Android apps

2,

Android Apps

for Absolute Beginners

Download from Wow! eBook <www.wowebook.com>

For your convenience Apress has placed some of the front
matter material after the index. Please use the Bookmarks
and Contents at a Glance links to access them.

flondsot Q)

Apress®

iv

Contents at a Glance

Contents........ccuvmmmmmmimmms s ———————————————=_ v
About the AUtROF..........cccmiemmmismnmssnnsssnsssssas s an s ssa s san s s an s ansnnnnnsnnnnnns X
About the Technical REVIEWETcccussmssssansmsssnsssssnsssssssssssnsssssssssssnsssssasssssnnsnss xi
Acknowledgments...........cuccmmusmmmmsmnmmsssmmssssmsssnssmsssssssssnssa s ssassnnsnnss Xii
INtroductioncccceinimmmmnennsnsssn s xiii
Chapter 1: Preliminary Information: Before We Get Startedcoccemeennnnens 1
Chapter 2: What’s Next? Our Road Aheadccccsmssemsmsssmsssssnsssssnsssssnnsnnnns 11
Chapter 3: Setting Up Your Android Development Environmentcccee. 19
Chapter 4: Introducing the Android Software Development Platform........... a1
Chapter 5: Android Framework OVerviewcccusssssssssssssssssssssssssnsssssanssssas 67
Chapter 6: Screen Layout Design: Views and Layoutsccccusseenmmssssnnnnsnans 89
Chapter 7: Ul Design: Buttons, Menus, and Dialogscccsuumssnnnnmsssssnsnsnans 115
Chapter 8: An Introduction to Graphics Resources in Android...........seuesn. 147
Chapter 9: Adding Interactivity: Handling Ul Eventsccccccccnnnssssnnnnnnnnnns 183
Chapter 10: Understanding Content Providers.......ccccuusemmmmmmmnnsssssssssssnnnnnnns 217
Chapter 11: Understanding Intents and Intent Filtersccccnninneeeennnnnns 255
Chapter 12: The Future.........ccoiremmmmmmninnnnsssssssssnsmsssssssssssssssnsssssssssssssssnnns 297
INA@X ceiuemnnrnsssnnnnnasssnnnnmsssssnnnnsssssnnnnessssnnnnessssnnnsessssnnnnessssnnnnessssnnnnesssnnnnnsssssnnnnss 311

Introduction

Over the last two years, Google’s Android operating system (OS) has gone from a virtually
unknown open source solution to the current mobile OS market leader among all mobile
handsets, with over one-third of the market share, and it’s still climbing rapidly. Android has even
started to dominate the tablet OS marketplace, and is also the foundation for the popular iTV OS
known as GoogleTV. There seems to be no end in sight for Android’s rocketing success, which is
great news for owners of this book.

I've heard a great many people say, “I have a really phenomenal idea for a smartphone
application! Can you program it for me!?” Rather than sit back and code all of these applications
for everyone, I thought it might be a smarter idea to write a book about how an absolute beginner
could code an Android application using open source tools that cost nothing to download and
that are free for commercial use, and then leverage that new found knowledge to reach their
dream of making their application idea a revenue-generating reality.

Thanks to open source and Google’s Android development environment, Oracle’s Java
programming Language, Linus Torvald’s Linux operating system, the Eclipse code editing
software, and this book, vaporizing a software product out of thin air, and at no production cost
other than your PC and “sweat equity,” is now a complete reality.

The Target: The Programming Neophyte

As you may have inferred from the title, this book assumes that you have never programmed
before in any programming language. It is written for someone who has never written a single
line of code before, and who is thus unfamiliar with object-oriented programming (OOP)
languages such as Oracle’s Java and mark-up languages such as XML. Both of these open source
languages are used extensively in creating Android applications.

There are lots of Java and Android books out there, but all of these books assume you have
programmed before, and know all about OOP. I wanted to write a book that takes readers from
knowing absolutely nothing about programming or knowing how to install a Software
Development Kit (SDK) and Integrated Development Environment (IDE) all the way to being
able to program Android applications using Java and XML.

The Weapon: Android, the Innovative Mobile Code
Environment

Android is my Internet 2.0 development weapon of choice, because it allows me to develop highly
advanced applications for the primary Internet 2.0 devices, including the main three where
revenue potential is by far the greatest:

INTRODUCTION

xiv

e Smartphones
e Tablets
e iTV or Interactive Television

The other reason I place my bets on Android is because it is open source, and thus free from
royalties and politics. I do not have to submit my Android application to any company and ask
permission to publish it, as long as it is not harmful in any way to others. For this reason, and due
to the free for commercial use nature of open source software, there is little external risk involved
in developing an application for the Android Platform.

How This Book Is Organized

Because this is a book for absolute beginners, we start at the very beginning, showing where to
download and how to install the various Android, Java, and Eclipse environments, as well as how
to configure these environments and how to set them up for application development and
testing. This in itself is no easy task, and must be done correctly, as these tools provide the
foundation for all of our Android development, debugging, and testing for the remainder of the
book.

Next I will provide you with an overview of where Android came from, why, how, and when
Google acquired it, and how it is uniquely structured among software development platforms. I
will introduce XML, Java, OOP, and Android concepts soon after that, as well as cover how
Android manages its screen layout. We will then move these concepts into use in later chapters in
the second half of the book; these chapters explain the most important concepts in Android in
their most logical order as they pertain to applications development.

In that second half of the book, we’ll start getting into developing a user interface (UI), as that
is the front-end or interface for your user to your Android application. Soon after we'll cover how
your Ul talks to your application via events processing. To spice up your application’s visual
appearance, we'll get into graphics, animation, and video, and then get into even more advanced
topics after that, such as databases and communications.

Finally we will look at some of the advanced features of Android that you will want to visit
after finishing the book; these are topics that are too advanced for a first book on Android but
which provide some of the coolest features in smartphone development today.

We’ll walk you through all of these topics and concepts with screenshots of the IDE and
visual examples and then take you though step-by-step examples reinforcing these concepts.
Sometimes we will repeat previous topics to reinforce what you have learned and apply these
skills in new ways. This enables new programmers to re-apply development skills and feel a sense
of accomplishment as they progress.

The Formula for Success

Learning to develop an Android application is an interactive process between you and the tools
and technologies (Eclipse, XML, Java, Android, and so on) that I cover in this book. Just like
learning to play a sport, you have to develop skills and practice them daily. You need to work
through the examples and exercises in this book, more than once if necessary to become
comfortable with each concept.

Just because you understand a concept that doesn’t necessarily mean you will know how to
apply it creatively and use it effectively; that takes practice, and ultimately will happen when the
“ah-ha” moment occurs, when you understand the concept in context with the other concepts
that interconnect with it.

You will learn quite a bit about how Android works from this introductory book. You will
glean a lot of insight into the inner working of Android by working through all of the exercises in
this book. But you will also learn new things not specifically mentioned in this book when you
compile, run and debug your programs. Spending time experimenting with your code and trying

INTRODUCTION

to find out why it is not working the way you want, or trying to add new features to it, is a learning
process that is very valuable.

The downside of debugging is it can sometimes be quite frustrating to the new developer. If
you have never wanted to put a bullet in your computer monitor, you will soon. You will question
why you are doing this, and whether you are savvy enough to solve the problem. Programming
can be very humbling, even for the most experienced of developers.

Like an athlete, the more you practice, the better you will become at your skill. You can do
some truly amazing things as an Android programmer. The world is your oyster. It is one of the
most satisfying accomplishments you can have, seeing your app in the Android App Store.
However, there is a price, and that price is time spent practicing your coding.

Here is our formula for success:

e Trust that you can pull it off. You may be the only one who says you can’t
do this. Don’t tell yourself that.

e Work through all the examples and exercises in this book, twice if
necessary, until you understand them.

¢ Code, code some more, and keep coding — don't stop. The more you code,
the better you'll get.

e Be patient with yourself. If you were fortunate enough to have been a star
pupil who can memorize material simply by reading it, this will not happen
with Java and XML coding. You are going to have to spend lots of time
coding in order to understand what is happening inside the OS.

¢ Whatever you do: DON’T GIVE UP!

Required Software, Materials, and Equipment

One of the great things about Java, Android and Eclipse is they are available in both 32-bit and 64-
bit versions on the three primary operating systems in use today:

¢ Windows
e Mac

e Linux

The other great thing about Java, Android and Eclipse is that they are free. You can download
Android at http://developer.android.com/SDK/. For equipment, any modern computer will do.
Fortunately they are only $250 to $500 brand new on www.PricelWatch.com and an OS such as
SUSE Linux is free and an amazing development operating system. SUSE Linux V11 can be
downloaded at www.OpenSUSE.com and is currently at version 11.4 and very stable.

Operating System and IDE

Although you can use Android on many platforms, the Eclipse integrated development
environment (IDE) that developers use to develop Android apps is most commonly used on an
Intel-based Windows or Linux PC. The Eclipse IDE is free and is available on the Internet at
www.eclipse.org. The operating system should be Windows XP or later or SUSE Linux 11.4 or later
to run Eclipse most effectively.

Xv

http://developer.android.com/SDK/
http://www.PriceWatch.com
http://www.OpenSUSE.com
http://www.eclipse.org

INTRODUCTION

Software Development Kits

You will need to download the Eclipse IDE from Eclipse and the Android SDK from Google. This
is available at http://developer.android.com/SDK/.

Dual Monitors

It is highly recommended that developers have a second monitor connected to their computer. It
is great to step through your code and watch your output window and Android emulator at the
same time on dual, independent monitors. Today’s PC hardware makes this easy. Just plug your
second monitor in to the second display port of any Intel-based PC or laptop, with the correct
display port adapter, of course, and you're able to have two monitors working independently
from one another. Note it is not required to have dual monitors. You will just have to organize
your open windows to fit on your screen if you don't.

http://developer.android.com/SDK/

Chapter

Preliminary Information:
Before We Get Started

This chapter introduces the Android operating system, giving you a little background
information to put things into perspective. We'll visit just how expansive this platform
has become in today’s Internet 2.0 environment of portable consumer electronic
devices. Internet 2.0 here refers to the consumption of the Internet over a wide variety of
different types of data networks using highly portable consumer electronic devices,
including smartphones, tablets, e-book readers, and even new emerging consumer
electronic products such as interactive television (iTV).

As this is an introductory book on the subject, not all of the advanced new media-
related areas, such as 3D and video streaming, will be covered. Some specifics of what
the book will and will not cover are outlined in this chapter.

At the end of the chapter, you’ll learn which tools you need to obtain in order to develop
for the Google Android platform, with instructions on how to download them.

Those of you who already recognize the significance of the Android revolution and know
which tools are needed to develop Android applications development may want to skip
this chapter. However, may be some tidbits in here that could spawn development ideas
—so skip along at your own risk!

Just a bit of fair warning: developing reliable applications for Android is not in any way a
trivial task. It takes a fair amount of knowledge of both high-level programming
languages such as Java and markup languages like XML. Building useful and engaging
new media applications also requires a deep knowledge of related new media
technologies such as 2D imaging, 3D rendering, audio processing, video streaming,
GPS localization, and database design.

Don’t expect to learn all of this at one sitting. Becoming a top-notch Android
programmer will take years of dedication and practice, as well as diligent research and
trial and error. In this book, you will gain the foundation that you need to build future
expertise, as well as learn the work process for eventually building your Android
masterpeice.

CHAPTER 1: Preliminary Information: Before We Get Started

Some History: What Is Android?

Android was originally created by Andy Rubin as an operating system for mobile
phones, around the dawn of this twenty-first century. In 2005, Google acquired Android
Inc., and made Andy Rubin the Director of Mobile Platforms for Google. Many think the
acquisition was largely in response to the emergence of the Apple iPhone around that
time; however, there were enough other large players, such as Nokia Symbian and
Microsoft Windows Mobile, that it seemed like a salient business decision for Google to
purchase the talent and intellectual property necessary to assert the company into this
emerging space, which has become known as Internet 2.0.

Internet 2.0 allows users of consumer electronics to access content via widely varied
data networks through highly portable consumer electronic devices, such as
smartphones, touchscreen tablets, and e-books, and even through not so portable
devices, such as iTVs, home media centers, and set-top boxes. This puts new media
content such as games, 3D animation, digital video, digital audio, and high-definition
imagery into our lives at every turn. Android is one of the vehicles that digital artists will
leverage to develop media creations that users have never before experienced.

Over the past decade, Android has matured and evolved into an extremely reliable,
bulletproof, embedded operating system platform, having gone from version 1.0 to
stable versions at 1.5, 1.6, 2.0, 2.1, 2.2, 2.3, and, recently, 3.0. An embedded operating
system is like having an entire computer on a chip small enough to fit into handheld
consumer electronics, but powerful enough to run applications (commonly known as
apps).

Android has the power of a full-blown computer operating system. It is based on the
Linux open source platform and Oracle’s (formerly Sun Microsystems’s) Java, one of the
world’s most popular programming languages.

NOTE: The term open source refers to software that has often been developed collaboratively by
an open community of individuals, is freely available for commercial use, and comes with all of
the source code so that it can be further modified if necessary. Android is open source, though
Google develops it internally before releasing the source code; from that point on, it is freely
available for commercial use.

It is not uncommon for an Android product to have a 1GHz processor and 1GB of fast,
computer-grade DDR2 memory. This rivals desktop computers of just a few years ago
and netbooks that are still currently available. You will see a further convergence of
handheld operating systems and desktop operating systems as time goes on. Some
examples are the Windows Mobile 7 and iPhone 4 mobile platforms.

Once it became evident that Android and open source were forces to be reckoned with,
a number of major companies —including HTC, Samsung, LG Electronics, and T-
Mobile—formed and joined the Open Handset Alliance (OHA). This was done in order to
put some momentum behind Google’s open source Android platform, and it worked.

CHAPTER 1: Preliminary Information: Before We Get Started

Today, more brand manufacturers use Android as an operating system on their
consumer electronic devices than any other operating system.

This development of the OHA is a major benefit to Android developers. Android allows
developers to create their applications in a single environment, and support by the OHA
lets developers deliver their content across dozens of major branded manufacturer’s
products, as well as across several different types of consumer electronic devices:
smartphones, iTV sets, e-book readers, home media centers, set-top boxes, and
touchscreen tablets. Exciting possibilities—to say the least.

So, Android is a seasoned operating system that has become one of the biggest players
in computing today, and with Google behind it. Android uses freely available open
source technologies such as Linux and Java, and standards such as XML, to provide a
content and application delivery platform to developers as well as the world’s largest
consumer electronics manufacturers. Can you spell O-P-P-O-R-T-U-N-I-T-Y? | sure can
... it’s spelled ANDROID.

Advantage Android: How Can Android Benefit Me?

There are simply too many benefits of the Android platform to ignore Android
development.

First of all, Android is based on open source technology, which was at its inception not
as refined as paid technologies from Apple and Microsoft. However, over the past two
decades, open source software technology has become equally as sophisticated as
conventional development technologies. This is evident in Internet 2.0, as the majority of
the consumer electronics manufacturers have chosen Linux and Java over the Windows
and Macintosh operating systems. Therefore, Android developers can develop not only
for smartphones, but also for new and emerging consumer electronic devices that are
network-compatible and thus available to connect to the Android Market. This translates
into more sales onto more devices in more areas of the customer’s life, and thus more
incentive to develop for Android over closed and PC operating systems.

In addition to being free for commercial use, Android has one of the largest, wealthiest,
and most innovative companies in modern-day computing behind it: Google. Add in the
OHA, and you have more than a trillion dollars of megabrand companies behind you
supporting your development efforts. It seems too good to be true, but it’s a fact, if you
are an Android developer (which you are about to be, in about a dozen chapters).

Finally, and most important, it’'s much easier to get your Android applications published
than those for other platforms that are similar to Android (I won’t mention any names
here to protect the not so innocent). We’ve all heard the horror stories regarding major
development companies waiting months, and sometimes years, for their apps to be
approved for the app marketplace. These problems are nearly nonexistent on the open
source Android platform. Publishing your app on Android Market is as easy as paying
$25, uploading your .apk file, and specifying free or paid download.

CHAPTER 1: Preliminary Information: Before We Get Started

The Scope of This Book

This book is an introduction to developing applications on Android. It’s intended for
absolute beginners—that is, people who have never created an application on the
Android platform for a consumer electronic device. | do not assume that you know what
Java is or how XML works.

What’s Covered

This book covers the basic and essential elements of Android development, including
the following:

B The open source tools required to develop for this platform
B Where to get these free tools

B How to properly install and configure the necessary tools for
applications development

B Which third-party tools are useful to use in conjunction with the
Android development tools

B Which operating systems and platforms currently support
development for the Android using these tools

B The concepts and programming constructs for Java and XML, and
their practical applications in creating Android applications

B How Android goes about setting up an Android application
B How it defines the user interfaces

How it writes to the display screen

How it communicates with other Android applications

How it interfaces with data, resources, networks, and the Internet

How it alerts users to events that are taking place inside and
outside the application

B How Android applications are published

How Android applications are ultimately sold, downloaded, and
updated automatically through the Android Market

Realize that Android has more than 44 Java packages that contain over 7,000 pieces of
programming code functionality to allow you to do just about anything imaginable—from
putting a button on the screen to synthesizing speech and accessing advanced
smartphone features like the high-resolution camera, GPS, and accelerometer.

Download from Wow! eBook <www.wowebook.com>

CHAPTER 1: Preliminary Information: Before We Get Started

NOTE: A package in Java is a collection of programming utilities that all have related and
interconnected functionality. For example, the java.io package contains utilities to deal with
input and output to your program, such as reading the contents of a file or saving data to a file.
Later chapters describe how to organize your own code into packages.

What does this mean? It means that even the most advanced Android books cannot
cover the plethora of things that the Android platform can do. In fact, most books
specialize in a specific area in the Android APIs. There is plenty of complexity in each
API, which ultimately, from the developer’s viewpoint, translates into incredible creative
power.

What’s Not Covered

So, what isn’t covered in this book? What cool, powerful capabilities do you have to
look forward to in that next level book on Android programming?

On the hardware side, we will not be looking at how to control the camera, access GPS
data from the smartphone, and access the accelerometer and gyroscope that allow the
user to turn the phone around and have the application react to phone positioning. We

will not be delving into advanced touchscreen concepts such as gestures, or accessing
other hardware such as the microphone, Bluetooth, and wireless connections.

On the software side, we will not be diving into creating your own Android MySqLite
Database Structure, or its new media codecs for digital video and digital audio, and its
real-time 3D rendering system (called OpenGL ES). We will not be exploring speech
synthesis and recognition, or the universal language support that allows developers to
create applications that display characters correctly in dozens of international languages
and foreign character sets. We will not be getting into advanced programming such as
game development, artificial intelligence, and physics simulations. All of these topics are
better suited to books that focus on these complex and detailed topical areas.

Preparing for Liftoff: SDK Tools to Download

In Chapter 3, you’ll learn how to set up a complete Android development environment.
We'll focus on Windows, because that's what | use to develop for Android, but the
process on Mac or Linux systems is similar, and I'll make sure you can follow along if
you prefer either of those systems.

Here, we’ll look at where to go to download the tools you’ll need, so that you are ready
for action when the time comes to install and configure them. This is because each of
these development tools is hundreds of megabytes in file size, and depending on your
connection speed, may take anywhere from ten minutes to ten hours to download.

CHAPTER 1: Preliminary Information: Before We Get Started

There are three major components of an Android development environment:
H Java
B Eclipse
B Android

In Chapter 3, when you install and configure the packages you are downloading now,
you will see that Eclipse requires the Java package to be installed in order to install and
run. Therefore, we will walk through downloading them in the order of installation, from
Java to Eclipse to Android.

Java

Let’s start with the foundation for everything we are doing, the Java Platform, Standard
Edition (Java SE). Java SE contains the core Java programming language.

To download Java SE, simply go to the Java SE Downloads section of Oracle’s web
site, which is in the Technology Network section under the Java directory, at this URL:

http://www.oracle.com/technetwork/java/javase/downloads/index.html

Figure 1-1 shows the Java SE Downloads site.

ORACLE (Sign In/Register for Account | Help) ~ United States v Communities v lama.. v Iwantto.. v |[¥] Secure Search Q
‘ Products and Services Downloads Store ‘ Support | Education Partners ‘ About ‘ Oracle Technology Network v j ‘

Oracle Technology Network > Java > JavaSE > D)

Java SE | oveniew [o jon || C ity |[T jes || Training s

Java SE for Business $ Java SE

Java Embedded Java SE Downloads ¥ Java EE and Glassfish

Java EE $ Java ME

Latest Release A) Embedded RealTime Previous Releases s

Java ME Use $ JavaFX

JavaFX & Java Card

Java DB # NetBeans IDE

Web Tier T o e eoe] Java Resources

Java Card

((& Newto Java?
& NetBeans | :

Download

|4
©

eveloper Training
$ Documentation

Here are the Java SE downloads in detail. java BluePrints

Wava Platform, Standard Edition
DK 6 Update 21 (JDK or JRE)
[This release includes i (’ N\ # Student Developers

lsupport for Oracle Enterprise Linux, Oracle VM, and Download JDK] Download JRE
IGoogle Chrome. Learn more »

\What Java Do | Need? You must have a copy of the JRE [JDK 6 Docs IJRE 6 Docs
(Java Runtime Environment) on your system to run Java|

lapplications and applets. To develop Java applications Installation Installa!lon
land applets, you need the JDK (Java D Kit),

hich includes the JRE. ReadMe ReadMe
ReleaseNotes ReleaseNotes
Oracle License Oracle License
Third Party Third Party
Licenses Licenses
System System

Confiqurations Confiqurations

Figure 1-1. Download the Java SE JDK.

http://www.oracle.com/technetwork/java/javase/downloads/index.html

CHAPTER 1: Preliminary Information: Before We Get Started

Click the Download JDK button to start downloading the Java SE Java Development Kit
(JDK). Then choose your platform from the drop-down menu that appears, accept the
license, and click the Continue button. You will be shown a link to the download that you
selected. Click that link to start the download.

NOTE: Make sure notto download Java Platform, Enterprise Edition (Java EE), JavaFX, or Java
with NetBeans.

Eclipse

Eclipse is an integrated development environment (IDE), which is a piece of software
dedicated to allowing you to more easily write programming code, and run and test that
code in an integrated environment. In other words, you write all your code into its text
editor, before running and testing that code using commands in Eclipse, without ever
needing to switch to another program.

Currently, Android requires the Galileo version of Eclipse (not Helios). You should
download the version of Eclipse that supports Java—Eclipse IDE for Java Developers.
Go to the Eclipse web site’s Downloads section at this URL.:

http://www.eclipse.org/downloads/packages/release/galileo/sr2

Figure 1-2 shows the Galileo package you want to download.

Home Downloads Users Members Committers Resources Projects About Us Custom Search

Downloads Home v

Eclipse Galileo Sr2 Packages

Helios SR1 Packages
Helios Packages Eclipse IDE for Java EE Developers, (190 MB) Windows 32-bit

Galileo Packages {JEE| Downloaded 1,991,046 Times Details Mac Carbon 32-bit
Ganymede Packages r_ac C;);:o: 3524-bl‘t 64-bit
Europa Packages inux 32-bit 64-bit

Windows 32-bit

Mac Carbon 32-bit

Mac Cocoa 32-bit 64-bit
Linux 32-bit 64-bit

Eclipse IDE for Java Developers, (92 MB)
Downloaded 968,872 Times Details

‘ Eclipse Classic 3.5.2, (na) Windows 32-bit 64-bit
Downloaded 905,914 Times Details Mac Carbon 32-bit
Mac Cocoa 32-bit 64-bit
Linux 32-bit 64-bit

u Eclipse IDE for C/C++ Developers, (79 MB) Windows 32-bit
Downloaded 416,936 Times Details Mac Carbon 32-bit
Mac Cocoa 32-bit 64-bit
Linux 32-bit 64-bit

& Eclipse for PHP Developers, (139 MB) Windows 32-bit
Downloaded 356,999 Times Details Mac Carbon 32-bit
Mac Cocoa 32-bit 64-bit
Linux 32-bit 64-bit

(Jee] Eclipse IDE for Java and Report Developers, (221 MB) Windows 32-bit
(BIRT) Downloaded 84,472 Times Details Mac Carbon 32-bit

Mac Cocoa 32-bit 64-bit
Linux 32-bit 64-bit

- Eclipse for RCP/Plug-in Developers, (184 uB) Windows 32-bit
Downloaded 75,679 Times Details Mac Carbon 32-bit
Mac Cocoa 32-bit 64-bit
Linux 32-bit 64-bit

‘ Eclipse Modeling Tools (includes Incubating components), (372MB) ~ Windows 32-bit
Downloaded 74,368 Times Details Mac Carbon 32-bit
Mac Cocoa 32-bit 64-bit
Linux 32-bit 64-bit

Figure 1-2. Choose to download the Eclipse IDE for Java Developers.

http://www.eclipse.org/downloads/packages/release/galileo/sr2

CHAPTER 1: Preliminary Information: Before We Get Started

Click the link in the right-hand column that matches your system, and then choose the
site from which to download.

Android SDK

The Android Software Development Kit (SDK) is a collection of files and utilities that
work hand in hand with the Eclipse IDE to create an Android-specific development tool.

To dowload the Android SDK, go to the Android Developers web site, located at this
URL:

http://developer.android.com/sdk/index.htm]l

Figure 1-3 shows the Android SDK packages available. Download the latest SDK for the
platform you are using.

ana3oid

developers Search veioper docs —
Home -/ SD i\ Dev Guide Reference Resources Videos Blog

Android SDK Starter Package ‘ l

Download the Android SDK

Installing the SDK

Downloadable SDK Components

Adding SDK Components Welcome Developers! If you are new to the Android SDK, please read the Quick Start, below, for an overview of how to install and set up the SDK.
new!

::g:g:g gi E::gg;g If you are already using the Android SDK and would like to update to the latest tools or platforms, please use the Android SDK and AVD Manager

Android 1.6 Platform to get the components, rather than downloading a new SDK package.

Android 1.5 Platform

Older Platforms

SDK Tools, 17 nev!

USB Driver for Windows, r3

MD5 Checksum

Windows android-sdk_r07-windows.zip 669664 bytes 69c40c2d2e408b623156934f9ae574f0
ADT Plugin for Eclipse
ADT 0997w Mac OS X (inthl) android-sdk_107-mac_x86.zip 14229546 bytes 0f330ed3ebb36786fafdc72b8act819
Native Development Tools Linux (386) \ android-sdk_r07-linux_xB6.tgz J7114517 bytes e10c75da3d1aal47ddd4asc58bic3646

Android NDK, rdp "

More Information

SDK System Requirements
SDK Archives

Figure 1-3. Download the Android SDK.

NOTE: We will walk through installing the other minor packages (shown on the left side of
Figure 1-3) using Eclipse in Chapter 3. For now, you don’t need to worry about anything except
downloading the main SDK.

Once the Eclipse and Android SDKs are installed and configured, you can further
enhance them by installing phone emulators and other add-ins, which are covered in
Chapter 3. In that chapter, we will go through the detailed setup of the Eclipse IDE for
Android development.

Summary

Andy Rubin’s creation called Android was purchased by Google in 2005 and made freely
available to developers to create mobile device applications using Java and XML. Since

http://developer.android.com/sdk/index.html

CHAPTER 1: Preliminary Information: Before We Get Started

then, the Android phenomenon has grown to encompass an open industry alliance of
the leading manufacturers and become the fastest growing mobile platform today. It is
the horse to bet on for the future of not only mobile devices, but also other types of
consumer electronic devices, including tablets and iTV.

What you will learn about in this book spans from how and where to get the Android
development environment to how to set it up properly, how to configure it optimally, and
how to use it to create applications that employ the powerful features of Android.

The three basic components you’ll need for Android development are Java, Eclipse, and
of course, Android. You can download these various components for free, as described
in this chapter. Once the Android SDK is installed in Eclipse, that IDE becomes a
comprehensive Android application development environment.

The next chapter provides an overview of what you will learn in this book, and then we’ll
get started with setup in Chapter 3.

Chapter

What’s Next?
Our Road Ahead

Before getting into the details of Android development, we’ll take a look at our “road
ahead.” This chapter provides an overview of what is covered in this book, and why it’s
covered in the order we will cover it.

You will see the logical progression throughout the book of how each chapter builds
upon the previous ones. We’ll move from setting up the IDE in Chapter 3, to learning
how Android works in Chapters 4 and 5, to adding exciting visuals and user interfaces
(Uls) in Chapters 6 through 8, to adding interactivity and complexity in Chapters 9
through 11. The final chapter inspires you to keep learning about the more advanced
features of the Android platform.

Your Android Development IDE

In Chapter 1, you downloaded the Java SE, Eclipse, and Android SDK packages you
need to build an environment for creating Android applications. In Chapter 3, you’ll learn
how to set up the tools you’ll use throughout the rest of the book. You’ll do this by
creating, step by step, from scratch, the very latest Android IDE out there—right on your
very own development workstation.

Note that part of this process must be done while online, so be sure to have your
Internet connection active and firing on all cylinders. We’ll be connecting in real time, via
Google’s Android Developers web site, to the latest Android application development
tools, plug-ins, drivers, and documentation.

Although it might seem that the setup of Java SE, Eclipse IDE, Android’s SDK, and an
Android Virtual Device (an emulator that mimics the behavior of a real Android
smartphone) is a topic too trivial for an entire chapter, that task is actually one of the
most critical in this book. If your IDE does not work 100% perfectly, your code will not
work 100% perfectly. In fact, without a robust and properly configured IDE, you may not
be able to develop any code at all!

1

CHAPTER 2: What’s Next? Our Road Ahead

The Eclipse IDE is a sophisticated programming environment that features code
highlighting, device emulation, logic tracing, debugging, and a plethora of other features.
Figure 2—1 shows an example of working in Eclipse, and Figure 2-2 shows an Android
Virtual Device in action.

Eava-chapu:uuluut ‘providers/DatabaseExamples.java -

File Edit Run Source Navigate Search Project Refactor Window Help

in-H& ‘B BNE -0 BEHGY @S- PEvED = [Eaa)
R R R

[# Package 22 _To Hierarchw =08 M@ main.xml] = 8=
=

Q:DI 4 b3 package content.providers; -
1 30Fim @®import android.app.Activity:[] o=
public class DatabaseExamples extends Activity {
public Uri addUri = null;
public Uri changeUri = null;
e @Override /** Called when the activity is first created. */
public void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState);
setContentView (R.layout.main);

4 Zl.g Chapterl0
4 [src
4 f} content.providers
b [J) DatabaseExamplesjava | .
> @8 gen [Generated Java Files]
> = Android1.5

G@ assets Button queryButton = (Button)findViewById(R.id.gqueryButton):
4 §‘;> res e queryButton.setOnClickListener (new OnClickListener() {
4 (= drawable = public void onClick (View v){
El icon.png queryContactPhoneNumber () ;
4 = layout } Ti
AX] mainxml 1
4 @values Button addButton = (Button)findViewById(R.id.addContactButton):;
@ strings.xml e addButton.setOnClickListener (new OnClickListener() {
@ AndroidManifest.xml a © public void onClick(View v){
default.properties addContactPhoneNumber ("Steve Wozniak", "415-555-7654");
&7 Chapter? '
107 Chapter8 N))) .
Button modButton = (Button)findViewById(R.id.modifyPhoneButton):
27 Chapterd

e modButton.setOnClickListener (new OnClickListener() {
A = public void onClick(View v){
modifyPhoneNumber ("916-555-1234") ;

17 dewvogella.android.temperature
7 LinearLayouts

}
1)
Button delButton = (Button)findViewById(R.id.deleteContactButton):;
e delButton.setOnClickListener (new OnClickListener() {
e public void onClick(View v){
deleteContactPhoneNumber () ;

}
1) -~
<[n »

(& Problems [@ Javadoc (@ Declaration [E Console (E Properties &2

< n |

-

n® ‘ Writable | Smart Insert | 40:1

Figure 2-1. The Eclipse IDE

CHAPTER 2: What’s Next? Our Road Ahead

| wflerswil @G 227w

IIntents and Intent Filter Examples IIntents and Intent Filter Examples

You Are Currently in: Activity #1 You Are Currently in: Activity #2

Go To Digital Clock: Activity #2 Go to Analog Watch: Activity #1

12:27:43 AM

MENU

Figure 2-2. An Android Virtual Device (AVD) in action

In Chapter 3, you will learn how to customize the Eclipse IDE with Android plug-ins,
which will morph the tool into one tailored to the particular needs of an Android
developer like you. As you will see, setting up this IDE for your specific development
goals is not a trivial undertaking.

Java, XML, and How Android Works

As you’ll learn in Chapter 4, an Android application is “stratified.” Its functionality is
spelled out in Java code, XML markup, and the Android manifest in a way that is truly
unique. This adds a great deal of extensibility, or development flexibility, to applications.
Android makes heavy use of an XML-based markup language to define the basic
components of an application, especially its visual components. Markup is not
technically code, but rather consists of tags, similar to the HTML tags web developers
use to format their online documents. XML is used in Android to define everything from
Uls to data access, and even programmatic constructs like Java object definitions and
configurations.

XML markup tags are easier for beginners to comprehend than a complex programming
language like Java. For this reason, you’ll use XML throughout this book whenever
possible, as Google recommends. Here, you’ll get a basic beginning knowledge of

CHAPTER 2: What’s Next? Our Road Ahead

Android application development, yet this will still give you the ability to make your apps
look very elegant and professional. | call it getting the maximum return on your
investment, and XML makes this possible.

The Android Application Framework

By the time you reach Chapter 5, you’ll have built a rock-solid integrated Android
software development environment and acquired a basic understanding of the
components that make up an application development project (images, text, layout,
buttons, code, audio, video, animation, XML, and so on).

In Chapter 5, you’ll learn the unique lingo of Android application design—that is, what
the various components of an Android application are called.

I'll outline how Java programming code and XML, along with any new media resources,
are compiled, compressed, and bundled into Android’s signature .apk file type (APK
stands for Android PacKage), and how logical Android components talk to each other in
an application.

The chapter also provides an overview of Android activities, which define the user
experience on the screen, and explains how they operate. You’ll learn about Android
services as well, which run in the background, separate from the application’s activities,
and provide the user with advanced functions through the UL.

You’ll also take an initial look at broadcast receivers, which alert an Android application
to events of interest, such as the activation of a camera on an Android device or an
incoming phone call. In fact, your app can even send out its own broadcasts, if there is
some reason to let other applications know of a change in state in one of your
application’s data constructs.

The chapter finishes up with a look at content providers, which are often databases filled
with information, such as a contact list, that applications may want to access to provide
functionality of their own. Android ships with a number of preconfigured content
providers, and you can also write your own.

Screen Layout Design

By Chapter 6, you will have a better idea of how the Android operating system works
internally, and how it wants to see applications put together. You’ll be ready to design
graphics, Uls, and even user experiences for your applications.

You’ll do all of this using screen constructs called views and view groups (grouped
views) and flexible layout containers, which can all be nested within each other to create
the Ul your application needs.

Chapter 6 explains how the display screen—the way most users interact with an Android
application—is handled in Android with a mixture of Java code and XML markup that
controls the hierarchy of View and ViewGroup objects and Layout containers. You can

CHAPTER 2: What’s Next? Our Road Ahead

also extend these classes to create your own custom View objects and Layout
containers when you need a more complex design. These containers ultimately hold the
other visual and Ul content in your application in its proper place, and thus are the
foundation of your application design. You’'ll want to learn these screen view and layout
concepts thoroughly, as they are core to implementing everything else that Android can
do.

You'll revisit XML yet again in this chapter, and learn how it allows you to define
complex screen layouts and Ul designs without writing a single line of Java code. You'll
learn about the different types of layout containers, and how each can be useful in
different Ul design scenarios, and even code a really cool application that is written
almost completely with XML.

User Interface Design

In Chapter 7, we’ll start building usable Ul designs, using the XML foundation of the
previous chapters, via your screen layout and view control.

We'll cover the three main screen resolutions that you can design Uls for under Android
and which options you have for providing high-, medium-, and low-resolution graphics
to allow Android to fit your application to each major screen size. We’ll also cover the
creation of standardized Android icons for use in your Ul designs.

Android has a large number of Ul elements, such as buttons, text fields, radio buttons,
check boxes, menus, alert dialogs, and all of those familiar controls that allow users to
interface with application software. These items can be implemented both in Java and in
XML.

In Chapter 7, we’ll design and code a usable application. We’ll design views, layouts,
and Ul elements, as well as attach their XML design elements to Java code that
performs some simple functions when the Ul elements are used by the application’s
users.

We'll look at the differences between option menus and context-sensitive menus, as
well as submenus for both of these types of menu constructs. We’ll also review different
types of dialog boxes, such as alert dialogs, progress dialogs, and dialogs for picking
dates and times.

Graphics and Animation Design

In Chapter 8, we’ll start adding application media elements through images, video, and
animation. These elements are key to making your application look great across all
Android phones.

The Android smartphone Active-Matrix Organic Light-Emitting Diode (AMOLED) half-size
video graphics array (HVGA) and wide video graphics array (WVGA) screens on current
products are impressive enough these days to allow some amazing experiences to be
created, so this is where it starts to get interesting as far as the visuals are concerned.

Download from Wow! eBook <www.wowebook.com>

CHAPTER 2: What’s Next? Our Road Ahead

In Chapter 8, we’ll explore the following:
B How to use bitmap images in Android applications

B How to animate bitmaps and vectors to create some pretty realistic
effects

B The different screen sizes, and how to create icons and graphics that
scale between widely varying screen resolutions

B An interesting user-controlled image-scaling technology called 9-patch

B The Android media player functionality, which allows you to control
both video and audio with minimal programming logic

B How Android allows you to control images directly

B How to draw directly to the underlying canvas via Java code

Interactivity

In Chapter 9, we’ll talk about adding interactivity to applications, so that they respond to
user input and actually do something. You do this by handling Ul events. We’ll look at
the most efficient way of handing events that are triggered by your users using the Ul
elements that are attached to the views and layouts defined in your XML files.

The following topics are covered:

B Event listeners, which execute the proper code in response to an event
that is triggered when a Ul element is used by the user (for instance,
you can run some code when a user touches a Ul element or presses
a key on the keyboard)

B Default event handlers that allow you to build event handling right into
your Ul elements

B Touch mode and navigation via the directional keys and the trackball,
and the differences between these, mainly having to do with a concept
called focus

B How focus movement is handled in Android
B How the operation of focus in Android can be controlled via Java code

B How focus preferences can be set in your XML files

Content Providers

In Chapter 10, we’ll be ready to get into the complexity of accessing data structures and
Android content providers. These content providers allow you to access databases of
system information that are available through the Android operating system, as well as
your own databases of information.

CHAPTER 2: What’s Next? Our Road Ahead

Content providers are the only method Android provides for sharing data across
applications, which is why they are important enough to merit their own chapter. We’ll
take a close look at the features of Android that allow you to query data from items
common to the Android platform, such as images, video, audio, and contacts.

Additionally, you can create your own content providers or add data to one. You'll see
how to create a content resolver so that you can interface with whatever content
providers you choose (and have permissions to access).

You’'ll learn about how content providers expose their data via data models similar to
databases, and how to use cursors to traverse the database in various ways.

Finally, we’ll investigate URI objects and how to use them to identify and access data
sets. Each set of data in the database will have its own Uniform Resource Identifier
(URI), which is similar to an HTTP URL.

Intents and Intent Filters

In Chapter 11, we are going to tackle one of the more complex concepts in the Android
environment: intents. Intents are asynchronous messages (members of the Intents
class) that travel between Android’s activities, services, and broadcast receiver
components. Asynchronous means not synchronized; that is, messages can be sent and
received independently (not in sync, but without pattern or reason) from each other.

Using intents allows you to take your current Android applications to an entirely new
level of complexity. Prior to this chapter, you’ll have added functionality to your
application by accessing the cool functions that Android provides. But all easy things
must come to an end, so they say.

Armed with intents (no pun intended), you can create advanced programming logic of
your own that ties together everything you have learned in the previous chapters. This
allows for far more powerful and useful programming constructs, and takes you from
beginner to intermediate.

You’ll learn how to spawn Intent objects that can carry highly customized messages
back and forth between your Android Ul (activities) and your programming logic
(services) for instance, as well as to and from broadcast receiver components.

We'll also look at intent resolution and intent filters. These allow you to filter out events
that your apps do not need to be concerned with, allowing you to optimize the progress
of internal communications.

The Future of Android

In the final chapter, | will expose you to all of those fascinating areas within the Android
development environment that we did not have the bandwidth to cover in this book.
There may be a lot of unfamiliar names and acronyms in this description, but that's the
nature of the future of Android.

CHAPTER 2: What’s Next? Our Road Ahead

The 3D engine inside Android is called OpenGL ES 1.2. You'll see how it allows you to
create real-time rendered 3D games and applications. And I'll give you some great
resources to find out more about this powerful 3D engine.

The SQLite database exists inside the Android operating system. We’ll uncover the
power it offers in allowing client-side databases to be created and used as content
providers.

Smartphone hardware such as the high-definition camera, GPS, accelerometer, and
microphone can be used to capture and digitize real-world events around us as images,
audio, and gestures, and turn them into data that can be used in your applications.
Computer programming has never been so powerful and innovation-oriented.

Inter-Android communication is another hot area, especially since Android devices can
be used as wireless hubs, giving access to many. We will look at Android’s integrated
Bluetooth APIs, which allow Android applications to wirelessly connect with any
Bluetooth device, and even provide for multiple connections.

We'll cover the concept of creating app widgets, or miniature applications that can be
embedded in other applications (think: the Android home screen) and receive real-time
updates (for things like clocks, radios, and weather stations).

Finally, we’ll consider the popular area of locations and maps using the Android location
package and Google Maps as an external data library. These tools are valuable for
Android application development, due to the mobile nature of the smartphone and the
fact that it has a built-in GPS.

Summary

As you can see from this chapter, this book will take you on a wild journey through the
various parts and components of the Android operating environment—from Ul design,
to new media assets, to database access, to more complicated background services
and interapplication messaging. We’'ll be dealing with adding some pretty cool elements
to Android applications, mainly by leveraging the power of “design via XML” and some
of Android’s built-in features.

In the next chapter, you’ll build an Eclipse-based Android IDE using the software that
you downloaded at the end of Chapter 1. After that, you’ll learn about how the Android
development environment is modularized and how to set it up to create applications
using this diverse mobile operating system.

Chapter

Setting Up Your Android
Development Environment

It’s time to get your hands dirty. In this chapter, starting from scratch, you’ll equip a
computer system to develop Android applications. You'll first install Oracle’s (formerly
Sun’s) Java SE JDK and the Java Runtime Environment, then the Eclipse IDE, and finally
the Android SDK, the tool set that provides Eclipse with the tools you’ll need to create
Android apps. Sound convoluted? It is. After all, this is high-end software development,
remember. What these are and how they relate to each other will become clear as you
proceed through this chapter.

Once the installation is complete, you’ll finish up by fine-tuning your Android
environment within Eclipse to include smartphone emulators, which let you test your app
with a representation of an Android phone on your workstation. You’ll also have USB
driver support, which makes it possible for you to test your applications on a real-live
Android smartphone. With these tools in place, you’ll be ready to rock and roll, and can
begin to explore how Android does things.

Installing Java, Eclipse, and Android

If you have not downloaded the required software as described in Chapter 1, you will
need to do that before proceeding, so those packages are ready to install. Here, we will
walk through installing Java SE and the JRE, Eclipse 3.5 (Galileo) or 3.6 (Helios)both of
which are supported by the Android SDK, the Android SDK, and the Android
Development Tools. For the examples in this chapter (and book), we will install the
software on a Windows system.

19

CHAPTER 3: Setting Up Your Android Development Environment

NOTE: Versions of the Java Runtime Environment, the Eclipse IDE, the Android SDK, and the
Android Eclipse plug-in are also available for Macintosh and Linux computers. The steps to install
them are nearly identical to those described in this chapter, and you will have no problems
following along. For more information, see
http://developer.android.com/guide/developing/eclipse-adt.html.

Java SE and JRE: Your Foundation for Application
Development

In Chapter 1, you downloaded the latest JDK from the Oracle web site, so the file jdk-
6u24-windows-i586.exe (or a similarly named file) is on your desktop and ready to install.

The installation includes the Java Runtime Environment (JRE), which is the environment
that allows Java programs such as Eclipse to run, or execute, under the Java runtime
engine. Indeed, this is the reason it is called a runtime—it is the environment, or software
process, that is active while a Java application is running.

Oracle has made the installation of the Java SE environment relatively painless. The
installation package is itself a software program (an executable, or .exe file type) that will
create the necessary folder structure on your hard disk drive and install all the files
precisely where they need to go.

Follow these steps to install Java SE and the JRE:

1. Double-click the JDK icon on your desktop (or in whatever folder you
downloaded it to) to launch the setup application. If your operating
system asks if it is OK to run the installation software, tell it to go right
ahead.

2. The legal agreement dialog appears, asking if you agree to the terms of
use for Oracle’s Java software. Read these, and then select Accept to
continue with the installation.

3. The next dialog tells you which files and features will be installed and
lets you turn off features that you do not wish to include. We are not
going to touch anything in this dialog, so simply click Next to copy the
300MB of development files onto your hard drive, as shown in Figure 3—1.

http://developer.android.com/guide/developing/eclipse-adt.html

CHAPTER 3: Setting Up Your Android Development Environment

Installing

& 117
The program features you selected are being installed. & S’ Il’ I

Status: Copying new files

(NENRNRARA AN AR |

Figure 3-1. Installing the JDK

4. After installing the JDK files, the installer will suggest a folder for the
JRE, usually in C:/ProgramFiles/Javal/jre6. Simply hit the Next button to
accept the default setting.

5. Once the JDK and JRE have finished installing, the final screen will tell
of a successful installation and provide a button for you to register the
product online if you are connected to the Internet. It is most likely a
good idea to register JDK (as well as the Eclipse and Android SDK), so
that you can receive updates regarding its development progress.

Eclipse IDE: The Development Environment

Now that you have successfully installed Java on your computer, you can install Eclipse
Galileo (Version 3.5) or Helios (Version 3.6), which is the IDE you will use for your
Android projects. You need to have Java installed before you install and run Eclipse
because Eclipse is written in Java.

NOTE: An IDE is a software package somewnhat like an advanced text editor, but with features
specifically fine-tuned for writing computer programs rather than publishing text documents. If
you want to get up to speed on all the amazing features of the Eclipse IDE, run through the Help
or Tutorials section once you have installed it.

CHAPTER 3: Setting Up Your Android Development Environment

In Chapter 1, you downloaded Eclipse from the Eclipse web site, so the Eclipse .zip file
is on your desktop and ready to install. Eclipse is a little harder to install than Java,
because it does not have an installation program (an .exe file in the case of Windows),
but instead has a folder structure of files inside a .zip archive. The trick is to extract this
file structure properly onto your hard drive, so that Eclipse can find the files it needs, and
they are in the folders where it is going to look for them.

Follow these steps to install Eclipse:

1.

()

@Back @ w\)

Double-click the Eclipse Galileo or Helios .zip file to launch WinZip extractor,
as shown in Figure 3-2 (notice that the Extract button is highlighted).

TIP: If you don’t have WinZip, a free alternative called PKZIP is available for Windows, Mac, and
Linux. Simply Google “PKZIP” and download the free version for your operating system type now.
Got it? Good. If you have Windows Vista or Windows 7, you can also open .zip files natively using
the Windows Explorer application, so you don’t need to download an extractor utility.

Edit View Favorites Tools

\’ /‘j Search

Help

ﬂé Folders

& % X 9 @

Address |29 C:\android

Folders

@ Desktop
® () My Documents
=] j My Computer

=]

-]

e (C:) OSDisk

Mame +
@andrnid-sdk_rn?-windnws.zip
eclipse-java-galileo-SR2-win32.zip
| £ jdk-6u20-windows-i586. exe

Size
23,115KB
95,011 KB
78,514 KB

Type
WinZip File
WinZip File
Application

Date Modified
10/2/2010 5:31 PM
6/19/2010 12:20 AM
6{18/2010 11:37 PM

AER)

@ () 92f58389beadSe! 1c1abSe

(2 Android
® () APPS
@ Apress
@ () Blender2.5alpha2
() cliffy
() Config.Msi
®) del
@ () DEV
® @ Documents and Settings
() Drivers
() DSTtemp
() EloDemo
@ () Engdpps
(22 Program Files
[2) TECapps
2 TEMP
D TeEST
(2 Utiliey
() WINDOWS
2 (D:) DVD/CD-RW Drive
“w (E:) Removable Disk
) fseventsd
@ () .Spotlight-¥100
() .Trashes
(2 android
() Apress
() BusinessCards
() Caligari

() FireFox3.5
(22 IES_WinXP
(2 kuzzon

File Actions Options Help
¥ =2 =l | & R & 2o N
S\ e @D e s
New Open Favorites Add Extract Encrypt View CheckOut Wizard

MName Type Modified Size Ratio Packed @\
Enrg.eclipse.rcp.configuration_root.win32.win32.x8. .. | M20100211-1343 File 2/18/2010 11:34 &AM 28,484 1% 28,333 5
org.eclipse.jdt_raot_3.5.2.r352_v20100108-7r88F... R352_Y20100108-7R&... 2/18/2010 11:34 AM 8076 1% 8,019
org.eclipse.rcp_root_3.5.2.R35x_v20100119-9540... R35X_Y20100119-954... 2{18{2010 11:34 AM 47,687 1% 47,397
org.eclipse.cvs_root_1.1.101,R35x_v20100125-7E.,.. R35X_Y20100125-7E7... 2{18/2010 11:34 AM 8,076 1% 8,010
org.eclipse.platform_root_3.5.2.R35x_v20100210-... R35X_¥20100210-080... 2/18/2010 11:34 AM 47,687 1% 47,397

|2 artifacts,xml XML Document 2/18{2010 11:34 AM 2,234 1% 644
org.eclipse.equinox.p2.artifact.repository. prefs PREFS File 2{18/2010 11:36 AM 27,107 92% 2,210
org.eclipse.equinox.p2.metadata.repository.prefs PREFS File 2/18/2010 11:36 AM 18,116 91% 1,634
org.eclipse.equinox.p2. artifact.repository . prefs PREFS File 2/18{2010 11:35 AM 1,540 79% 330
org.eclipse.equinox.p2.metadata.repository.prefs PREFS File 2/18/2010 11:35 AM 1,540 79% 330

#) jvmargs File 2/18/2010 11:35 &M 58 7% 54

Jock LOCK File 2{18/2010 11:32 &AM 0 0% 0
1266510768602, profile PROFILE File 2/18{2010 11:32 &M 788 61% 306
1266510963917 profile PROFILE File 2/18{2010 11:36 AM 1,753,799 93% 127,158
1266510957872, profile PROFILE File 2/18/2010 11:35 AM 1,753,800 93% 127,163
1266510768343, profile PROFILE File 2/18{2010 11:32 &AM 787 62% 302
enotice.html HTML Document 3{17/2005 5:12 PM 6,506 64% 2,325
.eclipseproduct ECLIPSEPRODUCT File 12{10{2008 5:05 PM 59 15% 50

(=] platform,xml *¥ML Document 2/18{2010 11:36 AM 4,348 79% 908
3config.ini Configuration Settings 2/18/2010 11:36 AM 807 49% 409
bundles.info INFO File 2{18/2010 11:36 &AM 32,436 86% 4,532
greadme_eclipse.html HTML Document 2/10§2010 5:28 AM 188,515 79% 39,321
elicense.html HTML Document 2/11/2010 8:54 PM 6,130 63% 2,285 \
%] | [>]
Selected O files, 0 bytes Total 1050 files, 109,407KB &0 .

() Opera_t0
[TN

Figure 3-2. Looking inside the Eclipse .zip file

CHAPTER 3: Setting Up Your Android Development Environment

2. Click Extract, and make sure that the location to extract the Eclipse file
structure is the root of your C:\ disk drive, as shown in Figure 3-3. This
will put Eclipse into a folder structure (defined in the .zip file) under
c:\eclipse, which is exactly where other software (in the case the
Android SDK) is going to look for (and find) it. Note that you must leave
the Use folder names check box checked for this to work properly.

2 = [B]X]
File Actions Options Help
= & ¢ ZRE Cmh 2 ; A L x
MNew Open Favorites Add Extract Encrypt View CheckOut Wizard
MName Type Modified Size Ratio Packed \
5 =1
org.eclipse.rcp.configuration_root.win32.win32.x8... M20100211-1343 File 2/18{2010 11:34 AM 28,484 1% 28,333
org.ecl . 5 . - 8,019
org oc a SlEAnndroydseclipsesyavacgalile 4 32, 47,397
org.ecl 8,010
e ™y s
org.ec Extract to: ll:.\ 47,397
artifac - = @ D esktop 644
°rg.ec = j My Computer 2,210
org.ed Desktop e (C:) OSDisk 1,634
org.ec @2 (D:) DVD/CD-RW Drive 330
org.ec v - [E:) Removable Disk 330
jvmarg ;} @43 My Network Places 54
Jock My Documents) Downloads 0
12665 #-() Tradeshow 306
12665 — @-{_} My Documents 127,158
12665 @ #-{2) LAN Admin Setup (delete when done) 127,163
12665 ' 302
?notice. My Computer Fllesr s ["] Open Explorer window 2,325
.eclips ~ Saansllaiile [[] Ovenarite existing files - S0
=] platfor Q ® Al files/folders in archive)) a08
“config My N K O Files: [Skip older fies 409
peonfia, py Networ [] [Hep |
bundle Places Use folder names 4,532
Ereadme | 39321
Elicense 2l 225 ©
a | 5]
Selected O files, 0 bytes Total 1050 files, 109,407KB O O "

Figure 3-3. Unzipping your Eclipse package with “Use folder names” checked

3. Go to Windows Explorer and click the c:\eclipse folder to view its file structure.
Look for a file called eclipse.exe, which is the actual Eclipse program
“executable” (hence .exe) file that you’ll want to use to launch the IDE.

4. Right-click the eclipse.exe file and select the Create Shortcut option, as
shown in Figure 3-4.

CHAPTER 3: Setting Up Your Android Development Environment

File Edt View Favorites Tools Help

Qeak - © - [T O search |2 Foers | [37 X) [F]-

- [B]X]
ar

Address [Crteclpse

B

Folders

X | Name ~

(& Desktop
= () My Documents
® () Apress
12 Downloads
0 geg-0.0
@® 2 My Music
(2 My Pictures
™8 My videos
® () Yuze Downloads
= 1 My Computer
= % (C1) OSDisk
®) 92f58389beadSel 1c1abSe.
() Android
®) APPS
) Apress
® () Blender2.Salphaz
1) cliffy
1) Config.Msi
®) del
® () DEY
® () Documents and Settings
() Drivers
() DSTtemp
= 3 edipse
() configuration
() dropins
® () features
®D2p2
® () plugins
12D readme
®) EloDemo
®) EngApps
®) Program Files
® () TECapps
= TEMP
® 2 TEST
1) wtility
® () WINDOWS

[| Econfiguration
(D)dropins
(Dfeatures
[=T:x3

Dplugins
(Direadme
.eclipseproduct
] artifacts xml

ecipse.ini| Open
[eclpsec.ex Runas...
Bjepl-v10.ht DWinZp »
@notice.him Fin to Start menu
Send To >
cut

Copy.

Delete

Rename

Properties

V]

Size

1KB
B4 KB
56 KB
1KB
28KB
17 KB
7KB

Type

File Folder
File Folder
File Folder
File Folder
File Folder
File Folder
ECLIPSEPRODUCT File
XML Document
Application
Configuration Settings
Application
HTML Document:
HTML Document:

Date Modfied
10/2j2010 7:48 PM
2{18/2010 11:35 AM
10/2}2010 7:48 PM
10/2/2010 7:48 PM
10/2/2010 7:48 PM
10/2/2010 7:48 PM
12/10/2008 5:05 PM
2/18/2010 11:35 AM
5/19/2009 6:10 PM
2{18/2010 11:36 AM
5/19/2009 6:10 PM
2{25/2005 6:53 PM
3/17/2005 5:12 PM

Figure 3-4. Creating a shortcut for Eclipse

5. Drag the eclipse.exe shortcut file onto your Quick Launch bar, and voila,
you now have an icon that requires only a single-click to launch the IDE,
as shown in Figure 3-5.

Tradeshow

LAN Admin
Setup (del...

Downloads

% G:Aeclipse

Fle Edt View Favorites Tools Help

Qo © (B Pt [iroes | (3 3 X 9 -

=5[]
o

Address | Cilecipse

g8«

() My pictures

29y videos
@ (2 Wuze Downloads.
= 1 My Computer
= % (C) OsDisk.
@ () 92f58389beadsel 1c1abSe

12 Android

@ 2 apps

Bitie] & |

1KB ECLIPSEPRODUCT File
84K8 XML Document

56K8 Application

1KB Configuration Settings
28Kk8 Application
17K8 HTML Document
HTML Document

Folders Size | Type Date Modfied
| @ pesktop File Folder 10/2/2010 7:48 M
= () My Documents File Folder 2/18/2010 11:35 AM
@ [Apress File Folder 1022010 7:48 P
(2 Downloads File Folder 10/2/2010 7:48 P
® 2 gegh0.0 File Folder 10/2/2010 7:48 P
@) My Music File Folder 10/2/2010 7:48 PM

12/10/2008 5:05 P11
2/18/2010 11:35 AM
5/19/2009 6:10 Pt
2/18/2010 11:36 AM
5/19/2009 6:10 Pt
2J25/2005 6:53 P
3/17/2005 5:12 P
10/2j2010 8:21 P

s 10/2/2010

Figure 3-5. Dragging the Eclipse shortcut onto the Quick Launch bar

Congratulations, you now have one of the most powerful open source IDE software
packages ever written, installed with Java SE, ready to launch at a moment’s notice and
use to develop Java software. Now, all you need to do is install Android and configure it

CHAPTER 3: Setting Up Your Android Development Environment

inside Eclipse, and you’ll be ready to develop Android applications ad infinitum. Cool
beans.

Android SDK: The Android Tool Kit for Eclipse

The last major step in putting together an Android development environment is to install
the latest Android SDK (currently, version 10).

In Chapter 1, you downloaded the Android SDK from the Android web site, so the file
android-sdk_r10-windows.zip is on your desktop and ready to extract. This process is
quite similar to the installation of the Eclipse IDE. As you did with Eclipse, extract the
Android SDK to your C:\ root folder now, as shown in Figure 3-6.

2 4= E3]
File Actions Options Help
= =2 Ry @A =
New Open Favorites Add Extract Encrypt View CheckOut Wizard
MName Type Modified Size | Ratio| Packed | &
D SDK Readme. bxt Text Document 8/30/2010 12:25 PM 856 48% 448
Csokm : 75,799
D emula qei==e = - 6,810
Qarons Exracttc O o
(D) fastbo ® b 127,422
=) NOTIC == = 45,573
b id = = @ Desktop ‘ J317
iz build. g = 1§ My Computer
3hardw Desktap e (C:) 0SDisk 1,357
|4 trace ®-.% (D:) DVD/CD-RW Drive 93,690
| orgne . % e [E:) Removable Disk 256,993
|&/) ddmuil| 1 ;} @43 My Network Places 352,620
@ androi My Documents I) Downloads 1,143
_ﬂ]layout #-2) Tradeshow 2,769
|4)] drawg) = @) My Documents 44,911
ﬂuix.jar @ #-{2) LAN Admin Setup (delete when done) 17,190
| &) sdklb. : 223,726
4] org-or s Fles (] Open Explorer window - 238,411
- Selected files/folders s o
&) emma - ‘ ! [[] Overwrite existing files E 33,706
ﬂ org.eq g @ &l files/folders in archive i § 85,316
B . [] Skip older files
L] skt py Network OFies: [| - 187,516
|4 jeomm Places Use folder names 284,425
L&) swt.ja 1457,
post_| i 794 4
e | [>]
Selected 0 files, 0 bytes Total 108 files, 38,060KB 00 .

Figure 3-6. Unzipping the Android SDK onto your hard disk drive

Notice that the software installs into a folder called C:\android-sdk-windows. Because
this is the folder where other software, like Eclipse, will look for the Android SDK, it is
best to use the folder name Google already set for it in the .zip file.

The Android SDK is now installed on your system. Since it will run inside the Eclipse IDE
(becomes a part of Eclipse), you don’t need to create a shortcut for it—you already have
one for Eclipse.

Download from Wow! eBook <www.wowebook.com>

CHAPTER 3: Setting Up Your Android Development Environment

What you need to do now is show Eclipse where the Android SDK is located so that
Eclipse can make the Android SDK functionality an integrated part of the Eclipse IDE.
This is done by installing the Android Development Tool plug-in for Eclipse, which we
will do in the next section.

Android Development Tool: Android Tools for Eclipse

It’s time to fire up Eclipse and add the Android Development Tool (ADT) plug-in to the
IDE.

NOTE: To perform the rest of the configuration and updates described in this chapter, you need
to be connected to the Internet.

Follow these steps to perform the installation:
1. Click the Eclipse Quick Launch bar icon to start Eclipse.

2. Accept the default workspace location (it will be under your Documents
folder). If a graphic with some circular buttons comes up, select
Workspace to enter the programming workspace environment.

3. From the main Eclipse menu, select Help » Install New Software..., as
shown in Figure 3-7.

File Edit Source Refactor Navigate Search Project Run ‘Window

. A . 3 e \ .) AT
i g~ (-0 Q- BEH G @ @ ekome 55 (&7 3ova |
[# Package Explor 52 Te Hierarchy | =8 (@) Help Contents [E] Taskuist 52 =08
%~ @ search E =
=2l O Dynamic Help ~
Ctrl+Shift+L Ef'%_:. \—.’ dg
Key Assist... r+-Shift+|
Tips and Tricks. . Find P oAl > Activat...
4# Report Bug or Enhancement... (5% Uncategorized
Cheat Sheets... 2% Outline 52 " =5
Check for Updates @® >
Install New Software. . n outlin is not available.

About Eclipse

|

B_g Problems 231 _7@ Javadocl @ Declaration @Y =0 |
0 items
Description Resource Path Locat... Type
07 (a0 =%

Figure 3-7. Selecting to install new software

CHAPTER 3: Setting Up Your Android Development Environment

4. In the Install dialog that appears, click the Add button at the upper right,
as shown in Figure 3-8.

= =)
File Edit Source Refactor Navigate Search Project Run Window Help
iCG-EHO i %0 Q- i BHEG I ®BS - E G0 55 (& sava |
i BT ey = 01| e CETT T
%%~ =
2 B]x] O-%-|xB e 9
Available Software b Al Actvet...
Select a site or enter the location of a site. (55 Uncategorized
Work with: | type or select a site Add...
Find more software by working with the 'Available Software Si
type filter text = = N
‘ ‘ 8% outline 52 N =0
Name Version | —
There is na site selected. A d it X <
D® ere s no site selected . An outling is not available.
Mame: ‘ Android Plug-In] [Local...]
Location: ‘ https:jjdl-ssl.google.com/android/eclipsef ‘ [Archive...]
v @
Show only the latest versions of available software [Hide items that are already installed v =8
®
Group items by category What is already installed?
Contact all update sites during install to find required software Locat... Type
®@ <sock | o>][rmsh
Py (a0 =B ® 5|

Figure 3-8. Adding the Android plug-in site to Eclipse

5. Inthe Add Site dialog that appears, enter the name Android Plug-In in
the Name field. In the Location field, enter one of the following:

B For the secure site, https://dl-
ssl.google.com/android/eclipse/

B For the nonsecure site, http://dl-
ssl.google.com/android/eclipse/

Figure 3-8 shows the secure HTTPS site selected. Click OK to add the site.

https://dl-ssl.google.com/android/eclipse/
https://dl-ssl.google.com/android/eclipse/
https://dl-ssl.google.com/android/eclipse/
http://dl-ssl.google.com/android/eclipse/
http://dl-ssl.google.com/android/eclipse/
http://dl-ssl.google.com/android/eclipse/

CHAPTER 3: Setting Up Your Android Development Environment

6. Once you’ve added the new Android plug-in option, its name appears at
the top of the Install dialog, and after a few moments, a hierarchy of
Developer Tools options populates the center of the Install dialog.
Select the first (highest) level, called Developer Tools (which will select
them all), as shown in Figure 3-9. Then click Next to continue with the
ADT installation. The plug-in proceeds to calculate installation
requirements and dependencies for several seconds.

NOTE: When you select Android Plug-In as the add-in, Google provides a URL, which appears
next to its name in the Install dialog.

= = [B]x)
File Edit Source Refactor Mavigate Search Project Run Window Help
) I/ (B0 Q- I BEE- I ®S P8 O
(] 23)] Hierarchy“ = H = EI@ Task List 23 = 8|
BES|e | =
insta AE6) G-%-|xB w9
Available Software PoALD Activat.,
Check the items that you wish to install, B ELC, Uncategorized
Work with: | Android Plug-In - https:/{dl-ssl.google.com/androidfeclipsef [Add...]
Find more software by working with the 'Available Software Sites' preferences.
type filker text = \
l ‘ 5% outline 2 =8
Name Version B
= [¥]000 Developer Tools An outline is not availabl :
[714* Android DDMS 0.9.9.v201009221407-60953 et
4% Android Development Toc 0.9.9.v201009221407-60953
Details
[¥] Show only the latest versions of available software [JHide items that are already installed 5 v = H)
A
[¥] Group items by category What is already installed?
[¥] Contact all update sites during install to find required software Locat... Type
@ s (GE)
P o® : a0 =

Figure 3-9. Installing the ADT plug-in in Eclipse

7. The next screen lists the Android Development Tools and Android Dalvik
Debug Monitor Server (DDMS, which is a debugging tool). Click Next to
accept these items.

CHAPTER 3: Setting Up Your Android Development Environment

8. Select the Accept Terms of License Agreement radio button, and then
click Finish. The Android development environment will be installed and
updated from the Google Android web site. If a message comes up that
asks you to approve an unsigned certificate, click OK to continue the
installation, which will leave you with a screen like the one shown in

Figure 3—10.
2 = [B]X)
File Edit Source Refactor Mavigate Search Project Run Window Help
I-EHE -0 BHGEG I ®™B Y TR . EflaJJaval
™ 3 e Hierarchy“‘ = =a [E] Task List 23“‘\7 = 0)
A v
=
_Jmi g-%- | xXB e |49
4) > Al P Activat...
@" e T s] (Z% Uncategorized

[] Always run in background

93 Install
() @

5% outline §2 \\7» = 08

An outling is not available.

HRun in Batkground] [Cancel] [<< Details]

‘Warning: You are installing software that contains unsigned content, The
! authenticity or validity of this software cannot be established. Do youwantto |-

é continue with the installation? @ > =8
0
i O® Install: (72%) D¢ (a5

Figure 3-10. Approving the unsigned content

9. Select the check box next to the Eclipse Trust Certificate and select OK.

10. A dialog appears, asking you to restart Eclipse to allow the changes to
be installed into memory and take effect in the IDE. Select Yes.

CHAPTER 3: Setting Up Your Android Development Environment

The Android Environment Within Eclipse

Once Eclipse restarts, the final step is to configure the ADT plug-in to point to your
Android SDK installation. Follow these steps:

1. In Eclipse, select Window » Preferences. Click the Android node on the left
to select the Android Preferences option.

2. In the Preferences window, use the Browse button to locate the
android-sdk-windows folder and select it, as shown in Figure 3—11. Click
the OK button, and the Android SDK will be part of Eclipse, meaning the
Android environment within Eclipse will be configured.

NOTE: You do not need to restart Eclipse for the Android SDK to become a part of it, because the
SDK just needs to be referenced in Eclipse in case any of the SDK tools need to be called by
Eclipse.

3. Select Help » Check for Updates to make sure you have the latest versions
of everything.

= =) 3}
File Edit Run Sourc ctor Window Help
4 4 e : ;e ge F 9. : X * (@3 .. |
B ld i 0-QAU BHEG-I®S LD |8 1ava |
= O B TaskList 53 =0
G-lE%lv xBl@~
’9"?5#; ces, A= I Find Q| > Al b Activate...
(% Uncategorized
type Filter text Android O -
¢ Genevfal Android Preferences
(= Android
Build SDK Location: | C:\android-sdk-windows ‘ i Browse... I
DDMS J— . VPP yrs
Launch Mote: The list of SDK Targets below is only reloaded once you hit ‘Apply’ or 'OK', @ Connect Mylyn 2
LogCat Target Name Vendor Platform ~ AP... Connect to your task and ALM tools.
Usage Stats = Mo target available - 7 = S
- Ant 5% outline 82 . @Y -0
- Help An outline is not available.
InstallfUpdate
* Java
RunfDebug
Tasks
[* Team
(# Usage Data Collector
Validation
XML
e~ =0
Locat... Type
Restore Defaults Apply
©) (. R
Il

Figure 3-11. Showing Eclipse the location of the Android IDE

CHAPTER 3: Setting Up Your Android Development Environment

Your Android development environment is now installed. Next, you will update the
software to make sure that you have the most recent releases available.

Updating the Android SDK

SDK updates often offer new elements that have been added since the SDK was
originally released, so this step brings you up to the most current status, in real-time
relative to today. Eclipse makes it easy to perform these updates though the Android
SDK and AVD Manager window. Follow these steps to open the window and get
updates:

1. Click the Android SDK and AVD Manager icon (it’s the one with the cute
green Android robot peeking over the edge of a down arrow, located at
the top left of the Eclipse toolbar) or select Window » Android SDK and AVD
Manager from the Eclipse main menu.

2. Inthe Android SDK and AVD Manager window, click Available Packages
to display the updated packages available to you for download, as
shown in Figure 3-12.

= - [B]x]|

File Edit Run Source Refactor Mavigate Search Project Window Help

Hets . BRE B0 Q- BEG OO F- i E 5 5 (& 3wva |

12 2k Hisrarchy |~ O = OB Taskuist 23\ =8|
B~ g-lEEl e xe|9~

Find Q| P oAl P Activate...

(% Uncategorized

Virtual Devices

Installed Packages Sites, Packages and Archives
Available Packages [=20e2]* hittps: /dl-ssl.google. comjandroidjrepositoryjrepository. xml

cumentation for Android SDK, API 8, revision 1
' SDK Platform Android 2.2, API 8, revision 2

" SDK Platform Android 2.1, API 7, revision 2

' SDK Platform Android 1.6, API 4, revision 3 ® Connect Mylyn 2
* SDK Platform Android 1.5, API 3, revision 4

Samples for SDK API 8, revision 1

Samples For SDK API 7, revision 1

Google APIs by Google Inc., Android API 8, revision 2
Google APIs by Google Inc., Android API 7, revision 1
Google APIs by Google Inc., Android API 4, revision 2
Google APIs by Google Inc., Android API 3, revision 3
Usb Driver package, revision 3

(@8 Market Licensing package, revision 1

Connect to your task and ALM tools.

55 outline 53 & ¥ = 0|

An outline is not available.

Description
SDK Source: https://dl-ssl.google i itory/repository. xml
19 packages found.

e
Add Add-on Site... | | Delete Add-on Site... [V Display updates only (Refrest | nstall selected [J)

L
EZ_\ Problems 52 @ Javadoc‘@;oeclaration‘ @ Y = 0]
0items

Description Resource Path Locat... | Type

Figure 3-12. Installing available packages via the Android SDK and AVD Manager window

CHAPTER 3: Setting Up Your Android Development Environment

3. Click the top check box in the Sites, Packages and Archives panel. This selects
all of the listed packages for installation. Then click the Install Selected button.

NOTE: You are installing a whole lot of development power here. In the example shown in Figure 3—
12, this includes every SDK and API from 1.5 through 3.0, as well as documentation and even the
USB Driver package, revision 4, which you’ll use in an upcoming section. The reason we also install
the older versions of Android is that we usually want to develop our application with the earliest
version of Android to obtain the most backward-compatibility and the widest user base possible.

4. On the next screen, make sure all packages, documentation, and APls, as
well as the USB drivers, are selected with a green check mark. If any of the
entries have a black question mark next to them, click to select those entries,
and then select the Accept radio button option (circled in Figure 3-13) to
replace the black question mark with a green check mark.

= J JBI

Fle Edt Run Source Refactor Navigate Search Project Window Help

d03~ BB F-0-Q BEE BSOS F 5[&7 ava |

= 8 fs Herarchy| = 81| = O TaskList 22 =0
B9~ g-%% o/ xB /497

‘ Find Q| P Al P Activate...

J=1E3 (& Uncategorized

Yirtual Devices

Installed Packages Sites, Packages and Archives

= [7] @ https:{/d-ssl.google..com/andraidfrepository/repository xml

ocumentation for Android SDK, API 8, revision 1
DK Platform Android 2.2, AP1 8, revision 2
DK Platform Android 2.1, AP1 7, revision 2
7" SDK Platform Android 1.6, AP1 4, revision 3 ® Connect Mylyn =

7 SDK Platform Android 1.5, AP 3, revision 4

Samples for SDK API 8, revision 1 Connect to your task and ALM tools.,

% Samples for SDK API 7, revision 1
¥ Google APIs by Google Inc., Android AP 8, revision 2
4 Google APIs by Google Inc., Android API 7, revision 1
4 Google APIs by Google Inc., Android API 4, revision 2
4 Google APIs by Google Inc., Android API 3, revision 3
@ [7] Gl Usb Driver package, revision 3
@[] @ Market Licensing package, revision 1

52 outine 52 . #~°=0

An outline is not available.

Description

SDK Source: https:{jdhssl.google.comfandroidjrepositoryjrepositary. xml
19 packages found.

Delate Add-on Ste [Display updates only Install Selected

(21 Problems £2 @ Javadoc| [&), Deceration @~ =0

aEn)

Packages

Package Description & License.

~ SDK Platform Android 2.2, APT 8, revision 2 ... []| package Description (]

~ SDK Platform Android 2.1, API 7, revision 2 ... USB Driver For Windows, revision 3 =

 SDK Platform Android 1.6, API 4, revision 3 ... Archive Descriotion

= SDK Platform Android 1.5, API 3, revision 4 ... Archive For Windows

~ Samples for SDK API 8, revision 1 Size: 6 MiB

~ Samples for SOK AP1 7, revision 1 B

~ Google APIs by Google Inc., Android APTS, ... Hicerse

~ Google APIs by Google Inc., Android API 7, ... This is the Android Software Development Kit License Agreement.

v 3

Google APIs by Google Inc., Anchoid APT 4, T

~ Google APIs by Google Inc., Android APT 3, ...

 Ush Driver package, revision 3 1.1 The Andraid Software Development Kit (referred to in this License [

 Market Licensing package, revision 1 Aareement as the "SDK" and snerifically inclidinn the Andraid svetem Files. V]
) @ ace)O Reject O Accept Al

e
[*] Something depends on this package (| rstal |) concel |
S —

Figure 3-13. Accepting the Android license and installing the latest Android packages into Eclipse

CHAPTER 3: Setting Up Your Android Development Environment

5. When the all the packages are selected, click Install. The installation
process may take some time, even on a fast Internet connection. My
updates took about 50 minutes at 200 Kbps. Yes, this is a significant
amount of data you are getting to update your Android development
environment.

6. At the end of the installation, the installer may ask you if it is OK to
restart the Android Debug Bridge (ADB). Reply Yes, and you are finished
updating everything Android. Now when you select Installed Packages
in the Android SDK and AVD Manager window, all of the packages you
just installed will be listed there.

At this point, you have downloaded, configured, and updated hundreds of megabytes of
Android-related development software for Java and Eclipse. You now have a finely
tuned, up-to-date, open source, professional Android software development
environment on your system and ready for use.

We have made significant progress at this point. Let’s finish up by installing some
emulators for our testing, as well as USB drivers for connecting to a physical Android
handset.

Setting Up AVDs and Smartphone Connections

The Android development environment ships with AVDs, which let you run your
applications on a graphical representation of an Android handset, otherwise known as
an emulator. You’ll want to install one now, before you begin to write code, so that you
can test your apps.

AVDs: Smartphone Emulators

To install an AVD, you use the same Android SDK and AVD Manager window you used
in the previous section. Here are the steps:

1. To open the Android SDK and AVD Manager window, click the icon
located at the top left of the Eclipse toolbar (see Figure 3-12, shown
earlier) or select Window » Android SDK and AVD Manager.

2. In the Android SDK and AVD Manager window, select Virtual Devices,
the first entry in the list in the left pane. Then click the New button (see
Figure 3-14).

CHAPTER 3: Setting Up Your Android Development Environment

JB]x]|

EPES

= ﬁ‘E] TaskList 52 7%

g-lfEE e xe8”

[Frd Q] A&l b Acivate..
,J ,J m (&% Uncategorized

12 22T Herarchy| = ||

BS|e~ ‘

=

List of existing Android Yirtual Devices located at C:\Documents and SettingsAdministrator},. androidiavd
Available Packages AYD Name: Target Name Platform API Level
- No AYD available - -
fsmmmeTT, alDeyice (YD XJ|
@ Connect Mylyn P
Name: Android_1.5_Emulator | Betaks Connect to your task and ALM tools.
Target: Android 1.5 - APT Level 3 V] Start. P = ==
9] B BE outine 53 P =
D Card: An outline is not available.
@ Size MB
OFie: | | [Bros
Skin:
@suitin: | Default (HVGA)
OResolution: | | |
Hardware:
Property Value

BeBE|t B-r5- = 0O

Override the existing AVD with th

=

Figure 3-14. Creating a new AVD to test Android 1.5 compatibility in an Android 1.5 emulator

3. Fillin the Create new Android Virtual Device (AVD) dialog as follows:

B Enter a name for the emulator in the Name text box. | used the
name Android_1.5_Emulator.

B From the Target drop-down menu, select an API. | chose the
Android 1.5 API.

B In the SD Card section, set a memory card size for the SD card. |
selected a size of 512MB (for the widest phone support).

[

In the Skin section, choose a screen resolution for the device
skin. | selected the default HVGA screen setting because my
Android phone has a 320 x 480 resolution display. Most
Androids out there use HVGA resolution, so by choosing this
option, you’ll obtain the widest phone handset compatibility.

Figure 3—14 shows the dialog | completed to create an Android 1.5 smartphone
emulator. Click the Create AVD button after you've filled in the dialog.

As you can in Figure 3-15, the new virtual device is now listed in the Virtual Devices
section of the Android SDK and AVD Manager window. Also note the message in the
bottom console area of the IDE telling of the successful emulator creation.

CHAPTER 3: Setting Up Your Android Development Environment

BEE)

Fle Edt Run Source Refactor Navigate Search Project Window Help

wiie 8 IBHE I B0 BEC @B PG 5 (&’ sava |
[# Package Explor &3 T Hierarchy| = O || = O|[B raskuist 3\ =8
5% v -l xela
Find Q| »oal b Activate...
=
=) “ (&% Uncategorized
Installed Packages List of existing Android Virtual Devices located at C:\Documents and SettingsiAdministrator).androidiavd
Available Packages AVYD Name Target Name Platform API Level New...
 Android_1.5_Emu... Android 1.5 15 3
7[- = @ Connect Mylyn 2
etai
Connect to your task and ALM taols.
tart, Z = 5
SE Outline £2 ~ =
An outline is not available.
|| Refresh
~ A valid Android Virtual Device. F_LI A repairable Android Virtual Device.
X An Android Virtual Device that failed to load. Click 'Details' to see the error.
[
21 Problems | @ Javadoc |2} Dedlaration | & console 53 ExpE| et B-r5-°0

Android
[2010-10-03 03:28:55 - SDK Manager] Created AVD 'Android_1.5_Ewmulator' based on Android 1.5

Figure 3-15. The Android 1.5 emulator added to the list of existing AVDs

USB Smartphone Drivers: External Devices

Since the latest USB driver for Android was installed as part of your environment
upgrade in a previous section, you’ve already taken care of installing the most up-to-
date USB drivers to interface the Eclipse IDE with your Android smartphone.

It is important to note that this driver is only for Windows. Using the external Android
smartphone on Mac and Linux does not require this driver download.

The driver is not intended to make your Android phone visible to Windows. You can
simply plug your Android in via USB, and it will be visible on your Windows desktop.
However, the driver is necessary to have the development interface to and from Eclipse.

Note that the USB driver you installed earlier went into the ADT plug-in for Eclipse, not
into the Windows driver registry. Possibly the term driver is misleading in this instance,
as this driver provides the ability for Eclipse to talk with your Android smartphone during
development, so that Android packages (.apk files) can be transferred to the smartphone
for testing and development purposes.

Download from Wow! eBook <www.wowebook.com>

CHAPTER 3: Setting Up Your Android Development Environment

Developing on 64-Bit Computing Platforms

Since Android development does not require a 64-bit computer like other advanced
development types such as 3D and audio synthesis do, most of us are going to use a
standard 32-bit operating system (possibly on a 64-bit capable computer) to run and
develop with Eclipse.

The primary advantage of running a 64-bit operating system, such as Windows 7 64-bit,
is that you can address more than the 3.3GB physical memory limit imposed
(mathematically) by a 32-bit operating system environment. Why mathematically?
Because a 32-bit system allows 3.3 billion as its largest number, and cannot count any
higher, and that includes memory addressing. Fortunately, the Android Eclipse
development environment does not need gigabytes of memory in order to function, so
you do not need a 64-bit system or operating system to develop for Android.

If you have a computer with 6GB or 8GB of memory, you are probably running a 64-bit
operating system. Therefore, you will need to download 64-bit (compatible) versions of
Java and Eclipse and substitute these packages for the 32-bit versions used in the
examples in this chapter. Other than the version you are installing or extracting, there
should be no difference from the process described in this chapter to install and
configure the Android environment. (I have Android development environments working
on both 64-bit Windows 7 and 32-bit Vista systems, so | know the process works as far
as JDK 6u24 and Eclipse Galileo or Helios are concerned.)

To download the 64-bit version of the Java SE JDK, go to the following URL:

https://cds.sun.com/is-bin/INTERSHOP.enfinity/WFS/CDS-CDS_Developer-
Site/en_US/-/USD/ViewProductDetail-Start?ProductRef=jdk-6u24-oth-JPR@CDS-
CDS_Developer

Click the Download button, which will take you to the downloads page shown in Figure
3-16. From the Platform drop-down menu, select Windows x64 as your operating
system version, and then click Continue to download the 64-bit version of the JDK.

CHAPTER 3: Setting Up Your Android Development Environment

avals il EVElopTEN LIRS G128 ST dowsl nternetixplore

G@ 4 \g, https://ce

File Edit View Favorites Tools Help

- [B](x]

5/CDS ‘E‘ ‘5‘ ‘Z‘ l:,' 64-bit Eclipse Galileo Download HEE‘

s.sun,com/is-bin/INTERSHOP . enfinity

X Gmxgle‘ -:'Search"'©' e Bshaer - = ? €y~ ()sSignIn ~

i‘} Favorites ‘ ﬁ @‘E-u- ested Sites v @ | Free Hotmaill & | v ice Gallery ~

‘88 - *Phow... ‘@How... ‘@How ‘@Ecllp... ‘.Ecllp...]@l.. x :l_l M- [dm -+ Page~ Safety~ Tooks~ @~
A

ORACLE" sun Developer Network (SDN)

Java¥ Solaris ¥ Communities ¥ My SDN Account Join SDN

SDN Home = Download Center =

Java SE Development Kit 6u21 (S - A

Fast, Easy & Reliable

There is more information on the available files for download on the Supported

System Configurations page. @ NetBeans simple, Intuitive IDE

Select Platform and Language for your download:
Getting Started?

Platform:

Language: | Select..
Linux

» New to Java Center
» New to Solaris Center

Linux Intel Itanium » Sun Studio
By selecting’ Linux x84)y accept the terms and conditions ofthe Java SE
Developmeni Solaris SPARC ant.
Solaris x64 Download Resources

Solaris x86

Windows

Windows Intel Itanium
Windows x64

Optional: Ple:
Or, click "Co

idditional functionality and benefits.
out Log In or Registration.

User Name: l — = ‘
Example: jim23 or jim@company.com

Password: | |

» Reqister Now
» Why Reaqister?
» Forgot User Name or Password ?

Continue »

» Download FAQs

» Download Customer
Senice

Related Resources

» Java.sun.com
» Solaris Developer Center
» JavaFX

» Web Developer Resource
Center

» Developer Services
» JavaOne Online
» Sun Student Developer

g8

¥ v ®100%

v

Figure 3-16. Downloading the 64-bit JOK

There is currently no 64-bit version of Eclipse Galileo 3.5.2—only of Galileo 3.5.1. If
that’s still true when you visit the Eclipse web site, you can use that version for your 64-
bit Android Eclipse development environment.

The 64-bit version of Galileo SR2 Eclipse download page is at the following URL:
http://phoenix.eclipse.org/packages/release/galileo/sr2

Click the Windows 64-bit link, shown in Figure 3-17, to download the file eclipse-SDK-
3.5.2-win32-x86_64.zip.

http://phoenix.eclipse.org/packages/release/galileo/sr2

CHAPTER 3: Setting Up Your Android Development Environment

File Edit VYiew Favorites Tools Help

x Google l

Msearch - G - pr | @ sharer B = P &~ ()signIn -

7 Favorites ‘ 55 @ cugestedSies v @] Free Hotmail @] Ve

22+ *Phowt.. | @HowT... PHowt... ([Dedps.. EEd.. x

Slice Gallery v

:‘7‘ ﬁ - [= v Page~ Safety ~ Tools~ @~

» | . CONTACT | LEGAL
eclipse
3 I NN

HOME

USERS | MEMBERSHIP

COMMITTERS | DOWNLOADS @ RESOURCES @ PROJECTS | ABOUTUS

Custom Search | |SEARGH B | AA

Downloads Home

By project Eclipse Galileo Sr2 Packages Downloads Available:

By topic Eclipse ClassiN/A)
The classic Eclipse doWmiedd: the Eclipse Platform, Java Development windows 32-b

Source code Tools, and Plug-in Development Environment, including source and Mac Carbon 32

. both user and programmer documentation. Please look also atthe Mac Cocoa 32-bit 64-bit
Sl e PRy Eclipse Project download page. Linux 32-bit 64-bit
Galileo 3.5.2 (SR2) Open Bugs: 0 Downloads: 0 More...

Packages
: Eclipse SOA Platform for Java and SOA
Galileo 3.5.1 (SR1)
Packages Developers (WA)
Eclipse SOA Platform is a runtimes and tools integration platform for
Galileo 3.5.0 Packages SOA developers. It makes easy to get the environment you need for Wi s
. " . indows 32-bit
developing and executing SOA. Itincludes a Java IDE, Swordfish Mac Carbon 32-bit
Ganymede Packages Tooling, the Plugin Development Environment (PDE), an XML Editor Mac Cocoa 32-bit 64-bit
and a WSDL Editor. The SOA package is maintained by the Eclipse Linux 32-bit 64-bit

Europa Packages

SOA Industry Workgroup. Note that the SOA package includes some
incubating components, as indicated by feature numbers less than
1.0.0 on the feature list.

Open Bugs: 2 Downloads: 0 More... ¥

& Internet da v W100% v

Figure 3-17. Downloading 64-bit Eclipse Galileo

Install the 64-bit JDK first, and then the 64-bit Eclipse IDE, and configure them exactly
as outlined for the 32-bit versions as far as the Android SDK is concerned.

Whew! We’'re finished! Now we can get to the business of Android development!

Summary

To set up your Android development environment, you begin by installing the Oracle
Java SE JDK, which is required to run both the Java programming language and the
Eclipse IDE (and is proof that Java can be used to develop large-scale, enterprise-
quality applications).

With the JDK installed, the next logical step is to install the Eclipse IDE, which the
Android development environment uses as a “host,” or platform, to support its ADT
plug-in.

CHAPTER 3: Setting Up Your Android Development Environment

Your next major step is to install the Android SDK, which contains all of the tools and
utilities that you need to develop Android applications. Once the SDK is installed on the
hard drive, you go into Eclipse and point Eclipse to the Android SDK installation
directory, so that Eclipse and Android’s SDK can work seamlessly hand in hand.

After installation, you can use Eclipse to check on the Internet for the very latest versions
of the Android SDK tools. You can install those you’ve found (which takes a while even
on a fast connection). Finally, you want to add an AVD on which to test your
applications.

You also can include 64-bit software addresses, on the off chance you are using a 64-bit
development system. To do this, just download and install the 64-bit versions of the
software.

In the next chapter, we’ll examine the Android platform and its components, to prepare
for writing Android applications.

Chapter

Introducing the Android
Software Development
Platform

The Android platform is a collection of software that includes an operating system and a
number of higher-level libraries that simplify the task of communicating with the
operating system. It also includes several applications that smartphone users have
come to expect, such as a phone (obviously), e-mail client, contact manager, Google
Maps, a web browser, a calendar, and so on.

Everything in the Android development environment, as well as all of the included
applications, can be programmed with a combination of Java and XML thanks to the so-
called runtime that is included with the Android SDK. The runtime translates the Java
and XML code that you write into a language that the operating system and the device
understand.

The foundation on which Android is built is carefully coded and painstakingly tested
Linux 2.6, an operating system that rarely crashes. Linux and its core services manage
the physical phone and give Android applications access to its features: touchscreen,
memory, data, security, various network receivers and transmitters, camera, and more.

Linux doesn’t do it all alone. Android has a number of libraries that provide higher-level
customized functions and services for 2D graphics, 3D graphics, and the audio and
video file formats in widest use today. In other words, Android supports all of the media
formats you could possibly want to use (for more information see
http://developer.android.com/guide/appendix/media-formats.html).

This chapter introduces the Android environment and shows you how to write your first
Android app.

a1

http://developer.android.com/guide/appendix/media-formats.html

CHAPTER 4: Introducing the Android Software Development Platform

NOTE: In this book, you’ll build apps using a combination of XML and Java, which sit in a layer
on top of the operating system (with the runtime as the component that translates Java and XML
into instructions for the operating system). However, you could, if you wished, access the
operating system and its services directly using lower-level languages such as C or C++. You
might consider this approach for an application that needs the utmost speed, such as a 3D game
or a real-time heart-monitoring program.

Understanding Java SE and the Dalvik Virtual
Machine

The Android runtime environment provides a core set of operating system libraries that
can be accessed via Java and XML. These give you access to device features and
lower-level Android operating system functions so that you don’t have to do any of that
hard programming yourself. You simply include the appropriate components from the
libraries you need in your program—something called importing—and then employ their
capabilities. You’ll learn how to put a number of these little engines to work in later
chapters.

To run Java SE code, Android uses a tool called the Dalvik Virtual Machine (DVM). The
DVM is an optimization mechanism and technology that allows application code and
resources to be highly optimized for use in mobile and embedded environments.

The good news is that the DVM is not something that a developer needs to worry about.
| describe it here only to give you a sense of what’s going on under the hood with
Android.

When you launch an Android application, it creates a process that allocates memory and
CPU processing resources (processor time slices) to the application, so that it has the
resources needed to function. Each time an application is launched and a process is
spawned, an instance or copy of the DVM is launched into your Android smartphone’s
memory. The DVM actually takes the Java language instructions and application's
design guidelines in an XML format, along with any external resources (images, audio
files, and so on), and translates them into optimized low-level binary code that goes into
the smartphone’s memory and eventually into the processor for processing.

So, what is the advantage of this DVM? The use of the DVM allows many more
applications to run within the somewhat limited memory resources (1GB) and
processing power of consumer electronic devices, and it also protects all of the other
spawned processes from each other. In this way, the crash of one application will not
bring down the entire operating system (as happened in the olden days of DOS and
Macintosh). That’s huge.

CHAPTER 4: Introducing the Android Software Development Platform

The Directory Structure of an Android Project

Android does its best to externalize all application assets that do not absolutely need to
be in your Java code. It does this by using the simpler XML markup language to define
Ul and data structures that would otherwise need to be declared and coded in Java.
This modularization is aided by having a clearly defined project hierarchy folder
structure, which holds logical types of application assets together in an orderly fashion.

Since Android is very particular about where the assets of your project are stored within
the project directory, you need to learn where each belongs early in the game. When it
comes time to generate your application—a process called compilation— Android looks
into these standardized folders to locate each type of asset it needs, and expects to find
like assets logically grouped together.

The assets of a project include its Java code, XML layouts, XML animation definitions,
and the rich media files that your Java code and XML markup reference. As shown in
Figure 4-1, default folders are created in an Android project to hold menus, images,
layouts, colors, fixed data values, raw (uncompressed) media, XML constructs, and
animation.

f E=Ra)
@@v | « Local Disk (C:) » AndroidProject » res » - - Search L

By Organize ~ : vs© v (g Burn QG
Favorite Links Name Date modified
[E Documents 1. anim 10/6/2010 9:34 PM
i . color 10/6/2010 9:35 PM
B Pictures | drawable 10/6/2010 9:34 PM
B Misc). layout 10/6/2010 9:35 PM
More » J. menu 10/6/2010 9:35 PM
Folders v | Juraw 10/6/2010 9:36 PM
B Desktop . | i values 10/6/2010 9:45 PM
ﬂ Walls | e xml 10/6/2010 9:37 PM
.. Public =
1% Computer
&, Local Disk (C:)
)i _MACOSX
. Android_Projects
. AndroidProject
-
L. anim
1. color
. drawable
1. layout
.. menu
L. raw
1. values
L oxml
W src
. android-sdk-windows -
] 8 items

Figure 4-1. Android’s file structure, showing the res (resources) folder and its subfolders

CHAPTER 4: Introducing the Android Software Development Platform

The Java code that drives an application is located in the /src (source code) folder and in
any subfolders that are defined by your Java code.

You’ll find other assets used by your application in logical subfolders of the /res
(resources) folder as needed. It is very important that only folders go in the /res folder. If
the Android compiler sees any files in this folder, it will generate a compiler error.

NOTE: The name of the game is to avoid compiler errors at all costs, because if Eclipse sees
compiler errors in your code, it does not even bother generating your application. And if your
application is not generated, you certainly cannot test it to see how it works.

If you don’t have any resources of a certain type (say animation), you do not need to
have an empty folder for it. This means that you do not need to create folders that you
will not use.

Common Default Resources Folders

The most common of the default resources (/res) subfolders are shown in the Figure 4-1.
The following are the eight provided when you create a project in Eclipse:

B Jayout: Ul screen layouts go in the /res/layout folder, which holds XML
files containing Ul layout definitions written in XML.

B anim: XML files that define animation go in the /res/anim folder.

B drawable: Images in PNG format (which Google prefers) or the JPEG
format (acceptable but not favored by Google) go into the
/res/drawable (screen-drawable imagery) folder.

® values: XML files that define constant values are in the res/values
folder.

B color: XML files that specify related color values for your application's
Ul go in the /res/color folder. For example, if your app has complicated
color bundles for different states of a button (a different color for when
it is pressed, focused, or unused), they will be logically arranged in this
folder.

®m xml: XML files that define custom data constructs are in the res/xm/
folder.

B menu: XML files defining menu layouts are in the res/menu folder.

B raw: Video files that are precompressed go in the res/raw folder, so
Android knows not to process them further.

CHAPTER 4: Introducing the Android Software Development Platform

The Values Folder

Let's examine the res/values folder in more detail. This is where you place predefined
application values in the form of XML files that define the variable names (x or y, for
instance) and their values that are later referenced in your Java code. For example,
these values might be strings (collections of text characters) or constants (hard-coded
values that your Java code uses in its program logic and can't change).

Think of the values folder as holding all of your constant values for your application in
one place. This way, if you need to adjust them during application development and
testing, you make the changes in a single location.

Figure 4-2 shows examples of files that can be placed in this folder:

B colors.xml: An XML file that will define the color values to be used in
the app. These allow you to standardize the Ul. For example, you
would define your background color. Then, if you decide to tweak it
later, you need to do the tweak in only one place.

B dimens.xml: An XML file that defines dimension values, such as
standard heights and font sizes for your Ul. You can then use these
values across your app to ensure it is consistent.

B arrays.xml: An XML file that defines a series of values to be used
together (known as an array). For example, this could be a list of icon
files or a list of options to display to the user.

B strings.xml: An XML file that defines text strings to be used in the
application. For example, you can place any screen titles or the app’s
name here and reference them in your code. If you need to change
these items, you simply do it here rather than in your code.

B styles.xml: An XML file that defines styles to be used in the application.
These styles are then applied to the Ul elements that require them, so
you separate the look of your app from the layout and functionality.
This makes your app easier to maintain.

Notice the Android file name conventions for the different types of XML files in the values
folder, adding another level of complexity.

CHAPTER 4: Introducing the Android Software Development Platform

@@' |, « AndroidProject » res » values v

‘ Organize v

i Name Date modified Type

| arraysxml 10/6/2010 10:43 PM XML File

. colorsxml 10/6/2010 10:44 PM XML File

| dimens.xml 10/6/201010:45PM XML File

B Music | strings.xml 10/6/201010:45PM XML File
More » | stylesxml 10/6/201010:45 PM XML File

i Favorite Links

E\ Documents
B Pictures

Folders
4 Ml Desktop
> B Walls
1. Public
48 Computer
4 &, Local Disk (C))
b e _MACOSX
i 1. Android_Projects

> 1. AndroidProject
> res

. anim

. color

. drawable
) layout

. menu

. raw

. values

. xml

L src

5 items

Figure 4-2. Files in the res/values folder. These files contain constants for an Android application.

Leveraging Android XML (Your Secret Weapon)

One of the most useful features of Android as a development environment is its use of
XML to define a great number of attributes within your application’s infrastructure.
Because you don’t need to work inside the Java programming language to handle these
attributes, you save hundreds of lines of Java code. Everything within the application—
from your Ul layouts, to your text strings, to animation, to interprocess communication
with Android’s operating system services (like vibrating the phone or playing a
ringtone)—can be defined via XML.

What makes XML ideal for Android development, and especially for beginners, is its
ease of use. It is no more complicated than HTML markup. So, if you know how to use
tags to boldface text or insert an image in your web site, you already understand how to
use XML.

You will be learning how this works in the next chapters of the book. Suffice it to say
that you will become familiar with XML in your Android development. XML brings one
heck of a lot of flexibility to Android development.

Download from Wow! eBook <www.wowebook.com>

CHAPTER 4: Introducing the Android Software Development Platform

Android’s use of XML for application design is very similar to the way HTML, Cascading
Style Sheets (CSS), and JavaScript are used in today’s popular Internet browsers. CSS
is used to separate the layout and look of a web page from its content and behavior,
which are specified by HTML markup and JavaScript code, respectively. This approach
leads to more modular and logically structured web pages. Designers can work on the
look of a web site using CSS, while search engine optimization (SEQO) professionals
optimize its findability with HTML, leaving user interaction to programmers who know
how to use JavaScript. The same approach applies to Android. Designers can create the
Ul for an application with XML, while programmers can call and access its elements
using Java without affecting screen formatting, animation, or graphics. Genius.

XML gives us amazing flexibility to accommodate variations within our apps, such as
different screen sizes, languages, and Ul designs. Here, we’ll look at a couple of brief
examples to give you an idea of XML’s power.

Screen Sizes

Because Ul designs can be defined precisely by an XML file, it's easy to deal with the
variety of screen sizes available on Android devices today. Let’s say that you want to do
a custom layout for each of the three primary screen sizes used in Android phones:

B Quarter VGA (QVGA), 240 x 320 pixels

B Half VGA (HVGA), 320 x 480 pixels (the “sweet spot” for most Android
phones)

B Wide VGA (WVGA), 800 x 480 pixels (found on the newest phones)

How does XML provide a solution? Simply create a Ul design in XML for each size and
use Java to determine the screen resolution of the phone.

Desktop Clocks

As another example of how XML can be leveraged, let’s take a look at a few lines of
code that define an important utility: Android’s popular desktop clock. (In Chapter 6,
you’ll learn how to create your own custom desktop clocks.)

The XML tag for an Android program function usually has the same name as its Java
counterpart, so you can access the power of the programming language from simple
XML. For example, here is the XML tag that corresponds to Java’s AnalogClock:

<AnalogClock />

Android's XML tags start with a left-angle bracket (<), followed immediately (no space)
by a class name, a space, a slash mark, and a right-angle bracket (/>).

To customize an AnalogClock, you must add attributes to the AnalogClock tag, inserting
them before the closing part of the tag (/>). Suppose you want to add an ID to reference
the utility from other parts of the application. Here’s how:

<AnalogClock android:id="@+id/AnalogClock />

CHAPTER 4: Introducing the Android Software Development Platform

This adds an ID to your AnalogClock with the name AnalogClock, which you can use to
reference it elsewhere in your application.

For each XML tag in Android, there are dozens of parameters that allow you to control
the tag’s appearance and implementation, including its positioning, naming (used in the
Java code), and other options.

In real-life, for readability, programmers usually write this code with each configuration
parameter indented on a separate line, like this:
<AnalogClock

android:id="@+id/AnalogClock

android:layout_width="fill parent”

android:layout_height="wrap_content”
/>

The Android compiler considers everything inside the AnalogClock tag to be a
parameter, or a customization option, until it reaches a closing tag (/>). The fill_parent
parameter stretches content to fill a container, and the wrap_content parameter tiles the
content. We'll cover these and other view and layout concepts in Chapter 6.

Using Your Android Application Resources

In addition to Java code and XML markup, the resources your application draws on
consist primarily of media elements and other file types that contribute to its
functionality in one way or another. These may include XML files that contain animation
parameters or text strings, bitmap image files, and even audio and video streams.

One of the primary reasons for externalizing resources is that you can have sets of
resources for variations, such as different screen sizes or language versions. Language
localization localizes the application to any given country. These language localizations
can be easily referenced in the Java code and switched when necessary by pointing to
different external file names or folders.

Bitmap Images

Let’s look at an example of a common application resource: the bitmap image. Your
PNG or JPEG bitmap image goes into the /res/drawable folder. It can then be referenced
by its file name only (excluding its extension) in the Java code as well as in the XML. For
this reason, be sure not to give a PNG file and a JPG file the same name.

Also, contrary to normal file-naming conventions, image file names can contain only
numbers and lowercase letters, so make sure to remember this rule (one of the many
anomalies of Android programming).

In summary, to set up bitmap images to be used in your application, do the following:
B Name them correctly.
B Use PNG or JPG format.

B Make sure they are in the /res/drawable folder so that Android can find them.

CHAPTER 4: Introducing the Android Software Development Platform

Alternate Resource Folders

Another great example of resource usage is supplying different Ul screen layouts for
portrait and landscape orientations. Usually, we will set our default screen Ul for phones
to portrait mode, as most people use their phone in this way (turning it sideways only to
view video).

Android provides support for alternate resources. If you set these up correctly, Android
will determine the current settings and use the correct resource configurations
automatically. In other words, you provide resources for each orientation, and Android
uses the correct resources as the user changes from one orientation to another.

Each set of alternative resources is in its own folder, where it can be referenced and
located later on in your Java code. We can provide resources for different screen
orientations and resolutions in this fashion, and have Android decide which folders to
look in for our application resources based on each user’s smartphone model.

Android offers three screen resolutions: low resolution (320 x 240), medium resolution
(320 x 480), and high resolution (800 x 480).

To add an alternate resource folder, create a directory under /res with the form
<resource_name>-<config_qualifier>. For instance, create /res/drawable-hdpi.

This creates an alternate resource folder for high-density dots per inch (hdpi) images.
The alternate folder will be used automatically if the Android smartphone screen uses a
WVGA (800 x 480) screen high-end model. Otherwise, it will use the normal HVGA (320
x 480) screen images, located in the default /res/drawable folder.

If you want to also support low-end screens, you can use the low-density dots per inch
qualifier, 1dpi. There is a medium dots per inch qualifier, mdpi, as well.

So, to have images for QVGA, HVGA, and WVGA screens arranged in folders in a way
that allows Android to automatically recognize the folder hierarchy, set up your folder
structure as follows:

B /res, with only folders

B /res/drawable-Idpi, with the following low-density DPI screen images
(QVGA):

B jcon.png (application icon file), 32 x 32 pixels
B background.png (application background), 320 x 240 pixels

B /res/drawable-mdpi, with the following medium-density DPI screen
images (HVGA):

B jcon.png, 48 x 48 pixels
B background.png, 320 x 480 pixels

B /res/drawable-hdpi, with the following high-density DPI screen images
(WVGA):

CHAPTER 4: Introducing the Android Software Development Platform

B jcon.png, 72 x 72 pixels
B background.png, 800 x 480 pixels

You’re well on your way to correctly setting up your Android application’s resources.
One more file we need to examine is AndroidManifest.xml.

Launching Your Application: The
AndroidManifest.xml File

When Android launches your application, the first file it seeks out is the application
manifest file. This file is always located in the root of your project folder and directory
structure, and is always called AndroidManifest.xml so that it can be located easily on
startup.

The Android manifest declares some very high-level definitions and settings for your
application using (surprise!) the XML markup language. The following are some of the
key items AndroidManifest.xml includes:

B References to the Java code you will write for your application, so that
your code can be found and run

B Definitions of the components of your Android application, including
when they can be launched

B Definitions of permissions for application security and for talking with
other Android applications

B Declaration of the a minimum level of Android operating system
version support, which amounts to defining which version(s) of
Android your application is going to support

All of the apps that we will write in this book will support Android versions 1.5, 1.6, 2.0,
2.1, 2.2, 2.3, and 3.0. We call this “Android 1.5 compatibility,” because it supports every
version of Android all the way back to version 1.5.

TIP: | try to develop for the 1.5 API level 3 so that my applications run on API versions 1.5, 1.6,
2.0, 2.1, 2.2, 2.3, and 3.0. Later versions are obviously backward-compatible, so the further
back you develop your minimum version level support, the more people will be able to use your
application. If you want to make money selling Android apps, this concept translates directly into
dollars, as there are millions of 1.5 and 1.6 phones still out there.

CHAPTER 4: Introducing the Android Software Development Platform

Creating Your First Android Application

By now, you’re probably aching to fire up Eclipse and create an application to see how
all this works. A tradition in all programming languages for new users is the crafting of
the “Hello World” application, so let’s create our own Hello World application right here
and now.

First, we’ll launch Eclipse and create the application. Then we’ll take a look at the files
and Java and XML code that Eclipse generates to get your app up and running. Finally,
we’ll give the app an icon to display on the Android main menu.

Launching Eclipse

The first step is to launch Eclipse. From there, you’ll create a project to house the
application.

To launch Eclipse, find and click the Eclipse shortcut launch icon on your workstation. If
a security warning dialog like the one shown in Figure 4-3 appears, click Run. If you
don’t want to see this dialog every time you start Eclipse, uncheck the box that reads
“Always ask before opening this file.”

Open File - Security Waming [= |

The publisher could not be verified. Are you sure you want to
run this software?

@ Name: C\eclipse_JAVA\eclipse.exe
Publisher: Unknown Publisher
Type: Application
From: C\eclipse_JAVA\eclipse.exe

e —
(L _Rn) Concel |

Always ask before opening this file)

publisher. You should only run software from publishers you trust.

|@ This file does not have a valid digital signature that verffies its
How can | decide what software to un?

S

Figure 4-3. The Windows Security Warning dialog

Next you will see the Eclipse startup screen. Then, in a few more seconds, a dialog will
appear, allowing you to tell Eclipse where your projects folder is kept on your hard disk
drive. Mine is kept on my C: drive and is called \Projects, so the entry is C:\Projects, as
shown in Figure 4-4. If you don’t want to specify this each time you start Eclipse, you
can check the “Use this as the default and do not ask again” option. Once you click the
OK button, Eclipse will start, and the IDE will appear.

CHAPTER 4: Introducing the Android Software Development Platform

Swomciane e

Select a workspace

Eclipse stores your projects in a folder called a workspace.
Choose a workspace folder to use for this session.

I Workspace: v Browse...

i Use this as the default and do @
S — 2

P ——
(I ok [} cancel
v

Figure 4-4. The Eclipse Workspace Launcher dialog

Creating an Android Project

Once the IDE has launched, select File » New » Project in the Eclipse main menu to
create a new project. In the New Project dialog, select Android Project from the list of
wizards to tell Eclipse the type of project you wish to create, as shown in Figure 4-5.
Click the Next button to continue.

prre T iese
Select a wizard —<>

-

[

Wizards:
| type filter text |

> (&= General

4 (= Android

{2 Android Project >
Ji Android Test Project

= CVS

L = Java

[(= Examples

Finish Cancel

Figure 4-5. The Eclipse New Project dialog

CHAPTER 4: Introducing the Android Software Development Platform

You’ll see the New Android Project dialog, which allows you to specify all sorts of
important variables for your applications. Let’s address them one by one.

B Project name: This is the name of the folder in your C:/Projects folder
that holds your Hello World application folders and files. Let’s give this
folder the same name as our application: HelloWorldAndroid.

CAUTION: We have omitted spaces from the folder name because spaces are not supported in
Java names. It is not advisable to use spaces in names of folders that you use for software
development.

B Create new project in workspace: We’'ll keep this radio button
selected so that Eclipse will create the new project within its IDE
working area for us automatically.

B Use default location: You can see what folder structure Eclipse will
use for your project folder by keeping this option checked.

B Build Target: This panel allows you to specify the versions of Android
your application will support. The more you support, the more users
will be able to use your application, so let’s use a build target of
Android 1.5. That version has everything that we will need to build
most applications that work across all current Android smartphones.
You do not need to select the Google APIs for 1.5—just pick the 1.5
Android open source package, which includes everything.

B Application name: The Properties section lets you specify where you
want Eclipse to set up the framework for your application, which is
where some of the basic Java and XML code will be written by the IDE
to get you started (a really a nice feature of Eclipse). The first field in
this section is for the application name, which is the name that will
appear in the application’s title bar when it runs. Let’s set that name to
Hello Great Big Android World Out There!

B Package name: This is the name you want to use for your Java package.
For now, we will simply define this as the name of the container that will
hold all of the Java code our application uses. Let’s name this package
Hello.World. (Java package names are separated by periods, much like
file pathnames are separated by forward slashes).

B Create Activity: Leave this box selected and let’s name our Java activity
class MyHelloWorld. A Java activity class is a collection of code that
controls your Ul (you will learn more about activities in the next chapter).

B Min SDK Version: Set this value to 3. This matches up with your
Android 1.5 build target selection, since version 1.5 of Android uses
the level 3 SDK.

CHAPTER 4: Introducing the Android Software Development Platform

Figure 4-6 shows the completed New Android Project dialog for this example. When you
are finished filling it out, click the Finish button. Eclipse will create your first Android
project for you.

& New Android Project =l]

New Android Project “
/1y By convention, package names usually start with a lowercase letter lcﬁ'
e —
@ame HelloWorldAndroid
Contents

@ Create new project in workspace
(*) Create project from existing source
Use default location

Location: ‘ C:/Projects/HelloWorldAndroid] Browse...

(0) Create project from existing sample

Samples: [ApiDemos v]

Build Target

Target Name Vendor
Android 1.5 Android Open Source Project
Google APIs GoogleInc.

Android 1.6 Android Open Source Project
Google APIs GoogleInc.
Android 2.1-upda... Android Open Source Project
Google APIs GoogleInc.
Android 2.2 Android Open Source Project
Google APIs GoogleInc.

0 00 NN A AW W

Android + Google APIs

Properties

Application name: Hello Great Big Android World Out There!

Package name: Hello.World

Create Activity: MyHelloWorld

Min SDK Version: 3|

Figure 4-6. The New Android Project dialog for your first Android app

CHAPTER 4: Introducing the Android Software Development Platform

Inspecting and Editing the Application Files

After you click Finish in the New Android Project dialog, you are returned to Eclipse. In
the IDE, you can navigate through the project using the Package Explorer pane.

Let’s look at the folder hierarchy that Eclipse has automatically created for our project.
Click the arrow icons next to the HelloWorldAndroid folder, and then click the arrow
icons next to the src and res folders under it.

Going further, click the open folder arrows next to the Hello.World, drawable, layout, and
values folders, so you can see the Java and XML files that Eclipse has so kindly created
for us. Figure 4-7 shows the Package Explorer pane at this point.

~

= Java - Eclipse = |B] %

File Edit Run

Source Navigate Search Project Refactor Window Help

a1 B8N $-0-ar oEm

BHO- OO e

m Package Explorer >3 e Hierarchy'] =8| = 0| 5’
B~ oz

127 3DFilm
27 Chapterl0
L1 Chapterll
L1 Chapter?
L1 Chapter8
L7 Chapterd
_ﬁ de.vogella.android.temperature

4 = HelloWorldAndroid
4 (3B src
4 1 Hello.World
3 MyHelloWorld.java
[G@ gen [Generated Java Files]
» =4 Android 1.5
% assets
4 = res
4 (= drawable
[R4] icon.png
4 (= layout
[X] mainxml
4 [~ values
[X] strings.xml
| AndroidManifest.xml
default.properties

-~

17 Linearlayouts

|E~' Pro | @ Ja |[% De |E Co ngl Pro| < 8)

i oY Chapterll

Figure 4-7. The Eclipse Package Explorer pane

Now let’s open some of these files and see just how much coding Eclipse has done for

this project.

CHAPTER 4: Introducing the Android Software Development Platform

To open any of the files listed in the Package Explorer, select the file by clicking once on
it (the icon will turn blue), and then press F3. Alternatively, right-click the file name to get
a context-sensitive menu, and then select the Open option.

Opening the MyHelloWorld Activity

The MyHelloWorld.java file holds our activity class. Right-click it and select Open to
explore it now. As shown in Figure 4-8, Eclipse has already written the code to create a
Ul screen for the application and set its content to the Ul defined in the main.xml file
(with the R.layout.main text), which we will look at next.

[= Java - HelloWorldAndroid/src/Hello/World/MyHelloWorld.java - Eclipse e)
File Edit Run Source Navigate Search Project Refactor Window Help
N-EH& ‘8 B84d i $-0-%r BEG- @SS PECED =

oo -

[Package Explorer 52 e Hierarchy| = O | [J] MyHelloWorldjava £3 =8
~ ’ ° &
B <}=='D| @ v package Hello.World; -~ =
€1 3DFilm 2| -
£ Chapter1 ?mport andro:}d.am»é c;ivlcy,
import android.os.Bundle;
7 Chapterll v
I Chapter? = public class MyHelloWorld extends Activity {
gchapterﬁ /** Called when the activity is first created. */
Chapterd © @Override
‘:c'f de.vogella.android.temperature a public void onCreate (Bundle savedInstanceState) {
= HelloWorldAndroid super.onCreate (savedInstanceState) ;
(3 src setContentView (R.layout.main) ;
£ Hello.World }
[J] MyHelloWorld.java } -
gen [Generated Java Files] < »
=) Android 1.5 y 7 7 7 = .= _ \
&, assets A8 “3-‘ Problems | @ Javadoc|@> Declaration | B Console 2\ B Properties| Gk &H | #B8~-r3~-=0 |
s = 1
i o® ‘ Writable | Smart Insert ‘ aldal

Figure 4-8. Our MyHelloWorld activity

Let's examine this in a little more detail:
package Hello.World;

import android.app.Activity;
import android.os.Bundle;

public class MyHelloWorld extends Activity {
/** Called when the activity is first created. */
@0verride
public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.main);

}

As you can see, Eclipse used the information in our New Android Project dialog to
create a usable Java file, which includes a Hello.World package declaration, import
statements, a MyHelloWorld activity class, and an onCreate() method.

Download from Wow! eBook <www.wowebook.com>

CHAPTER 4: Introducing the Android Software Development Platform

Opening the Ul Definition

Next, let’s take a look at our Ul interface markup code in the main.xml file in the layout
folder, as shown in Figure 4-9. The XML code in the main.xml file is quite a bit different
from the Java code.

<?xml version="1.0" encoding="utf-8"?>

<LinearlLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="fill parent"
android:layout_height="fill parent"
>

<TextView
android:layout_width="fill parent"
android:layout_height="wrap_content"
android:text="@string/hello"
/>

</Linearlayout>

It uses tags like those in HTML to define structures that you will be using in your
applications. In this case, it is a Ul structure that contains a LinearLayout tag, which
keeps our Ul elements in a straight line, and a TextView tag, which allows us to put our
text message on the application screen.

NOTE: If you don't see something like Figure 4-9, to view the file, click its icon in the /ayout
folder, select Open, and then choose main.xml at the bottom of the window.

File Edit Run Source Navigate Search Project Refactor Window Help
‘N-E& ‘8 BAd »-0-4- BHEG- O F- EZA|BE = (@)

IR 5 I o
F= Package Explorer 53 . j: Hierarchy‘] =g @ MyHelloWorld.java M =0
=] <)=='=>| & Ml l<?xml version="1.0" encoding="utf-8"2> - @

= o=
- LinearLayot : id="http: N . id. igm o
1 3DFilm 7 <LinearLayout xmlns:android="http://schemas.android.com/apk/res/android

1 Chapterl0 android:orientation="vertical"

L7 Chapterll

android:layout_width="fill parent"
android:layout_height= "£il 1 _parent"

7 Chapter7 >
7 Chapter8 <TextView
7 Chapterd X android:layout_width="fill parent"
L7 devogella.android.temperature android:layout height="wrap content"
+2 HelloWorldAndroid : =rgstri T
4 == HelloWorldAndroi android:text="@string/hello"
4 (48 src />
4 3 Hello.World </LinearLayout>

m

> [4] MyHelloWorld java
[q@ gen [Generated Java Files]
[=i Android 1.5
& assets
4 = res
4 (= drawable
B icon.png

4 (= layout v
(X mainxml <)

4 & values I Layout]main.xml‘
[X) stringsxml . = - - :
| AndroidManifest.xml < (E_l{ Problems[@ Javadoc‘@ Declaration(E Console &2 \\,EI Pmperties‘ G &B | # B~y =0

g 22 xml

Figure 4-9.The XML Ul layout for our activity

http://schemas.android.com/apk/res/android

CHAPTER 4: Introducing the Android Software Development Platform

Notice that the TextView tag uses an attribute called android: text, which is set equal to
@string/hello. This is a reference to the strings.xml file, which we are going to look at
next.

Opening the Strings Resource File

So far, we have looked at the Java code, which points to the main.xml file, which in turn
points to the strings.xml file. Open that file now (right-click the file’s icon in the Package
Explorer and select Open). The file will open in a third tab within the Eclipse IDE, as
shown in Figure 4-10.

File Edit Refactor Run Source Navigate Search Project Window Help
mi| 2 BRE $-0-QU- BHFC- @S- -G -me o~ & ([
W& Hierarchy“ =8| m MyHelloWorld.java I';Q mainxml| < (| stringsxml &2) =]
&
& | 2 | =)
B&|s i Android Resources (default) oz
17 3DFilm = 5 p
£ Chapterlo Resources Elements 5) © © © () @ (S) (1) Az Attributes for app_name (String) &l
7 Chapterll @) hello (String ® Strings, with optignal simple formatting, can
7 Chapter7 © a (s Add... be stored and retrieved as resources. You can
app_name (String add formatting to your string by using three
L Chapterd standard HTML tags: b, i, and u. If you use an
2] Chapterd . : N
. postrophe or a quote in your string, you must
L devogella.android.temperature either escape it or enclose the whole string in
4 bq HelloWorldAndroid the other kind of enclosing quotes.
4 (B sre Name* app_name
4 Hello.World —~
N MyHelloWorld java __Value* Hello Great Big Android World Out There!) |=
> @8 gen [Generated Java Files]
» =) Android 1.5
%} assets
4 & res
4 (= drawable
|Rs] icon.png
4 (= layout
[X] mainxml
4 (= values Bl
< A"d""! I anifestxml Resources >trings.xm|‘
default.properties r - ; > S 5 ==
1 LinearLayouts |E_~ Problems‘ @ Javadoc|@ Declaration‘ El Console 52 ‘\\:D Properties| A | #EB~-ri- m] ‘
. 1
o° Android SDK Content Loader

Figure 4-10. The strings.xml file when it first opens

When you open the strings.xml file, you will see that Eclipse has already added two
variables: hello and app_name. The string variable named hello is to hold the text that
we want our application to display. The app_name variable is to hold the string data that
will appear in the title bar at the top of the application. We already specified it in the New
Android Project dialog as Hello Great Big Android World Out Therel.

Notice the tabs at the bottom of the editing pane labeled Resources and strings.xml.
These tabs allow you to switch between the actual XML code and the more user-friendly
interface that you see in Figure 4-10, which makes editing Android resources a bit easier
than coding straight XML.

Since the app_name value is already specified thanks to our New Android Project dialog,
let’s leave it alone and set the value of hello.

CHAPTER 4: Introducing the Android Software Development Platform

Setting a Variable Value in strings.xml

To set the value of hello, all you need to do is to click its name in the left pane of the
Resources view and edit its text. Once you click hello, two fields will appear. One
contains the string variable name (hello), and the other has its value. In the Value field,
type Hello Android World, Here | Come!, as shown in Figure 4-11.

18 s idresuauesstingsam - Eciese (| e

File Edit Refactor Run Navigate Search Project Window Help

NB-HEe 8 8d $-0-A- BHG- @S F- H-5-we-o- = @)
% Package Explorer 3 3 Hierarchy| = 5|([3) MyHelloWorldjava (il main.xl M =g
-]
& e v =)
&| s & Android Resources {default) oz
g SC':::ZM Resources Elements §) © © © (5) @ () () Az Attributes for hello (String) =
7 Chapterl1 - ®) Strings, with optional simple formatting, can
&7 Chapter? © hello (string)) be stored and retrieved as resources. You can
1 Chaptes8 3pp_name (String) add formatting to your string by using three

standard HTML tags: b, i, and u. If you use an
apostrophe or a quote in your string, you must
either escape it or enclose the whole string in
the other kind of enclosing quotes.

7 Chapterd
7 devogella.android.temperature
& HelloWorldAndroid
@ src Name® hello
1 Hello.World
[3) MyHelloWorldjava Value™ | Hello Android World, Here Come!
&8 gen [Generated Java Files]
=\ Android 1.5
& assets
& res
= drawable
W4 icon.png
& layout
[X] mainaml
& values
[X) stringsxml
[d AndroidManifestxml Resources | stringsaxm |
default.properties = - .
I Linearlayouts 1& Problems | @ Javadoc (€, Declaration |] Console 23 . EJ Properties | ExpEl#B~rg~-= ﬁj

o° * Android SDK Content Loader

i

Figure 4-11. Editing the value of hello

Once you have entered a string for the hello variable, click the strings.xml tab at the
bottom of the editing pane and take a look at the XML code that Eclipse has generated,
as shown in Figure 4-12.

- : e
File Edit Refactor Run Source Navigate Search Project Window Help

NCEHEe 8 BAd I $-0-AY BEE OB S I G B O = [
. T2 Hierarchy| = 0| [5) MyHelloWorldjava [icl mainaml cl stringsaxmi 23, =8
&
B s & v <?xml version="1.0" encoding="utf-8"?2> -B
8| & o=
ﬁ 3DFilm <resources> o=
£ Chapterl0 <string name="hello">Hello An d World, Here I Come!</string>
b Pt <string name="app_name">Hell at Big Android World Out There!</string>
pter </resources>
[Chapter?
7 Chapterd
[Chapterd

{1 devogella.android.temperature
4 &2 HelloWorldAndroid
4 (B src
4 3 Hello.World
b [3) MyHelloWorld java
b &8 gen [Generated Java Files]
» =k Android1.5
2 assets
o @ores
4 (= drawable
@] icon.png
4 (= layout
[X] mainxml

4 (X2 -
C_x singsami ‘ :
[d] Androraaniestmi Resourced(Gtrings.xmi)

default.properties = - =
& LinearLayouts [problems @ Javadoc [[& Declaration [EJ Console £2 . Properties BEl#BE-ri-=0)

i - i * Android SDK Content Loader

Figure 4-12. The updated XML code

CHAPTER 4: Introducing the Android Software Development Platform

In this view, you can see the actual XML code for the string tags, which are nested
inside the <resources> tags that allow us to define resources for our Android application.
<?xml version="1.0" encoding="utf-8"?>
{resources>

<string name="hello">Hello Android World, Here I Come!</string>

<string name="app_name">Hello Great Big Android World Out There!</string>
</resources>

Each <string> tag has a variable name attribute so we can refer to it by name in our Java
code. Tags are ended by the same tag that started them with the addition of a forward
slash, like this: <string>XXX</string>.

As you can see in the XML code, Eclipse has created the correct XML code for us to use
to write our Hello World message to the smartphone screen. The code reads as follows:

<string name="hello”>Hello Android World, Here I Come!</string>

Now it’s time to compile and run the application.

Running the App

To compile and run the application, right-click the HelloWorldAndroid folder icon in the
Eclipse Package Explorer and select Run As > Android Application.

Eclipse will compile your app, and then open a version 1.5 emulator window to display a
virtual phone on which to run it. When the emulator first starts up, it will display the
standard smartphone screen, simulating a background image and standard Android
icons for system time, signal strength, and so on.

To actually run the app in the emulator, you need to click the Menu button in the middle-
bottom area of the screen, or use the Home button to display your application icons and
then select an icon to run. So, your application will not just run in the emulator
automatically. You must use the phone interface, finding and running the app as you
would in real life. Give it a shot now. Figure 4-13 shows Hello World running in the
emulator.

CHAPTER 4: Introducing the Android Software Development Platform

Ml @ 6:53PMm
Hello Great Big Android World Out There!
Hello Android World, Here I Come

Figure 4-13. Running Hello World in the emulator

Congratulations, you have created your first application. Next, we’ll customize its
Android icon.

Adding an Application Icon

The final thing that we are going to do in this chapter is give our application an icon that
will show up on users’ Android devices and can be used by them to launch the
application. We’ll use what you have learned about defining alternate resources by
creating an icon that works on small, medium, and large screens. We’ll add the
appropriate icon files into the correct alternate folders so that Android automatically
finds and uses the correct icon for each type of Android screen:

B /res/drawable-Idpi for small screens (/res/drawable-small is another
option that is based more on size than density)

B /res/drawable-mdpi for medium screens (or /res/drawable-normal)
B /res/drawable-hdpi for large screens (or /res/drawable-large)

Not surprisingly, this is done by giving your icon an exact name and file format, and
putting it into an exact directory. When Android finds an icon file there, it automatically
puts it into play as your application’s icon. The file must follow these rules:

CHAPTER 4: Introducing the Android Software Development Platform

Be placed in the correct /res/drawable-dpi folder, which holds all of
the drawable resources for that screen resolution

Be named icon.png

Be a 24-bit PNG file with an alpha channel (transparency), so that the
icon overlays any system background wallpaper seamlessly

Here, I'll use my 3D company logo, but you can use any image you like. Also, | use
Photoshop for this type of image editing, but you can use any image-editing program
you prefer.

Adding Transparency

The first thing we need to do is to put the logo onto a transparency. Here are the steps
to remove the white background from the logo (illustrated in Figure 4-14):

1.
2,

Open the logo file. It is 200 x 200 pixels.

Select the Magic Wand tool (in the toolbar) and set the tolerance at 12
(top toolbar). Click the white areas to select them.

Choose Invert the Selection to grab only the logo and select Edit » Copy to
copy this image data to the clipboard.

Create a new file of 200 x 200 pixels and paste the logo pixels on top of
the transparency.

Save the file as Mylcon.

CHAPTER 4: Introducing the Android Software Development Platform

.
B Adobe Photoshop CS3 Extended = =)
|| File Edit Image Layer Select Filter Analysis View Window Help

-!i\ - | o@"E® | Tolerance: 12 [¥] Antraias (7] Contiguous [] Sampe All Layers ‘ ’ﬁl Workspace v ‘

-X
| [avigater Histogram| info x |_<|
[r: :

]| #s:
B:

| b

s
+y.

e
b~
X,
.
&.
H,
4,
.
0.
LY
8.
T.
L]
=,
B.
2.
WV
Q

-
4

@ on,

Figure 4-14. Steps to extracting artwork on a solid color background into a transparency mask (alpha channel)

Creating the Icons

Now, we’ll create three standard Android-sized icons by using the Image » Resize
command, as follows:

B High-resolution icon: Resize the image from 200 x 200 to 72 x 72
pixels, as shown in Figure 4-15. Then use Save For Web to save it as a
24-bit PNG file with the transparency option checked in your project
folder: C:/Android_Project/res/drawable-hdpi. Name it icon.png.

CHAPTER 4: Introducing the Android Software Development Platform

Adobe Photoshop CS3 Extended
Edit Image Layer Select Filter Analysis View Window Help
B - | | | & Heghts|]| Rescution: J[poeinch]| (Frontimage) (Gear] |

1 Untitled-1 @ 100% (Laye..[= (B ||
Vi 50 100 150 20 ,

B4 00

— Pixel Dimensions: 15.2K (was 117.2K)
‘Width: pixels -

Height: pixels -

— Document S
Width: inches
Height: inches

Resolution: pixels/inch

Scale Styles
Constrain Proportions
Resample Image:

Bicubic Sharper (best for reduction) -

GEL % FENGE7 22/ AcORRBAS))

Figure 4-15. Using the Image Size command to create a high-resolution, 72-pixel square application icon

B Medium-resolution icon: Repeat the same process for the medium-
resolution icon. First, select Edit » Step Backwards, which will undo the
resizing to restore the image to 200 pixels. Then choose Image » Resize
to set the image to 48 pixels this time. Save the file in the same format
with the same options in the medium folder:
C:/Android_Project/res/drawable-mdpi. Name it icon.png.

B Low-resolution icon: Go back and resize the image to 32 pixels, and
save it to the low-density image folder:
C:/Android_Project/res/drawable-Idpi. Name it icon.png.

Figure 4-16 shows the three different icon.png files, illustrating their relative sizes to the
original. Android will now pick the appropriate icon when your application is run.

CHAPTER 4: Introducing the Android Software Development Platform

[& Adobe Photoshop CS3 Extended
File Edit Image Layer Select Filter Analysis View Window Help

|
i | o | 2 Height: ‘de\mnn pixelfinch v ‘ ‘ ‘@ Eemne ‘
» “ »

T Untitled-1 @ 100% (Laye...[= |[@ [] || 18 Untitled-3 @ 100% (Layer1...[= |[&][52 |
52 L L

[T COTTN o FOVTON v DT

\I{H

,_
™~

LE

172 x 72 pixels

Cick and drag to define cropping frame.
Use Shift, Ak, and Ctrl for addiional
options.

v -~

100% @]« »

T Untitled-5 @ 100% (Layer... [= |[@][] 0 DX
AR R R

||||||||||||||||||

748 x 48 pixels |732 x 32 pixels

B 5 PCNTED>re(2cOR 0\ 8 NHA0!

=] [unti.. (@@)12)| B Unti.. (@ @ [52)

Figure 4-16. High-, medium-, and low-resolution icons in Photoshop, with transparency (checkerboard)

Summary

Android is very particular about which types of files you use and where you put them
within your project folder. We will be looking at the particulars of how things need to be
set up in order to work properly in Android throughout this book.

In this chapter, you created and compiled your first project for Android inside Eclipse
using the Android application development environment you installed in Chapter 3. You
saw that the Android environment in Eclipse gives you a lot of development assistance,
and as a beginner, you’ll want to take advantage of every bit of help you can get. The
proof is in the pudding, as they say. You just developed an Android Hello World
application and needed to change only one line of code in the Eclipse IDE. You saw how
Android sets up a basic application, and which Java and XML files are needed in order
to create a Ul and a basic application.

Your Android application icon is very important to the branding of the application, as it
represents your application on the users’ desktop, which is usually crowded with all of
the other installed application icons. Customizing an app icon is as simple as putting the
icon file into the correct folder. You just must make sure that the icon is saved in the
correct file type, is the correct resolution, uses an alpha channel, and has the correct file
name: icon.png.

CHAPTER 4: Introducing the Android Software Development Platform

The next chapter provides an overview of Java and how Android compartmentalizes
things having to do with an application. In the remaining chapters, we will get down to
actually coding in Java and creating XML markup that delivers your application’s Ul and
functionality.

Download from Wow! eBook <www.wowebook.com>

Chapter

Android Framework
Overview

The primary programming language used in developing your Android applications is
Java SE, from Oracle (formerly Sun Microsystems). As noted in Chapter 1, Java SE
stands for Java Standard Edition, and many people shorten this to just Java to refer to
the programming language. Two other editions of the Java programming language are
called Java EE, short for Java Enterprise Edition, and Java ME, for Java Micro Edition.

Java EE is designed for massive computer networks, such as vast collections of blade
computers that are used to run large enterprises or corporations with thousands of
active users. Thus, Java EE has more multiuser scalable features than Java SE, which is
more for a single user on a single computer system, say a home PC or a handheld PC,
like Android.

Java ME is designed for embedded systems to create highly portable computers such
as mobile phones. It has fewer features than Java SE, so that it can fit onto a phone
without using too much memory and resources to run it. Most mobile phones run Java
ME, but Android phones run the more powerful Java SE. Android phones can run Java
SE because they have a full gigabyte of memory and a 1GHz or faster CPU, so
essentially today’s Android smartphones are tiny Linux computers.

Java is an object-oriented programming (OOP) language. It is based on the concepts of
developing modular, self-contained constructs called objects, which contain their own
attributes and characteristics. In this chapter, you will learn about the OOP
characteristics of Java, and the logic behind using these modular programming
techniques to build applications that are easier to share and debug due to this OOP
approach.

After you’ve had a taste of the power of Java, we’ll quickly cover XML, because it’s the
way you define Uls and configurations in your Android apps. Without it, you would need
to rely solely on Java code, which would make developing apps a lot more complicated.

67

CHAPTER 5: Android Framework Overview

Finally, we’ll cover the main parts of the Android framework, and you will be able to see
the OO underpinning it has. We'll briefly cover each component and explain which
chapter covers it in more detail.

The Foundation of 00P: The Object

The foundation of an OOP is the object itself. Objects in OOP languages are similar to
objects that you see around you, except they are virtual, and not tangible. Like tangible
real-world objects, objects have characteristics, called states, and things that they can
do, called behaviors. One way to think about it is that objects are nouns, or things that
exist in and of themselves, and behaviors are like verbs.

As an example, consider a very popular object in all of our lives: the automobile. Some
characteristics, or states, of a car might be as follows:

m Color (red)

Direction (N, S, E, or W)

Speed (15 miles per hour)

Engine type (gas, diesel, hydrogen, propane, or electric)
Gear setting (1, 2, 3, 4, or 5)

B Drivetrain type (2WD or 4WD)

The following are some things that a car can do, or behaviors:
B Accelerate

Shift gears

Apply the brake

Turn the wheels

Turn on the stereo

Use the headlights

B Use the turn signals
You get the idea.

Figure 5-1 is a simple diagram of the object structure using the car example. It shows
the characteristics, or attributes, of the car that are central to defining the car object,
and the behaviors that can be used. These attributes and behaviors define the car to the
outside world.

CHAPTER 5: Android Framework Overview

ANATOMY OF A CAR OBJECT

SHIFT GEARS
ACCELERATE

APPLY BRAKE
e TURN WHEELS

Figure 5-1. Car object showing car characteristics (inner oval) and car behaviors (outer oval)

Objects can be as complicated as you want them to be, and can nest or contain other
objects within their structure, or object hierarchy. A hierarchy is like a tree structure, with
a main trunk and branches and subbranches as you move up (or down) its structure. A
good example of a hierarchy is the directory or folder structure on your hard disk drive.

Directories or folders on your hard disk drive can contain other directories or folders,
which can in turn contain yet other directories and folders, allowing complex hierarchies
of organization to be created. You can do the same thing with objects, which can
contain subobjects, which can themselves contain further subobjects as needed to
create your structure. You’ll see plenty of nested objects when working with Android,
because nested objects are useful for grouping objects that are used in only one place.
In other words, some types of objects are useful only to one other type of object in an
Android app, so they are provided in a nested hierarchy.

You should practice identifying objects in the room around you, and then break their
definition down into states (characteristics) and behaviors (things that they can do), as
this is how you will need to think to become more successful in your OOP endeavors.

You’'ll notice that in real life, objects can be made up of other objects. For example, a car
engine object is made up of hundreds of discrete objects that function together to make
the engine object work as a whole. This same construction of more complicated objects
out of simpler objects can be done in OOP languages, where complex hierarchies of
objects can contain other objects that have been created in previous Java code.

Some O0OP Terminology

Now let’s cover some of the technical terminology used for Java objects. First, objects
have fields and methods, as follows:

B Fields, called variables, hold the object’s states.

B Methods are programming routines that operate on the object’s
internal states. If object characteristics can be thought of as nouns,
then methods can be thought of as verbs using this analogy. Methods
also allow other objects external to the object itself to communicate
with the object.

CHAPTER 5: Android Framework Overview

One of the key concepts of OOP is data encapsulation, where the object’s fields are
allowed to be modified directly only through that same object’s methods. This allows the
object to be self-sufficient. For example, to turn the car, you use the steering method,
which positions the wheels in the desired direction.

With data encapsulation, each object that is part of a larger construct can be built and
tested individually, without requiring accessing data from other objects or modules of
the application (which can translate into bugs). Without data encapsulation, people
could simply access any part of your object’s data and use it however they pleased. This
could introduce bugs, affecting the methods you have perfected to manipulate your
object and provide your solution.

Data encapsulation promotes the core concept in OOP of modularity. Once an object is
created and tested, it can be used by other objects without worrying about its integrity.
Data encapsulation thus allows code reuse, so programmers can develop libraries of
useful objects that do not need to be rewritten or retested by other programmers. You
can see how this can save developers money by structuring only the work that needs to
be done and avoiding redundant work processes.

Data encapsulation also allows developers to hide the data and the internal workings of
the object if desired.

Finally, objects make debugging easier because they can be removed modularly during
testing to ascertain where bugs are located in the overall code. In our car object
example, the attributes of our car are encapsulated inside the car object, and can be
changed only via the methods that surround them in the diagram. For instance, use the
Shift Gears method to change the Gears=1 attribute to Gears=2.

The Blueprint for an Object: The Class

In real life, there is seldom just a single kind of object. Usually, there are a number of
different types and variations. For instance, for a car object, there are many different
manufacturers, sizes, shapes, seating capacity, engine types, fuel types, transmission
types, and so on.

In Java SE, we write something called a class to define what an object can do (its
methods) and the fields it has. Once this class has been coded in Java, we can then
create an instance of each object that we wish to use by referencing the class definition.
In architectural terms, the class is a kind of blueprint as to what the object is, what
states it contains, and what it can do (what methods it has).

NOTE: An instance is a concrete object created from the blueprint of the class, with its own
states or unique data attributes. For example, you might have a (second) blue car instance that is
traveling south in third gear. (In the example, our first car instance is red and traveling north in
first gear.)

CHAPTER 5: Android Framework Overview

To illustrate this further, let’s construct a basic class for our car object example. To
create a car class, you use the Java keyword class, followed by your name for the new
class that you are writing, and then curly brackets to hold your code definition, like so:

class Car {Code definition for a car class goes in here. We will do this next}

The first thing that we usually put inside our class (inside the curly {} brackets) is the
data fields (variables) that will hold the states, or attributes, of our car. In this case, we
have six fields that define the car’s gear, speed, direction, fuel type, color, and drivetrain
(two- or four-wheel drive), as specified in the basic diagram shown earlier in Figure 5-1.

To define a variable in Java, you first declare its data type (int means a whole number,
and string means text), followed by your variable name. You can also (optionally) set a
default, or starting, value by using an equal sign and a data value. The variable definition
ends with a semicolon.

NOTE: Semicolons are used in programming languages to separate each code construct or
definition from the other ones in the same body of code.

So, with our six variables from our anatomy of an object diagram in place, our class
definition looks like this:

class Car {
int speed = 15;
int gear = 1;
int drivetrain = 4;
String direction = "N";
String color = "Red";
String fuel = "Gas";

}

Remember that these are all the default values—the ones each object instance will have
when we create it.

Notice how the example spaces out the curly braces ({}) on their own lines and indents
lines, so that you can see what is contained within those braces more easily.

The next part of the class file will contain the methods that define how the car object will
operate on the variables that define its current state of operation. Methods can also
return a value to the calling entity, such as values that have been successfully changed
or even answers to an equation. For instance, there could be a method to calculate
distance that multiplies speed by time and returns a distance value.

To declare a method that does not return any value to the calling entity, you use the
void keyword. A good example of using void is a method that triggers something—the
method is used to invoke a change in the object, but does not need to send a value
back to the calling function.

If your method or function returns a value, instead of using the void keyword, you use the
data type of the data that is to be returned, say int or string. For example, an addition
method would return a number after finishing its calculation, so you would use int.

CHAPTER 5: Android Framework Overview

After the void keyword comes a name for the method (say, shiftGears). This is followed
by the type of data (in this case, an int) and variable name (newGear) in parentheses.

void shiftGears (int newCear) {

The variable contains a data parameter that will be passed to the method, so the
method now has this variable to work with.

NOTE: The normal method-naming convention is to start a method name with a lowercase letter,
and to use uppercase letters to begin words embedded within the method name, like this:
methodNameExample().

Some methods are called without variables, as follows:
methodSample();

To call the shiftGears() method, you would use the following format:
shiftGears(4);

This passes 4 into the shiftGears() method’s newGear variable, which sets its value.
This value then is passed into the interior of the shiftGears() method logic (the part
inside the curly braces), where it is finally used to set the object’s gear (internal) field to
the new gear shift value of 4, or fourth gear.

A common reason to use a method without any parameters is to trigger a change in an
object that does not depend on any data being passed in. So, we could code an
upShift() method and a downShift() method that would upshift and downshift by one
gear level each time they were called, rather than change to a gear selected by the
driver. We then would not need a parameter to shift gears on our car; we would just call
upShift() or downShift() whenever gear shifting was needed.

NOTE: Notice the empty parentheses after the method names in the text. These are used when
writing about the method, so that the reader knows that the author is talking about a method.
You will see this convention used throughout the rest of this book.

After the method declaration, the method’s code procedures are contained inside the
curly braces. In this example, we have four methods:

B The shiftGears() method sets the car’s gear to the gear that was
passed into the shiftGears() method.

void shiftGears (int newCear) {
gear = newGear;
}

CHAPTER 5: Android Framework Overview

B The accelerateSpeed() method takes the object’s speed state variable
and adds an acceleration factor to the speed, which causes the object
to accelerate. This is done by taking the object’s current speed
setting, or state, and adding an acceleration factor to it, and then
setting the result of the addition back to the original speed variable, so
that the object’s speed state now contains the new (accelerated) speed
value.

void accelerateSpeed (int acceleration) {
speed = speed + acceleration;

B The applyBrake() method takes the object’s speed state variable and
subtracts a braking factor from the current speed, which causes the
object to decelerate, or to brake. This is done by taking the object’s
current speed setting and subtracting a braking factor from it, and then
setting the result of the subtraction back to the original speed variable,
so that the object’s speed state now contains the updated
(decelerated) braking value.

void applyBrake (int brakingFactor) {
speed = speed - brakingFactor;
}

B The turnhheel() method is straightforward, much like the
shiftGears() method, except that it uses a string value of N, S, E, or W
to control the direction that the car turns. When turniheel("W") is
used, the car will turn left.

void turnWheel (String newDirection) {
direction = newDirection;
}

The methods go inside the class and after the variable declarations, as follows:

class Car {
int speed = 15;
int gear = 1;
int drivetrain = 4;
String direction = "N";
String color = "Red";
String fuel = "Gas";

void shiftGears (int newGear) {
gear = newGear;

void accelerateSpeed (int acceleration) {
speed = speed + acceleration;

void applyBrake (int brakingFactor) {
speed = speed - brakingFactor;

void turnWheel (String newDirection) {

CHAPTER 5: Android Framework Overview

direction = newDirection;

This Car class allows us to define a car object, but it can’t do anything until we use it to
instantiate an object. In other words, it does not do anything until it is called.

To create an instance of an object, we instantiate it. Here’s the onCreate() method of an
Android application, where we instantiate two cars and use them (refer to the example in
Chapter 4 to see how to create an onCreate() method in an Android app):

public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);
setContentView(R.layout.main);

Car carOne
Car carTwo

new Car(); // Create Car Objects
new Car();

carOne.shiftGears(3);
carOne.accelerateSpeed(15); // Invoke Methods on Car 1
carOne.turniWheel("E");

carTwo.shiftGears(2); // Invoke Methods on Car 2
carTwo.applyBrake(10);
carTwo.turniheel("W");

}

Upon launch or creation of our Android application, we now have two empty car objects.
We have done this using the Car() class constructor, along with the new keyword, which
creates a new object for us, like so:

Car carOne = new Car();

The syntax for doing this is very similar to what we used to declare our variables:
B Define the object type Car.
B Give a name to our object (carOne).

B Set the carOne object equal to a new Car object definition, which has
all the default variable values set.

To invoke our methods using our new car objects requires the use of something called
dot notation. Once an object has been created and named, you can call methods by
using the following code construct:

objectName.methodName(variable);
So, to shift into third gear on car object number one, we would use this:
carOne.shiftGears(3);

So, as you can see in the final six lines of code in the onCreate() method , we set carOne
to third gear, accelerate it from 15 to 30 mph by accelerating by a value of 15, and turn
east by using the turnWheel() method with a value of "E" (the default direction is north,
or "N"). Car two we shift into second, applyBrake() to slow it down from 15 to 5 mph,
and turn the car west by using the turniWheel("W") method via our dot notation.

CHAPTER 5: Android Framework Overview

Providing Structure for Your Classes: Inheritance

There is also support in Java for developing different types of car objects by using a
technique called inheritance, where more specific car classes (and thus more uniquely
defined objects) can be subclassed from a more generic car class. Once a class is used
for inheritance by a subclass, it becomes the super class. There can be only one super
class and an unlimited number of subclasses. All the subclasses inherit the methods and
fields from the super class.

For instance, from our Car class, we could subclass an Suv class that extended the Car
class to include those attributes that would apply only to an SUV type of car, in addition
to the methods and states that apply to all types of cars. An SUV car class could have
onStarCall() and turnTowLightOn() methods, in addition to the usual car operation
methods. Similarly, we could generate a subclass for sports cars that includes an
activateOverdrive() method to provide faster gearing and an openTop() method to put
down the convertible roof. You can see these subclasses in the extension of our car
object diagram shown in Figure 5-2.

INHERITANCE OF A CAR OBJECT

SHIFT GEARS
ACCELERATE

GsmPD\ APPLY BRAKE

ON STAR /\ TOW LIGHT

/ SHIFT GEARS APPLY BRAKE
ACCELERATE @ TURN WHEELS

@)

Figure 5-2. Inheritance of a Car object

SHIFT GEARS
ACCELERATE

APPLY BRAKE
TURN WHEELS

To create a subclass from a super class, you extend the subclass from the super class
using the extends keyword in the class declaration, like this:

class Suv extends Car { New Fields and Methods Go Here }

This extends to Suv all of the fields and methods that Car features, so that the developer
can focus on just the new or different fields and methods that relate to the differentiation
of the SUV from the regular car definition. Since the original core fields and methods
come from the Car class, it becomes the super class, and the Suv class becomes the
subclass. Suv is said to be subclassed from the Car super class.

To refer to one of the super class methods from within the subclass you are writing, you
can use the super keyword. For example, in the Suv class, we may want to use a generic

CHAPTER 5: Android Framework Overview

car’s applyBrake() method, and then apply some other factor to the brakes that is
specific to SUVs. The following code does this:

class Suv extends Car {
void applyBrake (int brakingFactor) {
super.applyBrake(brakingFactor);
speed = speed - brakingFactor;
}
}

This means the SUV’s brakes are twice as powerful as a generic car’s brakes.

Be sure to use good programming practices and document the super class fields and
methods within each subclass. This documentation lets the users know that the super
class’s fields and methods are available, since they do not explicitly appear in the code
for the subclass.

Defining an Interface

In many Java applications, the classes conform to a certain pattern, so that the rest of
the application knows what to expect of those classes when they are instantiated as
objects. This is especially common when using a framework like Android.

The public interface that the classes present to the rest of the application makes using
them more predictable and allows you to use them in places where any class of that
pattern is suitable. In other words, the public interface is a label that tells the application
what this class can do, without the application needing to test its capabilities.

In Java terms, making a class conform to a pattern is done by implementing an
interface. The following is an ICar interface that forces all cars to have the methods
defined in the interface. This also means that the rest of the application knows that each
car can do all of these actions, because the ICar interface defines the public interface of
all cars.

public interface ICar {
void shiftGears (int newGear);
void accelerateSpeed (int acceleration);
void applyBrake (int brakingFactor);
void turnWheel (String newDirection);

}

So, a car is not a car unless it contains these particular methods.

To implement an interface, use the implements keyword as follows, and then define all
the methods as before, except they must be public.

class Car implements ICar {
int speed = 15;
int gear = 1;
int drivetrain = 4;
String direction = "N";
String color = "Red";

String fuel = "Gas ";

Download from Wow! eBook <www.wowebook.com>

CHAPTER 5: Android Framework Overview

public void shiftGears (int newGear) {
gear = newGear;

public void accelerateSpeed (int acceleration) {
speed = speed + acceleration;

public void applyBrake (int brakingFactor) {
speed = speed - brakingFactor;

public void turnWheel (String newDirection) {
direction = newDirection;
}

}

The public keyword allows other classes to call these methods, even if those classes
are in a different package (packages are discussed in the next section). After all, this is a
public interface, and anyone should be able to use it.

Bundling Classes in a Logical Way: The Package

Each time you start a new project in Android, the Eclipse IDE will create a package to
contain your own custom classes that you define to implement your application’s
functionality. In the Hello World application we created in the previous chapter, our
package was named Hello.World. In fact, the New Android Project dialog asked us for
this package name.

The package declaration is the first line of code in any Android application, or in any
Java application for that matter. The package declaration tells Java how to package
your application. Recall the first line of code in our Hello World application:

package hello.world;

After the package keyword and declaration come import statements, which import
existing Java classes and packages into your declared package. So, a package is not
only for your own code that you write yourself, but also for all code that your application
uses, even if it is open source code written by another programmer or company.

Basically, the package concept is similar to the folder hierarchy on your computer. A
package is just a way of organizing your code by its functionality. Android organizes its
classes into logical packages, which we will routinely import and use throughout this
book.

In our Hello World application in the previous chapter, we needed two import
statements in our MyHelloWorld.java file to support class functions in our application:

import android.app.Activity;
import android.os.Bundle;

These are basically addresses to where the code for each import statement is located.
Here is a generalization of how an import statement follows a path to the class:

CHAPTER 5: Android Framework Overview

import platform.functionality.classname;

This applies to our two statements as follows:
B android says this is an Android package.
B app and os refer to the broad functionality of the package in question.
B Activity and Bundle refer to the classes we are importing.

Thus, the Activity class, which is the super class for any activity that you create, is
found within the android.app package. This app part says that this package logically
contains classes that are necessary for the creation of Android applications, and one of
these is the Activity class, which allows us to define Uls.

The android.os package we referenced in our import statement contains classes that
are operating system utilities. One of these is Bundle, which allows us to create bundles
of variables for convenience and organization.

You might be wondering if the package is the highest level of organization in Java. The
answer is no, there is one higher level. This level is sometimes called a platform or
application programming interface (API). This is a collection of all the core packages for
a given language, such as Java SE or Java ME, or all the packages of a specialized
product, such as Android.

An Overview of XML

There are actually two types of languages used in Android development: Java and XML.
XML stands for eXtensible Markup Language. Developed in 1996, XML is similar to HTML
(for Hyper-Text Markup Language), which is used for web site design.

The primary use of XML is to structure data for items that require a predefined data
structure, such as address books or computer-aided design (CAD). Like Java, XML is
very modular, which allows complicated data definition constructs to be created.

XML uses structures called tags, just as HTML does. And as in HTML, these tags use
tag keywords bracketed by the < and > characters. For example, in Android, the
<resources> tag contains resource definitions, and the <string> tag contains string
resource definitions. The <string> tag also features attributes (which | think of more as
parameters of sorts); for instance, a <string> tag has a name attribute that allows it to be
named.

NOTE: A parameter is a choice of data options that can be set, telling some code what you want
it to do—sort of a way you can configure it exactly to your liking. So, you could set a background
color of red by specifying a red parameter to a method or as an attribute to an HTML element.

CHAPTER 5: Android Framework Overview

In our Hello World application in Chapter 4, we defined two string resources with the
following XML in the strings.xml file:

<resources>
<string name="hello">Hello Android World, Here I Come!</string>
<string name="app_name">Hello Great Big Android World</string>
</resources>

You can readily see the modularity via the nesting of tags. The <resources> tag contains
the two <string> tags and their attributes, putting them into one resources group.
Nesting can be as many levels deep as required for more complicated data definition
constructs.

XML is used in Android to define constructs so that you do not need to create them in
more complicated Java code. It is easier to write definitions in XML than it is to write
them in Java. This is because XML has the simpler markup format used in HTML, rather
than the more complicated block code structure used in Java. This makes it easier for
nonprogrammers to help write applications.

Because XML is easier to use than Java, and because this is a book for beginners, we
will do everything that we can using XML instead of Java. Android allows this, and the
XML works as well as Java code to achieve exactly the same results.

The Anatomy of an Android Application: The APK File

The cornerstone of Android application development is the application package file
format, or the APK file format. When you compile and output an application for
distribution to your Android users, the Eclipse IDE and Android SDK output your
application file name with an .apk extension. There is only one .apk file, and it includes
all of your application code (in the form of a DVM executable .dex file format), as well as
any new media resources or assets and the AndroidManifest.xml file (which we’ll discuss
in detail in the final section of this chapter). Interestingly, the Android Market increased
file size limits for .apk files from 25MB to 50MB, which is great news for developers.

So, if your application is called Zoomerza, for instance, the file that you get upon final
publishing will be called Zoomerza.apk, and it will run on any Android phone. This file
format is closely related to the standard Java .jar format, and uses the familiar ZIP type
compression. The .apk file is specifically set up so that it can be run in place without
going through the unpacking process.

You can look at the .apk file using the familiar file packing and unpacking software
packages, such as PKZIP, WinZip, WinRAR, Ark, and 7-Zip. If you are interested in
looking inside your application’s .apk file to see its folders, it will not hurt the .apk file to
do so.

If you have Windows Vista or Windows 7, the ZIP functionality is built into the operating
system. An easy way to see your .apk file is to rename it to a .zip extension and open it
inside the Windows Explorer file management utility. Another clever way to do this
without renaming the file is to right-click the .apk file and use the Open with option to
select a ZIP extraction utility. Let’s do that here, so you can see what I’m talking about.

CHAPTER 5: Android Framework Overview

1. Rename HelloWorldAndroid.apk to HelloWorldAndroid.zip.
2. When you’re warned about renaming the file, choose to do so anyway.

3. Click HelloWorldAndroid.zip. You will be able to see the internal file
structure, as shown in Figure 5-3.

Search

% B « Local Disk (C:) » Projects » HelloWorldAndroid » bin » HelloWorldAndroid.zip » v

Wy Organize v :iz Views ~ JE§ Extract all files

Favorite Links Name B Type Compresse... Password ... Size Ratio Date modified
EJ Documents 1 META-INF File Folder
. Lres File Folder
B Pictures | AndroidManifestxml XML File 1KB No 2KB 62% 12/4/2010 6:37 PM
D Music || classes.dex DEXFile 1KB No 2KB 51% 12/4/2010 6:37 PM
More » || resources.arsc ARSC File 2KB No 2KB 0% 12/4/2010 6:37 PM
Folders v
4 | HelloWorldAndroid
. assets
4 | bin
> 4 Hello
4B HelloWorldAndroid.zip
1. META-INF
a4 |l res
. drawable
1 layout
> i gen
D res B
D src
il LinearLayouts 2
> g TOFF
> 0 TFF
» B 3DFilm.zip
bl sculptris
> . Software
b) U3Key v
AndroidManifestxml Compressed size: 548 bytes Date modified: 12/4/2010 6:37 PM
Size: 1.38 KB Type: XML File
Ratio: 62%

Figure 5-3. Viewing the structure of HelloWorldAndroid.zip

As shown in Figure 5-3, the application includes an AndroidManifest.xml file and a
classes.dex file. It also contains the /res folder with the /drawable and /layout subfolders,
which hold the assets we used to develop the app.

Android Application Components

Android is designed with the maximum amount of modularity in mind. This modularity
makes it easy for developers to exchange functionality between their applications, which
is a central concept of the open source paradigm upon which Android is based. For
instance, if you have coded a cool animated Ul element, and you make this available to
other applications, they can implement your class and use that element. And you do not
need to have that code inside those other applications. As long as the application that
contains the element’s code is running (or can be launched) on the Android smartphone,
you can call the method via the Android operating system.

CHAPTER 5: Android Framework Overview

There are four main types of components that can be (but do not need to be) used
within an Android application:

B Activities handle the Ul to the smartphone screen.

B Services handle background processing.

B Broadcast receivers handle communication in your apps.

B Content providers handle data and database management issues.

Let’s take a closer at each of these components, to prepare for the hands-on use of
them in the rest of this book. Here, you’ll get an overview of what Android is made up of,
before we get into the details about class creation and such in later chapters.

Android Activities: Defining the Ul

An Android activity contains a Ul construct that accomplishes a given user-input task via
the smartphone display screen.

Android applications can have more than one activity. In fact, more complex
applications usually have one activity for each Ul screen implementation. For example, if
you are programming a game, you might have the following activities:

B The introductory splash screen with the Continue to Play Game OR
Press Button to Play Game

B The instructions screen, with a scrolling text Ul

The high-score screen, with Ul elements that allow the user to manage
high-score entries

B A player groups screen, where users choose who will play the game
with them

B The actual core gameplay screen itself

If an application has more than one activity, one is marked as the activity that is
presented when the application is launched. In our game example, that is the splash
screen (although it could be the instructions screen). This activity has an onCreate()
method that calls the main.xml file, as you saw in the Hello World application we created
in the previous chapter.

Here is the code for the onCreate() method from the Activity base, or super, class
(note the super keyword) and sets the content View to the main.xml Ul definition:

public class MyHelloWorld extends Activity {
/** Called when the activity is first created. */
@0verride
public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.main);

}

CHAPTER 5: Android Framework Overview

An activity can be full screen, or it can be part of a screen, allowing for floating windows
on top of other windows. An activity can also make use of other windows. For instance,
an activity might show a pop-up dialog requesting that the user enter information, or it

could display a product information window when a user clicks a product name or SKU.

We will get into Activity class creation in all of the following chapters, and cover it
specifically in Chapters 6 and 7,

Android Services: Processing in the Background

Unlike activities, services do not have any visual Ul (that’s what an activity is for).
Services handle the processing or heavy lifting for your application. They are often used
for doing things that need to be done in the background or back end of the application,
while the user works with your Ul in the foreground or front end of your application.

Here are some examples of what service components can do:
Calculate numeric values
Process game logic

Play media elements such as video and audio streams

Pull data from remote network locations
B Transfer data between devices via Bluetooth

Services handle calculations or processing that needs to be done in the background
while the user is busy looking at the results of this processing on the activity-generated
Ul screen elements.

Not surprisingly, you create your own services in Android by subclassing the Android
Service class. Services can run in the background, even after an activity Ul screen is no
longer visible, such as when a user picks an MP3 audio file to play, and then does
something else with the phone while listening to the music. We will take a look at using
services in Chapter 11. There, you’ll learn how to use a MediaPlayer to play audio and
video streams in the background of your applications.

Broadcast Receivers: Announcements and Notifications

Broadcast receivers are communication components that receive messages that are
sent between the Android operating system and other application components, or
between Android application components themselves.

The Android operating system often sends out messages regarding the status of what is
going on in real time with the Android phone itself. These are statuses that any Android
application may want or even need to know about in order to protect the application
integrity, such as if the phone is about to lose power and your app needs to save files.

CHAPTER 5: Android Framework Overview

The following are some examples of Android operating system-initiated broadcast
messages:

B Alow battery life warning
B Atime zone change notice
B Alanguage preference change notice
B A message that the camera has been used to snap a picture
And here are a couple examples of application-to-application broadcast messages:
B An alert that data has finished downloading

B A message that streaming video media has arrived, is cached, and is
ready for the start of playback

Your application can implement as many broadcast receivers as you like, in order to
intercept any of the types of messages that need to be monitored for your application’s
operation.

Like Android services, broadcast receivers operate in the background, and thus do not
have any associated Ul elements. However, this does not mean that the broadcast
receivers cannot trigger or invoke a Ul activity in response to the messages that they
carry. In fact, it is common practice to have broadcast receivers trigger Ul elements that
alert the user as to what is going on within the application.

Broadcast receivers can also use the Android NotificationManager class to alert the
user via built-in phone notification methods, such as flashing the screen backlight,
playing a sound, triggering phone vibrations, and placing a persistent alert icon on the
smartphone status bar.

Broadcast receivers are created by extending the Android BroadcastReceiver class. We
will look at using them in Chapter 11.

Content Providers: Data Management

Content providers in Android provide a way to make data available to your application
and to other applications, if that is desired. This can be data that is created in and for
your own application, or it can be data that can be accessed by your application, but
that is created by other applications, or even by the Android phone utilities themselves.
It can also be data that is created by your application and is made accessible to other
applications. The content provider component is both powerful and flexible.

For example, an Android phone utility uses a content provider to access the phone
number database that is kept within your smartphone. Android comes with a number of
built-in content provider databases, including contacts, images, audio, and video. These
can be accessed via phone system utilities, as well as by your applications through
coding.

CHAPTER 5: Android Framework Overview

Content data can be stored in a file system on your SD card in your smartphone, off-
phone in a remote HTTP server, or in a proper database. The latter is the preferred
method for storing and accessing data within Android, and you’ll see that in action in
Chapter 10, which covers using content providers.

To create your own content provider, you extend the ContentProvider base class, which
implements a standard set of methods that are used to store and retrieve data.
Applications access the methods defined by your ContentProvider class with a
ContentResolver object, which is used to talk to any content provider, in order to
navigate the data that is needed by the application.

A content provider is activated when it receives a request for data from a content
resolver. The other three components —activities, services, and broadcast receivers—
are activated via asynchronous messages called intents, which we’ll look at next.

Android Intent Objects: Messaging for Components

An Intent object in Android holds the contents of a message that is sent between
modules, typically to launch them or to send them new task instructions. For activities
and services, an Intent object provides an action to be taken, the data that the action
needs to operate on, and optionally, some details or additional information that may be
required for more complicated operations.

You communicate with each type of Android component (activity, service, and
broadcast receiver) using a different set of methods to receive the Intent object that is
passed to it. For this reason, Intent objects are easy to keep separate and well defined,
as they will be different for each type of Android component.

The components use the Intent object methods as follows:

B An activity is started up, or if it’s already started, given a new task, by
passing an Intent object to the Context.startActivity() method.
The Activity class can look at the contents of the Intent object via
the getIntent() method, and at subsequent intent objects via the
onNewIntent() method.

B An Android service component is started by passing an Intent object
to the Context.startService() method, which then calls the service
class onStart() method, and passes it the Intent object that contains
the actions for the service to perform and the data on which to
perform them.

B |f the service is already running and the Intent object contains new
instructions, then the intent is passed to the Context.bindService()
method in order to establish an open connection between the calling
component and the service that is being used. This always open, real-
time connection between code modules is commonly called binding in
programming.

CHAPTER 5: Android Framework Overview

B An Android broadcast receiver component is started by passing an
Intent object to the Context.sendBroadcast() method, or optionally to
the Context.sendOrderedBroadcast() method or
Context.sendStickyBroadcast() method. The Intent object in this
case contains the message action to be taken and the data (the
message) on which that action needs to be taken.

We will look closely at using Intent objects with activities in Chapter 11.

Android Manifest XML: Declaring Your Components

You have seen that Android needs to have a single XML file in your root project folder:
AndroidManifest.xml, which is the file that Android uses to launch your application. The
only other file in your project root folder is default.properties, which is generated by
Eclipse and should never be modified. So, the only file in your project root folder that
you ever need to worry about is AndroidManifest.xml.

The Android manifest uses XML for several good reasons:
B |tis easy to code.

B |t allows you to define a logical data structure that is easy for Android
to parse (break down into logical data definition components) and
understand.

B It can exist outside your Java code, so that Android can access it
before it starts looking at your Java code and asset resources.

The Android manifest XML file is essentially a road map for the Android operating
system, telling it what your application is going to do, which components are needed,
and what Android assets it needs permission to use within the Android smartphone
operating environment.

When your application is launched initially, the AndroidManifest.xml data definitions are
used by Android to set up areas of system resources and memory for application
components that need to be supported. They also are used to define secure access
permissions for the more sensitive areas of Android (such as private, internal
smartphone databases) that you need to access with your application.

Let’s take a look at the AndroidManifest.xml file for our Hello World app.

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="Hello.World"
android:versionCode="1"
android:versionName="1.0">

<application android:icon="@drawable/icon"
android:label="@string/app_name">
<activity android:name=".MyHelloWorld"
android:label="@string/app_name">

http://schemas.android.com/apk/res/android

CHAPTER 5: Android Framework Overview

<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>
</activity>
</application>

<uses-sdk android:minSdkVersion="3" />
</manifest>

The opening line is the XML version and encoding declaration—standard fare inserted
for us by Eclipse (as are other manifest entries). This is followed by the following tags:

B <manifest>: This tag has four standard attributes, including the
Hello.World package name that we entered in our New Android
Project dialog. The xmlns:android attribute points to the online
definition of the Android XML schema and is also standard fare in all
XML files. The other two attributes are the Android XML version code
and name, which are version 1 and 1.0, respectively.

NOTE: An XML schema definition is a road map as to what is allowed in a given XML file—that
is, the structure that it must follow and the tags or attributes it may contain. Think of it as
defining all of the rules that you need to follow for any given class of XML file, where the Android
manifest is a certain class of XML that needs to conform to a set format.

B <application>: This tag’s android:icon attribute points to our
icon.png file in our /drawable folder. The android:label attribute
points to our application name (the name that goes in the application
title bar at the top of the smartphone screen) in the strings.xml file.
Note that the <application> tag is nested inside the <manifest> tag.
You can see nesting by looking at the order of the closing tags at the
end of the manifest file structure.

B <activity>: Here, we declare our application’s activity class by
specifying its name via the android:name attribute as .MyHelloWorld,
which we also specified in our New Android Project dialog. Note that if
we had a service class or broadcast receiver class, we would also
declare them in this area of the manifest, along with their related
<service> and <receiver> tags, as you will see in Chapter 11.

B <intent-filter>: This tag specifies the action and category of the
Intent object that launches our application. The action is
android.intent.action.MAIN, which launches main.xml. The category
is android.intent.category.LAUNCHER, which specifies that
MyHellolWorld is the activity that launches the application (because it is
the activity that contains this <intent-filter> tag).

Download from Wow! eBook <www.wowebook.com>

CHAPTER 5: Android Framework Overview

B <uses-sdky: This tag specifies our minimum SDK support level of
Android 1.5 SDK 3 via the attribute named android:minSdkVersion,
which we also specified in our New Android Project dialog. This comes
after the closing tags for the <application>, <activity», and <intent-
filter> tags.

After that, we close our <manifest> tag, and we are finished declaring our Hello World
application manifest XML file.

We will look at Android manifest files in later chapters that cover more advanced
Android features, so you will be learning more about these tags before you are finished
with this book.

Summary

This chapter gave you an overview of the Java and XML languages, as well as the
various components of the Android operating system. We also looked at the
AndroidManifest.xml file, which ties everything together when Android launches your
application.

The main component of Java is the object, which contains fields, or states, and methods
that operate on those states in order to change the attributes of the objects, just as in
real life. This approach allows objects to mimic real-world objects and also to exhibit
data encapsulation, which allows objects to be secure and self-contained. This
modularization helps in testing and debugging, because problems can be localized more
precisely.

Objects can be created using classes, which are programming code constructs that are
used to define the object fields and methods, and thus their architecture. These classes
define the initial, or default, fields for the objects that are created from them, as well as
the programming code that defines methods for changing these default states as the
program executes. We used a car example to demonstrate the different attributes and
methods that would define a car object, such as acceleration, braking, steering, and
gear shifting.

Classes can be used to create more detailed classes through a process called
inheritance. Through inheritance, the original base class becomes a super class, and
new, more finely detailed classes are subclassed from the base class to form different
types of class definitions. In our car example, we created SUV and sports car classes,
which allowed us to create SUV and sports car objects.

Once you have finished coding all of your classes, you can bundle them logically
together in a package, which allows you to group your classes and even your
application together as one logical, well, package. You use the import statement to load
Android packages and classes. The format import platform.package.classname allows
you to precisely specify which packages and classes you wish to include and use in
your own applications.

CHAPTER 5: Android Framework Overview

We also took a look at XML, which uses tags to allow users to structure data. Tags can
be nested to become subsets of other tags, and thus complicated and precise data
structures can be created. Android uses XML so that some of the programming can be
done in an easier language than Java. This allows nonprogrammers to become involved
in the application design process.

The Android APK (.apk) file holds our application code binaries and resources in a
compressed .zip file format. This includes the classes.dex Dalvik executable file and the
Android manifest and application resources. Renaming the .apk file to .zip allows you to
look inside the file and see its assets. Recently, file size limits for .apk files were
increased from 25MB to 50MB.

Then we looked at Android application components. Android activity components hold
your Ul elements and are the front end of your applications to your end users. Android
services define your processing routines and are the back ends of your applications.
Android broadcast receivers send messages between your application components and
are your intercomponent application messengers. Android content providers store and
distribute your application data within your application to other applications and to the
Android operating system itself.

We next looked at Android Intent objects. These are our task managers. They send
instructions between our application components as to which actions to perform and on
which data to perform them.

Finally, we covered the Android manifest file, AndroidManifest.xml. This file defines to
the Android operating system how to start up your application, including which
components will be used and which permissions and SDK levels your application will
support on various model smartphones.

All of the concepts in this chapter will be covered in detail in the remaining chapters of
this book.

Chapter

Screen Layout Design:
Views and Layouts

One of the most important parts of any application’s design and development is the
graphical user interface (GUI) and screen layout design. Many of the most widely
circulated Android applications are popular because of their visual design, animated
graphics, and easy- or fun-to-use interfaces. We will explore the Java classes that
provide the core foundation for all of these front-end capabilities in this chapter.

Android View Hierarchies

In Google Android, in order to interface with the smartphone screen, you use two core
Java classes. These are two of the most important and often used classes in Android
development:

B The View class
B The ViewGroup class

View and ViewGroup are core, high-level classes, created or subclassed from the Java
Object class, as are all Java classes. View objects are created using the View class. The
View class can also be used to create many lower-level, or more customized, Java
classes. Those classes that are subclassed from the View class inherit the
characteristics of their superclass.

So, the basic screen layout in Android is controlled by a View object, which contains a
complex data structure that represents the content and layout parameters for a given
rectangular section of the smartphone’s display screen.

CHAPTER 6: Screen Layout Design: Views and Layouts

Using the View Class

There may be one or more View objects that make up the entire display screen,
depending on how you use the View and ViewGroup classes to create the Ul structure for
your Android application’s screen.

Each View object controls and references its own rectangular view parameters, allowing
you to control many attributes. Here are just some examples of the many attributes
controlled by the View class parameters available to programmers:

B Bounds (measurements)

Layout on the screen

Order in which its layers are drawn
Scrolling

Focus

Keystroke interactions
B Gesture interactions

Finally, Views have the ability to receive events—interaction events between your
application’s end user and the View object itself. For this reason, the View class is the
logical Java construct to subclass to build more detailed and specific Ul elements, such
as buttons, check boxes, radio buttons, and text fields.

NOTE: The View class serves as the foundation for Ul elements that are subclasses of the View
class. Recall that in Java, a subclass is a more specific or detailed implementation of the class
from which it is subclassed. For instance, the Button class is subclassed from the TextView
class, which is subclassed from the View class, which is subclassed from the Object class.
The Button class is subclassed from the TextView class because the Button has a
TextView label and is thus a more specialized version of a TextView; that is, it is a clickable
TextView with a button background appearance.

So many Ul classes have been subclassed from the View class that there is a name for
them: widgets. All of these widgets are contained in a package (a collection of classes)
called android.widget. For example, you can access a Button class via this package
using android.widget.button.

Nesting Views: Using the ViewGroup Class

One of the most useful classes subclassed from the View class is the ViewGroup class.
The ViewGroup class is used to subclass layout container classes, which allow groups of
View objects to be logically grouped, arranged, and cascaded onto the screen.

CHAPTER 6: Screen Layout Design: Views and Layouts

ViewGroups are layout containers, usually collections of Ul elements. In the diagram in
Figure 6-1, View could mean a button, a text field, a check box, and so on. This applies
to any other type of Ul element.

ViewGroup
|
| | | |
ViewGroup View View View
|
ViewGroup View
|
View View

Figure 6-1. ViewGroups and nested Views and ViewGroups

The remainder of this chapter explores the different types of ViewGroup subclasses.
These are the foundation that Android developers use to organize and group their View
objects (Ul elements) on the smartphone display screen.

Direct subclasses of the ViewGroup class include Absolutelayout, Relativelayout,
FramelLayout, LinearLayout, and SlidingDrawer. We’ll look at the two most often used
ViewGroup subclasses: LinearLayout and Relativelayout. We’ll also explore one of the
coolest ViewGroup subclasses: SlidingDrawer. This subclass can be used to greatly
expand your Android screen real estate by 200%.

In the diagram in Figure 6-1, the top level ViewGroup object is the parent of the View
objects and ViewGroup objects underneath it, which are called its children. The
ViewGroup object in the second row is both a child as well as a parent, and the same
goes for the ViewGroup object in the third row.

As you can see, ViewGroup objects can contain other ViewGroup objects (a concept
called nesting; it’s all so familial, isn’t it?), but View objects cannot contain other objects.
They are the end object, so to speak, and are simply Ul components for which you can
set via a plethora of configuration parameters.

CHAPTER 6: Screen Layout Design: Views and Layouts

Defining Screen Layouts: Using XML

The primary way of defining screen layouts (I will stop calling them ViewGroup objects
now, assuming that you are now classifying them as such when you see the term) is via
XML. This XML goes inside a file called main.xml, placed inside a folder called
/res/layout within your project folder.

Once this main.xml file is in place, with your XML screen layout (Ul) definition inside it,
you can use the Java onCreate() method to push it onto your screen on the startup of
your application activity, as discussed in Chapter 5.

We'll first take a look at the onCreate() code and how it works, and then we’ll use it for
real in the next sections, where we will create three vastly different types of screen
layouts.

Setting Up for Your Screen Layout

Just three lines of Java code inside an onCreate() method set your content view to the
main.xml screen layout XML definition:
public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);
setContentView(R.layout.main);

}

The words before the method name determine who can access its methods and data. A
public method is one that is open to any part of your Android application.

The words that follow the method name (always enclosed in parentheses) are the
parameters that an application can pass to the method for its use. Parameters are
chunks of data the method needs to do its job.

The savedInstanceState object is a Bundle object, which is a collection of all of the
states for your activity screen Ul elements. It exists so that the screen Ul elements can
be restored if the screen is replaced by navigation to other screens during the use of
your application. As you learned in Chapter 5, the state of a Ul screen consists of its
attributes and their values, including the Ul elements it uses, which one has the focus,
the colors, and similar attributes that define its appearance.

NOTE: The Activity class saves your state for you, so you don't need to worry. Simply extend
it, and it does the work for you.

The super keyword calls the superclass (the class containing the onCreate() method that
was subclassed from android.app.Activity), so it is basically referencing the onCreate()
method of the android.app.Activity class from which our activity class was subclassed.
It's just a shortcut for android.app.Activity.onCreate(savedInstanceState). Since it is
called from this activity class, it affects this activity locally and applies to this activity

CHAPTER 6: Screen Layout Design: Views and Layouts

only. This savedInstanceState object is the one Android kindly saves for us when it
deals with saving state.

TIP: If you ever want to save some state that is out of the ordinary, write your own method called
onSavelnstanceState(Bundle savedInstanceState). Then save your custom state to
the savedInstanceState object, remembering to call
super.onSaveInstanceState(savedInstanceState).

The onCreate() method will always be called by the Android operating system when
any activity (remember that these are defined in the AndroidManifest.xml file) is started.
This part of your code is where all of your initializations and Ul definitions will be
performed, so it must be present—at least if you need your users to interact with the
smartphone screen area.

The way that layouts contain other nested layouts in XML code (as shown in Figure 6-1)
is by nesting them inside each other. The closing tags are nested at the bottom of these
structures, and they must be nested in the correct order to show Android which layouts
are inside of which other layouts. Layouts underneath or inside of another layout
conform to, and are controlled by, their parent layout container. The code examples in
this chapter indent the nested code structures to show the nested layout hierarchy.

You are about to see all of this in action in the next section, where we’ll work with the
most commonly used layout container in Android: the linear layout. We’ll talk about the
LinearLayout class, which has been subclassed from the ViewGroup class, which is
subclassed from the View class, which is subclassed from the Object class.

NOTE: Java implements subclasses so there is no redundancy in the construction of your code.
Once a method has been written, it is available to every subclass (and its subclasses) that
inherits from its base class.

Using Linear Layouts

In a layout, usually buttons are placed across the top of the screen, or sometimes down
the side of the screen, in a line. This is exactly what the LinearLayout class does. It is
designed to contain and arrange Ul elements placed inside it across the screen (using
the horizontal orientation parameter) or up and down the screen (using the vertical
orientation parameter).

NOTE: The LinearLayout container should not contain any scrolling views. (I think that’s
common sense, but some folks will try anything once.)

CHAPTER 6: Screen Layout Design: Views and Layouts

In Java code, to set the LinearLayout object’s orientation, use the
setOrientation(integer) method, with either the constant HORIZONTAL for horizontal or
VERTICAL for vertical:

myLinearLayout.setOrientation(HORIZONTAL);

After the LinearLayout has been set up in your XML, it's possible to change its
orientation on the fly inside your Java code.

NOTE: Recall that constants are hard-coded values that your Java code uses in its program logic
and can't change. In this case, Android provides easy-to-remember names so that you don't
need to use fiddly numbers. You use the name HORIZONTAL, rather than the value it is set to,
which is 0. This also helps if the value of HORIZONTAL ever changes. You're protected because
the name does not change, even if the value inside Android does.

Here's the attribute for orientation in the LinearLayout tag for XML:
android:orientation="vertical"

Thus, the entire LinearlLayout tag looks like this:

<LinearlLayout android:orientation="vertical">

However, we should really have a few more key parameters in the LinearLayout tag to

make it more useful and standardized, so here’s how it's normally coded:

<LinearlLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="fill parent"

android:layout_height="fill parent"
android:orientation="horizontal">

The first parameter of the LinearLayout XML tag is the path to the Android XML schema
definition. This parameter sets the variable android used in the rest of the tag to
http://schemas.android.com/apk/res/android, so that you don’t need to write the other
parameters like this:

http://schemas.android.com/apk/res/android:layout width="fill parent"

The value for the layout width and height parameters, fill parent, simply tells the
LinearLayout to expand to fill its parent container. Since this is the top level
LinearLayout container, that would mean to fill the smartphone display screen. We
already know what the orientation does, so now we have our LinearlLayout defined.
Anything we place inside this container will display across the screen from left to right.

As discussed earlier in the chapter, the Java onCreate() method is used to load the
main.xml layout parameters for the application.

Well, it’s time to fire up Eclipse again, and create an application to see how all of this
cool stuff works together.

http://schemas.android.com/apk/res/android
http://schemas.android.com/apk/res/android

CHAPTER 6: Screen Layout Design: Views and Layouts

Creating the LinearLayouts Project in Eclipse

We’ll build a simple Ul that stacks some TextView elements along the left side of the
screen, just to see how LinearLayout works. Let’s fire up Eclipse and get started!

After you launch Eclipse, you will be presented with a Workspace Launcher dialog,
where Eclipse will present you with a suggested workspace folder. Alternatively, you can
select your own folder. | created a C:\Projects folder for my Android projects, and | used
the Browse button to find this folder and select it, as shown in Figure 6-2.

Sveene

Select a workspace

Eclipse stores your projects in a folder called a workspace.
Choose a workspace folder to use for this session.

Workspace:() v Browse...

Use this as the default and do not ask again

Figure 6-2. Selecting the project workspace in Eclipse

After you have set your project folder, and Eclipse has launched its development
environment, select File » New » Project, as shown in Figure 6-3. Then select the
Android Project wizard from the Android folder, as shown in Figure 6-4.

= Java - 3DFilm/res/layout/mainxmi - Ecli ESNEN=x
File] Edit Refactor Run Source Navigate Search Project Window Help
®. Alt+Shift+N » "% Java Project B~ 5l v = [Fae)
OpenFile.. o =5
Close Cul+W | § Package &
=3
Close All Ctrl+ShiftsW | @ Class a=
Save s @ |lmtestace
B oot @ Enum
Save All Cht-Shifts | & ||Annotafion
- &9 Source Folder
45 Java Working Set
[9 Folder
Rename... 2 |5 e
feizi B Untitled Tet File
Convert Line Delimiters To "B Unit Test Case
Print... Culsp | Task
Switch Workspace »|[9 Bxample..
Restart 4 Other... CisN b
o [e T DecTrTon T ErComsore 7, . Properties Bp#B-r5-=8
4 Export..
Properties AltsEnter
1 b8xml [3DFilm/res/drawable]
2 menuanim.xm [3DFilm/res/anim]
3 AndroidManifestxml [3DFilm]
4 blxml [3DFilm/res/drawable]
Bt
| [:
0® 3DFilm Uploading usage data...: (100%) ¢

Figure 6-3. Choosing to create a new project in Eclipse

CHAPTER 6: Screen Layout Design: Views and Layouts

NOTE: Once you have created an Android project, there will also be other options, such as an
Android XML File option and an Android Test Project option.

D e
Select a wizard —>
Wizards:
[type filter text]
[(= General
4 (> Android
Android Project
Ji Android Test Project
= CVS
b (= Java
b (= Examples

Figure 6-4. Creating a new Android project in Eclipse

Now we need to create a new project resource, so hit the Next button. This takes you to
the New Android Project dialog, where you need to fill out six important elements:

B Project name: In this field, enter LinearLayouts. This is the Eclipse
project name, as well as the name of the folder that will hold all of the
project files. We’ll set the name of our application in this dialog as well.

B Build Target: For our build target, we want as much platform
compatibility as possible, so we choose support all the way back to
Android 1.5. This way, our app will also work on Android versions 1.6,
2.0, 2.1, 2.2, 2.3, and 3.0. Version 1.5 equated to package release 3,
as you can see in the middle area of this dialog.

B Application name: In the Application name field in the Properties
section, enter LinearLayout_Example. This is the name that will
appear under our icon and in the title bar of our application.

Download from Wow! eBook <www.wowebook.com>

CHAPTER 6: Screen Layout Design: Views and Layouts

B Package name: In the Package name field in the Properties section,
enter linear.layout. (Remember that the package name is at least
two names separated by a period.)

B Create Activity: Make sure the Create Activity check box is checked,
and type LinearLayoutActivity in that field.

B Min SDK Version: Enter 3, which matches the table in the middle of
the dialog.

Figure 6-5 shows the completed dialog. Click the Finish button after you’ve filled out the

fields.

New Android Project

Creates a new Android Project resource.

Project name: { LinearLayouts)

Contents
@ Create new proj

ect in workspace

(©) Create project from existing source
Use default location

Location: ‘ C:/Projects/LinearLayouts

(©) Create project from existing sample

Samples: [ApiDemos

Build Target

Target Name

@ enercs
oogle APIs
Android 1.6
Google APIs
Android 2.1-
Google APIs
Android 2.2
Google APIs

Vendor
Android Open Source Project
GoogleInc.
Android Open Source Project
GoogleInc.

upda... Android Open Source Project
Google Inc.
Android Open Source Project
GoogleInc.

Platform
15

15

16

16
21-upd...
21-upd...
22

22

0 0 N N B B W W

Standard Android

Properties

platform 1.5

Application name: inearLayout_ExamEIe p]
Package name: linear.layout 2

Create Activity@ayoumcﬁvity

Min SDK Version:

©)

®

e) G)

Figure 6-5. The settings for our new LinearLayout project

CHAPTER 6: Screen Layout Design: Views and Layouts

Note that Eclipse Galileo has a bug where the compiler thinks the /gen folder is not
created. But as you can see with a look at the expanded Package Explorer pane shown
in Figure 6-6, the /gen folder is in fact present, and contains both files and data.

CAUTION: /gen is the compiler-generated folder, and not to be touched in any way during
development.

% e v v

File Edit Refactor Run Source Navigate Search Project Window Help

mA =] B $-0-Q- BHECG- S~ -3 - Cera~ & (@ ava)
f 0 e Hierarchy“ Bg|e~" B[1a) *mainaml 52 = Fez
-
7 3DFilm <?xml version="1.0" encoding="utf-8"?> -8 e
[devogella.android.temperature <LinearLayout xmlns:android="http://schemas.android.com/apk/res/android" of
4 52 LinearLayouts android:orientation="vertical”
PREES android:layout_width= "fill_parent"
4 1 linearlayout = android:layout_height="fill parent">
4 [3) LinearLayoutActivityjava || [STexcview
P e LinearLayoutActivity P] android:layout_width="fill parent”
@ onCreate(Bundle) : void g% android: layogf’_helg.hg:r'vrapzcontentu
.G gen [Generated Java Files] g% 7:drold: text="@string/hello
4 3 linearlayout = .
: </LinearLayout>
4 [0 Rjava
PECAY a5
& attr] S
» & drawable Layout | mainaxml
> & layout . = =
» & stiing [2 Problems 2@ Javadoc| [€, Declaration |) Console| (] Properties | » v =0
4 B Android 1.5 2 errors, 0 warnings, 0 others
s androidjar - Chandrold-sdicwindows\platformslandroid-3 | pescription Resource Path Locati
7 assets @ Errors (2 items)
e @, Project 'LinearLayouts' is missing required source folder: ‘gen’ LinearLayouts Build |
(& drowable © The project cannot be built until build path errors are resolved LinearLayouts Unkne
Rl icon.png
4 (= layout
[x) mainxml
4 (= values
[X] stringsxml
[d AndroidManifest.xml
default.properties
< i] »

main.xml - LinearLayouts/res/layout © Android SDK Content Loader

Figure 6-6. View of the Eclipse main.xml and Problems tab with errors

Editing the main.xml File

Now it’s time to work on main.xml. Right-click main.xml (if it is not open in a tab already)
and select Open. You will see some default XML code setting up a linear layout with
vertical orientation and a text field. Here is the code, which also appears in the main.xml
tab shown in Figure 6-6:

<?xml version="1.0" encoding="utf-8"?>
<LinearlLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="fill parent"
android:layout_height="fill parent" />
<TextView
android:layout_width="fill parent"
android:layout_height="wrap_content"
android:text="@string/hello" />
</Linearlayout>

In this file, add another TextView object by copy and pasting the <TextView> element.

http://schemas.android.com/apk/res/android

CHAPTER 6: Screen Layout Design: Views and Layouts

<?xml version="1.0" encoding="utf-8"?>

<LinearlLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="fill parent"
android:layout_height="fill parent"
>

<TextView
android:layout_width="fill parent"
android:layout_height="wrap_content"
android:text="@string/hello"
/>

<TextView
android:layout_width="fill_parent”
android:layout_height="wrap_content"
android:text="@string/hello"
/>

</Linearlayout>

We will edit the text strings to say “Text Area One!” and “Text Area Twol.”

Editing the strings.xml File

The text strings are edited in the strings.xml file, found in the values folder (shown in the
Package Explorer). Right-click strings.xml and select Open, so it opens in its own tab in
the editing area.

Change the hello text to Text Area One!. Also add another string variable textareatwo
and set it to Text Area Two!. Here’s the code:

<?xml version="1.0" encoding="utf-8"?>

<resources>
<string name="textareaone">Text Area One!</string>
<string name="textareatwo">Text Area Two!</string>
<string name="app_name">LinearlLayout Example</string>

</resources>

Figure 6-7 shows the strings added to the file.

http://schemas.android.com/apk/res/android

CHAPTER 6: Screen Layout Design: Views and Layouts

= Java - Linearlayouts/res/values/strings.xml - Eclipse.
File Edit Refactor Run Source Navigate Search Project Window Help
CYHS 8 Bid $-0-QAr BHEO

M& Hierarchy| B %| e ¥ = 0@ mainxmi [lc) *stringsaml 52

7 3DFilm <?xml version="1.0" encoding="utf-8"?>

17 devogella.android temperature <resources>
4 52 LinearLayouts <string name="textareaone">Text Area One!</string>
4 (% src B <string name="textareatwo">Text Area Two!</string>

4 3 linear.layout <string name="app name">LinearLayout_ Example</string>

4 [3) LinearLayoutActivityjava </resources>
4 © LinearLayoutActivity
@ onCreate(Bundle) : v
4 @8 gen [Generated Java Files]
4 £ linearlayout
4 [1] Rjava
PRECA
& attr T
4 g I‘"awab'e Resources | stringsxml
> ayout
> & ﬂzng [£1 Problems 22 @ Javadoc| [€) Declaration| &l Console| [Properties|
4 =) Android 1.5 2 errors, 0 warnings, 0 others
b &8 android jar - C:\android-sdk-windows\platforms\android-3 || pescription B Resource Locati

& assets @ Ermors 2items)
“aBres @ Project 'LinearLayouts' is missing required source folder: 'gen’ LinearLayouts Build |

“ B\;‘:’;‘:‘P"g © The project cannot be built until build path errors are resolved LinearLayouts Unknc
4 = layout

X mainxml
4 (= values

[X] stringsxml
[dl AndroidManifestxml
default.properties

J

strings.xml - LinearLayouts/res/values Android SDK Content Loader

Figure 6-7. Editing the strings.xml file

Notice that the app_name string was added from the information you gave in the project-
creation dialog, so you don’t need to code this (but this is where you change the
app_name later, if you want to).

Updating main.xml File

Next, change main.xml to reference the textareaone and textareatwo string variables,
which we set in the strings.xml file in the previous step, as shown in the code and in
Figure 6-8.

<?xml version="1.0" encoding="utf-8"?>

<LinearlLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="fill parent"
android:layout_height="fill parent"
>

<TextView
android:layout_width="fill parent"
android:layout_height="wrap_content
android:text="@string/textareaone"”
/>

<TextView
android:layout_width="fill parent"
android:layout_height="wrap_content
android:text="@string/textareatwo"
/>

</Linearlayout>

http://schemas.android.com/apk/res/android

CHAPTER 6: Screen Layout Design: Views and Layouts

2 Java - Linearlayouts/res/layout/mainxmi - Eclipse N
File Edit Refactor Run Source Navigate Search Project Window Help

X = :ae A : oy 7 = .
- & BHE F-0 Q- EHFCG- OB~ -3 LoD~
Wﬁ Hierarchy | =% | & ¥ = 8|ld *mainxml 2 _d *stringsxml | (=158
&
7 3DFilm <?xml version="1.0" encoding="utf-8"?>
{7 de.vogella.android.temperature <LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
4 52 LinearLayouts android:orientation="vertical"
4 (3 src android:layout_width= "fill_parent"
4 8 linearlayout android:layout_height="fill_parent”>
4 [J) LinearLayoutActivityjava <TextView)
PaCc) LinearLayoutActivity android:layout_width="fill parent”
@ onCreate(Bundle) : void android:layout_height="wrap content"
. droid:text="@string/text. "
4 @8 gen [Generated Java Files] android:text="4string/textareacne

/>
i layout
4 {3 linear.layor <TextView

4 [0 Rjava android:layout_width="fill parent"
«@ ? android:layout_height="wrap content"
& atte |] android:text=i@string/textareatvo”
> & drawable | | />
4 @f layout </LinearLayout>
» & string ~
4 B Android15 < ’
b (W android,jar - C:\android-sdk-windows\platforms\android-3 || Layout | main.xmi|
G@ assets S < S < r—
4 & res [Z0 Problems 52 @ Javadoc| [& Declaration| &l Console| 1 Properties ¥ =]
4 (= drawable 2 errors, 0 warnings, 0 others
R icon.png Description Resource Path Locati
4 (= layout @ Errors (2 items)
[x] mainxml) Project 'LinearLayouts' is missing required source folder: ‘gen’ LinearLayouts Build |
4 (= values @ The project cannot be built until build path errors are resolved LinearLayouts Unknc
[¥] stringsxml

[AndroidManifestxml
default.properties

]
* Android SDK Content Loader

strings.xml - LinearLayouts/res/values

Figure 6-8. LinearLayout XML code in main.xml

Viewing LinearLayoutActivity.java

Now it is time to take a look at what our Java code is doing. Right-click the
LinearLayoutActivity.java file on the left in the Package Explorer and select Open.

TIP: REMEMBER there is another way to open a file for editing in its own tab: just select the .java
or XML file and press the F3 key. A tab will open showing the contents of that file.

The file opens in its own tab next to the main.xml and strings.xml tabs in Eclipse. Here is
the code (Figure 6-9 shows what it looks like in Eclipse):

package linear.layout;

import android.app.Activity;
import android.os.Bundle;

public class LinearLayoutActivity extends Activity {
/** Called when the activity is first created. */
@0verride
public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.main);

CHAPTER 6: Screen Layout Design: Views and Layouts

= Java - Linearl i y

File Edit Refactor Run Source Navigate

B

inearl

BB -0~ Q-

ityjava - Eclipse -

Search Project Window Help
BHG- ®c - PAwEN

5 (& Java]

[# Package Explorer 32 _fg Hierarchy | Bg|le " [=}

R IR CIR I

|'] *strings.xml

1 3DFilm
[dewvogella.android.temperature
4 B2 LinearLayouts
4 (3 src
4 3 linear.layout
4 [J] LinearLayoutActivity.java
4 © LinearLayoutActivity
@ onCreate(Bundle) : void
4 &8 gen [Generated Java Files]
4 ff linear.layout
4 [J) Rjava
PECAY

A *mainxml
| package linear.layout;

“import android.app.Activity;
import android.os.Bundle;

public class LinearLayoutActivity extends Activity {
/** Called when the activity is first created. */
@Override
- public void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;
setContentView (R.layout.main);

}

Al AndroidManifest.xml
default.properties

< i

]

& attr
» & drawable -
> & layout d)
> & string ({2 Problems £2 @ Javadoc| [€} Declaration| & Console| 5 Properties | v =)
“m ‘:"dm‘d L 2 errors, 0 warnings, 0 others
b &8 androidjar - C:\android-sdk-windows\platforms\android-3 :
s assets Description Resource Path Locati
PR @ Errors (2 items)
4 (> drawable) Project 'LinearLayouts' is missing required source folder: 'gen’ LinearLayouts Build |
@ icon.png @ The project cannot be built until build path errors are resolved LinearLayouts Unknc
4 (= layout
[X] mainaxml
4 (= values
[X] stringsxml

| wiitable

‘ Smart Insert

|12

* Android SDK Content Loader

Figure 6-9. The LinearLayout application Java code and Problems tab

As you can see, the package name that we defined in the New Android Project dialog is
declared at the top of the Java code, as well as two import statements that reference
the Java classes that are needed (accessed or used) in the Java code: the Activity

class and the Bundle class. Below this is the Java code that loads the XML layout that

we created earlier in the other two tabs.

Running the LinearLayout

App

Now we are ready to compile and run our Android application. Since we have already
set up our 1.5 phone emulator in Chapter 3, all we need to do to compile and run our

app is right-click the top-level LinearlLayouts project folder in the Package Explorer on
the left and select Run As » Android Application. Then click the Console tab at the bottom

of Eclipse to see what is happening in the compilation process.

In Figure 6-10, you can see the process that the Android compiler goes through to
compile and launch your app in the 1.5 emulator. After around 30 seconds or so of
loading, the emulation environment will launch your app (click the Home and/or Menu
buttons on the emulator to see it). Note the name of the project and the name of our
activity as they are loaded into the emulator.

CHAPTER 6: Screen Layout Design: Views and Layouts

File Edit Refactor Run Source Navigate Search Project Window Help

2 8 848 $-0-A- BHE- MBS P IvD tHm oD & ()
(18 Package Explorer £ fs Hierarchy 5 %[& 7 = 0)d mainam [l stringsami | 0 LinearLayoutActivityjava 53 . =0
g ey ST ® s
1 3DFilm I package linear.layout; e
1 devogella.android.temperature o=
4 &2 LinearLayouts import android.app.Activity:
e import android.os.Bundle;

4 linearlayout
4 [J) LinearlayoutActivity.java public class LinearLayoutActivity extends Activity {
4 ® LinearLayoutActivity /** Called wnen the activity is first created. */
@ onCreate(Bundle) : void
4 38 gen [Generated Java Files]
4 8 linearlayout

Goverride
- public void onCreate (Sundle savedInstanceState) {
super.onCreate (savedInstancestate) ;
setContentView (R.layout.main) ;

[2010-10-09
[2010-10-09
[2010-10-08
[2010-10-09 23:51:42

Rl i J ’

L L] Installing L L Lapk. ..

LinearlLayouts] Success!

LinearLayouts] Starting activity linear.layout.LinearlayoutActivity on device g
= a MAIN ©

4] AndroidManifest.ml
[defaultproperties

4 [Rjove ,
@R N a5
@ atr g)
v & drawable
» & layout [21 Problems | @ Javadoc [, Declaration | & Console &2 . I Properties| Bt B~-r5-=0
» @ string Android
4 B Android 15 [2010-10-08 - &
+ &8 androidar - C\android-sdk-windows\pletforms\endroid3 || (2010-10-08 ekt S
& assets [2010-10-09 - LinearLayouts] adb is running normally.
4 Bores [2010-10-09 - 1 1 layout.L L activity launch
4 & drawable {2010-10-08 - Linearlayouts) Automatic Target Mode: launching new emulator with compatible AVD 'HVGA Android 1.5_Emulator'
A icon.png (2010-10-08 - Linearlayouts] Launching a new emulator with Vircual Device 'HVGA Android_1.5_Emulator’
4 layout [2010-10-08 - Linearlayouts] New emulator found: emulator-5554 L
R mainami [2010-10-08 - Linearlayouts] Waiting for HOME ('android.process.acore’) to be launched...
4 & values {2010-10-08 - Linearlayouts] HOME is up on device 'emulator-5554'
[2010-10-09 - L L k onto device 'emulator-5554'
[¥) stringsaxml

Linearlayouts] ActivityManager: Starting: Intent {

I linear.layout - LinearLayouts/src Android SDK Content Loader

Figure 6-10. View of Eclipse IDE with LinearLayout Java code and Console Tab Complier Progress Output

You’ll see that the LinearLayout vertically stacks our text fields as expected, as shown
in Figure 6-11.

il

LinearLayout_Example
Text A K

MENU

Figure 6-11. Running the LinearLayout_Example application in the emulator

CHAPTER 6: Screen Layout Design: Views and Layouts

Using Relative Layouts

Relative layouts are for more complicated Ul layouts for which you need to define the Ul
elements in a not so linear fashion. The Relativelayout layout class allows you to define
how the Ul elements (the View objects) are to be placed on the screen relative to each
other, rather than just laid out linearly. For this reason, the XML definition contains a few
more variables, so this example will be a number of lines of markup code longer than the
LinearLayout example.

If you start to get into the habit of nesting several LinearLayout containers to achieve a
more complex Ul layout result, you may want to consider using a single Relativelayout
container to achieve the same results with better control.

Simpler is always better, so if you can write a Ul layout using fewer nested ViewGroup
containers, it will always use less memory and function more quickly. The
Relativelayout container allows you to arrange all sorts of Ul elements together in a
single ViewGroup to achieve a complex layout.

Relative layouts are also the optimal type of layout container for using sliding drawers,
another direct subclass of the ViewGroup class. Sliding drawers extend the screen real
estate of the smartphone by allowing drawers to slide out onto the screen from any of
the four sides (top, left, bottom, or right). This is very cool functionality that is built into
the Android SDK, as you’ll see in the next section.

Since we already have our linear layout application open in Eclipse, let’s change it to a
relative layout configuration. That way, we won’t need to type in all the same code. To
change a layout, all you need to do is to change the XML code in your main.xml file.

Since our Java code references main.xml, we do not need to change anything in the
LinearLayoutActivity.java tab to make these changes work, a testimony to the power of
modularity via XML in Android. We also do not need to change (or even remove) the
content in strings.xml, even though it will not be used in the application anymore.

NOTE: If the unused code were lines of code in Java, Eclipse would notice that these variables
were not used and warn you about it.

We’ll edit main.xml now. And while we are at it, we’ll also add some other Ul elements —
an editable text field and a couple buttons—so that you can see how easy it is to create
(or in this case, change and/or refine) a Ul inside Android.

In the first tag of main.xml, change LinearLayout and its closing tag to Relativelayout.
We will add some Ul elements to the inside of the tag (before the closing tag
</Relativelayout> line of markup code).

Let’s leave in one <TextView> tag and delete the other. Give the remaining tag an ID and
a default, or starting, text value. So, this can be specified not only via a reference to a
data declaration in strings.xml (as in our previous example), but also directly, right here
in the main.xml file (just to show you two ways to do it), as follows:

CHAPTER 6: Screen Layout Design: Views and Layouts

<TextView
android:id="@+id/label"”
android:layout_width="fill parent"
android:layout_heightfill parent"”
android:text="Type here:"/>

This is the first Ul element, so we don’t have any relative layout attributes —there is
nothing for this Ul element to be relative to yet.

Next, let's add an <EditText> element (either by typing it in or by dragging from the
visual layout editor tab), as follows:

<EditText
android:id="@+id/entry"
android:layout_width="fill parent"
android:layout_height="wrap_content"
android:layout_below="@+id/label"/>

It will be laid out relative to (below) the TextView as shown. The key line of XML is the
parameter called layout below, which references the ID of the TextView, telling Android
to position the EditText object below the TextView object. This is pretty straightforward
logic and also very powerful.

Now let’s add an OK button Ul element, via the <Button> XML tag, as follows:

<Button
android:id="@+id/ok"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_below="@+id/entry"
android:layout_alignParentRight="true"
android:layout_marginlLeft="10dip"
android:text="0K"/>

This <Button> tag shows some of the power of relative positioning. The button is below
the EditText (using the parent’s ID parameter), aligned right relative to the parent, and
with 10 pixels of margin to the left of the button.

To see this 10 pixels of spacing, let’'s add a Cancel button to the left of the OK button
and aligned with it on the top, using this code:

<Button
android:id="@+id/cancel"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_tolLeftOf="@+id/ok"
android:layout_alignTop="@+id/ok"
android:text="Cancel"/>

Here is all of the new Relativelayout code in the main.xml file (Figure 6-12 shows it in
Eclipse):

<?xml version="1.0" encoding="utf-8"?>
<Relativelayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="fill parent"
android:layout_height="fill parent"
>

http://schemas.android.com/apk/res/android

CHAPTER 6: Screen Layout Design: Views and Layouts

<TextView
android:id="

@+id/label"

android:layout_width="fill parent"
android:layout_height="wrap_content"
android:text="Type here:"/>

/>

<EditText
android:
android:
android:
android:

<Button
android:
android:
android:
android:
android:
android:
android:

<Button
android:
android:
android:
android:
android:
android:

id="@+id/entry"
layout_width="fill parent"
layout_height="wrap_content"
layout below="@+id/label" />

id="@+id/ok"
layout_width="wrap_content"
layout_height="wrap_content"
layout below="@+id/entry"
layout_alignParentRight="true'
layout_marginLeft="10dip"
text="0K"/>

id="@+id/cancel”
layout_width="wrap_content"
layout_height="wrap_content"
layout_tolLeftOf="@+id/ok"
layout_alignTop="@+id/ok"
text="Cancel"/>

</Relativelayout>

CHAPTER 6: Screen Layout Design: Views and Layouts

Download from Wow! eBook <www.wowebook.com>

Eile Edit Run Source Navigate Search Project Refactor Window Help
D-H@idi8Sd $-0-A- WG OO IBDEEIHN-F-RErD- & 1 0oms (Fave] 7
[# Package Explorer 52 _T¢ Hieral(hy\] = O[ld stringsxml M@ LinearLayoutActivity.java] =]
¢='4>| o v <2xml version="1.0" encoding="utf-g8"?> NC] &)
hg LinearLayouts <RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android" E
@ src android:orientation= "vex.-tx'cal " S
Ji layout android:layout_width="fill parent")
& inearaye! A android:layout_height="fill parent"
[3) LinearLayoutActivity.java N - = =
3 gen [Generated Java Files]
G\‘ Android 1.5 <TextView
Gd assets android:id="@+id/label”
& res android:layout_width="fill parent"”
& drawable android:layout_height="vrap content”
& layout B android:text="Type here:"/>
(%] mainxml />
(& values
@ stringsxml <EditText [
|d AndroidManifestxml android:id="@+id/entry"” !
default.properties android:layout_width="fill parent"
@ proguard.cfg android:layout_height="vwrap content”
android:layout_below="@+id/label" />
<Button
android:id="@+id/ok"
android:layout_width="vrap_ content"”
android:layout_height="vrap content"
android:layout_below="@+id/entry"
android:layout_alignParentRight="true"
android:layout_marginLeft="10dip"
android:text="0K"/>
<Button
android:id="@+id/cancel”
android:layout_width="wvrap content”
android:layout_height="wrap content"”
android:layout_toLeftOf="@+id/ok"
android:layout_alignTop= "@+id/ok"
android:text="Cancel"/>
</RelativelLayout> |
‘ : W
Graphical Layout | main.xml
: 0° @® RelativeLayout/TextView/android:text i efllelBE
———

Figure 6-12. Editing RelativeLayout in the main.xml file

Now let’s compile the project. Right-click the LinearLayouts project folder at the top of
the Package Explorer pane and select Run As » Android Application. Figure 6-13 shows our
app running in the emulator. As you can see, the Relativelayout code works fine and
formats the Ul perfectly.

CHAPTER 6: Screen Layout Design: Views and Layouts

Ml @ 8:46 P
LinearLayout_Example
Type here

Cancel a

MENU

Figure 6-13. Running the relative layout example in the emulator

Now let’s add some animation to our Ul by creating sliding drawers for our Ul elements.

Sliding Drawers: Expanding Your Ul

One of the more advanced layout containers in Android is SlidingDrawer, another direct
subclass of the ever so useful ViewGroup class. This layout is not used as often as the
others, but it’s extremely handy.

Sliding drawers are useful because they give us a way to expand the screen area that
can be used by Ul components, or even for application content, for that matter.

A SlidingDrawer should be used as an overlay inside either the Relativelayout
container or the FrameLayout container. You cannot use SlidingDrawer as its own
container, because it needs to slide out of something.

NOTE: FrameLayout is not as useful as Linear or Realtive Layouts, and as such, is not as
frequently used as a layout container type. It can be used to hold a single Ul element inside a frame.

How do sliding drawers expand your screen area? By sliding a drawer (vertically or
horizontally) onto the display from off the screen, you have another virtual screen

CHAPTER 6: Screen Layout Design: Views and Layouts

available to use. This can be useful if you need the entire screen for your content,
because you can keep your Ul controls in a drawer that slides on or off the screen
whenever it is needed.

Now let’s add a sliding drawer to our Relativelayout of the previous section and see
just how cool an application we can create in less than 20 lines of XML code. We'll
create an app with an analog clock that slides out inside its own drawer whenever we
need to see what time it is.

Leave the Relativelayout XML tag intact, but delete the text and button elements inside
it. Then replace it with the SlidingDrawer tag:

<?xml version="1.0" encoding="utf-8"?>

<Relativelayout
xmlns:android=http://schemas.android.com/apk/res/android
android:layout width="fill parent"
android:layout_height="fill parent">

<SlidingDrawer
android:id="@+id/drawer"
android:layout_width="320dip"
android:layout_height="440dip"
android:orientation="vertical"
android:handle="@+id/handle"
android:content="@+id/content">

<ImageView
android:id="@+id/handle"
android:layout_width="48dip"
android:layout_height="48dip"
android:src="@drawable/icon" />

<AnalogClock android:id="@+id/content"
android:background="#DOA0A0"
android:layout_width="fill_parent"
android:layout_height="fill parent" />
</SlidingDrawer>
</Relativelayout>

As you can see from the code indenting, the SlidingDrawer tag goes inside the
Relativelayout tag. It has two other XML tags that go inside it: one that defines the
graphic that will be used as the handle for opening and closing the drawer (the
ImageView tag), and another that defines the content inside the drawer (the AnalogClock

tag).

Since Android installed a default icon.png graphic (for use as an application icon) in our
/res/drawable folder when we created our project for this chapter, | used that 48 x 48
pixel (standard size) icon for the handle of the drawer for demonstration purposes. Any
size graphic can be used. You’ll learn how to replace this with something cooler once
we get to using graphics with Android in Chapter 8.

We need to set the layout height and layout width for this handle to match the PNG
resolution using a setting of 48 device independent pixels (dip). We also need to point
the ImageView tag’s file source parameter, android:src, to the drawable folder and the

http://schemas.android.com/apk/res/android

CHAPTER 6: Screen Layout Design: Views and Layouts

icon file name, via @drawable/icon. Note that we do not need to specify the resources
folder /res/drawable or the full file name icon.png, because Android knows that @ means
/res/, and we just need to specify the first name of the PNG file for a graphic image.

The other XML tag that must be inside any SlidingDrawer layout container is content.
Whatever XML tag you want to use for your content must have an ID specified that
matches the name that is specified in the SlidingDrawer android:content parameter. In
this case, we are using content as the content container’s ID, but it could be anything
you like.

We are going to use Android’s AnalogClock XML tag to give us some impressive working
content for this exercise. Note that we are accomplishing this in only four lines of XML
code. In fact, this entire “clock in a drawer” Android application is using primarily XML
and essentially no Java logic, other than to display the Ul design on the smartphone
screen.

So that we can see the boundaries of the S1idingDrawer, which we have set in the
SlidingDrawer tag layout_width and layout_height parameters, we have placed an
android:background parameter in the AnalogClock tag. The content is given a teaberry
color background that matches our 1.5 emulator phone. This analog:background
parameter will work in virtually any XML tag relating to the screen and uses standard
hexadecimal color value representation inside quotes.

Finally, click the strings.xml tab and change LinearLayout Example to
SlidingDrawers_Example.

Figure 6-14 shows the IDE with the new code ready to compile. | have spaced it out so
that you can see which XML tags and modules are nested inside each other.

= Java - Linearlayouts/res/layout/mainxml - Eclipse q [E=EX)
[File Edit Refactor Run Source Navigate Search Project Window Help |
mid® B $-0-%- BHEG S~ -G - Bora- 5 [@ava)
(12 Package Explorer £5 fs Hierarchy | 2 % @ ¥ = 0 'mainaml 52\ stringsaml | [LinearlayoutActivityjava | =0
_ &
' 3DFilm <?xml version="1.0" encoding="utf-g"?> -m =
[devogella.android.temperature <Relativelayout xmlns:android="http://schemas.android.com/apk/res/android" = 0%
4 2 LinearLayouts android:layout_width="fill parent"”
4 (B sic android:layout_height="£ill_parent>

4 3 linear.layout
4 [J) LinearLayoutActivity java
4 © LinearLayoutActivity

|]

<SlidingDrawer
android:id="@+id/draver"”
android:layout_width="320dip"
android:layout_height="440dip"
android:orientation="vertical"

@ onCreate(Bundle) : void
4 &8 gen [Generated Java Files]

4 3 linear.layout android:handle="@+id/handle”

4 D Rjava android:content="g+id/content">
PRCAY
@j attr <ImageView
> & drawable android:id="@+id/handle"
> Y id android:layout_width="48dip"
> & layout android:layout_height="48dip"
> & string android:src="@dravable/icon" />
4 ®) Android 1.5
b &8 android.jar - C:\android-sdk-windows\platforms\android- <BnalogClock android:id="@+id/content"
&2 assets android:background: A0A0
o @res android:layout_width="£ill parent"”
4 (= drawable android:layout_height="fill parent” />
e i
4 & layout || </SlidingDrawer>
) mainaml .
4 & values </Relativelayout>
[¥) stringsaxml -

< »

4] AndroidManifest.xml

Layout | mainaxmi
[5) default properties ayout | main.xmi

(2 problems [@ Javadoc [€) Declaration [EJ Console 52 [Properties| BBt BE-ri-=0

icon.png - LinearLayouts/res/drawable Android SDK Content Loader

Figure 6-14. Sliding drawer example XML

CHAPTER 6: Screen Layout Design: Views and Layouts

Figure 6-15 shows the sliding drawer example running in the emulator. Some cool
things to change so that you can see what this layout container can do are the
orientation (horizontal or vertical) and the layout width and height parameters of the
SlidingDrawer tag itself. | suggest that you practice compiling and testing Android
applications by changing these XML parameters and then choosing Run As » Android
Application a bunch of times. This will help you to get used to the development work
process and more comfortable with Eclipse and how easy it is to use.

SlidingDrawers_Example

Figure 6-15. Running the sliding drawer example in the emulator

Using Padding and Margins with Views and Layouts

Padding adds spacing to a view so that a view's content is offset by a certain number of
pixels on each of the four sides. This way, the content doesn’t touch the edges of the
view and look unprofessional. In other words, padding adds space around the outside of
a view's content, and you can choose to do so on any of the four sides of the view.
When using padding, the padding is considered to be part of the view, which may affect
the way Android lays out the view.

Padding values are only available to Views, not to ViewGroups (and thus not available in
screen layout containers). ViewGroups instead support margins, which allow the same
results as padding to be obtained, except that the margins are not considered part of

CHAPTER 6: Screen Layout Design: Views and Layouts

the ViewGroup. For me, this makes Ul design more organized and easy to remember:
Views use padding values and ViewGroups use margin values.

Setting Padding in Views

Padding can be set via your Java code using the setPadding() method with four values,
for left, top, right, and bottom. Think of going around a clock, starting at 9:00 Awm,
separated by commas. So, to put a 4-pixel border inside your view, you would use the
following (remember that the order of parameters is left, top, right, bottom):

setPadding(4,4,4,4)

You can also separate each side in the Java methods. So, to get the padding for the left
side of the view, use getPaddingLeft(). To set just the padding on the top to 8 pixels,
write this:

setPaddingTop(8)

Setting Margins in ViewGroups

For ViewGroups, including layout containers (the subject of this chapter), the easiest way
to set margins during development is via the XML parameters for any ViewGroup object.

Four layout margin values are available in XML:
android:layout_marginBottom

android:layout_marginLeft

android:layout_marginRight
B android:layout_marginTop
We used one of these in our Relativelayout example earlier in this chapter.

Be sure to experiment with using these four parameters on your Ul elements. You'll see
that you can control exactly how your Ul elements are spaced around on the screen as
you become familiar with what margins can do.

Summary

Android allows us to design screen layouts via XML, which makes it much more simple
than it would be via Java code. Nonprogrammers like designers can get involved with
the Ul design without needing to know Java.

In this chapter, we started to take a look at the foundation for laying out our Ul areas on
the Android smartphone screen using the View and ViewGroup classes. We use the
ViewGroup class and its subclasses to lay out our Ul screen elements. Android provides
several of these subclasses, including the LinearLayout, SlidingDrawer and
Relativelayout classes we looked at in this chapter.

CHAPTER 6: Screen Layout Design: Views and Layouts

LinearlLayout is the most used layout container in Android programming and the one
used in the Android apps that come with the operating system. It arranges Ul elements
from right to left or top to bottom. It is possible to nest LinearLayout containers within
each other to achieve more complicated Uls.

Relativelayout is the next most used layout container in Android programming. It
allows you to arrange Ul elements by specifying their placement on the screen relative to
each other. This allows for more complicated Ul layouts than just the rows or columns
supported by the LinearLayout class.

We also took a look at one of the more innovative ViewGroup layout containers called
SlidingDrawer. This allows you to slide Ul elements on and off the screen, in and out of
view. This layout container can be used to greatly increase screen real estate by
allowing Ul elements to exist off-screen in a “drawer” that slides out only when the user
needs it.

In the next chapter, we will look at adding Ul elements into our ViewGroup layout
containers using View objects called widgets. The android.widget package gives us all
sorts of precoded Ul elements.

Chapter

Ul Design: Buttons,
Menus, and Dialogs

The Ul design determines the usability of your application, which will ultimately
determine its success and even its profitability if you are selling it.

A standard Ul is composed of a number of familiar components that can be used by
your application’s users to control their user experience (often called the UX). These Ul
elements include items such as buttons, check boxes, menus, text fields, dialog boxes,
system alerts, and similar widgets.

This chapter covers how to use several of the most important Android widgets for Ul
design. First, we’ll cover adding image buttons, text, and images to your Ul. Then you’ll
learn about the different types of menus available. Finally, we’ll cover displaying dialogs,
including alerts, which carry messages to your application user. There’s a lot of cool
stuff to cover, so let’s get started.

Using Common Ul Elements

Android has all of the standard Ul elements already coded and ready to use in a single
package called android.widget. Here, we’ll explore how to add an image button, text
area, and image to your app’s UL

NOTE: Recall that a package in Java is a collection of ready-to-use classes that you can leverage
within your application. You just need to tell Java that you are going to use them by importing
them via the Java import command.

115

CHAPTER 7: Ul Design: Buttons, Menus, and Dialogs

Adding an Image Button to Your Layout

In Chapter 6, we crafted a Ul that included the Button class, which is used to create the
standard Android system format buttons, and lets you do so with the greatest of ease.
Now, we’ll look at the more complex ImageButton class. For professional, customized,
high-graphics Uls, this is the class that you will need to use to gain the most control
over the user experience.

The android.widget package’s ImageButton class allows you to use your own imagery
to create custom multistate buttons that are cooler looking than the standard buttons
that come with the Android operating environment.

There is a distinct work process to creating a successful multi-state 24-bit PNG image
button, which will composite perfectly over background imagery using an 8-bit alpha
channel.

Android supports 24 bits of PNG image data, with another 8 bits of anti-aliased image
transparency channel (requiring another 8-bit alpha channel). Let’s do the math: 24 + 8 = 32.
So, what we really have is a 32-bit PNG image, with 8 bits of data for each of the red,
green, and blue image channels, and another 8 bits of data for the alpha (transparency)
channel.

In case you’re not familiar with some of the terms | used in the previous description,
here are some brief definitions:

B Compositing: The process of using layers to form a single new image
out of more than one component part.

B Alpha channel: That part of each layer that is transparent, and thus
does not hold any image data passing through visible image data from
other layers underneath it.

B Anti-aliasing: The edge treatment that is used to make the edges of
images within these transparency layers perfectly smooth when these
edges are not perfectly square, which they rarely are.

Defining Multistate Image Button Graphics in XML

The XML markup is a bit more complex for multistate image buttons than it is for regular
buttons. Your XML file needs to tell Android which image to use for each state of the
button:

B Pressed (for touchscreens, the pressed image will be shown when the
finger is touching a button image on the screen)

B Released or normal
B Focused (in use or last touched)

Let’s look at the code for our button1.xml file, which we will reference later when we
create our ImageButton XML entry in the main.xml file that goes in the /res/layout folder.

CHAPTER 7: Ul Design: Buttons, Menus, and Dialogs

You don't need to create this file now. In fact, when we get to that point in our example,
you’ll see that Eclipse creates this file for you automatically!
<?xml version="1.0" encoding="utf-8"?>
<selector xmlns:android="http://schemas.android.com/apk/res/android">
<item android:state pressed="true"
android:drawable="@drawable/button1 pressed" />
<item android:state focused="true"
android:drawable="@drawable/button1_focused" />
<item android:drawable="@drawable/buttoni_normal" />
</selector>

The first line is the standard first line of every XML file that you code, and it will always
say the same thing.

The second line defines a selector tag and points to its XML schema, as you have seen
in previous chapters. A selector tag allows selection between several options. Inside
the selector tag, we nest three item tags to show which drawable (bitmap) images to
use for state pressed=true, state focused=true, and the default or normal button
state.

For this XML code to work, we must have three 24-bit bitmap PNG images in our
project’s /res/drawable folder named button1_pressed.png, button1_focused.png, and
button1_normal.png.

NOTE: Recall that each of the image file names must use only lowercase letters and numbers,
and can also use the underscore character.

The first item tag has an android:state_pressed attribute, which is set equal to true,
and a second android:drawable attribute, which is set equal to the location of the file
and its name (sans the .png extension).

The @ equates to your project’s resources folder, /project/res/, so in this case,
@drawable/buttonl_pressed will equate to
c:/projects/imagebuttons/res/drawable/button1_pressed.png in the Android compiler.
The other item tags follow the same format as the first one.

Creating the Ul Image Button Project in Eclipse

Now that we’ve reviewed the concepts, let's create the project for real. As you’ve done
in previous chapters, fire up Eclipse and choose select File » New » Project to create a
new project. In the New Android Project dialog, set the options as follows:

B Project name: Name the folder Chapter7.

B Build Target: So our application runs on all of the popular Android
operating system versions from 1.5 through 3.0, choose Android 1.5.

B Application name: We’ll call this application Ul Examples.

http://schemas.android.com/apk/res/android

Download from Wow! eBook <www.wowebook.com>

CHAPTER 7: Ul Design: Buttons, Menus, and Dialogs

B Package name: Using the proper package name form, enter
chapter.seven as the name.

B Create Activity: Check this box and name the activity Userinterface.
B Min SDK Version: Enter 3, to complement the build target choice.

Figure 7-1 shows the completed New Android Project dialog for our multistate image
button example. Click Finish after you've filled it in.

New Android Project

Creates a new Android Project resource.

am
17

N1

Project name: Chapter7

Contents

@ Create new project in workspace
(©) Create project from existing source
Use default location

Location: { C:/Projects/Chapter7 ‘ Browse...

(©) Create project from existing sample

Samples: ‘ApiDemos v]

Build Target

Target Name Vendor Platform

Android 1.5 Android Open Source Project 15
Google APIs Google Inc. 15
Android 1.6 Android Open Source Project 16
Google APIs Google Inc. 16
Android 2.1-upda... Android Open Source Project 21-upd...
Google APIs Google Inc. 2.1-upd...
Android 2.2 Android Open Source Project 22
Google APIs Google Inc. 22

0 00 N N A e WWw

Standard Android platform 1.5

Properties

Application name: Ul Examples

Package name: chapter.seven

Create Activity: UserInterface

Min SDK Version: 3

Figure 7-1. Completed New Android Project dialog for our Chapter7 project

CHAPTER 7: Ul Design: Buttons, Menus, and Dialogs

Creating the button1.xml File

You now have an empty Eclipse project. Next, we’ll create the button1.xml file so we
can add the button state definition XML we created earlier.

Open the project tree on the left Package Explorer tab and expand the src folder by
clicking the arrow. Then right-click the drawable folder and select New » File, as shown
in Figure 7-2.

File Edit Refactor Run Source Navigate Search Project Window Help
‘MO8 B $-0 A BEE- 0SNG oo & (Eeve)
1] Hierarch‘\ =g =8 -
Bs|e” o
L 3DFilm o
4 5 Chapter7
b (B src
b &8 gen [Generated Java Files]
> =4 Android1.5
& assets
4 @ res
4 drawable,
R ic @ > 2% JavaProject
> & layou Go Into % Project...
b (& value|
4] Androidh Open in New Window # Package
default.p) Show In Alt+ShiftsW > | G Class
E7 devogella.ar
7 LinearLayout 5] Copy Ctrl+C @ Interface
& Copy Qualified Name @ | Enum
[Paste Ctrl+V @ Annotation Ex Eg‘ #EB~-rg-=0
% Delete Delete #9 Source Folder
45 Java Working Set -
Remove from Context Ctrl+Alt+Shift+Down C$ Folder
Build Path » E.
Refactor Alt+Shift+T » Léfd Text File
2y Import... [E JUnit Test Case
4 Export.. (7 Task
& Refresh 5 |9 Example.
Assign Working Sets... 4 Other.. P~
Validate
Run As »
Debug As »
Team »
Compare With »
Restore from Local History...
Source » ; i
ine drawab| __ Properties Alt+Enter Android SDK Content Loader

Figure 7-2. Creating a new file in the drawable folder to hold our XML

In the New File dialog, ask Eclipse to create the file button1.xml in the
Chapter7/res/drawable folder, as shown in Figure 7-3. Then click Finish to create an
empty text file. This is one of the most basic ways that you can have Eclipse create a
new, empty text file for you. We will cover other ways of creating new XML files in later
chapters.

CHAPTER 7: Ul Design: Buttons, Menus, and Dialogs

e
o)
File A
Create a new file resource. ;

Enter or select the parent folder:

&ty & o
&2 Chapter7
(= .settings
G@ assets
(& bin
% gen [Generated Java Files]
G@ res
(= drawable
(= layout
(= values
= src

File name: Cbuttonl xml)

@ [Finsh][Concel |

Figure 7-3. Specifying the drawable folder and button1.xml file name in the New File dialog

Click the button1.xml tab at the top of your screen, and then type in the XML code that
defines the selector and item tags for setting the three different image button states:

<?xml version="1.0" encoding="utf-8"?>
<selector xmlns:android="http://schemas.android.com/apk/res/android">
<item android:state pressed="true"
android:drawable="@drawable/button1 pressed" />
<item android:state focused="true"
android:drawable="@drawable/button1_focused" />
<item android:drawable="@drawable/button1i_normal" />
</selector>

After you’ve entered the XML, you’ll notice that Eclipse shows that there are three errors
in the markup relating to missing file assets. Place your mouse over the red X on the left
margin by the markup code. This pops up a diagnostic message regarding why Eclipse

thinks this code needs your attention, as shown in Figure 7-4.

http://schemas.android.com/apk/res/android

CHAPTER 7: Ul Design: Buttons, Menus, and Dialogs

Ve e R =
File Edit Refactor Run Source Navigate Search Project Window Help
O-He ' 8 BXd i $-0-%- BHFG- O F/- RA|BE H -3 - Sero- & (=)
[Packag 231\112 Hierarch| = O W =8
- &
[ER-Y <?xml version="1.0" encoding="utf-g"?> ~mf
& 30Fim <selector xmlns:android="hattp://schemas.android.com/apk/res/android™> o=
3 Chapter? <item android:state_pressed="true" .
b@ P android:drawable="@dravable/button pressed" /> <!-- pressed -->
G@SK “ v Files (] <item android:state_focused="true" -
gen [Generated Java Files] android:drawable="@dravable/button focused” /> <!-- focused -->
BA Android 1.5 @ [error: Error: No resource found that matches the given name (at ‘drawable’ with value ‘@drawable/button_normal).} -
& assets | </selector>
G res
> drawable v .
£ buttonl.xml
. Resources ‘ buttonl.xml ‘
[W] icon.png 2 = A
& layout [21 Problems | @ Javadoc [, Declaration | Bl Console 53 =] Properties el B-r3-=0
& values Android

1A AndroidManifest.xml

[2010-10-15 22:29:45 - Chapter7] Error in an XML file: aborting build. -
default.properties
] de.vogella.android.temperature
7 LinearLayouts
<« »
[nf” Android SDK Content Loader

Figure 7-4. Eclipse shows us that our three image state buttons are missing via error flags in the IDE.

We have not put the three image button images in the /res/drawable folder where they
belong. Eclipse is telling us that it does not see each file name that is referenced in the
markup in the directory where it is supposed to be.

NOTE: Once we add valid XML specifiers and code, the Eclipse error messages will disappear.
But this does show how Eclipse is watching out for you in real time, and offering warnings about
what might be missing, what might generate compiler errors, and other common problems.

Let’s create the three button state files. I'm going to use Photoshop, but other good
drawing tools can do the same thing. Also, these PNG images are provided with the
book code examples, so you do not need to create them from scratch if you would
rather not do that.

Just as in the examples in previous chapters, put the graphics on a transparency layer
(indicated in Photoshop by a checkerboard pattern), so that you can overlay the image
button on any background color or image you like. Figure 7-5 shows the completed
images in Photoshop.

CHAPTER 7: Ul Design: Buttons, Menus, and Dialogs

Help

O |
n A

Cul

"

b

!

e,
o w n .

Go M reNupra=(pcOR i S N&FD0

Figure 7-5. Our multistate image button images in Photoshop showing alpha channel transparency areas

Whenever you add new images or other assets to Eclipse, you need to tell Eclipse about
the new assets. To do this, right-click the top-level project folder and select Refresh, as
shown in Figure 7-6. You’ll notice that the red errors no longer appear in the file.

File Edit Refactor Run Source Navigate Search Project Window Help

CEHE 8 BAE -0 BHEE B LR e = [ev)
s Hierarchy| = 8 “buttonlxml &3
& | & || <xml version=ri.o" encoding=rutf-gn2>
= <selector xmlns:android="http://schemas.android.com/apk/res/android"> o=
= (<] <item android:state_pressed="true"
i -
C‘ ,Pc'“p"ﬂ:) - ~d:d: ble="@ le/buttoni_p: /> <!'-- pressed --> -
5 e * bi:state_focused=r"true" -
b @3 gen| Tie=
Go Into fi:drawable="@dravable/buttonl_focused" /> <!-- focused -->
> B And : drawable="@dravable/buttonl_normal" /> <!-- default --> =
& assetq Open in New Window -
a
4 res Open Type Hierarchy 4 s
‘ B:E ShowIn AltShift+ W » v
Copy Ctrl+C
> & 1 g Copy Qualified Name) Declaration | & Console &2 [Properties| Eubl| #B-riv=0
4 Vi
Qa Xb arl (B Paste Ctrl+V
S ~ Chapter7] Error in an XML file: aborting build. =
[defay % Delete Delete
W dewogell o | g ove from Context Crl+ Alt+ Shift+ Down
7 Linearla
Build Path »
Source Alt+Shift+S »
Refactor Alt+Shift+T »
2y Import...
A Export.. -~
v
= €[Refresh [T
i > ot * Android SDK Content Loader

Figure 7-6. Using the Refresh menu option to tell Eclipse that our images are now in the drawable folder

CHAPTER 7: Ul Design: Buttons, Menus, and Dialogs

Editing the main.xml File

Next, open the res folder and right-click the main.xml file to open it for editing. Notice
that our image button source files now appear in the Package Explorer pane.

We need to replace the default text tag in the main.xml file with an ImageButton tag, as
follows:

<ImageButton android:id="@+id/button_one"
android:layout width="wrap_content"
android:layout_height="wrap_content"
android:src="@drawable/button1"
android:paddingTop="5px">
</ImageButton>

Figure 7-7 shows the IDE at this point.

File Edit Refactor Run Source Navigate Search Project Window Help

B-HO 8 8id $-0-Q- 8~ O F - -F- oo~ & (@)
f 1: Hierarchy‘l =08 @ buttonl.xml ﬂg *mainxml &2 = oo
=
=] <‘}=='{> | @ V& <?xml version="1.0" encoding="utf-8"?> -8 .
- o=
{27 3DFilm) . .
4 72 Chapter? <LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
P@ P android:orientation="vertical”
b e@ srcn [Generated Java Files] android:layout_width= ”fill_parem:"
b ﬂied 'dlrS va e % android:layout height="fill parent">
> ndroid 1.] - -
a. et §Z .
G@ass s] <ImageButton android:id="@+id/button one"
4 > res android:layout_width="wrap content"
4 ;= drawable android:layout_height="wrap content"
| buttonl_focused.png android:src="@dravable/buttonl”
[®a] buttonl_normal.png android:paddingTop="5px">
Ba buttonl_pressed.png </ImageButton>
4X) buttonl.xml
[Ra icon.png </LinearLayout>
4 = layout
4X) mainxml
4 = values
4X) stringsxml
{1 AndroidManifestxml
defaul i 2 .
‘ault.properties
prope Layout | main.xmi
17 de.vogella.android.temperature

L7 LinearLayouts (E_w, Problems l"@ Javadoc [@) Declaration \E Console Sgﬁ Properties‘ [EN 5ﬁ| = R il A Elw}
‘Andvoid ‘

1) main.xml - Chapter7/res/layout © Android SDK Content Loader

Figure 7-7. Eclipse with a successful refresh and new ImageButton tag

The first attribute adds an ID of button_one to the ImageButton so we can access it
inside our Java code. The next two lines define the width and height of the image button
via the wrap_content attribute—all very standard Android programming fare.

The next line accesses the button1.xml file that we have created to reference the various
image button states. Notice that you do not need to add the .xm/ extension here, just as
you don’t need to add .png for graphic files. We add 5 pixels of padding to the top of
the image, just to practice using padding values.

Figure 7-8 shows how our Ul Examples app looks when run in the Android 1.5 emulator
(right-click Chapter7 and select Run As » Android Application).

CHAPTER 7: Ul Design: Buttons, Menus, and Dialogs

UI Examples

Figure 7-8. Our multistate image button running in the Android 1.5 emulator

When you click the image button, it changes color and uses the standard orange
background to highlight the button being clicked.

Since we want just the image to be the button (which is why we used transparency and
an alpha channel in Photoshop), we will set a background color, or transparency, next.

Replacing the Default Background

We do not want to use the default Android button background. We want the background
to be transparent so we can use this ImageButton to put an image on top of a button
and its text, as well as being able to make the image itself into a button.

In this example, we are changing the color of the button, rather than changing the size or
shape of the button, so the transparent area remains exactly the same, pixel for pixel,
between the different image state graphics. Thus, we can either set the background
image to our normal button state or set the background color to 100% transparent 32-
bit alpha channel with the #00000000 setting (which means zero red, zero green, zero
blue, zero alpha). This is similar to setting HTML color with the pattern #RRGGBBAA. That is
the most elegant solution, so let’s implement that now.

We’ll do this in a new way, so that you learn how to use another cool Eclipse
function that helps you design your Ul widgets and layouts. | think this is a really

CHAPTER 7: Ul Design: Buttons, Menus, and Dialogs

slick trick, and it was pretty difficult to figure out. As such, this is fairly advanced.
Stick with it, though, and you won't be disappointed.

Click the main.xml tab at the top of your screen, and then click the Layout tab at the
bottom of the pane that shows your XML for the ImageButton (see Figure 7-9). Eclipse
will render your XML markup exactly as it would look in the emulator. Eclipse also
provides (on the left) drag-and-drop widgets and layouts, so you can visually design
your Ul. The normal work process is to switch back and forth between the XML markup
coding tab and the visual layout editor tab so you can make sure your XML code is
nested properly. This is also a great way to learn XML layout and Ul coding in Android.

File Edit Refactor Run Navigate Search Project Window Help

| BHAE -0 BHEC~ @S FH~ H -G 0Era- 5 [@aa)
[[# Package Explorer B9 % Hierarchy | = O|/la) buttonl.xml ‘C(*main.xml ﬁ _[J) Usernterface java | =8
B = =
B g ‘ & 7 || Editing config: default D oz
o=
7 3DFilm
29 Chapter? Devices{ADPl v]CcmﬁiLandscape, closed v]chcale{ v][Theme V][Create...]
o
@ s (= Layouts @
£ chapter.seven
[3) Usernterfacejava (A) AbsoluteLayout
&8 gen [Generated Java Files] (D) DialerFilter
=) Android 1.5 (E) ExpandableList...
a
q@ assets (F) FrameLayout
&> res o
= drawable @G"d\éew
| buttonl_focused.png (= Views ®
| buttonl_normal.png) SurfaceView
|| buttonl_pressed.png .
W) View
4X| buttonl.xml
|®a] icon.png @) ViewStub
= layout @ AnalogClock
@ AutoComplete...
i values =
X stringsxml Layout m;n.xml[
i AndroidManifest.xml [2(Problems | @ Javado:‘@) Declaration | = Console‘g Properties)0 PEREHMYSO

default.properties

07 de.vogella.android.temperature Property Value 2
27 LinearLayouts ImageButton ‘=
Adjust view bounds
Background #00000000 (]

Baseline align bottom

Clickable

Crop to padding

Drawing cache quality

Duplicate parent state

Fading edge

Fading edge length o8

< m | »

Android SDK Content Loader

A drawable to use as the background.

Figure 7-9. Using the Eclipse visual layout editor and Properties tab to set your image background to transparent

An even cooler tab is the Properties tab at the bottom of the screen. This tab shows all
of the properties assigned or available to the Ul element tag that you have selected in
the layout view. Click the button element, and a red line will surround the button,
showing you what is currently actively selected. In the Properties tab, you will see all of
the properties and variables that you can set and customize for the ImageButton class.

Click the Background property in the Properties tab to highlight it. Eclipse then provides
a button to search for a file to use as a background image.

CHAPTER 7: Ul Design: Buttons, Menus, and Dialogs

Since we are just going to set the background to transparent, we do not need to use this
button for the example. Instead, type the transparency value #00000000 into the field
next to Background in the Properties tab, as shown in Figure 7-9. Then click somewhere
else in the IDE. The value will be accepted and the results displayed in the Layout tab!

That finishes up our custom image button. Next, let’s look at how to add text to your
app’s UL

Adding a Text to Your Layout

Besides buttons, another common Ul element is text. Android provides the TextView
class to implement text in a Ul.

Since we are using the visual layout editor in Eclipse, let’s continue to explore its
functionality. Click the left header bar called Layouts to close the layouts selection view,
leaving only the Views (remember widgets are really views) pane open. Clicking these
headers will toggle them open and shut at any time (try it now if you don’t believe me).

Next, click the scrollbar (gray, with a tiny arrow) until you see the TextView widget.
Select and drag (and drop) it into the Layout view window under the ImageButton. Our
TextView is now in the Ul view and is ready to customize by using the Properties tab at
the bottom of the Eclipse IDE. Let’s do that now.

Scroll down to the Text properties and set up some custom values, such as Sample
Text, and a text color of gold to match the ImageButton default image (an RGB value of
#CCCC77 will work well; this is a hexadecimal numeric representation of a 24-bit value).
Figure 7-10 shows the Eclipse IDE at this point.

P R N)
File Edit Refactor Run Navigate Search Project Window Help
-HS A IBHAEIF-0-Ar BHG OB FiH G PEr D & (@)
(1 Package Explorer 23"\\ % Hierarchy\‘ = B[l buttonxml (\Q *mainxml 23 [J] Usernterface java ‘ =g
- &
= g3 p Y iti 3 -
=< ‘ @ Editing config: default E g.__
&7 3DFilm . .][C]
'mg Chapter? Devlces{ADPl v]Conflg[Landscapg close v]Locale{ v][Theme v || Create...
@8 src

(= Layouts S

(= Views @
I Frogasssoar:

3 chapter.seven
[3) Usernterface java
&8 gen [Generated Java Files]

=) Android 1.5 ® RadioButton
& assets (® RatingBar
= res © SeekBar
= drawable @S inner
(W& buttonl_focused.png ® Tertvien

[Ra buttonl_normal.png

[Rs] buttonl_pressed.png (@ TimePicker

X buttonLxml ToggleButton %
(@] icon.png Layout | mainxml
2 layout 7 7 >
¥ mainaml (1308 Problams[@ Javadoc“ﬁ% Declaration | = Consolefw 1%9 RrtY=H8
§2 values Propet alue 0
AX) stringsxml P
: Tot &
| AndroidManifest.xml Text appearance
default.prope.rtles Text color #Cccen
£ devogela.android temperature Text color highlight |
1 LinearLayouts Text color hint o
Text color link Y/
< I J »
: n® Text to display. © Android SDK Content Loader

Figure 7-10. Using the Eclipse visual layout editor to add and configure a TextView widget in the main.xml file

CHAPTER 7: Ul Design: Buttons, Menus, and Dialogs

Finally, we’ll set a dpi value for padding, so that there is some space around our
TextView. Scroll to the Padding properties in the Properties tab at the bottom of your
Eclipse IDE, and type in 12dip, as shown in Figure 7-11. Then click another field, and
you will see the text space itself out.

3 Java - Chapte7/es/ayout/mainam - Ecpse S - W o E)

File Edit Refactor Run Navigate Search Project Window Help

i@ B iP-0"Q@- BHEGY @S~ L -Gy~ & [
(12 Package Explorer 52 2 Hierarchy| = 5[l buttontaml [cl *mainaml 52 _[J] Userntefacejova | = 0]
y h g -
B B | & || editing config: defauit Explode [
%
3DFil
E Ch;;;ﬂ Devices ADPL v Config|Landscape, close v]Locald (Theme - |[create..
src
Layouts
£ chapterseven vaoi
P (= Views @0
[J) Userdnterfacejava = —

gen [Generated Java Files] -
=\ Android 1.5 (® RadioButton

s, assets (® RatingBar
& res (©) SeekBar
i drawable @ Spinner
|Ra buttonl_focused.png ® TextView
(W] buttonl_normal.png —
[ms] buttonl_pressed.png Layout | mainxml
4X| buttonl.xml y 7 5 7 - =) 2 v = 8)
] icon.png (38 Problems | @ Javadoc‘@) Declaration |] Console | T Properties &3 PR =
= layout ‘ Property Value i
X mainxml I Padding
& values Padding bottom
4X] stringsxml Padding left E
A AndroidManifestxml Padding right =
default.properties Padding top
7 dewvogella.android.temperature Private ime options ™
£ LinearLayouts < " ‘ C
(1) Sets the padding, in pixels, of all four edges. Android SDK Content Loader

Figure 7-11. Setting the padding for our TextView via the Properties tab in the Eclipse IDE

Adding an Image

Finally, let’s add another popular type of Ul element used for design: the image. Go to
the code bundle for this book and copy the two 32-bit image files named image1.png
and image2.png into your Chapter7/res/drawable folder.

Right-click the Chapter7 folder in the Package Explorer pane and refresh the project.

Now, let’s add an ImageView tag to our XML. To do this, drag the ImageView from the
Views list on the left and drop it under the TextView. This gives us a LinearLayout
ViewGroup containing ImageButton, TextView, and ImageView tags.

Next, in the Properties tab below the visual editing window, click the Src (for Source)
property, and then click the button on the right with three dots (ellipsis) to open the
Reference Chooser dialog. Open the Drawable folder and select image1 for our
ImageView source imagery, as shown in Figure 7-12. Click the OK button to close the
dialog.

Download from Wow! eBook <www.wowebook.com>

CHAPTER 7: Ul Design: Buttons, Menus, and Dialogs

= Java - Chapter7/res/layout/main.xml - Eclipse =B %
File Edit Refactor Run Navigate Search Project Window Help
") BRE $-0-AU- BHFCG- S F~ H-EH ooy~ & ([§71ava)
[# Package Explorer R k Hierarchy | “ B/la buttonl.xml | @) *mainxml PN Usernterfacejava | = 51
o L A 8
2 5| & 7| editing config: default Explode D s
127 3DFilm .) - o
,1;@1 Chapter7 Devuces{ADP] VIConﬁg[Portrau V]Locale{q[Theme '][Createn.l
@ st (= Layouts
f chapter.seven =
[J] Usernterfacejava & Views . &
&8 gen [Generated Java Files] @ Datepicker
=4 Android 1.5 (© DigitalClock
& assets (® EditText
Q
> res © Gallery
= drawable
I
[ms] buttonl_focused.png @ magerJtton
[Rs| buttonl_normal.png (D ImageView
[ma] buttonl_pressed.png @MultiAutoCom...
X buttonlxml (®) ProgressBar
L fCDn.png (® RadioButton
|Ra imagel.png |l R
— =) ;g- atingBar
= Reference Chooser A =il ekBar
Choose a resource inner
" extView
type filter text
imePicker
b Color oggleButton
4 Drawable o
buttonl wolineListitem
buttonl_focused ideoView
buttonl_normal ~;
buttonl_pressed mainxml ‘
reon lems | @ Javadoc | [, Declaration | El Console ‘ T Properties 532 =8
Birac”
Value o
croll X
croll Y
ound effects enabled
rc
New Drawable.. tyle il
ag (]
@
ance isibility -
m] »
il Sets a drawable as the content of this ImageView. Android SDK Content Loader

Figure 7-12. Choosing our image resource via the Reference Chooser dialog, accessed by clicking the ellipsis in
the Src field in the Properties tab

In your visual layout tab, you will now see the image and how its transparency area
composites smoothly with the black background color.

Later, when we add a menu to our app, we will change the background color to white to
show how this image transparency can help with Ul compositing over different
background colors or imagery.

So now in the next screen, you will see our ImageButton, TextView, and ImageView with
enough screen area to hold a bottom menu of icons. Also note that we used the drop-
down at the top to change our orientation to Portrait mode, as shown in Figure 7-13.

This orientation fits our application design better. We’ll add menus in the next section.

CHAPTER 7: Ul Design: Buttons, Menus, and Dialogs

File Edit Refactor Run Navigate Search Project Window Help
midl®] Bild $-0 Q- B¥E- @S F- L -F - 0o~ & [
‘Vﬁ Package Explorer 23’7 . Hierarch = E"‘ '\g buttonl.xml ‘Lg *mainxml EG"‘ \ m Userlnterface java | = 0|
ge bxp: o y ! J -
B % | & || Editing config: default Explode E oz
=
127 3DFilm
] Chapter? DeviceE: =Locale{V][Theme '][Create...l
=
@ src (= Layouts
fi# chapter.seven =
[J) Usernterfacejava & Views ki
8 gen [Generated Java Files] @ Viewstib
=) Android 1.5 (@ AnalogClock
?\CI"? assets @ AutoComplete...
gz e Button
- . (© CheckBox)
|R buttonl _focused.png Sample Text
[m buttonl_normal.png (© Chronometer
| buttonl_pressed.png @ DatePicker
a¥l buttont.xml ©) DigitalClock
#: p— ® EditText
._J imagel.png
W imagelpng © Gallery
i layout (D ImageButton
#X| mainxml <: (D) ImageView
g values. ' ™ MultiAutoCom...
41X strings.xm|
A AndroidManifest.xml ® ProgressBar
2 default.properties (® RadioButton
prop!
107 dewvogella.android.temperature (® RatingBar
7 LinearLayouts () SeekBar
o
Layout | main.xml
[[2 Problems | @ Javadoc [[} Declaration | El Console | =] Properties 2 b = 0|
perti .
E
Property Value o
‘ effects enabled
<: Src @drawable/imagel
Style
Tag |
Tint
Visibility =
< m] »
nf Android SDK Content Loader

Figure 7-13. Changing our visual editing environment orientation to portrait

Using Menus in Android

Menus in Android are quite different from the top-mounted text menus found directly
beneath the title bar in PC applications. The menu function on a smartphone is a bit
different for ease of use, and is an actual physical button called Menu on Android
phones.

Pressing the Menu button calls up a menu, which is—you guessed it—at the bottom of
the screen, instead of at the top. To make it even more user-friendly, it is composed of
five large square icons that can be easily touched to control application features.

For our application, we will have our menus do things with our ImageView object,
background color, and alert dialog (which we’ll add later in the chapter), so that
everything we cover in this chapter ties together.

CHAPTER 7: Ul Design: Buttons, Menus, and Dialogs

Creating the Menu Structure with XML

As you might have guessed, you set up your entire menu structure in an XML file. The
menu XML file goes in a /res subfolder named menu, as required by Android. So, first
create a folder under the /res folder called menu. Next, right-click the Chapter7 project
folder, select New » File, and select the Chapter7 folder and its /res/menu subfolder for
the file’s location. Name the file mainmenu.xmi. Then type in the following XML for the
menu:

<?xml version="1.0" encoding="utf-8"?>
<menu xmlns:android="http://schemas.android.com/apk/res/android">

<item android:id="@+id/buttonone"
android:icon="@drawable/imagelicon"
android:title="@string/showimage1" />

<item android:id="@+id/buttontwo"
android:icon="@drawable/image2icon"
android:title="@string/showimage2" />

<item android:id="@+id/buttonthree"
android:icon="@drawable/menu3icon"
android:title="@string/showwhite" />

<item android:id="@+id/buttonfour"
android:icon="@drawable/menu4icon"
android:title="@string/showblack" />

<item android:id="@+id/buttonfive"
android:icon="@drawable/menu5icon"
android:title="@string/showalert" />
</menu>

The menu XML tag is fairly straightforward. It simply declares the location of its XML
schema definition and nested item tags that specify attributes for each menu item to be
added. The Android menu holds five items comfortably, and it can hold more than that
via a sixth item that drops down a submenu. Most Android applications use five or fewer
menu items.

Each of the item tags has the following three attributes:

B The android:id attribute allows the item tag to be given a name and
referenced in your Java code.

B The android:icon attribute is the location of the graphic file that will be
used for the menu icon. In the first item, it is located in the
Chapter7/res/drawable folder and named image1icon.png, shown in
Android shorthand as @drawable/image1icon.

B The android:title attribute is the title or label for the menu button.
The title is in the strings.xml file, where text constants are defined
(we’ll do that next).

http://schemas.android.com/apk/res/android

CHAPTER 7: Ul Design: Buttons, Menus, and Dialogs

Figure 7-14 shows the completed Chapter7/res/menu/menuname.xml file. The figure
also shows the five icon files (image1icon, image2icon, menu3icon, menu4icon, and
menubicon) placed in the /res/drawable folder, where Android looks for image files for
the application. The images are all 24-bit PNG files with transparency, as you will see
when they appear on our menu’s buttons.

"2 Java - ChapterT/res/men/mainmenuxmi - Edipse | e
File Edit Refactor Run Source Navigate Search Project Window Help

B BIBAE $-0-Ar BHEY OB S & (75w
BB EIR AR R

(18 packageBlorr £, T Hierchy| = 0|0 burontamt (i) mainsnt (3 maiomenoml 5>, (0 ssangeom | =8|
2

B %| & Y||® <2xml version="1.0" encoding="utf-8"?> -3

===
o=
.7 3DFilm A .) o
. ES Chapter? é‘%mlns.andrcud— http://schemas.android.com/apk/res/android">
‘@ %% android:1d= "@+id/buttonone”

4 i chapter.seven
> [J] Usernterfacejava
> &8 gen [Generated Java Files]

android:icon="@drawable/imagelicon"
android:title="@string/showimagel" />

4 Gﬂ Android 1.5 <item android:id="@+id/buttontwo”
> assets android:icon="@drawable/imageZicon"
4 Sf7 res android:title="@string/showimage2"” />
4 ;= drawable
|Rs| buttonl_focused.png <item android:id="@+id/buttonthree”
|Ra] buttonl_normal.png android:icon="@drawvable/menu3icon”
|ms| buttonl_pressed.png = android:title="@string/showvhite" />
AX] buttonl.xml
[R4] icon.png <item android:id="@+id/buttontwo"

android:icon="@dravable/menudicon”

|ma] imagel.png
android:title="@string/showblack" />

|Rs| imagelicon.png
[ms| image2.png

|ms| image2icon.png
|| menu3icon.png
[Rs| menudicon.png
|Rs| menuSicon.png </menu>

4 = layout
X mainxml

4 menu | — -
AX] mainmenu.xml « »

<item android:id="@+id/buttontwo”
android:icon="@dravable/menuSicon"
android:title="@string/showalert"” />

4 = values mnmenu.x@
AX) strings.xml - = = c =
) AndroidManifestxml = !E_n‘ Problems‘ @ Javadocl@ Declaration | & Console 2 \\fﬂ Properties 8 |
1) mainmenu.xml - Chapter7/res/menu : Android SDK Content Loader

Figure 7-14. View of the mainmenu.xml file showing menu and item tags. Also note the menu icons in the
drawable folder.

Defining Menu Item Strings

Next, we’ll go into the strings.xml file in the /res/values folder (under the menu folder in
the Package Explorer pane) to edit our application’s string constants. We’ll add the text
for our five menu items. Follow these steps to add the five string values specified in our
mainmenu.xml file:

1. Right-click the strings.xml file and select Open to open it in a tab for
editing in the Eclipse IDE, as shown in Figure 7-15.

CHAPTER 7: Ul Design: Buttons, Menus, and Dialogs

2

Java - Chapter7/res/values/strit I - Eclij
File Edit Refactor Run Navigate Search Project Window Help

N EHO A BAE I F-0-A BHE SO S L F e G

[+ Package Explorer &3 Tz Hierarchﬂ =0 @ buttonl.xml (@ main.xml (m L java (i xmjf <1 stril [m | !
=
& | es ¥ .
| & & Android Resources {(default) as
17 3DFilm -
- || Resources o
bggapteﬂ Elements OO0 OEMA:
src
3 chapter.seven ® hello (String)
[J) Usernterface java ® app_name (String)
&8 gen [Generated Java Files) (© background (Color)
=) Android 1.5
G'@ assets
a
> res -Down
= drawable

|Ra| buttonl_focused.png
[ms| buttonl_normal.png
[Wa| buttonl_pressed.png
AX] buttonl.xml
[Ws] icon.png
|ma| imagel.png
[ms| imagelicon.png
[ma| image2.png
[ms| image2icon.png
|Rs| menu3icon.png
[ms| menudicon.png
|Rs| menuSicon.png
= layout
AX] mainxml

= menu =

IX| mainmenu.xml

- —
= values R@strings.xml I
AX] strings.xml

TR =Tml gL Iﬂfﬁ Problems (@ Javadoc ﬂg% Declaration [E Console &2 =] Ploperties] [EA ﬂ | #fB~-ri-” E]
0°® Android SDK Content Loader

Figure 7-15. Adding string values for our menu items in the visual editor in Eclipse IDE

2. Click the Resources tab at the bottom of the pane to see a visual
representation of the values in the strings.xml file.

3. Click the Add button to bring up the dialog shown in Figure 7-16. Select
String and click OK to add a string to our strings.xml/ file.

CHAPTER 7: Ul Design: Buttons, Menus, and Dialogs

= Java - Chapter7/res/values/strings.xml - Eclipse 1 1 o|B] %
File Edit Refactor Run Navigate Search Project Window Help

O-HS 8 B iI-0-% BHE- MBI -F-Boro -

[% Package Explorer 52 13 Hierarchy‘ | 1A buttonl.xml ‘ 1A mainxml | 1A mainmenu.xml (Q) *stringsxml &3 S’ “““
2
K & Android Resources (default) gz
3DFil
?9 Cha'p::ﬂ “ || Resources ©®O©® ® () @ () (@) Az | Attributes for showimagel (String)
Elements
(8 src (® Strings, with optional simple formatting, can be
3 chapter.seven @ hello (String) :tored a_nd retrieved as resl;:urc_es. Y:u can ad: .
B - ‘'ormatting to your string by using three standar:
a) Usernterface java © app_name (String) HTML tags: b, i, and u. If you use an apostrophe
&3 gen [G.enerated fava Files] RACKoIaURLO00 or a quote in your string, you must either escape
=i Android 1.5 itor enclose the whole string in the other kind of
% assets |
& ;: p Down
ra
\E Create a new element at the top level, in Resources.
(ma]
L3
I © Color
(R (©) Dimension
] (D) Drawable
o] (Dinteger Array
] (Dltem
L3} | (40O
LY (§]String Array
R4 | (S)style/Theme
L3
= la
B
42 mel
& h
= values Resources‘ st(ings‘xml\
AX) stringsxml > - = =
[AndroidManifestxml il (E_(Problemsl @ Javadoc[@ Declavation]E Console &2 p Propertiesl ;] | 2 Erg~ [} ‘
o® Android SDK Content Loader

« A

Figure 7-16. Selecting a String element in the resource selection dialog in the add string resource work process

4. Inthe area on the right, in the Name field, enter showimage1. In the Value
field, enter IMAGE ONE. Click the Add button to add this string value to
the strings.xml file.

5. Repeat steps 3 and 4 to add four more string values with the following
names and values:

B showimage2, IMAGE TWO
B showwhite, USE WHITE
B showblack, USE BLACK
B showalert, SHOW ALERT

6. Set our default black background color of #000000 as a Color object, as
shown in Figure 7-17.

CHAPTER 7: Ul Design: Buttons, Menus, and Dialogs

r B
= Java - Chapter7/res/values/strings.xml - Edi_ @ﬂu
File Edit Refactor Run Navigate Search Project Window Help
MBS 8 B88d $-0 - BHE- OV~ 8 -3 -6E-a- &)
H Package Explorer ZZ“‘_?: Hierarchyy‘ = B[l buttontxml \‘@ mainxml ‘ILQA mainmenu.xml {M’l = 0|
g
|~ i Android Resources {default oz
o=
127 3DFilm a = o~
£ Chapter? = IE{I::::"(‘:S ®O©O®®B @[Az Attributes for background (Color) |
@8 src (© A color value specifies an RGB value with an
3 chapter.seven ® hello (String) alpha channel, which can be used in various
m Usernterface java ®) app.nam 9 ino places such as specifying a solid color for a
a - Drawable or the color to use for text. It always
a " <
i Ze';[ﬁ":’;“d Java Files] background (c°'°”) begins with 2 # character and then is followed
ndroid 1. ShOWIITIageL (atning, by the alpha-red-green-blue information in
% assets @ showimage2 (String) one of the following formats: #RGB, #ARGB,
T res ® showwhite (String) #RRGGBB or *AARRGGEB.
4= drawable ® showalert (String) Name* backgrourﬁ
|Ra] buttonl_focused.png ® showblack (String) .
|Ra| buttonl_normal.png Yalue” #000000 L
|Ra buttonl_pressed.png =
AX] buttonl.xml
[icon.png
|Ra| imagel.png
|Ra| imagelicon.png
|Ra] image2.png
|Ra| image2icon.png
|Ra| menu3icon.png
|Ra| menudicon.png
|| menuSicon.png
i layout m|
X mainxml
4= menu =
AX] mainmenuxml ~
i values Resources[strings,xml‘
4X) stringsxml - > 7 = : = =
A AndroidManifestxml i |E_: Problems | @ Javadoc‘@ Declaration|E Console 52 . Properties kpil#B~-r5-=06 |
o® Android SDK Content Loader

Figure 7-17. Editing the background color resource in the strings.xml file via the Eclipse visual editor

7. Add a white background called background2, using a value of #FFFFFF.

Inflating the Menu Structure via Java

Now it is time to add in our Java code, which inflates our menu from the XML file into
our application’s memory. The term inflating a resource describes the process of the
Android operating system taking the data described in an XML file and populating an
object that can be accessed and used in Java. In this case, it is our mainmenu object,
which contains five menu selection buttons, their icon resources, and the text captions.

Here is the Java code to add to our Userinterface.java file:

public boolean onCreateOptionsMenu(Menu menu) {
MenuInflater inflater = getMenuInflater();
inflater.inflate(R.menu.mainmenu, menu);
return true;

Android has a dedicated Java object for inflating XML code constructs into an object-
based format for use with Java. This is precisely what you are seeing here inside the
onCreateOptionsMenu() method, which uses the inflate() method and the
R.menu.mainmenu path to our mainmenu.xml file. It creates the inflater MenuInflater

CHAPTER 7: Ul Design: Buttons, Menus, and Dialogs

object, which contains our inflated menu objects. The R equates to the res folder of our
project, so R.menu.mainmenu is equivalent to
c:/Projects/Chapter7/res/menu/mainmenu.xmi.

We also added two import statements at the top of our code to tell Android which Ul
code we would be using. We specify android.view.Menu and
android.view.MenuInflater, which form the foundation for our menu and its inflation
from the XML format.

import android.view.Menu;
import android.view.MenuInflater;

Figure 7-18 shows the code added to UserInterface.java.

, ,

File Edit Refactor Run Source Navigate Search Project Window Help
-EHe ‘B BAE B-0-A%- BEE- @y POAEN & @)
IR IR I A

i ackage Explorer ierarc)" <l buttonl.xml [l mainxml j < mainmenu.xm| 1= strings.ml] frae
[% p Exj R\ _RBH hy 8 buttonl. | | | 8
&

Gj\>| ® v package chapter.seven; -

=3
o=
17 3DFilm -~ .) .
<4 Ch = “import android.app.RActivity;
1= Chapter7 N R

) import android.os.Bundle;
sre import android.view.Menu;
3 chapterseven

= import android.view.MenuInflater;
J] Userlnterface,java

@8 gen [Generated Java Files]

public class UserInterface extends Activity {

B Android 1.5 /** Called when the activity is first created. */

& assets @Override

Jej res public void onCreate (Bundle savedInstanceState) {
4= drawable super.onCreate (savedInstanceState) ;

|Ra| buttonl_focused.png
|Ra| buttonl_normal.png

setContentView (R.layout.main);
}

| buttonl_pressed.png

@ buttonl.xml public boolean onCreateOptionsMenu(Menu menu) {
@ icon.png MenuInflater inflater = getMenuInflater():
\E imagel.png inflater.inflate (R.menu.mainmenu, menu);

W4 imagelicon.png return true:

|Ra| image2.png }

|Ra| image2icon.png

|Ra| menu3icon.png ' g ht

|Rs| menudicon.png = - - -

|Ra| menuSicon.png [/ Problems | @ JavadocI@) Declaration[E Console 83\\] Properties BN @'—ﬁ | 2= B-r§y=0
i layout Android

d_‘ﬂ mainxml| [2010-10-24 16:45:56 Chapter7] HOME is up on device 'emulator-5554"' -
33 menu [2010-10-24 16:45:56 Chapter7] Uploading Chapter7.apk onto device 'emulator-5

@ mainmenu.xml [2010-10-24 16:45:58 - Chapter7] Installing Chapter7.apk...
i values [2010-10-24 16:46:29 - Chapter7] Success!
d,‘ﬂ strings.xml — || [2010-10-24 16:46:30 - Chapter7] Starting activity chapter.seven.UserInterface D
A AndroidManifest.xml [2010-10-24 16:46:34 - Chapter7] ActivityManager: Starting: Intent { action=and _
default.properties ||« (T] »
o® l Writable ‘ Smart Insert ‘ 16:1 Android SDK Content Loader

Figure 7-18. Creating our menu using the Menulnflater in the Eclipse IDE Java editing pane

Note that we have implemented our application’s options menu in little more than a half-
dozen lines of Java code. We have offloaded about 80% of the menu implementation
coding to XML, and we can continue to add features and fine-tune menu options inside
the XML markup as well.

CHAPTER 7: Ul Design: Buttons, Menus, and Dialogs

Running the Application in the Android Emulator

Let’s run our code and see our menu in action. Right-click the Chapter7 folder in the
Package Explorer pane and select Run As... » Android Application. After the emulator loads
and you start up your application, the emulator should look like Figure 7-19.

UI Examples

Figure 7-19. Running our application in the Android 1.5 emulator

As you can see, the Android phone has a prominent Menu button, which we can press
to display our menu at the bottom of the screen. You can see the translucency of the
menu. If you look closely at the first button, you will see the bottom of the ImageView
behind the menu. If you click the various buttons, they will highlight in orange and close
the menu, which you can reopen with the Menu button.

So, the default way an empty menu works is harmless to the application. It allows us to
develop and test the way our menu looks via XML before we add in the Java logic to
implement the actions that will be called when each button is pressed.

Making the Menu Work

Let’s add our menu item implementations now. First, we need to give our LinearlLayout
an ID, so that we can find it in our code.

<LinearlLayout xmlns:android="http://schemas.android.com/apk/res/android"

http://schemas.android.com/apk/res/android

CHAPTER 7: Ul Design: Buttons, Menus, and Dialogs

android:id="@+id/uilayout"
android:orientation="vertical"
android:layout_width="fill parent"
android:layout_height="fill parent"
>

Now, we need to implement the onOptionsItemSelected() method, where we code the
choices between our different menu item selections and what they do in our application
if and when they are selected.

public boolean onOptionsItemSelected(MenuItem item) {
LinearLayout bkgr = (LinearLayout)findViewById(R.id.uilayout);
ImageView image = (ImageView)findViewById(R.id.ImageView01);

switch (item.getItemId()) {

case R.id.buttonone:
image.setImageResource(R.drawable.image1);
return true;

case R.id.buttontwo:
image.setImageResource(R.drawable.image2);
return true;

case R.id.buttonthree:
bkgr.setBackgroundResource(R.color.background2);
return true;

case R.id.buttonfour:
bkgr.setBackgroundResource(R.color.background);
return true;

case R.id.buttonfive:
// The Alert Code For Next Section Goes Here!
return true;

default:

) return super.onOptionsItemSelected(item);

}

This code is a bit more complex than our MenuInflater code. At its core, it implements a
switch structure. The switch is a Java construct that says, “In the case of this, do that,
and in the case of this, do that; otherwise, as a default, do this.” This type of code
construct is perfect for the main Android menu, as it usually has only five or six items.

Figure 7-20 shows the Userinterface.java code in the Eclipse editor in context with our
previous two code blocks. In the figure, the new code is boxed. We will cover the top
import statements, then the outer onOptionsItemSelected() method, and then its inner
switch statement and programming logic for each button case statement and what it
needs to do in the Ul (switch images, background colors, and so on).

Download from Wow! eBook <www.wowebhook.com>

CHAPTER 7: Ul Design: Buttons, Menus, and Dialogs

File Edit Run Source Navigate Search Project Refactor Window Help

GrEe: 8 88d: -0 EH#C- O F- PHAoEh - Cero- 5 (& Java |
M& Hierarchy| = O1(lc buttontaml [d) mainaxmi [[3] java NG mai mi | [stringsaml | = a7
&
B <}§>| & 3 package chapter.seven; - -
&3 30Fim e ?mport andro:i.d. app.Activity; £=
-a import android.os.Bundle;
4 32 Chapter? ; o
import android.view.Menu;
a (3 src .

import android.view.MenulInflater;
import android.view.Menultem;

import android.widget.ImageView;
import android.widget.LinearLayout;

4 f} chapterseven
» [Userlnterface java
b &8 gen [Generated Java Files]
» =i Android 1.5

&l
= assets public class UserInterface extends Activity {

4 55 res @Override /** Called when the activity is first created. */
4 ;= drawable public void onCreate (Bundle savedInstanceState) {

|Wa| buttenl _focused.png
M| buttonl_normal.png
|ma] buttonl_pressed.png

super.onCreate (savedInstanceState);
setContentView (R.layout.main);
}

X buttonLxml public boolean onCreateOptionsMenu(Menu menu) {

R4 icon.png MenuInflater inflater = getMenulnflater():

EI imagel.png inflater.inflate (R.menu.mainmenu, menu);

[R] imagelicon.png return true;

|Ws| image2.png " - - -

EI imageZicon.png pubh‘c boolean onOpc:mn:Ic:emSelecced (Men?un:sm item) (A)
LinearLayout bkgr = (LinearLayout)findViewById(R.id.uilayout);

|Ra] menu3icon.png
|Rs| menudicon.png
|Rs| menuSicon.png

ImageView image = (ImageView)findViewById(R.id.ImageView01);

switch (item.getItemId()) {

4 = layout case R.id.buttonone:
X mainxml image.setImageResource (R.drawable.imagel);
4 §> menu return true;
4X] mainmenuxml case R.id.buttontwo:
4 = values image.setImageResource (R.drawable. image2) ;
AX] stringsxml return true;
A AndroidManifestxml case R.id.buttonthree:

bkgr.setBackgroundResource (R.color.background?) ;
return true;

case R.id.buttonfour:
bkgr.setBackgroundResource (R.color.background) ;
return true;

case R.id.buttonfive:
// The Alert Code For Next Section Goes Here!
return true;

default:
return super.onOptionsItemSelected (item);

}

default.properties
[C7 dewvogella.android.temperature
7 LinearLayouts

[[E Probiems 82 _@ Javadoc| [&) Declaration|] Console | I Properties | ®° -0

o* chapter.seven.L java - C

p

Figure 7-20. Java code to implement our menu functionality shown in the Eclipse IDE

First are the import statements for the Android classes that we are going to use in our
onOptionsItemSelected() method (see the top box in Figure 7-20):

B Since we reference MenuItem in our onOptionsItemSelected() method,
we need to import android.view.MenuItem.

B Since we are going to switch image resources in our ImageView Ul
object, we also need to import android.widget.ImageView.

B Since we are going to change our LinearLayout background color
from black to white, we need to import android.widget.LinearLayout
as well.

Remember that importing the class libraries that we are going to use in our Java code
makes sure they are in memory when Eclipse needs to use them during the compilation
of our Java code.

CHAPTER 7: Ul Design: Buttons, Menus, and Dialogs

Next, let’s examine our onOptionsItemSelected() code. First, we need to create
references to our LinearLayout and ImageView objects, so that we can operate on these
objects. This way, we can adjust their resource values to change our menu buttons’
image and background color.

The first line creates a LinearLayout object called bkgr and sets it to the LinearLayout
that is assigned the ID uilayout via the findViewById() method. The second line
creates an ImageView object called image and sets it to the ImageView that is assigned
the ID ImageViewo01 in the same way. These IDs can be seen in the main.xml file and tab,
so you can check that everything matches up.

Finally, we have the Java switch statement. It starts with switch(item.getItemId()),
which means “Decide between the following options (each case statement) based on the
ID of the MenuObject that we named item. If nothing matches, just use the default
action at the bottom of the statement decision tree list.” The case statements work as
follows:

B The first case statement says, “In the case of the item MenuItem with
an ID of buttonone being passed, please set the image ImageView
object’s image resource to the 24-bit PNG image called image1 in the
/drawable folder using the setImageResource() method.”

B The second case statement says, “In the case of the item MenuItem
with an ID of buttontwo being passed over, please set the image
ImageView object’s image resource to the 24-bit PNG image called
image2 in the /drawable folder using the setImageResource() method.”

B The third case statement says, “In the case of the item MenuItem with
an ID of buttonthree being passed over, please set the bkgr
LinearLayout object’s background resource to the color resource
called background? in the /values/strings.xml resource using the
setBackgroundResource() method.”

B The fourth case statement says, “In the case of the item MenuItem with
an ID of buttonfour being passed over, please set the bkgr
LinearLayout object’s background resource to the color resource
called background in the /values/strings.xml resource using the
setBackgroundResource() method.”

B The fifth case is left open for our next section, and thus the button
does nothing at this point.

If none of the case statements match IDs passed over to operate on, then the default
action is made, which is to pass over to the onOptionsItemSelected() method of the
superclass.

CHAPTER 7: Ul Design: Buttons, Menus, and Dialogs

Adding Dialogs

An Android dialog is always created as part of an activity, and is presented in the form of
a small, gray pop-up window that appears on top of the current activity’s Ul. Android
dims that Ul so that it does not compete with the dialog box.

The Dialog class is used to create an interruption of your current activity in order to
collect or relay information to your application’s end user. Examples of uses for dialogs
include alert notifications, end-user option selection, information data collection, date
selection, time selection, task or processing progress bar monitoring, and so on.

Using Custom Dialog Subclasses

Four custom subclasses of the Dialog class are provided as part of the Android API:
B AlertDialog
B ProgressDialog
B DatePickerDialog
B TimePickerDialog

You can also subclass your own custom Dialog class (say, CustomDialog) so that it does
exactly what you need it to do.

The general way to create a basic dialog within any given activity is via the
onCreateDialog(int) method. Android uses this method to track the dialog created,
which activity it belongs to, and its current state.

To display a dialog once it is created, you use the showDialog(int) method, specifying
the number of the dialog you wish to display. To hide or dismiss a Dialog object, use the
dismissDialog(int) method, and the Dialog object will be removed from memory and
the application.

Here, we’ll take a closer look at the most often used (and the recommended) Dialog
class: AlertDialog. Android provides an easy and powerful way to construct alert
dialogs with many features.

Displaying an Alert Dialog

The AlertDialog class provides a lot of built-in dialog features, such as a title, user
message, up to three buttons, and a list of selectable items. You can even use check
boxes and radio buttons in your list.

The AlertDialog works its magic via a dialog builder that provides a ready-made dialog
code structure for you to create complicated dialogs via the AlertDialog.Builder class.

As shown in the boxed areas of Figure 7-21, there are four main parts to adding our
AlertDialog to our existing Android application.

CHAPTER 7: Ul Design: Buttons, Menus, and Dialogs

= Java - Chapter7/src/cha
Run Source Navigate Search Project Refactor Window Help
in-E@& BHE I B-0-Ar BHCG @S H PEACED H-FHre ey
[# PackageExp 22 T2 Hiemchy‘l = O|[la buttonlxml [Lg, main.xml M{Q mainmenu.xml] [d stringsxml |

():DI @ - import android.view.MenuInflater;
import android.view.Menultem;

E-\ i[:‘F”T 7 import android.widget.ImageView;
> Eap e import .widget.LinearLayout;
src

import
import

app.AlertDialog;
logInterfac

ejava

chapter.seven
[L

a ¥
&3 gen [Generated Java Files] public class UserInterface extends Activity {
=) Android 1.5 = @Override /** Called when the activity is first created. */
& assets a public void onCreate (Bundle savedInstanceState) {
f{"j res super.onCreate (savedInstanceState) ;
&= drawable setContentView (R.layout.main) ;

|ma| buttonl_focused.png }

R buttonl_normal.png a = public boolean onCreateCptionsMenu(Menu menu) {

[buttonl_pressed.png MenuInflater inflater = getMenuInflater():

@ buttonl xml inflater.inflate (R.menu.mainmenu, menu);

Al icon.png return true;

[Rs| imagel.png }))

4] imagelicon.pn public boolean onOptionsItemSelected (Menultem item) {

N geZ -Png LinearLayout bkgr = (LinearLayout)findViewById(R.id.uilayout);
[Ru] image2.png mageView image = (ImageView)findViewById (R.id.ImageView01);:

|Rs| image2icon.png
M| menu3icon.png
|Ra| menudicon.png
|ms| menuSicon.png

AlertDialog.Builder builder = new AlertDialog.Builder(this);

builder.setTitle("Pick an Image!")

4= layout .setMessage ("Please Select Image One or Image Two:")
AX) mainxml .setCancelable (false)
£ menu
Lm mainmenu.xml .setPositiveButton ("IMAGE 1", new DialogInterface.OnClickListener() {
2 values public void onClick(DialogInterface dialog, int id) {
@ stringsxml image.setImageResource (R.drawable.imagel); £

1 AndroidManifestxml)
default.properties
27 dewvogella.android.temperature

7 LinearLayouts

12l

.setNegativeButton ("IMAGE 2", new DialogInterface.OnClickListener() {
public void onClick(DialogInterface dialog, int id) {
image.setImageResource (R.drawable.image2);
}
1)

switch (item.getItemId()) {

case R.id.buttonone:
image.setImageResource (R.drawable.imagel);
return true;

case R.id.buttontwo:
image.setImageResource (R.drawable. image2) ;
return true;

case R.id.buttonthree:
bkgr.setBackgroundResource (R.color.background2) ;
return true;

case R.id.buttonfour:
bkgr.setBackgroundResource (R.color.background) ;
return true;

case R.id.buttonfive:

| builder.show(); |

return true;

default:
return super.onOptionsItemSelected(item);
) -
(E&L problems 3@ savadoc| & Dectraton| & Console| I Propertes ®~ =0
Ay | wiitable | smartinsert | 27:1

Figure 7-21. Java code for implementing our alert dialog builder in the Eclipse IDE

First, we add the import statements for the Android utilities we are going to leverage to
provide our AlertDialog object:

import android.app.AlertDialog;
import android.content.DialogInterface;

Next, we create our AlertDialog.Builder object, which we name builder. This is a new
(empty and initialized) AlertDialog.Builder object.

CHAPTER 7: Ul Design: Buttons, Menus, and Dialogs

public boolean onOptionsItemSelected(MenuItem item) {
LinearLayout bkgr = (LinearLayout)findViewById(R.id.uilayout);
final ImageView image = (ImageView)findViewById(R.id.ImageView01);

AlertDialog.Builder builder = new AlertDialog.Builder(this);

In order to work with the image object inside the builder dialog object that we are
constructing, we need to add the keyword final to our declaration of this object
variable (you'll see why in the next step). The final keyword is used for variables,
methods, and classes. A final variable cannot be given a new value after it has been
assigned one (although we can alter the variable object like any other object). A final
method cannot be overridden. Also, a final class cannot be extended, and is thus in a
sense protected from further programming modifications.

The preceding code basically says, “l want to declare an object named builder that is of
the type AlertDialog.Builder, and | wish to set it equal to this new AlertDialog.Builder
object that | am creating here. Therefore, please instantiate an empty
AlertDialog.Builder object for me to define and fill with my own custom parameters.”

After this has been declared, builder exists as an empty AlertDialog ready to fill with
our own custom parameters. OK, on to the fun part and the third and major part of
AlertDialog definition.

Here is the code to customize our dialog:

builder.setTitle("Pick an Image!")
.setMessage("Please Select Image One or Image Two:")
.setCancelable(false)
.setPositiveButton("IMAGE 1", new DialogInterface.OnClickListener()

public void onClick(DialogInterface dialog, int id) {
image.setImageResource(R.drawable.image1);

)

.setNegativeButton("IMAGE 2", new DialogInterface.OnClickListener() {
public void onClick(DialogInterface dialog, int id) {
image.setImageResource(R.drawable.image2);

1;

We work with the image object, which we know can’t be reassigned a value because it is
final. This is to deal with situations where the event listener is used after the
onOptionsItemSelected() method has terminated. In this case, a non-final image
variable would not be around to take a new assignment, whereas a final variable is
frozen in memory for access at all times (of course, this may never happen, but Java
was built this way just to be sure).

Notice in this block of code that sets our AlertDialog parameters (I am amazed that
they did not offload AlertDialog parameters to an alert_dialog.xml file) that a new
concept called method chaining is used. This allows a large number of parameters to be
set without the builder object being explicitly typed before each dot-notation construct.

CHAPTER 7: Ul Design: Buttons, Menus, and Dialogs

In method chaining, the first method is attached to its object with dot notation. In our
example, it looks like this:

builder.setTitle("Pick an Image!")

The follow-on methods that set the other parameters are simply .setMessage(),
.setCancelable(false), and so on.

I've formatted the preceding code for ease of reading. But to give you a little more grip
on method chaining, the first three method calls could be rewritten as follows, illustrating
the chain:

builder.setTitle("Pick an Image!").setMessage("Please Select...").setCancelable(false)
Also note that between contiguous methods, there is no semicolon at the end of these

parameter setting lines of code. Semicolons are required on only the last and final
method call—in this case, after .setNegativeButton() to end the builder definition.

NOTE: In this case, the order of the chained methods doesn’t matter because each one returns
an AlertDialog.Builder object with the new parameter set alongside all the other
parameters that have been set so far. In other cases, the order of chaining matters. Android has
been well designed to make chaining easy and convenient.

The code for setting the title, the message, and whether the Back button on the phone is
able to cancel the dialog (in this case, it is not cancelable) is pretty straightforward here,
so let’s go over what is happening inside each button.

You can have up to three buttons in an AlertDialog object. These buttons are hard-
coded into the Android operating system as follows:

B PositiveButton
B NeutralButton
B NegativeButton

This explains the setPositiveButton() and setNegativeButton() methods shown in the
preceding code.

The convention here is to use PositiveButton for one-button dialogs, PositiveButton
and NegativeButton for two-button dialogs, and all three for three-button dialogs. The
code inside the two buttons in our dialog is nearly identical, so let’s go over what is
happening inside the first button, IMAGE 1.

.setPositiveButton("IMAGE 1", new DialogInterface.OnClickListener()

public void onClick(DialogInterface dialog, int id) {
image.setImageResource(R.drawable.image1);
}

1)

The setPositiveButton() method allows us to name the button IMAGE 1 and creates a
new OnClickListener() implementation for the DialogInterface. Note that we declared

CHAPTER 7: Ul Design: Buttons, Menus, and Dialogs

android.content.DialogInterface in an import statement initially, and it is being used
here to create a PositiveButton.

Inside the OnClickListener, we have a public method onClick(), which defines what will
be done when the button is clicked. onClick() is passed a dialog object of type
DialogInterface and an integer ID value that represents which of the buttons was
clicked or the numerical order of the button that was clicked—both of which are what
OnCLickListener wants to evaluate in the event the user clicks that button.

Inside this onClick container is where our code goes to change our ImageView object to
the appropriate image resource. Since we have already done that in the menu code, we
can simply copy the image.setImageResource(R.drawable.imagel) code from down in
our switch construct for ButtonOne.

Finally, down inside our switch statement, where before we had a placeholder
comment, we can now display the dialog by calling the show() method of the builder
object that we created earlier. This line of code could not be simpler:

builder.show();

Whenever the fifth menu button is clicked, our dialog will be shown. We can select
between the two images, which will then be set on our screen appropriately.

Now, right-click your Chapter7 folder and select Run As... » Android Application to see your
work. Figure 7-22 shows the dialog as it appears in the emulator after you click the !
button in the menu.

@ Pick an Image!

Please Select Image One or
Image Two:

[IMAGE 1] [IMAGE 2

Figure 7-22. Viewing our alert dialog in the emulator

CHAPTER 7: Ul Design: Buttons, Menus, and Dialogs

Summary

With the exception of dialogs, Android allows us to put together our designs using XML,
and to implement them with just a half-dozen lines of code is some instances, such as
when creating a system options menu. This allows designers to get one step closer to
the coding process.

In this chapter, we created an application that has all of the primary Ul objects that can
be used to construct an application:

B TImageButtons allow us to create custom Ul elements.

B TextView and ImageView objects allow us to put relevant information on
the screen.

B Menu items allow us to use the Android Menu button to control our
application.

B Alert dialogs interface with our users to gather information or inform
about decisions.

In the next chapter, you will learn how to add graphics to provide even more new media
user experiences in your Android applications.

Chapter

An Introduction to
Graphics Resources
in Android

This chapter will serve as an introduction to how to best integrate and optimize graphical
elements in your Android apps. These include graphics such as bitmap images, tween
animation (transform-based), bitmap animation (frame-based), image transitions
(crossfades, or slow-blended image fades from one image into another) and digital
video.

You will learn how to best use imaging techniques within your application’s View objects
that make up your Ul, and how to support all three levels of Android screens (QVGA,
HVGA, and WVGA) via custom resource assets.

NOTE: Because VGA is 640 x 480 pixels, quarter VGA (QVGA) is 320 x 240 pixels, or one-
quarter of a VGA screen; half VGA (HVGA) is 480 x 320, or one-half of a VGA screen; and wide
VGA (WVGA) is 800 x 480, or a widescreen version of a VGA screen.

We'll cover the use of graphics objects in both the areas of Ul design (custom buttons,
for instance) and user experience design (the content itself, say music videos or an
interactive children’s storybook).

We’ll look at two packages: the android.graphics.drawable package (I knew there was
a reason that resource folder was called drawable) and the android.view.animation
package. These are collections of useful classes for maximizing bitmap imagery and for
working with images that support the fourth dimension (time) via animation. For fun, we’ll
play with a really cool 9-patch image auto-scaling feature that Android supports for the
PNG format.

147

CHAPTER 8: An Introduction to Graphics Resources in Android

Finally, we’ll take a look at digital video. Using the VideoView class makes playing digital
video a snap. We’ll also discuss which open source digital video formats are best to use,
and how to optimize them for use on smartphones.

Introducing the Drawables

The central set of classes used to control the graphics-related content within your
Android application is called the drawable package. This package handles classes and
methods related to drawing the following onto the Android display screen:

B Bitmaps: In a bitmap, a collection of pixels make up an image—it's a
map of image bits, if you will.

B Shapes: Shapes are line drawings. They also known as vectors, like
the lines architects use in CAD drawings

B Gradients: Gradients are smooth transitions from one color to another
color. They can be shaped in a straight line or circular.

B Transitions: Shape transitions are smooth vector changes between
one shape to another shape. This process is sometimes referred to as
morphing.

B Animation: Animation is an image that moves in some way.

B Image transitions: These are smooth fades between one image to
another image. They are usually used to transition from one image to
another image.

In Android development, graphics-related items like gradients, image transitions,
animated transformations, and frame-based animation can all be termed drawables.
With the exceptions of tweens and transformational animation, all center their resource
assets in the /res/drawable folder. (And you thought tweens were 12-year-olds, right?)

The /res/drawable folder is also where you should put XML files that define things like
frame-based image animations and crossfading image transitions (which we will look at
later in this chapter). So get used to seeing drawable everywhere you look, because it
will be one of the most used folders in your resources (/res) folder.

Implementing Images

The way that Android is set up to automatically implement your images via the project
folder hierarchy is a bit hard to understand at first. But once you get used to it, you’ll find
that it is actually amazingly simple to use graphic resources, as major coding is all but
eliminated. You will see that in this chapter when we implement features using as few as
four lines of Java program logic.

I’m not sure what could be much simpler than this: put your imagery into the
project/res/drawable folder, and then reference it by file name in your code. Yes, all you

Download from Wow! eBook <www.wowebook.com>

CHAPTER 8: An Introduction to Graphics Resources in Android

need to do is reference it in your XML and Java code, and you are finished, and with
perfect results (assuming that your imagery is optimized correctly).

In this chapter, we will look at which image and video formats to use, which techniques
to implement, and which work processes to follow as much as (or more than) we will be
dealing with XML attributes and Java code snippets (although these are fun to play with
as well).

Core Drawable Subclasses

Android offers more than a dozen types of customized drawable objects. In this chapter,
we’ll work with the following core subclasses of android.graphics.drawable:

B BitmapDrawable object: Used to create, tile, stretch, and align
bitmaps.

ColorDrawable object: Used to fill certain other objects with color.
GradientDrawable object: Used to create and draw custom gradients.
AnimationDrawable object: Used to create frame-based animations.

TransitionDrawable object: Used to create crossfade transitions.

NinePatchDrawable object: Used to create resizable bitmaps via
custom stretchable areas.

NOTE: If you want to review all of the drawable objects, look at the
android.graphics.drawable package document on the Android Developers web site
(http://developer.android.com). You'll find that there is a plethora of graphics power in
Android’s 2D engine.

The most pervasive and often used type of drawable is the bitmap. A bitmap is an image
composed of a collection of dots called pixels, where “pix” stands for “pictures” and
“els” stands for “elements”. Yes, a bitmap is quite literally a map of bits. So, let’s get
started with adding bitmaps to your Android apps.

Using Bitmap Images in Android

How do we best optimize our static (motionless, or fixed-in-place) bitmap imagery for
use within our Android applications? That’s what this section is all about. We have
already worked with bitmap images in the previous chapter, in the context of our
ImageButton and ImageView objects, so you have a little experience with using truecolor
32-bit PNG (PNG32) files to obtain an excellent graphic result.

Android supports three bitmap image file formats: PNG, JPEG, and GIF. We’ll talk about
how Android truly feels about each one, so you can choose the right formats to meet
your graphics-related design and user experience objectives.

http://developer.android.com

CHAPTER 8: An Introduction to Graphics Resources in Android

PNG Images

The most powerful file format that Android supports, and the one it recommends using
over all others, is Portable Network Graphics, or PNG (pronounced “ping”). There are
two types of PNG:

B Indexed-color, which uses a limited 256-color image palette

B Truecolor, which uses a 32-bit color image that includes a full 8-bit
alpha channel (used for image compositing)

PNG is a known as a lossless image file format, because it loses zero image data in the
compression processing. This means that the image quality is always 100% maintained.
If designers know what they are doing, they can get very high-quality graphics into a
reasonably small data footprint using the indexed-color PNG8 and truecolor PNG32
image file formats.

Indexed-color PNGS files use one-fourth of the amount of data (bits) that a truecolor 32-
bit PNG32 image does. Remember the math we did in the previous chapter: 8 x 4 = 32.
A smaller data footprint is achieved by using only 8 bits, or a 256-color palette of optimal
colors best suited to represent the image, but with the same visual result. This is done
primarily to save data file size, thereby decreasing the image’s data footprint.

Truecolor PNG32 images use a full 32 bits of data for each of the image pixels to
represent the four image data channels that are in most bitmap images: alpha, red,
green, and blue (RGBA).

The alpha channel determines where the image is going to be transparent, and is used
for image compositing. As you learned in Chapter 7, compositing is the process of using
more than one image in layers to create a final image out of several component parts.

Another benefit of image compositing is that in your programming code, you can access
different image elements independently of other image elements. For example, you
might do this for game engine programming.

Note that at compile time, Android looks at your PNG32 graphics, and if they use less
than 256 colors in the image, Android automatically remaps them to be indexed PNG8
images, just as you would want it to do. This means that you don’t need to worry about
analyzing your images to see if they should be in truecolor or indexed-color format. You
can simply do everything in truecolor, and if it can be optimized into indexed-color with
no loss of data, Android will do that for you—making your data footprint three to four
times smaller.

If for some reason you don’t want your images optimized at compile time, you can put
them into the project/res/raw folder, which is for data that is accessed directly from your
Java code. A good example of this is video files that have been well optimized for size
and quality, and just need to be played. These come up in a video player example in
Chapter 11, so stay tuned, as we will be using the /raw folder soon enough.

CHAPTER 8: An Introduction to Graphics Resources in Android

JPEG and GIF Images

The next most desirable format to use is the JPEG image file type. This type does not
have an alpha channel. It uses lossy compression, which means that it throws away data
to get a better compression result.

If you look closely at JPEG images, you will see a lot of artifacts, such as areas of
strange color variations or dirt on the image that was not on the camera lens. JPEG is
useful for higher-resolution (print) images, where artifacts are too small to be seen. So, it
is not really suitable for small smartphone screens. JPEG is supported but not
recommended for Android apps.

Finally, we have GIF, an older 8-bit file format. The use of this file format is discouraged.
Stay away from using GlIFs for Android apps. Use PNG8 instead.

Creating Animation in Android

You’ve learned how to implement static bitmap images in previous chapters. So, let’s
get right into the fun stuff with animation.

Frame-based or Cel 2D Animation

Traditional 2D animation involves moving quickly among a number of what originally
were called cels, or hand-drawn images, creating the illusion of motion. To steal a more
modern term from the movie industry, each image, which is a little bit different from the
next, is called a frame. This term refers back to the original days of film, where actual
film stock would be run through a projector, showing 24 frames per second (fps).

In Android, frame-based animation is the easiest to implement and gives great results.
You just need to define the XML animation attributes—what and where the frames are—
in the correct place for Android to find them. Then you can control your animation via
Java.

In our example, we are going to animate a 3D logo. It will come into existence via a
fireworks-like particle animation.

Let’s fire up a new project in Eclipse, and see how animation works in Android.

1. If you still have the Chapter7 project folder open from the previous
examples, right-click that folder and select Close Project. This closes the
project folder in Eclipse (of course, it can be reopened later).

2. Select Eclipse File » New » Project and choose Android Project to open
the New Android Project dialog. Fill it out as follows (and shown in
Figure 8-1).

B Project name: Name this project Chapters8.
B Build Target: Choose Android 1.5.

CHAPTER 8: An Introduction to Graphics Resources in Android

B Application name: Let’s call this application Graphics
Examples.

Package name: Name the package graphics.examples.
Create Activity: Check this box and name the activity graphics.

Minimum SDK Version: Enter 3, which matches with our 1.5
compatibility Build Target setting.

S I o

New Android Project

F- -
1=

v

Creates a new Android Project resource.

Project name:‘ Chapter8 ,

Contents

@ Create new project in workspace
(©) Create project from existing source
Use default location

Location: l C:/Projects/Chapter8 ‘ Browse...

(©) Create project from existing sample

Samples: [ApiDemos

Build Target

Target Name Vendor Platform

< Android1.5) Android Open Source Project 15

oogle APIs GoogleInc. 15
Android 1.6 Android Open Source Project 16
Google APIs GoogleInc. 16
Android 2.1-upda... Android Open Source Project 21-upd...
Google APIs Google Inc. 21-upd...

Android 2.2 Android Open Source Project 22
Google APIs GoogleInc. 22

W 0 NN E e W W

Standard Android platform 2.1-updatel
Properties
Application namef_ Graphics Examples
Package name: graphics.exﬁ
Create Activity: @
Min SDK Version: @

®

Figure 8-1. Creating the Chapter8 Android project

CHAPTER 8: An Introduction to Graphics Resources in Android

3. Now we need to define our animation’s frames in an XML file, which
we’ll call logo_animation. Right-click your Chapter8 folder and select
New > File. At the bottom of the dialog, enter logo_animation.xml. In the
Chapter8 navigation pane in the middle of the dialog, expose your
directory structure (via the arrows next to the folders), and select the
res/drawable folder, so that the parent folder field above shows
Chapter8/res/drawable. This places our logo_animation XML file in the
correct folder. Figure 8-2 shows the completed New File dialog.

CAUTION: Since frame-based animation in Android uses bitmap images, you place the XML file
that references these bitmap images into the same folder the images occupy: the /res/drawable
folder. Do not put frame animation images or XML specifications into the /res/anim folder. That
folder is for transform animation (covered in the next section of this chapter). This is an important
difference in how frame-based animations and transform-based or tween animations are set up
and created in Android.

2 Java-C </graphi icsjava - Eclipse o8] ®
File Edit Run Source Navigate Search Project Refactor Window Help
wiid BRI B-0-QAU° BHGE- O F~ P Al = [
(18 Package Exp 53\ Hierarchy| = B[[graphicsjava 52 _[d) mainxml =g
ge Exp \ Y graphics) L 9
=
7 30Film o ¢ anaroid Activitys
&7 Chapter? ¥import android.app.Activity;[]
&l
[p.Chapteré public clasxtends Activity [{
@ src /** Called WHen the activity is first created. */

3 graphics.examples

[3) graphicsjava = New File

&8 gen [Generated Java Files] File
=) Android 1.5
Gc} assets Create a new file resource.
5 res
(= drawable
4 icon.png Enter or select the parent folder:
= layout Chapter8/res/drawable
1) mainaxml ._;
= values L
N PRc) Chapter8
4X] stringsxml - et
i AndroidManifest.xml g N ;rslgs
ass
default, rti
ault.properties & bin

7 de.vogella.android.temperature

7 LinearLayouts » &= gen [Generated Java Files]

4 @ re
(= drawable
= Tayou

(= values

PRL_File name: logo_animation.xml
Advanced >>

/Chapte
/Chapte
/Chapte
»

®

o® Chapter8

Figure 8-2. Creating logo_animation.xml in the Chapter8/res/drawable folder

CHAPTER 8: An Introduction to Graphics Resources in Android

4. Next, click the logo_animation.xml tab in Eclipse, and type in the
following XML to define our frame-based animation for Android (Figure
8-3 shows the new file in Eclipse):

<?xml version="1.0" encoding="utf-8"?>

<animation-list xmlns:android="http://schemas.android.com/apk/res/android"
android:oneshot="true">

<item android:drawable="@drawable/mtlogo0" android:duration="200" />
<item android:drawable="@drawable/mtlogo1" android:duration="200" />
<item android:drawable="@drawable/mtlogo2" android:duration="200" />
<item android:drawable="@drawable/mtlogo3" android:duration="200" />
<item android:drawable="@drawable/mtlogo4" android:duration="200" />
<item android:drawable="@drawable/mtlogo5" android:duration="200" />
<item android:drawable="@drawable/mtlogo6" android:duration="200" />
<item android:drawable="@drawable/mtlogo7" android:duration="200" />
<item android:drawable="@drawable/mtlogo8" android:duration="200" />
<item android:drawable="@drawable/mtlogo9" android:duration="200" />

</animation-list>

I’ B

File Edit Run Source Navigate Search Project Refactor Window Help

-E8 B BHE $-0 Q- BHG- @S H- 28| EE &5 (@)
[[# Package Ex m”\ Hierarchy| = O | [3) graphics,java < mainx Cl imati =8
ge XD \] GIATHIICS} 5
=] <)=={'>‘ e Y ||® <?xml version="1.0" encoding="utf-§"?> L (P
. o=
&1 3DFilm + |k
G Chapter? Fll <animation-list xmlns:android="http://schemas.android.com/apk/res/android"
< cn pt = . android:oneshot="true"s
4= Chaptel
@ src R <item android:drawable="@drawable/mtlogo0" android:duration="200" />
& graphlcs.gxar.nples <item android:drawable="@drawable/mtlogol” android:duration="200" />
a 3] graphicsjava <item android:drawable="@drawable/mtlogo2" android:duration="200" />
& gen [Generated Java Files] <item android:drawable="@drawable/mtlogo3"” android:duration="200" />
=\ Android 1.5 <item android:drawable="@drawable/mtlogo4" android:duration="200" />
Glcl) assets E <item android:drawable="@drawable/mtlogo5" android:duration="200" />
f';‘} res <item android:drawable="@drawable/mtlogoé"” android:duration="200" />
& drawable <item android:drawable="@drawable/mtlogo7" android:duration="200" />
B icon.png <item android:drawable="@drawvable/mtlogog" android:duration="200" />
j,‘ﬂ logo_animation.xml <item android:drawable="@drawable/mtlogo9"” android:duration="200" />
[ma] mtlogo0.png
| mtlogol.png </animation-list>
[Ra] mtlogo2.png

[Ra] mtlogo3.png —
[Ra] mtlogod.png

[Ra] mtlogo5.png -
[®a] mtlogo6.png < »

[ma| mtlogo7.png Resourc@go_animation.xmﬂ)

[ma] mtlogo8.png - = > = = - ——
(W] mtlogo9.png ~ [E_t Problems | @ Javadoc‘@ Declaration[a Console 2\ E Properties | u bf | # By =0 |

Figure 8-3. Creating the XML mark-up for the logo_animation.xml file

This is pretty straightforward XML tag mark-up logic here. We declare the XML version
and add an animation-list tag for frame-based animation image (item) listings. This tag
has its android:oneshot attribute set to true, which will prevent our animation from
looping continuously. Setting oneshot equal to false will run the animation seamlessly
as a loop.

http://schemas.android.com/apk/res/android

CHAPTER 8: An Introduction to Graphics Resources in Android

Inside the animation-1list tag, we have ten nested item tags (nested because the
animation-list closing tag comes after these ten item tags). These specify the location
of each image in our /res/drawable folder, where each image is a frame in the animation.

Using each item tag entry, we specify the name and location of each of our frames
mtlogoo through mtlogo9, as well as the duration of the frame display time in
milliseconds (ms). In this case, we start off using 200 ms, or one-fifth second, for each
frame, so that the entire animation plays over 2 seconds, and at 5 fps, just barely fast
enough to fake movement. We can adjust frame times later, to fine-tune the visual result,
as well as make the animation loop seamlessly to show this feature.

We need to put our animation frame images into the /res/drawable folder, so that the
XML code can reference them successfully. As you know by now, in Android, everything
needs to be in its correct place for things to work properly.

1. Copy the ten animation frames into the /res/drawable folder from the
code download.

2. Right-click the Chapter8 folder in the Package Explorer and select
Refresh, so that the IDE can see them.

3. If there are errors on your XML editing pane, right-click your Chapter8
folder and select Validate to clear these as well.

At this point, you should see a screen that looks similar to Figure 8-3.

Controlling Frame-based Animation via Java

Now we are going to write our Java code to access and control our 2D animation. If the
graphics.java tab is not already open, right-click the graphics.java file and select Open.

NOTE: In order to right-click the graphics.java file, the /src folder and subfolders need to be
showing in the expanded Package Explorer project-tree view, so click those arrows to make your
hierarchy visible.

Here is the code for our graphics.java file, which holds our graphics class from our
graphics.examples package:

package graphics.examples;
import android.app.Activity;
import android.os.Bundle;
import android.view.MotionEvent;

import android.widget.ImageView;
import android.graphics.drawable.AnimationDrawable;

public class Graphics extends Activity {

AnimationDrawable logoAnimation;

CHAPTER 8: An Introduction to Graphics Resources in Android

@0verride /** Called when the activity is first created. */

public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.main);

ImageView logoImage = (ImageView) findViewById(R.id.iv1);
logoImage.setBackgroundResource(R.drawable.logo_animation);
logoAnimation = (AnimationDrawable) logoImage.getBackground();

public boolean onTouchEvent(MotionEvent event) {
if (event.getAction() == MotionEvent.ACTION DOWN) {
logoAnimation.start();
return true;

else return super.onTouchEvent(event);

}

In Android Java code, AnimationDrawable is the class we need to use to implement our
frame-based animation sequences. We import the
android.graphics.drawable.AnimationDrawable class. Then we import the
android.widget.ImageView class, which we will use as a view container to display the
animation. Finally, we import the android.view.MotionEvent, which we will use to
implement a touchscreen touch trigger to interactively start up the animation play cycle.
We add the three new import statements to the ones that Android starts us out with (the
first two).

Next, we add the object declaration for our AnimationDrawable object, which we are
calling logoAnimation. This is as simple as writing the following:

AnimationDrawable logoAnimation;

Then we have our standard onCreate() method of our activity, using our main.xm/ Ul
layout specification. In this case, we’re using a LinearLayout container with an
ImageView called iv1 inside it to hold our frame animation.

Next, we create an ImageView object called logoImage, which we assign to ImageView
iv1, which we will declare in the main.xml file.

After that, we set the background resource for this newly created ImageView to our
logo_animation XML file, which specifies our animation sequence and timing. This is the
bridge between display (ImageView) and animation data (logo_animation.xml) set up so
that our animation will display through the background image setting for the ImageView.
This leaves it open for us to have a source image in our ImageView that uses
transparency (an alpha channel) to create cool effects. It essentially gives us two layers
in the ImageObject, as we can set source and background images for any ImageView
object.

Finally, we define the logoAnimation object that we declared in the first line of code in
the graphics class. logoAnimation is an AnimationDrawable object that gets its data
from the logoImage object via its getBackground() method, which grabs its background
image. As you can see from the previous line, that image has been obtained from the
logo_animation.xml file, where we define how everything should work.

CHAPTER 8: An Introduction to Graphics Resources in Android

To trigger our animation to play, we use a new method called onTouchEvent(). This
method uses a MotionEvent event to detect if the touchscreen has been touched, which
generates an ACTION_DOWN event. (Recall that an event is something that a Java class
listens for and is programmed to react to, like a touchscreen touch event or a keyboard
keystroke key event.)

In our code, if this ACTION_DOWN touch event is detected, then the logoAnimation object
is sent a start() method trigger. It plays and returns true (I played it), or else it passes
the event upward to the onTouchEvent method on the superclass from which it was
subclassed.

It’s pretty logical: a subclass is a specialization of a superclass. A superclass is a more
general class than the subclass and serves as the foundation class. If a subclass is sent
an event it is not specialized to deal with, it sends that event to its superclass for general
handling.

Figure 8-4 shows the four logical sections of code that we need to add to the default
graphics class and onCreate() code:

B Import the Android Java classes that we are leveraging in our code.

B Create and name an AnimationDrawable object that is accessible to
every code construct in our graphics class.

B Create an ImageView object tied to our main.xml screen layout, set the
background image resource of that ImageView to reflect our
logo_animation.xml attributes, and then have our logoAnimation
AnimationDrawable object take that frame data from the ImageView via
getBackground().

B Trigger the animation with an ACTION_DOWN touchscreen event in our
onTouchEvent() method.

CHAPTER 8: An Introduction to Graphics Resources in Android

8
= Java - Chapter8/src/graphic ples/graphics.java - Ecli
File Edit Run Source Navigate Search Project Refactor Window Help
HrHe aiBiddiv-0-arigwe-ioss POCEND & (@)
TR R R
|
[£ Package Exp 23\\\?3 Hielarchy‘ =8 csjava &3 . (4 mainxml |LQ logo_animation.xml l = 8
- . 2
<§>| & . package graphics.examples; - o
- o=
127 3DFilm -) ¢ android Activi
= e . JActivity;
1 Chapter? import android.app.Activity
<2 Chapter8 import android.os.Bundle;
P@ B import android.view.MotionEvent;
sre . import android.widget.ImageView;
i graphics.eamples import android.graphics.drawable.AnimationDrawable;
[3] graphicsjava
fa!
&3 gen [Generated Java Files] public class graphics extends Activity {
=), Android1.5
G@ assets IAnimationDrawable logoAnimation; I
el
i res
= drawable @Override /** Called when the activity is first created. */
@] icon.png public void onCreate (Bundle savedInstanceState) {
4X] logo_animation.xml super.onCreate (savedInstanceState);
[mtlogo0.png setContentView (R.layout.main);
[ms| mtlogol.png
@ mtlogo2.png ImageView logoImage = (ImageView) findViewById(R.id.ivi);
@ mtlogo3.png logoImage.setBackgroundResource (R.drawable.logo animation);
@ mtlogod.png I logoAnimation = (AnimationDrawable) logoImage.getBackground():
[Rs| mtlogoS5.png - . -
@mtlo 06.0n public boolean onTouchEvent (MotionEvent event) {
- 9 7"’ 9 if (event.getAction() == MotionEvent.ACTION DORN) {
E mtIOst.png logoAnimation.start():
R/ mtlogo8.png return true;
[Rs| mtlogo9.png) ‘
= layout else return super.onTouchEvent (event);
AX] mainxml }
i values T } 18
AX] strings.xml < i])
A AndroidManifest.xml ; ; —7 = e . =
default.properties i (& Problems| @ Javadoc[@ Declaratlon‘ El Console 2 EN Eﬁl H B~ D].
i 0° | Writable ‘ Smart Insert ‘ 20:1

Figure 8-4. Creating the graphics Java code that triggers our XML defined frame-based animation

Finally, we need to put in place the ImageView named ivi, which ties the ImageView in
our Java code to the ImageView defined in our XML document (main.xml) that defines our
screen Ul. Here is the code, which is also shown in Figure 8-5:

<?xml version="1.0" encoding="utf-8"?>

<LinearlLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="fill parent"
android:layout_height="fill parent"
>

<ImageView
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:id="@+id/iv1"/>

</Linearlayout>

http://schemas.android.com/apk/res/android

Download from Wow! eBook <www.wowebook.com>

CHAPTER 8: An Introduction to Graphics Resources in Android

File Edit Run Source Navigate Search Project Refactor Window Hel,
9) P
-H& BiRd -0 Q- EHEG- BB+~ EA|EBE & (& lava]
GRS IR SR v
[[Package Ex 83 Hierarchy| = O [3) graphics.java <l i 19| logo_animation.xml] =8
ge Exp ~ y graphics. 9 5
& s V|| <?xml version="1.0" encoding="utf-8"?> 7yl |
ERAK ——l 5=
o
3DFilm -
o = <LinearLayout xmlns:android="http://schemas.android.com/apk/res/android
.7 Chapter7 ?
= android:orientation="vertical"
5 Chapters
&= “hapte android:layout_width= "fill_parenc"
5 sre . android:layout height="fill parent'">
3 graphics.examples - - £
. [J] graphicsjava » A <ImageView
&8 gen [Generated Java Files] android:layout_width="wrap content”
=) Android 1.5 - id: ; = "
- 3
= assets . android:id="@+id/iv1"/>
Q.
i res L
= drawable </LinearLayout> i
iz lave I < .] »
)
valUes y E - = = ~
I stringsxml il |E_‘. Problems | @ Javadoc[@ Declaration|E Console &3 E'N; | = B~~$y=0O ‘
: !
i 0® LinearLayout/ImageVi droid:layout_height

Figure 8-5. Naming our ImageView Ul element in the main.xml file so it matches the iv1 name used in our Java
code

In this case, we have a LinearlLayout that contains an ImageView object named ivi. We
set our ImageView to wrap_content (basically to conform the ImageView bounds to the
160 x 160 pixel dimension of our image, and thus our animation sequence).

Running the Frame-based Animation App in the Emulator

Now let’s see our animation in action. Right-click your Chapter8 folder and choose Run
As > Android Application. When the 1.5 emulator comes up with a black screen (the first
frame of the animation is all black, so the effect loops seamlessly), tap the upper left of
the screen, and the animation will play—amazing.

Since a screenshot cannot display an animation, we’ll forego the screenshot of the 1.5
emulator. Now, here’s a simple exercise to try after you run this version. Make the
following changes, and then save the modified logo_animation.xml file:

1. Change the logo_animation values from 200 to 100 for all of the objects,
except for the first frame and the last frame.

2. Set these to 1000 or 2000.
3. Change the animation-1list tag’s android:oneshot attribute to false.

To run our looping animation version, right-click the Chapter8 folder and select Run As »
Android Application. Now when you touch the black screen in the upper-left portion, the
animation will begin to play and will continue looping forever.

Next, let’s add a transformational animation directly underneath our frame-based
animation.

CHAPTER 8: An Introduction to Graphics Resources in Android

Tween Animation in Android

Tween animation is used for shape-based animation, where shapes are animated from
one state to another without specifying the intermediate states. In other words, you
define the start and end positions of the shape, and Android fills in the gaps to make the
animation work.

This contrasts with frame-based animation, which uses a sequence of cels, or bitmap
images, like the flipbook animations of days gone by. So frame animation does its work
via pixels, while tween animation does its work via transforms that move, rotate, or scale
a shape, image, or even text. Thus, tween animation is more powerful than frame-based
animation. It can also be used in conjunction with frame-based animation to achieve
even more spectacular results.

Tween animation in Android is completely different than frame animation. It is
implemented with the set of classes found in the android.view.animation package.
These classes represent the true power of tween animation in Android. They include
things like advanced motion interpolators, which define how animation transformations
accelerate over time; and animation utilities, which are needed to rotate, scale, translate
(move), and fade View objects over time.

“Wait a minute,” you must be musing, “does ‘View objects’ mean that | can apply all of
this animation class power to, say, TextViews, for instance? Or even VideoViews?”
Indeed it does. If you transform a TextView (rotate it, for instance), and it has a
background image, that image is transformed correctly, right along with the text
elements of the TextView and all of its settings.

NOTE: Here, the word transformation refers to the process of rotation (spinning something
around a pivot point), scaling (resizing in x and y dimensions relative to a pivot point or reference
point), and x or y movement, which is called translation in animation.

As you might imagine, tween animation definitions can get very complex. This is where
the power of using XML to define complicated things, like transformational animation
constructs, becomes very apparent. Again, we thank Android for off-loading work like
this from Java coding to XML constructs. In XML, the animation transforms are simple
lists of nested tags; they are not called classes and methods. It is certainly easier to fine-
tune and refine these types of detailed animations via XML line-entry tweaks rather than
in Java code.

The XML for tween animations goes in an entirely different directory (folder) than frame
animation (which goes in /res/drawable). Transform animation goes in the /res/anim
folder.

CHAPTER 8: An Introduction to Graphics Resources in Android

Creating the text_animation.xml File

We will use a different XML file-creation method to create our transform animation XML
file and its folder, so let’s get into that right now.

1. Right-click your Chapter8 folder in the Eclipse Package Explorer pane at
the left and select New » Other... » Android » Android XML File, as shown in
Figure 8-6. Then click Next.

3 e B O

Select a wizard —<>

Wizards:
‘ type filter text ‘

b (= General
4 (= Android
&2 Android Project
O Android Test Project
bV
r (= Java
b (= Tasks
b (= XML
b (= Examples

Finish | Cancel

Figure 8-6. Selecting to create a new XML file via the Eclipse New » Other right-click menu selection route

2. As you can see by the options in the New Android XML dialog, Android
in Eclipse has a powerful XML file-creator utility that supports seven
different genres of XML files, including animation. Fill out the dialog as
follows (and shown in Figure 8-7):

B File: The first field we want to fill out is the name of the animation
XML file, which is text_animation.xml.

B What type of resource would you like to create?: Select
Animation as the XML file type, which automatically puts
/res/anim as the Folder field at the bottom of the dialog.

CHAPTER 8: An Introduction to Graphics Resources in Android

B Select the root element for the XML file: Make sure that set is
selected as the root element in the file. (The root element is the
outermost tag in an XML file and contains all the other tags.)
<set> is used to group and nest transforms to achieve more
powerful and flexible results, as you will see in our transform
XML markup.

3. Now click Finish. You will see the /res/anim folder appear in your project
hierarchy tree in the Package Explorer pane, with the text_animation.xml/
file under that.

i = Java - Chapter8/res/drawable/logo_anil

- = | [=] X4
- - - = > ¢
Fie ot Run Source Navgne o[New Ancroid . e e =
NEHS New Android XML File
HE'2 IR 25T IR A CIETE =M Creates a new Android XML file. 'ﬁ'
[% Package Exp &2 1] Hierarchy“‘
<:==(»> | o Project Chapter8 Browse...
.1 3DFilm FileS text_animation.xml >
7 Chapter7)
:‘g Chapter8 What type of resource would you like to create?
(# src © Layout © Values ©) AppWidget Provider
1 graphics.examples () Preference () Searchable @ Animation
[J] graphicsjava
@8 gen [Generated Java Files] What type of resource configuration would you like?
=) Android 1.5
&, assets Available Qualifiers G Chosen Qualifiers
f& res [T Network Code =
| =:
i = drawable & Language
4= layout vaf Region
X mainxml ©size
= values (R Ratio = V ‘
AX) stringsxml a Orientation
A AndroidManifest.xml Pixel Density
default.properties [Touch Screen
o d_e.vogelIa.android.temperature Keyboard
7 LinearLayouts) Text Input
% Navigation
1" Dimension S
| Folder /res/anim
Select the root element for the XML file:
€D -
, @ <Back | nea>C| [Fnish | [Dcancel
1 Chapter8

& =

Figure 8-7. Filling out the New Android XML File dialog

4. Now let’s add in our XML tags to define our scale and rotation
transforms, as shown in Figure 8-8. (Click the Source tab at the bottom
of the main window to open the XML code editing window if it does not
appear automatically.)

<?xml version="1.0" encoding="utf-8"?>

<set xmlns:android="http://schemas.android.com/apk/res/android"

http://schemas.android.com/apk/res/android

CHAPTER 8: An Introduction to Graphics Resources in Android

android:shareInterpolator="false">

<scale android:interpolator="@android:anim/accelerate decelerate interpolator"
android:fromXScale="1.0"
android:toXScale="1.4"
android:fromYScale="1.0"
android:toYScale="0.6"
android:pivotX="50%"
android:pivotY="50%"
android:fillAfter="false"
android:duration="700" />

<set android:interpolator="@android:anim/decelerate interpolator">
<scale android:fromXScale="1.4"
android:toXScale="0.0"
android:fromYScale="0.6"
android:toYScale="0.0"
android:pivotX="50%"
android:pivotY="50%"
android:startOffset="700"
android:duration="400"
android:fillBefore="false" />

<rotate android:fromDegrees="0"
android:toDegrees="-45"
android:toYScale="0.0"
android:pivotX="50%"
android:pivotY="50%"
android:startOffset="700"
android:duration="400" />

</set>
</set>

CHAPTER 8: An Introduction to Graphics Resources in Android

File Edit Run Source Navigate Search Project Refactor Window Help

‘O-E& BAE $-0-A-8HG- 0/ RA|BE & [)
blre ey

(12 Package Bxp 52 f: Hierarchy | =)

P

[J] graphics.java ‘I\g mainxml |\Q logo_animation.xm
B 05| % 7 ||& <2xml version="1.0" encoding="utf-g"?> =
C7 3DFilm | <set xmlns:android="http://schemas.android.com/apk/res/android" o=
&I Chapter? . I android:shareInterpolator="false">
52 Chapter8 . . .
s <scale android:interpolator="@android:anim/accelerate decelerate interpolator"
=re R android:fromXScale="1.0"
& graphn:s.sxal:nples android:toXScale="1.4"
o 2 graphicsjava android:from¥Scale="1.0"
&8 gen [Generated Java Files] android:to¥Scale="0. 6"
=) Android 1.5 android:pivotX="50%"
G'@ assets android:pivotY="50%"
2 res android:fillAfter="false"
anim android:duration="700" />
i‘ﬂ text_animation.xml <set android:interpolator="@android:anim/decelerate interpolator">
= drawable <scale
[Ra] icon.png android:fromXScale="1.4" r
@ logo_animation.xml android:toXScale="0.0"
‘E mtlogo0.png android:fromYScale="0.6"

android:toY¥Scale="0.0"
android:pivotX="50%"
android:pivotY="50%"
android:startOffset="700"

[@s] mtlogol.png
[ms| mtlogo2.png
[@s] mtlogo3.png

[mtlogod.png android:duration="400"

] mtlogos.png android:fillBefore="false" />
[R| mtlogob.png <rotate
[mtloge7.png android:fromDegrees="0"
[Rs] mtlogo8.png android:toDegrees="-45"
[mtlogod.png android:toY¥Scale="0.0"

= layout android:pivotX="50%"
AX] mainxml android:pivot¥Y="50%"

i values android:startOffset="700" 3
AX] stringsxml android:duration="400" />

A AndroidManifest.xml </set> 2

< »

default.properties
7 de.vogella.android.temperature
L LinearLayouts [E_r, Problems‘l@ Javadoc ‘@ Declaration IE Console S@ e BE ‘ 2 B~y =0

k =]

Design ‘ SnurceJ

i o° | Writable ‘ Smart Insert ‘ 3:1

Figure 8-8. Coding our tween animation tags and their parameters in the text_animation.xml file

Notice that there are quite a few attributes for the tags that allow transformational
animation over time. For instance, our scale tags allow us to specify to and from values
for both x and y dimensions, pivot points (where the scale emanates from, or from which
location on the object the scale is performed), scale offsets for nonuniform scaling, time
duration, and whether to fill before or after the transformation.

For rotation tags, we have rotation to and from degree specifications, as well as x and y
pivot point settings. We also have both an offset for skewed rotations and a duration
attribute that controls the speed of the rotational transformation. The pivot point defines
the center point of the rotation, and an offset defines how to skew the rotation from that
point, much like the old Spirograph set that created cool flower-like graphics.

Controlling Tween Animation via Java

Now that our TextView transform animation XML data is in place inside our newly
created /res/anim/text_animation.xml file, we can insert a half dozen lines of Java code
into our graphics.java file, to implement the transform animation within our application,
directly underneath our frame-based animation.

CHAPTER 8: An Introduction to Graphics Resources in Android

1. As shown in Figure 8-9, the first thing we must do is to import the
Android classes that are going to be used in the text animation
transformation: android.widget.TextView and the
android.view.animation classes called Animation and AnimationUtils.

import android.widget.TextView;

import android.view.animation.Animation;
import android.view.animation.AnimationUtils;

File Edit Refactor Run Source Navigate Search Project Window Help

& BiHLE i $-0-QAU BHG~ @O FH- Pl H-F-oera- = [Fa)
3 PackageE 53 T2 Hierarchy| = 0| [1] graphicsjava 82 _|a mainaml | i logo_animationxml | [X] text_animationaml | il image_transitionaml | =8
&
B t’b‘ P package graphics.examples; = s
o=
&7 3DFilm - i) .
& Chapter? = “import android.app.Activity:;
a import android.os.Bundle;
4 = Chapter8 N . N N
- import android.view.MotionEvent;
> B src .
a import
b &3 gen [Generated Java Files]
=4 Android 1.5
& assets
a
45> res import android.graphics.drawable.AnimationDrawable;
4 §= anim
AX] text_animationxml public class graphics extends Activity {
4 = drawable AnimationDrawable logoAnimation;
W& icon.png © @Override /** Called when the activity is first created. */
m image_transition.xml public void onCreate (Bundle savedInstanceState) {
@ imagel.png super.onCreate (savedInstanceState);
B image2png setContentView (R.layout.main); =
R logo_animationaaml ImageView logoImage = (ImageView) findViewById(R.id.ivi);
QJ mﬂo’gw png logoImage.setBackgroundResource (R.drawable.logo_animation) ;
logoAnimation = (AnimationDrawable) logoImage.getBackground():

[Ra] mtlogol.png
[ma] mtlogo2.png
(W] mtloge3.png
|ma| mtlogod.png
|ma| mtlogo5.png
|ma| mtlogo6.png

TextView textAnim = (TextView) findViewById(R.id.TVI1);
Animation textAnimation = i ionUtils. lo: i ion(this, R.anim.text animation);
textAnim.startAnimation(textAnimation);

}
o public boolean onTouchEvent (MotionEvent event) {

(W] mtlogo7.png if (event.getAction() == MotionEvent.ACTION DOWN) {

|ma| mtlogo8.png logoAnimation.start(); -

|Ra| mtlogo9.png return true;
4 5= layout }

AX] mainxml else return super.onTouchEvent (event);
4 5= values } =

AX] stringsxml [} i
a i ifestxml 1 3

i 7 i 7 = = = =
,31 defa:"-pripfrjles il (E; Problems | @ Javadoc [[Declaration | B Console | I Properties 23\ PEHRY ﬁ]l
e Chapter8 Android SDK Content Loader

Figure 8-9. Triggering our tween animation in our graphics.java code

2. Then down in our onCreate() method, we specify the TextView object
textAnim and the Animation object textAnimation.

TextView textAnim = (TextView) findViewById(R.id.TV1);
Animation textAnimation = AnimationUtils.loadAnimation(this, R.anim.text animation);

3. We then call the startAnimation() method on the TextView object,
specifying that we want to use the textAnimation Animation object.
textAnim.startAnimation(textAnimation);
4. Finally, we need to add a TextView object named TV1 to our

LinearlLayout tag and Ul container in our main.xml file, as shown in
Figure 8-10.

CHAPTER 8: An Introduction to Graphics Resources in Android

2 B
File Edit Run Source Navigate Search Project Refactor Window Help
Bl ‘BB B0 BECY @B H N H e & ([Fw)
M& Hierarchy] =N graphics.java [Lg mainxml &2 |4l logo_animation.xml ‘ [X] text_animation.xml | =1 i
B <}:'D‘ % Y ||® <?xml version="1.0" encoding="utf-g£"2?> -B :;
7 3DFilm 7 <LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"” o=
= android:orientation="vertical"
L1 Chapter7 , , .
229 Chapter8 androld:layout_w1d\:h="fll.l_parent:”
= P! android:layout height="fill parent">
. @B s R <ImageView and;nid:layom: w;dr.h="wrap content”
4 £ graphics.examples L andrcid:laycut:height="wra;_content" =
> [3) graphicsjava 3 android:id="@+id/ivi"/>
> & gen [Generated Java Files] | <TextView android:text="CHAPTER-EIGHT"
b = Android 1.5 §§§ android:id="@+id/TV1"
G@ assets N android:layout_width="wrap content"
a JG;} res android:layout_height= "vrap_content”/> Pl
4 = anim </LinearLayout> -
AX] text_animation.xml < »
b 4= drawable Layout‘main.xml[
‘ ﬁgommain,xml i l& Problemsl @ Javadocl@ Declaration]E Console 23\\\ Ef\u EE | #E-r5-° Ell
g '

Figure 8-10. Adding a TextView Ul object to our main.xml file

5. Now we can try out the tween animation. Right-click the Chapter8 folder
in the Package Explorer pane and select Run As... » Android Application.

6. It runs pretty fast. Let’s add a zero on the time values in our
text_animation.xml file, changing 400 to 4000 and 700 to 7000.

7. Compile and run the app again. You'll see that the animation runs ten
times slower.

Using Transitions

Transitions are preprogrammed custom special effects like crossfades and directional
wipes. Using these effects can increase the perceived professionalism of your
application.

You can use XML to set up such graphics transformations.

Android provides the TransitionDrawable class. Here, we will use it in conjunction with
an XML file in the /res/drawables directory, just as we did in the frame-based animation
example, since we are working solely with bitmap images.

So let’s get started.

1. Right-click the Chapter8 folder and select New » File to create a
standard text file for our XML in the /res/drawable folder (since we are
working with bitmap images).

2. Name the file image_transition.xml, as shown at the bottom of the New
File dialog in Figure 8-11.

CHAPTER 8: An Introduction to Graphics Resources in Android

st T eioi
File
3

Enter or select the parent folder:

< Chapter8/ res@

4 2 Chapter8
(= .settings
% assets
> (= bin
> & gen [Generated Java Files]
4 B res

=

(= drawable

= 1ayou
= values
b & src

File name_image_transitionxml)

@ | Finish | Cancel

Figure 8-11. Creating the image_transition.xml file in the drawable folder via the New File dialog

3. Next, add the <transition> tag as follows. The <transition> tag has
the usual xmlns reference (to make our file valid Android XML). Inside the
tag, we specify two <item> tags referencing the images that we need to
transition from and transition to. We are using the two images from
Chapter 7 here to show that the transitions will accommodate the alpha
channel and more complicated masking of images, which is important
for advanced designs:

<?xml version="1.0" encoding="utf-8"?>

<transition xmlns:android="http://schemas.android.com/apk/res/android">

<item android:drawable="@drawable/image1"/>
<item android:drawable="@drawable/image2"/>

</transition>

4. Add the two images to the drawable folder. Figure 8-12 shows what
your screen should look like once you have added the two images,

refreshed the IDE, and typed in your tags.

http://schemas.android.com/apk/res/android

CHAPTER 8: An Introduction to Graphics Resources in Android

Java - Chapter8/res/drawabl transition.xml - Eclj

it Refactor Run Source Navigate Search Project Window Help

i-E& ‘B IBAE I B-0-AU- BGOSR |EE & (@)
2R IR A SRR A= 4
[£ PackageE &2 T: Hieurchyl = B[graphicsjava ﬂg main.xml lf@ logo_animation.xml ‘ X] text_animation.xml w e
&
& | & ¥ ||® <2xml version="1.0" encoding="utf-g"2> -8y
1 3DFilm - . . o
&I Chaptei? <transition xmlns:android="http://schemas.android.com/apk/res/android">
e
&= Chapter8 <item android:drawable="@drawable/imagel” />
GIB =re . E I(i\:em android:drawable="@dravable/image2" />
&3 gen [Generated Java Files]
B Android 15 </transition>
G'@ assets
o res
i anim
i drawable o
s icon.png < 3
m image_transition.xml Resourcﬂ image_transition.xm| >
[Wa| imagel.png E = =
i Problems | @ Javadoc Declaration | &l Console 52 [Properties B-rijv=0
‘ (4] image2.png = (& | (= (perties | : u G|]]
i n® * Android SDK Content Loader

Figure 8-12. Writing our XML mark-up to transition between two images in our image_transition.xml file

5. Now we need to add an ImageView in our LinearLayout to hold our
image transition. Put the following in the main.xml/ file underneath our
animated TextView, as shown in Figure 8-13.

<ImageView android:layout width="wrap_content"
android:layout_height="wrap_content"

android:src="@drawable/image1"
android:id="@+id/imgTrans"/>

1 = - - ook 3
8 s ol S i

File Edit Refactor Run Source Navigate Search Project Window Help
[fD-B@iai8idi%-0-A- 886- 80+ RA|BEIH-F-0e-=- & [§ve) ﬁ
[% PackageE 52 T: Hieraxhy‘| =0|[m graphics.java [dl logo_animation.xml ‘ [X text_animation.xml | [dll image_transition.xml ‘ = B
&
& | @ V||® <2xml version="1.0" encoding="utf-£"?> ~af
= o=
'19 Chapter8 - R) .
@ src <LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
a android:orientation="vertical"”
&3 gen [Generated Java Files] android:layout width="£ill parent”
Gﬂ‘ A":t':'d 15 android: layom::heighc="filI_parent">
= ass
5 res
=4 i <ImageView android:layout_width="wrap content"
4= anim android:layout_height="wvrap content"
4X] text_animation.xml android:id="@+id/ivi"/>
= drawable
(W& icon.png <TextView android:text="CHAPTER-EIGHT"
4X] image_transitionxml | _ android:id="@+id/TVi"
imagel.pni android:layout width="wrap content"
gel.png - >
image2.pn android:layout height="wrap content"
ge2.png _ - .
@ logo_animation.xml android:textSize="24dip"/>
(@] mtlogo0.png
[mtlogol.png <ImageView android:layout_width="wrap content”
E] mtlogo2.png andro.?.d:layout_helght= "({rap_content"
) mtioge3.png android:src= @graysble/xmagel
android:id="@+id/imgTrans
] mtlogod.png d. d:id="@+id/. T: ">
| mtlogoS.png B </LinearLayout>
[Rs] mtlogo6.png i
(W] mtlogo7.png < P
[®s] mtlogo8.png Layouf main.xml
[Rs] mtlogo9.png - ~ =
= layout - (B Problems| @ Javadoc|@ Declaration‘ Bl Console 52 = Propertiesl 5 BB | il = R i ﬁ}
= L 1
i g * Android SDK Content Loader

Figure 8-13. Adding an ImageView Ul object to our main.xml file to hold our image transition

Download from Wow! eBook <www.wowebook.com>

CHAPTER 8: An Introduction to Graphics Resources in Android

We are specifying the first image (the “from” image) of our transition as the source image
to use in the ImageView object, and we are naming it imgTrans via the now familiar
@+id/imgTrans notation.

Now we are ready to drop a few lines of Java code (a whopping four this time) into
graphics.java to add the ability to do a fade transition from one image slowly into
another.

Here is the code to set up the ImageView we just added to access the transition:

TransitionDrawable trans = (TransitionDrawable)
getResources().getDrawable(R.drawable.image transition);

This is all on one line, as shown in Figure 8-14.

TIP: We have no new import statements to add, so the import statements block of code is
closed in Figure 8—14. This is indicated by a plus sign (+) next to the block, which signifies that
this code block can be expanded (just click the +). You can click any of the minus signs (-) in
your Java code window to close classes you are finished editing, if you want to see a higher-level
view of your code. Once your code becomes long and involved, you will find that you use this
simple feature regularly. Try it, and get used to making it a part of your work process inside the
Eclipse IDE.

File Edit Refactor Run Source Navigate Search Project Window Help

H-E® B $-0-A- BHFEG- S S- POAvEN H-FH-ve-o- & [
(1% PackageE 22 _fg Hierarchy| = O |([J] “graphicsjava &3 . [mainxml | (i logo_animationxm| | [¥] text_animationxml | [image._transition.xmi =g
y gRehic S
=] %‘ ® package graphics.examples; gt o=
8=
3DFilm - .
g Chapter? || ®import android.app.Activity:[]
v
53 Chapter public class graphics extends Activity {
a@m nimati le 1 imation;
&3 gen [Generated Java Files] B @Override /** Called when the activity is first created. */
GﬂA"dWIdl-s - public void onCreate (Bundle savedInstanceState) {
ac‘z assets super.onCreate (savedInstanceState) ;
L res setContentView (R.layout.main) ;
5 anim ImageView logoImage = (ImageView) findViewById(R.id.ivl);
4X] text_animation.xml logoImage rce (R.drawable.logo_animation);
& drawable 1 n = (Animaci le) logoImage. 0:
M icon.png TextView texthAnim = (TextView) findViewById(R.id.TV1);
1) image_transitionxml Animation textAnimation = AnimationUtils.loadAnimation(this, R.anim.text animation);
B4 imagel. png startAnimation (imation);
R image2.png
¥ logo, animationni TransitionDrawable trans = (IzansitionDrawable) gec 0- le(R.drawable.image transition):
. milogod.png ImageView transImage = (ImageView) findViewById(R.id.imgTrans):
B mtiogolpng transImage.setImageDrawable (trans) ;
] mtogo2png trans.startTransition (10000);
§ T
] ’“‘:°93'P"9 public boolean onTouchEvent (MotionEvent event) {
[Ba] mtlogod.png if (event.getAction() == MotionEvent.ACTION DOWN) {
(M| mtlogoS.png logoAnimation.start ()
[mtlogob.png return true;
R mtlogo7.png)
[Ra| mtlogo8.png else return super.onTouchEvent (event);
R mtlogo9.png)
5= layout 3 =
X mainaml <« »
5 values z - = ==
X stringsxml « |[[L Problems | @ Javadoc [[, Declaration | EJ Console 52 . [Properties| ExpE|l et B ri~ =
T ‘ Writable ‘ o s ‘ 26:1 Android SDK Content Loader

Figure 8-14. Adding our Java code to graphics.java to define and trigger our image transition

This code declares our TransitionDrawable object, which we name trans. It sets trans
to the results of the call to the getDrawable() method of the object returned by the

CHAPTER 8: An Introduction to Graphics Resources in Android

getResources() method. This obtains the image_transition.xml transition drawable
specification, which points to our two circular images.

Setting up that TransitionDrawable object and loading it with our XML file is the hardest
line of code in this quartet. The next three are more familiar and straightforward:
ImageView transImage = (ImageView) findViewById(R.id.imgTrans);

transImage.setImageDrawable(trans);
trans.startTransition(10000);

We create an ImageView object called transImage and, via the findviewById() method,
we link it to the imgTrans ID, from the second ImageView XML tag we added to main.xm/
earlier. We then use the setImageDrawable() method to set the transImage ImageView
object to the trans TransitionDrawable object that we just created above it.

This second and third lines of Java code bridge our ImageView object with our
TransitionDrawable object, and thus complete our wiring together of the various Ul view
and animation effect objects.

Finally, we can now talk to the trans TransitionDrawable object via its
startTransition(milliseconds) method. We will use that method to tell the transition to
begin and to take place over 10,000 ms, or 10 seconds, (slow fade) to complete.

Select Run As... » Android Application and watch the fun.

Creating 9-Patch Custom Scalable Images

Another type of drawable utility subclass in android.graphics.drawable package is
NinePatchDrawable. A NinePatch is a resizable bitmap whose scaling during resize
operations can be controlled via nine areas that you can define in the bitmap image
(think tic-tac-toe). This type of image could be used for anything from a scalable button
background to a Ul background that scales to fit different screen resolutions.

The advantage to the NinePatch drawable object is that you can define a single graphic
element (in our example, that will be a 2.7KB PNG file) that can be used across many
different Ul elements, including buttons, sliders, backgrounds, and similar items. Screen
or button backgrounds can use this technology.

Android comes with a tool for editing NinePatch objects. In the Android SDK tools folder
(as shown in Figure 8-15, this is under android-sdk-windows on Windows), you will find
a draw9patch.bat batch file. Running this file (from the command line or by using a right-
click context-sensitive menu) starts the Draw 9-patch utility.

CHAPTER 8: An Introduction to Graphics Resources in Android

@@v . « android-sdk-windows » tools »

‘ Organize™ v

&t Print (@ Burn

Views + .Open -

Favorite Links Name Date modified Type Size
EJ Documents L Jet 8/1/201012:28 AM File Folder
. L lib 8/1/201012:28 AM File Folder
B Pictures [adb.exe 8/1/201012:28 AM Application 566 KB
B Music] AdbWinApi.dil 8/1/201012:28 AM Applicatio... 94 KB
More » %] AdbWinUsbApi.dil 8/1/201012:28 AM Applicatio... 60 KB
Folders v android.bat 8/1/201012:28 AM Windows ... 4KB
418 Computer [&) apkbuilder.bat 8/1/201012:28 AM Windows ... 2KB
4 a Local Disk (C:) N ddms.bat 8/1/201012:28 AM Windows ... 3KB
b Ji _MACOSX £ X 8/1/201012:28 AM Application 296 KB
N ((Eldrawspatchbot) 8/1/20101228AM Windows .. 2KkB
o [} AndroidProiect ‘W' emulator.exe 8/1/201012:28 AM Application 8,395 KB
Im __|emulator_NOTICE.txt 8/1/201012:28 AM Text Docu... 18 KB
> 08 add-ons [etcltool.exe 8/1/201012:28 AM Application 900 KB
> @ docs [fastboot.exe 8/1/201012:28 AM Application 329KB
> [market_licensing [&]hierarchyviewerbat ~ 8/1/201012:28 AM Windows ... 2KB
> B platforr;s [T hprof-conv.exe 8/1/201012:28 AM Application 212 KB
N e layoutopt.bat 8/1/201012:28 AM Windows ... 2KB
i [mksdcard.exe 8/1/201012:28 AM Application 208 KB
@ | NOTICE.txt 8/1/201012:28 AM Text Docu... 202 KB
— LZ] source.properties 8/1/201012:28 AM PROPERTL.. 1KB
> B lib [sqlite3.exe 8/1/201012:28 AM Application 1,590 KB
> b ush,_driver [&]traceview.bat 8/1/201012:28 AM Windows ... 2KB
>)i AndroidUtils il [zipalign.exe 8/1/201012:28 AM Application 614 KB
ot draw9patch.bat Date modified: 8/1/2010 12:28 AM
<[% Windows Batch File Size: 1.45 KB
f“i Date created: 5/7/2010 11:48 AM

Figure 8-15. Locating the Android 9-patch editing tool in your operating system directory structure for the
Android SDK

TIP: This chapter uses screen images from Adobe Photoshop. If you don't have PhotoShop, there
a free open source software called GIMP (for the GNU Image Manipulation Program), which is
similar to Photoshop and available for Mac, Linux, and Windows systems. For more information

and to download GIMP, go to http://gimp.org.

Let’s try creating some 9-patch buttons.

1. To launch the 9-patch editor from Windows, right-click the
draw9patch.bat file (in Linux and Mac systems, the file name extension
may be different) and select Run as Administrator. You will see the Draw

9-patch startup screen.

http://gimp.org

CHAPTER 8: An Introduction to Graphics Resources in Android

2. Select File » Open 9-patch from the menu bar, as shown in Figure 8-16. In
the dialog that appears, go to your project/res/drawable folder and open
the chromebutton.png file.

f |£)| Draw 9-patch 1 1 — ‘

L — S

Figure 8-16. Draw 9-patch startup screen

3. The PNG32 image file opens in the 9-patch editor, as shown in Figure
8-17. Select the Show patches check box at the bottom of the window,
so that you can see the effects of the patch areas as colored,
translucent surfaces over the top of the image.

CHAPTER 8: An Introduction to Graphics Resources in Android

oo B W T, T
File
Press Shift to erase pixels Show bad patches -

Figure 8-17. On the left of the 9-patch editor is a working area where you will define the tiling areas of the
9-patch. On the right is a real-time preview area, showing how the image will tile when stretched in different
dimensions.

4. Draw boundaries with your mouse by dragging the mouse within the 1-pixel
wide transparent border area above and to the left of our graphic, as shown
in Figure 8-18. The Draw 9-patch utility adds this 1-pixel border area inside
the image.

NOTE: As you add points to this line with a left-click (or subtract with a right-click or Shift-click
for Mac), be sure to look at the images on the right. You’ll see how they change the way that
Android scales your background in real time as you work on the image.

File

Press Shift to erase pixels Show bad patches

Figure 8-18. Tileable areas in the 9-patch editor are defined by different colors.

5. Bring the original and the newly created 9-patch image into Photoshop,
as shown in Figure 8-19. Now, you can see what the 9-patch editor is
doing to tell Android which parts of the image to tile or scale and which
parts of the image to preserve (usually edges).

CHAPTER 8: An Introduction to Graphics Resources in Android

B S

File Edit Image Layer Select Filter Analysis View Window Help
|1z[_- Width: 3= Height: ‘ 2 o ,‘[anﬂmage][dsr]‘ ’ml Workspace
n chromebarbutton.psd @ 500% (Layer 1, RGB/8) o [@][=] y y — X
R VN PPV ¢ PUTTUUT . FOTTUUIN o JOTTITIN i PUTVUT i JUVTUURN i+ FOTTUUTN Lo JOTTION i OTVOT i+t It B Navigator | Histogram | Infox |
T
0 R: C:
E]| #6: AM:
B: Y:
— K:
E ?‘ 8-bit &-bit
3 =% | %
= —
0_ ‘B. Doc: 7.46K/9.95K
— é Click and drag to define cropping frame. Use Shift, Alt, and
3] Cirlfor additional options.
3 | pr—— 3
Doc: 6.75K/11.5K] « | Color | Swatche =

T chromebutton9.png @ 500% (Layer 0, RGB/8)
B O B B R

J‘ Layers X] Channels | Paths -
Normal v Opacity:| 100% | *

Lock:] & 0 @ Fil: | 100% [|
U= _________J

s00% 05| Doc: 7.46K/9.95K DK

g M eeNuErasr[peot NS NB 00 7]

Figure 8-19. The 9-patch images in Adobe Photoshop

6. Select File » Save and save the 9-patch image in your
/project/res/drawable folder as chromebutton.9.png. It is now ready to
implement as a background image in the test buttons that we are going
to add to our main.xml file.

7. Add the following code to the bottom of our LinearLayout container (it
can also be seen in Figure 8-21 later in the exercise):

<Button android:id="@+id/Button1"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:background="@drawable/chromebutton"”
android:textColor="#770000"
android:padding="3dip"
android:text="CLICK HERE!"
android:layout_gravity="center"/>

<Button android:id="@+id/Button2"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:background="@drawable/chromebutton"”
android:textColor="#007700"
android:padding="30dip"

CHAPTER 8: An Introduction to Graphics Resources in Android

android:text="NOW LETS REALLY SCALE THIS UP!"
android:layout_gravity="center"
android:textSize="17dip"/>

8. Click the Graphical Layout tab at the bottom of the main.xm/ editing
window, and switch Eclipse into preview mode (as you’ve done in earlier

examples). As shown in Figure 8-20, you can readily see the different
effects of scaling the 9-patch image that were previewed in the Draw 9-

patch tool.
"8 im0\
File Edit Refactor Run Navigate Search Project Window Help
w1 Bid i P-0"Q BHC- @S F~ L i LD & [§ave)
1% PackageE 22 Y Hierarchy| = 5| [1) graphicsjava lcl *mainaml 32 _[cl logo_animationml | (] text animationaml | i image transition.xmi =g
~ ~ &
& - .
‘ B8|s Editing config: default m .
7 3DFilm . - -
£1 Chapter? Devices ADPL < - configlportait > v)ocd ~ [Theme ~|[create..|
“@ Ch, p
PCBA:‘:'E CHAPTER-EIGHT

3 graphics.examples
[3) graphicsjava
8 gen [Generated Java Files]
=)\ Android 1.5
& assets
= anim
X text_animationaml
= drawable
chrome button.pn
€ chromebutton9.png >
i g transitonsanl NOW LETS REALLY SCALE THIS UP!
M| imagel.png
M| image2.png
1) logo_animation.xml
M| mtlogo0.png
M| mtlogol.png
@] mtlogo2.png
[Ra| mtlogo3.png
[Ra] mtlogod.png
@] mtlogo5.png

Al mtlogobpng ainml\

@) mtlogo7.png

) mtl ({2 Problems | @ Javadoc [Declaration | &l Console | Properties £3 -
[Ra] mtloged.png Property Value a
5= layout Tet NOW LETS REALLY SCALE THIS UP!
X mainxml Text appearance
= values Text color #007700
X stringsxml Text color highlight
Al AndroidManifestaml Text color hint
default.properties Text color link -
11 devogella.android.temperature Text scale X
7 LinearLayouts Text size 2
o® Size of the text. Android SDK Content Loader

Figure 8-20. Setting Ul parameters and portrait mode in the Eclipse layout editor

In this case, small padding values preserve the round ends of the button, and ten times
larger padding values scale the image to look more like a piece of chalk. Both different
button treatments are culled from the same 2.7KB PNG image using the
NinePatchDrawable object.

Note how easy it was for us to define and use the NinePatchDrawable class, without any
Java code at all. We simply need to put the chromebutton.9.png 9-patch-compatible
image into the /res/drawable folder, so it can be found and accessed by our XML.

Figure 8-21 shows the additions to main.xml. Notice that we added an attribute in each
of our Ul tags (ImageView and TextView):

android:layout_gravity="center"

CHAPTER 8: An Introduction to Graphics Resources in Android

3 o vttt e T (e

File Edit Refactor Run Source Navigate Search Project Window Help

Hr-E® BidiBs-0-U- BHG- OB~ BABE H-F-0era- 5 (fava)
[& Package E 52 T3 Hierarchy| = O [[9) graphics.java A *mai (9 logo_animati || X text_ani I | image_transiti | =0
B % | & 7 |[P_<?xml version="1.0" encoding="utf-5"2> - f_
<Linearlayout xmlns:android="http://schemas.android.com/apk/res/android" 7] ==
7 3DFilm android:orientation="vertical”
E{ Chapter? android:layout_width="fill parent"
(@SuChapteds | android:layout_height="fill parent"s
(8 src <ImageView android:layout_width="vrap_content’
2 graphics.examples - ndroid:layout height="wrap content"
[3) graphicsjava . [android:layout_gravity="center” |
@8 gen [Generated Java Files] android:id="@+1d/ivi"/>
=\ Android 1.5 <TextView android:text="CHAPTER-EIGHT"
& assets android:id="@+id/TVi"
b res android:layout_width="vrap_content"
& anim android:layout_height="wrap content"
R text_animation.xml android:layout_gravity="center"
& drawable android:textSize="24dip"/>
rome_button.png <ImageView android:layout_width="wrap content"
android:layout_height="vrap content"
BTeonng android:layout_gravity="center"”
o - android:src="Gdravable/imagel" =
4 image transition.xmi android:id="G+id/imgTrans"/>
8] imagel.png <Button android:id="@+id/Buttonl”
[®u] image2.png android:layout_width="wrap content"
48 logo_animationmi android:layout_height="vrap_content"
@] mtlogo0.png android: o edravab. e,
[Ra] mtlogol.png android:textColor="#770000"
[Ra] mtlogo2.png android:padding="3dip"
[mtlogo3.png android:text="CLICK HERE!"
[Rs] mtlogod.png android:layout_gravity="center"/>
@] mtlogoS.png <Button android:id="@+id/Button2"”
[Ra] mtlogo6.png android:layout_width="yrap_content"
[Ra] mtlogo7.png android:layout_height="vwrap content"
A mtlogo8.png android:background="gdravable/chromebutton”
@] mtloged.png android:textColor="$007700"
B layout android:padding="30dip"
& mainxml android:text="NOF LETS REALLY SCALE THIS UP!"
= values android:layout_gravity="center” android:textSize="17dip"/>
N </LinearLayout> I
X stringsxml <
Al AndroidManifestaml <«)
default.properties Layout | main.xml |
1 d la.android. L - - - > = -
1 Lineartayouts (2 problems @ Javado @, Dectartion (& Console = Properies 51 E#=c~ =0
nd @ LinearLayout/ImageView/android:layout_height Android SDK Content Loader

Figure 8-21. Adding our 9-patch PNG in our main.xml Ul layout and setting layout_gravity to center buttons

Layout gravity is like the alignment feature in word processors and browsers. It allows
you to snap a layout container or a Ul element to the left, right, top, bottom, or center.
It’s handy for designing the visual screen layout.

Now choose Run As » Android Application and check out our 9-patch buttons at the bottom
of the emulator screen. Take a good look at them, because we are going to replace
them with a VideoView in the next section.

Playing Video in Your Android Apps

As our final topic, we’ll look at how to simply and effectively play video files in your
Android applications. You do this through a very handy class called VideoView. We are
going to add the ability to play video in our application using only three lines of XML
code and eight lines of Java code, or less than a dozen lines of code in total.

Adding a VideoView Object

For video playback, we will use the VideoView class. Like TextView and ImageView
objects, VideoView objects make it easy to access MPEG-4 H.264 video in your Android
applications. Your video can be easily streamed from a remote server, keeping your
application download size to a minimum.

CHAPTER 8: An Introduction to Graphics Resources in Android

To add a VideoView to our LinearLayout, in main.xml, place the following new tag
underneath the last ImageView tag (and in place of our two Button tags, which should be
deleted and replaced with the following):

<VideoView android:layout_height="fill parent"

android:layout_width="fill parent"
android:id="@+id/VideoView"/>

This names our VideoView and tells it to fill its parent container using fill parent. The
fill parent value does the opposite of wrap_content. It blows the content up to fit the
layout container, rather than scaling the layout container down around the content.

With this in our LinearLayout for our Chapter8 project, replacing the two Button tags, we
will now have video at the bottom of our app screen, under our transition object. Since
in our vertical layout our VideoView object is getting pushed off the bottom of the screen,
let’s temporarily disable our frame-based animation while we develop our VideoView
code. We do this by commenting out a block of code, as follows:
<l--
<ImageView android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_gravity="center"
android:id="@+id/iv1"/>
-->

So, to comment out a block of code in XML, simply add the <!-- opening tag and the --
> closing tag, as shown here.

Your new main.xml code should look like Figure 8-22. You can see that once this block
of code is commented out, Eclipse changes the color of the code, and the Android
compiler no longer sees that code. As far as it’s concerned, the code is not there
anymore. We’ll do the same thing in our Java code as well, except using a different
comment method.

TIP: Commenting is a useful technique when you want to temporarily change a file without
deleting some content, or as a way of leaving notes to yourself. You will see this latter approach
used extensively in Java code. Commenting is a good habit for developers.

CHAPTER 8: An Introduction to Graphics Resources in Android

"3 - oot e T (el

File Edit Refactor Run Source Navigate Search Project Window Help

lict-He ‘6 B4d $-0-QA- BHEG- S/~ BA|EBE H -3 - Cora- = [@aa)
[# PackageEx 52 ~_To Hierarchy] = B[[J] graphicsjava w@, logo_animationxml | [X] text_animation.xml ‘@ image_transition.xml [= 0
&
& | & ||® <2xml version="1.0" encoding="utf-g"?>]
7 3DFilm ~ » o=
&1 Chapter? | <LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
74 Ch Pt 8 android:orientation="vertical”
PBBPE android:layout_width="fill parent"”
src

android:layout height

£ill parent">

3 graphics.examples
[3) graphicsjava
&8 gen [Generated Java Files]

<i--

<ImageView android:layout_width="wrap_content”
android:layout_height="wrap_content"

=\ Android 1.5 android:layout_gravity="center"
& assets android:id="@+id/ivi"/>
5 res >
2 anim <TextView android:text="CHAPTER-EIGHT"
4X] text_animation.xml = android @+id/TV1" 3
= drawable android:layout_width="wrap content" W
[Ra chrome_button.png android:layout_height="wrap content"
E chromebutton9.png android:layout_gravity="center"
E icon.png android:textSize="24dip"/>

<ImageView android:layout_width="wrap content"
android:layout_height="wrap content”
android:layout_gravity="center"
android:sr @dravable/imagel"
android:id="@+id/imgTrans"/>

4X] image_transition.xml

[R&| imagel.png

[Ra| image2.png

4X] logo_animation.xml

[Rs| mtlogo0.png

[R| mtlogol.png <VideoView android:layout height="£ill parent"

[R| mtlogo2.png android:layout_width="fill parent”

R4 mtlogo3.png android:id="@+id/VideoViev"/>

[Ra| mtlogod.png

(@] mtlogoS5.png </LinearLayout> S

|Ra| mtlogo6.png <

[Ra| mtlogo7.png Layout main.xmll

[R&| mtloge8.png (E_ = 7 . — = . . =08

Ms] mtlogod.png -l { Problems | @ Javadoc“% Declaratlon|E Console &2 [Properties| En 5E| #E~-ri- “
i g LinearLayout/#text © Android SDK Content Loader

Figure 8-22. Adding a VideoView and commenting out a section of the XML

Adding the Java for Video

In Java, a line of code is commented out by adding two forward slashes (//). In
graphics.java, we begin by commenting out our import android.view.MotionEvent
statement, as shown in Figure 8-23. Eclipse turns the commented code green to show it
is no longer recognized by the compiler.

Download from Wow! eBook <www.wowebook.com>

CHAPTER 8: An Introduction to Graphics Resources in Android

3 s Cpretsopncsonpigopncsma e I i)

File Edit Refactor Run Source Navigate Search Project Window Help
ir- ‘BB B-0-Q-
IR TR R =R

E Package bx ﬁ i Ys Hierarchy| = 0 |[[J] graphicsjava 52 _|d mainaml | [logo_animation.xml | X] text_animation.xml ‘ [cll image_transition.xml | =8|

BHCG- O F~ P S EI = [

= <é‘)l ' - package graphics.examples; - :;
1 3DFilm .) £
1 Chapter7 “import android.os. Bund}e;
472 Chapter8 import android.app.Activity;
‘f@ ::: //import andro view.MotionEvent;

Import android.widget.imageview;
import android.widget.TextView;

import android.net.Uri;

import android.widget.VideoView;
import android.widget.MediaController;

4 {1} graphics.examples
b [J] graphicsjava
b &8 gen [Generated Java Files]
» = Android 1.5

G@BSSQ’(S 1mMpoTr .View.animation.Animation;
4§ res import android.view.animation.AnimationUtils;

4 §= anim import android.graphics.drawable.AnimationDrawable;
4X] text_animation.xml import android.graphics.drawable.TransitionDrawable;

4 §= drawable
[a| chrome_button.png public class graphics extends Activity {
[chromebutton.9.png AnimationDrawable logoAnimation;
A icon.png © @Override /** Called when the activity is first created.

- public void onCreate (Bundle savedInstanceState) {

AX] image_transition.xml
super.onCreate (savedInstanceState);

E ;:::3:::3 setContentView (R.layout.main)
m logo_animation.xml //ImageView logoImage = (ImageView) findViewById(R.id.ivl);
- //logoImage.setBackgroundResource (R.drawable.logo_animation); =
(R mtlogo0.png //logoknimation = (AnimationDrawable) logoImage.getBackground(): r
[Ra] mtlogol.png TewById(R.1d. TVIT;
(R mtlogo2.png Animation textAnimation = AnimationUtils.loadAnimation(this, R.anim.text animati
[Ra| mtlogo3.png textAnim.startAnimation (textAnimation);
|| mtlogod.png TransitionDrawable trans = (TransitionDrawable) getResources().getDrawable (R.dra|
[Rs| mtlogo5.png ImageView transImage = (ImageView) findViewById(R.id.imgTrans):
[Rs| mtlogo6.png transImage.setImageDrawable (trans);
|Rs| mtlogo7.png trans.startTransition(10000);
[Rs| mtlogo8.png
(R mtlogo9.png Uri vidFile = Uri.parse("http://commonsware.com/misc/test2.3gp");
4 = layout VideoView videoView = (VideoView) findViewById(R.id.VideoView):
1) mainaxml videoView.setVideoURI (vidFile);
4 §= values videoView.setMediaController (new MediaController(this));
AX] stringsxml videoView.start():

£ AndroidManifest.xml !

default properties //public boolean onTouchEvent (MotionEvent event) {
£ dewogella.androidtemperature /7 if (event.getAction() == MotionEvent.ACTION DOWN) {
A /7 logoAnimation.start();
T LinearLayouts 7/ return true;
/7 }
/7 else return super.onTouchEvent (event);
/7 L3
) -
<[I])
(E_i Problems" @ Javadoc ‘@ Declaration (E Console &2 "\ [Properties| ENY ‘ #E~-5-° ﬁ)
ipe © Android SDK Content Loader

Figure 8-23. Adding Java code to play our VideoView Ul object

Remember that we commented out the code for our frame-based animation in our XML
file. Let’s now comment out the code that implements that frame-based animation in our
Java file. We also comment out the touchscreen code, as follows (and shown in Figure
8-23):

//ImageView logoImage = (ImageView) findViewById(R.id.iv1);

//1logoImage.setBackgroundResource(R.drawable.logo animation);

//logoAnimation = (AnimationDrawable) logoImage.getBackground();

Now, add three new import statements for the classes we need:

import android.net.Uri;
import android.widget.VideoView;
import android.widget.MediaController;

CHAPTER 8: An Introduction to Graphics Resources in Android

To get the video from our server, we also need to define its path using a Uri object, so
we must import the android.net.Uri class. We next import the VideoView widget
(android.widget.VideoView). Finally, to play the video in the VideoView, we will use a
MediaController object, so we import the android.widget.MediaController class as
well.

Next, add the following to create our VideoView object (see Figure 8-24):

Uri vidFile = Uri.parse("http://commonsware.com/misc/test2.3gp");
VideoView videoView = (VideoView) findViewById(R.id.VideoView);
videoView.setVideoURI(vidFile);

videoView.setMediaController(new MediaController(this));
videoView.start();

First, we create the Uri reference object, which holds the path, or address, to the video
file on the server. The Uniform Resource Identifier (URI) can use the familiar HTTP server
paradigm or a more advanced real-time streaming protocol. As you can see, here we are
using the HTTP protocol, which works fine and is the industry standard, thanks to the
Internet. We create a Uri object called vidFile using the parse() method with the HTTP
URL to any valid path and file name in quotes. Here, the Uri object points to the content
at http://commonsware.com/misc/test2.3gp, so that we have some video to play.

Now we have an object called vidFile that contains a reference to our video file.

Next, we set up our VideoView object, calling it videoView and using findViewById() to
locate the VideoView we created in our XML layout file. This is the same thing we have
been doing with the other View types, and should be pretty familiar to you at this point.

Now that we have a videoView object, we use the setVideoURI() method to pass the
vidFile Uri object to the videoView VideoView object, so that the VideoView is loaded
with the file path to use to retrieve the video. Now our Uri is wired into our VideoView,
and we need only to wire the MediaController into the VideoView so that the video can
be played.

The next line of code connects the videoView object to the MediaController object
using the videoView object’s setMediaController () method, and invokes a cool code-
optimization trick of declaring a new MediaController object inside the
setMediaController() method. The long form of this would require two lines of code
and an additional object variable, like so:

MediaController mediaControl = new MediaController(this);
videoView.setMediaController(mediaControl);

Finally, to start our videoView object playing, we send it a start() method call via the
last line of code:

videoView.start()

We are finished setting up our VideoView object. Now select Run As > Android Application
and watch our video stream over the Internet into your 1.5 emulator.

http://commonsware.com/misc/test2.3gp
http://commonsware.com/misc/test2.3gp

CHAPTER 8: An Introduction to Graphics Resources in Android

Summary

In this chapter, we took a look at the more advanced graphics capabilities that Android
offers, including two different types of animation, image transitions, and digital video.
You also learned a little more about the Eclipse IDE, code commenting, and image file
formats that are optimal for Android apps.

Here are some important points to remember:
B Always use PNG24 (which is really PNG32) format.

B Bitmap animation and tween animation are two completely different
things as far as Android is concerned. Bitmap-related animation and
transitions are handled through the /res/drawable folder. Tween
animation is handled via XML files defined in the /res/anim folder.

B Don’t limit yourself when using tween animation. Use it on any type of
View container you like—text, image, video, or whatever; wax creative.

In the next chapter, we’ll start looking at how to make things interactive by setting up
our applications to handle events and to listen for those events via event listeners.

Chapter

Adding Interactivity:
Handling Ul Events

In this chapter, we will explore how to wire up those super-cool Ul designs that you have
seen in the previous chapters, so that your Ul design becomes highly functional within
your Android application. With Android’s convenient event listeners, you can easily add
in your own custom programming logic. Using the event handling described in this
chapter, you’ll be able to have your Ul and graphical elements actually do something
productive or impressive after they are tapped on (touchscreen), navigated to (navigation
keypad), or typed into (keyboard).

We’ll begin with an overview of how Android listens to its touchscreen and keyboard,
and how to harness the power of input devices.

An Overview of Ul Events in Android

The way that we talk to all of the input devices in Java, and thus in Android, is via events
for each type of input device (touchscreen, keyboard, and navigation keys). Events are
actually system-generated messages that are sent to the View object whenever a Ul
element is accessed in some fashion by a user. Event refers to something that you
attend or otherwise recognize as being significant, and thus is the perfect term for these
Ul occurrences via Android input devices.

Listening for and Handling Events

Handling and handlers are two other terms used in conjunction with events in Java and
Android. Once these events are triggered by a user’s touch, keystroke, or navigation
key, they must be handled within your application. This is accomplished inside a method
(such as onClick() or onKeyDown()) that specifies exactly what you want to happen
when one of these input events is detected by Android and is sent over to your
appropriate event handler for processing.

183

CHAPTER 9: Adding Interactivity: Handling Ul Events

This concept of handling events is termed listening in Android. You will see the terms
event listeners and event handlers throughout this chapter. That’s because they are what
the chapter is all about: how to put into place the proper event listeners and event
handlers to cover your app users’ interaction via touchscreen, navigation keys, and
keyboard input devices that are part of a smartphone’s hardware.

Handling Ul Events via the View Class

Each of the Ul elements in your application is a View object of one incarnation or
another, and each has events that are unique to that element. This is how user
interaction with specific Ul elements is kept separate and organized. Each of these View
objects keeps track of its own user-input events.

The way that a View object within your layout talks with the rest of your application
program logic is via a public callback method that is invoked by Android when a given
action occurs in that Ul View object. For instance, if a Button is touched, an
onTouchEvent() method is called on that object, because Android knows to call a
method of that name when that event occurs. In other words, Android calls back to the
object that received an event so that the object can handle it.

For this callback message to be intercepted by your Java code and program logic, you
need to extend your View class and override the method from the View class that your Ul
widget was spawned (subclassed) from. To override a method means to declare and
define that method specifically within your class, and have it do something via your own
custom program logic.

Since your Ul design is made up of a collection of View objects in one or more ViewGroup
layout containers, you can see how this might represent a gaggle of coding just to make
sure all of your Ul elements are properly listening to the keyboard, touchscreen, and
navigation keys. Has Android done anything here to make things easier on us, as it has
in other areas of app development?

Yes, Android has provided a way to facilitate event handling. The View class from which
all of our Ul widgets are subclassed contains a collection of nested interfaces featuring

callbacks that are far easier to define, as they are part of the system that makes up the

View class and all of its methods.

These nested interfaces that are already a part of all of your View class-based widgets
are called event listeners. They provide the easiest way to quickly set in place code that
will capture user-input events and allow them to be processed right there in your
application program logic.

Event Callback Methods

In the most simple of terms, an event listener is a Java interface in the View class that
contains a single callback method to handle that type of user-input event. When you
implement a specific event listener interface, you are telling Android that your View class
will handle that specific event on that specific View.

CHAPTER 9: Adding Interactivity: Handling Ul Events

These callback methods are called by Android when the View object that the callback
method is registered 1o is triggered by the user-input device used to access that Ul
interface element. (I like to say the method is wired up to the View object, but then again,
| am a programmer and drink far too much coffee.)

The callback methods that we are going to cover in this chapter are the most common
ones used in Android application development. They are listed in Table 9-1.

Table 9-1. Common Android Callback Methods

Method From Triggered By

onClick() View.OnClLickListener Touch of screen or click of navigation
keys

onLongClick() View.OnLongClickListener Touch or Enter held for 1 second

onKey () View.OnKeyListener Press or release of key on phone

onTouch() View.OnTouchlListener Touch, release, or gesture events

onFocusChange() View.OnFocusChange Focus change

onCreateContextMenu() View.OnTouchListener Context menu

In the table, two of the methods are not directly triggered by user input, but they are
related to input events. These are onFocusChange() and onCreateContextMenu().
onFocusChange() tracks how the user moves from one Ul element to the next. The term
focus refers to which Ul element the user is using or accessing currently. When a user
goes from one Ul element to another one, the first Ul element is said to have “lost
focus,” and the next element is said to now “have the focus.” The
onCreateContextMenu() method is related to the onLongClick() callback method, in the
sense that context menus in Android are generated via a long-click user action. This is
the touchscreen equivalent of a right-click on most computers.

To define one of these callback methods to handle certain types of events for one of
your View objects, simply implement the nested interface in your activity or define it as
an anonymous class within your application. If you define it as an anonymous class, you
pass an instance of your implementation of the listener to the respective set..Listener()
method, as you’ll see in the next section.

In the rest of this chapter, you’ll learn how to leverage the main event listeners in
Android so you can make your applications interactive and useful.

Handling onClick Events

The onClick() method is triggered when the user touches a Ul element. As you might
guess, it’s the most commonly used event handler out there. So, it only makes sense to
start with handling onClick events.

CHAPTER 9: Adding Interactivity: Handling Ul Events

Implementing an onClick Listener for a Ul Element

First, let’s create an anonymous OnClicklListener:

final OnClickListener exampleListener = new OnClickListener()

public void onClick(View v) {
//Code here that does something upon click event.
}

};

This is an example of an anonymous class. This line of code sets up a variable called
exampleListener as a new OnClickListener object, which listens for onClick events.

NOTE: Recall from Chapter 7 that a final variable cannot be reassigned a value once it has been
set. This ensures that another listener does not get assigned.

It is logical, then that inside this class definition there would be a public onClick(View v)
handler to handle the onClick event. The public onClick handler is passed an ID
reference to the View object that was clicked on, so that it knows which View object to
handle. Note that the View that has been clicked is named v, so if you want to reference
the View object in the code inside this method, it is ready to go and must be referenced
via a variable “v”.

How any given onClick handler handles a click event is up to the code inside the
onClick handler. That code basically explains what to do if that Ul element was clicked
on or touched, or typed with a keystroke.

If you want to come off as really cool right now, simply look up casually from the book
and exclaim to your family, “I’m coding an onClick handler in Java right now,” and then
look back down and continue reading.

We have defined an OnClickListener, but we need to wire it to a Ul element (attach it to
a Ul View object) before that code can be triggered. Usually, this will go inside the
onCreate() method (which you have become familiar with in the first two-thirds of this
book).

It takes only two lines of code to connect a button to the examplelListener object. The
first is simply our Java declaration of the Button Ul object in our main.xml Ul layout
definition:
<Button android:text="First Button"

android:id="@+id/firstButton"

android:layout_gravity="center"

android:layout_width="wrap_content"
android:layout_height="wrap_content"/>

The second line is where we connect the button construct with the event listener
construct, by using the Button widget’s setOnClickListener() method, like so:

Button exampleButton = (Button)this.findViewById(R.id.firstButton);
exampleButton.setOnClickListener(exampleListener);

CHAPTER 9: Adding Interactivity: Handling Ul Events

Adding an onClick Listener to an Activity in Android

You will probably not be surprised when | tell you that there is an even sleeker way to
define your event listeners for your activities, using even fewer object references and
lines of code. This is normally how you will want to do things in your Android
applications programming activities.

You can implement an event listener directly inside the declaration of your activity within
the actual class declaration. Wow. Event listeners must be muy importante.

Here is a class declaration that uses the implements keyword to embed an
OnClickListener directly into the class via its declaration:

public class ActivityExample extends Activity implements OnClickListener() {..}

The previous two lines of code declaring the Button and wiring via setOnCLickListener()
would still exist inside the onCreate() code block, but the declaration of the
examplelListener object and class would not be necessary.

Now it’s time to create our Chapter9 project folder and implement a button and onClick
listener so that you can see event handling in action.

Creating the Event Handling Examples Project in Eclipse

For our first example, we’ll set up the button so that when it is clicked, the text on a
TextView changes.

In Eclipse, close the Chapter8 project folder (right-click it in Package Explorer and select
Close Project), if it’s still open. Also close all the empty tabs at the top of the Eclipse IDE,
using the x icons in the top-right side of each tab.

Select File » New » Project and choose Android Project to open the New Android Project
dialog. Fill it out as follows (and shown in Figure 9-1):

B Project name: Name the project Chapter9.
Build Target: Choose Android 1.5.
Application name: Name the application Event Handling Examples.

Package name: The package name should be event.handling.

Create Activity: Check the box and name the activity
HandlerExamples.

B Minimum SDK Version: Set this to 3, which matches our Android 1.5
build target and emulator.

CHAPTER 9: Adding Interactivity: Handling Ul Events

"3 New Android Project Si|En| s
New Android Project ‘
Creates a new Android Project resource. Cl

Project name:CChapterd)

Contents

@) Create new project in workspace
(©) Create project from existing source
Use default location

Location: [C:/Projects/Chapterd Browse... ‘

(©) Create project from existing sample

Samples: \ApiDemos V‘
Build Target
Target Name Vendor Platform API...
< Android 1.5) Android Open Source Project 15 3
oogle APIs GoogleInc. 15 3
I Android 1.6 Android Open Source Project 16 4
‘ Google APIs GoogleInc. 16 4
Android 2.1-upda... Android Open Source Project 21-upd.. 7
Google APIs GoogleInc. 21-upd.. 7
Android 2.2 Android Open Source Project 22 8
Google APIs GoogleInc. 22 8

Standard Android platform 1.5

Properties

Application name:<£vent Handling Examéles >

Package name: event.handling
Create Activity: €HandlerExample:

Min SDK Version:

@ [< Back][Next >] l Finish] [Cancel

S — 4

Figure 9-1. Creating the Chapter9 Android project

Editing the HandlerExamples.java File
Now let’s edit the java code:

1. Inthe Package Explorer, open your project tree hierarchy by clicking the
arrows next to the /src and /res folders, so that you can see their
contents. Select the HandlerExamples.java file under the
/src/event.handling folder by clicking once on it (it will turn blue), and
then hit the F3 key on your keyboard. This is the keyboard shortcut for
the Open option.

CHAPTER 9: Adding Interactivity: Handling Ul Events

2. Notice that some code has been written for us. The first thing we need
to do is to implement OnClickListener. Add implements
OnClickListener to the end of the class declaration, as shown in Figure
9-2. (Note there is a deliberate typo here, so | can show off some
features of Eclipse. See if you can spot it.)

= Java - Chap ing/ java - Eclipse o8] %
File Edit Run Source Navigate Search Project Refactor Window Help
- @ B BAE $-0-a- BEG- ®cy- PHAvEN CEm
R R SRR
[Package Explorer 52 e Hierarchy| = B |[[J) *HandlerBxamples,java £3 =0j-
- &
B Q:,/‘ I package event.handling; il ([P
7 3DFilm o
£ Chapter? “import android.app.Activity;
& ch P 8 import android.os.Bundle;
import android.view.View.OnClickListener;
B Ch:ztt:vQ
B;‘ handi LQ “public class HandlerExamples extends Activity implements OnClickListener() { I =1
eventhandling
[3) HandlerBxamplesjava /** Called when the activity is first created. */
&8 gen [Generated Java Files] - @Override
=) Android 1.5 a public void onCreate (Bundle savedInstanceState) {
g\c} assets super.onCreate (savedInstanceState) ;
& res setContentView (R.layout.main) ;
(= drawable } ——
A icon.png '@ The type HandlerExamples must implement the inherited abstract method
& layout 3 View.OnClickListener.onClick(View)
[X) mainxml 2 quick fixes available:
(= values l @ Add unimplemented methods I
[X) stringsxml @ Make type HandlerExamples abstract
| AndroidManifest.xml i
default.properties 7 P
G d Ila.android.
p o T T SE=—
1 LinearLayouts [[21 Problems [@ Javadoc [[€, Declaration [& Console 52 [Properties| EYIELEER)
L 1
o Witable | smartinsent | 9:5
a

Figure 9-2. Editing HandlerExamples.java

3. Asyou can see in Figure 9-2, Android and Eclipse have alerted us that
something is amiss. If you hold the mouse over the red-underlined
keywords, Eclipse will tell you what it thinks is wrong. When you mouse-
over the HandlerExamples keyword in the class definition, up pops a box
(shown in Figure 9-2) saying that Eclipse wants to see an onClick()
method. To fix this, click the Add unimplemented methods link (the first
one), and Eclipse will add the method for you (see Figure 9-3), as
follows:

@0verride

public void onClick(View v) {
// TODO Auto-generated method stub

NOTE: Since the onClick code uses a View object, Eclipse imports android.view. View,
which is shown at the top of the file.

Download from Wow! eBook <www.wowebook.com>

CHAPTER 9: Adding Interactivity: Handling Ul Events

4. There is nothing better than having our IDE write some code for us. Let’s
try it again. Mouse-over the OnClickListener keyword, and Eclipse will
tell you that you need an import statement. Click the Add import link,
and Eclipse will add the import statement (highlighted at the top of

Figure 9-3).
File Edit Run Source Navigate Search Project Refactor Window Help
-E& B H-0-AU- BH¥6G- O PEEN & (@)
$fleo o -
[[# Package Explorer ZZ“_J: Hierarchy| = O W =
B &
B <“§">| I package event.handling; ~my
21 3DFilm))) -
“import android.app.Activity;
7 Chapter? © android Aot T
£ Chapter8 import android.os.Bundle;
A o import android.view.View:
b@ap{e Import android.view.view.O ickListener;
src
i eventhandling . [g public class HandlerExamples extends Activity implements OnClickListener() { I =
&8 gen [Generated Java Files) /** Called when the activity is first created. */
=) Android 1.5 © @Override
%assets = public void onCreate(Bundle savedInstanceState) {
f’j res super.onCreate (savedInstanceState);
(= drawable setContentView (R.layout.main);
R4 icon.png }
2 layout
) mainaxm a @ public void onClick(View v) { |
= values 7| // TODO Ruto-generated method stub
X stringsxml }
A AndroidManifest.xml ' il
default.properties 7 ¥
1 de.vogella.android.temperature y = = =
1 LinearLayouts [[£X Problems | @ Javadoc [[& Declaration | E] Console &2 [Properties| Eepi|#BE~-r3-°0 |
b 1
o° | Wiiable | smartinsert | 8:76

Figure 9-3. Implementing a listener in our class definition via the implements keyword

NOTE: You need to get used to looking at what Eclipse is telling you as you code. This awareness

is especially useful while you are learning the programming language

and the development

environment. That is why | am showing you some mistakes here, rather than writing perfect lines
of code every time. One of the things you need to master is your process of working with the

Eclipse IDE.

5. But there is still an error in the class declaration. This is

because when

you implement an OnClickListener, you do not need to add the () at
the end. | removed the typo, and then | got a clean bill of health from

Eclipse, as shown in Figure 9-4.

public class HandlerExamples extends Activity implements OnClickListener {

CHAPTER 9: Adding Interactivity: Handling Ul Events

'ajava-f‘r ndii Tava - Ecly el e
File Edit Run Source Navigate Search Project Refactor Window Help
‘n-E& ‘BIBAdIs-0-Ar BH¥E- Ocs- POvEN & (@)

Hrfle ey

1% Package Explorer 22 g Hierarchy| = & i =)
-
[ER-Y I package event.handling; o -

1 3DFilm)) o o
&7 Chapter? “import android.app.Activity;
& cmptere import android.os.Bundle;
+4 Ch ’ 9 import android.view.View;
WBGP& import android.view.View.OnClickListener;
src

3 eventhandling
HandlerExamples.java
&8 gen [Generated Java Files]

public class HandlerExamples extends Activity implements OnClickListenex| {

/** Called when the activity is first created. */

=\ Android 1.5 & @override
& assets public void onCreate (Bundle savedInstanceState) {
o res super.onCreate (savedInstanceState) ;
(& drawable setContentView (R.layout.main) ;
A4 icon.png 3
= layout
R mainami = public void onClick (View v) { =
@valuu // TODO Auto-generated method stub
) stringsxml 4
[AndroidManifest xm } 8
default properties < :
£ devogella.android - - -
1 LinearLayouts [E_t Problems | @ Javadoc [[€) Declaration [] Console 53 [Properties| Bl B-r9-° EW‘
io® ‘ Writable ‘ Smartinsert | 8:73

Figure 9-4. A listener implemented correctly in Eclipse

6. Now let’s define our Button and attach our setOnClickListener() to it.
We talked about this earlier in the chapter, but this time, the containing

activity is the event listener, so we use this to refer to the containing
object.

Button button = (Button)findViewById(R.id.testButton);
button.setOnClickListener(this);

This is shown in Figure 9-5, along with the import android.widget.Button; statement
that we need in order to use the Button in our code.

2 Java-C java - Ecli ol o
File Edit Run Source Navigate Search Project Refactor Window Help
i-EHS BB H-0-A- BHOG OO P I ED 5 (& Java |
AR TR CIRCR L
Yo Hierarchy| = O } java 2 =5
El
5 % | & 7|| _ package event.handling: am|
127 3DFilm '?mpor: angro%g.app;&c;iv);.\:y; ==
&1 Chapter? import android.cs.Bundle;
& Chaptes8 import android.view.View:
3 ' o import android.view.View.OnClickListener;
4 i Chapte import android.widget.Button;
4 (B src
4 8 eventhandling public class HandlerExamples extends Activity implements OnClickListener {
> [3) HandlerBamples java
b &8 gen [Generated Java Files] = @Ooverride /** Called when the activity is first created. */ =
» = Android 1.5 public void onCreate (Bundle savedI) 1
&= assets super.onCreate (savedInstanceState);
a5 res setContentView (R.layout.main); u
4 (= drawable
W icon.png Button button = (Button)findViewById(R,id.testButton);
4 g layout button.setOnClickListener (this);
X mainaml i
=
4 = values
X stringsxml © public void onClick(View v) { =
1 AndroidManifestxml X // TODO Ruto-generated method stub i
default.properties q 5
G1d Il i S
& LinearLayouts ﬂ{z Problems | @ Javadoc (& Declamion[E Console 52 [Properties Eepi|tB~ri-= El]l
i o° event.handling.HandlerExamples.java - Chapterd/src

Figure 9-5. Defining a Button in HandlerExamples.java

CHAPTER 9: Adding Interactivity: Handling Ul Events

Editing the main.xml File
Now it’s time to set up the XML mark-up in our main.xml file.

1. Select the main.xml file under the /res/layout folder and hit F3 to open it
in the IDE in its own tab.

2. Click the Layout tab at the bottom of the IDE to show the layout visually
(see Figure 9-6), Then drag the Button widget (shown circled and
selected in Figure 9-6) onto the screen to the right, and drop it into
place under the TextView widget.

File Edit Run Navigate Search Project Refactor Window Help
- @ BRAE $-0-QA- BHEC- GBS F- H -G -GerD- & (Ee]
1% Package Explorer 53 _18 Hierarchy| = 1|([) *H java 1@) q =08
., - o s
= 5| & 7 || Editing config: default Explode D oz
7 3DFilm)) o
£ Chapter? Devices| ADPL ~ |config[Landscape, closed v]Locald ~|[Theme - | create...|
7 Chapter8 & Layouts = Hello World, HandlerExamples!
75 Chapted K
@ src [A) Absolutelayout | @+id/Button01
8 eventhandling (D) DialerFilter
&l G H @ ist
@3 gen [Generated Java Files] () FrameLayout
=i Android 1.5 o
&a, assets @GndVlew
’33 res @HorizontalScro[.,.
= drawable & Views -
EH& ":’""’"9 (@ AnalogClock
layoul
@AutoComplete...
= values
4X] stringsxml (© CheckBox
i AndroidManifest.xml © Chronometer
default.properties '
£ devogella.android ®Datee'd‘e’
17 LinearLayouts Layout Jhainxmi |
‘B_ Problems | @ Javadoc‘@, Declaration | El Console 2 & Properties ExpE|*B~-rg5~=0 |
: |
o° 22 xml

Figure 9-6. Adding a Button via a drag-and-drop operation the Eclipse layout editor in our main.xml file

3. Now click the main.xml tab at the bottom of the IDE to switch the view
from visual layout to coding view. Cut and paste the Button code so that
it comes before the TextView code (but after the LinearLayout tag). The
Button should be the first thing at the top of the screen.

4. Addthe "CLICK TO GENERATE EVENT" text, testButton ID, and centering
attribute you learned about in the previous chapter. Let’s also add a few
TextView attributes to improve visibility (see Figure 9-7).

<?xml version="1.0" encoding="utf-8"?>

<LinearlLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="fill parent"
android:layout_height="fill parent"
>

<Button android:text="CLICK TO GENERATE EVENT"

http://schemas.android.com/apk/res/android

CHAPTER 9: Adding Interactivity: Handling Ul Events

android:id="@+id/testButton"
android:layout_gravity="center"
android:layout_width="wrap_content"
android:layout_height="wrap_content"/>

<TextView android:layout width="wrap_content"
android:layout_height="wrap_content"
android:id="@+id/testText"
android:text="BEFORE CLICK TEXT!"
android:textColor="#FFCC99"
android:textSize="24px"/>
</Linearlayout>

"3 v oo e (el

File Edit Run Source Navigate Search Project Refactor Window Help

-EHe A IBAE I -0-AU- BHG- OO H-F e~ & (@)
Wﬁ Hierarchy | = 0|Q H java | ld mainxml 2 = 0|~
&| & Y||® <2xml version="1.0" encoding="utf-g"2> -B :_
1 3DFilm 7 <LinearLayout xmlns:android="http://schemas.android.com/apk/res/android" o=
= android:orientation="vertical”
£ Chapter7 : -
android:layout_width="fill parent"
E Chapterd android:layout_height="£ill parent">
4 3= Chapterd
4@ s) §§ <Button android:text="CLICK TO GENERATE EVENT"
4 H} eventhandling | | android:id="@+id/testButton"
b [3) HandlerExamplesjava android:layout_gravity="center"” E
> & gen [Generated Java Files] android:layout_widCh="vwrap COntent”
i = Android 1.5 = android:layout_height="wrap content"/>
s assets <TextView android:layout_width="fill parent"
4 5“5 res android:layout height="wrap content"
4 (= drawable android:id="@+id/testText"
M4 icon.png android:text="BEFORE CLICK TEXT!"
4 §= layout android:textColor="#FFCCI9" L
X mainaxml android:textSize="24px"/>
4 §= values <4/I_mearLaycu:> . e
X strings.xml (| -
A AndroidManifestxml Layout | mainami|
ﬁ defa:k.pr:pgr:nes i ![L Problems | @ Javadoc|@ Declaration ‘E Console %\\VD Properties| G 5ﬂ| [l = B A E“

i o®

Figure 9-7. Adding Button and TextView attributes in our main.xml file

Updating HandlerExamples.java
Now let’s go back into our Java code.
1. Click the HandlerExamples.java tab at the top of the code editor pane.

2. Add the code that responds to a click on the button, as follows (see
Figure 9-8):
public void onClick(View v) {

TextView text = (TextView)findViewById(R.id.testText);
text.setText("BUTTON HAS BEEN CLICKED. EVENT PROCESSED.");

}

We add our TextView object declaration into onClick(). We also add a setText("BUTTON
HAS BEEN CLICKED. EVENT PROCESSED.") call to the TextView object we named text,
created in the previous line.

CHAPTER 9: Adding Interactivity: Handling Ul Events

File Edit Run Source Navigate Search Project Refactor Window Help

£~ 8 Bidd F-0-Qr BHEG O F~ P I & (§Teva)
5 v xS (ow -
[# Package Explorer £3 . T2 Hierarchy| = 01|([1) HandlerExamplesjava 52 i mainxml =0
- &
I package event.handling; oz
1 3DFilm roid N . ==l
1 Chapter? 'fmport android.app.Activity; |
e import android.os.Bundle;
‘%‘ pal P o import android.view.View;
4 &= Chaptel import android.view.View.OnClickListener;
PR

import android.widget.Button;

4 1 eventhandling

import android.widget.TextView;

@3 gen [Generated Java Files] public class HandlerExamples extends Activit
=\ Android 1.5 = @override /** Called whi

implements OnClickListener {
the activity is first created. */

& assets - public void onCreate (Bundle savedInstanceState) {
4§ res super.onCreate (savedInstanceState) ;
4 (= drawable setC View(R.layout.main);
@] icon.png | Button button = (Button)findViewById (R.id.testButton);
4 5= layout button.setOnClickListener (this);
X mainaml)

4 ﬁvalugs a® public void onClick(View v) {

X stringsxml TextView text = (TextView)findViewById(R.id.testText);

o p text.setText ("BUTTON HAS BEEN CLICKED. EVENT PROCESSED."):;
il AndroidManifestxml

default,properties , } |
1 devogella.android temperature g .
1 LinearLayouts

l[:_ Problems | @ Javadoc [Declaration |) Console 52 . Properties Eepi|tB~r3-=0

Figure 9-8. Defining the onClick() event Handler Code for a TextView in HandlerExamples.java

Running the Event Handling Examples App in the Emulator

To run this example, right-click your Chapter9 folder in the Package Explorer pane and
select Run As » Android Application. We have our first Ul that responds to the most
common event handler out there: the onClick handler. Figure 9-9 shows the results.

Event Handling Examples Event Handling Examples

CLICK TO GENERATE EVENT

BEFORE CLICK TEXT! BUTTON HAS BEEN CLICKED.
EVENT PROCESSED.

Figure 9-9. Running the onClick event example in the Android 1.5 emulator

CHAPTER 9: Adding Interactivity: Handling Ul Events

Android Touchscreen Events: onTouch

Android handsets that feature touchscreens—the vast majority of them today —can take
advantage of advanced touchscreen features, such as gestures.

NOTE: Gestures are movements with the user’s finger across the touchscreen that invoke certain
program functions. They are popular for interaction on large screen smartphones and tablets.
You will want to learn about implementing gestures when you become a more experienced
Android developer. You have already been introduced to the onTouch event handler in the
previous chapter, where we used it to trigger the start () method of a frame animation
sequence of bitmap images. Gestures became available in Android 1.6 and thus do not work in
Android 1.5 which is the version we are developing for in this book to provide the widest
audience of user compatible devices.

It is important to note that an onClick event handler also works on a touchscreen, but an
onTouch handler does not work with the navigation keys or selector key (the center
selector Enter key). Therefore, it may be wise to use the onClick() method for most Ul
operations, and use onTouch() specifically when working with more advanced touch
events such as gestures that involve only the touchscreen.

Since we have already covered implementing onTouch() (you can revisit it in Chapter 8 if
you like), we’ll continue here with the other important event handlers. These are the ones
you will use more frequently in your application’s design and coding.

Touchscreen’s Right-Click Equivalent: onLongClick

After OnClick, OnLongClick is the next most used interface event. It is generated by the
most input hardware and also the basis for the context menu in Android.

The onLongClick() method works with the following:
B When the user touches and holds on the touchscreen for 1 second
B When the user holds down the Enter button on the phone
B When the user holds down the center navigation key for 1 second
Any of these will generate an OnLongClick event for whatever Ul widget has the focus.

Since any View object can trap an onLongClick() callback, the most elegant way to
show this event handling is to add it to our Button Ul object in our current Chapter9
example code. This will also allow you to see the common scenario of more than one
type of handler being used right alongside other types of event handlers in the same
View and class.

CHAPTER 9: Adding Interactivity: Handling Ul Events

1. In HandlerExamples.java, add a comma after OnCLickListener in the
public class HandlerExamples definition and add OnLongClickListener,
as shown in Figure 9-10. Then mouse-over the red-underlined
OnLongClickListener and select to add the import statement (boom
bam—there is our import code for this listener). Then mouse-over the
red-underlined HandlerExamples class name and select to implement
handler code. Voila, we now have the following:

public boolean onLongClick(View arg0) {

// TODO Auto-generated method stub
return false;

File Edit Run Source Navigate Search Project Refactor Window Help

f-He 8 BAEIP-0-AU- BEG-IOBS- I PIeEN H-F 0D & (@)
i Package gi %5 Hierarch| = B|([3] *HandlerExamplesjava 53 _|d) mainaml | =0
]
B <3:(>| & B4 - ?ackage eveny.handling,: . - o
27 3DFilm ?mport aner)-.d.app.Act)_vlty; o=
import android.os.Bundle;
Ly Chapter? import android.view.View:
T Chapter8 N roid. ey OnC1ickListenar:
4 §& Chapter m import android.view.View.OnLongClickListener;
4 (B src) TWport androld.widgec.Bucctons
4 eventhandling) import android.widget.TextView;
- v [3) HandlerBxamples.java | public class HandlerExamples extends ACtivity implements OnClickListener, OnLongClickListener { |
b &3 gen [Generated Java Files] S Toverride == Called when the activity is first creaced. =
1 =4 Android 1.5 a public void onCreate (Bundle savedInstanceState) {
2 assets super.onCreate (savedInstanceState) ;
a5res setContentView (R.layout.main);
4 (= drawable Button button = (Button)findViewById(R.id.testButton):
@] icon.png button.setOnClickListener (this);
4 §= layout }
R mainmi a e public void onClick(View v) {
4 §5 values TextView text = (TextView)findViewById(R.id.testText):
[stringsxml , text.setText ("BUTTON HAS BEEN CLICKED. EVENT PROCESSED."):
A AndroidManifestxml [- - - -
default properties public boolean onLongClick(View argd) {
- 7] // TODO Buto-generated method stub
{7 devogella.android.temperature return false:
7 LinearLayouts) ’
) -
« »
= > = s
[EL Problems [@ Javadoc [@) Declaration [Bl Console 52 . Properties BBt B-r3~=0)
i p® event.handling.HandlerExamples java - Chapterd/src

Figure 9-10. Implementing an OnLongClick listener in HandlerExamples.java

2. Now copy the text object and text.setText() code from the onClick
handler and paste it into the onLongClick handler, where the placeholder
comment code is. Change the text message to reflect the hold and
long-click, as shown in Figure 9-11. Note that we can use the same
object name text in both handlers. Since it is a local variable to each
handler, neither text object sees the other reference.

CHAPTER 9: Adding Interactivity: Handling Ul Events

File Edit Run Source Navigate Search Project Refactor Window Help

‘NrEHO A B0 iIP-0-A- IBEC ISOS I PAvET B -H e & (Eew]
E Package ﬁ N s Hierarch| = O|[[J] HandlerExamplesjava 2 . [d] mainxml l =8 e“
<)==€>| P I package event.handling; - o-
7 3DFilm “import android.app.Activity; a=

import android.os.Bundle;

T Chapter? import android.view.View;
E g:ap‘ez import android.view.View.OnClickListener;
4 = Chaptes import android.view.View.OnLongClickListener;
4 (B src) import android.widget.Button;
4 eventhandling import android.widget.TextView;
» [3) HandlerExamples.java public class HandlerExamples extends Activity implements OnClickListener, OnLongClickListener {

b &8 gen [Generated Java Files] o @override /** Called when the activity is first created. */

» =4 Android 1.5 public void onCreate (Bundle savedInstanceState) {
&= assets super.onCreate (savedInstanceState) ;
4§ res setContentView (R.layout.main);
4 (= drawable Button button = (Button)findViewById(R.id.testButton):;
[ms] icon.png button.setOnClickListener (this);
4 §= layout I button.setOnLongClickListener (this); |
AX] mainxml i
4 55 values o public void onClick(View v) {
m strings.xml TextView text = (TextView)findViewById(R.id.testText):
text.setText ("BUTTON HAS BEEN CLICKED. onClick EVENT PROCESSED."):

£l AndroidManifest.xml N

o lvf;:::f;::::mpmm A & public boolean onLongClick (View arg0) {
. TextView text = (TextView)findViewById (R.id.testText);
1 LinearLayouts text.setText ("BUTTON HAS BEEN HELD. onLongClick EVENT PROCESSED.");
return ralse;

}

}
<["] »

(B_r Problems [’@ Javadoc ‘@ Declaration‘E Console 52 I Properties et B~r5-° Eﬂ

0% event handlingHandlerExamples java - Chapterd/src

Figure 9-11. Attaching an OnLongClick listener to our Button object in HandlerExample.java

3. Now try the new functionality. Right-click the Chapter9 folder and
choose Run As » Android Project. This time, you get an app that displays
one message when you click and another when you hold the click. But
when you release the long-click, the onClick message appears. The
onLongClick message does not stay on the screen. Why is this?

4. Well, we forgot to change the default onLongClick() code, which returns
false. This tells Android that nothing has been handled in that code
block, so we are happy for Android to pass the event on to any other
handlers that might be interested. But we don’t want this to happen in
our example. Instead, we need to return true when we handle the event,
as follows (see Figure 9-12):

public boolean onLongClick(View arg0) {
TextView text = (TextView)findViewById(R.id.testText);
text.setText("BUTTON HAS BEEN HELD. onLongClick EVENT PROCESSED.");

return true;

This tells Android that we handled the event successfully, and sets the text that we
wanted.

CHAPTER 9: Adding Interactivity: Handling Ul Events

File Edit Run Source Navigate Search Project Refactor Window Help
[wif B i$-0-A- BEC- OB F- PIAoEE H-F-0o-D- & ()
E Package g . Y& Hierarch| = B |[[3) HandlerExamplesjava '23\\‘@ mainxml | =8
. &
=] \‘:==",}| o» v package event.handling; - =
&1 30Fiim “import android.app.Activity; of
import android.os.Bundle;
€7 Chapter7 N N
£ Chapter8 import android.view.View;
3 o P = import android.view.View.OnClickListener:
“ PBEP‘E import android.view.View.OnLongClickListener;
4 (8 src

import android.widget.Button;
import android.widget.TextView;
public class HandlerExamples extends Activity implements OnClickListener, OnLongClickListener {

4 {8 eventhandling
» [3) HandlerExamplesjava

> 8 gen [Generated Java Files] © @override /** Called when the activity is first created. */
> =k Android 1.5 a public void onCreate (Bundle savedInstanceState) {
&= assets super.onCreate (savedInstanceState) ;
4§ res setContentView (R.layout.main) ;
4 (= drawable Button button = (Button)findViewById(R.id.testButton):
[ms] icon.png button.setOnClickListener (this);
4 5= layout button.setOnLongClickListener (this);
4X] mainxml }
4 §= values a8 public void onClick(View v) {
I strings.xml TextView text = (TextView)findViewById(R.id.testText):

text.setText ("BUTTON HAS BEEN CLICKED. onClick EVENT PROCESSED."):

i AndroidManifestxml
default.properties

£ devogella.android.temperature

7 LinearLayouts

}
o public boolean onLongClick(View arg0d) {
TextView text = (TextView)findViewById(R.id.testText);

= = XL ("BUTTON HAS BEEN HELD. onLongClick EVENT PROCESSED."):;

}
) -
< I] >

‘EZ_‘ Problems“@, Javado:‘@ Declaration ‘E Console 52\ = Propertie; EY IR E)

o
n}

Figure 9-12. Returning a true flag from our handled onLongClick() method

Some of the event handlers return a Boolean (true or false value) to tell the calling code
whether or not your listener has handled the code (or consumed the event as the
programming terminology goes). So return true if you have handled the event (in our
case, setText() has been done) and processing should stop here. Return false if you
have not handled it or if you want the event to bubble up—that is, to be passed to other
event handlers.

Now compile and run our OnLongClick app version. It works perfectly. A click displays
the proper message and stays on the screen, and a long-click displays the proper
message that stays on the screen until a short-click changes it.

Now let’s add an onKeyListener and trap some keystroke events.

Keyboard Event Listeners: onKeyUp and onKeyDown

Events that will become familiar to you in Android app programming are onKey or
onKeyUp (key released) and onKeyDown (key pressed down).

These events are commonly used for games and to implement shortcuts in your application,
much like the F5 shortcut we use for Refresh or the F3 shortcut we use for Open.

To show how easy the keyboard event listeners are to implement, we are going to go
back to our bootstrap code (the code that Android wrote for us in the beginning of this
chapter) and add a couple lines to our main.xml file and our Java code to listen for a key
event (the Enter key, of course). In other words, we are starting from scratch with a blank
activity.

CHAPTER 9: Adding Interactivity: Handling Ul Events

Adding the XML for Keyboard Events

First, let's go into our TextView object and add in a pre-Enter key "BEFORE KEYSTROKE
DETECTED TEXT!" string, as well as a brighter color and larger text size. Here is the XML
markup for our main.xml file (see Figure 9-13):

<?xml version="1.0" encoding="utf-8"?>

<Linearlayout

xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="fill parent"
android:layout_height="fill parent">

<TextView android:layout width="fill parent"
android:layout_height="wrap_content"
android:id="@+id/testText"
android:text="BEFORE KEYSTROKE DETECTED TEXT!"
android:textColor="#FFDDAA"
android:textSize="19px"/>

</LinearlLayout>
2 Java - Chapterd/res/layout/main.xml - Eclipse o|[@] %
File Edit Refactor Run Source Navigate Search Project Window Help
il BRHE H-0-Q- BHFG- @O F~ i H-FHr oo~ & (@)
| [# Package £ s Hierarch| = O1|[[J] Handlerbxamplesjava [(] mainaml 53\ =g
- - &
B & | & Y||® <?xml version="1.0" encoding="utf-g"?> amf
&7 3DFilm 7 <LinearLayout xmlns:android="http://schemas.android.com/apk/res/android" o
EF Chapter? T android:orientation="vertical"”
& Chap!ers android:layout_width= "fill_paz‘ent"
a P! androld:layou\:_helghc="fill_parent:")
= Chapterd
G@ sre <TextView android:layout_width="fill parent" =
& gen [Generated Java Files] (§ android:layout height="wrap content"
G‘ﬁ Android 1.5 Bl | android:id="@+id/testText"
&> assets P android:text="BEFORE KEYSTROKE DETECTED TEXT!"
& res android:textColor="#FFDDAA"
(= drawable android:textSize="19px"/>
= layout
4X] mainxml </LinearLayout> -
= values 4 »
A AndroidManifestxml Layout | mainami |
=| default.properties M I7 7 — = N =)
B defauttoron v |[[2L Problems @ Javadoc [, Declaration |EJ Console 52 . [Properties| BB 2 B~ri-=0
L 1
1) main.xml - Chapterd/res/layout Android SDK Content Loader

Figure 9-13. Adding our TextView attributes in the main.xml file

Adding the Java for Keybhoard Events

In our HandlerExample.java file, we want to add two simple import statements and two
basic blocks of code to allow us to handle keyboard events via the OnKeyDown handler.
We will add about a dozen lines of code to be able to handle key events.

Here is the code, including the import statements and onCreate() method that was
written for us by Eclipse (see Figure 9-14):

package event.handling;

import android.app.Activity;

http://schemas.android.com/apk/res/android

Download from Wow! eBook <www.wowebook.com>

CHAPTER 9: Adding Interactivity: Handling Ul Events

import android.os.Bundle;
import android.view.KeyEvent;
import android.widget.TextView;

public class HandlerExamples extends Activity {
@0verride /** Called when the activity is first created. */
public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.main);

public boolean onKeyDown(int keyCode, KeyEvent event) {
if (keyCode == KeyEvent.KEYCODE_ENTER) {
textUpdate();
return true;

return false;

}

public void textUpdate() {
TextView text = (TextView)findViewById(R.id.testText);
text.setText("ENTER KEY PRESSED!");

T3 Java - Chapterd/sre/event/handiing/HandierExamplesiava - Ecl [E=REEN™>)

File Edit Refactor Run Source Navigate Search Project Window Help
OrEEe 8 B8HdIB-0-AU BEC OB P AeEDl & (@ Java)
RIS IR CIRCR A=

mﬁ; fg Hierarch| = O

Bgle”

m HandlerExamples,java &2 | mainxml | = g

package event.handling; I

- o
127 3DFilm
& Chapter? “import android.app.Activity;
& ch pt 5 import android.os.Bundle;

apte
vd

4 = Chapterd import android.view.KeyEvent;
PR] g import android.widget.TextView;
4 event.handling

b [J) HandlerExamples.java

public class HandlerExamples extends Activity {
3 O@ gen [Generated Java Files]

> = Android 1.5 @Override /** Called when the activity is first created. */
6@355915 public void onCreate (Bundle savedInstanceState) {
4 g—} res super.onCreate (savedInstanceState);
4 (= drawable setContentView (R.layout.main);
W icon.png }
4 §= layout
@ mainxml public boolean onKeyDown (int keyCode, KeyEvent event) {
4 d’}va[ues if (keyCode == KeyEvent.KEYCODE ENTER) {
AX) strings.xml textUpdate () ;

A AndroidManifest.xml return true;

default.properties
L7 devogella.android.temperature
17 LinearLayouts

}
return false;
}

public void textUpdate() {
TextView text = (TextView)findViewById(R.id.testText);
text.setText ("ENTER KEY PRESSED!");

< »
ﬂf_t Problems[@ Javadoc ‘K% Declaration (E Console 22~ E Properties] G BB | #B-rg-~ E’]

u event.handling.H Jjava - Chapter9/src Android SDK Content Loader

Figure 9-14. Adding an onKeyDown listener to our Java code

CHAPTER 9: Adding Interactivity: Handling Ul Events

We need to import android.view.KeyEvent for the onKeyDown handler (first code block)
and import android.widget.TextView for the textUpdate() method that we write in our
second code block.

We leave the class declaration and onCreate() block of code (after the import
statements) exactly as is.

The first block of code we write is the onKeyDown handler, which is a public method that
returns a Boolean value that tells us if the event was handled (true) or not handled and
needs to be passed along (false). The onKeyDown() method takes two parameters: the
keyCode (the key that was pressed) and details of the event (event).

Our program logic inside the onKeyDown handler looks at the keyCode passed into the
handler. If it is equal to the Enter key, signified by the KEYCODE_ENTER constant, it runs the
textUpdate() method, and then returns true to signify we handled the event. Otherwise,
onKeyDown () returns false to signify that an event was not handled.

This is the first time we have written our own method: the textUpdate() method that is
called from inside onKeyDown (). This demonstrates some standard Java programming.
The two lines of code that are in the textUpdate() routine could have been written
where the textUpdate(); line of code is inside the onKeyDown() handler:
public boolean onKeyDown(int keyCode, KeyEvent event) {
if (keyCode == KeyEvent.KEYCODE_ENTER) {
TextView text = (TextView)findViewById(R.id.testText);

text.setText("ENTER KEY PRESSED!");
return true;

return false;

}

This means that the textUpdate() method can contain all the things you want to do
when someone clicks the Enter key. You can use this method, rather than putting them
all inside the onKeyDown handler, where they could be in among actions for other keys.
This makes things more organized and modular, and really comes in handy when you
get into more complex code constructs.

Now compile and run the application.

You'll see a text field that says “BEFORE KEYSTROKE DETECTED TEXT!” that changes
after you click the Enter key in the emulator.

TIP: If you want to detect a range of keystrokes and send them to different custom methods, a
good programming construct to use is the switch construct, which allows you to outline
different cases from which to select. We used switch in Chapter 7’s examples.

CHAPTER 9: Adding Interactivity: Handling Ul Events

Context Menus in Android: onCreateContextMenu

The concept of the context menu is a very clever one. Unfortunately, it is often
underutilized both in PC and smartphone applications.

A context menu provides quick and easy access to all methods related to a Ul object.

For instance, when | right-click here in my word processor, | get a context-sensitive
menu with options for cut, copy, paste, font, paragraph, bullets, hyperlink, lookup,
synonyms, and translate.

The context menu in Android is always accessed by a LongClick event (covered earlier
in the chapter), just as on a PC it is accessed via a right-click.

To demonstrate, we will add context menus to this chapter’s example project. We’ll add
two classes, along with two custom methods, to implement our context menus. We’ll
are take a look at the Android Toast widget, which is handy to use to blast quick little
messages to the user. This way, you don’t need to use a full-blown dialog
implementation, as we did in Chapter 7.

Adding the XML for Context Menus

First, let’s add a Button tag to our main.xm/ LinearLayout so that we have a Ul element
(button) to long-click on.

1. Click the main.xml tab, and then click the Layout tab at the bottom of
that pane. Now add a Button view to the pane under the TextView.

2. Once the button appears under your text, switch back into XML editing
mode via the main.xml tab at the bottom of the pane. Now we’ll edit our
Button tag attributes. The first one is android:text. Let’s change that to
"Long-Click Here to Access Context Menu" and change our ID from
Buttono1 to contextButton.

3. Let’s also center our button using the android:layout_gravity =
"center" attribute, as we have done previously. But let’s do it a different
way this time. Put your cursor at the end of the android:id tag after the
end quote and hit Return to put the attribute on its own line. Type in
android:, and then wait.

4. Up will pop a little dialog listing every attribute that can be used in the
Button tag. This represents more work being done for us. Double-click
android:layout_gravity to select it. Then type = and wait again.

5. Again, a little dialog pops up, showing every value that can be used with
android:layout_gravity. Double-click center, and you have the tag
attribute written for you. (Make sure to use android:layout_gravity and
not android:gravity, or it will not work.)

CHAPTER 9: Adding Interactivity: Handling Ul Events

Here is what your XML tags should look like (see Figure 9-15):

<?xml version="1.0" encoding="utf-8"?>

<Linearlayout
xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="fill parent"
android:layout_height="fill parent">

<TextView android:layout width="fill parent"
android:layout_height="wrap_content"
android:id="@+id/testText"
android:text="BEFORE KEYSTROKE DETECTED TEXT!"
android:textColor="#FFDDAA"
android:textSize="19px"/>

<Button android:text="Long-Click Here to Access ContextMenu"
android:id="@+id/contextButton"
android:layout_gravity="center"
android:layout_width="wrap_content"”
android:layout_height="wrap_content"/>
</Linearlayout>

We will reference the testText and contextButton inside our Java code.
' Jova - Chapteresayout-port-160dpr-fngr-keyssoft-query-vackbal-480320/mainaml -cipse WL =Dl

File Edit Refactor Run Source Navigate Search Project Window Help

e A B $-0-A BHOY BB I H P & [av)
e Hietarch‘ = B[[5] HandlerExamples.java (\C_M mainxml &2 = [m]]|f
=2
<;==(>] ® Y <?xml version="1.0" encoding="utf-g8"?> @)
" <LinearLayout xmlns:android="http://schemas.android.com/apk/res/android" o=
127 3DFilm
B Chapter7 android:orientation="vertical”
e ChapterS android:layout_width="fill parent"
<4 Ch Pt 9 android:layout height="fill parent">
4 = Chapte = —
a (B src

<TextView android:layout_width= ”fill_paren £
android:layout_height="wrap content"
android:id="@+id/testText"

>} eventhandling
b &8 gen [Generated Java Files]

i =k Android 1.5 android:text="BEFORE KEYSTROKE DETECTED TEXT!"
&5 assets android:textColor="#FFDDAA"
a ‘?;} res android:textSize="19px"/>
4 (= drawable
W] icon.png <Button android:text="Long-Click Here to Access ContextMenu"
4 = layout android:id="@+id/contextButton"
@ mainxml android:layout_gravity="center"”
4 5= values android:layout_width="wrap content"
0¥ stringsxml android:layout_height="wrap content"/D
A AndroidManifest.xml .
default.properties </LinearLayout>

L] de.vogella.android.temperature

4 »
107 LinearLayouts

Layout ‘ main.xml ‘

< n

>

lE_t Problems ‘ @ Javadoc |@ Declaration |(E Console %\D Properties‘l Ex &E | B3~ Eﬂ
t |

ipge © Android SDK Content Loader

Figure 9-15. Adding a Button object in our main.xml file to receive the long-click event

http://schemas.android.com/apk/res/android

CHAPTER 9: Adding Interactivity: Handling Ul Events

Adding the Java for Context Menus

The main two Java methods that we override are onCreateContextMenu() and
onContextItemSelected(), which replace Android’s default methods of this same name.
The use of the super object in the first one allows us to reference a method in the parent
class that we are overriding. Note that overriding does not replace a class; it just allows
us to customize it, leaving the original class that was extended intact and usable.

Now let’s add the code for our onContextMenu event handling in HandlerExamples.java.
We'll add the new code in with the previous code that we wrote in the onKey() section in
order to handle onKeyDown events.

First, we need to use an import statement to import the Java classes that we are going
to reference in the code we are about to write. Three of the six are related to our Ul
elements (android.view.View, android.widget.Button, and android.widget.Toast), and
the other three are related to our implementation of our LongClick context menu.

import android.view.ContextMenu;

import android.view.MenuItem;

import android.view.View;

import android.view.ContextMenu.ContextMenuInfo;
import android.widget.Button;

import android.widget.Toast;

ContextMenu contains the methods that are related to the top level of the menu, such as
what it is called, how it looks, and so forth. ContextMenuInfo relates to the information
about any one given ContextMenu, which is really a collection of options. Within that
container or level, we have the MenuItems, which are their own level of objects. Each
MenuItem can have a name and styling, and can call methods once it is selected.

Now, let’s see how Android attaches to a ContextMenu.

First, we need to add two key lines of code to our onCreate() method for our activity.
The first declares and establishes a Button object, which we call contextButton and
which we find by its contextButton ID from the main.xml file. The next line of code wires
our newly created contextButton Button object to the ContextMenu system in Android.
public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.main);
Button contextButton = (Button) findViewById(R.id.contextButton);
registerForContextMenu(contextButton);

}

TIP: When | first started working with Android, | wondered which class contained the
registerForContextMenu() method. To again demonstrate how to use Eclipse as a learning
tool, I'll tell you how to answer a question like that. Place your cursor over the method you are
interested in, and Eclipse will pop up a box full of information about the method in question,
which includes the class that contains the method.

CHAPTER 9: Adding Interactivity: Handling Ul Events

Now let’s get into our custom logic for creating our ContextMenu and its content. The first of
the two menu methods is onCreateContextMenu(), which takes three objects as parameters:

B The ContextMenu object named menu
B The View object that called it

B The ContextMenuInfo object named menuInfo, which contains
information about the menu configuration

The first line of code inside this code block simply passes our three parameters up to
the parent class, which is referenced via the super keyword.

public void onCreateContextMenu(ContextMenu menu, View view,
ContextMenuInfo menuInfo) {
super.onCreateContextMenu(menu, view, menuInfo);

The next three lines of code call methods against or on the menu object, which is of type
ContextMenu. This code is configuring our top-level ContextMenu object by giving it a title
using menu.setHeaderTitle() and adding two menu items via the two menu.add()
methods.

public void onCreateContextMenu(ContextMenu menu, View view,
ContextMenuInfo menulnfo) {
super.onCreateContextMenu(menu, view, menuInfo);
menu.setHeaderTitle("Android Context Menu");
menu.add(0, view.getId(), 0, "Invoke Context Function 1");
menu.add(0, view.getId(), 0, "Invoke Context Function 2");

}

The second context menu method is onContextItemSelected(), which is passed a single
parameter of type MenuItem named item. Note that this method has a Boolean return
type, which means we need to return a true (handled) or false (not done yet) reply.

To start with, we have an if-then-else loop that compares the title of each MenuItem to
a string. If the title matches, it runs the appropriate contextFunction1 or
contextFunction2 (which we will code next).

public boolean onContextItemSelected(MenuItem item) {
if(item.getTitle()=="Invoke Context Function 1") {
contextFunctioni(item.getItemId());

else if(item.getTitle()=="Invoke Context Function 2"){
contextFunction2(item.getItemId());

else {
return false;

return true;

Recall that the first code after the if in parentheses is the condition. It reads, “If the title
that we are getting from the item object is equal to the text string "Invoke Context
Function 1", then perform the statements in the curly braces that follow this conditional
statement.”

CHAPTER 9: Adding Interactivity: Handling Ul Events

NOTE: Remember that == means is equal to, and = means set the value of a variable or
constant.

If this does not equate to true for the first if condition, then the next else block is
encountered, along with a second (nested) if statement that is almost completely
identical to the first, except that it is looking for the 2 option rather than 1. If this is also
not satisfied or matching, the second else returns a false from the method to the
calling code, telling it, “Sorry, no menu options here that match that!” If one of the if
conditions is met, the true that is under the conditional code block is returned, because
we have not jumped out of the method by returning a value yet.

Now we need to write our own methods for the two options, which we’ll call
contextFunction1() and contextFunction2(). We declare the first method as public
and as void, as it does not return any values. It simply carries out a task with no result to
report back. We name the method contextFunction1() and define one integer data
parameter to pass, in this case an ID.

public void contextFunctioni(int id){

Inside this method, we make a call to the Toast widget, which allows us to send brief
messages to our end users during their use of the application. To do this, we use the
makeText () method and access it directly from the Toast class via the following one
(admittedly dense) line of code:

Toast.makeText(this, "function 1 invoked!", Toast.LENGTH SHORT).show();

This is another one of those lines of code that does several things with a single
construct. Once you get really good at programming, this type of coding becomes a
really nice thing.

So we call the makeText() method and pass it three parameters:
B The activity that is running this Toast alert
B What the message should be
B How long to show the Toast pop-up

After the Toast.makeText(), another show() is appended. This displays the message we
just specified with makeText (). One line of code does everything. And the best part is
you can now use this code to pop up little messages to your users whenever you want
to do that.

No, the context menu stuff that we did earlier has nothing to do with this one-line Toast
construct, which will send a message to your screen anyplace in your code. Some
people use this for debugging, with messages like, “Setting X variable to 7” or similar, so
that you can see on the screen a visual progress through the code logic.

After our contextFunction2 code construct, which is similar to contextFunction1, we
have our key event handlers from the previous section working at the same time as our
ContextMenu.

CHAPTER 9: Adding Interactivity: Handling Ul Events

The entire body of code in HandlerExamples.java should now look like the following (see
Figure 9-16).

package event.handling;

import android.app.Activity;

import android.os.Bundle;

import android.view.KeyEvent;

import android.widget.TextView;

import android.view.ContextMenu;

import android.view.MenuItem;

import android.view.View;

import android.view.ContextMenu.ContextMenuInfo;
import android.widget.Button;

import android.widget.Toast;

public class HandlerExamples extends Activity {

@0verride /** Called when the activity is first created. */
public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.main);
Button contextButton = (Button) findViewById(R.id.contextButton);
registerForContextMenu(contextButton);

}

@0verride /** Override Parent Class for this Application */
public void onCreateContextMenu(ContextMenu menu, View view,

ContextMenuInfo menuInfo) {
super.onCreateContextMenu(menu, view, menuInfo);
menu.setHeaderTitle("Android Context Menu");
menu.add(0, view.getId(), 0, "Invoke Context Function 1");
menu.add(0, view.getId(), 0, "Invoke Context Function 2");

}

@0verride
public boolean onContextItemSelected(MenuItem item) {
if(item.getTitle()=="Invoke Context Function 1") {
contextFunction1(item.getItemId());

}
else if(item.getTitle()=="Invoke Context Function 2"){
contextFunction2(item.getItemId());

else {

}

return true;

return false;

}

public void contextFunctioni(int id){
Toast.makeText(this, "function 1 invoked!", Toast.LENGTH SHORT).show();
}

public void contextFunction2(int id){
Toast.makeText(this, "function 2 invoked!", Toast.LENGTH SHORT).show();

CHAPTER 9: Adding Interac : Handling Ul Events

public boolean onKeyDown(int keyCode, KeyEvent event) {
if (keyCode == KeyEvent.KEYCODE_ENTER) {
textUpdate();
return true;

return false;

}

public void textUpdate() {
TextView text = (TextView)findViewById(R.id.testText);
text.setText("ENTER KEY PRESSED!");

}
B st OO e e

[File Edit Refactor Run Source Novigate Search Project Window Help
in-E& B EIP-0-AU- BHEY OB PAeEN B eED

M T Hierar | = 0 |[[J) HandlerExamplesjava 22 _cl mainxml |
=

&|le ¥ package event.handling; o
- o
7 3DFilm . . o
{7 Chapter? “import android.app.Activity;
7 Ch: p‘ 8 import android.os.Bundle;
el Chap e,g import android.view.KeyEvent;
‘ PBEP‘E import android.widget.TextView:
4 (B src

android.view.ContextMenu;

import android.view.Menultem;

import android.view.View;

import android.view.Ct Co! Info;
import android.widget.Button;

4 1 eventhandling
b [J] HandlerExamples.j|
> @8 gen [Generated Java Files]|
> =\ Android 1.5

& assets import android.widget.Toast;
4 5res
4 (= drawable public class HandlerExamples extends Activity {
[W] icon.png © @override /** Called when the activity is first created. */
4 §= layout - public void onCreate (Bundle savedInstanceState) {
AX] mainxml super.onCreate (savedInstanceState);
4 §= values setContentView(R.lavout.main);
X stringsxml Button contextButton = (Button) findViewById(R.id.contextButton):

ﬁ AndroidManifestxml registerForContextMenu (contextButton);

default.properties
&7 devogella.android.temperatu
7 LinearLayouts

}
@Override /** Override Parent Class for this Application */
public void onCreateC (C menu, View view,ContextMenuInfo menuInfo) {
super.onCreateContextMenu (menu, view, menulnfo):

menu.setHeaderTitle ("Android Context Menu"):

menu.add (0, view.getId(), 0, "Invoke Context Function 1");

menu.add (0, view.getId(), 0, "Invoke Context Function 2");

}
© @Override
- public boolean onContextItemSelected (Menultem item) {
if (item.getTitle()=="Invoke Context Function 1"){contextFunctionl (item.getItemId()):;}
else if (item.getTitle()=="Invoke Context Function 2"){contextFunction2 (item.getItemId());}
else {return false:}
return true;
}
© public void contextFunctionl (int id){
Toast.makeText (this, "function 1 invoked!", Toast.LENGTH SHORT) .show():
}
© public void contextFunction2 (int id){
Toast.makeText (this, "function 2 invoked!", Toast.LENGTH SHORT).show():

a e Public boolean onXeyDown (Int KevCode, ReyEvenc event) 1
if (keyCode == KeyEvent.KEYCODE ENTER) {
textUpdate();
return true;
}
return false;
}
e public void textUpdate() {
TextView text = (TextView)findViewById (R.id.testText);
text.setText ("ENTER KEY PRESSED!"):

< »
Bilrt B-r3v=0)

ip® eventhandling.HandlerExamples java - Chapterd/src * Android SDK Content Loader

Q = | [EEL Problems [@ Javadoc [€) Declaration | & Console 52 [Properties |
!

Figure 9-16. Adding the Java code to implement a context menu in HandlerExamples.java

CHAPTER 9: Adding Interactivity: Handling Ul Events

Now let’s run our code with Run As > Android Application and see how it all works together.
A long-click on the button brings up the context menu. A touch or click on one of the
buttons highlights it, as shown in Figure 9-17. Once it is clicked, a Toast menu tells us
our method has been run. Also notice that our previous section code for onKeyDown ()
still works perfectly.

® Android Context Menu

Invoke Context Function 1

Invoke Context Function 2

Figure 9-17. Running our application in the Android 1.5 emulator after adding a context menu

Controlling the Focus in Android

One of the most challenging aspects of Ul design and programming is tracking and
controlling the focus of your application. The focus is where the Ul is paying attention,
representing which Ul element the user is presently dealing with.

The tough part about focus is that you can’t always see it visually. Even as an end user,
it is sometimes difficult to see where the focus is within an application. We have all
experienced this with our computers at one time or another, most commonly in forms
where the active cursor for a field moves from one field to another as the form is filled
out or the Tab key is used to jump the focus from field to field.

It is even more difficult to control, track, and implement focus from a programming
standpoint. Note that focus is not something that you need to specifically worry about
(Android handles it automatically), unless it is somehow tripping up your application’s
user experience.

Download from Wow! eBook <www.wowebook.com>

CHAPTER 9: Adding Interactivity: Handling Ul Events

Android has an internal algorithm that decides how to hop from one Ul element (View) to
another based on which View is closest to the previous View, but you can also control
how the focus moves from one Ul element to the next with your own custom code.
Here, we will go over the basics in order to get you started and familiar with the
concepts, in case you need to intervene with your own XML or Java code to manually
control focus.

First, we will look at how to control focus via XML, as it is easier to understand and
implement than the Java route. Later, we will go over Java methods that allow you to
take focus or otherwise control the focus based on what the user is doing in the
application.

Adding the XML for Focus Control

To start, let’s add a couple buttons to the Ul we’ve been developing in this chapter and
set the focus to do something that is not standard focus procedure in Android.

The easiest way to do this is to copy our existing Button tag in our main.xml file and
paste it in twice right underneath our existing Button tag markup (see Figure 9-18).

<?xml version="1.0" encoding="utf-8"?>

<Linearlayout
xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="fill parent"
android:layout_height="fill parent">

<TextView android:layout width="fill parent"
android:layout_height="wrap_content"
android:id="@+id/testText"
android:text="BEFORE KEYSTROKE DETECTED TEXT!"
android:textColor="#FFDDAA"
android:textSize="19px"/>

<Button android:text="Long-Click Here to Access ContextMenu"
android:id="@+id/contextButton"
android:layout_gravity="center"
android:layout_width="wrap_content"
android:layout_height="wrap_content"/>

<Button android:text="Second Button"
android:id="@+id/secondButton"
android:layout_gravity="center"
android:layout_width="wrap_content"
android:layout_height="wrap_content"/>

<Button android:text="Third Button"
android:id="@+id/thirdButton"
android:layout_gravity="center"
android:layout_width="wrap_content"
android:layout_height="wrap_content"/>
</Linearlayout>

http://schemas.android.com/apk/res/android

CHAPTER 9: Adding Interactivity: Handling Ul Events

File Edit Refactor Run Source Navigate Search Project Window Help
Hekd = B BAE -0 Q% BHE OB = (6l
HvBlvto v

M& Hierarch[=08 m HandlerExamples.java [@ *mainxml &2 =7\
s

& | & Y||® <?xml version="1.0" encoding="utf-g"2> -\
7 3DFilm <LinearLayout xmlns:android="http://schemas.android.com/apk/res/android" o=
android:orientation="vertical”
17 Chapter7 R . :
O Chapters android:layout_width="fill parent"”
<4 ch Pt 0 a android:layouc_height=”fill_parent">
“ p@ap € <TextView android:layout_width="fill_parent”
a src

android:layout_height="wrap content"

4 {1 eventhandling android:id="@+id/testText"

v [J] Handlerxamples.java android:text="BEFORE KEYSTROKE DETECTED TEXT!"
> 28 gen [Generated Java Files] android:textColor="#FFDDAA"
b A Android 1.5 a android:textSize="19px"/>
G@ assets <Button android:text="Long-Click Here to Access ContextMenu"
a f';‘) res android:id="@+id/contextButton"
4 (= drawable android:layout_gravity="center"
m icon.png android:layout_width="wrap_content"
4 §= layout android:layout_height="wrap_content"/>
AX] mainxml
4 §= values <Button android:text=”$econd Button"
¥ strings.xml android:id="@+id/secondButton”

android:layout_gravity="center"
android:layout_width="wrap content"
android:layout_height="wrap content'/>

<Button android:text="Third Button"”
android:id="@+id/thirdButton"
android:layout_gravity="center"
android:layout_width="wrap content"

a android:layout_height="wrap content"/>

</LinearLayout>

1l AndroidManifest.xml
default.properties
L] de.vogella.android.temperature ml
7 LinearLayouts

< »

Layout] mainxml ‘

I/E_t Problems | @ Javadoc[@ Declaration IE Console Sé\\\\kfj Properties] Ex BB [2By~ E\‘

1

< n

-

&

main.xml - Chapterd/res/layout Android SDK Content Loader

[|

Figure 9-18. Adding Ul buttons to the main.xml file

To make our Button tags unique, we also need to rename their IDs to secondButton and
thirdButton. This way, we can access them in our Java code and also change their
display text to reflect that they are the second and third buttons, respectively.

We will leave all of the other Button tag attributes for scaling and centering the same.

Now we will add our android:nextFocus attributes, so that we have control over which
Ul elements our focus jumps to and from when the user navigates the Ul with the arrow
keys on the front of the smartphone.

For the existing contextButton tag attributes, we want to add an android:nextFocusUp
attribute and point it to the third button. Then, if users hit the up arrow on their Android
smartphone when they are on the first button, it will cycle back down to the last button.

Since the ID of the third button is thirdButton, this tag attribute will read as follows:
android:nextFocusUp="@+id/thirdButton”

This is done in order to reference the third button tag we have defined in our XML
markup here as the destination Ul element for the up arrow focus to go to if users hit the

CHAPTER 9: Adding Interactivity: Handling Ul Events

up navigation arrow when they are on (have focus on) the first Ul button (contextButton
from our prior example).

To control advancement of focus from the contextButton to the secondButton button,
we add this:

android:nextFocusDown="@+id/secondButton"

Now we have defined all of the focus movements that can happen for the
contextButton, and we are ready to define the focus movements for the next two
buttons.

This will be a very similar process. In fact, you can simply cut and paste the two lines of
code that you wrote for the contextButton tag and change the ID attributes after you
paste them into the two new Button tags.

For the second Button tag, we will add in another two android:nextFocus attributes.
This time, these point to the buttons immediately above and below the second button,
so this one is the easiest. The code looks as follows:

android:nextFocusUp="@+id/contextButton”
android:nextFocusDown="@+id/thirdButton”

For the third Button tag, we will add in another two android:nextFocus attributes, which
finally point to the buttons immediately above and back up to the top button in our loop
of buttons, as follows:

android:nextFocusUp="@+id/secondButton"
android:nextFocusDown="@+id/contextButton"

The first attribute is pretty straightforward, as the secondButton button is above our third
button. For the nextFocusDown attribute, since there is no button underneath the third
button, we actually want the focus to wrap, or loop back, to our first contextButton
button, so that is the ID we use in the android:nextFocusDown attribute that we add to
the final Button tag.

NOTE: There are nextFocusLeft and nextFocusRight attributes available (one for each
arrow key) if you are using a horizontal LinearLayout tag atiribute, for instance.

Here are the three blocks of nextFocus attributes that we have added to our three
buttons so that you can check your work (see Figure 9-19):

<Button android:text="Long-Click Here to Access ContextMenu"
android:id="@+id/contextButton"
android:nextFocusUp="@+id/thirdButton"
android:nextFocusDown="@+id/secondButton"
android:layout_gravity="center"
android:layout_width="wrap_content"”
android:layout_height="wrap_content"/>

<Button android:text="Second Button"
android:id="@+id/secondButton"
android:nextFocusUp="@+id/contextButton"

CHAPTER 9: Adding Interactivity: Handling Ul Events

android:nextFocusDown="@+id/thirdButton"

android:layout_gravity="center"
android:layout_width="wrap_content"”
android:layout_height="wrap_content"/>

<Button android:text="Third Button"
android:id="@+id/thirdButton"
android:nextFocusUp="@+id/secondButton"
android:nextFocusDown="@+id/contextButton"
android:layout_gravity="center"
android:layout_width="wrap_content"”
android:layout_height="wrap_content"/>

8 3
3 e Copeietoosimsint e olees
File Edit Refactor Run Source Navigate Search Project Window Help
licn-B& ‘BB -0 AU BHE BS A =)
IR R =
T: Hierarch‘ = O || [J) HandlerExamplesjava ﬂg mainxml &3 = g
G:él e ||® <?xml version="1.0" encoding="utf-8"2)| -l :_
7 3DFilm <LinearLayout xmlns:android="http://schemas.android.com/apk/res/android" o=
android:orientation="vertical”
27 Chapter7 . . .
android:layout_width="fill parent"
E E:ap:e: android:layout_height= "fill_parent")
4 y= Lhaptel <TextView android:layout_width="fill parent"
4 (@ sre android:layout height="wrap content”
4 i eventhandling android:id="@+id/testText"
> [3] HandlerBxamples.java android:text="BEFORE KEYSTROKE DETECTED TEXT!"
> &8 gen [Generated Java Files] android:textColor="#FFDDAA"
» = Android 1.5 android:textSize="19px"/>
& assets <Button android:text="Long-Click Here to Access ContextMenu"
a g—} res android:id="@+id/contextButton”
4 (= drawable android:nextFocusUp="@+id/thirdButton"
[E icon.png android:nextFocusDown="@+1d/secondButton"
4 §= layout android:layout_gravity="center"
@ mainxml android:layout_width="wrap content"
4 §= values android:layout_height="wrap content"/>
AX] strings.xml <Button android:text="Second Button"
android ="@+id/secondButton”

i1 AndroidManifest.xml
default.properties
{07 de.vogella.android.temperature
7 LinearLayouts

extFocusUp="@+id/contextButton"
android:nextFocusDown="@+id/thirdButton"
android:layout_gravity="center"
android:layout_width="wrap content"
android:layout_height="wrap content"/>

<Button android:text="Third Button"

android:id="@+id/thirdButton”
android:nextFocusUp="@+id/secondButtonButton"
android:nextFocusDown="@+id/contextButton"
android:layout_gravity="center"”
android:layout_width="wrap content"
android:1ayout_height="Vrap_content"/>

</LinearLayout>

< »
Layout \ main.xml \

ﬂﬁ Problems[@ Javadoc [@ Declaration[E Console 82~ E Properties] 5 BB | #B~r5~-° EIW

1

n0® Android SDK Content Loader

Figure 9-19. Controlling the focus via XML mark-up in main.xml

CHAPTER 9: Adding Interactivity: Handling Ul Events

Adding the Java for Focus Control

Now let’s declare the two new buttons we defined in our main.xml/ markup in our Java
code, and point them toward our ContextMenu code that we wrote in the previous
section, so that they actually do something useful.

Here are the four new lines of code that we need to write to support these new buttons
(see Figure 9-20):

public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.main);
Button secondButton = (Button) findViewById(R.id.secondButton);
registerForContextMenu(secondButton);
Button thirdButton = (Button) findViewById(R.id.thirdButton);
registerForContextMenu(thirdButton);
Button contextButton = (Button) findViewById(R.id.contextButton);
registerForContextMenu(contextButton);

File Edit Run Source Refactor Navigate Search Project Window Help
rs~ BRHEi$-0-QA BHCG- @S F~ PohAeE@l -3 - oo~ = [Few)
E Package §;""~i Y Hierarch| = 1] [3) HandlerExamples.java 23\\& mainxml ‘ =0
- =
B <')==:>‘ P package event.handling; = =
7 3DFilm B ®import android.app.Activity:[] ==
C1 Chapter7 R s =
public class HandlerExamples extends Activity {
£ Chapter8 =

< @Override /** Called when the activity is first created. */
public void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState);
setContentView (R.layout.main);

4 52 Chapterd
PRE-ZIS
4 i} eventhandling

> [4) HandlerBxamples.jq Button secondButton = (Button) findViewById (R.id.secondButton):
b @8 gen [Generated Java Files] registerForContextMenu (secondButton) ;
i =4 Android 1.5 Button thirdButton = (Button) findViewById(R.id.thirdButton):
= assets registerForContextMenu (thirdButton) ;
b 5o res Button contextButton = (Button) findviewByld (R.id.contextButton):

A AndroidManifest.xml
default.properties .
1 d lla.android.temp < I] >

LinearLayouts |7 = = —
. B Linear a\;’:u > ‘E; Problems | @ Javado(l@ Declaration | & Console 2 [Properties ERY | #B8-r§-=0 |
| =

registerForContextMenu (contextButton);

]
e

u event.handling.HandlerExamples.java - Chapterd/src

Figure 9-20. Registering our buttons for the context menu in HandlerExamples.java

To implement this in the quickest fashion, select the two lines of code that define and
point our contextButton object to the registerForContextMenu() method, and paste
them twice above or below the original two lines of code.

Change the contextButton reference to secondButton in the first two lines, and to
thirdButton in the last two lines. You have now declared all three buttons and set them
to actually do something in your code.

Now let’s use our familiar Run As » Android Application work process to compile and run
this application, as shown in Figure 9-21. It now traps or handles onKey events and
onContextMenu events, as well as implements control of focus among the usable Ul
elements, namely the buttons.

CHAPTER 9: Adding Interactivity: Handling Ul Events

[Event Handling Examples

BEFORE KEYSTROKE DETECTED TEXT!

Long-Click Here to Access ContextMenu

—

Third Button

Figure 9-21. Running our sample application in the Android 1.5 emulator after adding focus control

You will notice now that when you compile and run this code, all three buttons will call
up a ContextMenu. In your own apps, you may want all (or many) of your Ul elements to
bring up the same context menu selections (say the application default context menu),
and this is the way to do that using very few lines of code.

It is important to test your applications vigorously, as some bugs will show up only after
the features have been used already once or twice.

To test this application, long-click each of the buttons and select either option.
Everything should work as expected and pull up the context menu. To see the cycling
focus that we have implemented, use the up or down arrow/keys on the bottom of the
Android smartphone (in this case, on the emulator) to cycle the focus among the buttons
(focus is shown in orange). You will notice no matter which direction you choose, the
focus cycles or loops through the buttons correctly.

NOTE: Remember that Android will handle focus for you as a matter of routine. This includes
jumping between Ul elements on the screen and even jumping to the next logical Ul element if a
Ul element (a View object) is hidden (or shown) or removed (or added) as a matter of the
application programming logic.

CHAPTER 9: Adding Interactivity: Handling Ul Events

Setting Focus Availability

View objects can be defined (in XML or Java) to be able to accept (or deny) focus using
the isFocusable() method or the android:focusable (XML) attribute. If you define a View
(Ul object) to be focusable (or not focusable) in XML, and then want to change this later
at runtime (while your application is running), there is also a setFocusable() method that
can flip this (Boolean) switch. These focus methods control focus navigation via the
smartphone navigation key hardware.

There are separate methods to control the focus in relation to the touchscreen, and
these are named very similarly: isFocusableInTouchMode() and
setFocusableInTouchMode(). For XML markup coding, you would use the format
android:focusableInTouchMode, similar to nontouch focus.

Finally, if you simply want to ascertain if there has been a change of focus on a Ul
object, you can use the onFocusChanged() method. This method can be called to find
out if there is a change in state from true to false, or focused to not focused, that you
can use in more advanced programming endeavors that watch focus even more closely.
With this method, your software can essentially watch what the user is doing with your
Ul and respond accordingly. As you can see, Android gives us a huge dose of control
over our application’s focus.

Summary

This chapter has covered some important and advanced concepts in Java
programming, as well as in Android app development. The topics ranged from setting up
event listeners and event handlers to controlling the focus of your Ul design as the user
moves through it, which is a part of your user experience design.

You now know how to handle clicks via navigation keys or touchscreen, long-clicks, and
keyboard use. We even covered some advanced features like context menus, the Toast
system for user message notifications, and controlling the focus in your XML or Java
code, or via both.

We covered a lot of important material in this chapter, so be sure to review it. It includes
some clever and new ways to use the Eclipse IDE as well, and that is also important to
master by the time you are finished with this book.

Chapter

Understanding Content
Providers

In this chapter, we are going to take a look at how to provide content within your
application. We'll cover how to share that content, and how to access and modify the
data that represents that content.

We have gotten significantly more advanced as we have progressed from chapter to
chapter, and this chapter is no different. Data access is significantly more complex than
event handling and Ul design. This is because it involves database design and
requesting security permissions for database access. In fact, starting with this chapter,
we will need to modify the application’s AndroidManifest.xml file, so be warned that we
are getting into some fairly complicated concepts and code here.

We’ll begin with an overview of exactly what Android content providers are, and what
they do for your Android user. After that, you will learn how to use SQLite-based content
providers for your Android applications although this is beyond the scope of this chapter
and book.

An Overview of Android Content Providers

Content provider is a term unique to Android development that means nothing more
than a datastore of data values, usually in the form of a SQLite database that is already
part of the Android operating system (OS). You can also create your own content
providers for your application.

An Android content provider provides you with access to sharable data structures
commonly called databases. The basic procedure is as follows:

1. Get permission to open the database.
2. Query the data.

3. Access the data.

217

CHAPTER 10: Understanding Content Providers

In accessing data, you might read the data, write the data (i.e. change the values of the
existing data), or append new data onto the database structure, based on the type and
level of security permissions that have been established in the AndroidManifest.xml file.

Data can be in Android internal memory or in external memory such as an SD card, or
even on an external server that is remote to the Android device itself.

Databases and Database Management Systems

The usual way for content providers to provide data structures for Android applications
is via a database management system (DBMS). A DBMS manages a database by
providing ways for users to create databases, as well as to populate them with data via
reading and writing operations.

There is a complete open source DBMS right inside the Android OS called SQLite. This
is a relational DBMS (RDBMS). An RDBMS is based on relationships that can be drawn
between data arranged in tables. Later in this chapter, you will see how to write data into
these tables in the RDBMS.

The SQL in SQLite stands for Structured Query Language. The "Lite" or "Light" part
delineates that this is a "lightweight" version of the DBMS, intended for embedded use
in consumer electronics devices, and not a full blown version of SQL, as would be used
on a computer system. Later, we will look briefly at how it allows you to access
database data records and the data contained within their individual data fields. All you
really need to know about SQLite is that it is a part of Android and that you can use it for
data storage. Android takes care of the DBMS functions for you!

In a DBMS, the highest level of data storage is the database itself, which contains tables
of data in rows and columns. Each table is two-dimensional, where a row is called a
record. Within each record are fields, organized into columns, which contain the
individual data items that make up the records. Fields can contain different data types,
such as numbers, text, or even references to data that is stored somewhere else.
However, each field must contain the same data type as the other fields in the same
column (see Figure 10-1).

CHAPTER 10: Understanding Content Providers

A MySQL RDBMS DATABASE

- - -
This 52| This is a ROW Saghrow sontams

This is a
COLUMN

JEACH COLUMN
CONTAINS
THE SAME

TYPE OF DATA

This is a TABLE

EACH TABLE IS A 2D COLLECTION
OF FIELDS ARRANGED IN ROWS
(RECORDS) AND COLUMNS (DATA TYPES)

Figure 10-1. MySQL RDBMS database

Note that there can be more than one table in a database (and usually is, for both
performance and organizational reasons). As long as there is a key (a unique index) for
each record in each table, information for a single data entry can span more than one
table. For instance, if your key or ID is 217, your personal information and phone
information can be in two different tables stored under that same key value.

CAUTION: After the record structure and data fields that define this record structure are set up,
don’t change the structure later. This is because the currently loaded records and fields may not
fit into the new data structure definition correctly. So, it’s best to design what your database
structure will be up-front, making the DBMS design process especially critical to the success of
the project.

The content providers that are provided with the Android OS all use SQLite, because it
is compact and open source, so we are going to focus on those in this chapter.

Android Built-in Content Providers

A significant number of SQLite database structures are hard-coded into Android in order
to handle things that users expect from their phones and tablets, such as contact
address books, camera picture storage, digital video storage, music libraries, and so
forth. The most extensive of these SQLite database structures is the Contacts database.

The base-level interfaces of the android.provider package allow us to access those
data structures that define the setup and personalization of each user’s smartphone.
Obviously, the data in each of these structures will be completely different for each
user’s phone.

Download from Wow! eBook <www.wowebook.com>

CHAPTER 10: Understanding Content Providers

Contacts Database Contact Providers

Table 10-1 lists the Contacts database interfaces found on the Android Developer site
(http://developer.android.com/reference/android/provider/package-summary.html).

Table 10-1. The Contacts Interfaces for Android 1.x Support

Interface Contents
Contacts.OrganizationColumns Organization
Contacts.GroupsColumns Groups
Contacts.PeopleColumns People
Contacts.PhonesColumns Phone numbers
Contacts.PhotosColumns Contact photographs
Contacts.PresenceColumns IM presences
Contacts.SettingsColumns Phone settings
Contacts.ContactMethodsColumns Contact methods
Contacts.ExtensionsColumns Phone extensions

If you browse the Android documentation, you’ll see that the interfaces listed in Table 10—
1 are all described as “deprecated.” Deprecated means that these classes have been
replaced by other classes in a newer version of the programming language (such as Java)
or API (such as Android). The newer classes that replace older classes are usually more
robust or complex, or sometimes they differ only in how they are implemented.

This is what has happened with the Contacts interfaces between Android versions 1.x
(1.0, 1.1, 1.5, and 1.6) and Android versions 2.x and 3.x (2.0, 2.1, 2.2, 2.3, and 3.0). So,
the database interfaces that work with Android 1.x phones are different than the ones
that work on the Android 2.x phones (more advanced or feature-rich database
structures, in this case).

If you are going to support 1.5 and 1.6 phones (as we are doing throughout this book),
you will need to use the database interfaces listed in Table 10-1.

The good news is that deprecated does not mean disabled. It more accurately means in
this case, “not suggested for general use unless you need to support pre-2.0 versions
for your Android users.” So, if you need to support Android 1.5 and later phones, you
can use the interfaces listed in Table 10-1, and they will still work well on 2.x (and 3.x)
smartphones. However, you may not be able to access data from a few new fields or
tables unless you add support for the new 2.x DBMS structures in your code by
detecting what OS the user is using, and have code sections that deal with each (1.x
and 2.x) structure differently.

http://developer.android.com/reference/android/provider/package-summary.html

CHAPTER 10: Understanding Content Providers

NOTE: If you want to be able to access every new feature, you can have your code detect which
version of the OS the phone is using, and have custom code that delivers the optimal
functionality for each version.

In the case of Android, deprecation (a common problem that developers need to get
used to) equates to different versions of the Android OS being able to do different
things, and thus having different sets of functionality that can be used for each operating
system level or version. With Android this is especially prevalent as different OS versions
support different hardware features for new phones and tablets, requiring new APIs and
changes to existing APIs in ode to support the new hardware features.

NOTE: Over time, versional functionality gets more and more difficult to keep track of. Indeed,
we already have eight (if you count Android 3.0) different OS versions that our code must work
across. Keeping track of all the programming constructs and logic mazes is enough of a
challenge for most, without a layer on top of that regarding remembering which constructs and
interfaces work or do not work with a given OS version. This is one reason why programmers are
so well paid.

Table 10-2 lists some of the new version 2.x content providers for manipulating contact

information. Some of these replace the deprecated versions that are listed in Table 10-1,
and are available from the same Android developer site link: (http://developer.android
.com/reference/android/provider/package-summary.html).

Table 10-2. Android 2.x Content Providers

Interface Contents
ContactsContract.CommonDataKinds.CommonColumns For subclassing databases
ContactsContract.ContactsColumns Contact main information
ContactsContract.ContactOptionsColumns Contact options
ContactsContract.ContactStatusColumns Contact status
ContactsContract.PhoneLookupColumns Phone numbers
ContactsContract.GroupsColumns Group definitions
ContactsContract.PresenceColumns IM presences
ContactsContract.SettingsColumns Account settings

ContactsContract.StatusColumns IM visibility

http://developer.android.com/reference/android/provider/package-summary.html
http://developer.android.com/reference/android/provider/package-summary.html

CHAPTER 10: Understanding Content Providers

Android MediaStore Content Providers

The other collections of content providers that are important within the Android OS are
the MediaStore content providers. These are listed in Table 10-3.

Table 10-3. Android MediaStore Content Providers

Interface Contents
MediaStore.Audio.AlbumColumns Album information
MediaStore.Audio.ArtistColumns Artist information
MediaStore.Audio.AudioColumns Audio information
MediaStore.Audio.GenresColumns Audio genre information
MediaStore.Audio.PlaylistsColumns Audio playlist information
MediaStore.Images.ImageColumns Digital images
MediaStore.Video.VideoColumns Digital video
MediaStore.MediaColumns Generic media store

In the rest of this chapter, we will look at how to declare content providers for use,
access them, read them, modify them, and append to them.

Defining a Content Provider

Before a content provider can be used, it must be registered for use by your Android
application. This is done by using some XML markup in the AndroidManifest.xml file.
The <provider» tag, so aptly named, allows us to define which content providers we are
going to access once our application is launched. Here’s a <provider> tag for the Images
content provider:

<provider android:name="MediaStore.Images.ImageColumns" />

All Android content providers expose to developers a publicly accessible unique
reference, or address, if you will, to each database. This address is called a URI, and the
Android constant that points to the data location within the database tableis always
called CONTENT_URI.

A content provider that provides access to multiple tables will expose a unique URI for
each table. Here are a couple examples of predetermined Android URI constants:

android.provider.Contacts.Phones.CONTENT_URI
android.provider.Contacts.Photos.CONTENT URI

The first reads “android (the OS) dot provider (the component type) dot Contacts (the
database) dot Phones (the table) dot CONTENT _URI (the constant that points to the data
location).” Yes, there is a logical method to the madness here.

CHAPTER 10: Understanding Content Providers

NOTE: URI objects are used for much more than just Android content providers, as you have seen
in Chapter 8. All of the ones that are used to access Android content providers start with
content://, just like a web address starts with http://.

Creating the Content Providers Example Project in Eclipse

Let’s set up our Chapter10 project folder in Eclipse right now, so you can learn a little
more about the Android manifest editor and how Eclipse can automate the Android
manifest XML coding process for us.

1. If you still have the Chapter9 project folder open from the previous
chapter, right-click that folder and select Close Project.

2. Then select File » New » Project and choose Android Project to open the
New Android Project dialog.

3. Fillit out as follows (and shown in Figure 10-2).
B Project name: Name the project Chapter10.
Build Target: Set this to Android 1.5.
Application name: Name the application Android Content Providers.

Package name: Set this to content.providers.

Create Activity: Check this box and name the activity
DatabaseExamples.

B Minimum SDK Version: Enter 3, which matches a minimum SDK
version of 3.

CHAPTER 10: Understanding Content Providers

8 Newtnso ot ki
New Android Project - -
Creates a new Android Project resource. l Cl "'

N1 o

Project name:(Chapterl0)

Contents

@ Create new project in workspace

(©) Create project from existing source
Use default location

Location: ‘ C:/Projects/Chapterl0 Browse... ‘

(©) Create project from existing sample

Samples: ‘ApiDemos v‘
Build Target

Target Name Vendor Platform API...

Android 1.5 Android Open Source Project 15 3

] Google APIs GoogleInc. 15 3

7] Android1.6 Android Open Source Project 16 4

] Google APIs GoogleInc. 16 4

[] Android 21-upda... Android Open Source Project 21-upd.. 7

[7] Google APIs Google Inc. 21-upd.. 7

[F] Android 2.2 Android Open Source Project 22 8

[7] Google APIs Google Inc. 22 8

Standard Android platform 1.5

Properties

Application name:: “Android Content Providers

content.providers

DatabaseExamples|

Min SDK Version: ‘ 3 >

@ [<Back | nmet> |[Finish][Concel |

Figure 10-2. Creating the Chapter10 Android project

Defining Security Permissions

The AndroidManifest.xml file is usually referred to as the manifest for your application,
and it tells the Android OS what we intend to do with our application. It is accessed
during the initial launch of your application to set up the memory for the application and
to boot up any system resources or pointers (addresses to things that we are going to
talk with or connect to) that are needed for the application to run successfully.

In this case, that means we will be asking Android for permission to access, and
possibly even change (depending on the tags we add), one of the Android databases
outlined in the previous tables. We need to get permissions to use certain areas of the
OS so that Android can implement a robust level of security within its OS infrastructure.

CHAPTER 10: Understanding Content Providers

To define permissions, use the <uses-permission> tag:

<uses-permission android:name="android.permission.READ_CONTACTS" />

This tag allows the application to READ the CONTACTS database. Read-only operations are
inherently safe, as we are only looking into these databases and reading from them. A
read operation is nondestructive to a database.

If we wish to change (overwrite or update, and append) data in a database, we need to
use a different permission tag that tells Android that we are going to write data to an
Android OS database. In this case, WRITE_CONTACTS represents the permission and
database we will use. As you may have guessed, the WRITE version of the tag looks like
this:

<uses-permission android:name="android.permission.WRITE_CONTACTS"/>

Permission for write operations is a bit more serious matter, due to the fact that we are
now able to screw up the database. In this case, we are dealing with the smartphone
user’s contacts data, and we might overwrite data that was there before our app ever
accessed it.

TIP: There are different permission tags that control different levels of access to services or
databases that are part of Android. To see a list of all of them, and to get an idea of what Android
will let you access with regard to smartphone hardware, features, and databases, check out this
link: developer.android.com/reference/android/Manifest

.permission.html. You will be amazed and empowered.

Now let’s see how easy it easy to use Eclipse to add the necessary permissions. Follow
these steps:

1. Right-click the AndroidManifest.xml file in the Project Explorer
navigation pane, as shown in Figure 10-3, and select Open or hit the F3
key on the keyboard.

CHAPTER 10: Understanding Content Providers

T' Java - Chapter10/AndroidManifestxm - Eclipse (ESH ™%
[[File Edit Run Source Navigate Search Project Refactor Window Help
irHe A B IP-0-A BECGT @SS N EH e 5 (& Java]
= ™ - = |
% Hierarchy| = () Chapterl0 Manifest 53D,)=l
-
P - - .
Bl & Android Manifest Permissions %=
1 3DFilm —
4 £ Chapterlo ermissions

4 (B src
4 3 contentproviders <
» [J] DatabaseExamples java
b &8 gen [Generated Java Files]
» = Android 1.5
& assets
4 Bres
4 (= drawable
@] icon.png
4 (= layout
X mainxml
4 (& values
[

~— properti

1 Chapter?
I Chapters
1 Chapted

1 devogella.android.temperature
7 LinearLayouts

Manifest | Application{Rermissions)i ion| AndroidMani \
[Problems [@ Javadoc [[&, Dectaration [B Console 52 . 1 Properties| BRHE#BE-ri-=0)

o® AndroidManifestxml - Chapterl0

Figure 10-3. Adding a permission in the Chapter10 manifest using the Eclipse visual editor

2. Inthe Chapter10 Manifest tab, click the Permissions tab at the bottom
of the window (see Figure 10-3).

3. Click the Add... button in the right pane.

4. Select the Uses Permission entry at the bottom of the list, and then click
OK (see Figure 10-4).

'8 oottt i SLIE5)

File Edit Run Navigate Search Project Refactor Window Help

iN-EHE 8I8Sd i $-0-A° BEG- OB -G era- 5 [Few)
1% Package 52 T Hierarch | © 5](lcl Chapterld Manifest 23l mainxml | [3] DatabaseExamplesjava |
Ble~ i Android Manifest Permissions
£ 3DFilm —
12 Chapterld o PO®®A: '_
B stc Create a new element at the top level, in Manifest.

3 content.providers |

[3) DatabaseExamplesjava

@3 gen [Generated Java Files] Remove... (P)Permission
=) Android 1.5 W (P)Permission Group
&> assets . (P)Permission Tree
& res Down_| i Uses Permission >
& drawable
R4 iconpng
5 layout
1K) mainml
2 values
AX] stringsxml

i AndroidManifestxml

default properties
7 Chapter?
1 Chapters

Chapterd e T—y P -
Some s st o e
£ LinearLayouts [Problems | @ Javadoc [[& Declaration | EJ Console 52

i

Figure 10-4. Selecting the Uses Permission entry

CHAPTER 10: Understanding Content Providers

5. You’ll see the uses-permission tag in the Permissions pane. From the drop-
down menu that lists permissions, select android.permission.READ_CONTACTS
(see Figure 10-5). Now it will appear in the left part of the pane.

Selecting the Uses Permission type on the right should update the pane at
the left, but currently it does not, so we (redundantly, since it's already at
the bottom of the list) click the Down button to force the manifest editor to

update the left pane with the proper uses-permission tag setting.

7.3 Java - Chapter10/AndroidManifestmi - Ecly Lo 5

File Edit Run Navigate Search Project Refactor Window Help
GrEHE 8 B -0 - Q- BHFCG~ @S H~ H-5 oo~ 5 (v
] = g
&g

1 package 51 Ts Hierarch | = O] () Chapterto Manifest 23, | mainam! | () Databasebamplesjave
=
o=

2 %| @ 7| % Android Manifest Permissions

&7 3DFilm — —
Permissions Attributes for Uses Permission

15 Chapterl0
@© The ission tag requests a *

8 sre © Uses Permission - permission”
£ content.providers Q) dd... containing package must be granted in order for it to operate
[3) DatabaseExamples,java correctly.
wme T @

&8 gen [Generated Java Files]
=i Android 15 android.permission.PROCESS_ OUTGOING_CALLS
& assets andsaid B
ores
(= drawable
[Ra] icon.png
= layout
X mainxml
= values
AX] stringsxml
Al AndroidManifestxml
defautt.properties

ion” that the

=
S)
= x| B
E ®
-

anaroTe T REAB=FRAMEBUFFER
android.permission.READ_INPUT_STATE

&I Chapter?
I Chaptes
g Chapteld Manifest | Applicatiof(Permissions Dr ion| I
devogel i
7 LinearLayouts [[2 Problems | @ Javadoc [Declaration | &l Console 53 EebE ¢ B~r3-=0)
S

Figure 10-5. Selecting the READ_CONTACTS permission

7. Repeat steps 3 through 6 to add another uses-permission tag, this time

selecting the android.permission.WRITE_CONTACTS option (see Figure 10-6).
b

= Java - Chap!erlO/AndmidManifest;anl - Eclipse
File Edit Run Navigate Search Project Refactor Window Help
& [

N-HE d Bid $-0-Q- BEEG- S~ 4 5B~
12 Package 58 fs Hierarch | = 0| ((c «Chapterl0 Manifest 53, () mainxm! | [1) Databasebamplesjava | =)
S

5 %[@ 7| 5 Android Manifest Permissions

(P © (B ® Az | Attributes for Uses Permission

(© The uses-permission tag requests a
package must be granted in order for it to o

1 3DFilm —
42 Chapterl0 ermissions
" th
@ src (@ android.permission.READ_CONTACTS (Uses Permission) (he] that

£ content providers :
3] DatabaseExamplesjava (OllEemeson Name |
droid ion WRITE_APN_SETTINGS =

8 gen [Generated Java Files]
=\ Android 15 ™
&> assets
B =
& drawable
R4l iconpng
= layout
X mainaml
£ values
X stringsxml
A AndroidManifestxml
default.properties
T Chapter?
T

1 Chapter8
T Chapterd v Manifest ermissiond) [i
M E-g-=0)

1 de [} = - = -
7 LinearLayouts [[£ Problems | @ Javadoc &) Declaration | Bl Console 53

perate correctly.

android.permission.WRITE_CONTACTS

SRATORp . 6 2
android.permission.WRITE_OWNER_DATA

o°

Figure 10-6. Selecting the WRITE_CONTACTS permission

CHAPTER 10: Understanding Content Providers

That’s all there is to adding our read and write permissions. Figure 10-7 shows our
AndroidManifest.xml file with the two permission tags at the bottom, before the closing tag:

<uses-permission android:name="android.permission.READ_CONTACTS"></uses-permission>
<uses-permission android:name="android.permission.WRITE_CONTACTS"></uses-permission>

TIP: Anytime you are working with the Eclipse manifest editor, you can click the
AndroidManifest.xml tab at the bottom of the window and see what this helper is doing as far as
writing the actual XML markup code.

File Edit Run Source Navigate Search Project Refactor Window Help

‘1| BHE $-0-QU- BHEG- S A~ B -FH-BErD- =
E Package 2 i s Hierarch | = t 5l *Chapterl0 Manifest 53 |d mainxml |) DatabaseExamplesjava | =
B <}=:(>| e Y ||® <?xml version="1.0" encoding="utf-g"?> ~m :
7 30Film i <manifest)cmlns:andxcid="hc?p://schemas.android.com/apk/res/android" o=
. :‘g Chapterl0 3 package="content.providers"
4 3 s android:versionCode="1"

android:versionName="1.0">
<application android:icon="@drawable/icon" android:label="@string/app name">
<activity android:name=". DatabaseExamples"
android:label="@string/app name">
<intent-filter>

4 f} content.providers

b [J) DatabaseExamples.ja

> 28 gen [Generated Java Files]
> =i Android 1.5

& assets = <action android:name="android.intent.action.MAIN" />
4 1057 res <category android:name="android.intent.category.LAUNCHER" />
4 (= drawable </intent-filter>
|®a] icon.png </activity>
4 = layout </application>
4X] mainxml <uses-sdk android:minSdkVersion="3" />
4 5= values %% <uses-permission android:name="android.permission.READ CONTACTS'"></uses-permission>]
1Y) strings xm [<uses-permission android:name="android.permission.WRITE CONTACTS"></uses-permission>
</manifescs -
=T JersUN properties ‘ »
7 Chapter? Manifest | Application | Permissions |1 ion(androidManifestxml)
q [m%) ‘E_ Problems"@ Javadoc‘@ Declaration|E Console 23 G Eﬁ‘ #EB~riy " ﬁ"
L 1
1) AndroidManifestxml - Chapterl0

Figure 10-7. The XML output for the permission additions we made in the visual editor

Now that we have permissions to read and write to the Contacts database, we can get
started working with databases.

Adding Data to the Contacts Database

Android SQLite uses a table-based database model, where rows represent each data
record and the columns represent the data fields, each with a constant type. In this way,
each piece of data in each column is the same exact type or classification, and each row
is a unique collection of data of these types spanning across the row.

In this example, we are going to work with the Contacts.People table. After we add
some sample data to this table, it will look like Table 10-4.

CHAPTER 10: Understanding Content Providers

Table 10-4. Contacts.People Database Table with Sample Data

_ID _COUNT NAME NUMBER

44 4 Bill Gates 212 555 1234
13 4 Steven Jobs 425 555 6677
53 4 Larry Ellison 201 555 4433
27 4 Mark Zuckerburg 213-555-4567

The column headers are the names that are used by Android to reference the data held
in each column. These are what you use in your Java code to access each field of data
within each record. For example, in some Java code we will write, we will refer to
People.NAME and People.NUMBER.

The column names prefaced by an underscore character (_ID and _COUNT) are data fields
assigned and controlled by Android; that is, you cannot WRITE these values, but you can
READ them.

Now let’s add the four data records shown in Table 10-4 into our Android emulator. (If
you like, you can add more than four records.) We'll do this using the utilities that come
on the smartphone. Follow these steps:

1. Run the emulator as usual by choosing Run As » Android Application.

NOTE: Another way to start the emulator is to select Window » Android SDK and AVD Manager.
Select your 1.5 emulator and press Start... and then Launch. Any contacts you enter should be
saved for later, even if you close the emulator.

2. Press the Home button. You will see four icons on the home screen
(shown in Figure 10-8 on the left side) labeled Messaging, Dialer,
Contacts, and Browser. The one called Contacts is a front-end to our
Contacts database and will allow us to add in the records shown in
Table 10-4.

Download from Wow! eBook <www.wowebook.com>

CHAPTER 10: Understanding Content Providers

— @& B *
. g Google Search Q Dialer Call log Favorites

You don't have any contacts.

To add contacts, press Menu
and select:

* New contact to create a new

\;1} S 2 contact from scratch
=|)
%),

* Import contacts to add

contacts from your SIM card
w8 @2

Dialer Contacts Browser

Figure 10-8. Adding new contacts to the Android Contacts database via the Contacts utility

3. Click the Contacts icon to launch the Contacts database, which is
initially empty. The screen tells us that we do not yet have any contacts
and how to add new contacts to the Contacts database (as shown on
the right side of Figure 10-8).

4. Click the Menu button to bring up a menu from the bottom of the screen
(similar to the menu we created in Chapter 7) that offers four different
options for working with the Contacts database.

5. Select the New Contact option to bring up the new contact data-entry
form.

6. Fill out the name (People.NAME) and mobile phone number
(People.NUMBER) fields at the top of the screen (as shown on the left side
of Figure 10-9), and then click the Menu button.

7. Select the Done option to add the record to the database. Our addition
appears on the screen (as shown in the right side of Figure 10-9).

CHAPTER 10: Understanding Content Providers

Tl @ 1238 AM
New contact @ E *

X Dialer Call log Favorites
Bill Gates
Bill Gates

Mobile 212-555-1234

Phone numbers o

[ST ©
~

Email addresses

1 2 ABC 3 DEF

5 JKL 6 MNO . Q o

8 Tuv Ja Search | New contact

O wxyz ~
le
Revert Add icon Display group Import contacts
u

MENU

A

(agn]

Figure 10-9. Adding a record to the Contact database

8. Repeat steps 4 through 7 to add the three other names in Table 104,
and maybe a few of your own.

Working with a Database

Let’s get started writing our application that will access the Contacts database. We’ll do
some data queries against it, update the data, add data, and delete data.

Querying a Content Provider: Accessing the Content

First, let's add a button to our example app’s main.xml file that will trigger our database
query via an onClick event (as discussed in Chapter 9 regarding events processing, or,
as discussed in the previous chapter).

1. Right-click the main.xml file, which is located under the /res/layout
folder. Then open the Eclipse layout editor and add the button via drag-
and-drop as you have done in previous examples. Here is the code that
shows the changes to the Button and TextView we need to make (see
Figure 10-10):

CHAPTER 10: Understanding Content Providers

<TextView android:layout width="fill parent"
android:layout_height="wrap_content"
android:text="Click Button Below to Run a Query" />

<Button android:text="Click to Query Contacts Database"
android:id="@+id/queryButton"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_gravity="center" />

8 - Chmetistonimsnan e ol

File Edit Run Source Navigate Search Project Refactor Window Help

i ‘B IBAE B0 BHE MO G F e & (@)
Mh Hierarchy‘| = 0/(ldl Chapterl0 Manifest Ir@ mainxml 22 =0
=
9:={>| e Y ||® <?xml version="1.0" encoding="utf-8"?> |
7 30Film 7 <LinearLayout xmlns:android="http://schemas.android.com/apk/res/android" o=
a = android:orientation="vertical”
4 = Chapterl0
4 8 src android:layout_width="fill parent"

X android:layout_height="fill parent">
4 H} content.providers - =

b [J) DatabaseExamplesjava

<TextView android:layout width="fill parent"
b &8 gen [Generated Java Files] -]

android:layout_height="wrap content"

m

i = Android 1.5 = android:text="Click Button Below to Run a Query"” />
&5 assets %I!
4 55 res |] <Button android:text="Click to Query Contacts Database"
4 (= drawable android:id="@+id/queryButton"
M icon.pn android:layout width="wrap content"
Png _ >
4 §= layout android:layout_height="wrap content" /> L
AX| mainxml
4 5= values </LinearLayout> %2
> o < »
4X) stringsxml -
3 AndroidManifestxml Layout | mainaxmi
B] - - - ~ — = =
Q /W+m‘ S f& Problemsl @ Javadoc[@ DeclaratlonlE Console 23 \‘ Ex EE' #B-ri-° EW
o0® mainxml - Chapterl0/res/layout

Figure 10-10. Adding our Button code to main.xml|

2. Next, right-click the /src/content.providers/DatabaseExamples.java file
and select Open.

3. First, we will add in our Button object declaration and our onClick event
handling code, as we did in the previous chapter. Later, we’ll write our
custom query method, once our Ul is in place. To get things going, add
the following three import statements that we need to define our Button:

import android.widget.Button;
import android.view.View;
import android.view.View.OnClickListener;

NOTE: Remember that you use the import statement to pull in the classes that you are going to
leverage in your code.

4. Now declare our Button object, like so, with some fairly standard code:
Button queryButton = (Button)findViewById(R.id.queryButton);

CHAPTER 10: Understanding Content Providers

5. Next, use the setOnClickListener() method to add the ability to handle
events for this button, using the following lines of code (see Figure 10-
11). First, we attach the new OnClickListener to our queryButton, and
then inside the onClick event handler, we assign the
queryContactPhoneNumber () method (which we will code next), to be run
when an onClick event is encountered. Note in Figure 10-11 that
queryContactPhoneNumber() is underlined in Eclipse, which tells us that
the method we are calling does not (yet) exist.

queryButton.setOnClickListener(new OnClickListener() {

public void onClick(View view) {
queryContactPhoneNumber();

D;
File Edit Run Source Navigate Search Project Refactor Window Help
[- BAE $-0-Q- BHC- OO A PIeEd H-F-Ca-o ©EE
[i % Hierarchy) = 5|(lcl Chapterl0 Manifest |l mainxml [5) DatabaseBxamplesjava 23 . =g
W ~ &
EEIIE package content.providers; LS
7 3DFilm -

“import android.app.Activity;
~ import android.os.Bundle;
. g8 s . Tmport android.view.view:
4 (3 content.providers import android.view.View.OnClickListener;
import android.widget.Button:

4 |5 Chapterl0

b) DatabaseExamples.java
b &8 gen [Generated Java Files]

> B Android 1.5 public class DatabaseExamples extends Activity {
& assets
el Gb'es © @override /** Called when the activity is first created. */
4 (= drawable - public void onCreate (Bundle savedInstanceState) {
[@s] icon.png super.onCreate (savedInstanceState);
4 = layout setContentView (R.layout.main);
J}Q main.xml Button queryButton = (Button)findViewById(R.id.gqueryButton):
4 = values - © queryButton.setOnClickListener (new OnClickListener() {
_‘)Q strings.xml ;ﬁ[© public void onClick(View v){ =
A AndroidManifestxml i@ queryContactPhoneNumber () ;
default.properties = ¥
£ Chapter? h:
1 Chapter8 }
1 Chapterd ! b
1 d la.android. i »
7 LinearLayouts [l Problems | @ Javadoc‘@ Declaration]E Console &2 EepEl# B~ri~° E"
o® content.providers.D: java - C| src

Figure 10-11. Declaring our import statements and query button in DatabaseExamples.java

TIP: As you've seen, when a method does not yet exist, Eclipse puts a red X in the left margin of
the code-editing pane and a red underline under the method name. If you want to remove those
error indicators immediately, simply hover your cursor (mouse) over the red underline for a
second, and select the Create Method option when the list of possible solutions pops up
underneath it. Hovering your mouse this way is a great technique for learning more about Java
and Eclipse. Don’t be afraid to explore and experiment with the Eclipse IDE as you work through
this book.

CHAPTER 10: Understanding Content Providers

6. Next, let’s add the four new import statements that we need (shown in
Figure 10-12). The first brings in our familiar android.widget.Toast
class to easily display our data via the Toast Ul widget. The second
imports the android.net.Uri class that allows us to define the Uri
object we need to access the database. The third imports the all-
important Cursor class android.database.Cursor that allows us to
traverse the data within all of the Android databases. Finally,
android.provider.Contacts.People is the table we will be accessing:

import android.widget.Toast;
import android.net.Uri;

import android.database.Cursor;
import android.provider.Contacts.People;

File Edit Run Source Navigate Search Project Refactor Window Help
N-EHS A BT B0 BEEG MO P AT H - PE D = @)
m_}: Hierarch | = O1]/[cl Chapterl0 Manifest [Icl mainxml [[J] *DatabaseExamplesjava 52 = 8
B G;.)‘ P package content.providers; - i
& 30Fim “import android.app.Activity; o=
4 52 Chaptento import android.os.Bundle;
- import android.view.View;
4B sic . import android.view.View.OnClickListener;
4 content.providers : import android.widget.Button;
.) Databasebxamples.java Import android.nec.Uri;
> &3 gen [Generated Java Files] import android.widget.Toast;
4 GﬂAndroidl.S import android.database.Cursor;
&> assets import android.provider.Contacts.People;
4 §5res
4 (= drawable public class DatabaseExamples extends Activity {
(W& icon.png © @Override /** Called when the activity is first created. */
4 §= layout a public void onCreate (Bundle savedInstanceState) {
m mainxml super.onCreate (savedInstanceState);
4 §= values setContentView (R.layout.main) ;
Lm stringsaml Button queryButton = (Button)findViewById(R.id.queryButton):
) AndroidManifestxmi © queryBu:t.:nn.s?:Onclic-:kList.:ener(new OnClickListener() {
default.properties %% S public void onClick(View v){
1 Chapter? E queryContactPhoneNumber () ;
7 Chapter8 . *
1 Chapterd) H:
{7 devogella.android. N - -
A private void queryContactPhoneNumber() {
T LinearLayouts String[] cols = new String[] {Pecple.NAME, People.NUMBER};
Uri myContacts = People.CONTENT URI;
Cursor mgCur = managedQuery (myContacts,cols,null,null,null);
if (mgCur.moveToFirst()) {
String myname = null;
String mynumber = null;
do {
myname = mgCur.getString (mqgCur.getColumnIndex (People.NAME)):
mynumber = mgCur.getString (mgCur.getColumnIndex (People.NUMBER));
Toast.makeText (this, myname + " " + mynumber, Toast.LENGTH SHORT).show():
} while (mgCur.moveToNext()):
}
}
} -
< m | »
q = o IE_l Problems | @ lavadoc|@> Declaration ‘E Console 23\; =N Egl # By E"
e content.providers.D java - C| src

Figure 10-12. Java for our queryContacttPhoneNumber() and import statements

7. Now we can write our queryContactPhoneNumber() method, to query the
database (also shown in Figure 10-12).

private void queryContactPhoneNumber() {
String[] cols = new String[] {People.NAME, People.NUMBER};
Uri myContacts = People.CONTENT_URI;
Cursor mqCur = managedQuery(myContacts,cols,null,null,null);

CHAPTER 10: Understanding Content Providers

if (mgCur.moveToFirst()) {

String myname = null;

String mynumber = null;

do {
myname = mqCur.getString(mqCur.getColumnIndex(People.NAME));
mynumber = mqCur.getString(mqCur.getColumnIndex(People.NUMBER));
Toast.makeText(this, myname + " " + mynumber, Toast.LENGTH_ SHORT).show();

} while (mqCur.moveToNext());

}

Let’s decipher exactly what is going on in this query method that we have written. Our
method is declared private (meaning it operates completely inside the class that
contains it) and void, as it returns no values. The first line defines a string array variable
called cols and instantiates it with a new string array loaded with the value of two
constants from the Contact.People table called NAME and NUMBER. These are the two data
fields from which we wish to access data.

private void queryContactPhoneNumber() {
String[] cols = new String[] {People.NAME, People.NUMBER};

The next line creates a Uri object called myContacts and sets it equal to the
People.CONTENT_URI table address that we are going to query.

Uri myContacts = People.CONTENT_URI;

We then need to create a Cursor object called mqCur and assign to it the results of the
call to the managedQuery() method. This method uses the myContacts Uri object, the
cols column references that we are going to pull data from, and three nulls (which
represent more complex SQLite operations).

Cursor mqCur = managedQuery(myContacts,cols,null,null,null);

The Cursor object that is now properly populated with our managedQuery() results will be
used in our iterative code, a do...while loop inside an if statement, to traverse the
records of our table that managedQuery() accesses.

The if part of the statement is true when the mqCur object has been positioned at the
first record of the results via the moveToFirst() method. When this happens, the
contents of the if statement are executed.

if (mgCur.moveToFirst()) {

The myname and mynumber string variables are cleared by setting them to null before we
enter into the do...while loop. The loop is started on the next line with a do construct
containing three logical programming statements. It ends with a while() condition that
says, “Move mqCur cursor object to the next record.”

As long as there is a next record that can be moved to, this will equate to true. When it

does not (at the end of the last record in the results), it will equate to false and drop out
of the loop, which will cease to function, just as we intended. In other words, as long as
there is another record to process, we’ll do another run of the code in the loop.

do {

} whiié (mqCur.moveToNext());

CHAPTER 10: Understanding Content Providers

Now let’s look at the three things done in the do...while loop while there are records to
read.

First, we set the myname variable to the value of the data that is found in the current
record of the results (on the first loop entry, this is the first record; on the second loop
entry, this is the second; and so on).

myname = mqCur.getString(mqCur.getColumnIndex(People.NAME));
We do this via two methods of the mqCur Cursor object:

B The getColumnIndex() method gets the internal reference or index
number for the People.NAME column for the current record.

B getString() gets the string data from that location in the results and
puts it into the myname variable.

We repeat the process in the next line of code for mynumber using People.NUMBER. It is
also held in a string format, so you can use dashes or whatever you like between the
numbers.

mynumber = mqCur.getString(mgCur.getColumnIndex(People.NUMBER));

Once our myname and mynumber string variables are loaded with the data values from the
database record, we call our familiar Toast widget and display the record on the screen.
Notice in this version of the Toast widget we get a little more advanced than just passing
a text string in the second argument of the makeText () method. Here, we use our two

variables (which contain text strings) and concatenate them (attach them) to a space
character using the + operator (used for joining strings together):

Toast.makeText(this, myname + " " + mynumber, Toast.LENGTH SHORT).show();

Note that this could also be written in two lines of code:

Toast.makeText(this, myname + " " + mynumber, Toast.LENGTH_SHORT);
Toast.show();

Now right-click your Chapter10 folder and choose Run As » Android Project. Try out the
Click to Query Contacts Database button to see it trigger our query method, displaying
data we added earlier. Figure 10-13 shows an example.

CHAPTER 10: Understanding Content Providers

Android Content Providers

ck Buttc >w to Run a Que

Click to Query Contacts Database

Wallace Jackson 805 555 1212

Figure 10-13. Running a query in the Android 1.5 emulator

Appending to a Content Provider: Adding New Content

Now you’ll see how to add new content to a content provider database. Here, we will
add a new contact name and phone number to the Contacts database.

1. First, copy and paste the first Button tag in our main.xml file and change
the ID to addContactButton. The text of the button should read "Click
to add a Contact to the Database" (see Figure 10-14).

<Button android:text="Click to add a Contact to the Database”
android:id="@+id/addContactButton"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_gravity="center" />

CHAPTER 10: Understanding Content Providers

= Java - Chapter10/res/l t/main.xml - Ecli =B8] X
T pse
File Edit Refactor Run Source Navigate Search Project Window Help
) < BiHd $-0-QU- BHG~ OO~ - -Froera- & (@ava)
[[# Package &3 . fs Hierarchy| = O |[[J] DatabaseExamplesjava € (c) mainxml &2 =0
g) =D
&
B &| & 7|/@ <?xml version="1.0" encoding="ut£-g"2} ||
. <LinearLayout xmlns:android="http://schemas.android.com/apk/res/android" o=
27 3DFilm
a android:orientation="vertical"
12 Chapterl0 :
Iy android:layout_width="fill parent"
sre — id android:layout_height="fill parent">
 content.providers . <TextView android:layout_width="fill parent"
o [3) DatabaseExamples java android:layout_height="wrap content"
=4 gen [Generated Java Files] android:text="Click Button Below to Run a Query" />
GHA"dm'dl'S <Button android:text="Click to Query Contacts Database"
> assets android:id="@+id/queryButton"
5 res android:layout_width="wrap_content"
(= drawable android:layout_height="wrap content"
|Ra] icon.png android:layout gravity="center" />
= layout <Button android:text="Click to Add A Contact to the Database"
Xl mainxml D android:id="g+id/addContactButton”
a android:layout width="wrap content”
= values _ .
A AndroidManifestxml android:layout_height="wrap content”
default.properties android:layout_gravity="center" />
7 Chapter? </LIinearrayour
1 Chapter8 < 5 =
7 Chapterd .
7 de. puu: android Layout | main.xmi
7 LinearLayouts [[21 Problems | @ Javadoc (€ Declaration |] Console £2 [Properties ExpE|# B -9~ =0
0® Android SDK Content Loader

Figure 10-14. Adding our second button in main.xml

2. The first stage of the Java code is to add two global objects that all the
methods in our class can use. There are two URIs that will contain the
locations where we can add data and change data:

public class DatabaseExamples extends Activity {

Uri addUri = null;
Uri changeUri = null;

3. Next, let’s add in the code to implement the second button for our Ul by
copying the Button object declaration and the onClick event handling
code and pasting it immediately underneath the existing Ul code in our
DatabaseExamples activity class.

4. Change the Button variable name to addButton, and change the R.id to
point to our new addContactButton. Also, set our method call to the new
addContactPhoneNumber () method we are going to write (see Figure 10-
15). Here is the new code:

Button addButton = (Button)findViewById(R.id.addContactButton);

addButton.setOnClickListener(new OnClickListener() {
public void onClick(View view) {
addContactPhoneNumber ("Steve Wozniak", "415-555-7654");

}
1);

NOTE: This line of code calls our addContactPhoneNumber () method and passes it new
database record data so that a new contact entry can be added to the Contacts database.

CHAPTER 10: Understanding Content Providers

java - Chapter10/src/ i java - Eclij
Java - Chapt viders/Datal Ecii el 50
e
File Edit Run Source Navigate Search Project Refactor Window Help
= i as a6 o =20 2 1) - v 5] - o =4
"] BHLE $-0-Q BHFCGY MO F~ PhewEl fHi-F-Ce- & [Faw)
(~ NG 2 - N - N =
H Package i3 Y2 Hierarch 5|/ [*DatabaseExamplesjava 52 [mainxml | =]
&
Bg|e _package content.providers; fam) -
7 3DFilm 7 @®import android.app.Activity;[] o=
4 52 Chapterld M .
4 (B src public class DatabaseExamples extends Activity {
tent provid public Uri addUri = null;
4 & content.providers : public Uri changeUri = null;
o 3] DatabaseExamplesji e @Override /** Called when the activity is first created. */ L
> B gen (Generated Java Files] a public void onCreate (Bundle savedInstanceState) {
3 :\ Android 1.5 super.onCreate (savedInstanceState);
&> assets setContentView (R.layout.main);
4 e Button queryButton = (Button)findViewById(R.id.queryButton);:
4 (= drawable p e quer .setOnClickListener (new OnClickListener() { H
[R4] icon.png - e public void onClick(View v){
4 §= layout queryContactPhoneNumber () ;
X mainxml }
4 G2 values N =
) stringsxml Button addButton = (Button)findViewByld (R.id.addContactButton);
[AndroidManifest.xmi _ © .setOnClickListener (new OnClickListener() {
default.properties = e public void onClick(View v){ =
&1 Chapter? & addContactPhoneNumber ("Steve Wozniak", "415-555-7654"); =
]
1 Chepte8 = . } i
1 Chapterd 7 - 5
{7 devogella.android 8 - - -
< = v |[[2 Problems | @ Javadoc [[€) Declaration &l Console 53 [Properties IR =R Eﬂ
o® ntent.providers.D: java - C|

Figure 10-15. Adding the Java code to add in the second button

5. Next, we are going to add the new method addContactPhoneNumber ().

private void addContactPhoneNumber(String newName, String newPhone) {

ContentValues myContact = new ContentValues();

myContact.put(People.NAME, newName);

addUri = getContentResolver().insert(People.CONTENT URI, myContact);

Uri contentUri = Uri.withAppendedPath(addUri, People.Phones.CONTENT DIRECTORY);

myContact.clear();

myContact.put(People.Phones.TYPE, People.TYPE MOBILE);

myContact.put(People.NUMBER, newPhone);

changeUri = getContentResolver().insert(contentUri, myContact);

Toast.makeText(this, "New Contact: " + newName + " " + newPhone,
Toast.LENGTH_SHORT);

}

We make sure that the addContactPhoneNumber () private method is declared with the
correct parameters, as follows:

private void addContactPhoneNumber(String newName, String newPhone) {

This is a bit different from our queryContactPhoneNumber () method, as we are passing
the method two string parameters: a name and a phone number. Since the
addContactPhoneNumber () method does not return any values, it is still a void method
and is declared as such, just like the others.

Now we are ready to write the code that will add a new name and phone number to the
Contacts database. The first thing that we need to do is to create a ContentValues
object called myContact that defines the table, column, and data values that need to be
passed into the content provider. Since this is a new class that we are using in our code,
we also need to add a statement to the end of our list of import statements (see Figure
10-16).

import android.content.ContentValues;

Download from Wow! eBook <www.wowebook.com>

CHAPTER 10: Understanding Content Providers

After we do that, we can instantiate a new ContentValues object called myContact via the
following declaration:

ContentValues myContact = new ContentValues();

Immediately after that, we need to configure that object with a data pair via the put()
method. This loads the ContentValues object with the table (People), the column (or field
of data to operate on) NAME, and the string variable with the name in it, newName.

myContact.put(People.NAME, newName);

Next, we use the getContentResolver() method to insert the myContact ContentValues
object into the People table, which is at the location specified by CONTENT URI constant
we discussed earlier in the chapter:

addUri = getContentResolver().insert(People.CONTENT URI, myContact);

This writes the newName variable that we loaded into our myContact ContentValues object
into the People.NAME database column that we specified in the same object. So, now our
newName variable passed to our method has been taken care of, and we just need to do
the same thing for our newNumber data variable. Then we will be finished. After this call,
addUri will hold the location of the newly inserted record.

The next line of code declares a Uri object named contentUri that appends the
People.Phones.CONTENT_DIRECTORY onto the addUri and creates a new, more detailed
URI object for the next query. (We are basically setting the location of where to add the
phone number by using the location of the new name record as a reference.) Now all we
need to do is change the data in the myContact ContentValues object for the final data-
insertion operation.

Uri contentUri = Uri.withAppendedPath(addUri, People.Phones.CONTENT DIRECTORY);

The first thing we want to do to the myContact object is to clear it, or basically turn it into
an empty object with a clean slate. Then, in the next two lines, we use the put() method
to load the myContact ContentValues object with the URI and table and column values
for the phone number field that we wish to write, and the newPhone phone number string
variable data (415-555-7654), using the following lines of code:

myContact.clear();

myContact.put(People.Phones.TYPE, People.TYPE MOBILE);
myContact.put(People.NUMBER, newPhone);

Finally, we call our powerhouse getContentResolver() method to go into our content
provider and insert the phone number data into the correct table and data column (data
field) location. This is done with the following code:

changeUri = getContentResolver().insert(contentUri, myContact);

Once our data record is written by the two getContentResolver() operations, we can
send a Toast to our users in the usual way, telling them that the write has been
performed.

Toast.makeText(this, "New Contact: " + newName + " " + newPhone, Toast.LENGTH_ SHORT);

CHAPTER 10: Understanding Content Providers

Figure 10-16 shows the code as it appears in Eclipse with the import statement, two
global Uri object variables declared, and our addContactPhoneNumber () method
highlighted.

File Edit Run Source Refactor Navigate Search Project Window Help

-Eeia Tl 4 YA 1 i i3 o
i 8 B -0 BHFEG~ S~ P IJwE AR R AR 5 (& Jeva]
i Package &2 %5 Hierarch | = 0((1) Databasebxamplesjava 2 [l mainaml | =8
&
G;}‘ P package content.providers; - s
S 3DFim “import android.app.Activity; af

import android.os.Bundle;

import android.view.View;

import android.view.View.OnClickListener;
import android.widget.Button;

import android.net.Uri;

4 33 Chapterl0
4 (B src
4 @ content.providers
» [J) DatabaseExamplesjava

> 28 gen [Generated Java Files] import android.widget.Toast:
» = Android 15 import android.database.Cursor;
&> assets import android.provider.Contacts.People;
455 res Iimport android.content.ContentValues; |
4 (= drawable
@] icon.png public class DatabaseExamples extends Activity {
4 §= layout public Uri addUri = null;

m mainxml ublic Uri changeUri = null;

4§ values © GOverride % Called when the activity is first created. */
\.‘b‘ﬂ strings.xml | public void onCreate (Bundle savedInstanceState) {

[AndroidManifest.xml super.onCreate (savedInstanceState) ;

default properties setContentView (R.layout.main) ;

&1 Chapter? Button queryButton = (Button)findViewById(R.id.gqueryButton):

1 Chapters © quer ton.secOnClickListener (new OnClickListener() {
a e public void onClick (View v){
& Chapterd . queryContactPhoneNumber () ;
7 devogella.android.temperature N
7 LinearLayouts s
Button addButton = (Button)findViewById(R.id.addContactButton):
= addButton.setOnClickListener (new OnClickListener() {
e public void onClick(View v){
addContactPhoneNumber ("Steve Wozniak", "415-555-7654");
}
1)
}
@ private void queryContactPhoneNumber () {[]
© private void addContactPh (String String) {
ContentValues myContact = new ContentValues();:
myContact.put (Pecple.NAME, newName);
2ddUri = getContentResolver().insert (People.CONTENT URI, myContact):
Uri contentUri = Uri.withAppendedPath(addUri, People.Phones.CONTENT DIRECTORY):
myContact.clear();
myContact.put (People.Phones.TYPE, People.TYPE MOBILE);
myContact.put (People.NUMBER, newPhone);
n Uri = getContentResolver().insert (contentUri, myContact);
Toast.makeText (this, "New Contact: " + ooy Toast.LENGTH SHORT) .show () ;
}
} -
« »
’ = + |[[2 Problems | @ Javadoc [[€) Declaration | Bl Console 53 . Properties| IR =R E)
i ntent.providers.D: java - C|

Figure 10-16. Writing the Java code for our AddContactPhoneNumber method

We declared the two addUri and changeUri URI objects at the top of our code outside all
of our methods so that they can be used in any of the methods in this class. We will be
using them in other methods later in this chapter, so we’ve made them available for that
purpose.

Now right-click your Chapter10 project folder and select Run As > Android Application. As
you will see when you click the second button, the name and number in our code is
added to the Contacts database and a message confirming this is toasted (isn’t that a
cool term?) to the screen, as shown in Figure 10-17. Now let’s go into our desktop and
find the data.

CHAPTER 10: Understanding Content Providers

Android Content Providers

Click to Query Contacts Database
Click to Add A Contact to the Database

Created a new contact: Steve Wozniak
415-555-7654

Figure 10-17. Adding a contact in the Android 1.5 emulator

To see the new data for Steve Wozniak, select the Contacts icon, hit the Menu button at the
bottom of the screen (on the phone), and choose the Search function. Then scroll down the
list until you see the Steve Wozniak entry (highlighted on the right in Figure 10-18).

e H *

Dialer Call log Favorites

Bill Gates

Mobile 212-555-1234

Larry Ellison
Mobile 201-555-4433

CHAPTER 10: Understanding Content Providers

T @ 11:18AM
.

Search contacts

Larry Ellison

Mark Zuckerburg

Steve Wozniak

Mark Zuckerburg

Mobile 213-555-

Steven Jobs

Mobile 425-555-667

)

New contact

B

Display group Import contacts

MENU

Figure 10-18. Using the Contacts editor utility in the Android 1.5 emulator

Now that you’ve seen how to add data to a contact provider, let’s look at how to modify
the content provider’s data.

Modifying Content Provider Data: Updating the Content

Changing an existing record is another write operation as far as a database is
concerned, because new data is written to a database record field, and that data
overwrites the existing data that was there.

Let’s dive right into our usual work process to see updating content in action.

1. First, in main.xml, copy the addContactButton Button tag and paste it
right underneath our other Button tags. Change the ID attribute to
modifyPhoneButton. This reflects the fact that we are going to modify the
phone number to the new phone number, just as we would do in real life
(people don’t change names quite as often as they change mobile
phone numbers).

2. Next, change the text of the button to read "Click to Modify the
Contact in the Database". Here’s the code in your Eclipse editor’s
main.xml tab (also shown in Figure 10-19):

CHAPTER 10: Understanding Content Providers

<Button android:text="Click to Modify the Contact in the Database"
android:id="@+id/modifyPhoneButton"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_gravity="center" />

'8 -t R (it

File Edit Refactor Run Source Navigate Search Project Window Help

NrEHE 8 BHE $-0 A BEE @S Do & (@)
m& Hierar(hl =8 D. ples.java f\g mainxml &2 = [m]]|f
=
<}=.?>| % 7 ||® <?xml version="1.0" encoding="utf-8"?p ||
7 30Film <LinearLayout xmlns:android="http://schemas.android.com/apk/res/android" o=
.59 Chapter10 android:orientation="vertical"
i g

android:layout_width="fill parent"”
android:layout_height="fill parent">
<TextView android:layout_width= "fill_parent"
android: layout_heighc= "wrap content"
android:text="Click Button Below to Run a Query" />

4 5B src
4 [content,providers

b)] DatabaseExamples,java
GB gen [Generated Java Files]

A4

4 GﬁAndroidl.S <Button android:text="Click to Query Contacts Database"
= assets android:id="@+id/queryButton”
4 ?,—} res android:layout_width="wrap content"”
4 (= drawable android:layout_height="wrap content"”
E] icon.png android:layout_gravity="center" />
4 = layout <Button android:text="Click to Add A Contact to the Database"
AX] mainxml android:id="@+id/addContactButton"
4 §= values android:layout_width="wrap content"”
@ stringsxml android:layout_height="wrap content”
a AndroidManifest.xml android:layout gl?avicy="cer.xter" /> _
R Ta: =, 0
default.properties <Button android:text: C.lJ.ck 1?0 Modify the Contact in the Database
7 Chapter7 android:id="@+id/modifyPhoneButton"
E7 Chapter8 android:layout_width="wrap content"”
P android:layout height="wrap content"”
17 Chapterd - = i >
d I droid. android:layout_gravity="center" />
|} F.voge la.android.temperature </LiTeaTIayoutS
17 LinearLayouts il
< »
Layout ‘ mainxml [
< m 'y ‘E_’ Problems {@ Javadoc |@> Declaration] Bl Console 52 =] Properties‘ =N (SE‘ i = B i E‘
t i
‘e © Android SDK Content Loader

Figure 10-19. Adding a modify contact button in main.xml

3. To finish off implementing the Ul for this new database operation, let’s
do a similar cut-and-paste operation in our DatabaseExamples.java file.
Add the addButton Button object and the addContactPhoneNumber ()
onClick() method call, and turn them into a modButton Button object
and an onClick event handler that calls a modifyPhoneNumber () method
(see Figure 10-20):

Button modButton = (Button)findViewById(R.id.modifyPhoneButton);
modButton.setOnClickListener(new OnClickListener() {

public void onClick(View v){
modifyPhoneNumber("916-555-1234");

1);

CHAPTER 10: Understanding Content Providers

= Java - Chapter10/src/c ‘providers/D: ples.java - Eclipse
File Edit Refactor Run Source Navigate Search Project Window Help
D-E® ‘BB IB-0 AU BEE OSSP S E = [ew)

R R R R -

’ﬁ % ﬁ N Y2 Hierarch | = g 1] DatabaseExamplesjava &3 .l mainxml | = &=| [
2

B <-=L-">| @ package content.providers; jam) o
1 3DFilm @®import android.app.Activity;[] o=
. b9 Chapterl0 public c]-.ass l?atabas?Efamples extends Activity {
public Uri addUri = null;
4 695“ R public Uri changeUri = null;
4 (i content.providers B e @Override /** Called when the activity is first created. */
a 4 @ DatabaseExamPles.)ava - public void onCreate (Bundle savedInstanceState) {
b &3 gen [Generated Java Files] super.onCreate (savedInstanceState);
b =i Android 1.5 setContentView (R.layout.main) ;
G@ assets Button queryButton = (Button)findViewById(R.id.queryButton):
4 S;} res o queryButton.setOnClickListener (new OnClickListener() { -
4 (= drawable a e public void onClick(View v){ b
E] icon.png queryContactPhoneNumber () ;
4 3= layout }
AX] mainxml)
4 = values Button addButton = (Button)findViewById (R.id.addContactButton):
1X) stringsxml = addButton.setOnClickListener (new OnClickListener() {
) AndroidManifestaxml a @ public void onClick(View v){
default.properties addContactPhoneNumber ("Steve Wozniak", "415-555-7654"); =
7 Chapter? i
1 Chapter8 L - - - - -
Button modButton = (Button)findViewById(R.id.modifyPhoneButton):
1 Chapterd

© modButton.setOnClickListener (new OnClickListener() {
e public void onClick(View v){
modifyPhoneNumber ("916-555-1234") ;

[C7 devogella.android.temperature
07 LinearLayouts

[

}
1) L

< ¥

m v [[£L Problems ‘(@ Javadoc |[& Declaration [E Console 52 _EJ Properties | GepE|l#B~-ri~-= E)

PN

&

Android SDK Content Loader

Figure 10-20. Adding the Java code to implement our modify contact button

The real heavy lifting is done in our modifyPhoneNumber () method, which will update the
phone number in the database record we just added. It takes a single string containing
the new telephone number to replace the existing one (see Figure 10-21). Also notice in
Figure 10-21 that we have collapsed our previous two methods using the "+" feature in
Eclipse that allows us to expand and contract blocks of code for easier viewing of what
we are working on currently. This is shown with a small red square at the left of the
screenshot.

private void modifyPhoneNumber(String replacePhone) {
if (changeUri == null) {
Toast.makeText(this, "You need to create a new contact to update!",
Toast.LENGTH_LONG).show();
} else {
ContentValues newPhoneNumber = new ContentValues();
newPhoneNumber . put (People.Phones.TYPE, People.TYPE_MOBILE);
newPhoneNumber . put(People.NUMBER, replacePhone);
getContentResolver().update(changeUri, newPhoneNumber, null,null);
Toast.makeText(this, "Updated phone number to: " + replacePhone,
Toast.LENGTH_SHORT).show();

CHAPTER 10: Understanding Content Providers

File Edit Run Source Refactor Navigate Search Project Window Help

Amine BhHdi$-0-A- BFC- O F- PHIoEl H-F-vera- & @)

2 Package ﬁ A Hierarch | = 5 |([1) Databasebxamplesjova 53 . cl mainaml | =8
| &
| =] <}§>[® package content.providers; A o ‘
‘ &1 30Film @import android.app.Activity;[] of |

public class DatabaseExamples extends Activity {
public Uri addUri = null;
public Uri changeUri = null;
@Override /** Called when the activity is first created. */
public void onCreate(Bundle savedInstanceState) {

4 55 Chapterl0
4 (B src

4 {3 content.providers e

» [3) DatabaseExamplesjava|| o

> &8 gen [Generated Java Files] super.onCreate (savedInstanceState) ;
> B Android 15 setContentView (R.layout.main) ;
& assets Button queryButton = (Button)findViewById (R.id.queryButton):
e o e erOmClioKIAstants (new ORCLickiastenen () {
4 (= drawable a® public void onClick(View v){
M4 iconpng queryContactPhoneNumber () ;
4 G2 layout 3
AX) mainxml I
4 55 velues Button addButton = (Button)findViewById (R.id.addContactButton);
R stringsaxml @ etonClickListener (new OnClickListener() {

&8 public void onClick(View v){

A AndroidManifestxml
addContactPhoneNumber ("Steve Wozniak", "415-555-7654");

default.properties
1 Chapter?
1 Chapters
1 Chapted

}
N
Button modButton = (Button)findViewById (R.id.modifyPhoneButton):
. © modButton. setonClickListener (new OnClickListener() {
1 devogelandroid temperature ||z - pabiic void onClick(View ¢
7 LinearLayouts § modi fyPhoneNumber ("916-555-1234") ;
}
b
}

@® private void queryContactPhoneNumber() {[]
@ | private void addContactPhoneNumber (String newName, String newPhone) {[]
© private void modif (String repl) <

if (changeUri == null) {
Toast.makeText (this, "You need to create a new contact to update!", Toast.LENGTH_LONG) .show();
} else {
Ce lues = new C lues ()
newPhoneNumber.put (People.Phones.TYPE, People.TYPE MOBILE):
newPhoneNumber . put (People. NUMBER, replacePhone);

getC lver () .update (| , null,null);
Toast.makeText (this, "Updated phone number to: " + replacePhone, Toast.LENGTH SHORT).show():
}
}
) L
il »
« i |2 Problems [@ Javadoc [&} Decleration [& Console £2 . Properties| B[E-ri--0

Figure 10-21. Writing our modifyPhoneNumber() method

The modifyPhoneNumber () method uses an if...then...else programming loop structure.
First, let’s make sure there is data in the changeUri data object by comparing the
changeUri object to null via the if (changeUri == null) construct.

if (changeUri == null) {

Toast.makeText(this, "You need to create a new contact to update!",
Toast.LENGTH_LONG).show();

If this construct equates to true, we print a Toast message, saying that the add
operation has not been done yet, and suggesting that the user use the add method
(which we just wrote) to create the record that we want to modify.

If the (changeUri == null) equates to false, it means that the changeUri is loaded with
the database and column references needed to access and modify the database record.
Then we can continue and execute the database modification via four lines of code and
a Toast notification that tells us what was done to the database.
getContentResolver().update(changeUri, newPhoneNumber, null,null);

Toast.makeText(this, "Updated phone number to: " + replacePhone,
Toast.LENGTH_SHORT).show();

CHAPTER 10: Understanding Content Providers

The first line of code is the creation of the newPhoneNumber ContentValues object, which
will hold our database names and constants that we will use to reference the phone
number field in the Contacts database.

} else {
ContentValues newPhoneNumber = new ContentValues();

First, we load the newPhoneNumber ContentValues object with the columns of data we are
going to modify. In the second line of code, we state that the People.Phones.TYPE will be
People.TYPE_MOBILE (that is, we are updating the mobile number). We then use the
People.NUMBER database constant to say we want to update the number with the
contents of the replacePhone data variable that we passed into the modifyPhoneNumber ()
call.

newPhoneNumber . put (People.Phones.TYPE, People.TYPE_MOBILE);
newPhoneNumber . put (People.NUMBER, replacePhone);

In our fourth line of code inside the else section of our loop, we call the
getContentResolver().update() method:

getContentResolver().update(changeUri, newPhoneNumber, null,null);
We pass it the following objects:

B changeUri (which we created in the addContactPhoneNumber () method)
specifies the location of the last record we worked with, which is the
one we want to update.

B newPhoneNumber is a ContentValues object that specifies which field of
that record structure we wish to modify. It also specifies the updated
data for that data field (the new mobile number).

Finally, we add in our Toast.makeText() call to display the data we have modified once
the getContentResolver().update() is complete.

Toast.makeText(this, "Updated phone number to:
Toast.LENGTH_SHORT).show();

+ replacePhone,

Compile and run the application in the Android 1.5 emulator, and you will see our new
Click to Modify the Contact in the Database button, as shown in Figure 10-22.

CHAPTER 10: Understanding Content Providers

t Providers

Click to Query Contacts Database

Click to Add A Contact to the Database

Click to Modify the Contact in the Database

Updated phone number to:
916-555-1234

Figure 10-22. Modifying a contact in the Android 1.5 emulator

We can now query the database, add a record to the database, and change the phone
number in an existing database record. Let’s complete this tour of common database
operations by adding an option to delete a record from the content provider database.

Removing Content Provider Data: Deleting Content

Our final example of manipulating the database demonstrates how to delete database
records. We’ll also make a few final changes in our main.xml/ Ul code to make everything
look a bit more professional.

1. For the TextView tag, change the text attribute to read "Click Buttons
Below to Query, Add, Modify, Delete". Also add 25 dip of padding to
the top and 50 dip of padding to the bottom to space out the objects on
the application screen and make it more readable. Here’s the new code
(also shown in Figure 10-23):

<TextView
android:layout_width="fill parent"
android:layout_height="wrap_content"
android:text="Click Buttons Below to Query, Add, Modify, Delete"
android:paddingTop="25dip"
android:paddingBottom="50dip"/>

CHAPTER 10: Understanding Content Providers

2. Use your favorite cut-and-paste work process to copy the modify
Button tag that we just created and paste it underneath the other Button
tags. Change the ID to deleteContactButton and the text to read "Click
to Delete the Contact in the Database". Your code should look like
this (also shown in Figure 10-23):

<Button android:text="Click to Delete the Contact in the Database"
android:id="@+id/deleteContactButton”
android:layout width="wrap content"”

android:layout_height="wrap_content"
android:layout_gravity="center" />

2 B

File Edit Run Source Navigate Search Project Refactor Window Help

N-EHe 8 BFdiF-0-AU- BBE- B F I H-FH oo & (& Java |

MT: Hierar(h] =8 4 DatabaseExamples.java (@ mainxml &2 =1

=2
B d:Dl & “||® <2xml version="1.0" encoding="utf-g"?> -8 o
1 3DFilm <LinearLayout xmlns:android="http://schemas.android.com/apk/res/android" o=
a android:orientation="vertical"
4 ;= Chapterl0

android:layout_width="fill parent"”

android:layout_height="fill parent">

<TextView android:layout_width= "fill_parem:"
android:lavout height="wrap content!

4 (3 src
4 £ content.providers
b [J) DatabaseExamples,java

> & gen [Generated Java Files] android:text="Click Buttons Below to Query, Add, Modify, Delete"
v =i Android 1.5 android:paddingTop="25dip"
& assets android:paddingBottom="50dip"/>
4 S,:‘? res <Button android:text="Click to Query Contacts Database"
4 (= drawable android:id="@+id/queryButton"
R4 icon.png android:layout_width="wrap content”
L= layout android:layout_height="wrap content"
E mainxml android:layout_gravity="center"” />
4 §= values <Button android:text="Click to Add A Contact to the Database"
I stringsxml android:id="@+id/addContactButton"
a AndroidManifest.xml android:layout_width="wrap content”
default.properties android:laynu:_heigltx:="vrap_contenc"
€ Chapter? android:layout_gravity="center"” />

<Button android:text="Click to Modify the Contact in the Database"
android:id="@+id/modifyPhoneButton"”
android:layout_width="wrap content”
android:layout_height="wrap content"
ﬂiroid:laynu: gravi:F”cﬂter" />

<Button android:text="Click to Delete the Contact in the Database"
android:id="@+id/deleteContactButton"
android:layout_width="wrap content"
android:layout_height="wrap content"
android:layout_gravity="center"” />

127 Chapter8

L Chapterd

27 dewvogella.android.temperature
7 LinearLayouts

</LTY TLEyour

< »

Layout ‘ main.xml‘

m] » (El, Problems I'@ Javadoc |@> Declaration ‘E Console(D Properties 2 PEREHAY" EI]

-

<&

content.providers.D ples.java - Chapterl0/src

Figure 10-23. Adding the delete button XML markup to main.xml

3. Now we will repeat the same copy-and-paste operation in our Java
code. Copy the modButton Button object creation and
setOnClickListener() event handling routine. Change the object name
to delButton and the method call to deleteContactPhoneNumber ()
(Figure 10-24 shows what your Java code for your Ul definitions should
look like in the Eclipse DatabaseExamples.java tab).

Download from Wow! eBook <www.wowebook.com>

CHAPTER 10: Understanding Content Providers

Button delButton = (Button)findViewById(R.id.deleteContactButton);
delButton.setOnClickListener(new OnClickListener() {
public void onClick(View v){
deleteContactPhoneNumber();

}
1
NOTE: Since we are simply deleting the record, we do not need to pass the method a variable.

This is because the road map to the database information that we wish to operate on is already
in our changeUr1i object, ready to reference.

File Edit Refactor Run Source Navigate Search Project Window Help
D-E® ‘BB IB-0 AU BEE OSSP S E = [ew)
R v By D

/ﬁ Package ﬁ N Y2 Hierarch | =)@ DatabaseExamples.java SX\@ mainxml | = &=| [
2

B <-:‘,'>| @ package content.providers; jam) o
1 3DFilm @®import android.app.Activity;[] o=
. b9 Chapterl0 public c]-.ass l?atabas?Efamples extends Activity {
public Uri addUri = null;
4 @SK R public Uri changeUri = null;
4 (i content.providers B e @Override /** Called when the activity is first created. */
a 4 @ DatabaseExamPles.)ava - public void onCreate (Bundle savedInstanceState) {
b &3 gen [Generated Java Files] super.onCreate (savedInstanceState);
b =i Android 1.5 setContentView (R.layout.main) ;
G@ assets Button queryButton = (Button)findViewById(R.id.queryButton):
4 S:‘> res o queryButton.setOnClickListener (new OnClickListener() { -
4 (= drawable a e public void onClick(View v){ b
@ icon.png queryContactPhoneNumber () ;
4 3= layout }
AX] mainxml)
4 = values Button addButton = (Button)findViewById (R.id.addContactButton):
1X) stringsxml = addButton.setOnClickListener (new OnClickListener() {
) AndroidManifestaxml a @ public void onClick(View v){
default.properties addContactPhc >er ("Steve Wozniak", "415-555-7654"); =
7 Chapter? i
1 Chapter8 L: - - " - -
1 Chapted Button modButton = (Blftton)f1ndV1ewBy¥d(R:1d.mod1fyPhoneButton);
X © modButton.setOnClickListener (new OnClickListener() {
jomj d'e.vogeIIa.androld.temperature ;ﬁ o public void onClick(View v){
7 Linearlayouts §§ modifyPhoneNumber ("916-555-1234") ;
|] }
1) %
< L
I |+ ||[£L Problems | @ Javadoc [[Declaration | & Console 52 Properties| Eepi|#B~-ri~-=0O
L

PN

&

Android SDK Content Loader

Figure 10-24. Adding the our Java code to implement the delete button

4. Now we will create our new deleteContactPhoneNumber() database
method. All we need to do is add in the code that makes sure our
changeUr1i object is still intact and loaded with reference parameters,
and then access our ContentResolver object to delete the data record.
Here’s the code (see Figure 10-25):

private void deleteContactPhoneNumber() {
if (changeUri == null) {

Toast.makeText(this, "You need to create a new contact to delete!",
Toast.LENGTH_LONG).show();

CHAPTER 10: Understanding Content Providers

} else {
getContentResolver().delete(addUri, null, null);
Toast.makeText(this, "Deleted contact at: " + addUri.toString(),
Toast.LENGTH_SHORT).show();
addUri = null;
changeUri = null;

File Edit Run Source Navigate Search Project Refactor Window Help

B-EE a8 88di%-0-A- BFCG- OS5~/ PIevEl H-F-0e-a- & @)
ﬁl“-ﬁ; T2 Hierarch | ~ 0| [3) DatabaseEramples,ava 22 mainaml | = .
B %‘ P package content.providers; - oz
1 30Film @®import android.app.Activity;[] o*
M &g Chapterl0 public class DatabaseExamples extends Activity {

public Uri addUri = null;
public Uri changeUri = null;
© @Override /** Called when the activity is first created. */
public void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;

4 (3 src
4 f§} content.providers
» [3) DatabaseExamplesjava) | o
> &8 gen [Generated Java Files]
v B Android 1.5 setContentView (R.layout.main) ;

& assets Button queryButton = (Button)findViewById(R.id.queryButton):
4 e © queryButton.setOnClickListener (new OnClickListener() {

4 (= drawable a e public void onClick(View v){
R4 icon.png queryContactPhoneNumber ()

4 §= layout ¥
1K) mainaml e

4 g values Button addButton = (Button)findViewById (R.id.addContactButton);
R strings.xml © addButton.setOnClickListener (new OnClickListener() {

a e public void onClick(View v){
addContactPhoneNumber ("Steve Wozniak", "415-555-7654");
}

) AndroidManifestxml
default.properties

7 Chapter7
&7 Chaptes N — . .
B Crapters Button modBucton = (Button) findViewById (R.id.modifyPhoneButton) ;
) o modButton.setOnClickListener (new OnClickListenexr() {
7 devogella.android temperature || pubiic void onClick (View v
& Linearlayouts modifyPhoneNumber ("916-555-1234") ;
3
bk
Button delButton = (Button)findViewById(R.id.deletsContactButton);
e delButton.setOnClickListener (new OnClickListener() {
e public void onClick(View v){
deleteContactPhoneNumber () ;
i

e
}

@ private void queryContactPhoneNumber () {[]
® private void addC (String String) 0
@ private void modifyPhoneNumber (String replacePhone) {[]
e private void deleteContactPhoneNumber () {
if (changeUri == null) {
Toast.makeText(this, "You need to create a new contact to update!", Toast.LENGTH LONG).show():
} else {
getContentResolver () .delete (addUri, null, null);
Toast.makeText (this, "Deleted contact at: " + addUri.toString(), Toast.LENGTH SHORT).show():
addUri = null;
changeUri = null;
}
}
) -
< »
q = + |[[2L Problems | @ Javadoc [(€, Declaration |] Console | = Properties 52 FPE YO

Figure 10-25. Adding our deleteContactPhoneNumber method to DatabaseExamples.java

This code uses an if loop that is identical to the one we constructed in the
modifyPhoneNumber () method earlier.
if (changeUri == null)

Toast.makeText(this, "You need to create a new contact to delete!",
Toast.LENGTH_LONG).show();

The if statement basically says. “I our changeUri object is not loaded with the data from
the add and modify operations, then tell the users that they need to create a new
contact first to delete the record; otherwise, perform the following operations.”

CHAPTER 10: Understanding Content Providers

The meat of our code to delete the database record that we have created is inside the
else portion of our if...then...else loop structure. It begins with a call to
setContentResolver().delete() to delete the data record whose particulars are
referenced in the addUri that we created in the addContactPhoneNumber () routine we
coded earlier.

} else {
getContentResolver().delete(addUri, null, null);

In this method, we are referencing the addUri, which references the Contacts database
and contact name, rather than the changeUri, which references the phone number and
type data fields. This is because we are deleting the top-level database record, and not
just the phone number inside it.

Once we have deleted our database record via the ContentResolver, we can Toast to
our users a message that it has been deleted. Finally, we set the URIs to null because
we have deleted the record.

Toast.makeText(this, "Deleted contact at: " + addUri.toString(),
Toast.LENGTH_SHORT).show();

addUri = null;

changeUri = null;

Now let’s select Run As » Android Application and see our latest button in action. In the
example in Figure 10-26, you can see that our Toast message shows the URI for the
Contacts database’s People table and record number 13.

Android Content Providers

Buttons Below to Que

Click to Query Contacts Database

Click to Add A Contact to the Database

Click to Modify the Contact in the Database

Click to Delete the Contact in the Database

Deleted contact at: content://contacts/
people/13

Figure 10-26. Running our final database application in the Android 1.5 emulator

CHAPTER 10: Understanding Content Providers

We now have our finished database-access application. This version is spaced out
much better on the screen, and it has all four database operations in place and
functioning:

B The Click to Query Contacts Database button shows the entire
Contacts database, including the new addition.

The Click to Add a Contact to the Database button adds a new record.

B The Click to Modify the Contact in the Database button changes the
database record to include a new phone number.

B The Click to Delete the Contact in the Database button deletes the
new record.

We have successfully written code to manipulate one of Android’s internal content
provider databases.

Summary

This is probably one of the most complicated chapters in this book, because it
combines the following:

B Knowledge of SQLite database design, functionality, and access—in
itself a topic that can easily span several books

B The Android concept of content providers

B The Java programming language constructs that are necessary to
access and manipulate these database structures

You should feel a great sense of accomplishment from getting through all of this
unscathed. You are learning how Android deals with advanced database concepts and
structures.

Most of the content providers that you will be working with in Android are already a part
of the OS. They provide access to the common functions that users want in their
phones, including contacts, music (audio), entertainment (video), and similar. The built-in
content providers were listed in this chapter. We also covered the concept of
deprecation, because as of Android 2.x, the internal content provider database
structures were enhanced, making pre-2.0 OS tables deprecated, although still usable,
as you saw in this chapter.

The primary Java classes in Android that handle content providers are (surprise!) the
ContentProvider class, the ContentResolver class, and the ContentValues class. Each
plays a critical role in defining (ContentProvider), accessing (ContentResolver), and
addressing (ContentValues) a SQLite database structure.

Although there are other ways to pull in data to your Android application, such as off
your SD card or off a remote server, the SQLite DBMS is the most robust approach and
the only one that can be accessed between applications. Furthermore, this is the most
useful content provider type to learn, because all of Android’s user data is stored and

CHAPTER 10: Understanding Content Providers

accessed via these SQLite databases. Unfortunately, it’s also the most difficult way to
implement content providers (database access) within the Android OS.

Chapter

Understanding Intents
and Intent Filters

This chapter will delve into intents, which are messaging objects that carry
communications between the major components of your application—your activities,
services, and broadcast receivers, which handle Android messaging. We have seen that
Android development is highly modularized, and intents provide a way to wire these
modules together to form a cohesive yet flexible application with secure, fluid
communication among all of its components.

This is a fairly complex and important topic, and we are going to cover intents as they
pertain to activities, services, and broadcast providers in detail. In fact, by the time we
get to the end of the chapter, we will have an application that has three XML files and
four different Java files open in the Eclipse IDE. Lucky we are close to the end of the
book, because for a book on Android for absolute beginners, this chapter is going to
seem a bit advanced. We’ll chalk it up to a rapid learning process and dive right in.

What Is an Intent?

An intent is represented by the android.content.Intent class. It is in the content
package because intents can be used to quickly access content providers, as we will
see in this chapter. But its use is much broader than that; in fact, the Android Developer
Reference says, “An intent is an abstract description of an operation to be performed,”
so intents can be used to quickly accomplish many tasks that would otherwise take
more programming code. An intent is a sort of a programming shortcut that’s built into
the Android OS and programming environment.

An Intent object is basically a passive data object (a bundle of instructions, if you will)
that both provides a description of some sort of standard operating system or developer
created “action” that needs to be performed and passes the data which that action
needs to operate on to the code receiving the intent.

255

CHAPTER 11: Understanding Intents and Intent Filters

In addition to a specified action, the Intent object can also contain relevant data needed
to complete that action, as well as data type specifications, constants, flags, and even
extra data related to the data needed by the action.

Because intents provide a detailed data and process communication structure among
Android application components, they can also be rather complex data structures
(objects). We’ll see the various parts of an intent’s structure in the next section.

There are three types of Intent objects that can be used inside the Android OS to
communicate with activities, services, and broadcast receivers. In fact, there is one
intent type for each of these. None of these types of Intent objects are allowed to
intersect with (i.e., interfere with, or collide with, or mistakenly be used with or by) any of
the other types of Intent objects. For this reason, we will cover each type of Intent object
separately, so we can see how intent-based communication with activities, services,
and broadcast messages differ from each other.

Android Intent Messaging via Intent Objects

Essentially, intents carry messages from one module of your application to another
(activity to activity, activity to service, broadcast to activity, etc.). Intents can be sent to
and from background processing services or intra-application activities or even inter-
application broadcast messages. Intents are similar to the events that are found in other
programming languages, except that intents can reach outside your application whereas
events can’t. Events are used to process user interface elements, as we have seen in
previous chapters, and are internal to the blocks of programming logic you write. Intents
can be passed to other applications written by other programmers, allowing them to be
connected as modules of each other, if needed.

Intent object-based messages can contain up to seven different kinds of informational
parts:

B Component name. The name of the class that the intent and its action
are targeting, specified by using the package name and the class
name.

B Action. A predefined type of action that is to be performed, such as
ACTION DIAL to initiate a phone dialing sequence or ACTION_VIEW to
view records in a database.

B Data. The actual data to be acted upon, such as the address of the
database records to view or the phone number to dial.

B Category. Android has predefined intents that are part of the OS that
are divided into various types or categories for easy access and use.
The category name tells what area of the OS the action that follows it
is going to affect. For instance, CATEGORY_HOME deals with the Android
Home screen. An ACTION_MAIN following a CATEGORY_HOME would cause
the Home screen to be launched in the smatphone.

CHAPTER 11: Understanding Intents and Intent Filters

B Type. This attribute specifies the type of the data using a MIME
format. It’s often left out as Android is usually able to infer the data
type from analyzing the data itself.

B Flags. This allows on/off flags to be sent with the intent. Flags are not
used for typical intents, but allow more complicated intents to be
crafted if needed by advanced developers.

B Extras. This parameter allows any extra information that is not
covered in the above fields to be included in the intent. This allows
very complex intents to be created.

With these seven different types of information, the messaging construct that an Intent
object communicates can become quite an intricate data structure, if you need it to be,
it can also be quite simple, depending on the application use that is involved.

The first thing an Intent object usually specifies is the name of the application
component you are targeting (usually a class you create); this is specified via the
package and class name, like so:

ComponentName(string package, string class)

The component name is optional. If it is not specified, the Android OS will utilize all of
the other information contained within the Intent object to infer what component of the
application or Android OS the Intent object should be passed to for further processing. It
is safer to always specify this information. On the other hand, intents are intended to be
used as programming shortcuts, and for many standard or common instances, Android
is designed to properly infer how to process them.

The most important part of the Intent object is the action specification. The action
defines the type of operation that the intent is requesting to be performed. Some of the
common action constants are listed in Table 11-1, along with their primary functions, so
you can get an idea of where these intents might be utilized in the Android OS.

Table 11-1. Examples of Action Constants and Their Primary Functions

Action Constant Target Activity Function

ACTION_DIAL Activity Displays the phone dialer
ACTION_CALL Activity Initiates a phone call
ACTION_EDIT Activity Display data for user to edit
ACTION_MAIN Activity Start up an initial task activity
ACTION_BATTERY_LOW Broadcast Receiver Battery low warning message
ACTION_HEADSET_PLUG Broadcast Receiver Headset plug/remove message
ACTION_SCREEN_ON Broadcast Receiver The screen turned on message

ACTION_TIMEZONE_CHANGED Broadcast Receiver Time zone has changed

CHAPTER 11: Understanding Intents and Intent Filters

It is important to note that in many cases the action constant that is specified
determines the type and structure of the data of the Intent object. The data parameter is
as important to the overall result of the intent resolution as the specified action to be
performed. Without providing the data for the action to operate on, the action is as
useless as the data would be without any action to be performed on it!

The ACTION_DIAL action constant is a good example; it targets an activity and displays
the smartphone dialing utility with the phone number (the data passed to it) to be dialed.
The data is the phone number the user entered into the user interface, and since the
action constant is ACTION_DIAL, Android can infer that the data passed to it is the phone
number to be dialed.

Thus, the next most important part of the Intent object is the data component, which
contains the data that is to be operated on. This is usually done via a URI object that
contains information about where the data can be found.

As we learned in the previous chapter, this often turns out to be a database content
provider; for instance, a SQLite database can be the target of an ACTION_VIEW or
ACTION_EDIT intent action. So, to edit database record information about a person in
your contacts list with the database ID of 1, we would use the following intent data
structure:

ACTION_EDIT content://contacts/people/1

A closely related part of the Intent object specification is the data’s MIME type, which
explicitly tells Android what type of data the intent should be working with so that, for
example, audio data doesn’t encounter an image processing routine.

The type part of the Intent object allows you to specify an explicit MIME data definition
or data type that, if present, overrides any inference of the data type by the Android OS.
You may already be familiar with the MIME data type declarations, as they are quite
common on web servers and other types of data servers.

MIME TYPES

MIME stands for “Multipurpose Internet Mail Extensions” and was originally designed for e-mail servers to
define their support for different types of data. It has since been extended to other server definitions of
supported data and content types, and to communication protocols (such as HTTP) data type definitions,
and now to Android OS to define content data types as well. Suffice it to say that MIME has become a
standard for defining content data types in a myriad of computing environments. Examples of MIME
definition include the following:

Content-Type: text/plain

Content-Type: image/jpeg
Content-Type: audio/mp3
Content-Type: video/mp4

Content-Type: application/msword

CHAPTER 11: Understanding Intents and Intent Filters

Another important parameter of an Intent object is the category, which is meant to give
additional or more fine-tuned information about the action that is specified to execute.
This is more useful with some actions than with others.

A good example of how categories help define what to do with a given action is
launching the home screen on a user’s Android phone via an Intent object. You use the
Action constant ACTION_MAIN with a category constant CATEGORY_HOME and voila! Android
launches the phone’s Home screen and shows it on the display.

Finally, the extras parameter allows additional data fields to be passed with the Intent
object to the activity, service or broadcast receiver. This parameter uses a Bundle object
to pass a collection of data objects.

This is a slick way to allow you to piggyback any additional data or more complex data
structure you wish to pass along with the Action request/message.

Intent Resolution: Implicit Intents & Explicit Intents

Intents, like events, need to be resolved so that they can be processed properly.
Resolution in this case means ascertaining the appropriate component to handle the
intent and its data structure.

There are two broad categories of intents —explicit intents and implicit intents. We will
look at explicit intent resolution first, as it is much more straightforward. Then, we’ll
cover implicit Intents and see how they need to be filtered so that Android knows how to
handle them properly.

Explicit Intents

Explicit intents use the component portion of the Intent object via the ComponentName
data field. You’ll generally use these when working with applications you have
developed, as you’ll know which packages and classes are appropriate for the Intent
object to send an action message and data to be acted on. Because the component is
specified explicitly, this type of intent is also safer as there is zero room for error in
interpretation. Best programming practices dictate that you thoroughly document your
code and thereby give other programmers using your intent code the proper component
name information. However in the real world, this best case does not always happen
and thus Android also has implicit intents and intent filters to handle other scenarios.

Other developers may not know what components to explicitly declare when working
with your application, and thus explicit intents are a better fit for non-public inter-
application communication. In fact, developing your application so that other developers
can use the intents is what implicit intents and intent filters are all about. As noted
earlier, if there is a component name specified, it will override all of the other parts of the
Intent object as far as determining what code will handle the intent resolution.

Download from Wow! eBook <www.wowebook.com>

CHAPTER 11: Understanding Intents and Intent Filters

There are two ways to specify a component. One way is via the setComponent () method,
which uses the ComponentName object:

.setComponent (ComponentName) ;

The other way is using the setClass(Context, Class) method to provide the exact class
to use to process the intent. Sometimes this is the only information in the intent,
especially if the desired result from using the intent is simply to launch parallel activities
that are internal to the application when they are needed by the user.

Implicit Intents

Implicit intents are those that don’t specify the component within the intent object. This
means that Android has to infer from the other parameters in the intent object what code
it needs to pass the intent message to for successful processing.

Android does this inference based on a comparison of the various actions, data, and
categories defined in the intent object with the code components that are available to
process the intent. This is usually done via intent filters that are defined in the
AndroidManifest.xml file.

Although designing classes that utilize implicit intents and intent filters is beyond the
scope of an introductory book on Android programming, we will go over the concept
here just to give you an idea of what can be done in Android and in what situations you
would use implicit intents and intent filters. You can find more information at

developer.android.com/reference/android/content/IntentFilter.html.

Intent filters are declared in AndroidManifest.xml using the <intent-filter> tag, and
they filter based on three of the seven attributes of the Intent object; action, data, and
category.

Intent filters provide a description of intent object structures that need to be matched as
well as a priority attribute to be used if more than one match is encountered. If no
action filters are specified, the action parameter of the intent will not be tested at all,
moving the testing on to the data parameter of the intent. If no data filters are specified,
then only intents that contain no data will be matched. Here is an example intent-
filter definition from an AndroidManifest.xml file that specifies that video MPEG4 and
audio MPEGS3 can be retrieved from the internet via HTTP:

<intent-filter>

<data android:mimeType="video/mp4" android:scheme="http" />

<data android:mimeType="audio/mp3" android:scheme="http" />
</intent-filter>

For Intent filtering based on data characteristics, the data parameter gets broken down
into four subcategories:

B Data type; This is the MIME data type, for instance, image/jpeg or
audio/mp3,

B Data scheme: This is written as scheme://host:port/path

CHAPTER 11: Understanding Intents and Intent Filters

B Data authority: This is the server host and the server port (see the
data scheme format above) specified together.

B Data path: A data path is an address to the location of the data, for
instance, http://www.apress.com/datafolder/file1. jpg.

Any of these you specify will be matched precisely to the content of the intent itself, for
example:

content://com.apress.project:300/datafolder/files/filel

In this example, the scheme is content, the host is com.apress.project, the port is 300,
and the path is datafolder/files/filel.

Since we can specify intents explicitly, we can use intent objects productively via the
methodologies outlined in the rest of this chapter without having to learn the convoluted
hierarchy of how to match unspecified intents. If you wish to delve into the complexities
of how to set up levels of intent filters for implicit intent matching, visit the Android
developer site and get ready to wrap your mind around some intense global logic
structures.

Using Intents with Activities

Enough theory, let’s write an Android application that uses intents to switch back and
forth between two different activities— an analog watch activity and a digital clock
activity —so you can see how intents are sent back and forth between more than one
Activity class.

1. First, let’s close our Chapter10 project folder (via a right-click and Close
Project) and create a new Chapter11 Android project with the following
parameters, as shown in Figure 11-1:

B Project name: Chapteri1

Application name: Intents and Intent Filter Examples
Package name: intent.filters

Create activity: IntentExamples

Build Target: Android 1.5

Min SDK Version: 3

http://www.apress.com/datafolder/file1.jpg

CHAPTER 11: Understanding Intents and Intent Filters

3 Mewsaapeea [isles)
=
| New Android Project

o
1=

i1

/Ay By convention, package names usually start with a lowercase letter

S

Project name:‘ Chapterll ’

Contents

@ Create new project in workspace

(©) Create project from existing source
Use default location

Location: [C:/Projects/Chapterll] Browse...

() Create project from existing sample

Samples: [ApiDemos v]
Build Target
Target Name Vendor Platform API...
Android 1.5 Android Open Source Project 15 3
Google APIs GoogleInc. 15 3
Android 1.6 Android Open Source Project 16 4
Google APIs GoogleInc. 16 4
Android 2.1-upda... Android Open Source Project 21-upd.. 7
Google APIs GoogleInc. 21-upd.. 7
Android 2.2 Android Open Source Project 22 8
Google APIs GoogleInc. 22 8
Standard Android platform 1.5
Properties
Application name: Intents and Intent Filter Examples
Package name: intent filters
Create Activity: IntentExamples
Min SDK Version: 3
@ [<Back | mNet> |[Finsh][cancel

Figure 11-1. Creating our IntentExamples project in Eclipse

2. Now we are going to create a second Activity class, so we can switch
back and forth between the two activities using an intent. To do this, we
need to right-click on the Chapter11 folder, and select New » Class,
which opens a dialog (Figure 11-2) that will create a new Java activity
class in the same folder as the IntentExamples.java class our New
Android Project dialog just created.

CHAPTER 11: Understanding Intents and Intent Filters

Java Class
Ay This package name is discouraged. By convention, package names usually start @
with a lowercase letter

Source folder: Chapterll/src Browse...

[T] Enclosing type: | | l Browse... ‘

Name: DigitalClockActivity

Modifiers: © public) default private protected

abstract [final [static

Superclass: android.app.Activity) Browse...

Interfaces: Add...
Remove ‘

Which method stubs would you like to create?
public static void main(String[] args)
Constructors from superclass
Inherited abstract methods
Do you want to add comments? (Configure templates and default value here)
Generate comments

@ [Fnish][Concel

Figure 11-2. Creating a new Java activity class

3. If you right-clicked on the Chapter11 folder to do the New » Class
operation, the dialog will already have the first field filled out, with the
Source folder field set to Chapter11/src. In the next field, you can either
type in the intent.filters package name we created in our New Android
Project dialog, or you can click the Browse button to the right of the field,
and select this package from the list.

4. Next we need to fill out the Name field, which will name our class. Let’s
use DigitalClockActivity since that’s one of the activities we’ll use in
this exercise.

5. Leave the Modifiers as set. Since we are creating an Activity class, we
need to extend the superclass android.app.Activity. This is the full
pathname to the Activity class, which is part of the app package in
Android OS.

Now let’s create our user interface for our first activity, which we will leave in its default
main.xml file container (shown in Figure 11-3).

CHAPTER 11: Understanding Intents and Intent Filters

1. Let’s expand our TextView tag with some new attributes:
a. Start with text that reads “You Are Currently in: Activity #1”

b. Use the android:textColor attribute to set the color to #FEA,
which is the equivalent to hexadecimal #FFEEAA, a light orange-
gold color.

c. Let’s use the android:textSize attribute to increase the text size
to 22 device-independent pixels, so it’s large and readable.

d. Finally, let’s use the android:paddingBottom="20dip" attribute to
push the button user interface object down and away from the text
title a little bit.

<TextView android:layout width="fill parent"
android:layout_height="wrap_content"
android:text="You Are Currently in: Activity #1"
android:textColor="#fea"
android:textSize="22dip"
android:paddingBottom="20dip"/>

2. Next, let’s edit the Button tag attributes:
a. Change its text label to “Go To Digital Clock: Activity #2”

b. Set the textSize attribute to 18 pixels so we have readable text on
our button.

c. Now let’s define our button size in pixels:
android:layout_width="280px" and
android:layout_height="60px" .

d. Finally, we’ll center our Ul button with the familiar
android:layout_gravity="center" and we are done creating the
button Ul attributes.

<Button android:id="@+id/Buttono1"
android:text="Go To Digital Clock: Activity #2"
android:textSize="18px"
android:layout_width="280px"
android:layout_height="60px"
android:layout_gravity="center"/>

3. Now we’ll add an AnalogClock tag, so we can create a cool watch. Use
the Layout tab at the bottom of the Eclipse editor (circled in Figure 11-3)

and drag the AnalogClock View element icon out of the Views List on
the left, and drop it under the Button in the Ul layout view.

4. Then, either go into the Properties tab at the bottom of Eclipse, find the
Misc section, and add in Layout gravity and Layout margin top values of
center and 30dip, respectively, or click the main.xml tab at the bottom of
the editor, and add in the tags yourself by hand.

CHAPTER 11: Understanding Intents and Intent Filters

NOTE: If Eclipse is not showing the Properties tab at the bottom, simply go into the Window
menu and select Show View » Other... and select Properties and then OK.

5. Next, copy the imagel.png file from our earlier Chapter7/res/drawable
folder to your Chapterii/res/drawable folder, then right-click on the
Chapteri1 folder and use the Refresh option so that Android can see this
image file inside our project.

6. Go into the Properties tab again and find the file using the Background
option, then click on the search ellipses ... to open a dialog where you
can select image1.png in the drawable folder to use as a background.
Here’s the final AnalogClock tag:

<AnalogClock android:id="@+id/AnalogClocko1"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_gravity="center"
android:layout_marginTop="30dip"
android:background="@drawable/image1" />

And here is the final code, which is also shown in Figure 11-3 for context:

<?xml version="1.0" encoding="utf-8"?>
<LinearlLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="fill parent"
android:layout_height="fill parent">
<TextView android:layout width="fill parent"
android:layout_height="wrap_content"
android:text="You Are Currently in: Activity #1"
android:textColor="#fea"
android:textSize="22dip"
android:paddingBottom="20dip"/>
<Button android:id="@+id/Buttono1"
android:text="Go To Digital Clock: Activity #2"
android:textSize="18px"
android:layout_width="280px"
android:layout_height="60px"
android:layout_gravity="center"/>
<AnalogClock android:id="@+id/AnalogClocko1"
android:layout_width="wrap_content"”
android:layout_height="wrap_content"
android:layout_gravity="center"
android:layout_marginTop="30dip"
android:background="@drawable/image1" />
</Linearlayout>

http://schemas.android.com/apk/res/android

CHAPTER 11: Understanding Intents and Intent Filters

8 - ettt I lss

File Edit Run Source Navigate Search Project Refactor Window Help

‘NrHe A B84 $-0-A7 BHG OO S-iH G ErD & (@0ava)
w& Hierarchy] = B[[3) DigitalClockActivity,javaC_| & mainxml 52 Q = [amf|[fr
&
= <§>| & - <?xml version="1.0" encoding="utf-8"2> -8 o
7 3DFilm <LinearLayout xmlns:android="http://schemas.android.com/apk/res/android" o=

android:orientation="vertical”
android:layout_width= "Fil 1 parent"
android:layout_height= "Fi 11 parent">

7 Chapterl0
2 Chapterll
PREEIS
4 3} intentfilters
» [J] DigitalClockActivity.java
> [J] IntentExamples.java

<TextView android:layout_width= "fill_parent "
android:layout_height="wrap content"
android:text="You Are Currently in: Activity #1i"

b &3 gen [Generated Java Files] android:textColor="§fea"
» =i Android1.5 android:textSize="22dip"
G@ assets android:paddingBottom="20dip"/>
4 & res
4 (= drawable <Button android:id="@+id/Button0O1"
R4 icon.png android:text="Go To Digital Clock: Activity #2"
L!] imagel.png android:textSize="18px"

android:layout_width="280px"

4 (= layout
android:layout_height="60px"
id: Sty=" "
4 (& values android:layout_gravity="center"/>

[¥] strings.xml
4] AndroidManifestxml
default.properties

<AnalogClock android:id="@+id/AnalogClock01"
android:layout_width="wrap content"
android:layout_height="wrap content"”

1T Chapter? android:layout_gravity="center"
7 Chapter8 android:layout_marginTop="30dip"
7 Chapterd android:background="@drawvable/imagel"” />
E fgvogflIa.android.temperature </LinearLayouts>
inearLayouts =
‘ »
Toul S
|E_t Problems | @ Javadoc ‘@ Declaration | Bl Console |Ej Properties 83\\ P EMY=O |
| |
g

Figure 11-3. Adding user interface elements to our main.xml file

Writing the Digital Clock Activity

Now let’s copy the user interface we just developed in our main.xml to use for our
second activity, which we’ve already created a DigitalClockActivity.java class for.

1. The easiest way to do this is to right-click on the main.xml file under the
/res/layout folder and select Copy from the pop-up context menu, then
right-click on the /res/layout folder in the Package Explorer pane (right
above the file name) and select Paste, which will paste a copy of
main.xml right alongside main.xml in the same folder. When you do this
you will get a Name Conflict dialog like the one in Figure 4.

Enter a new name for ‘'main.xml":

CHAPTER 11: Understanding Intents and Intent Filters

_digital_clockxml)

Figure 11-4. Specifying digital_clock.xml as the new name for main.xml|

2,

4,

Eclipse sees the duplicate file names and automatically provides a
simple dialog box that allows you to change the name. Change it to
digital clock.xml and click OK.

We are ready to right-click on digital clock.xml and select Open, or hit
the F3 key to open the copied file in its own editor pane, so we can
change some of the key tag attributes and quickly craft a user interface
for our second (digital clock) activity. Do this now.

Edit the AnalogClock tag as follows:
a. Change it to a DigitalClock tag.
b. Remove the background image reference to image1.png.
¢. Change the id to DigitalClocko1 .
d. Add a textSize attribute of 32dip.
e

Add a textColor attribute of #ADF to add some nice blue sky
coloring.

f. Finally, add an android:typeface="monospace" attribute for
readability, and we’re ready to change our TextView and Button Ul
objects.

<DigitalClock android:id="@+id/DigitalClocko1"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_gravity="center"
android:layout_marginTop="30dip"
android:textSize="32dip"
android:textColor="#adf"
android:typeface="monospace"/>

Change the button text to “Go to Analog Watch: Activity #1” and leave
the ID at Buttono1. Why? Because these two different XML files are
going to be called by two different Activity classes, and thus the ID does
not conflict. If one Activity class referenced both these XML files, we
might have a naming conflict.

CHAPTER 11: Understanding Intents and Intent Filters

<Button android:id="@+id/Buttono1"
android:text="Go to Analog Watch: Activity #1"
android:textSize="18px"
android:layout_width="280px"
android:layout_height="60px"
android:layout_gravity="center"/>

6. Finally, we change the TextView object text to read “You are Currently
in: Activity #2” and change the android:textColor to the #ADF value we
are using with the digital clock tag.

<TextView android:layout width="fill parent"
android:layout_height="wrap_content"
android:text="You Are Currently in: Activity #2"
android:textColor="#adf"
android:textSize="22dip"
android:paddingBottom="30dip"/>

When you’re done, the whole Ul layout should look like this (also shown in Figure 11-5):

<?xml version="1.0" encoding="utf-8"?>

<LinearlLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="fill parent"
android:layout_height="fill parent">

<TextView android:layout width="fill parent"
android:layout_height="wrap_content"
android:text="You Are Currently in: Activity #2"
android:textColor="#adf"
android:textSize="22dip"
android:paddingBottom="30dip"/>

<Button android:id="@+id/Buttono1"
android:text="Go to Analog Watch: Activity #1"
android:textSize="18px"
android:layout_width="280px"
android:layout_height="60px"
android:layout_gravity="center"/>

<DigitalClock android:id="@+id/DigitalClocko1"
android:layout_width="wrap_content"
android:layout_height="wrap_content
android:layout_gravity="center"
android:layout_marginTop="30dip"
android:textSize="32dip"
android:textColor="#adf"
android:typeface="monospace"/>

</Linearlayout>

http://schemas.android.com/apk/res/android

CHAPTER 11: Understanding Intents and Intent Filters

8522 - Chapter e fayout/diaial doctom S Ecl ESREERx)

File Edit Run Source Navigate Search Project Refactor Window Help

BHS BB -0 AU BHEC OB S -G EEr D i (§0va)
)] Hierarchy‘l = B[9] pigitalClockActivity.java l’[C_L main.xml @igital_:lock.)@\ = B[
-
=] <)==(>| & b <?xml version="1.0" encoding="utf-8"?> -8 o-
1 3DFilm <LinearLayout xmlns:android="http://schemas.android.com/apk/res/android" o=

android:orientation="vertical"
L] Chapterl0 . , .
- Chapterll android:layout_width="fill parent"
“w P android:layout height="fill parent'>
4 @B s <TextView andrnid:1ayou|:_wid|:h="fill_parem:"
android:layout_height="wrap content"
android:text="You Are Currently in: Activity #2"

4 £} intentfilters
» [J) DigitalClockActivity.java

b [J) IntentExamplesjava android:textColor="#adf"
> &8 gen [Generated Java Files] android:textSize="22dip"
» =i Android1.5 android:paddingBottom="20dip"/>
& assets <Button android:id="@+id/Button01"
4 OE’; res android:text="Go To Analog Watch: Activity #1"
4 (= drawable android:textSize="18px"
[!] icon.png android:layout_width="280px"
] imagel.png android:layout_height="60px"

4 (= layout android:1ayouc_gravicy="center"/>
x| digital_clockxml <DigitalClock android:id="@+id/DigitalClock01"
x) mamhx-m android:layout_width="wrap content"

4 (= values android:layout_height="wrap content”
@ strings.xml android:layout_gravity="center"”

@ AndroidMa:iflestxml android:layout_marginTop="30dip"

defaul . android:textSize="32dip"
ault.properties android:textColor="#adf"

[Chapter? android:typeface="monospace"/>
7 Chapter8 </LinearLayout>
7 Chapterd -
17 de.vogella.android.temperature < »
7 LinearLayouts Layout digita[_clock,xml‘
‘E_n Problems | @ Javadoc |@> Declaration I(E CnnsolefD Properties % PEHAY" Ij]
t 1
‘e :

Figure 11-5. XML mark-up for the digital_clock.xml user interface activity

Wiring up the Application

While we’re working with XML files, let’s add an activity tag in our
AndroidManifest.xml file so our second activity can be recognized by Android, before
finishing off the configuration.

Right-click on the AndroidManifest.xml file name under your Chapter11 folder (at the
bottom of the list), and select Open or hit F3. Add a second activity tag after the first
tag (which our New Android Project dialog has already created) that points to the new
DigitalClockActivity.java class we created earlier (see Figure 11-6). Here is the code:

<activity android:name=".DigitalClockActivity"></activity>

Download from Wow! eBook <www.wowebhook.com>

CHAPTER 11: Understanding Intents and Intent Filters

2 Java - Chapter11/AndroidManifestxmi - Eclipse e o
File Edit Run Source Navigate Search Project Refactor Window Help
: o @ e : . : ; . -
NCEHS A BAE B0 (BEE BB H G = ()
Y2 Hierarchy| = 5 |[[J] DigitalClockActivit [l mainxm [@ digital_clockxm | [J] IntentExamples.jav f\c_u *Chapterll Manifes 53 = O
&
YIS <?xml version="1.0" encoding="utf-g£"?> am|
£ 3DFilm A <manifest xmlns:android="http://schemas.android.com/apk/res/android" a=
7 Chapterl0 package="Intent.Filters"
bg Chaptelll android:versionCode="1"
P
@ P android:versionName="1.0">
4 W sic . <application android:icon="@dravable/icon" android:label="@string/app name">
. @ intent filters -~ <activity android:name=".IntentExamples"
> DigitalClockActivity,j3Ba android:label="@string/app_name">
. > m IntemExampIes.Java = <intent-filter>
b @3 gen [Generated Java Files] <action android:name="android.intent.action.MAIN" />
» =k Android 1.5 <category android:name="android.intent.category.LAUNCHER" />
& assets </intent-filter>
4 = res </activity>
4 (= drawable | B <activity android:name=".DigitalClockActivity"></activity> |
[Wa icon.png </application>
(W] imagel.png A <uses-sdk android:minSdkVersion="3" />
4 (= layout </manifest> -
%) digital_clockxml g — — . o b
X mainxml Manifest | A [| | J
¢ Galoe - |[E problems @ Javadoc & Declaration [E) Console [1 Properties £3 Y)
o | |
im® Intent Filters.DigitalClockActivityjava - Chapterl1/src

Figure 11-6. Adding the DigitalClockActivity tag to our AndroidManifest.xml file

Now let’s make sure both Activities have user interfaces. Thanks to our handy New
Android Project dialog, our IntentExamples class is ready and pointing to the main.xml file
so that the Activity #1 side of the equation is already taken care of. So all we have to
worry about is the DigitalClockActivity class.

Copy the import android.os.Bundle statement and the onCreate() method over to the
DigitalClockActivity.java class and change the R.layout specification to point to the
digital_clock XML user interface specification. Now we’ve implemented our user
interface logic for each of our two Activity classes as follows (and as shown in Figure
11-7):
public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);

setContentView(R.layout.digital clock);
}

3 e Cutien DAy e el

File Edt Run Source Navigate Search Project Refactor Window Help
H-HE: 8 84d $-0-Q- BHG- @O/ PAeEN: A - - Lero- & (e
I£ PackageE 23 s Hierarchy| = 0| @ DigitaiClockActivityjava @ mainami | [digital_clockaml | [3) IntentBxamplesjava | i *Chapterl1 Manifest | = &
&
NI package intent.filters; A s
1 3DFilm) i L o
& Chapterl0 “import android.app.Activity;
4 Snep! import android.os.Bundle;
4 &2 Chapteril
‘B public class DigitalClockActivity extends Activity {
P
@override /** Called when the activity is first created. */
o’ P public void onCreate (Bundle savedInstanceState) {
b &3 gen [Generated Java Files] super.onCreate (savedInstanceState) ;
» = Android 1.5 setContentView (R.layout.digital clock);
&= assets }
4 Bores ¥
4 (& drawable -
@4 icon.png < ’
|I!] imagel.png ([2 Problems | @ Javadoc [, Declaration [E Console [= Properties 52 . _ [BEEEEMGE]
P
X digital_clockxml Property Value =
< s] » <[m] >
1id Intent Filters.DigitalClockActivity.java - Chapterl1/src

Figure 11-7. Adding the digital clock user interface layout

CHAPTER 11: Understanding Intents and Intent Filters

Sending Intents

Now we need to add in our Button object and Intent object code to the onClick() event
handler in each activity so each can send an intent to the other activity, allowing us to
switch between the two activities using the button.

So let’s get started with the main IntentExamples activity class first, and add in our
familiar Button object instantiation and an onClick() event handler that will contain the
code that creates our Intent object. Remember to also add in (or have Eclipse add in for
you using the hover-over-redline method we learned earlier) the import statements for
the android.view.View and android.widget.Button packages, as well as a new import
we haven’t used before called android.contact.Intent, which defines our Intent object
class.

Since we’ve already covered adding a button and attaching it to an onClick() event
handler routine, we’ll get right into the two lines of code that create our Intent object and
send it over to the second activity. Here is the code, which you’ll also see in Figure 11-8.
The screenshot shows what your Eclipse editor pane for IntentExamples.java will look
like when we are finished.
Button Activityl = (Button) findViewById(R.id.Buttono1);
Activityl.setOnClickListener(new View.OnClickListener() {
public void onClick(View view) {
Intent myIntent =
new Intent(view.getContext(), DigitalClockActivity.class);
startActivityForResult(myIntent, 0);

1);
8 Jova- Chaptert srctent FierintentEsamplesiova - i< AN)

File Edit Run Source Navigate Search Project Refactor Window Help

cd~ BAEi$-0-QA- BHCG- OBF - PIloEl -5 -0E D~ ()
I Package Expl g} %5 Hierarchy| = 5[[J) DigitalClockActivityjava [icl mainaml [(d) digital_clockaxml € [3) IntentExamplesjava 52 3. [l Chapterll Manifest | =0
- &
B G:é‘ P package Intent.Filters; - .
1 3DFilm | Gimport androtd.ans.aceivs o
a Chapterlﬂ ?mpot ant IOJ,. .app.Activity;
4 Chanterll import android.os.Bundle;
4 g nep Tmport android.view.view;
4 @B src) import android.widget.Button;
4 IntentFilters import android.content.Intent;
1 [J) DigitalClockActivity.java
»_J) IntentExamples java public class IntentExamples extends Activity {
b &8 gen [Genersted Tava Files
b = Android 1.5 © @Override /** Called when the activity is first created. */
& assets - public void onCreate (Bundle savedInstanceState) {
4 Elj res A super.onCreate (savedInstanceState);
4 (= drawable 5 setContentView (R.layout.main);
R4 icon.png
R imagel.png Button Activityl = (Button) findViewById(R.id.Button0l):
4 55 layout _ e Activityl.setOnClickListener (new View.OnClickListener() {
1) digital_clockaxml = = public void onClick(View view) {
fdﬂ mainxml Intent myIntent = new Intent(view.getContext(), DigitalClockActivity.class):
p P} startActivityForResult (myIntent, 0);
4 §= values |]
AX] stringsxml L h '
A AndroidManifestxml N ‘
default.properties N iR
1 Chapter? W 4 »
7 Chapter8 7 E S \
& Chapterd o IIL Problems 52 @ Javadoc | [, Declaration| E] Console | [Properties @~ =0
~ |
1 Intent.Filters.IntentExamples.java - Chapterl1/src

Figure 11-8. Adding the Java code for the Ul button, event listener, and Intent object

CHAPTER 11: Understanding Intents and Intent Filters

To create an Intent object, we use the now familiar structure where we declare the
object type (Intent) and our name for it (nyIntent). We set it equal to a new Intent
object using the new keyword, along with a call to the Intent class’s constructor. The
constructor takes the context this intent is created in (in this case, a button obtained
from the View via a view.getContext() method call) and the activity class
(DigitalClockActivity.class) into which we want to pass our Intent object.

We then use the startActivityForResult() method (part of the
android.content.Intent class we imported) to pass the intent object we just created,
myIntent, and a parameter of zero; this is what we are sending to the other activity to be
acted on. This would typically consist of data that your application wants to pass from
one activity class to another via the Intent object for further processing. In this case, we
are simply calling (switching to) the other user interface activity.

Now let’s look at the code in our DigitalClockActivity class and see how the second
activity talks back to the first activity. We will skip over the Button instantiation and
onClick() event handling explanations, and get right into the intent declaration and the
Java code that returns a result to the calling activity class via yet another Intent object.
Here’s the code (also shown in Figure 11-9).
Button activity2 = (Button) findViewById(R.id.Buttono1);
activity2.setOnClickListener(new View.OnClickListener() {
public void onClick(View view) {
Intent replyIntent = new Intent();
setResult(RESULT_OK, replyIntent);

finish();
b;
® soe - Chaptrt e ity Doy e i S =i
File Edit Run Source Refactor Navigate Search Project Window Help
o - BAE $-0-QA- BHC- OO A P @ H-F e e nEE
) Hierarchy| = EX : DigitalClockActivityjav £33 [l mainxml ‘ 1] digital_clockxml ‘ @ java | [d] Chapterll Manifest ‘ =0
&
ER-YI package Intent.Filters; 0 o
1 30Film B . ¢ android O o
1 Chapterld import android.app.Activity;
<9 Chapterll import android.os.Bundle;
‘= . P import android.view.View;
4 @ src . import android.widget.Button;
4 i Int import android.content.Intent;
©_[J) DigitalClockActivityjava L)
4 Intentbxamples java public class DigitalClockActivity extends Activity {
> & gen [Generated Java Files]
b =i Android 1.5 o @override /** Called when the activity is first created. */
& assets a public void onCreate (Bundle savedInstanceState) {
4 f';‘) res super.onCreate (savedInstanceState) ;
4 (= drawable setContentView (R.layout.digital clock):
(W] icon.png £
(M) imagel.png Button Activity2 = (Button) findViewById(R.id.Buttono01):
4 5= layout e Activity2.setOnClickListener (new View.OnClickListener() {
1) digital_clockaml e public void onClick(View view) {
% mainxm . Intent replyIntent = new Intent():
- |] setResult (RESULT OK, replyIntent);
4 = values g - —
¥ stringsaml |] finish();
Xl E ||)

A AndroidManifest.xml
default.properties

£ Chapter? ,

1 Chapter8 Ll

&I Chapted < .

1 d lla.android. 1 = = =
i ‘E_w Problems &2 . @ Javadoc| & Declaration | = Console| =1 Properties | @~ =0 |

7 LinearLayouts

o0® Intent.Filters.DigitalClockActivity.java - Chapterl1/src

Figure 11-9. Java Code for the DigitalClockActivity, event listener, and intent object

CHAPTER 11: Understanding Intents and Intent Filters

In this activity class, in the onClick() listener we create a new (empty) intent object
called replyIntent, then load it with the setResult() method, which loads a constant
called RESULT_OK. When we have finished handling the intent (in this case by loading a
new intent with the reply data), we call the finish() method to send the intent back,
after the button in the second activity is clicked on to send us back to the first activity.

Now let’s right-click on our Chapter11 folder and then Run As » Android Application so
we can see that we can now switch back and forth between the two activities that
contain the two different time utilities we created in one application. As you can see in
Figure 11-10, we can switch between the two activities by clicking on the respective
buttons, and we can do this as many times as we like, and the application performs as
expected and does not crash. That is important, by the way, that the app does not crash
under repeated use.

B 1223 A

Intents and Intent Filter Examples Intents and Intent Filter Examples

You Are Currently in: Activity #1 You Are Currently in: Activity #2

Go To Digital Clock: Activity #2 Go to Analog Watch: Activity #1

12:27:43 AM

MENU

Figure 11-10. Running our app in the Android 1.5 emulator and switching back and forth between activities

Next we will use an intent object to call a service, the MediaPlayer, to play some music
in the background and allow us to start the music and stop the music.

To do this we first must learn what services are and how they can help us do things in
the background without affecting our application’s user interface functionality. We will
then get into an example that uses intents with both services and activities.

CHAPTER 11: Understanding Intents and Intent Filters

Android Services: Data Processing in its own Class

Android has an entire Service class dedicated to enabling developers to create services
that run apart from the main user interface program logic. These services can either run
in a separate process (known as a thread in Java programming as well as in other
programming languages) or the same process as the user interface activities.

A thread is an area of the operating system’s memory where a program function has its
own resources and can run in parallel with other applications or other application
components or functions. For instance, a video player can run in a different thread from
the rest of the application so that it doesn’t hog all of the main application thread
resources.

Threads were originally devised for multitasking operating systems like Mac, Linux, and
Windows, so that if a program or task crashed, it would not bring down the entire
operating system. Instead, just that thread or process could crash or lock-up, and the
others that were running wouldn’t be affected adversely.

A service is a type of Android application component that needs to run asynchronously
(not in step with the usual flow of the user interface). For example, if you have some
processing that takes a bit longer than the user is willing to wait for, you can set off the
processing asynchronously in the background while the main program continues. When
the processing has finished, the results can be delivered to the main program and dealt
with appropriately. A service can also be used by other Android applications, so it is
more extensible than an activity.

To create your own service class to offload programming tasks like calculating things or
playing media such as audio or video in real-time, you need to subclass the Service
class and implement at least its onCreate(), onStart(), and onDestroy() methods with
your own custom programming logic. You also must declare the Service class in your
AndroidManifest.xml file using the <service> tag, which we’ll get into a bit later on.

Using Intents with Services

To see how to control a service class via intent objects, we will need to add some user
interface elements to our Chapter11 IntentExamples activity, namely two button objects
that will start and stop our service. In this case, the service is the Android MediaPlayer,
which needs to run in the background, independently of our user interface elements.

1. First, let’s add a Button tag to our main.xml file by copying the Buttono1
tag and pasting it underneath the AnalogClock tag.

2. Change the id to startButton and the android:text to “Start the Media
Player Service” and leave the other attributes in the tag the same.

<Button android:id="@+id/startButton”
android:text="Start the Media Player Service"
android:textSize="18px"
android:layout_width="280px"
android:layout_height="60px"

CHAPTER 11: Understanding Intents and Intent Filters

android:layout_gravity="center"/>

3. Next, copy this startButton tag and paste the copy immediately below
the startButton tag.

4. Change the id of the copy to stopButton and the android:text to read
“Stop the Media Player Service” so that we now have a stop button and
a start button. Figure 11-11 shows both buttons in place in the Layout
tab of Eclipse and Figure 11-12 shows the code in context.
<Button android:id="@+id/stopButton”
android:text="Stop the Media Player Service"
android:textSize="18px"
android:layout_width="280px"
android:layout_height="60px"
android:layout_gravity="center"/>

File Edit Run Navigate Search Project Refactor Window Help

ik BRE -0 BHFCG- @S F~- -G ey & (§l)ave]
‘VIZ= Package Explo B < f: Hierarchy‘ =g [3) DigitalClockActivity ‘ 14 digital_clockxml [J) IntentExamples.java ‘»1 =0
) = - &
=S ‘ & 7 || Editing config: default Explode o=
- o=
3DFilm
g Chapterl0 Devices{ADPl vlConfi@rtraD v]LocaIe{ leTheme v"Create...]
el — 2 -
P;‘“P‘”ﬂ & Layouts BYou Are Currently in: Activity #1
src
1 intentfilters (A) AbsoluteLayout
[J) DigitalClockActivity.java (D) DialerFilter - .
[) IntentExamplesjava (B ExpandableList.. Go To Digital Clock: Activity #2
“:li izr;i:iznle:ted Java Files] [B Framelayout
s, assets (G) GridView
JG,I-} res (H) HorizontalScrol...
(= drawable [DImageSwitcher
R icon.png (D) LinearLayout
|ma] imagel.png (i
i layout (= Views P
41X digital_clock.xml ® .
SurfaceView
i values @ view
4X] strings.xml W) ViewStub
£ AndroidManifest.xml (® AnalogClock : .
. d:fa_lljlt.propertles ® AutoComplete.. Start the Media Player Service
apter;
1.7 Chapter8 Button
L Chapterd © CheckBox Stop the Media Player Service
07 devogella.android.temperature (© Chronometer
17 LinearLayouts N
“ Layout ;:ainxml ‘
'[2! Problems 3 @ Javadoc‘ @) Declaration| & Console‘ B Propertiesl - El'“
= 1

u

Figure 11-11. Designing our media player user interface in the Eclipse Layout Editor in Portrait mode

5. Now let’s change the AnalogClock tag attribute
android:layout_marginTop to use 20dip rather than 30dip. Copy the
attribute to the line below and change it to
android:layout_marginBottom so that we have an even 20 pixels of
spacing around the analog watch.

CHAPTER 11: Understanding Intents and Intent Filters

<AnalogClock android:id="@+id/AnalogClocko1"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_gravity="center"
android:layout_marginTop="20dip"
android:layout_marginBottom="20dip"
android:background="@drawable/image1" />

6. Click the Layout tab at the bottom of the main.xml pane to make sure the

user interface layout looks good and check Figure 11-12 to see that
your XML looks right.

| e et e B oo

File Edit Refactor Run Source Navigate Search Project Window Help

-He A BAdIB-0-A BHG OO FH H-FH e ero- & ()
|12 Package Bxplo 3 s Hierarchy = 5| ([0 DigitlClockActivity. (mainami £ |4 digita_clockaml | [1) jva |l Chapterll Manifest | = B
| &
B %| & Y|® <2xml version="1.0" encoding="utf-g"2> amy
7 3DFilm <LinearLayout xmlns:android="http://schemas.android.com/apk/res/android" =

android:orientation="vertical”
android:layout_width= "fill_psrent "
android:layout_height= "fill_parent ">

17 Chapterl0
4 39 Chapterll

. e sre. . <TextView android:layout width="fill parent”
4 £ intentfilters andzoid:1ayouc_heigh\:="vra; content"
» [3) DigitalClockActivity java android:text="You Are Currently in: Activity #1"
> [3) IntentExamples java android:textColor="#fea"
> &8 gen [Generated Java Files] android:textSize="22dip"
i = Android 1.5 android:paddingBottom="20dip"/>
& assets <Button android:id="@+id/Button01"
455 res android:text="Go To Digital Clock: Activity #2"
4 (= drawable android:textSize="18px"
[Wa] icon.png android:layout_width="280px"
[ma) imagel.png android:layout_height="60px"
4 §= layout android:layout_gravity="center"/>
<AnalogClock android:id="@+id/AnalogClock01" =

[X|_digital_clock.xml
android:layout_width="vwrap content"
android:layout_height="wrap content"

android:layout gravity='"center"
id:layout_marginTop="20dip"

4 ;= values

AX] stringsxml
Al AndroidManifest.xml
default.properties

:layout_marginBottom="20dip"

androld:bac. round="g >
17 Chapter? <Button android:id="@+id/startButton"
L Chapter8 android:text="Start the Media Player Service"
7 Chapterd android:textSize="18px"
1 devogella.android.temperature android:layout_width="280px"
7 LinearLayouts android:layout_height="60px"

android:layout_gravity="center"/>

<Button android:id="@+id/stopButton"”
android:text="Stop the Media Player Service"
android:textSize="18px"
android:layout_width="280px"
android:layout_height="60px" (3
android:layout_gravity="center"/>

</LinearLayout>
< »

Layouttmain.xm b
l[z Problems 52 @ Javadoc‘l 28 Declaration | =] Console‘l =] Properties"‘ L |

~ |
* Android SDK Content Loader

2] mainxml - Chapterl1/res/layout

Figure 11-12. Adding start and stop buttons for our media player in main.xml

Next we need to let our Android application know that we are going to be calling a
service, and this is done via the AndroidManifest.xml file. We will edit that file next to
add a service tag that points to our MediaPlayerService class, which we are going to
code next. We will add this service tag right after the second activity tag we added in
the previous example (see Figure 11-13 for context). This is how the service tag is
structured:

<service android:enabled="true" android:name=".MediaPlayerService" />

CHAPTER 11: Understanding Intents and Intent Filters

The first attribute of the service tag android:enabled indicates that the service is
enabled for use. If you set this attribute to false, the service is still declared to Android
for the application and can later be enabled via Java code. As we have seen, everything
that can be done in XML can also be accessed and changed in our Java code.

The second attribute, android:name, specifies the name of the service class that we will
code. We are going to name it MediaPlayerService. java so we specify that in XML as
.MediaPlayerService. Now we are ready to start coding the service that will play media
files without interfering with the user interface code in our activity class.

Note that if you haven’t created the MediaPlayerService. java class before you add the
service tag, Eclipse may highlight this fact with a red X in the margin to the left of the
service tag, as shown circled in Figure 11-13.
File Edit Refactor Run Source Navigate Search Project Window Help

c3 - BAEi$-0 Q- BHC- @B P~ H-H O 5 [Fva)
W& Hierarchy| = O1|([J) DigitalClockActivity. |15 mainxml [(d) digital clockxml | [3) IntentBxamples.java @f 8)

B Q:(')‘ & “||& <?xml version="1.0" encoding="utf-8"?>

oz
1 30Film A <manifest xmlns:android="http://schemas.android.com/apk/res/android" o-

7 Chapterl0 package="intent.filters"
a android:versionCode="1"
4 > Chapterll android:versionName="1.0">
4B s <application android:icon="@dravable/icon" android:1abe1="@string/app_name">

4 £ intentfilters <activity android:name=".IntentExamples"

» [3) DigitalClockActivity.java
b [J] IntentExamples.java

b &8 gen [Generated Java Files]

» m Android 1.5

android:label="@string/app name">

<intent-filter>

= <action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />

& assets </intent-filter>
455 res </activity>
4 (= drawable <activity android:name=".DigitalClockActivity"></activity> =
(] icon.png 8 ’ | <service android:enabled="true" android:name=".MediaPlayerService" /> |
[Rs] imagel.png </application>
4 = layout R <uses-sdk android:minSdkVersion="3" />
X digital_clockxml </manifest> il
X mainaml < T
4 = values Manifest | Application | Permissions |1 ion | idMani 1|
s 41 AndroidManifest.xml > i IB_A Problems £3 @ Javadoc | @ Declaration| & Console" =] Propertiesv‘ = | ‘
- 1
1) Android SDK Content Loader

Figure 11-13. Adding a Media Player Service Tag to the AndroidManifest.xml file in Eclipse

Now that we’ve added the XML mark-up, let’s create the MediaPlayerService. java
class, extending the Android Service class to create our own custom service class that
we’ll call from our IntentExamples Activity class.

Creating a Service

To do this, we will use the same work process as before:

1. Right-click on your Chapter11 folder in the Eclipse Package Explorer
pane on the left and select New » Class.

2. Fill out the New Java Class dialog as follows:

B Source folder: Chapter11/src. Default entry, as specified by
Eclipse

CHAPTER 11: Understanding Intents and Intent Filters

Package: intent.filters. Click Browse button and select from list
Name: MediaPlayerService

Modifiers: public

Superclass: android.app.Service

3. When everything is filled out, select Finish.

The completed dialog is shown in Figure 11-14. It will create an empty class where we
can put our media player logic for creating, starting, and stopping the media player.

Java Class
/1 This package name is discouraged. By convention, package names usually start @
with a lowercase letter

Source folder: Chapterl1/src Browse...
Package: (intent.filters ’ Browse...
[] Enclosing type: ‘ Browse...
Name: < MediaPlayerService >
Meodifiers: @ public © default private protected

[abstract [|final [static
Superclass: C android.app.Service) Browse...
Interfaces: Add...

‘ Remove

Which method stubs would you like to create?
[”] public static void main(String[] args)
[”] Constructors from superclass
Inherited abstract methods
Do you want to add comments? (Configure templates and default value here)
[”] Generate comments

@ [Finsh][cCanca |

Figure 11-14. Creating the MediaPlayerService.java class via the New Java Class dialog

Below (and in Figure 11-15) is the empty class that the New Java Class dialog created for
us, complete with the import statements that let us use the Service class, the Intent
class, and the IBinder interface. We won’t actually be using the IBinder interface in this
example but will leave in the code. This won’t affect how the app runs because it is used
by a null method, onBind(). We need to keep this method here because Android expects
it to be implemented when we extend the Service class, but we’ll just leave it as is.

package intent.filters;
import android.app.Service;

import android.content.Intent;
import android.os.IBinder;

CHAPTER 11: Understanding Intents and Intent Filters

public class MediaPlayerService extends Service {
@0verride
public IBinder onBind(Intent intent) {
// TODO Auto-generated method stub
return null;

NOTE: Binding is a concept in services where your activity can talk with the Service class while
it is running, and more than one time; but our example simply needs to start and stop the
service, so the complexity of binding is not needed.
8 -t i
File Edit Refactor Run Source Navigate Search Project Window Help
=Ra=l BAE H-0 Q- BHG- OB S~ P AwE@d H-F G D & [@aa)
W (1) DigitalClockActivity |lcl mainaxmi [(d) digital_clockxml [[J] IntentExamplesjava [Icl Chapterll Manifest | [1] MediaPlayerServicej 53 = =)
B <§>‘ P package intent.filters; - :
— B
‘ 'lggapmll e “import android.app.Service;
‘ e . - =l import android.content.Intent;
4 8 intent.fikers o import android.os.IBinder;
» [J) DigitalClockActivity.java
b [3) IntentExamples java 7 public class MediaPlayerService extends Service { L
b [B) MediaPlayerServicejava [=|| £
b &8 gen [Generated Java Files] gg = @override
b = Android 1.5 = public IBinder onBind(Intent intent) { -
& assets ﬁ // TODO Ruto-generated method stub
4§ res = Eg return null;
4 (= drawable | | 3
|4 icon.png §E
A4 imagelpng | I -
4§ layout il b
{J disf‘a'i':xk*'“' E ‘& Problems 52 @ Javadoc | [€) Declaration| B} Console| I Properties =0
1) Intent Filters.MediaPlayerService,java - Chapterl1/src Android SDK Content Loader

Figure 11-15. Android-created MediaPlayerService base service class

Here is the code that lets our MediaPlayerService class do things. I'll show you each of
the bold sections in turn as | describe what they do, so you can type them in as we go:

package intent.filters;

import android.app.Service;
import android.content.Intent;
import android.os.IBinder;

import android.media.MediaPlayer;

public class MediaPlayerService extends Service {
MediaPlayer myMediaPlayer;

@0verride

public IBinder onBind(Intent intent) {
// TODO Auto-generated method stub
return null;

}

@0verride

public void onCreate() {
myMediaPlayer = MediaPlayer.create(this, R.raw.mindtaffy);
myMediaPlayer.setLooping(true);

Download from Wow! eBook <www.wowebook.com>

CHAPTER 11: Understanding Intents and Intent Filters

@0verride

public void onStart(Intent intent, int startid) {
myMediaPlayer.start();

}

@0verride
public void onDestroy() {
myMediaPlayer.stop();

}
The results are shown in Figure 11-16.

File Edit Run Source Refactor Navigate Search Project Window Help
i~ B i$-0 U BFEG- O S PHAeEI H-F - oo~ 5)
E Package E3) s Hierarchy| = 5| [1) DigtalClockActivit |l mainam (i digital_clockam | [IntentExamplesjav [lcl Chapterl1 Manifes (3] MediaPlayerSenvice) 52 = 5|

-]

=R-N package intent.filters; o
“import android.app.Service; 3

]

b <

7 Chapterl0

i piuionint import android.content.Intent;
17@:(import android.os.IBinder:
“ . X Iimport android.media.MediaPlayer; |
4 fi} intentfilters

> [3) DigitalClockActivityq

public class MediaPlayerService extends Service {

public void onDestroy() {
myMediaPlayer.stop(); W

) AndroidManifestxml
default.properties W

g
> 5] IntentExamplesjava |] MediaPlayer myMediaPlayer;
» (@) MedisPlayerservice®) || = goverriae
> @3 gen [CenerereTTIvETIE public IBinder onBind(Intent intent) { -
b =h Android 1.5 // TODO Buto-generated method stub
&3 assets L return null;
Q. |
4 res 3 L
» | B B
4 (= drawable i g @Override
R4 icon.png 3 % public void onCreate() {
(W] imagel.png | myMediaPlayer = MediaPlayer.create(this, R.raw.mindtaffy):
4 §= layout § myMediaPlayer.setLooping (true) ;
X digital_clockxml |] i
X maingmi | o | covermuce
TS raw = public void onStart (Intent intent, int startid) {
@ mindtaffy.mia % , myMediaPlayer.start();
| §
b il e | eoverriae
AX] stringsxml -
| |
| |
|}
| |
I}
L]

}
£ Chapter?

3 -

7 Chapter8 E < »
e E (2 Problems £ @ savadoc| &, Declrsion] E Consale] I Properties)

s

Figure 11-16. Adding our MediaPlayer onCreate, onStart and onStop methods

The first code structure we always add to a new class is the onCreate() method, which
tells the class what to do to set itself up when it is called the first time (i.e., created).

We will use the onCreate() method to instantiate and configure our MediaPlayer object
and load it with our audio file. Since the audio file is an MP3 file and already optimized
for compression, we will put it in the /res/raw folder. Files in the /raw folder are left
alone by the Android app compression process and are simply put into the .apk file as
is. We’ll do that now before explaining the code in detail.

1. Let’s create a Chapteri1i/res/raw folder to hold the mindtaffy.m4a file
that we will call in our MediaPlayerService class. You can either create
the new /raw folder under the /Chapterii/res folder using your
operating system’s file manager or you can right-click on the /res folder
in the Eclipse Package Explorer pane and select New » Folder and enter
raw in the Folder name: field.

CHAPTER 11: Understanding Intents and Intent Filters

2. Copy mindtaffy.m4a into the new /raw folder

3. Right-click on the Chapter11 folder and select Refresh and, if necessary,
Validate to remove any error flags you might get in Eclipse. Usually if
Refresh does not make something visible to Android and get rid of error
flags in Eclipse, the Validate procedure will. If it doesn’t, you may have a
problem and need to examine your overall application structure.

Implementing Our MediaPlayer Functions

Now it’s time to go into the code so you can add the media player functionality to your
own app:

1. First, at the top of the MediaPlayerService class, declare a public global
variable called myMediaPlayer of object type MediaPlayer. This will be
accessed in one way or another by each of the methods that we’ll be
coding here, so we declare it at the top of the class to make it visible to
the whole class.

MediaPlayer myMediaPlayer;

2. Inthe onCreate() code block, let’s set the myMediaPlayer object to
contain the results of a create() method call with the mindtaffy.m4a file
passed as a parameter using the R.raw.mindtaffy reference. The
create() method call creates an instance of the media player and loads
it with the audio file that we are going to play.

3. Next we call the setLooping() method on the myMediaPlayer object and
set a true parameter so that the audio file loops while we are testing the
rest of the code.

@0verride
public void onCreate() {

myMediaPlayer = MediaPlayer.create(this, R.raw.mindtaffy);
myMediaPlayer.setLooping(true);

}

4. Now that our myMediaPlayer object has been declared, loaded with MP3
data, and set to loop when started, we can trigger it with the start()
method, which we will code next in the onStart() method (onStart() is
called when the service is started by our activity).

@0verride

public void onStart(Intent intent, int startid) {
myMediaPlayer.start();

CHAPTER 11: Understanding Intents and Intent Filters

5. In the onDestroy() method we use the stop() method to stop the
myMediaPlayer object. onDestroy() is called when the service is closed
and disposed of by Android, so we release memory containing the
media player and the audio file when we exit the application.

@0Override

public void onDestroy() {
myMediaPlayer.stop();

Wiring the Buttons to the Service

Now let’s go back into our IntentExamples.java class using the Eclipse editor tab and
add our Button objects, associated onClick() event handlers for each button, and the
necessary calls to our Service class onStart() and onDestroy() methods, as shown in
Figure 11-17.

' 3 a2~ ChaptertretentFierntentEramplesiova - Efpse I el

File Edit Run Source Refactor Navigate Search Project Window Help
CrEe 8 8d $-0-QA BHEEGY &S F~ P ARG IR R R & (v

Mk Hierarchy| = & [la digital_clockaml] Intentbxamplesjava 53). | Chapterl] Manifest | [J) MediaPlayerSenvicej | = &
&

4 o [E 1

'[9 DigitalClockActivity [l mainmi

Bgle~

1 3DFilm
11 Chapterl0
4 32 Chapterl1
4 (3 src
4 fi} intentfilters
» [J) DigitalClockActivity.java
b [J) IntentBxamples.java
b [J) MediaPlayerServicejava
b @8 gen [Generated Java Files]
b mh Android 1.5
= assets
4§ res
4 (= drawable
@] icon.png
R imagel.png
4 §= layout
¥ digital_clockaxml
X mainxml
4 & raw
‘@ mindtaffy.mda
4§ values
AX] stringsxml
£ AndroidManifestxml
default.properties
121 Chapter?
1 Chapter8
7 Chapterd
121 devogella.android.temperature
121 LinearLayouts

a

[

package intent.filters;
©import android.app.Activity:
import android.os.Bundle;
import android.view.View;
import android.widget.Button;
import android.content.Intent;

public class IntentExamples extends Activity {
e @override /**
public void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState);
setContentView (R.layout.main) ;
Button activityl = (Button) findViewBylId(R.id.Button0l);:
e activityl.setOnClickListener (new View.OnClickListener() {
e public void onClick(View view) {

Intent myIntent = new Intent (view.getContext(), DigitalClockActivity.class):

startActivityForResult (myIntent, 0);
}
1):

Called when the activity is first created. */

Button startButton =
e startButton.setOnClickListener (new View.OnClickListener() {
© public void onClick(View view) {

(Button) findViewById(R.id.startButton):

startService (new Intent(
}

ntext (), MediaPl,

1

Button stopButton = (Button) findViewById(R.id.stopButton);
stopButton.setOnClickListener (new View.OnClickListener() {
o public void onClick(View view) {

}

})

rService.class));

stopService (new Intent (getBaseContext (), MediaPlayerService.class));

}

<

‘[—E_r Problems 53 @ Javadoc| &) Declaration|] Console | [Properties

i"v:.ﬁ»‘

o°

=3
o=

Figure 11-17. Implementing the start and stop buttons to control the media player

First we have the start button.

Button startButton = (Button) findViewById(R.id.startButton);
startButton.setOnClickListener(new View.OnClickListener() {
public void onClick(View view) {
startService(new Intent(getBaseContext(), MediaPlayerService.class));

1);

CHAPTER 11: Understanding Intents and Intent Filters

As usual, we declare our startButton Button object with the startButton ID reference,
then use the setOnClickListener() method to add onClick() event handling to the
startButton. We are now ready to call the startService() method inside the onClick()
programming construct.

startService() calls the onStart() method of the Service class we just wrote, and
requires an intent object; this intent object tells Android what service to start and call the
onStart() method on. We will get a little tricky here and create a new intent object
inside of the startService() call using the following code structure:

startService(new Intent(getBaseContext(), MediaPlayerService.class));

To create a new intent object, we need to declare the current context as the first
parameter and then pass the name of the service class we wish to call as the second
parameter. In a third level of nesting (inside the new intent creation), we use another
method called getBaseContext() to obtain the current context for the new intent object.
As the second parameter, we will declare the name of the MediaPlayerService.class to
complete the creation of a valid intent object.

Now let’s go through the same procedure with the stopButton Button object, inserting
the stopButton ID reference and then using the trusty setOnClickListener() method to
add onClick() event handling to our new stopButton. Now we’re ready to call the
stopService() method in our newest onClick() programming routine.
Button stopButton = (Button) findViewById(R.id.stopButton);
stopButton.setOnClickListener(new View.OnClickListener() {

public void onClick(View view) {
stopService(new Intent(getBaseContext(), MediaPlayerService.class));

}
1);

The stopService() method calls the onDestroy() method of our Service class and
requires an intent object that tells Android what service to stop (destroy) and call the
onDestroy() method on.

We will create yet another new intent object in the stopService() call, using the
following code structure:

stopService(new Intent(getBaseContext(), MediaPlayerService.class));

To create our final intent object, we will declare the current context as our first
parameter and then pass the name of our MediaPlayerService()class as our second
parameter.

Running the Application

Now we are ready to right-click our Chapter11 folder and Run As » Android Application to
run our app. You'll find when you test the application that everything works perfectly
with everything else; you can start and stop the media player as many times as you like,
the music plays smoothly in the background without faltering, and you can switch back
and forth between the two activities as many times as you want without affecting the
media playback of the audio file. See Figure 11-18.

CHAPTER 11: Understanding Intents and Intent Filters

Intents and Intent Filter Examples

You Are Currently in: Activity #1

Start the Media Player Service

Stop the Media Player Service

Figure 11-18. Running our media player service inside the Android 1.5 emulator

Next we are going to take a look at using Intent objects with broadcast receivers, and
then we will have covered all three areas of Intent use within Android.

Using Intents with Broadcast Receivers

The final type of intent object we will look at in this chapter is the broadcast receiver,
which is used for communication between different applications or different areas of
Android, such as the MediaPlayer or Alarm functions. These intents send, listen to, or
receive messages, sort of like a head’s up notification system, to let your application
know what’s going on around it during the ongoing operation of the smartphone,
whether that’s a phone call coming in, an alarm going off, or a media player finishing a
file playback.

Since we already have an analog watch and a digital clock, let’s add a timer and alarm
function to finish off our suite. Since our analog clock user interface screen is full of Ul
elements, let’s add the alarm functions to our digital clock user interface, as that’s the
most logical place to add an alarm anyway. Figure 11-19 shows a basic diagram of what
we will do in XML and Java to create the intent and alarm in our next application
segment.

CHAPTER 11: Understanding Intents and Intent Filters

DEFINE USER INTERFACE (XML)
<EditText> User Enters Timer Duration
<Button> Click Start Timer Countdown

2
ENABLE USER INTERFACE (Java)

Button startTimer.setOnClickListener ()
onClick(View view) { timerAlert(view); }

CREATE INTENT & ALARM (Java)

timerintent = new Intent(this, timerBroadcastReceiver.class);
AlarmManager = (AlarmManager) getSystemService(ALARM_SERVICE);

2
RECEIVE INTENT & NOTIFY (Java)

onReceive (Context context, Intent intent)
Toast.makeToast(context, “ALARM NOTIFICATION!”)

Figure 11-19. What we have to do in XML and Java to create the intent and alarm

Creating the Timer User Interface via XML

So, first, let’s add an EditText tag so we can let users enter their own custom timer
duration. Place the following markup in your digital clock.xml file after the
DigitalClock tag:
<EditText android:layout width="wrap_content"

android:layout_height="wrap_content"

android:id="@+id/timeInSeconds"

android:layout_gravity="center"

android:hint="Enter Number of Seconds Here!"

android:inputType="numberDecimal"

android:layout_marginTop="30dip"

android:layout_marginBottom="30dip" />
The EditText tag has an ID of timeInSeconds and a layout gravity of center for
consistency with our prior Ul design. Since EditText is a new user interface object for
us, we will add an android:hint attribute that says “Enter Number of Seconds Here!”

NOTE: The hint attribute is text you enter to appear in the text field when it is created by
Android and placed on the screen in the layout container. This hint tells the user what to type in
the field, which, in this case, is the number of seconds the timer should count down.

Next we have an important android: inputType attribute, which tells us what data type
the field will contain, in this case a real number that is represented by the numberDecimal
constant. The timer uses milliseconds, so if we want the timer to count 1534
milliseconds, we can type 1.534 in this field and achieve this precise result. Finally, we

CHAPTER 11: Understanding Intents and Intent Filters

add two margin attributes (top and bottom) of 30dip each to space the user interface out
and to make it more visually attractive to the end user.

We’ll also add a Button tag called startTimer to, well, start the timer. Let’s use an ID of
startTimer and an android:text value of “Start Timer Countdown” to prompt the user.
And we’ll also use our familiar android:layout_gravity="center" to center our button,

so that the Ul remains consistent.

<Button android:layout width="wrap_content"
android:layout_height="wrap_content"
android:layout_gravity="center"
android:id="@+id/startTimer"
android:text="Start Timer Countdown" />

Figure 11-20 shows how our digital clock.xml file should look in the Eclipse IDE.
73 Java - Chapterl Lires/layout/digital_clockmi - &'ié‘ﬂg

File Edit Run Source Navigate Search Project Refactor Window Help

=i BRHEi$-0-A- BEG- OB H- H G- BErD 5 (@)
m’f: Hierarchy| = 01|([1) DigitalClockActivit [l mainam (&1 digital clockxm _£2 5 Chapterd1 Manifes | [3] . |0t 1 =8
N &
B &| & ¥|® <2xml version="1.0" encoding="utf-£"?> ~m|
‘& 3DFilm <Linearlayout xmlns:android="http://schemas.android.com/apk/res/android" ot
1 Chapterld android:orientation="vertical"
3 Chapterll android:layout_width="fill parent"
“ ‘79"‘"" android:layout_height="f£ill parent">
PR

<TextView android:layout_width="fill parent”
4 8 intentfilters android:layout_height="wrap_content”

> 3] DigitalClockActivityjava android:text="You Are Currently in: Activity #2"
>) IntentExamples java android:textColor="#adf"

b [3) MediaPlayerServicejava android:texcSize="22dip"

5[] timerBroadcastReceiverjava andro ddingBottom="30dip"/>
> @8 gen [Generated Java Files] <Button android:id="@+id/Button01"
> B Android 15 android:text="Go to Analog Watch: Activity #17
& assets android:textSize="18px"
4 §ores android:layout_width="280px"
4 = drawable android:layout_height="60px"
5] icon.png android:layout_gravity=rcenter"/>
) imagel.png <DigitalClock android:id="(+id/DigitalClock01"

4 75 layout android:layout_width="yrap_content”
R digitalclockom] android:layout_height="vyrap_content'
e android:layout_gravity='center"

&

android:layout_marginTop="30dip"

“Enw android:textSize="32dip"
B mindtaffy.méa android:textColor="#ads"
4 5 values android:t: >
&) stringsxml <EditText android:layout_width="vrap_content”
) AndroidManifestxml d:layout_height="wrap_content"
default.properties +id/timeInSeconds"
1 Chapter? yout_gravity=rcentern
1 Chapter8 ;E nt="Enter Number of Seconds Here!"
{7 Chapted F] :inputType="numberDecimal”
1 devogella.android.temperature android:layout_marginTop="30dip"
7 Linearlayouts ndroid:layout I p"/>
<Button android:layout_width="vrap_content"
android:layout_height="yrap_content"
android:layout_gravity="center"
android:id="@+id/startTimer" |
android:text="Start Timer Countdown"/>
</LInearrayoucs -~
« »
Layout(@igital clockxml)
w7 |[[& Problems @ Javadoc|[& Declaration | B Console 5% . [Properties BBt B-r3-=0)]
o digital_clockxm! - Chapterl1/res/layout

Figure 11-20. Adding our timer user interface elements to the digital_clock.xml file

Creating a Timer Broadcast Receiver

Now let’s create our TimerBroadcastReceiver class, which is a subclass of the
BroadcastReceiver class.

1. As we are now used to doing, let’s create a new class using New » Class,
and use the following parameters:

B Source folder: Chapter11/src. Default entry, as specified by
Eclipse

CHAPTER 11: Understanding Intents and Intent Filters

Package: intent.filters. Click Browse button and select from list
Name: TimerBroadcastReceiver

Modifiers: public

Superclass: android.content.BroadcastReceiver
2. When everything is filled out, select Finish.

Figure 11-21 shows what your New Java Class dialog should look like when you’ve
entered all of the relevant new Java class information.

o newmncns T ko

Java Class
/1, This package name is discouraged. By convention, package names usually start @
with a lowercase letter

Source folder: Chapterl1/src
[Enclosing type: ‘ ‘ ‘ Browse... ‘
Name: TimerBroadcastReceiver
Modifiers: @ public © default private protected
[7] abstract [~]final [static

Superclass: C android.content.BroadcastReceiver) Browse...
Interfaces: Add...

‘ Remove ‘

Which method stubs would you like to create?
["] public static void main(String[] args)
Constructors from superclass
Inherited abstract methods
Do you want to add comments? (Configure templates and default value here)
[7] Generate comments

@ Finish Cancel

Figure 11-21. Creating a new TimerBroadcastReceiver class via the New Java Class dialog in Eclipse

Now we have an empty class shell with all of the import statements that we need for our
BroadcastReceiver class and an empty onReceive() method for us to fill out with our
programming logic. The onReceive() method will receive our intent and broadcast a
message via the Toast class, which will notify us regarding the alarm status.

Let’s add an import statement for the Toast widget so we can use it to broadcast a
message to the user when the broadcast receiver is used. It is important to note that this
Toast message could be replaced by anything we want to happen when our timer goes
off, including but not limited to playing a song, playing a ringtone, vibrating the phone,
playing a video, or anything else you can think of.

import android.widget.Toast;

CHAPTER 11: Understanding Intents and Intent Filters

The Toast widget’s makeText() method can be coded as follows:

public void onReceive(Context context, Intent intent) {
Toast.makeText(context, "Alarm Notification", Toast.LENGTH_LONG).show();

We first pass the Toast widget the context parameter received along with the
onReceive() call and then tell it what to write to the screen (our “Alarm Notification”
string) and how long to show it on the screen (the LENGTH_LONG constant). We then
append the show() method to makeText() to draw the message to the screen.

Figure 11-22 shows how all of this should look on the TimerBroadcastReceiver tab in
the Eclipse IDE.

"3 -t hirossosveion- e el

File Edit Run Source Navigate Search Project Refactor Window Hel
9 J P
(i} 52 B BHd $-0-Q- BEG- @S F- PHIeEll H-F - ey~ & ()
W& Hierarchy| = 51 |([3) DigitalClockActivit \\g mainxm 4 digital_clockxm [[1) [l Chaptert1 Manifes | [1) MediaPlayerService. B> W)
- &
EEIEN package intent.filters; =]I
1 3DFilm a . B
|| “import android.content.BroadcastReceiver;
T Chapterld
= import android.content.Context;
4 32 Chaptenll _
L import android.content.Intent;
. @B s 3 import android.widget.Toast;
4 8 intentfilters L
» 1) DigitalClockActivityjava | | public class extends ¢
o) IntentExamples,java
b 3] MediaPlayerService java] @override
4 @Timerﬁmad(anR:(ﬂvu.java % public void onReceive (Context context, Intent intent) {
> &8 gen [Generated Java Files] | Toast.makeText (context, "ALARM NOTIFICATION!", Toast.LENGTE LONG).show():
> =4 Android 1.5 L] 3
& assets 3 -
PBe ‘ 5
Qe v |[[2 Problems @ Javadoc [[&) Decleration [B Console 52 [Properties BBl B-ri-=0)
o Filters iverjava - Chapterl1

Figure 11-22. Our TimerBroadcastReceiver class

Configuring the AndroidManifest.xml file <receiver> Tag

Now we need to declare our broadcast receiver using the receiver tag in our
AndroidManifest.xml file so it is registered for use with Android. We will do this right
after the service tag that we added in the previous section, entering the following line of
XML mark-up code:

<receiver android:name=".TimerBroadcastReceiver" android:enabled="true" />

This is fairly straightforward. We use the name attribute to assign our
TimerBroadcastReceiver class name to the receiver declaration tag and then enable it
for use in our application by setting the android:enabled attribute to true so that the
broadcast receiver is live (Figure 11-23).

CHAPTER 11: Understanding Intents and Intent Filters

3 o ot T i

File Edit Run Source Navigate Search Project Refactor Window Help

- Bid $-0-Q- BHG- @B P~ H-F-0ora 5 (7w
H Package Explorer & \i s Hierarchy| = O DigitalClockActivit 1 mainxm [l digital_clockxm | [1) IntentExamples,jav (1| Chapterl1 Manifes 52) [J] MediaPlayerService. [J) TimerBroadcastRecei =0
s
EEIE R " en g="ute-gn2>]
8=

droid. com/apk/: ar

» [) DigialClockActivityjava ~
o [) IntentBamplesjava

icon” android:label="Gstring/app name">
iname=". IntentExamples”
:label="estring/app_name">

b & gen [Generate
» = Android 15
& assets
Py
4 & drawable
@ icon.png
[ma imagel.png
4 5 layout
X digital_clockmi ']
1% mainami |
s
@ mindtaffy.mia <uses-sdk
values </manifest>

nandroid.intent.action.MAIN" />
ndroid:name="android. intent.category. LAUNCHER" />
>

I

“gv

Manifest | Application | Permissions | Instrumentation | AndroidManifest.ai

= 7| ([problems | @ Javado (8 Declaration | Console 3 [Properties) PRIELEa)

Ing AndroidManifestxml - Chapterl1

Figure 11-23. Adding a <receiver> tag to our AndroidManifest.xml file

Now our broadcast receiver is set up to notify users via a Toast message when the
broadcast receiver is utilized. The next thing we need to do is add the code to our
DigitalClockActivity class to implement an alarm clock function that triggers this
Broadcast Receiver class via an intent object, so we can see how all this works
together.

Implementing our Intent

The modifications to our DigitalClockActivity class will be done via several new
import statements, an event handler for a click on our start timer countdown button, and
the timerAlert() method that we will write to do all the heavy lifting to implement the
new timer functionality to our application and to trigger our broadcast receiver class
using intent objects.

Let’s start with the onCreate() method:

public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.digital clock);

Button activity2 = (Button) findViewById(R.id.Buttono1);
activity2.setOnClickListener(new View.OnClickListener() {
public void onClick(View view) {
Intent replyIntent = new Intent();
setResult(RESULT_OK, replyIntent);
finish();

}
1)

Button startTimer = (Button) findViewById(R.id.startTimer);
startTimer.setOnClickListener(new View.OnClickListener() {
public void onClick(View view) {
timerAlert(view);

Download from Wow! eBook <www.wowebook.com>

CHAPTER 11: Understanding Intents and Intent Filters

Now let’s see how to add the highlighted code, starting with the import statements
needed.

1. We need to import the two new widgets that we are going to use to
implement editable text and a toast notification message. Both of these
classes are from the android.widget package:

import android.widget.EditText;
import android.widget.Toast;

2. Next let’s create our startTimer Button object for the start timer
countdown button and use the findViewById() method to set it to the
new startTimer button tag we previously added to our
digital clock.xml file. Place the following in the onCreate() method
after the existing button code:

Button startTimer = (Button) findViewById(R.id.startTimer);

3. Now we’ll add a setOnClickListener() method to handle events
generated by the startTimer button. Inside of that construct we will
create an onClick() method that calls a timerAlert() method, which
holds all of the relevant program logic to set up intents and construct
the alarm feature for our digital clock activity:

startTimer.setOnClickListener(new View.OnClickListener() {
public void onClick(View view) {
timerAlert(view);
}

1);

We will pass the view variable (the onClick view or button that was passed from the
onClick() method) to the timerAlert() method so that it has the context needed for the
PendingIntent. Here is the code for the timerAlert() method, which we will go over line
by line:

public void timerAlert(View view) {
EditText textField = (EditText) findViewById(R.id.timeInSeconds);
int i = Integer.parseInt(textField.getText().toString());
Intent timerIntent = new Intent(this, TimerBroadcastReceiver.class);
PendingIntent myPendingIntent =
PendingIntent.getBroadcast(this.getApplicationContext(), 0, timerIntent, 0);
AlarmManager myAlarmManager = (AlarmManager) getSystemService(ALARM_SERVICE);
myAlarmManager.set(AlarmManager .RTC_WAKEUP, System.currentTimeMillis() +
(i * 1000), myPendingIntent);
Toast.makeText(this, "Alarm is set for " + i + " seconds!",
Toast.LENGTH_LONG).show();

1. First, we need two import statements for two new classes from the
android.app package.

B android.app.AlarmManager is a class that manages alarm
functions for the Android OS.

CHAPTER 11: Understanding Intents and Intent Filters

B android.app.PendingIntent is a class that allows intents to be
pending, which means they can be scheduled. This means they
can be handled by classes in Android even if the calling class is
paused, missing, asleep, stopped, or destroyed before the called
intent has been processed. This is important for an alarm,
especially if the timer is set to hours rather than minutes or
seconds, because the phone could run out of charge before the
Intent was ever satisfied.

import android.app.AlarmManager;
import android.app.PendingIntent;
2. The timerAlert() method is void because it just performs some tasks
relating to setting up intents and alarm functions. It takes a View object
named view as its passed parameter.

public void timerAlert(View view) {

3. The first thing we do in this method’s code block is to declare the
EditText object, name it textField, and locate it in our
digital clock.xml layout definition via its timeInSeconds ID parameter.

EditText textField = (EditText) findViewById(R.id.timeInSeconds);

4. Once we have the textField object we can use the getText() method
along with the toString() method to get the string that the user types
into the field. We then use the parseInt() method to convert that string
value into an integer value and store it in the i variable of type int (or
integer). Later we will use this integer value with our set() method to set
the alarm.

int i = Integer.parseInt(textField.getText().toString());

5. In the third line of code we declare an Intent object that we name
timerIntent and set it to a new Intent object with the context of this
and the class of TimerBroadcastReceiver.class as we have done in the
previous sections of this chapter. We will use this timerIntent object in
the PendingIntent object.

Intent timerIntent = new Intent(this, TimerBroadcastReceiver.class);

6. Now let’s create a PendingIntent object called myPendingIntent and set
it to the result of the getBroadcast() method call; this takes four
parameters:

B The context

B Code

B The intent object we want to use as a PendingIntent
[

Any constants

CHAPTER 11: Understanding Intents and Intent Filters

NOTE: In this case we need no code or constants so we simply pass the current context, which
we get using the getApplicationContext() method and the timerIntent object we
created just prior in the previous line of code.

PendingIntent myPendingIntent =

PendingIntent.getBroadcast(this.getApplicationContext(), 0, timerIntent, 0);

7. Now we are ready to create our alarm using the AlarmManager class. To
do this we declare an AlarmManager object named myAlarmManager and
call the getSystemService() method with the ALARM_SERVICE constant to
specify that we want to get the alarm system service and set it to the
myAlarmManager object. Once we have defined myAlarmManager as an
alarm service object we can use the set() method to configure it for our
use in the application.

AlarmManager myAlarmManager = (AlarmManager) getSystemService(ALARM_SERVICE);

8. The next line in the code block is the one that ties everything else
together. The set() method we will use on our myAlarmManager object
has three parameters:

B TYPE: The type of alarm trigger we wish to set.

B TRIGGER TIME: The alarm will trigger when it reaches this
system time.

B OPERATION: The PendingIntent object containing the context
and target intent code we wrote in
TimerBroadcastReceiver. java, as specified using the
getBroadcast() method.

myAlarmManager.set(AlarmManager .RTC_WAKEUP, System.currentTimeMillis() +
(i * 1000), myPendingIntent);

In our incarnation of the set() method on the myAlarmManager object, we first specify the
AlarmManager.RTC_WAKEUP, which uses the Real Time Clock (RTC) method and wakeup
constant to specify that we want to wake up the phone (if it is asleep) to deliver the
alarm. The RTC method uses the system clock in milliseconds as its time reference.

Using RTC only (without the WAKEUP) will not wake the phone up if it triggers while the
phone is asleep, and thus will be delivered only when the phone wakes up again. This
makes it not nearly as accurate as the RTC_WAKEUP constant. You can imagine how handy
it is to be able to wake up your phone at a certain discreet time even if it is asleep, so it’s
a good thing we are exposing you to this handy class here.

The next parameter we need to specify is the precise system time, in milliseconds, to
trigger the alarm. We will wax a bit tricky here, and we will specify this middle parameter
using a bit of inline programming logic.

CHAPTER 11: Understanding Intents and Intent Filters

We call the currentTimeMillis () method on the Android System object to get the
current system time in milliseconds, then we add to the system time the number of
seconds specified by our user in milliseconds, by multiplying the number of seconds in
variable i by 1000, since there are 1000 milliseconds in one second. The system time is
calculated in milliseconds since 1970, so it is a discrete number that we can simply add
our timer milliseconds value to.

This numeric result gives us the exact system time in milliseconds when the alarm needs
to be triggered, and puts it into the set() method’s second parameter, when our inline
code is evaluated at runtime. As we have seen, Java allows some fairly powerful
programming constructs to be created using just a single line of programming code.

Finally, we will specify the myPendingIntent object as our third parameter. This object,
created earlier with two lines of code, was loaded with the current context and the
timerIntent object that we created earlier with three lines of code. The timerIntent
object references our TimerBroadcastReceiver class, which will ultimately be called
when the alarm is triggered, and will send a Toast to the screen to tell our end user that
the time is up.

The final line of code sends a familiar Toast message to the end user, confirming that
the alarm has been set for the proper number of seconds. This is done by passing the
Toast makeText () method the current context (this) along with the Toast.LENGTH_LONG
constant and two strings with the i variable between them like this:

Toast.makeText(this, "Alarm is set for " + i + " seconds!", Toast.LENGTH_LONG).show();

As we’ve seen here, Java is very flexible in how it allows us to mix different data types.
Figure 11-24 shows our newly enhanced DigitalClockActivity class with the new
import statements, onCreate() method and timerAlert() method modifications shown.
Notice along the top of the IDE that we now have seven open tabs with XML and Java
code that we have either modified or written. This is the most robust application we’ve
written so far! Now we will run and test our new app.

CHAPTER 11: Understanding Intents and Intent Filters

File Edit Run Source Navigate Search Project Refactor Window Help

[mif 52 Bild $-0-Q- BHE- @SS/ PAwEl H-F -0~ = [Fa)
[PackegeExplo 22 2 Hierarchy| = B[] DigitalClockActivit 52, |l mainam | i digital clockxm | [3) IntentBamplesjav | < Chapterl1 Manifes | [3] Medi ice. 0] =8
N =l
EEIEN package imtent.filters; 2
7 3DFilm “import android.app.Activity; 3

import android.os.Bundle;
import android.view.View;
import android.widget.Button;
import android.content.Intent;
import android.widget.Editlext;
import android.widget.Toast:

7 Chapterl0
4 32 Chapterl
4 (B src
4 8 intentfilters
» | [3) DigitalClockActivity java

>) IntentExamples java import android.app.AlarmManager;
b [B) MediaPlayerSenvice java import android.app.PendingIntent;
b [3) TimerBroadcastReceiverjava public class DigitalClockActivity extends Activity {
b &8 gen [Generated Java Files] e @override /** Called when the activity is first created. */
© =k Android 1.5 -~ public void onCreate (Bundle savedInstanceState) {
& assets super.onCreate (savedInstanceState) ;
4 e setContentView (R.layout.digital clock);
4 = drawable Button activity2 = (Button) findViewById (R.id.Button01):
@4 iconpng © activity2.setOnClickListener (new View.OnClickListener() {
@ imagelpng a® public void onClick(View view) {
+ 5 layout Intent replyIntent = new Intent():

setResult (RESULT OK, replylntent);

m

el
0 digtalclockaml Pl
) mainaml R
4w iy
B mindiafty.mia Button starctTimer = (Sucton) findViewdyId(R.id.startTimer);
4 > values 2 tarcTimer.setOnClickList (new View.OnClickListener() {
4 stringsxm = - public void onClick(View view) {
i AndroidManifestxml ;: timerAlert (view):
default properties | | 3
3 Chapter? 1
1 Chapterd 3
& Chapterd e public void timerAlert (View view) {
& de.vogella.android.temperature EditText textField = (EditText) findViewById(R.id.timeInSeconds):
© Linearlayouts int i = Integer.parseInt(textField.getText ().toString()):
Intent timerIntent = new Intent(this, timerBroadcastReceiver.class):
PendingIntent 5 = PendingIntent (th cipplicati (), 0, timerIntent, 0):
2 myAl = @) ce (ALARM_SERVICE) ;
myAlarmManager.set (AlarmManager.RTC_WAKEUP, System.currentTimeMillis() + (i * 1000), myPendingIntent);
Toast.makeText(this, "Alarm is set for " + i + " seconds!", Toast.LENGTH LONG).show();
, b |
) .
< »
[[2 Problems | @ Javadoc [[€) Declaration | B Console 53 " [Properties BBt B-r3-=0)
1) Intent Filters.DigitalClockActivity.java - Chapterl1/src

Figure 11-24. Adding the startTimer button Ul code and timerAlert() method

Running the Timer Application via the Android 1.5
Emulator

Let’s right-click on our Chapter11 folder and select Run As » Android Application and get
right into our final intent examples application. You'll find when you run the application
that all three sections we’'ve added work perfectly together.

This shows us that all of the different types of intents can work seamlessly together in
Android and that they don’t interfere with each other, as we noted at the beginning of
the chapter.

We can now go back and forth between the analog and digital activities using the intents
we created; turn on the music and go back and forth while it is playing; and use the
timer function while the digital audio is playing back as a service.

In the digital clock activity, we can use the editable text field to set our timer value and
the start timer countdown button to trigger the broadcast intent, which broadcasts a
Toast to the screen when the specified number of seconds has passed.

Figure 11-25 shows the application running in the Android 1.5 emulator displaying the
digital clock, the timer function, and the button that allows us to switch back and forth
between our two different activities and their user interfaces.

CHAPTER 11: Understanding Intents and Intent Filters

Intents and Intent Filter Examples

You Are Currently in: Activity #2

Go to Analog Watch: Activity #1

1:18:15 AM

Figure 11-25. Running our timerAlert() method in the Android 1.5 emulator to show broadcast receiver intents

Summary

In this chapter, we’ve seen how different parts of the Android OS and the developer’s
application components communicate to form a cohesive and seamless application.
From user interface activities to background processing services and systems utilities,
intent objects are used in integral ways to pass requests for processing actions on data
structures between different types of application components.

This serves to enforce a modular, logical programming work process on the Android
applications developer, which ultimately increases security, decreases bugs and poorly
constructed code, and attempts to facilitate the kind of optimization that will be needed
in the mobile embedded environment of smartphones.

Ultimately, the proper use of intents and the creative structuring of application
components is what set the successful Android developer apart from the crowd, so be
sure to practice using intents and delve deeper into this area of the Android developer
documentation whenever you get a chance.

Chapter

The Future

There are a number of advanced Android topics that are beyond the scope of this book,
but it’s good for you to know about them so you can continue learning on your own.

This chapter will cover the more specialized areas of programming for Android, and give
a summary of what is available and how it is implemented, as well as provide some
resources for finding more information on implementing these attributes in your future
Android applications. The examples, where given, will be short and sweet, to give you a
taste of what is to come.

Widgets: Creating Your Own Widgets in Android

As we discussed in Chapter 7, Android has its own collection of user-interface widgets
that can be used to easily populate your layouts with functional elements that allow your
users to interface with the program logic that defines what your application does. These
widgets have their own package called android.widget that can be imported into your
application and used without further modification.

Android extends this widget capability to its programmers by allowing us to also create
our own widgets that can be used by Android as mini-application portals or views that
float on the Android home screen, or even in other applications (just like the standard Ul
widgets). If you remember, user interface elements are Widgets that are sub-classed
from View objects.

Widgets can be used to provide cool little extras for the Android homescreen, such as
weather reports, MP3 players, calendars, stopwatches, maps, or snazzy clocks and
similar micro-utilities.

To create an app widget, you utilize the Android AppWidgetProvider class, which
extends the BroadcastReceiver class. To create your own app widget, you need to
extend this class and override one or more of its key methods in order to implement
your custom app widget functionality. Key methods of the AppWidgetProvider class
include the following:

297

CHAPTER 12: The Future

B onUpdate(Context, AppWidgetManager, int[])
B onDeleted(Context, int[])

B onEnabled(Context)

B onDisabled(Context)

B onReceive(Context, Intent)

To create an app widget, you need to create an AppWidgetProviderInfo object that will
contain the metadata and parameters for the app widget. These are details such as the
user interface layout, how frequently it is updated or refreshed, and the convenience
class that it is sub-classed from (AppWidgetProvider). This can all be defined via XML,
which should be no surprise.

The AppWidgetProvider class defines all of the methods that allow your application to
interface with the app widget class via broadcast events, making it a broadcast receiver.
These broadcast events, as we discussed in Chapter 11, will update the widget, with
some frequency if required, as well as enabling (turning it on), disabling (turning it off),
and even deleting it if required.

App widgets also (optionally) offer a configuration activity that can launch itself when the
user first installs your app widget. This activity adds a user interface layout that allows
your users to modify the app widget settings before (or at the time of) its launch.

The app widget must be declared in the AndroidManifest.xml file, so that the application
has registered it with the OS for communications, as it is a broadcast receiver, so we
need the following code in our manifest:

<receiver android:name="ExampleAppWidgetProvider" >
<intent-filter>
<action android:name="android.appwidget.action.APPWIDGET UPDATE/>
</intent-filter>
<meta-data android:name="android.appwidget.provider"
android:resource="@xml/example_appwidget info />
</receiver>

Notice that the receiver tag specifies an XML file in the /res/xml folder that sets the
parameters for the look and operation of the widget, in a file called
example_appwidget_info.xml, which contains the following XML mark-up code:

<appwidget-provider
xmlns:android=http://schemas.android.com/apk/res/android
android:minWidth="294dp"
android:minHeight="72dp"
android:updatePeriodMillis="80000000"
android:initiallayout="@layout/example_ appwidget"
android:configure="com.example.android.ExampleAppWidgetConfigure" >
</appwidget-provider>

B The minWidth and minHeight attributes define the size of the widget.

B updatePeriodMillis defines the update period in milliseconds.

CHAPTER 12: The Future

The updatePeriodMillis value should be set as high as possible, as updates consume
battery power, and are called even if the smartphone is in sleep mode, which means that
the phone is powered on to make the update. The initiallayout attribute calls the XML
file that defines the app widget layout itself. You need to define an initiallayout XML
file for your app widget in the /res/layout folder, or your app widget will be empty. This
should all be old hat to you now after Chapter 6.

The last android: configure attribute is optional, and calls the activity that is needed to
configure the Ul layout and options settings for the widget on start-up. App widget
layouts are based on remote views, which support only the main the following three
layout classes in Android:

B Linearlayout
B Relativelayout
B Framelayout
The following widget classes are also supported in the initiallayout XML file:
AnalogClock
Button
Chronometer
ImageButton

ImageView

ProgressBar
B TextView

More information can be found at the App Widget Design Guidelines page at:

http://developer.android.com/guide/practices/ui_guidelines/
widget_design.html

General Information on App Widgets can be found at:
http://developer.android.com/guide/topics/appwidgets/index.html

Location-Based Services in Android

Location-based services and Google Maps are both very important OS capabilities
when it comes to a smartphone device. You can access all location and maps related
capabilities inside of Android via the android.location package, which is a collection of
classes or routines for dealing with maps and locations, and via the Google Maps
external library, which we will cover in the next section.

The central component of the location services network is the LocationManager system
service. This Android system service provides the APIs necessary to determine the
location and (if supported) bearing of the underlying device’s GPS and accelerometer
hardware functionality.

http://developer.android.com/guide/practices/ui_guidelines/
http://developer.android.com/guide/topics/appwidgets/index.html

CHAPTER 12: The Future

Similar to other Android systems services, the LocationManager is not instantiated
directly, but is instead requested as an instance from the system by calling the
getSystemService(Context) method, which then returns a handle to the new
LocationManager instance, like this:

getSystemService(Context.LOCATION SERVICE)

Once a LocationManager has been established inside of your application, you will be
able to do the following three things in your application:

B Query for a list of all LocationProviders for the last known user
location.

B Register (or unregister) for periodic updates of the user’s current
location.

B Register (or unregister) for a given Intent to be fired once the device is
within certain proximity of a specified latitude or longitude specified in
meters.

Google Maps in Android

Google provides an external library called Google Maps that makes it relatively easy to
add powerful mapping functions to your Android applications. It is a Java package
called com.google.android.maps, and it contains classes that allow for a wide variety of
functions relating to downloading, rendering, and caching map tiles, as well as a variety
of user control systems and display options.

One of the most important classes in the maps package is MapView class, a subclass of
ViewGroup, which displays a map using data supplied from the Google Maps service.
Essentially this class is a wrapper providing access to the functions of the Google Maps
API, allowing your applications to manipulate Google Maps through MapView methods
that allow maps and their data to be accessed much as though you would access any
other View object.

The MapView class provides programmers with all of the various user interface assets
that can be used to create and control Google Maps data. When your application
passes focus to your MapView object, it automatically allows your users to zoom into, and
pan around, the map using gestures or keypresses. It can also handle network requests
for additional map tiles or an entirely new map.

Before you can write a Google Maps-based application, you must obtain a Google Maps
API key to identify your app:

1. To begin with, you need to provide Google with the signature of your
application. To do so, run the following at the command line (this is
again a Windows example):

keytool -list -keystore C:\users\<username>\.android\debug.keystore

Download from Wow! eBook <www.wowebook.com>

CHAPTER 12: The Future

NOTE: The signature of your application proves to Google that your application comes from you.
Explaining the niceties of this is beyond the scope of the book, but for now just understand that
you are proving to Google that you created this application.

2. When prompted, the password is android. Here is what you should see:

Enter keystore password:

Keystore type: JKS

Keystore provider: SUN

Your keystore contains 1 entry
androiddebugkey, 21-Jan-2011, PrivateKeyEntry,
Certificate fingerprint (MD5): <fingerprint>

3. Copy the fingerprint. You'll need it in the next step.

4. Goto http://code.google.com/android/maps-api-signup.html and
enter the fingerprint in the "My certificate's MD5 fingerprint:" box.

5. Accept the terms and conditions, then click Generate API Key.

6. On the next page, note your API key.
Now that we have our key, here are the basic steps for implementing a Google Maps
app:

1. First you would want to create a new project and Activity called
MyGoogleMap, with a Project Build Target of Google APIs for version 1.5.
We need to do this to use the Google Maps classes.

NOTE: You may have to install the Google APIs using the Android SDK and AVD Manager. They
are listed as Google APIs by Google Inc.

2. In the AndroidManifest.xml file within the <application> tag use the
<uses-library> tag to point to the Google Maps library address
specified above as follows:

<uses-library android:name="com.google.android.maps" />
3. Also in the AndroidManifest.xml file and within the <application> tag,

use the <uses-permission> tag to request permission to access the
Internet as follows:

<uses-permission android:name="android.permission.INTERNET" />

http://code.google.com/android/maps-api-signup.html

CHAPTER 12: The Future

4. Next you would want to define some simple user interface elements
within your main.xml layout definition, using a basic linear layout with a
vertical parameter specified, and then a Google Maps MapView user
interface element with the clickable parameter set to true, allowing the
user to navigate the map, as follows:

<?xml version="1.0" encoding="utf-8"?>
<LinearlLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:id="@+id/mainlayout"
android:orientation="vertical"
android:layout_width="fill parent"
android:layout_height="fill parent" >
<com.google.android.maps.MapView
android:id="@+id/mapview"
android:layout_width="fill parent"
android:layout_height="fill parent"
android:clickable="true"
android:apiKey="Your Maps API Key"
/>
</Linearlayout>

5. Now enter your unique Google Maps API key that was assigned to you
in the apiKey parameter in the last parameter of the MapView tag.

6. Next open your MyGoogleMap.java activity and extend your class to use
a special sub-class of the Activity class called the MapActivity class,
as follows:

public class MyGoogleMap extends MapActivity {...}

7. One of the primary methods of the MapActivity class is the
isRouteDisplayed() method, which must be implemented, and once it
is, you will be able to pan around a map, so add this little bit of code as
follows to complete your basic map:

@0verride

protected boolean isRouteDisplayed() {
return false;

8. At the top of your MyGoogleMap class instantiate two handles for the
MapView and the ZoomTool controls (LinearLayout) we are going to add
next, as follows:

LinearLayout linearLayout;
MapView mapView;

9. Next in your onCreate() method, initialize your MapView Ul element and
add the ZoomControls capability to it via the setBuiltInZoomContols()
method as follows:

mapView = (MapView) findViewById(R.id.mapview);
mapView.setBuiltInZoomControls(true);

http://schemas.android.com/apk/res/android

CHAPTER 12: The Future

Note that we are using the built-in MapView zoom controls so we do not have to
write any code and yet when we run this basic application the user will be able to
zoom the MapView via zoom controls that will appear when the user touches the
map and then disappear after a short time-out period (of non-use).

10. Compile and run your MyGoogleMap application in the Android emulator.

It is important to note that the external Google Maps library is not an integral part of the
Android OS, but is actually something that is hosted externally to the smartphone
environment and requires access externally via a Google Maps key that you must apply
for and secure before your applications utilize this service from Google. This is the same
way that this works for using Google Maps from a web site; it’s just that the MapView
class fine-tunes this for Android usage. To learn more about the Google Maps external
library visit:

http://code.google.com/android/add-ons/google-apis

Google Search in Android

Google has built its business model on one major service that it has always offered:
search. It should be no surprise that search is thus a well-supported core service in
Android. Android users can search for any data that is available to them on their Android
handset or across the Internet.

Android, not surprisingly, provides a seamless, consistent search experience across the
board, and Android provides a robust search implementation framework for you to
implement search functions inside of your Android applications.

The Android search framework provides an interface for search that includes both the
interaction and the search itself, so that you do not have to define a separate Activity in
Android. The advantage of this is that the use of search in your application will not
interrupt your current Activity.

Using Android search puts a search dialog at the top of the screen, pushing other
content down on the screen as it is utilized. Once you have everything set up to use this
capability in Android, you can integrate your application with search by providing search
suggestions based on your app or recent user queries, offer you own custom application
specific search suggestions in the system-wide quick search function, and even turn on
voice search functions.

Search in Android is handled by the SearchManager class; however, that class is not
used directly, but rather is accessed via an Intent specified in XML or via your Java code
via the context.getSystemService(context.SEARCH_SERVICE) code construct. Here are
the basic steps to set-up capability for a search within your AndroidManifest.xml file.

1. Specify an <intent-filter> in the <activity> section of the
AndroidManifest.xml:

<intent-filter>
<action android:name="android.intent.action.SEARCH" />

http://code.google.com/android/add-ons/google-apis

CHAPTER 12: The Future

</intent-filter>

<meta-data android:name="android.app.searchable"
android:resource="@xml/searchable" />

2. Next, create the res/xml/searchable.xml file specified in the <meta-data>
tag in step 1.

3. Inside searchable.xml, create a <searchable> tag with the following
data:
<searchable xmlns:android="http://schemas.android.com/apk/res/android"
android:label="@string/search_label"
android:searchSuggestAuthority="dictionary"

android:searchSuggestIntentAction="android.intent.action.VIEW">
</searchable>

4. Now in res/values/strings.xml, add a string called search label.
Now you are ready to implement a search in your application as described here:
http://developer.android.com/guide/topics/search/search-dialog.html

Note that most Android phones and devices come with a search button built in, which
will pop up the search dialog. You can also provide a button to do this, in a menu
maybe. That's for you to experiment with.

Data Storage in Android

Android has a significant number of ways for you to save data on your smartphone, from
private data storage for your application, called shared preferences, to internal storage
on your smartphone device’s memory chips, to external storage via your smartphone
device’s external storage (HD card or mini HDD), to network connection (Network
Attached Storage) via your own network server, to an entire DBMS (Database
Management System) via open source SQLite private databases.

Shared Preferences

Shared preferences are persistent data pairs that remain in memory even if your
application is killed (or crashes), and thus this data remains persistent across multiple
user sessions. The primary use of shared preferences is to store user preferences for a
given user’s Android applications and this is a main reason why they persist in memory
between application runs.

To set your application’s shared preferences Android provides us with the
SharedPreferences class. This class can be used to store any primitive data types,
including Booleans (on/off, visible/hidden), floats, integers, strings, and longs. Note that
the data created with this class will remain persistent across user sessions with your
application even if your application is killed (the process is terminated or crashes).

http://schemas.android.com/apk/res/android
http://developer.android.com/guide/topics/search/search-dialog.html

CHAPTER 12: The Future

There are two methods in the SharedPreferences class that are used to access the
preferences; if you have a single preference file use getPreferences() and if you have
more than one preference files, you can name each and use
getSharedPreferences(name) and access them by name. Here is an example of the code
in use, where we retrieve a screen name. The settings.getString() call returns the
screenName parameter, or the name Android Fan if the setting is not set:

public static final String PREFS_NAME = "PreferenceFile";

@0verride

public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.main);

SharedPreferences settings = getSharedPreferences(PREFS_NAME, 0);
String screenName = settings.getString("screenName", "Android Fan");
// do something with the screen name.

We can set the screen name with the following:

SharedPreferences settings = getSharedPreferences(PREFS_NAME, 0);
SharedPreferences.Editor editor = settings.edit();
editor.putString("screenName", screenName);

editor.commit();

Internal Memory

Accessing internal memory storage on Android is done a bit differently, as that memory
is unique to your application and cannot be directly accessed by the user or by other
applications. When the application is uninstalled these files are deleted from memory. To
access files in memory use the openFileOutput() with the name of the file and the
operation needed, which will return a FileOutputStream object which you can use the
read(), write() and close() methods to manipulate the data into and out of the file.
Here is some example code showing this concept:

String FILENAME = "hello_file";

String string = "hello world!";

FileOutputStream fos = openFileOutput(FILENAME, Context.MODE_PRIVATE);
fos.write(string.getBytes());

fos.close();

External Memory

The method that is used for accessing external memory on an Android device is
getExternalStorageState(). It checks to see whether the media (usually an SD card or
internal micro HDD) is in place (inserted in the case of an SD card) and available for
usage. Note that files written to external removable storage media can also be accessed
outside of Android and applications by PCs or other computing devices that can read
the SD card format. This means there is no security in place on files that are written to
external removable storage devices.

CHAPTER 12: The Future

Using SQLite

The most common way to store data for your application, and the most organized and
sharable, is to create and utilize a MySQL Lite database. This is how Android stores and
accesses its own data for users who utilize its internal applications such as the Contacts
list or Database. Any private database you create for your application will be accessible
to all parts of your application, but not to other parts of other developer's applications
unless you give permission for them to access it. | will briefly outline how it would be
done here, and you can research these methods on the developer.android site for more
details.

The way to create a new SQL database in Android is to create a subclass of the
SQLiteOpenHelper class and then override the onCreate() method. This method allows
one to create a tabular structure within the desired database format that will support
your application’s optimal data structure. Here is some example code from the Android
Developer site showing the SQLiteOpenHelper implemented.

public class DictionaryOpenHelper extends SQLiteOpenHelper {
private static final int DATABASE_VERSION = 2;
private static final String DICTIONARY_TABLE_NAME =
private static final String DICTIONARY_TABLE_CREATE =
"CREATE TABLE " + DICTIONARY TABLE NAME + " (" +
KEY_WORD + " TEXT, " +
KEY _DEFINITION + " TEXT);";
DictionaryOpenHelper(Context context) {
super(context, DATABASE NAME, null, DATABASE VERSION);

"dictionary";

@0verride
public void onCreate(SQLiteDatabase db) {
db.execSQL(DICTIONARY TABLE_CREATE);

}

To write and read from the custom database structure, you would utilize the
getWritableDatabase() and getReadableDatabase() methods, which both return a
SQLiteDatabase object that represents the database structure and provides methods for
performing SQLite database operations.

To perform SQLite database queries on your new SQLite database you would use the
SQLiteDatabase_Query methods, which accept all common data query parameters such
as the table to query and the groupings, columns, rows, selections, projection, and
similar concepts that are mainstream in database programming.

Device Administration: Security for IT Deployments

As of Android version 2.2 (API Level 8), Google has introduced support for secure
enterprise applications via its Android Device Administration API. This API provides
developers with employee device administration at a lower system level, allowing the
creation of “security aware” applications that are necessary in MIS enterprise
applications that require that IT maintain a tight level of control over the employees
Android Smartphone devices at all times.

CHAPTER 12: The Future

A great example of this is the Android e-mail application, which has been upgraded in
OS version 2.2 to implement these security features to provide more robust e-mail
exchange security and support. Exchange Administrators can now implement and
enforce password protection policies in the Android e-Mail application spanning both
alphanumeric passwords and simpler numeric PINs across all of the devices in their
organization.

IT administrators can go as far as to remotely restore the factory defaults on lost or
stolen handsets, clearing sensitive passwords and wiping clean proprietary data. E-mail
Exchange End-Users can now sync their e-Mail and calendar data as well.

Using the Android Camera Class to control a Camera

The Android Camera class is used to control the built-in camera that is in every Android
smartphone. This Camera class is used to set image capture settings and parameters,
start and stop the preview modes, take the actual picture and retrieve frames of video in
real-time for encoding to a video stream or file. The Camera class is a client for the
camera service, which manages the camera hardware.

To access your Android device’s camera, you need to declare a permission in your
AndroidManifest.xml that allows the camera features to be included in your application.
You need to use the <uses-feature> tag to declare any camera features that you wish to
access in your application so that Android knows to activate them for use in your
application. The following XML AndroidManifest.xml entries allow the camera to be used
and define it as a feature along with the auto-focus capabilities:

<uses-permission android:name="android.permission.CAMERA" />

<uses-feature android:name="android.hardware.camera" />
<uses-feature android:name="android.hardware.camera.autofocus"/>

The developer.android website has plenty of Java code for you to experiment with.

3D Graphics: Using OpenGL ES 1.x in Android

One of the most impressive capabilities of the Android OS is its ability to “render” 3D
graphics in real-time using only the open source OpenGL (Open Source Graphics
Language) ES 1.0 API, and in later releases of Android, the OpenGL ES 1.1 and 1.2
APls. OpenGL ES stands for OpenGL for Embedded Systems.

OpenGL ES is an optimized embedded devices version of the OpenGL 1.3 API that is
used on Computers and Game Consoles. OpenGL ES is highly optimized for use in
embedded devices, much like the Android Dalvik Virtual Machine optimizes your code
by making sure there is no “fat” that the Smartphone CPU and memory need to deal
with, a streamlining of sorts. OpenGL ES 1.0 is feature parallel to the full OpenGL 1.3
standard, so if what you want to do on Android is doable in OpenGL 1.3, it should be
possible to do it in OpenGL ES 1.0.

CHAPTER 12: The Future

The Android OpenGL ES 1.0 is a custom implementation but is somewhat similar to the
J2ME JSR239 OpenGL ES API, with some minor deviations from this specification due
to its use with the Java Micro Edition (JavaME) for cell phones.

To access the OpenGL ES 1.0 API, you need to write your own custom subclass of the
View Class and obtain a handle to an OpenGL Context, which will then provide you with
access to the OpenGL ES 1.0 functions and operations. This is done in the onDraw()
method of the custom View class that you create, and once you have a handle to the
OpenGL Object, you can use that object’s methods to access and call the OpenGL ES
functional operations.

More information on OpenGL ES can be found at www.khromos.org/opengles/
Information about version 1.0 can be found at www.khronos.org/opengles/1_X/
Android Developer Documents do in fact exist for OpenGL ES 1.0 and 1.1 at

http://developer.android.com/reference/javax/microedition/khronos/opengles/pack
age-summary.html

FaceDetector

One of the coolest and most advanced concepts in the SDK is a facial recognition class
called FaceDetector.

FaceDetector automatically identified faces of subjects inside of a Bitmap graphic object.
| would suggest using PNG24 (24-bit PNG) for the highest quality source data for this
operation.

You create a FaceDetector object by using the public constructor FaceDetector:

public FaceDetector (width integer, height integer, maxFaces integer)

The method you use to find faces in the bitmap file is findFaces(Bitmap bitmap, Face[]
faces), which returns the number of faces successfully found.

SoundPool

The SoundPool class is great for game development and audio playback applications on
Android because it manages a pool of Audio Resources in an optimal fashion for
Android Apps that use a lot of audio or where audio is a critical part of the end-user’s
overall experience.

A SoundPool is a collection of audio “samples,” such as sound effects or short songs
which need to be loaded into Android memory from an external resource either inside
the application’s .APK file or from an external file or the internal file system.

The cool thing about the SoundPool is that it works hand in hand with the MediaPlayer
Class that we looked at in Chapter 8 to decode the audio into a raw PCM mono or
stereo 16-bit CD quality audio stream. This makes it easier for an application to include
compressed audio in it’s APK and then decompress it on application start-up, load it

http://www.khromos.org/opengles/
http://www.khronos.org/opengles/1_X/
http://developer.android.com/reference/javax/microedition/khronos/opengles/pack

CHAPTER 12: The Future

into memory, and then play it back without hiccups when it is called or triggered within
the application code.

It gets even more interesting. It turns out that SoundPool can also control the number of
audio assets that are being simultaneously “rendered” or turned from data values into
audio sound waves. Essentially this means that the SoundPool is an Audio “Mixing
Console” that can be used to layer audio in real-time to create custom mixes based on
your gameplay or other applications programming logic.

SoundPool defines a maxStreams parameter that limits the number of parallel audio
streams that can be played so that you can put a “cap” on the amount of processing
overhead that is used to mixdown audio in your application, in case this starts to affect
the visual elements that are also possibly rendering in real-time on the screen. If the
maxStreams value is exceeded then the SoundPool turns off individual audio streams
based on their priority values, or if none are assigned, based on the age of the audio
stream.

Individual audio streams within the SoundPool can be looped infinitely (a value of -1) or
any number of discreet times (0 to ...) and also counts from zero so a loop setting of
three plays the audio loop four times. Playback rates can also be scaled from 0.5 to 2.0,
or at half the pitch to twice the pitch, allowing real-time pitch shifting and with some
clever programming one could simulate effects such as Doppler via fairly simple Java
code. Samples can also be pitch shifted to give a range of sound effect tones or create
keyboard-like synthesizers.

SoundPool also lets you assign a Priority to your individual audio samples, with higher
numbers getting higher priority. Priority only comes into play when the maxStreams
value specified in the SoundPool Object is hit and an audio sample needs to be
removed from the playback queue to make room for another audio sample playback
request with a higher priority level. Be sure to prioritize your audio samples so that you
can have complete control of your audio and effects mixing during real-time playback.

MediaRecorder

In Chapter 8 we discussed the Android MediaPlayer class, which is commonly used to
play back audio or video files. Android can also record audio and media files at a high
level of fidelity and the counterpart to the MediaPlayer class for this is, logically, the
MediaRecorder class. It is important to note that MediaRecorder does not currently work
on the Android smartphone emulators.

There are five main MediaRecorder classes that control the process of media recording.
They are as follows (note that these are defined inside the MediaRecorder class, hence
the dot notation):

B MediaRecorder.AudioEncoder
B MediaRecorder.AudioSource

B MediaRecorder.OutputFormat

CHAPTER 12: The Future

B MediaRecorder.VideoEncoder
B MediaRecorder.VideoSource

You construct a MediaRecorder object and operate on it using the public methods such
as prepare(), release(), reset(), setAudioChannels(), setCamera(), setOutputFile(),
and a plethora of other methods that control how the new media data is captured and
stored on your Android device.

More information on the MediaRecorder class can be found at

http://developer.android.com/reference/media/MediaRecorder.html

Summary

There are a lot of great features in Android that we simply do not have enough time to
cover in one book, or that are too high complex for an absolute beginners’ book. That
doesn't mean that you should not investigate all the cool features that Android has to
offer on your own, however, so this chapter introduced some that are very powerful and
advanced for a mobile phone operating system.

Where graphics are concerned there is no more powerful open source graphics library
than OpenGL and Android implements the latest OpenGL ES 1.2 technology just like
HTML5 does currently. Since Android phones have guilt-in GPU hardware, this means
that you can render real-time 3D on the fly to visualize just about anything you want to
within your application and in three dimensions to boot!

There are many other interesting areas to be discovered in Android as well, from
creating your own widgets to creating your own MySQLite databases to using the
SmartPhone Camera to the Face Recognition to the SoundPool Audio Engine for games
and the Media Recorder to capture your own new media assets. All of this is covered in
detail on the developer.android.com website be sure to explore there at length to
enhance your knowledge of the thousands of interesting features in Android OS with
many more to come!

http://developer.android.com/reference/media/MediaRecorder.html

Download from Wow! eBook <www.wowebook.com>

Index

" Special Characters

and Numbers

(/>) tag, 47

<!--tag, 177

>tag, 177

3D graphics, using OpenGL ES 1.0 AP,
307-308

9-Patch bitmap custom scalable
images, 170-176

24-bit PNG file, 62

64-bit computing platforms, IDE on,
36-38

64-bit Eclipse IDE, 38

64-bit JDK, 37-38

A

AbsoluteLayout subclass, 91
accelerateSpeed() method, 73
ACTION_BATTERY_LOW constant, 257
ACTION_CALL constant, 257
ACTION_DIAL constant, 257-258
ACTION_DOWN event, 157
ACTION_EDIT constant, 257-258
ACTION_HEADSET_PLUG constant,
257
ACTION_MAIN constant, 257, 259
ACTION_SCREEN_ON constant, 257
ACTION_TIMEZONE_CHANGED
constant, 257
ACTION_VIEW constant, 258
activateOverdrive() method, 75
Active-Matrix Organic Light-Emitting
Diode (AMOLED), 15
activities, 14, 81-82

Activity classes, using intents with,
261-273
Activity statement, 78
activity tag, 86-87, 269, 276, 303
ADB (Android Debug Bridge), 33
Add a Contact to the Database button,
253
Add Site dialog, 27
addButton Button object, 238, 244
addContactButton Button tag, 237-238,
243
addContactPhoneNumber() method,
238-239, 241, 244, 247, 252
addUri object, 240-241, 252
ADT (Android Development Tool),
installing, 26-29
advanced topics, 297-310
3D graphics, using OpenGL ES 1.0
API, 307-308
Camera class, 307
data storage, 304-306
memory, 305
shared preferences, 304-305
using SQLite databases, 306
Device Administration API, security
for IT deployments, 306-307
FaceDetector class, 308
Google Maps, 300-303
Google Search, 303-304
location-based services, 299-300
MediaRecorder class, 309-310
SoundPool class, 308-309
widgets, 297-299
advantages, of Android, 3
AlarmManager class, 292
ALARM_SERVICE constant, 292

311

AlertDialog class, 140-145

Alpha channel, 116

alpha, red, green, and blue (ARGB), 150

AMOLED (Active-Matrix Organic
Light-Emitting Diode), 15

analog:background parameter, 110

AnalogClock tag, 47-48, 109-110,

264-265, 267, 274-275
AnalogClock View element icon, 264
Android

advantages of, 3

application framework, 14

future of, 17

history of, 2-3

and XML markup for applications,

13-14
Android activities, 14
Android Application option, Run As

menu, 229, 252
Android Contacts database, 230
Android Debug Bridge (ADB), 33
Android Developers web site, 8
Android development environment

components, 6
Android Development Tool (ADT),

installing, 26-29
Android Development Tool plug-in, for

Eclipse, 26
Android Development Tools, 28
Android Framework. See also OOP

AndroidManifest.xml, 85-88

and APK files, 79-80

application components, 80-84
activities, 81-82
broadcast receivers, 82-83
content providers, 83-84
services, 82

intent objects, 84-85

and XML, 78-79

Android MediaStore content providers,

222
Android PacKage (APK), 14
Android Plug-In Name field, 27
Android plug-in option, Install dialog, 28
Android plug-ins, 13

Android Project option, Run As menu,
236
Android SDK
downloading, 8-9
installing, 25-26
updating, 31-33
Android SDK and AVD Manager
window, 31, 33
Android SDK tools folder, 170
android-sdk-windows folder, 30
android-sdk_r07-windows.zip file, 25
android statement, 78
Android Test Project option, 96
Android Virtual Devices. See AVDs
Android XML File option, 96
Android_1.5_Emulator emulator name,
34
android.app package, 78, 290
android.app.Activity class, 92, 263
android.app.AlarmManager class, 290
android.app.Pendinglintent class, 291
android.app.Service class, 278
android:background parameter, 110
android:configure attribute, 299
android.contact.Intent package, 271
android.content.BroadcastReceiver
class, 287
android.content.Intent class, 255, 272
android.database.Cursor class, 234
android:drawable attribute, 117
android:enabled attribute, 277, 288
android:focusable attribute, 216
android.graphics.drawable package,
147,149, 170
android.graphics.drawable.AnimationDr
awable class, 156
android:hint attribute, EditText tag, 285
android:icon attribute, 86, 130
android:id attribute, 130
android:id tag, 202
android:inputType attribute, 285
android.intent.action.MAIN action, 87
android.intent.category.LAUNCHER
category, 87
android:label attribute, 86

android:layout_gravity = "center”
attribute, 202
android:layout_marginBottom attribute,
275
android:layout_marginTop attribute,
AnalogClock tag, 275
android.location package, 299
AndroidManifest.xml fiile, 85-88
AndroidManifest.xml file, 50, 288-289
android:minSdkVersion attribute, 87
android:name attribute, 86, 277
android.net.Uri class, 180, 234
android:nextFocus attribute, 211-212
android:nextFocusDown attribute,
Button tag, 212
android:nextFocusUp attribute,
contextButton tag, 211
android:oneshot attribute, 154, 159
android.os package, 78
android:paddingBottom="20dip"
attribute, 264
android.permission.READ_CONTACTS,
227
android.permission.WRITE_CONTACTS
option, 227
android.provider package, 219
android.provider.Contacts.People table,
234
android:src file, 109
android:state_pressed attribute, 117
android:text attribute, 58, 202, 274-275,
286
android:textColor attribute, 264, 268
android:textSize attribute, 264
android:title attribute, 130
android:typeface="monospace"
attribute, 267
android.view.animation package, 147,
160, 165
android.view.Menu statement, 135
android.view.Menulnflater, 135
android.view.Menultem, 138
android.view.MotionEvent class, 156
android.view.View element, 204
android.view.View package, 271
android.widget classes, 90

android.widget package, 290, 297
android.widget.Button element, 204
android.widget.Button package, 271
android.widget.ImageView class, 138,
156
android.widget.LinearLayout, 138
android.widget.MediaController class,
180
android.widget.TextView class, 165
android.widget.Toast class, 234
android.widget.Toast element, 204
anim folder, 44
animation, 151-166
frame-based, 151-159
controlling via Java language,
155-159
running in emulator, 159
tween, 160-166
controlling via Java language,
164-166
text_animation.xml file, 161-164
Animation class, 165
animation-list tag, 154-155, 159
AnimationDrawable class, 156
AnimationUtils class, 165
Anti-aliasing, 116
apiKey parameter, 302
APlIs (application programming
interfaces)
Device Administration, security for IT
deployments, 306-307
OpenGL ES 1.0-3D graphics,
307-308
.apk files, 3, 14, 35, 79-80
app package, 263
app statement, 78
app widgets, 18
application components, 80-84
activities, 81-82
broadcast receivers, 82-83
content providers, 83-84
services, 82
application framework, of Android, 14
Application name field, 53, 96, 117, 187,
223, 261

application programming interfaces.
See APIs
application resources, 48-50
alternate resource folders, 49-50

bitmap images, 48
<application> tag, 86-87, 301
applyBrake() method, 73-74, 76
app_name string, 100
app_name value, 58
app_name variable, 58
AppWidgetProvider class, 297-298
AppWidgetProviderinfo object, 298
ARGB (alpha, red, green, and blue), 150
arrays.xml file, 45
Available Packages option, 31
AVDs (Android Virtual Devices), 33-35

emulators, 33-34

external devices, 35

Background option, Eclipse, 265
backgrounds, replacing default,
124-126
behaviors, defined, 68
bitmap images, 149-151
application resources, 48
JPEG and GIF images, 151
PNG images, 150
Bitmap object, 308
bkgr LinearLayout object's background,
139
bkgr object, 139
bottom attribute, 286
broadcast receivers
overview, 82-83
using intents with, 284-295
BroadcastReceiver class, 83, 286-287,
297
Build Target field, 187, 261
Build Target panel, 53, 96, 117
builder definition, 143
builder object, 142, 144
Bundle class, 78, 92, 102
Bundle statement, 78
Button class, 90, 231-232, 238

Button tags, 177, 202, 210, 212, 237,
243, 264, 274, 286, 290
Button variable, 238
Button widget, 186, 192
ButtonO1 tag, 274
button1.xml file, 119
button_one, 123
buttons, ImageButton class, 116-126
button1.xml file, 119-122
defining multistate graphics in XML,
116-117
Eclipse Ul project, 117-118
editing main.xml file, 123-124
replacing default background,
124-126

we

C:\android-sdk-windows folder, 25

C:/Android_Project/res/drawable-hdpi
folder, 63

C:/Android_Project/res/drawable-mdpi
folder, 64

c:\eclipse folder, 23

C:/ProgramFiles/Java/jre6, 21

C:\Projects, 51

callback methods, event, 184-185

Camera class, 307

Car class, 74-75

case statements, 139

CATEGORY_HOME constant, 259

changeUri object, 241, 246-247,
250-252

Check for Updates option, 30

chromebutton.9.png file, 174-175

chromebutton.png file, 172

classes, in OOP, 70-74

clickable parameter, 302

close() method, 305

Close Project option, 223

color folder, 44

Color object, 133

colors.xml file, 45

cols column, 235

com.apress.project host, 261

common default resources folders, 44

ComponentName field, 259
Contact.People table, 235
Contacts database
adding data to, 228-231
contact providers, 220-221
Contacts editor utility, 243
Contacts icon, 230, 242
Contacts.ContactMethodsColumns
interface, 220
ContactsContract.CommonDataKinds.C
ommonColumns interface, 221
ContactsContract.ContactOptionsColu
mns interface, 221
ContactsContract.ContactsColumns
interface, 221
ContactsContract.ContactStatusColum
ns interface, 221
ContactsContract.GroupsColumns
interface, 221
ContactsContract.PhoneLookupColumn
s interface, 221
ContactsContract.PresenceColumns
interface, 221
ContactsContract.SettingsColumns
interface, 221
ContactsContract.StatusColumns
interface, 221
Contacts.ExtensionsColumns interface,
220
Contacts.GroupsColumns interface,
220
Contacts.OrganizationColumns
interface, 220
Contacts.People table, 228
Contacts.PeopleColumns interface, 220
Contacts.PhonesColumns interface,
220
Contacts.PhotosColumns interface, 220
Contacts.PresenceColumns interface,
220
Contacts.SettingsColumns interface,
220
content package, 255
content providers, 16-17, 83-84,
217-254
built-in, 219-222

Android MediaStore content
providers, 222
Contacts database contact
providers, 220-221
databases and database
management systems, 218-219
defining, 222-231
adding data to Contacts
database, 228-231
example project in Eclipse,
223-224
security permissions, 224-228
working with databases, 231-254
appending to, 237-243
modifying data, 243-248
querying, 231-237
removing data, 248-254
content resolver, 17
content scheme, 261
ContentProvider class, 84
ContentResolver object, 84, 250, 252
CONTENT_URI object, 222, 240
contentUri object, 240
ContentValues object, 239-240, 247
context parameter, 288
context-sensitive menus, 15
Context.bindService() method, 85
contextButton ID attribute, 204
contextButton tag, 211-212
contextFunction1() method, 206
contextFunction2() method, 206
context.getSystemService(context.SEA
RCH_SERVICE) code construct,
303
ContextMenu class, 204
ContextMenulnfo class, 204
Context.sendBroadcast() method, 85
Context.sendOrderedBroadcast()
method, 85
Context.sendStickyBroadcast()
method, 85
Context.startActivity() method, 84
Context.startService() method, 84
Create Activity check box, 53, 97, 118,
152, 187, 261
create() method, 281

Create new project in workspace radio
button, 53

Create Shortcut option, 23

curly braces (), 71

currentTimeMillis() method, 293

Cursor object, 235

Dalvik Debug Monitor Server (DDMS),
28
Dalvik Virtual Machine (DVM), 42
data encapsulation, 70
data storage, 304-306
memory, 305
shared preferences, 304-305
using SQLite databases, 306
database management systems
(DBMS), databases and,
218-219
DatabaseExamples activity class, 238
databases
Contacts
adding data to, 228-231
contact providers, 220-221
and database management systems,
218-219
SQLite, 306
working with, content providers,
231-254
DBMS (database management
systems), databases and,
218-219
DDMS (Dalvik Debug Monitor Server),
28
default event handlers, 16
delButton, 249
Delete the Contact in the Database
button, 253
deleteContactButton, 249
deleteContactPhoneNumber() database
method, 249-250
desktop clocks, with XML markup,
47-48
Developer Tools options, 28

development environment components,
Android, 6
Device Administration API, security for
IT deployments, 306-307
Dialog class, 140, 144
Dialoglinterface, 143-144
dialogs, 140-145
AlertDialog class, 140-145
custom Dialog subclasses, 140
digital clock application, 266-269
sending intents, 271-273
user interface layout, 269-270
DigitalClock tag, 267, 285
DigitalClockActivity class, 270, 272,
289, 293
DigitalClockActivity.class, 272
DigitalClockActivity.java class, 266,

269-270
digital_clock.xml file, 267, 285-286,
290-291

dimens.xml file, 45
directory structure, of Android project,
43-45
common default resources folders,
44
values folder, 45
dismissDialog(int) method, 140
doawhile loop, 236
Download JDK button, 7
Downloads site, Java SE, 6
downShift() method, 72
Draw 9-patch startup screen, 171
Draw 9-patch utility, 170
draw9patch.bat file, 170-171
drawable folder, 44, 64, 167, 265
drawable package, 148-149
drawable subclasses, 149
implementing images, 148-149

DVM (Dalvik Virtual Machine), 42

Eclipse, example content provider
project in, 223-224
Eclipse IDE, 11-13
for Android development, 8

installing, 21-25
setting location of Android IDE,
30-31
Eclipse IDE Java editing pane, 135
Eclipse menu, 26, 31
Eclipse New Project dialog, 52
Eclipse Package Explorer pane, 55
Eclipse platform, example event
handling project in, 187-188
eclipse-SDK-3.5.2-win32-x86_64.zip
file, 37
Eclipse SDK, downloading, 7-8
Eclipse toolbar, 33
Eclipse .zip file, 22
eclipse.exe file, 23-24
EditText tag, 105, 285
else block, 206
else section, 247
emulators
overview, 33-34
running event handling examples
app in, 194
running frame-based animation in,
159
running menus in, 136
running timer application via,
294-295
event handling, 16
Event Handling Examples application,
187
event listeners, 16
event parameter, onKeyDown()
method, 201
event.handling package, 187
example_appwidget_info.xml file, 298
exampleListener variable, 186
.exe file type, 20, 22
explicit intents, 259-260
extends keyword, 75
Extensible Markup Language. See XML
external devices, 35
external memory, 305

“F

FaceDetector class, 308

Fields, defined, 69

File field, Eclipse, 161
FileOutputStream object, 305
fill_parent parameter, 48, 94

final keyword, 142

final method, 142

final variable, 142

findFaces(Bitmap bitmap, Facel] faces)

method, 307
findViewByld() method, 139, 170, 180,
290

finish() method, 273
focus concept, 16
focus control, 209-216
Java for, 214-215
setting availability, 216
XML for, 210-213
Folder field, Eclipse, 161
Folder name: field, Eclipse, 280
fps (frames per second), 151
frame-based animation, 151-159
controlling via Java language,
155-159
running in emulator, 159
Framelayout container, 108
FrameLayout subclass, 91
frames per second (fps), 151

WG

Galileo package, 7
Galileo version, Eclipse, 7
getApplicationContext() method, 292
getBackground() method, 156-157
getBaseContext() method, 283
getBroadcast() method, 291-292
getColumnindex() method, 236
getContentResolver() method, 240
getContentResolver().update() method,
247
getDrawable() method, 169
getExternalStorageState() method, 305
getintent() method, 84
getPreferences() method, 305
getReadableDatabase() method, 306
getResources() method, 170

getSharedPreferences(name), 305

getString() method, 236
getSystemService() method, 292
getText() method, 291
getWritableDatabase() method, 306
GIF (Graphics Interchange Format)
images, 151
Google Maps, 300-303
Google Search, 303-304
Graphical Layout tab, Eclipse, 175
graphics class, 155-157
graphics, defining multistate in XML,
116-117
Graphics Examples application, 152
Graphics Interchange Format (GIF)
images, 151
graphics resources, 147-181
animation, 151-166
frame-based, 151-159
tween, 160-166
bitmap images, 149-151
JPEG and GIF images, 151
PNG images, 150
drawable package, 148-149
drawable subclasses, 149
implementing images, 148-149
NinePatch bitmap custom scalable
images, 170-176
playing video in apps, 176-181
Java language for, 178
VideoView class objects,
176-178
transitions, 166-170
graphics.examples package, 152, 155
graphics.java file, 155, 164, 169, 178
graphics.java tab, Eclipse, 155

half-size video graphics array (HVGA),
15, 147

HandlerExample.java file, 199

HandlerExamples activity, 187

HandlerExamples class, 196

HandlerExamples keyword, 189

HandlerExamples.java file, 188-194,
196, 204, 207
HandlerExamples.java tab, Eclipse, 193
handling events, via View class, 184
hardware, Smartphone, 18
Hello Android World, Here | Come!
Value field, 59
hello variable, 58-59
Hello World example application
adding icon to, 61-66
adding transparency, 62
standard sizes for, 63-66
application files for, 55-58
MyHelloWorld activity, 56
strings resource file, 58
Ul definition, 56-58
creating Android project, 52-54
launching Eclipse, 51
running app, 60-61
setting variable value in strings.xml,
59-60
Hello.World package, 53, 56, 77, 86
HelloWorldAndroid folder, 55
High-resolution icon, 63
hint attribute, 285
history, of Android, 2-3
HVGA (half-size video graphics array),
15, 147

i variable, 293

IBinder interface, 278

ICar interface, 76

icon files, 61

icon.png files, 62, 64

icons, 61-66
adding transparency to, 62
standard sizes for, 63-66

id attribute, 267, 274-275

ID attribute
Button tag, 202, 211, 286
EditText tag, 285

IDE (integrated development

environment), 19-39

on 64-bit computing platforms, 36
ADT, installing, 2629
Android SDK
installing, 25-26
updating, 31-33
AVDs, 33-35
emulators, 33-34
external devices, 35
Eclipse IDE, 11-13
installing, 21-25
setting location of Android IDE,
30-31
Java SE and JRE, installing, 20-21
if condition, 206
if statement, 235
if-then-else loop, 205
image object, 139, 142
image1.png file, 265, 267
ImageButton class, 116-126
button1.xml file, 119-122
defining multistate graphics in XML,
116-117
Eclipse Ul project, 117-118
editing main.xml file, 123-124
replacing default background,
124-126
ImageButton tag, 123, 127
images
implementing in drawable package,
148-149
NinePatch bitmap custom scalable,
170-176
Images content provider, 222
image.setimageResource(R.drawable.i
mage1) code, 144
image_transition.xml file, 166, 170
ImageView object, 128-129, 136, 139,
144
ImageView source imagery, 127
ImageView tags, 109, 127-128, 170,
177
ImageView Ul object, 138
implements keyword, 76, 187
implicit intents, 260-261
import android.os.Bundle statement,
270

import android.view.MotionEvent
statement, 178

import android.widget.Button;
statement, 191

import statements, 56, 78, 135, 144,
196, 232, 239, 271, 287, 290

importing, 42

inflate() method, 134

information technology (IT)
deployments, security for,
306-307

inheritance, 75-76

initialLayout attribute, 299

initialLayout XML file, 299

Install dialog, 27

Install Selected button, 32

integrated development environment.
See IDE

Intent class, 272, 278

<intent-filter> tag, 87, 260, 303

intent filters, 17

Intent object methods, 84-85, 87

Intent objects, 17, 84-85

intent resolution, 17

IntentExamples Activity class, 277

IntentExamples class, 270-271

IntentExamples.java class, 262, 271,

282
intent.filters package, 261, 263, 278,
287

intents, 255-295
description of, 255-256
and intent filters, 17
intent resolution, 259-261
explicit intents, 259-260
implicit intents, 260-261
messaging via intent objects,
256-259
Service class, 274-284
creating, 277-281
MediaPlayer application
functionality, 281-282
using intents with, 274-277
using with Activity classes, 261-273
using with broadcast receivers, timer
application, 285-295

Intents and Intent Filter Examples
application, 261

Intents class, 17

Inter-Android communication, 18

interactive television (iTV), 1

interactivity, of applications, 16

interfaces, in OOP, 76-77

internal memory, 305

isFocusable() method, 216

isFocusablelnTouchMode() method,
216

isRouteDisplayed() method, 302

IT (information technology)
deployments, security for,
306-307

item implementations, 136-139

item Menultem, 139

item tags, 117, 120, 129, 155, 167

iTV (interactive television), 1

d

Java code, inflating menu structure via,
134-135
Java Development Kit (JDK), 7
Java directory, 6
Java EE (Java Platform, Enterprise
Edition), 7
Java import command, 115
Java keyword class, 71
Java language
controlling animation via
frame-based, 155-159
tween, 164-166
for focus control, 214-215
for onCreateContextMenu() method,
204-209
for onKeyUp() and onKeyDown()
methods, 199-201
for playing video in apps, 178
Java Platform Enterprise Edition (Java
EE), 7
Java Platform Standard Edition (Java
SE), 6, 20-21
Java Runtime Environment (JRE), 20-21
Java SDK, downloading, 6-7

Java SE and JRE (Java Runtime
Environment), installing, 20-21

Java SE Downloads section, Oracle, 6

Java SE (Java Platform, Standard
Edition), 6, 20-21

java.io package, 5

Java's AnalogClock, 47

jdk-6u21-windows-i586.exe file, 20

JDK icon, 20

JDK (Java Development Kit), 7

JPEG (Joint Photographic Experts
Group) images, 151

JPG file, 48

JRE (Java Runtime Environment), 20-21

K

keyCode parameter, onKeyDown()
method, 201
KEYCODE_ENTER constant, 201

oL

Layout classes, Padding values with,
11-112

Layout containers, 14-15

layout folder, 44

Layout tab, Eclipse, 202, 264, 275-276

layout_below parameter, 105

layout_height parameter, 110

layout_width parameter, 110

LENGTH_LONG constant, 288

LinearLayout app, 102-103, 139
LinearLayout class, 93-103
LinearLayoutActivity.java file,
viewing, 101-102
main.xml file
editing, 98-99
updating, 100
project in Eclipse, 95-98
running LinearLayout app, 102-103
strings.xml file, editing, 99-100
LinearLayout object, 139
LinearLayout project, 98, 104
LinearLayout subclass, 91
LinearLayout tag, 57, 165, 192, 212

Download from Wow! eBook <www.wowebook.com>

LinearLayoutActivity.java file, 101-102

listening, 183-184

location-based services, 299-300

Location field, 27

LocationManager instance, 300

LocationManager system service,
299-300

LocationProviders, 300

logo_animation XML file, 156

logo_animation.xml file, 153, 156-157,
159

logo_animation.xml tab, Eclipse, 154

LongClick event, 202

mainmenu object, 134
mainmenu.xml file, 131
main.xml editing window, 175
main.xml file, 192-193
editing, 98-99, 123-124
updating, 100
main.xml pane, Eclipse, 276
main.xml tab, Eclipse, 192, 202, 264
makeText() method, 206, 236, 288, 293
managedQuery() method, 235
<manifest> tag, 86-87
MapActivity class, 302
Maps, Google, 300-303
MapView class, 300, 303
MapView control, 302
MapView interface, 302
MapView methods, 300
MapView object, 300
MapView tag, 302
MapView Ul element, 302
MapView zoom controls, 303
Margin values
with View and Layout classes,
111112
in ViewGroup class, 112-113
markup tags, XML, 13
MediaPlayer application functionality
overview, 281-282
running, 283-284
start and stop buttons, 282-28

MediaPlayer class, 309
MediaPlayerService class, 276,
279-281
MediaPlayerService.class, 283
MediaPlayerService.java class, 277
MediaRecorder class, 309-310
MediaStore.Audio.AlboumColumns
interface, 221
MediaStore.Audio.ArtistColumns
interface, 222
MediaStore.Audio.AudioColumns
interface, 222
MediaStore.Audio.GenresColumns
interface, 222
MediaStore.Audio.PlaylistsColumns
interface, 222
MediaStore.Images.ImageColumns
interface, 222
MediaStore.MediaColumns interface,
222
MediaStore.Video.VideoColumns
interface, 222
Medium-resolution icon, 64
memory, 305
Menu button, 230, 242
menu folder, 44
menu.add() method, 205
Menulnflater code, 137
Menultem class, 138, 204
MenuObject, 139
menus, 129-139
defining item string values, 131-134
item implementations, 136-139
running in emulator, 136
structure
creating with XML, 130-131
inflating via Java, 134-135
menu.setHeaderTitle() method, 205
messaging via intent objects, 256-259
<meta-data> tag, 304
methodNameExample() method, 72
milliseconds (ms), 155
MIME (Multipurpose Internet Mail
Extensions) types, 258-259
Min SDK Version, 53
Min SDK Version field, 97, 119, 261

mindtaffy.m4a file, 280-281

minHeight attribute, 298

miniature applications, 18

Minimum SDK Version field, 187, 223

minWidth attribute, 298

Misc section, Eclipse, 264

modButton Button object, 244, 249

Modifiers field, 278, 287

Modify the Contact in the Database
button, 253

modifyPhoneButton, 243

modifyPhoneNumber() method,
244-247, 251

MotionEvent event, 157

moveToFirst() method, 235

mqCur cursor object, 235-236

mqCur object, 235

ms (milliseconds), 155

Multipurpose Internet Mail Extensions
(MIME) types, 258-259

multistate graphics, defining in XML,
116-117

myContact ContentValues object, 240

myContact object, 239-240

myContacts Uri object, 235

MyGoogleMap activity, 301

MyGoogleMap application, 303

MyGoogleMap class, 302

MyGoogleMap.java activity, 302

MyHelloWorld activity class, 56

myMediaPlayer variable, 281

myname string variable, 235-236

myname variable, 236

mynumber string variable, 235-236

MySQL Lite database, 18

MySQL RDBMS database, 219

name attribute, 60, 78, 288

Name Conflict dialog box, 266

Name field, 263, 278, 287

navigation, 16

NegativeButton, 143

nesting View objects, ViewGroup class,
90-91

New Android Project dialog box, 54-55,
58, 96, 118, 151, 223, 262,
269-270

New Android XML dialog box, Eclipse,
161

New Contact option, 230

New File dialog box, 153, 166

New Java Class dialog box, 277-278,
287

new keyword, 74, 272

new media resources, 14

New Project dialog, 52

newGear variable, 72

newName variable, 240

newNumber data variable, 240

newPhone phone number string
variable data, 240

newPhoneNumber ContentValues
object, 247

newPhoneNumber object, 247

nextFocus attribute, 212

nextFocusDown attribute, 212

nextFocusLeft attribute, 212

nextFocusRight attribute, 212

NinePatch bitmap custom scalable
images, 170-176

NinePatchDrawable class, 170, 175

non-final image, 142

NotificationManager class, 83

numberDecimal constant, 285

wo

Object class, 89, 93
object hierarchy, 69
object-oriented programming. See OOP
OHA (Open Handset Alliance), 2-3
onBind() method, 278
onClick event, 231-233, 238, 244
onClick() event handler, 195, 271, 282
onClick handler, 186, 194, 196
onClick Listener objects, adding to
activities, 187-194
example event handling project in
Eclipse platform, 187-188
HandlerExamples.java file, 188-194

main.xml file, 192-193
running event handling examples
app in emulator, 194
onClick() method, 185-194
adding onClick Listener objects to
activities, 187-194

example event handling project in

Eclipse platform, 187-188
HandlerExamples.java file,
188-194
main.xml file, 192-193
running event handling examples
app in emulator, 194
implementing onClickListener
objects for Ul elements, 186
OnClickListener interface, 186-187,
189-190, 196, 233
OnClickListener keyword, 190
OnClLickListener() method, 143-144
onClickListener objects, implementing
for Ul elements, 186
onClick(View v) handler, 186
onContextltemSelected() method,
204-205
onContextMenu event, 204, 214
onCreate() method, 56, 81, 94, 156,
186, 201, 270, 274, 290, 306
onCreateContextMenu() method,
202-209
Java for, 204-209
XML for, 202-203
onCreateDialog(int) method, 140
onCreateOptionsMenu() method, 134
onDestroy() method, 274, 282-283
onFocusChange() method, 185
onFocusChanged() method, 216
onKey event, 198, 214
onKey() method, 185, 204
onKeyDown event, 198, 204
onKeyDown handler, 199, 201
onKeyDown() method, 198-201
Java for, 199-201
XML for, 199
onKeyListener interface, 198
onKeyUp event, 198

onKeyUp() method, 198-201
Java for, 199-201
XML for, 199
OnLongClick event, 195
onLongClick handler, 196
onLongClick() method, 185, 195-198
OnLongClickListener interface, 196
onNewlintent() method, 84
onOptionsltemSelected() method,
137-139, 142
onReceive()method, 287
onReceive() method, 287-288
onSavelnstanceState(Bundle
savedInstanceState) method,
93
onStarCall() method, 75
onStart() method, 84, 274, 281-283
onTouch handler, 195
onTouch() method, 185, 195
onTouchEvent() method, 157, 184
OOP (object-oriented programming),
68-78
classes in, 70-74
inheritance in, 75-76
interfaces in, 76-77
packages in, 77-78
terminology, 69-70
Open 9-patch menu item, 172
Open Handset Alliance (OHA), 2-3
open source, defined, 2
Open Source Graphics Language
(OpenGL) application
programming interface (ES 1.0
API), 5, 18, 307-308
Open with option, 80
openFileOutput() method, 305
OpenGL (Open Source Graphics
Language) ES 1.0 API, 5, 18,
307-308
openTop() method, 75
OPERATION parameter, 292
option menus, 15
Oracle's Java software, 20
os statement, 78

N

Package Explorer, Eclipse, 55, 155,
161-162, 166, 187, 194, 266,
277, 280

package keyword, 77

Package name field, 53, 97, 118, 187,
223, 261, 278, 287

Packages and Archives panel, 32

packages, in OOP, 77-78

Padding values, 111-112

parse() method, 180

parselnt() method, 291

People table, 240, 252

People. CONTENT_URI table, 235

People.NAME column, 236

People.NAME database, 229-230, 240

People.NUMBER database, 229-230,
236, 247

People.Phones. CONTENT_DIRECTOR,
240

People.Phones. TYPE, 247

People. TYPE_MOBILE, 247

Permissions tab, 226

PKZIP, 22

Platform drop-down menu, 36

plug-ins, Android, 13

PNG (Portable Network Graphics)
images, 150

PositiveButton, 143

preferences, shared, 304-305

prepare() method, 310

preview mode, Eclipse, 175

primitive data types, 304

priority attribute, 260

private method, 235

Project name, 223

Project name field, 96, 118, 187, 261

Project name folder, 53

project/res/drawable folder, 148, 172,
174

project/res/raw folder, 150

project's /res/drawable folder, 117

Properties tab, Eclipse, 264-265

<provider> tag, 222

public keyword, 77

public method, 92

put() method, 240

=a

quarter VGA (QVGA), 147

Query Contacts Database button, 253

queryButton, 233

queryContactPhoneNumber() method,
233-234, 239

QVGA (quarter VGA), 147

raw folder, 44, 150, 280-281

read() method, 304

Real Time Clock (RTC), 292

receiver tag, 86, 288, 298

red parameter, 79

Refresh option, folder context menu,

265
registerForContextMenu() method, 204,
214

RelativeLayout class, 91, 104-108
<RelativeLayout> tag, 104
RelativeLayout XML tag, 109
release() method, 310
replacePhone data variable, 247
/res/anim folder, 153, 160-162
/res/anim/text_animation.xml file, 164
/res/drawable-dpi folder, 62
res/drawable folder, 131, 148, 153, 155,
160, 166, 175

/res/drawable-hdpi, 49, 61
/res/drawable-Idpi, 49, 61
/res/drawable-mdpi, 49, 61
/res/drawables directory, 166
/res folder, 44, 49, 148, 188
/res/layout folder, 192, 266
/res/raw folder, 280
res/values folder, 45-46, 131
reset() method, 310
resolution, intent, 259-261

explicit, 259-260

implicit, 260-261
<resource_name>-<config_qualifier>

form, 49

<resources> tags, 60, 78-79

RESULT_OK constant, 273

R.layout.main text, 56

RTC (Real Time Clock), 292

RTC_WAKEUP constant, 292

Rubin, Andy, 2

Run as Administrator context menu
item, 171

runtime, 20, 41

WS

savedInstanceState object, 92-93
scalable images, NinePatch bitmap,
170-176
screen layout design
defining with XML
LinearLayout class, 93-103
Margin values, 112-113
Padding and Margin values,
111-112
Padding values, 112
RelativeLayout class, 104-108
setting up, 92-93
SlidingDrawer class, 108-111
overview, 14-15
View class hierarchies, 89-91
screen sizes, and XML markup, 47
screenName parameter, 305
SDKs (Software Development Kits),
downloading, 5-9
Android SDK, 8-9
Eclipse SDK, 7-8
Java SDK, 6-7
Search function, 242
Search, Google, 303-304
<searchable> tag, 304
search_label string, 304
SearchManager class, 303
security, for IT deployments, 306-307
security permissions, content providers,
224-228
Select the root element for the XML file
section, Eclipse, 162
selector tag, 117, 120

Service class, 274-284
creating, 277-281
MediaPlayer application functionality
overview, 281-282
running, 283-284
start and stop buttons, 282-283
using intents with, 274-277
service tag, 86, 274, 276-277, 288
services, 82
set() method, 291-293
<set> tag, 162
setAudioChannels() method, 310
setBackgroundResource() method, 139
setBuiltinZoomContols() method, 302
setCamera() method, 310
setCancelable(false) method, 143
setClass(Context, Class) method, 260
setComponent() method, 260
setContentResolver().delete() method,
252
setFocusable() method, 216
setFocusablelnTouchMode() method,
216
setimageDrawable() method, 170
setimageResource() method, 139
set.Listener() method, 185
setLooping() method, 281
setMediaController() method, 180
.setMessage() method, 143
setNegativeButton() method, 143
setOnClickListener() method, 186-187,
191, 233, 249, 283, 290
setOrientation(integer) method, 94
setOutputFile() method, 310
setPositiveButton() method, 143
setResult() method, 273
setText() method, 198
settings.getString(), 305
setVideoURI() method, 180
shared preferences, 304-305
SharedPreferences class, 304-305
shiftGears() method, 72-73
show() method, 144, 206, 288
showDialog(int) method, 140
showimage1 name field, 133
sizes, for icons, 63-66

SlidingDrawer class, expanding Ul,
108-111

Smartphone hardware, 18

Software Development Kits,
downloading. See SDKs,
downloading

SoundPool class, 308-309

source code (vsrc) folder, 44

Source folder field, 263, 277, 286

Source tab, Eclipse, 162

speed variable, 73

SQLite databases, 306

SQLiteDatabase_Query method, 306

SQLiteOpenHelper class, 306

/src/event.handling folder, 188

/src folder, 155, 188

start and stop buttons, MediaPlayer
application functionality,
282-283

start() method, 157, 180, 281

startActivityForResult() method,
android.content.Intent class,
272

startAnimation() method, 165

startButton tag, 275

startService() method, 283

startTransition(milliseconds) method,
170

state_focused=true, 117

state_pressed=true, 117
stop() method, 282
stopService() method, 283
<string> tags, 60, 78-79
string values, menu item, 131-134
strings.xml file

editing, 99-100

setting variable value in, 59-60
styles.xml file, 45
super keyword, 75, 92
Superclass field, 278, 287
Suv class, 75
switch statement, 139, 144
switch structure, 137
switch(item.getltemld()) method, 139

=T

Technology Network section, Java
directory, 6

text label, 264

text_animation.xml file, 161-164, 166

textareaone string variable, 100
textareatwo string variable, 100
textColor attribute, 267
text.setText() method, 196
textSize attribute, 264, 267
textUpdate() method, 201
TextView attribute, 192
TextView class, 90, 126-128
TextView elements, 95, 98
TextView label, 90
TextView object, 98, 105
TextView tag, 57-58, 104, 127, 231,
248, 264
TextView widget, 126, 192
timer application
configuring AndroidManifest.xml file
<receiver> tag, 288-289
creating broadcast receiver,
286-288
creating user interface via XML,
285-286
implementing intent, 289-294
running via emulator, 294-295
timerAlert() method, 289-291, 293
TimerBroadcastReceiver class, 288,
291, 293
TimerBroadcastReceiver tab, Eclipse,
288
TimerBroadcastReceiver.java class, 292
Toast class, 206, 287
Toast menu, 209
Toast message, 246
Toast notification, 246
Toast Ul widget, 234
Toast widget, 206, 236
Toast.LENGTH_LONG constant, 293
Toast.makeText() method, 206, 247
top attribute, 286
toString() method, 291
touch mode, 16
TowLightOn() method, 75

<transition> tag, 167
TransitionDrawable class, 166
transitions, 166-170
transparency, adding to icons, 62
TRIGGER TIME parameter, 292
turnWheel() method, 73-74
tween animation, 160-166

controlling via Java language,
164-166
text_animation.xml file, 161-164

TYPE parameter, 292

Ul events, 16
Ul (User Interface) design, 115-145

u

common elements, 115-128
ImageButton class, 116-126
ImageView tags, 127-128
TextView class, 126-127

design of, 15

dialogs, 140-145
AlertDialog class, 140-145
custom Dialog subclasses, 140

expanding with SlidingDrawer class,

108-111

menus, 129-139

defining item string values,
131-134

item implementations, 136-139

running in emulator, 136

structure, 130-135

(User Interface) events, 183-216

callback methods, 184-185

controlling application focus,

209-216
Java for, 214-215
setting availability, 216
XML for, 210-213
creating via XML, timer application,
285-286
handling, 183-184
layout for digital clock application,
269-270
listening for, 183-184
onClick() method, 185-194

onCreateContextMenu() method,
202-209
Java for, 204-209
XML for, 202-203
onKeyUp() and onKeyDown()
methods, 198-201
Java for, 199-201
XML for, 199
onLongClick() method, 195-198
onTouch() method, 195
Uniform Resource Identifier (URI), 17,
180
updatePeriodMillis value, 298-299
upShift() method, 72
Uri object, 240-241
URI (Uniform Resource ldentifier), 17,
180
Use default location option, 53
User Interface design. See Ul design
User Interface events. See Ul events
<uses-feature> tag, 307
<uses-library> tag, 301
Uses Permission entry option, 226
uses-permission tag, 225, 227, 301
Uses Permission type option, 227
<uses-sdk> tag, 87

=y

Validate context menu item, 155
Validate option, 122
Validate procedure, 281
values folder, 44-45
variables, setting value in strings.xml,
59-60
video, playing in apps, 176-181
Java language for, 178
VideoView class objects, 176-178
VideoView class, 148, 176-178
VideoView widget, 180
View class, handling events via, 184
View classes
hierarchies, 89-91
Margin values in, 111-112
Padding values with, 111-112
View content, 81

view groups, 14
View objects, 14-15, 89-91, 104, 297,

=X, Y

300 XML editing pane, Eclipse, 155
PR XML (Extensible Markup Language)
and Android Framework, 78-79

view variable, 290
view.getContext() method, 272

ViewGroup, 300 creating menu structure with,
ViewGroup classes 130-181 - -
Margin values in, 112-113 creating Ul via, timer application,
overview, 90-91 285286 -
ViewGroup objects, 14, 92 defining multistate graphics in,
ey 116-117

View.OnCLickListener interface, 185
View.OnFocusChange interface, 185 .
View.OnKeyListener interface, 185 LinearLayout class, 93-103

View.OnLongClickListener interface, Margin values, Mﬂ
185 Padding and Margin values,

. . . 111-112
View.OnTouchListener interface, 185 —
1ew u ' ! - Padding values, 112

Views List, Eclipse, 264 .
<vintent-filter> tag, 87 RelativeLayout class, 104-108

Virtual Devices option, 33 setting up, 92-93
Vcl,i: keyw\grd 71Fi7|2 - SlidingDrawer class, 108-111

defining screen layout design with

void method, 239 for focus control, 210-213 A
vsrc (source code) folder, 44 for on;g;eathgontextMenu() method,

for onKeyUp() and onKeyDown()

.w methods, 199

web site, Android Developers, 8 xml folder, 44
. XML markup, 46-48
What type of resource would you like to R
. . for applications, 13-14
create? section, Eclipse, 161 desktop clocks with. 4748
while() condition, 235 P RS

. . . and screen sizes, 47
wide V|d$27graph|cs array (WVGA), 15, xmins:android attribute, 86
widgets, 297-299
WinZip extractor, 22 .Z
wrap_content attribute, 123 .
wrap_content parameter, 48 zip files, 22, 25
write() method, 305 ZoomTool control, 302
WRITE_CONTACTS, 225
WVGA (wide video graphics array), 15,

147

Android Apps for
Absolute Beginners

-_—

Wallace Jackson

Apress:

Android Apps For Absolute Beginners
Copyright © 2011 by Wallace Jackson

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any
means, electronic or mechanical, including photocopying, recording, or by any information
storage or retrieval system, without the prior written permission of the copyright owner and the
publisher.

ISBN-13 (pbk): 978-1-4302-3446-3
ISBN-13 (electronic): 978-1-4302-3447-0
Printed and bound in the United States of America (POD)

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

President and Publisher: Paul Manning

Lead Editor: Matthew Moodie

Technical Reviewer: Kunal Mittal

Editorial Board: Steve Anglin, Mark Beckner, Ewan Buckingham, Gary Cornell, Jonathan
Gennick, Jonathan Hassell, Michelle Lowman, Matthew Moodie, Jeff Olson, Jeffrey
Pepper, Frank Pohlmann, Douglas Pundick, Ben Renow-Clarke, Dominic Shakeshaft,
Matt Wade, Tom Welsh

Coordinating Editor: Corbin Collins

Copy Editors: Marilyn Smith, Sharon Terdeman, Tracy Brown

Compositor: MacPS, LLC

Indexer: BIM Indexing & Proofreading Services

Artist: April Milne

Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media, LLC., 233 Spring
Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit waw.springeronline.com.

For information on translations, please e-mail rights@apress.com, or visit waw.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or
promotional use. eBook versions and licenses are also available for most titles. For more
information, reference our Special Bulk Sales-eBook Licensing web page at
www.apress.com/info/bulksales.

The information in this book is distributed on an “as is” basis, without warranty. Although every
precaution has been taken in the preparation of this work, neither the author(s) nor Apress shall
have any liability to any person or entity with respect to any loss or damage caused or alleged to
be caused directly or indirectly by the information contained in this work.

The source code for this book is available to readers at www.apress.com. You will need to answer
questions pertaining to this book in order to successfully download the code.

mailto:orders-ny@springer-sbm.com
http://www.springeronline.com
mailto:rights@apress.com
http://www.apress.com
http://www.apress.com/info/bulksales
http://www.apress.com

Download from Wow! eBook <www.wowebook.com>

In loving memory of all of our wonderful furry companions who graced our lives with
unconditional love for decades here on our ranch in the La Purisima State Historic Park on the
Point Conception Peninsula in Northern Santa Barbara County.

Contents

Contents at a Glance............ccouvemmmsmmsmsmssmmsmms s —————
About the AUthOr..........cccmnmmmmnnmmmssssnssssss s sssns s ssnsssssnsssssnsssssnnnnssnnnnnss X
About the Technical REVIEWETcoussemsssssmsmsssmsssssnsssssnsssssasssssasssssanssssanssssannnss Xi
Acknowledgments...........ccccsmnsmmmsssmsmsssnsmsssssmsssnsssssssssssssssssnssssssnssssanssssansnnssnnes Xil
Introduction..........cccvsrnmmnss s —————————— K]

Chapter 1: Preliminary Information: Before We Get Startedccccnnieeennn 1
Some History: What IS ANdroid? ... 2
Advantage Android: How Can Android Benefit Me?
The Scope of This Book

What's Covered....................

Eclipse ..
Android SDK

RS0 131 T P
Chapter 2: What’s Next? Our Road Aheadccoussemmmssamsmsssmsssssnsssssnnnnnnnns 11
Your Android Development IDEcooeernreeeceneeeeese e e seeeens 11

Java, XML, and How Android Works
The Android Application Framework
SCIEEN LAYOUL DESIGNceeeececececeeeccrcre e e e sess s e e e e e s s e e e e e e e e e ne e ne s e s e s e neae e e e e e et ee e nennnanann
User Interface Designc.c.cccu...
Graphics and Animation Design....
Interactivitycocoeeeeererererenennennes
Content Providers

RRElIRIRRI

SUMMANY ..o ...18
Chapter 3: Setting Up Your Android Development Environment 19
Installing Java, EClipse, and ANArOidoceecercrercecre e e e sasas e eenens 19

Java SE and JRE: Your Foundation for Application Developmentcoooooeoorencrcnrerenereseeee s 20

CONTENTS

Eclipse IDE: The Development ENVIFONMENTcoc oo nnan 21
Android SDK: The Android Tool Kit for EClIPSE......ccveviviririmnenssssssiissssss s 25
Android Development Tool: Android TOOIS fOr EClIPSEcueueueeecccrcrerereresesssese e sssssnenens 26
The Android Environment Within EClIPSE ... 30
Updating the ANArOid SDKcoeoeeeeeieieceeceerceere e e e sesssssss e ee e se e e e e e s e s e e e e se e e e e e e sasassnsnsnssnens 3
Setting Up AVDs and Smartphone CONNECLIONS..........ccocceecrereeerereresseseeeseere e se e se e e sennas 33
AVDs: SMartphone EMUIALOrS ... 33
USB Smartphone Drivers: EXTErNal DEVICES........cococeceererererererererseeeeesesesesesesesesesesesesssssssssssssssssssssssssesesesssans 35
Developing on 64-Bit Computing PlatfOrms.........ccocoe e 36
1011111 38
Chapter 4: Introducing the Android Software Development Platform........... 41
Understanding Java SE and the Dalvik Virtual Machineg ..o 42
The Directory Structure of an Android PrOJECToeoe e e 43
Common Default ReSOUICES FOIUETS.......c.ciuiiininiiiniiis s 44
THE ValUES FOIUENccciiiirirttt s s 45
Leveraging Android XML (Your Secret WeapOoNn)cuuvecsrmsrenisismssssssmsssssssssmssssssssssssssssss s sssessssssssssesens 46
SCreen SizeS " 47
Desktop ClOCKScccouerrerenissssreseiscnnnns A7
Using Your Android Application Resources... .48
Bitmap Images.......c.ccccvurene. .48
Alternate Resource Folders............cuvrnnnninninessnenennnnes .49
Launching Your Application: The AndroidManifest.xml File... .50
Creating Your First Android Application...........cccooeeeeeeeiercncncns .51
Launching EClipSe......c.coeererererererurnnnns .51
Creating an Android Project...........c.coceveueneee .52
Inspecting and Editing the AppliCation Filesoeeeererererereeeseeercscrcre e 55
Setting a Variable Value in STringS.XMI ... 59
10T T R (3T Y T 60
Adding an APPlICALION ICONcovrveeeeiereeece e e e e se e e s e e e e ee e e e e e nanansnsnns 61
1011111 65
Chapter 5: Android Framework OVerviewccucesssssssssssssssssssssssssssssnssnsans 67
The Foundation 0f OO0P: THE ODJECLccoceeeeeeeeeeereee e 68
0] LI 010 S =T 1T o] o 69
The Blueprint for an ODJECE: THE ClASS.......coceeeerererererererereee e e sese e e e e e sas s s enenens 70
Providing Structure for Your Classes: INNEITANCE ... 75
Defining @n INTEITACE ..o ————— 76
Bundling Classes in a Logical Way: The PACKAGEcececrerererererarsrarseeeseescsesesesesesesesssssssesssessssseseeesesesesene 77
AN OVEIVIEW OF XIMIL....cuiuiseriiussssrssiissssss st st 78
The Anatomy of an Android Application: The APK File ... e esenenes 79
Android Application COMPONENTS...........cccreeeeererere e e e e se e e se e e e s s s ssse e e e e nenean 80
Android Activities: Defining the Ulc.cc......... 81
Android Services: Processing in the Background............. .82
Broadcast Receivers: Announcements and Notifications . .82
Content Providers: Data Management.................... .83
Android Intent Objects: Messaging for Components....... .84
Android Manifest XML: Declaring Your Components85
1011111 87

Chapter 6: Screen Layout Design: Views and Layoutscccccsssunnssssansnnsas 89

Android View Hierarchies
Using the View Class
Nesting Views: Using the ViewGroup Class

Defining Screen Layouts: USING XMLccoeoeeerueeeeerccc oo ee e e e e e ssss s se e s sesssansnssssssasaens
Setting Up for YOUr SCreen LAYOUL..........c.cococeceeeeeeeeee e e e
USING LINEAE LAYOULS........ceccererererereseneeeeseseeeecsesesesesesessses e e e s e e e se e e e e e e s snsssese e e s s e s essaesesesansnans 93
USING REIAIVE LAYOULS.......cccocerereeerereeeeeeesseeee e e e e e e e sssssse e se e e e e s se e e e e e e e ee e e e e nesenann 104
Sliding Drawers: EXPanding YOUE Ulc.cocouoeeererreeceecrcseseeesesesesessssssssesesesesesesesesesesesesessssssssssssssssssssssenes 108
Using Padding and Margins with Views and Layouts
Setting Padding in VIEWSccccoerrmnmrmrenereneseeeeeeeenes
Setting Margins in ViewGroups

Chapter 7: Ul Design: Buttons, Menus, and Dialogscccsussssnnnsnsssnnnnnnnns 11
USiNG COMMON UL EIBMENTS........cooeieieeeiececccccceesese e e sesssss s e e e e e se e e e e s s e ne e se e sesesasanansnssssseas
Adding an Image Button to Your Layout
Adding a Text to Your Layout
Adding an Image...........
Using Menus in Android
Creating the Menu Structure With XML.........cooeerrrrreeeecerererere e
Defining Menu EM SEHNGScocoveeeereeeeereeeecr e se e sa s e e se e e nennan
Inflating the Menu Structure via Java..........ccoeeeerererereesenesenerescsese e
Running the Application in the Android Emulator
MaKiNG the MENU WOTK........ceeeeereeeeeeeeereee e e e e e e se e e e sasas s se e e e e e e se e e e e nenennan
AQAING DIAI0GScueeeerererererararseueseesesesereseresesesessssssssessssseeesesesesesesesssessssesesesesesssasasaesesese st sesessssnsnsesesessssnssssssses
Using Custom Dialog Subclasses
Displaying an Alert Dialog

Using Bitmap Images in Android...
PNG IMagesccoceeeeeerererenene
JPEG @NA GIF IMAJESeceeecuceenecercreneresesesssssseeeese e e e sesesesese s s s s s ae s s esssssssssssssssssssssssssnsnsnssenes

Creating AniMation iN ANAIOI0oueueueecccee e e se e e e e e e e e e s anansnnnannnas
Frame-based or Cel 2D ANIMALIONoeeereeeeereeeeee e se e se e ne e e sannenan
Tween Animation iN ANAIOIMcceeeeeeecrere e rere s e e e e e e e e e e s e e e e e asanansssennanas

USING TFANSIHIONSceeecececrererererereres e ee e e e e e e e e e e sasss e e e e e e e e e e e e e e seseeaese e e ne e e e e e ee e sesenesanas s e ananaeas

Creating 9-Patch Custom SCalable IMAQES.........coeeeerererererermreereresesere e seseseseses s se e sesesesesassessneaeas

Playing Video in Your Android Apps

CONTENTS

vii

CONTENTS

Handling Ul Events via the VIEW Class ... sssssssssssses 184
Event CallDack METNOMScccocieimrerirerieeeirieeee e e e se e e e e e e 184
Handling ONCICK EVENTS ..o ssssaens 185
Implementing an onClick Listener for @ Ul EIEMENt..........ccovnmmnss s 186
Adding an onClick Listener to an Activity in ANAroidcocoeoeieecncececrerereeesse e 187
Android Touchscreen EVENtS: ONTOUCK..........couiriinmncnsnsniniisis s sssses 195
Touchscreen’s Right-Click Equivalent: onLONGCICK.........couvrimrininmsmsmsnnenssssssssss s 195
Keyboard Event Listeners: onKeyUp and 0nKEYDOWNccooeurerurueeccereresesesesesssssssseseeseseseesesesesesssssssssssaeas 198
Adding the XML for Keyboard EVENTS...........ccumurmneninmmsnmnisinissssssissssssssssssssssss s sesssssssssesssssssssssssssass 199
Adding the Java for Keyboard EVENLS ... sssssseas 199
Context Menus in Android: onCreateConteXtMENU ... 202
Adding the XML for CONTEXE MENUScecucceecrecrcrere e e eeseeseseseseseses s s e s sesesesasesssssssssnsaeas 202
Adding the Java for CONTEXE MENUScccoceeeeeeeereeeeere e se s 204
Controlling the FOCUS i ANAFOId...........c.cererueueeeecesere e 209
Adding the XML for FOCUS CONIOL ..o e e e e e e e se e e e e sssseas 210
Adding the Java for FOCUS CONTIOL.........cccceeeeeeeerererere e e e e e se s e e 214
Setting FOCUS AVAIIADIITY ..ot 216
B0 131 T PP 216

An Overview of Android COntent ProVIiderS ... sessssssssssssssssssenes 217
Databases and Database Management SYStEMS.........cvvnncn s ———— 218

Android Built-in Content Providerscoveeuee219
Defining @ Content Provider ... w222
Creating the Content Providers Example Project in Eclipse.. ...223
Defining Security Permissions.........c.coeererererereneneccnenencnes 224
Adding Data to the Contacts Database ... 228
Working with @ Database ... ——————————— 231
Querying a Content Provider: Accessing the CONteNtcoe e 231
Appending to a Content Provider: Adding New CONteNt............co oo 237
Modifying Content Provider Data: Updating the Content ... 243
Removing Content Provider Data: Deleting CoNtentc.oeoe e 248
L1111 111 253
Chapter 11: Understanding Intents and Intent Filters...............cccsieeniinennnnns 255
WHat IS @N INTENTZ ...t s 255
Android Intent Messaging via INtent ODJECESoerererceececc e 256
Intent Resolution: Implicit Intents & EXPlCIt INTENTSeoererereeeee s 259
EXPICIE INTENES ..o ——————— 259
IMPICHE INTENTS ... ———————— 260
Using Intents with ACHIVItIES ... 261
Writing the Digital ClOCK ACHVITY........c.cceceeeccrcrere e e 266
Wiring up the Application..............269
Sending INtents........oveverenncns 271
Android Services: Data Processing in its OWN Class........coocvurmnnnmnmnin s 274

Using Intents with Services R 274
Creating @ SEIVICE.couuiuririisssis it 277
Implementing Our MediaPlayer FUNCHONSocceeceeccre e snnan 281
Wiring the Buttons t0 the Service ... " 282

RuNNiNg the APPIICALION.......cocieeeeeee et ne e e e nnan 283
Using Intents with BroadCast RECEIVELScocoeeeeercrerererereree e e e e 284
Creating the Timer USer INterface Via XMLc.coooeererererereeceeseesescse e e seses s e e e e e sesese e e sesesesesnas 285
Creating a Timer BroadCast RECEIVEc.oueerueuceceereerere e e ses e e se e s nenannnnan 286
Configuring the AndroidManifest.xml file <reCEIVEr> Tag........cvrurururrerererererererere e seseneas 288
IMpIeMEenting OUF INTENT ..o e ne e s 289
Running the Timer Application via the Android 1.5 EMUIALOXcoeeoceiececeeeee e 294
L1111 111 o 295
101 (gl P) T T (1 ——". ! | |
Widgets: Creating Your Own Widgets in ANAroidcceceeoencncecseneresesesesssseseee e e seseseses e sesesens 297
Location-Based Services in ANArOid ... 299
GO0QIE MAPS N ANAIOIMc.ceeererererereeeeueeeeccreeesesesesesesasssssssese e e e e e e e e sesssessnsesese e e e e e et aesenesesesesasanansnsnnsaeas 300
Google Search in ANAIOId ..o —————— 303
Data Storage in ANArOid..........cveiesiiriiiminir i ——————— 304
Shared PrefBreNCES ...t bbb 304
INEEINEAI MBMOIY..c..oceiit b 305
EXTEINEAI MBIMOIY ...ttt bbb 305

USING SALILE.....cueeccceeeere oo se e eeeeens ...306
Device Administration: Security for IT DEpIOYMENTS..........ou oo se e senenens 306

Using the Android Camera Class to control a Camera..... .. 307
3D Graphics: Using OpenGL ES 1.x in Android................. ...307

FaceDetector308
SoundPool308
MediaRecorder309
L1111 111 310

T - .. 3 | |

CONTENTS

About the Author

Wallace Jackson is the CEO of Mind Taffy Design, a new media content design
and production company founded in 1991. Mind Taffy specializes in leveraging
free for commercial use open source technologies to provide an extremely
compact data footprint, royalty-free, digital new media advertising and
branding campaigns for the leading international brands and manufacturers
worldwide.

Wallace has been pushing the cutting edge of i3D and Rich Media
Application Design via viral digital content deliverables, using under 512KB of
Total Data Footprint, for over two decades. He has worked for leading
international brands to create custom new media digital campaigns for
industry-leading companies, including brand marketing, PR, product demonstration, digital
signage, e-learning, AdverGaming, logo design, and end-user training for top Fortune 500
companies.

He has produced new media projects in a number of digital media "verticals" or content
deliverable areas, including: interactive 3D [i3D], Rich Internet Applications (RIA) content
production, virtual world design, user interface (UI) design, user experience (UX) design,
multimedia production, 3D modeling, sound design, MIDI synthesis, music composition, image
compositing, 3D animation, game programming, mobile application programming, BrandGame
creation, website design, CSS programming, data optimization, digital imaging, digital painting,
digital video editing, special effects, morphing, vector illustration, IPTV Programming, iTV
application design, interactive product demos, and tradeshow multimedia.

Wallace has created new media digital campaigns for leading international branded
manufacturers, including Sony, Samsung, Tyco, Dell, Epson, IBM, Mitsubishi, Compaq, TEAC,
KDS USA, CTX International, ADI Systems, Nokia, Micron, ViewSonic, OptiQuest, SGI, Western
Digital, Sun Microsystems, ProView, Sceptre, KFC, ICM, EIZO, Nanao, Digital Equipment [DEC],
TechMedia, Pacific Digital, ArtMedia, Maxcall, Altrasonic, DynaScan, EZC, Smile, Kinoton
GMBH, and many others.

Wallace holds an MSBA post-graduate degree in Marketing Strategy from USC, an MBA
degree in Management Information Systems Design and Implementation from the USC Marshall
School of Business, and a Bachelor's degree in Business Economics from UCLA Anderson School
of Management. He is currently the #2 ranked All Time Top Expert on LinkedIn, out of more than
90,000,000 executives that use that social media business web site.

About the Technical
Reviewer

Kunal Mittal serves as an Executive Director of Technology at Sony Pictures
Entertainment, where he is responsible for the SOA, Identity Management, and
Content Management programs. He provides a centralized engineering service
to different lines of business and leads efforts to introduce new platforms and
technologies into the Sony Pictures Enterprise IT environment.

Kunal is an entrepreneur who helps startups define their technology
strategy, product roadmap, and development plans. Having strong relations
with several development partners worldwide, he is able to help startups and
even large companies build appropriate development partnerships. He
generally works in an advisor or consulting CTO capacity, and serves actively in
the project management and technical architect functions. He has authored and edited several
books and articles on J2EE, cloud computing, and mobile technologies. He holds a Master's
degree in Software Engineering and is an instrument-rated private pilot.

Acknowledgments

My sincere thanks go to:

Matthew Moodie, my lead editor, for his patience and thoughtful guidance in shaping this
first edition of Android Apps for Absolute Beginners. Matthew, thanks for guiding me as a new
Apress author, and I look forward to future collaborations with you.

Kunal Mittal, my esteemed technical reviewer, for his hard work and insightful suggestions
in shaping this edition of the book.

Steve Anglin, my acquisitions editor, for bringing me into the Apress family to write this
book. I wouldn’t have done it at all if it were not for you!

Dominic Shakeshaft, editorial director, for overseeing the editorial process while I wrote. I
appreciate your help with the higher-level issues involved.

Corbin Collins, my coordinating editor, for listening to all of my miscellaneous and sundry
problems during the writing of this book and helping to get them all sorted out.

Marilyn Smith, Sharon Terdeman, and Tracy Brown, my copy editors, for their excellent
editing and book-polishing skills and for all the great suggestions for making this a fantastic
Android book.

My Editorial Board, including Steve Anglin, Mark Beckner, Ewan Buckingham, Gary Cornell,
Jonathan Gennick, Jonathan Hassell, Michelle Lowman, James Markham, Matthew Moodie, Jeff
Olson, Jeffrey Pepper, Frank Pohlmann, Douglas Pundick, Ben Renow-Clarke, Dominic
Shakeshaft, Matt Wade, and Tom Welsh, for making sure this is the best book for beginners about
the esteemed open source Android operating system.

The many loved ones and clients who patiently awaited my return to i3D content production
from the “professional sidetracker” commonly known as writing a programming book.

	Cover
	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	The Target: The Programming Neophyte
	The Weapon: Android, the Innovative Mobile Code Environment
	How This Book Is Organized
	The Formula for Success
	Required Software, Materials, and Equipment
	Operating System and IDE
	Software Development Kits
	Dual Monitors

	Preliminary Information: Before We Get Started
	Some History: What Is Android?
	Advantage Android: How Can Android Benefit Me?
	The Scope of This Book
	What’s Covered
	What’s Not Covered

	Preparing for Liftoff: SDK Tools to Download
	Java
	Eclipse
	Android SDK

	Summary

	What’s Next? Our Road Ahead
	Your Android Development IDE
	Java, XML, and How Android Works
	The Android Application Framework
	Screen Layout Design
	User Interface Design
	Graphics and Animation Design
	Interactivity
	Content Providers
	Intents and Intent Filters
	The Future of Android
	Summary

	Setting Up Your Android Development Environment
	Installing Java, Eclipse, and Android
	Java SE and JRE: Your Foundation for Application Development
	Eclipse IDE: The Development Environment
	Android SDK: The Android Tool Kit for Eclipse
	Android Development Tool: Android Tools for Eclipse
	The Android Environment Within Eclipse

	Updating the Android SDK
	Setting Up AVDs and Smartphone Connections
	AVDs: Smartphone Emulators
	USB Smartphone Drivers: External Devices

	Developing on 64-Bit Computing Platforms
	Summary

	Introducing the Android Software Development Platform
	Understanding Java SE and the Dalvik Virtual Machine
	The Directory Structure of an Android Project
	Common Default Resources Folders
	The Values Folder

	Leveraging Android XML (Your Secret Weapon)
	Screen Sizes
	Desktop Clocks

	Using Your Android Application Resources
	Bitmap Images
	Alternate Resource Folders

	Launching Your Application: The AndroidManifest.xml File
	Creating Your First Android Application
	Launching Eclipse
	Creating an Android Project
	Inspecting and Editing the Application Files
	Setting a Variable Value in strings.xml
	Running the App
	Adding an Application Icon

	Summary

	Android Framework Overview
	The Foundation of OOP: The Object
	Some OOP Terminology
	The Blueprint for an Object: The Class
	Providing Structure for Your Classes: Inheritance
	Defining an Interface
	Bundling Classes in a Logical Way: The Package

	An Overview of XML
	The Anatomy of an Android Application: The APK File
	Android Application Components
	Android Activities: Defining the UI
	Android Services: Processing in the Background
	Broadcast Receivers: Announcements and Notifications
	Content Providers: Data Management

	Android Intent Objects: Messaging for Components
	Android Manifest XML: Declaring Your Components
	Summary

	Screen Layout Design: Views and Layouts
	Android View Hierarchies
	Using the View Class
	Nesting Views: Using the ViewGroup Class

	Defining Screen Layouts: Using XML
	Setting Up for Your Screen Layout
	Using Linear Layouts
	Using Relative Layouts
	Sliding Drawers: Expanding Your UI
	Using Padding and Margins with Views and Layouts
	Setting Padding in Views
	Setting Margins in ViewGroups

	Summary

	UI Design: Buttons, Menus, and Dialogs
	Using Common UI Elements
	Adding an Image Button to Your Layout
	Adding a Text to Your Layout
	Adding an Image

	Using Menus in Android
	Creating the Menu Structure with XML
	Defining Menu Item Strings
	Inflating the Menu Structure via Java
	Running the Application in the Android Emulator
	Making the Menu Work

	Adding Dialogs
	Using Custom Dialog Subclasses
	Displaying an Alert Dialog

	Summary

	An Introduction to Graphics Resources in Android
	Introducing the Drawables
	Implementing Images
	Core Drawable Subclasses

	Using Bitmap Images in Android
	PNG Images
	JPEG and GIF Images

	Creating Animation in Android
	Frame-based or Cel 2D Animation
	Tween Animation in Android

	Using Transitions
	Creating 9-Patch Custom Scalable Images
	Playing Video in Your Android Apps
	Adding a VideoView Object
	Adding the Java for Video

	Summary

	Adding Interactivity: Handling UI Events
	An Overview of UI Events in Android
	Listening for and Handling Events
	Handling UI Events via the View Class
	Event Callback Methods

	Handling onClick Events
	Implementing an onClick Listener for a UI Element
	Adding an onClick Listener to an Activity in Android

	Android Touchscreen Events: onTouch
	Touchscreen’s Right-Click Equivalent: onLongClick
	Keyboard Event Listeners: onKeyUp and onKeyDown
	Adding the XML for Keyboard Events
	Adding the Java for Keyboard Events

	Context Menus in Android: onCreateContextMenu
	Adding the XML for Context Menus
	Adding the Java for Context Menus

	Controlling the Focus in Android
	Adding the XML for Focus Control
	Adding the Java for Focus Control
	Setting Focus Availability

	Summary

	Understanding Content Providers
	An Overview of Android Content Providers
	Databases and Database Management Systems
	Android Built-in Content Providers

	Defining a Content Provider
	Creating the Content Providers Example Project in Eclipse
	Defining Security Permissions
	Adding Data to the Contacts Database

	Working with a Database
	Querying a Content Provider: Accessing the Content
	Appending to a Content Provider: Adding New Content
	Modifying Content Provider Data: Updating the Content
	Removing Content Provider Data: Deleting Content

	Summary

	Understanding Intents and Intent Filters
	What Is an Intent?
	Android Intent Messaging via Intent Objects
	Intent Resolution: Implicit Intents & Explicit Intents
	Explicit Intents
	Implicit Intents

	Using Intents with Activities
	Writing the Digital Clock Activity
	Wiring up the Application
	Sending Intents

	Android Services: Data Processing in its own Class
	Using Intents with Services
	Creating a Service
	Implementing Our MediaPlayer Functions
	Wiring the Buttons to the Service
	Running the Application

	Using Intents with Broadcast Receivers
	Creating the Timer User Interface via XML
	Creating a Timer Broadcast Receiver
	Configuring the AndroidManifest.xml file <receiver> Tag
	Implementing our Intent
	Running the Timer Application via the Android 1.5 Emulator

	Summary

	The Future
	Widgets: Creating Your Own Widgets in Android
	Location-Based Services in Android
	Google Maps in Android
	Google Search in Android
	Data Storage in Android
	Shared Preferences
	Internal Memory
	External Memory
	Using SQLite

	Device Administration: Security for IT Deployments
	Using the Android Camera Class to control a Camera
	3D Graphics: Using OpenGL ES 1.x in Android
	FaceDetector
	SoundPool
	MediaRecorder
	Summary

	Index
	Special Characters and Numbers
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X, Y
	Z

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

