, but
it was expensive to build. Eight were sold for a loss of $20 million.



Fundamentals of RISC 11

As it turned out, assembly language programmers used the complicated machine
instructions, but compilers generally did not. It was difficult enough to get a com-
piler to recognize when a complicated instruction could be used, but the real
problem was one of optimizations: verbatim translation of source constructs isn't
very efficient. An optimizing compiler works by simplifying and eliminating redun-
dant computations. After a pass through an optimizing compiler, opportunities to
use the complicated instructions tend to disappear.

Fundamentals of RISC
A RISC machine could have been built in I960. (In fact, Seymour Cray built one in
1964—the CDC 6600.) However, given the same costs of components, technical
barriers, and even expectations for how computers would be used, you would
probably still have chosen a CISC design—even with the benefit of hindsight.

The exact inspiration that led to developing high performance RISC microproces-
sors in the 1980s is a subject of some debate. Regardless of the motivation of the
RISC designers, there were several obvious pressures that affected the develop-
ment of RISC:

• The number of transistors that could fit on a single chip was increasing. It was
clear that one would eventually be able to fit all the components from a pro-
cessor board onto a single chip.

• Techniques such as pipelining were being explored to improve performance.
Variable-length instructions and variable-length instruction execution times
(due to varying numbers of microcode steps) made implementing pipelines
more difficult.

• As compilers improved, they found that well-optimized sequences of stream-
lined instructions often outperformed the equivalent complicated multi-cycle
instructions. (See Appendix A, Processor Architectures, and Appendix B, Look-
ing at Assembly Language^)

The RISC designers sought to create a high performance single-chip processor
with a fast clock rate. When a CPU can fit on a single chip, its cost is decreased, its
reliability is increased, and its clock speed can be increased. While not all RISC
processors are single-chip implementation, most use a single chip.

To accomplish this task, it was necessary to discard the existing CISC instruction
sets and develop a new minimal instruction set that could fit on a single chip.
Hence the term reduced instruction set computer. In a sense reducing the instruc-
tion set was not an "end" but a means to an end.

For the first generation of RISC chips, the restrictions on the number of compo-
nents that could be manufactured on a single chip were severe, forcing the
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designers to leave out hardware support for some instructions. The earliest RISC
processors had no floating-point support in hardware, and some did not even sup-
port integer multiply in hardware. However, these instructions could be imple-
mented using software routines that combined other instructions (a microcode of
sorts).

These earliest RISC processors (most severely reduced) were not overwhelming
successes for four reasons;

• It took time for compilers, operating systems, and user software to be retuned
to take advantage of the new processors.

• If an application depended on the performance of one of the software-imple-
mented instructions, its performance suffered dramatically.

• Because RISC instructions were simpler, more instructions were needed to
accomplish the task.

• Because all the RISC instructions were 32 bits long, and commonly used CISC
instructions were as short as 8 bits, RISC program executables were often
larger.

As a result of these last two issues, a RISC program may have to fetch more mem-
ory for its instructions than a CISC program. This increased appetite for instruc-
tions actually clogged the memory bottleneck until sufficient caches were added to
the RISC processors. In some sense, you could view the caches on RISC proces-
sors as the microcode store in a CISC processor. Both reduced the overall appetite
for instructions that were loaded from memory.

While the RISC processor designers worked out these issues and the manufactur-
ing capability improved, there was a battle between the existing (now called CISC)
processors and the new RISC (not yet successful) processors. The CISC processor
designers had mature designs and well-tuned popular software. They also kept
adding performance tricks to their systems. By the time Motorola had evolved
from the MC68000 in 1982 that was a CISC processor to the MC68040 in 1989, they
referred to the MC68040 as a RISC processor.*

However, the RISC processors eventually became successful. As the amount of
logic available on a single chip increased, floating-point operations were added
back onto the chip. Some of the additional logic was used to add on-chip cache to
solve some of the memory bottleneck problems due to the larger appetite for
instruction memory. These and other changes moved the RISC architectures from
the defensive to the offensive.

And they did it without ever taking out a single instruction!
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RISC processors quickly became known for their affordable high-speed floating-
point capability compared to CISC processors.* This excellent performance on sci-
entific and engineering applications effectively created a new type of computer
system, the workstation. Workstations were more expensive than personal comput-
ers but their cost was sufficiently low that workstations were heavily used in the
CAD, graphics, and design areas. The emerging workstation market effectively cre-
ated three new computer companies in Apollo, Sun Microsystems, and Silicon
Graphics.

Some of the existing companies have created competitive RISC processors in addi-
tion to their CISC designs. IBM developed its RS-6000 (RIOS) processor, which had
excellent floating-point performance. The Alpha from DEC has excellent perfor-
mance in a number of computing benchmarks. Hewlett-Packard has developed the
PA-RISC series of processors with excellent performance. Motorola and IBM have
teamed to develop the PowerPC series of RISC processors that are used in IBM
and Apple systems.

By the end of the RISC revolution, the performance of RISC processors was so
impressive that single and multiprocessor RISC-based server systems quickly took
over the minicomputer market and are currently encroaching on the traditional
mainframe market.

Characterizing RISC
RISC is more of a design philosophy than a set of goals. Of course every RISC pro-
cessor has its own personality. However, there are a number of features commonly
found in machines people consider to be RISC:

• Instruction pipelining

• Pipelining floating-point execution

• Uniform instruction length

• Delayed branching

• Load/store architecture

• Simple addressing modes

This list highlights the differences between RISC and CISC processors. Naturally,
the two types of instruction-set architectures have much in common; each uses
registers, memory, etc. And many of these techniques are used in CISC machines
too, such as caches and instruction pipelines. It is the fundamental differences that

* The typical CISC microprocessor in the 1980s supported floating-point operations in a separate co-
processor.
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give RISC its speed advantage: focusing on a smaller set of less powerful instruc-
tions makes it possible to build a faster computer.

However, the notion that RISC machines are generally simpler than CISC machines
.isn't correct. Other features, such as functional pipelines, sophisticated memory
systems, and the ability to issue two or more instructions per clock make the latest
RISC processors the most complicated ever built. Furthermore, much of the com-
plexity that has been lifted from the instruction set has been driven into the com-
pilers, making a good optimizing compiler a prerequisite for machine
performance.

Let's put ourselves in the role of computer architect again and look at each item in
the list above to understand why it's important.

Pipelines
Everything within a digital computer (RISC or CISC) happens in step with a clock:
a signal that paces the computer's circuitry. The rate of the clock, or clock speed,
determines the overall speed of the processor. There is an upper limit to how fast
you can clock a given computer.

A number of parameters place an upper limit on the clock speed, including the
semiconductor technology, packaging, the length of wires tying the pieces
together, and the longest path in the processor. Although it may be possible to
reach blazing speed by optimizing all of the parameters, the cost can be pro-
hibitive. Furthermore, exotic computers don't make good office mates; they can
require too much power, produce too much noise and heat, or be too large. There
is incentive for manufacturers to stick with manufacturable and marketable tech-
nologies.

Reducing the number of clock ticks it takes to execute an individual instruction is
a good idea, though cost and practicality become issues beyond a certain point. A
greater benefit comes from partially overlapping instructions so that more than one
can be in progress simultaneously. For instance, if you have two additions to per-
form, it would be nice to execute them both at the same time. How do you do
that? The first, and perhaps most obvious, approach, would be to start them simul-
taneously. Two additions would execute together and complete together in the
amount of time it takes to perform one, As a result, the throughput would be
effectively doubled. The downside is that you would need hardware for two
adders in a situation where space is usually at a premium (especially for the early
RISC processors).

Other approaches for overlapping execution are more cost-effective than side-by-
side execution. Imagine what it would be like if, a moment after launching one
operation, you could launch another without waiting for the first to complete.
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Perhaps you could start another of the same type right behind the first one—like
the two additions. This would give you nearly the performance of side-by-side
execution without duplicated hardware. Such a mechanism does exist to varying
degrees in all computers—CISC and RISC. It's called a pipeline. A pipeline takes
advantage of the fact that many operations are divided into identifiable steps, each
of which uses different resources on the processor.*

Figure 2-1 shows a conceptual diagram of a pipeline. An operation entering at the
left proceeds on its own for five clock ticks before emerging at the right. Given
that the pipeline stages are independent of one another, up to five operations can
be in flight at a" time as long as each instruction is delayed long enough for the
previous instruction to clear the pipeline stage. Consider how powerful this mech-
anism is: where before it would have taken five clock ticks to get a single result, a
pipeline produces as much as one result every clock tick.

Pipelining is useful when a procedure can be divided into stages. Instruction pro-
cessing fits into that category. The job of retrieving an instruction from memory,
figuring out what it does, and doing it are separate steps we usually lump together
when we talk about executing an instruction. The number of steps varies, depend-
ing on whose processor you are using, but for illustration, let's say there are five:

Instruction fetch
The processor fetches an instruction from memory.

Instruction decode
The instruction is recognized or decoded.

Operand Fetch
The processor fetches the operands the instruction needs. These operands
may be in registers or in memory.

* Here is a simple analogy: imagine a line at a fast-food drive up window. If there is only one window,
one customer orders and pays, and the food is bagged and delivered to the customer before the sec-
ond customer orders. For busier restaurants, there are three windows. First you order, then move
ahead. Then at a second window, you pay and move ahead. At the third window you pull up, grab the
food and roar off into the distance. While your wait at the three-window (pipelined) drive-up may have
been slightly longer than your wait at the one-window (non-pipelined) restaurant, the pipeline solution
is significantly better because multiple customers are being processed simultaneously.
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Execute
The instruction gets executed.

Writeback
The processor writes the results back to wherever they are supposed to go—
possibly registers, possibly memory.

Ideally, instruction 1 will be entering the operand fetch stage as instruction 2
enters instruction decode stage and instruction 3 starts instruction fetch, and so on.
Our pipeline is five stages deep, so it should be possible to get five instructions in
flight all at once. If we could keep it up, we would see one instruction complete
per clock cycle.

Simple as this illustration seems, instruction pipelining is complicated in real life.
Each step must be able to occur on different instructions simultaneously, and
delays in any stage have to be coordinated with all those that follow. In Figure 2-2
we see three instructions being executed simultaneously by the processor, with
each instruction in a different stage of execution.

For instance, if a complicated memory access occurs in stage three, the instruction
needs to be delayed before going on to stage four because it takes some time to
calculate the operand's address and retrieve it from memory. All the while, the rest
of the pipeline is stalled. A simpler instruction, sitting in one of the earlier stages,
can't continue until the traffic ahead clears up.

Now imagine how a jump to a new program address, perhaps caused by an if
statement, could disrupt the pipeline flow. The processor doesn't know an
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instruction is a branch until the decode stage. It usually doesn't know whether a
branch will be taken or not until the execute stage. As shown in Figure 2-3, during
the four cycles after the branch instruction was fetched, the processor blindly
fetches instructions sequentially and starts these instructions through the pipeline.

If the branch "falls through," then everything is in great shape; the pipeline simply
executes the next instruction. It's as if the branch were a "no-op" instruction. How-
ever, if the branch jumps away, those three partially processed instructions never
get executed. The first order of business is to discard these "in-flight" instructions
from the pipeline. It turns out that because none of these instructions was actually
going to do anything until its execute stage, we can throw them away without
hurting anything (other than our efficiency). Somehow the processor has to be
able to clear out the pipeline and restart the pipeline at the branch destination.

Unfortunately, branch instructions occur every five to ten instructions in many pro-
grams. If we executed a branch every fifth instruction and only half our branches
fell through, the lost efficiency due to restarting the pipeline after the branches
would be 20 percent.

You need optimal conditions to keep the pipeline moving. Even in less-than-opti-
mal conditions, instruction pipelining is a big win—especially for RISC processors.
Interestingly, the idea dates back to the late 1950s and early 1960s with the UNI-
VAC LARC and the IBM Stretch. Instruction pipelining became mainstreamed in
1964, when the CDC 6600 and the IBM S/360 families were introduced with
pipelined instruction units—on machines that represented RISC-ish and CISC
designs, respectively. To this day, ever more sophisticated techniques are being
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applied to instruction pipelining, as machines that can overlap instruction execu-
tion become commonplace.

Pipelined Floating-Point Operations
Because the execution stage for floating-point operations can take longer than the
execution stage for fixed-point computations, these operations are typically
pipelined, too. Generally, this includes floating-point addition, subtraction, multi-
plication, comparisons, and conversions, though it might not include square roots
and division. Once a pipelined floating-point operation is started, calculations con-
tinue through the several stages without delaying the rest of the processor. The
result appears in a register at some point in'the future.

Some processors are limited in the amount of overlap their floating-point pipelines
can support. Internal components of the pipelines may be shared (for adding,
multiplying, normalizing, and rounding intermediate results), forcing restrictions
on when and how often you can begin new operations. In other cases, floating-
point operations can be started every cycle regardless of the previous floating-
point operations. We say that such operations we fully pipelined.

The number of stages in floating-point pipelines for affordable computers has
decreased over the last 10 years. More transistors and newer algorithms make it
possible to perform a floating-point addition or multiplication in just one to three
cycles. Generally the most difficult instruction to perform in a single cycle is the
floating-point multiply. However, if you dedicate enough hardware to it, there are
designs that can operate in a single cycle at a moderate clock rate.

Uniform Instruction Length
Our sample instruction pipeline had five stages: instruction fetch, instruction
decode, operand fetch, execution, and writeback. We want this pipeline to be able
to process five instructions in various stages without stalling. Decomposing each
operation into five identifiable parts, each of which is roughly the same amount of
time, is challenging enough for a RISC computer. For a designer working with a
CISC instruction set, it's especially difficult because CISC instructions come in vary-
ing lengths. A simple "return from subroutine" instruction might be one byte long,
for instance, whereas it would take a longer instruction to say "add register four to
memory location 2005 and leave the result in register five." The number of bytes
to be fetched must be known by the fetch stage of the pipeline as shown in Figure
2-4.

The processor has no way of knowing how long an instruction will be until it
reaches the decode stage and determines what it is. If it turns out to be a long
instruction, the processor may have to go back to memory and get the portion left
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behind; this stalls the pipeline. We could eliminate the problem by requiring that
all instructions be the same length, and that there be a limited number of instruc-
tion formats as shown in Figure 2-5. This way, every instruction entering the
pipeline is known a priori to be complete—not needing another memory access.
It would also be easier for the processor to locate the instruction fields that specify
registers or constants. Altogether because RISC can assume a fixed instruction
length, the pipeline flows much more smoothly.

Delayed Branches
As described earlier, branches are a significant problem in a pipelined architecture.
Rather than take a penalty for cleaning out the pipeline after a misguessed branch,
many RISC designs require an instruction after the branch. This instruction, in what
is called the branch delay slot, is executed no matter what way the branch goes.
An instruction in this position should be useful, or at least harmless, whichever
way the branch proceeds. That is, you expect the processor to execute the instruc-
tion following the branch in either case, and plan for it. In a pinch, a no-op can be
used. A slight variation would be to give the processor the ability to annul (or
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squash) the instruction appearing in the branch delay slot if it turns out that it
shouldn't have been issued after all:

ADD Rl,R2,Rl add rl to r2 and store in rl
SUB R3,R1,R3 subtract rl from r3, store in r3
BRA SOMEWHERE branch somewhere else
LABEL1 ZERO R3 instruction in branch delay slot

While branch delay slots appeared to be a very clever solution to eliminating
pipeline stalls associated with branch operations, as processors moved toward exe-
cuting two and four instructions simultaneously, another approach was needed.*

A more robust way of eliminating pipeline stalls was to "predict" the direction of
the branch using a table stored in the decode unit. As part of the decode stage, the
CPU would notice that the instruction was a branch and consult a table that kept
the recent behavior of the branch; it would then make a guess. Based on the
guess, the CPU would immediately begin fetching at the predicted location. As
long as the guesses were correct, branches cost exactly the same as any other
instruction.

If the prediction was wrong, the instructions that were in process had to be can-
celled, resulting in wasted time and effort. A simple branch prediction scheme is
typically correct well over 90% of the time, significantly reducing the overall nega-
tive performance impact of pipeline stalls due to branches. All recent RISC designs
incorporate some type of branch prediction, making branch delay slots effectively
unnecessary.

Another mechanism for reducing branch penalties is conditional execution. These
are instructions that look like branches in source code, but turn out to be a special
type of instruction in the object code. They are very useful because they replace
test and branch sequences altogether. The following lines of code capture the
sense of a conditional branch:

IF ( B < C ) THEN
A = D

ELSE
A = E

ENDIF

Using branches, this would require at least two branches to ensure that the proper
value ended up in A. Using conditional execution, one might generate code that
looks as follows:
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COMPARE B < C
IF TRUE A = D conditional instruction
IF FALSE A = E conditional instruction

This is a sequence of three instructions with no branches. One of the two assign-
ments executes, and the other acts as a no-op. No branch prediction is needed,
and the pipeline operates perfectly. There is a cost to taking this approach when
there are a large number of instructions in one or the other branch paths that
would seldom get executed using the traditional branch instruction model.

Load/Store Architecture
In a load/store instruction set architecture, memory references are limited to
explicit load and store instructions. Each instruction may not make more than one
memory reference per instruction. In a CISC processor, arithmetic and logical
instructions can include embedded memory references. There are three reasons
why limiting loads and stores to their own instructions is an improvement:

• First, we want all instructions to be the same length, for the reasons given
above. However, fixed lengths impose a budget limit when it comes to
describing what the operation does and which registers it uses. An instruction
that both referenced memory and performed some calculation wouldn't fit
within one instruction word.

• Second, giving every instruction the option to reference memory would com-
plicate the pipeline because there would be two computations to perform—
the address calculation plus whatever the instruction is supposed to do—but
there is only one execution stage. We could throw more hardware at it, but by
restricting memory references to explicit loads and stores, we can avoid the
problem entirely. Any instruction can perform an address calculation or some
other operation, but no instruction can do both.

• The third reason for limiting memory references to explicit loads and stores is
that they can take more time than other instructions—sometimes two or three
clock cycles more. A general instruction with an embedded memory reference
would get hung up in the operand fetch stage for those extra cycles, waiting
for the reference to complete. Again we would be faced with an instruction
pipeline stall.

Explicit load and store instructions can kick off memory references, in the
pipeline's execute stage, to be completed at a later time (they might complete
immediately; it depends on the processor and the cache). An operation down-
stream may require the result of the reference, but that's all right, as long as it is
far enough downstream that the reference has had time to complete.
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Simple Addressing Modes
Just as we want to simplify the instruction set, we also want a simple set of mem-
ory addressing modes. The reasons are the same: complicated address calcula-
tions, or those that require multiple memory references, will take too much time
and stall the pipeline. This doesn't mean that your program can't use elegant data
structures; the compiler explicitly generates the extra address arithmetic when it
needs it, as long as it can count on a few fundamental addressing modes in hard-
ware. In fact, the extra address arithmetic is often easier for the compiler to opti-
mize into faster forms (see Appendix B, Looking at Assembly Language, and the
section "Induction Variable Simplification" in Chapter 5, What a Compiler Does).

Of course, cutting back the number of addressing modes means that some mem-
ory references will take more real instructions than they might have taken on a
CISC machine. However, because everything executes more quickly, it generally is
still a performance win.

Second-Generation RISC Processors
The Holy Grail for early RISC machines was to achieve one instruction per clock.
The idealized RISC computer running at, say, 50 MHz, would be able to issue 50
million instructions per second assuming perfect pipeline scheduling. As we have
seen, a single instruction will take five or more clock ticks to get through the
instruction pipeline, but if the pipeline can be kept full, the aggregate rate will, in
fact, approach one instruction per clock. Once the basic pipelined RISC processor
designs became successful, competition ensued to determine which company
could build the best RISC processor.

Second-generation RISC designers used three basic methods to develop competi-
tive RISC processors:

• Improve the manufacturing processes to simply make the clock rate faster.
Take a simple design; make it smaller and faster. This approach was taken by
the Alpha processors from DEC. Alpha processors typically have had clock
rates double those of the closest competitor.

• Add duplicate compute elements on the space available as we can manufac-
ture chips with more transistors. This could allow two instructions to be exe-
cuted per cycle and could double performance without increasing clock rate.
This technique is called superscalar.

• Increase the number of stages in the pipeline above five. If the instructions
can truly be decomposed evenly into, say, ten stages, the clock rate could the-
oretically be doubled without requiring new manufacturing processes. This



Second-Generation RISC Processors

technique was called superpipelining. The MIPS processors used this tech-
nique with some success.

Superscalar Processors
The way you get two or more instructions per clock is by starting several opera-
tions side by side, possibly in separate pipelines. In Figure 2-6, if you have an
integer addition and a multiplication to perform, it should be possible to begin
them simultaneously, provided they are independent of each other (as long as the
multiplication does not need the output of the addition as one of its operands or
vice versa). You could also execute multiple fixed-point instructions—compares,
integer additions, etc.—at the same time, provided that they, too, are independent.
Another term used to describe superscalar processors is multiple instruction issue
processors.

The number and variety of operations that can be run in parallel depends on both
the program and the processor. The program has to have enough usable paral-
lelism so that there are multiple things to do, and the processor has to have an
appropriate assortment of functional units and the ability to keep them busy. The
idea is conceptually simple, but it can be a challenge for both hardware designers
and compiler writers. Every opportunity to do several things in parallel exposes
the danger of violating some precedence (i.e., performing computations in the
wrong order).

Superpipelined Processors
Roughly stated, simpler circuitry can run at higher clock speeds. Put yourself in the
role of a CPU designer again. Looking at the instruction pipeline of your proces-
sor, you might decide that the reason you can't get more speed out of it is that
some of the stages are too complicated or have too much going on, and they are

_23
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placing limits on how fast the whole pipeline can go. Because the stages are
clocked in unison, the slowest of them forms a weak link in the chain.

If you divide the complicated stages into less complicated portions, you can
increase the overall speed of the pipeline. This is called superpipelining. More
instruction pipeline stages with less complexity per stage will do the same work as
a pipelined processor, but with higher throughput due to increased clock speed.
Figure 2-7 shows an eight-stage pipeline used in the MIPS R4000 processor.

Figure 2- 7: MIPS R4000 instruction pipeline

Theoretically, if the reduced complexity allows the processor to clock faster, you
can achieve nearly the same performance as superscalar processors, yet without
instruction mix preferences. For illustration, picture a superscalar processor with
two units—fixed- and floating-point—executing a program that is composed
solely of fixed-point calculations; the floating-point unit goes unused. This reduces
the superscalar performance by one half compared to its theoretical maximum. A
superpipelined processor, on the other hand, will be perfectly happy to handle an
unbalanced instruction mix at full speed.

Superpipelines are not new; deep pipelines have been employed in the past,
notably on the CDC 6600. The label is a marketing creation to draw contrast to
superscalar processing, and other forms of efficient, high-speed computing.

Superpipelining can be combined with other approaches. You could have a super-
scalar machine with deep pipelines (DEC AXP and MIPS R-8000 are examples). In
fact, you should probably expect that faster pipelines with more stages will
become so commonplace that nobody will remember to call them superpipelines
after a while.
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RISC Means Fast
We all know that the "R" in RISC means "reduced." Lately, as the number of com-
ponents that can be manufactured on a chip has increased, CPU designers have
been looking at ways to make their processors faster by adding features. We have
already talked about many of the features such as on-chip multipliers, very fast
floating-point, lots of registers, and on~chip caches. Even with all of these features,
there seems to be space left over. Also, because much of the design of the control
section of the processor is automated, it might not be so bad to add just a "few"
new instructions here and there. Especially if simulations indicate a 10% overall
increase in speed!

So, what does it mean when they add 15 instructions to a RISC instruction set
architecture (ISA)? Would we call it "not-so-RISC"? A suggested term for this trend
is FISC, or fast instruction set computer. The point is that reducing the number of
instructions is not the goal. The goal is to build the fastest possible processor
within the manufacturing and cost constraints.*

Some of the types of instructions that are being added into architectures include:

• More addressing modes

• Meta-instructions such as "decrement counter and branch if non-zero"

• Specialized graphics instructions such as the Sun VIS set, the HP graphics
instructions, the MIPS Digital Media Extentions (MDMX), and the Intel MMX
instructions

Interestingly, the reason that the first two are feasible is that adder units take up so
little space, it is possible to put one adder into the decode unit and another into
the load/store unit. Most visualization instruction sets take up very little chip area.
They often provide "ganged" 8-bit computations to allow a 64-bit register to be
used to perform eight 8-bit operations in a single instruction.

Out-of-Order Execution: The Post-RISC
Architecture
We're never satisfied with the performance level of our computing equipment and
neither are the processor designers. Two-way superscalar processors were very
successful around 1994. Many designs were able to execute 1.6-1.8 instructions
per cycle on average, using all of the tricks described so far. As we became able to
manufacture chips with an ever-increasing transistor count, it seemed that we

* People will argue forever but, in a sense, reducing the instruction set was never an end in itself, it
was a means to an end.
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would naturally progress to four-way and then eight-way superscalar processors.
The fundamental problem we face when trying to keep four functional units busy
is that it's difficult to find contiguous sets of four (or eight) instructions that can be
executed in parallel. It's an easy cop-out to say, "the compiler will solve it all."

The solution to these problems that will allow these processors to effectively use
four functional units per cycle and hide memory latency is out-of-order execution
and speculative execution. Out-of-order execution allows a later instruction to be
processed before an earlier instruction is completed. The processor is "betting"
that the instruction will execute, and the processor will have the precomputed
"answer" the instruction needs. In some ways, portions of the RISC design philoso-
phy are turned inside-out in these new processors.

Speculative Computation
To understand the post-RISC architecture, it is important to separate the concept of
computing a value for an instruction and actually executing the instruction. Let's
look at a simple example:

LD R10,R2(RO) Load into RIO from memory

... 30 Instructions of various kinds (not FDIV)

FDIV R4,R5,R6 R4 = R5 / R6

Assume that (1) we are executing the load instruction, (2) R5 and R6 are already
loaded from earlier instructions, (3) it takes 30 cycles to do a floating-point divide,
and (4) there are no instructions that need the divide unit between the LD and the
FDIV. Why not start the divide unit computing the FDIV right now, storing the
result in some temporary scratch area? It has nothing better to do. When or if we
arrive at the FDIV, we will know the result of the calculation, copy the scratch area
into R4, and the FDIV will appear to execute in one cycle. Sound far-fetched? Not
for a post-RISC processor.

The post-RISC processor must be able to speculatively compute results before the
processor knows whether or not an instruction will actually execute. It accom-
plishes this by allowing instructions to start that will never finish and allowing later
instructions to start before earlier instructions finish.

To store these instructions that are in limbo between started and finished, the post-
RISC processor needs some space on the processor. This space for instructions is
called the instruction reorder buffer
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The Post-RISC Pipeline
The post-RISC processor pipeline in Figure 2-8 looks somewhat different from the
RISC pipeline. The first two stages are still instruction fetch and decode. Decode
includes branch prediction using a table that indicates the probable behavior of a
branch. Once instructions are decoded and branches are predicted, the instruc-
tions are placed into the IRB to be computed as soon as possible.

Figure 2-8: Post-RISC pipeline

The IRB holds up to 60 or so instructions that are waiting to execute for one rea-
son or another. In a sense, the fetch and decode/predict phases operate until the
buffer fills up. Each time the decode unit predicts a branch, the following instruc-
tions are marked with a different indicator so they can be found easily if the pre-
diction turns out to be wrong. Within the buffer, instructions are allowed to go to
the computational units when the instruction has all of its operand values. Because
the instructions are computing results without being executed, any instruction that
has its input values and an available computation unit can be computed. The
results of these computations are stored in extra registers not visible to the pro-
grammer called rename registers. The processor allocates rename registers, as they
are needed for instructions being computed.
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The execution units may have one or more pipeline stages, depending on the type
of the instruction. This part looks very much like traditional superscalar RISC pro-
cessors. Typically up to four instructions can begin computation from the IRB in
any cycle, provided four instructions are available with input operands and there
are sufficient computational units for those instructions.

Once the results for the instruction have been computed and stored in a rename
register, the instruction must wait until the preceding instructions finish so we
know that the instruction actually executes. In addition to the computed results,
each instruction has flags associated with it, such as exceptions. For example, you
would not be happy if your program crashed with the following message: "Error,
divide by zero. I was precomputing a divide in case you got to the instruction to
save some time, but the branch was mispredicted and it turned out that you were
never going to execute that divide anyway. I still had to blow you up though. No
hard feelings? Signed, the post-RISC CPU." So when a speculatively computed
instruction divides by zero, the CPU must simply store that fact until it knows the
instruction will execute and at that moment, the program can be legitimately
crashed.

If a branch does get mispredicted, a lot of bookkeeping must occur very quickly.
A message is sent to all the units to discard instructions that are part of all control
flow paths beyond the incorrect branch.

Instead of calling the last phase of the pipeline "writeback," it's called "retire." The
retire phase is what "executes" the instructions that have already been computed.
The retire phase keeps track of the instruction execution order and retires the
instructions in program order, posting results from the rename registers to the
actual registers and raising exceptions as necessary. Typically up to four instruc-
tions can be retired per cycle.

So the post-RISC pipeline is actually three pipelines connected by two buffers that
allow instructions to be processed out of order. However, even with all of this
speculative computation going on, the retire unit forces the processor to appear as
a simple RISC processor with predictable execution and interrupts.

Future Trends: Intel IA-64 and EPIC
In many ways the balance between implementing features in hardware and/or
software is a pendulum that swings back and forth. In the early days of CISC,
many features were added to hardware. The very complexity of these fully devel-
oped CISC processors began to limit their overall performance. RISC decided to
start over from scratch by implementing only the most basic functionality. How-
ever, almost as soon as the first RISC processors were on the market, RISC began
to see continued creeping elegance. The current out-of-order post-RISC processors
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are very powerful processors that perform many runtime optimizations to achieve
their very high performance.

The EPIC processor is a swing toward a more basic approach to out-of-order and
speculative execution. Like the initial RISC revolution, this revolution will result in
one or more new instruction set(s) such as the IA-64.

Unlike the post-RISC processors that use out-of-order execution and speculative
execution to implement a traditional RISC instruction set, the IA-64 instruction set
exposes speculative execution and out-of-order processing to the user. One of the
fundamental problems that limits the post-RISC processor's ability to scale to 8 or
16 functional units is the complexity of maintaining the "image" that these are
vanilla RISC processors. With the EPIC, the inner workings of the execution core
are not hidden from the instruction set.

The IA-64 implements an explicitly parallel instruction set. Instead of having the
processor determine the intra-instruction dependencies as part of the decode
stage, in IA-64 the compiler must add dependency information to the instructions.
By indicating which instructions do not depend on one another, the compiler is
communicating which instructions can execute in parallel, This greatly simplifies
the hardware needed in the processor for instruction scheduling.

The compiler also has added responsibility for memory operations using a pre-
fetch style of memory accesses. To eliminate branches and their associated penal-
ties, the IA-64 has extensive support for predicated execution. There can be a
number of active logical predicates and instructions that are conditionally execut-
ing based on the evaluation of the predicates. From the processor perspective, this
is much simpler than keeping track of the many control paths as the processor
speculatively executes beyond uncomputed branches.

This new architecture is covered in more detail in Appendix C, Future Trends:
Intel IA-64.

Closing Notes
Congratulations for reaching the end of a long chapter! We have talked a little bit
about old computers, CISC, RISC, post-RISC, and EPIC, and mentioned supercom-
puters in passing. I think it's interesting to observe that RISC processors are a
branch off a long-established tree. Many of the ideas that have gone into RISC
designs are borrowed from other types of computers, but none of them evolved
into RISC—RISC started at a discontinuity. There were hints of a RISC revolution
(the CDC 6600 and the IBM 801 project) but it really was forced on the world (for
its own good) by CPU designers at Berkeley and Stanford in the 1980s.
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As RISC has matured, there have been many improvements. Each time it appears
that we have reached the limit of the performance of our microprocessors there is
a new architectural breakthrough improving our single CPU performance. How
long can it continue? It is clear that as long as competition continues, there is sig-
nificant performance headroom using the out-of-order execution as the clock rates
move from a typical 200 MHz to 500+ MHz. DEC'S Alpha 21264 is planned to have
four-way out-of-order execution at 500 MHz by 1998. As of 1998, vendors are
beginning to reveal their plans for processors clocked at 1000 MHz or 1 GHz.

Unfortunately, developing a new processor is a very expensive task. If enough
companies merge and competition diminishes, the rate of innovation will slow.
Hopefully we will be seeing four processors on a chip, each 16-way out-of-order
superscalar, clocked at 1 GHz for $200 before we eliminate competition and let the
CPU designers rest on their laurels. At that point, scalable parallel processing will
suddenly become interesting again.

How will designers tackle some of the fundamental architectural problems, per-
haps the largest being memory systems? Even though the post-RISC architecture
and the EPIC alleviate the latency problems somewhat, the memory bottleneck
will always be there. The good news is that even though memory performance
improves more slowly than CPU performance, memory system performance does
improve over time. Well look next at techniques for building memory systems.

As discussed in the Preface, the exercises that come at the end of most chapters in
this book are not like the exercises in most engineering texts. These exercises are
mostly thought experiments, without well-defined answers, designed to get you
thinking about the hardware on your desk.

Exercises
1. Speculative execution is safe for certain types of instructions; results can be

discarded if it turns out that the instruction shouldn't have executed. Floating-
point instructions and memory operations are two classes of instructions for
which speculative execution is trickier, particularly because of the chance of
generating exceptions. For instance, dividing by zero or taking the square root
of a negative number causes an exception. Under what circumstances will a
speculative memory reference cause an exception?

2. Picture a machine with floating-point pipelines that are 100 stages deep (that's
ridiculously deep), each of which can deliver a new result every nanosecond.
That would give each pipeline a peak throughput rate of 1 Gflop, and a worst-
case throughput rate of 10 Mflops. What characteristics would a program need
to have to take advantage of such a pipeline?
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Let's say that you are fast asleep some night and begin dreaming. In your dream,
you have a time machine and a few 500-MHz four-way superscalar processors.
You turn the time machine back to 1981. Once you arrive back in time, you go out
and purchase an IBM PC with an Intel 8088 microprocessor running at 4.77 MHz.
For much of the rest of the night, you toss and turn as you try to adapt the
500-MHz processor to the Intel 8088 socket using a soldering iron and Swiss Army
knife. Just before you wake up, the new computer finally works, and you turn it
on to run the Linpack* benchmark and issue a press release. Would you expect
this to turn out to be a dream or a nightmare? Chances are good that it would turn
out to be a nightmare, just like the previous night where you went back to the
Middle Ages and put a jet engine on a horse. (You have got to stop eating double
pepperoni pizzas so late at night.)

Even if you can speed up the computational aspects of a processor infinitely fast,
you still must load and store the data and instructions to and from a memory.
Today's processors continue to creep ever closer to infinitely fast processing. Mem-
ory performance is increasing at a much slower rate (it will take longer for mem-
ory to become infinitely fast). Many of the interesting problems in high
performance computing use a large amount of memory. As computers are getting
faster, the size of problems they tend to operate on also goes up. The trouble is
that when you want to solve these problems at high speeds, you need a memory
system that is large, yet at the same time fast—a big challenge. Possible
approaches include the following:

See Chapter 15, Using Published Benchmarks, for details on the Linpack benchmark.

31
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• Every memory system component can be made individually fast enough to
respond to every memory access request.

• Slow memory can be accessed in a round-robin fashion (hopefully) to give the
effect of a faster memory system.

• The memory system design can be made "wide" so that each transfer contains
many bytes of information.

• The system can be divided into faster and slower portions and arranged so
that the fast portion is used more often than the slow one.

Again, economics are the dominant force in the computer business. A cheap, sta-
tistically optimized memory system will be a better seller than a prohibitively
expensive, blazingly fast one, so the first choice is not much of a choice at all. But
these choices, used in combination, can attain a good fraction of the performance
you would get if every component were fast. Chances are very good that your
high performance workstation incorporates several or all of them.

Once the memory system has been decided upon, there are things we can do in
software to see that it is used efficiently. A compiler that has some knowledge of
the way memory is arranged and the details of the caches can optimize their use
to some extent. The other place for optimizations is in user applications, as we'll
see later in the book. A good pattern of memory access will work with, rather than
against, the components of the system.

In this chapter we discuss how the pieces of a memory system work. We look at
how patterns of data and instruction access factor into your overall runtime, espe-
cially as CPU speeds increase. We also talk a bit about the performance implica-
tions of running in a virtual memory environment.

Memory Technology
Almost all fast memories used today are semiconductor-based.* They come in two
flavors: dynamic random access memory (DRAM) and static random access mem-
ory (SRAM). The term random means that you can address memory locations in
any order. This is to distinguish random access from serial memories, where you
have to step through all intervening locations to get to the particular one you are
interested in. An example of a storage medium that is not random is magnetic
tape. The terms dynamic and static have to do with the technology used in the
design of the memory cells. DRAMs are charge-based devices, where each bit is
represented by an electrical charge stored in a very small capacitor. The charge
can leak away in a short amount of time, so the system has to be continually

* Magnetic core memory is still used in applications where radiation "hardness"—resistance to changes
caused by ionizing radiation—is important.
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refreshed to prevent data from being lost. The act of reading a bit in DRAM also
discharges the bit, requiring that it be refreshed. It's not possible to read the mem-
ory bit in the DRAM while it's being refreshed.

SRAM is based on gates, and each bit is stored in four to six connected transistors.
SRAM memories retain their data as long as they have power, without the need for
any form of data refresh.

DRAM offers the best price/performance, as well as highest density of memory
cells per chip. This means lower cost, less board space, less power, and less heat.
On the other hand, some applications such as cache and video memory require
higher speed, to which SRAM is better suited. Currently, you can choose between
SRAM and DRAM at slower speeds—down to about 50 nanoseconds (ns). SRAM
has access times down to about 7 ns at higher cost, heat, power, and board space.

In addition to the basic technology to store a single bit of data, memory perfor-
mance is limited by the practical considerations of the on-chip wiring layout and
the external pins on the chip that communicate the address and data information
between the memory and the processor.

Access Time
The amount of time it takes to read or write a memory location is called the mem-
ory access time. A related quantity is the memory cycle time. Whereas the access
time says how quickly you can reference a memory location, cycle time describes
how often you can repeat references. They sound like the same thing, but they're
not. For instance, if you ask for data from DRAM chips with a 50-ns access time, it
may be 100 ns before you can ask for more data from the same chips. This is
because the chips must internally recover from the previous access. Also, when
you are retrieving data sequentially from DRAM chips, some technologies have
improved performance. On these chips, data immediately following the previously
accessed data may be accessed as quickly as 10 ns.

Access and cycle times for commodity DRAMs are shorter than they were just a
few years ago, meaning that it is possible to build faster memory systems. But CPU
clock speeds have increased too. The home computer market makes a good study.
In the early 1980s, the access time of commodity DRAM (200 ns) was shorter than
the clock cycle (4.77 MHz = 210 ns) of the IBM PC XT. This meant that DRAM
could be connected directly to the CPU without worrying about over running the
memory system. Faster XT and AT models were introduced in the mid-1980s with
CPUs that clocked more quickly than the access times of available commodity
memory. Faster memory was available for a price, but vendors punted by selling
computers with wait states added to the memory access cycle. Wait states are artifi-
cial delays that slow down references so that memory appears to match the speed
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of a faster CPU—at a penalty. However, the technique of adding wait states begins
to significantly impact performance around 25~33MHz. Today, CPU speeds are
even farther ahead of DRAM speeds.

The clock time for commodity home computers has gone from 210 ns for the XT
to around 3 ns for a 300-MHz Pentium-II, but the access time for commodity
DRAM has decreased disproportionately less—from 200 ns to around 50 ns. Pro-
cessor performance doubles every 18 months, while memory performance doubles
roughly every seven years.

The CPU/memory speed gap is even larger in workstations. Some models clock at
intervals as short as 1.6 ns. How do vendors make up the difference between CPU
speeds and memory speeds? The memory in the Cray-1 supercomputer used SRAM
that was capable of keeping up with the 12.5-ns clock cycle. Using SRAM for its
main memory system was one of the reasons that most Cray systems needed liquid
cooling.

Unfortunately, it's not practical for a moderately priced system to rely exclusively
on SRAM for storage. It's also not practical to manufacture inexpensive systems
with enough storage using exclusively SRAM.

The solution is a hierarchy of memories using processor registers, one to three lev-
els of SRAM cache, DRAM main memory, and virtual memory stored on media
such as disk. At each point in the memory hierarchy, tricks are employed to make
the best use of the available technology. For the remainder of this chapter, we will
examine the memory hierarchy and its impact on performance.

In a sense, with today's high performance microprocessor performing computa-
tions so quickly, the task of the high performance programmer becomes the care-
ful management of the memory hierarchy. In some sense it's a useful intellectual
exercise to view the simple computations such as addition and multiplication as
"infinitely fast" in order to get the programmer to focus on the impact of memory
operations on the overall performance of the program.

Registers
At least the top layer of the memory hierarchy, the CPU registers, operate as fast as
the rest of the processor. The goal is to keep operands in the registers as much as
possible. This is especially important for intermediate values used in a long com-
putation such as:

X = G * 2.41 + A / W - W * M

While computing the value of A divided by W, we must store the result of multi-
plying G by 2.41. It would be a shame to have to store this intermediate result in
memory and then reload it a few instructions later. On any modern processor with
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moderate optimization, the intermediate result is stored in a register. Also, the
value W is used in two computations, and so it can be loaded once and used
twice to eliminate a "wasted" load.

Compilers have been very good at detecting these types of optimizations and effi-
ciently making use of the available registers since the 1970s. Adding more registers
to the processor has some performance benefit, It's not practical to add enough
registers to the processor to store the entire problem data. So we must still use the
slower memory technology.

Caches
Once we go beyond the registers in the memory hierarchy, we encounter caches.
Caches are small amounts of SRAM that store a subset of the contents of the mem-
ory. The hope is that the cache will have the right subset of main memory at the
right time.

The actual cache architecture has had to change as the cycle time of the proces-
sors has improved. The processors are so fast that off-chip SRAM chips are not
even fast enough. This has lead to a multilevel cache approach with one, or even
two, levels of cache implemented as part of the processor. Table 3-1 shows the
approximate speed of accessing the memory hierarchy on a 500-MHz DEC 21164
Alpha.

Table 3-1: Memory Access Speed on a DEC 21164 Alpha

The off-chip and memory timings include more than just the access time for the
SRAM and DRAM. There is overhead in moving the data between the chips and
the cost of keeping the caches consistent with the main memory. When data is
loaded from the memory, it's loaded into the caches as well, unless the cache is
bypassed.

When every reference can be found in a cache, you say that you have a 100% hit
rate. Generally, a hit rate of 90% or better is considered good for a level-one (LI)
cache. In level-two (L2) cache, a hit rate of above 50% is considered acceptable.
Below that, application performance can drop off steeply.

One can characterize the average read performance of the memory hierarchy by
examining the probability that a particular load will be satisfied at a particular level
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of the hierarchy. For example, assume a memory architecture with an LI cache
speed of 10 ns, L2 speed of 30 ns, and memory speed of 300 ns. If a memory ref-
erence were satisfied from LI cache 75% of the time, L2 cache 20% of the time,
and main memory 5% of the time, the average memory performance would be:

( 0 . 7 5 * 10 ) + { 0 . 2 0 * 30 ) + { 0 .05 300 = 28 .5 ns

You can easily see why it's important to have an LI cache hit rate of 90% or
higher.

Given that a cache holds only a subset of the main memory at any time, it's impor-
tant to keep an index of which areas of the main memory are currently stored in
the cache. To reduce the amount of space that must be dedicated to tracking
which memory areas are in cache, the cache is divided into a number of equal
sized slots known as lines. Each line contains some number of sequential main
memory locations, generally four to sixteen integers or real numbers. Whereas the
data within a line comes from the same part of memory, other lines can contain
data that is far separated within your program, or perhaps data from somebody
else's program, as in Figure 3-1. When you ask for something from memory, the
computer checks to see if the data is available within one of these cache lines. If it
is, the data is returned with a minimal delay. If it's not, your program may be
delayed while a new line is fetched from main memory. Of course, if a new line is
brought in, another has to be thrown out. If you're lucky, it won't be the one con-
taining the data you are just about to need.

Figure 3-1: Cache lines can come from different parts of memory

When data is modified by storing a new value into a cache line, there must be
some mechanism to update the data in main memory. When caches are involved,
there are two approaches that are used when data is written back into main mem-
ory. When the cache operates as a writeback cache, data written into cache gener-
ally stays in the cache until the cache line is replaced, at which point it is written
into main memory. This works well if the processor is storing into successive
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locations in the same line. In a "write-through" cache, data is immediately written
into main memory and into the cache. Then when the cache line is needed for
another area of memory, it can simply be discarded without any need for a write-
back. Writeback is most common on single processors.

On multiprocessors (computers with several CPUs), written data must be returned
to main memory so the rest of the processors can see it, or all other processors
must be made aware of local cache activity. Perhaps they need to be told to invali-
date old lines containing the previous value of the written variable so that they
don't accidentally use stale data, This is known as maintaining coherency between
the different caches. The problem can become very complex in a multiprocessor
system.*

Caches are effective because programs often exhibit characteristics that help keep
the hit rate high. These characteristics are called spatial and temporal locality of
reference; programs often make use of instructions and data that are near to other
instructions and data, both in space and time. When a cache line is retrieved from
main memory, it contains not only the information that caused the cache miss, but
also some neighboring information. Chances are good that the next time your pro-
gram needs data, it will be in the cache line just fetched or another one recently
fetched.

Caches work best when a program is reading sequentially through the memory.
Assume a program is reading 32-bit integers with a cache line size of 256 bits.
When the program references the first word in the cache line, it waits while the
cache line is loaded from main memory. Then the next seven references to mem-
ory are satisfied quickly from the cache. This is called unit stride because the
address of each successive data element is incremented by one and all the data
retrieved into the cache is used. The following loop is a unit-stride loop:

DO 1=1,1000000
SUM = SUM + A(I)

END DO

When a program accesses a large data structure using "non-unit stride," perfor-
mance suffers because data is loaded into cache that is not used. For example:

DO 1=1,1000000,8
SUM = SUM + A(I)

END DO

This code would experience the same number of cache misses as the previous
loop, and the same amount of data would be loaded into the cache. However, the
program needs only one of the eight 32-bit words loaded into cache. Even though
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this program performs one-eighth the additions of the previous loop, its elapsed
time is roughly the same as the previous loop because the memory operations
dominate performance.

While this example may seem a bit contrived, there are several situations in which
non-unit strides occur quite often. First, when a FORTRAN two-dimensional array
is stored in memory, successive elements in the first column are stored sequen-
tially followed by the elements of the second column. If the array is processed
with the row iteration as the inner loop, it produces a unit-stride reference pattern
as follows:

REAL*4 A(200,200)
DO J = 1,200
DO I = 1,200

SUM = SUM + A(I,J)
END DO

END DO

Interestingly, a FORTRAN programmer would most likely write the loop (in alpha-
betical order) as follows, producing a non-unit stride of 800 bytes between succes-
sive load operations:

REAL*4 A(200,200)
DO I = 1,200
DO J = 1,200
SUM = SUM + A{I,J)

END DO
END DO

Because of this, some compilers can detect this suboptimal loop order and reverse
the order of the loops to make best use of the memory system. As we will see in
Chapter 4, however, this code transformation may produce different results, and so
you may have to give the compiler "permission" to interchange these loops in this
particular example (or, after reading this book, you could just code it properly in
the first place).

Another situation that typically results in non-unit stride is the traversal of a linked
list:

while ( ptr != NULL ) ptr = ptr->next;

The next element that is retrieved is based on the contents of the current element.
This type of loop bounces all around memory in no particular pattern. This is
called pointer chasing and there are no good ways to improve the performance of
this code.



Cache Organization 39

A third pattern often found in certain types of codes is called gather (or scatter)
and occurs in loops such as:

SUM = SUM + ARR ( IND(I) )

where the IND array contains offsets into the ARR array. Again, like the linked list,
the exact pattern of memory references is known only at runtime when the values
stored in the IND array are known. Some special-purpose systems have special
hardware support to accelerate this particular operation.

Cache Organization
The process of pairing memory locations with cache lines is called mapping. Of
course, given that a cache is smaller than main memory, you have to share the
same cache lines for different memory locations. In caches, each cache line has a
record of the memory address (called the tag) it represents and perhaps when it
was last used. The tag is used to track which area of memory is stored in a partic-
ular cache line.

The way memory locations (tags) are mapped to cache lines can have a beneficial
effect on the way your program runs, because if two heavily used memory loca-
tions map onto the same cache line, the miss rate will be higher than you would
like it to be. Caches can be organized in one of several ways: direct mapped, fully
associative, and set associative.

Direct-Mapped Cache
Direct mapping, as shown in Figure 3-2, is the simplest algorithm for deciding
how memory maps onto the cache. Say, for example, that your computer has a
4-KB cache. In a direct mapped scheme, memory location 0 maps into cache loca-
tion 0, as do memory locations 4K, 8K, 12K, etc. In other words, memory maps
onto the cache size. Another way to think about it is to imagine a metal spring
with a chalk line marked down the side. Every time around the spring, you
encounter the chalk line at the same place modulo the circumference of the
spring. If the spring is very long, the chalk line crosses many coils, the analog
being a large memory with many locations mapping into the same cache line.

Problems occur when alternating runtime memory references in a direct-mapped
cache point to the same cache line. Each reference causes a cache miss and
replaces the entry just replaced, causing a lot of overhead. The popular word for
this is thrashing. When there is lots of thrashing, a cache can be more of a liability
than an asset because each cache miss requires that a cache line be refilled—an
operation that moves more data than merely satisfying the reference directly from
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Figure 3-2: Many memory addresses map to the same cache line

main memory. It is easy to construct a pathological case that causes thrashing in a
4-KB direct-mapped cache:

REAL*4 A(1024), B(1024)
COMMON /STUFF/ A,B
DO 1=1,1024
A(I) = A(I) * B(I)

END DO
END

The arrays A and B both take up exactly 4 KB of storage, and their inclusion
together in COMMON assures that the arrays start exactly 4 KB apart in memory. In
a 4-KB direct mapped cache, the same line that is used for A (1} is used for B (1 ) ,
and likewise for A ( 2 ) and B ( 2 ) , etc., so alternating references cause repeated
cache misses. To fix it, you could either adjust the size of the array A, or put some
other variables into COMMON, between them. For this reason one should generally
avoid array dimensions that are close to powers of two.

Fully Associative Cache
At the other extreme from a direct mapped cache is a fully associative cache,
where any memory location can be mapped into any cache line, regardless of
memory address. Fully associative caches get their name from the type of memory
used to construct them—associative memory. Associative memory is like regular
memory, except that each memory cell knows something about the data it con-
tains.
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When the processor goes looking for a piece of data; the cache lines are asked all
at once whether any of them has it. The cache line containing the data holds up
its hand and says "I have it"; if none of them do, there is a cache miss. It then
becomes a question of which cache line will be replaced with the new data.
Rather than map memory locations to cache lines via an algorithm, like a direct-
mapped cache, the memory system can ask the fully associative cache lines to
choose among themselves which memory locations they will represent. Usually
the least recently used line is the one that gets overwritten with new data. The
assumption is that if the data hasn't been used in quite a while, it is least likely to
be used in the future.

Fully associative caches have superior utilization when compared to direct
mapped caches. It's difficult to find real-world examples of programs that will
cause thrashing in a fully associative cache. The expense of fully associative
caches is very high, in terms of size, price, and speed. The associative caches that
do exist tend to be small.

Set-Associative Cache
Now imagine that you have two direct mapped caches sitting side by side in a sin-
gle cache unit as shown in Figure 3-3. Each memory location corresponds to a
particular cache line in each of the two direct-mapped caches. The one you
choose to replace during a cache miss is subject to a decision about whose line
was used last—the same way the decision was made in a fully associative cache
except that now there are only two choices. This is called a set-associative cache.
Set-associative caches generally come in two and four separate banks of cache.
These are called two-way and four-way set associative caches, respectively. Of
course, there are benefits and drawbacks to each type of cache. A set-associative
cache is more immune to cache thrashing than a direct-mapped cache of the same
size, because for each mapping of a memory address into a cache line, there are
two or more choices where it can go. The beauty of a direct-mapped cache, how-
ever, is that it's easy to implement and, if made large enough, will perform roughly
as well as a set-associative design. Your machine may contain multiple caches for
several different purposes. Here's a little program for causing thrashing in a 4-KB
two-way set- associative cache:

REAL*4 A(1024), B(1024), C(1024)
COMMON /STUFF/ A,B,C
DO 1=1,1024
A(I) = A(I) * B(I) + C(I)

END DO
END

Like the previous cache thrasher program, this forces repeated accesses to the
same cache lines, except that now there are three variables contending for the
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same mapping instead of two. Again, the way to fix it would be to change the size
of the arrays or insert something in between them, in COMMON. By the way, if you
accidentally arranged a program to thrash like this, it would be hard for you to
detect it—aside from a feeling that the program runs a little slow. Few vendors
provide tools for measuring cache misses.

Instruction Cache
So far we have glossed over the two kinds of information you would expect to
find in a cache between main memory and the CPU: instructions and data. But if
you think about it, the demand for data is separate from the demand for instruc-
tions. In superscalar processors, for example, it's possible to execute an instruction
that causes a data cache miss alongside other instructions that require no data
from cache at all, i.e., they operate on registers. It doesn't seem fair that a cache
miss on a data reference in one instruction should keep you from fetching other
instructions because the cache is tied up. Furthermore, a cache depends on local-
ity of reference between bits of data and other bits of data or instructions and
other instructions, but what kind of interplay is there between instructions and
data? It would seem possible for instructions to bump perfectly useful data from
cache, or vice versa, with complete disregard for locality of reference.

Many designs from the 1980s used a single cache for both instructions and data.
But newer designs are employing what is known as the Harvard Memory Architec-
ture, where the demand for data is segregated from the demand for instructions.
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Main memory is a still a single large pool, but these processors have separate data
and instruction caches, possibly of different designs. By providing two indepen-
dent sources for data and instructions, the aggregate rate of information coming
from memory is increased, and interference between the two types of memory ref-
erences is minimized. Also, instructions generally have an extremely high level of
locality of reference because of the sequential nature of most programs. Because
the instruction caches don't have to be particularly large to be effective, a typical
architecture is to have separate LI caches for instructions and data and to have a
combined L2 cache. For example, the IBM/Motorola PowerPC 604e has separate
32-K four-way set-associative LI caches for instruction and data and a combined
L2 cache.

Virtual Memory
Virtual memory decouples the addresses used by the program (virtual addresses)
from the actual addresses where the data is stored in memory (physical addresses).
Your program sees its address space starting at 0 and working its way up to some
large number, but the actual physical addresses assigned can be very different. It
gives a degree of flexibility by allowing all processes to believe they have the
entire memory system to themselves. Another trait of virtual memory systems is
that they divide your program's memory up into pages—chunks. Page sizes vary
from 512 bytes to 1 MB or larger, depending on the machine. Pages don't have to
be allocated contiguously, though your program sees them that way. By being
separated into pages, programs are easier to arrange in memory, or move portions
out to disk.

Page Tables
Say that your program asks for a variable stored at location 1000. In a virtual mem-
ory machine, there is no direct correspondence between your program's idea of
where location 1000 is and the physical memory systems' idea. To find where your
variable is actually stored, the location has to be translated from a virtual to a
physical address. The map containing such translations is called a page table. Each
process has a several page tables associated with it, corresponding to different
regions, such as program text and data segments.

To understand how address translation works, imagine the following scenario: at
some point, your program asks for data from location 1000. Figure 3-4 shows the
steps required to complete the retrieval of this data. By choosing location 1000,
you have identified which region the memory reference falls in, and this identifies
which page table is involved. Location 1000 then helps the processor choose an
entry within the table. For instance, if the page size is 512 bytes, 1000 falls within
the second page (pages range from addresses 0-511, 512-1023, 1024-1535, etc.).
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Therefore, the second table entry should hold the address of the page housing the
value at location 1000.

Figure 3-4: Virtual-to-physical address mapping

The operating system stores the page-table addresses virtually, so it's going to take
a virtual-to-physical translation to locate the table in memory. One more virtual-to-
physical translation, and we finally have the true address of location 1000. The
memory reference can complete, and the processor can return to executing your
program.

Translation Lookaside Buffer
As you can see, address translation through a page table is pretty complicated. It
required two table lookups (maybe three) to locate our data. If every memory ref-
erence was that complicated, virtual memory computers would be horrible per-
formers. Fortunately, locality of reference causes virtual address translations to
group together; a program may repeat the same virtual page mapping millions of
times a second. And where we have repeated use of the same data, we can apply
a cache.

All modern virtual memory machines have a special cache called a translation
lookaside buffer (TLB) for virtual-to-physical-memory-address translation. The two
inputs to the TLB are an integer that identifies the program making the memory
request and the virtual page requested. From the output pops a pointer to the
physical page number. Virtual address in; physical address out. TLB lookups occur
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in parallel with instruction execution, so if the address data is in the TLB, memory
references proceed quickly.

Like other kinds of caches, the TLB is limited in size. It doesn't contain enough
entries to handle all the possible virtual-to-physical-address translations for all the
programs that might run on your computer. Larger pools of address translations
are kept out in memory, in the page tables. If your program asks for a virtual-to-
physical-address translation, and the entry doesn't exist in the TLB, you suffer a
TLB miss. The information needed may have to be generated (a new page may
need to be created), or it may have to be retrieved from the page table.

The TLB is good for the same reason that other types of caches are good: it
reduces the cost of memory references. But like other caches, there are pathologi-
cal cases where the TLB can fail to deliver value. The easiest case to construct is
one where every memory reference your program makes causes a TLB miss:

REAL X(IOOOOOOO)
COMMON X
DO 1=0,9999
DO J=l,10000000,10000
SUM = SUM + X(J+I)

END DO
END DO

Assume that the TLB page size for your computer is less than 40 KB. Every time
through the inner loop in the above example code, the program asks for data that
is 4 bytes*10,000 = 40,000 bytes away from the last reference. That is, each refer-
ence falls on a different memory page. This causes 1000 TLB misses in the inner
loop, taken 1001 times, for a total of at least one million TLB misses. To add insult
to injury, each reference is guaranteed to cause a data cache miss as well. Admit-
tedly, no one would start with a loop like the one above. But presuming that the
loop was any good to you at all, the restructured version in the code below would
cruise through memory like a warm knife through butter:

REAL X(IOOOOOOO)
COMMON X
DO 1=1,10000000

SUM = SUM + X(I)
END DO

The revised loop has unit stride, and TLB misses occur only every so often. Usu-
ally it is not necessary to explicitly tune programs to make good use of the TLB.
Once a program is tuned to be "cache-friendly," it nearly always is tuned to be
TLB friendly.

Because there is a performance benefit to keeping the TLB very small, the TLB
entry often contains a length field. A single TLB entry can be over a megabyte in
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length and can be used to translate addresses stored in multiple virtual memory
pages.

Page Faults
A page table entry also contains other information about the page it represents,
including flags to tell whether the translation is valid, whether the associated page
can be modified, and some information describing how new pages should be ini-
tialized. References to pages that aren't marked valid are called page faults.

Taking a worst-case scenario, say that your program asks for a variable from a par-
ticular memory location. The processor goes to look for it in the cache and finds it
isn't there (cache miss), which means it must be loaded from memory. Next it
goes to the TLB to find the physical location of the data in memory and finds there
is no TLB entry (a TLB miss). Then it tries consulting the page table (and refilling
the TLB), but finds that either there is no entry for your particular page or that the
memory page has been shipped to disk (both are page faults). Each step of the
memory hierarchy has shrugged off your request. A new page will have to be cre-
ated in memory and possibly, depending on the circumstances, refilled from disk.

Although they take a lot of time, page faults aren't errors. Even under optimal con-
ditions every program suffers some number of page faults. Writing a variable for
the first time or calling a subroutine that has never been called can cause a page
fault. This may be surprising if you have never thought about it before. The illu-
sion is that your entire program is present in memory from the start, but some por-
tions may never be loaded. There is no reason to make space for a page whose
data is never referenced or whose instructions are never executed. Only those
pages that are required to run the job get created or pulled in from the disk.*

The pool of physical memory pages is limited because physical memory is limited,
so on a machine where many programs are lobbying for space, there will be a
higher number of page faults. This is because physical memory pages are continu-
ally being recycled for other purposes. However, when you have the machine to
yourself, and memory is less in demand, allocated pages tend to stick around for a
while. In short, you can expect fewer page faults on a quiet machine. One trick to
remember if you ever end up working for a computer vendor: always run short
benchmarks twice. On some systems, the number of page faults will go down.
This is because the second run finds pages left in memory by the first, and you
won't have to pay for page faults again.t

* The term for this is demand paging,

t Text pages are identified by the disk device and block number from which they came.
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Paging space (swap space) on the disk is the last and slowest piece of the memory
hierarchy for most machines. In the worst-case scenario we saw how a memory
reference could be pushed down to slower and slower performance media before
finally being satisfied. If you step back, you can view the disk paging space as
having the same relationship to main memory as main memory has to cache. The
same kinds of optimizations apply too, and locality of reference is important. You
can run programs that are larger than the main memory system of your machine,
but sometimes at greatly decreased performance. When we look at memory opti-
mizations in Chapter 8, we will concentrate on keeping the activity in the fastest
parts of the memory system and avoiding the slow parts.

Improving Memory Performance
Given the importance, in the area of high performance computing, of the perfor-
mance of a computer's memory subsystem, many techniques have been used to
improve the performance of the memory systems of computers. The two attributes
of memory system performance are generally bandwidth and latency. Some mem-
ory system design changes improve one at the expense of the other, and other
improvements positively impact both bandwidth and latency. Bandwidth generally
focuses on the best possible steady-state transfer rate of a memory system. Usually
this is measured while running a long unit-stride loop reading or reading and writ-
ing memory.* Latency is a measure of the worst-case performance of a memory
system as it moves a small amount of data such as a 32- or 64-bit word between
the processor and memory. Both are important because they are an important part
of most high performance applications.

Because memory systems are divided into components, there are different band-
width and latency figures between different components as shown in Figure 3-5.
The bandwidth rate between a cache and the CPU will be higher than the band-
width between main memory and the cache, for instance. There may be several
caches and paths to memory as well. Usually, the peak memory bandwidth quoted
by vendors is the speed between the data cache and the processor.

In the rest of this section, we look at techniques to improve latency, bandwidth, or
both.

Large Caches
As we mentioned at the start of this chapter, the disparity between CPU speeds
and memory is growing. If you look closely, you can see vendors innovating in
several ways. Some workstations are being offered with 4- MB data caches! This is

* See the STREAM section in Chapter 15 for measures of memory bandwidth.
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Figure 3-5: Simple memory system

larger than the main memory systems of machines just a few years ago. With a
large enough cache, a small (or even moderately large) data set can fit completely
inside and get incredibly good performance. Watch out for this when you are test-
ing new hardware. When your program grows too large for the cache, the perfor-
mance may drop off considerably, perhaps by a factor of 10 or more, depending
on the memory access patterns. Interestingly, an increase in cache size on the part
of vendors can render a benchmark obsolete.

Up to 1992, the Linpack 100x100 benchmark was probably the single most-
respected benchmark to determine the average performance across a wide range
of applications. In 1992, IBM introduced the IBM RS-6000 which had a cache large
enough to contain the entire 100x100 matrix for the duration of the benchmark.
For the first time, a workstation had performance on this benchmark on the same
order of supercomputers. In a sense, with the entire data structure in a SRAM
cache, the RS-6000 was operating like a Cray vector supercomputer, The problem
was that the Cray could maintain and improve the performance for a 120x120
matrix, whereas the RS-6000 suffered a significant performance loss at this
increased matrix size. Soon, all the other workstation vendors introduced similarly
large caches, and the 100x100 Linpack benchmark ceased to be useful as an indi-
cator of average application performance.

Wider Memory Systems
Consider what happens when a cache line is refilled from memory: consecutive
memory locations from main memory are read to fill consecutive locations within
the cache line. The number of bytes transferred depends on how big the line is—
anywhere from 16 bytes to 256 bytes or more. We want the refill to proceed
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quickly because an instruction is stalled in the pipeline, or perhaps the processor
is waiting for more instructions. In Figure 3-6, if we have two DRAM chips that
provide us with 4 bits of data every 100 ns (remember cycle time), a cache fill of a
16-byte line takes 1600 ns.

Figure 3-6: Narrow memory system

One way to make the cache-line fill operation faster is to "widen" the memory sys-
tem as shown in Figure 3-7. Instead of having two rows of DRAMs, we create mul-
tiple rows of DRAMs. Now on every 100-ns cycle, we get 32 contiguous bits, and
our cache-line fills are four times faster.

Figure 3- 7: Wide memory system

We can improve the performance of a memory system by increasing the width of
the memory system up to the length of the cache line, at which time we can fill
the entire line in a single memory cycle. On the SGI Power Challenge series of
systems, the memory width is 256 bits. The downside of a wider memory system is
that DRAMs must be added in multiples. In many modern workstations and
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personal computers, memory is expanded in the form of single inline memory
modules (SIMMs). SIMMs currently are either 30-, 72-, or 168-pin modules, each of
which is made up of several DRAM chips ready to be installed into a memory sub-
system.

Bypassing Cache
It's interesting that we have spent nearly an entire chapter on how great a cache is
for high performance computers, and now we are going to bypass the cache to
improve performance. As mentioned earlier, some types of processing result in
non-unit strides (or bouncing around) through memory. These types of memory
reference patterns bring out the worst-case behavior in cache-based architectures.
It is these reference patterns that see improved performance by bypassing the
cache. Inability to support these types of computations remains an area where tra-
ditional supercomputers can significantly outperform high-speed RISC processors.
For this reason, RISC processors that are serious about number crunching may
have special instructions that bypass data cache memory; the data are transferred
directly between the processor and the main memory system.* In Figure 3-8 we
have four banks of SIMMs that can do cache fills at 128 bits per 100 ns memory
cycle. Remember that the data is available after 50 ns but we can't get more data
until the DRAMs refresh 50-60 ns later. However, if we are doing 32-bit non-unit-
stride loads and have the capability to bypass cache, each load will be satisfied
from one of the four SIMMs in 50 ns, While that SIMM refreshed, another load can
occur from any of the other three SIMMs in 50 ns. In a random mix of non-unit
loads there is a 75% chance that the next load will fall on a "fresh" DRAM. If the
load falls on a bank while it is refreshing, it simply has to wait until the refresh
completes.

A further advantage of bypassing cache is that the data doesn't need to be moved
through the SRAM cache. This operation can add from 10-50 ns to the load time
for a single word. This also avoids invalidating the contents of an entire cache line
in the cache.

Adding cache bypass, increasing memory-system widths, and adding banks
increases the cost of a memory system. Computer-system vendors make an eco-
nomic choice as to how many of these techniques they need to apply to get suffi-
cient performance for their particular processor and system. Hence, as processor
speed increases, vendors must add more of these memory system features to their
commodity systems to maintain a balance between processor and memory-system
speed.
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Figure 3-8: Bypassing cache

Interleaved and Pipelined Memory Systems
Vector supercomputers, such as the CRAY Y/MP and the Convex C3, are machines
that depend on multibanked memory systems for performance. The C3, in particu-
lar, has a memory system with up to 256-way interleaving. Each interleave (or
bank) is 64 bits wide. This is an expensive memory system to build, but it has
some very nice performance characteristics, Having a large number of banks helps
to reduce the chances of repeated access to the same memory bank. If you do hit
the same bank twice in a row, however, the penalty is a delay of nearly 300 ns—a
long time for a machine with a clock speed of 16 ns. So when things go well, they
go very well.

However, having a large number of banks alone is not sufficient to feed a 16-ns
processor using 50 ns DRAM. In addition to interleaving, the memory subsystem
also needs to be pipelined. That is, the CPU must begin the second, third, and
fourth load before the CPU has received the results of the first load as shown in
Figure 3-9. Then each time it receives the results from bank "n," it must start the
load from bank "n+4" to keep the pipeline fed. This way, after a brief startup
delay, loads complete every 16 ns and so the memory system appears to operate
at the clock rate of the CPU. This pipelined memory approach is facilitated by the
128-element vector registers in the C3 processor.

Using gather/scatter hardware, non-unit-stride operations can also be pipelined.
The only difference for non-unit-stride operations is that the banks are not
accessed in sequential order. With a random pattern of memory references, it's
possible to reaccess a memory bank before it has completely refreshed from a pre-
vious access. This is called a bank stall.



52 Chapter 3-' Memory

Figure 3-9: Multibanked memory system

Different access patterns are subject to bank stalls of varying seventy. For instance,
accesses to every fourth word in an eight-bank memory system would also be sub-
ject to bank stalls, though the recovery would occur sooner. References to every
second word might not experience bank stalls at all; each bank may have recov-
ered by the time its next reference comes around; it depends on the relative
speeds of the processor and memory system. Irregular access patterns are sure to
encounter some bank stalls.

In addition to the bank stall hazard, single-word references made directly to a
multibanked memory system carry a greater latency than those of (successfully)
cached memory accesses. This is because references are going out to memory that
is slower than cache, and there may be additional address translation steps as well.
However, banked memory references are pipelined. As long as references are
started well enough in advance, several pipelined, multibanked references can be
in flight at one time, giving you good throughput.

The CDC-205 system performed vector operations in a memory-to-memory fashion
using a set of explicit memory pipelines. This system had superior performance for
very long unit-stride vector computations. A single instruction could perform
65,000 computations using three memory pipes.

Software Managed Caches
Here's an interesting thought: if a vector processor can plan far enough in advance
to start a memory pipe, why can't a RISC processor start a cache-fill before it really
needs the data in those same situations? In a way, this is priming the cache to hide
the latency of the cache-fill. If this could be done far enough in advance, it would
appear that all memory references would operate at the speed of the cache.
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This concept is called prefetching and it is supported using a special prefetch
instruction available on many RISC processors. A prefetch instruction operates just
like a standard load instruction, except that the processor doesn't wait for the
cache to fill before the instruction completes. The idea is to prefetch far enough
ahead of the computation to have the data ready in cache by the time the actual
computation occurs. The following is an example of how this might be used:

DO 1=1,1000000,8
PREFETCH{ARR(1+8})
DO J=0,7

SUM= SUM+ARR(I+J)
END DO

END DO

This is not the actual FORTRAN. Prefetching is usually done in the assembly code
generated by the compiler when it detects that you are stepping through the array
using a fixed stride. The compiler typically estimate how far ahead you should be
prefetching. In the above example, if the cache-fills were particularly slow, the
value 8 in 1+8 could be changed to 16 or 32 while the other values changed
accordingly.

In a processor that could only issue one instruction per cycle, there might be no
payback to a prefetch instruction; it would take up valuable time in the instruction
stream in exchange for an uncertain benefit. On a superscalar processor, however,
a cache hint could be mixed in with the rest of the instruction stream and issued
alongside other, real instructions. If it saved your program from suffering extra
cache misses, it would be worth having.

Post-RISC Effects on Memory References
Memory operations typically access the memory during the execute phase of the
pipeline on a RISC processor. On the post-RISC processor, things are no different
than on a RISC processor except that many loads can be half finished at any given
moment. On some current processors, up to 28 memory operations may be active
with 10 waiting for off-chip memory to arrive. This is an excellent way to compen-
sate for slow memory latency compared to the CPU speed. Consider the following
loop:

LOADI R6,10000 Set the Iterations
LOADI R5,0 Set the index variable

LOOP: LOAD R1,R2(R5) Load a value from memory
INCR Rl Add one to Rl
STORE Rl,R3(R5) Store the incremented value back to memory
INCR R5 Add one to R5
COMPARE R5,R6 Check for loop termination
BLT LOOP Branch if R5 < R6 back to LOOP
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In this example, assume that it take 50 cycles to access memory. When the fetch/
decode puts the first load into the instruction reorder buffer (IRB), the load starts
on the next cycle and then is suspended in the execute phase. However, the rest
of the instructions are in the IRB. The INCR Rl must wait for the load and the
STORE must also wait. However, by using a rename register, the INCR R5, COM-
PARE, and BLT can all be computed, and the fetch/decode goes up to the top of
the loop and sends another load into the IRB for the next memory location that
will have to wait. This looping continues until about 10 iterations of the loop are
in the IRB. Then the first load actually shows up from memory and the INCR Rl
and STORE from the first iteration begins executing. Of course the store takes a
while, but about that time the second load finishes, so there is more work to do
and so on ...

Like many aspects of computing, the post-RISC architecture, with its out-of-order
and speculative execution, optimizes memory references. The post-RISC processor
dynamically unrolls loops at execution time to compensate for memory subsystem
delay. Assuming a pipelined multibanked memory system that can have multiple
memory operations started before any complete (the HP PA-8000 can have 10 off-
chip memory operations in flight at one time), the processor continues to dispatch
memory operations until those operations begin to complete.

Unlike a vector processor or a prefetch instruction, the post-RISC processor does
not need to anticipate the precise pattern of memory references so it can carefully
control the memory subsystem. As a result, the post-RISC processor can achieve
peak performance in a far-wider range of code sequences than either vector pro-
cessors or in-order RISC processors with prefetch capability.

This implicit tolerance to memory latency makes the post-RISC processors ideal for
use in the scalable shared-memory processors of the future, where the memory
hierarchy will become even more complex than current processors with three lev-
els of cache and a main memory.

Unfortunately, the one code segment that doesn't benefit significantly from the
post-RISC architecture is the linked-list traversal. This is because the next address
is never known until the previous load is completed so all loads are fundamentally
serialized.

Dynamic RAM Technology Trends
Much of the techniques in this section have focused on how to deal with the
imperfections of the dynamic RAM chip (although when your clock rate hits
300-600 MHz or 3-2 ns, even SRAM starts to look pretty slow). It's clear that the
demand for more and more RAM will continue to increase, and gigabits and more
DRAM will fit on a single chip. Because of this, significant work is underway to
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make new super-DRAMs faster and more tuned to the extremely fast processors of
the present and the future. Some of the technologies are relatively straightforward,
and others require a major redesign of the way that processors and memories are
manufactured.

Some DRAM improvements include:

• Fast page mode DRAM

• Extended data out RAM (EDO RAM)

• Synchronous DRAM (SDRAM)

• RAMBUS

• Cached DRAM (CDRAM)

Fast page mode DRAM saves time by allowing a mode in which the entire address
doesn't have to be re-clocked into the chip for each memory operation. Instead,
there is an assumption that the memory will be accessed sequentially (as in a
cache-line fill), and only the low-order bits of the address are clocked in for suc-
cessive reads or writes.

EDO RAM is a modification to output buffering on page mode RAM that allows it
to operate roughly twice as quickly for operations other than refresh.

Synchronous DRAM is synchronized using an external clock that allows the cache
and the DRAM to coordinate their operations. Also, SDRAM can pipeline the
retrieval of multiple memory bits to improve overall throughput.

RAMBUS is a proprietary technology capable of 500 MB/sec data transfer. RAMBUS
uses significant logic within the chip and operates at higher power levels than typ-
ical DRAM.

Cached DRAM combines a SRAM cache on the same chip as the DRAM. This
tightly couples the SRAM and DRAM and provides performance similar to SRAM
devices with all the limitations of any cache architecture. One advantage of the
CDRAM approach is that the amount of cache is increased as the amount of DRAM
is increased. Also when dealing with memory systems with a large number of
interleaves, each interleave has its own SRAM to reduce latency, assuming the data
requested was in the SRAM.

An even more advanced approach is to integrate the processor, SRAM, and DRAM
onto a single chip clocked at say 5 GHz, containing 128 MB of data. Understand-
ably, there is a wide range of technical problems to solve before this type of com-
ponent is widely available for $200—but it's not out of the question. The
manufacturing processes for DRAM and processors are already beginning to con-
verge in some ways (RAMBUS). The biggest performance problem when we have
this type of system will be, "What to do if you need 160 MB?"
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Closing Notes
They say that the computer of the future will be a good memory system that just
happens to have a CPU attached. As high performance microprocessor systems
take over as the high performance computing engines, the problem of a cache-
based memory system that uses DRAM for main memory must be solved. There
are many architecture and technology efforts underway to transform workstation
and personal computer memories to be as capable as supercomputer memories.

As CPU speed increases faster than memory speed, you will need the techniques
in this book. Also, as you move into multiple processors, memory problems don't
get better; usually they get worse. With many hungry processors always ready for
more data, a memory subsystem can become extremely strained.

With just a little skill, we can often restructure memory accesses so that they play
to your memory system's strengths instead of its weaknesses.

Exercises
1. The following code segment traverses a pointer chain:

while {(p = (char *) *p) != NULL);

How will such, a code interact with the cache if all the references fall within a
small portion of memory? How will the code interact with the cache if refer-
ences are stretched across many megabytes?

2. How would the code in Exercise 1 behave on a multibanked memory system
that has no cache?

3. A long time ago, people regularly wrote self-modifying code—programs that
wrote into instruction memory and changed their own behavior. What would
be the implications of self-modifying code on a machine with a Harvard mem-
ory architecture?

4. Assume a memory architecture with an LI cache speed of 10 ns, L2 speed of
30 ns, and memory speed of 200 ns. Compare the average memory system
performance with (1) LI 80%, L2 10%, and memory 10%; and (2) LI 85% and
memory 15%.

5. On a computer system, run loops that process arrays of varying length from 16
to 16 million:

ARRAY(I) = ARRAY{I) + 3

How does the number of additions per second change as the array length
changes? Experiment with REALM, REAL*8, INTEGERS, and INTEGER*8.



Closing Notes 57

Which has more significant impact on performance: larger array elements or
integer versus floating-point? Try this on a range of different computers.

6. Create a two-dimensional array of 1024x1024. Loop through the array with
rows as the inner loop and then again with columns as the inner loop. Per-
form a simple operation on each element. Do the loops perform differently?
Why? Experiment with different dimensions for the array and see the perfor-
mance impact.

7. Write a program that repeatedly executes timed loops of different sizes to
determine the cache size for your system.



Floating-Po in t
Numbers

Often when we want to make a point that nothing is sacred, we say, "one plus
one does not equal two." This is designed to shock us and attack our fundamental
assumptions about the nature of the universe. Well, in this chapter on floating-
point numbers, we will learn that "0.1 + 0.1 does not always equal 0.2" when we
use floating-point numbers for computations.

In this chapter we explore the limitations of floating-point numbers and how you
as a programmer can write code to minimize the effect of these limitations. This
chapter is just a brief introduction to a significant field of mathematics called
numerical analysis.

Reality
The real world is full of real numbers. Quantities such as distances, velocities,
masses, angles, and other quantities are all real numbers.* A wonderful property of
real numbers is that they have unlimited accuracy. For example, when considering
the ratio of the circumference of a circle to its diameter, we arrive at a value of
3.141592 . . . . The decimal value for pi does not terminate. Because real numbers
have unlimited accuracy, even though we can't write it down, pi is still a real

* In high performance computing we often simulate the real world, so it is somewhat ironic that we
use simulated real numbers (floating-point) in those simulations of the real world.

58
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number. Some real numbers are rational numbers because they can be repre-
sented as the ratio of two integers, such as 1/3. Not all real numbers are rational
numbers. Not surprisingly, those real numbers that aren't rational numbers are
called irrational. You probably would not want to start an argument with an irra-
tional number unless you have a lot of free time on your hands.

Unfortunately, on a piece of paper, or in a computer, we don't have enough space
to keep writing the digits of pi. So what do we do? We decide that we only need
so much accuracy and round real numbers to a certain number of digits. For
example, if we decide on four digits of accuracy, our approximation of pi is 3.142.
Some state legislature attempted to pass a law that pi was to be three. While this is
often cited as evidence for the IQ of governmental entities, perhaps the legislature
was just suggesting that we only need one digit of accuracy for pi. Perhaps they
foresaw the need to save precious memory space on computers when represent-
ing real numbers.

Representation
Given that we cannot perfectly represent real numbers on digital computers, we
must come up with a compromise that allows us to approximate real numbers.*
There are a number of different ways that have been used to represent real num-
bers. The challenge in selecting a representation is the trade-off between space
and accuracy and the tradeoff between speed and accuracy. In the field of high
performance computing we generally expect our processors to produce a floating-
point result every 600-MHz clock cycle. It is pretty clear that in most applications
we aren't willing to drop this by a factor of 100 just for a little more accuracy.
Before we discuss the format used by most high performance computers, we dis-
cuss some alternative (albeit slower) techniques for representing real numbers.

Binary Coded Decimal
In the earliest computers, one technique was to use binary coded decimal (BCD).
In BCD, each base-10 digit was stored in four bits. Numbers could be arbitrarily
long with as much precision as there was memory:

* Interestingly, analog computers have an easier time representing real numbers. Imagine a "water-
adding" analog computer which consists of rwo glasses of water and an empty glass. The amount of
water in the two glasses are perfectly represented real numbers. By pouring the two glasses into a
third, we are adding the two real numbers perfectly (unless we spill some), and we wind up with a real
number amount of water in the third glass. The problem with analog computers is knowing just how
much water is in the glasses when we are all done. It is also problematic to perform 600 million addi-
tions per second using this technique without getting pretty wet. Try to resist the temptation to start an
argument over whether quantum mechanics would cause the real numbers to be rational numbers. And
don't point out the fact that even digital computers are really analog computers at their core. I am try-
ing to keep the focus on floating-point values, and you keep drifting away!



60 Chapter 4: Floating-Point Numbers

123.45
0001 0010 0011 0100 0101

This format allows the programmer to choose the precision required for each vari-
able. Unfortunately, it is difficult to build extremely high-speed hardware to per-
form arithmetic operations on these numbers. Because each number may be far
longer than 32 or 64 bits, they did not fit nicely in a register. Much of the floating-
point operations for BCD were done using loops in microcode. Even with the flex-
ibility of accuracy on BCD representation, there was still a need to round real
numbers to fit into a limited amount of space.

Another limitation of the BCD approach is that we store a value from 0-9 in a
four-bit field. This field is capable of storing values from 0-15 so some of the
space is wasted.

Rational Numbers
One intriguing method of storing real numbers is to store them as rational num-
bers. To briefly review mathematics, rational numbers are the subset of real num-
bers that can be expressed as a ratio of integer numbers. For example, 22/7 and
1/2 are rational numbers. Some rational numbers, such as 1/2 and 1/10, have per-
fect representation as base-10 decimals, and others, such as 1/3 and 22/7, can only
be expressed as infinite-length base-10 decimals. When using rational numbers,
each real number is stored as two integer numbers representing the numerator and
denominator. The basic fractional arithmetic operations are used for addition, sub-
traction, multiplication, and division, as shown in Figure 4-1.

Figure 4-1: Rational number mathematics

The limitation that occurs when using rational numbers to represent real numbers
is that the size of the numerators and denominators tends to grow. For each addi-
tion, a common denominator must be found. To keep the numbers from becoming
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extremely large, during each operation, it is important to find the greatest common
divisor (GCD) to reduce fractions to their most compact representation. When the
values grow and there are no common divisors, either the large integer values
must be stored using dynamic memory or some form of approximation must be
used, thus losing the primary advantage of rational numbers.

For mathematical packages such as Maple or Mathematica that need to produce
exact results on smaller data sets, the use of rational numbers to represent real
numbers is at times a useful technique. The performance and storage cost is less
significant than the need to produce exact results in some instances.

Fixed Point
If the desired number of decimal places is known in advance, it's possible to use
fixed-point representation. Using this technique, each real number is stored as a
scaled integer. This solves the problem that base-10 fractions such as 0.1 or 0.01
cannot be perfectly represented as a base-2 fraction. If you multiply 110.77 by 100
and store it as a scaled integer 11077, you can perfectly represent the base-10 frac-
tional part (0.77). This approach can be used for values such as money, where the
number of digits past the decimal point is small and known.

However, just because all numbers can be accurately represented it doesn't mean
there are not errors with this format. When multiplying a fixed-point number by a
fraction, you get digits that can't be represented in a fixed-point format, so some
form of rounding must be used. For example, if you have $125.87 in the bank at
4% interest, your interest amount would be $5.0348. However, because your bank
balance only has two digits of accuracy, they only give you $5.03, resulting in a
balance of $130.90. Of course you probably have heard many stories of program-
mers getting rich depositing many of the remaining 0.0048 amounts into their own
account. My guess is that banks have probably figured that one out by now, and
the bank keeps the money for itself. But it does make one wonder if they round
or truncate in this type of calculation.*

Mantissa/Exponent
The floating-point format that is most prevalent in high performance computing is
a variation on scientific notation. In scientific notation the real number is repre-
sented using a mantissa, base, and exponent: 6.02 x

* Perhaps banks round this instead of truncating, knowing that they will always make it up in teller
machine fees.
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The mantissa typically has some fixed number of places of accuracy. The mantissa
can be represented in base 2, base 16, or BCD. There is generally a limited range
of exponents, and the exponent can be expressed as a power of 2, 10, or 16.

The primary advantage of this representation is that it provides a wide overall
range of values while using a fixed-length storage representation. The primary lim-
itation of this format is that the difference between two successive values is not
uniform. For example, assume that you can represent three base-10 digits, and
your exponent can range from -10 to 10. For numbers close to zero, the "distance"
between successive numbers is very small. For the number 1.72 x 10-10, the next
larger number is 1.73 x 10-10. The distance between these two "close" small num-
bers is 0.000000000001. For the number 6.33 x 1010, the next larger number is 6.34
x 1010. The distance between these "close" large numbers is 100 million.

In Figure 4-2, we use two base-2 digits with an exponent ranging from -1 to 1.

Figure 4-2: Distance between successive floating-point numbers

There are multiple equivalent representations of a number when using scientific
notation:

6 . 0 0 X 105
0 . 6 0 X 106
0 . 0 6 X 107

By convention, we shift the mantissa (adjust the exponent) until there is exactly
one nonzero digit to the left of the decimal point. "When a number is expressed
this way, it is said to be "normalized." In the above list, only 6.00 x 1Q5 is normal-
ized. Figure 4-3 shows how some of the floating-point numbers from Figure 4-2
are not normalized.

While the mantissa/exponent has been the dominant floating-point approach for
high performance computing, there were a wide variety of specific formats in use
by computer vendors. Historically, each computer vendor had their own particular
format for floating-point numbers. Because of this, a program executed on several
different brands of computer would generally produce different answers. This
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Figure 4-3: Normalized floating-point numbers

invariably led to heated discussions about which system provided the right answer
and which system(s) were generating meaningless results.*

When storing floating-point numbers in digital computers, typically the mantissa is
normalized, and then the mantissa and exponent are converted to base-2 and
packed into a 32- or 64-bit word. If more bits were allocated to the exponent, the
overall range of the format would be increased, and the number of digits of accu-
racy would be decreased. Also the base of the exponent could be base-2 or
base-16. Using 16 as the base for the exponent increases the overall range of
exponents, but because normalization must occur on four-bit boundaries, the
available digits of accuracy are reduced on the average. Later we will see how the
IEEE 754 standard for floating-point format represents numbers.

Effects of Floating-Point Representation
One problem with the mantissa/base/exponent representation is that not all
base-10 numbers can be expressed perfectly as a base-2 number. For example, 1/2
and 0.25 can be represented perfectly as base-2 values, while 1/3 and 0.1 produce
infinitely repeating base-2 decimals. These values must be rounded to be stored in
the floating-point format. With sufficient digits of precision, this generally is not a
problem for computations. However, it does lead to some anomalies where alge-
braic rules do not appear to apply. Consider the following example:

REAL*4 X,Y
X = 0.1
Y = 0
DO 1=1,10
Y = Y + X

ENDDO
IF ( Y .EQ. 1.0 ) THEN

* Interestingly, there was an easy answer to the question for many programmers. Generally they
trusted the results from the computer they used to debug the code and dismissed the results from other
computers as garbage.



64 Chapter 4: Floating-Point Numbers

PRINT *,'Algebra is truth'
ELSE
PRINT *,'Not here'

ENDIF
PRINT *,1.0-Y
END

At first glance, this appears simple enough. Mathematics tells us ten times 0.1
should be one. Unfortunately, because 0.1 cannot be represented exactly as a
base-2 decimal, it must be rounded. It ends up being rounded down to the last bit.
When ten of these slightly smaller numbers are added together, it does not quite
add up to 1.0. When X and Y are REAL*4, the difference is about 10-7, and when
they are REAL*8, the difference is about 10'16.

One possible method for comparing computed values to constants is to subtract
the values and test to see how close the two values become. For example, one can
rewrite the test in the above code to be:

IF ( ABS(l.O-Y) .LT. IE-6 } THEN
PRINT *,'Close enough for government work'

ELSE
PRINT *,'Not even close'

ENDIF

The type of the variables in question and the expected error in the computation
that produces Y determines the appropriate value used to declare that two values
are close enough to be declared equal.

Another area where inexact representation becomes a problem is the fact that
algebraic inverses do not hold with all floating-point numbers. For example, using
REAL*4, the value (1 .0 /X) * X does not evaluate to 1.0 for 135 values of X
from one to 1000. This can be a problem when computing the inverse of a matrix
using LU-decomposition. LU-decomposition repeatedly does division, multiplica-
tion, addition, and subtraction. If you do the straightforward LU-decomposition on
a matrix with integer coefficients that has an integer solution, there is a pretty
good chance you won't get the exact solution when you run your algorithm. Dis-
cussing techniques for improving the accuracy of matrix inverse computation is
best left to a numerical analysis text.

More Algebra That Doesn't Work
While the examples in the proceeding section focused on the limitations of multi-
plication and division, addition and subtraction are not, by any means, perfect.
Because of the limitation of the number of digits of precision, certain additions or
subtractions have no effect. Consider the following example using REAL* 4 with 7
digits of precision:
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X = 1.25E8
Y = X + 7.5E-3
IF ( X.EQ.Y } THEN
PRINT *,'Am I nuts or what?'

END IF

While both of these numbers are precisely representable in floating-point, adding
them is problematic. Prior to adding these numbers together, their decimal points
must be aligned as in Figure 4-4.

Figure 4-4: Loss of accuracy while aligning decimal points

Unfortunately, while we have computed the exact result, it cannot fit back into a
REAL* 4 variable (7 digits of accuracy) without truncating the 0.0075. So after the
addition, the value in Y is exactly 1.25E8. Even sadder, the addition could be per-
formed millions of times, and the value for Y would still be 1.25E8.

Because of the limitation on precision, not all algebraic laws apply all the time.
For instance, the answer you obtain from X+Y will be the same as Y+X, as per the
commutative law for addition. Whichever operand you pick first, the operation
yields the same result; they are mathematically equivalent. It also means that you
can choose either of the following two forms and get the same answer:

(X + Y) + Z

{Y + X) + Z

However, this is not equivalent:

(Y + Z) + X

The third version isn't equivalent to the first two because the order of the calcula-
tions has changed. Again, the rearrangement is equivalent algebraically, but not
computationally. By changing the order of the calculations, we have taken advan-
tage of the associativity of the operations; we have made an associative transfor-
mation of the original code.

To understand why the order of the calculations matters, imagine that your com-
puter can perform arithmetic significant to only five decimal places.
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Also assume that the values of X, Y, and Z are . 00005 , .00005, and 1.0000,
respectively. This means that:

(X + Y) + Z = .00005 + .00005 + 1.0000
= .0001 + 1.0000 = 1.0001

but:

(Y + Z) + X = .00005 + 1.0000 + .00005
= 1.0000 + .00005 = 1.0000

The two versions give slightly different answers. When adding Y+Z+X, the sum' of
the smaller numbers was insignificant when added to the larger number. But when
computing X+Y+Z, we add the two small numbers first, and their combined sum is
large enough to influence the final answer. For this reason, compilers that rear-
range operations for the sake of performance generally only do so after the user
has requested optimizations beyond the defaults.

For these reasons, the FORTRAN language is very strict about the exact order of
evaluation of expressions. To be compliant, the compiler must ensure that the
operations occur exactly as you express them.*

For Kernighan and Ritchie C, the operator precedence rules are different. Although
the precedences between operators are honored (i.e., * comes before +, and eval-
uation generally occurs left to right for operators of equal precedence), the com-
piler is allowed to treat a few commutative operations (+, *, &, A and |) as if they
were fully associative, even if they are parenthesized. For instance, you might tell
the C compiler:

a - x 4- (y + z} ;

However, the C compiler is free to ignore you, and combine X, Y, and Z in any
order it pleases.

Now armed with this knowledge, view the following harmless-looking code seg-
ment:

REAL*4 SUM,A(100QOOO)
SUM =0.0
DO 1=1,1000000

SUM = SUM + A (I)
ENDDO

Begins to look like a nightmare waiting to happen. The accuracy of this sum
depends of the relative magnitudes and order of the values in the array A. If we
sort the array from smallest to largest and then perform the additions, we have a
more accurate value. There are other algorithms for computing the sum of an array

* Often even if you didn't mean it.
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that reduce the error without requiring a full sort of the data. Consult a good text-
book on numerical analysis for the details on these algorithms.

If the range of magnitudes of the values in the array is relatively small, the straight-
forward computation of the sum is probably sufficient.

Improving Accuracy Using Guard Digits
In this section we explore a technique to improve the precision of floating-point
computations without using additional storage space for the floating-point num-
bers.

Consider the following example of a base-10 system with five digits of accuracy
performing the following subtraction:

10.001 - 9.9993 = 0.0017

All of these values can be perfectly represented using our floating-point format.
However, if we only have five digits of precision available while aligning the deci-
mal points during the computation, the results end up with significant error as
shown in Figure 4-5.

Figure 4-5: Need/or guard digits

To perform this computation and round it correctly, we do not need to increase
the number of significant digits for stored values. We do, however, need additional
digits of precision while performing the computation.

The solution is to add extra guard digits which are maintained during the interim
steps of the computation. In our case, if we maintained six digits of accuracy while
aligning operands, and rounded before normalizing and assigning the final value,
we would get the proper result. The guard digits only need to be present as part
of the floating-point execution unit in the CPU. It is not necessary to add guard
digits to the registers or to the values stored in memory.

It is not necessary to have an extremely large number of guard digits. At some
point, the difference in the magnitude between the operands becomes so great
that lost digits do not affect the addition or rounding results.
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History of IEEE Floating-Point Format
Prior to the RISC microprocessor revolution, each vendor had their own floating-
point formats based on their designers' views of the relative importance of range
versus accuracy and speed versus accuracy. It was not uncommon for one vendor
to carefully analyze the limitations of another vendor's floating-point format and
use this information to convince users that theirs was the only "accurate" floating-
point implementation. In reality none of the formats was perfect. The formats were
simply imperfect in different ways.

During the 1980s the Institute for Electrical and Electronics Engineers (IEEE) pro-
duced a standard for the floating-point format. The title of the standard is "IEEE
754-1985 Standard for Binary Floating-Point Arithmetic." This standard provided
the precise definition of a floating-point format and described the operations on
floating-point values.

Because IEEE 754 was developed after a variety of floating-point formats had been
in use for quite some time, the IEEE 754 working group had the benefit of exam-
ining the existing floating-point designs and taking the strong points, and avoiding
the mistakes in existing designs. The IEEE 754 specification had its beginnings in
the design of the Intel i8087 floating-point coprocessor. The i8087 floating-point
format improved on the DEC VAX floating-point format by adding a number of
significant features.

The near universal adoption of IEEE 754 floating-point format has occurred over a
10-year time period. The high performance computing vendors of the mid 1980s
(Cray IBM, DEC, and Control Data) had their own proprietary floating-point for-
mats that they had to continue supporting because of their installed user base.
They really had no choice but to continue to support their existing formats. In the
mid to late 1980s the primary systems that supported the IEEE format were RISC
workstations and some coprocessors for microprocessors. Because the designers of
these systems had no need to protect a proprietary floating-point format, they
readily adopted the IEEE format. As RISC processors moved from general-purpose
integer computing to high performance floating-point computing, the CPU design-
ers found ways to make IEEE floating-point operations operate very quickly. In 10
years, the IEEE 754 has gone from a standard for floating-point coprocessors to the
dominant floating-point standard for all computers. Because of this standard, we,
the users, are the beneficiaries of a portable floating-point environment.
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IEEE Floating-Point Standard
The IEEE 754 standard specified a number of different details of floating-point
operations, including:

• Storage formats

• Precise specifications of the results of operations

• Special values

• Specified runtime behavior on illegal operations

Specifying the floating-point format to this level of detail insures that when a com-
puter system is compliant with the standard, users can expect repeatable execution
from one hardware platform to another when operations are executed in the same
order.

IEEE Storage Format
The two most common IEEE floating-point formats in use are 32- and 64-bit num-
bers. Table 4-1 gives the general parameters of these data types.

Table 4-1: Parameters of IEEE 32- and 64-Bit Formats

In FORTRAN, the 32-bit format is usually called REAL, and the 64-bit format is usu-
ally called DOUBLE. However, some FORTRAN compilers double the sizes for
these data types. For that reason, it is safest to declare your FORTRAN variables as
REAL*4 or REAL*8. The double-extended format is not as well supported in com-
pilers and hardware as the single- and double-precision formats. The bit arrange-
ment for the single and double formats are shown in Figure 4-6.

Based on the storage layouts in Table 4-1, we can derive the ranges and accuracy
of these formats, as shown in Table 4-2.
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The minimum normalized number is the smallest number which can be repre-
sented at full precision. IEEE format also supportes subnormal numbers, which are
smaller than the minimum normalized number at a loss of precision. Using sub-
normal numbers, one can represent numbers as small as 2.0E-45 in the 32-bit for-
mat, but for numbers that small, the accuracy is reduced to 1-2 digits of base-10
accuracy.

In IEEE, if a computation yields a value larger than the largest finite number
(called overflow), the special value infinity is returned.

Converting from Base-10 to IEEE Internal Format
We now examine how a 32-bit floating-point number is stored. The high-order bit
is the sign of the number. Numbers are stored in a sign-magnitude format (i.e., not
2's - complement). The exponent is stored in the 8-bit field biased by adding 127
to the exponent. This results in an exponent ranging from -126 through +127.

The mantissa is converted into base-2 and normalized so that there is one nonzero
digit to the left of the binary place, adjusting the exponent as necessary. The digits
to the right of the binary point are then stored in the low-order 23 bits of the
word. Because all numbers are normalized, there is no need to store the leading 1.



IEEE Operations 71

This gives a free extra bit of precision. Because this bit is dropped, it's no longer
proper to refer to the stored value as the mantissa. In IEEE parlance, this mantissa
minus its leading digit is called the significand.

Figure 4-7 shows an example conversion from base-10 to IEEE 32-bit format.

Figure 4-7: Converting from base-10 to IEEE 32-bit format

The 64-bit format is similar, except the exponent is 11 bits long, biased by adding
1023 to the exponent, and the significand is 54 bits long.

IEEE Operations
The IEEE standard specifies how computations are to be performed on floating-
point values on the following operations:"
• Addition

• Subtraction

• Multiplication

• Division

• Square root

• Remainder (modulo)

• Conversion to/from integer

• Conversion to/from printed base-10

These operations are specified in a machine-independent manner, giving flexibility
to the CPU designers to implement the operations as efficiently as possible while
maintaining compliance with the standard. During operations, the IEEE standard
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requires the maintenance of two guard digits and a sticky bit for intermediate val-
ues. The guard digits above and the sticky bit are used to indicate if any of the bits
beyond the second guard digit is nonzero.

Figure 4-8: Computation using guard and sticky bits

In Figure 4-8, we have five bits of normal precision, two guard digits, and a sticky
bit. Guard bits simply operate as normal bits—as if the significand were 25 bits.
Guard bits participate in rounding as the extended operands are added. The sticky
bit is set to 1 if any of the bits beyond the guard bits is nonzero in either
operand.* Once the extended sum is computed, it is rounded so that the value
stored in memory is the closest possible value to the extended sum including the
guard digits. Table 4-3 shows all eight possible values of the two guard digits and
the sticky bit and the resulting stored value with an explanation as to why.

Table 4-3: Extended Sums and Their Stored Values

* If you are somewhat hardware-inclined and you think about it for a moment, you will soon come up
with a way to properly maintain the sticky bit without ever computing the full "infinite precision sum."
You just have to keep track as things get shifted around.
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Table 4-3: Extended Sums and Their Stored Values (continued)

The first priority is to check the guard digits. Never forget that the sticky bit is just
a hint, not a real digit. So if we can make a decision without looking at the sticky
bit, that is good. The only desision we are making is to round the last storable bit
up or down. When that stored value is retrieved for the next computation, its
guard digits are set to zeros. It is sometimes helpful to think of the stored value as
having the guard digits, but set to zero.

So of our eight different extended sums, we must choose between two stored val-
ues. In the first two cases, the guard digits in the extended sum and stored value
match exactly, so we just store it. For nonzero guard digits, we have to figure
which is closer. When the guard digits are 01 the extended sum is one guard digit
unit away from the truncated value. For 11 we are closest to the rounded-up
value. However, when the guard digits are 10 we have the largest error and are
right between the truncated and rounded-up values. It is at this point where we
consult the value of the sticky bit to get a better indication of which stored value
would be closer to our extended sum.

Two guard digits and the sticky bit in the IEEE format insures that operations yield
the same rounding as if the intermediate result were computed using unlimited
precision and then rounded to fit within the limits of precision of the final com-
puted value.

At this point, you might be asking, "Why do I care about this minutiae?" At some
level, unless you are a hardware designer, you don't care. But when you examine
details like this, you can be assured of one thing: when they developed the IEEE
floating-point standard, they looked at the details very carefully. The goal was to
produce the most accurate possible floating-point standard within the constraints
of a fixed-length 32- or 64-bit format. Because they did such a good job, it's one
less thing you have to worry about. Besides, this stuff makes great exam ques-
tions.

Special Values
In addition to specifying the results of operations on numeric data, the IEEE stan-
dard also specifies the precise behavior on undefined operations such as dividing
by zero. These results are indicated using several special values. These values are
bit patterns that are stored in variables that are checked before operations are
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performed. The IEEE operations are all defined on these special values in addition
to the normal numeric values. Table 4-4 summarizes the special values for a 32-bit
IEEE floating-point number.

Table 4-4: Special Values for an IEEE 32-Bit Number

The value of the exponent and significand determines which type of special value
this particular floating-point number represents. Zero is designed such that integer
zero and floating-point zero are the same bit pattern.

Denormalized numbers can occur at some point as a number continues to get
smaller, and the exponent has reached the minimum value. We could declare that
minimum to be the smallest representable value. However, with denormalized val-
ues, we can continue by setting the exponent bits to zero and shifting the signifi-
cand bits to the right, first adding the leading "1" that was dropped, then
continuing to add leading zeros to indicate even smaller values. At some point the
last nonzero digit is shifted off to the right, and the value becomes zero. This
approach is called gradual underflow where the value keeps approaching zero
and then eventually becomes zero. Not all implementations support denormalized
numbers in hardware; they might trap to a software routine to handle these num-
bers at a significant performance cost.

At the top end of the biased exponent value, an exponent of all Is can represent
the Not a Number (NaN) value or infinity. Infinity occurs in computations roughly
according to the principles of mathematics. If you continue to increase the magni-
tude of a number beyond the range of the floating-point format, once the range
has been exceeded, the value becomes infinity. Once a value is infinity, further
additions won't increase it, and subtractions won't decrease it. You can also pro-
duce the value infinity by dividing a nonzero value by zero. If you divide a
nonzero value by infinity, you get zero as a result.

The NaN value indicates a number that is not mathematically defined. You can
generate a NaN by dividing zero by zero, dividing infinity by infinity, or taking the
square root of -1. The difference between infinity and NaN is that the NaN value
has a nonzero significand. The NaN value is very sticky. Any operation that has a
NaN as one of its inputs always produces a NaN result.
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Exceptions and Traps
In addition to defining the results of computations that aren't mathematically
defined, the IEEE standard provides programmers with the ability to detect when
these special values are being produced. This way, programmers can write their
code without adding extensive IF tests throughout the code checking for the mag-
nitude of values. Instead they can register a trap handler for an event such as
underflow and handle the event when it occurs. The exceptions defined by the
IEEE standard include:

• Overflow to infinity

• Underflow to zero

• Division by zero

• Invalid operation

• Inexact operation

According to the standard, these traps are under the control of the user. In most
cases, the compiler runtime library manages these traps under the direction from
the user through compiler flags or runtime library calls. Traps generally have sig-
nificant overhead compared to a single floating-point instruction, and if a program
is continually executing trap code, it can significantly impact performance.

In some cases it's appropriate to ignore traps on certain operations. A commonly
ignored trap is the underflow trap. In many iterative programs, it's quite natural for
a value to keep reducing to the point where it "disappears." Depending on the
application, this may or may not be an error situation so this exception can be
safely ignored.

If you run a program and then it terminates, you see a message such as:

Overflow handler called 10,000,000 times

It probably means that you need to figure out why your code is exceeding the
range of the floating-point format. It probably also means that your code is execu-
tiong more slowly because it is spending too much time in its error handlers.

Compiler Issues
The IEEE 754 floating-point standard does a good job describing how floating-
point operations are to be performed. However, we generally don't write assembly
language programs. When we write in a higher-level language such as FORTRAN,
it's sometimes difficult to get the compiler to generate the assembly language you
need for your application. The problems fall into two categories:
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* The compiler is too conservative in trying to generate IEEE-compliant code
and produces code that doesn't operate at the peak speed of the processor.
On some processors, to fully support gradual underflow, extra instructions
must be generated for certain instructions. If your code will never underflow,
these instructions are unnecessary overhead.

• The optimizer takes liberties rewriting your code to improve its performance,
eliminating some necessary steps. For example, if you have the following
code:

Z = X + 500
Y = Z - 200

The optimizer may replace it with Y = X + 300. However, in the case of a
value for X that is close to overflow, the two sequences may not produce the
same result.

Sometimes a user prefers "fast" code that loosely conforms to the IEEE standard,
and at other times the user will be writing a numerical library routine and need
total control over each floating-point operation. Compilers have a challenge sup-
porting the needs of both of these types of users. Because of the nature of the
high performance computing market and benchmarks, often the "fast and loose"
approach prevails in many compilers.

Closing Notes
While this is a relatively long chapter with a lot of technical detail, it does not
even begin to scratch the surface of the IEEE floating-point format or the entire
field of numerical analysis. We as programmers must be careful about the accuracy
of our programs, lest the results become meaningless. Here are a few basic rules
to get you started:

• Look for compiler options that relax or enforce strict IEEE compliance and
choose the appropriate option for your program. You may even want to
change these options for different portions of your program.

• Use REAL*8 for computations unless you are sure REAL*4 has sufficient pre-
cision. Given that REAL*4 has roughly 7 digits of precision, if the bottom dig-
its become meaningless due to rounding and computations, you are in some
danger of seeing the effect of the errors in your results. REAL* 8 with 13 digits
makes this much less likely to happen.

• Be aware of the relative magnitude of numbers when you are performing
additions.
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• When summing up numbers, if there is a wide range, sum from smallest to
largest.

• Perform multiplications before divisions whenever possible.

• When performing a comparison with a computed value, check to see if the
values are "close" rather than identical.

• Make sure that you are not performing any unnecessary type conversions dur-
ing the critical portions of your code.

An excellent reference on floating-point issues and the IEEE format is "What Every
Computer Scientist Should Know About Floating-Point Arithmetic," written by
David Goldberg, in ACM Computing Surveys magazine (March 1991). This article
gives examples of the most common problems with floating-point and outlines the
solutions. It also covers the IEEE floating-point format very thoroughly. I also rec-
ommend you consult Dr. William Kahan's home page (http://http.cs.berke-
ley.edu/~wkahan/) for some excellent materials on the IEEE format and challenges
using floating-point arithmetic. Dr. Kahan was one of the original designers of the
Intel 18087 and the IEEE 754 floating-point format.

Exercises
1. Run the following code to count the number of inverses that are not perfectly

accurate:

REALM X,Y,Z

INTEGER I

I - 0

DO X=l.0,1000.0,1.0

Y = 1.0 / X

Z = Y * X

IF ( Z .NE. 1.0 ) THEN

1 = 1 + 1
END IF

ENDDO

PRINT *, 'Found ' ,1

END

Change the type of the variables to REAL*8 and repeat. Make sure to keep
the optimization at a sufficiently low level (-00) to keep the compiler from
eliminating the computations. .

2. Write a program to determine the number of digits of precision for REAL*4
and REAL*8.

3. Write a program to demonstrate how summing an array forward to backward
and backward to forward can yield a different result.
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4. Assuming your compiler supports varying levels of IEEE compliance, take a
significant computational code and test its overall performance under the vari-
ous IEEE compliance options. Do the results of the program change?
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The goal of an optimizing compiler is the efficient translation of a higher-level lan-
guage into the fastest possible machine language that accurately represents the
high-level language source. What makes a representation good is: it gives the cor-
rect answers, and it executes quickly.

Naturally, it makes no difference how fast a program runs if it doesn't produce the
right answers.* But given an expression of a program that executes correctly, an
optimizing compiler looks for ways to streamline it. As a first cut, this usually
means simplifying the code, throwing out extraneous instructions, and sharing
intermediate results between statements. More advanced optimizations seek to
restructure the program and may actually make the code grow in size, though the
number of instructions executed will (hopefully) shrink.

When it comes to finally generating machine language, the compiler has to know
about the registers and rules for issuing instructions. For performance, it needs to
understand the costs of those instructions and the latencies of machine resources,
such as the pipelines. This is especially true for processors that can execute more
than one instruction at a time. It takes a balanced instruction mix—the right pro-
portion of floating-point, fixed point, memory and branch operations, etc.—to
keep the machine busy.

Initially compilers were tools that allowed us to write in something more readable
than assembly language. Today they border on artificial intelligence as they take
our high-level source code and translate it into highly optimized machine language
across a wide variety of single- and multiple- processor architectures. In the area
of high performance computing, the compiler at times has a greater impact on the
performance of our program than either the processor or memory architecture.

However, you can sometimes trade accuracy for speed.

81
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Throughout the history of high performance computing, if we are not satisfied
with the performance of our program written in a high-level language, we will
gladly rewrite all or part of the program in assembly language. Thankfully, today's
compilers usually make that step unnecessary.

In this chapter we cover the basic operation of optimizing compilers. In a later
chapter we will cover the techniques used to analyze and compile programs for
advanced architectures such as parallel or vector processing systems. We start our
look at compilers examining how the relationship between programmers and their
compilers has changed over time.

History of Compilers
If you have been in high performance computing since its beginning in the 1950s,
you have programmed in several languages during that time. During the 1950s and
early 1960s, you programmed in assembly language. The constraint on memory
and slow clock rates made every instruction precious. With small memories, over-
all program size was typically small, so assembly language was sufficient. Toward
the end of the 1960s, programmers began writing more of their code in a high-
level language such as FORTRAN. Writing in a high-level language made your
work much more portable, reliable, and maintainable. Given the increasing speed
and capacity of computers, the cost of using a high-level language was something
most programmers were willing to accept. In the 1970s if a program spent a partic-
ularly large amount of time in a particular routine, or the routine was part of the
operating system or it was a commonly used library, most likely it was written in
assembly language.

During the late 1970s and early 1980s, optimizing compilers continued to improve
to the point that all but the most critical portions of general-purpose programs
were written in high-level languages. On the average, the compilers generate bet-
ter code than most assembly language programmers. This was often because a
compiler could make better use of hardware resources such as registers. In a pro-
cessor with 16 registers, a programmer might adopt a convention regarding the
use of registers to help keep track of what value is in what register. A compiler
can use each register as much as it likes because it can precisely track when a reg-
ister is available for another use.

However, during that time, high performance computer architecture was also
evolving. Cray Research was developing vector processors at the very top end of
the computing spectrum. Compilers were not quite ready to determine when these
new vector instructions could be used. Programmers were forced to write assem-
bly language or create highly hand-tuned FORTRAN that called the appropriate
vector routines in their code. In a sense, vector processors turned back the clock
when it came to trusting the compiler for a while. Programmers never lapsed
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completely into assembly language, but some of their FORTRAN started looking
rather un-FORTRAN like. As the vector computers matured, their compilers
became increasingly able to detect when vectorization could be performed. At
some point, the compilers again became better than programmers on these archi-
tectures. These new compilers reduced the need for extensive directives or lan-
guage extensions.*

The RISC revolution led to an increasing dependence on the compiler. Program-
ming early RISC processors such as the Intel i860 was painful compared to CISC
processors. Subtle differences in the way a program was coded in machine lan-
guage could have a significant impact on the overall performance of the program.
For example, a programmer might have to count the instruction cycles between a
load instruction and the use of the results of the load in a computational instruc-
tion. As superscalar processors were developed, certain pairs of instructions could
be issued simultaneously, and others had to be issued serially. Because there were
a large number of different RISC processors produced, programmers did not have
time to learn the nuances of wringing the last bit of performance out of each pro-
cessor. It was much easier to lock the processor designer and the compiler writer
together (hopefully they work for the same company) and have them hash out the
best way to generate the machine code. Then everyone would use the compiler
and get code that made reasonably good use of the hardware.

The compiler became an important tool in the processor design cycle. Processor
designers had much greater flexibility in the types of changes they could make.
For example, it would be a good design in the next revision of a processor to exe-
cute existing codes 10% slower than a new revision, but by recompiling the code,
it would perform 65% faster. Of course it was important to actually provide that
compiler when the new processor was shipped and have the compiler give that
level of performance across a wide range of codes rather than just one particular
benchmark suite.

Which Language to Optimize?
It has been said, "I don't know what language they will be using to program high
performance computers 10 years from now, but we do know it will be called FOR-
TRAN." At the risk of inciting outright warfare, we need to discuss the strengths
and weaknesses of languages that are used for high performance computing. Most

* The Livermore Loops was a benchmark that specifically tested the capability of a compiler to effec-
tively optimize a set of loops. In addition to being a performance benchmark, it was also a compiler
benchmark.
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computer scientists (not computational scientists) train on a steady diet of C, C++,*
or some other language focused on data structures or objects. When students
encounter high performance computing for the first time, there is an immediate
desire to keep programming in their favorite language. However, to get the peak
performance across a wide range of architectures, FORTRAN is the only practical
language.

When students ask why this is, usually the first answer is, "Because it has always
been that way." In one way this is correct. Physicists, mechanical engineers,
chemists, structural engineers, and meteorologists do most programming on high
performance computers. FORTRAN is the language of those fields. (When was the
last time a computer science student wrote a properly working program that com-
puted for a week?) So naturally the high performance computer vendors put more
effort into making FORTRAN work well on their architecture.

This is not the only reason that FORTRAN is a better language, however. There are
some fundamental elements that make C, C++, or any data structures-oriented lan-
guage unsuitable for high performance programming. In a word, that problem is
pointers. Pointers (or addresses) are the way good computer scientists construct
linked lists, binary trees, binomial queues, and all those nifty data structures. The
problem with pointers is that the effect of a pointer operation is known only at
execution time when the value of the pointer is loaded from memory. Once an
optimizing compiler sees a pointer, all bets are off. It cannot make any assump-
tions about the effect of a pointer operation at compile time. It must generate con-
servative (less optimized) code that simply does exactly the same operation in
machine code that the high-level language described.

While the lack of pointers in FORTRAN is a boon to optimization, it seriously lim-
its the programmer's ability to create data structures. In some applications, espe-
cially highly scalable network-based applications, the use of good data structures
can significantly improve the overall performance of the application. To solve this,
in the FORTRAN 90 specification, pointers have been added to FORTRAN. In some
ways, this was an attempt by the FORTRAN community to keep programmers from
beginning to use C in their applications for the data structure areas of their appli-
cations. If programmers begin to use pointers throughout their codes, their FOR-
TRAN programs will suffer from the same problems that inhibit optimization in C
programs. In a sense FORTRAN has given up its primary advantage over C by try-
ing to be more like C. The debate over pointers is one reason that the adoption
rate of FORTRAN 90 somewhat slowed. Many programmers prefer to do their data
structure, communications, and other bookkeeping work in C, while doing the
computations in FORTRAN 77.

* Just for the record, both the authors of this book are quite accomplished in C, C++, and FORTRAN,
so they have no preconceived notions.
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FORTRAN 90 also has strengths and weaknesses when compared to FORTRAN 77
on high performance computing platforms. FORTRAN 90 has a strong advantage
over FORTRAN 77 in the area of improved semantics that enable more opportuni-
ties for advanced optimizations. This advantage is especially true on distributed
memory systems on which data decomposition is a significant factor. (See Chapter
13, Language Support for Performance.} However, until FORTRAN 90 becomes
popular, vendors won't be motivated to squeeze the last bit of performance out of
FORTRAN 90.

So while FORTRAN 77 continues to be the mainstream language for high perfor-
mance computing for the near future, other languages, like C and FORTRAN 90,
have their limited and potentially increasing roles to play. In some ways the
strongest potential challenger to FORTRAN in the long run may come in the form
of a numerical tool set such as Matlab. However, packages such as Matlab have
their own set of optimization challenges that must be overcome before they topple
FORTRAN 77's domination.

Optimizing Compiler Tour
We will start by taking a walk through an optimizing compiler to see one at work.
We think it's interesting, and if you can empathize with the compiler, you will be a
better programmer; you will know what the compiler wants from you, and what it
can do on its own.

Compilation Process
The compilation process is typically broken down into a number of identifiable
steps, as shown in Figure 5-1. While not all compilers are implemented in exactly
this way, it helps to understand the different functions a compiler must perform:

1. A precompiler or preprocessor phase is where some simple textual manipula-
tion of the source code is performed. The preprocessing step can be process-
ing of include files and making simple string substitutions throughout the
code.

2. The lexical analysis phase is where the incoming source statements are
decomposed into tokens such as variables, constants, comments, or language
elements.

3. The parsing phase is where the input is checked for syntax, and the compiler
translates the incoming program into an intermediate language that is ready
for optimization.

4. One or more optimization passes are performed on the intermediate language.
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Figure 5-1: Basic compiler processes

5. An object code generator translates the intermediate language into assembly
code, taking into consideration the particular architectural details of the pro-
cessor in question.

As compilers become more and more sophisticated in order to wring the last bit of
performance from the processor, some of these steps (especially the optimization
and code-generation steps) become more and more blurred. In this chapter, we
focus on the traditional optimizing compiler, and in later chapters we will look
more closely at how modern compilers do more sophisticated optimizations.

Intermediate Language Representation
Because we are most interested in the optimization of our program, we start our
discussion at the output of the parse phase of the compiler. The parse phase out-
put is in the form of an an intermediate language (IL) that is somewhere between
a high-level language and assembly language. The intermediate language
expresses the same calculations that were in the original program, in a form the
compiler can manipulate more easily. Furthermore, instructions that aren't present
in the source, such as address expressions for array references, become visible
along with the rest of the program, making them subject to optimizations too.
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How would an intermediate language look? In terms of complexity, it's similar to
assembly code but not so simple that the definitions* and uses of variables are
lost. We'll need definition and use information to analyze the flow of data through
the program. Typically, calculations are expressed as a stream of quadruples—
statements with exactly one operator, (up to) two operands, and a result.t Presum-
ing that anything in the original source program can be recast in terms of quadru-
ples, we have a usable intermediate language. To give you an idea of how this
works, We're going to rewrite the statement below as a series of four quadruples;

A = - B + C * D / E

Taken all at once, this statement has four operators and four operands: /, *, +,
and - (negate), and B, C, D, and E. This is clearly too much to fit into one quadru-
ple. We need a form with exactly one operator and, at most, two operands per
statement. The recast version that follows manages to do this, employing tempo-
rary variables to hold the intermediate results:

Tl = D / E
T2 = C * Tl
T3 = -B
A = T3 + T2

A workable intermediate language would, of course, need some other features,
like pointers. We're going to suggest that we create our own intermediate lan-
guage to investigate how optimizations work. To begin, we need to establish a
few rules:

• Instructions consist of one opcode, two operands, and a result. Depending on
the instruction, the operands may be empty.

• Assignments are of the form X := Y op Z, meaning X gets the result of op
applied to Y and Z.

• All memory references are explicit load from or store to "temporaries" tw.

• Logical values used in branches are calculated separately from the actual
branch.

• Jumps go to absolute addresses.

If we were building a compiler, we'd need to be a little more specific. For our pur-
poses, this will do. Consider the following bit of C code:

while (j < n) {
k = k + j * 2;
m = j * 2;

* By "definitions," we mean the assignment of values: not declarations.
More generally, code can be cast as w-tuples. It depends on the level of the intermediate language.
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This loop translates into the intermediate language representation shown here:

C: :

Each C source line is represented by several IL statements. On many RISC proces-
sors, our IL code is so close to machine language that we could turn it directly into
object code.* Often the lowest optimization level does a literal translation from the
intermediate language to machine code. When this is done, the code generally is
very large and performs very poorly. Looking at it, you can see places to save a
few instructions. For instance, j gets loaded into temporaries in four places; surely
we can reduce that. We have to do some analysis and make some optimizations.

Basic Blocks
After generating our intermediate language, we want to cut it into basic blocks.
These are code sequences that start with an instruction that either follows a branch
or is itself a target for a branch. Put another way, each basic block has one
entrance (at the top) and one exit (at the bottom). Figure 5-2 represents our IL
code as a group of three basic blocks. Basic blocks make code easier to analyze.
By restricting flow of control within a basic block from top to bottom and elimi-
nating all the branches, we can be sure that if the first statement gets executed, the
second one does too, and so on. Of course, the branches haven't disappeared, but
we have forced them outside the blocks in the form of the connecting arrows—
the flow graph.

* See Appendix B, Looking at Assembly Language, for some examples of machine code translated
directly from intermediate language.
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Figure 5-2: Intermediate language divided into basic blocks

We are now free to extract information from the blocks themselves. For instance,
we can say with certainty which variables a given block uses and which variables
it defines (sets the value of). We might not be able to do that if the block con-
tained a branch. We can also gather the same kind of information about the calcu-
lations it performs. After we have analyzed the blocks so that we know what goes
in and what comes out, we can modify them to improve performance and just
worry about the interaction between blocks.

Optimization Levels
There are a wide variety of optimization techniques, and they are not all applica-
ble in all situations. So the user is typically given some choices as to whether or
not particular optimizations are performed. Often this is expressed in the form of
an optimization level that is specified on the compiler as a command-line option
such as -O3.



90 Chapter 5: What a Compiler Does

The different levels of optimization controlled by a compiler flag may include the
following:

No optimization
Generates machine code directly from the intermediate language, which can
be very large and slow code. The primary uses of no optimization are for
debuggers and establishing the correct program output. Because every opera-
tion is done precisely as the user specified, it must be right.

Basic optimizations
Similar to those described in this chapter. They generally work to minimize the
intermediate language and generate fast compact code.

Interprocedural analysis
Looks beyond the boundaries of a single routine for optimization opportuni-
ties. This optimization level might include extending a basic optimization such
as copy propagation across multiple routines. Another result of this technique
is procedure inlining where it will improve performance.

Runtime profile analysis
It is possible to use runtime profiles to help the compiler generate improved
code based on its knowledge of the patterns of runtime execution gathered
from profile information.

Floating-point optimizations
The IEEE floating-point standard (IEEE 754) specifies precisely how floating-
point operations are performed and the precise side effects of these opera-
tions. The compiler may identify certain algebraic transformations that increase
the speed of the program (such as replacing a division with a reciprocal and a
multiplication) but might change the output results from the unoptimized
code.

Dataflow analysis
Identifies potential parallelism between instructions, blocks, or even successive
loop iterations.

Advanced optimization
May include automatic vectorization, parallelization, or data decomposition on
advanced architecture computers.

These optimizations might be controlled by several different compiler options. It
often takes some time to figure out the best combination of compiler flags for a
particular code or set of codes. In some cases, programmers compile different rou-
tines using different optimization settings for best overall performance.
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Classical Optimizations
Once the intermediate language is broken into basic blocks, there are a number of
optimizations that can be performed on the code in these blocks. Some optimiza-
tions are very simple and affect a few tuples within a basic block. Other optimiza-
tions move code from one basic block to another without altering the program
results. For example, it is often valuable to move a computation from the body of
a loop to the code immediately preceding the loop.

In this section, we are going to list classical optimizations by name and tell you
what they are for. We're not suggesting that you make the changes; most compilers
since the mid-1980s automatically perform these optimizations at all but their low-
est optimization level. As we said at the start of the chapter, if you understand
what the compiler can (and can't) do, you will become a better programmer
because you will be able to play to the compiler's strengths.

Copy Propagation
To start, let's look at a technique for untangling calculations. Take a look at the
following segment of code: notice the two computations involving X.

X = Y

Z = 1.0 + X

As written, the second statement requires the results of the first before it can pro-
ceed—you need X to calculate Z. Unnecessary dependencies could translate into a
delay at runtime.* With a little bit of rearrangement we can make the second state-
ment independent of the first, by propagating a copy of Y. The new calculation for
Z uses the value of Y directly:

X = Y

Z = 1.0 + Y

Notice that we left the first statement, X=Y, intact. You may ask, "Why keep it?"
The problem is that we can't tell whether the value of X is needed elsewhere. That
is something for another analysis to decide. If it turns out that no other statement
needs the new value of X, the assignment is eliminated later by dead code
removal.

* This code is an example of a flow dependence. I describe dependencies in detail in Chapter 9,
Understanding Parallelism.
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Constant Folding
A clever compiler can find constants throughout your program. Some of these are
"obvious" constants like those defined in parameter statements. Others are less
obvious, such as local variables that are never redefined. When you combine them
in a calculation, you get a constant expression. The little program below has two
constants, I and K:

PROGRAM MAIN
INTEGER I,K
PARAMETER (I = 100)
K = 200
J = I + K

END

Because I and K are constant individually, the combination I+K is constant, which
means that J is a constant too. The compiler reduces constant expressions like
I+K into constants with a technique called constant folding.

How does constant folding work? You can see that it is possible to examine every
path along which a given variable could be defined en route to a particular basic
block. If you discover that all paths lead back to the same value, that is a constant;
you can replace all references to that variable with that constant. This replacement
has a ripple-through effect. If the compiler finds itself looking at an expression
that is made up solely of constants, it can evaluate the expression at compile time
and replace it with a constant. After several iterations, the compiler will have
located most of the expressions that are candidates for constant folding.

A programmer can sometimes improve performance by making the compiler
aware of the constant values in your application. For example, in the following
code segment:

X = X * Y

the compiler may generate quite different runtime code if it knew that Y was 0, 1,
2, or 175.32. If it does not know the value for Y, it must generate the most conser-
vative (not necessarily the fastest) code sequence. A programmer can communi-
cate these values through the use of the PARAMETER statement in FORTRAN. By
the use of a parameter statment, the compiler knows the values for these constants
at runtime. Another example we have seen is:

DO I = 1,10000
DO J=1,IDIM

ENDDO
ENDDO
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After looking at the code, it's clear that IDIM was either 1, 2, or 3, depending on
the data set in use. Clearly if the compiler knew that IDIM was 1, it could gener-
ate much simpler and faster code.

Dead Code Removal
Programs often contain sections of dead code that have no effect on the answers
and can be removed. Occasionally, dead code is written into the program by the
author, but a more common source is the compiler itself; many optimizations pro-
duce dead code that needs to be swept up afterwards.

Dead code comes in two types:

• Instructions that are unreachable

• Instructions that produce results that are never used

You can easily write some unreachable code into a program by directing the flow
of control around it—permanently. If the compiler can tell it's unreachable, it will
eliminate it. For example, it's impossible to reach the statement I = 4 in this pro-
gram:

PROGRAM MAIN
1 = 2
WRITE (*,*) I
STOP
1 = 4
WRITE ( *,*) I
END

The compiler throws out everything after the STOP statement and probably gives
you a warning. Unreachable code produced by the compiler during optimization
will be quietly whisked away.

Computations with local variables can produce results that are never used. By ana-
lyzing a variable's definitions and uses, the compiler can see whether any other
part of the routine references it. Of course the compiler can't tell the ultimate fate
of variables that are passed between routines, external or common, so those com-
putations are always kept (as long as they are reachable).* In the following pro-
gram, computations involving k contribute nothing to the final answer and are
good candidates for dead code elimination:

main ()
{

int i,k;

* If a compiler does sufficient interprocedural analysis, it can even optimize variables across routine
boundaries. Interprocedural analysis can be the bane of benchmark codes trying to time a computation
without using the results of the computation.
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i = k = 1;
i += 1;
k += 2;
printf ( " % d \ n " , i ) ;

}

Dead code elimination has often produced some amazing benchmark results from
poorly written benchmarks. See the exercises at the end of the chapter for an
example of this type of code.

Strength Reduction
Operations or expressions have time costs associated with them. Sometimes it's
possible to replace a more expensive calculation with a cheaper one. We call this
strength reduction. The following code fragment contains two expensive opera-
tions:

REAL X , Y
Y = X**2
J = K*2

For the exponentiation operation on the first line, the compiler generally makes an
embedded mathematical subroutine library call. In the library routine, X is con-
verted to a logarithm, multiplied, then converted back. Overall, raising X to a
power is expensive—taking perhaps hundreds of machine cycles. The key is to
notice that X is being raised to a small integer power. A much cheaper alternative
would be to express it as X*X, and pay only the cost of multiplication. The second
statement shows integer multiplication of a variable K by 2. Adding K+K yields the
same answer, but takes less time.

There are many opportunities for compiler-generated strength reductions; these
are just a couple of them. We will see an important special case when we look at
induction variable simplification. Another example of a strength reduction is
replacing multiplications by integer powers of two by logical shifts.

Variable Renaming
In Chapter 2, High Performance Microprocessors, we talked about register renam-
ing. Some processors can make runtime decisions to replace all references to reg-
ister 1 with register 2, for instance, to eliminate bottlenecks. Register renaming
keeps instructions that are recycling the same registers for different purposes from
having to wait until previous instructions have finished with them.

The same situation can occur in programs—the same variable (i.e., memory loca-
tion) can be recycled for two unrelated purposes. For example, see the variable x
in the following fragment:
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x = y * z;
q = r + x + x;
x = a + b;

When the compiler recognizes that a variable is being recycled, and that its current
and former uses are independent, it can substitute a new variable to keep the cal-
culations separate:

xO = y * z;
q = r + xO + xO;
x = a + b;

Variable renaming is an important technique because it clarifies that calculations
are independent of each other, which increases the number of things that can be
done in parallel.

Common Subexpression Elimination
Subexpressions are pieces of expressions. For instance, A+B is a subexpression of
C* (A+B). If A+B appears in several places, like it does below, we call it a com-
mon subexpression:

D = C * (A + B)
E = (A + B ) / 2 .

Rather than calculate A + B twice, the compiler can generate a temporary variable
and use it wherever A + B is required:

temp = A + B
D = C * temp
E = temp/2.

Different compilers go to different lengths to find common subexpressions. Most
pairs, such as A+B, are recognized. Some can recognize reuse of intrinsics, such as
S IN(X) . Don't expect the compiler to go too far though. Subexpressions like
A+B+C are not computationally equivalent to reassociated forms like B+C+A, even
though they are algebraically the same. In order to provide predictable results on
computations, FORTRAN must either perform operations in the order specified by
the user or reorder them in a way to guarantee exactly the same result. Sometimes
the user doesn't care which way A+B+C associates, but the compiler cannot
assume the user does not care.

Address calculations provide a particularly rich opportunity for common subex-
pression elimination. You don't see the calculations in the source code; they're
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generated by the compiler. For instance, a reference to an array element A ( I , J)
may translate into an intermediate language expression such as:

address(A) + (1-1)*sizeof_datatype(A)
+ (J-l)*sizeof_datatype(A) * column_dimension(A)

If A ( I , J) is used more than once, we have multiple copies of the same address
computation. Common subexpression elimination will (hopefully) discover the
redundant computations and group them together.

Loop-Invariant Code Motion
Loops are where many high performance computing programs spend a majority of
their time. The compiler looks for every opportunity to move calculations out of a
loop body and into the surrounding code. Expressions that don't change after the
loop is entered (loop-invariant expressions) are prime targets. The following loop
has two loop-invariant expressions:

DO 1=1,N

A ( I ) = B ( I ) + C * D
E = G ( K )

E1SIDDO

Below, we have modified the expressions to show how they can be moved to the
outside:

temp = C * D
DO 1=1,N
A{I} « B(I) + temp

ENDDO
E = G(K)

It is possible to move code before or after the loop body. As with common subex-
pression elimination, address arithmetic is a particularly important target for loop-
invariant code motion. Slowly changing portions of index calculations can be
pushed into the suburbs, to be executed only when needed.

Induction Variable Simplification
Loops can contain what are called induction variables. Their value changes as a
linear function of the loop iteration count. For example, K is an induction variable
in the following loop. Its value is tied to the loop index:

DO 1=1,N

K = 1*4 + M

ENDDO
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Induction variable simplification replaces calculations for variables like K with
simpler ones. Given a starting point and the expression's first derivative, you can
arrive at K's value for the n\h iteration by stepping through the n-1 intervening
iterations:

K = M

DO 1=1,N

K = K + 4

ENDDO

The two forms of the loop aren't equivalent; the second won't give you the value
of K given any value of I. Because you can't jump into the middle of the loop on
the nth iteration, K always takes on the same values it would have if we had kept
the original expression.

Induction variable simplification probably wouldn't be a very important optimiza-
tion, except that array address calculations look very much like the calculation for
K in the example above. For instance, the address calculation for A (I ) within a
loop iterating on the variable I looks like this:

address - base_address(A) + (1-1) * sizeof_datatype(A)

Performing all that math is unnecessary. The compiler can create a new induction
variable for references to A and simplify the address calculations:

outside the loop...
address = base_address(A) - {1 * sizeof__datatype(A))
inside the loop...
address = address + sizeof_datatype(A)

Induction variable simplification is especially useful on processors that can auto-
matically increment a register each time it is used as a pointer for a memory refer-
ence. While stepping through a loop, the memoiy reference and the address
arithmetic can both be squeezed into a single instruction—a great savings.

Object Code Generation
Precompilation, lexical analysis, parsing, and many optimization techniques are
somewhat portable, but code generation is very specific to the target processor. In
some ways this phase is where compilers earn their keep on single-processor RISC
systems.

Anything that isn't handled in hardware has to be addressed in software. That
means if the processor can't resolve resource conflicts, such as overuse of a regis-
ter or pipeline, then the compiler is going to have to take care of it. Allowing the
compiler to take care of it isn't necessarily a bad thing—it's a design decision. A
complicated compiler and simple, fast hardware might be cost effective for certain
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applications. Two processors at opposite ends of this spectrum are the MIPS R2000
and the HP PA-8000. The first depends heavily on the compiler to schedule
instructions and fairly distribute resources. The second manages both things at
runtime, though both depend on the compiler to provide a balanced instruction
mix.

In all computers, register selection is a challenge because, in spite of their num-
bers, registers are precious. You want to be sure that the most active variables
become register resident at the expense of others. On machines without register
renaming (see Chapter 2), you have to be sure that the compiler doesn't try to
recycle registers too quickly, otherwise the processor has to delay computations as
it waits for one to be freed.

Some instructions in the repertoire also save your compiler from having to issue
others. Examples are auto-increment for registers being used as array indices or
conditional assignments in lieu of branches. These both save the processor from
extra calculations and make the instruction stream more compact.

Lastly, there are opportunities for increased parallelism. Programmers generally
think serially, specifying steps in logical succession. Unfortunately, serial source
code makes serial object code. A compiler that hopes to efficiently use the paral-
lelism of the processor will have to be able to move instructions around and find
operations that can be issued side by side. This is one of the biggest challenges for
compiler writers today. As superscalar and very long instruction word (VLIW)
designs become capable of executing more instructions per clock cycle, the com-
piler will have to dig deeper for operations that can execute at the same time.

Closing Notes
This chapter has been a basic introduction into how an optimizing compiler oper-
ates. However, this is not the last we will talk about compilers. In order to perform
the automatic vectorization, parallelization, and data decomposition, compilers
must further analyze the source code. As we encounter these topics, we will dis-
cuss the compiler impacts and how programmers can best interact with compilers.

For single-processor modern RISC architectures, compilers usually generate better
code than most assembly language programmers. Instead of compensating for a
simplistic compiler by adding hand optimizations, we as programmers must keep
our programs simple so as not to confuse the compiler. By understanding the pat-
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terns that compilers are quite capable of optimizing, we can focus on writing
straightforward programs that are portable and understandable.

Exercises
1. Does your compiler recognize dead code in the program below? How can you

be sure? Does the compiler give you a warning?

main()
{

int k=l;
if (k == 0)

printf ("This statement is never executed.\n");

}

2. Compile the following code and execute it under various optimization levels.
Try to guess the different types of optimizations that are being performed to
improve the performance as the optimization is increased.

REAL*8 A(IOOOOOO)
DO 1=1,1000000

A(I) = 3.1415927
ENDDO
DO 1=1,1000000
A{I) = A(I) * SIN(A(I)) + COS{A{I))

ENDDO
PRINT *,"All Done"

3. Take the following code segment and compile it at various optimization levels.
Look at the generated assembly language code (-S option on some compilers)
and find the effects of each optimization level on the machine language. Time
the program to see the performance at the different optimization levels. If you
have access to multiple architectures, look at the code generated using the
same optimization levels on different architectures.

REAL*8 A(IOOOOOO)
COMMON/BLK/A
.... Call Time

DO 1=1,1000000
A(I) = A(I) + 1.234

ENDDO
.... Call Time

END

Why is it necessary to put the array into a common block?



Timing
and Profiling

Perhaps getting your code to produce the right answers is enough, After all, if you
only plan to use the program once in a while, or if it only takes a few minutes to
run, execution time isn't going to matter that much. But it might not always be that
way. Typically, people start taking interest in the runtime of their programs for two
reasons:

• The workload has increased.

• They are considering a new machine.

It's clear why you might care about the performance of your program if the work-
load increases. Trying to cram 25 hours of computing time into a 24-hour day is an
administrative nightmare. But why should people who are considering a new
machine care about the runtime? After all, the new machine is presumably faster
than the old one, so everything should take less time. The reason is that when
people are evaluating new machines, they need a basis of comparison—a bench-
mark. People often use familiar programs as benchmarks. It makes sense: you
want a benchmark to be representative of the kind of work you do, and nothing is
more representative of the work you do than the work you do!

Benchmarking sounds easy enough, provided you have timing tools. And you
already know the meaning of time.* You just want to be sure that what those tools
are reporting is the same as what you think you're getting; especially if you have
never used the tools before. To illustrate, imagine if someone took your watch and
replaced it with another that expressed time in some funny units or three overlap-
ping sets of hands. It would be very confusing; you might have a problem reading

100

* Time is money.
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it at all. You would also be justifiably nervous about conducting your affairs by a
watch you don't understand.

UNIX timing tools are like the six-handed watch, reporting three different kinds of
time measurements. They aren't giving conflicting information—they just present
more information than you can jam into a single number. Again, the trick is learn-
ing to read the watch. That's what the first part of this chapter is about. We'll
investigate the different types of measurements that determine how a program is
doing. In Chapter 16, Running Your Own Benchmarks, we apply what we've
learned when we talk about how to conduct a formal benchmark.

If you plan to tune a program, you need more than timing information. Where is
time being spent—in a single loop, subroutine call overhead, or with memory
problems? For tuners, the latter sections of this chapter discuss how to profile code
at the procedural and statement levels. We also discuss what profiles mean and
how they predict the approach you have to take when, and if, you decide to
tweak the code for performance, and what your chances for success will be.

Timing
We assume that your program runs correctly. It would be rather ridiculous to time
a program that's not running right, though this doesn't mean it doesn't happen.
Depending on what you are doing, you may be interested in knowing how much
time is spent overall, or you may be looking at just a portion of the program. We
show you how to time the whole program first, and then talk about timing individ-
ual loops or subroutines.

Timing a Whole Program
Under UNIX, you can time program execution by placing the time command
before everything else you normally type on the command line. When the pro-
gram finishes, a timing summary is produced. For instance, if your program is
called foo, you can time its execution by typing time foo. If you are using the C
shell or Korn shell, time is one of the shell's built-in commands. With a Bourne
shell, time is a separate command executable in /bin. In any case, the following
information appears at the end of the run:

• User time

• System time

• Elapsed time

These timing figures are easier to understand with a little background. As your
program runs, it switches back and forth between two fundamentally different
modes: user mode and kernel mode. The normal operating state is user mode. It is
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in user mode that the instructions the compiler generated on your behalf get exe-
cuted, in addition to any subroutine library calls linked with your program.* It
might be enough to run in user mode forever, except that programs generally
need other services, such as I/O, and these require the intervention of the operat-
ing system—the kernel. A kernel service request made by your program, or per-
haps an event from outside your program, causes a switch from user mode into
kernel mode.

Time spent executing in the two modes is accounted for separately. The user time
figure describes time spent in user mode. Similarly, system time is a measure of the
time spent in kernel mode. As far as user time goes, each program on the machine
is accounted for separately. That is, you won't be charged for activity in somebody
else's application. System time accounting works the same way, for the most part;
however, you can, in some instances, be charged for some system services per-
formed on other people's behalf, in addition to your own. Incorrect charging
occurs because your program may be executing at the moment some outside
activity causes an interrupt. This seems unfair, but take consolation in the fact that
it works both ways: other users may be charged for your system activity too, for
the same reason.

Taken together, user time and system time are called CPU time. Generally, the user
time is far greater than the system time. You would expect this because most
applications only occasionally ask for system services. In fact, a disproportionately
large system time probably indicates some trouble. For instance, programs that are
repeatedly generating exception conditions, such as page faults, misaligned mem-
ory references, or floating-point exceptions, use an inordinate amount of system
time. Time spent doing things like seeking on a disk, rewinding a tape, or waiting
for characters at the terminal doesn't show up in CPU time. That's because these
activities don't require the CPU; the CPU is free to go off and execute other pro-
grams.

The third piece of information (corresponding to the third set of hands on the
"watch), elapsed time, is a measure of the actual (wall clock) time that has passed
since the program was started. For programs that spend most of their time com-
puting, the elapsed time should be close to the CPU time. Reasons why elapsed
time might be greater are:

• You are timesharing the machine with other active programs.t

* Cache miss time is buried in here too.

The uptime command gives you a rough indication of the other activity on your machine. The last
three fields tell the average number of processes ready to run during the last 1, 5, and 15 minutes,
respectively,
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• Your application performs a lot of I/O.

• Your application requires more memory bandwidth than is available on the
machine.

• Your program was paging or swapped.

People often record the CPU time and use it as an estimate for elapsed time. Using
CPU time is okay on a single CPU machine, provided you have seen the program
run when the machine was quiet and noticed the two numbers were very close
together. But for multiprocessors, the total CPU time can be far different from the
elapsed time. Whenever there is a doubt, wait until you have the machine to your-
self and time your program then, using elapsed time. It is very important to pro-
duce timing results that can be verified using another run when the results are
being used to make important purchasing decisions.

If you are running on a Berkeley UNIX derivative, the C shell's built-in time com-
mand can report a number of other useful statistics. The default form of the output
is shown in Figure 6-1. Check with your csh manual page for more possibilities.

In addition to figures for CPU and elapsed time, csh time command produces
information about CPU utilization, page faults, swaps, blocked I/O operations
(usually disk activity), and some measures of how much physical memory our pro-
gram occupied when it ran. We describe each of them in turn.

Percent utilization

Percent utilization corresponds to the ratio of elapsed time to CPU time. As we
mentioned above, there can be a number of reasons why the CPU utilization
wouldn't be 100% or mighty close. You can often get a hint from the other fields
as to whether it is a problem with your program or whether you were sharing the
machine when you ran it.

Average real memory utilization

The two average memory utilization measurements shown in Figure 6-1 character-
ize the program's resource requirements as it ran.

The first measurement, shared-memory space, accounts for the average amount of
real memory taken by your program's text segment—the portion that holds the
machine instructions. It is called "shared" because several concurrently running
copies of a program can share the same text segment (to save memory). Years
ago, it was possible for the text segment to consume a significant portion of the
memory system, but these days, with memory sizes starting around 32 MB, you
have to compile a pretty huge source program and use every bit of it to create a
shared-memory usage figure big enough to cause concern. The shared-memory
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Figure 6-1: The built-in csb time function

space requirement is usually quite low relative to the amount of memory available
on your machine.

The second average memory utilization measurement, unshared-memory space,
describes the average real storage dedicated to your program's data structures as it
ran. This storage includes saved local variables and COMMON for FORTRAN, and
static and external variables for C. We stress the word "real" here and above
because these numbers talk about physical memory usage, taken over time. It may
be that you have allocated arrays with 1 trillion elements (virtual space), but if
your program only crawls into a corner of that space, your runtime memory
requirements will be pretty low.

What the unshared-memory space measurement doesn't tell you, unfortunately, is
your program's demand for memory at its greediest. An application that requires
100 MB l/10th of the time and 1 KB the rest of the time appears to need only 10
MB on average—not a revealing picture of the program's memory requirements.

Blocked I/O operations

The two figures for blocked I/O operations primarily describe disk usage, though
tape devices and some other peripherals may also be used with blocked I/O.
Character I/O operations, such as terminal input and output, do not appear here.
A large number of blocked I/O operations could explain a lower-than-expected
CPU utilization.
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Page faults and swaps

An unusually high number of page faults or any swaps probably indicates a system
choked for memory, which would also explain a longer-than-expected elapsed
time. It may be that other programs are competing for the same space. And don't
forget that even under optimal conditions, every program suffers some number of
page faults, as explained in Chapter 3, Memory. Techniques for minimizing page
faults are described in Chapter 8, Loop Optimizations.

Timing a Portion of the Program
For some benchmarking or tuning efforts, measurements taken on the "outside" of
the program tell you everything you need to know. But if you are trying to isolate
performance figures for individual loops or portions of the code, you may want to
include timing routines on the inside too. The basic technique is simple enough:

1. Record the time before you start doing X.

2. DoX.

3. Record the time at completion of X.

4. Subtract the start time from the completion time.

If, for instance, X's primary job is to calculate particle positions, divide by the total
time to obtain a number for particle positions/second. You have to be careful
though; too many calls to the timing routines, and the observer becomes part of
the experiment. The timing routines take time too, and their very presence can
increase instruction cache miss or paging. Furthermore, you want X to take a sig-
nificant amount of time so that the measurements are meaningful. Paying attention
to the time between timer calls is really important because the clock used by the
timing functions has a limited resolution. An event that occurs within a fraction of
a second is hard to measure with any accuracy.

Getting Time Information
In this section, we discuss methods for getting various timer values during the exe-
cution of your program.

For FORTRAN programs, a library timing function found on many machines is
called etime, which takes a two-element REAL*4 array as an argument and fills
the slots with the user CPU time and system CPU time, respectively. The value
returned by the function is the sum of the two. Here's how etime is often used:

real*4 tarray(2), etime
real*4 start, finish

start = etime(tarray)
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finish = etime (tarray)

write (*,*) 'CPU time: ', finish - start

Not every vendor supplies an etime function; in fact, one doesn't provide a timing
routine for FORTRAN at all. Try it first. If it shows up as an undefined symbol
when the program is linked, you can use the following C routine. It provides the
same functionality as etime.

#include <sys/times.h>
#define TICKS 100.

float etime (parts)
struct {

float user;
float system;

} *parts;

struct tms local;
times (&local);
parts->user = (float) local.tms_utime/TICKS;
parts->system = (float) local.tms_stime/TTCKS;
return (parts->user + parts->system);

}

There are a couple of things you might have to tweak to make it work. First of all,
linking C routines with FORTRAN routines on your computer may require you to
add an underscore (_) after the function name. This changes the entry to
float etime_ (parts). Furthermore, you might have to adjust the TICKS
parameter. We assumed that the system clock had a resolution of 1/100 of a sec-
ond (true for the Hewlett-Packard machines that this version of etime was written
for). 1/60 is very common. On an RS-6000 the number would be 1000. You may
find the value in a file named /usr/include/sys/param.h on your machine, or you
can determine it empirically.

A C routine for retrieving the wall time using calling gettimeofday is shown below.
It is suitable for use with either C or FORTRAN programs as it uses call-by-value
parameter passing:

#include <stdio.h>
#include <stdlib.h>
#include <sys/time .h>

void hpcwall (double *retval)
{
static long zsec = 0;
static long zusec = 0;
double esec;
struct timeval tp;
struct timezone tzp;
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gettimeofday (&tp, &tzp) ;

if { zsec == 0 ) zsec = tp.tv_sec;
if { zusec == 0 ) zusec = tp.tv_usec;

*retval = (tp. tv_sec - zsec) + (tp. tv_usec - zusec ) * 0. 000001 ;

void hpcwall_{double *retval) { hpcwall (retval) ; } /* Other convention */

Given that you will often need both CPU and wall time, and you will be continu-
ally computing the difference between successive calls to these routines, you may
want to write a routine to return the elapsed wall and CPU time upon each call as
follows:

SUBROUTINE HPCTIM (WTIME, CTIME)
IMPLICIT NONE

*

REAL WTIME, CTIME
COMMON/HPCTIMC/CBEGIN/WBEGIN
REAL*8 CBEGIN,CEND,WBEGIN,WEND
REAL ETIME,CSCRATCH{2)

*

CALL HPCWALL (WEND)
CEND=ETIME (CSCRATCH)

*

WTIME = WEND - WBEGIN
CTIME = CEND - CBEGIN

*

WBEGIN = WEND
CBEGIN = CEND
END

Using Timing Information
You can get a lot information from the timing facilities on a UNIX machine. Not
only can you tell how long it takes to perform a given job, but you can also get
hints about whether the machine is operating efficiently, or whether there is some
other problem that needs to be factored in, such as inadequate memory.

Once the program is running with all anomalies explained away, you can record
the time as a baseline. If you are tuning, the baseline will be a reference with
which you can tell how much (or little) tuning has improved things. If you are
benchmarking, you can use the baseline to judge how much overall incremental
performance a new machine will give you. But remember to watch the other fig-
ures — paging, CPU utilization, etc. These may differ from machine to machine for
reasons unrelated to raw CPU performance. You want to be sure you are getting
the full picture. In Chapter 15, Using Published Benchmarks, and Chapter 16 we
talk about benchmarking in more detail.
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Subroutine Profiling
Sometimes you want more detail than the overall timing of the application. But
you don't have time to modify the code to insert several hundred etime calls into
your code. Profiles are also very useful when you have been handed a strange
20,000-line application program and told to figure out how it works and then
improve its performance.

Most compilers provide a facility to automatically insert timing calls into your code
at the entry and exit of each routine at compile time. While your program runs,
the entry and exit times are recorded and then dumped into a file. A separate util-
ity summarizes the execution patterns and produces a report that shows the per-
centage of the time spent in each of your routines and the library routines.

The profile gives you a sense of the shape of the execution profile. That is, you
can see that 10% of the time is spent in subroutine A, 5% in subroutine B, etc. Nat-
urally, if you add all of the routines together they should account for 100% of the
overall time spent. From these percentages you can construct a picture—a pro-
file—of how execution is distributed when the program runs. Though not repre-
sentative of any particular profiling tool, the histograms in Figure 6-2 and Figure
6-3 depict these percentages, sorted from left to right, with each vertical column
representing a different routine. They help illustrate different profile shapes.

Figure 6-2: Sharp profile—dominated by routine 1

A sharp profile says that most of the time is spent in one or two procedures, and if
you want to improve the program's performance you should focus your efforts on
tuning those procedures. A minor optimization in a heavily executed line of code
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can sometimes have a great effect on the overall runtime, given the right opportu-
nity. K flat profile* on the other hand, tells you that the runtime is spread across
many routines, and effort spent optimizing any one or two will have little benefit
in speeding up the program. Of course, there are also programs whose execution
profile falls somewhere in the middle.

We cannot predict with absolute certainty what you are likely to find when you
profile your programs, but there are some general trends. For instance, engineer-
ing and scientific codes built around matrix solutions often exhibit very sharp pro-
files. The runtime is dominated by the work performed in a handful of routines.
To tune the code, you need to focus your efforts on those routines to make them
more efficient. It may involve restructuring loops to expose parallelism, providing
hints to the compiler, or rearranging memory references. In any case, the chal-
lenge is tangible; you can see the problems you have to fix.

There are limits to how much tuning one or two routines will improve your run-
time, of course. An often quoted rule of thumb is Amdahl's Law, derived from
remarks made in 1967 by one of the designers of the IBM 360 series, and founder
of Amdahl Computer, Gene Amdahl. Strictly speaking, his remarks were about the
performance potential of parallel computers, but people have adapted Amdahl's
Law to describe other things too. For our purposes, it goes like this: Say you have
a program with two parts, one that can be optimized so that it goes infinitely fast

* The term "flat profile" is a little overloaded. We are using it to describe a profile that shows an even
distribution of time throughout the program. You will also see the label flat profile used to draw dis-
tinction from a call graph profile, as described below.
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and another that can't be optimized at all. Even if the optimizable portion makes
up 50% of the initial runtime, at best you will be able to cut the total runtime in
half. That is, your runtime will eventually be dominated by the portion that can't
be optimized. This puts an upper limit on your expectations when tuning.

Even given the finite return on effort suggested by Amdahl's Law, tuning a pro-
gram with a sharp profile can be rewarding. Programs with flat profiles are much
more difficult to tune. These are often system codes, nonnumeric applications, and
varieties of numerical codes without matrix solutions. It takes a global tuning
approach to reduce, to any justifiable degree, the runtime of a program with a flat
profile. For instance, you can sometimes optimize instruction cache usage, which
is complicated because of the program's equal distribution of activity among a
large number of routines. It can also help to reduce subroutine call overhead by
folding callees into callers. Occasionally, you can find a memory reference prob-
lem that is endemic to the whole program—and one that can be fixed all at once.

When you look at a profile, you might find an unusually large percentage of time
spent in the library routines such as log, exp, or sin. Often these functions are
done in software routines rather than inline. You may be able to rewrite your code
to eliminate some of these operations. Another important pattern to look for is
when a routine takes far longer than you expect. Unexpected execution time may
indicate you are accessing memory in a pattern that is bad for performance or that
some aspect of the code cannot be optimized properly.

In any case, to get a profile, you need a profiler. One or two subroutine profilers
come standard with the software development environments on all UNIX
machines. We discuss two of them: prof and gprof. In addition, we mention a few
line-by-line profilers. Subroutine profilers can give you a general overall view of
where time is being spent. You probably should start with prof, if you have it
(most machines do). Otherwise, use gprof After that, you can move to a line-by-
line profiler if you need to know which statements take the most time.

prof
prof is the most common of the UNIX profiling tools. In a sense, it is an extension
of the compiler, linker, and object libraries, plus a few extra utilities, so it is hard
to look at any one thing and say "this profiles your code." prof works by periodi-
cally sampling the program counter as your application runs. To enable profiling,
you must recompile and relink using the -p flag. For example, if your program has
two modules, stuff.c and junk.c, you need to compile and link according to the
following code:

% cc stuff.c -p -O -c
% cc junk.c -p -O -c
% cc stuff.o junk.o -p -o stuff
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This creates a stuff binary that is ready for profiling. You don't need to do any-
thing special to run it. Just treat it normally by entering stuff. Because runtime
statistics are being gathered, it takes a little longer than usual to execute.* At com-
pletion, there is a new file called mon.out in the directory where you ran it. This
file contains the history of stuff in binary form, so you can't look at it directly. Use
the prof utility to read mon.out and create a profile of stuff. By default, the infor-
mation is written to your screen on standard output, though you can easily redi-
rect it to a file:

% prof stuff > stuff.prof

To explore how the prof command works, we have created the following ridicu-
lous little application, loops, c. It contains a main routine and three subroutines for
which you can predict the time distribution just by looking at the code.

Again, you need to compile and link loops with the -p flag, run the program, and
then run the prof utility to extract a profile, as follows:

% cc loops.c -p -o loops
% ./loops
% prof loops > loops.prof

The following example shows what a loops.prof should look like. There are six
columns.

* Remember: code with profiling enabled takes longer to run. You should recompile and relink the
whole thing without the -p flag when you have finished profiling.

main (} {
int 1;
for (1=0;1<1000;1++) {

if (1 == 2* {1/2}} foo ();
bar();
baz();

}
}
foo (){

int j;
for {j=0;j<200;j++)

}
bar {) {

int i ;
for (i=0;i<200;i++);

}
baz (} {

int k;
for (k=0;k<300;k++);

}
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The columns can be described as follows:

%Time
Percentage of CPU time consumed by this routine

Seconds
CPU time consumed by this routine

Cumsecs
A running total of time consumed by this and all preceding routines in the list

Calls
The number of times this particular routine was called

msec/call
Seconds divided by number of calls giving the average length of time taken by
each invocation of the routine

Name
The name of this routine

The top three routines listed are from loops.c itself. You can see an entry for the
"main" routine more than halfway down the list. Depending on the vendor, the
names of the routines may contain leading or trailing underscores, and there will
always be some routines listed you don't recognize. These are contributions from
the C library and possibly the FORTRAN libraries, if you are using FORTRAN. Pro-
filing also introduces some overhead into the run, and often shows up as one or
two subroutines in the prof output. In this case, the entry for _prof il represents
code inserted by the linker for collecting runtime profiling data.

If it was our intention to tune loops, we would consider a profile like the one in
the figure above to be a fairly good sign. The lead routine takes 50% of the run-
time, so at least there is a chance we could do something with it that would have
a significant impact on the overall runtime. (Of course with a program as trivial as
loops, there is plenty we can do, since loops does nothing.)
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gprof
Just as it's important to know how time is distributed when your program runs, it's
also valuable to be able to tell who called who in the list of routines. Imagine, for
instance, if something labeled _exp showed up high in the list in the prof output.
You might say: "Hmrnm, I don't remember calling anything named exp ( } . I won-
der where that came from." A call tree helps you find it.

Subroutines and functions can be thought of as members of a family tree. The top
of the tree, or root, is actually a routine that precedes the main routine you coded
for the application. It calls your main routine, which in turn calls others, and so
on, all the way down to the leaf nodes of the tree. This tree is properly known as
a call graph* The relationship between routines and nodes in the graph is one of
parents and children. Nodes separated by more than one hop are referred to as
ancestors and descendants.

Figure 6-4 graphically depicts the kind of call graph you might see in a small
application, main is the parent or ancestor of most of the rest of the routines. G
has two parents, E and C. Another routine, A, doesn't appear to have any ances-
tors or descendants at all. This problem can happen when routines are not com-
piled with profiling enabled, or when they aren't invoked with a subroutine call—
such as would be the case if A were an exception handler.

The UNIX profiler that can extract this kind of information is called gprof. It repli-
cates the abilities of prof, plus it gives a call graph profile so you can see who calls
whom, and how often. The call graph profile is handy if you are trying to figure
out how a piece of code works or where an unknown routine came from, or if
you are looking for candidates for subroutine inlining.

To use call graph profiling you need go through the same steps as with prof,
except that a -pg flag is substituted for the -p flag.t Additionally, when it comes
time to produce the actual profile, you use the gprof utility instead of prof. One
other difference is that the name of the statistics file is gmon.out instead of
mon.out:

% cc -pg stuff.c -c
% cc stuff.o -pg -o stuff
% stuff
% gprof stuff > stuff.gprof

* It doesn't have to be a tree. Any subroutine can have more than one parent. Furthermore, recursive
subroutine calls introduce cycles into the graph, in which a child calls one of its parents.

t On HP machines, the flag is -G.



114 Chapter 6: Timing and Profiling

Figure 6-4; Simple call graph

The output from gprof is divided into three sections:

• Call graph profile

• Timing profile

• Index

The first section textually maps out the call graph. The second section lists rou-
tines, the percentage of time devoted to each, the number of calls, etc. (similar to
prof). The third section is a cross reference so that you can locate routines by
number, rather than by name. This section is especially useful for large applica-
tions because routines are sorted based on the amount of time they use, and it can
be difficult to locate a particular routine by scanning for its name. Let's invent
another trivial application to illustrate how gprof works. Figure 6-5 shows a short
piece of FORTRAN code, along with a diagram of how the routines are connected
together. Subroutines A and B are both called by MAIN, and, in turn, each calls C.
The following example shows a section of the output from gprof s call graph
profile:*

* In the interest of conserving space, we clipped out the section most relevant to our discussion and
included it in this example. There was a lot more to it, including calls of setup and system routines, the
likes of which you will see when you run gprof.
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called/total parents
index %time self descendants called+self name index

called/total children
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Sandwiched between each set of dashed lines is information describing a given
routine and its relationship to parents and children. It is easy to tell which routine
the block represents because the name is shifted farther to the left than the others.
Parents are listed above, children below. As with prof, underscores are tacked
onto the labels.* A description of each of the columns follows:

index
You will notice that each routine name is associated with a number in brackets
C[n]). This is a cross-reference for locating the routine elsewhere in the pro-
file. If, for example, you were looking at the block describing _MAIN_ and
wanted to know more about one of its children, say _a_, you could find it by
scanning down the left side of the page for its index, [ 5 ].

%time
The meaning of the %time field is a little different than it was for prof. In this
case it describes the percentage of time spent in this routine plus the time
spent in all of its children. It gives you a quick way to determine where the
busiest sections of the call graph can be found.

self
Listed in seconds, the self column has different meanings for parents, the
routine in question, and its children. Starting with the middle entry—the rou-
tine itself—the self figure shows how much overall time was dedicated to
the routine. In the case _b_, for instance, this amounts to 3.23 seconds.

Each self column entry shows the amount of time that can be attributed to
calls from the parents. If you look at routine _c_, for example, you will see
that it consumed a total time of 3-23 seconds. But note that it had two parents:
1.62 seconds of the time was attributable to calls from _a__, and 1.62 seconds
to _b_.

For the children, the self figure shows how much time was spent executing
each child due to calls from this routine. The children may have consumed
more time overall, but the only time accounted for is time-attributable to calls
from this routine. For example, _c_ accumulated 3-23 seconds overall, but if
you look at the block describing _b_, you see _c_ listed as a child with only
1.62 seconds. That's the total time spent executing _c_ on behalf of __J>_.

* You may have noticed that there are two main routines: _MAIN_ and _main. In a FORTRAN pro-
gram, _MAIN_ is the actual FORTRAN main routine. It's called as a subroutine by _main, provided
from a system library at link time. When you're profiling C code, you won't see _MAIN_.
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descendants
As with the self column, figures in the descendants column have different
meanings for the routine, its parents, and children. For the routine itself, it
shows the number of seconds spent in all of its descendants.

For the routine's parents, the descendants figure describes how much time
spent in the routine can be traced back to calls by each parent. Looking at
routine _c_ again, you can see that of its total time, 3.23 seconds, 1.62 sec-
onds were attributable to each of its two parents, _a_ and _b_.

For the children, the descendants column shows how much of the child's
time can be attributed to calls from this routine. The child may have accumu-
lated more time overall, but the only time displayed is time associated with
calls from this routine.

calls
The calls column shows the number of times each routine was invoked, as
well as the distribution of those calls associated with both parents and chil-
dren. Starting with the routine itself, the figure in the calls column shows
the total number of entries into the routine. In situations where the routine
called itself, you will also see a +n immediately appended, showing that addi-
tional n calls were made recursively.

Parent and child figures are expressed as ratios. For the parents, the ratio m/n
says "of the n times the routine was called, m of those calls came from this
parent." For the child, it says "of the n times this child was called, m of those
calls came from this routine."

gprof's Flat Profile
As we mentioned previously, gprofalso produces a timing profile (also called a
"flat" profile, just to confuse things) similar to the one produced by prof. A few of
the fields are different from prof, and there is some extra information, so it will
help if we explain it briefly. The following example shows the first few lines from
a .gpro/flat profile for stuff. You will recognize the top three routines from the
original program. The others are library functions included at link-time.

% cumulative self self total
time seconds seconds calls ms/call ms/call name

_c_ [6]
_b__ [4]
_a_ [5]
_ioctl [9]
.rem [12]
_f_clos [177]
_sigblock [178]
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Here's what each column means:

%time
Again, we see a field that describes the runtime for each routine as a percent-
age of the overall time taken by the program. As you might expect, all the
entries in this column should total 100% (nearly).

cumulative seconds
For any given routine, the column called "cumulative seconds" tallies a run-
ning sum of the time taken by all the preceding routines plus its own time. As
you scan towards the bottom, the numbers asymptotically approach the total
runtime for the program.

self seconds
Each routine's individual contribution to the runtime.

calls
The number of times this particular routine was called.

self ms/call
Seconds spent inside the routine, divided by the number of calls. This gives
the average length of time taken by each invocation of the routine. The figure
is presented in milliseconds.

total ms/call
Seconds spent inside the routine plus its descendants, divided by the number
of calls.

name
The name of the routine. Notice that the cross-reference number appears here
too.

Accumulating the Results of Several gprof Runs
It is possible to accumulate statistics from multiple runs so that you can get a pic-
ture of how a program is doing with a variety of data sets. For instance, say that
you wanted to profile an application—call it bar—with three different sets of
input data. You could perform the runs separately, saving the gmon.out files as
you go, and then combine the results into a single profile at the end:

% f77 -pg bar.f -o bar
% bar < datal.input
% mv gmon. out gmon. 1
% bar < data2.input
% mv gmon.out gmon.2
% bar < data3.input
% gprof bar -s gmon.l gmon.2 gmon.out > gprof.summary.out
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In the example profile, each run along the way creates a new gmon.out file that
we renamed to make room for the next one. At the end, ^pro/combines the infor-
mation from each of the data files to produce a summary profile of bar in the file
gprof.summary.out. Additionally (you don't see it here), gprof creates a file named
gmon.sum that contains the merged data from the original three data files.
gmon.sum has the same format as gmon.out, so you can use it as input for other
merged profiles down the road.

In form, the output from a merged profile looks exactly the same as for an individ-
ual run. There are a couple of interesting things you will note, however. For one
thing, the main routine appears to have been invoked more than once—one time
for each run, in fact. Furthermore, depending on the application, multiple runs
tend to either smooth the contour of the profile or exaggerate its features. You can
imagine how this might happen. If a single routine is consistently called while oth-
ers come and go as the input data changes, it takes on increasing importance in
your tuning efforts.

A Few Words About Accuracy
For processors running at 600 MHz and more, the time between 60 Hz and 100 Hz
samples is a veritable eternity. Furthermore, you can experience quantization
errors when the sampling frequency is fixed, as is true of steady l/100th or l/60th
of a second samples. To take an exaggerated example, assume that the timeline in
Figure 6-6 shows alternating calls to two subroutines, BAR and FOO. The tick
marks represent the sample points for profiling.

Figure 6-6: Quantization errors in profiling

BAR and FOO take turns running. In fact, BAR takes more time than FOO. But
because the sampling interval closely matches the frequency at which the two sub-
routines alternate, we get a quantizing error: most of the samples happen to be
taken while FOO is running. Therefore, the profile tells us that FOO took more CPU
time than BAR.

We have described the tried and true UNIX subroutine profilers that have been
available for years. In many cases, vendors have much better tools available for
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the asking or for a fee. If you are doing some serious tuning, ask your vendor rep-
resentative to look into other tools for you.

Basic Block Profilers
There are several good reasons to desire a finer level of detail than you can see
with a subroutine profiler. For humans trying to understand how a subroutine or
function is used, a profiler that tells which lines of source code were actually exe-
cuted, and how often, is invaluable; a few clues about where to focus your tuning
efforts can save you time. Also, such a profiler saves you from discovering that a
particularly clever optimization makes no difference because you put it in a sec-
tion of code that never gets executed.

As part of an overall strategy, a subroutine profile can direct you to a handful of
routines that account for most of the runtime, but it takes a basic block profiler* to
get you to the associated source code lines.

Basic block profilers can also provide compilers with information they need to
perform their own optimizations. Most compilers work in the dark. They can
restructure and unroll loops, but they cannot tell when it will pay off. Worse yet,
misplaced optimizations often have an adverse effect of slowing down the code!
This can be the result of added instruction cache burden, wasted tests introduced
by the compiler, or incorrect assumptions about which way a branch would go at
runtime. If the compiler can automatically interpret the results of a basic block
profile, or if you can supply the compiler with hints, it often means a reduced run-
time with little effort on your part.

There are several basic block profilers in the world. The closest thing to a stan-
dard, tcov, is shipped with Sun workstations; it's standard because the installed
base is so big. On MlPS-based workstations, such as those from Silicon Graphics
and DEC, the profiler (packaged as an extension to prof) is called pixie. We
explain briefly how to run each profiler using a reasonable set of switches. You
can consult your manual pages for other options.

tcov
tcov, available on Sun workstations and other SPARC machines that run SunOS,
gives execution statistics that describe the number of times each source statement
was executed. It is very easy to use. Assume for illustration that we have a source
program called foo.c. The following steps create a basic block profile:

* A basic block is a section of code with only one entrance and one exit. If you know how many
times the block was entered, you know how many times each of the statements in the block was exe-
cuted, which gives you a line-by-line profile. The concept of a basic block is explained in detail in
Chapters, What a Compiler Does.
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% cc -a foo.c -o foo
% foo
% tcov foo.c

The -a option tells the compiler to include the necessary support for tcov." Several
files are created in the process. One called foo.d accumulates a history of the exe-
cution frequencies within the program foo. That is, old data is updated with new
data each time foo is run, so you can get an overall picture of what happens inside
foo, given a variety of data sets. Just remember to clean out the old data if you
want to start over. The profile itself goes into a file called foo.tcov.

Let's look at an illustration. Below is a short C program that performs a bubble sort
of 10 integers:

int n[] = {23,12,43,2,98,78,2,51,77,8};
main ()
{
int i, j, ktemp;
for (i=10; i>0; i--} {
for (j=0; j<i; j++) {
if (n[j] < n[j+l]) {
ktemp = n[j+l], n[j+l] - n[j], n[j] = ktemp;

}
}

}
)

tcov produces a basic block profile that contains execution counts for each source
line, plus some summary statistics (not shown):

int n[] = {23,12,43,2,98,78,2,51,77,8};
main ()

1 -> (
int i, j , ktemp;

10 -> for (1=10; i>0; i--} {
10, 55 -> for (j=0; j<i; j++) {
55 -> if (n[j] < n[j+l]) {
23 -> ktemp = n[j+l], n[j+l] = n[j], n[j] = ktemp;

}
}

}
1 -> }

* On Sun Soiaris systems, the -xa option is used.

The numbers to the left tell you the number of times each block was entered. For
instance, you can see that the routine was entered just once, and that the highest
count occurs at the test n [ j ] < n[ j+1] . tcov shows more than one count on a
line in places where the compiler has created more than one block.
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pixie
pixie is a little different from tcov. Rather than reporting the number of times each
source line was executed, pixie reports the number of machine clock cycles
devoted to executing each line. In theory, you could use this to calculate the
amount of time spent per statement, although anomalies like cache misses are not
represented.

pixie works by "pixifying" an executable file that has been compiled and linked in
the normal way. Below we run pixie on foo to create a new executable called
foo.pixie:

% cc foo.c -o foo
% pixie £00
% foo.pixie
% prof -pixie foo

Also created was a file named foo.Addrs, which contains addresses for the basic
blocks within foo. When the new program, foo.pixie, is run, it creates a file called
foo.Counts, containing execution counts for the basic blocks whose addresses are
stored in foo.Addrs. pixie data accumulates from run to run. The statistics are
retrieved using prof and a special -pixie flag.

pixie's default output comes in three sections and shows:

• Cycles per routine

• Procedure invocation counts

• Cycles per basic line

Below, we have listed the output of the third section for the bubble sort:

procedure (file) line bytes cycles % cum %

main (foo.c) 7 44 605 12.11 12.11
_cleanup (flsbuf.c) 59 20 500 10.01 22.13
fclose (flsbuf.c} 81 20 500 10.01 32.14
fclose (flsbuf.c) 94 20 500 10.01 42.15
_cleanup (flsbuf.c) 54 20 500 10.01 52.16
fclose (flsbuf.c) 76 16 400 8.01 60.17
main (foo.c) 10 24 298 5.97 66.14
main (foo.c) 8 36 207 4.14 70.28

Here you can see three entries for the main routine from/oo.c, plus a number of
system library routines. The entries show the associated line number and the num-
ber of machine cycles dedicated to executing that line as the program ran. For
instance, line 7 of foo.c took 605 cycles (12% of the runtime).
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Virtual Memory
In addition to the negative performance impact due to cache misses, the virtual
memory system can also slow your program down if it is too large to fit in the
memory of the system or is competing with other large jobs for scarce memory
resources.

Under most UNIX implementations, the operating system automatically pages
pieces of a program that are too large for the available memory out to the swap
area. The program won't be tossed out completely; that only happens when mem-
ory gets extremely tight, or when your program has been inactive for a while.
Rather, individual pages are placed in the swap area for later retrieval. First of all,
you need to be aware that this is happening if you don't already know about it.
Second, if it is happening, the memory access patterns are critical. When refer-
ences are too widely scattered, your runtime will be completely dominated by disk
I/O.

If you plan in advance, you can make a virtual memory system work for you
when your program is too large for the physical memory on the machine. The
techniques are exactly the same as those for tuning a software-managed out-of-
core solution, or loop nests. The process of "blocking" memory references so that
data consumed in neighborhoods uses a bigger portion of each virtual memory
page before rotating it out to disk to make room for another.*

Gauging the Size of Your Program and the
Machine's Memory
How can you tell if you are running out-of-core? There are ways to check for pag-
ing on the machine, but perhaps the most straightforward check is to compare the
size of your program against the amount of available memory. You do this with
the size command:

% size myprogram

On a System V UNIX machine, the output looks something like this:

53872 + 53460 + 10010772 = 10118104

On a Berkeley UNIX derivative you see something like this:

text data bss hex decimal
53872 53460 10010772 9a63d8 10118104

We examine the techniques for blocking in Chapter 8.
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The first three fields describe the amount of memory required for three different
portions of your program. The first, text, accounts for the machine instructions that
make up your program. The second, data, includes initialized values in your pro-
gram such as the contents of data statements, common blocks, externals, character
strings, etc. The third component, bss, (block started by symbol), is usually the
largest. It describes an uninitialized data area in your program. This area would be
made of common blocks that are not set by a block data. The last field is a total
for all three sections added together, in bytes.*

Next, you need to know how much memory you have in your system. Unfortu-
nately, there isn't a standard UNIX command for this. On the RS/6000, /etc/lscfg
tells you. On an SGI machine, /etc/hinv does it. Many System V UNIX implementa-
tions have an /etc/memsize command. On any Berkeley derivative, you can type:

% ps aux

This command gives you a listing of all the processes running on the machine.
Find the process with the largest value in the %MEM. Divide the value in the RSS
field by the percentage of memory used to get a rough figure for how much mem-
ory your machine has:

memory = RSS/(%MEM/100)

For instance, if the largest process shows 5% memory usage and a resident set size
(RSS) of 840 KB, your machine has 840000/C5/100) = 16 MB of memory.t If the
answer from the size command shows a total that is anywhere near the amount of
memory you have, you stand a good chance of paging when you run—especially
if you are doing other things on the machine at the same time.

Checking for Page Faults
Your system's performance monitoring tools tell you if programs are paging. Some
paging is OK; page faults and "page-ins" occur naturally as programs run. Also, be
careful if you are competing for system resources along with other users. The pic-
ture you get won't be the same as when you have the computer to yourself.

To check for paging activity on a Berkeley UNIX derivative, use the vmstat com-
mand. Commonly people invoke it with a time increment so that it reports paging
at regular intervals:

* Warning: The size command won't give you the full picture if your program allocates memory
dynamically, or keeps data on the stack. This area is especially important for C programs and FOR-
TRAN programs that create large arrays that are not in COMMON.

t You could also reboot the machinellt will tell you how much memory is available when it comes up.
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% vmstat 5

This command produces output every five seconds:

procs memory page disk faults cpu
r b w avm fre re at pi po fr de sr sO dl d2 d3 in sy cs us sy id
0 0 0 824 21568 0 0 0 0 0 0 0 0 0 0 0 2 0 3 7 1 3 0 1 9 8
0 0 0 840 21508 0 0 0 0 0 0 0 1 0 0 0 251 186 156 0 1 0 9 0

0 0 0 846 21460 00 0 0 0 0 0 2 0 0 0 248 149 152 1 9 89
0 0 0 918 21444 0 0 0 0 0 0 0 4 0 0 0 258 143 152 2 1 0 8 9

Lots of valuable information is produced. For our purposes, the important fields
are avm or active virtual memory, the fre or free real memory, and the pi and
po numbers showing paging activity. When the fre figure drops to near zero, and
the po field shows a lot of activity, it's an indication that the memory system is
overworked.

On a SysV machine, paging activity can be seen with the sar command:

% sar -r 5 5

This command shows you the amount of free memory and swap space presently
available. If the free memory figure is low, you can assume that your program is
paging:

Sat Apr 18 20:42:19
[r] freeinem freeswap

4032 82144

As we mentioned earlier, if you must run a job larger than the size of the memory
on your machine, the same sort of advice that applied to conserving cache activity
applies to paging activity.* Try to minimize the stride in your code, and where you
can't, blocking memory references helps a whole lot.

A note on memory performance monitoring tools: you should check with your
workstation vendor to see what they have available beyond vmstat or sar. There
may be much more sophisticated (and often graphical) tools that can help you
understand how your program is using memory.

Closing Notes
We have seen some of the tools for timing and profiling. Even though it seems like
we covered a lot, there are other kinds of profiles we would like to be able to
cover—cache miss measurements, runtime dependency analysis, flop measure-
ments, and so on. These profiles are good when you are looking for particular

* By the way, are you getting the message "Out of memory?" If you are running csh, try typing
unlimit to see if the message goes away. Otherwise, it may mean that you don't have enough swap
space available to run the job.



Chapter 6: Timing and Profiling

anomalies, such as cache miss or floating-point pipeline utilization. Profilers for
these quantities exist for some machines, but they aren't widely distributed.

One thing to keep in mind: when you profile code you sometimes get a very lim-
ited view of the way a program is used. This is especially true if it can perform
many types of analyses for many different sets of input data. Working with just
one or two profiles can give you a distorted picture of how the code operates
overall. Imagine the following scenario: someone invites you to take your very first
ride in an automobile. You get in the passenger's seat with a sketch pad and a
pen, and record everything that happens. Your observations include some of the
following:

• The radio is always on.

• The windshield wipers are never used.

• The car moves only in a forward direction.

The danger is that, given this limited view of the way a car is operated, you might
want to disconnect the radio's on/off knob, remove the windshield wipers, and
eliminate the reverse gear. This would come as a real surprise to the next person
who tries to back the car out on a rainy day! The point is that unless you are care-
ful to gather data for all kinds of uses, you may not really have a picture of how
the program operates. A single profile is fine for tuning a benchmark, but you may
miss some important details on a multipurpose application. Worse yet, if you opti-
mize it for one case and cripple it for another, you may do far more harm than
good.

Profiling, as we saw in this chapter, is pretty mechanical. Tuning requires insight.
It's only fair to warn you that it isn't always rewarding. Sometimes you pour your
soul into a clever modification that actually increases the runtime. Argh! What
went wrong? You'll need to depend on your profiling tools to answer that.

Exercises
1. Profile the following program using gprof. Is there any way to tell how much

of the time spent in routine c was due to recursive calls?

main()

{
int i, n=10;
for (1=0; i<1000; 1++) {

c(n);
a(n);

}
}
c(n)
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2. Profile an engineering code (floating-point intensive) with full optimization on
and off. How does the profile change? Can you explain the change?

3. Write a program to determine the overhead of the getrusage and the etime
calls. Other than consuming processor time, how can making a system call to
check the time too often alter the application performance?

int n;
{

if (n > 0) {
a (n - l ) ;
c (n- l ) ;

}
}
a(n)
int n;
{

c(n) ;

}



Eliminating
Clutter

We have looked at code from the compiler's point of view and at how to profile
code to find the trouble spots. This is good information, but if you are dissatisfied
with a code's performance, you might still be wondering what to do about it. One
possibility is that your code is too obtuse for the compiler to optimize properly.
Excess code, too much modularization, or even previous optimization-related
"improvements" can clutter up your code and confuse the compilers. Clutter is
anything that contributes to the runtime without contributing to the answer. It
comes in two forms:

Things that contribute to overhead
Subroutine calls, indirect memory references, tests within loops, wordy tests,
type conversions, variables preserved unnecessarily

Things that restrict compiler flexibility
Subroutine calls, indirect memory references, tests within loops, ambiguous
pointers

It's not a mistake that some of the same items appear in both lists. Subroutine calls
or if-statements within loops can both bite and scratch you by taking too much
time and by creating fences—places in the program where instructions that appear
before can't be safely intermixed with instructions that appear after, at least not
without a great deal of care. The goal of this chapter is to show you how to elimi-
nate clutter, so you can restructure what's left over for the fastest execution. We
save a few specific topics that might fit here, especially those regarding memory
references, for later chapters where they are treated as subjects by themselves.

Before we start, we'll remind you: as you look for ways to improve what you
have, keep your eyes and mind open to the possibility that there might be a fun-
damentally better way to do something—a more efficient sorting technique,

128



Subroutine Calls 129

random number generator, or solver. A different algorithm may buy you far more
speed than tuning. Algorithms are beyond the scope of this book, but what we are
discussing here should help you recognize "good" code, or help you to code a
new algorithm to get the best performance.

Subroutine Calls
A typical corporation is full of frightening examples of overhead. Say your depart-
ment has prepared a stack of paperwork to be completed by another department.
What do you have to do to transfer that work? First, you have to be sure that your
portion is completed; you can't ask them to take over if the materials they need
aren't ready. Next, you need to package the materials—data, forms, charge num-
bers, and the like. And finally comes the official transfer. Upon receiving what you
sent, the other department has to unpack it, do their job, repackage it, and send it
back.

A lot of time gets wasted moving work between departments. Of course, if the
overhead is minimal compared to the amount of useful work being done, it won't
be that big a deal. But it might be more efficient for small jobs to stay within one
department. The same is true of subroutine and function calls. If you only enter
and exit modules once in a relative while, the overhead of saving registers and
preparing argument lists won't be significant. However, if you are repeatedly call-
ing a few small subroutines, the overhead can buoy them to the top of the profile.
It might be better if the work stayed where it was, in the calling routine.

Additionally, subroutine calls inhibit compiler flexibility. Given the right opportu-
nity, you'd like your compiler to have the freedom to intermix instructions that
aren't dependent upon each other. These are found on either side of a subroutine
call, in the caller and callee. But the opportunity is lost when the compiler can't
peer into subroutines and functions. Instructions that might overlap very nicely
have to stay on their respective sides of the artificial fence.

It helps if we illustrate the challenge that subroutine boundaries present with an
exaggerated example. The following loop runs very well on a wide range of pro-
cessors:

DO 1=1,N
A ( I ) - A { I ) + B ( I ) * C

ENDDO

The code below performs the same calculations, but look at what we have done:

DO 1=1,N
CALL, MADD {A(I}, B(I), C)

ENDDO
SUBROUTINE MADD (A,B,C)
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A = A + B * C

RETURN

END

Each iteration calls a subroutine to do a small amount of work that was formerly
within the loop. This is a particularly painful example because it involves floating-
point calculations. The resulting loss of parallelism, coupled with the procedure
call overhead, might produce code that runs 100 times slower. Remember, these
operations are pipelined, and it takes a certain amount of "wind-up" time before
the throughput reaches one operation per clock cycle. If there are few floating-
point operations to perform between subroutine calls, the time spent winding up
and winding down pipelines figures prominently.

Subroutine and function calls complicate the compiler's ability to efficiently man-
age COMMON and external variables, delaying until the last possible moment
actually storing them in memory. The compiler uses registers to hold the "live" val-
ues of many variables. When you make a call, the compiler cannot tell whether
the subroutine will be changing variables that are declared as external or COM-
MON. Therefore, it's forced to store any modified external or COMMON variables
back into memory so that the callee can find them. Likewise, after the call has
returned, the same variables have to be reloaded into registers because the com-
piler can no longer trust the old, register-resident copies. The penalty for saving
and restoring variables can be substantial, especially if you are using lots of them.
It can also be unwarranted if variables that ought to be local are specified as
external or COMMON, as in the following code:

COMMON /USELESS/ K
DO K=l,1000
IF (K .EQ. 1) CALL AUX

ENDDO

In this example, K has been declared as a COMMON variable. It is used only as a
do-loop counter, so there really is no reason for it to be anything but local. How-
ever, because it is in a COMMON block, the call to AUX forces the compiler to store
and reload K each iteration. This is because the side effects of the call are
unknown.

So far, it looks as if we are preparing a case for huge main programs without any
subroutines or functions! Not at all. Modularity is important for keeping source
code compact and understandable. And frankly, the need for maintainability and
modularity is always more important than the need for small performance
improvements. However, there are a few approaches for streamlining subroutine
calls that don't require you to scrap modular coding techniques: macros and pro-
cedure inlining.
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Remember, if the function or subroutine does a reasonable amount of work, pro-
cedure call overhead isn't going to matter very much. However, if one small rou-
tine appears as a leaf node in one of the busiest sections of the call graph, you
might want to think about inserting it in appropriate places in the program.

Macros
Macros are little procedures that are substituted inline at compile time. Unlike sub-
routines or functions, which are included once during the link, macros are repli-
cated every place they are used. When the compiler makes its first pass through
your program, it looks for patterns that match previous macro definitions and
expands them inline. In fact, in later stages, the compiler sees an expanded macro
as source code.

Macros are part of both C and FORTRAN (although the FORTRAN notion of a
macro, the statement function, is reviled by the FORTRAN community, and won't
survive much longer).* For C programs, macros are created with a #def ine con-
struct, as demonstrated here:

#define average (x,y) ((x+y)/2)
main ( )
{

float q = 100, p = 50;
float a;
a = average (p, q) ;
printf ( "%f\n" ,a) ;

}

The first compilation step for a C program is a pass through the C preprocessor,
cpp. This happens automatically when you invoke the compiler, cpp expands
#def ine statements inline, replacing the pattern matched by the macro definition.
In the program above, the statement:

a = average (p, q) ;

gets replaced with:

a = ( ( p + q ) / 2 ) ;

You have to be careful how you define the macro because it literally replaces the
pattern located by cpp. For instance, if the macro definition said:

#define multiply(a,b) (a*ta)

* The statement function has been eliminated in FORTRAN 90.
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and you invoked it as:

c - multiply (x+t,y+v) ;

the resulting expansion would be x+t*y+v — probably not what you intended.

If you are a C programmer you may be using macros without being conscious of
it. Many C header files (.h) contain macro definitions. In fact, some "standard" C
library functions are really defined as macros in the header files. For instance, the
function getchar can be linked in when you build your program. If you have a
statement:

^include <stdio.h>

in your file, getchar is replaced with a macro definition at compile time, replacing
the C library function.

You can make cpp macros work for FORTRAN programs too.* For example, a
FORTRAN version of the C program above might look like this:

#define AVERAG(X,Y) ((X+Y)/2)
C

PROGRAM MAIN
REAL A,P,Q
DATA P,Q /50. , 100./
A = AVERAG(P,Q)
WRITE (*,*) A
END

Without a little preparation, the #def ine statement is rejected by the FORTRAN
compiler. The program first has to be preprocessed through cpp to replace the use
of AVERAG with its macro definition. It makes compilation a two-step procedure,
but that shouldn't be too much of a burden, especially if you are building your
programs under the control of the make utility. We would also suggest you store
FORTRAN programs containing cpp directives under filename. F to distinguish
them from unadorned FORTRAN. Just be sure you make your changes only to the
.F files and not to the output from cpp. This is how you would preprocess FOR-
TRAN .F files by hand:

% /lib/cpp -P < average.F > average.f
% f77 aver age.f -c

The FORTRAN compiler never sees the original code. Instead, the macro definition
is substituted inline as if you had typed it yourself:

c
PROGRAM MAIN
REAL A,P,Q

* Some programmers use the standard UNIX m4 preprocessor for FORTRAN.
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DATA P,Q /50.,100./
A = ((P+Q)/2)
WRITE (*,*) A
END

By the way, some FORTRAN compilers recognize the . F extension already, making
the two-step process unnecessary. If the compiler sees the .T7 extension it invokes
cpp automatically, compiles the output, and throws away the intermediate / file.
Try compiling a .F on your computer to see if it works.

Also, be aware that macro expansions may make source lines extend past column
72, which will probably make your FORTRAN compiler complain (or worse: it
might pass unnoticed). Some compilers support input lines longer than 72 charac-
ters. On the Sun compilers the -e option allows extended input lines up to 132
characters long.

Procedure Inlining
Macro definitions tend to be pretty short, usually just a single statement. Some-
times you have slightly longer (but not too long) bits of code that might also bene-
fit from being copied inline, rather than called as a subroutine or function. Again,
the reason for doing this is to eliminate procedure call overhead and expose paral-
lelism. If your compiler is capable of inlining subroutine and function definitions
into the modules that call them, then you have a very natural, very portable way
to write modular code without suffering the cost of subroutine calls.

Depending on the vendor, you can ask the compiler for procedure inlining by:

• Specifying which routines should be inlined on the compiler's command line

• Putting inlining directives into the source program

• Letting the compiler inline automatically

The directives and compile line options are not standard, so you have to check
your compiler documentation. Unfortunately, you may learn that there is no such
feature ("yet," always yet), or that it's an expensive extra. The third form of inlin-
ing in the list, automatic, is available from just a few vendors. Automatic inlining
depends on a sophisticated compiler that can view the definitions of several mod-
ules at once.

There are some words of caution with regard to procedure inlining. You can easily
do too much of it. If everything and anything is ingested into the body of its par-
ents, the resulting executable may be so large that it repeatedly spills out of the
instruction cache and becomes a net performance loss. Our advice is that you use
the caller/callee information profilers give you and make some intelligent deci-
sions about inlining, rather than trying to inline every subroutine available. Again,
small routines that are called often are generally the best candidates for inlining.



134 Chapter 7: Eliminating Clutter

Branches
People sometimes take a week to make a decision, so we can't fault a computer if
it takes a few tens of nanoseconds. However, if an if-statement appears in some
heavily traveled section of the code, you might get tired of the delay. There are
two basic approaches to reducing the impact of branches:

• Streamline them.

• Move them out to the computational suburbs. Particularly, get them out of
loops.

In this section we show you some easy ways to reorganize conditionals so they
execute more quickly.

Branches Within Loops
Numerical codes usually spend most of their time in loops, so you don't want any-
thing inside a loop that doesn't have to be there, especially an if-statement. Not
only do if-statements gum up the works with extra instructions, they can force a
strict order on the iterations of a loop. Of course, you can't always avoid condi-
tionals. Sometimes, though, people place them in loops to process events that
could have been handled outside, or even ignored.

To take you back a few years, the following code shows a loop with a test for a
value close to zero:

PARAMETER (SMALL = l.E-20)

DO 1=1,N
IF (ABS(A(I)) .GE. SMALL) THEN

B(I) = B(I) + A(I) * C

END IF

ENDDO

The idea was that if the multiplier, A ( I ) , were reasonably small, there would be
no reason to perform the math in the center of the loop. Because floating-point
operations weren't pipelined on many machines, a comparison and a branch was
cheaper; the test would save time. On an older CISC or early RISC processor, a
comparison and branch is probably still a savings. But on other architectures, it
costs a lot less to just perform the math and skip the test. Eliminating the branch
eliminates a control dependency and allows the compiler to pipeline more arith-
metic operations. Of course, the answer could change slightly if the test is elimi-
nated. It then becomes a question of whether the difference is significant. Here's
another example where a branch isn't necessary. The loop finds the absolute value
of each element in an array:
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DO I=1,N
IF ( A ( I ) .LT. 0 . ) A ( I ) = -A{I)

ENDDO

But why perform the test at all? On most machines, it's quicker to perform the
abs () operation on every element of the array.

We do have to give you a warning, though; if you are coding in C, the absolute
value, f abs ( ) , is a subroutine call. In this particular case, you are better off leav-
ing the conditional in the loop.*

When you can't always throw out the conditional, there are things you can do to
minimize negative performance. First, we have to learn to recognize which condi-
tionals within loops can be restructured and which cannot. Conditionals in loops
fall into several categories:

• Loop invariant conditionals

• Loop index dependent conditionals

• Independent loop conditionals

• Dependent loop conditionals

• Reductions

• Conditionals that transfer control

Let's look at these types in turn.

Loop Invariant Conditionals
The following loop contains an invariant test:

DO I=1,K
IF (N .EQ. 0) THEN
A(I) = A(I) + B(I) * C

ELSE
A(I) = 0.

ENDIF
ENDDO

"Invariant" means that the outcome is always the same. Regardless of what hap-
pens to the variables A, B, C, and I, the value of N won't change, so neither will
the outcome of the test.

* The machine representation of a floating-point number starts with a sign bit. If the bit is 0, the num-
ber is positive. If it is 1, the number is negative. The fastest absolute value function is one that merely
"ands" out the sign bit. See macros in /usr/include/macros.h and /usr/include/math.h.
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You can recast the loop by making the test outside and replicating the loop body
twice—once for when the test is true, and once for when it is false, as in the fol-
lowing example:

IF (N .EQ. 0} THEN
DO I=1,K
A(I) = A(I) + B(I) * C

ENDDO
ELSE
DO I=1,K
A(I) = 0

ENDDO
ENDIF

The effect on the runtime is dramatic. Not only have we eliminated K-1 copies of
the test, we have also assured that the computations in the middle of the loop are
not control-dependent on the if-statement, and are therefore much easier for the
compiler to pipeline.

We remember helping someone optimize a program with loops containing similar
conditionals. They were checking to see whether debug output should be printed
each iteration inside an otherwise highly optimizable loop. We can't fault the per-
son for not realizing how much this slowed the program down. Performance
wasn't important at the time. The programmer was just trying to get the code to
produce good answers. But later on, when performance mattered, by cleaning up
invariant conditionals, we were able to speed up the program by a factor of 100.

Loop Index Dependent Conditionals
For loop index dependent conditionals, the test is true for certain ranges of the
loop index variables. It isn't always true or always false, like the conditional we
just looked at, but it does change with a predictable pattern, and one that we can
use to our advantage. The following loop has two index variables, I and J.

DO I=1,N
DO J=1,N

IF (J .LT. I}
A(J,I) = A(J,I) + B(J,I) * C

ELSE
A{J,I) = 0.0

ENDIF
ENDDO

ENDDO

Notice how the if-statement partitions the iterations into distinct sets: those for
which it is true and those for which it is false. You can take advantage of the pre-
dictability of the test to restructure the loop into several loops—each custom-made
for a different partition:
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DO 1=1,N
DO J=1,I-1

A{J,I) = A(J,I) + B(J,I) * C
ENDDO
DO J=I,N

A(J,I) = 0.0
ENDDO

ENDDO

The new version will almost always be faster. A possible exception is when N is a
small value, like 3, in which case we have created more clutter. But then, the loop
probably has such a small impact on the total runtime that it won't matter which
way it's coded.

Independent Loop Conditionals
It would be nice if you could optimize every loop by partitioning it. But more
often than not, the conditional doesn't directly depend on the value of the index
variables. Although an index variable may be involved in addressing an array, it
doesn't create a recognizable pattern in advance—at least not one you can see
when you are writing the program. Here's such a loop:

DO 1=1,N
DO J=1,N

IF (B(J,I) .GT. 1.0} A(J,I) = A(J,I) + B(J,I) * C
ENDDO

ENDDO

There is not much you can do about this type of conditional. But because every
iteration is independent, the loop can be unrolled or can be performed in parallel.

Dependent Loop Conditionals
When the conditional is based on a value that changes with each iteration of the
loop, the compiler has no choice but to execute the code exactly as written. For
instance, the following loop has an if-statement with built-in scalar recursion:

DO I=1,N
IF (X .LT. A ( I ) ) X = X + B ( I ) * 2 .

ENDDO

You can't know which way the branch will go for the next iteration until you are
done with the current iteration. To recognize the dependency, try to unroll the
loop slightly by hand. If you can't start the second test until the first has finished,
you have a dependent loop conditional. You may want to look at these types of
loops to see if you can eliminate the iteration-to-iteration value.
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Reductions
Keep an eye out for loops in which the if-statement is performing a max or rnin
function on a array. This is a reduction, so called because it reduces a array to a
scalar result (the previous example was a reduction too, by the way). Again, we
are getting a little bit ahead of ourselves, but since we are talking about if-state-
ments in loops, I want to introduce a trick for restructuring reductions max and
min to expose more parallelism. The following loop searches for the maximum
value, z, in the array a by going through the elements one at a time:

for {i=0; i<n; i++)
z = a[i] > z ? a[ i ] : z;

As written, it's recursive like the loop from the previous section. You need the
result of a given iteration before you can proceed to the next. However, since we
are looking for the greatest element in the whole array, and since that will be the
same element (essentially) no matter how we go about looking for it, we can
restructure the loop to check several elements at a time (we assume n is evenly
divisible by 2 and do not include the preconditioning loop):

zO = 0.;
zl = 0.;
for (i=0; i< n-1; i+=2) {

zO = zO < a[i] ? a[i] : zO;
zl = zl < a[i+l] ? a[i+l] : zl;

}
Z = ZO < zl ? zl : zO;

Do you see how the new loop calculates two new maximum values each iteration?
These maximums are then compared with one another, and the winner becomes
the new official max. It's analogous to a play-off arrangement in a Ping-Pong tour-
nament. Whereas the old loop was more like two players competing at a time
while the rest sat around, the new loop runs several matches side by side. In gen-
eral this particular optimization is not a good one to code by hand. On parallel
processors, the compiler performs the reduction in its own way. If you hand-code
similar to this example, you may inadvertently limit the compiler's flexibility on a
parallel system.

Conditionals That Transfer Control
Let's step back a second. Have you noticed a similarity among all the loops so far?
We have looked only at a particular type of conditional, conditional assign-
ments—based on the outcome of the test, a variable gets reassigned. Of course,
not every conditional ends up in an assignment. You can have statements that
transfer flow of control, such as subroutine calls or goto statements. In the fol-
lowing example, the programmer is carefully checking before dividing by zero.
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However, this test has an extremely negative impact on the performance because
it forces the iterations to be done precisely in order:

DO I=1,N
DO J=1,N
IF (B(J,I) .EQ. 0 ) THEN
PRINT *,I,J
STOP

ENDIF
A(J,I) = A(J,I) / B(J,I)

ENDDO
ENDDO

Avoiding these tests is one of the reasons that the designers of the IEEE floating-
point standard added the trap feature for operations such as dividing by zero.
These traps allow the programmer in a performance-critical section of the code to
achieve maximum performance yet still detect when an error occurs.

Other Clutter
Clutter comes in many forms. Consider the previous sections as having dealt with
large pieces of junk you might find in the front hall closet: an ironing board,
hockey sticks, and pool cues. Now we are down to the little things: a widowed
checker, a tennis ball, and a hat nobody owns. We want to mention a few of them
here. We apologize in advance for changing subjects a lot, but that's the nature of
cleaning out a closet!

Data Type Conversions
Statements that contain runtime type conversions suffer a little performance
penally each time the statement is executed. If the statement is located in a portion
of the program where there is a lot of activity, the total penalty can be significant.

People have their reasons for writing applications with mixed typing. Often it is a
matter of saving memory space, memory bandwidth, or time. In the past, for
instance, double-precision calculations took twice as long as their single-precision
counterparts, so if some of the calculations could be arranged to take place in sin-
gle precision, there could be a performance win.* But any time saved by perform-
ing part of the calculations in single precision and part in double precision has to

* Nowadays, single-precision calculations can take longer than double-precision calculations from reg-
ister to register.
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be measured against the additional overhead caused by the runtime type conver-
sions. In the following code, the addition of A ( I ) to B (I) is mixed type:

INTEGER NUMEL, I

PARAMETER (NUMEL = 1000)

REAL*8 A(NUMEL)

REAL*4 B(NUMEL)

DO I=1,NUMEL

A(I) = A(I) + B(I>

ENDDO

In each iteration, B ( I ) has to be promoted to double precision before the addi-
tion can occur. You don't see the promotion in the source code, but it's there, and
it takes time.

C programmers beware: in Kernighan and Ritchie (K&R) C, all floating-point calcu-
lations in C programs take place in double precision—even if all the variables
involved are declared as float. It is possible for you to write a whole K+R applica-
tion in one precision, yet suffer the penalty of many type conversions.

Another data type-related mistake is to use character operations in IF tests. On
many systems, character operations have poorer performance than integer opera-
tions since they may be done via procedure calls. Also, the optimizers may not
look at code using character variables as a good candidate for optimization. For
example, the following code:

DO I=1,10000

IF ( CHVAR(I) .EQ. 'Y' ) THEN

A(I) = A(I) + B(I)*C

ENDIF

ENDDO

might be better written using an integer variable to indicate whether or not a com-
putation should be performed:

DO I=1,10000

IF ( IFLAG(I) .EQ. 1 ) THEN

A ( I ) = A(I) + B(I )*C
ENDIF

ENDDO

Another way to write the code, assuming the IFLAG variable was 0 or 1, would be
as follows:

DO I=1,10000

A ( I ) - A ( I ) + B( I )*C*IFLAG(I )
ENDDO

The last approach might actually perform slower on some computer systems than
the approach using the IF and the integer variable.



Doing Your Own Common
Subexpression Elimination
So far we have given your compiler the benefit of the doubt. Common subexpres-
sion elimination—the ability of the compiler to recognize repeated patterns in the
code and replace all but one with a temporary variable—probably works on your
machine for simple expressions. In the following lines of code, most compilers
would recognize a+b as a common subexpression:

c = a + b + d
e = g + a + b

becomes:

temp = a + b
c = temp + d
e = g + temp

Substituting for a+b eliminates some of the arithmetic. If the expression is reused
many times, the savings can be significant. However, a compiler's ability to recog-
nize common subexpressions is limited, especially when there are multiple com-
ponents, or their order is permuted. A compiler might not recognize that a+b+c
and c+b+a are equivalent.* For important parts of the program, you might con-
sider doing common subexpression elimination of complicated expressions by
hand. This guarantees that it gets done. It compromises beauty somewhat, but
there are some situations where it is worth it.

Here's another example in which the function sin is called twice with the same
argument:

x = r*sin(a)*cos(b);
y = r*sin{a)*sin(b);
z = r*cos(a) ;

becomes:

temp = r*sin(a);
x = temp*cos(b);
y = temp*sin(b);
z = r*cos(a);

We have replaced one of the calls with a temporary variable. We agree, the sav-
ings for eliminating one transcendental function call out of five won't win you a
Nobel prize, but it does call attention to an important point: compilers typically do
not perform common subexpression elimination over subroutine or function calls.

* And because of overflow and round-off errors in floating-point, in some situations they might not be
equivalent.
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The compiler can't be sure that the subroutine call doesn't change the state of the
argument or some other variables that it can't see.

The only time a compiler might eliminate common subexpressions containing
function calls is when they are intrinsics, as in FORTRAN. This can be done
because the compiler can assume some things about their side effects. You, on the
other hand, can see into subroutines, which means you are better qualified than
the compiler to group together common subexpressions involving subroutines or
functions.

Doing Your Own Code Motion
All of these optimizations have their biggest payback within loops because that's
where all of a program's activity is concentrated. One of the best ways to cut
down on runtime is to move unnecessary or repeated (invariant) instructions out
of the main flow of the code and into the suburbs. For loops, it's called hoisting
instructions when they are pulled out from the top and sinking when they are
pushed down below. Here's an example:

DO I=1,N
A(I) = A(I) / SQRT(X*X + Y*Y)

ENDDO

becomes:

TEMP = 1 / SQRT(X*X + Y*Y)
DO I=1,N
A(I) = A(I) * TEMP

ENDDO

We hoisted an expensive, invariant operation out of the loop and assigned the
result to a temporary variable. Notice, too, that we made an algebraic simplifica-
tion when we exchanged a division for multiplication by an inverse. The multipli-
cation will execute much more quickly. Your compiler might be smart enough to
make these transformations itself, assuming you have instructed the compiler that
these are legal transformations; but without crawling through the assembly lan-
guage, you can't be positive. Of course, if you rearrange code by hand and the
runtime for the loop suddenly goes down, you will know that the compiler has
been sandbagging all along.

Sometimes you want to sink an operation below the loop. Usually, it's some calcu-
lation performed each iteration but whose result is only needed for the last. To
illustrate, here's a sort of loop that is different from the ones we have been look-
ing at. It searches for the final character in a character string:
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while (*p != ' ')
c = *p++;

becomes:

while (*p++ != ' ');
c = *(p-1);

The new version of the loop moves the assignment of c beyond the last iteration.
Admittedly, this transformation would be a reach for a compiler and the savings
wouldn't even be that great. But it illustrates the notion of sinking an operation
very well.

Again, hoisting or sinking instructions to get them out of loops is something your
compiler should be capable of doing. But often you can slightly restructure the
calculations yourself when you move them to get an even greater benefit.

Handling Array Elements in Loops
Here's another area where you would like to trust the compiler to do the right
thing. When making repeated use of an array element within a loop, you want to
be charged just once for loading it from memory. Take the following loop as an
example. It reuses X(I) twice:

DO I=1,N
XOLD(I) = X ( I )

X ( I ) = X(I) + XINC(I)

ENDDO

In reality, the steps that go into retrieving X (I ) are just additional common subex-
pressions: an address calculation (possibly) and a memory load operation. You can
see that the operation is repeated by rewriting the loop slightly:

DO I=1,N
TEMP = X(I)
XOLD(I) = TEMP
X(I) = TEMP + XINC(I)

ENDDO

FORTRAN compilers should recognize that the same X (I ) is being used twice and
that it only needs to be loaded once, but compilers aren't always so smart. You
sometimes have to create a temporary scalar variable to hold the value of an array
element over the body of a loop. This is particularly true when there are subrou-
tine calls or functions in the loop, or when some of the variables are external
or COMMON. Make sure to match the types between the temporary variables and
the other variables. You don't want to incur type conversion overhead just because
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you are "helping" the compiler. For C compilers, the same kind of indexed expres-
sions are an even greater challenge. Consider this code:

Unless the compiler can see the definitions of x, xinc, and xold, it has to
assume that they are pointers leading back to the same storage, and repeat the
loads and stores. In this case, introducing temporary variables to hold the values
x, xinc, and xold is an optimization the compiler wasn't free to make.

Interestingly, while putting scalar temporaries in the loop is useful for RISC and
superscalar machines, it doesn't help code that runs on parallel hardware. A paral-
lel compiler looks for opportunities to eliminate the scalars or, at the very least, to
replace them with temporary vectors. If you run your code on a parallel machine
from time to time, you might want to be careful about introducing scalar tempo-
rary variables into a loop. A dubious performance gain in one instance could be a
real performance loss in another.

Closing Notes
In this chapter, we introduced tuning techniques for eliminating program clutter—
anything that contributes to the runtime without contributing to the answer. We
saw many examples of tuning techniques—enough that you may be asking your-
self, "What's left?" Well, as we will see in the upcoming chapters, there are a cou-
ple of ways we can help the compiler:

• Find more parallelism

• Use memory as effectively as possible

Sometimes this means we make changes that are not beautiful. However, they are
often quick.

Exercises
1. How would you simplify the following loop conditional?

DO I=1,N

A ( I ) = A ( I ) * B

IF (I .EQ. N / 2 ) A ( I ) = 0.

ENDDO
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2. The following loop is taken from this chapter. Time it on your computer, both
with and without the test. Run it with three sets of data: one with all A ( I ) s
less than SMALL, one with all A ( I ) s greater than SMALL, and one with an
even split. When is it better to leave the test in the loop, if ever?

PARAMETER (SMALL = l.E-20)
DO I=1,N
IF (ABS(A(I)) .GE. SMALL) THEN
B(I) = B(I) + A(I) * C

ENDIF
ENDDO

3. Write a simple program that calls a simple subroutine in its inner loop. Time
the program execution. Then tell the compiler to inline the routine and test
the performance again. Finally, modify the code to perform the operations in
the body of the loop and time the code. Which option ran faster? You may
have to look at the generated machine code to figure out why.



In nearly all high performance applications, loops are where the majority of the
execution time is spent. In the last chapter we examined ways in which applica-
tion developers introduced clutter into loops, possibly slowing those loops down,
In this chapter we focus on techniques used to improve the performance of these
"clutter-free" loops. Sometimes the compiler is clever enough to generate the faster
versions of the loops, and other times we have to do some rewriting of the loops
ourselves to help the compiler.

It's important to remember that one compiler's performance enhancing modifica-
tions are another compiler's clutter. When you make modifications in the name of
performance you must make sure you're helping by testing the performance with
and without the modifications. Also, when you move to another architecture you
need to make sure that any modifications aren't hindering performance. For this
reason, you should choose your performance-related modifications wisely. You
should also keep the original (simple) version of the code for testing on new
architectures. Also if the benefit of the modification is small, you should probably
keep the code in its most simple and clear form.

146
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We look at a number of different loop optimization techniques, including:

• Loop unrolling

• Nested loop optimization

• Loop interchange

• Memory reference optimization

• Blocking

• Out-of-core solutions

Someday, it may be possible for a compiler to perform all these loop optimizations
automatically. Typically loop unrolling is performed as part of the normal compiler
optimizations. Other optimizations may have to be triggered using explicit com-
pile-time options. As you contemplate making manual changes, look carefully at
which of these optimizations can be done by the compiler. Also run some tests to
determine if the compiler optimizations are as good as hand optimizations.

Operation Counting
Before you begin to rewrite a loop body or reorganize the order of the loops, you
must have some idea of what the body of the loop does for each iteration. Opera-
tion counting is the process of surveying a loop to understand the operation mix.
You need to count the number of loads, stores, floating-point, integer, and library
calls per iteration of the loop. From the count, you can see how well the operation
mix of a given loop matches the capabilities of the processor. Of course, operation
counting doesn't guarantee that the compiler will generate an efficient representa-
tion of a loop.* But it generally provides enough insight to the loop to direct tun-
ing efforts.

Bear in mind that an instruction mix that is balanced for one machine may be
imbalanced for another. Processors on the market today can generally issue some
combination of one to four operations per clock cycle. Address arithmetic is often
embedded in the instructions that reference memory. Because the compiler can
replace complicated loop address calculations with simple expressions (provided
the pattern of addresses is predictable), you can often ignore address arithmetic
when counting operations.t

* Take a look at the assembly language output to be sure, which may be going a bit overboard. To get
an assembly language listing on most machines, compile with the -S flag. On an RS/6000, use the -qlist
flag.

t The compiler reduces the complexity of loop index expressions with a technique called induction
variable simplification. See Chapter 5, What a Compiler Does.
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Let's look at a few loops and see what we can learn about the instruction mix:

This loop contains one floating-point addition and three memory references (two
loads and a store). There are some complicated array index expressions, but these
will probably be simplified by the compiler and executed in the same cycle as the
memory and floating-point operations. For each iteration of the loop, we must
increment the index variable and test to determine if the loop has completed.

A 3:1 ratio of memory references to floating-point operations suggests that we can
hope for no more than 1/3 peak floating-point performance from the loop unless
we have more than one path to memory. That's bad news, but good information.
The ratio tells us that we ought to consider memory reference optimizations first.

The loop below contains one floating-point addition and two memory opera-
tions—a load and a store. Operand B(J) is loop-invariant, so its value only needs
to be loaded once, upon entry to the loop:

Again, our floating-point throughput is limited, though not as severely as in the
previous loop. The ratio of memory references to floating-point operations is 2:1.

The next example shows a loop with better prospects. It performs element-wise
multiplication of two vectors of complex numbers and assigns the results back to
the first. There are six memory operations (four loads and two stores) and six
floating-point operations (two additions and four multiplications):

It appears that this loop is roughly balanced for a processor that can perform the
same number of memory operations and floating-point operations per cycle. How-
ever, it might not be. Many processors perform a floating-point multiply and add
in a single instruction. If the compiler is good enough to recognize that the multi-
ply-add is appropriate, this loop may also be limited by memory references; each
iteration would be compiled into two multiplications and two multiply-adds.

Again, operation counting is a simple way to estimate how well the requirements
of a loop will map onto the capabilities of the machine. For many loops, you often
find the performance of the loops dominated by memory references, as we have
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seen in the last three examples. This suggests that memory reference tuning is very
important.

Basic Loop Unrolling
The most basic form of loop optimization is loop unrolling. It is so basic that most
of today's compilers do it automatically if it looks like there's a benefit. There has
been a great deal of clutter introduced into old dusty-deck FORTRAN programs in
the name of loop unrolling that now serves only to confuse and mislead today's
compilers.

We're not suggesting that you unroll any loops by hand. The purpose of this sec-
tion is twofold. First, once you are familiar with loop unrolling, you might recog-
nize code that was unrolled by a programmer (not you) some time ago and
simplify the code. Second, you need to understand the concepts of loop unrolling
so that when you look at generated machine code, you recognize unrolled loops.

The primary benefit in loop unrolling is to perform more computations per itera-
tion. At the end of each iteration, the index value must be incremented, tested,
and the control is branched back to the top of the loop if the loop has more itera-
tions to process. By unrolling the loop, there are less "loop-ends" per loop execu-
tion. Unrolling also reduces the overall number of branches significantly and gives
the processor more instructions between branches (i.e., it increases the size of the
basic blocks).

For illustration, consider the following loop. It has a single statement wrapped in a
do-loop:

DO I=1,N
A ( I ) = A ( I ) + B { I ) * C

ENDDO

You can unroll the loop, as we have below, giving you the same operations in
fewer iterations with less loop overhead. You can imagine how this would help on
any computer. Because the computations in one iteration do not depend on the
computations in other iterations, calculations from different iterations can be exe-
cuted together. On a superscalar processor, portions of these four statements may
actually execute in parallel:

DO I=1,N,4
A(I) = A(I) + B(I) * C
A(I+1) = A{I+1) + B(I+1) * C
A(I+2) = A{I+2) + B(I+2) * C
A(I+3) = A(I+3) + B(I+3) * C

ENDDO
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However, this loop is not exactly the same as the previous loop. The loop is
unrolled four times, but what if N is not divisible by 4? If not, there will be one,
two, or three spare iterations that don't get executed. To handle these extra itera-
tions, we add another little loop to soak them up. The extra loop is called a pre-
conditioning loop:

The number of iterations needed in the preconditioning loop is the total iteration
count modulo for this unrolling amount. If, at runtime, N turns out to be divisible
by 4, there are no spare iterations, and the preconditioning loop isn't executed,

Speculative execution in the post-RISC architecture can reduce or eliminate the
need for unrolling a loop that will operate on values that must be retrieved from
main memory. Because the load operations take such a long time relative to the
computations, the loop is naturally unrolled. While the processor is waiting for the
first load to finish, it may speculatively execute three to four iterations of the loop
ahead of the first load, effectively unrolling the loop in the Instruction Reorder
Buffer.

Qualifying Candidates for
Loop Unrolling
Assuming a large value for N, the previous loop was an ideal candidate for loop
unrolling. The iterations could be executed in any order, and the loop innards
were small. But as you might suspect, this isn't always the case; some kinds of
loops can't be unrolled so easily. Additionally, the way a loop is used when the
program runs can disqualify it for loop unrolling, even if it looks promising.

In this section we are going to discuss a few categories of loops that are generally
not prime candidates for unrolling, and give you some ideas of what you can do
about them. We talked about several of these in the previous chapter as well, but
they are also relevant here.
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Loops with Low Trip Counts
To be effective, loop unrolling requires a fairly large number of iterations in the
original loop. To understand why, picture what happens if the total iteration count
is low, perhaps less than 10, or even less than 4. With a trip count this low, the
preconditioning loop is doing a proportionately large amount of the work. It's not
supposed to be that way. The preconditioning loop is supposed to catch the few
leftover iterations missed by the unrolled, main loop. However, when the trip
count is low, you make one or two passes through the unrolled loop, plus one or
two passes through the preconditioning loop. In other words, you have more clut-
ter; the loop shouldn't have been unrolled in the first place.

Probably the only time it makes sense to unroll a loop with a low trip count is
when the number of iterations is constant and known at compile time. For
instance, suppose you had the following loop:

PARAMETER (NITER = 3)
DO I=1,NITER
A(I) = B(I) * C

ENDDO

Because NITER is hardwired to 3, you can safely unroll to a depth of 3 without
worrying about a preconditioning loop. In fact, you can throw out the loop struc-
ture altogether and leave just the unrolled loop innards:

PARAMETER (NITER = 3)
A(l) = B(l) * C
A(2) = B(2) * C
A(3) = A(3) * C

Of course, if a loop's trip count is low, it probably won't contribute significantly to
the overall runtime, unless you find such a loop at the center of a larger loop.
Then you either want to unroll it completely or leave it alone.

Fat Loops
Loop unrolling helps performance because it fattens up a loop with more calcula-
tions per iteration. By the same token, if a particular loop is already fat, unrolling
isn't going to help. The loop overhead is already spread over a fair number of
instructions. In fact, unrolling a fat loop may even slow your program down
because it increases the size of the text segment, placing an added burden on the
memory system (we'll explain this in greater detail shortly). A good rule of thumb
is to look elsewhere for performance when the loop innards exceed three or four
statements.
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Loops Containing Procedure Calls
As with fat loops, loops containing subroutine or function calls generally aren't
good candidates for unrolling. There are several reasons. First, they often contain a
fair number of instructions already. And if the subroutine being called is fat, it
makes the loop that calls it fat as well. The size of the loop may not be apparent
when you look at the loop; the function call can conceal many more instructions.

Second, when the calling routine and the subroutine are compiled separately, it's
impossible for the compiler to intermix instructions. A loop that is unrolled into a
series of function calls behaves much like the original loop, before unrolling.

Last, function call overhead is expensive. Registers have to be saved; argument
lists have to be prepared. The time spent calling and returning from a subroutine
can be much greater than that of the loop overhead. Unrolling to amortize the cost
of the loop structure over several calls doesn't buy you enough to be worth the
effort.

The general rule when dealing with procedures is to first try to eliminate them in
the "remove clutter" phase, and when this has been done, check to see if unrolling
gives an additional performance improvement.

Loops with Branches in Them
In the previous chapter we showed you how to eliminate certain types of
branches, but of course, we couldn't get rid of them all. In cases of iteration-inde-
pendent branches, there might be some benefit to loop unrolling. The IF test
becomes part of the operations that must be counted to determine the value of
loop unrolling. Below is a doubly nested loop. The inner loop tests the value of
B ( J , I ) :

Each iteration is independent of every other, so unrolling it won't be a problem.
We'll just leave the outer loop undisturbed:
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This approach works particularly well if the processor you are using supports con-
ditional execution. As described earlier, conditional execution can replace a
branch and an operation with a single conditionally executed assignment. On a
superscalar processor with conditional execution, this unrolled loop executes quite
nicely.

Nested Loops
When you embed loops within other loops, you create a loop nest. The loop or
loops in the center are called the inner loops. The surrounding loops are called
outer loops. Depending on the construction of the loop nest, we may have some
flexibility in the ordering of the loops. At times, we can swap the outer and inner
loops with great benefit. In the next sections we look at some common loop nest-
ings and the optimizations that can be performed on these loop nests.

Often when we are working with nests of loops, we are working with multidimen-
sional arrays. Computing in multidimensional arrays can lead to non-unit-stride
memory access. Many of the optimizations we perform on loop nests are meant to
improve the memory access patterns.

First, we examine the computation-related optimizations followed by the memory
optimizations.

Outer Loop Unrolling
If you are faced with a loop nest, one simple approach is to unroll the inner loop,
Unrolling the innermost loop in a nest isn't any different from what we saw above.
You just pretend the rest of the loop nest doesn't exist and approach it in the nor-
mal way. However, there are times when you want to apply loop unrolling not
just to the inner loop, but to outer loops as well—or perhaps only to the outer
loops. Here's a typical loop nest:
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To unroll an outer loop, you pick one of the outer loop index variables and repli-
cate the innermost loop body so that several iterations are performed at the same
time, just like we saw in the previous section. The difference is in the index vari-
able for which you unroll. In the code below, we have unrolled the middle (j)
loop twice:

We left the k loop untouched; however, we could unroll that one, too. That would
give us outer and inner loop unrolling at the same time:

We could even unroll the i loop too, leaving eight copies of the loop innards.
(Notice that we completely ignored preconditioning; in a real application, of
course, we couldn't.)

Outer Loop Unrolling to Expose Computations
Say that you have a doubly nested loop and that the inner loop trip count is
low—perhaps 4 or 5 on average. Inner loop unrolling doesn't make sense in this
case because there won't be enough iterations to justify the cost of the precondi-
tioning loop. However, you may be able to unroll an outer loop. Consider this
loop, assuming that M is small and N is large:

Unrolling the I loop gives you lots of floating-point operations that can be over-
lapped:
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In this particular case, there is bad news to go with the good news; unrolling the
outer loop causes strided memory references on A, B, and C. However, it probably
won't be too much of a problem because the inner loop trip count is small, so it
naturally groups references to conserve cache entries.

Outer loop unrolling can also be helpful when you have a nest with recursion in
the inner loop, but not in the outer loops. In this next example, there is a first-
order linear recursion in the inner loop:

Because of the recursion, we can't unroll the inner loop, but we can work on sev-
eral copies of the outer loop at the same time. When unrolled, it looks like this:

You can see the recursion still exists in the I loop, but we have succeeded in find-
ing lots of work to do anyway.

Sometimes the reason for unrolling the outer loop is to get a hold of much larger
chunks of things that can be done in parallel. If the outer loop iterations are inde-
pendent, and the inner loop trip count is high, then each outer loop iteration
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represents a significant, parallel chunk of work. On a single CPU that doesn't mat-
ter much, but on a tightly coupled multiprocessor, it can translate into a tremen-
dous increase in speeds.

Loop Interchange
Loop interchange is a technique for rearranging a loop nest so that the right stuff
is at the center. What the right stuff is depends upon what you are trying to
accomplish. In many situations, loop interchange also lets you swap high trip
count loops for low trip count loops, so that activity gets pulled into the center of
the loop nest.*

Loop Interchange to Move Computations
to the Center
When someone writes a program that represents some kind of real-world model,
they often structure the code in terms of the model. This makes perfect sense. The
computer is an analysis tool; you aren't writing the code on the computer's behalf.
However, a model expressed naturally often works on one point in space at a
time, which tends to give you insignificant inner loops—at least in terms of the
trip count. For performance, you might want to interchange inner and outer loops
to pull the activity into the center, where you can then do some unrolling. Let's
illustrate with an example. Here's a loop where KDIM time-dependent quantities
for points in a two-dimensional mesh are being updated:

PARAMETER (IDIM = 1000, JDIM = 1000, KDIM = 3)

DO 1=1,IDIM
DO J=1,JDIM
DO K=1,KDIM

D ( K , J , I ) = D ( K , J , I ) + V ( K , J , I ) * DT

ENDDO

ENDDO

ENDDO

In practice, KDIM is probably equal to 2 or 3, where J or I, representing the num-
ber of points, may be in the thousands. The way it is written, the inner loop has a
very low trip count, making it a poor candidate for unrolling.

By interchanging the loops, you update one quantity at a time, across all of the
points. For tuning purposes, this moves larger trip counts into the inner loop and
allows you to do some strategic unrolling:

* It's also good for improving memory access patterns, as we will see in the next section.
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DO K=1,KDIM
DO J=1,JDIM
DO I=1,IDIM
D(K,J,I) = D(K,J,I) + V(K,J,I) * DT

ENDDO
ENDDO

ENDDO

This example is straightforward; it's easy to see that there are no inter-iteration
dependencies. But how can you tell, in general, when two loops can be inter-
changed? Interchanging loops might violate some dependency, or worse, only vio-
late it occasionally, meaning you might not catch it when optimizing. Can we
interchange the loops below?

While it is possible to examine the loops by hand and determine the dependen-
cies, it is much better if the compiler can make the determination. Very few single-
processor compilers automatically perform loop interchange. However, the compil-
ers for high-end vector and parallel computers generally interchange loops if there
is some benefit and if interchanging the loops won't alter the program results.*

Memory Access Patterns
The best pattern is the most straightforward: increasing and unit sequential. For an
array with a single dimension, stepping through one element at a time will accom-
plish this. For multiply-dimensioned arrays, access is fastest if you iterate on the
array subscript offering the smallest stride or step size. In FORTRAN programs, this
is the leftmost subscript; in C, it is the rightmost. The FORTRAN loop below has
unit stride, and therefore will run quickly:

In contrast, the next loop is slower because its stride is N (which, we assume, is
greater than 1). As N increases from one to the length of the cache line (adjusting

* When the compiler performs automatic parallel optimization, it prefers to run the outermost loop in
parallel to minimize overhead and unroll the innermost loop to make best use of a superscalar or vec-
tor processor. For this reason, the compiler needs to have some flexibility in ordering the loops in a
loop nest.
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for the length of each element), the performance worsens. Once N is longer than
the length of the cache line (again adjusted for element size), the performance
won't decrease:

Here's a unit-stride loop like the previous one, but written in C:

Unit stride gives you the best performance because it conserves cache entries.
Recall how a data cache works.* Your program makes a memory reference; if the
data is in the cache, it gets returned immediately. If not, your program suffers a
cache miss while a new cache line is fetched from main memory, replacing an old
one. The line holds the values taken from a handful of neighboring memory loca-
tions, including the one that caused the cache miss. If you loaded a cache line,
took one piece of data from it, and threw the rest away, you would be wasting a
lot of time and memory bandwidth. However, if you brought a line into the cache
and consumed everything in it, you would benefit from a large number of memory
references for a small number of cache misses. This is exactly what you get when
your program makes unit-stride memory references.

The worst-case patterns are those that jump through memory, especially a large
amount of memory, and particularly those that do so without apparent rhyme or
reason (viewed from the outside). On jobs that operate on very large data struc-
tures, you pay a penalty not only for cache misses, but for TLB misses too.t It
would be nice to be able to rein these jobs in so that they make better use of
memory. Of course, you can't eliminate memory references; programs have to get
to their data one way or another. The question is, then: how can we restructure
memory access patterns for the best performance?

In the next few sections, we are going to look at some tricks for restructuring
loops with strided, albeit predictable, access patterns. The tricks will be familiar;
they are mostly loop optimizations from the last chapter, used here for different
reasons. The underlying goal is to minimize cache and TLB misses as much as
possible. You will see that we can do quite a lot, although some of this is going to
be ugly.

* See Chapter 3, Memory.

f The Translation Lookaside Buffer (TLB) is a cache of translations from virtual memory addresses to
physical memory addresses. For more information, refer back to Chapter 3.
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Loop Interchange to Ease Memory Access Patterns
Loop interchange is a good technique for lessening the impact of strided memory
references. Let's revisit our FORTRAN loop with non-unit stride. The good news is
that we can easily interchange the loops; each iteration is independent of every
other:

After interchange, A, B, and C are referenced with the leftmost subscript varying
most quickly. This modification can make an important difference in performance.
We traded three N-strided memory references for unit strides:

Matrix Multiplication
Matrix multiplication is a common operation we can use to explore the options
that are available in optimizing a loop nest. A programmer who has just finished
reading a linear algebra textbook would probably write matrix multiply as it
appears in the example below:

The problem with this loop is that the A ( I , K ) will be non-unit stride. Each itera-
tion in the inner loop consists of two loads (one non-unit stride), a multiplication,
and an addition.
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Given the nature of the matrix multiplication, it might appear that you can't elimi-
nate the non-unit stride. However, with a simple rewrite of the loops all the mem-
ory accesses can be made unit stride:

Now, the inner loop accesses memory using unit stride. Each iteration performs
two loads, one store, a multiplication, and an addition. When comparing this to
the previous loop, the non-unit stride loads have been eliminated, but there is an
additional store operation. Assuming that we are operating on a cache-based sys-
tem, and the matrix is larger than the cache, this extra store won't add much to the
execution time. The store is to the location in C ( I , J) that was used in the load.
In most cases, the store is to a line that is already in the in the cache, The B (K, J)
becomes a constant scaling factor within the inner loop.

When Interchange Won't Work
In the matrix multiplication code, we encountered a non-unit stride and were able
to eliminate it with a quick interchange of the loops. Unfortunately, life is rarely
this simple. Often you find some mix of variables with unit and non-unit strides, in
which case interchanging the loops moves the damage around, but doesn't make
it go away.

The loop to perform a matrix transpose represents a simple example of this
dilemma:

Whichever way you interchange them, you will break the memory access pattern
for either A or B. Even more interesting, you have to make a choice between
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strided loads vs. strided stores: which will it be?* We really need a general method
for improving the memory access patterns for both A and B, not one or the other.
We'll show you such a method in the next section.

Blocking to Ease Memory Access
Patterns
Blocking is another kind of memory reference optimization. As with loop inter-
change, the challenge is to retrieve as much data as possible with as few cache
misses as possible. We'd like to rearrange the loop nest so that it works on data in
little neighborhoods, rather than striding through memory like a man on stilts.
Given the following vector sum, how can we rearrange the loop?

This loop involves two vectors. One is referenced with unit stride, the other with a
stride of N. We can interchange the loops, but one way or another we still have N-
strided array references on either A or B, either of which is undesirable. The trick
is to block references so that you grab a few elements of A, and then a few of B,
and then a few of A, and so on—in neighborhoods. We make this happen by
combining inner and outer loop unrolling:

Use your imagination so we can show why this helps. Usually, when we think of a
two-dimensional array, we think of a rectangle or a square (see Figure 8-1).
Remember, to make programming easier, the compiler provides the illusion that
two-dimensional arrays A and B are rectangular plots of memory as in Figure 8-1.
Actually, memory is sequential storage. In FORTRAN, a two-dimensional array is
constructed in memory by logically lining memory "strips" up against each other,
like the pickets of a cedar fence. (It's the other way around in C: rows are stacked

* I can't tell you which is the better way to cast it; it depends on the brand of computer. Some per-
form better with the loops left as they are, sometimes by more than a factor of two. Others perform
better with them interchanged. The difference is in the way the processor handles updates of main
memory from cache.
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on top of one another.) Array storage starts at the upper left, proceeds down to
the bottom, and then starts over at the top of the next column. Stepping through
the array with unit stride traces out the shape of a backwards "N," repeated over
and over, moving to the right.

Imagine that the thin horizontal lines of Figure 8-2 cut memory storage into pieces
the size of individual cache entries. Picture how the loop will traverse them.
Because of their index expressions, references to A go from top to bottom (in the
backwards "N" shape), consuming every bit of each cache line, but references to B
dash off to the right, using one piece of each cache entry and discarding the rest
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(see Figure 8-3, top). This low usage of cache entries will result in a high number
of cache misses.

If we could somehow rearrange the loop so that it consumed the arrays in small
rectangles, rather than strips, we could conserve some of the cache entries that are
being discarded. This is exactly what we accomplished by unrolling both the inner
and outer loops, as in the following example. Array A is referenced in several
strips side by side, from top to bottom, while B is referenced in several strips side
by side, from left to right (see Figure 8-3, bottom). This improves cache perfor-
mance and lowers runtime.

For really big problems, more than cache entries are at stake. On virtual memory
machines, memory references have to be translated through a TLB. If you are deal-
ing with large arrays, TLB misses, in addition to cache misses, are going to add to
your runtime.

Here's something that may surprise you. In the code below, we rewrite this loop
yet again, this time blocking references at two different levels: in 2x2 squares to



164 Chapter 8: Loop Optimizations

save cache entries, and by cutting the original loop in two parts to save TLB
entries;

You might guess that adding more loops would be the wrong thing to do. But if
you work with a reasonably large value of N, say 512, you will see a significant
increase in performance. This is because the two arrays A and B are each 256 KB
x 8 bytes = 2 MB when 1SJ is equal to 512—larger than can be handled by the TLBs
and caches of most processors.

The two boxes in Figure 8-4 illustrate how the first few references to A and B look
superimposed upon one another in the blocked and unblocked cases. Unblocked
references to B zing off through memory, eating through cache and TLB entries.
Blocked references are more sparing with the memory system.

You can take blocking even further for larger problems. This code shows another
method that limits the size of the inner loop and visits it repeatedly:
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Where the inner I loop used to execute N iterations at a time, the new K loop
executes only 16 iterations. This divides and conquers a large memory address
space by cutting it into little pieces.

While these blocking techniques begin to have diminishing returns on single-pro-
cessor systems, on large multiprocessor systems with nonuniform memory access
(NUMA), there can be significant benefit in carefully arranging memory accesses to
maximize reuse of both cache lines and main memory pages.

Again, the combined unrolling and blocking techniques we just showed you are
for loops with mixed stride expressions. They work very well for loop nests like
the one we have been looking at. However, if all array references are strided the
same way, you will want to try loop unrolling or loop interchange first.
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Programs That Require More
Memory Than You Have
People occasionally have programs whose memory size requirements are so great
that the data can't fit in memory all at once. At any time, some of the data has to
reside outside of main memory on secondary (usually disk) storage. These out-of-
core solutions fall into two categories:

• Software-managed, out-of-core solutions

• Virtual memory-managed, out-of-core solutions

With a software-managed approach, the programmer has recognized that the prob-
lem is too big and has modified the source code to move sections of the data out
to disk for retrieval at a later time. The other method depends on the computer's
memory system handling the secondary storage requirements on its own, some-
times at a great cost in runtime.

Software-Managed, Out-of-Core Solutions
Most codes with software-managed, out-of-core solutions have adjustments; you
can tell the program how much memory it has to work with, and it takes care of
the rest. It is important to make sure the adjustment is set correctly. Code that was
tuned for a machine with limited memory could have been ported to another with-
out taking into account the storage available. Perhaps the whole problem will fit
easily.

If we are writing an out-of-core solution, the trick is to group memory references
together so that they are localized. This usually occurs naturally as a side effect of
partitioning, say, a matrix factorization into groups of columns. Blocking refer-
ences the way we did in the previous section also corrals memory references
together so you can treat them as memory "pages." Knowing when to ship them
off to disk entails being closely involved with what the program is doing.

Closing Notes
Loops are the heart of nearly all high performance programs. The first goal with
loops is to express them as simply and clearly as possible (i.e., eliminates the clut-
ter). Then, use the profiling and timing tools to figure out which routines and
loops are taking the time. Once you find the loops that are using the most time,
try to determine if the performance of the loops can be improved.

First try simple modifications to the loops that don't reduce the clarity of the code.
You can also experiment with compiler options that control loop optimizations.



Closing Notes 167

Once you've exhausted the options of keeping the code looking clean, and if you
still need more performance, resort to hand-modifying to the code. Typically the
loops that need a little hand-coaxing are loops that are making bad use of the
memory architecture on a cache-based system. Hopefully the loops you end up
changing are only a few of the overall loops in the program.

However, before going too far optimizing on a single processor machine, take a
look at how the program executes on a parallel system. Sometimes the modifica-
tions that improve performance on a single-processor system confuses the parallel-
processor compiler. The compilers on parallel and vector systems generally have
more powerful optimization capabilities, as they must identify areas of your code
that will execute well on their specialized hardware. These compilers have been
interchanging and unrolling loops automatically for some time now.

Exercises
1. Why is an unrolling amount of three or four iterations generally sufficient for

simple vector loops on a RISC processor? What relationship does the unrolling
amount have to floating-point pipeline depths?

2. On a processor that can execute one floating-point multiply, one floating-point
addition/subtraction, and one memory reference per cycle, what's the best
performance you could expect from the following loop?

3. Try unrolling, interchanging, or blocking the loop in subroutine BAZFAZ to
increase the performance. What method or combination of methods works
best? Look at the assembly language created by the compiler to see what its
approach is at the highest level of optimization. (Note: Compile the main rou-
tine and BAZFAZ separately; adjust NTIMES so that the untuned run takes
about one minute; and use the compiler's default optimization level.)
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4. Code the matrix multiplication algorithm in the "straightforward" manner and
compile it with various optimization levels. See if the compiler performs any
type of loop interchange.

Try the same experiment with the following code:

Do you see a difference in the compiler's ability to optimize these two loops?
If you see a difference, explain it.

5. Code the matrix multiplication algorithm both the ways shown in this chapter.
Execute the program for a range of values for N. Graph the execution time
divided by N3 for values of N ranging from 50x50 to 500x500. Explain the per-
formance you see.



Shared-Memory
Parallel Processors



Understanding
Parallelism

In a sense, we have been talking about parallelism from the beginning of the
book. Instead of calling it "parallelism," we have been using words like
"pipelined," "superscalar," and "compiler flexibility." As we move into program-
ming on multiprocessors, we must increase our understanding of parallelism in
order to understand how to effectively program these systems. In short, as we gain
more parallel resources, we need to find more parallelism in our code.

When we talk of parallelism, we need to understand the concept of granularity.
The granularity of parallelism indicates the size of the computations that are being
performed at the same time between synchronizations. Some examples of paral-
lelism in order of increasing grain size are:

• When performing a 32-bit integer addition, using a carry lookahead adder, you
can partially add bits 0 and 1 at the same time as bits 2 and 3.

• On a pipelined processor, while decoding one instruction, you can fetch the
next instruction.

• On a two-way superscalar processor, you can execute any combination of an
integer and a floating-point instruction in a single cycle.

• On a multiprocessor, you can divide the iterations of a loop among the four
processors of the system.

• You can split a large array across four workstations attached to a network.
Each workstation can operate on its local information and then exchange
boundary values at the end of each time step.

In this chapter, we start at instruction-level parallelism (pipelined and superscalar)
and move toward thread-level parallelism, which is what we need for multiproces-
sor systems. It is important to note that the different levels of parallelism are gen-

777
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erally not in conflict. Increasing thread parallelism at a coarser grain size often
exposes more fine-grained parallelism.

The following is a loop that has plenty of parallelism:

We have expressed the loop in a way that would imply that A(l) must be com-
puted first, followed by A(2), and so on. However, once the loop was completed,
it would not have mattered if A(l6000), were computed first followed by A(15999),
and so on. The loop could have computed the even values of I and then com-
puted the odd values of I. It would not even make a difference if all 16,000 of the
iterations were computed simultaneously using a 16,000-way superscalar
processor,* If the compiler has flexibility in the order in which it can execute the
instructions that make up your program, it can execute those instructions simulta-
neously when parallel hardware is available.

One technique that computer scientists use to formally analyze the potential paral-
lelism in an algorithm is to characterize how quickly it would execute with an
"infinite-way" superscalar processor.

Not all loops contain as much parallelism as this simple loop. We need to identify
the things that limit the parallelism in our codes and remove them whenever pos-
sible. In previous chapters we have already looked at removing clutter and rewrit-
ing loops to simplify the body of the loop.

This chapter also supplements Chapter 5, What a Compiler Does, in many ways.
We looked at the mechanics of compiling code, all of which apply here, but we
didn't answer all of the "whys." Basic block analysis techniques form the basis for
the work the compiler does when looking for more parallelism. Looking at two
pieces of data, instructions, or data and instructions, a modern compiler asks the
question, "Do these things depend on each other?" The three possible answers are
yes, no, and we don't know. The third answer is effectively the same as a yes,
because a compiler has to be conservative whenever it is unsure whether it is safe
to tweak the ordering of instructions.

Helping the compiler recognize parallelism is one of the basic approaches special-
ists take in tuning code. A slight rewording of a loop or some supplementary
information supplied to the compiler can change a "we don't know" answer into
an opportunity for parallelism. To be certain, there are other facets to tuning as

* Interestingly, this is not as far-fetched as it might seem. On a single instruction multiple data (SIMD)
computer such as the Connection CM-2 with 16,384 processors, it would take three instruction cycles to
process this entire loop. See Chapter 12, Large-Scale Parallel Computing, for more details on this type
of architecture.
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well, such as optimizing memory access patterns so that they best suit the hard-
ware, or recasting an algorithm. And there is no single best approach to every
problem; any tuning effort has to be a combination of techniques.

Dependencies
Imagine a symphony orchestra where each musician plays without regard to the
conductor or the other musicians. At the first tap of the conductor's baton, each
musician goes through all of his or her sheet music. Some finish far ahead of oth-
ers, leave the stage, and go home. The cacophony wouldn't resemble music (come
to think of it, it would resemble experimental jazz) because it would be totally
uncoordinated. Of course this isn't how music is played. A computer program, like
a musical piece, is woven on a fabric that unfolds in time (though perhaps woven
more loosely). Certain things must happen before or along with others, and there
is a rate to the whole process.

With computer programs, whenever event A must occur before event B can, we
say that B is dependent on A. We call the relationship between them a depen-
dency. Sometimes dependencies exist because of calculations or memory opera-
tions; we call these data dependencies. Other times, we are waiting for a branch or
do-loop exit to take place; this is called a control dependency. Each is present in
every program to varying degrees. The goal is to eliminate as many dependencies
as possible. Rearranging a program so that two chunks of the computation are less
dependent exposes parallelism, or opportunities to do several things at once.

Control Dependencies
Just as variable assignments can depend on other assignments, a variable's value
can also depend on the flow of control within the program. For instance, an
assignment within an if-statement can occur only if the conditional evaluates to
true. The same can be said of an assignment within a loop. If the loop is never
entered, no statements inside the loop are executed.

When calculations occur as a consequence of the flow of control, we say there is a
control dependency, as in the code below and shown graphically in Figure 9-1.
The assignment located inside the block-if may or may not be executed, depend-
ing on the outcome of the test X .NE. 0. In other words, the value of Y depends
on the flow of control in the code around it. Again, this may sound to you like a
concern for compiler designers, not programmers, and that's mostly true. But there
are times when you might want to move control-dependent instructions around to
get expensive calculations out of the way (provided your compiler isn't smart
enough to do it for you). For example, say that Figure 9-2 represents a little sec-
tion of your program. Flow of control enters at the top and goes through two
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branch decisions. Furthermore, say that there is a square root operation at the
entry point, and that the flow of control almost always goes from the top, down to
the leg containing the statement A = 0 . 0 . This means that the results of the calcula-
tion A=SQRT (B) are almost always discarded because A gets a new value of 0 .0
each time through. A square root operation is always "expensive" because it takes
a lot of time to execute. The trouble is that you can't just get rid of it; occasionally
it's needed. However, you could move it out of the way and continue to observe
the control dependencies by making two copies of the square root operation
along the less traveled branches, as shown in Figure 9-3. This way the SQRT
would execute only along those paths where it was actually needed.

This kind of instruction scheduling will be appearing in compilers (and even hard-
ware) more and more as time goes on. A variation on this technique is to calculate
results that might be needed at times when there is a gap in the instruction stream
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(because of dependencies), thus using some spare cycles that might otherwise be
wasted.

Data Dependencies
A calculation that is in some way bound to a previous calculation is said to be
data dependent upon that calculation. In the code below, the value of B is data
dependent on the value of A. That's because you can't calculate B until the value
of A is available:

This dependency is easy to recognize, but others are not so simple. At other times,
you must be careful not to rewrite a variable with a new value before every other
computation has finished using the old value. We can group all data dependencies
into three categories: (1) flow dependencies, (2) antidependencies, and (3) output
dependencies. Figure 9-4 contains some simple examples to demonstrate each
type of dependency. In each example, we use an arrow that starts at the source of
the dependency and ends at the statement that must be delayed by the depen-
dency. The key problem in each of these dependencies is that the second state-
ment can't execute until the first has completed. Obviously in the particular output
dependency example, the first computation is dead code and can be eliminated
unless there is some intervening code that needs the values. There are other tech-
niques to eliminate either output or antidependencies. The following example con-
tains a flow dependency followed by an output dependency.
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While we can't eliminate the flow dependency, the output dependency can be
eliminated by using a scratch variable:

As the number of statements and the interactions between those statements
increase, we need a better way to identify and process these dependencies. Figure
9-5 shows four statements with four dependencies.

None of the second through fourth instructions can be started before the first
instruction completes.
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Forming a DAG
One method for analyzing a sequence of instructions is to organize it into a
directed acyclic graph (DAG).* Like the instructions it represents, a DAG describes
all of the calculations and relationships between variables. The data flow within a
DAG proceeds in one direction; most often a DAG is constructed from top to bot-
tom. Identifiers and constants are placed at the "leaf" nodes—the ones on the top.
Operations, possibly with variable names attached, make up the internal nodes.
Variables appear in their final states at the bottom. The DAG's edges order the
relationships between the variables and operations within it. All data flow pro-
ceeds from top to bottom.

To construct a DAG, the compiler takes each intermediate language tuple and
maps it onto one or more nodes. For instance, those tuples that represent binary
operations, such as addition (X=A+B), form a portion of the DAG with two inputs
(A and B) bound together by an operation (+). The result of the operation may
feed into yet other operations within the basic block (and the DAG) as shown in
Figure 9-6.

For a basic block of code, we build our DAG in the order of the instructions. The
DAG for the previous four instructions is shown in Figure 9-7. This particular
example has many dependencies, so there is not much opportunity for parallelism.
Figure 9-8 shows a more straightforward example shows how constructing a DAG
can identify parallelism.

From this DAG, we can determine that instructions 1 and 2 can be executed in
parallel. Because we see the computations that operate on the values A and B

* A graph is a collection of nodes connected by edges. By directed, we mean that the edges can only
be traversed in specified directions. The word acyclic means that there are no cycles in the graph; that
is, you can't loop anywhere within it.
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while processing instruction 4, we can eliminate a common subexpression during
the construction of the DAG. If we can determine that Z is the only variable that is
used outside this small block of code, we can assume the Y computation is dead
code.

By constructing the DAG, we take a sequence of instructions and determine which
must be executed in a particular order and which can be executed in parallel. This
type of data flow analysis is very important in the codegeneration phase on super-
scalar processors. "We have introduced the concept of dependencies and how to
use data flow to find opportunities for parallelism in code sequences within a
basic block. We can also use data flow analysis to identify dependencies, opportu-
nities for parallelism, and dead code between basic blocks.

Uses and Definitions
As the DAG is constructed, the compiler can make lists of variable uses and defini-
tions, as well as other information, and apply these to global optimizations across
many basic blocks taken together. Looking at the DAG in Figure 9-8, we can see
that the variables defined are Z, Y, X, C, and D, and the variables used are A and
B. Considering many basic blocks at once, we can say how far a particular variable
definition reaches—where its value can be seen. From this we can recognize situ-
ations where calculations are being discarded, where two uses of a given variable
are completely independent, or where we can overwrite register-resident values
without saving them back to memory. We call this investigation data flow analysis.
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To illustrate, suppose that we have the flow graph in Figure 9-9. Beside each basic
block we've listed the variables it uses and the variables it defines. What can data
flow analysis tell us?

Notice that a value for A is defined in block X but only used in block Y. That
means that A is dead upon exit from block Y or immediately upon taking the
right-hand branch leaving X; none of the other basic blocks uses the value of A.
That tells us that any associated resources, such as a register, can be freed for
other uses.

Looking at Figure 9-9 we can see that D is defined in basic block X, but never
used. This means that the calculations defining D can be discarded.

Something interesting is happening with the variable G. Blocks X and W both use
it, but if you look closely you'll see that the two uses are distinct from one
another, meaning that they can be treated as two independent variables.

A compiler featuring advanced instruction scheduling techniques might notice that
W is the only block that uses the value for E, and so move the calculations defin-
ing E out of block Y and into W, where they are needed.
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In addition to gathering data about variables, the compiler can also keep informa-
tion about subexpressions. Examining both together, it can recognize cases where
redundant calculations are being made (across basic blocks), and substitute previ-
ously computed values in their place. If, for instance, the expression H*I appears
in blocks X, Y, and W, it could be calculated just once in block X and propagated
to the others that use it.

Loops
Loops are the center of activity for many applications, so there is often a high pay-
back for simplifying or moving calculations outside, into the computational sub-
urbs. Early compilers for parallel architectures used pattern matching to identify
the bounds of their loops. This limitation meant that a hand-constructed loop
using if-statements and goto-statements would not be correctly identified as a
loop. Because modern compilers use data flow graphs, it's practical to identify
loops as a particular subset of nodes in the flow graph. To a data flow graph, a
hand constructed loop looks the same as a compiler-generated loop. Optimiza-
tions can therefore be applied to either type of loop.

Once we have identified the loops, we can apply the same kinds of data-flow
analysis we applied above. Among the things we are looking for are calculations



Loop-Carried Dependencies 181

that are unchanging within the loop and variables that change in a predictable
(linear) fashion from iteration to iteration.

How does the compiler identify a loop in the flow graph? Fundamentally, two con-
ditions have to be met:

• A given node has to dominate all other nodes within the suspected loop. This
means that all paths to any node in the loop have to pass through one particu-
lar node, the dominator. The dominator node forms the header at the top of
the loop.

• There has to be a cycle in the graph. Given a dominator, if we can find a path
back to it from one of the nodes it dominates, we have a loop. This path back
is known as the back edge of the loop.

The flow graph in Figure 9-10 contains one loop and one red herring. You can see
that node B dominates every node below it in the subset of the flow graph. That
satisfies Condition 1 and makes it a candidate for a loop header. There is a path
from E to B, and B dominates E, so that makes it a back edge, satisfying Condition
2. Therefore, the nodes B, C, D, and E form a loop. The loop goes through an
array of linked list start pointers and traverses the lists to determine the total num-
ber of nodes in all lists. Letters to the extreme right correspond to the basic block
numbers in the flow graph.

At first glance, it appears that the nodes C and D form a loop too. The problem is
that C doesn't dominate D (and vice versa), because entry to either can be made
from B, so condition 1 isn't satisfied. Generally, the flow graphs that come from
code segments written with even the weakest appreciation for a structured design
offer better loop candidates.

After identifying a loop, the compiler can concentrate on that portion of the flow
graph, looking for instructions to remove or push to the outside. Certain types of
subexpressions, such as those found in array index expressions, can be simplified
if they change in a predictable fashion from one iteration to the next.

In the continuing quest for parallelism, loops are generally our best sources for
large amounts of parallelism. However, loops also provide new opportunities for
those parallelism-killing dependencies.

Loop-Carried Dependencies
The notion of data dependence is particularly important when we look at loops,
the hub of activity inside numerical applications. A well-designed loop can pro-
duce millions of operations that can all be performed in parallel. However, a sin-
gle misplaced dependency in the loop can force it all to be run in serial. So the
stakes are higher when looking for dependencies in loops.
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Some constructs are completely independent, right out of the box. The question
we want to ask is "Can two different iterations execute at the same time, or is
there a data dependency between them?" Consider the following loop:

For any two values of I and K, can we calculate the value of A (I ) and A ( K ) at
the same time? Below, we have manually unrolled several iterations of the previ-
ous loop, so they can be executed together:

You can see that none of the results are used as an operand for another calcula-
tion. For instance, the calculation for A(I+1) can occur at the same time as the
calculation for A ( I ) because the calculations are independent; you don't need the
results of the first to determine the second. In fact, mixing up the order of the cal-
culations won't change the results in the least. Relaxing the serial order imposed
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on these calculations makes it possible to execute this loop very quickly on paral-
lel hardware.

Flow Dependencies
For comparison, look at the next code fragment:

This loop has the regularity of the previous example, but one of the subscripts is
changed. Again, it's useful to manually unroll the loop and look at several itera-
tions together:

In this case, there is a dependency problem. The value of A (1+1) depends on the
value of A ( I ) , the value of A (1+2) depends on A {1+1), and so on; every itera-
tion depends on the result of a previous one. Dependencies that extend back to a
previous calculation and perhaps a previous iteration (like this one), are loop car-
ried flow dependencies or backward dependencies. You often see such dependen-
cies in applications that perform Gaussian elimination on certain types of matrices,
or numerical solutions to systems of differential equations. However, it is impossi-
ble to run such a loop in parallel (as written); the processor must wait for interme-
diate results before it can proceed.

In some cases, flow dependencies are impossible to fix; calculations are so depen-
dent upon one another that we have no choice but to wait for previous ones to
complete. Other times, dependencies are a function of the way the calculations are
expressed. For instance, the loop above can be changed to reduce the depen-
dency. By replicating some of the arithmetic, we can make it so that the second
and third iterations depend on the first, but not on one another. The operation
count goes up—we have an extra addition that we didn't have before—but we
have reduced the dependency between iterations:

The speed increase on a workstation won't be great (most machines run the recast
loop more slowly). However, some parallel computers can trade off additional cal-
culations for reduced dependency and chalk up a net win.
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Antidependencies
It's a different story when there is a loop-carried antidependency, as in the code
below:

In this loop, there is an antidependency between the variable A (I ) and the vari-
able A (1+2) . That is, you must be sure that the instruction that uses A (1+2)
does so before the previous one redefines it. Clearly, this is not a problem if the
loop is executed serially, but remember, we are looking for opportunities to over-
lap instructions. Again, it helps to pull the loop apart and look at several iterations
together. We have recast the loop by making many copies of the first statement,
followed by copies of the second:

The reference to A (1+2) needs to access an "old" value, rather than one of the
new ones being calculated. If you perform all of the first statement followed by all
of the second statement, the answers will be wrong. If you perform all of the sec-
ond statement followed by all of the first statement, the answers will also be
wrong. In a sense, to run the iterations in parallel, you must either save the A val-
ues to use for the second statement or store all of the B value in a temporary area
until the loop completes.

We can also directly unroll the loop and find some parallelism:

Statements 1-4 could all be executed simultaneously. Once those statements com-
pleted execution, statements 5-8 could execute in parallel. Using this approach,
there are sufficient intervening statements between the dependent statements that
we can see some parallel performance improvement from a superscalar RISC pro-
cessor.
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Output Dependencies
The third class of data dependencies, output dependencies, is of particular interest
to users of parallel computers, particularly multiprocessors. Output dependencies
involve getting the right values to the right variables when all calculations have
been completed. Otherwise, an output dependency is violated. The loop below
assigns new values to two elements of the vector A with each iteration:

As always, we won't have any problems if we execute the code sequentially. But if
several iterations are performed together, and statements are reordered, then incor-
rect values can be assigned to the last elements of A. For example, in the naive
vectorized equivalent below, A (1+2) takes the wrong value because the assign-
ments occur out of order:

Whether or not you have to worry about output dependencies depends on
whether you are actually parallelizing the code. Your compiler will be conscious
of the danger, and will be able to generate legal code—and possibly even fast
code, if it's clever enough. But output dependencies occasionally become a prob-
lem for programmers.

Dependencies Within an Iteration
We have looked at dependencies that cross iteration boundaries but we haven't
looked at dependencies within the same iteration. Consider the following code
fragment:

When we look at the loop, the variable D has a flow dependency. The second
statement cannot start until the first statement has completed. At first glance this
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might appear to limit parallelism significantly. When we look closer and manually
unroll several iterations of the loop, the situation gets worse:

Now, the variable D has flow, output, and antidependencies. It looks like this loop
has no hope of running in parallel. However, there is a simple solution to this
problem at the cost of some extra memory space, using a technique called promot-
ing a scalar to a vector. We define D as an array withN elements and rewrite the
code as follows:

Now the iterations are all independent and can be run in parallel. Within each iter-
ation, the first statement must run before the second statement.

Reductions
The sum of an array of numbers is one example of a reduction—so called
because it reduces a vector to a scalar. The following loop to determine the total
of the values in an array certainly looks as though it might be able to be run in
parallel:

However, if we perform our unrolling trick, it doesn't look very parallel:

This loop also has all three types of dependencies and looks impossible to paral-
lelize. If we are willing to accept the potential effect of rounding, we can add
some parallelism to this loop as follows (again we did not add the preconditioning
loop):
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Again, this is not precisely the same computation, but all four partial sums can be
computed independently. The partial sums are combined at the end of the loop.

Loops that look for the maximum or minimum elements in an array, or multiply all
the elements of an array, are also reductions. Likewise, some of these can be reor-
ganized into partial results, as with the sum, to expose more computations. Note
that the maximum and minimum are associative operators, so the results of the
reorganized loop are identical to the sequential loop.

Ambiguous References
Every dependency we have looked at so far has been clear cut; you could see
exactly what you were dealing with by looking at the source code. But other
times, describing a dependency isn't so easy. Recall this loop from the "Antidepen-
dencies" section earlier in this chapter:

Because each variable reference is solely a function of the index, I, it's clear what
kind of dependency we are dealing with. Furthermore, we can describe how far
apart (in iterations) a variable reference is from its definition. This is called the
dependency distance. A negative value represents a flow dependency; a positive
value means there is an antidependency. A value of zero says that no dependency
exists between the reference and the definition. In this loop, the dependency dis-
tance for A is +2 iterations.

However, array subscripts may be functions of other variables besides the loop
index. It may be difficult to tell the distance between the use and definition of a
particular element. It may even be impossible to tell whether the dependency is a
flow dependency or an antidependency, or whether a dependency exists at all.
Consequently, it may be impossible to determine if it's safe to overlap execution of
different statements, as in the following loop:
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If the loop made use of A ( I + K ) , where the value of K was unknown, we
wouldn't be able to tell (at least by looking at the code) anything about the kind
of dependency we might be facing. If K is zero, we have a dependency within the
iteration and no loop-carried dependencies. If K is positive we have an antidepen-
dency with distance K. Depending on the value for K, we might have enough par-
allelism for a superscalar processor. If K is negative, we have a loop-carried flow
dependency, and we may have to execute the loop serially.

Ambiguous references, like A ( I + K ) above, have an effect on the parallelism we
can detect in a loop. From the compiler perspective, it may be that this loop does
contain two independent calculations that the author whimsically decided to throw
into a single loop. But when they appear together, the compiler has to treat them
conservatively, as if they were interrelated. This has a big effect on performance. If
the compiler has to assume that consecutive memory references may ultimately
access the same location, the instructions involved cannot be overlapped. One
other option is for the compiler to generate two versions of the loop and check
the value for K at runtime to determine which version of the loop to execute.

A similar situation occurs when we use integer index arrays in a loop. The loop
below contains only a single statement, but you can't be sure that any iteration is
independent without knowing the contents of the K and J arrays:

For instance, what if all of the values for K (I ) were the same? This causes the
same element of the array A to be rereferenced with each iteration! That may seem
ridiculous to you, but the compiler can't tell.

With- code like this, it's common for every value of K ( I ) to be unique. This is
called a permutation. If you can tell a compiler that it is dealing with a permuta-
tion, the penally is lessened in some cases. Even so, there is insult being added to
injury. Indirect references require more memory activity than direct references, and
this slows you down.

Pointer Ambiguity in Numerical C Applications
FORTRAN compilers depend on programmers to observe aliasing rules. That is,
programmers are not supposed to modify locations through pointers that may be
aliases of one another. They can become aliases in several ways, such as when
two dummy arguments receive pointers to the same storage locations:
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SUBROUTINE BOB ( X , Y ) <~ X, Y become aliases

C compilers don't enjoy the same restrictions on aliasing. In fact, there are cases
where aliasing could be desirable. Additionally, C is blessed with pointer types,
increasing the opportunities for aliasing to occur. This means that a C compiler has
to approach operations through pointers more conservatively than a FORTRAN
compiler would. Let's look at some examples to see why.

The following loop nest looks like a FORTRAN loop cast in C. The arrays are
declared or allocated all at once at the top of the routine, and the starting address
and leading dimensions are visible to the compiler. This is important because it
means that the storage relationship between the array elements is well known.
Hence, you could expect good performance:

Now imagine what happens if you allocate the rows dynamically. This makes the
address calculations more complicated. The loop nest hasn't changed; however,
there is no guaranteed stride that can get you from one row to the next. This is
because the storage relationship between the rows is unknown:

In fact, your compiler knows even less than you might expect about the storage
relationship. For instance, how can it be sure that references to a and c aren't
aliases? It may be obvious to you that they're not. You might point out that malloc
never overlaps storage. But the compiler isn't free to assume that. Who knows?
You may be substituting your own version of mallocl

Let's look at a different example, where storage is allocated all at once, though the
declarations are not visible to all routines that are using it. The following subrou-
tine bob performs the same computation as our previous example. However,
because the compiler can't see the declarations for a and c (they're in the main
routine), it doesn't have enough information to be able to overlap memory refer-
ences from successive iterations; the references could be aliases:
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To get the best performance, make available to the compiler as many details about
the size and shape of your data structures as possible. Pointers, whether in the
form of formal arguments to a subroutine or explicitly declared, can hide impor-
tant facts about how you are using memory. The more information the compiler
has, the more it can overlap memory references. This information can come from
compiler directives or from making declarations visible in the routines where per-
formance is most critical.

Closing Notes
You already knew there was a limit to the amount of parallelism in any given pro-
gram. Now you know why. Clearly, if a program had no dependencies, you could
execute the whole thing at once, given suitable hardware. But programs aren't
infinitely parallel; they are often hardly parallel at all. This is because they contain
dependencies of the types we saw above.

When we are writing and/or tuning our loops, we have a number of (sometimes
conflicting) goals to keep in mind:

• Balance memory operations and computations.

• Minimize unnecessary operations.

• Access memory using unit stride if at all possible.

• Allow all of the loop iterations to be computed in parallel.

In the coming chapters, we will begin to learn more about executing our programs
on parallel multiprocessors. At some point we will escape the bonds of compiler
automatic optimization and begin to explicitly code the parallel portions of our
code.
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To learn more about compilers and dataflow, read The Art of Compiler Design:
Theory and Practice \yy Thomas Pittman and James Peters (Prentice-Hall).

Exercises
1. Identify the dependencies (if there are any) in the following loops. Can you

think of ways to organize each loop for more parallelism?

2. Imagine that you are a parallelizing compiler, trying to generate code for the
loop below. Why are references to A a challenge? Why would it help to know
that K is equal to zero? Explain how you could partially vectorize the state-
ments involving A if you knew that K had an absolute value of at least 8.

3. The following three statements contain a flow dependency, an antidepen-
dency and an output dependency. Can you identify each? Given that you are
allowed to reorder the statements, can you find a permutation that produces
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the same values for the variables C and B? Show how you can reduce the
dependencies by combining or rearranging calculations and using temporary
variables.



Shared-Memory
Multiprocessors

In the mid-1980s, shared-memory multiprocessors were pretty expensive and
pretty rare. Now, as hardware costs are dropping, they are becoming common-
place. Many home computer systems in the under-$3000 range have a socket for a
second CPU. Home computer operating systems are providing the capability to
use more than one processor to improve system performance. Rather than special-
ized resources locked away in a central computing facility, these shared-memory
processors are often viewed as a logical extension of the desktop. These systems
run the same operating system (UNIX or NT) as the desktop and many of the
same applications from a workstation will execute on these multiprocessor servers.

Typically a workstation will have from 1 to 4 processors and a server system will
have 4 to 64 processors. Shared-memory multiprocessors have a significant advan-
tage over other multiprocessors because all the processors share the same view of
the memory, as shown in Figure 10-1.

These processors are also described as uniform memory access (also known as
UMA) systems. This designation indicates that memory is equally accessible to all
processors with the same performance.

The popularity of these systems is not due simply to the demand for high perfor-
mance computing. These systems are excellent at providing high throughput for a
multiprocessing load, and function effectively as high-performance database
servers, network servers, and Internet servers. Within limits, their throughput is
increased linearly as more processors are added.

In this book we are not so interested in the performance of database or Internet
servers. That is too passe; buy more processors, get better throughput. We are
interested in pure, raw, unadulterated compute speed for our high performance
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application. Instead of running hundreds of small jobs, we want to utilize all
$750,000 worth of hardware for our single job.

The challenge is to find techniques that make a program that takes an hour to
complete using one processor, complete in less than a minute using 64 processors.
This is not trivial. Throughout this book so far, we have been on an endless quest
for parallelism. In this and the remaining chapters, we will begin to see the payoff
for all of your hard work and dedication!

The cost of a shared-memory multiprocessor can range from $4000 to $30 million.
Some example systems include multiple-processor Intel systems from a wide range
of vendors, SGI Power Challenge Series, HP/Convex C-Series, DEC AlphaServer,
Cray vector/parallel processors, and Sun Enterprise systems. The SGI Origin 2000,
HP/Convex Exemplar, Data General AV-20000, and Sequent NUMAQ-2000 all are
uniform-memory, symmetric multiprocessing systems that can be linked to form
even larger shared nonuniform memory-access systems. Among these systems, as
the price increases, the number of CPUs increases, the performance of individual
CPUs increases, and the memory performance increases.

In this chapter we will study the hardware and software environment in these sys-
tems and learn how to execute our programs on these systems.

Symmetric Multiprocessing Hardware
In Figure 10-1, we viewed an ideal shared-memory multiprocessor. In this section,
we look in more detail at how such a system is actually constructed. The primary
advantage of these systems is the ability for any CPU to access all of the memory
and peripherals. Furthermore, the systems need a facility for deciding among
themselves who has access to what, and when, which means there will have to be
hardware support for arbitration. The two most common architectural
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underpinnings for symmetric multiprocessing are buses and crossbars. The bus is
the simplest of the two approaches. Figure 10-2 shows processors connected using
a bus. A bus can be thought of as a set of parallel wires connecting the compo-
nents of the computer (CPU, memory, and peripheral controllers), a set of proto-
cols for communication, and some hardware to help carry it out. A bus is less
expensive to build, but because all traffic must cross the bus, as the load increases,
the bus eventually becomes a performance bottleneck.

A crossbar is a hardware approach to eliminate the bottleneck caused by a single
bus. A crossbar is like several buses running side by side with attachments to each
of the modules on the machine—CPU, memory, and peripherals. Any module can
get to any other by a path through the crossbar, and multiple paths may be active
simultaneously. In the 4x5 crossbar of Figure 10-3, for instance, there can be four
active data transfers in progress at one time. In the diagram it looks like a patch-
work of wires, but there is actually quite a bit of hardware that goes into con-
structing a crossbar. Not only does the crossbar connect parties that wish to
communicate, but it must also actively arbitrate between two or more CPUs that
want access to the same memory or peripheral. In the event that one module is
too popular, it's the crossbar that decides who gets access and who doesn't. Cross-
bars have the best performance because there is no single shared bus. However,
they are more expensive to build, and their cost increases as the number of ports
is increased. Because of their cost, crossbars typically are only found at the high
end of the price and performance spectrum.

Whether the system uses a bus or crossbar, there is only so much memory band-
width to go around; four or eight processors drawing from one memory system
can quickly saturate all available bandwidth. All of the techniques that improve
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memory performance (as described in Chapter 3, Memory) also apply here in the
design of the memory subsystems attached to these buses or crossbars.

The Effect of Cache
The most common multiprocessing system is made up of commodity processors
connected to memory and peripherals through a bus. Interestingly, the fact that
these processors make use of cache somewhat mitigates the bandwidth bottleneck
on a bus-based architecture. By connecting the processor to the cache and view-
ing the main memory through the cache, we significantly reduce the memory traf-
fic across the bus. In this architecture, most of the memory accesses across the bus
take the form of cache line loads and flushes. To understand why, consider what
happens when the cache hit rate is very high. In Figure 10-4, a high cache hit rate
eliminates some of the traffic that would have otherwise gone out across the bus
or crossbar to main memory. Again, it is the notion of "locality of reference" that
makes the system work. If you assume that a fair number of the memory refer-
ences will hit in the cache, the equivalent attainable main memory bandwidth is
more than the bus is actually capable of. This assumption explains why multipro-
cessors are designed with less bus bandwidth than the sum of what the CPUs can
consume at once.

Imagine a scenario where two CPUs are accessing different areas of memory using
unit stride. Both CPUs access the first element in a cache line at the same time.
The bus arbitrarily allows one CPU access to the memory. The first CPU fills a
cache line and begins to process the data. The instant the first CPU has completed
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its cache line fill, the cache line fill for the second CPU begins. Once the second
cache line fill has completed, the second CPU begins to process the data in its
cache line. If the time to process the data in a cache line is longer than the time to
fill a cache line, the cache line fill for processor two completes before the next
cache line request arrives from processor one. Once the initial conflict is resolved,
both processors appear to have conflict-free access to memory for the remainder
of their unit-stride loops.

In actuality, on some of the fastest bus-based systems, the memory bus is suffi-
ciently fast that up to 20 processors can access memory using unit stride with very
little conflict. If the processors are accessing memory using non-unit stride, bus
and memory bank conflict becomes apparent, with fewer processors.

This bus architecture combined with local caches is very popular for general-pur-
pose multiprocessing loads. The memory reference patterns for database or Inter-
net servers generally consist of a combination of time periods with a small
working set, and time periods that access large data structures using unit stride.
Scientific codes tend to perform more non-unit-stride access than general-purpose
codes. For this reason, the most expensive parallel-processing systems targeted at
scientific codes tend to use crossbars connected to multibanked memory systems.

The main memory system is better shielded when a larger cache is used. For this
reason, multiprocessors sometimes incorporate a two-tier cache system, where
each processor uses its own small on-chip local cache, backed up by a larger sec-
ond board-level cache with as much as 4 MB of memory. Only when neither can
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satisfy a memory request, or when data has to be written back to main memory,
does a request go out over the bus or crossbar.

Coherency
Now, what happens when one CPU of a multiprocessor running a single program
in parallel changes the value of a variable, and another CPU tries to read it? Where
does the value come from? These questions are interesting because there can be
multiple copies of each variable, and some of them can hold old or stale values.

For illustration, say that you are running a program with a shared variable A. Pro-
cessor 1 changes the value of A and Processor 2 goes to read it.

In Figure 10-5, if Processor 1 is keeping A as a register-resident variable, then Pro-
cessor 2 doesn't stand a chance of getting the correct value when it goes to look
for it. There is no way that 2 can know the contents of 1's registers; so assume, at
the very least, that Processor 1 writes the new value back out. Now the question
is, where does the new value get stored? Does it remain in Processor 1's cache? Is
it written to main memory? Does it get updated in Processor 2's cache?

Really, we are asking what kind of cache coherency protocol the vendor uses to
assure that all processors see a uniform view of the values in "memory." It gener-
ally isn't something that the programmer has to worry about, except that in some
cases, it can affect performance. The approaches used in these systems are similar
to those used in single-processor systems with some extensions. The most straight-
forward cache coherency approach is called a write-through policy, variables writ-
ten into cache are simultaneously written into main memory. As the update takes
place, other caches in the system see the main memory reference being per-
formed. This can be done because all of the caches continuously monitor (also
known as snooping) the traffic on the bus, checking to see if each address is in
their cache. If a cache "notices" that it contains a copy of the data from the
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locations being written, it may either invalidate its copy of the variable or obtain
new values (depending on the policy). One thing to note is that a write-through
cache demands a fair amount of main memory bandwidth since each write goes
out over the main memory bus. Furthermore, successive writes to the same loca-
tion or bank are subject to the main memory cycle time and can slow the machine
down.

A more sophisticated cache coherency protocol is called copyback or writeback.
The idea is that you write values back out to main memory only when the cache
housing them needs the space for something else. Updates of cached data are
coordinated between the caches, by the caches, without help from the processor.
Copyback caching also uses hardware that can monitor (snoop) and respond to
the memory transactions of the other caches in the system. The benefit of this
method over the write-through method is that memory traffic is reduced consider-
ably. Let's walk through it to see how it works.

Cache Line States
For this approach to work, each cache must maintain a state for each line in its
cache. The possible states used in the example include:

Modified
This cache line needs to be written back to memory.

Exclusive
There are no other caches that have this cache line,

Shared
There are read-only copies of this line in two or more caches.

Empty/Invalid
This cache line doesn't contain any useful data.

This particular coherency protocol is often called MESI. Other cache coherency
protocols are more complicated, but these states give you an idea how multipro-
cessor writeback cache coherency works.

We start where a particular cache line is in memory and in none of the writeback
caches on the systems. The first cache to ask for data from a particular part of
memory completes a normal memory access; the main memory system returns
data from the requested location in response to a cache miss. The associated
cache line is marked exclusive, meaning that this is the only cache in the system
containing a copy of the data; it is the owner of the data. If another cache goes to
main memory looking for the same thing, the request is intercepted by the first
cache, and the data is returned from the first cache—not main memory. Once an
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interception has occurred and the data is returned, the data is marked shared in
both of the caches.

When a particular line is marked shared, the caches have to treat it differently than
they would if they were the exclusive owners of the data—especially if any of
them wants to modify it. In particular, a write to a shared cache entry is preceded
by a broadcast message to all the other caches in the system. It tells them to invali-
date their copies of the data. The one remaining cache line gets marked as modi-
fied to signal that it has been changed, and that it must be returned to main
memory when the space is needed for something else. By these mechanisms, you
can maintain cache coherence across the multiprocessor without adding tremen-
dously to the memory traffic.

By the way, even if a variable is not shared, it's possible for copies of it to show
up in several caches. On a symmetric multiprocessor, your program can bounce
around from CPU to CPU. If you run for a little while on this CPU, and then a little
while on that, your program will have operated out of separate caches. That
means that there can be several copies of seemingly unshared variables scattered
around the machine. Operating systems often try to minimize how often a process
is moved between physical CPUs during context switches. This is one reason not
to overload the available processors in a system.

Data Placement
There is one more pitfall regarding shared memory we have so far failed to men-
tion. It involves data movement. Although it would be convenient to think of the
multiprocessor memory as one big pool, we have seen that it is actually a carefully
crafted system of caches, coherency protocols, and main memory. The problems
come when your application causes lots of data to be traded between the caches.
Each reference that falls out of a given processor's cache (especially those that
require an update in another processor's cache) has to go out on the bus.

Often, it's slower to get memory from another processor's cache than from the
main memory because of the protocol and processing overhead involved. Not only
do we need to have programs with high locality of reference and unit stride, we
also need to minimize the data that must be moved from one CPU to another.

Multiprocessor Software Concepts
Now that we have examined the way shared-memory multiprocessor hardware
operates, we need to examine how software operates on these types of comput-
ers. We still have to wait until the next chapters to begin making our FORTRAN
programs run in parallel. For now, we use C programs to examine the fundamen-
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tals of multiprocessing and multithreading. There are several techniques used to
implement multithreading, so the topics we will cover include:

• Operating system-supported multiprocessing

• User space multithreading

• Operating system-supported multithreading

The last of these is what we primarily will use to reduce the walltime of our appli-
cations.

Operating System-Supported Multiprocessing
Most modern general-purpose operating systems support some form of multipro-
cessing. Multiprocessing doesn't require more than one physical CPU; it is simply
the operating system's ability to run more than one process on the system. The
operating system context-switches between each process at fixed time intervals, or
on interrupts or input-output activity. For example, in UNIX, if you use the ps
command, you can see the processes on the system:

For each process we see the process identifier (PID), the terminal that is executing
the command, the amount of CPU time the command has used, and the name of
the command. The PID is unique across the entire system. Most UNIX commands
are executed in a separate process. In the above example, most of the processes
are waiting for some type of event, so they are taking very few resources except
for memory. Process 6773* seems to be executing and using resources. Running ps
again confirms that the CPU time is increasing for the ansys process:

* ANSYS is a commonly used structural-analysis package.
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Running the vmstat 5 command tells us many things about the activity on the sys-
tem. First, there are three runnable processes. If we had one CPU, only one would
actually be running at a given instant. To allow all three jobs to progress, the oper-
ating system time-shares between the processes. Assuming equal priority, each
process executes about 1/3 of the time. However, this system is a two-processor
system, so each process executes about 2/3 of the time. Looking across the vmstat
output, we can see paging activity (pi, po), context switches (cs), overall user time
(us), system time (sy), and idle time (id).

Each process can execute a completely different program. While most processes
are completely independent, they can cooperate and share information using inter-
process communication (pipes, sockets) or various operating system-supported
shared-memory areas. We generally don't use multiprocessing on these shared-
memory systems as a technique to increase single-application performance. We
will explore techniques that use multiprocessing coupled with communication to
improve performance on scalable parallel processing systems in Chapter 12, Large-
Scale Parallel Computing,

Multiprocessing software

In this section, we explore how programs access multiprocessing features.* In this
example, the program creates a new process using the fork() function. The new
process (child) prints some messages and then changes its identity using execQ by
loading a new program. The original process (parent) prints some messages and
then waits for the child process to complete:

int globvar; /* A global variable */

i
main (} {

int pid,status,retval;
int stackvar; /* A stack variable */

globvar = 1;
stackvar = 1;
printf("Main - calling fork globvar=%d stackvar=%d\n",globvar,stackvar)
pid = fork();
printf("Main - fork returned pid=%d\n",pid);
if ( pid == 0 ) {
printf("Child - globvar=%d stackvar=%d\n",globvar,stackvar);
sleep(1);
printf{"Child - woke up globvar=%d stackvar=%d\n",globvar,stackvar);
globvar = 100;
stackvar = 100;

* These examples are written in C using the POSIX 1003-1 application programming interface. This
example runs on most UNIX systems and on other POSIX-compliant systems including OpenNT, Open-
VMS, and many others.
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The key to understanding this code is to understand how the forkQ function oper-
ates. The simple summary is that the forkQ function is called once in a process
and returns twice, once in the original process and once in a newly created pro-
cess. The newly created process is an identical copy of the original process. All the
variables (local and global) have been duplicated. Both processes have access to
all of the open files of the original process. Figure 10-6 shows how the fork opera-
tion creates a new process.

The only difference between the processes is that the return value from the fork()
function call is 0 in the new (child) process and the process identifier (shown by
the ps command) in the original (parent) process. This is the program output:

Tracing this through, first the program sets the global and stack variable to one
and then calls fork(). During the fork() call, the operating system suspends the
process, makes an exact duplicate of the process, and then restarts both processes.
You can see two messages from the statement immediately after the fork. The first
line is coming from the original process, and the second line is coming from the
new process. If you were to execute a ps command at this moment in time, you
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would see two processes running called "fork." One would have a process identi-
fier of 19336.

As both processes start, they execute an IF-THEN-ELSE and begin to perform dif-
ferent actions in the parent and child. Notice that globvar and stackvar are set to 5
in the parent, and then the parent sleeps for two seconds. At this point, the child
begins executing. The values for globvar and stackvar are unchanged in the child
process. This is because these two processes are operating in completely indepen-
dent memory spaces. The child process sleeps for one second and sets its copies
of the variables to 100. Next, the child process calls the execlQ function to over-
write its memory space with the UNIX date program. Note that the execlQ never
returns; the date program takes over all of the resources of the child process. If
you were to do a ps at this moment in time, you still see two processes on the sys-
tem but process 19336 would be called "date." The date command executes, and
you can see its output.*

* It's not uncommon for a human parent process to "fork" and create a human child process that ini-
tially seems to have the same identity as the parent. It's also not uncommon for the child process to
change its overall identity to be something very different from the parent at some later point. Usually
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The parent wakes up after a brief two-second sleep and notices that its copies of
global and local variables have not been changed by the action of the child pro-
cess. The parent then calls the waitQ function to determine if any of its children
exited. The waitQ function returns which child has exited and the status code
returned by that child process (in this case, process 19336).

User Space Multithreading
A thread is different from a process. When you add threads, they are added to the
existing process rather than starting in a new process. Processes start with a single
thread of execution and can add or remove threads throughout the duration of the
program. Unlike processes, which operate in different memory spaces, all threads
in a process share the same memory space. Figure 10-7 shows how the creation of
a thread differs from the creation of a process. Not all of the memory space in a
process is shared between all threads. In addition to the global area that is shared
across all threads, each thread has a thread private area for its own local variables.
It's important for programmers to know when they are working with shared vari-
ables and when they are working with local variables.

When attempting to speed up high performance computing applications, threads
have the advantage over processes in that multiple threads can cooperate and
work on a shared data structure to hasten the computation. By dividing the work
into smaller portions and assigning each smaller portion to a separate thread, the
total work can be completed more quickly.

Multiple threads are also used in high performance database and Internet servers
to improve the overall throughput of the server. With a single thread, the program
can either be waiting for the next network request or reading the disk to satisfy
the previous request, With multiple threads, one thread can be waiting for the next
network transaction while several other threads are waiting for disk I/O to com-
plete.

The following is an example of a simple multithreaded application.* It begins with
a single master thread that creates three additional threads. Each thread prints
some messages, accesses some global and local variables, and then terminates:

human children wait 13 years or so before this change occurs, but in UNIX, this happens in a few
microseconds. So, in some ways, in UNIX, there are many parent processes that are "disappointed"
because their children did not turn out like them!

* This example uses the IEEE POSIX standard interface for a thread library. If your system supports
POSIX threads, this example should work. If not, there should be similar routines on your system for
each of the thread functions.
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The global shared areas in this case are those variables declared in the static area
outside the mainQ code. The local variables are any variables declared within a
routine. When threads are added, each thread gets its own function call stack. In
C, the automatic variables that are declared at the beginning of each routine are
allocated on the stack. As each thread enters a function, these variables are sepa-
rately allocated on that particular thread's stack. So these are the thread-local vari-
ables.

Unlike the forkQ function, the pthread_create() function creates a new thread,
and then control is returned to the calling thread. One of the parameters of the
pthread_create() is the name of a function.

New threads begin execution in the function TestFuncQ and the thread finishes
when it returns from this function. When this program is executed, it produces the
following output:
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You can see the threads getting created in the loop. The master thread completes
the pthread_create() loop, executes the second loop, and calls the pthread_Join()
function. This function suspends the master thread until the specified thread com-
pletes. The master thread is waiting for Thread 4 to complete. Once the master
thread suspends, one of the new threads is started, Thread 4 starts executing. Ini-
tially the variable globvar is set to 0 from the main program. The self, me, and
param variables are thread-local variables, so each thread has its own copy.
Thread 4 sets globvar to 15 and goes to sleep. Then Thread 5 begins to execute
and sees globvar set to 15 from Thread 4; Thread 5 sets globvar to 16, and goes to
sleep. This activates Thread 6, which sees the current value for globvar and sets it
to 17. Then Threads 6, 5, and 4 wake up from their sleep, all notice the latest
value of 17 in globvar, and return from the TestFuncQ routine, ending the threads.

All this time, the master thread is in the middle of a ptbread_Join() waiting for
Thread 4 to complete. As Thread 4 completes, the pthread_join() returns. The
master thread then calls pthread_join() repeatedly to ensure that all three threads
have been completed. Finally, the master thread prints out the value for globvar
that contains the latest value of 17.

To summarize, when an application is executing with more than one thread, there
are shared global areas and thread private areas. Different threads execute at dif-
ferent times, and they can easily work together in shared areas.

Limitations of user space multithreading

Multithreaded applications were around long before multiprocessors existed. It is
quite practical to have multiple threads with a single CPU. As a matter of fact, the
previous example would run on a system with any number of processors, includ-
ing one. If you look closely at the code, it performs a sleep operation at each criti-
cal point in the code. One reason to add the sleep calls is to slow the program
down enough that you can actually see what is going on. However, these sleep
calls also have another effect. When one thread enters the sleep routine, it causes
the thread library to search for other "runnable" threads. If a runnable thread is
found, it begins executing immediately while the calling thread is "sleeping." This
is called a user-space thread context switch. The process actually has one operating
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system thread shared among several logical user threads. When library routines
(such as sleep) are called, the thread library* jumps in and reschedules threads.

We can explore this effect by substituting the following SpinFuncQ function,
replacing TestFuncQ function in the pthread_create() call in the previous exam-
ple:

If you look at the function, each thread entering this function prints a message and
goes to sleep for 1, 2, and 3 seconds. Then the function increments globvar (ini-
tially set to 0 in main) and begins a while-loop, continuously checking the value of
globvar. As time passes, the second and third threads should finish their sleepO,
increment the value for globvar, and begin the while-loop. When the last thread
reaches the loop, the value for globvar is 3 and all the threads exit the loop. How-
ever, this isn't what happens:

* The pthreads library supports both user-space threads and operating-system threads, as we shall
soon see. Another popular early threads package was called cthreads.
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We run the program in the background* and everything seems to run fine. All the
threads go to sleep for 1, 2, and 3 seconds. The first thread wakes up and starts
the loop waiting for globvar to be incremented by the other threads. Unfortu-
nately, with user space threads, there is no automatic time sharing. Because we
are in a CPU loop that never makes a system call, the second and third threads
never get scheduled so they can complete their sleepO call. To fix this problem,
we need to make the following change to the code:

while{globvar < THREAD_COUNT ) sleep(1) ;

With this sleept call, Threads 2 and 3 get a chance to be "scheduled." They then
finish their sleep calls, increment the globvar variable, and the program terminates
properly.

You might ask the question, "Then what is the point of user space threads?" Well,
when there is a high performance database server or Internet server, the multiple
logical threads can overlap network I/O with database I/O and other background
computations. This technique is not so useful when the threads all want to per-
form simultaneous CPU-intensive computations. To do this, you need threads that
are created, managed, and scheduled by the operating system rather than a user
library.

Operating System-Supported Multithreading
When the operating system supports multiple threads per process, you can begin
to use these threads to do simultaneous computational activity. There is still no
requirement that these applications be executed on a multiprocessor system. When
an application that uses four operating system threads is executed on a single pro-
cessor machine, the threads execute in a time-shared fashion. If there is no other
load on the system, each thread gets 1/4 of the processor. While there are good
reasons to have more threads than processors for noncompute applications, it's
not a good idea to have more active threads than processors for compute-intensive
applications because of thread-switching overhead. (For more detail on the effect
of too many threads, see Appendix D, How FORTRAN Manages Threads at Run-
time^

* Because we know it will hang and ignore interrupts.

t Some thread libraries support a call to a routine sched_yield() that checks for runnable threads. If it
finds a runnable thread, it runs the thread. If no thread is runnable, it returns immediately to the calling
thread. This routine allows a thread that has the CPU to ensure that other threads make progress during
CPU-intensive periods of its code.
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If you are using the POSIX threads library, it is a simple modification to request
that your threads be created as operating-system rather rather than user threads, as
the following code shows:

The code executed by the master thread is modified slightly. We create an
"attribute" data structure and set the PTHREAD_SCOPE_SYSTEM attribute to indi-
cate that we would like our new threads to be created and scheduled by the oper-
ating system, We use the attribute information on the call to pthread_create().
None of the other code has been changed. The following is the execution output
of this new program:
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Now the program executes properly. When the first thread starts spinning, the
operating system is context switching between all three threads. As the threads
come out of their sleepO, they increment their shared variable, and when the final
thread increments the shared variable, the other two threads instantly notice the
new value (because of the cache coherency protocol) and finish the loop. If there
are fewer than three CPUs, a thread may have to wait for a time-sharing context
switch to occur before it notices the updated global variable.

With operating-system threads and multiple processors, a program can realistically
break up a large computation between several independent threads and compute
the solution more quickly. Of course this presupposes that the computation could
be done in parallel in the first place.

Techniques for Multithreaded Programs
Given that we have multithreaded capabilities and multiprocessors, we must still
convince the threads to work together to accomplish some overall goal. Often we
need some ways to coordinate and cooperate between the threads. There are sev-
eral important techniques that are used while the program is running with multiple
threads, including:

• Fork-join (or create-join) programming

• Synchronization using a critical section with a lock, semaphore, or mutex

• Barriers

Each of these techniques has an overhead associated with it. Because these over-
heads are necessary to go parallel, we must make sure that we have sufficient
work to make the benefit of parallel operation worth the cost.
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Fork-Join Programming
This approach is the simplest method of coordinating your threads. As in the ear-
lier examples in this chapter, a master thread sets up some global data structures
that describe the tasks each thread is to perform and then use the
pthread_create() function to activate the proper number of threads. Each thread
checks the global data structure using its thread-id as an index to find its task. The
thread then performs the task and completes. The master thread waits at a
pthread_join() point, and when a thread has completed, it updates the global data
structure and creates a new thread. These steps are repeated for each major itera-
tion (such as a time-step) for the duration of the program:

The shortcoming of this approach is the overhead cost associated with creating
and destroying an operating system thread for a potentially very short task.

The other approach is to have the threads created at the beginning of the program
and to have them communicate amongst themselves throughout the duration of
the application. To do this, they use such techniques as critical sections or barriers.

Synchronization
Synchronization is needed when there is a particular operation to a shared variable
that can only be performed by one processor at a time. For example, in previous
SpinFuncQ examples, consider the line:

globvar++;

In assembly language, this takes at least three instructions:

What if globvar contained 0, Thread 1 was running, and, at the precise moment it
completed the LOAD into Register Rl and before it had completed the ADD or
STORE instructions, the operating system interrupted the thread and switched to
Thread 2? Thread 2 catches up and executes all three instructions using its regis-
ters: loading 0, adding 1 and storing the 1 back into globvar. Now Thread 2 goes
to sleep and Thread 1 is restarted at the ADD instruction. Register Rl for Thread 1
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contains the previously loaded value of 0; Thread 1 adds 1 and then stores 1 into
globvar. What is wrong with this picture? "We meant to use this code to count the
number of threads that have passed this point. Two threads passed the point, but
because of a bad case of bad timing, our variable indicates only that one thread
passed. This is because the increment of a variable in memory is not atomic. That
is, halfway through the increment, something else can happen.

Another way we can have a problem is on a multiprocessor when two processors
execute these instructions simultaneously. They both do the LOAD, getting 0. Then
they both add 1 and store 1 back to memory.* Which processor actually got the
honor of storing their 1 back to memory is simply a race.

We must have some way of guaranteeing that only one thread can be in these
three instructions at the same time. If one thread has started these instructions, all
other threads must wait to enter until the first thread has exited. These areas are
called critical sections. On single-CPU systems, there was a simple solution to criti-
cal sections: you could turn off interrupts for a few instructions and then turn them
back on. This way you could guarantee that you would get all the way through
before a timer or other interrupt occurred:

However, this technique does not work for longer critical sections or when there is
more than one CPU. In these cases, you need a lock, a semaphore, or a mutex.
Most thread libraries provide this type of routine. To use a mutex, we have to
make some modifications to our example code:

* Boy, this is getting pretty picky. How often will either of these events really happen? Well, if it
crashes your airline reservation system every 100,000 transactions or so, that would be way too often.
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The mutex data structure must be declared in the shared area of the program.
Before the threads are created, pthread_mutex_init must be called to initialize the
mutex. Before globvar is incremented, we must lock the mutex and after we finish
updating globvar (three instructions later), we unlock the mutex. With the code as
shown above, there will never be more than one processor executing the glob-
var++ line of code, and the code will never hang because an increment was
missed. Semaphores and locks are used in a similar "way.

Interestingly, when using user space threads, an attempt to lock an already locked
mutex, semaphore, or lock can cause a thread context switch. This allows the
thread that "owns" the lock a better chance to make progress toward the point
where they will unlock the critical section. Also, the act of unlocking a mutex can
cause the thread waiting for the mutex to be dispatched by the thread library.

Barriers
Barriers are different than critical sections. Sometimes in a multithreaded applica-
tion, you need to have all threads arrive at a point before allowing any threads to
execute beyond that point. An example of this is a time-based simulation. Each
task processes its portion of the simulation but must wait until all of the threads
have completed the current time step before any thread can begin the next time
step. Typically threads are created, and then each thread executes a loop with one
or more barriers in the loop. The rough pseudocode for this type of approach is as
follows:
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In a sense, our SpinFuncQ function implements a barrier. It sets a variable initially
to 0. Then as threads arrive, the variable is incremented in a critical section. Imme-
diately after the critical section, the thread spins until the precise moment that all
the threads are in the spin loop, at which time all threads exit the spin loop and
continue on.

For a critical section, only one processor can be executing in the critical section at
the same time. For a barrier, all processors must arrive at the barrier before any of
the processors can leave.

A Real Example
In all of the above examples, we have focused on the mechanics of shared mem-
ory, thread creation, and thread termination. We have used the sleepQ routine to
slow things down sufficiently to see interactions between processes. But we want
to go very fast, not just learn threading for threading's sake.

The example code below uses the multithreading techniques described in this
chapter to speed up a sum of a large array. The hpcwall routine is from Chapter 6,
Timing and Profiling.

This code allocates a four-million-element double-precision array and fills it with
random numbers between 0 and 1. Then using one, two, three, and four threads,
it sums up the elements in the array:
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First, the code performs the sum using a single thread using a for-loop. Then for
each of the parallel sums, it creates the appropriate number of threads that call
SumFuncC). Each thread starts in SumFuncQ and initially chooses an area to oper-
ation in the shared array. The "strip" is chosen by dividing the overall array up
evenly among the threads with the last thread getting a few extra if the division
has a remainder.

Then, each thread independently performs the sum on its area. When a thread has
finished its computation, it uses a mutex to update the global sum variable with its
contribution to the global sum:

There are some interesting patterns. Before you interpret the patterns, you must
know that this system is a three-processor Sun Enterprise 3000. Note that as we go
from one to two threads, the time is reduced to one-half. That is a good result
given how much it costs for that extra CPU. We characterize how well the addi-
tional resources have been used by computing an efficiency factor that should be
1.0. This is computed by multiplying the wall time by the number of threads. Then
the time it takes on a single processor is divided by this number. If you are using
the extra processors well, this evaluates to 1.0. If the extra processors are used
pretty well, this would be about 0.9- If you had two threads, and the computation
did not speed up at all, you would get 0.5.

At two and three threads, wall time is dropping, and the efficiency is well over 0.9.
However, at four threads, the wall time increases, and our efficiency drops very
dramatically. This is because we now have more threads than processors. Even
though we have four threads that could execute, they must be time-sliced between
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three processors.* This is even worse that it might seem. As threads are switched,
they move from processor to processor and their caches must also move from pro-
cessor to processor, further slowing performance. This cache-thrashing effect is not
too apparent in this example because the data structure is so large, most memory
references are not to values previously in cache.

It's important to note that because of the nature of floating-point (see Chapter 4,
Floating-Point Numbers), the parallel sum may not be the same as the serial sum.
To perform a summation in parallel, you must be willing to tolerate these slight
variations in your results.

Closing Notes
As they drop in price, multiprocessor systems are becoming far more common.
These systems have many attractive features, including good price/performance,
compatibility with workstations, large memories, high throughput, large shared
memories, fast I/O, and many others. While these systems are strong in multipro-
grammed server roles, they are also an affordable high performance computing
resource for many organizations. Their cache-coherent shared-memory model
allows multithreaded applications to be easily developed.

We have also examined some of the software paradigms that must be used to
develop multithreaded applications. While you hopefully will never have to write
C code with explicit threads like the examples in this chapter, it is nice to under-
stand the fundamental operations at work on these multiprocessor systems. Using
the FORTRAN language with an automatic parallelizing compiler, we have the
advantage that these and many more details are left to the FORTRAN compiler and
runtime library. At some point, especially on the most advanced architectures, you
may have to explicitly program a multithreaded program using the types of tech-
niques shown in this chapter.

One trend that has been predicted for some time is that we will begin to see multi-
ple cache-coherent CPUs on a single chip once the ability to increase the clock
rate on a single chip slows down. Imagine that your new $2000 workstation has
four 1-GHz processors on a single chip. Sounds like a good time to learn how to
write multithreaded programs!

* It is important to match the number of runnable threads to the available resources. In compute code,
when there are more threads than available processors, the threads compete among themselves, caus-
ing unnecessary overhead and reducing the efficiency of your computation. See Appendix D for more
details.
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Exercises
1. Experiment with the fork code in this chapter. Run the program multiple times

and see how the order of the messages changes. Explain the results.

2. Experiment with the createl and create3 codes in this chapter. Remove all of
the sleepO calls. Execute the programs several times on single and multipro-
cessor systems. Can you explain why the output changes from run to run in
some situations and doesn't change in others?

3. Experiment with the parallel sum code in this chapter. In the SumFuncQ rou-
tine, change the for-loop to:

for(i=start;i<end;i++ } GlobSum = GlobSum + array[i];

Remove the three lines at the end that get the mutex and update the Glob-
Sum. Execute the code. Explain the difference in values that you see for
GlobSum. Are the patterns different on a single processor and a multiproces-
sor? Explain the performance impact on a single processor and a multiproces-
sor.

4. Explain how the following code segment could cause deadlock—two or more
processes waiting for a resource that can't be relinquished:

5. If you were to code the functionality of a spin-lock in C, it might look like
this:

while {!lockword);
lockword = !lockword;

As you know from the first sections of the book, the same statements would
be compiled into explicit loads and stores, a comparison, and a branch.
There's a danger that two processes could each load lockword, find it unset,
and continue on as if they owned the lock (we have a race condition). This
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suggests that spin-locks are implemented differently—that they're not merely
the two lines of C above. How do you suppose they are implemented?



Programming
Shared-Memory
Multiprocessors

In Chapter 10, Shared-Memory Multiprocessors, we examined the hardware used to
implement shared-memory parallel processors and the software environment for a
programmer who is using threads explicitly. In this chapter, we view these proces-
sors from a simpler vantage point. When programming these systems in FOR-
TRAN, you have the advantage of the compiler's support of these systems. At the
top end of ease of use, we can simply add a flag or two on the compilation of our
well-written code, set an environment variable, and voila, we are executing in par-
allel. If you want some more control, you can add directives to particular loops
where you know better than the compiler how the loop should be executed.* First
we examine how well-written loops can benefit from automatic parallelism. Then
we will look at the types of directives you can add to your program to assist the
compiler in generating parallel code. While this chapter refers to running your
code in parallel, most of the techniques apply to the vector-processor supercom-
puters as well.

Automatic Parattelization
So far in the book, we've covered the tough things you need to know to do paral-
lel processing. At this point, assuming that your loops are clean, they use unit
stride, and the iterations can all be done in parallel, all you have to do is turn on a

* If you have skipped all the other chapters in the book and jumped to this one, don't be surprised if
some of the terminology is unfamiliar. While all those chapters seemed to contain endless boring detail,
they did contain some basic terminology. So those of us who read all those chapters have some com-
mon terminology needed for this chapter. If you don't go back and read all the chapters, don't com-
plain about the big words we keep using in this chapter!

222
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compiler flag and buy a good parallel processor. For example, look at the follow-
ing code:

Here we have an iterative code that satisfies all the criteria for a good parallel
loop. On a good parallel processor with a modern compiler, you are two flags
away from executing in parallel. On Sun Solaris systems, the autopar flag turns on
the automatic parallelization, and the loopinfo flag causes the compiler to describe
the particular optimization performed for each loop. To compile this code under
Solaris, you simply add these flags to your 177 call:

If you simply run the code, it's executed using one thread. However, the code is
enabled for parallel processing for those loops that can be executed in parallel. To
execute the code in parallel, you need to set the UNIX environment to the number
of parallel threads you wish to use to execute the code. On Solaris, this is done
using the PARALLEL variable:
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Speedup is the term used to capture how much faster the job runs using N proces-
sors compared to the performance on one processor. It is computed by dividing
the single processor time by the multiprocessor time for each number of proces-
sors. Figure 11-1 shows the wall time and speedup for this application.

Figure 11-2 shows this information graphically, plotting speedup versus the num-
ber of processors,

Note that for a while we get nearly perfect speedup, but we begin to see a mea-
surable drop in speedup at four and eight processors. There are several causes for
this. In all parallel applications, there is some portion of the code that can't run in
parallel. During those nonparallel times, the other processors are waiting for work
and aren't contributing to efficiency. This nonparallel code begins to affect the
overall performance as more processors are added to the application.

So you say, "this is more like it!" and immediately try to run with 12 and 16
threads. Now, we see the graph in Figure 11-4 and the data from Figure 11-3.

What has happened here? Things were going so well, and then they slowed down.
We are running this program on a 16-processor system, and there are eight other
active threads, as indicated below:
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Once we pass eight threads, there are no available processors for our threads. So
the threads must be time-shared between the processors, significantly slowing the
overall operation. By the end, we are executing 16 threads on eight processors,
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and our performance is slower than with one thread. So it is important that you
don't create too many threads in these types of applications.*

Compiler Considerations
Improving performance by turning on automatic parallelization is an example of
the "smarter compiler" we discussed in earlier chapters. The addition of a single
compiler flag has triggered a great deal of analysis on the part of the compiler
including;

• Which loops can execute in parallel, producing the exact same results as the
sequential executions of the loops? This is done by checking for dependencies
that span iterations. A loop with no inter-iteration dependencies is called a
DOALL loop.

• Which loops are worth executing in parallel? Generally very short loops gain
no benefit and may execute more slowly when executing in parallel. As with
loop unrolling, parallelism always has a cost. It is best used when the benefit
far outweighs the cost.

• In a loop nest, which loop is the best candidate to be parallelized? Generally
the best performance occurs when we parallelize the outermost loop of a loop

* In Appendix D, How FORTRAN Manages Threads at Runtime, when we look at how the FORTRAN
runtime library operates on these systems it will be much clearer why having more threads than avail-
able processors has such a negative impact on performance.
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nest. This way the overhead associated with beginning a parallel loop is amor-
tized over a longer parallel loop duration.

• Can and should the loop nest be interchanged? The compiler may detect that
the loops in a nest can be done in any order. One order may work very well
for parallel code while giving poor memory performance. Another order may
give unit stride but perform poorly with multiple threads. The compiler must
analyze the cost/benefit of each approach and make the best choice.

• How do we break up the iterations among the threads executing a parallel
loop? Are the iterations short with uniform duration, or long with wide varia-
tion of execution time? We will see that there are a number of different ways
to accomplish this. When the programmer has given no guidance, the com-
piler must make an educated guess.

Even though it seems complicated, the compiler can do a surprisingly good job on
a wide variety of codes. It is not magic, however. For example, in the following
code we have a loop-carried flow dependency:

When we compile the code, the compiler gives us the following message:

The compiler throws its hands up in despair, and lets you know that the loop at
Line 8 had an unsafe dependence, and so it won't automatically parallelize the
loop. When the code is executed below, adding a thread does not affect the exe-
cution performance:
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A typical application has many loops. Not all the loops are executed in parallel.
It's a good idea to run a profile of your application, and in the routines that use
most of the CPU time, check to find out which loops are not being parallelized.
Within a loop nest, the compiler generally chooses only one loop to execute in
parallel.

Other Compiler Flags
In addition to the flags shown above, you may have other compiler flags available
to you that apply across the entire program:

• You may have a compiler flag to enable the automatic parallelization of reduc-
tion operations. Because the order of additions can affect the final value when
computing a sum of floating-point numbers, the compiler needs permission to
parallelize summation loops.

• Flags that relax the compliance with IEEE floating-point rules may also give
the compiler more flexibility when trying to parallelize a loop. However, you
must be sure that it's not causing accuracy problems in other areas of your
code.

• Often a compiler has a flag called "unsafe optimization" or "assume no depen-
dencies." While this flag may indeed enhance the performance of an applica-
tion with loops that have dependencies, it almost certainly produces incorrect
results.

There is some value in experimenting with a compiler to see the particular combi-
nation that will yield good performance across a variety of applications. Then that
set of compiler options can be used as a starting point when you encounter a new
application.

Assisting the Compiler
If it were all that simple, you wouldn't need this book. While compilers are
extremely clever, there is still a lot of ways to improve the performance of your
code without sacrificing its portability. Instead of converting the whole program to
C and using a thread library, you can assist the compiler by adding compiler direc-
tives to our source code.
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Compiler directives are typically inserted in the form of stylized FORTRAN com-
ments. This is done so that a nonparallelizing compiler can ignore them and just
look at the FORTRAN code, sans comments. This allows to you tune your code for
parallel architectures without letting it run badly on a wide range of single-proces-
sor systems.

There are two categories of parallel-processing comments:

• Assertions

• Manual parallelization directives

Assertions tell the compiler certain things that you as the programmer know about
the code that it might not guess by looking at the code. Through the assertions,
you are attempting to assuage the compiler's doubts about whether or not the
loop is eligible for parallelization. When you use directives, you are taking full
responsibility for the correct execution of the program. You are telling the com-
piler what to parallelize and how to do it. You take full responsibility for the out-
put of the program. If the program produces meaningless results, you have no one
to blame but yourself.

Assertions
In a previous example, we compiled a program and received the following output:

An uneducated programmer who has not read this book (or has not looked at the
code) might exclaim, "What unsafe dependence, I never put one of those in my
code!" and quickly add a no dependencies assertion. This is the essence of an
assertion. Instead of telling the compiler to simply parallelize the loop, the pro-
grammer is telling the compiler that its conclusion that there is a dependence is
incorrect. Usually the net result is that the compiler does indeed parallelize the
loop.

We will briefly review the types of assertions that are typically supported by these
compilers. An assertion is generally added to the code using a stylized comment.

No dependencies

A no dependencies or ignore dependencies directive tells the compiler that refer-
ences don't overlap. That is, it tells the compiler to generate code that may exe-
cute incorrectly if there are dependencies. You're saying, "I know what I'm doing;
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it's OK to overlap references." A no dependencies directive might help the follow-
ing loop:

If you know that k is greater than -1 or less than -n, you can get the compiler to
parallelize the loop:

Of course, blindly telling the compiler that there are no dependencies is a pre-
scription for disaster. If k equals -1, the example above becomes a recursive loop.

Relations

You will often see loops that contain some potential dependencies, making them
bad candidates for a no dependencies directive. However, you may be able to
supply some local facts about certain variables. This allows partial parallelization
without compromising the results. In the code below, there are two potential
dependencies because of subscripts involving k and j:

Perhaps we know that there are no conflicts with references to a [ i ] and
a[i+k]. But maybe we aren't so sure about c[i] and c [ i + j ] . Therefore, we
can't say in general that there are no dependencies. However, we may be able to
say something explicit about k (like "k is always greater than -1"), leaving j out
of it. This information about the relationship of one expression to another is called
a relation assertion. Applying a relation assertion allows the compiler to apply its
optimization to the first statement in the loop, giving us partial parallelization.*

Again, if you supply inaccurate testimony that leads the compiler to make unsafe
optimizations, your answer may be wrong.

* Notice that, if you were tuning by hand, you could split this loop into two: one parallclizable and
one not.
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Permutations

As we have seen elsewhere, when elements of an array are indirectly addressed,
you have to worry about whether or not some of the subscripts may be repeated.
In the code below, are the values of K {I) all unique? Or are there duplicates?

If you know there are no duplicates in K (i.e., that A ( K ( I ) ) is a permutation),
you can inform the compiler so that iterations can execute in parallel. You supply
the information using a permutation assertion.

No equivalences

Equivalenced arrays in FORTRAN programs provide another challenge for the
compiler. If any elements of two equivalenced arrays appear in the same loop,
most compilers assume that references could point to the same memory storage
location and optimize very conservatively. This may be true even if it is abun-
dantly apparent to you that there is no overlap whatsoever.

You inform the compiler that references to equivalenced arrays are safe with a no
equivalences assertion. Of course, if you don't use equivalences, this assertion has
no effect.

Trip count

Each loop can be characterized by an average number of iterations. Some loops
are never executed or go around just a few times. Others may go around hun-
dreds of times:

Your compiler is going to look at every loop as a candidate for unrolling or paral-
lelization. It's working in the dark, however, because it can't tell which loops are
important and tries to optimize them all. This can lead to the surprising experience
of seeing your runtime go up after optimization!

A trip count assertion provides a clue to the compiler that helps it decide how
much to unroll a loop or when to parallelize a loop.* Loops that aren't important
can be identified with low or zero trip counts. Important loops have high trip
counts.

* The assertion is made either by hand or from a profiler.
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Inline substitution

If your compiler supports procedure inlining, you can use directives and com-
mand-line switches to specify how many nested levels of procedures you would
like to inline, thresholds for procedure size, etc. The vendor will have chosen rea-
sonable defaults.

Assertions also let you choose subroutines that you think are good candidates for
inlining. However, subject to its thresholds, the compiler may reject your choices.
Inlining could expand the code so much that increased memory activity would
claim back gains made by eliminating the procedure call. At higher optimization
levels, the compiler is often capable of making its own choices for inlining candi-
dates, provided it can find the source code for the routine under consideration.

Some compilers support a feature called interprocedural analysis. When this is
done, the compiler looks across routine boundaries for its data flow analysis. It
can perform significant optimizations across routine boundaries, including auto-
matic inlining, constant propagation, and others.

No side effects

Without interprocedural analysis, when looking at a loop, if there is a subroutine
call in the middle of the loop, the compiler has to treat the subroutine as if it will
have the worst possible side effects. Also, it has to assume that there are depen-
dencies that prevent the routine from executing simultaneously in two different
threads.

Many routines (especially functions) don't have any side effects and can execute
quite nicely in separate threads because each thread has its own private call stack
and local variables. If the routine is meaty, there will be a great deal of benefit in
executing it in parallel.

Your computer may allow you to add a directive that tells you if successive sub-
routine calls are independent:

Even if the compiler has all the source code, use of common variables or equiva-
lences may mask call independence.
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Manual Parallelism
At some point, you get tired of giving the compiler advice and hoping that it will
reach the conclusion to parallelize your loop. At that point you move into the
realm of manual parallelism. Luckily the programming model provided in FOR-
TRAN insulates you from much of the details of exactly how multiple threads are
managed at runtime. You generally control explicit parallelism by adding specially
formatted comment lines to your source code. There are a wide variety of formats
of these directives. In this section, we use the syntax that is part of the OpenMP
(see www.openmp.org) standard. You generally find similar capabilities in each of
the vendor compilers. The precise syntax varies slightly from vendor to vendor.
(That alone is a good reason to have a standard.)

The basic programming model is that you are executing a section of code with
either a single thread or multiple threads. The programmer adds a directive to
summon additional threads at various points in the code. The most basic construct
is called the parallel region.

Parallel regions

In a parallel region, the threads simply appear between two statements of straight-
line code. A very trivial example might be the following using the OpenMP direc-
tive syntax:

The C$OMP is the sentinel that indicates that this is a directive and not just another
comment. The output of the program when run looks as follows:
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Execution begins with a single thread. As the program encounters the PARALLEL
directive, the other threads are activated to join the computation. So in a sense, as
execution passes the first directive, one thread becomes four. Four threads execute
the two statements between the directives. As the threads are executing indepen-
dently, the order in which the print statements are displayed is somewhat random.
The threads wait at the END PARALLEL directive until all threads have arrived.
Once all threads have completed the parallel region, a single thread continues
executing the remainder of the program.

In Figure 11-5, the PRIVATE (IAM) indicates that the I AM variable is not shared
across all the threads but instead, each thread has its own private version of the
variable. The IGLOB variable is shared across all the threads. Any modification of
IGLOB appears in all the other threads instantly, within the limitations of the
cache coherency.

During the parallel region, the programmer typically divides the work among the
threads. This pattern of going from single-threaded to multithreaded execution
may be repeated many times throughout the execution of an application.

Because input and output are generally not thread-safe, to be completely correct,
we should indicate that the print statement in the parallel section is only to be
executed on one processor at any one time. We use a directive to indicate that this
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section of code is a critical section. A lock or other synchronization mechanism
ensures that no more than one processor is executing the statements in the critical
section at any one time:

Parallel loops

Quite often the areas of the code that are most valuable to execute in parallel are
loops. Consider the following loop:

To manually parallelize this loop, we insert a directive at the beginning of the
loop:

When this statement is encountered at runtime, the single thread again summons
the other threads to join the computation. However, before the threads can start
working on the loop, there are a few details that must be handled. The PARALLEL
DO directive accepts the data classification and scoping clauses as in the parallel
section directive earlier. We must indicate which variables are shared across all
threads and which variables have a separate copy in each thread. It would be a
disaster to have TMPl and TMP2 shared across threads. As one thread takes the
square root of TMPl, another thread would be resetting the contents of TMPl.
A ( I ) and B ( I ) come from outside the loop, so they must be shared. We need to
augment the directive as follows:
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The iteration variable I also must be a thread-private variable. As the different
threads increment their way through their particular subset of the arrays, they
don't want to be modifying a global value for I.

There are a number of other options as to how data will be operated on across the
threads. This summarizes some of the other data semantics available:

Firstprivate
These are thread-private variables that take an initial value from the global
variable of the same name immediately before the loop begins executing.

Lastprivate
These are thread-private variables except that the thread that executes the last
iteration of the loop copies its value back into the global variable of the same
name.

Reduction
This indicates that a variable participates in a reduction operation that can be
safely done in parallel. This is done by forming a partial reduction using a
local variable in each thread and then combining the partial results at the end
of the loop.

Each vendor may have different terms to indicate these data semantics, but most
support all of these common semantics. Figure 11-6 shows how the different types
of data semantics operate.

Now that we have the data environment set up for the loop, the only remaining
problem that must be solved is which threads will perform which iterations. It
turns out that this is not a trivial task, and a wrong choice can have a significant
negative impact on our overall performance.

Iteration scheduling

There are two basic techniques (along with a few variations) for dividing the itera-
tions in a loop between threads. We can look at two extreme examples to get an
idea of how this works:
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In both loops, all the computations are independent, so if there were 10,000 pro-
cessors, each processor could execute a single iteration. In the vector-add exam-
ple, each iteration would be relatively short, and the execution time would be
relatively constant from iteration to iteration. In the particle tracking example, each
iteration chooses a random number for an initial particle position and iterates to
find the minimum energy. Each iteration takes a relatively long time to complete,
and there will be a wide variation of completion times from iteration to iteration.

These two examples are effectively the ends of a continuous spectrum of the itera-
tion scheduling challenges facing the FORTRAN parallel runtime environment:

Static
At the beginning of a parallel loop, each thread takes a fixed continuous por-
tion of iterations of the loop based on the number of threads executing the
loop.

Dynamic
With dynamic scheduling, each thread processes a chunk of data and when it
has completed processing, a new chunk is processed. The chunk size can be
varied by the programmer, but is fixed for the duration of the loop.
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These two example loops can show how these iteration scheduling approaches
might operate when executing with four threads. In the vector-add loop, static
scheduling would distribute iterations 1-2500 to Thread 0, 2501-5000 to Thread 1,
5001-7500 to Thread 2, and 7501-10000 to Thread 3- In Figure 11-7, the mapping
of iterations to threads is shown for the static scheduling option.

Since the loop body (a single statement) is short with a consistent execution time,
static scheduling should result in roughly the same amount of overall work (and
time if you assume a dedicated CPU for each thread) assigned to each thread per
loop execution.

An advantage of static scheduling may occur if the entire loop is executed repeat-
edly. If the same iterations are assigned to the same threads that happen to be
running on the same processors, the cache might actually contain the values for A,
B, and C from the previous loop execution.* The runtime pseudo-code for static
scheduling in the first loop might look as follows:

It's not always a good strategy to use the static approach of giving a fixed number
of iterations to each thread. If this is used in the second loop example, long and
varying iteration times would result in poor load balancing. A better approach is to

* The operating system and runtime library actually go to some lengths to try to make this happen.
This is another reason not to have more threads than available processors, which causes unnecessary
context switching.
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have each processor simply get the next value for IPROB each time at the top of
the loop.

That approach is called dynamic scheduling, and it can adapt to widely varying
iteration times. In Figure 11-8, the mapping of iterations to processors using
dynamic scheduling is shown. As soon as a processor finishes one iteration, it pro-
cesses the next available iteration in order.

If a loop is executed repeatedly, the assignment of iterations to threads may vary
due to subtle timing issues that affect threads. The pseudo-code for the dynamic
scheduled loop at runtime is as follows:

ILOCAL is used so that each thread knows which iteration is currently processing.
The IPROB value is altered by the next thread executing the critical section.

While the dynamic iteration scheduling approach works well for this particular
loop, there is a significant negative performance impact if the programmer were to
use the wrong approach for a loop. For example, if the dynamic approach were
used for the vector-add loop, the time to process the critical section to determine
which iteration to process may be larger than the time to actually process the itera-
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tion. Furthermore, any cache affinity of the data would be effectively lost because
of the virtually random assignment of iterations to processors.

In between these two approaches are a wide variety of techniques that operate on
a chunk of iterations. In some techniques the chunk size is fixed, and in others it
varies during the execution of the loop. In this approach, a chunk of iterations are
grabbed each time the critical section is executed. This reduces the scheduling
overhead, but can have problems in producing a balanced execution time for each
processor. The runtime is modified as follows to perform the particle tracking loop
example using a chunk size of 100:

The choice of chunk size is a compromise between overhead and termination
imbalance. Typically the programmer must get involved through directives in order
to control chunk size.

Part of the challenge of iteration distribution is to balance the cost (or existence) of
the critical section against the amount of work done per invocation of the critical
section. In the ideal world, the critical section would be free, and all scheduling
would be done dynamically. Parallel/vector supercomputers with hardware assis-
tance for load balancing can nearly achieve the ideal using dynamic approaches
with relatively small chunk size.

Because the choice of loop iteration approach is so important, the compiler relies
on directives from the programmer to specify which approach to use. The follow-
ing example shows how we can request the proper iteration scheduling for our
loops:
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Closing Notes
Using data flow analysis and other techniques, modern compilers can peer
through the clutter that we programmers innocently put into our code and see the
patterns of the actual computations. In the field of high performance computing,
having great parallel hardware and a lousy automatic parallelizing compiler gener-
ally results in no sales. Too many of the benchmark rules allow only a few com-
piler options to be set.

Physicists and chemists are interested in physics and chemistry, not computer sci-
ence. If it takes 1 hour to execute a chemistry code without modifications and
after six weeks of modifications the same code executes in 20 minutes, which is
better? Well from a chemist's point of view, one took an hour, and the other took
1008 hours and 20 minutes, so the answer is obvious.* Although if the program
were going to be executed thousands of times, the tuning might be a win for the
programmer. The answer is even more obvious if it again takes six weeks to tune
the program every time you make a modification to the program.

In some ways, assertions have become less popular than directives. This is due to
two factors: (1) compilers are getting better at detecting parallelism even if they
have to rewrite some code to do so, and (2) there are two kinds of programmers:
those who know exactly how to parallelize their codes and those who turn on the
"safe" auto-parallelize flags on their codes. Assertions fall in the middle ground,
somewhere between where the programmer does not want to control all the
details but kind of feels that the loop can be parallelized.

You can get online documentation of the OpenMP syntax used in these examples
at www.openmp.org.

Exercises
1. Take a static, highly parallel program with a relative large inner loop. Compile

the application for parallel execution. Execute the application increasing the
threads. Examine the behavior when the number of threads exceed the avail-

* On the other hand, if the person is a computer scientist, improving the performance might result in
anything from a poster session at a conference to a journal article! This makes for lots of intra-depart-
mental masters degree projects.
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able processors. See if different iteration scheduling approaches make a differ-
ence.

2. Take the following loop and execute with several different iteration scheduling
choices. For chunk-based scheduling, use a large chunk size, perhaps 100,000.
See if any approach performs better than static scheduling:

3. Execute the following loop for a range of values for N from 1 to 16 million:

Run the loop in a single processor. Then force the loop to run in parallel. At
what point do you get better performance on multiple processors? Do the
number of threads affect your observations?

4. Use an explicit parallelization directive to execute the following loop in paral-
lel with a chunk size of 1:

Execute the loop with a varying number of threads, including one. Also com-
pile and execute the code in serial. Compare the output and execution times.
What do the results tell you about cache coherency? About the cost of moving
data from one cache to another, and about critical section costs?
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Large-Scale
Parallel Computing

The parallel-processing systems that use high performance RISC processors and a
uniform shared-memory model are relatively easy to program. These are the most
common high performance computers encountered by programmers. Because of
the bus bandwidth or the cost of a large crossbar, these systems are generally lim-
ited to somewhere between 8-64 processors.

There are many applications whose performance can be improved by using more
than one processor. Often the people interested in these applications can afford to
spend significant resources on these systems. Often these problems are some type
of simulation. Simulations of molecules, weather systems, economies, or fluid flow
all have a parallel quality to them, like the systems they represent. Atoms don't
take turns interacting, as in a computer program running on a serial computer.
They all interact with one another, all at the same time.

In this chapter, we include the following topics:

• A discussion of our ability to take advantage of an ever-increasing number of
processors

• A summary of interconnection technologies

• A taxonomy of parallel architectures

245
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• A survey of existing scalable architectures

The field of scalable computing, though several decades old, is still struggling to
reach maturity. Questions about how people should express their models haven't
been settled. Nor is there any kind of agreement on what architectures are best. So
in a sense, this chapter is less a statement of the way things are and more a tour of
the battlefield. In this chapter, we focus on the theoretical and technical details of
these systems. In the next chapter, we examine the programming environments
that can be used on these systems.

Amdahl's Law
One question that you should ask at this point is, "How far can we go?" The
answer to the question depends on the application. Gene Amdahl, architect of the
IBM 360 computers, developed what is now called Amdahl's Law to characterize
how well an application can make use of scalable parallel processors,

Whether running on a parallel computer or not, nearly every program has a mix-
ture of parts that are serial and parts that are parallel. An engineering analysis is a
good example. The setup portion may be very serial: data is read in, a matrix is
populated. If there is little opportunity to overlap execution, the setup portion
can't benefit from having multiple CPUs at its disposal. The solution phase, on the
other hand, will often be highly parallel.

Amdahl's Law looks at how much of the program can be run in parallel and how
much of the program must be run using only a single processor. For an example,
let's say we have an application that executes in 100 minutes, and it could run in
parallel for 95 of the 100 minutes. Once the ratio of parallel to serial time is estab-
lished, it puts an upper bound on the possible speedup for this application using
more processors. In this example, assume that we used so many processors that
the parallel portion of the code executed in the blink of an eye. Because of the
serial portion of the code, the overall runtime would be five minutes (plus a blink
of an eye). So by purchasing an infinite number of processors, we have improved
the performance of the application by a factor of 20. Figure 12-1 shows a graph of
speedup versus number of processors. We see that there is a diminishing benefit
to adding more processors, as the serial portion of the code becomes the domi-
nant factor in execution time. When Amdahl's Law was first discussed, it seemed
to show that large-scale parallel processors were pretty pointless. Surveys of exist-
ing code put the percentage of the code that could run in parallel for typical appli-
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cations anywhere from 60%~95%. Beyond eight or so processors, there was not
much point. (How could you argue with a law!)*

While Amdahl's Law is not wrong, there were two flawed assumptions made when
it was used to conclude that massive parallelism is pointless:

• Because parallel processors were not available, programmers never bothered
to try to make their code more parallel. As these systems became available,
much effort went into rethinking how applications performed computations to
maximize the computations that could be done in parallel.

• Often when you doubled the size of your problem, the serial portion took
twice as much time, and the parallel portion took four or eight times longer.
This disparity in the relative increase in time meant that the application spent
more time (as a percentage) in the parallel portion of the application. As the
memory and processor capability increased, scientists started solving larger
problems. So by making a problem larger, a 95% parallel problem became a
99% parallel, and then a 99-9% parallel problem. These were not "violations"
of Amdahl's Law. In fact, Amdahl's Law predicted that the last case could run
up to 1000 times faster on a sufficiently large parallel processor.

Given the fact that potential speedup is so often affected by problem size, there
are new "laws" that have been proposed that capture this effect. These laws are
called Gustafson's Law and Ni's Law. Gustafson's Law addresses how the increas-
ing sizes of a program affected its scalability. Ni's Law summarizes the interaction

* I think there is a song about this, "I fought Amdahl's Law and the law won." Or something like that.
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between increasing problem size and the ability to execute the program in paral-
lel.

There also have been advances such as data-flow analysis in compilers that make
it possible to detect and extract parallelism from code that is difficult to find by
examining the code manually.

More Bad News
Even though we have applications that could spend 99-9% or more of their time in
parallel, there are still significant problems that can limit the overall speedup:

• The need to access globally shared information or transfer information from
one processor to another

• Difficulty dividing the parallel computation evenly between so many proces-
sors

Often, running a program on multiple processors requires overhead that would
not be necessary if there were only one processor. Programs usually have to be
structured specifically for parallelism, so that there is enough to do to keep multi-
ple processors busy without spending an inordinate amount of time coordinating
or passing information between them. The job of splitting out the parallel parts for
execution on multiple CPUs is called problem decomposition.

An application may be parallelized with a particular architecture in mind. For
instance, it may be a massively parallel machine containing thousands of small
processors, a traditional multiprocessor with four (or so) CPUs, or a network of
workstations. In many cases, the effort spent parallelizing an application for one
type of machine is transferable to another. The difference is often the granularity
of the decomposed parts: the amount of work each processor does before it com-
pletes, communicates, or goes back to the well for more.

Another problem is communication. At some point, these processors must do
something together or you might just as well use a room full of unconnected video
games to do your computation. This generally requires some form of interproces-
sor communication. This communication is also an overhead that would not be
necessary if the problem were run on a single processor. So, even during the par-
allel portions of the code, there are overhead factors that limit speedup. Generally,
as the number of processors increases, the relative impact of the overhead also
increases. This is another version of the law of diminishing returns with increasing
processors.
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Interconnect Technology
There is an interesting correspondence between high performance networking and
high performance computing. In some sense, all the parallel processors we have
been talking about so far are variations on the idea of "network of workstations."
Most popular parallel processors are based on commodity RISC processors con-
nected together to solve large problems collectively. Interestingly, there are many
technologies that high performance parallel processors and high-end network
equipment share. There are examples of a technology that was developed with an
eye to network equipment that was eventually used to develop a parallel proces-
sor, and vice versa.

Fundamentally, processors must communicate with each other while working on a
large common problem. Sometimes this communication is through shared memory
and sometimes it is a message from one CPU to another. For multiple CPUs and
memories to communicate, there must be some form of interconnect. In a sense it
does not make much difference whether we connect CPUs to memory as in Figure
12-2, or connect nodes (each with a CPU and memory) to one another as in Figure
12-3.
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Figure 12-3: Connecting nodes to one another

One can view the interconnect as a network connecting all the entities that make
up the parallel processing system. There are a number of different interconnection
topologies, including the following:

• Bus architecture

• Crossbar

• Pipelined multistep communications

• Multistage interconnection network

• Mesh and toroid connections

• Hypercubes

• Irregular topologies

Each of these has advantages and disadvantages in terms of latency, bandwidth,
scalability, and ease of manufacture. We discuss each in turn.

Bus architecture

We have already discussed the bus architecture. It's simple to build and allows
easy expansion. The bus architecture is essentially a broadcast interconnect
because every component that is connected to the bus can watch (or snoop) every
operation that occurs on the bus. This makes it relatively straightforward to imple-
ment cache coherency across the bus. The primary limitation of the bus architec-
ture is its ability to scale as more processors are added.

The bus architecture is similar to Ethernet in network technology. Ethernet is a
broadcast technology; all systems connected to the network can "snoop" on all
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data that is being transferred across the network. Ethernet is inexpensive and
works very well, but does not scale well to large amounts of traffic.

Crossbar

We have also discussed the crossbar interconnect. Like a network switch, the
crossbar provides multiple independent paths from the processors to the memory.
Generally, it is possible to push more data through a crossbar because of the mul-
tiple paths. However, some form of broadcast capability is needed to implement
cache coherency. On a crossbar, the cache coherency requests can either be
copied to all of the ports of the crossbar or there can be a separate bus for it.

Crossbars can scale better than bus-based systems in the area of data transfer rates.
However, they are more expensive to build and they become quite costly as the
number of processors is increased.

Neither the bus nor crossbar can scale sufficiently to support thousands of proces-
sors, so we must turn to more exotic interconnection networks to support these
extremely large systems.

Pipelined multistep communications

As we move to a more scalable interconnect, we generally lose the ability to
directly connect to all of the memory of the system. There may be several steps in
the path from source to destination. As we will later see in the mesh architecture,
there can be many (20-50) steps that messages must take on the trip from source
to destination.

At each step, the message encounters a piece of hardware that is called a router.
The purpose of a router is to take an incoming message and forward it out the
appropriate link towards its destination. A router can be hardware or some combi-
nation of hardware and software, as shown in Figure 12-4. If we had to wait for a
complete message at every step, this would significantly slow the communication
capability. Also, we would need enough memory at each router to store several
messages.

To minimize the latency of a message crossing an interconnection network, in
most of the current interconnects the message transfer is pipelined at each stage.
Let's look at an example of the source sending a request to the destination. As the
message is sent to Router A, the first two bits of the message select the second
output port of Router A. These bits are stripped off, and the rest of the message is
sent out the second output port. As the message arrives at Router B, the next two
bits of the message are stripped off, and select the third output port of the router.
At Router C, the next two bits of the message select the fourth output port. In each
router, two bits are stripped off and the rest of the bits of the message are
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delivered to the destination. In this example, the first six bits of the message
would be "011011" to select the second (01), third (10), and fourth (11) router
ports for the successive routers. Using this approach, there is very little latency
added by the extra stage.* This approach dynamically establishes a "temporary
connection" between the nodes. When the data transfer is finished, the resources
used by the connection are available for other communications.

Multistage interconnection network

A multistage interconnection network (MIN) is an interconnect that can scale
beyond a bus or a crossbar. A MIN is essentially a network of small crossbars. In
Figure 12-5, eight four-way crossbars are linked to create a 32-way crossbar. This
has an advantage in that it is less expensive to build than a 32-way crossbar with
dedicated connections between all pairs of nodes. However, there may be some
contention if Node 0 on the left wants to communicate with Node 4 on the right at
the exact same time that Node 1 on the left wants to communicate with Node 7 on
the right. On a crossbar, these communications could occur simultaneously. How-
ever, in a crossbar, if both Nodes 1 and 3 on the left wanted to communicate with
Node 5 on the right, there would be contention.

A single 4x4 crossbar allows four nodes to communicate with one step. A MIN
consisting of eight 4x4 crossbars connects 32 nodes at the cost of one additional
step. However, if the communications are pipelined, the negative impact of the
extra step can be minimized.

* Interestingly, high performance network switching equipment uses a similar approach. Because the
destination addresses are in the beginning of network packets, once a switch has received the first part
of a packet, it quickly determines its destination and begins sending the data to the destination even
before the rest of the data has been received. The primary difference in a network switch is that it
doesn't strip off the header bits when it passes the data on.
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Mesh and toroid connections

A mesh is easy to visualize: it looks like a window screen extending in two or
three dimensions. Each node has four or six directly connected Cartesian neigh-
bors, depending on whether the machine is two-dimensional or three-dimensional.
To move data from Node A to Node B, you map a Cartesian (X,Y) route through
the mesh as shown in Figure 12-6. Similar to the MIN, the first bits of the message
are used at each router to determine whether the message is routed north, south,
east, or west. Then the bits are stripped off, and the rest of the message continues
on.

You can visualize this process as a worm working its way through the mesh, turn-
ing left, turning right, and going straight. As the head of the "worm" moves
through the mesh, all the data simultaneously trails right behind. Like the MIN, the
message establishes the connection and uses the connection in a pipelined fash-
ion. This technique of pipelining the data while the connection is being estab-
lished was called wormhole routing by its inventor, William Dally of MIT.

Prior to wormhole routing, the mesh topology was not very popular because of
the number of hops that were necessary on the average. If a two-dimensional
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mesh were constructed to connect 256 processors, the worst-case number of hops
required for two processors (upper-left to lower-right) to communicate would be
30. However, with wormhole routing, each hop only required 1-2 extra bits of
time.

A variation on the mesh topology is the toroid topology. Figure 12-7 shows a two-
dimensional toroid interconnect. A toroid adds a "wrap-around" link from the far
left node to the far right node. This is done in each dimension. The advantage of
this approach is that it reduces the worst-case number of hops by 50%. There are
two ways this can happen. If the loops are bidirectional, the message can be sent
in the direction that yields the shortest route. If loops are uni-directional, toroids
still maintain an advantage when you consider the fact that most often we see two
messages exchanged between a pair of processors. In our 256-processor computer,
if we are sending from the upper left to lower right, it still takes 30 steps. How-
ever, the return message takes the looped links back and arrives in two steps. So
the total hop count for our request and its reply is 32. But because we have
moved two messages, the average hop count per message is 16.

Three-dimensional meshes and toroids have a shorter worst-case hop count than
their two-dimensional versions. However, the two-dimensional interconnects are
easier to build, and wormhole routing makes the number of hops less of a nega-
tive factor.
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Hypercubes

In the days before wormhole routing, the number of hops a message took from its
source to its destination were significant. Each message had to pass completely
across a hop to the next node before it could begin moving across the next hop.
In this environment, the goal is to find an interconnect that minimizes the number
of hops and is still reasonably easy to build. Figure 12-8 shows a number of differ-
ent interconnection topologies that can connect four nodes.

A good compromise is to arrange the processors into an n-dimensional cube. For
instance, with four processors, you could build a 2-cube (the number of nodes, N,
is 2 ). A 3-cube would be a volume composed of eight processors. The longest
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path from any node to any other is n hops—two in the case of a 2-cube. This
turns out to be a reasonable number of connections, and it scales well. Higher-
dimensional cubes are formed by joining two lower-dimensional cubes together.
For instance, you can build a 4-cube by combining two 3-cubes as shown in Fig-
ure 12-9.

If you scale it to 1024 processors (this is a 10 cube), the longest path between any
two nodes is ten hops, and the total number of connections is 2 = 5120. To
compare, if we build a two-dimensional mesh with 1024 nodes, the longest path
between any two nodes is 64 hops.

Irregular topologies

As our ability to build fast interconnect hardware improves, we can also have
enough power to support irregular topologies. Sun Microsystems had a research
project called the S3MP that supported an irregular topology. The idea is that you
have computer building blocks with an S3MP connection. You could connect the
systems in a simple ring or star topology for light-duty applications. If you wanted
more bandwidth and better latency, you could add more routers and more links.
The S3MP system could make use of these additional links and get better band-
width and latency. At some point you would just buy a bunch of CPU boxes, place
them in a rack, add the maximum number of links, and call it a scalable parallel
processing system.

While this architecture may seem a bit futuristic, it's probably the general direction
in which systems will go. Users can purchase compute power and interconnect
bandwidth as they go. Also, if the nodes of a scalable parallel processing system
were the same hardware as a workstation, this would be a cost-effective and, thus,
very appealing solution.
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Summary of interconnection topologies

In parallel processing (and networking), we have lots of nodes that all want to
communicate with each other. A wide range of techniques is used to connect
these nodes. Each approach has its strengths and weaknesses. One of the funda-
mental choices a parallel processing company makes is which interconnect to use.
Interestingly, this effect is so significant that sometimes a computer is named after
its interconnect. For example, Cray's first scalable parallel processor was named
the "T3D" for its three-dimensional toroid interconnect. The BBN-GP1000 was
called the "Butterfly" because when its interconnect was drawn on paper, it looked
somewhat like a butterfly.* And the nCUBE company is so named because it uses
the n-cube interconnect. Before that a company called Hypercube marketed a
computer called the Hypercube that used a hypercube interconnect.

In addition to categorizing parallel processors by their interconnect, we can cate-
gorize them by the way they execute instructions and access data. In the next sec-
tion, we examine a taxonomy that categorizes the capabilities of these computers.

A Taxonomy of Parallel Architectures
We need some simple terminology that refers to a class of parallel processing sys-
tems. Michael Flynn developed the taxonomy as shown in Figure 12-10. This tax-
onomy is based on the number of simultaneous independent streams of
instructions and data. When looking at a parallel architecture, you could either
identify a single instruction (SI) stream or multiple instruction (MI) streams. For
data you could find either a single data (SD) stream or multiple data (MD) streams
coming from memory.

There are some grey areas in Flynn's taxonomy, but it has persisted as a way of
broadly categorizing parallel processing architectures. The classic workstation is
clearly a single instruction and single data (SISD) architecture. Array processors
use a matrix of processors, all simultaneously performing the same instruction on
their own local data (SIMD).t A network of workstations (NOW) communicating
through message passing is clearly a MIMD processor.

There is a debate as to whether or not a uniform memory parallel processor such
as those described in Chapter 10, Shared-Memory Multiprocessors, are MISD or
MIMD computers.

* Kind of like one of those "ink-blot" tests.

f Here's an illustration: the largest SIMD machine in the world runs every weekday around noon, when
the aerobics and exercise programs come on the air. The host calls out the instructions: "left, and
down, and up, then r ight . . . , " while thousands follow along in lock step.
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One faction in the debate counts each connection between a CPU and its cache as
an independent memory stream, and, therefore, it is clearly a MIMD architecture.
The other faction sees that there is a single memory, and because of the cache
coherency the data from the caches, in one sense, are coming to and from that
single memory; hence, these systems exhibit the MISD architecture. If there were
no coherency between the caches, it would probably be easier to agree that these
systems are MIMD architectures. Figure 12-11 shows both sides of the argument.

There are four types of parallel architectures you are likely to encounter:

• MIMD (or MISD) with shared uniform memory
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• MIMD with shared nonuniform memory

• MIMD with distributed memory

• SIMD with distributed memory

In the next sections, we look at some of the existing scalable parallel processing
systems. In the next chapter, we begin to examine how they are programmed.

A Survey of Parallel Architectures
There is always a conflict between uniform-memory multiprocessors and scalable
parallel processors.* Since scalable processors are harder to build, harder to pro-
gram, and usually more expensive, they must provide significantly more power
than the best uniform-memory multiprocessor. There are quite a few examples of
scalable processor companies that went out of business because a new 16-proces-
sor, uniform-memory system was faster and cheaper than their old 64-processor
scalable system.

Looking at this fact, one might conclude that the best idea is just to wait for a few
years rather than learn to use scalable systems. There are two reasons that this is
typically not done:

• Sometimes the problem is actually important and you need the answer now,
not two years from now.

• The newest scalable systems are made up of multiple multiprocessor uniform
memory systems. Once the techniques for scalable computing are mastered,
we can throw very large numbers of processors at the problem for a real
increase in speed.

Another potential trend that might occur is that the competition in the single pro-
cessor market will fall off due to the extremely high cost of developing new pro-
cessors. At some point, it may take three or four years to double single-processor
performance rather than the 18 months it has taken for many years.t If the pace of
innovation in single-processor systems slows, there will certainly be renewed inter-
est in scalable computing systems.

* A rough working definition of how many processors it takes to qualify as "scalable" would be: A
scalable parallel-processing system is one that supports significantly more processors than a bus- or
crossbar-based system. There isn't a fixed number of processors that qualifies as scalable. A processor
count considered "scalable" five years ago might not be considered scalable today because of improve-
ments in bus and crossbar technology.
t I am not predicting this will happen. The end of this performance trend (Moore's Law) has been pre-
dicted incorrectly too many times over the course of history. But it might actually happen some day.
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The Top 500 Report
An excellent resource that examines the relative success of particular high perfor-
mance computer architectures is the "Top 500 Report." This report lists the 500
most powerful computer sites in the world. One URL for this report is
http://www.netlib.org/benchmark/top500.html, and there are mirror sites in Europe
and Japan. By looking at this report, one gets some indication of the relative suc-
cess of a particular architecture in the high performance computing field. For
example, this report contains the following information:

• In 1997, the fastest computer in the world was a distributed-memory MIMD
system with 9152 Pentium CPUs installed at Sandia National Labs.

• In 1997, the second fastest computer in the world was a Cray T3E shared-
memory MIMD system with 1248 DEC Alpha processors.

• In 1993, of the 500 fastest computers, none was a pure SMP multiprocessor,
344 were parallel/vector supercomputers, and 156 were scalable parallel pro-
cessors.

• In 1997, of the fastest 500 computers, 66 were pure SMP multiprocessors, 71
were parallel/vector supercomputers, and 362 were scalable parallel proces-
sors.

It's fascinating to see the trends in the data. As of this writing, it is clear that scal-
able systems and scalable systems with multi-CPU nodes are becoming the domi-
nant architecture at the top-level high performance computing sites, as shown in
Figure 12-12. Now we will look at some parallel processing systems and their
architecture.

Shared Uniform Memory MIMD
These systems were described in Chapter 10 and Chapter 11. They are popular
because of their ease of use and good price/performance. Table 12-1 summarizes
some of the features of the systems available as of this writing.

Table 12-1: Features of Shared Uniform Memory Systems

System Processor

MIPS-R10000
Alpha-21164
UltraSparc-2
UltraSparc-2
PA-8000
Cray Vector

Max. CPUs

36
14
30
64
16
32

Memory Bandwidth

1.2 GB/sec (bus)
1.8 GB/sec (bus)
2.5 GB/sec (bus)
13 GB/sec (crossbar)
15 GB/sec (crossbar)
800GB/sec (crossbar)



Shared Non-Uniform Memory MIMD Systems 261

The pricing of these systems is a combination of the memory bandwidth and the
aggregate performance of the processors.

Shared Non-Uniform Memory MIMD
Systems
Given the success of the shared-memory programming model, it's not surprising
that many vendors of scalable systems maintain the shared memory paradigm.
However, to go beyond the crossbar, something must give. What is typically sacri-
ficed is the uniform memory access found in the bus- and crossbar-based systems.
The resulting system is called a Non-Uniform Memory Access (NUMA) system. In a
NUMA system, the processors have direct access to all the memory located any-
where in the system. However, some memory may appear to be slower than other
memory. A simple view of this is shown in Figure 12-13-

Different areas of memory (typically determined by the memory address) have dif-
ferent sharing and performance semantics. The global shared memory may or not
be cache-coherent across processors.

On these types of systems, to achieve peak performance, one must use local mem-
ory whenever practical and only use global (or remote) memory sparingly. While
this diagram shows the programming model, it's not the way most systems are
implemented. Usually you have a set of nodes that each contain one or more
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processors and some memory. These nodes are connected using one of the inter-
connects described in Figure 12-14.

In this example, we have two CPUs and memory on each node. References to the
memory within the node are satisfied quickly without using the interconnect. Ref-
erences to the memories on the other nodes must be sent across the interconnect.
These remote references take longer than the local references; this is the "nonuni-
form" part of the NUMA architecture.

Another interesting trend in these types of systems is how many processors are
present in a node. Early scalable systems had one processor per node. Today they
have up to 16 processors per node. Each node acts as a cache-coherent uniform
memory multiprocessor with access to the slower remote memories.
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Cache Coherence
As mentioned before, some scalable shared-memory systems implement a cache
coherency protocol across the interconnect, and some do not. The advantage of
cache coherence is that programmers, operating systems, and applications are
used to working with cache-coherent systems so there are fewer surprises (other
than the fact that some memory is slower). The term that the industry uses to refer
to these systems is cache-coherent nonuniform memory access (ccNUMA).

The primary vendors of this type of system are the companies who are successful
in the symmetric multiprocessing systems. Table 12-2 lists companies that have
scalable cache-coherent systems.

Table 12-2: Scalable Cache-Coherent Systems

The Kendall Square company marketed a cache-coherent shared-memory system
using a proprietary processor called the KSR-1, which could, theoretically, scale to
1088 nodes.

The belief that ccNUMA can provide scalable performance for business applica-
tions is one of the factors fueling the investment in this approach.

ccNUMA Implementation
Providing the illusion of a simple integrated memory system to a distributed-menv
ory computer is a challenging problem, Uniform shared-memory multiprocessors
have the crossbar or bus that makes cache coherency much simpler. Every cache
must "see" every possible memory operation to determine that the operation is
being done on a location that it currently has in its cache. On a bus, since all
caches are connected to the same bus, they simply "snoop" (or continuously mon-
itor) the bus and can see every memory transaction regardless of which processor
issued the memory operation. A crossbar is somewhat more difficult. A crossbar
must broadcast its cache coherency operations to all the ports of the crossbar to
notify all of the caches. On a scalable system with 64 or more separate memories
and 128 processor caches, broadcasting every cache operation to all these compo-
nents is not practical.

An alternative to snooping or broadcast is directory-based caching. In this
approach, processors can find out who else is sharing access to the same data and
perform cache coherency operations only with those processors. One form of
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directory-based cache coherency is known as scalable coherent interface (SCI),
defined in IEEE standards project (PI596). SCI-based systems track data ownership
with a doubly linked list, stringing together each node holding a copy of a particu-
lar piece of data. A processor wishing to modify data has to coordinate with all
other processors in the list. This means traversing the directory list and possibly
adding or deleting itself. Once the data is in the caches, it's managed by the
caches. When a processor makes a request for data that is already out in some
other processor's cache, the memory subsystem replies with a pointer to the head
of a list of processors, rather than the requested data. When this list is received,
the processor that is trying to access the data communicates with all the processors
that have the data in cache to obtain or get exclusive access to it. The HP Exem-
plar, Sequent NUMAQ-2000, and Data General AV-20000 systems use variants of
the SCI caching mechanism. The HP Exemplar uses multiple SCI rings to enhance
its overall bandwidth.

There are other schemes, too. The KSR-1 implemented a technique called
ALLCACHE. With ALLCACHE, instead of having local caches and a global memory,
all data in the system is stored in one of the nodes in the cache. If a processor
needed data that wasn't in its cache, using a directory system, it retrieves the data
from the other cache. This data stays in the current processor cache until it's
needed by another processor. Instead of data moving from memory to cache and
then back to memory, it simply migrates from one cache to another across the
machine. The term used to describe this general approach to distributed cache-
coherent memory is called COMA, or cache-only memory architecture.

Shared Memory Without Cache Coherency
It's possible to program a scalable shared-memory system that doesn't support
cache coherency. If cache coherency isn't required, the memory architecture can
be much simpler and the interconnection bandwidth can be spent moving data
rather than exchanging cache messages.* However, these systems can be more dif-
ficult to program because the programmer must be more aware of when multiple
processors may be accessing the same remote memory simultaneously. Also, it's
more difficult to support the needs for business applications without cache
coherency.

The current system that implements noncoherent shared memory is the Cray T3E
system. The Cray T3E supports up to 2048 processors. Each node consists of two
DEC Alpha 21164 processors and a local memory. The nodes are connected using
a three-dimensional toroid interconnect. The overall bandwidth of the system is on

* It's not like the authors have any personal opinions about this.
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the order of 122 GB/sec and the interconnect supports extremely low-latency
loads and stores from remote memory.

Another interesting system that supported scalable shared memory without cache
coherency was the BBN TC-2000. Originally, this system could expand to 256
Motorola MC88100 processors with one processor per node card. A later version
with two Motorola 604 processors per card could expand to 512 processors.
Remote memory was accessed through a multistage interconnection network
(MIN).

Distributee-Memory MIMD Architecture
At some point, the programmer has so clearly decomposed the problem that all
that is necessary is a whole lot of processors with some basic communication abil-
ity. The program is fully aware when it needs to communicate with other proces-
sors. For these types of applications, convienences like shared cache-coherent
memory are not necessary.

These applications can execute on the distributed-memory MIMD computers.
There are a number of programming environments that work very effectively on
these computers. High Performance FORTRAN (HPF), Parallel Virtual Machine
(PVM), and Message Passing Interface (MPI) are all examples of popular program-
ming environments for these systems. These programming environments are dis-
cussed in Chapter 13, Language Support for Performance.

Interestingly, the techniques used in programming these computers can also
improve performance on the other architectures as well. Even though communica-
tion between threads is simpler on the shared-memory parallel architectures, it can
have a significant performance impact if it's done too often. By decomposing an
application on a distributed-memory MIMD system, the developer identifies (and
tries to minimize) the communication that must be performed as part of the appli-
cation. Programs ported to HPF, PVM, or MPI often run very well on shared-mem-
ory architectures.

Networks of Workstations
The most basic instance of a distributed-memory MIMD machine is a network of
workstations (NOW).* This approach is popular because is doesn't cost a lot to

* An interesting application that pushed the concept of NOW to the limits was the breaking of a 56-bit
RC5 encryption key (www.distributed.net). This effort harnessed the spare cycles of home, office, and
business computers all over the world and is possibly the largest single computational problem ever
solved in the history of computing outside the United States Federal government. The computation
lasted over 200 days and evaluated 34 quadrillion potential keys. The average performance of the com-
putation was equivalent to over 16,000 Pentium Pro 200 processors.
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enter the high performance computing market. It's possible to utilize the idle
cycles of "workstations late at night or to stack 64 vintage computers up on shelves
connected by a network. Generally it's harder to get peak performance from these
systems because of the slow communications, but because the hardware cost is so
low, the extra programming effort may be warranted for some organizations.

Tightly Coupled Distributed-Memory Processors
A tightly coupled distributed-memory MIMD system is the combination of a high
performance interconnect with a large number of processing nodes. It is almost
always easier to simply port and support a message-passing subroutine library
compared to supporting shared memory in hardware.

Much as the proponents of noncached shared memory argue that caching is an
unnecessary luxury, the message-passing proponents would argue that shared
memory is an unnecessary luxury.* The most powerful computer in the world as
of the writing of this book is a distributed-memory system manufactured by Intel.
It uses a two-dimensional mesh interconnect and contains 9152 Pentium proces-
sors. It's installed at Sandia National Labs and performs some of the largest physi-
cal simulations on the planet. It was installed as part of the Advanced Scientific
Computing Initiative (ASCI) effort. It is capable of over a trillion floating-point
operations per second.

Although Intel is not currently marketing their high performance computers, for
many years they pioneered the deployment of fast wormhole-routed two-dimen-
sional meshes in their Paragon and Delta computing systems.

The IBM SP series of scalable computers is very popular for a wide variety of high
performance computing applications. One unique approach of the IBM SP series is
the fact that it relies on workstation hardware components. The SP uses a multi-
stage interconnection network. There is a card that can be installed in any IBM
RS-6000 computer that attaches the computer to the interconnect. This way IBM
can improve the performance of the processors and memory independent of the
interconnect performance. Over the years, IBM has continuously installed higher
performance processors in their systems, going from "thin" nodes to "wide"
nodes, and now even adding multiprocessor "high" nodes to the SP family.

One of the shortcomings of many scalable computing systems is that it takes too
long to deploy a newer, faster version of a processor because the nodes need to
be completely reengineered from scratch each time. IBM's approach allows them
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to take the latest and greatest processors off the shelf and immediately improve
the performance (and prices) of an IBM SP system.

The Connection Machine company developed the first widely used SIMD machine
in the CM-2. The follow-on product was a distributed-memory MIMD machine
called the CM-5. The CM-5 nodes used SPARC and Fujitsu vector processors. It
used an interconnection network called a "Fat-Tree." Users programmed it in a
data-parallel fashion much like SIMD systems. The CM-5 had a unique synchro-
nization network in addition to its data network that provided low-latency syn-
chronization capabilities. The CM-5 was capable of supporting 16,384 processors.

nCUBE entered high performance computing with several products based on the
hypercube interconnect. More recently with the nCUBE3 computer systems they
are focusing on the on-demand, media-delivery, high performance database and
data-mining markets. nCUBE systems are based on their own proprietary CPU
which is optimized for data-transfer operations over their interconnect.

One way of building a low-cost high performance system is to use the intercon-
nect technology from Myricom, Inc. Myricom offers the first example of a high-
bandwidth interconnect that is available separately. A user can assemble his own
MPP system using the Myrinet interconnect and expansion cards for PCI or SBUS
(Sun Microsystems). The network implements an irregular interconnection topol-

ogy-

Single Instruction, Multiple Data
A SIMD (pronounced symdee) machine is a collection of processors, usually thou-
sands, that all perform the same operation at exactly the same time as every other,
yet on different data. Each processor has a little bit of local memory and some
communications paths to its neighbors. They don't share any memory, so if you
want more than one processor to see the same value of a particular variable, you
have to transfer it across a communications path.

The array of small processors is connected to a frontend that broadcasts each
instruction to all the processors. The frontend sits on a network like any other
machine. You log into it to get access to the parallel machine. Typically the fron-
tend itself is responsible for the nonparallel part of the computations. The frontend
can exchange data with the array of processors. Other peripherals, such as disk
drives, input devices, or data switches, may hang off the frontend or the array of
processors as shown in Figure 12-15. At first glance, this seems like a peculiar
idea. But think about a do-loop. If each iteration is independent of the rest, then
you are free to execute them all at the same time. Furthermore, the math for each
iteration is the same (or nearly so). The only difference is that you are working
with a different value of index variable: I=n in one case, and I=m in another:
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Same instructions, different data—this matches the concept of a SIMD machine
very well. Iterations can be spread across the available processors and executed all
at once. If there are more iterations than processors, they can be doubled up so
that each processor handles several calculations. Communications between proces-
sors can be done simultaneously as well. Each cell can generally communicate
with its neighbor to the north, south, east, and west in lock step with the rest.

Keeping communications to a minimum is key. If you are adding a vector A to a
vector B, for example, and corresponding elements exist in each processor's local
memory, then the addition is very fast. That is, if A ( I ) lives on the same proces-
sor as B { I ) , and the loop says A ( I ) = A ( I ) + B (I}, there won't be any interpro-
cessor transfer of data.

However, if the loop says something else, for example, A ( I ) = A ( I ) + B(I+1),
then each processor has to send its value of B (1+1) to the neighbor performing
the addition. The communications take place in parallel, so they aren't show-stop-
ping, but they have an effect. You can see that the layout of data among the pro-
cessors matters. In the first case, no data needed to be transferred. In the second,
all the B( I+ l ) ' s did.

Other constructs contain greater potential communications overhead. These con-
structs cause problems in other architectures as well: strided references, permuta-
tions, etc. These require communications between processors; there is no way to
lay out the data so that only local memory is used. With a permutation, for
instance, a node may need to talk to its next-door neighbor or one all the way
across the machine. Generally, there isn't a regular pattern to the communications.
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Reductions, such as MAX, MIN, dot products, etc., need special treatment on SIMD
machines. Each requires that all processors cooperate in coalescing a single value
from many. For instance, if you are looking for the largest value A(N) from A,
eventually all values A (I ) have to be compared. Handcrafting such operations is
possible, but SIMD machines generally come with very efficiently implemented
reductions, transpose functions, matrix multiplies, etc.

When all the processors are executing the same instruction simultaneously, it
would seem that IF statements would be difficult. These operations are accom-
plished by allowing processors to ignore certain instructions based on a flag stored
in each processor. For example, look at the following code:

DO 1=1,N
IF ( A(I) .NE. 0 ) THEN
B(I) = 1.0 / A(I>

ELSE
B(I) = 0.0

ENDIF
ENDDO

To keep the example simple, we assume that there are N processors, and each
processor has the appropriate A (I ) and B {I) values stored locally. This loop
takes three instructions. First, each processor tests its value for A ( I ) and sets its
flag value accordingly. The next instruction is "If your flag is TRUE, divide 1.0 by
A ( I ) and store the result in B ( I ) . " The next instruction is "If your flag is FALSE,
set B ( I ) to 0." This way, all the processors are executing the same instruction,
and the flag is used to cause a subset of the processors to ignore the instructions.

While this is a clever approach that allows SIMD systems to process IF statements,
it reduces the efficiency of SIMD systems. SIMD systems effectively execute both
sides of every branch. This can be a significant problem if one branch of the IF is
seldom executed, but takes a long time when it is executed. There could be a long
code segment with one processor executing the instructions and the other 16,000
or so processors ignoring the instructions.

Another disadvantage of the SIMD approach is the fact that they don't use com-
modity RISC processors. Because of this, each generation of processor must be
engineered by the system manufacturer. It's doubtful that there is a sufficiently
large market to support enough research effort to keep SIMD systems competitive
with other forms of scalable computing.

Two companies have developed SIMD computers. Connection Machine, Inc.
developed the CM-2. The CM-2 supported up to 65,535 processing elements and
was programmed in a SIMD fashion. Interestingly, while the CM-2 was pro-
grammed as a two-dimensional mesh, its interconnect was actually an hypercube.
MasPar, Inc. also marketed a SIMD computer for some time. The MasPar could
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support up to 16,384 processors, each of which was somewhat more powerful
than those in the CM-2.

The individual processors of SIMD machines are not particularly fast or powerful,
but there are usually thousands of them, which makes the whole machine, taken
together, quite powerful. Interestingly, while the SIMD computers are not the most
popular given the current high performance computing market, they are in many
ways the most scalable systems. Because they never have to synchronize across
processors (synchronization is implicit), they eliminate a great deal of communica-
tion required on the other architectures.

Closing Notes
In many ways, this chapter should raise more questions than provide answers.
Over the short 15-year history of scalable computing systems there have been
many instances of wonderful technology. Unfortunately, there has never been
enough demand in the marketplace for 500-processor systems to support the
research needed to develop widely available, low-cost, high performance, easy-to-
use products.

For many years, the fact that scalable computing was viewed as strategic by the
federal government kept funds flowing into the area. However, as the political cli-
mate has changed, the federal government has been less willing to fund compa-
nies who were not a success in the general marketplace. This has caused an
unfortunate shakeout and the loss of a number of promising technologies.

However, after a lull in activity, the demand for scalable computing is again on the
rise, this time fueled by the needs of business and the ever-increasing demand for
the ability to deliver online information across high performance networks. The
continued development of low-cost scalable systems means that high performance
computing users will have even better choices in the future.

It's difficult to predict exactly which architectures and vendors will be successful.
It's not always the best technology that wins in the end. The successful high per-
formance computing vendors of the future will have developed a product that sat-
isfies both the needs of the general-purpose computing environment and the high
performance computing environment. That way, the research and development
investments benefit both groups of users.
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Exercises
1. Go to the Top 500 site (http://www.netlib.org/benchmark/top500.html), and

look at the most current data. Are there any new trends or continuations of
the existing trends?



Language Support
for Performance

This chapter discusses the programming languages that are used on the largest
parallel processing systems. Usually when you are faced with porting and tuning
your code on a new scalable architecture architecture, you have to sit back and
think about your application for a moment. Sometimes fundamental changes to
your algorithm are needed before you can begin to work on the new architecture.
Don't be surprised if you need to rewrite all or portions of the application in one
of these languages. Modifications on one system may not give a performance ben-
efit on another system. But if the application is important enough, it's worth the
effort to improve its performance.

In this chapter, we cover:

• FORTRAN 90

• HPF: High Performance FORTRAN

These languages are designed for use on high-end computing systems. We will fol-
low a simple program through each of these languages, using a simple finite-dif-
ference computation that roughly models heat flow. It's a classic problem that
contains a great deal of parallelism and is easily solved on a wide variety of paral-
lel architectures.

We introduce and discuss the concept of single program multiple data (SPMD) in
that we treat MIMD computers as SIMD computers. We write our applications as if
a large SIMD system were going to solve the problem. Instead of actually using a
SIMD system, the resulting application is compiled for a MIMD system. The
implicit synchronization of the SIMD systems is replaced by explicit synchroniza-
tion at runtime on the MIMD systems.

272
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Data-Parallel Problem: Heat Flow
A classic problem that explores scalable parallel processing is the heat flow prob-
lem. The physics behind this problem lie in partial differential equations.

We will start with a one-dimensional metal plate (also known as a rod), and move
to a two-dimensional plate in later examples. We start with a rod that is at zero
degrees Celsius. Then we place one end in 100 degree steam and the other end in
zero degree ice. We want to simulate how the heat flows from one end to another.
And the resulting temperatures along points on the metal rod after the temperature
has stabilized.

To do this we break the rod into 10 segments and track the temperature over time
for each segment. Intuitively, within a time step, the next temperature of a portion
of the plate is an average of the surrounding temperatures. Given fixed tempera-
tures at some points in the rod, the temperatures eventually converge to a steady
state after sufficient time steps. Figure 13-1 shows the setup at the beginning of the
simulation.
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Clearly, by Time step 101, the simulation has converged to two decimal places of
accuracy as the numbers have stopped changing. This should be the steady-state
approximation of the temperature at the center of each segment of the bar.

Now, at this point, astute readers are saying to themselves, "Um, don't look now,
but that loop has a flow dependency." You would also claim that this won't even
parallelize a little bit. It is so bad you can't even unroll the loop for a little instruc-
tion-level parallelism!

A person familiar with the theory of heat flow will also point out that the above
loop doesn't exactly implement the heat flow model. The problem is that the val-
ues on the right side of the assignment in the ROD loop are supposed to be from
the previous time step, and that the value on the left side is the next time step.
Because of the way the loop is written, the ROD(I-l) value is from the next time
step, as shown in Figure 13-2.

This can be solved using a technique called red-black, where we alternate
between two arrays. Figure 13-3 shows how the red-black version of the computa-
tion operates. This kills two birds with one stone! Now the mathematics is pre-
cisely correct, and there is no recurrence. Sounds like a real win-win situation.
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The only downside to this approach is that it takes twice the memory storage and
twice the memory bandwidth.* The modified code is as follows:

* There is another red-black approach that computes first the even elements and then the odd ele-
ments of the rod in two passes. This approach has no data dependencies within each pass. The ROD
array never has all the values from the same time step. Either the odd or even values are one time step
ahead of the other. It ends up with a stride of two and doubles the bandwidth but does not double the
memory storage required to solve the problem.
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The output for the modified program is:

Interestingly, the modified program takes longer to converge than the first version.
It converges at Time step 181 rather than 101. If you look at the first version,
because of the recurrence, the heat ended up flowing up faster from left to right
because the left element of each average was the next-time-step value. It may
seem nifty, but it's wrong.* Generally, in this problem, either approach converges
to the same eventual values within the limits of floating-point representation.

This heat flow problem is extremely simple, and in its red-black form, it's inher-
ently very parallel with very simple data interactions. It's a good model for a wide
range of problems where we are discretizing two-dimensional or three-dimen-
sional space and performing some simple simulations in that space.

* There are other algorithmic approaches to solving partial differential equations, such as the "fast mul-
tipole method" that accelerates convergence "legally." Don't assume that the brute force approach used
here is the only method to solve this particular problem. Programmers should always look for the best
available algorithm (parallel or not) before trying to scale up the "wrong" algorithm. For folks other
than computer scientists, time to solution is more important than linear speed-up.
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This problem can usually be scaled up by making a finer grid. Often, the benefit
of scalable processors is to allow a finer grid rather than a faster time to solution.
For example, you might be able to to a worldwide weather simulation using a
200-mile grid in four hours on one processor. Using 100 processors, you may be
able to do the simulation using a 20-mile grid in four hours with much more accu-
rate results. Or, using 400 processors, you can do the finer grid simulation in one
hour.

Explicitly Parallel Languages
As we've seen throughout this book, one of biggest tuning challenges is getting
the compiler to recognize that a particular code segment can be parallelized. This
is particularly true for numerical codes, where the potential payback is greatest.
Think about this: if you know that something is parallel, why should there be any
difficulty getting the compiler to recognize it? Why can't you just write it down,
and have the compiler say "Yes, this is to be done in parallel."

The problem is that the most commonly used languages don't offer any constructs
for expressing parallel computations. You are forced to express yourself in primi-
tive terms, as if you were a caveman with a grand thought but no vocabulary to
voice it. This is particularly true of FORTRAN and C. They do not support a notion
of parallel computations, which means that programmers must reduce calculations
to sequential steps. That sounds cumbersome, but most programmers do it so nat-
urally that they don't even realize how good they are at it.

For example, let's say we want to add two vectors, A and B, How would we do it?
We would probably write a little loop without a moment's thought:

This seems reasonable, but look what happened. We imposed an order on the cal-
culations! Wouldn't it be enough to say "C gets A plus B"? That would free the
compiler to add the vectors using any hardware at its disposal, using any method
it likes. This is what parallel languages are about. They seek to supply primitives
suitable for expressing parallel computations.

New parallel languages aren't being proposed as rapidly as they were in the
mid-1980s. Developers have realized that you can come up with a wonderful
scheme, but if it isn't compatible with FORTRAN or C, few people will care about
it. The reason is simple: there are billions of lines of C and FORTRAN code, but
only a few lines of Fizgibbet, or whatever it is you call your new parallel language.
Because of the predominance of C and FORTRAN, the most significant parallel
language activities today seek to extend those languages, thus protecting the 20 or
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30 years of investment in programs already written.* It is too tempting for the
developers of a new language to test their language on the eight-queens problem
and the game of life, get good results, then declare it ready for prime time and
begin waiting for the hordes of programmers converting to their particular lan-
guage.

FORTRAN 90
The previous American National Standards Institute (ANSI) FORTRAN standard
release, FORTRAN 77 (X3.9-1978), was written to promote portability of FORTRAN
programs between different platforms. It didn't invent new language components,
but instead incorporated good features that were already available in production
compilers. Unlike FORTRAN 77, FORTRAN 90 (ANSI X3-198-1992) brings new
extensions and features to the language. Some of these just bring FORTRAN up to
date with newer languages like C (dynamic memory allocation, scoping rules) and
C++ (generic function interfaces). But some of the new features are unique to
FORTRAN (array operations). Interestingly, while the FORTRAN 90 specification
was being developed, the dominant high performance computer architectures
were scalable SIMD systems such as the Connection Machine and shared-memory
vector-parallel processor systems from companies like Cray Research.

FORTRAN 90 does a surprisingly good job of meeting the needs of these very dif-
ferent architectures. Its features also map reasonably well onto the new shared
uniform memory multiprocessors. However, as we will see later, FORTRAN 90
alone is not yet sufficient to meet the needs of the scalable distributed and
nonuniform access memory systems that are becoming dominant at the high end
of computing.

The FORTRAN 90 extensions to FORTRAN 77 include:

• Array constructs

• Dynamic memory allocation and automatic variables

• Pointers

• New data types, structures

• New intrinsic functions, including many that operate on vectors or matrices

* One of the more significant efforts in the area of completely new languages is Streams and Iteration
in a Single Assignment Language (SISAL). It's a data flow language that can easily integrate FORTRAN
and C modules. The most interesting aspects of SISAL are the number of large computational codes that
were ported to SISAL and the fact that the SISAL proponents generally compared their performance to
the FORTRAN and C performance of the same applications.
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• New control structures, such as a WHERE statement

• Enhanced procedure interfaces

FORTRAN 90 Array Constructs
With FORTRAN 90 array constructs, you can specify whole arrays or array sections
as the participants in unary and binary operations. These constructs are a key fea-
ture for "unserializing" applications so that they are better suited to vector comput-
ers and parallel processors. For example, say you wish to add two vectors, A and
B. In FORTRAN 90, you can express this as a simple addition operation, rather
than a traditional loop. That is, you can write:

A = A + B

instead of the traditional FORTRAN 77 loop:

The code generated by the compiler on your workstation may not look any differ-
ent, but for some of the parallel machines available now and workstations just
around the corner, the difference are significant. The FORTRAN 90 version states
explicitly that the computations can be performed in any order, including all in
parallel at the same time.

One important effect of this is that if the FORTRAN 90 version experienced a float-
ing-point fault adding element 17, and you were to look at the memory in a
debugger, it would be perfectly legal for element 27 to be already computed.

You are not limited to one-dimensional arrays. For instance, the element-wise
addition of two two-dimensional arrays could be stated like this:*

Naturally, when you want to combine two arrays in an operation, their shapes
have to be compatible. Adding a seven-element vector to an eight-element vector
doesn't make sense. Neither would multiplying a 2x4 array by a 3X4 array. When

* Just in case you are wondering, A*B gives you an element-wise multiplication of array members-
not matrix multiplication. That is covered by a FORTRAN 90 intrinsic function.
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the two arrays have compatible shapes, relative to the operation being performed
upon them, we say they are in shape conformance, as in the following code:

DOUBLE PRECISION A(8), B(8)

A = A + B

Scalars are always considered to be in shape conformance with arrays (and other
scalars), In a binary operation with an array, a scalar is treated as an array of the
same size with a single element duplicated throughout.

Still, we are limited. When you reference a particular array, A, for example, you
reference the whole thing, from the first element to the last. You can imagine cases
where you might be interested in specifying a subset of an array. This could be
either a group of consecutive elements or something like "every eighth element"
(i.e., a non-unit stride through the array). Parts of arrays, possibly noncontiguous,
are called array sections.

FORTRAN 90 array sections can be specified by replacing traditional subscripts
with triplets of the form a:b:c, meaning "elements a through b, taken with an
increment of c." You can omit parts of the triplet, provided the meaning remains
clear. For example, a:b means "elements a through b;" a: means "elements from
a to the upper bound with an increment of 1." Remember that a triplet replaces a
single subscript, so an n-dimension array can have n triplets.

You can use triplets in expressions, again making sure that the parts of the expres-
sion are in conformance. Consider these statements:

The first statement above assigns the last 10 elements of Y to the 10th row of X.
The second statement expresses the same thing slightly differently. The lone ":"
tells the compiler that the whole range (1 through 10) is implied.

FORTRAN 90 Intrinsics
FORTRAN 90 extends the functionality of FORTRAN 77 intrinsics, and adds many
new ones as well, including some intrinsic subroutines. Most can be array-valued:
they can return arrays sections or scalars, depending on how they are invoked. For
example, here's a new, array-valued use of the SIN intrinsic:
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Each element of array A is replaced with its sine. FORTRAN 90 intrinsics work
with array sections too, as long as the variable receiving the result is in shape con-
formance with the one passed:

Other intrinsics, such as SQRT, LOG, etc., have been extended as well. Among the
new intrinsics are:

Reductions
FORTRAN 90 has vector reductions such as MAXVAL, MINVAL, and SUM. For
higher-order arrays (anything more than a vector) these functions can perform
a reduction along a particular dimension. Additionally, there is a DOT_PROD-
UCT function for the vectors.

Matrix manipulation
Intrinsics MATMUL and TRANSPOSE can manipulate whole matrices.

Constructing or reshaping arrays
RESHAPE allows you to create a new array from elements of an old one with
a different shape. SPREAD replicates an array along a new dimension. MERGE
copies portions of one array into another under control of a mask. CSHIFT
allows an array to be shifted in one or more dimensions.

Inquiry functions
SHAPE, SIZE, LBOUND, and UBOUND let you ask questions about how an
array is constructed.

Parallel tests
Two other new reduction intrinsics, ANY and ALL, are for testing many array
elements in parallel.

New Control Features
FORTRAN 90 includes some new control features, including a conditional assign-
ment primitive called WHERE, that puts shape-conforming array assignments under
control of a mask as in the following example. Here's an example of the WHERE
primitive:
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In places where the logical expression is TRUE, A gets 1.0 and C gets B+l. 0. In
the ELSEWHERE clause, A gets -1.0. The result of the operation above would be
arrays A and C with the elements;

Again, no order is implied in these conditional assignments, meaning they can be
done in parallel. This lack of implied order is critical to allowing SIMD computer
systems and SPMD environments to have flexibility in performing these computa-
tions.

Automatic and Allocatable Arrays
Every program needs temporary variables or work space. In the past, FORTRAN
programmers have often managed their own scratch space by declaring an array
large enough to handle any temporary requirements. This practice gobbles up
memory (albeit virtual memory, usually), and can even have an effect on perfor-
mance. With the ability to allocate memory dynamically, programmers can wait
until later to decide how much scratch space to set aside. FORTRAN 90 supports
dynamic memory allocation with two new language features: automatic arrays and
allocatable arrays.

Like the local variables of a C program, FORTRAN 90's automatic arrays are
assigned storage only for the life of the subroutine or function that contains them.
This is different from traditional local storage for FORTRAN arrays, where some
space was set aside at compile or link time. The size and shape of automatic
arrays can be sculpted from a combination of constants and arguments. For
instance, here's a declaration of an automatic array, B, using FORTRAN 90's new
specification syntax:

Two arrays are declared: A, the dummy argument, and B, an automatic, explicit
shape array. When the subroutine returns, B ceases to exist. Notice that the size of
B is taken from one of the arguments, N.

Allocatable arrays give you the ability to choose the size of an array after examin-
ing other variables in the program. For example, you might want to determine the
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amount of input data before allocating the arrays. This little program asks the user
for the matrix's size before allocating storage:

The ALLOCATE statement creates an MXN array that is later freed by the DEALLO-
CATE statement. As with C programs, it's important to give back allocated memory
when you are done with it; otherwise, your program might consume all the virtual
storage available.

Heat Flow in FORTRAN 90
The heat flow problem is an ideal program to use to demonstrate how nicely FOR-
TRAN 90 can express regular array programs:

The program is identical, except the inner loop is now replaced by a single state-
ment that computes the "new" section by averaging a strip of the "left" elements
and a strip of the "right" elements.

The output of this program is as follows:
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If you look closely, this output is the same as the red-black implementation. That
is because in FORTRAN 90:

is a single assignment statement. As shown in Figure 13-4, the right side is com-
pletely evaluated before the resulting array section is assigned into ROD ( 2 : 9 ) . For
a moment, that might seem unnatural, but consider the following statement:

We know that if I starts with 5, it's incremented up to six by this statement. That
happens because the right side (5+1) is evaluated before the assignment of 6 into
I is performed. In FORTRAN 90, a variable can be an entire array. So, this is a red-
black operation. There is an "old" ROD on the right side and a "new" ROD on the
left side!

To really "think" FORTRAN 90, it's good to pretend you are on an SIMD system
with millions of little CPUs. First we carefully align the data, sliding it around, and
then—wham—in a single instruction, we add all the aligned values in an instant.
Figure 13-4 shows graphically this act of "aligning" the values and then adding
them. The data flow graph is extremely simple. The top two rows are read-only,
and the data flows from top to bottom. Using the temporary space eliminates the
seeming dependency. This approach of "thinking SIMD" is one of the ways to
force ourselves to focus our thoughts on the data rather than the control. SIMD
may not be a good architecture for your problem but if you can express it so that
SIMD could work, a good SPMD environment can take advantage of the data par-
allelism that you have identified.

The above example actually highlights one of the challenges in producing an effi-
cient implementation of FORTRAN 90. If these arrays contained 10 million ele-
ments, and the compiler used a simple approach, it would need 30 million
elements for the old "left" values, the old "right" values, and for the new values.
Data flow optimization is needed to determine just how much extra data must be
maintained to give the proper results. If the compiler is clever, the extra memory
can be quite small:
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This does not have the parallelism that the full red-black implementation has, but
it does produce the correct results with only two extra data elements. The trick is
to save the old "left" value just before you wipe it out. A good FORTRAN 90 com-
piler uses data flow analysis, looking at a template of how the computation moves
across the data to see if it can save a few elements for a short period of time to
alleviate the need for a complete extra copy of the data.

The advantage of the FORTRAN 90 language is that it's up to the compiler whether
it uses a complete copy of the array or a few data elements to insure that the pro-
gram executes properly. Most importantly, it can change its approach as you move
from one architecture to another.

FORTRAN 90 Versus FORTRAN 77
Interestingly, FORTRAN 90 has never been fully embraced by the high perfor-
mance community. There are a few reasons why:
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• There is a concern that the use of pointers and dynamic data structures would
ruin performance and lose the optimization advantages of FORTRAN over C.
Some people would say that FORTRAN 90 is trying to be a better C than C.
Others would say, "who wants to become more like the slower language!"
Whatever the reason, there was some controversy when FORTRAN 90 was
implemented, leading to some reluctance in adoption by programmers. Some
vendors said, "You can use FORTRAN 90, but FORTRAN 77 will always be
faster."

• Because vendors often implemented different subsets of FORTRAN 90, it was
not as portable as FORTRAN 77. Because of this, users who needed maximum
portability stuck with FORTRAN 77.

• Sometimes vendors purchased their fully compliant FORTRAN 90 compilers
from a third party who demanded high license fees. So, you could get the free
(and faster according to the vendor) FORTRAN 77 or pay for the slower (wink
wink) FORTRAN 90 compiler.

• Because of these factors, the number of serious applications developed in
FORTRAN 90 was small. So the benchmarks used to purchase new systems
were almost exclusively FORTRAN 77. This further motivated the vendors to
improve their FORTRAN 77 compilers instead of their FORTRAN 90 compilers.

• As the FORTRAN 77 compilers became more sophisticated using data flow
analysis, it became relatively easy to write portable "parallel" code in FOR-
TRAN 77, using the techniques we have discussed in this book.

• One of the greatest potential benefits to FORTRAN 90 was portability between
SIMD and the parallel/vector supercomputers. As both of these architectures
were replaced with the shared uniform memory multiprocessors, FORTRAN 77
became the language that afforded the maximum portability across the com-
puters typically used by high performance computing programmers.

• The FORTRAN 77 compilers supported directives that allowed programmers to
fine-tune the performance of their applications by taking full control of the
parallelism. Certain dialects of FORTRAN 77 essentially became parallel pro-
gramming "assembly language." Even highly tuned versions of these codes
were relatively portable across the different vendor shared uniform memory
multiprocessors.

So, events conspired against FORTRAN 90 in the short run. However, FORTRAN
77 is not well suited for the distributed memory systems because it does not lend
itself well to data layout directives. As we need to partition and distribute the data
carefully on these new systems, we must give the compiler lots of flexibility. FOR-
TRAN 90 is the language best suited to this purpose.
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FORTRAN 90 Summary
Well, that's the whirlwind tour of FORTRAN 90. We have probably done the lan-
guage a disservice by covering it so briefly, but we wanted to give you a feel for
it. There are many features that were not discussed. If you would like to learn
more, we recommend FORTRAN 90 Explained, by Michael Metcalf and John Reid
(Oxford University Press).

FORTRAN 90 by itself is not sufficient to give us scalable performance on dis-
tributed memory systems. So far, compilers are not yet capable of performing
enough data flow analysis to decide where to store the data and when to retrieve
the memory. So, for now, we programmers must get involved with the data layout.
We must decompose the problem into parallel chunks that can be individually
processed. We have several options. We can use High Performance FORTRAN and
leave some of the details to the compiler, or we can use explicit message-passing
and take care of all of the details ourselves.

Problem Decomposition
There are three main approaches to dividing or decomposing work for distribution
among multiple CPUs:

Decomposing computations
We have already discussed this technique. When the decomposition is done
based on computations, we come up with some mechanism to divide the
computations (such as the iterations of a loop) evenly among our processors.
The location of the data is generally ignored, and the primary issues are itera-
tion duration and uniformity. This is the preferred technique for the shared
uniform memory systems because the data can be equally accessed by any
processor.

Decomposing data
When memory access is nonuniform, the tendency is to focus on the distribu-
tion of the data rather than computations. The assumption is that retrieving
"remote" data is costly and should be minimized. The data is distributed
among the memories. The processor that contains the data performs the com-
putations on that data after retrieving any other data necessary to perform the
computation.

Decomposing tasks
When the operations that must be performed are very independent, and take
some time, a task decomposition can be performed. In this approach a master
process/thread maintains a queue of work units. When a processor has avail-
able resources, it retrieves the next "task" from the queue and begins
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processing. This is a very attractive approach for embarrassingly parallel
computations.*

In some sense, the rest of this chapter is primarily about data decomposition. In a
distributed memory system, the communication costs usually are the dominant
performance factor. If your problem is so embarrassingly parallel that it can be dis-
tributed as tasks, then nearly any technique will work. Data-parallel problems
occur in many disciplines. They vary from those that are extremely parallel to
those that are just sort of parallel. For example, fractal calculations are extremely
parallel; each point is derived independently of the rest. It's simple to divide fractal
calculations among processors. Because the calculations are independent, the pro-
cessors don't have to coordinate or share data.

Our heat flow problem when expressed in its red-black (or FORTRAN 90) form is
extremely parallel but requires some sharing of data. A gravitational model of a
galaxy is another kind of parallel program. Each point exerts an influence on
every other. Therefore, unlike the fractal calculations, the processors do have to
share data.

In either case, you want to arrange calculations so that processors can say to one
another, "you go over there and work on that, and I'll work on this, and we'll get
together when we are finished."

Problems that offer less independence between regions are still very good candi-
dates for domain decomposition. Finite difference problems, short-range particle
interaction simulations, and columns of matrices can be treated similarly. If you
can divide the domain evenly between the processors, they each do approxi-
mately the same amount of work on their way to a solution.

Other physical systems are not so regular or involve long-range interactions. The
nodes of an unstructured grid may not be allocated in direct correspondence to
their physical locations, for instance. Or perhaps the model involves long-range
forces, such as particle attractions. These problems, though more difficult, can be
structured for parallel machines as well. Sometimes various simplifications, or
"lumping" of intermediate effects, are needed. For instance, the influence of a
group of distant particles upon another may be treated as if there were one com-
posite particle acting at a distance. This is done to spare the communications that
would be required if every processor had to talk to every other regarding each
detail. In other cases, the parallel architecture offers opportunities to express a
physical system in different and clever ways that make sense in the context of the

* The distributed RC5 key-cracking effort was coordinated in this fashion. Each processor would
check out a block of keys and begin testing those keys. At some point, if the processor was not fast
enough or had crashed, the central system would reissue the block to another processor. This allowed
the system to recover from problems on individual computers.
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machine. For instance, each particle could be assigned to its own processor, and
these could slide past one another, summing interactions and updating a time step.

Depending on the architecture of the parallel computer and problem, a choice for
either dividing or replicating (portions of) the domain may add unacceptable over-
head or cost to the whole project.

For a large problem, the dollar value of main memory may make keeping separate
local copies of the same data out of the question. In fact, a need for more memory
is often what drives people to parallel machines; the problem they need to solve
can't fit in the memory of a conventional computer.

By investing some effort, you could allow the domain partitioning to evolve as the
program runs, in response to an uneven load distribution. That way, if there were
a lot of requests for As, then several processors could dynamically get a copy of
the A piece of the domain. Or the A piece could be spread out across several pro-
cessors, each handling a different subset of the A definitions. You could also
migrate unique copies of data from place to place, changing their home as
needed.

When the data domain is irregular, or changes over time, the parallel program
encounters a load-balancing problem. Such a problem becomes especially appar-
ent when one portion of the parallel computations takes much longer to complete
than the others. A real-world example might be an engineering analysis on an
adaptive grid, As the program runs, the grid becomes more refined in those areas
showing the most activity. If the work isn't reapportioned from time to time, the
section of the computer with responsibility for the most highly refined portion of
the grid falls farther and farther behind the performance of the rest of the
machine.

High Performance FORTRAN (HPF)
In March 1992, the High Performance Fortran Forum (HPFF) began meeting to dis-
cuss and define a set of additions to FORTRAN 90 to make it more practical for
use in a scalable computing environment. The plan was to develop a specification
within the calendar year so that vendors could quickly begin to implement the
standard. The scope of the effort included the following:

• Identify scalars and arrays that will be distributed across a parallel machine.

• Say how they will be distributed. Will they be strips, blocks, or something
else?

• Specify how these variables will be aligned with respect to one another,
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• Redistribute and realign data structures at runtime.

• Add a FORALL control construct for parallel assignments that are difficult or
impossible to construct using FORTRAN 90's array syntax.

• Make improvements to the FORTRAN 90 WHERE control construct.

• Add intrinsic functions for common parallel operations.

There were several sources of inspiration for the HPF effort. Layout directives
were already part of the FORTRAN 90 programming environment for some SIMD
computers (i.e., the CM-2). Also, PVM, the first portable message-passing environ-
ment, had been released a year earlier, and users had a year of experience trying
to decompose by hand programs. They had developed some basic usable tech-
niques for data decomposition that worked very well but required far too much
bookkeeping.*

The HPF effort brought together a diverse set of interests from all the major high
performance computing vendors. Vendors representing all the major architectures
were represented. As a result HPF was designed to be implemented on nearly all
types of architectures,

There is an effort underway to produce the next FORTRAN standard: FORTRAN
95. FORTRAN 95 is expected to adopt some but not all of the HPF modifications.

Programming in HPF
At its core, HPF includes FORTRAN 90. If a FORTRAN 90 program were run
through an HPF compiler, it must produce the same results as if it were run
through a FORTRAN 90 compiler. Assuming an HPF program only uses FORTRAN
90 constructs and HPF directives, a FORTRAN 90 compiler could ignore the direc-
tives, and it should produce the same results as an HPF compiler.

As the user adds directives to the program, the semantics of the program are not
changed. If the user completely misunderstands the application and inserts
extremely ill-conceived directives, the program produces correct results very
slowly. An HPF compiler doesn't try to "improve on" the user's directives. It
assumes the programmer is omniscient.t

Once the user has determined how the data will be distributed across the proces-
sors, the HPF compiler attempts to use the minimum communication necessary
and overlaps communication with computation whenever possible. HPF generally
uses an "owner computes" rule for the placement of the computations. A particular
element in an array is computed on the processor that stores that array element.

* As we shall soon see.

t Always a safe assumption.
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All the necessary data to perform the computation is gathered from remote proces-
sors, if necessary, to perform the computation. If the programmer is clever in
decomposition and alignment, much of the data needed will be from the local
memory rather then a remote memory. The HPF compiler is also responsible for
allocating any temporary data structures needed to support communications at
runtime.

In general, the HPF compiler is not magic—it simply does a very good job with
the communication details when the programmer can design a good data decom-
position. At the same time, it retains portability with the single CPU and shared
uniform memory systems using FORTRAN 90.

HPF data layout directives

Perhaps the most important contributions of HPF are its data layout directives.
Using these directives, the programmer can control how data is laid out based on
the programmer's knowledge of the data interactions. An example directive is as
follows:

The !HPF$ prefix would be a comment to a non-HPF compiler and can safely be
ignored by a straight FORTRAN 90 compiler. The DISTRIBUTE directive indicates
that the ROD array is to be distributed across multiple processors. If this directive is
not used, the ROD array is allocated on one processor and communicated to the
other processors as necessary. There are several distributions that can be done in
each dimension:

These distributions operate as follows:

BLOCK
The array is distributed across the processors using contiguous blocks of the
index value. The blocks are made as large as possible.

CYCLIC
The array is distributed across the processors, mapping each successive ele-
ment to the "next" processor, and when the last processor is reached, alloca-
tion starts again on the first processor.

CYCLIC(n)
The array is distributed the same as CYCLIC except that n successive elements
are placed on each processor before moving on to the next processor.
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* All the elements in that dimension are placed on the same processor. This is
most useful for multidimensional arrays.

Figure 13-5 shows how the elements of a simple array would be mapped onto
three processors with different directives.

It must allocate four elements to Processors 1 and 2 because there is no Processor
4 available for the leftover element if it allocated three elements to Processors 1
and 2. In Figure 13-5, the elements are allocated on successive processors, wrap-
ping around to Processor 1 after the last processor. In Figure 13-5, using a chunk
size with CYCLIC is a compromise between pure BLOCK and pure CYCLIC.

To explore the use of the *, we can look at a simple two-dimensional array
mapped onto four processors. In Figure 13-6, we show the array layout and each
cell indicates which processor will hold the data for that cell in the two-dimen-
sional array. In Figure 13-6, the directive decomposes in both dimensions simulta-
neously. This approach results in roughly square patches in the array. However,
this may not be the best approach. In the following example, we use the * to indi-
cate that we want all the elements of a particular column to be allocated on the
same processor. So, the column values equally distribute the columns across the
processors. Then, all the rows in each column follow where the column has been
placed. This allows unit stride for the on-processor portions of the computation
and is beneficial in some applications. The * syntax is also called on-processor dis-
tribution.

When dealing with more than one data structure to perform a computation, you
can either separately distribute them or use the ALIGN directive to ensure that
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corresponding elements of the two data structures are to be allocated together. In
the following example, we have a plate array and a scaling factor that must be
applied to each column of the plate during the computation:

In both examples, the PLATE and the SCALE variables are allocated to the same
processors as the corresponding columns of PLATE. The * and : syntax commu-
nicate the same information. When * is used, that dimension is collapsed, and it
doesn't participate in the distribution. When the : is used, it means that dimension
follows the corresponding dimension in the variable that has already been dis-
tributed.

You could also specify the layout of the SCALE variable and have the PLATE vari-
able "follow" the layout of the SCALE variable:
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You can put simple arithmetic expressions into the ALIGN directive subject to
some limitations. Other directives include:

PROCESSORS
Allows you to create a shape of the processor configuration that can be used
to align other data structures.

REDISTRIBUTE and REALIGN
Allow you to dynamically reshape data structures at runtime as the communi-
cation patterns change during the course of the run.

TEMPLATE

Allows you to create an array that uses no space. Instead of distributing one
data structure and aligning all the other data structures, some users will create
and distribute a template and then align all of the real data structures to that
template.

The use of directives can range from very simple to very complex. In some situa-
tions, you distribute the one large shared structure, align a few related structures
and you are done. In other situations, programmers attempt to optimize communi-
cations based on the topology of the interconnection network (hypercube, multi-
stage interconnection network, mesh, or toroid) using very detailed directives.
They also might carefully redistribute the data at the various phases of the compu-
tation.

Hopefully your application will yield good performance without too much effort.

HPF control structures

While the HPF designers were in the midst of defining a new language, they set
about improving on what they saw as limitations in FORTRAN 90. Interestingly,
these modifications are what is being considered as part of the new FORTRAN 95
standard.

The FORALL statement allows the user to express simple iterative operations that
apply to the entire array without resorting to a do-loop (remember, do-loops force
order). For example:

FORALL (1=1:100, J=l:100) A ( I , J ) = I + J

This can be expressed in native FORTRAN 90 but it is rather ugly, counterintuitive,
and prone to error.

Another control structure is the ability to declare a function as "PURE." A PURE
function has no side effects other than through its parameters. The programmer is
guaranteeing that a PURE function can execute simultaneously on many proces-
sors with no ill effects. This allows HPF to assume that it will only operate on local
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data and does not need any data communication during the duration of the func-
tion execution. The programmer can also declare which parameters of the function
are input parameters, output parameters, and input-output parameters.

HPF intrinsics

The companies who marketed SIMD computers needed to come up with signifi-
cant tools to allow efficient collective operations across all the processors. A per-
fect example of this is the SUM operation. To SUM the value of an array spread
across N processors, the simplistic approach takes N steps. However, it is possible
to accomplish it in log(N) steps using a technique called parallel-prefix-sum. By
the time HPF was in development, a number of these operations had been identi-
fied and implemented. HPF took the opportunity to define standardized syntax for
these operations.

A sample of these operations includes:

SUM_PREFIX
Performs various types of parallel-prefix summations.

ALL_SCATTER
Distributes a single value to a set of processors.

GRADE_DOWN

Sorts into decreasing order.

IANY
Computes the logical OR of a set of values.

While there are a large number of these intrinsic functions, most applications use
only a few of the operations.

HPF extrinsics

In order to allow the vendors with diverse architectures to provide their particular
advantage, HPF included the capability to link "extrinsic" functions. These func-
tions didn't need to be written in FORTRAN 90/HPF and performed a number of
vendor-supported capabilities. This capability allowed users to perform such tasks
as the creation of hybrid applications with some HPF and some message passing.

High performance computing programmers always like the ability to do things
their own way in order to eke out that last drop of performance.
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Heat Flow in HPF
To port our heat flow application to HPF, there is really only a single line of code
that needs to be added. In the example below, we've changed to a larger two-
dimensional array:

You will notice that the HPF directive distributes the array columns using the
BLOCK approach, keeping all the elements within a column on a single processor.
At first glance, it might appear that (BLOCK, BLOCK) is the better distribution.
However, there are two advantages to a (*, BLOCK) distribution. First, striding
down a column is a unit-stride operation and so you might just as well process an
entire column. The more significant aspect of the distribution is that a
(BLOCK, BLOCK) distribution forces each processor to communicate with up to
eight other processors to get its neighboring values. Using the (*,BLOCK) distri-
bution, each processor will have to exchange data with at most two processors
each time step.

When we look at PVM, we will look at this same program implemented in a
SPMD-style message-passing fashion. In that example, you will see some of the
details that HPF must handle to properly execute this code. After reviewing that
code, you will probably choose to implement all of your future heat flow applica-
tions in HPF!
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HPF Summary
In some ways, HPF has been good for FORTRAN 90. Companies such as IBM with
its SP-1 needed to provide some high-level language for those users who didn't
want to write message-passing codes. Because of this, IBM has invested a great
deal of effort in implementing and optimizing HPF. Interestingly, much of this
effort will directly benefit the ability to develop more sophisticated FORTRAN 90
compilers. The extensive data flow analysis required to minimize communications
and manage the dynamic data structures will carry over into FORTRAN 90 compil-
ers even without using the HPF directives.

Time will tell if the HPF data distribution directives will no longer be needed and
compilers will be capable of performing sufficient analysis of straight FORTRAN 90
code to optimize data placement and movement.

In its current form, HPF is an excellent vehicle for expressing the highly data-par-
allel, grid-based applications. Its weaknesses are irregular communications and
dynamic load balancing. A new effort to develop the next version of HPF is under-
way to address some of these issues. Unfortunately, it is more difficult to solve
these runtime problems while maintaining good performance across a wide range
of architectures.

Closing Notes
In this chapter, we have covered some of the efforts in the area of languages that
have been developed to allow programs to be written for scalable computing.
There is a tension between pure FORTRAN-77, FORTRAN 90, HPF, and message
passing as to which will be the ultimate tools for scalable, high performance com-
puting.

Certainly, there have been examples of great successes for both FORTRAN 90
(Thinking Machines CM-5) and HPF (IBM SP and others) as languages that can
make excellent use of scalable computing systems. One of the problems of a high-
level language approach is that sometimes using an abstract high-level language
actually reduces effective portability.

The languages are designed to be portable, but if the vendor of your particular
scalable computer doesn't support the language variant in which you have chosen
to write your application, then it isn't portable. Even if the vendor has your lan-
guage available, it may not be tuned to generate the best code for their architec-
ture.

One solution is to purchase your compilers from a third-party company such as
Pacific Sierra or Kuck and Associates. These vendors sell one compiler that runs
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across a wide range of systems. For users who can afford these options, these
compilers afford a higher level of portability,

One of the fundamental issues is the chicken-and-egg problem. If users don't use
a language, vendors won't improve the language. If all the influential users (with
all the money) use message passing, then the existence of an excellent HPF com-
piler is of no real value to those users.

The good news is that both FORTRAN 90 and HPF provide one road map to
portable scalable computing that doesn't require explicit message passing. The
only question is which road we users will choose.



Message-Passing
Environments

A message-passing interface is a set of function and subroutine calls for C or FOR-
TRAN that give you a way to split an application for parallel execution. Data is
divided and passed out to other processors as messages. The receiving processors
unpack them, do some work, and send the results back or pass them along to
other processors in the parallel computer.

In some ways, message passing is the "assembly language" of parallel processing.
You get ultimate responsibility, and if you are talented (and your problem cooper-
ates), you get ultimate performance. If you have a nice scalable problem and are
not satisfied with the resulting performance, you pretty much have yourself to
blame. The compiler is completely unaware of the parallel aspects of the program.

The two most popular message-passing environments are parallel virtual machine
(PVM) and message-passing interface (MPI). Most of the important features are
available in either environment, Once you have mastered message passing, mov-
ing from PVM to MPI won't cause you much trouble. You may also operate on a
system that provides only a vendor-specific message-passing interface. However,
once you understand message passing concepts and have properly decomposed
your application, usually it's not that much more effort to move from one mes-
sage-passing library to another.*

* Notice I said "not that much more effort."
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Parallel Virtual Machine (PVM)
The idea behind PVM is to assemble a diverse set of network-connected resources
into a "virtual machine." A user could marshal the resources of 35 idle worksta-
tions on the Internet and have their own personal scalable processing system. The
work on PVM started in the early 1990s at Oak Ridge National Labs. PVM was
pretty much an instant success among computer scientists. It provided a rough
framework in which to experiment with using a network of workstations as a par-
allel processor.

In PVM Version 3, your virtual machine can consist of single processors, shared-
memory multiprocessors, and scalable multiprocessors. PVM attempts to knit all of
these resources into a single, consistent, execution environment.

To run PVM, you simply need a login account on a set of network computers that
have the PVM software installed. You can even install it in your home directory.
To create your own personal virtual machine, you would create a list of these
computers in a file:

After some nontrivial machinations with paths and environment variables, you can
start the PVM console:

Many different users can be running virtual machines using the same pool of
resources. Each user has their own view of an empty machine. The only way you
might detect other virtual machines using your resources is in the percentage of
the time your applications get the CPU.
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There is a wide range of commands you can issue at the PVM console. The ps
command shows the running processes in your virtual machine. It's quite possible
to have more processes than computer systems. Each process is time-shared on a
system along with all the other load on the system. The reset command performs a
soft reboot on your virtual machine. You are the virtual system administrator of the
virtual machine you have assembled.

To execute programs on your virtual computer, you must compile and link your
programs with the PVM library routines:*

When the first PVM call is encountered, the application contacts your virtual
machine and enrolls itself in the virtual machine. At that point it should show up
in the output of the ps command issued at the PVM console.

From that point on, your application issues PVM calls to create more processes
and interact with those processes. PVM takes the responsibility for distributing the
processes on the different systems in the virtual machine, based on the load and
your assessment of each system's relative performance. Messages are moved
across the network using user datagram protocol (UDP) and delivered to the
appropriate process.

Typically, the PVM application starts up some additional PVM processes. These
can be additional copies of the same program or each PVM process can run a dif-
ferent PVM application. Then the work is distributed among the processes, and
results are gathered as necessary.

There are several basic models of computing that are typically used when working
with PVM:

Master/Slave
When operating in this mode, one process (usually the initial process) is des-
ignated as the master that spawns some number of worker processes. Work
units are sent to each worker process, and the results are returned to the mas-
ter. Often the master maintains a queue of work to be done and as a slave

* Note: the exact compilation may be different on your system.
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finishes, the master delivers a new work item to the slave. This approach
works well when there is little data interaction and each work unit is indepen-
dent. This approach has the advantage that the overall problem is naturally
load-balanced even when there is some variation in the execution time of
individual processes.

Broadcast/Gather
This type of application is typically characterized by the fact that the shared
data structure is relatively small and can be easily copied into every proces-
sor's node. At the beginning of the time step, all the global data structures are
broadcast from the master process to all of the processes. Each process then
operates on their portion of the data. Each process produces a partial result
that is sent back and gathered by the master process. This pattern is repeated
for each time step.

SPMD/Data decomposition
When the overall data structure is too large to have a copy stored in every
process, it must be decomposed across multiple processes. Generally, at the
beginning of a time step, all processes must exchange some data with each of
their neighboring processes. Then with their local data augmented by the nec-
essary subset of the remote data, they perform their computations. At the end
of the time step, necessary data is again exchanged between neighboring pro-
cesses, and the process is restarted.

The most complicated applications have nonuniform data flows and data that
migrates around the system as the application changes and the load changes on
the system.

In this section, we have two example programs: one is a master-slave operation,
and the other is a data decomposition-style solution to the heat flow problem.

Queue of Tasks
In this example, one process (mast) creates five slave processes (slav) and doles
out 20 work units (add one to a number). As a slave process responds, it's given
new work or told that all of the work units have been exhausted:
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One of the interesting aspects of the PVM interface is the separation of calls to
prepare a new message, pack data into the message, and send the message. This
is done for several reasons. PVM has the capability to convert between different
floating-point formats, byte orderings, and character formats. This also allows a
single message to have multiple data items with different types.

The purpose of the message Type in each PVM send or receive is to allow the
sender to wait for a particular type of message. In this example, we use two mes-
sage types. Type one is a message from the master to the slave, and type two is
the response.

When performing a receive, a process can either wait for a message from a spe-
cific process or a message from any process.
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In the second phase of the computation, the master waits for a response from any
slave, prints the response, and then doles out another work unit to the slave or
tells the slave to terminate by sending a message with a value of -1.

The slave code is quite simple—it waits for a message, unpacks it, checks to see if
it is a termination message, returns a response, and repeats:

When the master program is executed, it produces the following output:
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Clearly the processes are operating in parallel, and the order of execution is some-
what random. This code is an excellent skeleton for handling a wide range of
computations. In the next example, we perform an SPMD-style computation to
solve the heat flow problem using PVM.

Heat Flow in PVM
This next example is a rather complicated application that implements the heat
flow problem in PVM. In many ways, it gives some insight into the work that is
performed by the HPF environment. We will solve a heat flow in a two-dimen-
sional plate with four heat sources and the edges in zero-degree water, as shown
in Figure 14-1.

The data will be spread across all of the processes using a (*, BLOCK) distribution.
Columns are distributed to processes in contiguous blocks, and all the row ele-
ments in a column are stored on the same process. As with HPF, the process that
"owns" a data cell performs the computations for that cell after retrieving any data
necessary to perform the computation.

We use a red-black approach but for simplicity, we copy the data back at the end
of each iteration. For a true red-black, you would perform the computation in the
opposite direction every other time step.

Note that instead of spawning slave process, the parent process spawns additional
copies of itself. This is typical of SPMD-style programs. Once the additional pro-
cesses have been spawned, all the processes wait at a barrier before they look for
the process numbers of the members of the group. Once the processes have
arrived at the barrier, they all retrieve a list of the different process numbers:
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At this point in the code, we have NPROC processes executing in an SPMD mode.
The next step is to determine which subset of the array each process will com-
pute. This is driven by the INUM variable, which ranges from 0 to 3 and uniquely
identifies these processes.

We decompose the data and store only one quarter of the data on each process.
Using the INUM variable, we choose our continuous set of columns to store and
compute. The OFFSET variable maps between a "global" column in the entire
array and a local column in our local subset of the array. Figure 14-2 shows a map
that indicates which processors store which data elements. The values marked
with a B are boundary values and won't change during the simulation. They are all
set to 0. This code is often rather tricky to figure out. Performing a
(BLOCK, BLOCK) distribution requires a two-dimensional decomposition and
exchanging data with the neighbors above and below, in addition to the neighbors
to the left and right:
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Now we run the time steps. The first act in each time step is to reset the heat
sources. In this simulation, we have four heat sources placed near the middle of
the plate. We must restore all the values each time through the simulation as they
are modified in the main loop:
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Now we perform the exchange of the "ghost values" with our neighboring pro-
cesses. For example, Process 0 contains the elements for global column 50. To
compute the next time step values for column 50, we need column 51, which is
stored in Process 1. Similarly, before Process 1 can compute the new values for
column 51, it needs Process O's values for column 50.

Figure 14-3 shows how the data is transferred between processors. Each process
sends its leftmost column to the left and its rightmost column to the right. Because
the first and last processes border unchanging boundary values on the left and
right respectively, this is not necessary for columns one and 200. If all is done
properly, each process can receive its ghost values from their left and right neigh-
bors.

The net result of all of the transfers is that for each space that must be computed,
it's surrounded by one layer of either boundary values or ghost values from the
right or left neighbors:
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This next segment is the easy part. All the appropriate ghost values are in place,
so we must simply perform the computation in our subspace. At the end, we copy
back from the RED to the BLACK array; in a real simulation, we would perform
two time steps, one from BLACK to RED and the other from RED to BLACK, to
save this extra copy:

Now we find the center cell and send to the master process (if necessary) so it can
be printed out. We also dump out the data into files for debugging or later visual-
ization of the results. Each file is made unique by appending the instance number
to the filename. Then the program terminates:
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* Lets all go together
CALL PVMFBARRIER( 'pheat', NPROC, INFO )
CALL PVMFEXIT( INFO }

END

The SENDCELL routine finds a particular cell and prints it out on the master pro-
cess. This routine is called in an SPMD style: all the processes enter this routine
although all not at precisely the same time. Depending on the INUM and the cell
that we are looking for, each process may do something different.

If the cell in question is in the master process, and we are the master process,
print it out. All other processes do nothing. If the cell in question is stored in
another process, the process with the cell sends it to the master processes. The
master process receives the value and prints it out. All the other processes do
nothing.

This is a simple example of the typical style of SPMD code. All the processes exe-
cute the code at roughly the same time, but, based on information local to each
process, the actions performed by different processes may be quite different:

Like the previous routine, the STORE routine is executed on all processes. The
idea is to store a value into a global row and column position. First, we must
determine if the cell is even in our process. If the cell is in our process, we must
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compute the local column (I) in our subset of the overall matrix and then store the
value:

"When this program executes, it has the following output:

We see two lines of print. The first line indicates the values that Process 0 used in
its geometry computation. The second line is the output from the master process
of the temperature at cell (100,100) after 200 time steps.

One interesting technique that is useful for debugging this type of program is to
change the number of processes that are created. If the program is not quite mov-
ing its data properly, you usually get different results when different numbers of
processes are used. If you look closely, the above code performs correctly with
one process or 30 processes.

Notice that there is no barrier operation at the end of each time step. This is in
contrast to the way parallel loops operate on shared uniform memory multiproces-
sors that force a barrier at the end of each loop. Because we have used an "owner
computes" rule, and nothing is computed until all the required ghost data is
received, there is no need for a barrier. The receipt of the messages with the
proper ghost values allows a process to begin computing immediately without
regard to what the other processes are currently doing.

This example can be used either as a framework for developing other grid-based
computations, or as a good excuse to use HPF and appreciate the hard work that
the HPF compiler developers have done. A well-done HPF implementation of this
simulation should outperform the PVM implementation because HPF can make
tighter optimizations. Unlike us, the HPF compiler doesn't have to keep its gener-
ated code readable.
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PVM Summary
PVM is a widely used tool because it affords portability across every architecture
other than SIMD. Once the effort has been invested in making a code message
passing, it tends to run well on many architectures.

The primary complaints about PVM include:

• The need for a pack step separate from the send step

• The fact that it is designed to work in a heterogeneous environment that may
incur some overhead

• It doesn't automate common tasks such as geometry computations

But all in all, for a certain set of programmers, PVM is the tool to use. If you
would like to learn more about PVM see PVM—A User's Guide and Tutorial for
Networked Parallel Computing, by Al Geist, Adam Beguelin, Jack Dongarra,
Weicheng Jiang, Robert Manchek, and Vaidy Sunderarn (MIT Press). Information is
also available at www.netlib.org/pvm3/.

Message-Passing Interface (MPI)
The Message-Passing Interface (MPI) was designed to be an industrial-strength
message-passing environment that is portable across a wide range of hardware
environments.

Much like High Performance FORTRAN, MPI was developed by a group of com-
puter vendors, application developers, and computer scientists. The idea was to
come up with a specification that would take the strengths of many of the existing
proprietary message passing environments on a wide variety of architectures and
come up with a specification that could be implemented on architectures ranging
from SIMD systems with thousands of small processors to MIMD networks of
workstations and everything in between.

Interestingly, the MPI effort was completed a year after the High Performance
FORTRAN (HPF) effort was completed. Some viewed MPI as a portable message-
passing interface that could support a good HPF compiler. Having MPI makes the
compiler more portable. Also having the compiler use MPI as its message-passing
environment insures that MPI is heavily tested and that sufficient resources are
invested into the MPI implementation.
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PVM Versus MPI
While many of the folks involved in PVM participated in the MPI effort, MPI is not
simply a follow-on to PVM. PVM was developed in a university/research lab envi-
ronment and evolved over time as new features were needed. For example, the
group capability was not designed into PVM at a fundamental level. Some of the
underlying assumptions of PVM were based "on a network of workstations con-
nected via Ethernet" model and didn't export well to scalable computers.* In some
ways, MPI is more robust than PVM, and in other ways, MPI is simpler than PVM.
MPI doesn't specify the system management details as in PVM; MPI doesn't specify
how a virtual machine is to be created, operated, and used.

MPI Features
MPI has a number of useful features beyond the basic send and receive capabili-
ties. These include:

Communicators
A communicator is a subset of the active processes that can be treated as a
group for collective operations such as broadcast, reduction, barriers, sending,
or receiving. Within each communicator, a process has a rank that ranges
from zero to the size of the group. A process may be a member of more than
one communicator and have a different rank within each communicator. There
is a default communicator that refers to all the MPI processes that is called
MPI_COMM_WORLD.

Topologies
A communicator can have a topology associated with it. This arranges the pro-
cesses that belong to a communicator into some layout. The most common
layout is a Cartesian decomposition. For example, 12 processes may be
arranged into a 3X4 grid.t Once these topologies are denned, they can be
queried to find the neighboring processes in the topology. In addition to the
Cartesian (grid) topology, MPI also supports a graph-based topology.

Communication modes
MPI supports multiple styles of communication, including blocking and non-
blocking. Users can also choose to use explicit buffers for sending or allow
MPI to manage the buffers. The nonblocking capabilities allow the overlap of
communication and computation. MPI can support a model in which there is
no available memory space for buffers and the data must be copied directly

* One should not diminish the positive contributions of PVM, however. PVM was the first widely avail-
able portable message-passing environment. PVM pioneered the idea of heterogeneous distributed
computing with built-in format conversion.

f Sounds a little like HPF, no?
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from the address space of the sending process to the memory space of the
receiving process. MPI also supports a single call to perform a send and
receive that is quite useful when processes need to exchange data.

Single-call collective operations
Some of the calls in MPI automate collective operations in a single call. For
example, the broadcast operation sends values from the master to the slaves
and receives the values on the slaves in the same operation. The net result is
that the values are updated on all processes. Similarly, there is a single call to
sum a value across all of the processes to a single value. By bundling all this
functionality into a single call, systems that have support for collective opera-
tions in hardware can make best use of this hardware. Also, when MPI is
operating on a shared-memory environment, the broadcast can be simplified
as all the slaves simply make a local copy of a shared variable.

Clearly, the developers of the MPI specification had significant experience with
developing message-passing applications and added many widely used features to
the message-passing library. Without these features, each programmer needed to
use more primitive operations to construct their own versions of the higher-level
operations.

Heat Flow in MPI
In this example, we implement our heat flow problem in MPI using a similar
decomposition to the PVM example. There are several ways to approach the prob-
lem. We could almost translate PVM calls to corresponding MPI calls using the
MPI_COMM__WORLD communicator. However, to showcase some of the MPI fea-
tures, we create a Cartesian communicator:

The basic data structures are much the same as in the PVM example. We allocate a
subset of the heat arrays in each process. In this example, the amount of space
allocated in each process is set by the compile-time variable MINPROC. The
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simulation can execute on more than MINPROC processes (wasting some space in
each process), but it can't execute on less than MINPROC processes, or there won't
be sufficient total space across all of the processes to hold the array:

These data structures are used for our interaction with MPI. As we will be doing a
one-dimensional Cartesian decomposition, our arrays are dimensioned to one. If
you were to do a two-dimensional decomposition, these arrays would need two
elements:

The call to MPI_INIT creates the appropriate number of processes. Note that in
the output, the PRINT statement before the call only appears once, but the second
PRINT appears once for each process. "We call MPI_COMM_SIZE to determine the
size of the global communicator MPI_COMM_WORLD. We use this value to set up
our Cartesian topology:

Now we create a one-dimensional (NDIM=1) arrangement of all of our processes
(MPI_CQMM_WORLD). All of the parameters on this call are input values except for
COMM1D and IERR. COMMlD is an integer "communicator handle." If you print it
out, it will be a value such as 134. It is not actually data, it is merely a handle that
is used in other calls. It is quite similar to a file descriptor or unit number used
when performing input-output to and from files.

The topology we use is a one-dimensional decomposition that isn't periodic. If we
specified that we wanted a periodic decomposition, the far-left and far-right pro-
cesses would be neighbors in a wrapped-around fashion making a ring. Given that
it isn't periodic, the far-left and far-right processes have no neighbors.
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In our PVM example above, we declared that Process 0 was the far-right process,
Process NPROC-1 was the far-left process, and the other processes were arranged
linearly between those two. .If we set REORDER to .FALSE., MPI also chooses
this arrangement. However, if we set REORDER to . TRUE., MPI may choose to
arrange the processes in some other fashion to achieve better performance, assum-
ing that you are communicating with close neighbors.

Once the communicator is set up, we use it in all of our communication opera-
tions:

Within each communicator, each process has a rank from zero to the size of the
communicator minus 1. The MPI_COMM_RANK tells each process its rank within
the communicator. A process may have a different rank in the COMM1D communi-
cator than in the MPI_COMM_WORLD communicator because of some reordering.

Given a Cartesian topology communicator,* we can extract information from the
communicator using the MPI_CART_GET routine:

In this call, all of the parameters are output values rather than input values as in
the MPI_CART_CREATE call. The COORDS variable tells us our coordinates within
the the communicator. This is not so useful in our one-dimensional example, but
in a two-dimensional process decomposition, it would tell our current position in
that two-dimensional grid:

* Remember, each communicator may have a topology associated with it. A topology can be grid,
graph, or none. Interestingly, the MPI_COMM_WORLD communicator has no topology associated with
it.
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We can use MPI_CART_SHIFT to determine the rank number of our left and right
neighbors, so we can exchange our common points with these neighbors. This is
necessary because we can't simply send to INUM-1 and INUM+1 if MPI has cho-
sen to reorder our Cartesian decomposition, If we are the far-left or far-right pro-
cess, the neighbor that doesn't exist is set to MPI_PROC_NULL, which indicates
that we have no neighbor. Later when we are performing message sending, it
checks this value and sends messages only to real processes. By not sending the
message to the "null process," MPI has saved us an IF test.

To determine which strip of the global array we store and compute in this process,
we call a utility routine called MPE_DECOMP1D that simply does several calcula-
tions to evenly split our 200 columns among our processes in contiguous strips. In
the PVM version, we need to perform this computation by hand.

The MPE_DECOMP1D routine is an example of an extended MPI library call (hence
the MPE prefix). These extensions include graphics support and logging tools in
addition to some general utilities. The MPE library consists of routines that were
useful enough to standardize but not required to be supported by all MPI imple-
mentations. You will find the MPE routines supported on most MPI implementa-
tions.

Now that we have our communicator group set up, and we know which strip
each process will handle, we begin the computation:

As in the PVM example, we set the plate (including boundary values) to zero.

All processes begin the time step loop. Interestingly, like in PVM, there is no need
for any synchronization. The messages implicitly synchronize our loops.

The first step is to store the permanent heat sources. We need to use a routine
because we must make the store operations relative to our strip of the global
array:
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All of the processes set these values independently depending on which process
has which strip of the overall array.

Now we exchange the data with our neighbors as determined by the Cartesian
communicator. Note that we don't need an IF test to determine if we are the far-
left or far-right process. If we are at the edge, our neighbor setting is
MPI_PROC_NULL and the MPI_SEND and MPI_RECV calls do nothing when
given this as a source or destination value, thus saving us an IF test.

Note that we specify the communicator COMM1D because the rank values we are
using in these calls are relative to that communicator:

Just to show off, we use both the separate send and receive, and the combined
send and receive. When given a choice, it's probably a good idea to use the com-
bined operations to give the runtime environment more flexibility in terms of
buffering. One downside to this that occurs on a network of workstations (or any
other high-latency interconnect) is that you can't do both send operations first and
then do both receive operations to overlap some of the communication delay.

Once we have all of our ghost points from our neighbors, we can perform the
algorithm on our subset of the space:
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Again, for simplicity, we don't do the complete red-black computation.* We have
no synchronization at the bottom of the loop because the messages implicitly syn-
chronize the processes at the top of the next loop.

Again, we dump out the data for verification. As in the PVM example, one good
test of basic correctness is to make sure you get exactly the same results for vary-
ing numbers of processes:

To terminate the program, we call MPI_FINALIZE:

As in the PVM example, we need a routine to store a value into the proper strip of
the global array. This routine simply checks to see if a particular global element is
in this process and if so, computes the proper location within its strip for the
value. If the global element is not in this process, this routine simply returns doing
nothing:

When this program is executed, it has the following output:

* Note that you could do two time steps (one black-red-black iteration) if you exchanged two ghost
columns at the top of the loop.
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As you can see, we call MPI_INIT to activate the four processes. The PRINT
statement immediately after the MPI_INIT call appears four times, once for each
of the activated processes. Then each process prints out the strip of the array it
will process. We can also see the neighbors of each process including -1 when a
process has no neighbor to the left or right. Notice that Process 0 has no left
neighbor, and Process 3 has no right neighbor. MPI has provided us the utilities to
simplify message-passing code that we need to add to implement this type of grid-
based application.

When you compare this example with a PVM implementation of the same prob-
lem, you can see some of the contrasts between the two approaches. Programmers
who wrote the same six lines of code over and over in PVM combined them into a
single call in MPI. In MPI, you can think "data parallel" and express your program
in a more data-parallel fashion.

In some ways, MPI feels less like assembly language than PVM. However, MPI
does take a little getting used to when compared to PVM. The concept of a Carte-
sian communicator may seem foreign at first, but with understanding, it becomes a
flexible and powerful tool.

Heat in MPI Using Broadcast/Gather
One style of parallel programming that we have not yet seen is the broadcast/
gather style. Not all applications can be naturally solved using this style of pro-
gramming. However, if an application can use this approach effectively, the
amount of modification that is required to make a code run in a message-passing
environment is minimal.

Applications that most benefit from this approach generally do a lot of computa-
tion using some small amount of shared information. One requirement is that one
complete copy of the "shared" information must fit in each of the processes.

If we keep our grid size small enough, we can actually program our heat flow
application using this approach. This is almost certainly a less efficient implemen-
tation than any of the earlier implementations of this problem because the core
computation is so simple. However, if the core computations were more complex
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and needed access to values farther than one unit away, this might be a good
approach.

The data structures are simpler for this approach and, actually, are no different
than the single-process FORTRAN 90 or HPF versions. We will allocate a complete
RED and BLACK array in every process:

We need fewer variables for the MPI calls because we aren't creating a communi-
cator. We simply use the default communicator MPI_COMM_WORLD. We start up
our processes, and find the size and rank of our process group:

Since we are broadcasting initial values to all of the processes, we only have to set
things up on the master process:

As we run the time steps (again with no synchronization), we set the persistent
heat sources directly. Since the shape of the data structure is the same in the mas-
ter and all other processes, we can use the real array coordinates rather than map-
ping them as with the previous examples. We could skip the persistent settings on
the nonmaster processes, but it doesn't hurt to do it on all processes:
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Now we broadcast the entire array from process rank zero to all of the other pro-
cesses in the MPI_COMM_WORLD communicator. Note that this call does the send-
ing on rank zero process and receiving on the other processes. The net result of
this call is that all the processes have the values formerly in the master process in
a single call:

Now we perform the subset computation on each process. Note that we are using
global coordinates because the array has the same shape on each of the processes.
All we need to do is make sure we set up our particular strip of columns accord-
ing to S and E:

Now we need to gather the appropriate strips from the processes into the appro-
priate strip in the master array for rebroadcast in the next time step. We could
change the loop in the master to receive the messages in any order and check the
STATUS variable to see which strip it received:
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We use MPE_DECOMP1D to determine which strip we're receiving from each pro-
cess.

In some applications, the value that must be gathered is a sum or another single
value. To accomplish this, you can use one of the MPI reduction routines that coa-
lesce a set of distributed values into a single value using a single call.

Again at the end, we dump out the data for testing. However, since it has all been
gathered back onto the master process, we only need to dump it on one process:

When this program executes with four processes, it produces the following output:

The ranks of the processes and the subsets of the computations for each process
are shown in the output.
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So that is a somewhat contrived example of the broadcast/gather approach to par-
allelizing an application. If the data structures are the right size and the amount of
computation relative to communication is appropriate, this can be a very effective
approach that may require the smallest number of code modifications compared to
a single-processor version of the code.

MPI Summary
Whether you chose PVM or MPI depends on which library the vendor of your sys-
tem prefers. Sometimes MPI is the better choice because it contains the newest
features, such as support for hardware-supported multicast or broadcast, that can
significantly improve the overall performance of a scatter-gather application.

A good text on MPI is Using MPI — Portable Parallel Programming with the Mes-
sage-Passing Interface, by William Gropp, Ewing Lusk, and Anthony Skjellum (MIT
Press). You may also want to retrieve and print the MPI specification from
http://www.netlib.org/mpi/.

Closing Notes
In this chapter we have looked at the "assembly language" of parallel program-
ming. While it can seem daunting to rethink your application, there are often some
simple changes you can make to port your code to message passing. Depending
on the application, a master-slave, broadcast-gather, or decomposed data approach
might be most appropriate.

It's important to realize that some applications just don't decompose into message
passing very well. You may be working with just such an application. Once you
have some experience with message passing, it becomes easier to identify the criti-
cal points where data must be communicated between processes.

While HPF, PVM, and MPI are all mature and popular technologies, it's not clear
whether any of these technologies will be the long-term solution that we will use
10 years from now. One possibility is that we will use FORTRAN 90 (or FORTRAN
95) without any data layout directives or that the directives will be optional.
Another interesting possibility is simply to keep using FORTRAN 77. As scalable,
cache-coherent, non-uniform memory systems become more popular, they will
evolve their own data allocation primitives. For example, the HP/Exemplar sup-
ports the following data storage attributes: shared, node-private, and thread-pri-
vate. As dynamic data structures are allocated, they can be placed in any one of
these classes. Node-private memory is shared across all the threads on a single
node but not shared beyond those threads. Perhaps we will only have to declare
the storage class of the data but not the data layout for these new machines.
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PVM and MPI still need the capability of supporting a fault-tolerant style of com-
puting that allows an application to complete as resources fail or otherwise
become available. The amount of compute power that will be available to applica-
tions that can tolerate some unreliability in the resources will be very large. There
have been a number of moderately successful attempts in this area such as Con-
dor, but none have really caught on in the mainstream.

To run the most powerful computers in the world at their absolute maximum per-
formance levels, the need to be portable is somewhat reduced. Making your par-
ticular application go ever faster and scale to ever higher numbers of processors is
a fascinating activity. May the FLOPS be with you!



V
Benchmarking



Using Published
Benchmarks

Now that you are excited about making your code go really fast, you want to buy
your very own high performance computer. How do you go about deciding which
one? You will be spending somewhere between $10,000 and $30 million; you
should make sure you get what you pay for. One approach is to just get more of
the computers you already have. Another way is to get the marketing literature
from each vendor and choose the best one. You could get one of each and let
your users decide which they prefer after a year or so. You could call in the sales-
people, have them give a presentation, and based on the quality of the graphics in
the presentation, decide which computer to purchase.*

None of these approaches suffices for any engineer worth half their salt. We like to
poke, prod, kick the tires, and take a test spin, In Chapter 16, Running Your Own
Benchmarks, we discuss how to test drive one of these systems. However, you
can't test drive every computer system on the planet. Often, we use published
benchmark data to help guide us toward the right computer. We can use the pub-
lished benchmark information to help narrow the focus, and, after doing our own
performance testing, we can use published benchmarks to verify that our results
are not completely out of line.

There are three sources of benchmarks:

• Vendor-specific benchmarks such as the iCOMP

• User organizations who share their benchmarks, such as Linpack, NAS, or
SPLASH

Don't laugh too hard. Some of these actually happen more often than you think.
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• Industry organizations such as SPEC

It's important to know the value of each of these types of benchmarks so they can
be appropriately used when making a decision.

There are many different types of benchmarks, ranging from very simple (30 lines
of code) to very complex (100,000+ lines of code). A benchmark often summarizes
a system's performance in a single number. For example, a $100,000 system might
rate a 10.7, and a $150,000 system might be rated at 23.6. Which one is better? The
second system, which is rated more than twice as high, but only costs 50% more,
sounds like getting something for nothing. Unfortunately, the only thing that mat-
ters after you buy the system is how well the system runs your (or your users')
applications under operating conditions that you expect in production.

A large challenge is to find a benchmark (or a few benchmarks) that roughly mod-
els your workload. This is why we need to understand that different benchmarks
measure different things. However, before we go off and learn all about the differ-
ent benchmarks, we need a little terminology.

MIPS: Millions of Instructions Per Second
The execution rate of a computer system is one way one could estimate the per-
formance on a particular user application. However, it's one of the worst possible
metrics to use. MIPS (millions of instructions per second) is typically related
closely to the clock rate of the processor. And while it is pretty safe to assume that
a 100-MIPS processor would be better than a 3-MIPS processor, a 50-MIPS proces-
sor could easily outperform a 100-MIPS processor.

Thankfully, few vendors still quote MIPS when comparing their computer perfor-
mance to another vendor. Unfortunately, using MIPS is really comparing apples to
oranges. The only reliable definition of MIPS today is, "meaningless indicator of
processor speed."

Using MIPS as a tool to determine relative performance of different computers is
flawed in two basic ways. First, a million instructions on one processor architec-
ture does not accomplish the same work as a million instructions on another.* For
example, if one processor does floating-point in software and takes 100 integer
instructions to do a floating-point operation, your 100-MIPS processor becomes
one million useful instructions per second. Also, especially in CISC processors, dif-
ferent instructions can take different amounts of time, so MIPS must be some type
of weighted average of the number of instructions per second. Were your "million"
instructions all NO-OPs (do-nothing instructions) or 32-bit loads from memory?

* It's like determining the winner of a foot race by counting who used fewer steps.



Introduction 331

The second problem with using MIPS is that some vendors have redefined "MIP"
as their own internal metric to compare different models of their own computers.
For example, for a long time, folks viewed the DEC VAX 11/780, introduced in
1978, as the standard "1 MIP" machine. The funny thing is that the 11/780 isn't a 1
MIP machine at all—at least not in a pure sense. DEC published figures stating
that for a reasonable job mix, the 11/780 executes at a rate of 470 thousand
instructions/second—less than half of 1 MIP. So if somebody says that they have a
10-MIPS machine, by comparison with the 11/780, their computer is 10 times the
speed of an 11/780, or less than 5 MIPS. You sometimes hear the expressions
"VAX MIPS" or "VUPs" (VAX units of processing) to make the comparison clear.

All this taken together means that MIPS is only useful for comparisons between
two processors from the same vendor that support the same instruction set with
the same compilers. Intel has this type of benchmark, but they call it the iCOMP
rating to emphasize that it is just an Intel benchmark that can be used to compare
the relative performance of Intel processors.

What Are Mflops?
Floating-point benchmarks sit at the other end of the spectrum from MIPS. Float-
ing-point performance is often measured in terms of millions of floating-point
operations per second, called megaflops or MFLOPS for short. By the least contro-
versial definition, a floating-point operation is one that executes on floating-point
hardware. This definition includes floating-point additions, multiplies, compar-
isons, format conversions (between integer and floating-point form, for example),
and perhaps divides and square roots, if they too are implemented in hardware.
Unless otherwise stated, most megaflops figures report the rate at which the hard-
ware can perform some mix of additions and multiplies. Square roots and divides
take longer to execute, are less common in most codes, and often can't be
pipelined to the same extent as additions and multiplies (they might even be soft-
ware functions), which makes them less valuable in predicting general perfor-
mance.

Just like MIPS, megaflops are sometimes reported in terms of machine peak
speeds and sometimes in terms of benchmark speeds. However, while it is consid-
ered misleading to talk about peak MIPS ratings, vendors regularly quote peak
megaflops rates. Peak megaflops for current processors are usually an integral
multiple of the clock rate (usually 1, 2, or 4). The megaflops rate can be doubled
because at the heart of many new machines' instruction sets is a floating-point
multiply-add operation that can perform two "flops" in the space of one (under
optimal conditions). The multiply-add is perfect for accumulating a running sum of
vector elements, as in a dot product. On a four-way superscalar with two fully
pipelined multiply-add units, a processor can produce four Mflops per cycle. As
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we add functional units, the peak Mflops become less and less useful. The bigger
issue will be how quickly data can be moved into and out of the processor.

User Benchmarks
Consider a benchmark story. You could stay up late tonight and create a bench-
mark called the "zmark." It could test a few things, check the time, average things
out and declare the system being tested as "12 zmarks." Then you could run it on
lots of different computers, put them in a table, register the www.zmark.org
domain and publish your ranked list of the performance of the computers you
have tested. Chances are good that you would probably be ignored.

However, if word got out that your benchmark was the best available indicator of
system performance, users might start buying their computers only after looking at
your rating. Then, vendors would be banging on your door to make sure their
newest computers were properly ranked in your list. They would give you time on
their computers or even give you a computer to use. Nowyour list of performance
results begins to become very complete, and the vendors begin to quote your
results in their marketing literature.

Because of added attention, users put even more stock in your zmark rating. At
some point, the best engineers at the vendor companies would examine your code
and figure out where their compilers were generating less-than-ideal code. Then
they might fix up their compilers to do their best on your code. One vendor real-
izes that by doubling the cache size they can improve their zmark rating by a fac-
tor of five, so they add the cache and sell lots of systems. At some point, the users
who are purchasing their computers based on your zmark rating begin to realize
that their applications run much faster on a computer with a lower zmark rating.
Then word gets around that the zmark benchmark has been broken. Pretty soon
users stop relying on your zmark to make their purchases.

For a brief moment in time you created a user benchmark. There have been many
influential user benchmarks that measured high performance computing. As a mat-
ter of fact, before high performance computing became mainstream, user bench-
marks were the primary source of performance information for high performance
systems.

Unpack
The mother of all benchmarks is the Unpack benchmark, written by Jack Don-
garra, formerly of Argonne National Laboratory, but now at the Oak Ridge
National Laboratory in Tennessee. You hear "Linpack" so often, it's easy to believe
it's the name of the benchmark. The goal of the Linpack was not to develop a
benchmark, but instead to develop a set of high performance library routines for
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linear algebra.* As the Unpack developers gathered performance information
about their library, they began to publish their results. The Unpack benchmark
uses a handful of those routines to measure the time it takes to solve a dense sys-
tem of linear equations using Gaussian elimination. The benchmark reports aver-
age megaflop rates by dividing the total number of floating-point operations by
time.

It turned out that the Unpack 100x100 program stressed both the floating-point
performance and the memory performance of the computer systems of the 1980s
and early 1990s. Because of the nature of the computation, there were no "tricks"
available to speed it up. Also because scientists "understood" Gaussian elimination,
they could relate the Unpack results to their own applications. In some ways, Lin-
pack was viewed as a very hard problem for a high performance computer to
solve. In a sense, users felt that if a computer could do 300 Mflops on Unpack,
then it would probably do 300 Mflops (or better) on their applications.

There are several versions of the Unpack benchmark, differing in size, numerical
precision, and ground rules. The most useful number was the the 100x100 matrix
double-precision results under strictly compiled FORTRAN—no hand optimiza-
tions. You are allowed to use whatever compiler optimizations you have at your
disposal, like automatic loop unrolling, but you can't modify the code itself.

In addition to the 100x100 benchmark, there is also a 1000x1000 "anything goes"
Unpack benchmark. Vendors are allowed to solve the system of equations using
any method they choose, as long there isn't an appreciable loss of precision over
the original. The larger Unpack is an important metric because it predicts the
achievable peak performance on the largest computing systems for highly opti-
mized applications. While there were no tricks for the 100x100 benchmark, when
the problem was scaled up to 1000x1000 there were a wide range of performance
improvements available.*

The heart of the 100x100 Unpack benchmark is a routine called daxpy. Daxpy
scales a vector by a constant and adds it to another vector:

DO I = 1,N
DY(I) = DY(I) + DA*DX(I)

END DO

Looking closely at the loop, you can count two floating-point operations (a multi-
ply and an addition) and three memory operations (two loads and a store).

* The "Unpack" benchmark is such a classic that the library routines upon which it was based have
now been rewritten. The new linear algebra library is called "LAPACK—-Linear Algebra PACKage,"
available at http://ivww.netlib.org/lapack/. LAPACK and SCALAPAK focus on solving linear equations on
scalable parallel processors in addition to parallel/vector supercomputers.

f See the blocking discussion in Chapter 8, Loop Optimizations.
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Memory operations limit this loop's performance on most architectures, though it's
the perfect mix for some vector supercomputers.

The Linpack 100x100 ceased to be a useful benchmark when it could be easily
held in the cache of a microprocessor. The data structures for the benchmark are
only 320 KB. In 1989, Linpack clearly tested the main memory performance. How-
ever, today, 250 KB is a relatively small size for a second-level cache on a home
computer. Some top-end RISC processors support 2 MB or larger first-level caches.
Unfortunately, you can't simply scale up the Linpack benchmark. If you increase
the size to, say, 16 MB, the data structures can be accessed in a blocked fashion,
again making good use of cache.

So, the Linpack 100x100 benchmark went from the most dominant single number
benchmark in history to relative obscurity in about two years as one vendor after
another had a sufficiently large cache to hold the entire data structure for the dura-
tion of the benchmark run.

However, the Linpack benchmark continues on as the basis for the Top 500 Report,
which lists the 500 most powerful computers in the world.*

Linpack Highly Parallel Computing Benchmark
The Linpack Highly Parallel Computing (or table 3) benchmark is designed to
explore the scalability of parallel systems. In this benchmark, the vendor is
allowed to pick the size of the matrix (N), and hence the amount of work done by
each processor. The available physical memory in the system under test provides a
rough upper bound on the value for N. Information collected with the benchmark
includes:

The system peak Gflops.

The matrix size that achieves half the rated R^^ Gflops (R^x corresponding
to Nmax matrix size).

See Chapter 12, Large-Scale Parallel Computing, and http://parallel.rz.uni~mannheim.de/top500.btml.

The matrix size (N) that gives the highest Gflops for some number of CPUs. It
could be the point beyond which making the matrix any larger does not give
appreciable increase in Mflops, so it may not be the absolute highest Mflops
possible; it could also be an upper bound based on memory limitations in a
configuration.
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The Gflops achieved for the Nmax size matrix.

The smaller the matrix size for a given number of CPUs, the better, because it
implies that the system can achieve its highest performance on smaller problems.

Table 15-1 shows information extracted from the Oct 12, 1996 report.*

Table 15-1: Highly Parallel Computing Benchmark Results

In these cases, 16 CPUs are used. The ^-max Gflops, i.e., the performance reached
for the given matrix size (Nmax) is similar between pairs of systems, but the prob-
lem size needed to achieve these results is almost 50% higher on the T3E and
Fujitsu systems. In addition, to achieve one-half the Rmax Gflops, the problem size
(N1/2) varies significantly. This indicates that, if you plotted performance versus
problem size for both systems, the T3E and Fujitsu takes appreciably "longer" to
reach their maximum performance. For a user, high values for Nmax and N1y2 indi-
cate that these systems are better suited to very scalable problems.

SPLASH
The Stanford Parallel Applications for Shared Memory (SPLASH) is a very common
benchmark suite for shared-memory parallel processors. SPLASH was developed in
association with the FLASH (FLexible Architecture for SHared memory) hardware
architecture project at Stanford University. The FLASH system is a scalable non-
uniform memory access (NUMA) system. The SPLASH benchmark consists of four
kernelt benchmarks and eight scientific applications. One unique aspect of the
applications is that they are already parallelized using a portable parallel process-
ing macro library.

* Note that the C90 is using the Strassen algorithm, which accounts for the higher Rmax than Rpeak. This
is because the Gflops calculation is based on Gaussian Elimination, and Strassen has a lower operation
count. This points to a potential problem with the Unpack benchmark in situations where vendors are
free to choose the algorithm to solve the problem (which is the case for N=1000 and NxN). If C90 used
the standard solution method, it would have an Rmax no larger than Rpeak (15 Gflops). And it might
also affect the problem sizes for Nmax and N1/2.
f A kernel benchmark is one where some computationally intensive subset of a large application has
been extracted. The small portion of the program is augmented with data and driver routines so that it
is self-contained. Using the kernel approach keeps benchmark codes smaller and more manageable.



336 Chapter 15: Using Published Benchmarks

The developers of the programs have identified the areas of memory that can be
shared and the portions of the computations that can be done in parallel using
multiple threads. The data areas have been carefully decomposed by hand, and
the developers have even identified some areas in the code where it might be
beneficial to migrate data from remote memory to local memory.

The advantage of eliminating the need for a sophisticated compiler is that it is
quite convienent to test hardware parallel processing capability before the com-
piler is available. In a sense, the SPLASH results are a good predictor of how fast
these applications might run when a good compiler would be available.

If a vendor quotes SPLASH results as their only benchmark, it might lead you to
believe that their compiler was a bit weak. However, vendors do not typically
quote performance results for SPLASH. Usually these codes are used in a research
setting to test the newest emerging hardware.

The SPLASH web address is http://www-flash.stanford.edtL/apps/SPLASH/ and the
address to download the codes is ftp://www-flash.stanford.edu/pub/.

NAS
The NAS benchmark suite is a set of codes developed by NASA. The primary idea
of the NAS benchmark is to test large, fast, scalable parallel computer systems.
There are three benchmark sets that make up the NAS parallel benchmarks:

NPB1
This benchmark is unique in that it is specified without using any source code.
NAS publishes a report describing the mathematics and the computations to
be performed. The vendors are free to choose any language to solve the prob-
lem. The goal is to have a benchmark that truly allows architectures to be
shown in their best light and eliminate any architecture or compiler bias that
might be present if the benchmark were expressed in source code. The down-
side of this benchmark from the user perspective is that you don't really know
how hard the vendor had to work to make the benchmark run so fast. Per-
haps it was a lazy afternoon or perhaps it took 20 of the company's top engi-
neers a year and a half. Because the NPB-1 benchmark is part of NASA's
production workload, one benefit is that NASA ends up with the modified ver-
sions of the code.

NPB2
This benchmark is a more traditional benchmark with two kernel codes and
three application codes. It's distributed with MPI message- passing calls in
place. As in the SPLASH benchmark, this benchmark developer has already
identified the parallelism, the data decomposition, and the communication pat-
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tern. For this reason, it's a better test of the hardware and architecture perfor-
mance rather than the compiler performance.

NPB 2-serial
This benchmark is a "deparallelized" version of the NPB 2 benchmark. The
idea is to allow smaller single processor and multiprocessor shared-memory
systems to execute the same codes for comparison purposes. These can test
compiler ability by comparing the hand-tuned parallel version to the compiler-
automatic parallel version.

The NAS codes are useful to categorize the performance of the larger advanced-
architecture computers. You will also see the NAS benchmarks used in research
settings. You can get more information about the NAS benchmarks at http://sci~
ence. nas. nasa.gov/Software/NPB/.

STREAM: Memory Bandwidth Benchmark
Many benchmarks measure some "overall" performance metric that attempts to
determine how well the system performs in a "typical" environment. This simplifi-
cation reduces many factors, including compiler, CPU architecture, and memory
architecture, to one number.

The STREAM benchmark looks at user-sustainable memory bandwidth (which can
be completely unrelated to peak theoretical memory bandwidth), and at the rela-
tive costs of memory accesses and floating-point arithmetic. STREAM is intended to
complement UNPACK 1000 and UNPACK NxN, which provide an excellent
approximation to the peak sustainable floating-point performance. While looking
at the STREAM performance of your potential computer is probably not enough
information to make a good decision, these numbers can be very useful.

The STREAM code executes and times several very long loops with a simple body,
as shown in Table 15-2.

Table 15-2: STREAM Benchmark Components

The loops access sufficiently large data structures that the data can't fit in the
cache. Memory is accessed using unit stride. The effective memory bandwidth and
flops are computed for each loop.



338 Chapter 15: Using Published Benchmarks

While these values are interesting and useful, another number called machine bal-
ance is computed. Machine balance captures the relative performance of the float-
ing-point computations versus the memory bandwidth. Table 15-3 features
information extracted from some of the STREAM results. Balance is peak Mflops
(as determined by Linpack 1000x1000) divided by triad bandwidth in megawords
(8 bytes per word in these figures) per second. The computer vendor names have
been removed from these results. The lower the machine balance number, the
faster memory is relative to the CPU.

Table 15-3: Selected STREAM Results

As you can see, there is a wide range of performance values for both the arith-
metic and the memory bandwidth. However, when you examine the ratio, we see
quite dramatic effects of the memory hierarchy implementations. The values range
from 0.9 to 64. The computer that has a balance factor of 0.9 probably doesn't
need a cache. The computer with the balance factor of 64 had better be hitting its
cache 99%+ of the time.

While the STREAM benchmark can't tell you exactly how well your computer will
perform on your code, it can tell you some basic performance strengths and weak-
nesses to help you design your benchmarks to test those strengths and weak-
nesses more accurately. Computer vendors often use the STREAM benchmark in
their own internal testing, and it is increasingly being quoted by computer vendors
in their external documentation.
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The STREAM benchmark was developed by John McCalpin while at the University
of Delaware. The STREAM benchmark information is maintained at
http://www.cs.virginia.edu/stream/.

HINT
Another memory-oriented benchmark is the HINT (Hierarchical INTegration)
benchmark. HINT was developed at NASA Ames Lab and Iowa State University by
John Gustafson and others. HINT is reported in a graphical representation and
captures floating-point performance, integer performance, memory hierarchy, unit
stride memory performance, numerical accuracy, and non-unit-stride memory per-
formance.

HINT doesn't fix the problem size, number of iterations, or the running time. HINT
executes a computation and produces a speed measure called quality improve-
ment per second (QUIPS). To determine the QUIPS, HINT performs a computation
to determine the area bounded by f(x)=(l-x)/(l+x) for (X=x<-l. As the program
progresses, it hierarchically decomposes 0<=x<=l into regions and performs the
computation. As long as memory, time, and computational accuracy are available,
HINT continuously refines its decomposition, yielding a more accurate result. The
computation benefits both from increased memory and increased computation.
The measure is how quickly the accuracy of the computed integral can be
improved per second, hence the term "quality improvement per second."

HINT results can either be viewed graphically, plotting the execution time versus
QUIPS, or you can integrate the area under that curve to produce a single value
called MQUIPS. A precursor to the HINT benchmark was the SLALOM benchmark,
which measured how much useful work that can be completed in a fixed amount
of time. You can get more information regarding HINT at http://www.scl.ames-
lab.gov/Projects/HINT/.

Industry Benchmarks
With the pressure that is placed on an influential benchmark and the financial
incentive to gain an advantage in the benchmark area, one of the best sources of
reliable information is industry benchmarks.

Industry benchmarks are usually developed by an independent organization that
sets the policies for benchmarks, distributes and updates the benchmarks, and
then publishes their results. Vendors and users generally pay a fee to make use of
the benchmarks. Two examples of industry benchmarks are the Systems Perfor-
mance Evaluation Cooperative (SPEC) and the Transaction Processing Council
(TPC).
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These organizations have a strong incentive to keep their benchmarks impartial
and to keep the benchmarks from becoming obsolete. While vendors would all
love to gain some slight advantage for their particular rating according to one of
these benchmarks, they also know that if users are to trust a benchmark result, the
organization must maintain high integrity. The need for integrity keeps the games
to a minimum, and if one vendor cheats a bit when reporting the results, the other
vendors won't hesitate to complain loudly. The result is a self-policed environ-
ment. If a benchmark turns out to be particularly easy to get better results using
questionable methods, the benchmark code or the rules for execution are gener-
ally changed by the benchmark organization to rectify the problem.

The net result is that the best benchmarks change over time as technology and
user workload change over time.

The SPEC Benchmarks
In the late 1980s, a group called the Systems Performance Evaluation Cooperative
(SPEC) formed to "establish, maintain and endorse a standardized set of relevant
benchmarks that can be applied to the newest generation of high performance
computers." Benchmarks submitted by member computer companies were assem-
bled into the first SPEC suite of codes.* You have probably heard of SPECmarks—
measurements of how well computers performed on the benchmark suite. These
are cumulative numbers for the performance of the suite as a whole.

The first SPEC benchmark suite was called SPEC89. This suite was revised in 1992
and 1995, and a new version is planned for 1998. By releasing new versions, the
SPEC organization can keep their benchmarks relevant to current hardware and
software trends. Computer vendors can't become too skilled at tuning the codes.
SPEC supplies a number of different benchmarks that test performance outside the
realm of the CPU and memory. I will describe some of the SPEC benchmarks. For
more detail, consult the http://www.spec.org web site.

SPEC89

This was the original SPECmark benchmark. It consisted of the the geometric
mean^ of the runtimes for 10 programs in the suite. This benchmark did not differ-
entiate between integer and floating-point performance. The single, original SPEC-
mark number was a preemptive attempt by SPEC to prevent the vendor

* As you can imagine, computer companies would be inclined to submit benchmarks that they do best
on, and that the competition does worst on.

t The geometric mean is the nth root of the product of n numbers. A geometric mean is affected by
the worst benchmarks in the suite, more than an average would be.



Industry Benchmarks

community from accumulating the 10 benchmark numbers into their own, possibly
biased, summary result.

Interestingly, in the late 1980s the SPECmark was not a particularly important
benchmark in the minds of computer buyers. The different competing computer
architectures of the time (CISC, RISC, and vector) had such different performance
characteristics that no benchmark could effectively relate all of their performances,
In the high performance field, the dominant benchmark was the Linpack 100x100
code which measures floating-point performance and memory bandwidth. RISC
and CISC microprocessors performed so poorly on the Linpack benchmark that
there was really no comparison.

SPEC92

The SPEC92 benchmarks are a significant improvement over the SPEC89 bench-
marks. There are 20 benchmarks in the SPEC92 CPU benchmark suite, up from 10
in SPEC89. SPEC92 includes six integer and 14 floating-point codes. SPEC92 is
reported in two summary figures: floating-point (SPECfp92) and integer
(SPECint92). The reason that the overall SPECmark figure has been eliminated is
that it cloaked the differences between integer and floating-point performance. For
instance, a machine with good floating-point performance and mediocre integer
performance could come up with a similar SPECmark as a machine with the
reverse situation. By having two numbers, the distinction between floating and
integer performance are clearer.

Around 1992, the floating-point performance of high-end RISC processors began to
creep toward that of low-end supercomputers, and cache sizes began to grow
quickly. As the difference between supercomputers and RISC-based systems began
to blur, the SPECfp92 benchmark became more interesting to high performance
computing users. As the Linpack 100x100 benchmark was losing its title as the
high performance computing benchmark, SPECfp92 became the battleground for
the upcoming RISC processors. Vendors invested a great deal of time tuning their
hardware and software for SPEC92 performance. At some point around 1994, the
increasing cache sizes and clever compilers cracked the SPECfp92 benchmark.
Luckily the SPECfp95 benchmark was just around the corner.

SPEC95

By the time the SPECint95 and SPECfp95 benchmarks were released, it became the
only remaining single-number CPU benchmark in wide use. Improvements from
the SPEC92 benchmark include the following:

• Benchmarks no longer fit into on-chip caches.
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• Benchmarks run much longer.

• The codes are more like large user applications, and the loops contain more
code.

• The SPEC95 suite includes all the tools and scripts necessary to run the codes
and prepare the performance report for return to SPEC. This standardized the
execution environment and reduced the vendor's ability to tune the bench-
mark environment for maximum performance (which weren't representative of
how users would actually use their computers).

The SPEC organization has effectively assumed that all benchmarks have a half-
life. Once they release one benchmark, they begin work designing the next
benchmark. SPEC invites users (and compensates them) to submit codes for the
next benchmark suite. The next set of CPU benchmarks is scheduled to be
released in 1998 and is tentatively labeled SPEC98.

The integer benchmarks in SPEC95 include an artificial intelligence game, a simu-
lation of a chip circuitry, a C compiler, a LISP interpreter, an image-manipulation
program, a Perl interpreter, the UNIX compress command, and an in-memory
object-oriented database.

The floating-point benchmarks in SPEC95 include mesh generation, a shallow
water simulation, partial differential equations, a Monte-Carlo computation, fluid-
dynamics computation, a multigrid solver in a three-dimensional potential field,
turbulence modeling, weather prediction, quantum chemistry, and Maxwell's equa-
tions.

In addition to the SPECint95 and the SPECfp95 numbers, there are several related
benchmark results:

SPECint_base95
Measures the performance under a restrictive set of rules including:

• All the codes must use the same compiler flags.

• There may be no more than four compiler flags.

• There can be no "assertion" flags.

• There can be no feedback-directed optimization (i.e., the compiler cannot
use a profile from a previous run).

The idea is that the base rate more accurately represents the typical "mileage" the
user will experience. The more widely reported SPECint95 results can have more
aggressive optimization options and can use different optimizations on different
codes. There is also a SPECfp__base95 value. Interestingly, looking at a subset of
the SPEC95 data, there was between 0 and 10% improvement from the base to the
aggressive results. Not all vendors report base rate figures.
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SPECint_rate95
Measures the throughput of an entire (possibly multiprocessor) system. The
vendor can run as many concurrent copies of the SPECint95 benchmarks as
necessary to maximize the SPECint_rate95 value. SPECint_rate95 is computed
as the highest achievable aggregate SPECint95 throughput across the entire
system. There is a similar SPECfp__rate95 result.

The SPEC95 (and presumably the SPEC98) benchmark has gained the respect of
the vendors and the users as a single number that can compare a wide variety of
computers. By continuously improving their benchmarks, SPEC provides an excel-
lent service to both the users and the vendors. In addition to the CPU rates, SPEC
has several other benchmarks.

SPEChpc96

The SPEChpc96 is a new SPEC benchmark. This is somewhat of a follow-on effort
to the Perfect Club benchmark that tried to focus attention on larger, more realistic
application performance. In SPEChpc96, the set of programs is targeted directly at
the top end of the high performance computing spectrum including a wide range
of architectures. The two applications that are included are a seismic code and a
chemistry code. Users can execute problems of different sizes based on the overall
capabilities of their systems.

The applications are complete codes and make use of FORTRAN, C, and C++; they
also are available in PVM. These applications also include input and output as part
of the applications. Unlike the other SPEC CPU results, each application result is
reported separately. The goal is to simulate as closely as possible the real high
performance computing environment. Vendors are allowed to make certain modifi-
cations based on the assumption that users purchasing a $5 million computer
would be willing to make reasonable modifications to their applications to achieve
peak performance.

Other SPEC benchmarks

The SPEC organization is increasing its array of benchmarks beyond the traditional
memory, CPU, and application program areas. Other benchmarks include:

• SPECweb96: A web server benchmark

• SPECsfs: A benchmark for a shared filesystem over a network aimed primarily
at the Network File System (NFS)

• Multimedia performance: The initial code will be based on MPEG-2

• Graphics performance
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• OpenGL benchmark

• X Windows System performance

The SPEC organization has established its credibility in the area of benchmarks
and it is quite natural for them to expand into these new and emerging areas of
benchmarking.

Transaction Processing Benchmarks
For some applications, you are more interested in the interactive response than
raw compute power. Interactive applications often demand that the computer and
operating system be tuned to respond quickly to outside events, and be able to
handle a large number of active processes simultaneously. An appropriate model
might be a banking application, or an office environment, where there can be
many people sharing time and I/O bandwidth of a single computer. Each interac-
tive request and response can be considered a transaction.

Just as there are CPU benchmarks, there are also transaction processing bench-
marks. Transaction processing is the term generally used to refer to high- volume
database applications such as those found in the banking and airline reservation
industries. It is important to be able to accurately measure the performance of
computing systems for these applications. The number of different computer archi-
tectures used in database processing is as varied as the architectures using in high
performance computing.

The Transaction Processing Council (,http;//www.tpc.org) is an industry-based orga-
nization representing 40 computer system and database vendors. TPC provides a
framework in which to benchmark these high- end database systems. The TPC
results are highly respected in the database field. Vendors even publish the dollars
per TPC figures for their systems when comparing their products against other
vendors.

Like SPEC, TPC has had to evolve their benchmarks over time as technologies and
user needs change. Originally, the TPC-A and TPC-B were the mainstream bench-
marks for this field. Today, the TPC-C and TPC-D benchmarks are the main bench-
marks in use by these vendors.

In these benchmarks, users are simulated by another program or another
computer* that makes transactions, filling the role of many people signed on to the
machine. Performance is measured by the amount of time it takes the computer to
complete transactions under various loads.

* This is called a remote terminal emulation benchmark, when one computer drives another through
the terminal ports, or across the network. See Chapter 16.
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TPC-A

TPC-A is a benchmark of credit-debit transactions being performed by a second
computer simulating bank tellers, each issuing one request every 10 seconds. To
obtain a 1-TPS rating, 10 tellers issuing one request every 10 seconds must see
transaction completion within 2 seconds 90% of the time. There are also some
requirements on how the data is distributed throughout the database.

TPC-B

TPC-B is the same as TPC-A, except that the transactions are generated by other
processes on the same computer(s), rather than being initiated across a network.
This makes TPC-B less of a terminal I/O test and more of a database stress test.
TPC-B numbers will always be higher than TPC-A numbers.

TPC-C

TPC-C is a newer, more complex simulation, modeling the transactions of a com-
pany that sells a product or service. Transactions are orders, payments, inquiries,
and even (intentional) mistakes that need correction.

TPC-D

The TPC-D benchmark is focused on a decision-support environment where the
data is being slowly modified online at some level while other processes are per-
forming large queries, joins, and scans, The idea is to model the environment in
which many central corporate databases operate.

Closing Notes
When deciding which computer to purchase, you are bombarded with many dif-
ferent benchmark numbers. You see them in tables, bar graphs, line charts, flip
charts, and pie charts. While wading through benchmark reports can seem intimi-
dating, someone who has a basic understanding of which benchmarks measure
which aspects of performance can learn a great deal from these presentations.

Often you can learn as much from which benchmarks they don't feature as you
can from the benchmarks they do. While it's dangerous to purchase a computer
system based solely on the published benchmark results, careful analysis of these
results can significantly improve your analysis and understanding of the perfor-
mance of the system.

Use them as a performance barometer, but remember: there is nothing like bench-
marking your own code. Chapter 16 discusses how to do this so that you will have
faith and reproduability in your results.
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A good general web site that deals with benchmarks is http://www.netlib.org/
benchmark/ if you want to learn about other benchmarks not covered in this
chapter.

Exercises
1. Download some of the published benchmarks mentioned in this chapter and

attempt to reproduce the published results for your system.

2. Find two computers with different performance levels. Using a stopwatch,
measure the time it takes to perform some common task on both computers.
Compare the relative performance of the systems using your informal measure
to the relative performance as predicted by a common benchmark such as
SPEC95- Is SPEC95 a good indicator of the performance on the task you
selected? Why or why not?



Running Your
Own Benchmarks

You can read all the magazine reviews you want when looking for a new car, but
there is no substitute for the test drive. Sometimes you need to just take it out for a
spin and see how well it accelerates. Actually, if you are spending all that money
(on a computer or a car), you should have a little fun before you plop down your
cash. There are some real benefits to test driving a high performance computer:

• Your application may exercise some feature of the compiler or hardware that
wasn't revealed in the industry benchmarks.

• Your code may be "large," whereas some industry benchmarks are "small."

• Your program may require some support in the form of libraries or language
features that aren't present on the machine.

• Your application might run (unexpectedly) slowly.

• Your program may expose a horrible bug.

Besides, no benchmark we know of measures how well the keyboard is laid out,
how forgiving the compiler is, or how far the vendor deviates from what you
expect. You are only going to learn these things by sitting in front of the machine.

This chapter is about benchmarking. It won't be so much a discussion of the
mechanics of benchmarking, such as using the timing facilities—most of that was
covered in Chapter 6, Timing and Profiling. Instead, we discuss benchmark prepa-
ration and policies that will give you confidence in your results.

347
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Choosing What to Benchmark
We have seen groups scoop together a fairly random collection of programs and
pass them out to vendors as a "benchmark suite." This usually happens when
they're pressured to justify their choice for a computer and helps to satisfy the pur-
chasing department's requirement for a fair and honest evaluation. The trouble is
that although these suites may provide general insight into a machine's perfor-
mance, they don't say much about whether the machine will be good for its ulti-
mate purpose. By picking user benchmarks that reflect what you do every day, or
intend to do in the future, you can steer the purchasing justification in favor of the
right machine.

Some orthogonality in your choices is a good idea. To take an example, say that
you do structural analysis for a living. It might be wise to pick problems that rep-
resent different types of analyses, rather than several different examples of the
same thing. For instance, a suite consisting of one dynamic, one static, and one
modal analysis would tell you how the machine (and perhaps a third-party soft-
ware package) performs in three areas. If you do more of one thing than another,
that's OK. Estimate the relative importance of each as a percentage of the work
you do and use it as a weighting factor when it comes time to tally the benchmark
results. This way, the most important things you do influence the outcome to the
greatest extent.

Benchmark Runtime
Of course, you don't know how long benchmarks are going to run if you haven't
run them yet. Even so, it's worth trying to project the runtime so that you can
keep the total for the collection to a reasonable level. Each code should execute
for more than a few minutes, but less than 15 or so. All told, it should take less
than an hour to do the "whole thing, if for no other reason than that you are going
to end up running it over and over. If benchmarks are too short, performance may
get buried in the startup and termination overhead. If benchmarks are too long,
you'll get bored.

How do you estimate the runtime? Use a published benchmark such as SPECfp95.
If your last machine was rated at 3 SPECfp95, and the system you are looking at
today is rated at 60 SPECfp95, then everything should run 20 times faster, right?
(Well, let's just hope so). Notice that this will take a significant 20-minute job and
turn it into an insignificant one-minute benchmark, which brings up a good point.
You need to choose benchmarks that are representative of what you are going to
do in the future, when you get the new machine. This is not only true for runtime,
but for memory requirements (and I/O) as well. After all, if the old machine was
adequate, you wouldn't be looking for a new one.
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Benchmark Memory Size
Benchmark memory size is one of the most important areas to consider when
pulling a suite together. New caches and memory systems are much bigger and
faster than those of machines a few years ago. But as we saw in Chapter 2, High
Performance Microprocessors, the relative gap in memory system performance ver-
sus CPU performance has widened. This means that one program, running two
different size problems, can test two completely different things:

• CPU performance for small problems

• Memory system performance for large problems

For this reason, it's a good idea to size the benchmarks realistically or make them
representative of the kinds of problems you will be running down the road. Your
own benchmarks are probably one of the few places you will get to see figures for
the performance of large problems anyway.

Be careful, of course, that the machines have sufficient memory for whatever
benchmarks you plan to run. Otherwise, your programs will page (or swap), giv-
ing you useless performance data. (You should never plan to page or swap on
purpose.) If you need help determining the memory sizes of your programs, see
Chapter 6.

Kernels and Sanitized Benchmarks
In some cases, the sheer bulk of an application makes it unsuitable as a bench-
mark. There may be hundreds of thousands of lines of code, or it may require data
or resources that are difficult to port. Still, if the application is an important exam-
ple of the work you do, you might want to construct a kernel—a subset of the
code that represents the computations where the time is spent. Figure 16-1 shows
the relationship between a kernel benchmark and the original application. Usually
you would extract the central routines and give them their own main or driver
routine. Data can be included in the source or read into the program at startup.

There are also cases where code is sensitive or proprietary and needs to be sani-
tized before it can be released or reviewed by others. Again, the idea is to extract
the essence of the computations while leaving out the peripheral work, including
setup, interaction, and output. Comments can be removed with an editor, and vari-
able names can be disguised if necessary. As with a kernel, a sanitized benchmark
can have its data included as part of the source code. A word of warning: when
setting up the data for a kernel, make an extra effort to be sure you haven't left
the code open to over-optimization by a clever compiler. Initialize values from a
file, a separately compiled block of data or externals; hide the ultimate fate of vari-
ables from the compiler by placing some of the results in common or external
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variables; or print out the values at the end. These steps help guard against dead
code removal or constant propagation that wouldn't have occurred in the original
application. If one vendor's compiler recognizes an opportunity to remove unnec-
essary code, and another doesn't, you are no longer running the same benchmark
across machines.

One common technique in kernel codes is to execute the kernel loop multiple
times to get a large enough time to be meaningful:

Depending on the computation, the compiler could quickly determine that the
kernel loop was computing the exact same results for all of the MAXREPS itera-
tions and only run the last iteration! Or it might interchange the loops. The way to
stop this from happening is to add a call to an external routine that is compiled
separately. This stops the inquisitive compiler from performing data flow analysis
into the routine and is forced to execute all of the MAXREPS iterations in the order
you specify:
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If the compiler can detect that the NOOPT routine has no effect on the variables
participating in the kernel loop, it can ignore the call and potentially remove dead
code that you think you are timing. The solution to this problem is to either put
the variables into the call to NOOPT as parameters or place them all in a FOR-
TRAN common block,

Clever compilers are wonderful tools when we want our program to run fast and
produce the right results. However, they can make a kernel benchmark writer's life
painful at times.

Another problem with kernel codes is the effect of cache. If you must run the ker-
nel several thousand times to make your time meaningful, then you have to be
aware that it may run all but the first iteration from the cache. If the application
does not normally run from cache, then you may be erroneously reporting a much
faster execution time than you will see on the real application. To solve this prob-
lem, you can increase the size of the data structure so that it can't remain in the
cache between iterations. Another approach is to perform some calculation to
clear out the cache between successive iterations.

With all the trouble it takes to create kernel codes, they play a very important role
in the decision-making process. Remember that the industry and users benchmarks
generally had a few kernels and a few large codes. Each provides us with poten-
tially different information. The large codes tell us how well the new system run
applications. The kernels can often help explain why the applications run so well
or so poorly. A kernel might tell you that System A does division 21 times faster
than System B, while addition takes about the same amount of time. So if one of
your users uses lots of division, they might want to know that information before
the final decision is made.

Benchmarking Third-Party Codes
With third-party codes, you have little control over the performance on different
hardware platforms. The company that owns the code ported, tested, and perhaps
tuned it slightly (though not always), and shipped it out in executable form. You
may have some control over the amount of memory used (which can affect the
performance), but beyond that, there is usually little you can do if it runs slowly.

You might expect that the application's speed on various machines would roughly
track SPEC, MIPS, and mflops, but it may not! To understand why, consider the
potential problems a small- to medium-sized third-party software developer may
face. Each new release incorporates bug fixes from previous releases and perhaps
some enhancements—sometimes major enhancements. Developers get into real
trouble if they start maintaining separate versions of the code for different plat-
forms, so they work with one and periodically distribute the changes.
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Assume that you are Mr. Software Developer. You have 10 Brand X computers,
one (old) Brand Y, and know where you can borrow time on a Brand Z. On
which platform will you develop? Brand X, naturally, because that's what you
own.

Now say that you have finished a release for Brand X—it passed 98% of the QA
suite (and the other 2% are declared features rather than bugs)—and now you are
migrating the code to Brands Y and Z. It gets through the QA suite with results in
the neighborhood of 92% correct. You find that by shutting off optimizations that
you can bump it up to 96%. "Hmmm. . . , " you say, "I have to get this release out
on time. I'll ask Mr. Computer Vendor to look into this problem later." And you
ship the code with compiler optimizations reduced or shut off altogether! By sacri-
ficing performance, you saved yourself development time.

Assuming the scenario is true (and even if it's not in your case), there is an extra
step you want to take when planning a platform for third-party codes: ask the
people who own the code what platform they use to develop the application. The
brand(s) used for development get the earliest software releases and perhaps the
best relative performance. See if the company has opinions about particular
brands, and whether they have run benchmarks between them.

You won't typically find a performance report from the actual vendor of the soft-
ware. For example, it would be nice if SAS (a statistical package) would publish a
"SASmarc" rating for each of the computer systems. You seldom see such a rating
published; if SAS were to publish such a rating, it would damage their relationship
with hardware vendors. Eventually all the hardware vendors would hate them.
Even if a company was happy that they had the best SASmarc performance one
quarter, the next quarter another company would take over the top spot making
the first company angry. Eventually there would be no company that would be
willing to sell SAS on their hardware.

Because you can't depend on the software developers to "rat" on the hardware
manufacturers, you might have to contact other users with experience across sev-
eral platforms. They may even say "Gee, we bought a Brand W and a Brand Z.
But every one runs their code on Brand Z, because it is so much faster. We turned
the Brand W computer into a web server."

As ever, you will want to run your own benchmarks on various platforms, if possi-
ble. It gets a little tricky here because now you have to arrange with both the
hardware vendor and the supplier of the third-party package. In the case of well-
known applications, try convincing the hardware vendor to borrow the software
for you. They may already have it, or they may have someone in the company
who is responsible for the communication with the software supplier. For less
popular packages, you probably will have to approach the software vendor your-
self.
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Benchmark the Compiler, Development
Environment, and Operating System
Often, the quality of the compiler and development environment can have a sig-
nificant impact on how well you can use the system. If the only areas you test are
compute speed and memory bandwidth, you will be missing this very important
aspect. Other features you may want to look for are parallel debuggers, perfor-
mance tuning tools, batch queuing systems and system administration tools.

If the system will be used for some interactive activity while it chugs away at the
batch jobs, make sure to test how it performs with a mix of activity. Sometime sys-
tems are turned to favor one type of activity at the expense of another.

This is a good reason to schedule a visit to the company and run the benchmarks
yourself rather than sending the vendor the benchmark source and having them
send back results a month later.

Benchmark the Company
Once you have purchased the computer, and the company has cashed the check,
hopefully your relationship with the company will continue. You will need help
and support in a wide range of areas from hardware to software, tuning and sys-
tem administration. A good company can provide excellent resources to help you
deploy the best possible service for you and your users. Before purchasing a sys-
tem, you should test the service and support, and make sure it's satisfactory.

Types of Benchmarks
There are two components to every benchmark: the system under test, and the
quantity for which you are measuring. In this book we've talked primarily about
CPU/memory system performance. Accordingly, the benchmark techniques we
describe are aimed at CPU performance, though you can borrow some of them for
I/O and graphics tests, too. On the outside, the tests are simple: measure the time
it takes to do something.

The way the benchmarks are conducted should mimic the way the machine ulti-
mately will be used. Will you be running one job at a time, or will there be many?
Are you more interested in interactive response than CPU performance? How will
you compare your measurements between platforms? These are some of the ques-
tions you need to ask when planning a benchmark.
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Single Stream Benchmarks
In the simplest kind of benchmark, single stream, you measure how long it takes
the computer to execute a collection of programs, one at a time. Usually the
machine is booted "multiuser," running the normal selection of daemons and
background processes, but without any other demanding jobs to do, aside from
your benchmark as shown in Figure 16-2. Generally, two important sets of num-
bers result:

• The elapsed time for the whole collection

• The elapsed time for each individual piece

Often the pieces are contributed by different groups within your organization,
meaning that there are going to be people who are just as interested in how their
portion ran, as how things went overall. To make an objective measurement, you
are going to have to gather estimates of the importance of each piece, and use
those estimates as weighting factors for tallying the results as shown in Figure
l6~3. Also, you will want to normalize the results because the time it takes to run a
particular program may not correspond to its importance.

To illustrate, say that you got the results shown in Table 16-1 from running pro-
grams A, B, and C on brands X, Y, and Z (in seconds).

Table 16-1: Raw Time Results

Taking the same table and normalizing the times in each row by the best time
obtained, we get the results (in seconds) shown in Table 16-2.
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Now we need to apply weighting factors. Using whatever yardstick is appropriate,
rate the applications by their relative importance. For example, if you run Program
A most of the time, you might say that it should contribute 65% of its normalized
runtime to the answer. Likewise, Programs B and C might contribute 25% and 10%,
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respectively. This means that, taking Brand X, the accumulated benchmark time
would be:

Brand Y and Brand Z benchmark results would be:

Brand Z wins (though not by much)! This outcome isn't immediately obvious from
the raw data. Brand X won two out of the three benchmarks, but Brand Z won the
most important of them. How much of a difference is significant? If I were buying
the system, I wouldn't let 2% or even 10% or 20% be the deciding factor. There are
other things to be concerned with, like cost and ease of use. However, a perfor-
mance difference of 30% or more starts to become important. Still, the hardest part
of choosing is deciding the value of the unquantifiable features of a system.

Throughput Benchmarks
If you are shopping for a server on which you expect to run several jobs at once,
you will want to select a mix of codes to be benchmarked all at the same time.
This shows you how the machine handles a heavy load, with a higher number of
context switches and greater demands on memory and I/O. For a multitasking
multiprocessor, this is the only way you are going to be able to compare between
brands; single stream benchmarks use just one CPU at a time, whereas you need
to see them exercised all at once (including an increased demand on the memory
system). Again, you need to be conscious of your total memory requirements. If
the programs don't fit altogether in memory, the benchmark may become a disk-
bashing test (because of paging). Different programs take different amounts of
time to run. If you start them all at once, the last benchmark to finish will have
spent some time executing all by itself, as Figure 16-4 illustrates.

This is not what you want from a throughput benchmark; you want to see each
application run against a steady background load. One way to do this is to con-
struct a "stone wall" of programs as in Figure 16-5. When one of the programs
completes it is immediately restarted, making for a (nearly) continuous contribu-
tion to the load. After a little while, you have gathered one or more times for each
benchmark, depending on how long you let them run. Average these together, if
appropriate, and add the runtimes for A+B+C+D+E . . . to get a throughput fig-
ure for collection. Be sure to discard any contributions that aren't run against the
full background load. The proportionate runtime for the different pieces will vary
between machines, so again, you may want to normalize the times for A, B, etc.,
before adding them together.
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Interactive Benchmarks
If you are interested in more than crunching—if you are interested in knowing
how a group of programmers playing Hunt the Wumpus will slow down a com-
puter—you are going to want to run interactive benchmarks. Interactive response
involves components of a computer—I/O system, operating system, networks—
that are outside the scope of this book. Nonetheless, interactive response bench-
marks may be important for your application. Figure 16-6 shows how an interac-
tive benchmark is constructed. You need two systems: one plays the part of users
running interactive programs (shells, editors, word processors, etc.), while the
other (the one being benchmarked) provides the services. As far as the system
under test is concerned, there are real users on the machine; they log in through
the network or serial ports and hammer away. By "playing" more and more users,
you can see how performance drops off as interactive demands increase. Usually
you measure this as the fraction of a second it takes to get response from a com-
mand.

Constructing an interactive benchmark (often called a remote terminal emulation
or RTE benchmark) is more challenging than constructing a CPU benchmark.
Development of the simulator portion is a big project by itself. One tool that is
available is called "Expect." Using Expect, you program the commands that are
sent and the expected responses to those commands. Expect operates like a user:
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it "waits for a prompt and then executes a command. You program Expect by writ-
ing expect scripts, which consist of prompts and responses. Another approach is
to write code in Perl or Tcl/Tk that makes the connections and interacts with the
systems. There are others as well.

Preparing the Code
Nothing fouls up a benchmarking effort more than discovering part way through
that something is wrong with one or more of the benchmarks, and that they have
to be tossed out. The time to look into portability is before you start. You will also
want to package your benchmarks into a little kit so that anybody who runs them
will get the same results; you don't want misunderstandings about how the code is
to be handled to affect the answers.

Portability
Portability is important in a benchmark because it helps ensure that the same thing
is being run on each system. Just as importantly, it frees you (and anyone else)
from having to go into the code and hack it up as it migrates from platform to
platform. A small mistake here or there, and suddenly it's a new benchmark. To
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give yourself a good feeling that the results are reproducible, you have to be able
to move benchmarks from machine to machine without modifications.

The best way to check for portability in a benchmark is to port it. If you have the
luxury of extended access to the machines you want to benchmark, you should
make a preliminary pass through each with the same code, tweaking it for porta-
bility as you go. That way, when you get to the end, you will (most likely) have
programs that compile and run on all the platforms. Then you can start the bench-
mark.

If, on the other hand, you don't have ready access to the machines being bench-
marked, then port the code to anything! Porting exposes a fair portion of the
portability problems anyway (i.e., namelist support is needed, you can't assign
Hollerith strings to reals, alarm(3) behaves differently, etc.). It's going to take you
longer to port the code than to benchmark it anyway, and you certainly don't
want the code to be modified as the benchmarks proceed, so porting ahead of
time is important.

Aside from shoehorning the code through the compiler, you also have to think
about how properties of the algorithm will affect the runtime. For example, say
that your program characterizes the properties of an airfoil by starting out with
some initial conditions and iterating until reaching a steady state. How are you
going to account for numerical differences that actually affect the number of itera-
tions? One machine may finish in 400 time steps whereas another may execute 420
time steps. You have to decide whether you think that the 420 time steps is a bug,
or whether it is acceptable, and exactly how you want to measure performance.
As an alternative, you might plan to measure time per iteration, rather than total
time.

Another thing to think about is data files. Does your program require unformatted
data as input? If so, you are going to need to create some auxiliary programs to
port the data, too; you can't assume that the unformatted files will be good on
every machine. And what about interaction with the user? You will want to "hard-
wire" any dialog so that time spent waiting for keyboard input doesn't figure into
the benchmark time. Basically, you want your benchmarks to run without help
from you.

Making a Benchmark Kit
As we said at the start of this chapter, it's important to have confidence in your
benchmarks. Chances are that a lot of money is going to be spent, partly on the
basis of benchmarks. It would be good to feel that the benchmark results are reli-
able and reproducible. Furthermore, you want them to be as self-documenting as
possible. We'll say more about increasing benchmark reliability in a little while.
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Right now let's talk about making the results reproducible.

The best way to make a benchmark reproducible is to put a wrapper around it so
that it compiles and runs with a single command. Any compiler options used and
the exact measurements taken are part of the wrapper, making it easy for anyone
to understand where your results came from. You probably need separate wrap-
pers for each machine—compiler invocations, options, etc., may differ. The wrap-
per itself can be a script (command file) or a makefile. Once you have prepared
the benchmark—wrapper, code, and data files—you want to save it into a tar
(tape archive) file and stash it away. To run the benchmark on a Brand X com-
puter, you should only need to unpack the archive and type:

%make brandx >& brandx.out.

Arrange the makefile so that when the benchmark runs, everything written to std-
out—compiler messages, and timing numbers—is recorded into a file. This file
should be tucked away for reference, in case you want to go over the raw data
again in the future. If a vendor runs your benchmark, ask for a copy of the output.
Place some commands in your script or makefile that list all the files with their
respective sizes so that if something has changed (if someone hacked the code),
you will know about it.

We'd be willing almost to guarantee that you are going to have to run the bench-
marks again, down the road. New platforms will come out, and people in your
organization will want to compare them with the ones you purchased. Also, keep
in mind that compilers are constantly improving. Benchmark times can improve
significantly over the life of a system, perhaps as much as 30%. If you have a nice
benchmark kit, you can resurrect it and update it without giving up too much of
your time.

Benchmarking Checklist
Just so we both sleep a little better, we've written down a list of steps to remem-
ber. These will help make your benchmark results better indicators of perfor-
mance. Some of these may appear obvious to you, but perhaps one or two will
have slipped your mind.

Compile with optimizations turned on

Don't forget to turn on compiler optimizations. The performance difference
between optimized and unoptimized code can be great—often more than a factor
of two. You will find that there are usually several optimization levels to choose
from; however, without a degree of care, the highest ones can cause your program
to run slower. And you don't necessarily want to go with the default, -O, flag.
Check the manuals and ask the vendor representative to determine the best
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optimization level for your kind of program. Perhaps you will want to experiment
with other optimization flags as well.

These experiments can lead to a good set of suggested optimizations for your
users once you have purchased the system.

Check the memory size

Be sure the machine has enough memory to run your job. With too little memory,
your program will page or swap, reducing the performance by as much as 20
times.

Check for other processes

There will always be a bubbling sea of daemons running in the background, but
they don't generally take much time. What you are on the lookout for is other pro-
cesses soaking up lots of cycles in competition with yours. Sometimes they are
other "real" programs, but they can also be hung processes consuming resources.

Scrutinize the timing output

It is particularly important to pay attention to both CPU time and elapsed time. If
they are not close, then look for an explanation. Perhaps your program is perform-
ing a lot of I/O. Could there be a memory problem? You would find evidence in
the number of page faults.

Check the answers!

The last step is to check the results. You should be especially scrutinizing of the
output when a program completes unreasonably quickly or slowly. It would be
convenient if you could automatically diffthe output from different machines, but
this generally doesn't work. The problem is that vendors round numbers differ-
ently, represent them with different internal precisions and take liberties at com-
pile time. Of course the fact that most of the computers you will be testing support
the IEEE floating-point format reduces this problem somewhat.

The output formats may vary slightly; the result may be l.Oe-6 rather than
0 .10E-5. Although these are the same number, a tool like diff doesn't know this.
If the answers are just plain wrong, or the program seems to be producing correct
results, but at a snail's pace, you might want to check for bugs introduced because
of nonportable code.

Check for IEEE traps

Sometimes one particular application executes much slower relative to the others
for no apparent reason. One possible explanation is that there is an excessive
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number of IEEE exception traps. Some computers support gradual underflow in
hardware and other trap to software to compute these values. If you have a com-
putation that deals with numbers very close to zero, it can underflow regularly
under normal conditions. Whatever the case, it's a good idea to see if the IEEE
exception handlers were called. Some vendors have a message that tells you that
this has happened at the end of each job.

Many compilers allow an option to flush denormalized numbers to zero. If you
have a code* that regularly underflows, it probably makes sense to turn on flush to
zero to make the benchmark fair.

Remember to benchmark your own computer

We're not suggesting that you buy another of the brand you already own, but
applying the same procedure to your present machine can be revealing. You may
find that you are not using the machine correctly, or that the runtime isn't as long
as you thought it was. At any rate, you want a standard time to compare against.

Set the rules for the benchmark

It's important to set some rules for the benchmark unless you will be running all
of the benchmarks yourself. Are modifications allowed? What type of modifica-
tions? Can they add directives or change code? Can they only change for portabil-
ity, or can they rewrite algorithms? Do they have to report a baseline and modified
performance figure? How many and what type of compiler options are allowed?
Can they turn on the "unsafe optimization flag" for all the codes? Must the outputs
of the program match your baseline results? Exactly or within some factor?

If you are unsure, the best rule is not to allow any modifications unless absolutely
necessary to get the code to work. If you want to have more lenient rules we sug-
gest you look at the rules for the industry and user benchmarks at the sites dis-
cussed in Chapter 15.

To avoid rule battles with your vendors, it's a good idea to add some rules about
the rules:

• You have the final say in determining how the benchmarks are to be inter-
preted.

• You can suspend or alter the rules as you see fit.

• You make the final decision as to whether a modification or compiler option is
necessary or undesired hacking on the part of the benchmarker.

* Try running the heat flow programs in Chapter 13, Language Support for Performance, with REALM.
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If your purchasing rules permit it, it's good to provide a contact for benchmark
questions. The last thing you need is to wait for four months and get completely
meaningless results from the vendor. When you tell them, "Oh, I didn't mean
that!," they won't be too amused regarding the time they wasted in the benchmark
and may not be willing to rerun the codes with a tiny change so that it is just the
way you want.

Closing Notes
You must always remember the purpose of benchmarks. Benchmarks are tools
that insure you are getting the most effective possible system for the money you
are spending. If done properly, they can be a good learning experience for both
you and your vendors. On large system purchases, the vendors take your codes
very seriously. If you permit it, they may want to keep some of the codes to add
to their compiler qualification suite. If you are willing to let the decision to buy a
$5 million computer rest on the performance of a particular code, then it must be
pretty important.

One excellent test that is often overlooked is to travel to the company for a visit so
you can run the codes yourself. You would be surprised at how much more you
learn at the company headquarters compared to what you learn from the salesper-
son sitting in your office.* If you are dropping $2 million on a new computer, a
few thousand in travel expenses up front is a small price to pay to be absolutely
sure you are getting the right computer. A visit to a conference such as Supercom-
puting (http://www.computer.org) can also be a worthwhile investment. It gives an
excellent opportunity for you to interact with all of the major high performance
computing vendors all at one place. They often have technical personnel and
equipment on-site for you to consult.t

Profit margins on high performance systems have dropped significantly. Analyst/
sales teams are being encouraged to reduce the cost of selling. This means that
they are going to be less interested in helping you run a benchmark for the sale of
a small or even medium-sized system than they would have been five years ago.
That's not to say they don't want to sell them to you, but where benchmarks are
concerned, they just can't afford to get too involved. You will probably have to
(and want to) run them yourself, perhaps at their office or over the Internet, with

* More benchmark stories: at one company, while we were running benchmark tests, the computer
locked up, and, in about 30 seconds, it caught fire. The salesman got pretty nervous. At another com-
pany, the system ran great until someone started up the vi editor. At that point, context switching abso-
lutely killed performance of the running benchmark. It was OK, as long as you didn't plan to edit files
on the system.
f Don't go expecting to run benchmarks on the show floor. Only one vendor has allowed me to actu-
ally run some tests on the equipment at the show. The vendors generally don't want you breaking their
stuff for the rest of the show.
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consulting access to the analyst.

If you are buying a large system, on the other hand, they just might be able to
give you some dedicated benchmarking assistance. Perhaps they will want to drag
your code down a hole and hack at it for a while. Inevitably, the process ends
with the analyst presenting fabulous results on overheads to a small crowd in a
darkened room. The salesperson will be a well-dressed shadow with words of
good will and support to put the kabosh on any technical questions. Be careful
with the numbers they give you.

One more thing: keep good notes. A month after the benchmark has been com-
pleted, someone will almost always ask you for some detail that you forgot to
write down, and that turns out to be the most important detail.
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Processor Architectures

In this appendix, we summarize a number of different processor architectures. The
study of how processor designers have approached getting the best performance
out of a processor is fascinating as economic and technical constraints change over
time. We don't intend to cover every processor in existence, nor do we intend to
be the most thorough document on the processors that are described here. After
all, it is rather difficult to capture all the detail of thousands of pages of vendor
documentation in a few short paragraphs. This appendix assumes that you have
read Chapter 2, High Performance Microprocessors, and Chapter 3, Memory.

We progress from one processor type to another in a roughly historical sequence.
We cover CISC processors, vector processors, several generations of RISC proces-
sors, and some other architectures as well. In each processor, we focus on some of
the more interesting aspects of the architecture, using the particular architecture as
a motivating example.

CISC Processors
We look at the Motorola MC68000 series of processors: an example of a CISC
architecture family. The MC68000 architecture is actually a number of processors,
ranging from the MC68000 through the MC68060. There are many variants of each
processor for applications ranging from workstations to embedded applications
with built-in RAM and ROM.

367
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Motorola MC68000 Family
The MC68000 was designed at a time when there was a significant limitation on
the number of transistors that could be manufactured on a single chip. So it was
important to make the best use of all of the available hardware on the processor.
The MC68000 is a family of architectures with each succeeding generation of pro-
cessor backwards-compatible with the previous one:

MC68000
The first member of the family. The MC68000 supports seven 32-bit data regis-
ters and seven 32-bit address registers. This processor did not support virtual
memory or any cache on the chip.

MC68020
This was much more sophisticated than the MC68000. The MC68020 supported
a 4 GB virtual memory space, had an on-chip instruction cache of 256 bytes, a
three-stage instruction pipeline, and a wide variety of addressing modes. The
MC68020 ran at speeds up to 33 MHz.

MC68030
This member of the family added a 256-byte data cache in addition to the
instruction cache, moved the virtual memory support on-chip and could run at
up to 50 MHz.

MC68040
This processor upped the data and instruction caches to 4 KB each and moved
the MC68881/MC68882 floating-point coprocessor on-chip. The MC68040
could run at up to 40 MHz.

MC68060
This processor increased the on-chip data caches to 8 KB. This processor also
implements branch prediction and operates as a three-way superscalar proces-
sor. The MC68060 can execute at up to 66 MHz.

The MC68000 family shows how a design can change over time, adding capabili-
ties and maintaining upwards compatibility. One should probably not expect to
see a MC68080 processor anytime soon. In the general purpose market, Motorola
is focusing on the PowerPC, which is a new family of processors based on a RISC
instruction set. The MC68000 processor series continues in the embedded proces-
sor market with specialized processors such as the MC68302 integrated multiproto-
col processor and the MC68356 signal processing communication engine (SPCE).
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Complex Instructions
To look at a classic complex instruction set implemented by the MC68020 and later
processors, let's examine the MOVE instruction, which loads and stores data.
There are 18 different addressing modes used for this instruction. We look at sev-
eral of these addressing modes here:

Different assemblers use different notation to represent each instruction, so if you
look at MC68000 assembly language, it might not look exactly like these examples.
In Figure A-l, we diagram the last (and most complicated) of the addressing mode
examples; In that example, 12 is added to aO, then the 32-bit value at that location
is loaded, and dl multiplied by 4 and 24 are added to that value to compute the
effective address of the load into dO. The machine code for the last instruction can
take up to five words depending on the length of the offset constants. We also
need some temporary registers to store the values for these calculations because
the value of aO is not supposed to be changed except in the preindex and postin-
dex instructions.

A much clearer way to express the last example is using pseudo-code. Assume we
have two 32-bit scratch registers called Effective Address (EA) and Memory Data
Register (MDR). We can express the last instruction by the following sequence of
pseudo-code:

This is an excellent way of capturing the exact process that needed to occur to
handle the particular instruction. As we shall see shortly, this list of steps needed
to accomplish the instruction was captured in the processor microcode.
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Adding these steps added time on these processors. For example, the following
table shows the number of cycles that each of the address translations added to
the base instruction time for the MC68020 and MC68060 (not including memory
access time).
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Table A-l: Performance of Different Addressing Modes

Interestingly, the MC68020 operated at up to 33 MHz and the MC68060 operates at
66 MHz. Even though the clock rate is faster, the MC68060 can do more complex
addressing modes at no apparent additional cost. A MC68060 processor might
have been quite a competitor for an early RISC processor running at 66 MHz—
especially if compiler writers spent some time to figure out exactly when to use
these addressing modes.

A RISC proponent would look at this table and reach a very different conclusion.
If the MC68060 has so much time during a 66-MHz clock cycle to throw in three
extra 32-bit additions, then perhaps an equivalent RISC processor would run four
times faster, or 264 MHz! Of course, as with all great arguments, neither perspec-
tive is completely correct.

Microcode
You might guess that a machine such as the MC68060, which features a range of
sophisticated addressing modes and instructions, could be very complicated. Say,
for instance, that a processor provides 200 different instructions, 100 of which can
address memory. Of the instructions that can address memory, say each can
choose from 18 different addressing modes. That means there are
(100x18)+100=1900 legal instruction/address combinations. Additionally, as we
have seen, some of them could be very involved, requiring several memory
accesses. The length of the instruction might vary too, depending on the complex-
ity or the number of auxiliary fields included. This is going to make the whole
processor very complicated, especially the portion that decodes instructions and
sequences the machine.

To get a feel for what a CPU designer is up against, picture the inside of the pro-
cessor as a collection of black box components (adders, shifters, and registers)
connected together by data paths (wiring). And on early processors, you never
had enough space to throw a few extra adders on the chip. To make it all work
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like a computer, you have to be able to selectively allow the black boxes to share
data.

Figure A-2 depicts a simple machine and how it might execute a simple operation:
adding the contents of two registers and returning the sum to a third. This takes
three steps; in each step, the processor activates a pair of control points to move
information across the data path. First it activates control points a and f, moving
the contents of register 1; then b and e; then finally c and d, to move the result
back to Register 3- If we had two more data paths, we could perform the addition
in a single step; the operands and result could be transferred almost simultane-
ously.

The choreography needed to activate the control points in the proper order comes
from the CPU's control section. On a hardwired design, the control section is a tan-
gle of dedicated sequential and combinatorial logic gates that converts the instruc-
tions from your program into control signals. For instance, an instruction that says
"add Register 1 to Register 2 and leave the result in Register 3" is logically reduced
to electrical signals that activate control points. Although the above example is
trivial, it helps illustrate how much logic is involved in building the control section
for our hypothetical machine with 1900 instruction/address combinations. On
many older machines, the control section, like the rest of the computer, was
designed completely by hand. This was a difficult task in the first place, and was
no easier to update and debug. In the early 1950s, the British scientist Maurice V.
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Wilkes introduced an easier method for controlling the machine: microcoding. He
demonstrated that you could replace the hardwired control section with a set of
microinstructions and a simple sequencer to dish them out, turning data paths and
functional units on and off in the proper order. Each machine instruction—the
lowest level you would normally be able to see—was represented by a yet finer
level of instructions called a microprogram. The sequencer was like a machine
within a machine, interpreting your instructions with microcode and giving the
computer its personality.

The immediate benefit of microcoding versus hardwiring the control section was
that it made it easier to build and maintain the instruction set; essentially, the
instructions were being simulated, rather than being acted upon directly in
hardware.* Microcoding also had two more powerful, secondary effects. Now
nearly any instruction set could be emulated by any machine with a microcoded
control section. Furthermore, extremely complicated operations—more compli-
cated than anything you would want to hardwire—could be thrown into the
instruction repertoire without additional hardware.

For the sake of argument, say that you want your instruction set to include an
operation that converts lowercase letters to uppercase; you give the computer an
"a" and the appropriate opcode, and out pops an "A," If you were implementing a
non-microcoded design, you would have to build custom hardware to recognize
the instruction and sequence the machine. If, on the other hand, your architecture
was microcoded, the steps for converting lowercase letters to uppercase could be
written into the microcode. Either way, it would appear to the user that there was
a conversion instruction, but in the second case, it would be considerably easier
for you to implement; you would essentially write a routine to do it.

Since microcode allowed any machine to be emulated, it became possible to cre-
ate an architecture family, a whole range of computers sharing a common instruc-
tion set. The first such architecture family was the S/360 series, introduced by IBM
in 1964. From the programmer's point of view, the hardware looked the same for
each machine in the family. Executable modules were portable between comput-
ers even though the processors might be based on completely different underlying
hardware. The tremendous benefit (and marketing value) of the common instruc-
tion set architecture quickly became apparent. Incompatible computers, non-exis-
tent upgrade paths, re compilations, and receding are discomforts people just don't

* The design and maintenance of hardwired processors is not as big a problem as it once was. Com-
puters now take a big part in creating other computers. Silicon compilers, and more recently logic syn-
thesis and VHDL—methods that turn design specifications into semiconductor layouts—have made it
possible to hardwire fairly complex designs, yet retain the ability to debug or change them if necessary.
They don't make the problem of complexity in hardwired designs disappear, but they go a long way to
making it manageable. (VHDL stands for Very High Speed Integrated Circuit Hardware Design
language,)
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want to deal with. A single microcoded architecture, on the other hand, can sur-
vive long enough to grow a large base of software and customers.

Microcode During Instruction Execution
In some ways, microcode is like a simple RISC instruction set. You can almost
think of microcode as a RISC "subroutine" call that is invoked when a particular
CISC instruction is executed. For example:

Using this microcode technique is a good way to reuse hardware such as an adder
while supporting a wide range of addressing modes.

Microcode summary

Microcode started as an engineering convenience, but microcode (actually, com-
plex instructions) also served to reduce traffic between the CPU and the memory
system. An arbitrarily complex instruction could trigger a control sequence that
would have taken a long time had it been written in more primitive steps and
retrieved from memory in pieces. Furthermore, complex instructions freed up the
(only) route between memory and the CPU so that data could move across it.

In short, by accomplishing multiple operations in a single instruction, micropro-
gramming diminished traffic between the main memory system and the processor.
Developments in semiconductors, compilers, and computer architecture created
alternatives to microcode. High-speed caches, described in Chapter 3, pipelined
instruction processing. Advanced compiler technology made it easier to replace
the microcode with a compiler-generated sequence of simple instructions.*

With clock speeds increasing by leaps and bounds, it was hard for users and
designers to notice the creeping overhead of a microcoded architecture and ever-
more-complex instruction sets. More complex computers went faster anyway, just
by virtue of increased hardware performance. Eventually, what was once added

* Not to imply that you can't use caches and microcode together . . .
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value became a liability: all of these architectures—the VAX, the Intel 80x86 in
PCs, the 680x0 family of processors, IBM's mainframes—have accumulated the
baggage of many years of very complex and specialized instructions. It's not easy
for microcoded CISC implementations to retain support for old instructions, yet
stay competitive with RISC in terms of performance.

There was a time during the late 1980s when there was intense competition
between large CISC mainframes and minicomputers, and RISC servers. Companies
like DEC, Hewlett-Packard, and IBM were losing a great deal of business to RISC
processors. These companies survived that period by developing their own com-
petitive RISC processors. Companies such as Control Data, Prime, Wang, and Bur-
roughs lost significant market share during the CISC-to-RISC transition.

Vector Processors
During the late 1970s through the mid-1980s, powerful, single-chip microproces-
sors were CISC designs due to the limitation of the number of transistors that
could be placed on a chip. Processors such as the Intel 8086 (1978) and 80386
(1985), and Motorola's MC68000 (1979) and MC68020 (1984), were the mainstream
microprocessors. Tlie integer and floating-point processing of these processors was
very slow. Their primary application was in the area of personal computers doing
tasks like word processing and spreadsheets.

During this time, the unchallenged high performance computers were the vector
processors produced by companies such as Control Data, Cray Research, Cray
Computers, NEC, Fujitsu, IBM, and Convex.

The first successful vector supercomputer was the Cray-lS, introduced in 1975. It
featured a 12.5-ns (80-MHz) clock and was fully pipelined to produce a floating-
point result every cycle. While this seems slow compared to today's microproces-
sors, one of its competitors at the time was the Intel 8008* processor. Even now,
while the current generation of RISC microprocessors is catching up quickly,
vector-processor computers still have the absolute fastest processors and memory
interconnect in the world.

Given the nature of scientific computing codes, a well-balanced high-performance
scientific processor should be able to load two 64-bit words from any location in
memory, perform a floating-point computation, and store a 64-bit result to any
location in memory every cycle. Once achieved, the goal was to do more than one

* The Intel 8008 was introduced in 1972, had a clock rate of 108 KHz, and could address 16K of mem-
ory. It might have been capable of 100 floating-point operations per second on a good day with a tail-
wind. See http://wwwJntel.com/mtel/museum/25annw/for other interesting tidbits.
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of each per cycle. In the 1970s and 1980s, given technology constraints, a vector
processor was the only architecture that could achieve this level of performance.

There is one other aspect of the vector processors that make them very different
from any of the past or present microprocessors. The vector computer companies
were specifically high performance computer companies. Instead of selling mil-
lions of $100 processors in a mass market, their goal was often to sell between 5
and 20 systems per year at a cost of $30-100 million dollars per system. In this
market, these vendors could deploy exotic technology such as liquid cooling, the
fastest available logic, a large main memory based on static RAM, or the use of
gold connectors throughout. Often these vendors would make a technological
breakthrough in design or manufacturing just to finish their first system.

The fundamental extensions that make a vector processor unique are its vector
registers, memory pipelines, and vector instructions.

Vector Registers
A typical vector processor has normal 64-bit address and data registers. However,
it also has vector registers, each of which is made up of multiple elements. Vector
registers range in length from 128 to 512 elements per register. Figure A-3 shows
the available registers in a typical vector processor.
These vector registers are accessed using special vector instructions that operate
on a subset of the elements stored in a vector register in a single instruction. For
example:

This vector add instruction can add each of the 128 elements in Vector Register VI
to the corresponding element of Vector Register V2 and store the result in the cor-
responding element in Vector Register V3. If VI, V2, and V3 were FORTRAN
arrays, this single machine-language instruction essentially is the same as saying:

or (for those who like FORTRAN 90):

This loop operation was implemented either directly in a hardware sequencer or
by using a loop implemented in microcode.
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Vector Processor Memory Systems
With clock rates starting at 12.5 ns and moving below 2 ns, it's important for a
memory subsystem to be able to retrieve and store data at a sufficient rate so as
not to stall the computation pipelines. Even if you were to create a large memory
made completely of static RAM, it wouldn't be fast enough. Memory operations
must be pipelined as described in Chapter 3 to support the data transfer rates
needed by these processors.

When you look at the architectural specifications for vector systems, the number of
memory pipelines is an important metric for the system's overall performance. The
CDC Star-205* has up to four memory pipelines. The peak performance of a Star
system was directly related to the number of installed memory pipelines.

A memory pipeline is hardware that's in the CPU, memory interconnect, and mem-
ory subsystem. In a sense, the CPU tells the pipeline, "get me these 128 words,"
and then waits. The pipeline begins the process of accessing the memory banks
and, as the memory values come back, sends them to the processor. The goal is

* So-named because it looked somewhat like the Starship Enterprise when viewed from above.
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that after a (hopefully short) startup delay, the pipeline will provide one or more
values every processor cycle until all the values have been retrieved.

You can ask the memory pipeline to retrieve unit-stride data (it generally likes this
best) or non-unit-stride data, or tell it to gather data according to the values in an
address vector.

Vector Instructions
Now that we have pipelined vector registers, floating-point units, and memory sys-
tems, we should be ready to program. So we write our first vector program to do
A(l:128) = B(l:128) + C(l:128) as follows:

We are quite happy except for one thing: pipeline startup delay. The good news
about pipelines is that once they start, we get results every cycle. The bad news is
the time it takes to get them started. For each vector instruction, it would not be
outrageous to see a 10-15 cycle start-up delay for each instruction. Given that each
instruction executes for up to 128 cycles once the pipeline starts, this is an unac-
ceptable waste of resources. Some instructions on some vector processors can take
over a hundred cycles to get started.

There is a technique called chaining that helps reduce this latency problem.
Chaining allows a later instruction to get started before an earlier instruction com-
pletes. Chaining also allows values to be used out of a vector register before all of
the values in the register have been computed.

This example also demonstrates why it's a good idea to have more than one mem-
ory pipeline available. Using multiple memory pipelines and chained computa-
tions, we can create multi-instruction pipelines and avoid incurring extra startup
latency for each vector instruction.

First, the load from B into Register VI begins and is delegated to one of the mem-
ory load pipelines. Then, in the next cycle, assuming that we have a pipeline
available, we initiate the load of C into Register V2. As the elements of VI and V2
begin arriving, we can chain the vector add into Register V3. If we have sufficient
capability, we can even chain the store into C from Register V3 as the elements
exit the addition pipeline.

Once we have started all the operations, these four instructions work together as a
single pipeline to move data from memory through the CPU, and the results get
moved back to memory with minimum latency as shown in Figure A-4. The
achievable performance of a particular vector processor was often dependent on
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the number of available memory pipelines and the degree to which one operation
could be chained to another. Vector processors that simply executed vector
instructions serially often had great difficulty achieving their rated peak perfor-
mance.

The designers of the CDC Star-100 and ETA-10 series of computers saw this pattern
of load-compute-store and decided to completely eliminate the registers and con-
nect the compute pipeline directly to two read pipes and one write pipe. This
gave outstanding performance on long unit-stride memory-to-memory operations.
Unfortunately for these systems, there are many applications that can make good
use of registers, either by eliminating memory accesses in store-reload patterns or
load-load patterns. In these applications, a register-based architecture outperforms
a pure memory architecture.

Hardware Implications
These vector systems are physically quite large. Some were six feet tall and six feet
in diameter. Given the limitations of the speed of light,* it's not possible for data to
travel across the entire cabinet in a single cycle. If one register were several feet
from another register, it might take four or five cycles to copy data between those
two registers. This makes the layout of the components within the cabinet an
important part of the overall design of these large vector systems.

* Light and electricity are very fast, but they travel less than a foot in a nanosecond. With a clock rate
of two nanoseconds, the farthest a signal could travel was two feet!
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By limiting the vector operations to a carefully predefined set of instructions, the
computer designers could lay out the vector registers, compute pipelines, and
memory pipelines so that they could all interact without incurring any unnecessary
delay.

In a sense, we can think of the vector registers as an early form of programmable
data cache in a refrigerator-sized computer system. Because of the large physical
size of the processor, it wasn't practical to provide a generic data cache that could
be accessed using any pattern. Vector processors instead access their data cache in
well-defined patterns that can be naturally pipelined.

Early RISC Processors
The year 1986 was an important turning point in the RISC architecture. Before
1986, most of the RISC microprocessors were simply too underpowered to make a
significant impact on mainstream computer architectures. In 1986, RISC processors
under development at Berkeley (RISC-1) and Stanford (MIPS) made their commer-
cial debut as the SPARC V7 and MIPS-I processors, respectively. The HP PA-RISC
family was also introduced in 1986. Other major RISC processor families were
introduced later: Motorola 88100 (1988), IBM Powerl (1990), DEC Alpha (1992),
IBM Power2 (1993), and IBM/Motorola PowerPC (1993).

In this section, we look at the two processors that are often credited with causing
the RISC revolution.

MIPS R2000 and R3000
The MIPS architecture is a family of processors that has evolved over time as tech-
nology constraints have changed. The original MIPS processor was the MIPS R2000
and its follow-on, the R3000. These chips have 32 32-bit integer registers and 16
64-bit floating-point registers. Floating-point operations are supported using a
coprocessor, and the cache is off-chip. The pipeline depth is five. The MIPS R3000
supported a clock rate of up to 40 MHz.

SPARC-1 Processor
The early SPARC processors were very straightforward with a pipeline depth of
four (fetch, decode, execute, and write). The floating-point processor was a sepa-
rate coprocessor. The unique SPARC feature was the concept of register windows.

Register windows pass parameters from a calling routine to a subroutine without
forcing parameters to be placed in memory on a stack. The idea was to improve
the performance of subroutine calls and interrupt processing. SPARC processors
appear to have 32 32-bit registers, numbered from zero to 31. These registers are
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partitioned into four groups: global, input, local, and output. When a subroutine is
entered, its first act is to rotate the register window.* The caller's out registers
become the callee's in registers. The caller's local and in registers are saved to
memory if the processor is out of free registers. This is called a spill While it's exe-
cuting, the callee can operate on its local and output registers. Its input registers
and global registers are shared with the callee and the entire program, respec-
tively. When the callee completes, it restores the caller's registers before returning
to the caller.

At first blush, this seems no different than a call stack. Functionally, it operates the
same as a stack. Values are saved upon entry and restored upon exit. Some values
are shared between the callee and caller. Register windows are intended to be
implemented completely as registers on the chip. Many implementations of the
SPARC have 130 or more physical registers that save and restore the local and in
registers upon each call and return. The number of physical registers are limited. If
the code makes too many nested subroutine calls, the registers must be stored on
a stack structure in memory.

The SPARC researchers did a careful study of existing code and determined a rea-
sonable number of physical registers to save and restore the register windows
without spilling to memory unnecessarily. In a sense, register windows are a carhe
of the top of a call stack supported in hardware.

Architectural Experiments
Throughout the 1980s, the computer architecture field was diverse. There was a
certain restlessness with the aging CISC processors. Computer researchers (some at
universities and others at new small start-up companies) were exploring the space
between the CISC processors with their serial instruction streams and the high-end
parallel/vector supercomputers. There have been a number of architectures that
have been proposed and implemented that explore different design approaches.
These architectures are not even close to successful when compared to the current
RISC processors. However, these architectures bear some study because each has
some strong features that may reappear in the future in a somewhat modified
form.

The architectures we briefly explore in this section include:

Intel i860
An early long instruction word RISC processor that was a precursor to super-
scalar RISC processors.

* Unless it's a "leaf procedure.
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Multiflow Trace
A very long instruction word processor that could execute 7, 14, or 28 instruc-
tions per cycle in parallel.

Data flow processors
Data flow processors have always had the potential to find and exploit the
maximum amount of parallelism present in an application. However, while
this architecture has enticing potential, it has been difficult to solve some of
the technical issues for this architecture.

While it's doubtful that any of these architectures will stage a dramatic comeback,
current and upcoming processors often take some of the best ideas from these
architectures and use them to one degree or another.

Intel i860
The Intel i860, an early superscalar processor, was capable of executing more than
one instruction side by side per clock cycle. The i860 depended on the compiler
to determine when to execute multiple instructions. Later superscalar processors
can dynamically find parallelism in an instruction stream at runtime. In some
respects, the sophisticated instruction hardware that's not yet in the i860 is being
simulated by the compiler (which makes for slow compilers, by the way).

Each parallel instruction is actually two or more regular RISC instructions
cemented together into a single long instruction word. Every clock tick, one of
these long instructions is fetched and fed into separate pipelines controlling differ-
ent parts of the processor.

The Intel i860 has two operating modes. The first, single instruction mode, makes
the processor look very much like a classic RISC machine. There is pipelined
instruction overlap, but only one new operation can be initiated with each clock
cycle.

The other, dual mode, starts two instructions per clock cycle—one floating-point
and one of a choice of fixed point instruction, memory reference, or branch (a
"core" operation, in Intel parlance).* You can switch the processor from one mode
to the other during operation, and perhaps frequently within a given program. Fig-
ure A-5 shows how the i860 switches between these modes.

* Think of the dual-mode instructions for the Intel i860 like a wedding party making its way up the
aisle: the order and relationship of the participants is fixed and determined well ahead of time.
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Multiflow Trace
If one continues along the path of creating ganged parallel execution units that
depend on the compiler to identify parallelism, one arrives at the very long
instruction word (VLIW) architecture. VLIW machines are superscalar processors
with "wider" instructions (even more operations per clock). There might be several
floating-point, integer, branch, and memory operations initiated each clock cycle.
The potential for VLIW processors is great, but they require very sophisticated
compilers; the instruction stream decomposition that happens at runtime in a
superscalar machine has to be done off-line for a VLIW. You might guess that this
would make things easier because it gives the processor less to worry about at
runtime.

However, everything that might go wrong has to be accounted for when compil-
ing—conflicting memory references, instructions that depend on the results of pre-
vious instructions, out-of-order execution, etc. Instruction scheduling problems
that might be self-correcting on a superscalar processor have to be carefully pre-
pared in advance by a VLIW compiler. This limits the optimization that can be per-
formed On these systems.

The most successful company to develop and market a VLIW system was Multi-
flow, which developed its Trace-7, Trace-14, and Trace-28 systems that could exe-
cute 7, 14, and 28 instructions per cycle in parallel. When plodding through "dusty
deck" or legacy code, Multiflow's compiler could only schedule three or four
instructions at a time, but for numerically intensive codes it was not uncommon to
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achieve tens of instructions per clock. The processor had eight floating-point
pipelines and four memory pipelines—all scheduled at compiletime.

The great weakness of the pure VLIW systems is that if you can only do a single
instruction in a cycle, you still have to execute N-l No-op instructions. The very
long instruction word can be 1024 bits long, which requires significant instruction
fetch bandwidth. Programs can be quite large on these systems.

Multiflow has since gone out of business, but we'd hate to let that fact water down
our endorsement of VLIW: it was a nifty idea.

Data Flow Processors
Another architecture that has been experimental for quite some time is the data
flow architecture. Data flow has the potential for identifying maximal of paral-
lelism in an application.

A traditional (non-data flow) processor has a sense of which instruction(s) are cur-
rently executing. Unless there is a branch instruction, the next instructions that
execute are those instructions that immediately follow the current instructions.
There is a program counter that tells us where we are currently executing and
where we will execute next.

Data flow dispenses with any notion of sequential program order or program
counter. Instructions are placed into a run queue. Each instruction in the queue is
ready to execute or is waiting for some input operands. Once an instruction
receives its operands, it can begin executing immediately.

Dataflow memory semantics

The memory in a data flow processor is what makes it possible to determine
which instructions have received their input values. On a traditional processor,
memory locations contain a value. By executing an assignment statement, that
value can be changed. In data flow, a variable can either contain a value or be
undefined. Each variable can only be assigned a value once; this called a single
assignment architecture;

These two instructions make perfect sense on a traditional processor. First X is set
to 5, and the next instruction sets it to 6. On a data flow processor, the second
instruction isn't legal because X already has a value.
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To handle looping structures, data flow processors add a tag to a variable that dif-
ferentiates these values of X as different variables:

X{0) = 5
X{1} = X{0> + 1
X{2} =

These are not exactly the same as arrays. It is better to think of this as X at time 0,
X at time 1, and X at time 2. Once no more instructions are waiting for X{0}, that
value can be discarded to reclaim space.

Dataflow instructions

A data flow machine language instruction consists of an operator, input operands,
and output operands. For example:

In data flow, the order of these instructions does not matter. For example, the fol-
lowing would be equivalent to the previous code:

The order of execution is determined by the availability of the input operands. In
the previous two examples, when the code starts, all of the variables are unde-
fined. Instead of executing the "first" instruction, a data flow processor looks for
any instruction that has all of its input operands. In the first example, the A=5 and
B=7 statements are ready to execute. They can execute in any order or even at the
same time. Once they execute, they define the values for A and B, making the
C=A+B instruction ready to execute. Once this instruction executes, C becomes
defined, making the D=C+2 instruction ready to execute.

While this may seem a bit alien to the typical procedural programmer, data flow
has many advantages. For the right application, we can keep adding functional
units to enhance our performance without changing the code at all. The additional
functional units simply take more "ready" instructions and execute them, defining
new values. The functional units don't even have to operate on the same clock
cycle. Figure A-6 shows a set of data flow instructions being processed by a data
flow processor.
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While data flow processors have apparent advantages, they have challenges that
have not yet been solved:

• Determining which instruction (out of potentially millions) is ready to execute
is a compute-intensive task. There are heuristics that work in some instances,
but they don't work as a general high performance solution.

• Existing mass-market memory systems don't support the concept of an "unde-
fined" memory location. All memory locations have a value. A data flow pro-
cessor needs to find the "denned" memory locations quickly using hardware
support.

• The dynamic nature of data flow processors using tagged memory leads to the
creation and deletion of many instructions. Processors must be careful to do
proper garbage collection so as not to run out of space.

• It's difficult to express simple looping constructs using arrays of values in
primitive data flow operations.

For this reason, many of the data flow efforts are working on "hybrid" processors
that combine attributes of traditional processors with elements of data flow proces-
sors. Interestingly, the post-RISC architecture, in some ways, makes use of data
flow in a limited fashion.
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Second-Generation RISC Processors
In this section, we see the RISC processor families move from conservative to
exotic. As the chip space increased, the minimal RISC designs began to add a
number of features and capabilities to improve their competitive position against
one another.

MIPS R4000/R4400
The R4000 introduced the concept of the superpipelined RISC processor. By
increasing the number of pipeline stages to eight, the overall clock rate could be
significantly increased. The processor ran at a clock rate internally that was double
its external clock rate. The R4400 can operate at up to 250 MHz (internal rate).
The R4400 integrated the memory management unit, floating-point support and
cache on the processor. The MIPS R4400MC had specialized support for multipro-
cessor cache coherency. It had an instruction that caused an updated value to be
broadcast to all of the caches connected to the memory bus.

MIPS R8000
The R6000 processor was the first RISC microprocessor to specifically target high
performance scientific computing. It was a four-way superscalar processor operat-
ing at 75 MHz. This processor could load two 64-bit values and perform two 64-bit
floating-point computations (four if they were multiply-adds) every cycle. Through
a combination of hardware and compiler support, the R8000 supported a feature
called software pipelining that allowed the R8000 to sustain a memory-to-memory
computation at a rate of two computations per 75-MHz cycle. This is similar to the
hardware memory pipelines of the vector processors. The MIPS R8000 also sup-
ported conditional execution and a reciprocal instruction to speed up divides (at
some loss of accuracy). The floating-point processor was on a separate chip.

An interesting feature of the R8000 is that floating-point loads and stores bypass
the primary cache and go straight from the secondary cache to the registers. This
is what enables the system to maintain nearly 100% of theoretical speed on vector
operations in the large streaming cache. Software pipelining helps expose enough
parallelism to make this possible, but the bypass of the LI cache is crucial to get-
ting peak efficiency on those transfers. Integer loads and stores still go to the LI
cache on the R6000, just like a normal chip.
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MIPSR4300i
This processor was specifically designed to maximize performance at a very low
cost per processor; it powers the Nintendo-64 video game. It was once said that
the most concentrated compute power on the planet is the Nintendo warehouse.
The specifications of the Nintendo-64 read like a supercomputer of a few years
ago: MIPS R4300 at 94 MHz and 4 MB RAMBUS-based RAM, with a transfer rate of
600 MB/sec. The difference is that the Nintendo-64 price is only $150 and it fits
nicely next to your television set.

You may also find a MIPS RISC processor in your satellite video-decoding equip-
ment, WebTV box, or handheld computer.

DEC Alpha 21164
The DEC 21164 is a four-way superscalar RISC processor. The Alpha competes
based on its extremely fast clock rate. At any point in time, DEC is typically ship-
ping processors that have a clock rate twice as fast as the other CPU vendors.
Although some of the parallelism is lost, the cost is less significant when each
cycle is so quick. Keeping the architecture clean and the clock rate high is one of
the primary tenets of the RISC and DEC 21164 philosophy.

The Alpha's pipeline has five stages. Every stage takes a single cycle except, in
some cases, the execution unit takes more than one. The fetch and decode stages
are similar to nonsuperscalar processors. A slot stage within the fetch/decode unit
takes the next four decoded instructions. As resources become available, instruc-
tions are issued in order from this group of four until all have been issued.

The Alpha has an 8-K first-level instruction cache, an 8-K first-level data cache, and
a 96-K second-level cache on chip. The first-level cache is relatively small com-
pared to the other modern processors1 16-K to 32-K first-level caches, but its small
size allows single-cycle access even with the Alpha's fast clock. It also has a
prefetch buffer containing four blocks of 32-bit instructions. According to DEC,
having a two level on-chip cache gives better overall performance than a larger,
but slower, first-level cache on chip. Since the 8-K cache is less than a page and
uses the virtual address as a tag, it has the further advantage of allowing partial
overlap of the cache lookup and virtual memory address lookups using the trans-
late lookaside buffer. This also means that the LI cache needs to be flushed on
each context switch.

The Alpha also supports an optional off-chip third-level cache, which is pipelined
in the sense that the address on the address bus can change before the data bus is
read by the processor. This feature essentially allows the third-level cache to fetch
multiple words at the same time. The effect is quite similar to using pipelines to
increase the rate of instruction execution.
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The Alpha 21164 will not issue instructions out of order, nor will it issue instruc-
tions from different four-instruction blocks. So, if all instructions but one are
issued, then, in the next clock tick, only that one instruction is issued. Although
instructions are issued in order, multicycle instructions can complete out of order,
Allowing out-of-order completion provides a low-latency, simple, and fast
pipeline, but doesn't provide precise interrupts.

Because of the strict in-order issue, this architecture relies heavily on the compilers
to schedule instructions to best utilize their functional units and prevent data
dependencies from stalling the pipeline.

SUN UltraSPARC
The UltraSPARC-1 architecture is a four-way superscalar processor. It doesn't issue
instructions out of order, but it does have many advanced features to improve per-
formance. Instructions are retrieved from memory, predecoded, and placed in the
I-cache. Both branch history and flow history are also stored in the I-cache.
Because the SPARC architecture uses a branch delay slot, four instructions can
never have more than two branches. In each four instruction segment in the I-
cache, there are two branch history entries (2 bits) and one "Next Field" entry.
This last entry points to the next group of four instructions to be fetched from the
I-cache so the instruction fetch operation can easily be pipelined without needing
to consult a branch prediction table.

Between the instruction fetch and dispatch units, the UltraSPARC has a 12-instruc-
tion queue. This queue allows fetching to continue while the execution pipeline is
stalled due to a dependency or cache miss. Conversely, the execution units can
continue to work even when the instruction fetch has a cache miss. Thus, the
UltraSPARC's pipeline can be thought of as two connected pipelines with a buffer
between them. If either pipeline stalls, the other can exploit the buffer.

Instructions are issued in order and retired in order except for several multicycle
instructions (such as floating-point divide, load/store, and instructions issued to
the multiple cycle integer unit). These long-latency instructions are retired out of
order.

The UltraSPARC has two integer units and five floating-point units. Any combina-
tion of two integer and two floating-point instructions can be issued each cycle.
Loads, stores, and branches are executed by an integer unit but outstanding loads
are tracked by the load/store unit. The load/store unit has a nine-entry load buffer
and an eight-entry store buffer. These buffers allow overlapping of load and store
operations reducing the apparent memory latency.
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Post-RISC Processors
The current crop of processors that support out-of-order and speculative execution
are beginning to stray quite far from their minimalist RISC beginnings. Often the
processor is smarter at runtime than the compiler. The processor can derive more
optimal instruction schedules than the compiler.

If you are unfamiliar with some of the terminology used in this section, see Chap-
ter 2 for an overview of the post-RISC architecture.

DEC Alpha 21264
While the DEC Alpha 21164 processor pursues 600-MHz performance and beyond,
DEC is also developing the Alpha 21264 with out-of-order execution. While this
processor was not available until 1998, it demonstrates that out-of-order execution
does not necessarily imply low clock speeds. The target clock speed of the 21264
is 500 MHz. Like most of the post-RISC processors, the 21264 is a four-way super-
scalar processor with out-of-order execution. While the 21164 had simple branch
prediction, the 21264 adds a next fetch predictor (flow prediction) in each cache
line. To allow for register renaming, the processor implements 80 integer and 72
floating-point rename registers.

The 21264 can have 20 integer instructions and 15 floating-point instructions in
queues. Up to four integer and two floating-point instructions can be issued per
cycle. The floating-point add and multiply units are fully pipelined with a four-
cycle latency. Up to 32 load/store instructions can be active at one time. Of those
memory operations, up to eight off-chip reads and eight off-chip writes can be
active at one time.

While the 21264 (500 MHz) is not available, the estimates of its floating-point per-
formance are at 50 SpecFP95. As a comparison, both the Alpha 21164 (500 MHz)
and HP PA-8000 (200 MHz) have around 20.0 SpecFP95. This is a factor of 2.5
increase in floating-point performance at the same clock rate when compared to
the Alpha 21164.

HAL SPARC64
The HAL SPARC64 processor implements the SPARCV9 architecture with out-of-
order execution. The SPARC64 can have up to 64 instructions active at any time.
There are ten execution units. Any combination of four fixed-point, two floating-
point, two load/store, or one branch instruction can be issued in one cycle. Up to
12 load/store instructions can be active simultaneously. Branch prediction is done
using a standard two-bit counter mechanism.



Post-RISC Processors 391

IBM PowerPC 604
The PowerPC 604 and other members of the PowerPC family incorporate most fea-
tures of a post-RISC CPU. The PPC 604 is four-way superscalar, and instructions
are fetched from an on-chip cache in four-instruction segments. Instructions are
predecoded as they are loaded into the cache. During the fetch stage, instruction
flow prediction is performed using a 256-entry branch target address cache
(BTAC).

Fetched instructions go into an eight-instruction queue where they are decoded
and then dispatched. In one cycle, up to four instructions can be fetched into the
queue and up to four can be dispatched from the queue. Branch prediction is han-
dled in the dispatch stage using a two-bit prediction scheme. The bits are stored in
the 512-entry branch history table (BHT).

The dispatch unit forwards instructions to the appropriate functional units from the
instruction queue. The reorder buffer of the PowerPC is unique in that it is dis-
tributed across the six functional units, each having its own two-entry "reservation
station." Instructions in the reservation stations can be issued in any order as
resources become available. When an instruction is dispatched, a logical rename
register is allocated for the result of the operation. The PPC 604 has eight rename
registers for floating-point and twelve for general-purpose registers. In addition,
four loads and six stores can be buffered, further increasing the number of instruc-
tions issued out of order. Results are moved into the appropriate architected regis-
ter when the instruction has completed, i.e., is no longer speculative. Upon
dispatch, the dispatch unit also allocates an entry in the completed instruction
buffer in the completion unit. The completion unit provides in-order retirement of
instructions for the PowerPC.

A unique feature of the PowerPC architecture is the "branch-on-counter" instruc-
tion, which efficiently implements counter-based loops. The Count Register is part
of branch prediction, thus branch-on-counter instructions are effectively uncondi-
tional branches from the perspective of the execution stage.

MIPS RIOOOO
The MIPS RIOOOO is an excellent example of the post-RISC architecture. Targeted
toward high-end graphics processing and fast floating-point operation, the MIPS
RIOOOO aggressively executes instructions out of order, while guaranteeing in-order
completion and precise interrupts.

The RIOOOO is a fully four-way superscalar architecture containing a 64-K split two-
way set-associative cache on-chip. It can fetch, decode (with branch prediction),
and schedule up to four instructions per cycle. Each instruction is predecoded as
it's loaded into the I-cache. During the decode, branches are predicted (although
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only one branch may be predicted per cycle), output dependencies are identified,
and rename registers are allocated.

After being decoded, the instruction is placed into one of three 16-entry instruction
queues (integer/branch, floating point, or address) for scheduling. These queues
supply instructions for five execution pipelines. Instructions may execute from
these queues in any order. An instruction is dispatched from the queue when the
required inputs and execution units are available.

Note that the R10000 doesn't implement flow prediction but instead relies on a
branch resume cache for mispredicted branches. Branch prediction uses the two-
bit scheme, and the branch prediction bits are stored in the I-cache. Each branch
is followed by a delay slot, so no more than two branches can be fetched in one
cycle. Only one branch can be issued per cycle.

HPPA-8000
The heart of the PA-8000 is an out-of-order execution core with a 56-entry instruc-
tion reorder buffer (IRB). This buffer is divided into a 28-entry buffer for arithmetic
instructions and a 28-entry buffer for memory instructions. Instructions are fetched
from a large off-chip synchronous SRAM cache. Moving the cache off chip allows
the cache to be quite large. Some PA-8000 processors have 2 MB or larger LI
caches. Access to the I-cache takes two cycles, so the PA-8000 uses flow prediction
to pipeline the fetches. This flow prediction implementation uses a 32-entry, fully
associative branch target address cache (BTAC).

Each cycle, up to four instructions can be inserted into either the arithmetic/logic
unit buffer or the memory instruction buffer. Branch instructions go into both IRBs
to help recover from mispredicted branches. The PA 8000 places four instructions
into the IRBs on every cycle, but branches count as two instructions, since they go
into both IRBs. Branches are predicted at this point using a 256-entry branch his-
tory table.

Instructions in the IRB arbitrate for the execution units. Availability of input
operands is the first priority. The second priority is to choose the "oldest" instruc-
tion. Tlie arbitration is a set-associative operation; there is no sequential search of
the IRB to determine the appropriate instruction. During each cycle, at most two
arithmetic and two memory instructions can be dispatched simultaneously.

There are two units that perform address computations associated with loads and
stores. Once an address is computed, it is stored in the 28-entry address reorder
buffer. This buffer allows the memory control to track up to 28 loads, stores, and
prefetches simultaneously, and these memory operations can be completed in any
order from the off-chip data cache or from main memory. Up to 10 off-chip data
cache misses can be outstanding at one time.
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Intel Pentium Pro
The Intel Pentium Pro is an interesting blend of architectures. It still executes the
x86 CISC instruction set, but the internal implementation is a high performance
post-RISC CPU. The Pentium Pro has an execution core that supports out-of-order
execution. The most dramatic aspect of the Pentium Pro architecture is that the
execution core is not executing Intel x86 instructions. The actual instructions are
called uops or micro-operations. Each Intel x86 instruction is decoded and trans-
lated into a one or more uops that are executed by the out-of-order core.

Instructions go through the Pentium Pro in three stages: First, the instruction is
fetched, decoded, and converted into a uop. Second, the uops are executed in the
out-of-order core. The final stage retires the uops in original program order. The
overall pipeline length has 14 stages.*

Fetching and decoding in the Pentium Pro is more complex than in other proces-
sors. Some x86 instructions are very complex and can decode into hundreds of
uops, although the number is usually less than three. Also, the x86 instruction set
has instructions with varying lengths. The logic that converts from x86 to uops
performs a similar function to microcode in earlier CISC machines.

The heart of the out-of-order core is the reservation station (RS). The Pentium Pro
has a register allocation table that maps the architected registers onto a larger set
of physical registers located in the reorder buffer.

The RS holds up to 20 uops until they are ready for execution. The RS is the buffer
between the first and second stages. If an instruction's operands are ready, and an
appropriate execution unit is available, the instruction is dispatched. The Pentium
Pro has five execution units: two integer arithmetic/logic units, two load/store
units, and one floating-point unit.

The final pipeline stages retire instructions. When the uops complete, they wait in
the reorder buffer until all of the instructions that came before them (in program
order) have been retired. Once that has happened, that instruction may retire.

The most impressive aspect of this architecture is that the Pentium Pro maintains
x86 compatibility. The designers handle a number of archaic (early 1980s) archi-
tectural characteristics, such as self-modifying code, which didn't concern other
designers. Nonetheless, the Pentium Pro performance is competitive with other
processors in the post-RISC generation.

* Given that the eight-stage pipeline of the MIPS R4000 was called "superpipeline," what do we call a
14-stage pipeline? Megapipeline? Ultrapipeline? Hyperpipeline?
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Summary
We have looked at many different processors from different time periods. We have
seen how some architectures were designed from the ground up to be high per-
formance processors, and other processors have backed into the role of high per-
formance computing.

One thing that history has shown is that the best high performance systems are
developed when a company sets out to produce high performance systems. The
system designers must completely understand and address the compute and mem-
ory demands of high performance computing when building their systems.

If you would like more detail on processor architecture, two good books on the
subject are Computer Architecture: A Quantitative Approach by David A. Patterson
and John L. Hennessy (Morgan Kaufman), and Advanced Computer Architecture
by Kai Hwang (McGraw Hill).

At this point, it would be great to write about what the architecture of the future
will look like. Will vector processors become extinct? Will our home video games
be so fast and fun to play that we forget about high performance computing and
just wander around in virtual reality?

While we won't predict what the future will bring in terms of architecture, there
are some trends that appear to be quite clear. First, the money is going into com-
modity processors for now. The market is driving research and development. So
it's a good guess that no significant new processors will be developed other than
RISC processors aimed at the personal computer market. High performance com-
puters for the medium term will use those processors to their best advantage.

The September 1997 issue of IEEE Computer offers a good look at the potential
future of microprocessors. The issue looks at the uses and challenges of the bil-
lion-transistor chip.



Looking at
Assembly Language

In this appendix, we take a look at the assembly language produced by a number
of different compilers on a number of different architectures. In this survey we
revisit some of the issues of CISC versus RISC, and the strengths and weaknesses
of different architectures.

For this survey, two roughly identical segments of code were used. The code was
a relatively long loop adding two arrays and storing the result in a third array. The
loops were written both in FORTRAN and C.

The FORTRAN loop was as follows:

We have gathered these examples over the years from a number of different com-
pilers, and the results are not particularly scientific. This is not intended to review
a particular architecture or compiler version, but rather just to show an example of
the kinds of things you can learn from looking at the output of the compiler.
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Intel 8088
The Intel 8088 processor used in the original IBM Personal Computer is a very tra-
ditional CISC processing system with features severely limited by its transistor
count. It has very few registers, and the registers generally have rather specific
functions. To support a large memory model, it must set its segment register lead-
ing up to each memory operation. This limitation means that every memory access
takes a minimum of. three instructions. Interestingly, a similar pattern occurs on
RISC processors.

You notice that at one point, the code moves a value from the ax register to the
bx register because it needs to perform another computation that can only be
done in the ax register. Note that this is only an integer computation, as the Intel
8088 doesn't support hardware floating-point operations:

Because there are so few registers, the variable I is kept in memory and loaded
several times throughout the loop. The inc instruction at the end of the loop
actually updates the value in memory. Interestingly, at the top of the loop, the
value is then reloaded from memory.

In this type of architecture, the available registers put such a strain on the flexibil-
ity of the compiler, there is often not much optimization that is practical.



Appendix B: Looking at Assembly Language 39 7

Motorola MC68020
In this section, we examine another classic CISC processor, the Motorola MC68020,
which was used to build Macintosh computers and Sun workstations. We hap-
pened to run this code on a BBN GP-1000 Butterfly parallel processing system
made up of 96 MC68020 processors.

The Motorola architecture is relatively easy to program in assembly language. It
has plenty of 32-bit registers, and they are relatively easy to use. It has a CISC
instruction set that keeps assembly language programming quite simple. Many
instructions can perform multiple operations in a single instruction.

We use this example to show a progression of optimization levels, using a f77
compiler on a floating-point version of the loop. Our first example is with no opti-
mization:

The value for I is stored in the dO register. Each time through the loop, it's incre-
mented by 1. At the same time, register dl is initialized to the value for N and
decremented each time through the loop. Each time through the loop, I is stored
into memory, so the proper value for I ends up in memory when the loop termi-
nates. Registers al, a2, and a3 are preloaded to be the first address of the arrays
B, A, and C respectively. However, since FORTRAN arrays begin at 1, we must
subtract 4 from each of these addresses before we can use I as the offset. The
lea instructions are effectively subtracting 4 from one address register and storing
it in another.

The following instruction performs an address computation that is almost a one-to-
one translation of an array reference:

This instruction retrieves a floating-point value from the memory. The address is
computed by first multiplying dO by 4 (because these are 32-bit floating-point
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numbers) and adding that value to aO. As a matter of fact, the lea and fmoves
instructions could have been combined as follows:

To compute its memory address, this instruction multiplies dO by 4, adds the con-
tents of al, and then subtracts 4. The resulting address is used to load 4 bytes into
floating-point register fpO. This is almost a literal translation of fetching B ( I ) .
You can see how the assembly is set up to track high-level constructs.

It is almost as if the compiler were "trying" to show off and make use of the nifty
assembly language instructions.

Like the Intel, this is not a load-store architecture. The f adds instruction adds a
value from memory to a value in a register (fpO) and leaves the result of the addi-
tion in the register. Unlike the Intel 8088, we have enough registers to store quite
a few of the values used throughout the loop (I, N, the address of A, B, and C) in
registers to save memory operations.

C on the MC68020

In the next example, we compiled the C version of the loop with the normal opti-
mization (-0) turned on. We see the C perspective on arrays in this code. C views
arrays as extensions to pointers in C; the loop index advances as an offset from a
pointer to the beginning of the array:

We first see the value of I being copied into several registers and multiplied by 4
(using a left shift of 2, strength reduction). Interestingly, the value in register al is
I multiplied by 4. Registers dO, dl, and d2 are the addresses of C, B, and A
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respectively. In the load, add, and store, al is the base of the address computation
and dO, dl, and d2 are added as an offset to al to compute each address.

This is a simplistic optimization that is primarily trying to maximize the values that
are kept in registers during loop execution. Overall, it's a relatively literal transla-
tion of the C language semantics from C to assembly. In many ways, C was
designed to generate relatively efficient code without requiring a highly sophisti-
cated optimizer.

More optimization

In this example, we are back to the FORTRAN version on the MC68020. We have
compiled it with the highest level of optimization (-OLM) available on this com-
piler. Now we see a much more aggressive approach to the loop:

First off, the compiler is smart enough to do all of its address adjustment outside
the loop and store the adjusted addresses of A, B, and C in registers. We do the
load, add, and store in quick succession. Then we advance the array addresses by
4 and perform the subtraction to determine when the loop is complete.

This is very tight code and bears little resemblance to the original FORTRAN code.

SPARC Architecture
These next examples were performed using a SPARC architecture system using
FORTRAN. The SPARC architecture is a classic RISC processor using load-store
access to memory, many registers and delayed branching. We first examine the
code at the lowest optimization:
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This is some pretty poor code. We don't need to go through it line by line, but
there are a few quick observations we can make. The value for I is loaded from
memory five times in the loop. The address of I is computed six times throughout
the loop (each time takes two instructions). There are no tricky memory address-
ing modes, so multiplying I by 4 to get a byte offset is done explicitly three times
(at least they use a shift). To add insult to injury, they even put a NO-OP in the
branch delay slot.

One might ask, "Why do they ever generate code this bad?" Well, it's not because
the compiler isn't capable of generating efficient code, as we shall see below. One
explanation is that in this optimization level, it simply does a one-to-one transla-
tion of the tuples (intermediate code) into machine language. You can almost
draw lines in the above example and precisely identify which instructions came
from "which tuples.

One reason to generate the code using this simplistic approach is to guarantee that
the program will produce the correct results. Looking at the above code, it's pretty
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easy to argue that it indeed does exactly what the FORTRAN code does. You can
track every single assembly statement directly back to part of a FORTRAN state-
ment.

It's pretty clear that you don't want to execute this code in a high performance
production environment without some more optimization.

Moderate optimization

In this example, we enable some optimization (-01):

This is a significant improvement from the previous example. Some loop constant
computations (subtracting 4) were hoisted out of the loop. We only loaded I 4
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times during a loop iteration. Strangely, the compiler didn't choose to store the
addresses of A ( 0 ) , B ( 0 ) , and C ( 0 ) in registers at all even though there were
plenty of registers. Even more perplexing is the fact that it loaded a value from
memory immediately after it had stored it from the exact same register!

But one bright spot is the branch delay slot. For the first iteration, the load was
done before the loop started. For the successive iterations, the first load was done
in the branch delay slot at the bottom of the loop.

Comparing this code to the moderate optimization code on the MC68020, you can
begin to get a sense of why RISC was not an overnight sensation. It turned out
that an unsophisticated compiler could generate much tighter code for a CISC pro-
cessor than a RISC processor. RISC processors are always executing extra instruc-
tions here and there to compensate for the lack of slick features in their instruction
set. If a processor has a faster clock rate but has to execute more instructions, it
does not always have better performance than a slower, more efficient processor.

But as we shall soon see, this CISC advantage is about to evaporate in this particu-
lar example.

Higher optimization

We now increase the optimization to -02. Now the compiler generates much bet-
ter code. It's important you remember that this is the same compiler being used
for all three examples.

At this optimization level, the compiler looked through the code sufficiently well
to know it didn't even need to rotate the register windows (no save instruction).
Clearly the compiler looked at the register usage of the entire routine:
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This is tight code. The registers oO, ol, and o2 contain the addresses of the first
elements of A, B, and C respectively. They already point to the right value for the
first iteration of the loop. The value for I is never stored in memory; it is kept in
global register gl. Instead of multiplying I by 4, we simply advance the three
addresses by 4 bytes each iteration.

The branch delay slots are utilized for both branches. The branch at the bottom of
the loop uses the annul feature to cancel the following load if the branch falls
through.

The most interesting observation regarding this code is the striking similarity to the
code and the code generated for the MC68020 at its top optimization level:

The two code sequences are nearly identical! For the SPARC, it does an extra load
because of its load-store architecture. On the SPARC, I is incremented and com-
pared to N, while on the MC68020, I is decremented and compared to zero.

This aptly shows how the advancing compiler optimization capabilities quickly
made the "nifty" features of the CISC architectures rather useless. Even on the CISC
processor, the post-optimization code used the simple forms of the instructions
because they produce they fastest execution time.

Note that these code sequences were generated on an MC68020. An MC68060
should be able to eliminate the three addql instructions by using post-increment,
saving three instructions. Add a little loop unrolling, and you have some very tight
code. Of course, the MC68060 was never a broadly deployed workstation proces-
sor, so we never really got a chance to take it for a test drive.
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Convex C-240
This section shows the results of compiling on the Convex C-Series of parallel/vec-
tor supercomputers. In addition to their normal registers, vector computers have
vector registers that contain up to 256 64-bit elements. These processors can per-
form operations on any subset of these registers with a single instruction.

It is hard to claim that these vector supercomputers are more RISC or CISC. They
have simple lean instruction sets and, hence, are RISC-like. However, they have
instructions that implement loops, and so they are somewhat CISC-like.

The Convex C-240 has scalar registers (s2), vector registers (v2), and address reg-
isters (a3). Each vector register has 128 elements. The vector length register con-
trols how many of the elements of each vector register are processed by vector
instructions. If vector length is above 128, the entire register is processed.

The code to implement our loop is as follows:

Initially, the vector length register is set to N. We assume that for the first iteration,
N is greater than 128. The next instruction is a vector load instruction into register
vO. This loads 128 32-bit elements into this register. The next instruction also loads
128 elements, and the following instruction adds those two registers and places
the results into a third vector register. Then the 128 elements in Register v2 are
stored back into memory. After those elements have been processed, N is decre-
mented by 128 (after all, we did process 128 elements). Then we add 512 to each
of the addresses (4 bytes per element) and loop back up. At some point, during
the last iteration, if N is not an exact multiple of 128, the vector length register is
less than 128, and the vector instructions only process those remaining elements
up to N.

One of the challenges of vector processors is to allow an instruction to begin exe-
cuting before the previous instruction has completed. For example, once the load
into Register vl has partially completed, the processor could actually begin adding
the first few elements of vO and vl while waiting for the rest of the elements of vl
to arrive. This approach of starting the next vector instruction before the previous
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vector instruction has completed is called chaining. Chaining is an important fea-
ture to get maximum performance from vector processors.

IBM RS-6000
The IBM RS-6000 is generally credited as the first RISC processor to have cracked
the Linpack 100x100 benchmark. The RS-6000 is characterized by strong floating-
point performance and excellent memory bandwidth among RISC workstations.
The RS-6000 was the basis for IBM's scalable parallel processor: the IBM-SP1 and
SP2.

When our example program is run on the RS-6000, we can see the use of a CISC-
style instruction in the middle of a RISC processor. The RS-6000 supports a branch-
on-count instruction that combines the decrement, test, and branch operations into
a single instruction. Moreover, there is a special register (the count register) that is
part of the instruction fetch unit that stores the current value of the counter. The
fetch unit also has its own add unit to perform the decrements for this instruction.

These types of features creeping into RISC architectures are occuring because
there is plenty of chip space for them. If a wide range of programs can run faster
with this type of instruction, it's often added.

The assembly code on the RS-6000 is:

The RS-6000 also supports a memory addressing mode that can add a value to its
address register before using the address register. Interestingly, these two features
(branch on count and pre-increment load) eliminate several instructions when
compared to the more "pure" SPARC processor. The SPARC processor has 10
instructions in the body of its loop, while the RS-6000 has 6 instructions.

The advantage of the RS-6000 in this particular loop may be less significant if both
processors were two-way superscalar. The instructions were eliminated on the
RS-6000 were integer instructions. On a two-way superscalar processor, those inte-
ger instructions may simply execute on the integer units while the floating-point
units are busy performing the floating-point computations.
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Conclusion
In this section, we have attempted to give you some understanding of the variety
of assembly language that is produced by compilers at different optimization levels
and on different computer architectures. At some point during the tuning of your
code, it can be quite instructive to take a look at the generated assembly language
to be sure that the compiler is not doing something really stupid that is slowing
you down.

Please don't be tempted to rewrite portions in assembly language. Usually any
problems can be solved by cleaning up and streamlining your high-level source
code and setting the proper compiler flags.

It is interesting that very few people actually learn assembly language any more.
Most folks find that the compiler is the best teacher of assembly language. By
adding the appropriate option (often -S), the compiler starts giving you lessons. I
suggest that you don't print out all of the code. There are many pages of useless
variable declarations, etc. For these examples, I cut out all of that useless informa-
tion, It is best to view the assembly in an editor and only print out the portion that
pertains to the particular loop you are tuning.



Future Trends:
Intel IA-64

by Dr. Richard Enbody

As of the writing of this book, yet another evolutionary step in the instruction set
of microprocessors is on the way. The Intel/HP joint effort, termed "Merced," is
taking the next step in architecture.

The primary, outstanding speed impediments facing post-RISC processors are
memory latency, the number of branch mispredictions, and the limited ability to
keep multiple execution units busy (parallelism). The principle behind IA-64 is to
attack latency and mispredictions using increased memory bandwidth, and to
attack parallelism with EPIC.

Let us begin by defining terms. EPIC stands for explicitly parallel instruction com-
puting, which defines a means for a compiler to explicitly pass information about
parallelism to the hardware. EPIC was developed by Intel and Hewlett-Packard.
Intel-Architecture-64 (IA-64) is a newly defined 64-bit instruction set architecture
(ISA) that was defined by Intel and Hewlett-Packard. IA-64 incorporates EPIC, so it
can be thought of as an implementation of EPIC. Merced is Intel's first micropro-
cessor to implement the IA-64 ISA. In other words, Merced is an implementation
of IA-64, which is an implementation of EPIC.* Starting at the highest level in Fig-
ure C-l, let us examine how EPIC allows a compiler to pass information about
parallelism to hardware. The principle behind EPIC begins with the fact that cur-
rent optimizing compilers consider data dependencies in constructing a set of
instructions to run on hardware. However, that knowledge is currently not shared
with the hardware. In fact, current out-of-order microprocessors go to great
lengths to rediscover and work around dependencies in code. EPIC defines a

* To compare these new terms, EPIC is a design approach like RISC or CISC, IA-64 is an instruction set
architecture like x86 or PA-RISC, and Merced is a particular implementation of an ISA like Pentium Pro
or 8086.
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means for the dependence knowledge determined by the compiler to be explicitly
passed to the hardware, as shown in Figure C-2.

The mechanism EPIC chose for communication is to use "template" bits. These bits
indicate groups of instructions that are independent of each other so they need
not be executed in sequence. In IA-64, instructions are bundled into groups of
three with template bits indicating whether one, two, or all three instructions are
independent. The IA-64 instruction format is shown in Figure C-3. With the knowl-
edge from the compiler that groups of instructions can be executed in parallel, the
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scheduling hardware is greatly simplified over existing out-of-order processors.
Instructions marked as independent can be issued directly to execution units
(assuming their operands are available). Simplified hardware scheduling saves the
transistor budget for other uses and provides an opportunity for a faster clock.

If all that EPIC supplied was simplified scheduling, it would not provide much per-
formance improvement. The greater potential of EPIC is to discover and pass on
knowledge of parallelism at a higher level than the instruction level. Since compil-
ers work off-line, they have the luxury of exploring high-level structures of pro-
grams and the time to examine rearrangements of code for maximum parallelism.
This higher-level examination promises to provide greater instruction-level paral-
lelism (IIP) to the hardware. The combination of greater ILP together with the
ability to inform hardware of the parallelism is the promise of EPIC,

IA-64 is much more than simply an implementation of EPIC, but the other ISA
enhancements are more evolutionary than revolutionary. They are, nevertheless,
important advances in commercial instruction sets. The three most significant
enhancements announced to date are predicated instructions, speculative loads,
and the three-instruction-bundled words. They are not totally new concepts, but
they have not been implemented in a commodity microprocessor. Other important
enhancements are an enormous increase in registers and the new-to-Intel fixed-
length instruction.

The three most significant enhancements require an increase in bandwidth to be
most effective. Predicated instructions and speculative loads have the potential to
add bandwidth related to instructions whose results will never be used. However,
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increased bandwidth could be a fair trade for the potential benefits that these
instructions can provide.

Predicated instructions are well-known enough to appear in popular architecture
textbooks. In fact, the conditional-move instruction that exists in modern commod-
ity microprocessors is a restricted type of predicated instruction. A conditional-
move instruction moves a value from one register to another register based on
some conditional value, possibly in a third register. IA-64 extends this concept to
most instructions and conditions instructions using 64 one-bit predicate registers.
Predicated instructions complete their execution based on the associated one-bit
predicate register.

For example, consider an if-then statement based on a condition, X. If X is true,
the instructions in the if clause are executed. Conversely, if X is false, the instruc-
tions in the then clause are executed. Normally, branches would be inserted at the
entry and exit of the if-clause instructions to control the conditional flow. Predicat-
ing all the instructions in both the if and then clauses on the X-condition allows
the branches to be removed. All instructions in both clauses are issued to execu-
tion units, but their results are not committed until the condition X has been evalu-
ated. Those instructions whose predicate evaluates to TRUE will complete; those
whose predicate is FALSE won't.

As shown in Figure C-4, the result is that instructions down both paths (if and
then) are issued. With 64 predicate registers, many branches can be followed at
the same time. However, not all branches can be replaced by predicated instruc-
tions. Some branches won't be replaced, and branch prediction is used in those
cases.

Two benefits accrue from the use of the predicated instructions. One is that the
conditional completion of the instruction is delayed, allowing time to calculate the
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condition before it is needed. Also, without guessing (branch prediction), the cor-
rect code is executed. Of course, the incorrect code is also executed (not to com-
pletion), but the cost is primarily bandwidth that may be affordable. In particular,
the cost of the extra bandwidth must be measured against the cost of mispredict-
ing a branch. The misprediction stalls may be offset by the execution of code that
isn't used, but the premise is that some useful code will be accomplished during
the cycles which would have been stalls. Also many sequences of if-then-else code
are very short.

Research published at the 1995 International Conference on Computer Architecture
by Mahlke, et al., showed that with an eight-wide machine, predicated instructions
removed half of the branches in a set of benchmarks examined. Of particular note
is that the removed branches represented 40% of the mispredicted branches. That
is, predicated instructions tended to remove branches that were difficult to predict.
Given the Intel claim that "It is not unusual for some of today's highly pipelined
machines to have penalties of 20% to 30% of their performance going to branch
mispredicts," the potential benefits are enormous.

Note how well predicated branches work with the EPIC concept. Instructions that
follow different branch outcomes are naturally independent of each other and can
be executed in parallel.

Speculative loads also promise to provide significant improvements. The problem
with loads is that the memory hierarchy has been getting slower with respect to
processor speeds, so memory access penalties have been growing (latency). If one
can start a load well before its result is to be used, the latency of satisfying that
load can be hidden by executing other unrelated instructions. However, moving
loads earlier in the instruction stream can be difficult. Loads tend to be the first in
a dependency chain of instructions: load, load, load, compute, store. In addition,
loads tend to come at the beginning of a basic block whose predecessor was ter-
minated by a branch. In order to move (hoist) the load earlier in the instruction
stream, the load must be moved before the branch, but whether the load is actu-
ally executed depends on the whether the branch was taken. A simple example is
"if a pointer is valid, use the pointer." One would not want to use the pointer
before determining if it is valid. Another potential problem with moving the load
occurs if the instruction were to cause an exception. Imagine speculatively execut-
ing a load that causes a page fault; the penalty incurred for such an unused load is
significant.

The IA-64 solution is a speculative load that splits a load into two parts. The first is
an initiation of the load that can be hoisted earlier in the instruction stream. Before
the results of the load can be used, a check instruction is executed to ensure that
the load should be executed, that is, the correct path was taken, and to check that
the load has completed successfully. If the speculative load generates an
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exception, flag it (using a "token") and continue. The exception will be handled at
the check time. Figure C-5 shows how the IA-64 might split a load into two parts.

The potential performance gain is significant. Access to main memory can cost a
hundred clock cycles, and the penalty increases as processors speed up. Even a
second-level cache miss can cost a couple of dozen cycles. Hoisting loads earlier
in the instruction stream allows loads to move data from higher up the memory
hierarchy onto the processor chip in time for the data to be used without delay.
Given that basic blocks are frequently only six instructions long, the ability to hoist
loads beyond the basic block can be significant. Since these speculative loads can
be hoisted above multiple branches, the potential performance gain is even
greater.

As with predicated instructions, the penalty with speculative loads is wasted band-
width. That is, loads may be initiated (data moved onto the chip) that are never
used. One must weigh the cost of the extra bandwidth against the cost of the elim-
inated load stalls.

The IA-64 instruction format is a 128-bit instruction word that bundles three
instructions together with predicate bits for each instruction. EPIC template bits are
included that indicate the independence of the three instructions in the word and
the independence of subsequent bundles. Part of the EPIC compiler's job is to
select appropriate groups of three instructions to be bundled into each word. Ear-
lier VLIW instruction sets required instructions bundled into the same word to be
independent.

IA-64's template bits allow combinations of dependent and independent instruc-
tions to be bundled together. This feature eliminates the need for the abundance
of NOPs in earlier VLIW implementations, and allows easier compatibility across
different word sizes, a serious problem for earlier implementations.
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The final IA-64 announced feature is the enormous increase in registers. There are
now 128 general-purpose registers and 128 floating-point registers. This increase in
registers increases the register-management task of the compiler, but significantly
reduces the false dependencies smaller register sets can impose on code. With this
expansion of registers, the renaming capability common in the current micropro-
cessors isn't needed.

Taken together, predicated instructions and speculative loads dramatically increase
the ability of a compiler to rearrange code to achieve high levels of parallelism
while eliminating the stalls of mispredicted branches and cache misses. The
increased register set reduces stalls from false data dependencies that further
increases available parallelism. The EPIC template bits combined with the long
instruction word allows the compiler to explicitly pass on this discovered paral-
lelism to the hardware. The restructured code with explict dependency informa-
tion allows the execution units to be highly utilized, which should result in fast
execution.

The EPIC concept, combined with the IA-64 ISA, has the potential to provide sig-
nificant performance improvement over current microprocessor architectures.



In FORTRAN, an application executes with a single thread, and when the applica-
tion encounters a parallel loop, it utilizes more than one thread to improve its per-
formance. This section describes how FORTRAN manages those threads at runtime
and explores some performance impacts of having too many threads. This material
suppliments the material in Chapter 10, Shared-Memory Multiprocessors and Chap-
ter 11, Programming Shared-Memory Multiprocessors.

One simple approach would be to invoke the operating system to create the nec-
essary threads at the beginning of each parallel loop and destroy the threads at the
end of the loop. Unfortunately, calling the operating system at the beginning of
each loop incurs excessive overhead. In addition to the operating system over-
head, the arrival times of these newly created threads to enter the parallel compu-
tation are often skewed significantly. To avoid this overhead and late thread
arrival, the FORTRAN runtime library typically creates its threads once at the
beginning of execution and then manages those threads in user space.

This approach, which creates a fixed number of threads at the beginning of execu-
tion and uses them throughout the duration of the application, is referred to as
fixed thread scheduling (FTS) throughout this section. The choice of the name
"fixed" emphasizes the fact that the number of threads doesn't change once the
application begins execution.

In the next section, we examine how these threads are managed by the runtime
library and the performance of this approach in the face of a dynamic load.
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Runtime Thread Management Details
When a compiled parallel application is executed and the first parallel loop is
encountered, the runtime environment starts up a number of threads. The number
of threads is often the same as the number of installed processors. The number of
threads is usually controlled by the user via an environment variable. These
threads are scheduled by the operating system much like UNIX processes. The tra-
ditional approach is that threads are simply scheduled when there is a processor
available or using some round-robin scheme designed to give threads a fair
chance at using the processor. On some systems, these threads are scheduled by
the operating system using gang scheduling. When a set of threads is gang sched-
uled, either all of the threads are executing or all are preempted. In Figure D-l
and Figure D-2 these approaches are graphically compared.

If gang scheduling is done in its strictest sense, a significant amount of time could
be wasted when a multithreaded application is timesharing with a single-threaded
application. Regardless of the way the operating system schedules the threads,
when the program starts, one thread begins executing the user application while
the other threads "spin," waiting for a parallel loop to be encountered. The code
these waiting threads execute is as follows:

The variable wakeup is set initially to zero. With a bus-based system, this
approach might appear to cause a great deal of unnecessary memory traffic. Actu-
ally, each waiting processor ends up with a shared encached copy of the wakeup
variable with the value zero. Once the caches have been filled, there is no addi-
tional memory traffic as these waiting processors execute this tight loop. Some sys-
tems have added special hardware instructions to make this wakeup from a spin
loop perform even more efficiently.
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When a parallel loop is encountered, the variable beginning_of_loop is set to
indicate which parallel loop is about to be executed, and the variable wakeup is
set to 1 to activate the waiting threads. Setting wakeup to 1 causes all the cached
copies to be invalidated, and the next iteration of the spin loop exits as the caches
reload with the new value of wakeup. The waiting threads immediately notice the
change, exit the spin loop, and join the computation. Once the threads arrive at
the loop, they each determine the appropriate iterations to process using the itera-
tion-scheduling technique chosen for this particular loop and begin processing
those iterations.

When the loop completes, each executing thread enters a barrier, and, when all
the threads have entered the barrier, one thread continues executing in serial. The
remaining threads again execute the spin loop waiting for the next parallel loop.
This approach results in extremely quick thread-activation times.

To demonstrate the timing of these operations, the following FORTRAN loop was
executed on the SGI Challenge:

Because the scheduling type is SIMPLE, the consistent mapping of a CPU to an
iteration of the J loop is forced. By checking the elapsed time between the IN
and MIDDLE times, we can determine the time for a thread to arrive in the parallel
section of a loop (spawn time). By checking the elapsed time between the MID-
DLE and OUT, the time spent processing the loop-end barrier can be determined
for each thread. Once the overhead for the WALLTIME calls is removed, this loop
does no work, and we can measure the performance of the parallel loop startup
and completion. This loop measures how fast a thread can be brought into the
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loop from a spinning state. Later, we will measure how these timings change when
a loop is executed, and there are more threads than processors.

In Figure D-3, the performance of this loop is measured on an empty system. The
loop was executed a number of times, and the average values are reported in this
figure.

*This figure shows the performance of the first and second threads (out of four
threads) using free scheduling and gang scheduling. Using gang scheduling, the
entire loop takes 36 microseconds; using free scheduling, it takes 40 microseconds.
Thread 1 wakes the other threads up, so it is the first to arrive in the body of the
loop. Thread 1 takes 7 microseconds to go from the serial code to the body of the
loop in both cases. Thread 2 takes 16 microseconds to arrive in the body of the
loop. This difference shows how quickly the "helper" threads can arrive from their
spin loops. The barrier at the end of the loop takes somewhat longer in general
than the spawn process. Also, since Thread 1 arrives quicker, it completes its work
quicker and, as such, spends more time at the barrier waiting until Thread 2
arrives to terminate the loop. The performance for Threads 3 and 4 look identical
to Thread 2.

While the spin-wakeup approach results in fast loop startup times, there is a prob-
lem because this approach assumes that all the available threads are actually exe-
cuting the spin loop at all times they aren't participating in a parallel loop. There
are two reasons that a thread might not be executing the spin loop when a parallel
loop is encountered. The first reason is that the thread may have decided to volun-
tarily put itself to sleep because it has waited too long in the spin loop code at a
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barrier or waiting for work. The second reason is that the operating system may
have pre-empted a thread involuntarily because of another unrelated load.

A spinning thread waiting for work voluntarily suspends itself to minimize wasted
CPU time in case an application needs to spend a significant time running serial
code. The pseudo-code for this is roughly as follows:

The counter value is typically controllable by the application programmer. The
programmer may also be able to suppress the release_cpu behavior altogether.
Interestingly, by suppressing the release of the CPU, the programmer gets
marginally better performance for his application. Of course, the CPU time spent
spinning is not accomplishing any real work and the CPU is not available for other
users. Often, benchmark runs are executed with the release_cpu behavior sup-
pressed. When a thread voluntarily gives up the CPU, it records this fact, so when
the serial thread encounters a parallel loop, it can request that the operating sys-
tem reschedule the suspended thread.

With the potential that a waiting thread might suspend itself, the pseudo-code for
starting a parallel loop is as follows:

If any threads have put themselves to sleep, wake them up
Store starting location of parallel loop
Notify spinning threads via wakeup
Distribute iterations to threads
Process assigned iterations
Perform Barrier
One thread continues execution while others wait for the

next parallel loop to be encountered

If a spinning thread has been suspended involuntarily by the operating system, the
startup latency is much larger because the serial thread is not aware (and is not
even allowed to awaken) the spinning thread that has been suspended. The loop
startup code simply assumes the spinning threads will join in a few microseconds.
The operating system must reschedule the suspended thread before the thread can
execute, detect the changed wakeup variable, and join the computation. In the
worst case, this latency can be on the order of an operating system time slice.
Thread-arrival skew can cause a nondynamic iteration scheduling algorithm to
appear to have very unbalanced load, as is shown later.



Appendix D: How FORTRAN Manages Threads at Runtime 419

While this approach seems to waste the CPU in spin loops, a program that is well-
suited to parallel processing, when properly tuned, typically runs in parallel a
large part of the time. Thus, the time that processors spend spinning at the end of
parallel loops should be minimized on an unloaded system.

Problems with Dynamic Load
*,

Computer systems similar to the SGI Challenge perform very well when there is no
other load on the system, and each thread has exclusive access to a CPU. Unfortu-
nately, the performance of the SGI gets much worse when there are more threads
than available processors.

There are a number of the major problems when there are more threads than pro-
cessors:

• Preemption during spin-lock critical section

• Preemption of the wrong thread in a producer-consumer relationship

• Unnecessary context switch overhead

• Corruption of caches due to context switches

With the increase of CPU speed and the increasing reliance on data resident in
cache, the context switch corrupting cache has had an increasing impact on per-
formance.

Loop performance under load

In this section, we look at the performance of the simple loop when a single CPU-
bound job is added to the system. The same experiments are shown in Figure D-3,
with the addition of load. These experiments are run with the standard SGI com-
piler options that use spin without release_cpu at the end of a loop. In Figure
D-4, the spawn and barrier times are shown for a gang-scheduled and a free-
scheduled application. All the experiments use fixed-thread scheduling in that four
threads are used for every parallel loop. Both the first and second thread are
shown in Figure D-4. The performance for the unloaded system is included for ref-
erence. When gang scheduling is used and load is added, the change in perfor-
mance is effectively unmeasurable. However, when load is added to the free
scheduled program, performance suffers dramatically. Figure D-5 changes the y-
axis to a logarithmic scale so that the performance of the loop under free schedul-
ing can be observed. In Figure D-4, the free thread scheduled application per-
forms over three orders of magnitude slower. Interestingly, Thread 1 still enters the
loop in 14 microseconds, although at the increased scale, it can no longer be seen.
The second thread averages 10,583 microseconds (or 0.1 seconds) for its arrival.
The bulk of the time is spent in the barrier for all threads, with each thread dis-
placing the other spinning threads to spin. Further, because there are four CPUs
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and only one single load thread, three threads are usually active in the application.
These threads quickly go to the barrier and spin, waiting for the arrival of the
fourth thread. Once the fourth thread arrives, it quickly completes its 15 microsec-
onds of work and goes to the barrier.

To further understand the values that make up this average, Figure D-6 shows the
performance of Thread 2 (the last bar above) for a selected number of individual
iterations. The vertical axis is again logarithmic. In this figure the cost for the
spawn and the barrier are shown for the second thread with free scheduling on a
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further expanded scale. The barrier contributes the majority of the performance
impact. In some iterations, the spawn time (or thread arrival time) is significant,
and in a few iterations, there is a negative performance impact from both the
thread arrival and barrier time.

Parallel applications and load on the SGI

The above tests focus on the potential negative impact when thread imbalance
occurs. However, in a real application on the SGI, gang scheduling is available,
and loops execute longer in parallel, which reduces the impact of loop startup and
termination performance. In the following example, cache effect, context switch
overhead, and other factors impact performance.

To test the performance impact on running applications, a simple, parallel compu-
tation is used as the benchmark application. The core loop for these tests is as fol-
lows:

All of these experiments are performed on a four-processor, four-CPU SGI Chal-
lenge system. This experiment is run using the SGI compiler with gang scheduling
turned on.

Figure D-7 shows the performance of the code with several compiler options and
load scenarios. The first set of bars show that the application code parallelizes
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automatically without any user modifications using simple iteration scheduling.
The wall time is roughly one-quarter the CPU time.

The second bars represent a set of single-threaded applications with random
arrival and duration. These applications don't generate enough aggregate load to
completely utilize the system, which is why the wall time is not 25% of the CPU
time. The wall time and CPU time shown in the chart is the aggregate for all the
jobs.

The third bars show the ideal CPU and wall time for the combination of the paral-
lel job and the set of single-threaded jobs running simultaneously, assuming per-
fect load balancing on four CPUs. Note .that while CPU time increases additively,
the wall time doesn't increase from the other bars to the ideal bars. This lack of an
increase is because, on the four-CPU system, there are enough spare cycles while
the other job is running for the parallel job to execute to completion. Figure D-8
shows these different combinations of runs.

The ideal performance only occurs if the parallel job can "soak up" the free cycles
while the other jobs were running without adding a great deal of overhead. The
next-to-last bar, other+simple, shows the actual performance achieved on the
SGI Challenge when the jobs are run together. The system performs much worse
than ideal when both jobs run simultaneously. The wall time for the combination
job is 1.68 times longer than ideal, and the CPU time of the combination job is
1.76 times longer than the ideal CPU time. In fact, with the two jobs running
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simultaneously, the SGI performs worse than if you ran the jobs sequentially using
a batch queue, as shown by the last set of bars in the figure.

When both parallel and serial jobs are running simultaneously, the parallel appli-
cation experiences poor performance and slows down the nonparallel applications
as well. The problem that causes the poor performance for both jobs when they
are run simultaneously is explained in Figure D-8.

When the SGI system is otherwise empty, either the parallel job or the serial jobs
make good use of the resources. However, when all of the jobs are run at the
same time, there can be more active threads than processors. All the threads must
be timeshared across the available processors, which has a significant negative
impact on both the parallel and serial jobs. The parallel job experiences a wide
range of effects, as described earlier. The serial job slows due to context switches,
cache loss, and the simple loss of CPU due to timesharing. The worst part of this
situation is that the parallel work delays the completion of the serial work, extend-
ing the length of time the system is operating inefficiently.
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The only reasonable choice on such a system is to run parallel compute jobs on
an otherwise empty system. These incompatible workloads can be separated using
a batch queue, a predetermined schedule for usage during different parts of the
day, or some other external management policy.

Summary
There are many techniques that perform dynamic load balancing within a single
application using iteration scheduling on an otherwise empty SMP parallel proces-
sor. These techniques assume that every thread has a dedicated processor. There is
an excellent systemwide dynamic load-balancing solution available on expensive
parallel/vector supercomputers that allows those systems to maintain 100% utiliza-
tion over the long term. Unfortunately, there is no production quality solution for
low-cost SMP systems that provides overall dynamic load balancing.

Supercomputers have long had the ability to mix high performance computing
load with other forms of load, and maintain high efficiency and utilization. There
are techniques that allow less expensive systems to have similar abilities; however,
the operating systems and compilers on these computers must be aware of the
problems and provide features that allow for dynamic adjustment of the threads at
runtime.



Memory
Performance

by Colin Hearne Evans

In this appendix, we examine the affects of the cache and memory hierarchy on
several popular architectures using some simple benchmarks. We will look at how
performance can be strongly affected by memory stride and cache usage, and we
will use the benchmarks to do some simple analysis of positive and negative
aspects of each architecture. The results will illustrate programming strategies dis-
cussed in other parts of this book and give some useful methods for comparing
the performance of different architectures.

The two benchmarks outlined here, memld and mem2d, are two FORTRAN pro-
grams that perform a large number of simple integer computations over one-
dimensional and two-dimensional data structures. The benchmarks explore the
effects of memory stride and variations in memory and cache speed, depending on
how a data structure is accessed. Performance is measured in MOPS (millions of
operations per second), a relative measure of how many millions of simple integer
computations are performed per second when the data structure is accessed in a
certain fashion. The results are similar to the STREAM benchmark discussed in
Chapter 15, Using Published Benchmarks, in that they measure the bandwidth
from the memory subsystems to the CPU, but the STREAM benchmark tests band-
width from main memory, and we will look at variations in bandwidth across the
whole cache and memory hierarchy.

The memld Benchmark
The memld benchmark records the time used to perform a large number of 32-bit
integer additions over a one-dimensional array. The benchmark varies the amount
of the array accessed over a number of tests so that the active data set for each test
moves from the LI cache to the L2 cache, and then becomes so large that it can
only be contained in main memory. Memory bandwidth is consistent for data sets
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that fit totally in the same cache, but bandwidth drops as the data set gets too
large and is pushed out into the next level of cache or into main memory. Cache
performance at every level is profiled, and cache sizes can easily be determined
from the results.

The core of the memld benchmark is the set of nested loops in the middle of the
program:

The HPCTIM function is a timing function that returns the elapsed time from the
last time the function was called. The NOOPT function is a placeholder function
that does nothing, but prevents sneaky compilers from altering the loop structure
drastically or finding other ways of subverting the benchmark.
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Here is the typical output from a 143-MHz Sun UltraSPARC 1 system with a 16-KB
LI data cache and a 512-KB L2 cache:

The output gives the array length in bytes that is used for the benchmark, the wall
time and CPU time taken to complete the loops, the ratio of CPU to wall time
(useful for determining if the results are invalid because of a heavy load on the
system), and the MOPS bandwidth based on the wall time. The lower MOPS rat-
ings for the very small data sets are due to missed branch prediction at the end of
each loop. This dominates the execution time of the small loops due to loop over-
head. Loop overhead dominates the execution time of small loops, but quickly
becomes insignificant as the loops get larger. The bandwidth drops after the data
set reaches sizes of 16 KB and 512 KB, consistent with the actual memory sizes of
the system. The largest drop in speed on this system is from the LI cache to the L2
cache.

Results from the Mem Id Benchmark
Figure E-l and Figure E-2 show the results from two UltraSPARC systems running
at 143 and 248 MHz, two systems with SPARC II microprocessors running at 75
and 85 MHz, and a Pentium Pro system running at 200 MHz. All systems ran
Solaris. Figure E-l illustrates raw MOPS performance and MOPS performance
scaled by clock rate for the Sun systems. The points where each dataset moves
from one level of memory hierarchy to the next are easily visible as large dips in
the graphs. All of the systems have 16-KB LI data caches and 1-MB L2 caches
except for the 143-MHz Ultra, which has a 512-KB L2 cache.
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There are large differences in the raw bandwidth performance between the
143-MHz and 248-MHz Ultra chips while the data is in the LI or L2 caches. At peak
performance, the 248-MHz chip's bandwidth performance is close to 73% greater
than the 143-MHz chip, consistent with the 248-MHz chip's clock speed being 73%
greater than the 143-MHz chip. In the LI and L2 caches, there is almost a perfect
speedup, where more clock cycles translate purely into more speed. But once the
data set moves out to 2 MB or 4 MB, the 248-MHz chip's bandwidth is only
around 22% greater than the 143-MHz chip's bandwidth. The 143-MHz UltraSPARC
1 and 248-MHz UltraSPARC 2 use the same speed memory, so the 248-MHz chips
spends more time than the 143-MHz system waiting around for main memory.

The problem of slow main memory is made plainer by the graph of bandwidth
scaled by clock rates. The SPARC II systems have better performance per clock tick
than the UltraSPARC systems as long as the data is in cache. However, this doesn't
mean that it is a good idea to produce a 200 MHz SPARC II chip, because even
between 75 MHz and 85 MHz clock rates, there is a large degradation in perfor-
mance when the processors start accessing main memory. The bandwidth per
clock tick goes down as clock rates rise, and, in the case of the SPARC II chips, the
bandwidth drops very quickly. UltraSPARC chips have a number of features to
ease access to main memory including pipelined memory accesses. These features
mean that bandwidth per clock tick does not drop as quickly as earlier systems
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when the clock rate goes up. New trends in architecture design are primarily
aimed at staving off the law of diminishing returns for clock speeds.

A comparison of the Pentium Pro 200 MHz system and two UltraSPARC! systems
shows where Intel has been successful with its newest processor. Figure E-2
depicts the Pentium Pro holding its own against the UltraSPARC chip for band-
width performance in cache, For bandwidth from makTmemory though, the Pen-
tium Pro is the slowest. In Figure E-3, it becomes more obvious that the Pentium
Pro is a winner for integer bandwidth in cache, but still falls short with accessing
main memory. This illustrates a difference in design philosophies, where the Ultra-
SPARC microprocessors use extensive pipelining of loads and flow prediction in
order to handle memory latency, while the Pentium Pro uses out-of-order execu-
tion. Out-of-order execution allows for loads to be started early and allows for bet-
ter use of superscalar features of a chip. However, it appears from the graph that,
for integer bandwidth, the superscalar scheduling is more effective than the load
scheduling. These two figures suggest that the Pentium Pro systems are real con-
tenders in the workstation market, and that future Intel chips will be worth look-
ing at.
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The mem2d Benchmark
The mem2d benchmark tests best-case and worst-case memory usage and com-
piler cleverness by recording the time it takes to perform a series of additions on a
two-dimensional array in unit stride and against unit stride. The number of
columns in the array increase over successive iterations, while the number of rows
stays the same. There are two tests of non-unit stride: one uses an empty NOOPT
function in the inner loop in order to keep the compiler from interchanging the
inner and out loops. The other test has no NOOPT function and is meant to test
the compiler's ability to find non-unit stride loops and interchange the inner and
outer loops. The results compare memory bandwidth with unit stride and non-unit
stride memory accesses in terms of MOPS, similar to the memld benchmark.

The core of the mem2d benchmark is the three sets of nested loops in this pro-
gram:
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As in memld, the HPCTIM function is a timing function that returns the elapsed
time from the last time the function was called. The NOOPT function is a place-
holder function that does nothing, but prevents sneaky compilers from altering the
loop structure drastically or finding other ways of subverting the benchmark.

Here is the typical output from a 143-MHz Sun UltraSPARC 1 system with a 16-KB
LI cache and a 512-KB L2 cache compiled with the -depend flag that invokes loop
dependency analysis;
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The output gives the number of columns used with 2048 rows, the number of
additions performed on the array used, the wall time, and the MOPS bandwidth.
The cases with columns as the inner loop give non-unit-stride memory access, and
the bandwidth drops as the amount of memory accessed in non-unit stride
increases. The case with rows as the inner loop gives unit stride, and the band-
width rises as the number of columns accessed at each row increases because the
amount of memory accessed in unit stride is increasing. The -depend option that
was given to the compiler causes the interchangeable loops to be flipped, turning
a loop where every memory access is in non-unit stride into a loop where every
memory access is in unit stride. As can be seen, the interchanged loops and the
loops with the rows nested inside approach the same bandwidth because the
loops with rows nested inside become unit-stride loops as the number of columns
accessed at each row increases.

Figure E-4 depicts the results of mem2d running on a Pentium Pro at 200 MHz and
an UltraSPARC 1 at 143 MHz. The SPARC system outperforms the Pentium Pro for
larger datasets as in memld, but neither of the systems handle nonstride memory
accesses well. For the larger datasets, the UltraSPARC's bandwidth with unit-stride
access is faster by a factor of 13 over the non-unit-stride bandwidth. Unit-stride
bandwidth on the Pentium Pro is as much as eight times faster than non-unit-stride
bandwidth. These cases illustrate best-case and worst-case memory access pat-
terns, and they show the breadth of performance on the UltraSPARC and Pentium
Pro systems. Both systems are highly optimized for unit-stride access patterns, and
it's important to spend time tweaking code in order to stay near the top of the per-
formance band.
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The results for the interchangeable loops show that the Sun UltraSPARC compiler
was able to detect non-unit stride memory accesses and swap the inner and outer
loops not held in place by data dependencies. The result was a loop that was pure
unit stride accesses. The Sun compiler for the Pentium Pro was not able to identify
the non-unit stride memory accesses, and this suggests that the compiler is not
able to do sophisticated hardware optimizations for Pentium Pro systems. Loop
swapping is only one optimization that a compiler can do, but it is a fairly funda-
mental optimization.

Summary
This section shows how a set of simple programs can be used to explore the per-
formance capabilities of today's high performance computers. There are many
variations that can be done using these codes. You can also compare integer and
floating-point performance and explore the relative performance of single and
double precision.
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binary coded decimal (BCD), 59
blocked I/O operations, 104
blocking, 161-165
branch delay slots, 19
branch instructions

delayed, 19-21
detecting, 16
predicated instructions, 410-411

branches, 134-139
transfering control with, 138

broadcast/gather computing model (MPI),
302, 320-324

buses, 194, 250
montoring traffic on, 198, 263

bypassing caches, 50

c
C language on MC68020, 398
cache coherency protocol, 198
cache-coherent nonuniform memory access

(ccNUMA), 263-264
cached DRAM, 55
caches, 35-39

bypassing, 50
coherency between, 37, 198, 263-264

shared memory without, 264
large, 47
line states, 199
mapping schemes, 39-43
prefetching, 52
shared multiprocessing and, 196-200

call graphs, 113
ccNUMA (cache-coherent nonuniform

memory access), 263-264
character operations, 140
CISC processors, 8-11, 367-375

instruction length, 18
classical optimizations, list of, 91-98
clock speed, 14

clutter, eliminating, 128-145
common subexpression elimination, 95,

141
conditional branches, 134-139
data type conversions, 139
macros, 131-133
procedure inlining, 133
reorganizing loops, 142-144
subroutine calls, 129-131

code (see programs)
coherency between caches, 37, 198,

263-264
shared memory without, 264

common subexpression elimination, 95,
141

common variables
memory storage for, 104
subroutine calls and, 130

communication modes (MPI), 313
communicators (MPI), 313
company, benchmarking, 353
compilation process, 85
compilers, 81-99

automatic parallelization and, 226-241
benchmarking, 353
choosing language for, 83-85
classical optimizations, list of, 91-98
floating-point operations and, 75
history of, 82-83
how they work, 85-89
macros, 131-133
optimization levels, 89-90

complex instruction sets, 9-11, 369-371
computations with floating-point numbers

(see floating-point operations)
conditional branches, 134-139

loops with, 134-139, 152
transfering control with, 138

conditional execution, 20
constant folding, 92
control dependencies, 173-175
control features, FORTRAN 90, 281
control section (CPU), 372
control structures (HPF), 294
control-transfer conditionals, 138
Convex C-240 processor, 404
copy propagation, 91
copyback caching, 199
cpp macros, 131-133
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CPU registers, 34
CPU time, 102

elapsed time and, 103
etime function for (FORTRAN), 105

CPUs
control section, 372
dividing work among, 287-289

Cray-lS computer, 375
critical sections, 214, 234
crossbars, 194, 251
custom benchmarks, 347-364

checklist for, 360-363
coding, 358-363
types of benchmarks, 353-358
what to benchmark, 348-353

cycle time, 33

D
DAGs (directed acyclic graphs), 177-178
Dally, William, 253
data decomposition, 287
data dependencies, 173, 175-176

loops and, 181-187
data flow analysis, 90, 178
data flow processors, 384
data layout directives (HPF), 291-294
data-parallel problems, 273-277, 288

in FORTRAN 90, 283-285
in HPF, 296
in MPI, 314-324
inPVM, 305-311

data type conversions, 139
dead code removal, 93
DEC Alpha 21164 processor, 388
DEC Alpha 21264 processor, 390
decomposing work for CPU distribution,

287-289
^define construct, 131
delayed branch instructions, 19-21
demand paging, 46
denormalized numbers, 74
dependencies, 173-180

ambiguous references, 187-190
"assume no dependencies" flag, 228
loops and, 181-187
"no/ignore dependencies" assertions,

229
dependency distance, 187
dependent loop conditionals, 137

development environment, benchmarking,
353

direct mapped caches, 39-40
directed acyclic graphs (DAGs), 177-178
directory-based caching, 263
distributed-memory MIMD architecture,

265-267
DOALL loops, 226
Dongarra, Jack, 332
DOUBLE data type, 69
double-precision calculations, 139
DRAM (dynamic RAM), 32

access and cycle times, 33
technology trends, 54
(see also memory)

dual mode (i860 processor), 382
dynamic iteration scheduling, 239
dynamic memory allocation, 282
dynamic random access memory (see

DRAM)

E
EDO RAM, 55
elapsed time, 102

gettimeofday routine (example), 106
page faults and swaps, 105

EPIC (explicitly parallel instruction comput-
ing), 29, 407-413

etime function (FORTRAN), 105
exceptions for floating-point operations, 75
exclusive cache lines, 199
executing instructions (see instructions)
execution profiles (see subroutine profiles)
execution rate of system, 330
explicitly parallel instruction computing

(EPIC), 29, 407-413
exponent/mantissa representation, 61-63
extended data out RAM, 55
external variables

memory storage for, 104
subroutine calls and, 130

extrinsics, HPF, 295

F
families of architecture, 373
fast instruction set computer (FISC), 25
fast page mode DRAM, 55
fat loops, 151
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fences, 128
Firstprivate option, 236
FISC (fast instruction set computer), 25
fixed-point representation, 61
fixed thread scheduling, 414
FLASH project, 335
flat profiles, 109

gprofs timing profile, 117
flexibility, subroutine calls and, 129
floating-point operations, 58-78

CISC processors and, 9, 13
compilers issues, 75
consequences of inexact representation,

63-67
exceptions and traps, 75
guard digits, 67, 73
IEEE 754 standard, 68-76
Mflops, 331
MIPS R8000 processor and, 387
number representation schemes, 59-63
number storage format, 69
optimizations, 90
parallelization and, 228
pipelining, 18
RISC processors and, 12
special values, 73
subroutine-based, 130

flow dependencies, 175, 183
flow of control, 173
Flynn, Michael, 257
FORALL statement (HPF), 294
forkQ, 202
fork-join programming, 213
FORTRAN language, 83-85

cpp macros with, 132
FORTRAN 77, 84, 278, 285
FORTRAN 90, 278-287

FORTRAN 77 vs., 84, 285
heat flow problem, 283-285
HPF and, 290

FORTRAN 95, 290
HPF (High Performance FORTRAN),

289-297, 324
thread management, 414-424

fractions to represent real numbers, 60
fully associative caches, 40
function calls, 129-131

loops with, 152

G
gather (memory access pattern), 39
gettimeofday routine (example), 106
gprof profiling tool, 113-119

accumulating several result sets, 118
flat profile of, 117

gradual underflow, 74
granularity, 171
greatest common divisor (GCD), 6l
guard digits, 67, 73
Gustafson, John, 339
Gustafson's Law, 247

H
HAL SPARC64 processor, 390
hardware performance benchmarks,

329-346
creating your own, 347-364

checklist for, 360-363
coding, 358-363
types of benchmarks, 353-358
what to benchmark, 348-353

industry-defined, 339-345
SPEC benchmarks, 340-344
for transaction processing, 344-345

Mflops, 331
MIPS, 330
user-defined, 332-339

HINT benchmark, 339
Unpack benchmark, 332-334
Linpack Highly Parallel Computing

benchmark, 334-335
NAS benchmark, 336
SPLASH benchmark, 335
STREAM benchmark, 337

hardware, vector processors and, 379
Harvard Memory Architecture, 42
heat flow problem, 273-277

in FORTRAN 90, 283-285
in HPF, 296
in MPI, 314-324
inPVM, 305-311

high performance (see performance)
High Performance FORTRAN (HPF),

289-297, 324
control structures, 294
data layout directives, 291-294
heat flow problem, 296

HINT benchmark, 339
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hinv command, 124
hoisting/sinking loop operations, 142
HP PA-8000 processor, 392
HPF (High Performance FORTRAN),

289-297, 324
control structures, 294
data layout directives, 291-294
heat flow problem, 296

hypercube interconnect topology, 255

/
IA-64 processor, 29, 407-413
IBM PowerPC 64 processor, 391
IBM RS-6000 processor, 405
IEEE 754 floating-point standard, 68-76
if statement (see conditional branches)
"ignore dependencies" assertion, 229
IL (intermediate language) representation,

86
independent loop conditionals, 137
index, cache, 36
induction variable simplification, 96
industry performance benchmarks, 339-345

SPEC benchmarks, 340-344
for transaction processing, 344-345

infinity (value), 74
inline substitution assertions, 232
inlining subroutines and functions, 133
inner loops, 153
instruction caches, 42
instruction-level parallelism, 171
Instruction Reorder Buffer, 392
instruction set architectures (see ISAs)
instructions

architectures for (see ISAs)
branches (see branch instructions), 16
conditional execution, 20
for data flow processors, 385
load/store architecture, 21
microcode during execution, 374
microinstructions, 373
out-of-order (speculative) execution,

25-28
RS (Reservation Station), 393

pipelining, 14-18
floating-point operations, 18
memory pipelines, 377
RISC vs. post-RISC, 27
superpipelined processors, 23, 387

predicated, 410-411
reduced sets (see RISC processors)
simultaneous execution of, 14

superscalar processors, 23, 382, 389
uniform instruction length, 18-19
for vector processors, 378-379

insufficient memory for programs, 166
determining in advance, 123

Intel 8008 processor, 375
Intel 8088 processor, 396
Intel i860 processor, 382
Intel IA-64 processor, 29, 407-413
Intel Pentium Pro processor, 393
interactive benchmarks, 357
interchanging loops, 156

memory access patterns and, 159-161
interconnect technology, 249-257
interleaved memory systems, 51
intermediate language (IL) representation,

86
interprocedural analysis, 90, 232
intrinsics, FORTRAN 90, 280
intrinsics, HPF, 295
invariant conditionals, 135
I/O operations, blocked, 104
IRB (Instruction Reorder Buffer), 392
irregular interconnect topologies, 256
ISAs (instruction set architectures), 367-394

architecture families, 373
CISC (see CISC processors)
experiments on, 381-386
FISC, 25
future trends, 28-29
RISC (see RISC processors)
VLIW (very long instruction word), 383

iteration scheduling, 236-241

K
kernel benchmarks, 335, 349-351
kernel mode, 101

L
language, compiler, 83-85
large-scale parallelism, 245-271

architecture taxonomy, 257-259
distributed-memory MIMD, 265-267
interconnect technology, 249-257
shared nonuniform MIMD, 26l
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large-scale parallelism (cont'd)
shared uniform MIMD, 260
SIMD machines, 267-270

Lastprivate option, 236
latency, 47
line states, caches, 199
lines, cache, 36

(see also caches, mapping schemes)
Unpack benchmark, 332-334
Unpack Highly Parallel Computing bench-

mark, 334-335
load/store architecture, 21
locality of reference, 37, 196
loop index dependent conditionals, 136
loop-invariant code motion, 96
loop-invariant conditionals, 135
loop nests, 153

parallelization of, 226
rearranging, 156, 159-161

loopinfo flag, 223
loops

array elements in, 143
conditional branches in, 134-139, 152
dependencies and, 181-187
hoisting/sinking operations, 142
loop interchange, 156, 159-161
memory access patterns and, 157-160
nested, 153-156
optimizing, 146-168

loop unrolling, 149-153
operation counting, 147-149

parallel loops, 235
parallelism and, 180-181
preconditioning loops, 150
procedure calls in, 152

Iscfg command, 124

M
machine balance, 338
macros, 131-133
magnetic core memory, 32
mantissa/exponent representation, 61-63
manual parallelism, 233-241
mapping caches, 39-43
master/slave computing model, 301
matrix multiplication, 159
max function, 138
MC68000 processors, 368

measuring performance, 6, 329-346
creating your own benchmarks, 347-364

checklist for, 360-363
coding, 358-363
types of benchmarks, 353-358
what to benchmark, 348-353

industry-defined benchmarks, 339-345
SPEC benchmarks, 340-344
for transaction processing, 344-345

memory performance, 425-434
Mflops, 331
MIPS, 330
user-denned benchmarks, 332-339

HINT benchmark, 339
Unpack benchmark, 332-334
Unpack Highly Parallel Computing

benchmark, 334-335
NAS benchmark, 336
SPIASH benchmark, 335
STREAM benchmark, 337

memld benchmark, 425-429
mem2d benchmark, 430-434
memory, 31-57

access and cycle times, 33
access patterns, 37, 157-160

blocking and, 161-165
addressing modes, 22
average memory utilization, 103
bandwidth benchmark (STREAM), 337
benchmarking, 349
caches (see caches)
data flow processor semantics, 384
dynamic memory allocation (FORTRAN

90), 282
floating-point storage format, 69
HINT benchmark, 339
improving performance of, 47-55
insufficient for programs, 123, 166
interleaved and pipelined systems, 51
load/store architecture and, 21
memld and mem2d benchmarks,

425-434
page faults, 105, 124
post-RISC architecture and, 53
registers, 34
shared-memory multiprocessors, 193-221

caches and, 196-200
data placement/movement, 200
example of, 216-219
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memory, shared-memory multiprocessors
(cont'd)

multithreading techniques, 212-216
programming, 222-242
SMP hardware, 194-200
software concepts, 200-212
(see also parallelism)

speculative loads, 411-412
technology of, 32-34, 54
vector processor memory systems, 377
virtual memory, 43-47, 123-125

memory pipelines, 377
memsize command, 124
Merced (see Intel IA-64 processor)
mesh connections, 253
MESI protocol, 199
message-passing environments, 4, 299-325

MPI (message-passing interface),
312-324

PVM (parallel virtual machine), 300-312
message-passing interface (MPI), 312-324

heat flow problem, 314-324
PVM vs., 313

Mflops, 331
microcoding, 371-375
microinstructions, 373
microprocessors (see processors)

EPIC and Intel IA-64, 28-29, 407-413
microprograms, 373
MIMD architecture

distributed-memory MIMD, 265-267
shared nonuniform memory MIMD, 26l
shared uniform memory MIMD, 260

min function, 138
MINs (multistage interconnection net-

works), 252
MIPS architecture

R10000 processor, 391
R2000, R3000 processors, 380
R4000, R4400 processors, 387
R4300i processor, 388
R8000 processor, 387

MIPS (millions of instructions per second),
330

mixed stride, 165
mixed typing, 139
Motorola MC68000 processors, 368
Motorola MC68020 processor, 397-399
MPI (message-passing interface), 312-324

heat flow problem, 314-324
PVM vs., 313

MQUIPS, 339
Multiflow's Trace systems, 383
multiple instruction issue processors, 23
multiprocessors, 37

operating-system-supported, 201-205
shared-memory, 193-221

caches and, 196-200
data placement/movement, 200
example of, 216-219
multithreading techniques, 212-216
programming, 222-242
SMP hardware, 194-200
software concepts, 200-212
(see also parallelism)

(see also multithreading)
multistage interconnection networks

(MINs), 252
multithreading, 200

barriers, 215
example of, 216-219
FORTRAN thread management, 414-424
operating-system-supported, 210-212
parallel regions, 233-235
synchronization, 213-215
thread-level parallelism, 171
thread private area, 205
user space, 205-210

mutexes, 214

TV
NaN (not a number), 74
NAS parallel benchmarks, 336
nested loops, 153-156
network of workstations (NOW), 4, 265
Nintendo-64 video game, 388
Ni's Law, 247
"no dependencies" assertion, 229
"no equivalences" assertion, 231
No optimization (optimization level), 90
"no side effects" assertions, 232
nonuniform memory access (NUMA)

systems, 5, 26l
ccNUMA, 263-264

non-unit stride, 37, 159-161
not a number (NaN), 74
NOW (network of workstations), 4, 265
NPB benchmarks, 336
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NUMA (nonuniform memory access)
systems, 5, 26l

ccNUMA, 263-264

o
object code generation, 97
OpenMP standard, 233
operating system, benchmarking, 353
operating system-supported multiproces-

sors, 201-205
operating system-supported multithreading,

210-212
operation counting, 147-149
optimizing compilers, 81-99

choosing language for, 83-85
classical optimizations, list of, 91-98
how they work, 85-89
optimization levels, 89-90

optimizing performance (see performance)
orthogonality of benchmarks, 348
"Out of memory?" message, 125
outer loops, 153
out-of-core solutions, 123, 166
out-of-order (speculative) execution

RS (Reservation Station), 393
out-of-order instruction execution, 25-28
output dependencies, 175, 185
overflow errors, 70
overlapping instruction execution, 14

superscalar processors, 23, 382, 389
(see also pipelining instructions)

p
PA-8000 processor (HP), 392
page faults, 105, 124
pages of memory, 43

page faults, 46
page tables, 43

parallel regions, 233-235
parallel virtual machine (PVM), 300-312,

324
heat flow problem, 305-311
MPI vs., 313

parallelism, 171-192
ambiguous references, 187-190
Amdahl's Law, 109, 246-248
architecture taxonomy, 257-259
assertions, 229-232

automatic parallelization, 222-228
broadcast/gather computing model

(MPI), 302, 320-324
DAGs (directed acyclic graphs), 177-178
dependencies, 173-180

loops and, 181-187
distributed-memory MIMD, 265-267
heat flow problem, 273-277

in FORTRAN 90, 283-285
in HPF, 296
in MPI, 314-324
in PVM, 305-311

interconnect technology, 249-257
large-scale, 245-271
loops and, 180-181, 235
manual, 233-241
message-passing environments, 299-325

MPI (message-passing interface),
312-324

PVM (parallel virtual machine),
300-312

parallel languages, 277-278
shared nonuniform MIMD, 261
shared uniform MIMD, 260
SIMD machines, 267-270

partial differential equations, 276
Pentium Pro processor (Intel), 393
percent utilitization, 103
performance

Amdahl's Law, 109, 246-248
benchmarks, 329-346

creating your own, 347-364
industry-defined, 339-345
memory performance, 425-434
Mflops, 331
MIPS, 330
user-defined, 332-339

dividing work among CPUs, 287-289
eliminating clutter, 128-145

common subexpression elimination,
95, 141

conditional branches, 134-139
data type conversions, 139
macros, 131-133
procedure inlining, 133
reorganizing loops, 142-144
subroutine calls, 129-131

importance of, 3
loops (see loops)
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performance (cont'd)
measuring, 6
memory, 425-434
parallelism (see parallelism)
program timing, 101-107
programming languages and, 272-298
scope of, 4
studying, 5
subroutine profiles, 108-120
virtual memory and, 123-125

permutation assertions, 231
permutations, 188
pipelined memory systems, 51
pipelined multistep communications, 251
pipelining instructions, 14-18

floating-point operations, 18
memory pipelines, 377
RISC vs. post-RISC, 27
superpipelined processors, 23, 387

pixie basic block profiler, 122
pointer ambiguity, 188-190
pointer chasing, 38
pointers (addresses), 84

common subexpression elimination, 95
portability, benchmark, 358
post-RISC architecture, 25-28, 390-393

loop unrolling, 150
memory references, 53

PowerPC architecture (IBM), 391
precision of floating-point operations

guard digits, 67, 73
inexact representation and, 63-67

preconditioning loops, 150
predicated instructions, 410-411
prefetching, 52
problem decomposition, 248, 287-289
procedure calls, 129-133

inlining, 133
loops with, 152
macros, 131-133

processors, 8-30
CISC (see CISC processors)
compiler design and, 83
data flow processors, 384
RISC (see RISC processors)
superscalar, 23

Intel i860 processor, 382
Sun UltraSPARC processor, 389

vector processors, 375-380
VLIW processors, 383

prof profiling tool, 110-112
profiling, 108-120

Amdahl's Law, 109, 246-248
basic block profilers, 120-122
quantization errors, 119
runtime profile analysis, 90
sharp vs. flat, 108
subroutine profilers, 110-119
virtual memory, 123-125

programming languages, 272-298
assembly language, 395-406

programs
eliminating clutter, 128-145

common subexpression elimination,
95, 141

conditional branches, 134-139
data type conversions, 139
macros, 131-133
procedure inlining, 133
reorganizing loops, 142-144
subroutine calls, 129-131

insufficient memory for, 123, 166
subroutine profiles, 108-120
timing, 101-107

Amdahl's Law, 109, 246-248
getting time information, 105

ps aux command, 124
pthread_create(), 207, 213
pthread_join(), 208
pthread_mutex_init(), 215
pthreads library, 209
published benchmarks for performance,

329-346
industry-defined, 339-345

SPEC benchmarks, 340-344
for transaction processing, 344-345

Mflops, 331
MIPS, 330
user-defined, 332-339

Linpack benchmark, 332-334
Linpack Highly Parallel Computing

benchmark, 334-335
NAS benchmark, 336
SPLASH benchmark, 335

PURE functions (HPF), 294



444 Index

PVM (parallel virtual machine), 300-312,
324

heat flow problem, 305-311
MPI vs., 313

Q
quadruples, 87
quantization errors in profiling, 119
queue of tasks, 302
QUIPS (quality improvement per second),

339

JR
R10000 processor (MIPS), 391
R2000, R3000 processors (MIPS), 380
R4000, R4400 processors (MIPS), 387
R4300i processor (MIPS), 388
R8000 processor (MIPS), 387
RAM, dymamic vs. static, 32
RAMBUS technology, 55
rational number representation of reals, 60
REAL data type, 69
real numbers, 58
red-black technique, 274

(see also heat flow problem)
reduced instruction set (see RISC proces-

sors)
reductions, 138, 186, 236

automatic parallelization of, 228
FORTRAN 90, 281
SIMD machines and, 269

registers, 34
IA-64 processor and, 413
rename registers, 27
vector registers, 376

relation assertions, 230
remote terminal emulation benchmark, 344
rename registers, 27
renaming variables, 94
Reservation Station (RS), 393
RISC processors, 4, 8, 11-25, 50, 83, 380-381

design philosophy of, 13-14
instruction length, 18
post-RISC architecture, 25-28, 390-393

loop unrolling, 150
memory references, 53

second-generation, 22-24, 387-389

SIMD machines and, 269
SPARC architecture, 399-403

RS (Reservation Station), 393
RS-6000 processor, 405
runtime (see benchmarks for performance;

performance; profiling)

s
S3MP project, 256
sanitized benchmarks, 349-351
sar command, 125
scalable coherent interface (SCI), 264
scalable computing, 246
scalable NUMA systems, 5, 26l

ccNUMA, 263-264
scalable processors, 259
scatter (memory access pattern), 39
sched_yield(), 210
scheduling iterations, 236-241
SCI (scalable coherent interface), 264
SDRAM (synchronous DRAM), 55
second-generation RISC processors, 22-24,

387-389
semaphores, 214
set associative caches, 41
SGI Challenge, 4l6, 419-423
shared cache lines, 200
shared nonuniform memory MIMD systems,

261
shared uniform memory MIMD systems,

260
shared-memory multiprocessors, 193-221

caches and, 196-200
data placement/movement, 200
example of, 216-219
multithreading techniques, 212-216
programming, 222-242
SMP hardware, 194-200
software concepts, 200-212
(see also parallelism)

shared-memory space, 103
sharp profiles, 108
side effects, 232
sign bits, 135
SIMD machines, 267-270
simulations, 245
simultaneous instruction execution, 14

superscalar processors, 23, 382, 389
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single-call collective operations (MPI), 314
single-chip processors, 11
single instruction mode (i860 processor),

382
single instruction, multiple data (SIMD)

machines, 267-270
single-precision calculations, 139
single stream benchmarks, 354-356
sinking/hoisting loop operations, 142
SISAL language, 278
SISD architecture, 257
size command, 123
SLALOM benchmark, 339
SMP (symmetric multiprocessing), 4

hardware for, 194-200
software concepts, 200-212
(see also shared-memory multiproces-

sors)
snooping bus traffic, 198, 263
software for shared-memory multiproces-

sors, 200-212
software-managed caches, 52
software-managed out-of-core solutions,

123, 166
SPARC architecture, 399-403
SPARC-1 processor, 380
SPARC64 processor (HAL), 390
spatial locality of reference, 37
SPEC benchmarks, 340-344
speculative instruction execution, 25-28

RS (Reservation Station), 393
speculative loads, 411-412
speedup, 224

Amdahl's Law and, 246
SPLASH benchmark, 335
SPMD/data decomposition computing

model, 302
SRAM (static random access memory), 32

caches, 35-43
integrated with DRAM, 55
(see also memory)

statement function, 131
static iteration scheduling, 237
static random access memory (see SRAM)
sticky bits, 72
STREAM benchmark, 337
strength reduction, 94
subexpression elimination, 95, 141
subnormal numbers, 70

subroutine calls, 129-131, 152
subroutine profiles, 108-120

Amdahl's Law, 109, 246-248
basic block profilers, 120-122
profilers, 110-119

quantization errors, 119
sharp vs. flat, 108

Sun UltraSPARC processor, 389
superpipelined processors, 23, 387
superscalar processors, 23

Intel i860 processor, 382
Sun UltraSPARC processor, 389

swap area, 123
swaps, 105
symmetric multiprocessing (SMP), 4

hardware for, 194-200
software concepts, 200-212
(see also shared-memory multiproces-

sors)
synchronization of threads, 213-215
synchronous DRAM (SDRAM), 55
system time, 102

T
tags (cache memory addresses), 39
task decomposition, 287
task queue computing model, 302
tcov basic block profiler, 120
temporal locality of reference, 37
third-party code, benchmarking, 351-352
thrashing, 39
thread-level parallelism, 171
thread private area, 205
threads (see multithreading)
throughput benchmarks, 356
tightly coupled distribute d-memory MIMD

systems, 266-267
time-based simulations, 215
time command, 101, 103
timing, 101-107

Amdahl's Law, 109, 246-248
getting time information, 105
percent utilization, 103
portions of programs, 105
subroutine profiles, 108-120

TLB (translation lookaside buffer), 44
Top 500 Report, 260
topologies (MPI), 313
toroid connections, 254
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TPC (transaction processing) benchmarks,
344-345

Trace systems (Multiflow), 383
transaction processing benchmarks,

344-345
translation lookaside buffer (TLB), 44
traps for floating-point operations, 75
trip count assertions, 231
trip counts, loop, 151

u
UltraSPARC processor (Sun), 389
UMA (uniform memory access), 193
uniform instruction length, 18-19
uniform memory access (UMA), 193
uniform-memory multiprocessors, 259

shared nonuniform memory MIMD
systems, 261

shared uniform memory MIMD systems,
260

unit stride, 37, 158-160
unlimit command, 125
unrolling loops, 149-153

nested loops, 153
qualifying candidates for, 150-153

unsafe optimization flag, 228
unshared-memory space, 104
uptime command, 102
user-defined performance benchmarks,

332-339
HINT benchmark, 339
Unpack benchmark, 332-334

Unpack Highly Parallel Computing
benchmark, 334-335

NAS benchmark, 336
SPLASH benchmark, 335
STREAM benchmark, 337

user mode, 101
user space multithreading, 205-210
user-space thread context switch, 208

V
variable length instructions, 18
variable remaining, 94
variable uses and definitions, 178
variables, subroutine calls and, 130
vector processors, 375-380
vector registers, 376
virtual machine, parallel (PVM), 300-312
virtual memory, 43-47, 123-125
VLIW architecture, 383
vmstat command, 124

w
waitO, 205
wait states, 33
wall clock time, 102

gettimeofday routine (example), 106
page faults and swaps, 105

widening the memory system, 48
workstations, 13

network of (see NOW)
wormhole routing, 253
writeback caching, 199
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Colophon
The animal featured on the cover of High Performance Computing is the Northern
harrier (also known as the hen harrier or marsh hawk). Unlike most other hawks,
this harrier likes to hunt exclusively on the wing—cruising up to 100 miles a day—
and prefers roosting and nesting on the ground. Hunting forays over field and
marsh consist of long, low glides powered by intermittent flaps, with an occa-
sional pause to hover briefly. The Harrier aircraft is named for this characteristic.

This species is one of the most acrobatic and agile of the raptors. During court-
ship, males perform spectacular acrobatics, marked by tumbling, drifting upside
down, 200-foot spiral dives, and wingovers.

Northern harriers prey on a variety of animals—predominately small mammals,
birds, and reptiles—which they detect with their keen sense of hearing. (They are
considered the diurnal counterpart of the short-eared owl.) An owl-like facial ruff
helps reflect sound (such as squeaking mice) to the harrier's sensitive ears. This
bird of prey ranges over most temperate regions of the Northern Hemisphere.

Edie Freedman and Kathleen Wilson designed the cover of this book using a 19th-
century engraving from the Dover Pictorial Archive. The cover layout was
produced with Quark XPress 3-32 using the ITC Garamond font.
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colophon was written by Michael Kalantarian.
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High Performance Computing
The computing power that's available on the average desktop has exploded in the past
few years. A typical PC has performance exceeding that of a multi-million dollar
supercomputer a mere decade ago. To some people, that might mean that it's time to
sit back and watch computers get faster: performance is no longer an issue, we'll let

hardware do the work. But if you're looking at this book, you're not one of them. Performance is
always an issue. Even with the fastest computers, there's a need to harness the processing power
and get more work done in a limited amount of time.

If you're a software developer, you probably know that getting the most out of a modern
workstation or PC can be tricky. Paying closer attention to memory reference patterns and loop
structure can have a huge payoff. High Performance Computing discusses how modern
workstations get their performance, and how you can write code that makes optimal use of your
hardware. You'll learn what the newest set of buzzwords really means, how caching and other
memory design features affect the way your software behaves, and where the newest "post-RISC"
architectures are headed.

If you're involved with purchasing or evaluating workstations, this book will help you make
intelligent comparisons. You'll learn how to interpret the commonly quoted industry benchmarks,
what vendors do to show their machines in the best possible light, and how to run your own
benchmarks.

Whether you're using the latest Pentium PC or a highly specialized multi-processor, you'll find
High Performance Computing an indispensable guide. Topics covered include:

• CPU and memory architecture for RISC microprocessors and their successors

• Optimizing compilers

• Timing and profiling programs

• Understanding parallelism

• Loop and memory reference optimizations

• Benchmarking

• Parallel computing and multiprocessing

Visit O'Reilly on the Web at www.oreilly.com
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