
■ INTRODUCTION 

xxii 

 Anybody can start building simple apps for the Android platform, and this 
book shows you how. Android Apps for Absolute Beginners takes you 

through the process of getting your first Android applications up and running, 
using plain English and practical examples. It cuts through the fog of jargon 
and mystery that surrounds Android application development and gives you 
simple, step-by-step instructions to get you started. 

This book teaches Android application development in language anyone can 
understand, giving you the best possible start in Android development. It pro-
vides clear examples that make learning easy, allowing you to pick up the con-
cepts without fuss. And it offers clear code descriptions and layout so that you 
can get your apps running as soon as possible.

What you’ll learn:
• How to get both yourself and your computer set up for Android app 
 development. 
• How to use the Eclipse programming environment to make your 
 Android development efficient and straightforward. 
• How to build simple apps in clear steps and get them working 
 immediately. 
• How to style your application so that it looks great.
• How to make the most of the Android’s touchscreen. 
• Ways to use shortcuts and cheat sheets to create apps the easy way. 
• The basics of Java and XML to let you move on to advanced apps. 

If you have a great idea for an Android app but have never programmed before, 
then this book is for you. You don’t need any previous computer programming 
skills—as long as you have a desire to learn, and you know which end of the 
mouse is which, the world of Android app development awaits. Android Apps 

for Absolute Beginners
Wallace Jackson

Get started building your very own
Android apps

Android Apps 



■ INTRODUCTION 

xxii 

For your convenience Apress has placed some of the front 
matter material after the index. Please use the Bookmarks 

and Contents at a Glance links to access them. 

D
ow

nl
oa

d 
fr

om
 W

ow
! e

B
oo

k 
<

w
w

w
.w

ow
eb

oo
k.

co
m

>



 

iv 

 

Contents at a Glance 

Contents .............................................................................................................. v 

About the Author ................................................................................................. x 

About the Technical Reviewer ........................................................................... xi 

Acknowledgments ............................................................................................ xii 

Introduction ..................................................................................................... xiii 

■Chapter 1: Preliminary Information: Before We Get Started ........................... 1

■Chapter 2: What’s Next? Our Road Ahead ..................................................... 11

■Chapter 3: Setting Up Your Android Development Environment ................... 19

■Chapter 4: Introducing the Android Software Development Platform ........... 41

■Chapter 5: Android Framework Overview ..................................................... 67

■Chapter 6: Screen Layout Design: Views and Layouts .................................. 89

■Chapter 7: UI Design: Buttons, Menus, and Dialogs .................................... 115

■Chapter 8: An Introduction to Graphics Resources  in Android ................... 147

■Chapter 9: Adding Interactivity: Handling UI Events ................................... 183

■Chapter 10: Understanding Content Providers ............................................ 217

■Chapter 11: Understanding Intents and Intent Filters ................................. 255

■Chapter 12: The Future ................................................................................ 297

Index ............................................................................................................... 311



 

xiii 

 

Introduction 

Over the last two years, Google’s Android operating system (OS) has gone from a virtually 
unknown open source solution to the current mobile OS market leader among all mobile 
handsets, with over one-third of the market share, and it’s still climbing rapidly. Android has even 
started to dominate the tablet OS marketplace, and is also the foundation for the popular iTV OS 
known as GoogleTV. There seems to be no end in sight for Android’s rocketing success, which is 
great news for owners of this book. 

I’ve heard a great many people say, “I have a really phenomenal idea for a smartphone 
application! Can you program it for me!?” Rather than sit back and code all of these applications 
for everyone, I thought it might be a smarter idea to write a book about how an absolute beginner 
could code an Android application using open source tools that cost nothing to download and 
that are free for commercial use, and then leverage that new found knowledge to reach their 
dream of making their application idea a revenue-generating reality. 

Thanks to open source and Google’s Android development environment, Oracle’s Java 
programming Language, Linus Torvald’s Linux operating system, the Eclipse code editing 
software, and this book, vaporizing a software product out of thin air, and at no production cost 
other than your PC and “sweat equity,” is now a complete reality. 

The Target: The Programming Neophyte 
As you may have inferred from the title, this book assumes that you have never programmed 
before in any programming language. It is written for someone who has never written a single 
line of code before, and who is thus unfamiliar with object-oriented programming (OOP) 
languages such as Oracle’s Java and mark-up languages such as XML. Both of these open source 
languages are used extensively in creating Android applications. 

There are lots of Java and Android books out there, but all of these books assume you have 
programmed before, and know all about OOP. I wanted to write a book that takes readers from 
knowing absolutely nothing about programming or knowing how to install a Software 
Development Kit (SDK) and Integrated Development Environment (IDE) all the way to being 
able to program Android applications using Java and XML. 

The Weapon: Android, the Innovative Mobile Code 
Environment 
Android is my Internet 2.0 development weapon of choice, because it allows me to develop highly 
advanced applications for the primary Internet 2.0 devices, including the main three where 
revenue potential is by far the greatest: 



■ INTRODUCTION 

 

 

xiv 

• Smartphones 

• Tablets 

• iTV or Interactive Television 

The other reason I place my bets on Android is because it is open source, and thus free from 
royalties and politics. I do not have to submit my Android application to any company and ask 
permission to publish it, as long as it is not harmful in any way to others. For this reason, and due 
to the free for commercial use nature of open source software, there is little external risk involved 
in developing an application for the Android Platform. 

How This Book Is Organized 
Because this is a book for absolute beginners, we start at the very beginning, showing where to 
download and how to install the various Android, Java, and Eclipse environments, as well as how 
to configure these environments and how to set them up for application development and 
testing. This in itself is no easy task, and must be done correctly, as these tools provide the 
foundation for all of our Android development, debugging, and testing for the remainder of the 
book. 

Next I will provide you with an overview of where Android came from, why, how, and when 
Google acquired it, and how it is uniquely structured among software development platforms. I 
will introduce XML, Java, OOP, and Android concepts soon after that, as well as cover how 
Android manages its screen layout. We will then move these concepts into use in later chapters in 
the second half of the book; these chapters explain the most important concepts in Android in 
their most logical order as they pertain to applications development. 

In that second half of the book, we’ll start getting into developing a user interface (UI), as that 
is the front-end or interface for your user to your Android application. Soon after we'll cover how 
your UI talks to your application via events processing. To spice up your application’s visual 
appearance, we’ll get into graphics, animation, and video, and then get into even more advanced 
topics after that, such as databases and communications. 

Finally we will look at some of the advanced features of Android that you will want to visit 
after finishing the book; these are topics that are too advanced for a first book on Android but 
which provide some of the coolest features in smartphone development today. 

We’ll walk you through all of these topics and concepts with screenshots of the IDE and 
visual examples and then take you though step-by-step examples reinforcing these concepts. 
Sometimes we will repeat previous topics to reinforce what you have learned and apply these 
skills in new ways. This enables new programmers to re-apply development skills and feel a sense 
of accomplishment as they progress.  

The Formula for Success 
Learning to develop an Android application is an interactive process between you and the tools 
and technologies (Eclipse, XML, Java, Android, and so on) that I cover in this book. Just like 
learning to play a sport, you have to develop skills and practice them daily. You need to work 
through the examples and exercises in this book, more than once if necessary to become 
comfortable with each concept. 

Just because you understand a concept that doesn’t necessarily mean you will know how to 
apply it creatively and use it effectively; that takes practice, and ultimately will happen when the 
“ah-ha” moment occurs, when you understand the concept in context with the other concepts 
that interconnect with it.  

You will learn quite a bit about how Android works from this introductory book. You will 
glean a lot of insight into the inner working of Android by working through all of the exercises in 
this book. But you will also learn new things not specifically mentioned in this book when you 
compile, run and debug your programs. Spending time experimenting with your code and trying 



■ INTRODUCTION 

 

 

xv 

to find out why it is not working the way you want, or trying to add new features to it, is a learning 
process that is very valuable. 

The downside of debugging is it can sometimes be quite frustrating to the new developer. If 
you have never wanted to put a bullet in your computer monitor, you will soon. You will question 
why you are doing this, and whether you are savvy enough to solve the problem. Programming 
can be very humbling, even for the most experienced of developers. 

Like an athlete, the more you practice, the better you will become at your skill. You can do 
some truly amazing things as an Android programmer. The world is your oyster. It is one of the 
most satisfying accomplishments you can have, seeing your app in the Android App Store. 
However, there is a price, and that price is time spent practicing your coding.  

 
Here is our formula for success: 

• Trust that you can pull it off. You may be the only one who says you can’t 
do this. Don’t tell yourself that. 

• Work through all the examples and exercises in this book, twice if 
necessary, until you understand them. 

• Code, code some more, and keep coding – don't stop. The more you code, 
the better you’ll get. 

• Be patient with yourself. If you were fortunate enough to have been a star 
pupil who can memorize material simply by reading it, this will not happen 
with Java and XML coding. You are going to have to spend lots of time 
coding in order to understand what is happening inside the OS. 

• Whatever you do: DON’T GIVE UP! 

Required Software, Materials, and Equipment  
One of the great things about Java, Android and Eclipse is they are available in both 32-bit and 64-
bit versions on the three primary operating systems in use today: 

• Windows 

• Mac 

• Linux 

The other great thing about Java, Android and Eclipse is that they are free. You can download 
Android at http://developer.android.com/SDK/. For equipment, any modern computer will do. 
Fortunately they are only $250 to $500 brand new on www.PriceWatch.com and an OS such as 
SUSE Linux is free and an amazing development operating system. SUSE Linux V11 can be 
downloaded at www.OpenSUSE.com and is currently at version 11.4 and very stable. 

Operating System and IDE 
Although you can use Android on many platforms, the Eclipse integrated development 
environment (IDE) that developers use to develop Android apps is most commonly used on an 
Intel-based Windows or Linux PC. The Eclipse IDE is free and is available on the Internet at 
www.eclipse.org. The operating system should be Windows XP or later or SUSE Linux 11.4 or later 
to run Eclipse most effectively. 

http://developer.android.com/SDK/
http://www.PriceWatch.com
http://www.OpenSUSE.com
http://www.eclipse.org


■ INTRODUCTION 

 

 

xvi 

Software Development Kits 
You will need to download the Eclipse IDE from Eclipse and the Android SDK from Google. This 
is available at http://developer.android.com/SDK/. 

Dual Monitors 
It is highly recommended that developers have a second monitor connected to their computer. It 
is great to step through your code and watch your output window and Android emulator at the 
same time on dual, independent monitors. Today’s PC hardware makes this easy. Just plug your 
second monitor in to the second display port of any Intel-based PC or laptop, with the correct 
display port adapter, of course, and you’re able to have two monitors working independently 
from one another. Note it is not required to have dual monitors. You will just have to organize 
your open windows to fit on your screen if you don’t. 

 

http://developer.android.com/SDK/


 

 

1 

1 

   Chapter 

Preliminary Information: 
Before We Get Started 
This chapter introduces the Android operating system, giving you a little background 
information to put things into perspective. We’ll visit just how expansive this platform 
has become in today’s Internet 2.0 environment of portable consumer electronic 
devices. Internet 2.0 here refers to the consumption of the Internet over a wide variety of 
different types of data networks using highly portable consumer electronic devices, 
including smartphones, tablets, e-book readers, and even new emerging consumer 
electronic products such as interactive television (iTV). 

As this is an introductory book on the subject, not all of the advanced new media-
related areas, such as 3D and video streaming, will be covered. Some specifics of what 
the book will and will not cover are outlined in this chapter.  

At the end of the chapter, you’ll learn which tools you need to obtain in order to develop 
for the Google Android platform, with instructions on how to download them. 

Those of you who already recognize the significance of the Android revolution and know 
which tools are needed to develop Android applications development may want to skip 
this chapter. However, may be some tidbits in here that could spawn development ideas 
—so skip along at your own risk! 

Just a bit of fair warning: developing reliable applications for Android is not in any way a 
trivial task. It takes a fair amount of knowledge of both high-level programming 
languages such as Java and markup languages like XML. Building useful and engaging 
new media applications also requires a deep knowledge of related new media 
technologies such as 2D imaging, 3D rendering, audio processing, video streaming, 
GPS localization, and database design.  

Don’t expect to learn all of this at one sitting. Becoming a top-notch Android 
programmer will take years of dedication and practice, as well as diligent research and 
trial and error. In this book, you will gain the foundation that you need to build future 
expertise, as well as learn the work process for eventually building your Android 
masterpeice. 

1 



CHAPTER 1:  Preliminary Information: Before We Get Started 2 

Some History: What Is Android? 
Android was originally created by Andy Rubin as an operating system for mobile 
phones, around the dawn of this twenty-first century. In 2005, Google acquired Android 
Inc., and made Andy Rubin the Director of Mobile Platforms for Google. Many think the 
acquisition was largely in response to the emergence of the Apple iPhone around that 
time; however, there were enough other large players, such as Nokia Symbian and 
Microsoft Windows Mobile, that it seemed like a salient business decision for Google to 
purchase the talent and intellectual property necessary to assert the company into this 
emerging space, which has become known as Internet 2.0. 

Internet 2.0 allows users of consumer electronics to access content via widely varied 
data networks through highly portable consumer electronic devices, such as 
smartphones, touchscreen tablets, and e-books, and even through not so portable 
devices, such as iTVs, home media centers, and set-top boxes. This puts new media 
content such as games, 3D animation, digital video, digital audio, and high-definition 
imagery into our lives at every turn. Android is one of the vehicles that digital artists will 
leverage to develop media creations that users have never before experienced. 

Over the past decade, Android has matured and evolved into an extremely reliable, 
bulletproof, embedded operating system platform, having gone from version 1.0 to 
stable versions at 1.5, 1.6, 2.0, 2.1, 2.2, 2.3, and, recently, 3.0. An embedded operating 
system is like having an entire computer on a chip small enough to fit into handheld 
consumer electronics, but powerful enough to run applications (commonly known as 
apps). 

Android has the power of a full-blown computer operating system. It is based on the 
Linux open source platform and Oracle’s (formerly Sun Microsystems’s) Java, one of the 
world’s most popular programming languages.   

NOTE: The term open source refers to software that has often been developed collaboratively by 

an open community of individuals, is freely available for commercial use, and comes with all of 
the source code so that it can be further modified if necessary. Android is open source, though 
Google develops it internally before releasing the source code; from that point on, it is freely 

available for commercial use. 

It is not uncommon for an Android product to have a 1GHz processor and 1GB of fast, 
computer-grade DDR2 memory. This rivals desktop computers of just a few years ago 
and netbooks that are still currently available. You will see a further convergence of 
handheld operating systems and desktop operating systems as time goes on. Some 
examples are the Windows Mobile 7 and iPhone 4 mobile platforms. 

Once it became evident that Android and open source were forces to be reckoned with, 
a number of major companies—including HTC, Samsung, LG Electronics, and T-
Mobile—formed and joined the Open Handset Alliance (OHA). This was done in order to 
put some momentum behind Google’s open source Android platform, and it worked. 



CHAPTER 1:  Preliminary Information: Before We Get Started 3 

Today, more brand manufacturers use Android as an operating system on their 
consumer electronic devices than any other operating system. 

This development of the OHA is a major benefit to Android developers. Android allows 
developers to create their applications in a single environment, and support by the OHA 
lets developers deliver their content across dozens of major branded manufacturer’s 
products, as well as across several different types of consumer electronic devices: 
smartphones, iTV sets, e-book readers, home media centers, set-top boxes, and 
touchscreen tablets. Exciting possibilities—to say the least. 

So, Android is a seasoned operating system that has become one of the biggest players 
in computing today, and with Google behind it. Android uses freely available open 
source technologies such as Linux and Java, and standards such as XML, to provide a 
content and application delivery platform to developers as well as the world’s largest 
consumer electronics manufacturers. Can you spell O-P-P-O-R-T-U-N-I-T-Y? I sure can 
... it’s spelled ANDROID. 

Advantage Android: How Can Android Benefit Me? 
There are simply too many benefits of the Android platform to ignore Android 
development.  

First of all, Android is based on open source technology, which was at its inception not 
as refined as paid technologies from Apple and Microsoft. However, over the past two 
decades, open source software technology has become equally as sophisticated as 
conventional development technologies. This is evident in Internet 2.0, as the majority of 
the consumer electronics manufacturers have chosen Linux and Java over the Windows 
and Macintosh operating systems. Therefore, Android developers can develop not only 
for smartphones, but also for new and emerging consumer electronic devices that are 
network-compatible and thus available to connect to the Android Market. This translates 
into more sales onto more devices in more areas of the customer’s life, and thus more 
incentive to develop for Android over closed and PC operating systems. 

In addition to being free for commercial use, Android has one of the largest, wealthiest, 
and most innovative companies in modern-day computing behind it: Google. Add in the 
OHA, and you have more than a trillion dollars of megabrand companies behind you 
supporting your development efforts. It seems too good to be true, but it’s a fact, if you 
are an Android developer (which you are about to be, in about a dozen chapters). 

Finally, and most important, it’s much easier to get your Android applications published 
than those for other platforms that are similar to Android (I won’t mention any names 
here to protect the not so innocent). We’ve all heard the horror stories regarding major 
development companies waiting months, and sometimes years, for their apps to be 
approved for the app marketplace. These problems are nearly nonexistent on the open 
source Android platform. Publishing your app on Android Market is as easy as paying 
$25, uploading your .apk file, and specifying free or paid download. 



CHAPTER 1:  Preliminary Information: Before We Get Started 4 

The Scope of This Book 
This book is an introduction to developing applications on Android. It’s intended for 
absolute beginners—that is, people who have never created an application on the 
Android platform for a consumer electronic device. I do not assume that you know what 
Java is or how XML works.  

What’s Covered 
This book covers the basic and essential elements of Android development, including 
the following: 

 The open source tools required to develop for this platform 

 Where to get these free tools 

 How to properly install and configure the necessary tools for 
applications development 

 Which third-party tools are useful to use in conjunction with the 
Android development tools 

 Which operating systems and platforms currently support 
development for the Android using these tools 

 The concepts and programming constructs for Java and XML, and 
their practical applications in creating Android applications 

 How Android goes about setting up an Android application 

 How it defines the user interfaces 

 How it writes to the display screen 

 How it communicates with other Android applications 

 How it interfaces with data, resources, networks, and the Internet 

 How it alerts users to events that are taking place inside and 
outside the application 

 How Android applications are published 

 How Android applications are ultimately sold, downloaded, and 
updated automatically through the Android Market 

Realize that Android has more than 44 Java packages that contain over 7,000 pieces of 
programming code functionality to allow you to do just about anything imaginable—from 
putting a button on the screen to synthesizing speech and accessing advanced 
smartphone features like the high-resolution camera, GPS, and accelerometer.   



CHAPTER 1:  Preliminary Information: Before We Get Started 5 

NOTE: A package in Java is a collection of programming utilities that all have related and 
interconnected functionality. For example, the java.io package contains utilities to deal with 
input and output to your program, such as reading the contents of a file or saving data to a file. 

Later chapters describe how to organize your own code into packages. 

What does this mean? It means that even the most advanced Android books cannot
cover the plethora of things that the Android platform can do. In fact, most books
specialize in a specific area in the Android APIs. There is plenty of complexity in each
API, which ultimately, from the developer’s viewpoint, translates into incredible creative
power. 

What’s Not Covered 
So, what isn’t covered in this book? What cool, powerful capabilities do you have to
look forward to in that next level book on Android programming?  

On the hardware side, we will not be looking at how to control the camera, access GPS
data from the smartphone, and access the accelerometer and gyroscope that allow the
user to turn the phone around and have the application react to phone positioning. We
will not be delving into advanced touchscreen concepts such as gestures, or accessing
other hardware such as the microphone, Bluetooth, and wireless connections. 

On the software side, we will not be diving into creating your own Android MySqLite
Database Structure, or its new media codecs for digital video and digital audio, and its
real-time 3D rendering system (called OpenGL ES). We will not be exploring speech
synthesis and recognition, or the universal language support that allows developers to
create applications that display characters correctly in dozens of international languages
and foreign character sets. We will not be getting into advanced programming such as
game development, artificial intelligence, and physics simulations. All of these topics are
better suited to books that focus on these complex and detailed topical areas. 

Preparing for Liftoff: SDK Tools to Download 
In Chapter 3, you’ll learn how to set up a complete Android development environment.
We'll  focus on Windows, because that's what I use to develop for Android, but the
process on Mac or Linux systems is similar, and I'll make sure you can follow along if
you prefer either of those systems.  

Here, we’ll look at where to go to download the tools you’ll need, so that you are ready
for action when the time comes to install and configure them. This is because each of
these development tools is hundreds of megabytes in file size, and depending on your
connection speed, may take anywhere from ten minutes to ten hours to download.  

D
ow

nl
oa

d 
fr

om
 W

ow
! e

B
oo

k 
<

w
w

w
.w

ow
eb

oo
k.

co
m

>



CHAPTER 1:  Preliminary Information: Before We Get Started 6 

There are three major components of an Android development environment: 

 Java 

 Eclipse 

 Android 

In Chapter 3, when you install and configure the packages you are downloading now, 
you will see that Eclipse requires the Java package to be installed in order to install and 
run. Therefore, we will walk through downloading them in the order of installation, from 
Java to Eclipse to Android. 

Java 
Let’s start with the foundation for everything we are doing, the Java Platform, Standard 
Edition (Java SE). Java SE contains the core Java programming language.  

To download Java SE, simply go to the Java SE Downloads section of Oracle’s web 
site, which is in the Technology Network section under the Java directory, at this URL: 

http://www.oracle.com/technetwork/java/javase/downloads/index.html 

Figure 1–1 shows the Java SE Downloads site. 

 

Figure 1–1. Download the Java SE JDK. 

http://www.oracle.com/technetwork/java/javase/downloads/index.html


CHAPTER 1:  Preliminary Information: Before We Get Started 7 

Click the Download JDK button to start downloading the Java SE Java Development Kit 
(JDK). Then choose your platform from the drop-down menu that appears, accept the 
license, and click the Continue button. You will be shown a link to the download that you 
selected. Click that link to start the download.  

NOTE: Make sure not to download Java Platform, Enterprise Edition (Java EE), JavaFX, or Java 

with NetBeans. 

Eclipse 
Eclipse is an integrated development environment (IDE), which is a piece of software 
dedicated to allowing you to more easily write programming code, and run and test that 
code in an integrated environment. In other words, you write all your code into its text 
editor, before running and testing that code using commands in Eclipse, without ever 
needing to switch to another program. 

Currently, Android requires the Galileo version of Eclipse (not Helios). You should 
download the version of Eclipse that supports Java—Eclipse IDE for Java Developers. 
Go to the Eclipse web site’s Downloads section at this URL: 

http://www.eclipse.org/downloads/packages/release/galileo/sr2 

Figure 1–2 shows the Galileo package you want to download. 

 

Figure 1–2. Choose to download the Eclipse IDE for Java Developers. 

http://www.eclipse.org/downloads/packages/release/galileo/sr2


CHAPTER 1:  Preliminary Information: Before We Get Started 8 

Click the link in the right-hand column that matches your system, and then choose the 
site from which to download. 

Android SDK 
The Android Software Development Kit (SDK) is a collection of files and utilities that 
work hand in hand with the Eclipse IDE to create an Android-specific development tool.  

To dowload the Android SDK, go to the Android Developers web site, located at this 
URL: 

http://developer.android.com/sdk/index.html 

Figure 1–3 shows the Android SDK packages available. Download the latest SDK for the 
platform you are using. 

 

Figure 1–3. Download the Android SDK. 

NOTE: We will walk through installing the other minor packages (shown on the left side of  
Figure 1–3) using Eclipse in Chapter 3. For now, you don’t need to worry about anything except 

downloading the main SDK. 

Once the Eclipse and Android SDKs are installed and configured, you can further 
enhance them by installing phone emulators and other add-ins, which are covered in 
Chapter 3. In that chapter, we will go through the detailed setup of the Eclipse IDE for 
Android development.  

Summary 
Andy Rubin’s creation called Android was purchased by Google in 2005 and made freely 
available to developers to create mobile device applications using Java and XML. Since 

http://developer.android.com/sdk/index.html


CHAPTER 1:  Preliminary Information: Before We Get Started 9 

then, the Android phenomenon has grown to encompass an open industry alliance of 
the leading manufacturers and become the fastest growing mobile platform today. It is 
the horse to bet on for the future of not only mobile devices, but also other types of 
consumer electronic devices, including tablets and iTV. 

What you will learn about in this book spans from how and where to get the Android 
development environment to how to set it up properly, how to configure it optimally, and 
how to use it to create applications that employ the powerful features of Android. 

The three basic components you’ll need for Android development are Java, Eclipse, and 
of course, Android. You can download these various components for free, as described 
in this chapter. Once the Android SDK is installed in Eclipse, that IDE becomes a 
comprehensive Android application development environment. 

The next chapter provides an overview of what you will learn in this book, and then we’ll 
get started with setup in Chapter 3. 



 

 

11 

11 

   Chapter 

What’s Next? 
Our Road Ahead 
Before getting into the details of Android development, we’ll take a look at our “road 

ahead.” This chapter provides an overview of what is covered in this book, and why it’s 

covered in the order we will cover it. 

You will see the logical progression throughout the book of how each chapter builds 

upon the previous ones. We’ll move from setting up the IDE in Chapter 3, to learning 

how Android works in Chapters 4 and 5, to adding exciting visuals and user interfaces 

(UIs) in Chapters 6 through 8, to adding interactivity and complexity in Chapters 9 

through 11. The final chapter inspires you to keep learning about the more advanced 

features of the Android platform. 

Your Android Development IDE 
In Chapter 1, you downloaded the Java SE, Eclipse, and Android SDK packages you 

need to build an environment for creating Android applications. In Chapter 3, you’ll learn 

how to set up the tools you’ll use throughout the rest of the book. You’ll do this by 

creating, step by step, from scratch, the very latest Android IDE out there—right on your 

very own development workstation. 

Note that part of this process must be done while online, so be sure to have your 

Internet connection active and firing on all cylinders. We’ll be connecting in real time, via 

Google’s Android Developers web site, to the latest Android application development 

tools, plug-ins, drivers, and documentation. 

Although it might seem that the setup of Java SE, Eclipse IDE, Android’s SDK, and an 

Android Virtual Device (an emulator that mimics the behavior of a real Android 

smartphone) is a topic too trivial for an entire chapter, that task is actually one of the 

most critical in this book. If your IDE does not work 100% perfectly, your code will not 

work 100% perfectly. In fact, without a robust and properly configured IDE, you may not 

be able to develop any code at all! 

2 



CHAPTER 2:  What’s Next? Our Road Ahead 12 

The Eclipse IDE is a sophisticated programming environment that features code 

highlighting, device emulation, logic tracing, debugging, and a plethora of other features. 

Figure 2–1 shows an example of working in Eclipse, and Figure 2–2 shows an Android 

Virtual Device in action. 

NOTE: An Android Virtual Device is an emulator that mimics the behavior of a real Android 

smartphone, as shown in Figure 2–2. 

 

Figure 2–1. The Eclipse IDE 



CHAPTER 2:  What’s Next? Our Road Ahead 13 

 

Figure 2–2. An Android Virtual Device (AVD) in action 

In Chapter 3, you will learn how to customize the Eclipse IDE with Android plug-ins, 

which will morph the tool into one tailored to the particular needs of an Android 

developer like you. As you will see, setting up this IDE for your specific development 

goals is not a trivial undertaking. 

Java, XML, and How Android Works 
As you’ll learn in Chapter 4, an Android application is “stratified.” Its functionality is 

spelled out in Java code, XML markup, and the Android manifest in a way that is truly 

unique. This adds a great deal of extensibility, or development flexibility, to applications. 

Android makes heavy use of an XML-based markup language to define the basic 

components of an application, especially its visual components. Markup is not 

technically code, but rather consists of tags, similar to the HTML tags web developers 

use to format their online documents. XML is used in Android to define everything from 

UIs to data access, and even programmatic constructs like Java object definitions and 

configurations.  

XML markup tags are easier for beginners to comprehend than a complex programming 

language like Java. For this reason, you’ll use XML throughout this book whenever 

possible, as Google recommends. Here, you’ll get a basic beginning knowledge of 



CHAPTER 2:  What’s Next? Our Road Ahead 14 

Android application development, yet this will still give you the ability to make your apps 

look very elegant and professional. I call it getting the maximum return on your 

investment, and XML makes this possible. 

The Android Application Framework 
By the time you reach Chapter 5, you’ll have built a rock-solid integrated Android 

software development environment and acquired a basic understanding of the 

components that make up an application development project (images, text, layout, 

buttons, code, audio, video, animation, XML, and so on). 

In Chapter 5, you’ll learn the unique lingo of Android application design—that is, what 

the various components of an Android application are called.  

I'll outline how Java programming code and XML, along with any new media resources, 

are compiled, compressed, and bundled into Android’s signature .apk file type (APK 

stands for Android PacKage), and how logical Android components talk to each other in 

an application. 

The chapter also provides an overview of Android activities, which define the user 

experience on the screen, and explains how they operate. You’ll learn about Android 

services as well, which run in the background, separate from the application’s activities, 

and provide the user with advanced functions through the UI. 

You’ll also take an initial look at broadcast receivers, which alert an Android application 

to events of interest, such as the activation of a camera on an Android device or an 

incoming phone call. In fact, your app can even send out its own broadcasts, if there is 

some reason to let other applications know of a change in state in one of your 

application’s data constructs. 

The chapter finishes up with a look at content providers, which are often databases filled 

with information, such as a contact list, that applications may want to access to provide 

functionality of their own. Android ships with a number of preconfigured content 

providers, and you can also write your own. 

Screen Layout Design 
By Chapter 6, you will have a better idea of how the Android operating system works 

internally, and how it wants to see applications put together. You’ll be ready to design 

graphics, UIs, and even user experiences for your applications.  

You’ll do all of this using screen constructs called views and view groups (grouped 

views) and flexible layout containers, which can all be nested within each other to create 

the UI your application needs. 

Chapter 6 explains how the display screen—the way most users interact with an Android 

application—is handled in Android with a mixture of Java code and XML markup that 

controls the hierarchy of View and ViewGroup objects and Layout containers. You can 



CHAPTER 2:  What’s Next? Our Road Ahead 15 

also extend these classes to create your own custom View objects and Layout 

containers when you need a more complex design. These containers ultimately hold the 

other visual and UI content in your application in its proper place, and thus are the 

foundation of your application design. You’ll want to learn these screen view and layout 

concepts thoroughly, as they are core to implementing everything else that Android can 

do. 

You’ll revisit XML yet again in this chapter, and learn how it allows you to define 

complex screen layouts and UI designs without writing a single line of Java code. You’ll 

learn about the different types of layout containers, and how each can be useful in 

different UI design scenarios, and even code a really cool application that is written 

almost completely with XML.  

User Interface Design 
In Chapter 7, we’ll start building usable UI designs, using the XML foundation of the 

previous chapters, via your screen layout and view control. 

We’ll cover the three main screen resolutions that you can design UIs for under Android 

and which options you have for providing high-, medium-, and low-resolution graphics 

to allow Android to fit your application to each major screen size. We’ll also cover the 

creation of standardized Android icons for use in your UI designs. 

Android has a large number of UI elements, such as buttons, text fields, radio buttons, 

check boxes, menus, alert dialogs, and all of those familiar controls that allow users to 

interface with application software. These items can be implemented both in Java and in 

XML. 

In Chapter 7, we’ll design and code a usable application. We’ll design views, layouts, 

and UI elements, as well as attach their XML design elements to Java code that 

performs some simple functions when the UI elements are used by the application’s 

users. 

We’ll look at the differences between option menus and context-sensitive menus, as 

well as submenus for both of these types of menu constructs. We’ll also review different 

types of dialog boxes, such as alert dialogs, progress dialogs, and dialogs for picking 

dates and times. 

Graphics and Animation Design 
In Chapter 8, we’ll start adding application media elements through images, video, and 

animation. These elements are key to making your application look great across all 

Android phones. 

The Android smartphone Active-Matrix Organic Light-Emitting Diode (AMOLED) half-size 

video graphics array (HVGA) and wide video graphics array (WVGA) screens on current 

products are impressive enough these days to allow some amazing experiences to be 

created, so this is where it starts to get interesting as far as the visuals are concerned. 



CHAPTER 2:  What’s Next? Our Road Ahead 16 

In Chapter 8, we’ll explore the following: 

 How to use bitmap images in Android applications 

 How to animate bitmaps and vectors to create some pretty realistic

effects 

 The different screen sizes, and how to create icons and graphics that

scale between widely varying screen resolutions 

 An interesting user-controlled image-scaling technology called 9-patch 

 The Android media player functionality, which allows you to control

both video and audio with minimal programming logic 

 How Android allows you to control images directly 

 How to draw directly to the underlying canvas via Java code 

Interactivity 
In Chapter 9, we’ll talk about adding interactivity to applications, so that they respond to

user input and actually do something. You do this by handling UI events. We’ll look at

the most efficient way of handing events that are triggered by your users using the UI

elements that are attached to the views and layouts defined in your XML files. 

The following topics are covered: 

 Event listeners, which execute the proper code in response to an event

that is triggered when a UI element is used by the user (for instance,

you can run some code when a user touches a UI element or presses 

a key on the keyboard) 

 Default event handlers that allow you to build event handling right into

your UI elements 

 Touch mode and navigation via the directional keys and the trackball,

and the differences between these, mainly having to do with a concept

called focus 

 How focus movement is handled in Android 

 How the operation of focus in Android can be controlled via Java code 

 How focus preferences can be set in your XML files 

Content Providers 
In Chapter 10, we’ll be ready to get into the complexity of accessing data structures and

Android content providers. These content providers allow you to access databases of

system information that are available through the Android operating system, as well as

your own databases of information. 

D
ow

nl
oa

d 
fr

om
 W

ow
! e

B
oo

k 
<

w
w

w
.w

ow
eb

oo
k.

co
m

>



CHAPTER 2:  What’s Next? Our Road Ahead 17 

Content providers are the only method Android provides for sharing data across 

applications, which is why they are important enough to merit their own chapter. We’ll 

take a close look at the features of Android that allow you to query data from items 

common to the Android platform, such as images, video, audio, and contacts. 

Additionally, you can create your own content providers or add data to one. You’ll see 

how to create a content resolver so that you can interface with whatever content 

providers you choose (and have permissions to access). 

You’ll learn about how content providers expose their data via data models similar to 

databases, and how to use cursors to traverse the database in various ways. 

Finally, we’ll investigate URI objects and how to use them to identify and access data 

sets. Each set of data in the database will have its own Uniform Resource Identifier 

(URI), which is similar to an HTTP URL. 

Intents and Intent Filters 
In Chapter 11, we are going to tackle one of the more complex concepts in the Android 

environment: intents. Intents are asynchronous messages (members of the Intents 

class) that travel between Android’s activities, services, and broadcast receiver 

components. Asynchronous means not synchronized; that is, messages can be sent and 

received independently (not in sync, but without pattern or reason) from each other. 

Using intents allows you to take your current Android applications to an entirely new 

level of complexity. Prior to this chapter, you’ll have added functionality to your 

application by accessing the cool functions that Android provides. But all easy things 

must come to an end, so they say. 

Armed with intents (no pun intended), you can create advanced programming logic of 

your own that ties together everything you have learned in the previous chapters. This 

allows for far more powerful and useful programming constructs, and takes you from 

beginner to intermediate. 

You’ll learn how to spawn Intent objects that can carry highly customized messages 

back and forth between your Android UI (activities) and your programming logic 

(services) for instance, as well as to and from broadcast receiver components. 

We’ll also look at intent resolution and intent filters. These allow you to filter out events 

that your apps do not need to be concerned with, allowing you to optimize the progress 

of internal communications. 

The Future of Android 
In the final chapter, I will expose you to all of those fascinating areas within the Android 

development environment that we did not have the bandwidth to cover in this book. 

There may be a lot of unfamiliar names and acronyms in this description, but that's the 

nature of the future of Android. 



CHAPTER 2:  What’s Next? Our Road Ahead 18 

The 3D engine inside Android is called OpenGL ES 1.2. You’ll see how it allows you to 

create real-time rendered 3D games and applications. And I’ll give you some great 

resources to find out more about this powerful 3D engine. 

The SQLite database exists inside the Android operating system. We’ll uncover the 

power it offers in allowing client-side databases to be created and used as content 

providers. 

Smartphone hardware such as the high-definition camera, GPS, accelerometer, and 

microphone can be used to capture and digitize real-world events around us as images, 

audio, and gestures, and turn them into data that can be used in your applications. 

Computer programming has never been so powerful and innovation-oriented. 

Inter-Android communication is another hot area, especially since Android devices can 

be used as wireless hubs, giving access to many. We will look at Android’s integrated 

Bluetooth APIs, which allow Android applications to wirelessly connect with any 

Bluetooth device, and even provide for multiple connections.  

We’ll cover the concept of creating app widgets, or miniature applications that can be 

embedded in other applications (think: the Android home screen) and receive real-time 

updates (for things like clocks, radios, and weather stations). 

Finally, we’ll consider the popular area of locations and maps using the Android location 

package and Google Maps as an external data library. These tools are valuable for 

Android application development, due to the mobile nature of the smartphone and the 

fact that it has a built-in GPS. 

Summary 
As you can see from this chapter, this book will take you on a wild journey through the 

various parts and components of the Android operating environment—from UI design, 

to new media assets, to database access, to more complicated background services 

and interapplication messaging. We’ll be dealing with adding some pretty cool elements 

to Android applications, mainly by leveraging the power of “design via XML” and some 

of Android’s built-in features. 

In the next chapter, you’ll build an Eclipse-based Android IDE using the software that 

you downloaded at the end of Chapter 1. After that, you’ll learn about how the Android 

development environment is modularized and how to set it up to create applications 

using this diverse mobile operating system. 



 

 

19 

19 

   Chapter 

Setting Up Your Android 
Development Environment 
It’s time to get your hands dirty. In this chapter, starting from scratch, you’ll equip a 

computer system to develop Android applications. You’ll first install Oracle’s (formerly 

Sun’s) Java SE JDK and the Java Runtime Environment, then the Eclipse IDE, and finally 

the Android SDK, the tool set that provides Eclipse with the tools you’ll need to create 

Android apps. Sound convoluted? It is. After all, this is high-end software development, 

remember. What these are and how they relate to each other will become clear as you 

proceed through this chapter. 

Once the installation is complete, you’ll finish up by fine-tuning your Android 

environment within Eclipse to include smartphone emulators, which let you test your app 

with a representation of an Android phone on your workstation. You’ll also have USB 

driver support, which makes it possible for you to test your applications on a real-live 

Android smartphone. With these tools in place, you’ll be ready to rock and roll, and can 

begin to explore how Android does things. 

Installing Java, Eclipse, and Android 
If you have not downloaded the required software as described in Chapter 1, you will 

need to do that before proceeding, so those packages are ready to install. Here, we will 

walk through installing Java SE and the JRE, Eclipse 3.5 (Galileo) or 3.6 (Helios)both of 

which are supported by the Android SDK, the Android SDK, and the Android 

Development Tools. For the examples in this chapter (and book), we will install the 

software on a Windows system. 

3 



CHAPTER 3:  Setting Up Your Android Development Environment 20 

NOTE: Versions of the Java Runtime Environment, the Eclipse IDE, the Android SDK, and the 
Android Eclipse plug-in are also available for Macintosh and Linux computers. The steps to install 
them are nearly identical to those described in this chapter, and you will have no problems 

following along. For more information, see 

http://developer.android.com/guide/developing/eclipse-adt.html. 

Java SE and JRE: Your Foundation for Application 
Development 
In Chapter 1, you downloaded the latest JDK from the Oracle web site, so the file jdk-
6u24-windows-i586.exe (or a similarly named file) is on your desktop and ready to install.  

The installation includes the Java Runtime Environment (JRE), which is the environment 

that allows Java programs such as Eclipse to run, or execute, under the Java runtime 

engine. Indeed, this is the reason it is called a runtime—it is the environment, or software 

process, that is active while a Java application is running.  

Oracle has made the installation of the Java SE environment relatively painless. The 

installation package is itself a software program (an executable, or .exe file type) that will 

create the necessary folder structure on your hard disk drive and install all the files 

precisely where they need to go.  

Follow these steps to install Java SE and the JRE:  

1. Double-click the JDK icon on your desktop (or in whatever folder you 

downloaded it to) to launch the setup application. If your operating 

system asks if it is OK to run the installation software, tell it to go right 

ahead. 

2. The legal agreement dialog appears, asking if you agree to the terms of 

use for Oracle’s Java software. Read these, and then select Accept to 

continue with the installation.  

3. The next dialog tells you which files and features will be installed and 

lets you turn off features that you do not wish to include. We are not 

going to touch anything in this dialog, so simply click Next to copy the 

300MB of development files onto your hard drive, as shown in Figure 3–1. 

http://developer.android.com/guide/developing/eclipse-adt.html


CHAPTER 3:  Setting Up Your Android Development Environment 21 

 

Figure 3–1. Installing the JDK 

4. After installing the JDK files, the installer will suggest a folder for the 

JRE, usually in C:/ProgramFiles/Java/jre6. Simply hit the Next button to 

accept the default setting.  

5. Once the JDK and JRE have finished installing, the final screen will tell 

of a successful installation and provide a button for you to register the 

product online if you are connected to the Internet. It is most likely a 

good idea to register JDK (as well as the Eclipse and Android SDK), so 

that you can receive updates regarding its development progress. 

Eclipse IDE: The Development Environment 
Now that you have successfully installed Java on your computer, you can install Eclipse 

Galileo (Version 3.5) or Helios (Version 3.6), which is the IDE you will use for your 

Android projects. You need to have Java installed before you install and run Eclipse 

because Eclipse is written in Java. 

NOTE: An IDE is a software package somewhat like an advanced text editor, but with features 
specifically fine-tuned for writing computer programs rather than publishing text documents. If 
you want to get up to speed on all the amazing features of the Eclipse IDE, run through the Help 

or Tutorials section once you have installed it.  



CHAPTER 3:  Setting Up Your Android Development Environment 22 

In Chapter 1, you downloaded Eclipse from the Eclipse web site, so the Eclipse .zip file 

is on your desktop and ready to install. Eclipse is a little harder to install than Java, 

because it does not have an installation program (an .exe file in the case of Windows), 

but instead has a folder structure of files inside a .zip archive. The trick is to extract this 

file structure properly onto your hard drive, so that Eclipse can find the files it needs, and 

they are in the folders where it is going to look for them.  

Follow these steps to install Eclipse:  

1. Double-click the Eclipse Galileo or Helios .zip file to launch WinZip extractor, 

as shown in Figure 3–2 (notice that the Extract button is highlighted).  

TIP: If you don’t have WinZip, a free alternative called PKZIP is available for Windows, Mac, and 
Linux. Simply Google “PKZIP” and download the free version for your operating system type now. 
Got it? Good. If you have Windows Vista or Windows 7, you can also open .zip files natively using 

the Windows Explorer application, so you don’t need to download an extractor utility. 

 

Figure 3–2. Looking inside the Eclipse .zip file 



CHAPTER 3:  Setting Up Your Android Development Environment 23 

2. Click Extract, and make sure that the location to extract the Eclipse file 

structure is the root of your C:\ disk drive, as shown in Figure 3–3. This 

will put Eclipse into a folder structure (defined in the .zip file) under 

c:\eclipse, which is exactly where other software (in the case the 

Android SDK) is going to look for (and find) it. Note that you must leave 

the Use folder names check box checked for this to work properly. 

 

Figure 3–3. Unzipping your Eclipse package with “Use folder names” checked 

3. Go to Windows Explorer and click the c:\eclipse folder to view its file structure. 

Look for a file called eclipse.exe, which is the actual Eclipse program 

“executable” (hence .exe) file that you’ll want to use to launch the IDE.  

4. Right-click the eclipse.exe file and select the Create Shortcut option, as 

shown in Figure 3–4. 



CHAPTER 3:  Setting Up Your Android Development Environment 24 

 

Figure 3–4. Creating a shortcut for Eclipse 

5. Drag the eclipse.exe shortcut file onto your Quick Launch bar, and voila, 

you now have an icon that requires only a single-click to launch the IDE, 

as shown in Figure 3–5.  

 

Figure 3–5. Dragging the Eclipse shortcut onto the Quick Launch bar 

Congratulations, you now have one of the most powerful open source IDE software 

packages ever written, installed with Java SE, ready to launch at a moment’s notice and 

use to develop Java software. Now, all you need to do is install Android and configure it 



CHAPTER 3:  Setting Up Your Android Development Environment 25 

inside Eclipse, and you’ll be ready to develop Android applications ad infinitum. Cool 

beans. 

Android SDK: The Android Tool Kit for Eclipse 
The last major step in putting together an Android development environment is to install 

the latest Android SDK (currently, version 10). 

In Chapter 1, you downloaded the Android SDK from the Android web site, so the file 

android-sdk_r10-windows.zip is on your desktop and ready to extract. This process is 

quite similar to the installation of the Eclipse IDE. As you did with Eclipse, extract the 

Android SDK to your C:\ root folder now, as shown in Figure 3–6. 

 

Figure 3–6. Unzipping the Android SDK onto your hard disk drive 

Notice that the software installs into a folder called C:\android-sdk-windows. Because 

this is the folder where other software, like Eclipse, will look for the Android SDK, it is 

best to use the folder name Google already set for it in the .zip file. 

The Android SDK is now installed on your system. Since it will run inside the Eclipse IDE 

(becomes a part of Eclipse), you don’t need to create a shortcut for it—you already have 

one for Eclipse. 



CHAPTER 3:  Setting Up Your Android Development Environment 26 

What you need to do now is show Eclipse where the Android SDK is located so that

Eclipse can make the Android SDK functionality an integrated part of the Eclipse IDE.

This is done by installing the Android Development Tool plug-in for Eclipse, which we

will do in the next section. 

Android Development Tool: Android Tools for Eclipse 
It’s time to fire up Eclipse and add the Android Development Tool (ADT) plug-in to the

IDE.  

NOTE: To perform the rest of the configuration and updates described in this chapter, you need 

to be connected to the Internet. 

Follow these steps to perform the installation: 

1. Click the Eclipse Quick Launch bar icon to start Eclipse.  

2. Accept the default workspace location (it will be under your Documents
folder). If a graphic with some circular buttons comes up, select

Workspace to enter the programming workspace environment. 

3. From the main Eclipse menu, select Help  Install New Software…, as

shown in Figure 3–7.  

Figure 3–7. Selecting to install new software 

D
ow

nl
oa

d 
fr

om
 W

ow
! e

B
oo

k 
<

w
w

w
.w

ow
eb

oo
k.

co
m

>



CHAPTER 3:  Setting Up Your Android Development Environment 27 

4. In the Install dialog that appears, click the Add button at the upper right, 

as shown in Figure 3–8.  

 

Figure 3–8. Adding the Android plug-in site to Eclipse 

5. In the Add Site dialog that appears, enter the name Android Plug-In in 

the Name field. In the Location field, enter one of the following: 

 For the secure site, https://dl-
ssl.google.com/android/eclipse/ 

 For the nonsecure site, http://dl-
ssl.google.com/android/eclipse/ 

Figure 3–8 shows the secure HTTPS site selected. Click OK to add the site. 

https://dl-ssl.google.com/android/eclipse/
https://dl-ssl.google.com/android/eclipse/
https://dl-ssl.google.com/android/eclipse/
http://dl-ssl.google.com/android/eclipse/
http://dl-ssl.google.com/android/eclipse/
http://dl-ssl.google.com/android/eclipse/


CHAPTER 3:  Setting Up Your Android Development Environment 28 

6. Once you’ve added the new Android plug-in option, its name appears at 

the top of the Install dialog, and after a few moments, a hierarchy of 

Developer Tools options populates the center of the Install dialog. 

Select the first (highest) level, called Developer Tools (which will select 

them all), as shown in Figure 3–9. Then click Next to continue with the 

ADT installation. The plug-in proceeds to calculate installation 

requirements and dependencies for several seconds. 

NOTE: When you select Android Plug-In as the add-in, Google provides a URL, which appears 

next to its name in the Install dialog. 

 

Figure 3–9. Installing the ADT plug-in in Eclipse 

7. The next screen lists the Android Development Tools and Android Dalvik 

Debug Monitor Server (DDMS, which is a debugging tool). Click Next to 

accept these items. 



CHAPTER 3:  Setting Up Your Android Development Environment 29 

8. Select the Accept Terms of License Agreement radio button, and then 

click Finish. The Android development environment will be installed and 

updated from the Google Android web site. If a message comes up that 

asks you to approve an unsigned certificate, click OK to continue the 

installation, which will leave you with a screen like the one shown in 

Figure 3–10. 

 

Figure 3–10. Approving the unsigned content 

9. Select the check box next to the Eclipse Trust Certificate and select OK. 

10. A dialog appears, asking you to restart Eclipse to allow the changes to 

be installed into memory and take effect in the IDE. Select Yes.  



CHAPTER 3:  Setting Up Your Android Development Environment 30 

The Android Environment Within Eclipse 
Once Eclipse restarts, the final step is to configure the ADT plug-in to point to your 

Android SDK installation. Follow these steps:  

1. In Eclipse, select Window  Preferences. Click the Android node on the left 

to select the Android Preferences option. 

2. In the Preferences window, use the Browse button to locate the 

android-sdk-windows folder and select it, as shown in Figure 3–11. Click 

the OK button, and the Android SDK will be part of Eclipse, meaning the 

Android environment within Eclipse will be configured.  

NOTE: You do not need to restart Eclipse for the Android SDK to become a part of it, because the 
SDK just needs to be referenced in Eclipse in case any of the SDK tools need to be called by 

Eclipse. 

3. Select Help  Check for Updates to make sure you have the latest versions 

of everything.  

 

Figure 3–11. Showing Eclipse the location of the Android IDE 



CHAPTER 3:  Setting Up Your Android Development Environment 31 

Your Android development environment is now installed. Next, you will update the 

software to make sure that you have the most recent releases available. 

Updating the Android SDK 
SDK updates often offer new elements that have been added since the SDK was 

originally released, so this step brings you up to the most current status, in real-time 

relative to today. Eclipse makes it easy to perform these updates though the Android 

SDK and AVD Manager window. Follow these steps to open the window and get 

updates: 

1. Click the Android SDK and AVD Manager icon (it’s the one with the cute 

green Android robot peeking over the edge of a down arrow, located at 

the top left of the Eclipse toolbar) or select Window  Android SDK and AVD 
Manager 

2. In the Android SDK and AVD Manager window, click Available Packages 

to display the updated packages available to you for download, as 

shown in Figure 3–12.  

 

Figure 3–12. Installing available packages via the Android SDK and AVD Manager window 



CHAPTER 3:  Setting Up Your Android Development Environment 32 

3. Click the top check box in the Sites, Packages and Archives panel. This selects 

all of the listed packages for installation. Then click the Install Selected button.  

NOTE: You are installing a whole lot of development power here. In the example shown in Figure 3–
12, this includes every SDK and API from 1.5 through 3.0, as well as documentation and even the 

USB Driver package, revision 4, which you’ll use in an upcoming section. The reason we also install 
the older versions of Android is that we usually want to develop our application with the earliest 

version of Android to obtain the most backward-compatibility and the widest user base possible. 

4. On the next screen, make sure all packages, documentation, and APIs, as 

well as the USB drivers, are selected with a green check mark. If any of the 

entries have a black question mark next to them, click to select those entries, 

and then select the Accept radio button option (circled in Figure 3–13) to 

replace the black question mark with a green check mark. 

 

Figure 3–13. Accepting the Android license and installing the latest Android packages into Eclipse 



CHAPTER 3:  Setting Up Your Android Development Environment 33 

5. When the all the packages are selected, click Install. The installation 

process may take some time, even on a fast Internet connection. My 

updates took about 50 minutes at 200 Kbps. Yes, this is a significant 

amount of data you are getting to update your Android development 

environment.  

6. At the end of the installation, the installer may ask you if it is OK to 

restart the Android Debug Bridge (ADB). Reply Yes, and you are finished 

updating everything Android. Now when you select Installed Packages 

in the Android SDK and AVD Manager window, all of the packages you 

just installed will be listed there. 

At this point, you have downloaded, configured, and updated hundreds of megabytes of 

Android-related development software for Java and Eclipse. You now have a finely 

tuned, up-to-date, open source, professional Android software development 

environment on your system and ready for use. 

We have made significant progress at this point. Let’s finish up by installing some 

emulators for our testing, as well as USB drivers for connecting to a physical Android 

handset. 

Setting Up AVDs and Smartphone Connections 
The Android development environment ships with AVDs, which let you run your 

applications on a graphical representation of an Android handset, otherwise known as 

an emulator. You’ll want to install one now, before you begin to write code, so that you 

can test your apps. 

AVDs: Smartphone Emulators 
To install an AVD, you use the same Android SDK and AVD Manager window you used 

in the previous section. Here are the steps: 

1. To open the Android SDK and AVD Manager window, click the icon 

located at the top left of the Eclipse toolbar (see Figure 3–12, shown 

earlier) or select Window  Android SDK and AVD Manager. 

2. In the Android SDK and AVD Manager window, select Virtual Devices, 

the first entry in the list in the left pane. Then click the New button (see 

Figure 3–14). 



CHAPTER 3:  Setting Up Your Android Development Environment 34 

 

Figure 3–14. Creating a new AVD to test Android 1.5 compatibility in an Android 1.5 emulator 

3. Fill in the Create new Android Virtual Device (AVD) dialog as follows: 

 Enter a name for the emulator in the Name text box. I used the 

name Android_1.5_Emulator. 

 From the Target drop-down menu, select an API. I chose the 

Android 1.5 API. 

 In the SD Card section, set a memory card size for the SD card. I 

selected a size of 512MB (for the widest phone support). 

 In the Skin section, choose a screen resolution for the device 

skin. I selected the default HVGA screen setting because my 

Android phone has a 320 × 480 resolution display. Most 

Androids out there use HVGA resolution, so by choosing this 

option, you’ll obtain the widest phone handset compatibility.  

Figure 3–14 shows the dialog I completed to create an Android 1.5 smartphone 

emulator. Click the Create AVD button after you’ve filled in the dialog. 

As you can in Figure 3–15, the new virtual device is now listed in the Virtual Devices 

section of the Android SDK and AVD Manager window. Also note the message in the 

bottom console area of the IDE telling of the successful emulator creation. 



CHAPTER 3:  Setting Up Your Android Development Environment 35 

 

Figure 3–15. The Android 1.5 emulator added to the list of existing AVDs 

USB Smartphone Drivers: External Devices 
Since the latest USB driver for Android was installed as part of your environment 

upgrade in a previous section, you’ve already taken care of installing the most up-to-

date USB drivers to interface the Eclipse IDE with your Android smartphone. 

It is important to note that this driver is only for Windows. Using the external Android 

smartphone on Mac and Linux does not require this driver download.  

The driver is not intended to make your Android phone visible to Windows. You can 

simply plug your Android in via USB, and it will be visible on your Windows desktop. 

However, the driver is necessary to have the development interface to and from Eclipse. 

Note that the USB driver you installed earlier went into the ADT plug-in for Eclipse, not 
into the Windows driver registry. Possibly the term driver is misleading in this instance, 

as this driver provides the ability for Eclipse to talk with your Android smartphone during 

development, so that Android packages (.apk files) can be transferred to the smartphone 

for testing and development purposes. 



CHAPTER 3:  Setting Up Your Android Development Environment 36 

Developing on 64-Bit Computing Platforms 
Since Android development does not require a 64-bit computer like other advanced

development types such as 3D and audio synthesis do, most of us are going to use a

standard 32-bit operating system (possibly on a 64-bit capable computer) to run and

develop with Eclipse. 

The primary advantage of running a 64-bit operating system, such as Windows 7 64-bit,

is that you can address more than the 3.3GB physical memory limit imposed

(mathematically) by a 32-bit operating system environment. Why mathematically?

Because a 32-bit system allows 3.3 billion as its largest number, and cannot count any

higher, and that includes memory addressing. Fortunately, the Android Eclipse

development environment does not need gigabytes of memory in order to function, so

you do not need a 64-bit system or operating system to develop for Android. 

If you have a computer with 6GB or 8GB of memory, you are probably running a 64-bit

operating system. Therefore, you will need to download 64-bit (compatible) versions of

Java and Eclipse and substitute these packages for the 32-bit versions used in the

examples in this chapter. Other than the version you are installing or extracting, there

should be no difference from the process described in this chapter to install and

configure the Android environment. (I have Android development environments working

on both 64-bit Windows 7 and 32-bit Vista systems, so I know the process works as far

as JDK 6u24 and Eclipse Galileo or Helios are concerned.)  

To download the 64-bit version of the Java SE JDK, go to the following URL: 

https://cds.sun.com/is-bin/INTERSHOP.enfinity/WFS/CDS-CDS_Developer-
Site/en_US/-/USD/ViewProductDetail-Start?ProductRef=jdk-6u24-oth-JPR@CDS-
CDS_Developer 

Click the Download button, which will take you to the downloads page shown in Figure

3–16. From the Platform drop-down menu, select Windows x64 as your operating

system version, and then click Continue to download the 64-bit version of the JDK. 

D
ow

nl
oa

d 
fr

om
 W

ow
! e

B
oo

k 
<

w
w

w
.w

ow
eb

oo
k.

co
m

>



CHAPTER 3:  Setting Up Your Android Development Environment 37 

 

Figure 3–16. Downloading the 64-bit JDK  

There is currently no 64-bit version of Eclipse Galileo 3.5.2—only of Galileo 3.5.1. If 

that’s still true when you visit the Eclipse web site, you can use that version for your 64-

bit Android Eclipse development environment.  

The 64-bit version of Galileo SR2 Eclipse download page is at the following URL: 

http://phoenix.eclipse.org/packages/release/galileo/sr2 

Click the Windows 64-bit link, shown in Figure 3–17, to download the file eclipse-SDK-
3.5.2-win32-x86_64.zip. 

http://phoenix.eclipse.org/packages/release/galileo/sr2


CHAPTER 3:  Setting Up Your Android Development Environment 38 

 

Figure 3–17. Downloading 64-bit Eclipse Galileo 

Install the 64-bit JDK first, and then the 64-bit Eclipse IDE, and configure them exactly 

as outlined for the 32-bit versions as far as the Android SDK is concerned.  

Whew! We’re finished! Now we can get to the business of Android development! 

Summary 
To set up your Android development environment, you begin by installing the Oracle 

Java SE JDK, which is required to run both the Java programming language and the 

Eclipse IDE (and is proof that Java can be used to develop large-scale, enterprise-

quality applications). 

With the JDK installed, the next logical step is to install the Eclipse IDE, which the 

Android development environment uses as a “host,” or platform, to support its ADT 

plug-in.  



CHAPTER 3:  Setting Up Your Android Development Environment 39 

Your next major step is to install the Android SDK, which contains all of the tools and 

utilities that you need to develop Android applications. Once the SDK is installed on the 

hard drive, you go into Eclipse and point Eclipse to the Android SDK installation 

directory, so that Eclipse and Android’s SDK can work seamlessly hand in hand. 

After installation, you can use Eclipse to check on the Internet for the very latest versions 

of the Android SDK tools. You can install those you’ve found (which takes a while even 

on a fast connection). Finally, you want to add an AVD on which to test your 

applications.  

You also can include 64-bit software addresses, on the off chance you are using a 64-bit 

development system. To do this, just download and install the 64-bit versions of the 

software. 

In the next chapter, we’ll examine the Android platform and its components, to prepare 

for writing Android applications. 



 

 

41 

41 

   Chapter 

Introducing the Android 
Software Development 
Platform 
The Android platform is a collection of software that includes an operating system and a 

number of higher-level libraries that simplify the task of communicating with the 

operating system. It also includes several applications that smartphone users have 

come to expect, such as a phone (obviously), e-mail client, contact manager, Google 

Maps, a web browser, a calendar, and so on. 

Everything in the Android development environment, as well as all of the included 

applications, can be programmed with a combination of Java and XML thanks to the so-

called runtime that is included with the Android SDK. The runtime translates the Java 

and XML code that you write into a language that the operating system and the device 

understand. 

The foundation on which Android is built is carefully coded and painstakingly tested 

Linux 2.6, an operating system that rarely crashes. Linux and its core services manage 

the physical phone and give Android applications access to its features: touchscreen, 

memory, data, security, various network receivers and transmitters, camera, and more. 

Linux doesn’t do it all alone. Android has a number of libraries that provide higher-level 

customized functions and services for 2D graphics, 3D graphics, and the audio and 

video file formats in widest use today. In other words, Android supports all of the media 

formats you could possibly want to use (for more information see 

http://developer.android.com/guide/appendix/media-formats.html). 

This chapter introduces the Android environment and shows you how to write your first 

Android app. 

4 

http://developer.android.com/guide/appendix/media-formats.html


CHAPTER 4:  Introducing the Android Software Development Platform 42 

NOTE: In this book, you’ll build apps using a combination of XML and Java, which sit in a layer 
on top of the operating system (with the runtime as the component that translates Java and XML 
into instructions for the operating system). However, you could, if you wished, access the 

operating system and its services directly using lower-level languages such as C or C++. You 
might consider this approach for an application that needs the utmost speed, such as a 3D game 

or a real-time heart-monitoring program. 

Understanding Java SE and the Dalvik Virtual 
Machine 
The Android runtime environment provides a core set of operating system libraries that 

can be accessed via Java and XML. These give you access to device features and 

lower-level Android operating system functions so that you don’t have to do any of that 

hard programming yourself. You simply include the appropriate components from the 

libraries you need in your program—something called importing—and then employ their 

capabilities. You’ll learn how to put a number of these little engines to work in later 

chapters. 

To run Java SE code, Android uses a tool called the Dalvik Virtual Machine (DVM). The 

DVM is an optimization mechanism and technology that allows application code and 

resources to be highly optimized for use in mobile and embedded environments.  

The good news is that the DVM is not something that a developer needs to worry about. 

I describe it here only to give you a sense of what’s going on under the hood with 

Android.  

When you launch an Android application, it creates a process that allocates memory and 

CPU processing resources (processor time slices) to the application, so that it has the 

resources needed to function. Each time an application is launched and a process is 

spawned, an instance or copy of the DVM is launched into your Android smartphone’s 

memory. The DVM actually takes the Java language instructions and application's 

design guidelines in an XML format, along with any external resources (images, audio 

files, and so on), and translates them into optimized low-level binary code that goes into 

the smartphone’s memory and eventually into the processor for processing. 

So, what is the advantage of this DVM? The use of the DVM allows many more 

applications to run within the somewhat limited memory resources (1GB) and 

processing power of consumer electronic devices, and it also protects all of the other 

spawned processes from each other. In this way, the crash of one application will not 
bring down the entire operating system (as happened in the olden days of DOS and 

Macintosh). That’s huge. 



CHAPTER 4:  Introducing the Android Software Development Platform 43 

The Directory Structure of an Android Project 
Android does its best to externalize all application assets that do not absolutely need to 

be in your Java code. It does this by using the simpler XML markup language to define 

UI and data structures that would otherwise need to be declared and coded in Java. 

This modularization is aided by having a clearly defined project hierarchy folder 

structure, which holds logical types of application assets together in an orderly fashion.  

Since Android is very particular about where the assets of your project are stored within 

the project directory, you need to learn where each belongs early in the game. When it 

comes time to generate your application—a process called compilation—Android looks 

into these standardized folders to locate each type of asset it needs, and expects to find 

like assets logically grouped together. 

The assets of a project include its Java code, XML layouts, XML animation definitions, 

and the rich media files that your Java code and XML markup reference. As shown in 

Figure 4–1, default folders are created in an Android project to hold menus, images, 

layouts, colors, fixed data values, raw (uncompressed) media, XML constructs, and 

animation. 

  

Figure 4–1. Android’s file structure, showing the res (resources) folder and its subfolders 



CHAPTER 4:  Introducing the Android Software Development Platform 44 

The Java code that drives an application is located in the /src (source code) folder and in 

any subfolders that are defined by your Java code. 

You’ll find other assets used by your application in logical subfolders of the /res 

(resources) folder as needed. It is very important that only folders go in the /res folder. If 

the Android compiler sees any files in this folder, it will generate a compiler error.  

NOTE: The name of the game is to avoid compiler errors at all costs, because if Eclipse sees 
compiler errors in your code, it does not even bother generating your application. And if your 

application is not generated, you certainly cannot test it to see how it works. 

If you don’t have any resources of a certain type (say animation), you do not need to 

have an empty folder for it. This means that you do not need to create folders that you 

will not use. 

Common Default Resources Folders 
The most common of the default resources (/res) subfolders are shown in the Figure 4–1. 

The following are the eight provided when you create a project in Eclipse: 

 layout: UI screen layouts go in the /res/layout folder, which holds XML 

files containing UI layout definitions written in XML. 

 anim: XML files that define animation go in the /res/anim folder. 

 drawable: Images in PNG format (which Google prefers) or the JPEG 

format (acceptable but not favored by Google) go into the 

/res/drawable (screen-drawable imagery) folder. 

 values: XML files that define constant values are in the res/values 

folder. 

 color: XML files that specify related color values for your application's 

UI go in the /res/color folder. For example, if your app has complicated 

color bundles for different states of a button (a different color for when 

it is pressed, focused, or unused), they will be logically arranged in this 

folder. 

 xml: XML files that define custom data constructs are in the res/xml 
folder. 

 menu: XML files defining menu layouts are in the res/menu folder. 

 raw: Video files that are precompressed go in the res/raw folder, so 

Android knows not to process them further. 



CHAPTER 4:  Introducing the Android Software Development Platform 45 

The Values Folder 
Let's examine the res/values folder in more detail. This is where you place predefined 

application values in the form of XML files that define the variable names (x or y, for 

instance) and their values that are later referenced in your Java code. For example, 

these values might be strings (collections of text characters) or constants (hard-coded 

values that your Java code uses in its program logic and can't change). 

Think of the values folder as holding all of your constant values for your application in 

one place. This way, if you need to adjust them during application development and 

testing, you make the changes in a single location.  

Figure 4–2 shows examples of files that can be placed in this folder: 

 colors.xml: An XML file that will define the color values to be used in 

the app. These allow you to standardize the UI. For example, you 

would define your background color. Then, if you decide to tweak it 

later, you need to do the tweak in only one place. 

 dimens.xml: An XML file that defines dimension values, such as 

standard heights and font sizes for your UI. You can then use these 

values across your app to ensure it is consistent. 

 arrays.xml: An XML file that defines a series of values to be used 

together (known as an array). For example, this could be a list of icon 

files or a list of options to display to the user. 

 strings.xml: An XML file that defines text strings to be used in the 

application. For example, you can place any screen titles or the app’s 

name here and reference them in your code. If you need to change 

these items, you simply do it here rather than in your code. 

 styles.xml: An XML file that defines styles to be used in the application. 

These styles are then applied to the UI elements that require them, so 

you separate the look of your app from the layout and functionality. 

This makes your app easier to maintain. 

Notice the Android file name conventions for the different types of XML files in the values 

folder, adding another level of complexity.  



CHAPTER 4:  Introducing the Android Software Development Platform 46 

 

Figure 4–2. Files in the res/values folder. These files contain constants for an Android application. 

Leveraging Android XML (Your Secret Weapon) 
One of the most useful features of Android as a development environment is its use of 

XML to define a great number of attributes within your application’s infrastructure. 

Because you don’t need to work inside the Java programming language to handle these 

attributes, you save hundreds of lines of Java code. Everything within the application—

from your UI layouts, to your text strings, to animation, to interprocess communication 

with Android’s operating system services (like vibrating the phone or playing a 

ringtone)—can be defined via XML. 

What makes XML ideal for Android development, and especially for beginners, is its 

ease of use. It is no more complicated than HTML markup. So, if you know how to use 

tags to boldface text or insert an image in your web site, you already understand how to 

use XML. 

You will be learning how this works in the next chapters of the book. Suffice it to say 

that you will become familiar with XML in your Android development. XML brings one 

heck of a lot of flexibility to Android development. 



CHAPTER 4:  Introducing the Android Software Development Platform 47 

Android’s use of XML for application design is very similar to the way HTML, Cascading

Style Sheets (CSS), and JavaScript are used in today’s popular Internet browsers. CSS

is used to separate the layout and look of a web page from its content and behavior,

which are specified by HTML markup and JavaScript code, respectively. This approach

leads to more modular and logically structured web pages. Designers can work on the

look of a web site using CSS, while search engine optimization (SEO) professionals

optimize its findability with HTML, leaving user interaction to programmers who know

how to use JavaScript. The same approach applies to Android. Designers can create the

UI for an application with XML, while programmers can call and access its elements

using Java without affecting screen formatting, animation, or graphics. Genius. 

XML gives us amazing flexibility to accommodate variations within our apps, such as

different screen sizes, languages, and UI designs. Here, we’ll look at a couple of brief

examples to give you an idea of XML’s power. 

Screen Sizes 
Because UI designs can be defined precisely by an XML file, it’s easy to deal with the

variety of screen sizes available on Android devices today. Let’s say that you want to do

a custom layout for each of the three primary screen sizes used in Android phones:  

 Quarter VGA (QVGA), 240  320 pixels 

 Half VGA (HVGA), 320  480 pixels (the “sweet spot” for most Android

phones) 

 Wide VGA (WVGA), 800  480 pixels (found on the newest phones) 

How does XML provide a solution? Simply create a UI design in XML for each size and

use Java to determine the screen resolution of the phone. 

Desktop Clocks 
As another example of how XML can be leveraged, let’s take a look at a few lines of

code that define an important utility: Android’s popular desktop clock. (In Chapter 6,

you’ll learn how to create your own custom desktop clocks.) 

The XML tag for an Android program function usually has the same name as its Java

counterpart, so you can access the power of the programming language from simple

XML. For example, here is the XML tag that corresponds to Java’s AnalogClock: 

<AnalogClock /> 

Android's XML tags start with a left-angle bracket (<), followed immediately (no space)

by a class name, a space, a slash mark, and a right-angle bracket (/>). 

To customize an AnalogClock, you must add attributes to the AnalogClock tag, inserting

them before the closing part of the tag (/>). Suppose you want to add an ID to reference

the utility from other parts of the application. Here’s how: 

<AnalogClock android:id=”@+id/AnalogClock />  

D
ow

nl
oa

d 
fr

om
 W

ow
! e

B
oo

k 
<

w
w

w
.w

ow
eb

oo
k.

co
m

>



CHAPTER 4:  Introducing the Android Software Development Platform 48 

This adds an ID to your AnalogClock with the name AnalogClock, which you can use to 

reference it elsewhere in your application.  

For each XML tag in Android, there are dozens of parameters that allow you to control 

the tag’s appearance and implementation, including its positioning, naming (used in the 

Java code), and other options.  

In real-life, for readability, programmers usually write this code with each configuration 

parameter indented on a separate line, like this: 

<AnalogClock 
        android:id=”@+id/AnalogClock 
        android:layout_width=”fill_parent” 
        android:layout_height=”wrap_content” 
/> 

The Android compiler considers everything inside the AnalogClock tag to be a 

parameter, or a customization option, until it reaches a closing tag (/>). The fill_parent 

parameter stretches content to fill a container, and the wrap_content parameter tiles the 

content. We’ll cover these and other view and layout concepts in Chapter 6. 

Using Your Android Application Resources 
In addition to Java code and XML markup, the resources your application draws on 

consist primarily of media elements and other file types that contribute to its 

functionality in one way or another. These may include XML files that contain animation 

parameters or text strings, bitmap image files, and even audio and video streams.  

One of the primary reasons for externalizing resources is that you can have sets of 

resources for variations, such as different screen sizes or language versions. Language 
localization localizes the application to any given country. These language localizations 

can be easily referenced in the Java code and switched when necessary by pointing to 

different external file names or folders. 

Bitmap Images 
Let’s look at an example of a common application resource: the bitmap image. Your 

PNG or JPEG bitmap image goes into the /res/drawable folder. It can then be referenced 

by its file name only (excluding its extension) in the Java code as well as in the XML. For 

this reason, be sure not to give a PNG file and a JPG file the same name. 

Also, contrary to normal file-naming conventions, image file names can contain only 

numbers and lowercase letters, so make sure to remember this rule (one of the many 

anomalies of Android programming). 

In summary, to set up bitmap images to be used in your application, do the following: 

 Name them correctly. 

 Use PNG or JPG format. 

 Make sure they are in the /res/drawable folder so that Android can find them. 



CHAPTER 4:  Introducing the Android Software Development Platform 49 

Alternate Resource Folders 
Another great example of resource usage is supplying different UI screen layouts for 

portrait and landscape orientations. Usually, we will set our default screen UI for phones 

to portrait mode, as most people use their phone in this way (turning it sideways only to 

view video).  

Android provides support for alternate resources. If you set these up correctly, Android 

will determine the current settings and use the correct resource configurations 

automatically. In other words, you provide resources for each orientation, and Android 

uses the correct resources as the user changes from one orientation to another.  

Each set of alternative resources is in its own folder, where it can be referenced and 

located later on in your Java code. We can provide resources for different screen 

orientations and resolutions in this fashion, and have Android decide which folders to 

look in for our application resources based on each user’s smartphone model. 

Android offers three screen resolutions: low resolution (320  240), medium resolution 

(320  480), and high resolution (800  480). 

To add an alternate resource folder, create a directory under /res with the form 

<resource_name>-<config_qualifier>. For instance, create /res/drawable-hdpi.  

This creates an alternate resource folder for high-density dots per inch (hdpi) images. 

The alternate folder will be used automatically if the Android smartphone screen uses a 

WVGA (800  480) screen high-end model. Otherwise, it will use the normal HVGA (320 

 480) screen images, located in the default /res/drawable folder.  

If you want to also support low-end screens, you can use the low-density dots per inch 

qualifier, ldpi. There is a medium dots per inch qualifier, mdpi, as well.  

So, to have images for QVGA, HVGA, and WVGA screens arranged in folders in a way 

that allows Android to automatically recognize the folder hierarchy, set up your folder 

structure as follows: 

 /res, with only folders 

 /res/drawable-ldpi, with the following low-density DPI screen images 

(QVGA): 

 icon.png (application icon file), 32  32 pixels 

 background.png (application background), 320  240 pixels 

 /res/drawable-mdpi, with the following medium-density DPI screen 

images (HVGA): 

 icon.png, 48  48 pixels 

 background.png, 320  480 pixels 

 /res/drawable-hdpi, with the following high-density DPI screen images 

(WVGA): 



CHAPTER 4:  Introducing the Android Software Development Platform 50 

 icon.png, 72  72 pixels 

 background.png, 800  480 pixels 

You’re well on your way to correctly setting up your Android application’s resources. 

One more file we need to examine is AndroidManifest.xml. 

Launching Your Application: The 
AndroidManifest.xml File 
When Android launches your application, the first file it seeks out is the application 

manifest file. This file is always located in the root of your project folder and directory 

structure, and is always called AndroidManifest.xml so that it can be located easily on 

startup. 

The Android manifest declares some very high-level definitions and settings for your 

application using (surprise!) the XML markup language. The following are some of the 

key items AndroidManifest.xml includes: 

 References to the Java code you will write for your application, so that 

your code can be found and run 

 Definitions of the components of your Android application, including 

when they can be launched 

 Definitions of permissions for application security and for talking with 

other Android applications 

 Declaration of the a minimum level of Android operating system 

version support, which amounts to defining which version(s) of 

Android your application is going to support  

All of the apps that we will write in this book will support Android versions 1.5, 1.6, 2.0, 

2.1, 2.2, 2.3, and 3.0. We call this “Android 1.5 compatibility,” because it supports every 

version of Android all the way back to version 1.5. 

TIP: I try to develop for the 1.5 API level 3 so that my applications run on API versions 1.5, 1.6, 
2.0, 2.1, 2.2, 2.3, and 3.0. Later versions are obviously backward-compatible, so the further 
back you develop your minimum version level support, the more people will be able to use your 

application. If you want to make money selling Android apps, this concept translates directly into 

dollars, as there are millions of 1.5 and 1.6 phones still out there. 



CHAPTER 4:  Introducing the Android Software Development Platform 51 

Creating Your First Android Application 
By now, you’re probably aching to fire up Eclipse and create an application to see how 

all this works. A tradition in all programming languages for new users is the crafting of 

the “Hello World” application, so let’s create our own Hello World application right here 

and now. 

First, we’ll launch Eclipse and create the application. Then we’ll take a look at the files 

and Java and XML code that Eclipse generates to get your app up and running. Finally, 

we’ll give the app an icon to display on the Android main menu. 

Launching Eclipse 
The first step is to launch Eclipse. From there, you’ll create a project to house the 

application. 

To launch Eclipse, find and click the Eclipse shortcut launch icon on your workstation. If 

a security warning dialog like the one shown in Figure 4–3 appears, click Run. If you 

don’t want to see this dialog every time you start Eclipse, uncheck the box that reads 

“Always ask before opening this file.” 

 

Figure 4–3. The Windows Security Warning dialog 

Next you will see the Eclipse startup screen. Then, in a few more seconds, a dialog will 

appear, allowing you to tell Eclipse where your projects folder is kept on your hard disk 

drive. Mine is kept on my C: drive and is called \Projects, so the entry is C:\Projects, as 

shown in Figure 4–4. If you don’t want to specify this each time you start Eclipse, you 

can check the “Use this as the default and do not ask again” option. Once you click the 

OK button, Eclipse will start, and the IDE will appear. 



CHAPTER 4:  Introducing the Android Software Development Platform 52 

 

Figure 4–4. The Eclipse Workspace Launcher dialog 

Creating an Android Project 
Once the IDE has launched, select File  New  Project in the Eclipse main menu to 

create a new project. In the New Project dialog, select Android Project from the list of 

wizards to tell Eclipse the type of project you wish to create, as shown in Figure 4–5. 

Click the Next button to continue. 

 

Figure 4–5. The Eclipse New Project dialog 



CHAPTER 4:  Introducing the Android Software Development Platform 53 

You’ll see the New Android Project dialog, which allows you to specify all sorts of 

important variables for your applications. Let’s address them one by one.  

 Project name: This is the name of the folder in your C:/Projects folder 

that holds your Hello World application folders and files. Let’s give this 

folder the same name as our application: HelloWorldAndroid.  

CAUTION: We have omitted spaces from the folder name because spaces are not supported in 
Java names. It is not advisable to use spaces in names of folders that you use for software 

development. 

 Create new project in workspace: We’ll keep this radio button 

selected so that Eclipse will create the new project within its IDE 

working area for us automatically. 

 Use default location: You can see what folder structure Eclipse will 

use for your project folder by keeping this option checked.  

 Build Target: This panel allows you to specify the versions of Android 

your application will support. The more you support, the more users 

will be able to use your application, so let’s use a build target of 

Android 1.5. That version has everything that we will need to build 

most applications that work across all current Android smartphones. 

You do not need to select the Google APIs for 1.5—just pick the 1.5 

Android open source package, which includes everything. 

 Application name: The Properties section lets you specify where you 

want Eclipse to set up the framework for your application, which is 

where some of the basic Java and XML code will be written by the IDE 

to get you started (a really a nice feature of Eclipse). The first field in 

this section is for the application name, which is the name that will 

appear in the application’s title bar when it runs. Let’s set that name to 

Hello Great Big Android World Out There! 

 Package name: This is the name you want to use for your Java package. 

For now, we will simply define this as the name of the container that will 

hold all of the Java code our application uses. Let’s name this package 

Hello.World. (Java package names are separated by periods, much like 

file pathnames are separated by forward slashes). 

 Create Activity: Leave this box selected and let’s name our Java activity 

class MyHelloWorld. A Java activity class is a collection of code that 

controls your UI (you will learn more about activities in the next chapter).  

 Min SDK Version: Set this value to 3. This matches up with your 

Android 1.5 build target selection, since version 1.5 of Android uses 

the level 3 SDK. 



CHAPTER 4:  Introducing the Android Software Development Platform 54 

Figure 4–6 shows the completed New Android Project dialog for this example. When you 

are finished filling it out, click the Finish button. Eclipse will create your first Android 

project for you. 

 

Figure 4–6. The New Android Project dialog for your first Android app 



CHAPTER 4:  Introducing the Android Software Development Platform 55 

Inspecting and Editing the Application Files 
After you click Finish in the New Android Project dialog, you are returned to Eclipse. In 

the IDE, you can navigate through the project using the Package Explorer pane.  

Let’s look at the folder hierarchy that Eclipse has automatically created for our project. 

Click the arrow icons next to the HelloWorldAndroid folder, and then click the arrow 

icons next to the src and res folders under it.  

Going further, click the open folder arrows next to the Hello.World, drawable, layout, and 

values folders, so you can see the Java and XML files that Eclipse has so kindly created 

for us. Figure 4–7 shows the Package Explorer pane at this point. 

 

Figure 4–7. The Eclipse Package Explorer pane 

Now let’s open some of these files and see just how much coding Eclipse has done for 

this project.  



CHAPTER 4:  Introducing the Android Software Development Platform 56 

To open any of the files listed in the Package Explorer, select the file by clicking once on 

it (the icon will turn blue), and then press F3. Alternatively, right-click the file name to get 

a context-sensitive menu, and then select the Open option.  

Opening the MyHelloWorld Activity 
The MyHelloWorld.java file holds our activity class. Right-click it and select Open to 

explore it now. As shown in Figure 4–8, Eclipse has already written the code to create a 

UI screen for the application and set its content to the UI defined in the main.xml file 

(with the R.layout.main text), which we will look at next. 

 

Figure 4–8. Our MyHelloWorld activity 

Let's examine this in a little more detail: 

package Hello.World; 
 
import android.app.Activity; 
import android.os.Bundle; 
 
public class MyHelloWorld extends Activity { 
    /** Called when the activity is first created. */ 
    @Override 
    public void onCreate(Bundle savedInstanceState) { 
        super.onCreate(savedInstanceState);    
        setContentView(R.layout.main); 
    } 
} 

As you can see, Eclipse used the information in our New Android Project dialog to 

create a usable Java file, which includes a Hello.World package declaration, import 

statements, a MyHelloWorld activity class, and an onCreate() method.  



CHAPTER 4:  Introducing the Android Software Development Platform 57 

Opening the UI Definition 
Next, let’s take a look at our UI interface markup code in the main.xml file in the layout
folder, as shown in Figure 4–9. The XML code in the main.xml file is quite a bit different

from the Java code.  

<?xml version="1.0" encoding="utf-8"?> 
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android" 
    android:orientation="vertical" 
    android:layout_width="fill_parent" 
    android:layout_height="fill_parent" 
    >
<TextView 
    android:layout_width="fill_parent"  
    android:layout_height="wrap_content" 
    android:text="@string/hello" 
    />
</LinearLayout> 

It uses tags like those in HTML to define structures that you will be using in your

applications. In this case, it is a UI structure that contains a LinearLayout tag, which

keeps our UI elements in a straight line, and a TextView tag, which allows us to put our

text message on the application screen. 

NOTE: If you don't see something like Figure 4–9, to view the file, click its icon in the layout 

folder, select Open, and then choose main.xml at the bottom of the window.  

Figure 4–9.The XML UI layout for our activity 

D
ow

nl
oa

d 
fr

om
 W

ow
! e

B
oo

k 
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

http://schemas.android.com/apk/res/android


CHAPTER 4:  Introducing the Android Software Development Platform 58 

Notice that the TextView tag uses an attribute called android:text, which is set equal to 

@string/hello. This is a reference to the strings.xml file, which we are going to look at 

next.  

Opening the Strings Resource File 
So far, we have looked at the Java code, which points to the main.xml file, which in turn 

points to the strings.xml file. Open that file now (right-click the file’s icon in the Package 

Explorer and select Open). The file will open in a third tab within the Eclipse IDE, as 

shown in Figure 4–10. 

 

Figure 4–10. The strings.xml file when it first opens 

When you open the strings.xml file, you will see that Eclipse has already added two 

variables: hello and app_name. The string variable named hello is to hold the text that 

we want our application to display. The app_name variable is to hold the string data that 

will appear in the title bar at the top of the application. We already specified it in the New 

Android Project dialog as Hello Great Big Android World Out There!. 

Notice the tabs at the bottom of the editing pane labeled Resources and strings.xml. 

These tabs allow you to switch between the actual XML code and the more user-friendly 

interface that you see in Figure 4–10, which makes editing Android resources a bit easier 

than coding straight XML. 

Since the app_name value is already specified thanks to our New Android Project dialog, 

let’s leave it alone and set the value of hello. 



CHAPTER 4:  Introducing the Android Software Development Platform 59 

Setting a Variable Value in strings.xml 
To set the value of hello, all you need to do is to click its name in the left pane of the 

Resources view and edit its text. Once you click hello, two fields will appear. One 

contains the string variable name (hello), and the other has its value. In the Value field, 

type Hello Android World, Here I Come!, as shown in Figure 4–11. 

 

Figure 4–11. Editing the value of hello 

Once you have entered a string for the hello variable, click the strings.xml tab at the 

bottom of the editing pane and take a look at the XML code that Eclipse has generated, 

as shown in Figure 4–12. 

 

Figure 4–12. The updated XML code 



CHAPTER 4:  Introducing the Android Software Development Platform 60 

In this view, you can see the actual XML code for the string tags, which are nested 

inside the <resources> tags that allow us to define resources for our Android application.  

<?xml version="1.0" encoding="utf-8"?> 
<resources> 
    <string name="hello">Hello Android World, Here I Come!</string> 
    <string name="app_name">Hello Great Big Android World Out There!</string> 
</resources> 

Each <string> tag has a variable name attribute so we can refer to it by name in our Java 

code. Tags are ended by the same tag that started them with the addition of a forward 

slash, like this: <string>XXX</string>. 

As you can see in the XML code, Eclipse has created the correct XML code for us to use 

to write our Hello World message to the smartphone screen. The code reads as follows: 

<string name=”hello”>Hello Android World, Here I Come!</string> 

Now it’s time to compile and run the application. 

Running the App 
To compile and run the application, right-click the HelloWorldAndroid folder icon in the 

Eclipse Package Explorer and select Run As  Android Application.  

Eclipse will compile your app, and then open a version 1.5 emulator window to display a 

virtual phone on which to run it. When the emulator first starts up, it will display the 

standard smartphone screen, simulating a background image and standard Android 

icons for system time, signal strength, and so on.  

To actually run the app in the emulator, you need to click the Menu button in the middle-

bottom area of the screen, or use the Home button to display your application icons and 

then select an icon to run. So, your application will not just run in the emulator 

automatically. You must use the phone interface, finding and running the app as you 

would in real life. Give it a shot now. Figure 4–13 shows Hello World running in the 

emulator. 



CHAPTER 4:  Introducing the Android Software Development Platform 61 

 

Figure 4–13. Running Hello World in the emulator 

Congratulations, you have created your first application. Next, we’ll customize its 

Android icon. 

Adding an Application Icon 
The final thing that we are going to do in this chapter is give our application an icon that 

will show up on users’ Android devices and can be used by them to launch the 

application. We’ll use what you have learned about defining alternate resources by 

creating an icon that works on small, medium, and large screens. We’ll add the 

appropriate icon files into the correct alternate folders so that Android automatically 

finds and uses the correct icon for each type of Android screen: 

 /res/drawable-ldpi for small screens (/res/drawable-small is another 

option that is based more on size than density) 

 /res/drawable-mdpi for medium screens (or /res/drawable-normal) 

 /res/drawable-hdpi for large screens (or /res/drawable-large) 

Not surprisingly, this is done by giving your icon an exact name and file format, and 

putting it into an exact directory. When Android finds an icon file there, it automatically 

puts it into play as your application’s icon. The file must follow these rules: 



CHAPTER 4:  Introducing the Android Software Development Platform 62 

 Be placed in the correct /res/drawable-dpi folder, which holds all of 

the drawable resources for that screen resolution 

 Be named icon.png 

 Be a 24–bit PNG file with an alpha channel (transparency), so that the 

icon overlays any system background wallpaper seamlessly 

Here, I'll use my 3D company logo, but you can use any image you like. Also, I use 

Photoshop for this type of image editing, but you can use any image-editing program 

you prefer. 

Adding Transparency 
The first thing we need to do is to put the logo onto a transparency. Here are the steps 

to remove the white background from the logo (illustrated in Figure 4–14): 

1. Open the logo file. It is 200  200 pixels.  

2. Select the Magic Wand tool (in the toolbar) and set the tolerance at 12 

(top toolbar). Click the white areas to select them.  

3. Choose Invert the Selection to grab only the logo and select Edit  Copy to 

copy this image data to the clipboard.  

4. Create a new file of 200  200 pixels and paste the logo pixels on top of 

the transparency. 

5. Save the file as MyIcon. 



CHAPTER 4:  Introducing the Android Software Development Platform 63 

 

Figure 4–14. Steps to extracting artwork on a solid color background into a transparency mask (alpha channel) 

Creating the Icons  
Now, we’ll create three standard Android-sized icons by using the Image  Resize 

command, as follows:  

 High-resolution icon: Resize the image from 200  200 to 72  72 

pixels, as shown in Figure 4–15. Then use Save For Web to save it as a 

24–bit PNG file with the transparency option checked in your project 

folder: C:/Android_Project/res/drawable-hdpi. Name it icon.png. 



CHAPTER 4:  Introducing the Android Software Development Platform 64 

 

Figure 4–15. Using the Image Size command to create a high-resolution, 72-pixel square application icon 

 Medium-resolution icon: Repeat the same process for the medium-

resolution icon. First, select Edit  Step Backwards, which will undo the 

resizing to restore the image to 200 pixels. Then choose Image  Resize 

to set the image to 48 pixels this time. Save the file in the same format 

with the same options in the medium folder: 

C:/Android_Project/res/drawable-mdpi. Name it icon.png. 

 Low-resolution icon: Go back and resize the image to 32 pixels, and 

save it to the low-density image folder: 

C:/Android_Project/res/drawable-ldpi. Name it icon.png. 

Figure 4–16 shows the three different icon.png files, illustrating their relative sizes to the 

original. Android will now pick the appropriate icon when your application is run. 

NOTE: Don't delete the drawable folder, because Android will use the icon in it if none of your 

resources matches the characteristics of the device running your app. 



CHAPTER 4:  Introducing the Android Software Development Platform 65 

 

Figure 4–16. High-, medium-, and low-resolution icons in Photoshop, with transparency (checkerboard) 

Summary 
Android is very particular about which types of files you use and where you put them 

within your project folder. We will be looking at the particulars of how things need to be 

set up in order to work properly in Android throughout this book. 

In this chapter, you created and compiled your first project for Android inside Eclipse 

using the Android application development environment you installed in Chapter 3. You 

saw that the Android environment in Eclipse gives you a lot of development assistance, 

and as a beginner, you’ll want to take advantage of every bit of help you can get. The 

proof is in the pudding, as they say. You just developed an Android Hello World 

application and needed to change only one line of code in the Eclipse IDE. You saw how 

Android sets up a basic application, and which Java and XML files are needed in order 

to create a UI and a basic application. 

Your Android application icon is very important to the branding of the application, as it 

represents your application on the users’ desktop, which is usually crowded with all of 

the other installed application icons. Customizing an app icon is as simple as putting the 

icon file into the correct folder. You just must make sure that the icon is saved in the 

correct file type, is the correct resolution, uses an alpha channel, and has the correct file 

name: icon.png. 



CHAPTER 4:  Introducing the Android Software Development Platform 66 

The next chapter provides an overview of Java and how Android compartmentalizes 

things having to do with an application. In the remaining chapters, we will get down to 

actually coding in Java and creating XML markup that delivers your application’s UI and 

functionality. 



67 

67 

   Chapter 

Android Framework
Overview 
The primary programming language used in developing your Android applications is

Java SE, from Oracle (formerly Sun Microsystems). As noted in Chapter 1, Java SE

stands for Java Standard Edition, and many people shorten this to just Java to refer to

the programming language. Two other editions of the Java programming language are

called Java EE, short for Java Enterprise Edition, and Java ME, for Java Micro Edition. 

Java EE is designed for massive computer networks, such as vast collections of blade

computers that are used to run large enterprises or corporations with thousands of

active users. Thus, Java EE has more multiuser scalable features than Java SE, which is

more for a single user on a single computer system, say a home PC or a handheld PC,

like Android. 

Java ME is designed for embedded systems to create highly portable computers such

as mobile phones. It has fewer features than Java SE, so that it can fit onto a phone

without using too much memory and resources to run it. Most mobile phones run Java

ME, but Android phones run the more powerful Java SE. Android phones can run Java

SE because they have a full gigabyte of memory and a 1GHz or faster CPU, so

essentially today’s Android smartphones are tiny Linux computers.  

Java is an object-oriented programming (OOP) language. It is based on the concepts of

developing modular, self-contained constructs called objects, which contain their own

attributes and characteristics. In this chapter, you will learn about the OOP

characteristics of Java, and the logic behind using these modular programming

techniques to build applications that are easier to share and debug due to this OOP

approach. 

After you’ve had a taste of the power of Java, we’ll quickly cover XML, because it’s the

way you define UIs and configurations in your Android apps. Without it, you would need

to rely solely on Java code, which would make developing apps a lot more complicated. 

5 

D
ow

nl
oa

d 
fr

om
 W

ow
! e

B
oo

k 
<

w
w

w
.w

ow
eb

oo
k.

co
m

>



CHAPTER 5:  Android Framework Overview 68 

Finally, we’ll cover the main parts of the Android framework, and you will be able to see 

the OO underpinning it has. We’ll briefly cover each component and explain which 

chapter covers it in more detail. 

The Foundation of OOP: The Object 
The foundation of an OOP is the object itself. Objects in OOP languages are similar to 

objects that you see around you, except they are virtual, and not tangible. Like tangible 

real-world objects, objects have characteristics, called states, and things that they can 

do, called behaviors. One way to think about it is that objects are nouns, or things that 

exist in and of themselves, and behaviors are like verbs. 

As an example, consider a very popular object in all of our lives: the automobile. Some 

characteristics, or states, of a car might be as follows: 

 Color (red) 

 Direction (N, S, E, or W) 

 Speed (15 miles per hour) 

 Engine type (gas, diesel, hydrogen, propane, or electric) 

 Gear setting (1, 2, 3, 4, or 5) 

 Drivetrain type (2WD or 4WD) 

The following are some things that a car can do, or behaviors:  

 Accelerate 

 Shift gears 

 Apply the brake 

 Turn the wheels 

 Turn on the stereo 

 Use the headlights 

 Use the turn signals  

You get the idea. 

Figure 5–1 is a simple diagram of the object structure using the car example. It shows 

the characteristics, or attributes, of the car that are central to defining the car object, 

and the behaviors that can be used. These attributes and behaviors define the car to the 

outside world.  



CHAPTER 5:  Android Framework Overview 69 

 

Figure 5–1. Car object showing car characteristics (inner oval) and car behaviors (outer oval)  

Objects can be as complicated as you want them to be, and can nest or contain other 

objects within their structure, or object hierarchy. A hierarchy is like a tree structure, with 

a main trunk and branches and subbranches as you move up (or down) its structure. A 

good example of a hierarchy is the directory or folder structure on your hard disk drive.  

Directories or folders on your hard disk drive can contain other directories or folders, 

which can in turn contain yet other directories and folders, allowing complex hierarchies 

of organization to be created. You can do the same thing with objects, which can 

contain subobjects, which can themselves contain further subobjects as needed to 

create your structure. You’ll see plenty of nested objects when working with Android, 

because nested objects are useful for grouping objects that are used in only one place. 

In other words, some types of objects are useful only to one other type of object in an 

Android app, so they are provided in a nested hierarchy. 

You should practice identifying objects in the room around you, and then break their 

definition down into states (characteristics) and behaviors (things that they can do), as 

this is how you will need to think to become more successful in your OOP endeavors. 

You’ll notice that in real life, objects can be made up of other objects. For example, a car 

engine object is made up of hundreds of discrete objects that function together to make 

the engine object work as a whole. This same construction of more complicated objects 

out of simpler objects can be done in OOP languages, where complex hierarchies of 

objects can contain other objects that have been created in previous Java code. 

Some OOP Terminology 
Now let’s cover some of the technical terminology used for Java objects. First, objects 

have fields and methods, as follows: 

 Fields, called variables, hold the object’s states.  

 Methods are programming routines that operate on the object’s 

internal states. If object characteristics can be thought of as nouns, 

then methods can be thought of as verbs using this analogy. Methods 

also allow other objects external to the object itself to communicate 

with  the object. 



CHAPTER 5:  Android Framework Overview 70 

One of the key concepts of OOP is data encapsulation, where the object’s fields are 

allowed to be modified directly only through that same object’s methods. This allows the 

object to be self-sufficient. For example, to turn the car, you use the steering method, 

which positions the wheels in the desired direction. 

With data encapsulation, each object that is part of a larger construct can be built and 

tested individually, without requiring accessing data from other objects or modules of 

the application (which can translate into bugs). Without data encapsulation, people 

could simply access any part of your object’s data and use it however they pleased. This 

could introduce bugs, affecting the methods you have perfected to manipulate your 

object and provide your solution. 

Data encapsulation promotes the core concept in OOP of modularity. Once an object is 

created and tested, it can be used by other objects without worrying about its integrity. 

Data encapsulation thus allows code reuse, so programmers can develop libraries of 

useful objects that do not need to be rewritten or retested by other programmers. You 

can see how this can save developers money by structuring only the work that needs to 

be done and avoiding redundant work processes. 

Data encapsulation also allows developers to hide the data and the internal workings of 

the object if desired.  

Finally, objects make debugging easier because they can be removed modularly during 

testing to ascertain where bugs are located in the overall code. In our car object 

example, the attributes of our car are encapsulated inside the car object, and can be 

changed only via the methods that surround them in the diagram. For instance, use the 

Shift Gears method to change the Gears=1 attribute to Gears=2. 

The Blueprint for an Object: The Class 
In real life, there is seldom just a single kind of object. Usually, there are a number of 

different types and variations. For instance, for a car object, there are many different 

manufacturers, sizes, shapes, seating capacity, engine types, fuel types, transmission 

types, and so on. 

In Java SE, we write something called a class to define what an object can do (its 

methods) and the fields it has. Once this class has been coded in Java, we can then 

create an instance of each object that we wish to use by referencing the class definition. 

In architectural terms, the class is a kind of blueprint as to what the object is, what 

states it contains, and what it can do (what methods it has). 

NOTE: An instance is a concrete object created from the blueprint of the class, with its own 
states or unique data attributes. For example, you might have a (second) blue car instance that is 
traveling south in third gear. (In the example, our first car instance is red and traveling north in 

first gear.) 



CHAPTER 5:  Android Framework Overview 71 

To illustrate this further, let’s construct a basic class for our car object example. To 

create a car class, you use the Java keyword class, followed by your name for the new 

class that you are writing, and then curly brackets to hold your code definition, like so: 

class Car {Code definition for a car class goes in here. We will do this next} 

The first thing that we usually put inside our class (inside the curly {} brackets) is the 

data fields (variables) that will hold the states, or attributes, of our car. In this case, we 

have six fields that define the car’s gear, speed, direction, fuel type, color, and drivetrain 

(two- or four-wheel drive), as specified in the basic diagram shown earlier in Figure 5–1. 

To define a variable in Java, you first declare its data type (int means a whole number, 

and string means text), followed by your variable name. You can also (optionally) set a 

default, or starting, value by using an equal sign and a data value. The variable definition 

ends with a semicolon.  

NOTE: Semicolons are used in programming languages to separate each code construct or 

definition from the other ones in the same body of code. 

So, with our six variables from our anatomy of an object diagram in place, our class 

definition looks like this:  

class Car { 
    int speed = 15; 
    int gear = 1; 
    int drivetrain = 4; 
    String direction = "N"; 
    String color = "Red"; 
    String fuel = "Gas"; 
} 

Remember that these are all the default values—the ones each object instance will have 

when we create it. 

Notice how the example spaces out the curly braces ({}) on their own lines and indents 

lines, so that you can see what is contained within those braces more easily.  

The next part of the class file will contain the methods that define how the car object will 

operate on the variables that define its current state of operation. Methods can also 

return a value to the calling entity, such as values that have been successfully changed 

or even answers to an equation. For instance, there could be a method to calculate 

distance that multiplies speed by time and returns a distance value. 

To declare a method that does not return any value to the calling entity, you use the 

void keyword. A good example of using void is a method that triggers something—the 

method is used to invoke a change in the object, but does not need to send a value 

back to the calling function. 

If your method or function returns a value, instead of using the void keyword, you use the 

data type of the data that is to be returned, say int or string. For example, an addition 

method would return a number after finishing its calculation, so you would use int. 



CHAPTER 5:  Android Framework Overview 72 

After the void keyword comes a name for the method (say, shiftGears). This is followed 

by the type of data (in this case, an int) and variable name (newGear) in parentheses.  

void shiftGears (int newGear) { 

The variable contains a data parameter that will be passed to the method, so the 

method now has this variable to work with.  

NOTE: The normal method-naming convention is to start a method name with a lowercase letter, 
and to use uppercase letters to begin words embedded within the method name, like this: 

methodNameExample(). 

Some methods are called without variables, as follows:  

methodSample(); 

To call the shiftGears() method, you would use the following format:  

shiftGears(4); 

This passes 4 into the shiftGears() method’s newGear variable, which sets its value. 

This value then is passed into the interior of the shiftGears() method logic (the part 

inside the curly braces), where it is finally used to set the object’s gear (internal) field to 

the new gear shift value of 4, or fourth gear. 

A common reason to use a method without any parameters is to trigger a change in an 

object that does not depend on any data being passed in. So, we could code an 

upShift() method and a downShift() method that would upshift and downshift by one 

gear level each time they were called, rather than change to a gear selected by the 

driver. We then would not need a parameter to shift gears on our car; we would just call 

upShift() or downShift() whenever gear shifting was needed. 

NOTE: Notice the empty parentheses after the method names in the text. These are used when 
writing about the method, so that the reader knows that the author is talking about a method. 

You will see this convention used throughout the rest of this book.  

After the method declaration, the method’s code procedures are contained inside the 

curly braces. In this example, we have four methods: 

 The shiftGears() method sets the car’s gear to the gear that was 

passed into the shiftGears() method. 

        void shiftGears (int newGear) { 
                gear = newGear; 
        } 



CHAPTER 5:  Android Framework Overview 73 

 The accelerateSpeed() method takes the object’s speed state variable 

and adds an acceleration factor to the speed, which causes the object 

to accelerate. This is done by taking the object’s current speed 

setting, or state, and adding an acceleration factor to it, and then 

setting the result of the addition back to the original speed variable, so 

that the object’s speed state now contains the new (accelerated) speed 

value. 

        void accelerateSpeed (int acceleration) { 
                speed = speed + acceleration; 
        } 

 The applyBrake() method takes the object’s speed state variable and 

subtracts a braking factor from the current speed, which causes the 

object to decelerate, or to brake. This is done by taking the object’s 

current speed setting and subtracting a braking factor from it, and then 

setting the result of the subtraction back to the original speed variable, 

so that the object’s speed state now contains the updated 

(decelerated) braking value. 

        void applyBrake (int brakingFactor) { 
                speed = speed - brakingFactor; 
        } 

 The turnWheel() method is straightforward, much like the 

shiftGears() method, except that it uses a string value of N, S, E, or W 

to control the direction that the car turns. When turnWheel("W") is 

used, the car will turn left. 

        void turnWheel (String newDirection) { 
                direction = newDirection; 
        } 

The methods go inside the class and after the variable declarations, as follows: 

class Car { 
    int speed = 15; 
    int gear = 1; 
    int drivetrain = 4; 
    String direction = "N"; 
    String color = "Red"; 
    String fuel = "Gas"; 
 
    void shiftGears (int newGear) { 
        gear = newGear; 
    } 
 
    void accelerateSpeed (int acceleration) { 
        speed = speed + acceleration; 
    } 
 
    void applyBrake (int brakingFactor) { 
        speed = speed - brakingFactor; 
    } 
 
    void turnWheel (String newDirection) { 



CHAPTER 5:  Android Framework Overview 74 

        direction = newDirection; 
    } 
} 

This Car class allows us to define a car object, but it can’t do anything until we use it to 

instantiate an object. In other words, it does not do anything until it is called.  

To create an instance of an object, we instantiate it. Here’s the onCreate() method of an 

Android application, where we instantiate two cars and use them (refer to the example in 

Chapter 4 to see how to create an onCreate() method in an Android app): 

public void onCreate(Bundle savedInstanceState) { 
    super.onCreate(savedInstanceState); 
    setContentView(R.layout.main); 
 
    Car carOne = new Car();           // Create Car Objects 
    Car carTwo = new Car(); 
 
    carOne.shiftGears(3); 
    carOne.accelerateSpeed(15);                // Invoke Methods on Car 1 
    carOne.turnWheel("E"); 
 
    carTwo.shiftGears(2);                       // Invoke Methods on Car 2 
    carTwo.applyBrake(10); 
    carTwo.turnWheel("W"); 
} 

Upon launch or creation of our Android application, we now have two empty car objects. 

We have done this using the Car() class constructor, along with the new keyword, which 

creates a new object for us, like so: 

Car carOne = new Car(); 

The syntax for doing this is very similar to what we used to declare our variables:  

 Define the object type Car. 

 Give a name to our object (carOne). 

 Set the carOne object equal to a new Car object definition, which has 

all the default variable values set. 

To invoke our methods using our new car objects requires the use of something called 

dot notation. Once an object has been created and named, you can call methods by 

using the following code construct: 

 objectName.methodName(variable); 

So, to shift into third gear on car object number one, we would use this: 

carOne.shiftGears(3); 

So, as you can see in the final six lines of code in the onCreate() method , we set carOne 

to third gear, accelerate it from 15 to 30 mph by accelerating by a value of 15, and turn 

east by using the turnWheel() method with a value of "E" (the default direction is north, 

or "N"). Car two we shift into second, applyBrake() to slow it down from 15 to 5 mph, 

and turn the car west by using the turnWheel("W") method via our dot notation. 



CHAPTER 5:  Android Framework Overview 75 

Providing Structure for Your Classes: Inheritance 
There is also support in Java for developing different types of car objects by using a 

technique called inheritance, where more specific car classes (and thus more uniquely 

defined objects) can be subclassed from a more generic car class. Once a class is used 

for inheritance by a subclass, it becomes the super class. There can be only one super 

class and an unlimited number of subclasses. All the subclasses inherit the methods and 

fields from the super class. 

For instance, from our Car class, we could subclass an Suv class that extended the Car 

class to include those attributes that would apply only to an SUV type of car, in addition 

to the methods and states that apply to all types of cars. An SUV car class could have 

onStarCall() and turnTowLightOn() methods, in addition to the usual car operation 

methods. Similarly, we could generate a subclass for sports cars that includes an 

activateOverdrive() method to provide faster gearing and an openTop() method to put 

down the convertible roof. You can see these subclasses in the extension of our car 

object diagram shown in Figure 5–2. 

 

Figure 5–2. Inheritance of a Car object  

To create a subclass from a super class, you extend the subclass from the super class 

using the extends keyword in the class declaration, like this: 

class Suv extends Car { New Fields and Methods Go Here } 

This extends to Suv all of the fields and methods that Car features, so that the developer 

can focus on just the new or different fields and methods that relate to the differentiation 

of the SUV from the regular car definition. Since the original core fields and methods 

come from the Car class, it becomes the super class, and the Suv class becomes the 

subclass. Suv is said to be subclassed from the Car super class. 

To refer to one of the super class methods from within the subclass you are writing, you 

can use the super keyword. For example, in the Suv class, we may want to use a generic 



CHAPTER 5:  Android Framework Overview 76 

car’s applyBrake() method, and then apply some other factor to the brakes that is 

specific to SUVs. The following code does this: 

class Suv extends Car { 
    void applyBrake (int brakingFactor) { 
        super.applyBrake(brakingFactor); 
        speed = speed - brakingFactor; 
    } 
} 

This means the SUV’s brakes are twice as powerful as a generic car’s brakes. 

Be sure to use good programming practices and document the super class fields and 

methods within each subclass. This documentation lets the users know that the super 

class’s fields and methods are available, since they do not explicitly appear in the code 

for the subclass. 

Defining an Interface 
In many Java applications, the classes conform to a certain pattern, so that the rest of 

the application knows what to expect of those classes when they are instantiated as 

objects. This is especially common when using a framework like Android.  

The public interface that the classes present to the rest of the application makes using 

them more predictable and allows you to use them in places where any class of that 

pattern is suitable. In other words, the public interface is a label that tells the application 

what this class can do, without the application needing to test its capabilities. 

In Java terms, making a class conform to a pattern is done by implementing an 

interface. The following is an ICar interface that forces all cars to have the methods 

defined in the interface. This also means that the rest of the application knows that each 

car can do all of these actions, because the ICar interface defines the public interface of 

all cars. 

public interface ICar { 
    void shiftGears (int newGear); 
    void accelerateSpeed (int acceleration); 
    void applyBrake (int brakingFactor); 
    void turnWheel (String newDirection); 
} 

So, a car is not a car unless it contains these particular methods.  

To implement an interface, use the implements keyword as follows, and then define all 

the methods as before, except they must be public. 

class Car implements ICar { 
    int speed = 15; 
    int gear = 1; 
    int drivetrain = 4; 
    String direction = "N"; 
    String color = "Red"; 
    String fuel = "Gas  "; 



CHAPTER 5:  Android Framework Overview 77 

    public void shiftGears (int newGear) { 
        gear = newGear; 
    } 

    public void accelerateSpeed (int acceleration) { 
        speed = speed + acceleration; 
    } 

    public void applyBrake (int brakingFactor) { 
        speed = speed - brakingFactor; 
    } 

    public void turnWheel (String newDirection) { 
        direction = newDirection; 
    }
} 

The public keyword allows other classes to call these methods, even if those classes

are in a different package (packages are discussed in the next section). After all, this is a

public interface, and anyone should be able to use it. 

Bundling Classes in a Logical Way: The Package 
Each time you start a new project in Android, the Eclipse IDE will create a package to

contain your own custom classes that you define to implement your application’s

functionality. In the Hello World application we created in the previous chapter, our

package was named Hello.World. In fact, the New Android Project dialog asked us for

this package name.  

The package declaration is the first line of code in any Android application, or in any

Java application for that matter. The package declaration tells Java how to package

your application. Recall the first line of code in our Hello World application: 

package hello.world; 

After the package keyword and declaration come import statements, which import

existing Java classes and packages into your declared package. So, a package is not

only for your own code that you write yourself, but also for all code that your application

uses, even if it is open source code written by another programmer or company. 

Basically, the package concept is similar to the folder hierarchy on your computer. A

package is just a way of organizing your code by its functionality. Android organizes its

classes into logical packages, which we will routinely import and use throughout this

book. 

In our Hello World application in the previous chapter, we needed two import
statements in our MyHelloWorld.java file to support class functions in our application: 

import android.app.Activity;
import android.os.Bundle; 

These are basically addresses to where the code for each import statement is located.

Here is a generalization of how an import statement follows a path to the class: 

D
ow

nl
oa

d 
fr

om
 W

ow
! e

B
oo

k 
<

w
w

w
.w

ow
eb

oo
k.

co
m

>



CHAPTER 5:  Android Framework Overview 78 

import platform.functionality.classname; 

This applies to our two statements as follows: 

 android says this is an Android package. 

 app and os refer to the broad functionality of the package in question. 

 Activity and Bundle refer to the classes we are importing.  

Thus, the Activity class, which is the super class for any activity that you create, is 

found within the android.app package. This app part says that this package logically 

contains classes that are necessary for the creation of Android applications, and one of 

these is the Activity class, which allows us to define UIs.  

The android.os package we referenced in our import statement contains classes that 

are operating system utilities. One of these is Bundle, which allows us to create bundles 

of variables for convenience and organization. 

You might be wondering if the package is the highest level of organization in Java. The 

answer is no, there is one higher level. This level is sometimes called a platform or 

application programming interface (API). This is a collection of all the core packages for 

a given language, such as Java SE or Java ME, or all the packages of a specialized 

product, such as Android.  

An Overview of XML 
There are actually two types of languages used in Android development: Java and XML. 

XML stands for eXtensible Markup Language. Developed in 1996, XML is similar to HTML 

(for Hyper-Text Markup Language), which is used for web site design. 

The primary use of XML is to structure data for items that require a predefined data 

structure, such as address books or computer-aided design (CAD). Like Java, XML is 

very modular, which allows complicated data definition constructs to be created. 

XML uses structures called tags, just as HTML does. And as in HTML, these tags use 

tag keywords bracketed by the < and > characters. For example, in Android, the 

<resources> tag contains resource definitions, and the <string> tag contains string 

resource definitions. The <string> tag also features attributes (which I think of more as 

parameters of sorts); for instance, a <string> tag has a name attribute that allows it to be 

named.  

NOTE: A parameter is a choice of data options that can be set, telling some code what you want 
it to do—sort of a way you can configure it exactly to your liking. So, you could set a background 

color of red by specifying a red parameter to a method or as an attribute to an HTML element. 



CHAPTER 5:  Android Framework Overview 79 

In our Hello World application in Chapter 4, we defined two string resources with the 

following XML in the strings.xml file: 

<resources> 
        <string name="hello">Hello Android World, Here I Come!</string> 
        <string name="app_name">Hello Great Big Android World</string> 
</resources> 

You can readily see the modularity via the nesting of tags. The <resources> tag contains 

the two <string> tags and their attributes, putting them into one resources group. 

Nesting can be as many levels deep as required for more complicated data definition 

constructs. 

XML is used in Android to define constructs so that you do not need to create them in 

more complicated Java code. It is easier to write definitions in XML than it is to write 

them in Java. This is because XML has the simpler markup format used in HTML, rather 

than the more complicated block code structure used in Java. This makes it easier for 

nonprogrammers to help write applications. 

Because XML is easier to use than Java, and because this is a book for beginners, we 

will do everything that we can using XML instead of Java. Android allows this, and the 

XML works as well as Java code to achieve exactly the same results. 

The Anatomy of an Android Application: The APK File 
The cornerstone of Android application development is the application package file 

format, or the APK file format. When you compile and output an application for 

distribution to your Android users, the Eclipse IDE and Android SDK output your 

application file name with an .apk extension. There is only one .apk file, and it includes 

all of your application code (in the form of a DVM executable .dex file format), as well as 

any new media resources or assets and the AndroidManifest.xml file (which we’ll discuss 

in detail in the final section of this chapter). Interestingly, the Android Market increased 

file size limits for .apk files from 25MB to 50MB, which is great news for developers. 

So, if your application is called Zoomerza, for instance, the file that you get upon final 

publishing will be called Zoomerza.apk, and it will run on any Android phone. This file 

format is closely related to the standard Java .jar format, and uses the familiar ZIP type 

compression. The .apk file is specifically set up so that it can be run in place without 

going through the unpacking process. 

You can look at the .apk file using the familiar file packing and unpacking software 

packages, such as PKZIP, WinZip, WinRAR, Ark, and 7-Zip. If you are interested in 

looking inside your application’s .apk file to see its folders, it will not hurt the .apk file to 

do so. 

If you have Windows Vista or Windows 7, the ZIP functionality is built into the operating 

system. An easy way to see your .apk file is to rename it to a .zip extension and open it 

inside the Windows Explorer file management utility. Another clever way to do this 

without renaming the file is to right-click the .apk file and use the Open with option to 

select a ZIP extraction utility. Let’s do that here, so you can see what I’m talking about.  



CHAPTER 5:  Android Framework Overview 80 

1. Rename HelloWorldAndroid.apk to HelloWorldAndroid.zip.  

2. When you’re warned about renaming the file, choose to do so anyway. 

3. Click HelloWorldAndroid.zip. You will be able to see the internal file 

structure, as shown in Figure 5–3.  

 

Figure 5–3. Viewing the structure of HelloWorldAndroid.zip 

As shown in Figure 5–3, the application includes an AndroidManifest.xml file and a 

classes.dex file. It also contains the /res folder with the /drawable and /layout subfolders, 

which hold the assets we used to develop the app. 

Android Application Components 
Android is designed with the maximum amount of modularity in mind. This modularity 

makes it easy for developers to exchange functionality between their applications, which 

is a central concept of the open source paradigm upon which Android is based. For 

instance, if you have coded a cool animated UI element, and you make this available to 

other applications, they can implement your class and use that element. And you do not 

need to have that code inside those other applications. As long as the application that 

contains the element’s code is running (or can be launched) on the Android smartphone, 

you can call the method via the Android operating system. 



CHAPTER 5:  Android Framework Overview 81 

There are four main types of components that can be (but do not need to be) used 

within an Android application: 

 Activities handle the UI to the smartphone screen. 

 Services handle background processing. 

 Broadcast receivers handle communication in your apps. 

 Content providers handle data and database management issues. 

Let’s take a closer at each of these components, to prepare for the hands-on use of 

them in the rest of this book. Here, you’ll get an overview of what Android is made up of, 

before we get into the details about class creation and such in later chapters. 

Android Activities: Defining the UI 
An Android activity contains a UI construct that accomplishes a given user-input task via 

the smartphone display screen.  

Android applications can have more than one activity. In fact, more complex 

applications usually have one activity for each UI screen implementation. For example, if 

you are programming a game, you might have the following activities: 

 The introductory splash screen with the Continue to Play Game OR 

Press Button to Play Game 

 The instructions screen, with a scrolling text UI 

 The high-score screen, with UI elements that allow the user to manage 

high-score entries 

 A player groups screen, where users choose who will play the game 

with them 

 The actual core gameplay screen itself 

If an application has more than one activity, one is marked as the activity that is 

presented when the application is launched. In our game example, that is the splash 

screen (although it could be the instructions screen). This activity has an onCreate() 

method that calls the main.xml file, as you saw in the Hello World application we created 

in the previous chapter.  

Here is the code for the onCreate() method from the Activity base, or super, class 

(note the super keyword) and sets the content View to the main.xml UI definition: 

public class MyHelloWorld extends Activity { 
    /** Called when the activity is first created. */ 
    @Override 
    public void onCreate(Bundle savedInstanceState) { 
        super.onCreate(savedInstanceState); 
        setContentView(R.layout.main); 
    } 
} 



CHAPTER 5:  Android Framework Overview 82 

An activity can be full screen, or it can be part of a screen, allowing for floating windows 

on top of other windows. An activity can also make use of other windows. For instance, 

an activity might show a pop-up dialog requesting that the user enter information, or it 

could display a product information window when a user clicks a product name or SKU. 

We will get into Activity class creation in all of the following chapters, and cover it 

specifically in Chapters 6 and 7, 

Android Services: Processing in the Background 
Unlike activities, services do not have any visual UI (that’s what an activity is for). 

Services handle the processing or heavy lifting for your application. They are often used 

for doing things that need to be done in the background or back end of the application, 

while the user works with your UI in the foreground or front end of your application. 

Here are some examples of what service components can do: 

 Calculate numeric values 

 Process game logic 

 Play media elements such as video and audio streams 

 Pull data from remote network locations 

 Transfer data between devices via Bluetooth 

Services handle calculations or processing that needs to be done in the background 

while the user is busy looking at the results of this processing on the activity-generated 

UI screen elements. 

Not surprisingly, you create your own services in Android by subclassing the Android 

Service class. Services can run in the background, even after an activity UI screen is no 

longer visible, such as when a user picks an MP3 audio file to play, and then does 

something else with the phone while listening to the music. We will take a look at using 

services in Chapter 11. There, you’ll learn how to use a MediaPlayer to play audio and 

video streams in the background of your applications. 

Broadcast Receivers: Announcements and Notifications 
Broadcast receivers are communication components that receive messages that are 

sent between the Android operating system and other application components, or 

between Android application components themselves.  

The Android operating system often sends out messages regarding the status of what is 

going on in real time with the Android phone itself. These are statuses that any Android 

application may want or even need to know about in order to protect the application 

integrity, such as if the phone is about to lose power and your app needs to save files. 



CHAPTER 5:  Android Framework Overview 83 

The following are some examples of Android operating system-initiated broadcast 

messages: 

 A low battery life warning 

 A time zone change notice 

 A language preference change notice 

 A message that the camera has been used to snap a picture 

And here are a couple examples of application-to-application broadcast messages: 

 An alert that data has finished downloading 

 A message that streaming video media has arrived, is cached, and is 

ready for the start of playback 

Your application can implement as many broadcast receivers as you like, in order to 

intercept any of the types of messages that need to be monitored for your application’s 

operation.  

Like Android services, broadcast receivers operate in the background, and thus do not 

have any associated UI elements. However, this does not mean that the broadcast 

receivers cannot trigger or invoke a UI activity in response to the messages that they 

carry. In fact, it is common practice to have broadcast receivers trigger UI elements that 

alert the user as to what is going on within the application. 

Broadcast receivers can also use the Android NotificationManager class to alert the 

user via built-in phone notification methods, such as flashing the screen backlight, 

playing a sound, triggering phone vibrations, and placing a persistent alert icon on the 

smartphone status bar. 

Broadcast receivers are created by extending the Android BroadcastReceiver class. We 

will look at using them in Chapter 11. 

Content Providers: Data Management 
Content providers in Android provide a way to make data available to your application 

and to other applications, if that is desired. This can be data that is created in and for 

your own application, or it can be data that can be accessed by your application, but 

that is created by other applications, or even by the Android phone utilities themselves. 

It can also be data that is created by your application and is made accessible to other 

applications. The content provider component is both powerful and flexible. 

For example, an Android phone utility uses a content provider to access the phone 

number database that is kept within your smartphone. Android comes with a number of 

built-in content provider databases, including contacts, images, audio, and video. These 

can be accessed via phone system utilities, as well as by your applications through 

coding.  



CHAPTER 5:  Android Framework Overview 84 

Content data can be stored in a file system on your SD card in your smartphone, off-

phone in a remote HTTP server, or in a proper database. The latter is the preferred 

method for storing and accessing data within Android, and you’ll see that in action in 

Chapter 10, which covers using content providers.  

To create your own content provider, you extend the ContentProvider base class, which 

implements a standard set of methods that are used to store and retrieve data. 

Applications access the methods defined by your ContentProvider class with a 

ContentResolver object, which is used to talk to any content provider, in order to 

navigate the data that is needed by the application. 

A content provider is activated when it receives a request for data from a content 

resolver. The other three components—activities, services, and broadcast receivers—

are activated via asynchronous messages called intents, which we’ll look at next. 

Android Intent Objects: Messaging for Components 
An Intent object in Android holds the contents of a message that is sent between 

modules, typically to launch them or to send them new task instructions. For activities 

and services, an Intent object provides an action to be taken, the data that the action 

needs to operate on, and optionally, some details or additional information that may be 

required for more complicated operations. 

You communicate with each type of Android component (activity, service, and 

broadcast receiver) using a different set of methods to receive the Intent object that is 

passed to it. For this reason, Intent objects are easy to keep separate and well defined, 

as they will be different for each type of Android component.  

The components use the Intent object methods as follows: 

 An activity is started up, or if it’s already started, given a new task, by 

passing an Intent object to the Context.startActivity() method. 

The Activity class can look at the contents of the Intent object via 

the getIntent() method, and at subsequent intent objects via the 

onNewIntent() method.  

 An Android service component is started by passing an Intent object 

to the Context.startService() method, which then calls the service 

class onStart() method, and passes it the Intent object that contains 

the actions for the service to perform and the data on which to 

perform them. 

 If the service is already running and the Intent object contains new 

instructions, then the intent is passed to the Context.bindService() 

method in order to establish an open connection between the calling 

component and the service that is being used. This always open, real-

time connection between code modules is commonly called binding in 

programming. 



CHAPTER 5:  Android Framework Overview 85 

 An Android broadcast receiver component is started by passing an 

Intent object to the Context.sendBroadcast() method, or optionally to 

the Context.sendOrderedBroadcast() method or 

Context.sendStickyBroadcast() method. The Intent object in this 

case contains the message action to be taken and the data (the 

message) on which that action needs to be taken. 

We will look closely at using Intent objects with activities in Chapter 11. 

Android Manifest XML: Declaring Your Components 
You have seen that Android needs to have a single XML file in your root project folder: 

AndroidManifest.xml, which is the file that Android uses to launch your application. The 

only other file in your project root folder is default.properties, which is generated by 

Eclipse and should never be modified. So, the only file in your project root folder that 

you ever need to worry about is AndroidManifest.xml. 

The Android manifest uses XML for several good reasons: 

 It is easy to code. 

 It allows you to define a logical data structure that is easy for Android 

to parse (break down into logical data definition components) and 

understand. 

 It can exist outside your Java code, so that Android can access it 

before it starts looking at your Java code and asset resources. 

The Android manifest XML file is essentially a road map for the Android operating 

system, telling it what your application is going to do, which components are needed, 

and what Android assets it needs permission to use within the Android smartphone 

operating environment. 

When your application is launched initially, the AndroidManifest.xml data definitions are 

used by Android to set up areas of system resources and memory for application 

components that need to be supported. They also are used to define secure access 

permissions for the more sensitive areas of Android (such as private, internal 

smartphone databases) that you need to access with your application.  

Let’s take a look at the AndroidManifest.xml file for our Hello World app. 

<?xml version="1.0" encoding="utf-8"?> 
 
<manifest        xmlns:android="http://schemas.android.com/apk/res/android" 
        package="Hello.World" 
        android:versionCode="1" 
        android:versionName="1.0"> 
 
    <application        android:icon="@drawable/icon" 
                        android:label="@string/app_name"> 
        <activity android:name=".MyHelloWorld" 
                  android:label="@string/app_name"> 

http://schemas.android.com/apk/res/android


CHAPTER 5:  Android Framework Overview 86 

          <intent-filter> 
            <action android:name="android.intent.action.MAIN" /> 
            <category android:name="android.intent.category.LAUNCHER" /> 
          </intent-filter> 
        </activity> 
    </application> 
 
    <uses-sdk android:minSdkVersion="3" /> 
</manifest> 

The opening line is the XML version and encoding declaration—standard fare inserted 

for us by Eclipse (as are other manifest entries). This is followed by the following tags: 

 <manifest>: This tag has four standard attributes, including the 

Hello.World package name that we entered in our New Android 

Project dialog. The xmlns:android attribute points to the online 

definition of the Android XML schema and is also standard fare in all 

XML files. The other two attributes are the Android XML version code 

and name, which are version 1 and 1.0, respectively. 

NOTE: An XML schema definition is a road map as to what is allowed in a given XML file—that 
is, the structure that it must follow and the tags or attributes it may contain. Think of it as 

defining all of the rules that you need to follow for any given class of XML file, where the Android 

manifest is a certain class of XML that needs to conform to a set format. 

 <application>: This tag’s android:icon attribute points to our 

icon.png file in our /drawable folder. The android:label attribute 

points to our application name (the name that goes in the application 

title bar at the top of the smartphone screen) in the strings.xml file. 

Note that the <application> tag is nested inside the <manifest> tag. 

You can see nesting by looking at the order of the closing tags at the 

end of the manifest file structure. 

 <activity>: Here, we declare our application’s activity class by 

specifying its name via the android:name attribute as .MyHelloWorld, 

which we also specified in our New Android Project dialog. Note that if 

we had a service class or broadcast receiver class, we would also 

declare them in this area of the manifest, along with their related 

<service> and <receiver> tags, as you will see in Chapter 11. 

 <intent-filter>: This tag specifies the action and category of the 

Intent object that launches our application. The action is 

android.intent.action.MAIN, which launches main.xml. The category 

is android.intent.category.LAUNCHER, which specifies that 

MyHelloWorld is the activity that launches the application (because it is 

the activity that contains this <intent-filter> tag). 



CHAPTER 5:  Android Framework Overview 87 

 <uses-sdk>: This tag specifies our minimum SDK support level of 

Android 1.5 SDK 3 via the attribute named android:minSdkVersion,

which we also specified in our New Android Project dialog. This comes

after the closing tags for the <application>, <activity>, and <intent-
filter> tags.  

After that, we close our <manifest> tag, and we are finished declaring our Hello World

application manifest XML file.  

We will look at Android manifest files in later chapters that cover more advanced

Android features, so you will be learning more about these tags before you are finished

with this book. 

Summary 
This chapter gave you an overview of the Java and XML languages, as well as the

various components of the Android operating system. We also looked at the

AndroidManifest.xml file, which ties everything together when Android launches your

application. 

The main component of Java is the object, which contains fields, or states, and methods

that operate on those states in order to change the attributes of the objects, just as in

real life. This approach allows objects to mimic real-world objects and also to exhibit

data encapsulation, which allows objects to be secure and self-contained. This

modularization helps in testing and debugging, because problems can be localized more

precisely. 

Objects can be created using classes, which are programming code constructs that are

used to define the object fields and methods, and thus their architecture. These classes

define the initial, or default, fields for the objects that are created from them, as well as

the programming code that defines methods for changing these default states as the

program executes. We used a car example to demonstrate the different attributes and

methods that would define a car object, such as acceleration, braking, steering, and

gear shifting. 

Classes can be used to create more detailed classes through a process called

inheritance. Through inheritance, the original base class becomes a super class, and

new, more finely detailed classes are subclassed from the base class to form different

types of class definitions. In our car example, we created SUV and sports car classes,

which allowed us to create SUV and sports car objects. 

Once you have finished coding all of your classes, you can bundle them logically

together in a package, which allows you to group your classes and even your

application together as one logical, well, package. You use the import statement to load

Android packages and classes. The format import platform.package.classname allows

you to precisely specify which packages and classes you wish to include and use in

your own applications. 

D
ow

nl
oa

d 
fr

om
 W

ow
! e

B
oo

k 
<

w
w

w
.w

ow
eb

oo
k.

co
m

>



CHAPTER 5:  Android Framework Overview 88 

We also took a look at XML, which uses tags to allow users to structure data. Tags can 

be nested to become subsets of other tags, and thus complicated and precise data 

structures can be created. Android uses XML so that some of the programming can be 

done in an easier language than Java. This allows nonprogrammers to become involved 

in the application design process. 

The Android APK (.apk) file holds our application code binaries and resources in a 

compressed .zip file format. This includes the classes.dex Dalvik executable file and the 

Android manifest and application resources. Renaming the .apk file to .zip allows you to 

look inside the file and see its assets. Recently, file size limits for .apk files were 

increased from 25MB to 50MB. 

Then we looked at Android application components. Android activity components hold 

your UI elements and are the front end of your applications to your end users. Android 

services define your processing routines and are the back ends of your applications. 

Android broadcast receivers send messages between your application components and 

are your intercomponent application messengers. Android content providers store and 

distribute your application data within your application to other applications and to the 

Android operating system itself. 

We next looked at Android Intent objects. These are our task managers. They send 

instructions between our application components as to which actions to perform and on 

which data to perform them. 

Finally, we covered the Android manifest file, AndroidManifest.xml. This file defines to 

the Android operating system how to start up your application, including which 

components will be used and which permissions and SDK levels your application will 

support on various model smartphones.  

All of the concepts in this chapter will be covered in detail in the remaining chapters of 

this book. 



 

 

89 

89 

   Chapter 

Screen Layout Design: 
Views and Layouts 
One of the most important parts of any application’s design and development is the 

graphical user interface (GUI) and screen layout design. Many of the most widely 

circulated Android applications are popular because of their visual design, animated 

graphics, and easy- or fun-to-use interfaces. We will explore the Java classes that 

provide the core foundation for all of these front-end capabilities in this chapter. 

Android View Hierarchies 
In Google Android, in order to interface with the smartphone screen, you use two core 

Java classes. These are two of the most important and often used classes in Android 

development:  

 The View class  

 The ViewGroup class  

View and ViewGroup are core, high-level classes, created or subclassed from the Java 

Object class, as are all Java classes. View objects are created using the View class. The 

View class can also be used to create many lower-level, or more customized, Java 

classes. Those classes that are subclassed from the View class inherit the 

characteristics of their superclass. 

So, the basic screen layout in Android is controlled by a View object, which contains a 

complex data structure that represents the content and layout parameters for a given 

rectangular section of the smartphone’s display screen. 

6 



CHAPTER 6:  Screen Layout Design: Views and Layouts 90 

Using the View Class 
There may be one or more View objects that make up the entire display screen, 

depending on how you use the View and ViewGroup classes to create the UI structure for 

your Android application’s screen. 

Each View object controls and references its own rectangular view parameters, allowing 

you to control many attributes. Here are just some examples of the many attributes 

controlled by the View class parameters available to programmers: 

 Bounds (measurements) 

 Layout on the screen 

 Order in which its layers are drawn 

 Scrolling 

 Focus 

 Keystroke interactions 

 Gesture interactions  

Finally, Views have the ability to receive events—interaction events between your 

application’s end user and the View object itself. For this reason, the View class is the 

logical Java construct to subclass to build more detailed and specific UI elements, such 

as buttons, check boxes, radio buttons, and text fields. 

NOTE: The View class serves as the foundation for UI elements that are subclasses of the View 
class. Recall that in Java, a subclass is a more specific or detailed implementation of the class 
from which it is subclassed. For instance, the Button class is subclassed from the TextView 
class, which is subclassed from the View class, which is subclassed from the Object class. 

The Button class is subclassed from the TextView class because the Button has a 
TextView label and is thus a more specialized version of a TextView; that is, it is a clickable 

TextView with a button background appearance. 

So many UI classes have been subclassed from the View class that there is a name for 

them: widgets. All of these widgets are contained in a package (a collection of classes) 

called android.widget. For example, you can access a Button class via this package 

using android.widget.button. 

Nesting Views: Using the ViewGroup Class 
One of the most useful classes subclassed from the View class is the ViewGroup class. 

The ViewGroup class is used to subclass layout container classes, which allow groups of 

View objects to be logically grouped, arranged, and cascaded onto the screen. 



CHAPTER 6:  Screen Layout Design: Views and Layouts 91 

ViewGroups are layout containers, usually collections of UI elements. In the diagram in 

Figure 6–1, View could mean a button, a text field, a check box, and so on. This applies 

to any other type of UI element. 

 

Figure 6–1. ViewGroups and nested Views and ViewGroups  

The remainder of this chapter explores the different types of ViewGroup subclasses. 

These are the foundation that Android developers use to organize and group their View 

objects (UI elements) on the smartphone display screen.  

Direct subclasses of the ViewGroup class include AbsoluteLayout, RelativeLayout, 

FrameLayout, LinearLayout, and SlidingDrawer. We’ll look at the two most often used 

ViewGroup subclasses: LinearLayout and RelativeLayout. We’ll also explore one of the 

coolest ViewGroup subclasses: SlidingDrawer. This subclass can be used to greatly 

expand your Android screen real estate by 200%. 

In the diagram in Figure 6–1, the top level ViewGroup object is the parent of the View 

objects and ViewGroup objects underneath it, which are called its children. The 

ViewGroup object in the second row is both a child as well as a parent, and the same 

goes for the ViewGroup object in the third row. 

As you can see, ViewGroup objects can contain other ViewGroup objects (a concept 

called nesting; it’s all so familial, isn’t it?), but View objects cannot contain other objects. 

They are the end object, so to speak, and are simply UI components for which you can 

set via a plethora of configuration parameters. 



CHAPTER 6:  Screen Layout Design: Views and Layouts 92 

Defining Screen Layouts: Using XML 
The primary way of defining screen layouts (I will stop calling them ViewGroup objects 

now, assuming that you are now classifying them as such when you see the term) is via 

XML. This XML goes inside a file called main.xml, placed inside a folder called 

/res/layout within your project folder. 

Once this main.xml file is in place, with your XML screen layout (UI) definition inside it, 

you can use the Java onCreate() method to push it onto your screen on the startup of 

your application activity, as discussed in Chapter 5. 

We’ll first take a look at the onCreate() code and how it works, and then we’ll use it for 

real in the next sections, where we will create three vastly different types of screen 

layouts. 

Setting Up for Your Screen Layout 
Just three lines of Java code inside an onCreate() method set your content view to the 

main.xml screen layout XML definition: 

public void onCreate(Bundle savedInstanceState) { 
        super.onCreate(savedInstanceState); 
        setContentView(R.layout.main); 
} 

The words before the method name determine who can access its methods and data. A 

public method is one that is open to any part of your Android application.  

The words that follow the method name (always enclosed in parentheses) are the 

parameters that an application can pass to the method for its use. Parameters are 

chunks of data the method needs to do its job. 

The savedInstanceState object is a Bundle object, which is a collection of all of the 

states for your activity screen UI elements. It exists so that the screen UI elements can 

be restored if the screen is replaced by navigation to other screens during the use of 

your application. As you learned in Chapter 5, the state of a UI screen consists of its 

attributes and their values, including the UI elements it uses, which one has the focus, 

the colors, and similar attributes that define its appearance. 

NOTE: The Activity class saves your state for you, so you don't need to worry. Simply extend 

it, and it does the work for you. 

The super keyword calls the superclass (the class containing the onCreate() method that 

was subclassed from android.app.Activity), so it is basically referencing the onCreate() 

method of the android.app.Activity class from which our activity class was subclassed. 

It’s just a shortcut for android.app.Activity.onCreate(savedInstanceState). Since it is 

called from this activity class, it affects this activity locally and applies to this activity 



CHAPTER 6:  Screen Layout Design: Views and Layouts 93 

only. This savedInstanceState object is the one Android kindly saves for us when it 

deals with saving state. 

TIP: If you ever want to save some state that is out of the ordinary, write your own method called 

onSaveInstanceState(Bundle savedInstanceState). Then save your custom state to 
the savedInstanceState object, remembering to call 

super.onSaveInstanceState(savedInstanceState). 

The onCreate() method will always be called by the Android operating system when 

any activity (remember that these are defined in the AndroidManifest.xml file) is started. 

This part of your code is where all of your initializations and UI definitions will be 

performed, so it must be present—at least if you need your users to interact with the 

smartphone screen area.  

The way that layouts contain other nested layouts in XML code  (as shown in Figure 6–1) 

is by nesting them inside each other. The closing tags are nested at the bottom of these 

structures, and they must be nested in the correct order to show Android which layouts 

are inside of which other layouts. Layouts underneath or inside of another layout 

conform to, and are controlled by, their parent layout container. The code examples in 

this chapter indent the nested code structures to show the nested layout hierarchy. 

You are about to see all of this in action in the next section, where we’ll work with the 

most commonly used layout container in Android: the linear layout. We’ll talk about the 

LinearLayout class, which has been subclassed from the ViewGroup class, which is 

subclassed from the View class, which is subclassed from the Object class.  

NOTE: Java implements subclasses so there is no redundancy in the construction of your code. 
Once a method has been written, it is available to every subclass (and its subclasses) that 

inherits from its base class. 

Using Linear Layouts 
In a layout, usually buttons are placed across the top of the screen, or sometimes down 

the side of the screen, in a line. This is exactly what the LinearLayout class does. It is 

designed to contain and arrange UI elements placed inside it across the screen (using 

the horizontal orientation parameter) or up and down the screen (using the vertical 

orientation parameter). 

NOTE: The LinearLayout container should not contain any scrolling views. (I think that’s 

common sense, but some folks will try anything once.)  



CHAPTER 6:  Screen Layout Design: Views and Layouts 94 

In Java code, to set the LinearLayout object’s orientation, use the 

setOrientation(integer) method, with either the constant HORIZONTAL for horizontal or 

VERTICAL for vertical: 

myLinearLayout.setOrientation(HORIZONTAL); 

After the LinearLayout has been set up in your XML, it’s possible to change its 

orientation on the fly inside your Java code. 

NOTE: Recall that constants are hard-coded values that your Java code uses in its program logic 
and can't change. In this case, Android provides easy-to-remember names so that you don't 
need to use fiddly numbers. You use the name HORIZONTAL, rather than the value it is set to, 

which is 0. This also helps if the value of HORIZONTAL ever changes. You're protected because 

the name does not change, even if the value inside Android does. 

Here's the attribute for orientation in the LinearLayout tag for XML: 

android:orientation="vertical" 

Thus, the entire LinearLayout tag looks like this: 

<LinearLayout android:orientation="vertical"> 

However, we should really have a few more key parameters in the LinearLayout tag to 

make it more useful and standardized, so here’s how it’s normally coded: 

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android" 
        android:layout_width="fill_parent" 
        android:layout_height="fill_parent" 
        android:orientation="horizontal"> 

The first parameter of the LinearLayout XML tag is the path to the Android XML schema 

definition. This parameter sets the variable android used in the rest of the tag to 

http://schemas.android.com/apk/res/android, so that you don’t need to write the other 

parameters like this: 

http://schemas.android.com/apk/res/android:layout_width="fill_parent" 

The value for the layout width and height parameters, fill_parent, simply tells the 

LinearLayout to expand to fill its parent container. Since this is the top level 

LinearLayout container, that would mean to fill the smartphone display screen. We 

already know what the orientation does, so now we have our LinearLayout defined. 

Anything we place inside this container will display across the screen from left to right. 

As discussed earlier in the chapter, the Java onCreate() method is used to load the 

main.xml layout parameters for the application.  

Well, it’s time to fire up Eclipse again, and create an application to see how all of this 

cool stuff works together.  

http://schemas.android.com/apk/res/android
http://schemas.android.com/apk/res/android


CHAPTER 6:  Screen Layout Design: Views and Layouts 95 

Creating the LinearLayouts Project in Eclipse 
We’ll build a simple UI that stacks some TextView elements along the left side of the 

screen, just to see how LinearLayout works. Let’s fire up Eclipse and get started! 

After you launch Eclipse, you will be presented with a Workspace Launcher dialog, 

where Eclipse will present you with a suggested workspace folder. Alternatively, you can 

select your own folder. I created a C:\Projects folder for my Android projects, and I used 

the Browse button to find this folder and select it, as shown in Figure 6–2. 

 

Figure 6–2. Selecting the project workspace in Eclipse 

After you have set your project folder, and Eclipse has launched its development 

environment, select File   New   Project, as shown in Figure 6–3. Then select the 

Android Project wizard from the Android folder, as shown in Figure 6–4.  

 

Figure 6–3. Choosing to create a new project in Eclipse 



CHAPTER 6:  Screen Layout Design: Views and Layouts 96 

NOTE: Once you have created an Android project, there will also be other options, such as an 

Android XML File option and an Android Test Project option.  

 

Figure 6–4. Creating a new Android project in Eclipse 

Now we need to create a new project resource, so hit the Next button. This takes you to 

the New Android Project dialog, where you need to fill out six important elements: 

 Project name: In this field, enter LinearLayouts. This is the Eclipse 

project name, as well as the name of the folder that will hold all of the 

project files. We’ll set the name of our application in this dialog as well. 

 Build Target: For our build target, we want as much platform 

compatibility as possible, so we choose support all the way back to 

Android 1.5. This way, our app will also work on Android versions 1.6, 

2.0, 2.1, 2.2, 2.3, and 3.0. Version 1.5 equated to package release 3, 

as you can see in the middle area of this dialog. 

 Application name: In the Application name field in the Properties 

section, enter LinearLayout_Example. This is the name that will 

appear under our icon and in the title bar of our application.  



CHAPTER 6:  Screen Layout Design: Views and Layouts 97 

Package name: In the Package name field in the Properties section,

enter linear.layout. (Remember that the package name is at least

two names separated by a period.)  

Create Activity: Make sure the Create Activity check box is checked,

and type LinearLayoutActivity in that field.  

Min SDK Version: Enter 3, which matches the table in the middle of

the dialog. 

Figure 6–5 shows the completed dialog. Click the Finish button after you’ve filled out the

fields.  

Figure 6–5. The settings for our new LinearLayout project  

D
ow

nl
oa

d 
fr

om
 W

ow
! e

B
oo

k 
<

w
w

w
.w

ow
eb

oo
k.

co
m

>



CHAPTER 6:  Screen Layout Design: Views and Layouts 98 

Note that Eclipse Galileo has a bug where the compiler thinks the /gen folder is not 

created. But as you can see with a look at the expanded Package Explorer pane shown 

in Figure 6–6, the /gen folder is in fact present, and contains both files and data. 

CAUTION: /gen is the compiler-generated folder, and not to be touched in any way during 

development. 

 

Figure 6–6. View of the Eclipse main.xml and Problems tab with errors  

Editing the main.xml File 
Now it’s time to work on main.xml. Right-click main.xml (if it is not open in a tab already) 

and select Open. You will see some default XML code setting up a linear layout with 

vertical orientation and a text field. Here is the code, which also appears in the main.xml 

tab shown in Figure 6–6: 

<?xml version="1.0" encoding="utf-8"?> 
        <LinearLayout xmlns:android="http://schemas.android.com/apk/res/android" 
    android:orientation="vertical" 
    android:layout_width="fill_parent" 
    android:layout_height="fill_parent" /> 
<TextView 
    android:layout_width="fill_parent"  
    android:layout_height="wrap_content"  
    android:text="@string/hello" /> 
</LinearLayout> 

In this file, add another TextView object by copy and pasting the <TextView> element.  

http://schemas.android.com/apk/res/android


CHAPTER 6:  Screen Layout Design: Views and Layouts 99 

<?xml version="1.0" encoding="utf-8"?> 
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android" 
    android:orientation="vertical" 
    android:layout_width="fill_parent" 
    android:layout_height="fill_parent" 
    > 
<TextView 
    android:layout_width="fill_parent"  
    android:layout_height="wrap_content"  
    android:text="@string/hello" 
    /> 
 
<TextView 
    android:layout_width="fill_parent"  
    android:layout_height="wrap_content"  
    android:text="@string/hello" 
    /> 
 
</LinearLayout> 

We will edit the text strings to say “Text Area One!” and “Text Area Two!.” 

Editing the strings.xml File 
The text strings are edited in the strings.xml file, found in the values folder (shown in the 

Package Explorer). Right-click strings.xml and select Open, so it opens in its own tab in 

the editing area.  

Change the hello text to Text Area One!. Also add another string variable textareatwo 

and set it to Text Area Two!. Here’s the code: 

<?xml version="1.0" encoding="utf-8"?> 
<resources> 
    <string name="textareaone">Text Area One!</string> 
    <string name="textareatwo">Text Area Two!</string> 
    <string name="app_name">LinearLayout_Example</string> 
</resources> 

Figure 6–7 shows the strings added to the file. 

http://schemas.android.com/apk/res/android


CHAPTER 6:  Screen Layout Design: Views and Layouts 100 

 

Figure 6–7. Editing the strings.xml file 

Notice that the app_name string was added from the information you gave in the project-

creation dialog, so you don’t need to code this (but this is where you change the 

app_name later, if you want to).  

Updating main.xml File 
Next, change main.xml to reference the textareaone and textareatwo string variables, 

which we set in the strings.xml file in the previous step, as shown in the code and in 

Figure 6–8. 

<?xml version="1.0" encoding="utf-8"?> 
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android" 
    android:orientation="vertical" 
    android:layout_width="fill_parent" 
    android:layout_height="fill_parent" 
    > 
<TextView 
    android:layout_width="fill_parent"  
    android:layout_height="wrap_content"  
    android:text="@string/textareaone" 
    /> 
 
<TextView   
    android:layout_width="fill_parent"  
    android:layout_height="wrap_content"  
    android:text="@string/textareatwo" 
    /> 
 
</LinearLayout> 

http://schemas.android.com/apk/res/android


CHAPTER 6:  Screen Layout Design: Views and Layouts 101 

 

Figure 6–8. LinearLayout XML code in main.xml  

Viewing LinearLayoutActivity.java 
Now it is time to take a look at what our Java code is doing. Right-click the 

LinearLayoutActivity.java file on the left in the Package Explorer and select Open.  

TIP: REMEMBER there is another way to open a file for editing in its own tab: just select the .java 

or XML file and press the F3 key. A tab will open showing the contents of that file. 

The file opens in its own tab next to the main.xml and strings.xml tabs in Eclipse. Here is 

the code (Figure 6–9 shows what it looks like in Eclipse): 

package linear.layout; 
 
import android.app.Activity; 
import android.os.Bundle; 
 
public class LinearLayoutActivity extends Activity { 
    /** Called when the activity is first created. */ 
    @Override 
    public void onCreate(Bundle savedInstanceState) { 
        super.onCreate(savedInstanceState); 
        setContentView(R.layout.main); 
    } 
} 



CHAPTER 6:  Screen Layout Design: Views and Layouts 102 

 

Figure 6–9. The LinearLayout application Java code and Problems tab  

As you can see, the package name that we defined in the New Android Project dialog is 

declared at the top of the Java code, as well as two import statements that reference 

the Java classes that are needed (accessed or used) in the Java code: the Activity 

class and the Bundle class. Below this is the Java code that loads the XML layout that 

we created earlier in the other two tabs. 

Running the LinearLayout App 
Now we are ready to compile and run our Android application. Since we have already 

set up our 1.5 phone emulator in Chapter 3, all we need to do to compile and run our 

app is right-click the top-level LinearLayouts project folder in the Package Explorer on 

the left and select Run As  Android Application. Then click the Console tab at the bottom 

of Eclipse to see what is happening in the compilation process. 

In Figure 6–10, you can see the process that the Android compiler goes through to 

compile and launch your app in the 1.5 emulator. After around 30 seconds or so of 

loading, the emulation environment will launch your app (click the Home and/or Menu 

buttons on the emulator to see it). Note the name of the project and the name of our 

activity as they are loaded into the emulator. 



CHAPTER 6:  Screen Layout Design: Views and Layouts 103 

 

Figure 6–10. View of Eclipse IDE with LinearLayout Java code and Console Tab Complier Progress Output 

You’ll see that the LinearLayout vertically stacks our text fields as expected, as shown 

in Figure 6–11. 

 

Figure 6–11. Running the LinearLayout_Example application in the emulator 



CHAPTER 6:  Screen Layout Design: Views and Layouts 104 

Using Relative Layouts 
Relative layouts are for more complicated UI layouts for which you need to define the UI 

elements in a not so linear fashion. The RelativeLayout layout class allows you to define 

how the UI elements (the View objects) are to be placed on the screen relative to each 

other, rather than just laid out linearly. For this reason, the XML definition contains a few 

more variables, so this example will be a number of lines of markup code longer than the 

LinearLayout example. 

If you start to get into the habit of nesting several LinearLayout containers to achieve a 

more complex UI layout result, you may want to consider using a single RelativeLayout 

container to achieve the same results with better control.  

Simpler is always better, so if you can write a UI layout using fewer nested ViewGroup 

containers, it will always use less memory and function more quickly. The 

RelativeLayout container allows you to arrange all sorts of UI elements together in a 

single ViewGroup to achieve a complex layout. 

Relative layouts are also the optimal type of layout container for using sliding drawers, 

another direct subclass of the ViewGroup class. Sliding drawers extend the screen real 

estate of the smartphone by allowing drawers to slide out onto the screen from any of 

the four sides (top, left, bottom, or right). This is very cool functionality that is built into 

the Android SDK, as you’ll see in the next section. 

Since we already have our linear layout application open in Eclipse, let’s change it to a 

relative layout configuration. That way, we won’t need to type in all the same code. To 

change a layout, all you need to do is to change the XML code in your main.xml file. 

Since our Java code references main.xml, we do not need to change anything in the 

LinearLayoutActivity.java tab to make these changes work, a testimony to the power of 

modularity via XML in Android. We also do not need to change (or even remove) the 

content in strings.xml, even though it will not be used in the application anymore.  

NOTE: If the unused code were lines of code in Java, Eclipse would notice that these variables 

were not used and warn you about it. 

We’ll edit main.xml now. And while we are at it, we’ll also add some other UI elements—

an editable text field and a couple buttons—so that you can see how easy it is to create 

(or in this case, change and/or refine) a UI inside Android. 

In the first tag of main.xml, change LinearLayout and its closing tag to RelativeLayout. 

We will add some UI elements to the inside of the tag (before the closing tag 

</RelativeLayout> line of markup code). 

Let’s leave in one <TextView> tag and delete the other. Give the remaining tag an ID and 

a default, or starting, text value. So, this can be specified not only via a reference to a 

data declaration in strings.xml (as in our previous example), but also directly, right here 

in the main.xml file (just to show you two ways to do it), as follows: 



CHAPTER 6:  Screen Layout Design: Views and Layouts 105 

<TextView 
        android:id="@+id/label" 
        android:layout_width="fill_parent" 
        android:layout_heightfill_parent" 
        android:text="Type here:"/> 

This is the first UI element, so we don’t have any relative layout attributes—there is 

nothing for this UI element to be relative to yet. 

Next, let's add an <EditText> element (either by typing it in or by dragging from the 

visual layout editor tab), as follows: 

<EditText 
        android:id="@+id/entry" 
        android:layout_width="fill_parent" 
        android:layout_height="wrap_content" 
        android:layout_below="@+id/label"/> 

It will be laid out relative to (below) the TextView as shown. The key line of XML is the 

parameter called layout_below, which references the ID of the TextView, telling Android 

to position the EditText object below the TextView object. This is pretty straightforward 

logic and also very powerful. 

Now let’s add an OK button UI element, via the <Button> XML tag, as follows: 

<Button 
        android:id="@+id/ok" 
        android:layout_width="wrap_content" 
        android:layout_height="wrap_content" 
        android:layout_below="@+id/entry" 
        android:layout_alignParentRight="true" 
        android:layout_marginLeft="10dip" 
        android:text="OK"/> 

This <Button> tag shows some of the power of relative positioning. The button is below 

the EditText (using the parent’s ID parameter), aligned right relative to the parent, and 

with 10 pixels of margin to the left of the button. 

To see this 10 pixels of spacing, let’s add a Cancel button to the left of the OK button 

and aligned with it on the top, using this code: 

<Button 
        android:id="@+id/cancel" 
        android:layout_width="wrap_content" 
        android:layout_height="wrap_content" 
        android:layout_toLeftOf="@+id/ok" 
        android:layout_alignTop="@+id/ok" 
        android:text="Cancel"/> 

Here is all of the new RelativeLayout code in the main.xml file (Figure 6–12 shows it in 

Eclipse): 

<?xml version="1.0" encoding="utf-8"?> 
<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android" 
    android:orientation="vertical" 
    android:layout_width="fill_parent" 
    android:layout_height="fill_parent" 
    > 

http://schemas.android.com/apk/res/android


CHAPTER 6:  Screen Layout Design: Views and Layouts 106 

 
<TextView   
    android:id="@+id/label" 
    android:layout_width="fill_parent"  
    android:layout_height="wrap_content"  
    android:text="Type here:"/> 
    /> 
 
<EditText 
        android:id="@+id/entry" 
        android:layout_width="fill_parent" 
        android:layout_height="wrap_content" 
        android:layout_below="@+id/label" /> 
 
<Button 
        android:id="@+id/ok" 
        android:layout_width="wrap_content" 
        android:layout_height="wrap_content" 
        android:layout_below="@+id/entry" 
        android:layout_alignParentRight="true" 
        android:layout_marginLeft="10dip" 
        android:text="OK"/> 
 
<Button 
        android:id="@+id/cancel" 
        android:layout_width="wrap_content" 
        android:layout_height="wrap_content" 
        android:layout_toLeftOf="@+id/ok" 
        android:layout_alignTop="@+id/ok" 
        android:text="Cancel"/> 
 
</RelativeLayout> 



CHAPTER 6:  Screen Layout Design: Views and Layouts 107 

Figure 6–12. Editing RelativeLayout in the main.xml file  

Now let’s compile the project. Right-click the LinearLayouts project folder at the top of

the Package Explorer pane and select Run As  Android Application. Figure 6–13 shows our

app running in the emulator. As you can see, the RelativeLayout code works fine and

formats the UI perfectly. 

D
ow

nl
oa

d 
fr

om
 W

ow
! e

B
oo

k 
<

w
w

w
.w

ow
eb

oo
k.

co
m

>



CHAPTER 6:  Screen Layout Design: Views and Layouts 108 

 

Figure 6–13. Running the relative layout example in the emulator 

Now let’s add some animation to our UI by creating sliding drawers for our UI elements. 

Sliding Drawers: Expanding Your UI 
One of the more advanced layout containers in Android is SlidingDrawer, another direct 

subclass of the ever so useful ViewGroup class. This layout is not used as often as the 

others, but it’s extremely handy. 

Sliding drawers are useful because they give us a way to expand the screen area that 

can be used by UI components, or even for application content, for that matter.  

A SlidingDrawer should be used as an overlay inside either the RelativeLayout 

container or the FrameLayout container. You cannot use SlidingDrawer as its own 

container, because it needs to slide out of something. 

NOTE: FrameLayout is not as useful as Linear or Realtive Layouts, and as such, is not as 

frequently used as a layout container type. It can be used to hold a single UI element inside a frame. 

How do sliding drawers expand your screen area? By sliding a drawer (vertically or 

horizontally) onto the display from off the screen, you have another virtual screen 



CHAPTER 6:  Screen Layout Design: Views and Layouts 109 

available to use. This can be useful if you need the entire screen for your content, 

because you can keep your UI controls in a drawer that slides on or off the screen 

whenever it is needed. 

Now let’s add a sliding drawer to our RelativeLayout of the previous section and see 

just how cool an application we can create in less than 20 lines of XML code. We’ll 

create an app with an analog clock that slides out inside its own drawer whenever we 

need to see what time it is. 

Leave the RelativeLayout XML tag intact, but delete the text and button elements inside 

it. Then replace it with the SlidingDrawer tag: 

<?xml version="1.0" encoding="utf-8"?> 
<RelativeLayout 
     xmlns:android=http://schemas.android.com/apk/res/android 
     android:layout_width="fill_parent" 
     android:layout_height="fill_parent"> 
 
     <SlidingDrawer 
           android:id="@+id/drawer" 
           android:layout_width="320dip" 
           android:layout_height="440dip" 
           android:orientation="vertical" 
           android:handle="@+id/handle" 
           android:content="@+id/content"> 
 
           <ImageView 
               android:id="@+id/handle" 
               android:layout_width="48dip" 
               android:layout_height="48dip" 
               android:src="@drawable/icon"  /> 
 
           <AnalogClock android:id="@+id/content" 
               android:background="#D0A0A0" 
               android:layout_width="fill_parent" 
               android:layout_height="fill_parent" /> 
     </SlidingDrawer> 
</RelativeLayout> 

As you can see from the code indenting, the SlidingDrawer tag goes inside the 

RelativeLayout tag. It has two other XML tags that go inside it: one that defines the 

graphic that will be used as the handle for opening and closing the drawer (the 

ImageView tag), and another that defines the content inside the drawer (the AnalogClock 

tag). 

Since Android installed a default icon.png graphic (for use as an application icon) in our 

/res/drawable folder when we created our project for this chapter, I used that 48 × 48 

pixel (standard size) icon for the handle of the drawer for demonstration purposes. Any 

size graphic can be used. You’ll learn how to replace this with something cooler once 

we get to using graphics with Android in Chapter 8. 

We need to set the layout height and layout width for this handle to match the PNG 

resolution using a setting of 48 device independent pixels (dip). We also need to point 

the ImageView tag’s file source parameter, android:src, to the drawable folder and the 

http://schemas.android.com/apk/res/android


CHAPTER 6:  Screen Layout Design: Views and Layouts 110 

icon file name, via @drawable/icon. Note that we do not need to specify the resources 

folder /res/drawable or the full file name icon.png, because Android knows that @ means 

/res/, and we just need to specify the first name of the PNG file for a graphic image. 

The other XML tag that must be inside any SlidingDrawer layout container is content. 

Whatever XML tag you want to use for your content must have an ID specified that 

matches the name that is specified in the SlidingDrawer android:content parameter. In 

this case, we are using content as the content container’s ID, but it could be anything 

you like. 

We are going to use Android’s AnalogClock XML tag to give us some impressive working 

content for this exercise. Note that we are accomplishing this in only four lines of XML 

code. In fact, this entire “clock in a drawer” Android application is using primarily XML 

and essentially no Java logic, other than to display the UI design on the smartphone 

screen. 

So that we can see the boundaries of the SlidingDrawer, which we have set in the 

SlidingDrawer tag layout_width and layout_height parameters, we have placed an 

android:background parameter in the AnalogClock tag. The content is given a teaberry 

color background that matches our 1.5 emulator phone. This analog:background 

parameter will work in virtually any XML tag relating to the screen and uses standard 

hexadecimal color value representation inside quotes.  

Finally, click the strings.xml tab and change LinearLayout_Example to 

SlidingDrawers_Example. 

Figure 6–14 shows the IDE with the new code ready to compile. I have spaced it out so 

that you can see which XML tags and modules are nested inside each other. 

 

Figure 6–14. Sliding drawer example XML  



CHAPTER 6:  Screen Layout Design: Views and Layouts 111 

Figure 6–15 shows the sliding drawer example running in the emulator. Some cool 

things to change so that you can see what this layout container can do are the 

orientation (horizontal or vertical) and the layout width and height parameters of the 

SlidingDrawer tag itself. I suggest that you practice compiling and testing Android 

applications by changing these XML parameters and then choosing Run As  Android 
Application a bunch of times. This will help you to get used to the development work 

process and more comfortable with Eclipse and how easy it is to use. 

 

Figure 6–15. Running the sliding drawer example in the emulator 

Using Padding and Margins with Views and Layouts 
Padding adds spacing to a view so that a view's content is offset by a certain number of 

pixels on each of the four sides. This way, the content doesn’t touch the edges of the 

view and look unprofessional. In other words, padding adds space around the outside of 

a view's content, and you can choose to do so on any of the four sides of the view. 

When using padding, the padding is considered to be part of the view, which may affect 

the way Android lays out the view.  

Padding values are only available to Views, not to ViewGroups (and thus not available in 

screen layout containers). ViewGroups instead support margins, which allow the same 

results as padding to be obtained, except that the margins are not considered part of 



CHAPTER 6:  Screen Layout Design: Views and Layouts 112 

the ViewGroup. For me, this makes UI design more organized and easy to remember: 

Views use padding values and ViewGroups use margin values. 

Setting Padding in Views 
Padding can be set via your Java code using the setPadding() method with four values, 

for left, top, right, and bottom. Think of going around a clock, starting at 9:00 AM, 

separated by commas. So, to put a 4-pixel border inside your view, you would use the 

following (remember that the order of parameters is left, top, right, bottom):  

setPadding(4,4,4,4) 

You can also separate each side in the Java methods. So, to get the padding for the left 

side of the view, use getPaddingLeft(). To set just the padding on the top to 8 pixels, 

write this:  

setPaddingTop(8) 

Setting Margins in ViewGroups 
For ViewGroups, including layout containers (the subject of this chapter), the easiest way 

to set margins during development is via the XML parameters for any ViewGroup object. 

Four layout margin values are available in XML:  

 android:layout_marginBottom 

 android:layout_marginLeft 

 android:layout_marginRight 

 android:layout_marginTop 

We used one of these in our RelativeLayout example earlier in this chapter.  

Be sure to experiment with using these four parameters on your UI elements. You’ll see 

that you can control exactly how your UI elements are spaced around on the screen as 

you become familiar with what margins can do. 

Summary 
Android allows us to design screen layouts via XML, which makes it much more simple 

than it would be via Java code. Nonprogrammers like designers can get involved with 

the UI design without needing to know Java. 

In this chapter, we started to take a look at the foundation for laying out our UI areas on 

the Android smartphone screen using the View and ViewGroup classes. We use the 

ViewGroup class and its subclasses to lay out our UI screen elements. Android provides 

several of these subclasses, including the LinearLayout, SlidingDrawer and 

RelativeLayout classes we looked at in this chapter. 



CHAPTER 6:  Screen Layout Design: Views and Layouts 113 

LinearLayout is the most used layout container in Android programming and the one 

used in the Android apps that come with the operating system. It arranges UI elements 

from right to left or top to bottom. It is possible to nest LinearLayout containers within 

each other to achieve more complicated UIs. 

RelativeLayout is the next most used layout container in Android programming. It 

allows you to arrange UI elements by specifying their placement on the screen relative to 

each other. This allows for more complicated UI layouts than just the rows or columns 

supported by the LinearLayout class. 

We also took a look at one of the more innovative ViewGroup layout containers called 

SlidingDrawer. This allows you to slide UI elements on and off the screen, in and out of 

view. This layout container can be used to greatly increase screen real estate by 

allowing UI elements to exist off-screen in a “drawer” that slides out only when the user 

needs it. 

In the next chapter, we will look at adding UI elements into our ViewGroup layout 

containers using View objects called widgets. The android.widget package gives us all 

sorts of precoded UI elements. 



 

 

115 

115 

   Chapter 

UI Design: Buttons, 
Menus, and Dialogs 
The UI design determines the usability of your application, which will ultimately 

determine its success and even its profitability if you are selling it.  

A standard UI is composed of a number of familiar components that can be used by 

your application’s users to control their user experience (often called the UX). These UI 

elements include items such as buttons, check boxes, menus, text fields, dialog boxes, 

system alerts, and similar widgets. 

This chapter covers how to use several of the most important Android widgets for UI 

design. First, we’ll cover adding image buttons, text, and images to your UI. Then you’ll 

learn about the different types of menus available. Finally, we’ll cover displaying dialogs, 

including alerts, which carry messages to your application user. There’s a lot of cool 

stuff to cover, so let’s get started. 

Using Common UI Elements 
Android has all of the standard UI elements already coded and ready to use in a single 

package called android.widget. Here, we’ll explore how to add an image button, text 

area, and image to your app’s UI. 

NOTE: Recall that a package in Java is a collection of ready-to-use classes that you can leverage 
within your application. You just need to tell Java that you are going to use them by importing 

them via the Java import command. 

7 



CHAPTER 7:  UI Design: Buttons, Menus, and Dialogs 116 

Adding an Image Button to Your Layout 
In Chapter 6, we crafted a UI that included the Button class, which is used to create the 

standard Android system format buttons, and lets you do so with the greatest of ease. 

Now, we’ll look at the more complex ImageButton class. For professional, customized, 

high-graphics UIs, this is the class that you will need to use to gain the most control 

over the user experience. 

The android.widget package’s ImageButton class allows you to use your own imagery 

to create custom multistate buttons that are cooler looking than the standard buttons 

that come with the Android operating environment.  

There is a distinct work process to creating a successful multi-state 24-bit PNG image 

button, which will composite perfectly over background imagery using an 8-bit alpha 

channel. 

Android supports 24 bits of PNG image data, with another 8 bits of anti-aliased image 

transparency channel (requiring another 8-bit alpha channel). Let’s do the math: 24 + 8 = 32. 

So, what we really have is a 32-bit PNG image, with 8 bits of data for each of the red, 

green, and blue image channels, and another 8 bits of data for the alpha (transparency) 

channel. 

In case you’re not familiar with some of the terms I used in the previous description, 

here are some brief definitions: 

 Compositing: The process of using layers to form a single new image 

out of more than one component part.  

 Alpha channel: That part of each layer that is transparent, and thus 

does not hold any image data passing through visible image data from 

other layers underneath it. 

 Anti-aliasing: The edge treatment that is used to make the edges of 

images within these transparency layers perfectly smooth when these 

edges are not perfectly square, which they rarely are. 

Defining Multistate Image Button Graphics in XML 
The XML markup is a bit more complex for multistate image buttons than it is for regular 

buttons. Your XML file needs to tell Android which image to use for each state of the 

button: 

 Pressed (for touchscreens, the pressed image will be shown when the 

finger is touching a button image on the screen) 

 Released or normal  

 Focused (in use or last touched) 

Let’s look at the code for our button1.xml file, which we will reference later when we 

create our ImageButton XML entry in the main.xml file that goes in the /res/layout folder. 



CHAPTER 7:  UI Design: Buttons, Menus, and Dialogs 117 

You don't need to create this file now. In fact, when we get to that point in our example, 

you’ll see that Eclipse creates this file for you automatically! 

<?xml version="1.0" encoding="utf-8"?> 
<selector xmlns:android="http://schemas.android.com/apk/res/android"> 
        <item android:state_pressed="true" 
                android:drawable="@drawable/button1_pressed" /> 
        <item android:state_focused="true" 
                android:drawable="@drawable/button1_focused" /> 
        <item android:drawable="@drawable/button1_normal" /> 
</selector> 

The first line is the standard first line of every XML file that you code, and it will always 

say the same thing.  

The second line defines a selector tag and points to its XML schema, as you have seen 

in previous chapters. A selector tag allows selection between several options. Inside 

the selector tag, we nest three item tags to show which drawable (bitmap) images to 

use for state_pressed=true, state_focused=true, and the default or normal button 

state. 

For this XML code to work, we must have three 24-bit bitmap PNG images in our 

project’s /res/drawable folder named button1_pressed.png, button1_focused.png, and 

button1_normal.png. 

NOTE: Recall that each of the image file names must use only lowercase letters and numbers, 

and can also use the underscore character. 

The first item tag has an android:state_pressed attribute, which is set equal to true, 

and a second android:drawable attribute, which is set equal to the location of the file 

and its name (sans the .png extension).  

The @ equates to your project’s resources folder, /project/res/, so in this case, 

@drawable/button1_pressed will equate to 

c:/projects/imagebuttons/res/drawable/button1_pressed.png in the Android compiler. 

The other item tags follow the same format as the first one. 

Creating the UI Image Button Project in Eclipse 
Now that we’ve reviewed the concepts, let's create the project for real. As you’ve done 

in previous chapters, fire up Eclipse and choose select File  New  Project to create a 

new project. In the New Android Project dialog, set the options as follows:  

 Project name: Name the folder Chapter7. 

 Build Target: So our application runs on all of the popular Android 

operating system versions from 1.5 through 3.0, choose Android 1.5. 

 Application name: We’ll call this application UI Examples. 

http://schemas.android.com/apk/res/android


CHAPTER 7:  UI Design: Buttons, Menus, and Dialogs 118 

Package name: Using the proper package name form, enter

chapter.seven as the name. 

Create Activity: Check this box and name the activity UserInterface. 

Min SDK Version: Enter 3, to complement the build target choice. 

Figure 7–1 shows the completed New Android Project dialog for our multistate image

button example. Click Finish after you’ve filled it in. 

Figure 7–1. Completed New Android Project dialog for our Chapter7 project  

D
ow

nl
oa

d 
fr

om
 W

ow
! e

B
oo

k 
<

w
w

w
.w

ow
eb

oo
k.

co
m

>



CHAPTER 7:  UI Design: Buttons, Menus, and Dialogs 119 

Creating the button1.xml File 
You now have an empty Eclipse project. Next, we’ll create the button1.xml file so we 

can add the button state definition XML we created earlier. 

Open the project tree on the left Package Explorer tab and expand the src folder by 

clicking the arrow. Then right-click the drawable folder and select New  File, as shown 

in Figure 7–2. 

 

Figure 7–2. Creating a new file in the drawable folder to hold our XML  

In the New File dialog, ask Eclipse to create the file button1.xml in the 

Chapter7/res/drawable folder, as shown in Figure 7–3. Then click Finish to create an 

empty text file. This is one of the most basic ways that you can have Eclipse create a 

new, empty text file for you. We will cover other ways of creating new XML files in later 

chapters. 



CHAPTER 7:  UI Design: Buttons, Menus, and Dialogs 120 

 

Figure 7–3. Specifying the drawable folder and button1.xml file name in the New File dialog  

Click the button1.xml tab at the top of your screen, and then type in the XML code that 

defines the selector and item tags for setting the three different image button states: 

<?xml version="1.0" encoding="utf-8"?> 
<selector xmlns:android="http://schemas.android.com/apk/res/android"> 
        <item android:state_pressed="true" 
                android:drawable="@drawable/button1_pressed" /> 
        <item android:state_focused="true" 
                android:drawable="@drawable/button1_focused" /> 
        <item android:drawable="@drawable/button1_normal" /> 
</selector> 

After you’ve entered the XML, you’ll notice that Eclipse shows that there are three errors 

in the markup relating to missing file assets. Place your mouse over the red X on the left 

margin by the markup code. This pops up a diagnostic message regarding why Eclipse 

thinks this code needs your attention, as shown in Figure 7–4. 

http://schemas.android.com/apk/res/android


CHAPTER 7:  UI Design: Buttons, Menus, and Dialogs 121 

 

Figure 7–4. Eclipse shows us that our three image state buttons are missing via error flags in the IDE. 

We have not put the three image button images in the /res/drawable folder where they 

belong. Eclipse is telling us that it does not see each file name that is referenced in the 

markup in the directory where it is supposed to be.  

NOTE: Once we add valid XML specifiers and code, the Eclipse error messages will disappear. 
But this does show how Eclipse is watching out for you in real time, and offering warnings about 

what might be missing, what might generate compiler errors, and other common problems. 

Let’s create the three button state files. I'm going to use Photoshop, but other good 

drawing tools can do the same thing. Also, these PNG images are provided with the 

book code examples, so you do not need to create them from scratch if you would 

rather not do that. 

Just as in the examples in previous chapters, put the graphics on a transparency layer 

(indicated in Photoshop by a checkerboard pattern), so that you can overlay the image 

button on any background color or image you like. Figure 7–5 shows the completed 

images in Photoshop. 



CHAPTER 7:  UI Design: Buttons, Menus, and Dialogs 122 

 

Figure 7–5. Our multistate image button images in Photoshop showing alpha channel transparency areas  

Whenever you add new images or other assets to Eclipse, you need to tell Eclipse about 

the new assets. To do this, right-click the top-level project folder and select Refresh, as 

shown in Figure 7–6. You’ll notice that the red errors no longer appear in the file. 

TIP: There is also a deeper level of refreshing called validating, which will go into even deeper 
depths in your code and image assets. If the red error marks do not disappear, simply right-click 

the Chapter7 top-level folder again and choose the Validate option.  

 

Figure 7–6. Using the Refresh menu option to tell Eclipse that our images are now in the drawable folder  



CHAPTER 7:  UI Design: Buttons, Menus, and Dialogs 123 

Editing the main.xml File 
Next, open the res folder and right-click the main.xml file to open it for editing. Notice 

that our image button source files now appear in the Package Explorer pane. 

We need to replace the default text tag in the main.xml file with an ImageButton tag, as 

follows: 

<ImageButton android:id="@+id/button_one" 
             android:layout_width="wrap_content" 
             android:layout_height="wrap_content" 
             android:src="@drawable/button1" 
             android:paddingTop="5px"> 
</ImageButton> 

Figure 7–7 shows the IDE at this point. 

 

Figure 7–7. Eclipse with a successful refresh and new ImageButton tag  

The first attribute adds an ID of button_one to the ImageButton so we can access it 

inside our Java code. The next two lines define the width and height of the image button 

via the wrap_content attribute—all very standard Android programming fare. 

The next line accesses the button1.xml file that we have created to reference the various 

image button states. Notice that you do not need to add the .xml extension here, just as 

you don’t need to add .png for graphic files. We add 5 pixels of padding to the top of 

the image, just to practice using padding values.  

Figure 7–8 shows how our UI Examples app looks when run in the Android 1.5 emulator 

(right-click Chapter7 and select Run As  Android Application). 



CHAPTER 7:  UI Design: Buttons, Menus, and Dialogs 124 

 

Figure 7–8. Our multistate image button running in the Android 1.5 emulator  

When you click the image button, it changes color and uses the standard orange 

background to highlight the button being clicked.  

Since we want just the image to be the button (which is why we used transparency and 

an alpha channel in Photoshop), we will set a background color, or transparency, next. 

Replacing the Default Background 
We do not want to use the default Android button background. We want the background 

to be transparent so we can use this ImageButton to put an image on top of a button 

and its text, as well as being able to make the image itself into a button. 

In this example, we are changing the color of the button, rather than changing the size or 

shape of the button, so the transparent area remains exactly the same, pixel for pixel, 

between the different image state graphics. Thus, we can either set the background 

image to our normal button state or set the background color to 100% transparent 32-

bit alpha channel with the #00000000 setting (which means zero red, zero green, zero 

blue, zero alpha). This is similar to setting HTML color with the pattern #RRGGBBAA. That is 

the most elegant solution, so let’s implement that now. 

We’ll do this in a new way, so that you learn how to use another cool Eclipse 

function that helps you design your UI widgets and layouts. I think this is a really 



CHAPTER 7:  UI Design: Buttons, Menus, and Dialogs 125 

slick trick, and it was pretty difficult to figure out. As such, this is fairly advanced. 

Stick with it, though, and you won't be disappointed. 

Click the main.xml tab at the top of your screen, and then click the Layout tab at the 

bottom of the pane that shows your XML for the ImageButton (see Figure 7–9). Eclipse 

will render your XML markup exactly as it would look in the emulator. Eclipse also 

provides (on the left) drag-and-drop widgets and layouts, so you can visually design 

your UI. The normal work process is to switch back and forth between the XML markup 

coding tab and the visual layout editor tab so you can make sure your XML code is 

nested properly. This is also a great way to learn XML layout and UI coding in Android. 

 

Figure 7–9. Using the Eclipse visual layout editor and Properties tab to set your image background to transparent  

An even cooler tab is the Properties tab at the bottom of the screen. This tab shows all 

of the properties assigned or available to the UI element tag that you have selected in 

the layout view. Click the button element, and a red line will surround the button, 

showing you what is currently actively selected. In the Properties tab, you will see all of 

the properties and variables that you can set and customize for the ImageButton class. 

Click the Background property in the Properties tab to highlight it. Eclipse then provides 

a button to search for a file to use as a background image.  



CHAPTER 7:  UI Design: Buttons, Menus, and Dialogs 126 

Since we are just going to set the background to transparent, we do not need to use this 

button for the example. Instead, type the transparency value #00000000 into the field 

next to Background in the Properties tab, as shown in Figure 7–9. Then click somewhere 

else in the IDE. The value will be accepted and the results displayed in the Layout tab! 

That finishes up our custom image button. Next, let’s look at how to add text to your 

app’s UI. 

Adding a Text to Your Layout 
Besides buttons, another common UI element is text. Android provides the TextView 

class to implement text in a UI. 

Since we are using the visual layout editor in Eclipse, let’s continue to explore its 

functionality. Click the left header bar called Layouts to close the layouts selection view, 

leaving only the Views (remember widgets are really views) pane open. Clicking these 

headers will toggle them open and shut at any time (try it now if you don’t believe me). 

Next, click the scrollbar (gray, with a tiny arrow) until you see the TextView widget. 

Select and drag (and drop) it into the Layout view window under the ImageButton. Our 

TextView is now in the UI view and is ready to customize by using the Properties tab at 

the bottom of the Eclipse IDE. Let’s do that now. 

Scroll down to the Text properties and set up some custom values, such as Sample 
Text, and a text color of gold to match the ImageButton default image (an RGB value of 

#CCCC77 will work well; this is a hexadecimal numeric representation of a 24-bit value). 

Figure 7–10 shows the Eclipse IDE at this point.  

 

Figure 7–10. Using the Eclipse visual layout editor to add and configure a TextView widget in the main.xml file  



CHAPTER 7:  UI Design: Buttons, Menus, and Dialogs 127 

Finally, we’ll set a dpi value for padding, so that there is some space around our 

TextView. Scroll to the Padding properties in the Properties tab at the bottom of your 

Eclipse IDE, and type in 12dip, as shown in Figure 7–11. Then click another field, and 

you will see the text space itself out. 

 

Figure 7–11. Setting the padding for our TextView via the Properties tab in the Eclipse IDE  

Adding an Image 
Finally, let’s add another popular type of UI element used for design: the image. Go to 

the code bundle for this book and copy the two 32-bit image files named image1.png 

and image2.png into your Chapter7/res/drawable folder.  

Right-click the Chapter7 folder in the Package Explorer pane and refresh the project. 

Now, let’s add an ImageView tag to our XML. To do this, drag the ImageView from the 

Views list on the left and drop it under the TextView. This gives us a LinearLayout 

ViewGroup containing ImageButton, TextView, and ImageView tags. 

Next, in the Properties tab below the visual editing window, click the Src (for Source) 

property, and then click the button on the right with three dots (ellipsis) to open the 

Reference Chooser dialog. Open the Drawable folder and select image1 for our 

ImageView source imagery, as shown in Figure 7–12. Click the OK button to close the 

dialog. 



CHAPTER 7:  UI Design: Buttons, Menus, and Dialogs 128 

Figure 7–12. Choosing our image resource via the Reference Chooser dialog, accessed by clicking the ellipsis in
the Src field in the Properties tab 

In your visual layout tab, you will now see the image and how its transparency area

composites smoothly with the black background color.  

Later, when we add a menu to our app, we will change the background color to white to

show how this image transparency can help with UI compositing over different

background colors or imagery. 

So now in the next screen, you will see our ImageButton, TextView, and ImageView with

enough screen area to hold a bottom menu of icons. Also note that we used the drop-

down at the top to change our orientation to Portrait mode, as shown in Figure 7–13.

This orientation fits our application design better. We’ll add menus in the next section. 

D
ow

nl
oa

d 
fr

om
 W

ow
! e

B
oo

k 
<

w
w

w
.w

ow
eb

oo
k.

co
m

>



CHAPTER 7:  UI Design: Buttons, Menus, and Dialogs 129 

 

Figure 7–13. Changing our visual editing environment orientation to portrait  

Using Menus in Android 
Menus in Android are quite different from the top-mounted text menus found directly 

beneath the title bar in PC applications. The menu function on a smartphone is a bit 

different for ease of use, and is an actual physical button called Menu on Android 

phones. 

Pressing the Menu button calls up a menu, which is—you guessed it—at the bottom of 

the screen, instead of at the top. To make it even more user-friendly, it is composed of 

five large square icons that can be easily touched to control application features.  

For our application, we will have our menus do things with our ImageView object, 

background color, and alert dialog (which we’ll add later in the chapter), so that 

everything we cover in this chapter ties together. 



CHAPTER 7:  UI Design: Buttons, Menus, and Dialogs 130 

Creating the Menu Structure with XML 
As you might have guessed, you set up your entire menu structure in an XML file. The 

menu XML file goes in a /res subfolder named menu, as required by Android. So, first 

create a folder under the /res folder called menu. Next, right-click the Chapter7 project 

folder, select New  File, and select the Chapter7 folder and its /res/menu subfolder for 

the file’s location. Name the file mainmenu.xml. Then type in the following XML for the 

menu: 

<?xml version="1.0" encoding="utf-8"?> 
 
<menu xmlns:android="http://schemas.android.com/apk/res/android"> 
 
    <item android:id="@+id/buttonone" 
          android:icon="@drawable/image1icon" 
          android:title="@string/showimage1" /> 
 
    <item android:id="@+id/buttontwo" 
          android:icon="@drawable/image2icon" 
          android:title="@string/showimage2" /> 
 
    <item android:id="@+id/buttonthree" 
          android:icon="@drawable/menu3icon" 
          android:title="@string/showwhite" /> 
 
    <item android:id="@+id/buttonfour" 
          android:icon="@drawable/menu4icon" 
          android:title="@string/showblack" /> 
 
    <item android:id="@+id/buttonfive" 
          android:icon="@drawable/menu5icon" 
          android:title="@string/showalert" /> 
</menu> 

The menu XML tag is fairly straightforward. It simply declares the location of its XML 

schema definition and nested item tags that specify attributes for each menu item to be 

added. The Android menu holds five items comfortably, and it can hold more than that 

via a sixth item that drops down a submenu. Most Android applications use five or fewer 

menu items. 

Each of the item tags has the following three attributes: 

 The android:id attribute allows the item tag to be given a name and 

referenced in your Java code.  

 The android:icon attribute is the location of the graphic file that will be 

used for the menu icon. In the first item, it is located in the 

Chapter7/res/drawable folder and named image1icon.png, shown in 

Android shorthand as @drawable/image1icon.  

 The android:title attribute is the title or label for the menu button. 

The title is in the strings.xml file, where text constants are defined 

(we’ll do that next).  

http://schemas.android.com/apk/res/android


CHAPTER 7:  UI Design: Buttons, Menus, and Dialogs 131 

Figure 7–14 shows the completed Chapter7/res/menu/menuname.xml file. The figure 

also shows the five icon files (image1icon, image2icon, menu3icon, menu4icon, and 

menu5icon) placed in the /res/drawable folder, where Android looks for image files for 

the application. The images are all 24-bit PNG files with transparency, as you will see 

when they appear on our menu’s buttons. 

 

Figure 7–14. View of the mainmenu.xml file showing menu and item tags. Also note the menu icons in the 
drawable folder. 

Defining Menu Item Strings 
Next, we’ll go into the strings.xml file in the /res/values folder (under the menu folder in 

the Package Explorer pane) to edit our application’s string constants. We’ll add the text 

for our five menu items. Follow these steps to add the five string values specified in our 

mainmenu.xml file: 

1. Right-click the strings.xml file and select Open to open it in a tab for 

editing in the Eclipse IDE, as shown in Figure 7–15. 



CHAPTER 7:  UI Design: Buttons, Menus, and Dialogs 132 

 

Figure 7–15. Adding string values for our menu items in the visual editor in Eclipse IDE  

2. Click the  tab at the bottom of the pane to see a visual 

representation of the values in the strings.xml file.  

TIP: Remember that if you want to see the XML, click the  tab next to it. You can 
switch back and forth between the code view and the helper view which is a great way to learn 

how to code XML UI elements!  

3. Click the Add button to bring up the dialog shown in Figure 7–16. Select 

String and click OK to add a string to our strings.xml file.  



CHAPTER 7:  UI Design: Buttons, Menus, and Dialogs 133 

 

Figure 7–16. Selecting a String element in the resource selection dialog in the add string resource work process  

4. In the area on the right, in the Name field, enter showimage1. In the Value 

field, enter IMAGE ONE. Click the Add button to add this string value to 

the strings.xml file. 

5. Repeat steps 3 and 4 to add four more string values with the following 

names and values: 

 showimage2, IMAGE TWO

 showwhite, USE WHITE 

 showblack, USE BLACK 

 showalert, SHOW ALERT 

6. Set our default black background color of #000000 as a Color object, as 

shown in Figure 7–17. 



CHAPTER 7:  UI Design: Buttons, Menus, and Dialogs 134 

 

Figure 7–17. Editing the background color resource in the strings.xml file via the Eclipse visual editor  

7. Add a white background called background2, using a value of #FFFFFF. 

Inflating the Menu Structure via Java 
Now it is time to add in our Java code, which inflates our menu from the XML file into 

our application’s memory. The term inflating a resource describes the process of the 

Android operating system taking the data described in an XML file and populating an 

object that can be accessed and used in Java. In this case, it is our mainmenu object, 

which contains five menu selection buttons, their icon resources, and the text captions.  

Here is the Java code to add to our UserInterface.java file: 

public boolean onCreateOptionsMenu(Menu menu) { 
        MenuInflater inflater = getMenuInflater(); 
        inflater.inflate(R.menu.mainmenu, menu); 
        return true; 
 } 

Android has a dedicated Java object for inflating XML code constructs into an object-

based format for use with Java. This is precisely what you are seeing here inside the 

onCreateOptionsMenu() method, which uses the inflate() method and the 

R.menu.mainmenu path to our mainmenu.xml file. It creates the inflater MenuInflater 



CHAPTER 7:  UI Design: Buttons, Menus, and Dialogs 135 

object, which contains our inflated menu objects. The R equates to the res folder of our 

project, so R.menu.mainmenu is equivalent to 

c:/Projects/Chapter7/res/menu/mainmenu.xml. 

We also added two import statements at the top of our code to tell Android which UI 

code we would be using. We specify android.view.Menu and 

android.view.MenuInflater, which form the foundation for our menu and its inflation 

from the XML format. 

import android.view.Menu; 
import android.view.MenuInflater; 

Figure 7–18 shows the code added to UserInterface.java. 

 

Figure 7–18. Creating our menu using the MenuInflater in the Eclipse IDE Java editing pane  

Note that we have implemented our application’s options menu in little more than a half-

dozen lines of Java code. We have offloaded about 80% of the menu implementation 

coding to XML, and we can continue to add features and fine-tune menu options inside 

the XML markup as well. 



CHAPTER 7:  UI Design: Buttons, Menus, and Dialogs 136 

Running the Application in the Android Emulator 
Let’s run our code and see our menu in action. Right-click the Chapter7 folder in the 

Package Explorer pane and select Run As…  Android Application. After the emulator loads 

and you start up your application, the emulator should look like Figure 7–19. 

 

Figure 7–19. Running our application in the Android 1.5 emulator  

As you can see, the Android phone has a prominent Menu button, which we can press 

to display our menu at the bottom of the screen. You can see the translucency of the 

menu. If you look closely at the first button, you will see the bottom of the ImageView 

behind the menu. If you click the various buttons, they will highlight in orange and close 

the menu, which you can reopen with the Menu button.  

So, the default way an empty menu works is harmless to the application. It allows us to 

develop and test the way our menu looks via XML before we add in the Java logic to 

implement the actions that will be called when each button is pressed.  

Making the Menu Work 
Let’s add our menu item implementations now. First, we need to give our LinearLayout 

an ID, so that we can find it in our code. 

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android" 

http://schemas.android.com/apk/res/android


CHAPTER 7:  UI Design: Buttons, Menus, and Dialogs 137 

 android:id="@+id/uilayout" 
    android:orientation="vertical" 
    android:layout_width="fill_parent" 
    android:layout_height="fill_parent" 
    > 

Now, we need to implement the onOptionsItemSelected() method, where we code the 

choices between our different menu item selections and what they do in our application 

if and when they are selected. 

public boolean onOptionsItemSelected(MenuItem item) { 
    LinearLayout bkgr = (LinearLayout)findViewById(R.id.uilayout); 
    ImageView image = (ImageView)findViewById(R.id.ImageView01); 
 
        switch (item.getItemId()) { 
 
        case R.id.buttonone: 
                        image.setImageResource(R.drawable.image1); 
                        return true; 
        case R.id.buttontwo: 
                        image.setImageResource(R.drawable.image2); 
                        return true; 
        case R.id.buttonthree: 
                        bkgr.setBackgroundResource(R.color.background2); 
                        return true; 
        case R.id.buttonfour: 
                        bkgr.setBackgroundResource(R.color.background); 
                        return true; 
        case R.id.buttonfive: 
                        // The Alert Code For Next Section Goes Here! 
                        return true; 
        default: 
                return super.onOptionsItemSelected(item); 
        } 
 
    } 

This code is a bit more complex than our MenuInflater code. At its core, it implements a 

switch structure. The switch is a Java construct that says, “In the case of this, do that, 
and in the case of this, do that; otherwise, as a default, do this.” This type of code 

construct is perfect for the main Android menu, as it usually has only five or six items.  

Figure 7–20 shows the UserInterface.java code in the Eclipse editor in context with our 

previous two code blocks. In the figure, the new code is boxed. We will cover the top 

import statements, then the outer onOptionsItemSelected() method, and then its inner 

switch statement and programming logic for each button case statement and what it 

needs to do in the UI (switch images, background colors, and so on). 



CHAPTER 7:  UI Design: Buttons, Menus, and Dialogs 138 

Figure 7–20. Java code to implement our menu functionality shown in the Eclipse IDE  

First are the import statements for the Android classes that we are going to use in our

onOptionsItemSelected() method (see the top box in Figure 7–20): 

Since we reference MenuItem in our onOptionsItemSelected() method,

we need to import android.view.MenuItem. 

Since we are going to switch image resources in our ImageView UI

object, we also need to import android.widget.ImageView. 

Since we are going to change our LinearLayout background color

from black to white, we need to import android.widget.LinearLayout
as well. 

Remember that importing the class libraries that we are going to use in our Java code

makes sure they are in memory when Eclipse needs to use them during the compilation

of our Java code. 

D
ow

nl
oa

d 
fr

om
 W

ow
! e

B
oo

k 
<

w
w

w
.w

ow
eb

oo
k.

co
m

>



CHAPTER 7:  UI Design: Buttons, Menus, and Dialogs 139 

Next, let’s examine our onOptionsItemSelected() code. First, we need to create 

references to our LinearLayout and ImageView objects, so that we can operate on these 

objects. This way, we can adjust their resource values to change our menu buttons’ 

image and background color. 

The first line creates a LinearLayout object called bkgr and sets it to the LinearLayout 

that is assigned the ID uilayout via the findViewById() method. The second line 

creates an ImageView object called image and sets it to the ImageView that is assigned 

the ID ImageView01 in the same way. These IDs can be seen in the main.xml file and tab, 

so you can check that everything matches up. 

Finally, we have the Java switch statement. It starts with switch(item.getItemId()), 

which means “Decide between the following options (each case statement) based on the 

ID of the MenuObject that we named item. If nothing matches, just use the default 

action at the bottom of the statement decision tree list.” The case statements work as 

follows: 

 The first case statement says, “In the case of the item MenuItem with 

an ID of buttonone being passed, please set the image ImageView 

object’s image resource to the 24-bit PNG image called image1 in the 

/drawable folder using the setImageResource() method.” 

 The second case statement says, “In the case of the item MenuItem 

with an ID of buttontwo being passed over, please set the image 

ImageView object’s image resource to the 24-bit PNG image called 

image2 in the /drawable folder using the setImageResource() method.” 

 The third case statement says, “In the case of the item MenuItem with 

an ID of buttonthree being passed over, please set the bkgr 

LinearLayout object’s background resource to the color resource 

called background2 in the /values/strings.xml resource using the 

setBackgroundResource() method.” 

 The fourth case statement says, “In the case of the item MenuItem with 

an ID of buttonfour being passed over, please set the bkgr 

LinearLayout object’s background resource to the color resource 

called background in the /values/strings.xml resource using the 

setBackgroundResource() method.” 

 The fifth case is left open for our next section, and thus the button 

does nothing at this point.  

If none of the case statements match IDs passed over to operate on, then the default 

action is made, which is to pass over to the onOptionsItemSelected() method of the 

superclass. 



CHAPTER 7:  UI Design: Buttons, Menus, and Dialogs 140 

Adding Dialogs 
An Android dialog is always created as part of an activity, and is presented in the form of 

a small, gray pop-up window that appears on top of the current activity’s UI. Android 

dims that UI so that it does not compete with the dialog box.  

The Dialog class is used to create an interruption of your current activity in order to 

collect or relay information to your application’s end user. Examples of uses for dialogs 

include alert notifications, end-user option selection, information data collection, date 

selection, time selection, task or processing progress bar monitoring, and so on. 

Using Custom Dialog Subclasses 
Four custom subclasses of the Dialog class are provided as part of the Android API: 

 AlertDialog 

 ProgressDialog 

 DatePickerDialog  

 TimePickerDialog 

You can also subclass your own custom Dialog class (say, CustomDialog) so that it does 

exactly what you need it to do. 

The general way to create a basic dialog within any given activity is via the 

onCreateDialog(int) method. Android uses this method to track the dialog created, 

which activity it belongs to, and its current state. 

To display a dialog once it is created, you use the showDialog(int) method, specifying 

the number of the dialog you wish to display. To hide or dismiss a Dialog object, use the 

dismissDialog(int) method, and the Dialog object will be removed from memory and 

the application. 

Here, we’ll take a closer look at the most often used (and the recommended) Dialog 

class: AlertDialog. Android provides an easy and powerful way to construct alert 

dialogs with many features. 

Displaying an Alert Dialog 
The AlertDialog class provides a lot of built-in dialog features, such as a title, user 

message, up to three buttons, and a list of selectable items. You can even use check 

boxes and radio buttons in your list. 

The AlertDialog works its magic via a dialog builder that provides a ready-made dialog 

code structure for you to create complicated dialogs via the AlertDialog.Builder class. 

As shown in the boxed areas of Figure 7–21, there are four main parts to adding our 

AlertDialog to our existing Android application.  



CHAPTER 7:  UI Design: Buttons, Menus, and Dialogs 141 

 

Figure 7–21. Java code for implementing our alert dialog builder in the Eclipse IDE  

First, we add the import statements for the Android utilities we are going to leverage to 

provide our AlertDialog object: 

import android.app.AlertDialog;  
import android.content.DialogInterface; 

Next, we create our AlertDialog.Builder object, which we name builder. This is a new 

(empty and initialized) AlertDialog.Builder object.  



CHAPTER 7:  UI Design: Buttons, Menus, and Dialogs 142 

public boolean onOptionsItemSelected(MenuItem item) { 
    LinearLayout bkgr = (LinearLayout)findViewById(R.id.uilayout);         
    final ImageView image = (ImageView)findViewById(R.id.ImageView01); 
     
    AlertDialog.Builder builder = new AlertDialog.Builder(this); 

In order to work with the image object inside the builder dialog object that we are 

constructing, we need to add the keyword final to our declaration of this object 

variable (you'll see why in the next step). The final keyword is used for variables, 

methods, and classes. A final variable cannot be given a new value after it has been 

assigned one (although we can alter the variable object like any other object). A final 

method cannot be overridden. Also, a final class cannot be extended, and is thus in a 

sense protected from further programming modifications.  

The preceding code basically says, “I want to declare an object named builder that is of 

the type AlertDialog.Builder, and I wish to set it equal to this new AlertDialog.Builder 

object that I am creating here. Therefore, please instantiate an empty 

AlertDialog.Builder object for me to define and fill with my own custom parameters.” 

After this has been declared, builder exists as an empty AlertDialog ready to fill with 

our own custom parameters. OK, on to the fun part and the third and major part of 

AlertDialog definition.  

Here is the code to customize our dialog: 

builder.setTitle("Pick an Image!") 
      .setMessage("Please Select Image One or Image Two:") 
      .setCancelable(false) 
      .setPositiveButton("IMAGE 1", new DialogInterface.OnClickListener() 
      { 
            public void onClick(DialogInterface dialog, int id) { 
                  image.setImageResource(R.drawable.image1); 
            } 
      }) 
 
      .setNegativeButton("IMAGE 2", new DialogInterface.OnClickListener() { 
            public void onClick(DialogInterface dialog, int id) { 
                  image.setImageResource(R.drawable.image2); 
            } 
       }); 

We work with the image object, which we know can’t be reassigned a value because it is 

final. This is to deal with situations where the event listener is used after the 

onOptionsItemSelected() method has terminated. In this case, a non-final image 

variable would not be around to take a new assignment, whereas a final variable is 

frozen in memory for access at all times (of course, this may never happen, but Java 

was built this way just to be sure). 

Notice in this block of code that sets our AlertDialog parameters (I am amazed that 

they did not offload AlertDialog parameters to an alert_dialog.xml file) that a new 

concept called method chaining is used. This allows a large number of parameters to be 

set without the builder object being explicitly typed before each dot-notation construct.  



CHAPTER 7:  UI Design: Buttons, Menus, and Dialogs 143 

In method chaining, the first method is attached to its object with dot notation. In our 

example, it looks like this: 

builder.setTitle("Pick an Image!")  

The follow-on methods that set the other parameters are simply .setMessage(), 

.setCancelable(false), and so on.  

I've formatted the preceding code for ease of reading. But to give you a little more grip 

on method chaining, the first three method calls could be rewritten as follows, illustrating 

the chain: 

builder.setTitle("Pick an Image!").setMessage("Please Select...").setCancelable(false) 

Also note that between contiguous methods, there is no semicolon at the end of these 

parameter setting lines of code. Semicolons are required on only the last and final 

method call—in this case, after .setNegativeButton() to end the builder definition. 

NOTE: In this case, the order of the chained methods doesn’t matter because each one returns 
an AlertDialog.Builder object with the new parameter set alongside all the other 
parameters that have been set so far. In other cases, the order of chaining matters. Android has 

been well designed to make chaining easy and convenient. 

The code for setting the title, the message, and whether the Back button on the phone is 

able to cancel the dialog (in this case, it is not cancelable) is pretty straightforward here, 

so let’s go over what is happening inside each button. 

You can have up to three buttons in an AlertDialog object. These buttons are hard-

coded into the Android operating system as follows:  

 PositiveButton 

 NeutralButton 

 NegativeButton 

This explains the setPositiveButton() and setNegativeButton() methods shown in the 

preceding code. 

The convention here is to use PositiveButton for one-button dialogs, PositiveButton 

and NegativeButton for two-button dialogs, and all three for three-button dialogs. The 

code inside the two buttons in our dialog is nearly identical, so let’s go over what is 

happening inside the first button, IMAGE 1. 

      .setPositiveButton("IMAGE 1", new DialogInterface.OnClickListener() 
      { 
            public void onClick(DialogInterface dialog, int id) { 
                  image.setImageResource(R.drawable.image1); 
            } 
      }) 

The setPositiveButton() method allows us to name the button IMAGE 1 and creates a 

new OnClickListener() implementation for the DialogInterface. Note that we declared 



CHAPTER 7:  UI Design: Buttons, Menus, and Dialogs 144 

android.content.DialogInterface in an import statement initially, and it is being used 

here to create a PositiveButton. 

Inside the OnClickListener, we have a public method onClick(), which defines what will 

be done when the button is clicked. onClick() is passed a dialog object of type 

DialogInterface and an integer ID value that represents which of the buttons was 

clicked or the numerical order of the button that was clicked—both of which are what 

OnCLickListener wants to evaluate in the event the user clicks that button. 

Inside this onClick container is where our code goes to change our ImageView object to 

the appropriate image resource. Since we have already done that in the menu code, we 

can simply copy the image.setImageResource(R.drawable.image1) code from down in 

our switch construct for ButtonOne. 

Finally, down inside our switch statement, where before we had a placeholder 

comment, we can now display the dialog by calling the show() method of the builder 

object that we created earlier. This line of code could not be simpler: 

builder.show(); 

Whenever the fifth menu button is clicked, our dialog will be shown. We can select 

between the two images, which will then be set on our screen appropriately.  

Now, right-click your Chapter7 folder and select Run As…  Android Application to see your 

work. Figure 7–22 shows the dialog as it appears in the emulator after you click the ! 

button in the menu. 

 

Figure 7–22. Viewing our alert dialog in the emulator  



CHAPTER 7:  UI Design: Buttons, Menus, and Dialogs 145 

Summary 
With the exception of dialogs, Android allows us to put together our designs using XML, 

and to implement them with just a half-dozen lines of code is some instances, such as 

when creating a system options menu. This allows designers to get one step closer to 

the coding process. 

In this chapter, we created an application that has all of the primary UI objects that can 

be used to construct an application: 

 ImageButtons allow us to create custom UI elements. 

 TextView and ImageView objects allow us to put relevant information on 

the screen. 

 Menu items allow us to use the Android Menu button to control our 

application. 

 Alert dialogs interface with our users to gather information or inform 

about decisions. 

In the next chapter, you will learn how to add graphics to provide even more new media 

user experiences in your Android applications. 



 

 

147 

147 

   Chapter 

An Introduction to 
Graphics Resources  
in Android 
This chapter will serve as an introduction to how to best integrate and optimize graphical 

elements in your Android apps. These include graphics such as bitmap images, tween 

animation (transform-based), bitmap animation (frame-based), image transitions 

(crossfades, or slow-blended image fades from one image into another) and digital 

video. 

You will learn how to best use imaging techniques within your application’s View objects 

that make up your UI, and how to support all three levels of Android screens (QVGA, 

HVGA, and WVGA) via custom resource assets.  

NOTE: Because VGA is 640  480 pixels, quarter VGA (QVGA) is 320  240 pixels, or one-
quarter of a VGA screen; half VGA (HVGA) is 480  320, or one-half of a VGA screen; and wide 

VGA (WVGA) is 800  480, or a widescreen version of a VGA screen. 

We’ll cover the use of graphics objects in both the areas of UI design (custom buttons, 

for instance) and user experience design (the content itself, say music videos or an 

interactive children’s storybook).  

We’ll look at two packages: the android.graphics.drawable package (I knew there was 

a reason that resource folder was called drawable) and the android.view.animation 

package. These are collections of useful classes for maximizing bitmap imagery and for 

working with images that support the fourth dimension (time) via animation. For fun, we’ll 

play with a really cool 9-patch image auto-scaling feature that Android supports for the 

PNG format.  

8 



CHAPTER 8:  An Introduction to Graphics Resources in Android 148 

Finally, we’ll take a look at digital video. Using the VideoView class makes playing digital 

video a snap. We’ll also discuss which open source digital video formats are best to use, 

and how to optimize them for use on smartphones. 

Introducing the Drawables 
The central set of classes used to control the graphics-related content within your 

Android application is called the drawable package. This package handles classes and 

methods related to drawing the following onto the Android display screen: 

 Bitmaps: In a bitmap, a collection of pixels make up an image—it’s a 

map of image bits, if you will. 

 Shapes: Shapes are line drawings. They also known as vectors, like 

the lines architects use in CAD drawings 

 Gradients: Gradients are smooth transitions from one color to another 

color. They can be shaped in a straight line or circular. 

 Transitions: Shape transitions are smooth vector changes between 

one shape to another shape. This process is sometimes referred to as 

morphing. 

 Animation: Animation is an image that moves in some way. 

 Image transitions: These are smooth fades between one image to 

another image. They are usually used to transition from one image to 

another image. 

In Android development, graphics-related items like gradients, image transitions, 

animated transformations, and frame-based animation can all be termed drawables. 

With the exceptions of tweens and transformational animation, all center their resource 

assets in the /res/drawable folder. (And you thought tweens were 12-year-olds, right?) 

The /res/drawable folder is also where you should put XML files that define things like 

frame-based image animations and crossfading image transitions (which we will look at 

later in this chapter). So get used to seeing drawable everywhere you look, because it 

will be one of the most used folders in your resources (/res) folder. 

Implementing Images 
The way that Android is set up to automatically implement your images via the project 

folder hierarchy is a bit hard to understand at first. But once you get used to it, you’ll find 

that it is actually amazingly simple to use graphic resources, as major coding is all but 

eliminated. You will see that in this chapter when we implement features using as few as 

four lines of Java program logic. 

I’m not sure what could be much simpler than this: put your imagery into the 

project/res/drawable folder, and then reference it by file name in your code. Yes, all you 



CHAPTER 8:  An Introduction to Graphics Resources in Android 149 

need to do is reference it in your XML and Java code, and you are finished, and with

perfect results (assuming that your imagery is optimized correctly). 

In this chapter, we will look at which image and video formats to use, which techniques

to implement, and which work processes to follow as much as (or more than) we will be

dealing with XML attributes and Java code snippets (although these are fun to play with

as well). 

Core Drawable Subclasses 
Android offers more than a dozen types of customized drawable objects. In this chapter,

we’ll work with the following core subclasses of android.graphics.drawable: 

BitmapDrawable object: Used to create, tile, stretch, and align

bitmaps. 

ColorDrawable object: Used to fill certain other objects with color. 

GradientDrawable object: Used to create and draw custom gradients. 

AnimationDrawable object: Used to create frame-based animations. 

TransitionDrawable object: Used to create crossfade transitions. 

NinePatchDrawable object: Used to create resizable bitmaps via

custom stretchable areas. 

NOTE: If you want to review all of the drawable objects, look at the 
android.graphics.drawable package document on the Android Developers web site 
(http://developer.android.com). You’ll find that there is a plethora of graphics power in 

Android’s 2D engine. 

The most pervasive and often used type of drawable is the bitmap. A bitmap is an image

composed of a collection of dots called pixels, where “pix” stands for “pictures” and

“els” stands for “elements”. Yes, a bitmap is quite literally a map of bits. So, let’s get

started with adding bitmaps to your Android apps. 

Using Bitmap Images in Android 
How do we best optimize our static (motionless, or fixed-in-place) bitmap imagery for

use within our Android applications? That’s what this section is all about. We have

already worked with bitmap images in the previous chapter, in the context of our

ImageButton and ImageView objects, so you have a little experience with using truecolor

32-bit PNG (PNG32) files to obtain an excellent graphic result. 

Android supports three bitmap image file formats: PNG, JPEG, and GIF. We’ll talk about

how Android truly feels about each one, so you can choose the right formats to meet

your graphics-related design and user experience objectives.  

D
ow

nl
oa

d 
fr

om
 W

ow
! e

B
oo

k 
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

http://developer.android.com


CHAPTER 8:  An Introduction to Graphics Resources in Android 150 

PNG Images 
The most powerful file format that Android supports, and the one it recommends using 

over all others, is Portable Network Graphics, or PNG (pronounced “ping”). There are 

two types of PNG: 

 Indexed-color, which uses a limited 256-color image palette  

 Truecolor, which uses a 32-bit color image that includes a full 8-bit 

alpha channel (used for image compositing) 

PNG is a known as a lossless image file format, because it loses zero image data in the 

compression processing. This means that the image quality is always 100% maintained. 

If designers know what they are doing, they can get very high-quality graphics into a 

reasonably small data footprint using the indexed-color PNG8 and truecolor PNG32 

image file formats. 

Indexed-color PNG8 files use one-fourth of the amount of data (bits) that a truecolor 32-

bit PNG32 image does. Remember the math we did in the previous chapter: 8  4 = 32. 

A smaller data footprint is achieved by using only 8 bits, or a 256-color palette of optimal 

colors best suited to represent the image, but with the same visual result. This is done 

primarily to save data file size, thereby decreasing the image’s data footprint. 

Truecolor PNG32 images use a full 32 bits of data for each of the image pixels to 

represent the four image data channels that are in most bitmap images: alpha, red, 

green, and blue (RGBA).  

The alpha channel determines where the image is going to be transparent, and is used 

for image compositing. As you learned in Chapter 7, compositing is the process of using 

more than one image in layers to create a final image out of several component parts. 

Another benefit of image compositing is that in your programming code, you can access 

different image elements independently of other image elements. For example, you 

might do this for game engine programming. 

Note that at compile time, Android looks at your PNG32 graphics, and if they use less 

than 256 colors in the image, Android automatically remaps them to be indexed PNG8 

images, just as you would want it to do. This means that you don’t need to worry about 

analyzing your images to see if they should be in truecolor or indexed-color format. You 

can simply do everything in truecolor, and if it can be optimized into indexed-color with 

no loss of data, Android will do that for you—making your data footprint three to four 

times smaller. 

If for some reason you don’t want your images optimized at compile time, you can put 

them into the project/res/raw folder, which is for data that is accessed directly from your 

Java code. A good example of this is video files that have been well optimized for size 

and quality, and just need to be played. These come up in a video player example in 

Chapter 11, so stay tuned, as we will be using the /raw folder soon enough. 



CHAPTER 8:  An Introduction to Graphics Resources in Android 151 

JPEG and GIF Images 
The next most desirable format to use is the JPEG image file type. This type does not 

have an alpha channel. It uses lossy compression, which means that it throws away data 

to get a better compression result.  

If you look closely at JPEG images, you will see a lot of artifacts, such as areas of 

strange color variations or dirt on the image that was not on the camera lens. JPEG is 

useful for higher-resolution (print) images, where artifacts are too small to be seen. So, it 

is not really suitable for small smartphone screens. JPEG is supported but not 

recommended for Android apps. 

Finally, we have GIF, an older 8-bit file format. The use of this file format is discouraged. 

Stay away from using GIFs for Android apps. Use PNG8 instead. 

Creating Animation in Android 
You’ve learned how to implement static bitmap images in previous chapters. So, let’s 

get right into the fun stuff with animation. 

Frame-based or Cel 2D Animation 
Traditional 2D animation involves moving quickly among a number of what originally 

were called cels, or hand-drawn images, creating the illusion of motion. To steal a more 

modern term from the movie industry, each image, which is a little bit different from the 

next, is called a frame. This term refers back to the original days of film, where actual 

film stock would be run through a projector, showing 24 frames per second (fps). 

In Android, frame-based animation is the easiest to implement and gives great results. 

You just need to define the XML animation attributes—what and where the frames are—

in the correct place for Android to find them. Then you can control your animation via 

Java.  

In our example, we are going to animate a 3D logo. It will come into existence via a 

fireworks-like particle animation. 

Let’s fire up a new project in Eclipse, and see how animation works in Android.  

1. If you still have the Chapter7 project folder open from the previous 

examples, right-click that folder and select Close Project. This closes the 

project folder in Eclipse (of course, it can be reopened later).  

2. Select Eclipse File  New  Project and choose Android Project to open 

the New Android Project dialog. Fill it out as follows (and shown in 

Figure 8–1). 

 Project name: Name this project Chapter8. 

 Build Target: Choose Android 1.5. 



CHAPTER 8:  An Introduction to Graphics Resources in Android 152 

 Application name: Let’s call this application Graphics 
Examples. 

 Package name: Name the package graphics.examples. 

 Create Activity: Check this box and name the activity graphics. 

 Minimum SDK Version: Enter 3, which matches with our 1.5 

compatibility Build Target setting. 

 

Figure 8–1. Creating the Chapter8 Android project 



CHAPTER 8:  An Introduction to Graphics Resources in Android 153 

3. Now we need to define our animation’s frames in an XML file, which 

we’ll call logo_animation. Right-click your Chapter8 folder and select 

New  File. At the bottom of the dialog, enter logo_animation.xml. In the 

Chapter8 navigation pane in the middle of the dialog, expose your 

directory structure (via the arrows next to the folders), and select the 

res/drawable folder, so that the parent folder field above shows 

Chapter8/res/drawable. This places our logo_animation XML file in the 

correct folder. Figure 8–2 shows the completed New File dialog. 

CAUTION: Since frame-based animation in Android uses bitmap images, you place the XML file 
that references these bitmap images into the same folder the images occupy: the /res/drawable 

folder. Do not put frame animation images or XML specifications into the /res/anim folder. That 
folder is for transform animation (covered in the next section of this chapter). This is an important 
difference in how frame-based animations and transform-based or tween animations are set up 

and created in Android. 

 

Figure 8–2. Creating logo_animation.xml in the Chapter8/res/drawable folder 



CHAPTER 8:  An Introduction to Graphics Resources in Android 154 

4. Next, click the logo_animation.xml tab in Eclipse, and type in the 

following XML to define our frame-based animation for Android (Figure 

8–3 shows the new file in Eclipse):   

<?xml version="1.0" encoding="utf-8"?> 
 
<animation-list xmlns:android="http://schemas.android.com/apk/res/android" 
                    android:oneshot="true"> 
    <item android:drawable="@drawable/mtlogo0" android:duration="200" /> 
    <item android:drawable="@drawable/mtlogo1" android:duration="200" /> 
    <item android:drawable="@drawable/mtlogo2" android:duration="200" /> 
    <item android:drawable="@drawable/mtlogo3" android:duration="200" /> 
    <item android:drawable="@drawable/mtlogo4" android:duration="200" /> 
    <item android:drawable="@drawable/mtlogo5" android:duration="200" /> 
    <item android:drawable="@drawable/mtlogo6" android:duration="200" /> 
    <item android:drawable="@drawable/mtlogo7" android:duration="200" /> 
    <item android:drawable="@drawable/mtlogo8" android:duration="200" /> 
    <item android:drawable="@drawable/mtlogo9" android:duration="200" /> 
</animation-list> 

 

Figure 8–3. Creating the XML mark-up for the logo_animation.xml file 

This is pretty straightforward XML tag mark-up logic here. We declare the XML version 

and add an animation-list tag for frame-based animation image (item) listings. This tag 

has its android:oneshot attribute set to true, which will prevent our animation from 

looping continuously. Setting oneshot equal to false will run the animation seamlessly 

as a loop. 

http://schemas.android.com/apk/res/android


CHAPTER 8:  An Introduction to Graphics Resources in Android 155 

Inside the animation-list tag, we have ten nested item tags (nested because the 

animation-list closing tag comes after these ten item tags). These specify the location 

of each image in our /res/drawable folder, where each image is a frame in the animation.  

Using each item tag entry, we specify the name and location of each of our frames 

mtlogo0 through mtlogo9, as well as the duration of the frame display time in 

milliseconds (ms). In this case, we start off using 200 ms, or one-fifth second, for each 

frame, so that the entire animation plays over 2 seconds, and at 5 fps, just barely fast 

enough to fake movement. We can adjust frame times later, to fine-tune the visual result, 

as well as make the animation loop seamlessly to show this feature. 

We need to put our animation frame images into the /res/drawable folder, so that the 

XML code can reference them successfully. As you know by now, in Android, everything 

needs to be in its correct place for things to work properly.  

1. Copy the ten animation frames into the /res/drawable folder from the 

code download.  

2. Right-click the Chapter8 folder in the Package Explorer and select 

Refresh, so that the IDE can see them.  

3. If there are errors on your XML editing pane, right-click your Chapter8 

folder and select Validate to clear these as well.  

At this point, you should see a screen that looks similar to Figure 8–3. 

Controlling Frame-based Animation via Java 
Now we are going to write our Java code to access and control our 2D animation. If the 

graphics.java tab is not already open, right-click the graphics.java file and select Open.  

NOTE: In order to right-click the graphics.java file, the /src folder and subfolders need to be 
showing in the expanded Package Explorer project-tree view, so click those arrows to make your 

hierarchy visible. 

Here is the code for our graphics.java file, which holds our graphics class from our 

graphics.examples package: 

package graphics.examples; 
 
import android.app.Activity; 
import android.os.Bundle; 
import android.view.MotionEvent; 
import android.widget.ImageView; 
import android.graphics.drawable.AnimationDrawable; 
 
public class Graphics extends Activity { 
 
        AnimationDrawable logoAnimation; 
     



CHAPTER 8:  An Introduction to Graphics Resources in Android 156 

    @Override       /** Called when the activity is first created. */ 
    public void onCreate(Bundle savedInstanceState) { 
        super.onCreate(savedInstanceState); 
        setContentView(R.layout.main); 
 
        ImageView logoImage = (ImageView) findViewById(R.id.iv1); 
        logoImage.setBackgroundResource(R.drawable.logo_animation); 
        logoAnimation = (AnimationDrawable) logoImage.getBackground(); 
    } 
    public boolean onTouchEvent(MotionEvent event) { 
          if (event.getAction() == MotionEvent.ACTION_DOWN) { 
            logoAnimation.start(); 
            return true; 
          } 
          else return super.onTouchEvent(event); 
    } 
} 

In Android Java code, AnimationDrawable is the class we need to use to implement our 

frame-based animation sequences. We import the 

android.graphics.drawable.AnimationDrawable class. Then we import the 

android.widget.ImageView class, which we will use as a view container to display the 

animation. Finally, we import the android.view.MotionEvent, which we will use to 

implement a touchscreen touch trigger to interactively start up the animation play cycle. 

We add the three new import statements to the ones that Android starts us out with (the 

first two). 

Next, we add the object declaration for our AnimationDrawable object, which we are 

calling logoAnimation. This is as simple as writing the following:  

AnimationDrawable logoAnimation; 

Then we have our standard onCreate() method of our activity, using our main.xml UI 

layout specification. In this case, we’re using a LinearLayout container with an 

ImageView called iv1 inside it to hold our frame animation. 

Next, we create an ImageView object called logoImage, which we assign to ImageView 

iv1, which we will declare in the main.xml file. 

After that, we set the background resource for this newly created ImageView to our 

logo_animation XML file, which specifies our animation sequence and timing. This is the 

bridge between display (ImageView) and animation data (logo_animation.xml) set up so 

that our animation will display through the background image setting for the ImageView. 

This leaves it open for us to have a source image in our ImageView that uses 

transparency (an alpha channel) to create cool effects. It essentially gives us two layers 

in the ImageObject, as we can set source and background images for any ImageView 

object.  

Finally, we define the logoAnimation object that we declared in the first line of code in 

the graphics class. logoAnimation is an AnimationDrawable object that gets its data 

from the logoImage object via its getBackground() method, which grabs its background 

image. As you can see from the previous line, that image has been obtained from the 

logo_animation.xml file, where we define how everything should work. 



CHAPTER 8:  An Introduction to Graphics Resources in Android 157 

To trigger our animation to play, we use a new method called onTouchEvent(). This 

method uses a MotionEvent event to detect if the touchscreen has been touched, which 

generates an ACTION_DOWN event. (Recall that an event is something that a Java class 

listens for and is programmed to react to, like a touchscreen touch event or a keyboard 

keystroke key event.) 

In our code, if this ACTION_DOWN touch event is detected, then the logoAnimation object 

is sent a start() method trigger. It plays and returns true (I played it), or else it passes 

the event upward to the onTouchEvent method on the superclass from which it was 

subclassed. 

It’s pretty logical: a subclass is a specialization of a superclass. A superclass is a more 

general class than the subclass and serves as the foundation class. If a subclass is sent 

an event it is not specialized to deal with, it sends that event to its superclass for general 

handling.  

Figure 8–4 shows the four logical sections of code that we need to add to the default 

graphics class and onCreate() code: 

 Import the Android Java classes that we are leveraging in our code. 

 Create and name an AnimationDrawable object that is accessible to 

every code construct in our graphics class. 

 Create an ImageView object tied to our main.xml screen layout, set the 

background image resource of that ImageView to reflect our 

logo_animation.xml attributes, and then have our logoAnimation 

AnimationDrawable object take that frame data from the ImageView via 

getBackground(). 

 Trigger the animation with an ACTION_DOWN touchscreen event in our 

onTouchEvent() method. 



CHAPTER 8:  An Introduction to Graphics Resources in Android 158 

 

Figure 8–4. Creating the graphics Java code that triggers our XML defined frame-based animation 

Finally, we need to put in place the ImageView named iv1, which ties the ImageView in 

our Java code to the ImageView defined in our XML document (main.xml) that defines our 

screen UI. Here is the code, which is also shown in Figure 8–5: 

<?xml version="1.0" encoding="utf-8"?> 
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android" 
    android:orientation="vertical" 
    android:layout_width="fill_parent" 
    android:layout_height="fill_parent" 
    > 
 
    <ImageView 
    android:layout_width="wrap_content"  
    android:layout_height="wrap_content" 
    android:id="@+id/iv1"/> 
 
</LinearLayout> 

http://schemas.android.com/apk/res/android


CHAPTER 8:  An Introduction to Graphics Resources in Android 159 

Figure 8–5. Naming our ImageView UI element in the main.xml file so it matches the iv1 name used in our Java
code 

In this case, we have a LinearLayout that contains an ImageView object named iv1. We

set our ImageView to wrap_content (basically to conform the ImageView bounds to the

160  160 pixel dimension of our image, and thus our animation sequence). 

Running the Frame-based Animation App in the Emulator 
Now let’s see our animation in action. Right-click your Chapter8 folder and choose Run
As  Android Application. When the 1.5 emulator comes up with a black screen (the first

frame of the animation is all black, so the effect loops seamlessly), tap the upper left of

the screen, and the animation will play—amazing. 

Since a screenshot cannot display an animation, we’ll forego the screenshot of the 1.5

emulator. Now, here’s a simple exercise to try after you run this version. Make the

following changes, and then save the modified logo_animation.xml file:  

1. Change the logo_animation values from 200 to 100 for all of the objects,

except for the first frame and the last frame.  

2. Set these to 1000 or 2000. 

3. Change the animation-list tag’s android:oneshot attribute to false. 

To run our looping animation version, right-click the Chapter8 folder and select Run As 

Android Application. Now when you touch the black screen in the upper-left portion, the

animation will begin to play and will continue looping forever. 

Next, let’s add a transformational animation directly underneath our frame-based

animation. 

D
ow

nl
oa

d 
fr

om
 W

ow
! e

B
oo

k 
<

w
w

w
.w

ow
eb

oo
k.

co
m

>



CHAPTER 8:  An Introduction to Graphics Resources in Android 160 

Tween Animation in Android 
Tween animation is used for shape-based animation, where shapes are animated from 

one state to another without specifying the intermediate states. In other words, you 

define the start and end positions of the shape, and Android fills in the gaps to make the 

animation work.  

This contrasts with frame-based animation, which uses a sequence of cels, or bitmap 

images, like the flipbook animations of days gone by. So frame animation does its work 

via pixels, while tween animation does its work via transforms that move, rotate, or scale 

a shape, image, or even text. Thus, tween animation is more powerful than frame-based 

animation. It can also be used in conjunction with frame-based animation to achieve 

even more spectacular results. 

Tween animation in Android is completely different than frame animation. It is 

implemented with the set of classes found in the android.view.animation package. 

These classes represent the true power of tween animation in Android. They include 

things like advanced motion interpolators, which define how animation transformations 

accelerate over time; and animation utilities, which are needed to rotate, scale, translate 

(move), and fade View objects over time. 

“Wait a minute,” you must be musing, “does ‘View objects’ mean that I can apply all of 

this animation class power to, say, TextViews, for instance? Or even VideoViews?” 

Indeed it does. If you transform a TextView (rotate it, for instance), and it has a 

background image, that image is transformed correctly, right along with the text 

elements of the TextView and all of its settings. 

NOTE: Here, the word transformation refers to the process of rotation (spinning something 
around a pivot point), scaling (resizing in x and y dimensions relative to a pivot point or reference 

point), and x or y movement, which is called translation in animation. 

As you might imagine, tween animation definitions can get very complex. This is where 

the power of using XML to define complicated things, like transformational animation 

constructs, becomes very apparent. Again, we thank Android for off-loading work like 

this from Java coding to XML constructs. In XML, the animation transforms are simple 

lists of nested tags; they are not called classes and methods. It is certainly easier to fine-

tune and refine these types of detailed animations via XML line-entry tweaks rather than 

in Java code. 

The XML for tween animations goes in an entirely different directory (folder) than frame 

animation (which goes in /res/drawable). Transform animation goes in the /res/anim 

folder. 



CHAPTER 8:  An Introduction to Graphics Resources in Android 161 

Creating the text_animation.xml File  
We will use a different XML file-creation method to create our transform animation XML 

file and its folder, so let’s get into that right now. 

1. Right-click your Chapter8 folder in the Eclipse Package Explorer pane at 

the left and select New  Other…  Android  Android XML File, as shown in 

Figure 8–6. Then click Next. 

 

Figure 8–6. Selecting to create a new XML file via the Eclipse New  Other right-click menu selection route   

2. As you can see by the options in the New Android XML dialog, Android 

in Eclipse has a powerful XML file-creator utility that supports seven 

different genres of XML files, including animation. Fill out the dialog as 

follows (and shown in Figure 8–7): 

 File: The first field we want to fill out is the name of the animation 

XML file, which is text_animation.xml.  

 What type of resource would you like to create?: Select 

Animation as the XML file type, which automatically puts 

/res/anim as the Folder field at the bottom of the dialog. 



CHAPTER 8:  An Introduction to Graphics Resources in Android 162 

 Select the root element for the XML file: Make sure that set is 

selected as the root element in the file. (The root element is the 

outermost tag in an XML file and contains all the other tags.) 

<set> is used to group and nest transforms to achieve more 

powerful and flexible results, as you will see in our transform 

XML markup. 

3. Now click Finish. You will see the /res/anim folder appear in your project 

hierarchy tree in the Package Explorer pane, with the text_animation.xml 
file under that. 

 

Figure 8–7. Filling out the New Android XML File dialog 

4. Now let’s add in our XML tags to define our scale and rotation 

transforms, as shown in Figure 8–8. (Click the Source tab at the bottom 

of the main window to open the XML code editing window if it does not 

appear automatically.) 

<?xml version="1.0" encoding="utf-8"?> 
 
<set xmlns:android="http://schemas.android.com/apk/res/android" 

http://schemas.android.com/apk/res/android


CHAPTER 8:  An Introduction to Graphics Resources in Android 163 

     android:shareInterpolator="false"> 
 
    <scale android:interpolator="@android:anim/accelerate_decelerate_interpolator" 
          android:fromXScale="1.0" 
          android:toXScale="1.4" 
          android:fromYScale="1.0" 
          android:toYScale="0.6" 
          android:pivotX="50%" 
          android:pivotY="50%" 
          android:fillAfter="false" 
          android:duration="700" /> 
 
    <set android:interpolator="@android:anim/decelerate_interpolator"> 
        <scale android:fromXScale="1.4"  
                android:toXScale="0.0" 
                android:fromYScale="0.6" 
                android:toYScale="0.0"  
                android:pivotX="50%"  
                android:pivotY="50%"  
                android:startOffset="700" 
                android:duration="400"  
                android:fillBefore="false" /> 
 
        <rotate android:fromDegrees="0"  
                android:toDegrees="-45" 
                android:toYScale="0.0"  
                android:pivotX="50%"  
                android:pivotY="50%" 
                android:startOffset="700" 
                android:duration="400" /> 
    </set> 
</set> 



CHAPTER 8:  An Introduction to Graphics Resources in Android 164 

 

Figure 8–8. Coding our tween animation tags and their parameters in the text_animation.xml file  

Notice that there are quite a few attributes for the tags that allow transformational 

animation over time. For instance, our scale tags allow us to specify to and from values 

for both x and y dimensions, pivot points (where the scale emanates from, or from which 

location on the object the scale is performed), scale offsets for nonuniform scaling, time 

duration, and whether to fill before or after the transformation. 

For rotation tags, we have rotation to and from degree specifications, as well as x and y 

pivot point settings. We also have both an offset for skewed rotations and a duration 

attribute that controls the speed of the rotational transformation. The pivot point defines 

the center point of the rotation, and an offset defines how to skew the rotation from that 

point, much like the old Spirograph set that created cool flower-like graphics.  

Controlling Tween Animation via Java 
Now that our TextView transform animation XML data is in place inside our newly 

created /res/anim/text_animation.xml file, we can insert a half dozen lines of Java code 

into our graphics.java file, to implement the transform animation within our application, 

directly underneath our frame-based animation. 



CHAPTER 8:  An Introduction to Graphics Resources in Android 165 

1. As shown in Figure 8–9, the first thing we must do is to import the 

Android classes that are going to be used in the text animation 

transformation: android.widget.TextView and the 

android.view.animation classes called Animation and AnimationUtils. 

import android.widget.TextView; 
import android.view.animation.Animation; 
import android.view.animation.AnimationUtils; 

 

Figure 8–9. Triggering our tween animation in our graphics.java code  

2. Then down in our onCreate() method, we specify the TextView object 

textAnim and the Animation object textAnimation.  

TextView textAnim = (TextView) findViewById(R.id.TV1); 
Animation textAnimation = AnimationUtils.loadAnimation(this, R.anim.text_animation); 

3. We then call the startAnimation() method on the TextView object, 

specifying that we want to use the textAnimation Animation object.  

textAnim.startAnimation(textAnimation); 

4. Finally, we need to add a TextView object named TV1 to our 

LinearLayout tag and UI container in our main.xml file, as shown in 

Figure 8–10. 



CHAPTER 8:  An Introduction to Graphics Resources in Android 166 

 

Figure 8–10. Adding a TextView UI object to our main.xml file  

5. Now we can try out the tween animation. Right-click the Chapter8 folder 

in the Package Explorer pane and select Run As…  Android Application.  

6. It runs pretty fast. Let’s add a zero on the time values in our 

text_animation.xml file, changing 400 to 4000 and 700 to 7000.  

7. Compile and run the app again. You’ll see that the animation runs ten 

times slower. 

Using Transitions 
Transitions are preprogrammed custom special effects like crossfades and directional 

wipes. Using these effects can increase the perceived professionalism of your 

application.  

You can use XML to set up such graphics transformations. 

Android provides the TransitionDrawable class. Here, we will use it in conjunction with 

an XML file in the /res/drawables directory, just as we did in the frame-based animation 

example, since we are working solely with bitmap images.  

So let’s get started.  

1. Right-click the Chapter8 folder and select New  File to create a 

standard text file for our XML in the /res/drawable folder (since we are 

working with bitmap images).  

2. Name the file image_transition.xml, as shown at the bottom of the New 

File dialog in Figure 8–11. 



CHAPTER 8:  An Introduction to Graphics Resources in Android 167 

 

Figure 8–11. Creating the image_transition.xml file in the drawable folder via the New File dialog  

3. Next, add the <transition> tag as follows. The <transition> tag has 

the usual xmlns reference (to make our file valid Android XML). Inside the 

tag, we specify two <item> tags referencing the images that we need to 

transition from and transition to. We are using the two images from 

Chapter 7 here to show that the transitions will accommodate the alpha 

channel and more complicated masking of images, which is important 

for advanced designs: 

<?xml version="1.0" encoding="utf-8"?> 
 
<transition xmlns:android="http://schemas.android.com/apk/res/android"> 
 
        <item android:drawable="@drawable/image1"/> 
        <item android:drawable="@drawable/image2"/> 
 
</transition> 

4. Add the two images to the drawable folder. Figure 8–12 shows what 

your screen should look like once you have added the two images, 

refreshed the IDE, and typed in your tags. 

http://schemas.android.com/apk/res/android


CHAPTER 8:  An Introduction to Graphics Resources in Android 168 

 

Figure 8–12. Writing our XML mark-up to transition between two images in our image_transition.xml file  

5. Now we need to add an ImageView in our LinearLayout to hold our 

image transition. Put the following in the main.xml file underneath our 

animated TextView, as shown in Figure 8–13. 

<ImageView android:layout_width="wrap_content"  
           android:layout_height="wrap_content" 
           android:src="@drawable/image1" 
           android:id="@+id/imgTrans"/> 

 

Figure 8–13. Adding an ImageView UI object to our main.xml file to hold our image transition  



CHAPTER 8:  An Introduction to Graphics Resources in Android 169 

We are specifying the first image (the “from” image) of our transition as the source image

to use in the ImageView object, and we are naming it imgTrans via the now familiar

@+id/imgTrans notation. 

Now we are ready to drop a few lines of Java code (a whopping four this time) into

graphics.java to add the ability to do a fade transition from one image slowly into

another.  

Here is the code to set up the ImageView we just added to access the transition: 

TransitionDrawable trans = (TransitionDrawable) 
  getResources().getDrawable(R.drawable.image_transition); 

This is all on one line, as shown in Figure 8–14. 

TIP: We have no new import statements to add, so the import statements block of code is 
closed in Figure 8–14. This is indicated by a plus sign (+) next to the block, which signifies that 

this code block can be expanded (just click the +). You can click any of the minus signs (–) in 
your Java code window to close classes you are finished editing, if you want to see a higher-level 
view of your code. Once your code becomes long and involved, you will find that you use this 

simple feature regularly. Try it, and get used to making it a part of your work process inside the 

Eclipse IDE. 

Figure 8–14. Adding our Java code to graphics.java to define and trigger our image transition  

This code declares our TransitionDrawable object, which we name trans. It sets trans
to the results of the call to the getDrawable() method of the object returned by the 

D
ow

nl
oa

d 
fr

om
 W

ow
! e

B
oo

k 
<

w
w

w
.w

ow
eb

oo
k.

co
m

>



CHAPTER 8:  An Introduction to Graphics Resources in Android 170 

getResources() method. This obtains the image_transition.xml transition drawable 

specification, which points to our two circular images.  

Setting up that TransitionDrawable object and loading it with our XML file is the hardest 

line of code in this quartet. The next three are more familiar and straightforward: 

ImageView transImage = (ImageView) findViewById(R.id.imgTrans); 
transImage.setImageDrawable(trans); 
trans.startTransition(10000); 

We create an ImageView object called transImage and, via the findViewById() method, 

we link it to the imgTrans ID, from the second ImageView XML tag we added to main.xml 
earlier. We then use the setImageDrawable() method to set the transImage ImageView 

object to the trans TransitionDrawable object that we just created above it. 

This second and third lines of Java code bridge our ImageView object with our 

TransitionDrawable object, and thus complete our wiring together of the various UI view 

and animation effect objects. 

Finally, we can now talk to the trans TransitionDrawable object via its 

startTransition(milliseconds) method. We will use that method to tell the transition to 

begin and to take place over 10,000 ms, or 10 seconds, (slow fade) to complete.  

Select Run As…  Android Application and watch the fun. 

Creating 9-Patch Custom Scalable Images 
Another type of drawable utility subclass in android.graphics.drawable package is 

NinePatchDrawable. A NinePatch is a resizable bitmap whose scaling during resize 

operations can be controlled via nine areas that you can define in the bitmap image 

(think tic-tac-toe). This type of image could be used for anything from a scalable button 

background to a UI background that scales to fit different screen resolutions. 

The advantage to the NinePatch drawable object is that you can define a single graphic 

element (in our example, that will be a 2.7KB PNG file) that can be used across many 

different UI elements, including buttons, sliders, backgrounds, and similar items. Screen 

or button backgrounds can use this technology. 

Android comes with a tool for editing NinePatch objects. In the Android SDK tools folder 

(as shown in Figure 8–15, this is under android-sdk-windows on Windows), you will find 

a draw9patch.bat batch file. Running this file (from the command line or by using a right-

click context-sensitive menu) starts the Draw 9-patch utility. 



CHAPTER 8:  An Introduction to Graphics Resources in Android 171 

 

Figure 8–15. Locating the Android 9-patch editing tool in your operating system directory structure for the 
Android SDK 

TIP: This chapter uses screen images from Adobe Photoshop. If you don't have PhotoShop, there 
a free open source software called GIMP (for the GNU Image Manipulation Program), which is 
similar to Photoshop and available for Mac, Linux, and Windows systems. For more information 

and to download GIMP, go to http://gimp.org. 

Let’s try creating some 9-patch buttons.  

1. To launch the 9-patch editor from Windows, right-click the 

draw9patch.bat file (in Linux and Mac systems, the file name extension 

may be different) and select Run as Administrator. You will see the Draw  

9-patch startup screen. 

http://gimp.org


CHAPTER 8:  An Introduction to Graphics Resources in Android 172 

2. Select File  Open 9-patch from the menu bar, as shown in Figure 8–16. In 

the dialog that appears, go to your project/res/drawable folder and open 

the chromebutton.png file. 

 

Figure 8–16. Draw 9-patch startup screen 

3. The PNG32 image file opens in the 9-patch editor, as shown in Figure 

8–17. Select the Show patches check box at the bottom of the window, 

so that you can see the effects of the patch areas as colored, 

translucent surfaces over the top of the image.  



CHAPTER 8:  An Introduction to Graphics Resources in Android 173 

 

Figure 8–17. On the left of the 9-patch editor is a working area where you will define the tiling areas of the  
9-patch. On the right is a real-time preview area, showing how the image will tile when stretched in different 
dimensions. 

4. Draw boundaries with your mouse by dragging the mouse within the 1-pixel 

wide transparent border area above and to the left of our graphic, as shown 

in Figure 8–18. The Draw 9-patch utility adds this 1-pixel border area inside 

the image. 

NOTE: As you add points to this line with a left-click (or subtract with a right-click or Shift-click 
for Mac), be sure to look at the images on the right. You’ll see how they change the way that 

Android scales your background in real time as you work on the image.  

 

Figure 8–18. Tileable areas in the 9-patch editor are defined by different colors. 

5. Bring the original and the newly created 9-patch image into Photoshop, 

as shown in Figure 8–19. Now, you can see what the 9-patch editor is 

doing to tell Android which parts of the image to tile or scale and which 

parts of the image to preserve (usually edges). 



CHAPTER 8:  An Introduction to Graphics Resources in Android 174 

 

Figure 8–19. The 9-patch images in Adobe Photoshop  

6. Select File  Save and save the 9-patch image in your 

/project/res/drawable folder as chromebutton.9.png. It is now ready to 

implement as a background image in the test buttons that we are going 

to add to our main.xml file.  

7. Add the following code to the bottom of our LinearLayout container (it 

can also be seen in Figure 8–21 later in the exercise): 

        <Button android:id="@+id/Button1" 
                        android:layout_width="wrap_content" 
                        android:layout_height="wrap_content"  
                        android:background="@drawable/chromebutton" 
                        android:textColor="#770000"  
                        android:padding="3dip" 
                        android:text="CLICK HERE!" 
                        android:layout_gravity="center"/> 
        <Button android:id="@+id/Button2" 
                        android:layout_width="wrap_content" 
                        android:layout_height="wrap_content"  
                        android:background="@drawable/chromebutton" 
                        android:textColor="#007700"  
                        android:padding="30dip" 



CHAPTER 8:  An Introduction to Graphics Resources in Android 175 

                        android:text="NOW LETS REALLY SCALE THIS UP!" 
                        android:layout_gravity="center" 
                        android:textSize="17dip"/> 

8. Click the Graphical Layout tab at the bottom of the main.xml editing 

window, and switch Eclipse into preview mode (as you’ve done in earlier 

examples). As shown in Figure 8–20, you can readily see the different 

effects of scaling the 9-patch image that were previewed in the Draw 9-

patch tool. 

 

Figure 8–20. Setting UI parameters and portrait mode in the Eclipse layout editor 

In this case, small padding values preserve the round ends of the button, and ten times 

larger padding values scale the image to look more like a piece of chalk. Both different 

button treatments are culled from the same 2.7KB PNG image using the 

NinePatchDrawable object. 

Note how easy it was for us to define and use the NinePatchDrawable class, without any 

Java code at all. We simply need to put the chromebutton.9.png 9-patch-compatible 

image into the /res/drawable folder, so it can be found and accessed by our XML. 

Figure 8–21 shows the additions to main.xml. Notice that we added an attribute in each 

of our UI tags (ImageView and TextView): 

android:layout_gravity="center" 



CHAPTER 8:  An Introduction to Graphics Resources in Android 176 

 

Figure 8–21. Adding our 9-patch PNG in our main.xml UI layout and setting layout_gravity to center buttons   

Layout gravity is like the alignment feature in word processors and browsers. It allows 

you to snap a layout container or a UI element to the left, right, top, bottom, or center. 

It’s handy for designing the visual screen layout. 

Now choose Run As  Android Application and check out our 9-patch buttons at the bottom 

of the emulator screen. Take a good look at them, because we are going to replace 

them with a VideoView in the next section. 

Playing Video in Your Android Apps 
As our final topic, we’ll look at how to simply and effectively play video files in your 

Android applications. You do this through a very handy class called VideoView. We are 

going to add the ability to play video in our application using only three lines of XML 

code and eight lines of Java code, or less than a dozen lines of code in total. 

Adding a VideoView Object 
For video playback, we will use the VideoView class. Like TextView and ImageView 

objects, VideoView objects make it easy to access MPEG-4 H.264 video in your Android 

applications. Your video can be easily streamed from a remote server, keeping your 

application download size to a minimum.  



CHAPTER 8:  An Introduction to Graphics Resources in Android 177 

To add a VideoView to our LinearLayout, in main.xml, place the following new tag 

underneath the last ImageView tag (and in place of our two Button tags, which should be 

deleted and replaced with the following): 

        <VideoView android:layout_height="fill_parent" 
                   android:layout_width="fill_parent" 
                   android:id="@+id/VideoView"/> 

This names our VideoView and tells it to fill its parent container using fill_parent. The 

fill_parent value does the opposite of wrap_content. It blows the content up to fit the 

layout container, rather than scaling the layout container down around the content.  

With this in our LinearLayout for our Chapter8 project, replacing the two Button tags, we 

will now have video at the bottom of our app screen, under our transition object. Since 

in our vertical layout our VideoView object is getting pushed off the bottom of the screen, 

let’s temporarily disable our frame-based animation while we develop our VideoView 

code. We do this by commenting out a block of code, as follows: 

<!-- 
        <ImageView android:layout_width="wrap_content"  
                   android:layout_height="wrap_content" 
                   android:layout_gravity="center"  
                   android:id="@+id/iv1"/> 
 --> 

So, to comment out a block of code in XML, simply add the <!-- opening tag and the --
> closing tag, as shown here.  

Your new main.xml code should look like Figure 8–22. You can see that once this block 

of code is commented out, Eclipse changes the color of the code, and the Android 

compiler no longer sees that code. As far as it’s concerned, the code is not there 

anymore. We’ll do the same thing in our Java code as well, except using a different 

comment method. 

TIP: Commenting is a useful technique when you want to temporarily change a file without 
deleting some content, or as a way of leaving notes to yourself. You will see this latter approach 

used extensively in Java code. Commenting is a good habit for developers. 



CHAPTER 8:  An Introduction to Graphics Resources in Android 178 

 

Figure 8–22. Adding a VideoView and commenting out a section of the XML 

Adding the Java for Video 
In Java, a line of code is commented out by adding two forward slashes (//). In 

graphics.java, we begin by commenting out our import android.view.MotionEvent 

statement, as shown in Figure 8–23. Eclipse turns the commented code green to show it 

is no longer recognized by the compiler. 

3



CHAPTER 8:  An Introduction to Graphics Resources in Android 179 

Figure 8–23. Adding Java code to play our VideoView UI object 

Remember that we commented out the code for our frame-based animation in our XML

file. Let’s now comment out the code that implements that frame-based animation in our

Java file. We also comment out the touchscreen code, as follows (and shown in Figure

8–23): 

        //ImageView logoImage = (ImageView) findViewById(R.id.iv1); 
        //logoImage.setBackgroundResource(R.drawable.logo_animation); 
        //logoAnimation = (AnimationDrawable) logoImage.getBackground(); 

Now, add three new import statements for the classes we need: 

import android.net.Uri; 
import android.widget.VideoView;
import android.widget.MediaController; 

D
ow

nl
oa

d 
fr

om
 W

ow
! e

B
oo

k 
<

w
w

w
.w

ow
eb

oo
k.

co
m

>



CHAPTER 8:  An Introduction to Graphics Resources in Android 180 

To get the video from our server, we also need to define its path using a Uri object, so 

we must import the android.net.Uri class. We next import the VideoView widget 

(android.widget.VideoView). Finally, to play the video in the VideoView, we will use a 

MediaController object, so we import the android.widget.MediaController class as 

well. 

Next, add the following to create our VideoView object (see Figure 8–24):  

        Uri vidFile = Uri.parse("http://commonsware.com/misc/test2.3gp"); 
        VideoView videoView = (VideoView) findViewById(R.id.VideoView); 
        videoView.setVideoURI(vidFile); 
        videoView.setMediaController(new MediaController(this)); 
        videoView.start(); 

First, we create the Uri reference object, which holds the path, or address, to the video 

file on the server. The Uniform Resource Identifier (URI) can use the familiar HTTP server 

paradigm or a more advanced real-time streaming protocol. As you can see, here we are 

using the HTTP protocol, which works fine and is the industry standard, thanks to the 

Internet. We create a Uri object called vidFile using the parse() method with the HTTP 

URL to any valid path and file name in quotes. Here, the Uri object points to the content 

at http://commonsware.com/misc/test2.3gp, so that we have some video to play.  

Now we have an object called vidFile that contains a reference to our video file.  

Next, we set up our VideoView object, calling it videoView and using findViewById() to 

locate the VideoView we created in our XML layout file. This is the same thing we have 

been doing with the other View types, and should be pretty familiar to you at this point. 

Now that we have a videoView object, we use the setVideoURI() method to pass the 

vidFile Uri object to the videoView VideoView object, so that the VideoView is loaded 

with the file path to use to retrieve the video. Now our Uri is wired into our VideoView, 

and we need only to wire the MediaController into the VideoView so that the video can 

be played. 

The next line of code connects the videoView object to the MediaController object 

using the videoView object’s setMediaController() method, and invokes a cool code-

optimization trick of declaring a new MediaController object inside the 

setMediaController() method. The long form of this would require two lines of code 

and an additional object variable, like so: 

MediaController mediaControl = new MediaController(this); 
videoView.setMediaController(mediaControl); 

Finally, to start our videoView object playing, we send it a start() method call via the 

last line of code: 

videoView.start() 

We are finished setting up our VideoView object. Now select Run As  Android Application 

and watch our video stream over the Internet into your 1.5 emulator. 

http://commonsware.com/misc/test2.3gp
http://commonsware.com/misc/test2.3gp


CHAPTER 8:  An Introduction to Graphics Resources in Android 181 

Summary 
In this chapter, we took a look at the more advanced graphics capabilities that Android 

offers, including two different types of animation, image transitions, and digital video. 

You also learned a little more about the Eclipse IDE, code commenting, and image file 

formats that are optimal for Android apps. 

Here are some important points to remember: 

 Always use PNG24 (which is really PNG32) format. 

 Bitmap animation and tween animation are two completely different 

things as far as Android is concerned. Bitmap-related animation and 

transitions are handled through the /res/drawable folder. Tween 

animation is handled via XML files defined in the /res/anim folder.  

 Don’t limit yourself when using tween animation. Use it on any type of 

View container you like—text, image, video, or whatever; wax creative. 

In the next chapter, we’ll start looking at how to make things interactive by setting up 

our applications to handle events and to listen for those events via event listeners. 



 

 

183 

183 

   Chapter 

Adding Interactivity: 
Handling UI Events 
In this chapter, we will explore how to wire up those super-cool UI designs that you have 

seen in the previous chapters, so that your UI design becomes highly functional within 

your Android application. With Android’s convenient event listeners, you can easily add 

in your own custom programming logic. Using the event handling described in this 

chapter, you’ll be able to have your UI and graphical elements actually do something 

productive or impressive after they are tapped on (touchscreen), navigated to (navigation 

keypad), or typed into (keyboard). 

We’ll begin with an overview of how Android listens to its touchscreen and keyboard, 

and how to harness the power of input devices. 

An Overview of UI Events in Android 
The way that we talk to all of the input devices in Java, and thus in Android, is via events 

for each type of input device (touchscreen, keyboard, and navigation keys). Events are 

actually system-generated messages that are sent to the View object whenever a UI 

element is accessed in some fashion by a user. Event refers to something that you 

attend or otherwise recognize as being significant, and thus is the perfect term for these 

UI occurrences via Android input devices. 

Listening for and Handling Events 
Handling and handlers are two other terms used in conjunction with events in Java and 

Android. Once these events are triggered by a user’s touch, keystroke, or navigation 

key, they must be handled within your application. This is accomplished inside a method 

(such as onClick() or onKeyDown()) that specifies exactly what you want to happen 

when one of these input events is detected by Android and is sent over to your 

appropriate event handler for processing.  

9 



CHAPTER 9:  Adding Interactivity: Handling UI Events 184 

This concept of handling events is termed listening in Android. You will see the terms 

event listeners and event handlers throughout this chapter. That’s because they are what 

the chapter is all about: how to put into place the proper event listeners and event 

handlers to cover your app users’ interaction via touchscreen, navigation keys, and 

keyboard input devices that are part of a smartphone’s hardware. 

Handling UI Events via the View Class 
Each of the UI elements in your application is a View object of one incarnation or 

another, and each has events that are unique to that element. This is how user 

interaction with specific UI elements is kept separate and organized. Each of these View 

objects keeps track of its own user-input events. 

The way that a View object within your layout talks with the rest of your application 

program logic is via a public callback method that is invoked by Android when a given 

action occurs in that UI View object. For instance, if a Button is touched, an 

onTouchEvent() method is called on that object, because Android knows to call a 

method of that name when that event occurs. In other words, Android calls back to the 

object that received an event so that the object can handle it.  

For this callback message to be intercepted by your Java code and program logic, you 

need to extend your View class and override the method from the View class that your UI 

widget was spawned (subclassed) from. To override a method means to declare and 

define that method specifically within your class, and have it do something via your own 

custom program logic. 

Since your UI design is made up of a collection of View objects in one or more ViewGroup 

layout containers, you can see how this might represent a gaggle of coding just to make 

sure all of your UI elements are properly listening to the keyboard, touchscreen, and 

navigation keys. Has Android done anything here to make things easier on us, as it has 

in other areas of app development? 

Yes, Android has provided a way to facilitate event handling. The View class from which 

all of our UI widgets are subclassed contains a collection of nested interfaces featuring 

callbacks that are far easier to define, as they are part of the system that makes up the 

View class and all of its methods.  

These nested interfaces that are already a part of all of your View class-based widgets 

are called event listeners. They provide the easiest way to quickly set in place code that 

will capture user-input events and allow them to be processed right there in your 

application program logic.  

Event Callback Methods 
In the most simple of terms, an event listener is a Java interface in the View class that 

contains a single callback method to handle that type of user-input event. When you 

implement a specific event listener interface, you are telling Android that your View class 

will handle that specific event on that specific View. 



CHAPTER 9:  Adding Interactivity: Handling UI Events 185 

These callback methods are called by Android when the View object that the callback 

method is registered to is triggered by the user-input device used to access that UI 

interface element. (I like to say the method is wired up to the View object, but then again, 

I am a programmer and drink far too much coffee.) 

The callback methods that we are going to cover in this chapter are the most common 

ones used in Android application development. They are listed in Table 9–1. 

Table 9–1. Common Android Callback Methods 

Method From Triggered By 

onClick() View.OnCLickListener Touch of screen or click of navigation 

keys 

onLongClick() View.OnLongClickListener Touch or Enter held for 1 second 

onKey() View.OnKeyListener Press or release of key on phone 

onTouch() View.OnTouchListener Touch, release, or gesture events 

onFocusChange() View.OnFocusChange Focus change 

onCreateContextMenu() View.OnTouchListener Context menu 

In the table, two of the methods are not directly triggered by user input, but they are 

related to input events. These are onFocusChange() and onCreateContextMenu(). 

onFocusChange() tracks how the user moves from one UI element to the next. The term 

focus refers to which UI element the user is using or accessing currently. When a user 

goes from one UI element to another one, the first UI element is said to have “lost 

focus,” and the next element is said to now “have the focus.” The 

onCreateContextMenu() method is related to the onLongClick() callback method, in the 

sense that context menus in Android are generated via a long-click user action. This is 

the touchscreen equivalent of a right-click on most computers. 

To define one of these callback methods to handle certain types of events for one of 

your View objects, simply implement the nested interface in your activity or define it as 

an anonymous class within your application. If you define it as an anonymous class, you 

pass an instance of your implementation of the listener to the respective set…Listener() 

method, as you’ll see in the next section.  

In the rest of this chapter, you’ll learn how to leverage the main event listeners in 

Android so you can make your applications interactive and useful. 

Handling onClick Events 
The onClick() method is triggered when the user touches a UI element. As you might 

guess, it’s the most commonly used event handler out there. So, it only makes sense to 

start with handling onClick events.  



CHAPTER 9:  Adding Interactivity: Handling UI Events 186 

Implementing an onClick Listener for a UI Element 
First, let’s create an anonymous OnClickListener: 

final OnClickListener exampleListener = new OnClickListener() 
{ 
    public void onClick(View v) { 
        //Code here that does something upon click event. 
    } 
}; 

This is an example of an anonymous class. This line of code sets up a variable called 

exampleListener as a new OnClickListener object, which listens for onClick events. 

NOTE: Recall from Chapter 7 that a final variable cannot be reassigned a value once it has been 

set. This ensures that another listener does not get assigned. 

It is logical, then that inside this class definition there would be a public onClick(View v) 

handler to handle the onClick event. The public onClick handler is passed an ID 

reference to the View object that was clicked on, so that it knows which View object to 

handle. Note that the View that has been clicked is named v, so if you want to reference 

the View object in the code inside this method, it is ready to go and must be referenced 

via a variable “v”. 

How any given onClick handler handles a click event is up to the code inside the 

onClick handler. That code basically explains what to do if that UI element was clicked 

on or touched, or typed with a keystroke.  

If you want to come off as really cool right now, simply look up casually from the book 

and exclaim to your family, “I’m coding an onClick handler in Java right now,” and then 

look back down and continue reading. 

We have defined an OnClickListener, but we need to wire it to a UI element (attach it to 

a UI View object) before that code can be triggered. Usually, this will go inside the 

onCreate() method (which you have become familiar with in the first two-thirds of this 

book).  

It takes only two lines of code to connect a button to the exampleListener object. The 

first is simply our Java declaration of the Button UI object in our main.xml UI layout 

definition: 

<Button android:text="First Button"  
        android:id="@+id/firstButton" 
        android:layout_gravity="center" 
        android:layout_width="wrap_content"  
        android:layout_height="wrap_content"/> 

The second line is where we connect the button construct with the event listener 

construct, by using the Button widget’s setOnClickListener() method, like so: 

Button exampleButton = (Button)this.findViewById(R.id.firstButton); 
exampleButton.setOnClickListener(exampleListener); 



CHAPTER 9:  Adding Interactivity: Handling UI Events 187 

Adding an onClick Listener to an Activity in Android 
You will probably not be surprised when I tell you that there is an even sleeker way to 

define your event listeners for your activities, using even fewer object references and 

lines of code. This is normally how you will want to do things in your Android 

applications programming activities. 

You can implement an event listener directly inside the declaration of your activity within 

the actual class declaration. Wow. Event listeners must be muy importante.  

Here is a class declaration that uses the implements keyword to embed an 

OnClickListener directly into the class via its declaration: 

public class ActivityExample extends Activity implements OnClickListener() {…} 

The previous two lines of code declaring the Button and wiring via setOnCLickListener() 

would still exist inside the onCreate() code block, but the declaration of the 

exampleListener object and class would not be necessary. 

Now it’s time to create our Chapter9 project folder and implement a button and onClick 

listener so that you can see event handling in action.  

Creating the Event Handling Examples Project in Eclipse 
For our first example, we’ll set up the button so that when it is clicked, the text on a 

TextView changes. 

In Eclipse, close the Chapter8 project folder (right-click it in Package Explorer and select 

Close Project), if it’s still open. Also close all the empty tabs at the top of the Eclipse IDE, 

using the x icons in the top-right side of each tab. 

Select File  New  Project and choose Android Project to open the New Android Project 

dialog. Fill it out as follows (and shown in Figure 9–1): 

 Project name: Name the project Chapter9. 

 Build Target: Choose Android 1.5. 

 Application name: Name the application Event Handling Examples. 

 Package name: The package name should be event.handling. 

 Create Activity: Check the box and name the activity 

HandlerExamples. 

 Minimum SDK Version: Set this to 3, which matches our Android 1.5 

build target and emulator.  



CHAPTER 9:  Adding Interactivity: Handling UI Events 188 

 

Figure 9–1. Creating the Chapter9 Android project 

Editing the HandlerExamples.java File  
Now let’s edit the java code: 

1. In the Package Explorer, open your project tree hierarchy by clicking the 

arrows next to the /src and /res folders, so that you can see their 

contents. Select the HandlerExamples.java file under the 

/src/event.handling folder by clicking once on it (it will turn blue), and 

then hit the F3 key on your keyboard. This is the keyboard shortcut for 

the Open option. 



CHAPTER 9:  Adding Interactivity: Handling UI Events 189 

2. Notice that some code has been written for us. The first thing we need 

to do is to implement OnClickListener. Add implements 
OnClickListener to the end of the class declaration, as shown in Figure 

9–2. (Note there is a deliberate typo here, so I can show off some 

features of Eclipse. See if you can spot it.) 

 

Figure 9–2. Editing HandlerExamples.java  

3. As you can see in Figure 9–2, Android and Eclipse have alerted us that 

something is amiss. If you hold the mouse over the red-underlined 

keywords, Eclipse will tell you what it thinks is wrong. When you mouse-

over the HandlerExamples keyword in the class definition, up pops a box 

(shown in Figure 9–2) saying that Eclipse wants to see an onClick() 

method. To fix this, click the Add unimplemented methods link (the first 

one), and Eclipse will add the method for you (see Figure 9–3), as 

follows: 

        @Override 
        public void onClick(View v) { 
                // TODO Auto-generated method stub 
 
        } 

NOTE: Since the onClick code uses a View object, Eclipse imports android.view.View, 

which is shown at the top of the file. 



CHAPTER 9:  Adding Interactivity: Handling UI Events 190 

4. There is nothing better than having our IDE write some code for us. Let’s

try it again. Mouse-over the OnClickListener keyword, and Eclipse will

tell you that you need an import statement. Click the Add import link,

and Eclipse will add the import statement (highlighted at the top of

Figure 9–3).  

Figure 9–3. Implementing a listener in our class definition via the implements keyword  

NOTE: You need to get used to looking at what Eclipse is telling you as you code. This awareness 

is especially useful while you are learning the programming language and the development 
environment. That is why I am showing you some mistakes here, rather than writing perfect lines 
of code every time. One of the things you need to master is your process of working with the 

Eclipse IDE. 

5. But there is still an error in the class declaration. This is because when

you implement an OnClickListener, you do not need to add the () at

the end. I removed the typo, and then I got a clean bill of health from

Eclipse, as shown in Figure 9–4. 

public class HandlerExamples extends Activity implements OnClickListener { 

D
ow

nl
oa

d 
fr

om
 W

ow
! e

B
oo

k 
<

w
w

w
.w

ow
eb

oo
k.

co
m

>



CHAPTER 9:  Adding Interactivity: Handling UI Events 191 

 

Figure 9–4. A listener implemented correctly in Eclipse  

6. Now let’s define our Button and attach our setOnClickListener() to it. 

We talked about this earlier in the chapter, but this time, the containing 

activity is the event listener, so we use this to refer to the containing 

object.  

        Button button = (Button)findViewById(R.id.testButton); 
        button.setOnClickListener(this); 

This is shown in Figure 9–5, along with the import android.widget.Button; statement 

that we need in order to use the Button in our code. 

 

Figure 9–5. Defining a Button in HandlerExamples.java  



CHAPTER 9:  Adding Interactivity: Handling UI Events 192 

Editing the main.xml File  
Now it’s time to set up the XML mark-up in our main.xml file.  

1. Select the main.xml file under the /res/layout folder and hit F3 to open it 

in the IDE in its own tab.  

2. Click the Layout tab at the bottom of the IDE to show the layout visually 

(see Figure 9–6), Then drag the Button widget (shown circled and 

selected in Figure 9–6) onto the screen to the right, and drop it into 

place under the TextView widget. 

 

Figure 9–6. Adding a Button via a drag-and-drop operation the Eclipse layout editor in our main.xml file  

3. Now click the main.xml tab at the bottom of the IDE to switch the view 

from visual layout to coding view. Cut and paste the Button code so that 

it comes before the TextView code (but after the LinearLayout tag). The 

Button should be the first thing at the top of the screen.  

4. Add the "CLICK TO GENERATE EVENT" text, testButton ID, and centering 

attribute you learned about in the previous chapter. Let’s also add a few 

TextView attributes to improve visibility (see Figure 9–7). 

<?xml version="1.0" encoding="utf-8"?> 
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android" 
    android:orientation="vertical" 
    android:layout_width="fill_parent" 
    android:layout_height="fill_parent" 
    > 
     
<Button android:text="CLICK TO GENERATE EVENT"  

http://schemas.android.com/apk/res/android


CHAPTER 9:  Adding Interactivity: Handling UI Events 193 

        android:id="@+id/testButton" 
        android:layout_gravity="center"  
        android:layout_width="wrap_content"  
        android:layout_height="wrap_content"/> 
 
<TextView android:layout_width="wrap_content"  
          android:layout_height="wrap_content" 
          android:id="@+id/testText" 
          android:text="BEFORE CLICK TEXT!" 
          android:textColor="#FFCC99" 
          android:textSize="24px"/> 
</LinearLayout> 

 

Figure 9–7. Adding Button and TextView attributes in our main.xml file 

Updating HandlerExamples.java 
Now let’s go back into our Java code.  

1. Click the HandlerExamples.java tab at the top of the code editor pane.  

2. Add the code that responds to a click on the button, as follows (see 

Figure 9–8): 

        public void onClick(View v) { 
                TextView text = (TextView)findViewById(R.id.testText); 
                text.setText("BUTTON HAS BEEN CLICKED. EVENT PROCESSED."); 
        } 

We add our TextView object declaration into onClick(). We also add a setText("BUTTON 
HAS BEEN CLICKED. EVENT PROCESSED.") call to the TextView object we named text, 

created in the previous line. 



CHAPTER 9:  Adding Interactivity: Handling UI Events 194 

 

Figure 9–8. Defining the onClick() event Handler Code for a TextView in HandlerExamples.java  

Running the Event Handling Examples App in the Emulator 
To run this example, right-click your Chapter9 folder in the Package Explorer pane and 

select Run As  Android Application. We have our first UI that responds to the most 

common event handler out there: the onClick handler. Figure 9–9 shows the results. 

 

Figure 9–9. Running the onClick event example in the Android 1.5 emulator 



CHAPTER 9:  Adding Interactivity: Handling UI Events 195 

Android Touchscreen Events: onTouch 
Android handsets that feature touchscreens—the vast majority of them today—can take 

advantage of advanced touchscreen features, such as gestures.  

NOTE: Gestures are movements with the user’s finger across the touchscreen that invoke certain 
program functions. They are popular for interaction on large screen smartphones and tablets. 
You will want to learn about implementing gestures when you become a more experienced 
Android developer. You have already been introduced to the onTouch event handler in the 

previous chapter, where we used it to trigger the start() method of a frame animation 
sequence of bitmap images. Gestures became available in Android 1.6 and thus do not work in 
Android 1.5 which is the version we are developing for in this book to provide the widest 

audience of user compatible devices. 

It is important to note that an onClick event handler also works on a touchscreen, but an 

onTouch handler does not work with the navigation keys or selector key (the center 

selector Enter key). Therefore, it may be wise to use the onClick() method for most UI 

operations, and use onTouch() specifically when working with more advanced touch 

events such as gestures that involve only the touchscreen. 

Since we have already covered implementing onTouch() (you can revisit it in Chapter 8 if 

you like), we’ll continue here with the other important event handlers. These are the ones 

you will use more frequently in your application’s design and coding. 

Touchscreen’s Right-Click Equivalent: onLongClick 
After OnClick, OnLongClick is the next most used interface event. It is generated by the 

most input hardware and also the basis for the context menu in Android.  

The onLongClick() method works with the following: 

 When the user touches and holds on the touchscreen for 1 second 

 When the user holds down the Enter button on the phone 

 When the user holds down the center navigation key for 1 second 

Any of these will generate an OnLongClick event for whatever UI widget has the focus. 

Since any View object can trap an onLongClick() callback, the most elegant way to 

show this event handling is to add it to our Button UI object in our current Chapter9 

example code. This will also allow you to see the common scenario of more than one 

type of handler being used right alongside other types of event handlers in the same 

View and class. 



CHAPTER 9:  Adding Interactivity: Handling UI Events 196 

1. In HandlerExamples.java, add a comma after OnCLickListener in the 

public class HandlerExamples definition and add OnLongClickListener, 

as shown in Figure 9–10. Then mouse-over the red-underlined 

OnLongClickListener and select to add the import statement (boom 

bam—there is our import code for this listener). Then mouse-over the 

red-underlined HandlerExamples class name and select to implement 

handler code. Voila, we now have the following: 

    public boolean onLongClick(View arg0) { 
        // TODO Auto-generated method stub 
        return false; 
    }  

 

Figure 9–10. Implementing an OnLongClick listener in HandlerExamples.java 

2. Now copy the text object and text.setText() code from the onClick 

handler and paste it into the onLongClick handler, where the placeholder 

comment code is. Change the text message to reflect the hold and 

long-click, as shown in Figure 9–11. Note that we can use the same 

object name text in both handlers. Since it is a local variable to each 

handler, neither text object sees the other reference. 



CHAPTER 9:  Adding Interactivity: Handling UI Events 197 

 

Figure 9–11. Attaching an OnLongClick listener to our Button object in HandlerExample.java  

3. Now try the new functionality. Right-click the Chapter9 folder and 

choose Run As  Android Project. This time, you get an app that displays 

one message when you click and another when you hold the click. But 

when you release the long-click, the onClick message appears. The 

onLongClick message does not stay on the screen. Why is this? 

4. Well, we forgot to change the default onLongClick() code, which returns 

false. This tells Android that nothing has been handled in that code 

block, so we are happy for Android to pass the event on to any other 

handlers that might be interested. But we don’t want this to happen in 

our example. Instead, we need to return true when we handle the event, 

as follows (see Figure 9–12):  

    public boolean onLongClick(View arg0) { 
        TextView text = (TextView)findViewById(R.id.testText); 
        text.setText("BUTTON HAS BEEN HELD. onLongClick EVENT PROCESSED."); 
        return true; 
    } 

This tells Android that we handled the event successfully, and sets the text that we 

wanted.  



CHAPTER 9:  Adding Interactivity: Handling UI Events 198 

 

Figure 9–12. Returning a true flag from our handled onLongClick() method  

Some of the event handlers return a Boolean (true or false value) to tell the calling code 

whether or not your listener has handled the code (or consumed the event as the 

programming terminology goes). So return true if you have handled the event (in our 

case, setText() has been done) and processing should stop here. Return false if you 

have not handled it or if you want the event to bubble up—that is, to be passed to other 

event handlers. 

Now compile and run our OnLongClick app version. It works perfectly. A click displays 

the proper message and stays on the screen, and a long-click displays the proper 

message that stays on the screen until a short-click changes it.  

Now let’s add an onKeyListener and trap some keystroke events. 

Keyboard Event Listeners: onKeyUp and onKeyDown 
Events that will become familiar to you in Android app programming are onKey or 

onKeyUp (key released) and onKeyDown (key pressed down).  

These events are commonly used for games and to implement shortcuts in your application, 

much like the F5 shortcut we use for Refresh or the F3 shortcut we use for Open.  

To show how easy the keyboard event listeners are to implement, we are going to go 

back to our bootstrap code (the code that Android wrote for us in the beginning of this 

chapter) and add a couple lines to our main.xml file and our Java code to listen for a key 

event (the Enter key, of course). In other words, we are starting from scratch with a blank 

activity. 



CHAPTER 9:  Adding Interactivity: Handling UI Events 199 

Adding the XML for Keyboard Events 
First, let’s go into our TextView object and add in a pre-Enter key "BEFORE KEYSTROKE 
DETECTED TEXT!" string, as well as a brighter color and larger text size. Here is the XML 

markup for our main.xml file (see Figure 9–13): 

<?xml version="1.0" encoding="utf-8"?> 
 
<LinearLayout 
xmlns:android="http://schemas.android.com/apk/res/android" 
        android:orientation="vertical" 
        android:layout_width="fill_parent" 
        android:layout_height="fill_parent"> 
 
    <TextView android:layout_width="fill_parent"  
                  android:layout_height="wrap_content" 
                  android:id="@+id/testText"  
                  android:text="BEFORE KEYSTROKE DETECTED TEXT!"  
                  android:textColor="#FFDDAA"  
                  android:textSize="19px"/> 
 
</LinearLayout> 

 

Figure 9–13. Adding our TextView attributes in the main.xml file 

Adding the Java for Keyboard Events 
In our HandlerExample.java file, we want to add two simple import statements and two 

basic blocks of code to allow us to handle keyboard events via the OnKeyDown handler. 

We will add about a dozen lines of code to be able to handle key events. 

Here is the code, including the import statements and onCreate() method that was 

written for us by Eclipse (see Figure 9–14): 

package event.handling; 
 
import android.app.Activity; 

http://schemas.android.com/apk/res/android


CHAPTER 9:  Adding Interactivity: Handling UI Events 200 

import android.os.Bundle;
import android.view.KeyEvent;
import android.widget.TextView; 

public class HandlerExamples extends Activity { 
    @Override   /** Called when the activity is first created. */ 
    public void onCreate(Bundle savedInstanceState) { 
        super.onCreate(savedInstanceState); 
        setContentView(R.layout.main); 
    } 

        public boolean onKeyDown(int keyCode, KeyEvent event) { 
                if (keyCode == KeyEvent.KEYCODE_ENTER) { 
                            textUpdate(); 
                            return true; 
                    } 
                        return false; 
                } 

        public void textUpdate() { 
                TextView text = (TextView)findViewById(R.id.testText); 
                text.setText("ENTER KEY PRESSED!"); 
        }
} 

Figure 9–14. Adding an onKeyDown listener to our Java code 

D
ow

nl
oa

d 
fr

om
 W

ow
! e

B
oo

k 
<

w
w

w
.w

ow
eb

oo
k.

co
m

>



CHAPTER 9:  Adding Interactivity: Handling UI Events 201 

We need to import android.view.KeyEvent for the onKeyDown handler (first code block) 

and import android.widget.TextView for the textUpdate() method that we write in our 

second code block. 

We leave the class declaration and onCreate() block of code (after the import 

statements) exactly as is. 

The first block of code we write is the onKeyDown handler, which is a public method that 

returns a Boolean value that tells us if the event was handled (true) or not handled and 

needs to be passed along (false). The onKeyDown() method takes two parameters: the 

keyCode (the key that was pressed) and details of the event (event). 

Our program logic inside the onKeyDown handler looks at the keyCode passed into the 

handler. If it is equal to the Enter key, signified by the KEYCODE_ENTER constant, it runs the 

textUpdate() method, and then returns true to signify we handled the event. Otherwise, 

onKeyDown() returns false to signify that an event was not handled. 

This is the first time we have written our own method: the textUpdate() method that is 

called from inside onKeyDown(). This demonstrates some standard Java programming. 

The two lines of code that are in the textUpdate() routine could have been written 

where the textUpdate(); line of code is inside the onKeyDown() handler: 

        public boolean onKeyDown(int keyCode, KeyEvent event) { 
                if (keyCode == KeyEvent.KEYCODE_ENTER) { 
                            TextView text = (TextView)findViewById(R.id.testText); 
                            text.setText("ENTER KEY PRESSED!"); 
                            return true; 
                    } 
                        return false; 
                } 

This means that the textUpdate() method can contain all the things you want to do 

when someone clicks the Enter key. You can use this method, rather than putting them 

all inside the onKeyDown handler, where they could be in among actions for other keys. 

This makes things more organized and modular, and really comes in handy when you 

get into more complex code constructs. 

Now compile and run the application.  

You’ll see a text field that says “BEFORE KEYSTROKE DETECTED TEXT!” that changes 

after you click the Enter key in the emulator.  

TIP: If you want to detect a range of keystrokes and send them to different custom methods, a 
good programming construct to use is the switch construct, which allows you to outline 

different cases from which to select. We used switch in Chapter 7’s examples. 



CHAPTER 9:  Adding Interactivity: Handling UI Events 202 

Context Menus in Android: onCreateContextMenu 
The concept of the context menu is a very clever one. Unfortunately, it is often 

underutilized both in PC and smartphone applications.  

A context menu provides quick and easy access to all methods related to a UI object.  

For instance, when I right-click here in my word processor, I get a context-sensitive 

menu with options for cut, copy, paste, font, paragraph, bullets, hyperlink, lookup, 

synonyms, and translate.  

The context menu in Android is always accessed by a LongClick event (covered earlier 

in the chapter), just as on a PC it is accessed via a right-click.  

To demonstrate, we will add context menus to this chapter’s example project. We’ll add 

two classes, along with two custom methods, to implement our context menus. We’ll 

are take a look at the Android Toast widget, which is handy to use to blast quick little 

messages to the user. This way, you don’t need to use a full-blown dialog 

implementation, as we did in Chapter 7. 

Adding the XML for Context Menus 
First, let’s add a Button tag to our main.xml LinearLayout so that we have a UI element 

(button) to long-click on.  

1. Click the main.xml tab, and then click the Layout tab at the bottom of 

that pane. Now add a Button view to the pane under the TextView. 

2. Once the button appears under your text, switch back into XML editing 

mode via the main.xml tab at the bottom of the pane. Now we’ll edit our 

Button tag attributes. The first one is android:text. Let’s change that to 

"Long-Click Here to Access Context Menu" and change our ID from 

Button01 to contextButton. 

3. Let’s also center our button using the android:layout_gravity = 
"center" attribute, as we have done previously. But let’s do it a different 

way this time. Put your cursor at the end of the android:id tag after the 

end quote and hit Return to put the attribute on its own line. Type in 

android:, and then wait. 

4. Up will pop a little dialog listing every attribute that can be used in the 

Button tag. This represents more work being done for us. Double-click 

android:layout_gravity to select it. Then type = and wait again. 

5. Again, a little dialog pops up, showing every value that can be used with 

android:layout_gravity. Double-click center, and you have the tag 

attribute written for you. (Make sure to use android:layout_gravity and 

not android:gravity, or it will not work.)  



CHAPTER 9:  Adding Interactivity: Handling UI Events 203 

Here is what your XML tags should look like (see Figure 9–15): 

<?xml version="1.0" encoding="utf-8"?> 
<LinearLayout 
xmlns:android="http://schemas.android.com/apk/res/android" 
android:orientation="vertical" 
android:layout_width="fill_parent" 
android:layout_height="fill_parent"> 
 
<TextView android:layout_width="fill_parent" 
          android:layout_height="wrap_content" 
          android:id="@+id/testText"  
          android:text="BEFORE KEYSTROKE DETECTED TEXT!"  
          android:textColor="#FFDDAA"  
          android:textSize="19px"/> 
 
        <Button android:text="Long-Click Here to Access ContextMenu" 
                android:id="@+id/contextButton" 
                android:layout_gravity="center" 
                android:layout_width="wrap_content"  
                android:layout_height="wrap_content"/> 
</LinearLayout> 

We will reference the testText and contextButton inside our Java code.  

 

Figure 9–15. Adding a Button object in our main.xml file to receive the long-click event  

http://schemas.android.com/apk/res/android


CHAPTER 9:  Adding Interactivity: Handling UI Events 204 

Adding the Java for Context Menus 
The main two Java methods that we override are onCreateContextMenu() and 

onContextItemSelected(), which replace Android’s default methods of this same name. 

The use of the super object in the first one allows us to reference a method in the parent 

class that we are overriding. Note that overriding does not replace a class; it just allows 

us to customize it, leaving the original class that was extended intact and usable. 

Now let’s add the code for our onContextMenu event handling in HandlerExamples.java. 

We’ll add the new code in with the previous code that we wrote in the onKey() section in 

order to handle onKeyDown events.  

First, we need to use an import statement to import the Java classes that we are going 

to reference in the code we are about to write. Three of the six are related to our UI 

elements (android.view.View, android.widget.Button, and android.widget.Toast), and 

the other three are related to our implementation of our LongClick context menu. 

import android.view.ContextMenu; 
import android.view.MenuItem; 
import android.view.View; 
import android.view.ContextMenu.ContextMenuInfo; 
import android.widget.Button; 
import android.widget.Toast; 

ContextMenu contains the methods that are related to the top level of the menu, such as 

what it is called, how it looks, and so forth. ContextMenuInfo relates to the information 

about any one given ContextMenu, which is really a collection of options. Within that 

container or level, we have the MenuItems, which are their own level of objects. Each 

MenuItem can have a name and styling, and can call methods once it is selected.  

Now, let’s see how Android attaches to a ContextMenu. 

First, we need to add two key lines of code to our onCreate() method for our activity. 

The first declares and establishes a Button object, which we call contextButton and 

which we find by its contextButton ID from the main.xml file. The next line of code wires 

our newly created contextButton Button object to the ContextMenu system in Android.  

    public void onCreate(Bundle savedInstanceState) { 
        super.onCreate(savedInstanceState); 
        setContentView(R.layout.main); 
        Button contextButton = (Button) findViewById(R.id.contextButton); 
        registerForContextMenu(contextButton); 
    } 

TIP: When I first started working with Android, I wondered which class contained the 
registerForContextMenu() method. To again demonstrate how to use Eclipse as a learning 

tool, I’ll tell you how to answer a question like that. Place your cursor over the method you are 
interested in, and Eclipse will pop up a box full of information about the method in question, 

which includes the class that contains the method. 



CHAPTER 9:  Adding Interactivity: Handling UI Events 205 

Now let’s get into our custom logic for creating our ContextMenu and its content. The first of 

the two menu methods is onCreateContextMenu(), which takes three objects as parameters:  

 The ContextMenu object named menu 

 The View object that called it 

 The ContextMenuInfo object named menuInfo, which contains 

information about the menu configuration 

The first line of code inside this code block simply passes our three parameters up to 

the parent class, which is referenced via the super keyword. 

    public void onCreateContextMenu(ContextMenu menu, View view, 
                                    ContextMenuInfo menuInfo) { 
        super.onCreateContextMenu(menu, view, menuInfo); 

The next three lines of code call methods against or on the menu object, which is of type 

ContextMenu. This code is configuring our top-level ContextMenu object by giving it a title 

using menu.setHeaderTitle() and adding two menu items via the two menu.add() 

methods. 

    public void onCreateContextMenu(ContextMenu menu, View view, 
                                    ContextMenuInfo menuInfo) { 
        super.onCreateContextMenu(menu, view, menuInfo); 
        menu.setHeaderTitle("Android Context Menu"); 
        menu.add(0, view.getId(), 0, "Invoke Context Function 1"); 
        menu.add(0, view.getId(), 0, "Invoke Context Function 2"); 
    } 

The second context menu method is onContextItemSelected(), which is passed a single 

parameter of type MenuItem named item. Note that this method has a Boolean return 

type, which means we need to return a true (handled) or false (not done yet) reply.  

To start with, we have an if-then-else loop that compares the title of each MenuItem to 

a string. If the title matches, it runs the appropriate contextFunction1 or 

contextFunction2 (which we will code next). 

    public boolean onContextItemSelected(MenuItem item) { 
        if(item.getTitle()=="Invoke Context Function 1") { 
                contextFunction1(item.getItemId()); 
        } 
        else if(item.getTitle()=="Invoke Context Function 2"){ 
                contextFunction2(item.getItemId()); 
        } 
        else { 
                return false; 
        } 
        return true; 
    } 

Recall that the first code after the if in parentheses is the condition. It reads, “If the title 

that we are getting from the item object is equal to the text string "Invoke Context 
Function 1", then perform the statements in the curly braces that follow this conditional 

statement.” 



CHAPTER 9:  Adding Interactivity: Handling UI Events 206 

NOTE: Remember that == means is equal to, and = means set the value of a variable or 

constant. 

If this does not equate to true for the first if condition, then the next else block is 

encountered, along with a second (nested) if statement that is almost completely 

identical to the first, except that it is looking for the 2 option rather than 1. If this is also 

not satisfied or matching, the second else returns a false from the method to the 

calling code, telling it, “Sorry, no menu options here that match that!” If one of the if 

conditions is met, the true that is under the conditional code block is returned, because 

we have not jumped out of the method by returning a value yet. 

Now we need to write our own methods for the two options, which we’ll call 

contextFunction1() and contextFunction2(). We declare the first method as public 

and as void, as it does not return any values. It simply carries out a task with no result to 

report back. We name the method contextFunction1() and define one integer data 

parameter to pass, in this case an ID. 

    public void contextFunction1(int id){ 

Inside this method, we make a call to the Toast widget, which allows us to send brief 

messages to our end users during their use of the application. To do this, we use the 

makeText() method and access it directly from the Toast class via the following one 

(admittedly dense) line of code: 

Toast.makeText(this, "function 1 invoked!", Toast.LENGTH_SHORT).show(); 

This is another one of those lines of code that does several things with a single 

construct. Once you get really good at programming, this type of coding becomes a 

really nice thing.  

So we call the makeText() method and pass it three parameters: 

 The activity that is running this Toast alert 

 What the message should be 

 How long to show the Toast pop-up 

After the Toast.makeText(), another show() is appended. This displays the message we 

just specified with makeText(). One line of code does everything. And the best part is 

you can now use this code to pop up little messages to your users whenever you want 

to do that.  

No, the context menu stuff that we did earlier has nothing to do with this one-line Toast 

construct, which will send a message to your screen anyplace in your code. Some 

people use this for debugging, with messages like, “Setting X variable to 7” or similar, so 

that you can see on the screen a visual progress through the code logic. 

After our contextFunction2 code construct, which is similar to contextFunction1, we 

have our key event handlers from the previous section working at the same time as our 

ContextMenu.  



CHAPTER 9:  Adding Interactivity: Handling UI Events 207 

The entire body of code in HandlerExamples.java should now look like the following (see 

Figure 9–16). 

package event.handling; 
 
import android.app.Activity; 
import android.os.Bundle; 
import android.view.KeyEvent; 
import android.widget.TextView; 
import android.view.ContextMenu; 
import android.view.MenuItem; 
import android.view.View; 
import android.view.ContextMenu.ContextMenuInfo; 
import android.widget.Button; 
import android.widget.Toast; 
 
public class HandlerExamples extends Activity { 
 
    @Override                   /** Called when the activity is first created. */ 
    public void onCreate(Bundle savedInstanceState) { 
        super.onCreate(savedInstanceState); 
        setContentView(R.layout.main); 
        Button contextButton = (Button) findViewById(R.id.contextButton); 
        registerForContextMenu(contextButton); 
    } 
 
    @Override                   /** Override Parent Class for this Application */ 
    public void onCreateContextMenu(ContextMenu menu, View view, 
                                    ContextMenuInfo menuInfo) { 
        super.onCreateContextMenu(menu, view, menuInfo); 
        menu.setHeaderTitle("Android Context Menu"); 
        menu.add(0, view.getId(), 0, "Invoke Context Function 1"); 
        menu.add(0, view.getId(), 0, "Invoke Context Function 2"); 
    } 
 
    @Override 
    public boolean onContextItemSelected(MenuItem item) { 
        if(item.getTitle()=="Invoke Context Function 1") { 
                contextFunction1(item.getItemId()); 
        } 
        else if(item.getTitle()=="Invoke Context Function 2"){ 
                contextFunction2(item.getItemId()); 
        } 
        else { 
                return false; 
        } 
        return true; 
    } 
 
    public void contextFunction1(int id){ 
        Toast.makeText(this, "function 1 invoked!", Toast.LENGTH_SHORT).show(); 
    } 
 
    public void contextFunction2(int id){ 
        Toast.makeText(this, "function 2 invoked!", Toast.LENGTH_SHORT).show(); 
    }         



CHAPTER 9:  Adding Interactivity: Handling UI Events 208 

    public boolean onKeyDown(int keyCode, KeyEvent event) { 
        if (keyCode == KeyEvent.KEYCODE_ENTER) { 
                    textUpdate(); 
                    return true; 
        } 
        return false; 
    } 
     
    public void textUpdate() { 
            TextView text = (TextView)findViewById(R.id.testText); 
            text.setText("ENTER KEY PRESSED!"); 
    } 
} 

 

Figure 9–16. Adding the Java code to implement a context menu in HandlerExamples.java  



CHAPTER 9:  Adding Interactivity: Handling UI Events 209 

Now let’s run our code with Run As  Android Application and see how it all works together. 

A long-click on the button brings up the context menu. A touch or click on one of the 

buttons highlights it, as shown in Figure 9–17. Once it is clicked, a Toast menu tells us 

our method has been run. Also notice that our previous section code for onKeyDown() 

still works perfectly. 

 

Figure 9–17. Running our application in the Android 1.5 emulator after adding a context menu 

Controlling the Focus in Android 
One of the most challenging aspects of UI design and programming is tracking and 

controlling the focus of your application. The focus is where the UI is paying attention, 

representing which UI element the user is presently dealing with. 

The tough part about focus is that you can’t always see it visually. Even as an end user, 

it is sometimes difficult to see where the focus is within an application. We have all 

experienced this with our computers at one time or another, most commonly in forms 

where the active cursor for a field moves from one field to another as the form is filled 

out or the Tab key is used to jump the focus from field to field.  

It is even more difficult to control, track, and implement focus from a programming 

standpoint. Note that focus is not something that you need to specifically worry about 

(Android handles it automatically), unless it is somehow tripping up your application’s 

user experience.  



CHAPTER 9:  Adding Interactivity: Handling UI Events 210 

Android has an internal algorithm that decides how to hop from one UI element (View) to

another based on which View is closest to the previous View, but you can also control

how the focus moves from one UI element to the next with your own custom code.

Here, we will go over the basics in order to get you started and familiar with the

concepts, in case you need to intervene with your own XML or Java code to manually

control focus. 

First, we will look at how to control focus via XML, as it is easier to understand and

implement than the Java route. Later, we will go over Java methods that allow you to

take focus or otherwise control the focus based on what the user is doing in the

application. 

Adding the XML for Focus Control 
To start, let’s add a couple buttons to the UI we’ve been developing in this chapter and

set the focus to do something that is not standard focus procedure in Android.  

The easiest way to do this is to copy our existing Button tag in our main.xml file and

paste it in twice right underneath our existing Button tag markup (see Figure 9–18). 

<?xml version="1.0" encoding="utf-8"?> 
<LinearLayout
xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="fill_parent"
android:layout_height="fill_parent"> 

<TextView android:layout_width="fill_parent" 
          android:layout_height="wrap_content" 
          android:id="@+id/testText"  
          android:text="BEFORE KEYSTROKE DETECTED TEXT!"  
          android:textColor="#FFDDAA"  
          android:textSize="19px"/> 

        <Button android:text="Long-Click Here to Access ContextMenu" 
                android:id="@+id/contextButton" 
                android:layout_gravity="center" 
                android:layout_width="wrap_content"  
                android:layout_height="wrap_content"/> 
                 
        <Button android:text="Second Button" 
                android:id="@+id/secondButton" 
                android:layout_gravity="center" 
                android:layout_width="wrap_content"  
                android:layout_height="wrap_content"/> 
                 
        <Button android:text="Third Button" 
                android:id="@+id/thirdButton" 
                android:layout_gravity="center" 
                android:layout_width="wrap_content"  
                android:layout_height="wrap_content"/> 
</LinearLayout> 

D
ow

nl
oa

d 
fr

om
 W

ow
! e

B
oo

k 
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

http://schemas.android.com/apk/res/android


CHAPTER 9:  Adding Interactivity: Handling UI Events 211 

 

Figure 9–18. Adding UI buttons to the main.xml file 

To make our Button tags unique, we also need to rename their IDs to secondButton and 

thirdButton. This way, we can access them in our Java code and also change their 

display text to reflect that they are the second and third buttons, respectively. 

We will leave all of the other Button tag attributes for scaling and centering the same. 

Now we will add our android:nextFocus attributes, so that we have control over which 

UI elements our focus jumps to and from when the user navigates the UI with the arrow 

keys on the front of the smartphone. 

For the existing contextButton tag attributes, we want to add an android:nextFocusUp 

attribute and point it to the third button. Then, if users hit the up arrow on their Android 

smartphone when they are on the first button, it will cycle back down to the last button.  

Since the ID of the third button is thirdButton, this tag attribute will read as follows:  

android:nextFocusUp=”@+id/thirdButton” 

This is done in order to reference the third button tag we have defined in our XML 

markup here as the destination UI element for the up arrow focus to go to if users hit the 



CHAPTER 9:  Adding Interactivity: Handling UI Events 212 

up navigation arrow when they are on (have focus on) the first UI button (contextButton 

from our prior example). 

To control advancement of focus from the contextButton to the secondButton button, 

we add this:  

android:nextFocusDown="@+id/secondButton" 

Now we have defined all of the focus movements that can happen for the 

contextButton, and we are ready to define the focus movements for the next two 

buttons.  

This will be a very similar process. In fact, you can simply cut and paste the two lines of 

code that you wrote for the contextButton tag and change the ID attributes after you 

paste them into the two new Button tags. 

For the second Button tag, we will add in another two android:nextFocus attributes. 

This time, these point to the buttons immediately above and below the second button, 

so this one is the easiest. The code looks as follows: 

android:nextFocusUp=”@+id/contextButton” 
android:nextFocusDown=”@+id/thirdButton” 

For the third Button tag, we will add in another two android:nextFocus attributes, which 

finally point to the buttons immediately above and back up to the top button in our loop 

of buttons, as follows: 

android:nextFocusUp="@+id/secondButton" 
android:nextFocusDown="@+id/contextButton" 

The first attribute is pretty straightforward, as the secondButton button is above our third 

button. For the nextFocusDown attribute, since there is no button underneath the third 

button, we actually want the focus to wrap, or loop back, to our first contextButton 

button, so that is the ID we use in the android:nextFocusDown attribute that we add to 

the final Button tag.  

NOTE: There are nextFocusLeft and nextFocusRight attributes available (one for each 

arrow key) if you are using a horizontal LinearLayout tag attribute, for instance. 

Here are the three blocks of nextFocus attributes that we have added to our three 

buttons so that you can check your work (see Figure 9–19): 

        <Button android:text="Long-Click Here to Access ContextMenu" 
                android:id="@+id/contextButton" 
                android:nextFocusUp="@+id/thirdButton" 
                android:nextFocusDown="@+id/secondButton" 
                android:layout_gravity="center" 
                android:layout_width="wrap_content"  
                android:layout_height="wrap_content"/> 
                 
        <Button android:text="Second Button" 
                android:id="@+id/secondButton" 
                android:nextFocusUp="@+id/contextButton" 



CHAPTER 9:  Adding Interactivity: Handling UI Events 213 

                android:nextFocusDown="@+id/thirdButton" 
                 
                android:layout_gravity="center" 
                android:layout_width="wrap_content"  
                android:layout_height="wrap_content"/> 
                 
        <Button android:text="Third Button" 
                android:id="@+id/thirdButton" 
                android:nextFocusUp="@+id/secondButton" 
                android:nextFocusDown="@+id/contextButton" 
                android:layout_gravity="center" 
                android:layout_width="wrap_content"  
                android:layout_height="wrap_content"/> 

 

Figure 9–19. Controlling the focus via XML  mark-up in main.xml  



CHAPTER 9:  Adding Interactivity: Handling UI Events 214 

Adding the Java for Focus Control 
Now let’s declare the two new buttons we defined in our main.xml markup in our Java 

code, and point them toward our ContextMenu code that we wrote in the previous 

section, so that they actually do something useful. 

Here are the four new lines of code that we need to write to support these new buttons 

(see Figure 9–20): 

    public void onCreate(Bundle savedInstanceState) { 
        super.onCreate(savedInstanceState); 
        setContentView(R.layout.main); 
        Button secondButton = (Button) findViewById(R.id.secondButton); 
        registerForContextMenu(secondButton); 
        Button thirdButton = (Button) findViewById(R.id.thirdButton); 
        registerForContextMenu(thirdButton); 
        Button contextButton = (Button) findViewById(R.id.contextButton); 
        registerForContextMenu(contextButton); 
    }  

 

Figure 9–20. Registering our buttons for the context menu in HandlerExamples.java 

To implement this in the quickest fashion, select the two lines of code that define and 

point our contextButton object to the registerForContextMenu() method, and paste 

them twice above or below the original two lines of code.  

Change the contextButton reference to secondButton in the first two lines, and to 

thirdButton in the last two lines. You have now declared all three buttons and set them 

to actually do something in your code. 

Now let’s use our familiar Run As  Android Application work process to compile and run 

this application, as shown in Figure 9–21. It now traps or handles onKey events and 

onContextMenu events, as well as implements control of focus among the usable UI 

elements, namely the buttons. 



CHAPTER 9:  Adding Interactivity: Handling UI Events 215 

 

Figure 9–21. Running our sample application in the Android 1.5 emulator after adding focus control 

You will notice now that when you compile and run this code, all three buttons will call 

up a ContextMenu. In your own apps, you may want all (or many) of your UI elements to 

bring up the same context menu selections (say the application default context menu), 

and this is the way to do that using very few lines of code. 

It is important to test your applications vigorously, as some bugs will show up only after 

the features have been used already once or twice.  

To test this application, long-click each of the buttons and select either option. 

Everything should work as expected and pull up the context menu. To see the cycling 

focus that we have implemented, use the up or down arrow/keys on the bottom of the 

Android smartphone (in this case, on the emulator) to cycle the focus among the buttons 

(focus is shown in orange). You will notice no matter which direction you choose, the 

focus cycles or loops through the buttons correctly. 

NOTE: Remember that Android will handle focus for you as a matter of routine. This includes 
jumping between UI elements on the screen and even jumping to the next logical UI element if a 

UI element (a View object) is hidden (or shown) or removed (or added) as a matter of the 

application programming logic. 



CHAPTER 9:  Adding Interactivity: Handling UI Events 216 

Setting Focus Availability 
View objects can be defined (in XML or Java) to be able to accept (or deny) focus using 

the isFocusable() method or the android:focusable (XML) attribute. If you define a View 

(UI object) to be focusable (or not focusable) in XML, and then want to change this later 

at runtime (while your application is running), there is also a setFocusable() method that 

can flip this (Boolean) switch. These focus methods control focus navigation via the 

smartphone navigation key hardware. 

There are separate methods to control the focus in relation to the touchscreen, and 

these are named very similarly: isFocusableInTouchMode() and 

setFocusableInTouchMode(). For XML markup coding, you would use the format 

android:focusableInTouchMode, similar to nontouch focus. 

Finally, if you simply want to ascertain if there has been a change of focus on a UI 

object, you can use the onFocusChanged() method. This method can be called to find 

out if there is a change in state from true to false, or focused to not focused, that you 

can use in more advanced programming endeavors that watch focus even more closely. 

With this method, your software can essentially watch what the user is doing with your 

UI and respond accordingly. As you can see, Android gives us a huge dose of control 

over our application’s focus. 

Summary 
This chapter has covered some important and advanced concepts in Java 

programming, as well as in Android app development. The topics ranged from setting up 

event listeners and event handlers to controlling the focus of your UI design as the user 

moves through it, which is a part of your user experience design. 

You now know how to handle clicks via navigation keys or touchscreen, long-clicks, and 

keyboard use. We even covered some advanced features like context menus, the Toast 

system for user message notifications, and controlling the focus in your XML or Java 

code, or via both. 

We covered a lot of important material in this chapter, so be sure to review it. It includes 

some clever and new ways to use the Eclipse IDE as well, and that is also important to 

master by the time you are finished with this book. 



 

 

217 

217 

                         Chapter 

Understanding Content 
Providers 
In this chapter, we are going to take a look at how to provide content within your 

application. We’ll cover how to share that content, and how to access and modify the 

data that represents that content.  

We have gotten significantly more advanced as we have progressed from chapter to 

chapter, and this chapter is no different. Data access is significantly more complex than 

event handling and UI design. This is because it involves database design and 

requesting security permissions for database access. In fact, starting with this chapter, 

we will need to modify the application’s AndroidManifest.xml file, so be warned that we 

are getting into some fairly complicated concepts and code here. 

We’ll begin with an overview of exactly what Android content providers are, and what 

they do for your Android user. After that, you will learn how to use SQLite-based content 

providers for your Android applications although this is beyond the scope of this chapter 

and book. 

An Overview of Android Content Providers 
Content provider is a term unique to Android development that means nothing more 

than a datastore of data values, usually in the form of a SQLite database that is already 

part of the Android operating system (OS). You can also create your own content 

providers for your application.  

An Android content provider provides you with access to sharable data structures 

commonly called databases. The basic procedure is as follows: 

1. Get permission to open the database. 

2. Query the data. 

3. Access the data. 

10 



CHAPTER 10:  Understanding Content Providers 218 

In accessing data, you might read the data, write the data (i.e. change the values of the 

existing data), or append new data onto the database structure, based on the type and 

level of security permissions that have been established in the AndroidManifest.xml file.  

Data can be in Android internal memory or in external memory such as an SD card, or 

even on an external server that is remote to the Android device itself. 

Databases and Database Management Systems 
The usual way for content providers to provide data structures for Android applications 

is via a database management system (DBMS). A DBMS manages a database by 

providing ways for users to create databases, as well as to populate them with data via 

reading and writing operations.  

There is a complete open source DBMS right inside the Android OS called SQLite. This 

is a relational DBMS (RDBMS). An RDBMS is based on relationships that can be drawn 

between data arranged in tables. Later in this chapter, you will see how to write data into 

these tables in the RDBMS. 

The SQL in SQLite stands for Structured Query Language. The "Lite" or "Light" part 

delineates that this is a "lightweight" version of the DBMS, intended for embedded use 

in consumer electronics devices, and not a full blown version of SQL, as would be used 

on a computer system. Later, we will look briefly at how it allows you to access 

database data records and the data contained within their individual data fields. All you 

really need to know about SQLite is that it is a part of Android and that you can use it for 

data storage. Android takes care of the DBMS functions for you! 

In a DBMS, the highest level of data storage is the database itself, which contains tables 

of data in rows and columns. Each table is two-dimensional, where a row is called a 

record. Within each record are fields, organized into columns, which contain the 

individual data items that make up the records. Fields can contain different data types, 

such as numbers, text, or even references to data that is stored somewhere else. 

However, each field must contain the same data type as the other fields in the same 

column (see Figure 10–1). 



CHAPTER 10:  Understanding Content Providers 219 

 

Figure 10–1. MySQL RDBMS database 

Note that there can be more than one table in a database (and usually is, for both 

performance and organizational reasons). As long as there is a key (a unique index) for 

each record in each table, information for a single data entry can span more than one 

table. For instance, if your key or ID is 217, your personal information and phone 

information can be in two different tables stored under that same key value. 

CAUTION: After the record structure and data fields that define this record structure are set up, 
don’t change the structure later. This is because the currently loaded records and fields may not 
fit into the new data structure definition correctly. So, it’s best to design what your database 

structure will be up-front, making the DBMS design process especially critical to the success of 

the project. 

The content providers that are provided with the Android OS all use SQLite, because it 

is compact and open source, so we are going to focus on those in this chapter. 

Android Built-in Content Providers 
A significant number of SQLite database structures are hard-coded into Android in order 

to handle things that users expect from their phones and tablets, such as contact 

address books, camera picture storage, digital video storage, music libraries, and so 

forth. The most extensive of these SQLite database structures is the Contacts database.  

The base-level interfaces of the android.provider package allow us to access those 

data structures that define the setup and personalization of each user’s smartphone. 

Obviously, the data in each of these structures will be completely different for each 

user’s phone.  



CHAPTER 10:  Understanding Content Providers 220 

Contacts Database Contact Providers 
Table 10–1 lists the Contacts database interfaces found on the Android Developer site

(http://developer.android.com/reference/android/provider/package-summary.html). 

Table 10–1. The Contacts Interfaces for Android 1.x Support 

Interface Contents 

Contacts.OrganizationColumns Organization 

Contacts.GroupsColumns Groups  

Contacts.PeopleColumns People 

Contacts.PhonesColumns Phone numbers 

Contacts.PhotosColumns Contact photographs 

Contacts.PresenceColumns IM presences 

Contacts.SettingsColumns Phone settings 

Contacts.ContactMethodsColumns Contact methods 

Contacts.ExtensionsColumns Phone extensions 

If you browse the Android documentation, you’ll see that the interfaces listed in Table 10–

1 are all described as “deprecated.” Deprecated means that these classes have been

replaced by other classes in a newer version of the programming language (such as Java)

or API (such as Android). The newer classes that replace older classes are usually more

robust or complex, or sometimes they differ only in how they are implemented. 

This is what has happened with the Contacts interfaces between Android versions 1.x 

(1.0, 1.1, 1.5, and 1.6) and Android versions 2.x and 3.x (2.0, 2.1, 2.2, 2.3, and 3.0). So,

the database interfaces that work with Android 1.x phones are different than the ones

that work on the Android 2.x phones (more advanced or feature-rich database

structures, in this case).  

If you are going to support 1.5 and 1.6 phones (as we are doing throughout this book),

you will need to use the database interfaces listed in Table 10–1. 

The good news is that deprecated does not mean disabled. It more accurately means in

this case, “not suggested for general use unless you need to support pre-2.0 versions

for your Android users.” So, if you need to support Android 1.5 and later phones, you

can use the interfaces listed in Table 10–1, and they will still work well on 2.x (and 3.x )

smartphones. However, you may not be able to access data from a few new fields or

tables unless you add support for the new 2.x DBMS structures in your code by

detecting what OS the user is using, and have code sections that deal with each (1.x

and 2.x) structure differently. 

D
ow

nl
oa

d 
fr

om
 W

ow
! e

B
oo

k 
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

http://developer.android.com/reference/android/provider/package-summary.html


CHAPTER 10:  Understanding Content Providers 221 

NOTE: If you want to be able to access every new feature, you can have your code detect which 
version of the OS the phone is using, and have custom code that delivers the optimal 

functionality for each version. 

In the case of Android, deprecation (a common problem that developers need to get 

used to) equates to different versions of the Android OS being able to do different 

things, and thus having different sets of functionality that can be used for each operating 

system level or version. With Android this is especially prevalent as different OS versions 

support different hardware features for new phones and tablets, requiring new APIs and 

changes to existing APIs in ode to support the new hardware features. 

NOTE: Over time, versional functionality gets more and more difficult to keep track of. Indeed, 
we already have eight (if you count Android 3.0) different OS versions that our code must work 
across. Keeping track of all the programming constructs and logic mazes is enough of a 
challenge for most, without a layer on top of that regarding remembering which constructs and 

interfaces work or do not work with a given OS version. This is one reason why programmers are 

so well paid. 

Table 10–2 lists some of the new version 2.x content providers for manipulating contact 

information. Some of these replace the deprecated versions that are listed in Table 10–1, 

and are available from the same Android developer site link: (http://developer.android 
.com/reference/android/provider/package-summary.html). 

Table 10–2. Android 2.x Content Providers 

Interface Contents 

ContactsContract.CommonDataKinds.CommonColumns For subclassing databases 

ContactsContract.ContactsColumns Contact main information 

ContactsContract.ContactOptionsColumns Contact options 

ContactsContract.ContactStatusColumns Contact status 

ContactsContract.PhoneLookupColumns Phone numbers 

ContactsContract.GroupsColumns Group definitions 

ContactsContract.PresenceColumns IM presences 

ContactsContract.SettingsColumns Account settings 

ContactsContract.StatusColumns IM visibility 

http://developer.android.com/reference/android/provider/package-summary.html
http://developer.android.com/reference/android/provider/package-summary.html


CHAPTER 10:  Understanding Content Providers 222 

Android MediaStore Content Providers 
The other collections of content providers that are important within the Android OS are 

the MediaStore content providers. These are listed in Table 10–3. 

Table 10–3. Android MediaStore Content Providers 

Interface Contents 

MediaStore.Audio.AlbumColumns Album information  

MediaStore.Audio.ArtistColumns Artist information  

MediaStore.Audio.AudioColumns Audio information 

MediaStore.Audio.GenresColumns Audio genre information 

MediaStore.Audio.PlaylistsColumns Audio playlist information 

MediaStore.Images.ImageColumns Digital images  

MediaStore.Video.VideoColumns Digital video  

MediaStore.MediaColumns Generic media store  

In the rest of this chapter, we will look at how to declare content providers for use, 

access them, read them, modify them, and append to them. 

Defining a Content Provider 
Before a content provider can be used, it must be registered for use by your Android 

application. This is done by using some XML markup in the AndroidManifest.xml file. 

The <provider> tag, so aptly named, allows us to define which content providers we are 

going to access once our application is launched. Here’s a <provider> tag for the Images 

content provider: 

<provider android:name="MediaStore.Images.ImageColumns"  /> 

All Android content providers expose to developers a publicly accessible unique 

reference, or address, if you will, to each database. This address is called a URI, and the 

Android constant that points to the data location within the database tableis always 

called CONTENT_URI.  

A content provider that provides access to multiple tables will expose a unique URI for 

each table. Here are a couple examples of predetermined Android URI constants: 

android.provider.Contacts.Phones.CONTENT_URI 
android.provider.Contacts.Photos.CONTENT_URI 

The first reads “android (the OS) dot provider (the component type) dot Contacts (the 

database) dot Phones (the table) dot CONTENT_URI (the constant that points to the data 

location).” Yes, there is a logical method to the madness here. 



CHAPTER 10:  Understanding Content Providers 223 

NOTE: URI objects are used for much more than just Android content providers, as you have seen 
in Chapter 8. All of the ones that are used to access Android content providers start with 

content://, just like a web address starts with http://. 

Creating the Content Providers Example Project in Eclipse 
Let’s set up our Chapter10 project folder in Eclipse right now, so you can learn a little 

more about the Android manifest editor and how Eclipse can automate the Android 

manifest XML coding process for us. 

1. If you still have the Chapter9 project folder open from the previous 

chapter, right-click that folder and select Close Project.  

2. Then select File  New  Project and choose Android Project to open the 

New Android Project dialog.  

3. Fill it out as follows (and shown in Figure 10–2). 

 Project name: Name the project Chapter10. 

 Build Target: Set this to Android 1.5. 

 Application name: Name the application Android Content Providers. 

 Package name: Set this to content.providers. 

 Create Activity: Check this box and name the activity 

DatabaseExamples. 

 Minimum SDK Version: Enter 3, which matches a minimum SDK 

version of 3. 



CHAPTER 10:  Understanding Content Providers 224 

 

Figure 10–2. Creating the Chapter10 Android project 

Defining Security Permissions 
The AndroidManifest.xml file is usually referred to as the manifest for your application, 

and it tells the Android OS what we intend to do with our application. It is accessed 

during the initial launch of your application to set up the memory for the application and 

to boot up any system resources or pointers (addresses to things that we are going to 

talk with or connect to) that are needed for the application to run successfully. 

In this case, that means we will be asking Android for permission to access, and 

possibly even change (depending on the tags we add), one of the Android databases 

outlined in the previous tables. We need to get permissions to use certain areas of the 

OS so that Android can implement a robust level of security within its OS infrastructure.  



CHAPTER 10:  Understanding Content Providers 225 

To define permissions, use the <uses-permission> tag: 

<uses-permission android:name="android.permission.READ_CONTACTS" /> 

This tag allows the application to READ the CONTACTS database. Read-only operations are 

inherently safe, as we are only looking into these databases and reading from them. A 

read operation is nondestructive to a database.  

If we wish to change (overwrite or update, and append) data in a database, we need to 

use a different permission tag that tells Android that we are going to write data to an 

Android OS database. In this case, WRITE_CONTACTS represents the permission and 

database we will use. As you may have guessed, the WRITE version of the tag looks like 

this: 

<uses-permission android:name="android.permission.WRITE_CONTACTS"/> 

Permission for write operations is a bit more serious matter, due to the fact that we are 

now able to screw up the database. In this case, we are dealing with the smartphone 

user’s contacts data, and we might overwrite data that was there before our app ever 

accessed it. 

TIP: There are different permission tags that control different levels of access to services or 
databases that are part of Android. To see a list of all of them, and to get an idea of what Android 
will let you access with regard to smartphone hardware, features, and databases, check out this 
link: developer.android.com/reference/android/Manifest 

.permission.html. You will be amazed and empowered. 

Now let’s see how easy it easy to use Eclipse to add the necessary permissions. Follow 

these steps: 

1. Right-click the AndroidManifest.xml file in the Project Explorer 

navigation pane, as shown in Figure 10–3, and select Open or hit the F3 

key on the keyboard.  



CHAPTER 10:  Understanding Content Providers 226 

 

Figure 10–3. Adding a permission in the Chapter10 manifest using the Eclipse visual editor 

2. In the Chapter10 Manifest tab, click the Permissions tab at the bottom 

of the window (see Figure 10–3).  

3. Click the Add… button in the right pane.  

4. Select the Uses Permission entry at the bottom of the list, and then click 

OK (see Figure 10–4).  

 

Figure 10–4. Selecting the Uses Permission entry  



CHAPTER 10:  Understanding Content Providers 227 

5. You’ll see the uses-permission tag in the Permissions pane. From the drop-

down menu that lists permissions, select android.permission.READ_CONTACTS 

(see Figure 10–5). Now it will appear in the left part of the pane. 

6. Selecting the Uses Permission type on the right should update the pane at 

the left, but currently it does not, so we (redundantly, since it’s already at 

the bottom of the list) click the Down button to force the manifest editor to 

update the left pane with the proper uses-permission tag setting. 

 

Figure 10–5. Selecting the READ_CONTACTS permission 

7. Repeat steps 3 through 6 to add another uses-permission tag, this time 

selecting the android.permission.WRITE_CONTACTS option (see Figure 10–6).  

 

Figure 10–6. Selecting the WRITE_CONTACTS permission  



CHAPTER 10:  Understanding Content Providers 228 

That’s all there is to adding our read and write permissions. Figure 10–7 shows our 

AndroidManifest.xml file with the two permission tags at the bottom, before the closing tag: 

<uses-permission android:name="android.permission.READ_CONTACTS"></uses-permission> 
<uses-permission android:name="android.permission.WRITE_CONTACTS"></uses-permission> 

TIP: Anytime you are working with the Eclipse manifest editor, you can click the 
AndroidManifest.xml tab at the bottom of the window and see what this helper is doing as far as 

writing the actual XML markup code. 

 

Figure 10–7. The XML output for the permission additions we made in the visual editor  

Now that we have permissions to read and write to the Contacts database, we can get 

started working with databases. 

Adding Data to the Contacts Database 
Android SQLite uses a table-based database model, where rows represent each data 

record and the columns represent the data fields, each with a constant type. In this way, 

each piece of data in each column is the same exact type or classification, and each row 

is a unique collection of data of these types spanning across the row. 

In this example, we are going to work with the Contacts.People table. After we add 

some sample data to this table, it will look like Table 10–4. 



CHAPTER 10:  Understanding Content Providers 229 

Table 10–4. Contacts.People Database Table with Sample Data  

_ID _COUNT NAME NUMBER 

44 4 Bill Gates 212 555 1234 

13 4 Steven Jobs 425 555 6677 

53 4 Larry Ellison 201 555 4433 

27 4 Mark Zuckerburg 213-555-4567 

The column headers are the names that are used by Android to reference the data held 

in each column. These are what you use in your Java code to access each field of data 

within each record. For example, in some Java code we will write, we will refer to 

People.NAME and People.NUMBER. 

The column names prefaced by an underscore character (_ID and _COUNT) are data fields 

assigned and controlled by Android; that is, you cannot WRITE these values, but you can 

READ them. 

Now let’s add the four data records shown in Table 10–4 into our Android emulator. (If 

you like, you can add more than four records.) We’ll do this using the utilities that come 

on the smartphone. Follow these steps: 

1. Run the emulator as usual by choosing Run As  Android Application.  

NOTE: Another way to start the emulator is to select Window  Android SDK and AVD Manager. 
Select your 1.5 emulator and press Start... and then Launch. Any contacts you enter should be 

saved for later, even if you close the emulator. 

2. Press the Home button. You will see four icons on the home screen 

(shown in Figure 10–8 on the left side) labeled Messaging, Dialer, 

Contacts, and Browser. The one called Contacts is a front-end to our 

Contacts database and will allow us to add in the records shown in 

Table 10–4.  



CHAPTER 10:  Understanding Content Providers 230 

Figure 10–8. Adding new contacts to the Android Contacts database via the Contacts utility 

3. Click the Contacts icon to launch the Contacts database, which is

initially empty. The screen tells us that we do not yet have any contacts

and how to add new contacts to the Contacts database (as shown on

the right side of Figure 10–8). 

4. Click the Menu button to bring up a menu from the bottom of the screen

(similar to the menu we created in Chapter 7) that offers four different

options for working with the Contacts database.  

5. Select the New Contact option to bring up the new contact data-entry

form. 

6. Fill out the name (People.NAME) and mobile phone number

(People.NUMBER) fields at the top of the screen (as shown on the left side

of Figure 10–9), and then click the Menu button.  

7. Select the Done option to add the record to the database. Our addition

appears on the screen (as shown in the right side of Figure 10–9). 

D
ow

nl
oa

d 
fr

om
 W

ow
! e

B
oo

k 
<

w
w

w
.w

ow
eb

oo
k.

co
m

>



CHAPTER 10:  Understanding Content Providers 231 

 

Figure 10–9. Adding a record to the Contact database  

8. Repeat steps 4 through 7 to add the three other names in Table 10–4, 

and maybe a few of your own.  

Working with a Database 
Let’s get started writing our application that will access the Contacts database. We’ll do 

some data queries against it, update the data, add data, and delete data.  

Querying a Content Provider: Accessing the Content 
First, let’s add a button to our example app’s main.xml file that will trigger our database 

query via an onClick event (as discussed in Chapter 9 regarding events processing, or, 

as discussed in the previous chapter). 

1. Right-click the main.xml file, which is located under the /res/layout 
folder. Then open the Eclipse layout editor and add the button via drag-

and-drop as you have done in previous examples. Here is the code that 

shows the changes to the Button and TextView we need to make (see 

Figure 10–10): 



CHAPTER 10:  Understanding Content Providers 232 

<TextView  android:layout_width="fill_parent"  
           android:layout_height="wrap_content"  
           android:text="Click Button Below to Run a Query" /> 
 
<Button   android:text="Click to Query Contacts Database"  
          android:id="@+id/queryButton"  
          android:layout_width="wrap_content"  
          android:layout_height="wrap_content"  
          android:layout_gravity="center" /> 

 

Figure 10–10. Adding our Button code to main.xml 

2. Next, right-click the /src/content.providers/DatabaseExamples.java file 

and select Open.  

3. First, we will add in our Button object declaration and our onClick event 

handling code, as we did in the previous chapter. Later, we’ll write our 

custom query method, once our UI is in place. To get things going, add 

the following three import statements that we need to define our Button: 

import android.widget.Button; 
import android.view.View; 
import android.view.View.OnClickListener; 

NOTE: Remember that you use the import statement to pull in the classes that you are going to 

leverage in your code. 

4. Now declare our Button object, like so, with some fairly standard code: 

Button queryButton = (Button)findViewById(R.id.queryButton); 



CHAPTER 10:  Understanding Content Providers 233 

5. Next, use the setOnClickListener() method to add the ability to handle 

events for this button, using the following lines of code (see Figure 10–

11). First, we attach the new OnClickListener to our queryButton, and 

then inside the onClick event handler, we assign the 

queryContactPhoneNumber() method (which we will code next), to be run 

when an onClick event is encountered. Note in Figure 10–11 that 

queryContactPhoneNumber() is underlined in Eclipse, which tells us that 

the method we are calling does not (yet) exist. 

queryButton.setOnClickListener(new OnClickListener() { 
        public void onClick(View view) { 
                queryContactPhoneNumber(); 
        } 
}); 

 

Figure 10–11. Declaring our import statements and query button in DatabaseExamples.java 

TIP: As you’ve seen, when a method does not yet exist, Eclipse puts a red X in the left margin of 
the code-editing pane and a red underline under the method name. If you want to remove those 
error indicators immediately, simply hover your cursor (mouse) over the red underline for a 

second, and select the Create Method option when the list of possible solutions pops up 
underneath it. Hovering your mouse this way is a great technique for learning more about Java 
and Eclipse. Don’t be afraid to explore and experiment with the Eclipse IDE as you work through 

this book. 



CHAPTER 10:  Understanding Content Providers 234 

6. Next, let’s add the four new import statements that we need (shown in 

Figure 10–12). The first brings in our familiar android.widget.Toast 

class to easily display our data via the Toast UI widget. The second 

imports the android.net.Uri class that allows us to define the Uri 

object we need to access the database. The third imports the all-

important Cursor class android.database.Cursor that allows us to 

traverse the data within all of the Android databases. Finally, 

android.provider.Contacts.People is the table we will be accessing: 

import android.widget.Toast; 
import android.net.Uri; 
import android.database.Cursor; 
import android.provider.Contacts.People; 

 

Figure 10–12. Java for our queryContacttPhoneNumber() and import statements  

7. Now we can write our queryContactPhoneNumber() method, to query the 

database (also shown in Figure 10–12). 

private void queryContactPhoneNumber() { 
    String[] cols = new String[] {People.NAME, People.NUMBER}; 
    Uri myContacts = People.CONTENT_URI; 
    Cursor mqCur = managedQuery(myContacts,cols,null,null,null); 



CHAPTER 10:  Understanding Content Providers 235 

    if (mqCur.moveToFirst()) { 
        String myname = null; 
        String mynumber = null; 
        do { 
            myname = mqCur.getString(mqCur.getColumnIndex(People.NAME)); 
            mynumber = mqCur.getString(mqCur.getColumnIndex(People.NUMBER)); 
            Toast.makeText(this, myname + " " + mynumber, Toast.LENGTH_SHORT).show(); 
        } while (mqCur.moveToNext()); 
    } 
} 

Let’s decipher exactly what is going on in this query method that we have written. Our 

method is declared private (meaning it operates completely inside the class that 

contains it) and void, as it returns no values. The first line defines a string array variable 

called cols and instantiates it with a new string array loaded with the value of two 

constants from the Contact.People table called NAME and NUMBER. These are the two data 

fields from which we wish to access data. 

    private void queryContactPhoneNumber() { 
        String[] cols = new String[] {People.NAME, People.NUMBER}; 

The next line creates a Uri object called myContacts and sets it equal to the 

People.CONTENT_URI table address that we are going to query.  

        Uri myContacts = People.CONTENT_URI; 

We then need to create a Cursor object called mqCur and assign to it the results of the 

call to the managedQuery() method. This method uses the myContacts Uri object, the 

cols column references that we are going to pull data from, and three nulls (which 

represent more complex SQLite operations). 

        Cursor mqCur = managedQuery(myContacts,cols,null,null,null); 

The Cursor object that is now properly populated with our managedQuery() results will be 

used in our iterative code, a do…while loop inside an if statement, to traverse the 

records of our table that managedQuery() accesses. 

The if part of the statement is true when the mqCur object has been positioned at the 

first record of the results via the moveToFirst() method. When this happens, the 

contents of the if statement are executed. 

        if (mqCur.moveToFirst()) { 

The myname and mynumber string variables are cleared by setting them to null before we 

enter into the do…while loop. The loop is started on the next line with a do construct 

containing three logical programming statements. It ends with a while() condition that 

says, “Move mqCur cursor object to the next record.” 

As long as there is a next record that can be moved to, this will equate to true. When it 

does not (at the end of the last record in the results), it will equate to false and drop out 

of the loop, which will cease to function, just as we intended. In other words, as long as 

there is another record to process, we’ll do another run of the code in the loop. 

            do { 
                ... 
            } while (mqCur.moveToNext()); 



CHAPTER 10:  Understanding Content Providers 236 

Now let’s look at the three things done in the do…while loop while there are records to 

read. 

First, we set the myname variable to the value of the data that is found in the current 

record of the results (on the first loop entry, this is the first record; on the second loop 

entry, this is the second; and so on). 

                myname = mqCur.getString(mqCur.getColumnIndex(People.NAME)); 

We do this via two methods of the mqCur Cursor object: 

 The getColumnIndex() method gets the internal reference or index 

number for the People.NAME column for the current record. 

 getString() gets the string data from that location in the results and 

puts it into the myname variable.  

We repeat the process in the next line of code for mynumber using People.NUMBER. It is 

also held in a string format, so you can use dashes or whatever you like between the 

numbers.  

                mynumber = mqCur.getString(mqCur.getColumnIndex(People.NUMBER)); 

Once our myname and mynumber string variables are loaded with the data values from the 

database record, we call our familiar Toast widget and display the record on the screen. 

Notice in this version of the Toast widget we get a little more advanced than just passing 

a text string in the second argument of the makeText() method. Here, we use our two 

variables (which contain text strings) and concatenate them (attach them) to a " " space 

character using the + operator (used for joining strings together): 

Toast.makeText(this, myname + " " + mynumber, Toast.LENGTH_SHORT).show();  

Note that this could also be written in two lines of code: 

Toast.makeText(this, myname + " " + mynumber, Toast.LENGTH_SHORT);  
Toast.show(); 

Now right-click your Chapter10 folder and choose Run As  Android Project. Try out the 

Click to Query Contacts Database button to see it trigger our query method, displaying 

data we added earlier. Figure 10–13 shows an example. 



CHAPTER 10:  Understanding Content Providers 237 

 

Figure 10–13. Running a query in the Android 1.5 emulator  

Appending to a Content Provider: Adding New Content 
Now you’ll see how to add new content to a content provider database. Here, we will 

add a new contact name and phone number to the Contacts database. 

1. First, copy and paste the first Button tag in our main.xml file and change 

the ID to addContactButton. The text of the button should read "Click 
to add a Contact to the Database" (see Figure 10–14). 

    <Button android:text="Click to add a Contact to the Database"  
            android:id="@+id/addContactButton"  
            android:layout_width="wrap_content"  
            android:layout_height="wrap_content"  
            android:layout_gravity="center" /> 



CHAPTER 10:  Understanding Content Providers 238 

 

Figure 10–14. Adding our second button in main.xml 

2. The first stage of the Java code is to add two global objects that all the 

methods in our class can use. There are two URIs that will contain the 

locations where we can add data and change data: 

public class DatabaseExamples extends Activity { 
        Uri addUri = null; 
        Uri changeUri = null; 

3. Next, let’s add in the code to implement the second button for our UI by 

copying the Button object declaration and the onClick event handling 

code and pasting it immediately underneath the existing UI code in our 

DatabaseExamples activity class. 

4. Change the Button variable name to addButton, and change the R.id to 

point to our new addContactButton. Also, set our method call to the new 

addContactPhoneNumber() method we are going to write (see Figure 10–

15). Here is the new code: 

        Button addButton = (Button)findViewById(R.id.addContactButton); 
         
        addButton.setOnClickListener(new OnClickListener() { 
            public void onClick(View view) { 
                addContactPhoneNumber("Steve Wozniak", "415-555-7654"); 
            } 
        }); 

NOTE: This line of code calls our addContactPhoneNumber() method and passes it new 

database record data so that a new contact entry can be added to the Contacts database. 



CHAPTER 10:  Understanding Content Providers 239 

 

Figure 10–15. Adding the Java code to add in the second button  

5. Next, we are going to add the new method addContactPhoneNumber(). 

    private void addContactPhoneNumber(String newName, String newPhone) { 
        ContentValues myContact = new ContentValues(); 
        myContact.put(People.NAME, newName); 
        addUri = getContentResolver().insert(People.CONTENT_URI, myContact); 
        Uri contentUri = Uri.withAppendedPath(addUri, People.Phones.CONTENT_DIRECTORY); 
        myContact.clear(); 
        myContact.put(People.Phones.TYPE, People.TYPE_MOBILE); 
        myContact.put(People.NUMBER, newPhone); 
        changeUri = getContentResolver().insert(contentUri, myContact); 
        Toast.makeText(this, "New Contact: " + newName + " " + newPhone,  
                       Toast.LENGTH_SHORT); 
    } 

We make sure that the addContactPhoneNumber() private method is declared with the 

correct parameters, as follows: 

private void addContactPhoneNumber(String newName, String newPhone) { 

This is a bit different from our queryContactPhoneNumber() method, as we are passing 

the method two string parameters: a name and a phone number. Since the 

addContactPhoneNumber() method does not return any values, it is still a void method 

and is declared as such, just like the others. 

Now we are ready to write the code that will add a new name and phone number to the 

Contacts database. The first thing that we need to do is to create a ContentValues 

object called myContact that defines the table, column, and data values that need to be 

passed into the content provider. Since this is a new class that we are using in our code, 

we also need to add a statement to the end of our list of import statements (see Figure 

10–16). 

import android.content.ContentValues; 



CHAPTER 10:  Understanding Content Providers 240 

After we do that, we can instantiate a new ContentValues object called myContact via the

following declaration: 

ContentValues myContact = new ContentValues(); 

Immediately after that, we need to configure that object with a data pair via the put()
method. This loads the ContentValues object with the table (People), the column (or field

of data to operate on) NAME, and the string variable with the name in it, newName. 

myContact.put(People.NAME, newName);  

Next, we use the getContentResolver() method to insert the myContact ContentValues
object into the People table, which is at the location specified by CONTENT_URI constant

we discussed earlier in the chapter: 

addUri = getContentResolver().insert(People.CONTENT_URI, myContact); 

This writes the newName variable that we loaded into our myContact ContentValues object

into the People.NAME database column that we specified in the same object. So, now our

newName variable passed to our method has been taken care of, and we just need to do

the same thing for our newNumber data variable. Then we will be finished. After this call,

addUri will hold the location of the newly inserted record. 

The next line of code declares a Uri object named contentUri that appends the

People.Phones.CONTENT_DIRECTORY onto the addUri and creates a new, more detailed

URI object for the next query. (We are basically setting the location of where to add the

phone number by using the location of the new name record as a reference.) Now all we

need to do is change the data in the myContact ContentValues object for the final data-

insertion operation. 

        Uri contentUri = Uri.withAppendedPath(addUri, People.Phones.CONTENT_DIRECTORY); 

The first thing we want to do to the myContact object is to clear it, or basically turn it into

an empty object with a clean slate. Then, in the next two lines, we use the put() method

to load the myContact ContentValues object with the URI and table and column values

for the phone number field that we wish to write, and the newPhone phone number string

variable data (415-555-7654), using the following lines of code: 

myContact.clear();
myContact.put(People.Phones.TYPE, People.TYPE_MOBILE);
myContact.put(People.NUMBER, newPhone); 

Finally, we call our powerhouse getContentResolver() method to go into our content

provider and insert the phone number data into the correct table and data column (data

field) location. This is done with the following code: 

changeUri = getContentResolver().insert(contentUri, myContact); 

Once our data record is written by the two getContentResolver() operations, we can

send a Toast to our users in the usual way, telling them that the write has been

performed.  

Toast.makeText(this, "New Contact: " + newName + " " + newPhone, Toast.LENGTH_SHORT); 

D
ow

nl
oa

d 
fr

om
 W

ow
! e

B
oo

k 
<

w
w

w
.w

ow
eb

oo
k.

co
m

>



CHAPTER 10:  Understanding Content Providers 241 

Figure 10–16 shows the code as it appears in Eclipse with the import statement, two 

global Uri object variables declared, and our addContactPhoneNumber() method 

highlighted. 

 

Figure 10–16. Writing the Java code for our AddContactPhoneNumber method  

We declared the two addUri and changeUri URI objects at the top of our code outside all 

of our methods so that they can be used in any of the methods in this class. We will be 

using them in other methods later in this chapter, so we’ve made them available for that 

purpose.  

Now right-click your Chapter10 project folder and select Run As  Android Application. As 

you will see when you click the second button, the name and number in our code is 

added to the Contacts database and a message confirming this is toasted (isn’t that a 

cool term?) to the screen, as shown in Figure 10–17. Now let’s go into our desktop and 

find the data. 



CHAPTER 10:  Understanding Content Providers 242 

 

Figure 10–17. Adding a contact in the Android 1.5 emulator  

To see the new data for Steve Wozniak, select the Contacts icon, hit the Menu button at the 

bottom of the screen (on the phone), and choose the Search function. Then scroll down the 

list until you see the Steve Wozniak entry (highlighted on the right in Figure 10–18).  



CHAPTER 10:  Understanding Content Providers 243 

 

Figure 10–18. Using the Contacts editor utility in the Android 1.5 emulator  

Now that you’ve seen how to add data to a contact provider, let’s look at how to modify 

the content provider’s data. 

Modifying Content Provider Data: Updating the Content 
Changing an existing record is another write operation as far as a database is 

concerned, because new data is written to a database record field, and that data 

overwrites the existing data that was there. 

Let’s dive right into our usual work process to see updating content in action.  

1. First, in main.xml, copy the addContactButton Button tag and paste it 

right underneath our other Button tags. Change the ID attribute to 

modifyPhoneButton. This reflects the fact that we are going to modify the 

phone number to the new phone number, just as we would do in real life 

(people don’t change names quite as often as they change mobile 

phone numbers).  

2. Next, change the text of the button to read "Click to Modify the 
Contact in the Database". Here’s the code in your Eclipse editor’s 

main.xml tab (also shown in Figure 10–19): 



CHAPTER 10:  Understanding Content Providers 244 

<Button android:text="Click to Modify the Contact in the Database"  
        android:id="@+id/modifyPhoneButton"  
        android:layout_width="wrap_content"  
        android:layout_height="wrap_content"  
        android:layout_gravity="center" /> 

 

Figure 10–19. Adding a modify contact button in main.xml 

3. To finish off implementing the UI for this new database operation, let’s 

do a similar cut-and-paste operation in our DatabaseExamples.java file. 

Add the addButton Button object and the addContactPhoneNumber() 

onClick() method call, and turn them into a modButton Button object 

and an onClick event handler that calls a modifyPhoneNumber() method 

(see Figure 10–20): 

        Button modButton = (Button)findViewById(R.id.modifyPhoneButton); 
        modButton.setOnClickListener(new OnClickListener() { 
            public void onClick(View v){ 
               modifyPhoneNumber("916-555-1234"); 
            } 
        }); 



CHAPTER 10:  Understanding Content Providers 245 

 

Figure 10–20. Adding the Java code to implement our modify contact button  

The real heavy lifting is done in our modifyPhoneNumber() method, which will update the 

phone number in the database record we just added. It takes a single string containing 

the new telephone number to replace the existing one (see Figure 10–21). Also notice in 

Figure 10-21 that we have collapsed our previous two methods using the "+" feature in 

Eclipse that allows us to expand and contract blocks of code for easier viewing of what 

we are working on currently. This is shown with a small red square at the left of the 

screenshot. 

private void modifyPhoneNumber(String replacePhone) { 
    if (changeUri == null) { 
        Toast.makeText(this, "You need to create a new contact to update!",  
                       Toast.LENGTH_LONG).show(); 
    } else { 
        ContentValues newPhoneNumber = new ContentValues(); 
        newPhoneNumber.put(People.Phones.TYPE, People.TYPE_MOBILE); 
        newPhoneNumber.put(People.NUMBER, replacePhone); 
        getContentResolver().update(changeUri, newPhoneNumber, null,null); 
        Toast.makeText(this, "Updated phone number to: " + replacePhone,  
                       Toast.LENGTH_SHORT).show(); 
    } 
} 

v



CHAPTER 10:  Understanding Content Providers 246 

 

Figure 10–21. Writing our modifyPhoneNumber() method 

The modifyPhoneNumber() method uses an if…then…else programming loop structure. 

First, let’s make sure there is data in the changeUri data object by comparing the 

changeUri object to null via the if (changeUri == null) construct. 

    if (changeUri == null) { 
        Toast.makeText(this, "You need to create a new contact to update!",  
                       Toast.LENGTH_LONG).show(); 

If this construct equates to true, we print a Toast message, saying that the add 

operation has not been done yet, and suggesting that the user use the add method 

(which we just wrote) to create the record that we want to modify. 

If the (changeUri == null) equates to false, it means that the changeUri is loaded with 

the database and column references needed to access and modify the database record. 

Then we can continue and execute the database modification via four lines of code and 

a Toast notification that tells us what was done to the database.  

        getContentResolver().update(changeUri, newPhoneNumber, null,null); 
        Toast.makeText(this, "Updated phone number to: " + replacePhone,  
                       Toast.LENGTH_SHORT).show(); 
    } 
} 



CHAPTER 10:  Understanding Content Providers 247 

The first line of code is the creation of the newPhoneNumber ContentValues object, which 

will hold our database names and constants that we will use to reference the phone 

number field in the Contacts database.  

    } else { 
        ContentValues newPhoneNumber = new ContentValues(); 

First, we load the newPhoneNumber ContentValues object with the columns of data we are 

going to modify. In the second line of code, we state that the People.Phones.TYPE will be 

People.TYPE_MOBILE (that is, we are updating the mobile number). We then use the 

People.NUMBER database constant to say we want to update the number with the 

contents of the replacePhone data variable that we passed into the modifyPhoneNumber() 

call.  

        newPhoneNumber.put(People.Phones.TYPE, People.TYPE_MOBILE); 
        newPhoneNumber.put(People.NUMBER, replacePhone); 

In our fourth line of code inside the else section of our loop, we call the 

getContentResolver().update() method: 

        getContentResolver().update(changeUri, newPhoneNumber, null,null); 

We pass it the following objects: 

 changeUri (which we created in the addContactPhoneNumber() method) 

specifies the location of the last record we worked with, which is the 

one we want to update. 

 newPhoneNumber is a ContentValues object that specifies which field of 

that record structure we wish to modify. It also specifies the updated 

data for that data field (the new mobile number). 

Finally, we add in our Toast.makeText() call to display the data we have modified once 

the getContentResolver().update() is complete. 

        Toast.makeText(this, "Updated phone number to: " + replacePhone,  
                       Toast.LENGTH_SHORT).show(); 

Compile and run the application in the Android 1.5 emulator, and you will see our new 

Click to Modify the Contact in the Database button, as shown in Figure 10–22.  



CHAPTER 10:  Understanding Content Providers 248 

 

Figure 10–22. Modifying a contact in the Android 1.5 emulator  

We can now query the database, add a record to the database, and change the phone 

number in an existing database record. Let’s complete this tour of common database 

operations by adding an option to delete a record from the content provider database. 

Removing Content Provider Data: Deleting Content 
Our final example of manipulating the database demonstrates how to delete database 

records. We’ll also make a few final changes in our main.xml UI code to make everything 

look a bit more professional.  

1. For the TextView tag, change the text attribute to read "Click Buttons 
Below to Query, Add, Modify, Delete".  Also add 25 dip of padding to 

the top and 50 dip of padding to the bottom to space out the objects on 

the application screen and make it more readable. Here’s the new code 

(also shown in Figure 10–23): 

<TextView 
    android:layout_width="fill_parent"  
    android:layout_height="wrap_content"  
    android:text="Click Buttons Below to Query, Add, Modify, Delete" 
    android:paddingTop="25dip" 
    android:paddingBottom="50dip"/> 



CHAPTER 10:  Understanding Content Providers 249 

2. Use your favorite cut-and-paste work process to copy the modify 

Button tag that we just created and paste it underneath the other Button 

tags. Change the ID to deleteContactButton and the text to read "Click 
to Delete the Contact in the Database". Your code should look like 

this (also shown in Figure 10–23): 

<Button android:text="Click to Delete the Contact in the Database"  
        android:id="@+id/deleteContactButton"  
        android:layout_width="wrap_content"  
        android:layout_height="wrap_content"  
        android:layout_gravity="center" /> 

 

Figure 10–23. Adding the delete button XML markup to main.xml 

3. Now we will repeat the same copy-and-paste operation in our Java 

code. Copy the modButton Button object creation and 

setOnClickListener() event handling routine. Change the object name 

to delButton and the method call to deleteContactPhoneNumber() 

(Figure 10–24 shows what your Java code for your UI definitions should 

look like in the Eclipse DatabaseExamples.java tab).  



CHAPTER 10:  Understanding Content Providers 250 

        Button delButton = (Button)findViewById(R.id.deleteContactButton); 
        delButton.setOnClickListener(new OnClickListener() { 
            public void onClick(View v){ 
               deleteContactPhoneNumber(); 
            } 
        }); 

NOTE: Since we are simply deleting the record, we do not need to pass the method a variable. 
This is because the road map to the database information that we wish to operate on is already 

in our changeUri object, ready to reference.  

Figure 10–24. Adding the our Java code to implement the delete button 

4. Now we will create our new deleteContactPhoneNumber() database

method. All we need to do is add in the code that makes sure our

changeUri object is still intact and loaded with reference parameters,

and then access our ContentResolver object to delete the data record.

Here’s the code (see Figure 10–25): 

    private void deleteContactPhoneNumber() { 
        if (changeUri == null) { 
            Toast.makeText(this, "You need to create a new contact to delete!",  
                           Toast.LENGTH_LONG).show(); 

D
ow

nl
oa

d 
fr

om
 W

ow
! e

B
oo

k 
<

w
w

w
.w

ow
eb

oo
k.

co
m

>



CHAPTER 10:  Understanding Content Providers 251 

        } else { 
            getContentResolver().delete(addUri, null, null); 
            Toast.makeText(this, "Deleted contact at: " + addUri.toString(),  
                           Toast.LENGTH_SHORT).show(); 
            addUri = null; 
            changeUri = null; 
        } 
    } 

 

Figure 10–25. Adding our deleteContactPhoneNumber method to DatabaseExamples.java 

This code uses an if loop that is identical to the one we constructed in the 

modifyPhoneNumber() method earlier.  

        if (changeUri == null) { 
            Toast.makeText(this, "You need to create a new contact to delete!",  
                           Toast.LENGTH_LONG).show(); 

The if statement basically says. “I our changeUri object is not loaded with the data from 

the add and modify operations, then tell the users that they need to create a new 

contact first to delete the record; otherwise, perform the following operations.” 



CHAPTER 10:  Understanding Content Providers 252 

The meat of our code to delete the database record that we have created is inside the 

else portion of our if…then…else loop structure. It begins with a call to 

setContentResolver().delete() to delete the data record whose particulars are 

referenced in the addUri that we created in the addContactPhoneNumber() routine we 

coded earlier. 

        } else { 
            getContentResolver().delete(addUri, null, null); 

In this method, we are referencing the addUri, which references the Contacts database 

and contact name, rather than the changeUri, which references the phone number and 

type data fields. This is because we are deleting the top-level database record, and not 

just the phone number inside it. 

Once we have deleted our database record via the ContentResolver, we can Toast to 

our users a message that it has been deleted. Finally, we set the URIs to null because 

we have deleted the record. 

            Toast.makeText(this, "Deleted contact at: " + addUri.toString(),  
                           Toast.LENGTH_SHORT).show(); 
            addUri = null; 
            changeUri = null; 
        } 

Now let’s select Run As  Android Application and see our latest button in action. In the 

example in Figure 10–26, you can see that our Toast message shows the URI for the 

Contacts database’s People table and record number 13. 

 

Figure 10–26. Running our final database application in the Android 1.5 emulator  



CHAPTER 10:  Understanding Content Providers 253 

We now have our finished database-access application. This version is spaced out 

much better on the screen, and it has all four database operations in place and 

functioning: 

 The Click to Query Contacts Database button shows the entire 

Contacts database, including the new addition. 

 The Click to Add a Contact to the Database button adds a new record. 

 The Click to Modify the Contact in the Database button changes the 

database record to include a new phone number. 

 The Click to Delete the Contact in the Database button deletes the 

new record. 

We have successfully written code to manipulate one of Android’s internal content 

provider databases. 

Summary 
This is probably one of the most complicated chapters in this book, because it 

combines the following: 

 Knowledge of SQLite database design, functionality, and access—in 

itself a topic that can easily span several books 

 The Android concept of content providers 

 The Java programming language constructs that are necessary to 

access and manipulate these database structures 

You should feel a great sense of accomplishment from getting through all of this 

unscathed. You are learning how Android deals with advanced database concepts and 

structures. 

Most of the content providers that you will be working with in Android are already a part 

of the OS. They provide access to the common functions that users want in their 

phones, including contacts, music (audio), entertainment (video), and similar. The built-in 

content providers were listed in this chapter. We also covered the concept of 

deprecation, because as of Android 2.x, the internal content provider database 

structures were enhanced, making pre-2.0 OS tables deprecated, although still usable, 

as you saw in this chapter. 

The primary Java classes in Android that handle content providers are (surprise!) the 

ContentProvider class, the ContentResolver class, and the ContentValues class. Each 

plays a critical role in defining (ContentProvider), accessing (ContentResolver), and 

addressing (ContentValues) a SQLite database structure. 

Although there are other ways to pull in data to your Android application, such as off 

your SD card or off a remote server, the SQLite DBMS is the most robust approach and 

the only one that can be accessed between applications. Furthermore, this is the most 

useful content provider type to learn, because all of Android’s user data is stored and 



CHAPTER 10:  Understanding Content Providers 254 

accessed via these SQLite databases. Unfortunately, it’s also the most difficult way to 

implement content providers (database access) within the Android OS. 



 

 

255 

255 

   Chapter 

Understanding Intents 
and Intent Filters 
This chapter will delve into intents, which are messaging objects that carry 

communications between the major components of your application—your activities, 

services, and broadcast receivers, which handle Android messaging. We have seen that 

Android development is highly modularized, and intents provide a way to wire these 

modules together to form a cohesive yet flexible application with secure, fluid 

communication among all of its components. 

This is a fairly complex and important topic, and we are going to cover intents as they 

pertain to activities, services, and broadcast providers in detail. In fact, by the time we 

get to the end of the chapter, we will have an application that has three XML files and 

four different Java files open in the Eclipse IDE. Lucky we are close to the end of the 

book, because for a book on Android for absolute beginners, this chapter is going to 

seem a bit advanced. We’ll chalk it up to a rapid learning process and dive right in. 

What Is an Intent? 
An intent is represented by the android.content.Intent class. It is in the content 

package because intents can be used to quickly access content providers, as we will 

see in this chapter. But its use is much broader than that; in fact, the Android Developer 

Reference says, “An intent is an abstract description of an operation to be performed,” 

so intents can be used to quickly accomplish many tasks that would otherwise take 

more programming code. An intent is a sort of a programming shortcut that’s built into 

the Android OS and programming environment. 

An Intent object is basically a passive data object (a bundle of instructions, if you will) 

that both provides a description of some sort of standard operating system or developer 

created “action” that needs to be performed and passes the data which that action 

needs to operate on to the code receiving the intent. 

11 



CHAPTER 11:  Understanding Intents and Intent Filters 256 

In addition to a specified action, the Intent object can also contain relevant data needed 

to complete that action, as well as data type specifications, constants, flags, and even 

extra data related to the data needed by the action. 

Because intents provide a detailed data and process communication structure among 

Android application components, they can also be rather complex data structures 

(objects). We’ll see the various parts of an intent’s structure in the next section. 

There are three types of Intent objects that can be used inside the Android OS to 

communicate with activities, services, and broadcast receivers. In fact, there is one 

intent type for each of these. None of these types of Intent objects are allowed to 

intersect with (i.e., interfere with, or collide with, or mistakenly be used with or by) any of 

the other types of Intent objects. For this reason, we will cover each type of Intent object 

separately, so we can see how intent-based communication with activities, services, 

and broadcast messages differ from each other. 

Android Intent Messaging via Intent Objects 
Essentially, intents carry messages from one module of your application to another 

(activity to activity, activity to service, broadcast to activity, etc.). Intents can be sent to 

and from background processing services or intra-application activities or even inter-

application broadcast messages. Intents are similar to the events that are found in other 

programming languages, except that intents can reach outside your application whereas 

events can’t. Events are used to process user interface elements, as we have seen in 

previous chapters, and are internal to the blocks of programming logic you write. Intents 

can be passed to other applications written by other programmers, allowing them to be 

connected as modules of each other, if needed. 

Intent object-based messages can contain up to seven different kinds of informational 

parts:  

 Component name. The name of the class that the intent and its action 

are targeting, specified by using the package name and the class 

name. 

 Action. A predefined type of action that is to be performed, such as 

ACTION_DIAL to initiate a phone dialing sequence or ACTION_VIEW to 

view records in a database. 

 Data. The actual data to be acted upon, such as the address of the 

database records to view or the phone number to dial. 

 Category. Android has predefined intents that are part of the OS that 

are divided into various types or categories for easy access and use. 

The category name tells what area of the OS the action that follows it 

is going to affect. For instance, CATEGORY_HOME deals with the Android 

Home screen. An ACTION_MAIN following a CATEGORY_HOME would cause 

the Home screen to be launched in the smatphone. 



CHAPTER 11:  Understanding Intents and Intent Filters 257 

 Type. This attribute specifies the type of the data using a MIME 

format. It’s often left out as Android is usually able to infer the data 

type from analyzing the data itself. 

 Flags. This allows on/off flags to be sent with the intent. Flags are not 

used for typical intents, but allow more complicated intents to be 

crafted if needed by advanced developers. 

 Extras. This parameter allows any extra information that is not 

covered in the above fields to be included in the intent. This allows 

very complex intents to be created. 

With these seven different types of information, the messaging construct that an Intent 

object communicates can become quite an intricate data structure, if you need it to be, 

it can also be quite simple, depending on the application use that is involved. 

The first thing an Intent object usually specifies is the name of the application 

component you are targeting (usually a class you create); this is specified via the 

package and class name, like so: 

ComponentName(string package, string class) 

The component name is optional. If it is not specified, the Android OS will utilize all of 

the other information contained within the Intent object to infer what component of the 

application or Android OS the Intent object should be passed to for further processing. It 

is safer to always specify this information. On the other hand, intents are intended to be 

used as programming shortcuts, and for many standard or common instances, Android 

is designed to properly infer how to process them. 

The most important part of the Intent object is the action specification. The action 

defines the type of operation that the intent is requesting to be performed. Some of the 

common action constants are listed in Table 11–1, along with their primary functions, so 

you can get an idea of where these intents might be utilized in the Android OS. 

Table 11–1. Examples of Action Constants and Their Primary Functions 

Action Constant Target Activity Function 

ACTION_DIAL Activity Displays the phone dialer  

ACTION_CALL Activity Initiates a phone call 

ACTION_EDIT Activity Display data for user to edit  

ACTION_MAIN Activity Start up an initial task activity  

ACTION_BATTERY_LOW Broadcast Receiver Battery low warning message 

ACTION_HEADSET_PLUG Broadcast Receiver Headset plug/remove message 

ACTION_SCREEN_ON Broadcast Receiver The screen turned on message 

ACTION_TIMEZONE_CHANGED Broadcast Receiver Time zone has changed 



CHAPTER 11:  Understanding Intents and Intent Filters 258 

It is important to note that in many cases the action constant that is specified 

determines the type and structure of the data of the Intent object.  The data parameter is 

as important to the overall result of the intent resolution as the specified action to be 

performed. Without providing the data for the action to operate on, the action is as 

useless as the data would be without any action to be performed on it! 

The ACTION_DIAL action constant is a good example; it targets an activity and displays 

the smartphone dialing utility with the phone number (the data passed to it) to be dialed. 

The data is the phone number the user entered into the user interface, and since the 

action constant is ACTION_DIAL, Android can infer that the data passed to it is the phone 

number to be dialed. 

Thus, the next most important part of the Intent object is the data component, which 

contains the data that is to be operated on. This is usually done via a URI object that 

contains information about where the data can be found. 

As we learned in the previous chapter, this often turns out to be a database content 

provider; for instance, a SQLite database can be the target of an ACTION_VIEW or 

ACTION_EDIT intent action. So, to edit database record information about a person in 

your contacts list with the database ID of 1, we would use the following intent data 

structure: 

ACTION_EDIT content://contacts/people/1  

A closely related part of the Intent object specification is the data’s MIME type, which 

explicitly tells Android what type of data the intent should be working with so that, for 

example, audio data doesn’t encounter an image processing routine. 

The type part of the Intent object allows you to specify an explicit MIME data definition 

or data type that, if present, overrides any inference of the data type by the Android OS. 

You may already be familiar with the MIME data type declarations, as they are quite 

common on web servers and other types of data servers. 

MIME TYPES 

MIME stands for “Multipurpose Internet Mail Extensions” and was originally designed for e-mail servers to 
define their support for different types of data. It has since been extended to other server definitions of 
supported data and content types, and to communication protocols (such as HTTP) data type definitions, 
and now to Android OS to define content data types as well. Suffice it to say that MIME has become a 
standard for defining content data types in a myriad of computing environments. Examples of MIME 
definition include the following: 

 Content-Type: text/plain 

 Content-Type: image/jpeg 

 Content-Type: audio/mp3 

 Content-Type: video/mp4 

 Content-Type: application/msword 
 



CHAPTER 11:  Understanding Intents and Intent Filters 259 

Another important parameter of an Intent object is the category, which is meant to give 

additional or more fine-tuned information about the action that is specified to execute. 

This is more useful with some actions than with others.  

A good example of how categories help define what to do with a given action is 

launching the home screen on a user’s Android phone via an Intent object. You use the 

Action constant  ACTION_MAIN with a category constant CATEGORY_HOME and voila! Android 

launches the phone’s Home screen and shows it on the display. 

Finally, the extras parameter allows additional data fields to be passed with the Intent 

object to the activity, service or broadcast receiver. This parameter uses a Bundle object 

to pass a collection of data objects. 

This is a slick way to allow you to piggyback any additional data or more complex data 

structure you wish to pass along with the Action request/message. 

Intent Resolution: Implicit Intents & Explicit Intents 
Intents, like events, need to be resolved so that they can be processed properly. 

Resolution in this case means ascertaining the appropriate component to handle the 

intent and its data structure. 

There are two broad categories of intents—explicit intents and implicit intents. We will 

look at explicit intent resolution first, as it is much more straightforward. Then, we’ll 

cover implicit Intents and see how they need to be filtered so that Android knows how to 

handle them properly. 

Explicit Intents 
Explicit intents use the component portion of the Intent object via the ComponentName 

data field. You’ll generally use these when working with applications you have 

developed, as you’ll know which packages and classes are appropriate for the Intent 

object to send an action message and data to be acted on. Because the component is 

specified explicitly, this type of intent is also safer as there is zero room for error in 

interpretation. Best programming practices dictate that you thoroughly document your 

code and thereby give other programmers using your intent code the proper component 

name information. However in the real world, this best case does not always happen 

and thus Android also has implicit intents and intent filters to handle other scenarios. 

Other developers may not know what components to explicitly declare when working 

with your application, and thus explicit intents are a better fit for non-public inter-

application communication. In fact, developing your application so that other developers 

can use the intents is what implicit intents and intent filters are all about. As noted 

earlier, if there is a component name specified, it will override all of the other parts of the 

Intent object as far as determining what code will handle the intent resolution. 



CHAPTER 11:  Understanding Intents and Intent Filters 260 

There are two ways to specify a component. One way is via the setComponent() method,

which uses the ComponentName object: 

.setComponent(ComponentName); 

The other way is using the setClass(Context, Class) method to provide the exact class

to use to process the intent. Sometimes this is the only information in the intent,

especially if the desired result from using the intent is simply to launch parallel activities

that are internal to the application when they are needed by the user. 

Implicit Intents 
Implicit intents are those that don’t specify the component within the intent object. This

means that Android has to infer from the other parameters in the intent object what code

it needs to pass the intent message to for successful processing. 

Android does this inference based on a comparison of the various actions, data, and

categories defined in the intent object with the code components that are available to

process the intent. This is usually done via intent filters that are defined in the

AndroidManifest.xml file. 

Although designing classes that utilize implicit intents and intent filters is beyond the

scope of an introductory book on Android programming, we will go over the concept

here just to give you an idea of what can be done in Android and in what situations you

would  use implicit intents and intent filters. You can find more information at  

developer.android.com/reference/android/content/IntentFilter.html. 

Intent filters are declared in AndroidManifest.xml using the <intent-filter> tag, and

they filter based on three of the seven attributes of the Intent object; action, data, and

category. 

Intent filters provide a description of intent object structures that need to be matched as

well as a priority attribute to be used if more than one match is encountered. If no

action filters are specified, the action parameter of the intent will not be tested at all,

moving the testing on to the data parameter of the intent. If no data filters are specified,

then only intents that contain no data will be matched. Here is an example intent-
filter definition from an AndroidManifest.xml file that specifies that video MPEG4 and

audio MPEG3 can be retrieved from the internet via HTTP: 

<intent-filter> 
<data android:mimeType="video/mp4" android:scheme="http" /> 
<data android:mimeType="audio/mp3" android:scheme="http" />
</intent-filter> 

For Intent filtering based on data characteristics, the data parameter gets broken down

into four subcategories: 

Data type; This is the MIME data type, for instance, image/jpeg or

audio/mp3, 

Data scheme: This is written as scheme://host:port/path  

D
ow

nl
oa

d 
fr

om
 W

ow
! e

B
oo

k 
<

w
w

w
.w

ow
eb

oo
k.

co
m

>



CHAPTER 11:  Understanding Intents and Intent Filters 261 

 Data authority: This is the server host and the server port (see the 

data scheme format above) specified together. 

 Data path: A data path is an address to the location of the data, for 

instance, http://www.apress.com/datafolder/file1.jpg. 

Any of these you specify will be matched precisely to the content of the intent itself, for 

example: 

content://com.apress.project:300/datafolder/files/file1 

In this example, the scheme is content, the host is com.apress.project, the port is 300, 

and the path is datafolder/files/file1.  

Since we can specify intents explicitly, we can use intent objects productively via the 

methodologies outlined in the rest of this chapter without having to learn the convoluted 

hierarchy of how to match unspecified intents. If you wish to delve into the complexities 

of how to set up levels of intent filters for implicit intent matching, visit the Android 

developer site and get ready to wrap your mind around some intense global logic 

structures. 

Using Intents with Activities 
Enough theory, let’s write an Android application that uses intents to switch back and 

forth between two different activities— an analog watch activity and a digital clock 

activity—so you can see how intents are sent back and forth between more than one 

Activity class.  

1. First, let’s close our Chapter10 project folder (via a right-click and Close 

Project) and create a new Chapter11 Android project with the following 

parameters, as shown in Figure 11–1: 

 Project name: Chapter11 

 Application name: Intents and Intent Filter Examples 

 Package name: intent.filters 

 Create activity: IntentExamples 

 Build Target: Android 1.5 

 Min SDK Version: 3 

http://www.apress.com/datafolder/file1.jpg


CHAPTER 11:  Understanding Intents and Intent Filters 262 

 

Figure 11–1. Creating our IntentExamples project in Eclipse 

2. Now we are going to create a second Activity class, so we can switch 

back and forth between the two activities using an intent. To do this, we 

need to right-click on the Chapter11 folder, and select New  Class, 
which opens a dialog (Figure 11–2) that will create a new Java activity 

class in the same folder as the IntentExamples.java class our New 

Android Project dialog just created. 



CHAPTER 11:  Understanding Intents and Intent Filters 263 

 

Figure 11–2. Creating a new Java activity class 

3. If you right-clicked on the Chapter11 folder to do the New  Class 

operation, the dialog will already have the first field filled out, with the 

Source folder field set to Chapter11/src. In the next field, you can either 

type in the intent.filters package name we created in our New Android 
Project dialog, or you can click the Browse button to the right of the field, 

and select this package from the list. 

4. Next we need to fill out the Name field, which will name our class. Let’s 

use DigitalClockActivity since that’s one of the activities we’ll use in 

this exercise.  

5. Leave the Modifiers as set. Since we are creating an Activity class, we 

need to extend the superclass android.app.Activity. This is the full 

pathname to the Activity class, which is part of the app package in 

Android OS. 

Now let’s create our user interface for our first activity, which we will leave in its default 

main.xml file container (shown in Figure 11–3).  



CHAPTER 11:  Understanding Intents and Intent Filters 264 

1. Let’s expand our TextView tag with some new attributes: 

a. Start with text that reads “You Are Currently in: Activity #1”  

b. Use the android:textColor attribute to set the color to #FEA, 

which is the equivalent to hexadecimal #FFEEAA, a light orange-

gold color.  

c. Let’s use the android:textSize attribute to increase the text size 

to 22 device-independent pixels, so it’s large and readable.  

d. Finally, let’s use the android:paddingBottom="20dip" attribute to 

push the button user interface object down and away from the text 

title a little bit. 

    <TextView   android:layout_width="fill_parent" 
                android:layout_height="wrap_content" 
                android:text="You Are Currently in: Activity #1"  
                android:textColor="#fea" 
                android:textSize="22dip"  
                android:paddingBottom="20dip"/> 

2. Next, let’s edit the Button tag attributes: 

a. Change its text label to “Go To Digital Clock: Activity #2”  

b. Set the textSize attribute to 18 pixels so we have readable text on 

our button.  

c. Now let’s define our button size in pixels: 

android:layout_width="280px" and 

android:layout_height="60px" .  

d. Finally, we’ll center our UI button with the familiar 

android:layout_gravity="center" and we are done creating the 

button UI attributes. 

    <Button android:id="@+id/Button01" 
            android:text="Go To Digital Clock: Activity #2" 
            android:textSize="18px" 
            android:layout_width="280px" 
            android:layout_height="60px"  
            android:layout_gravity="center"/> 

3. Now we’ll add an AnalogClock tag, so we can create a cool watch. Use 

the Layout tab at the bottom of the Eclipse editor (circled in Figure 11–3) 

and drag the AnalogClock View element icon out of the Views List on 

the left, and drop it under the Button in the UI layout view.  

4. Then, either go into the Properties tab at the bottom of Eclipse, find the 

Misc section, and add in Layout gravity and Layout margin top values of 

center and 30dip, respectively, or click the main.xml tab at the bottom of 

the editor, and add in the tags yourself by hand.  



CHAPTER 11:  Understanding Intents and Intent Filters 265 

NOTE: If Eclipse is not showing the Properties tab at the bottom, simply go into the Window 

menu and select Show View  Other... and select Properties and then OK.  

5. Next, copy the image1.png file from our earlier Chapter7/res/drawable 

folder to your Chapter11/res/drawable folder, then right-click on the 

Chapter11 folder and use the Refresh option so that Android can see this 

image file inside our project.  

6. Go into the Properties tab again and find the file using the Background 

option, then click on the search ellipses … to open a dialog where you 

can select image1.png in the drawable folder to use as a background. 

Here’s the final AnalogClock tag: 

    <AnalogClock    android:id="@+id/AnalogClock01"  
                    android:layout_width="wrap_content"  
                    android:layout_height="wrap_content"  
                    android:layout_gravity="center"  
                    android:layout_marginTop="30dip"  
                    android:background="@drawable/image1" /> 

And here is the final code, which is also shown in Figure 11–3 for context: 

<?xml version="1.0" encoding="utf-8"?> 
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android" 
    android:orientation="vertical" 
    android:layout_width="fill_parent" 
    android:layout_height="fill_parent">     
    <TextView   android:layout_width="fill_parent" 
                android:layout_height="wrap_content" 
                android:text="You Are Currently in: Activity #1"  
                android:textColor="#fea" 
                android:textSize="22dip"  
                android:paddingBottom="20dip"/> 
    <Button android:id="@+id/Button01" 
            android:text="Go To Digital Clock: Activity #2" 
            android:textSize="18px" 
            android:layout_width="280px" 
            android:layout_height="60px"  
            android:layout_gravity="center"/> 
    <AnalogClock    android:id="@+id/AnalogClock01"  
                    android:layout_width="wrap_content"  
                    android:layout_height="wrap_content"  
                    android:layout_gravity="center"  
                    android:layout_marginTop="30dip"  
                    android:background="@drawable/image1" /> 
</LinearLayout> 

http://schemas.android.com/apk/res/android


CHAPTER 11:  Understanding Intents and Intent Filters 266 

 

Figure 11–3. Adding user interface elements to our main.xml file 

Writing the Digital Clock Activity 
Now let’s copy the user interface we just developed in our main.xml to use for our 

second activity, which we’ve already created a DigitalClockActivity.java class for.  

1. The easiest way to do this is to right-click on the main.xml file under the 

/res/layout folder and select Copy from the pop-up context menu, then 

right-click on the /res/layout folder in the Package Explorer pane (right 

above the file name) and select Paste, which will paste a copy of 

main.xml right alongside main.xml in the same folder. When you do this 

you will get a Name Conflict dialog like the one in Figure 4. 



CHAPTER 11:  Understanding Intents and Intent Filters 267 

 

Figure 11–4. Specifying digital_clock.xml as the new name for main.xml 

2. Eclipse sees the duplicate file names and automatically provides a 

simple dialog box that allows you to change the name. Change it to 

digital_clock.xml and click OK.  

3. We are ready to right-click on digital_clock.xml and select Open, or hit 

the F3 key to open the copied file in its own editor pane, so we can 

change some of the key tag attributes and quickly craft a user interface 

for our second (digital clock) activity. Do this now. 

4. Edit the AnalogClock tag as follows: 

a. Change it to a DigitalClock tag.  

b. Remove the background image reference to image1.png.  

c. Change the id to DigitalClock01 . 

d. Add a textSize attribute of 32dip.  

e. Add a textColor attribute of #ADF to add some nice blue sky 

coloring.  

f. Finally, add an android:typeface="monospace" attribute for 

readability, and we’re ready to change our TextView and Button UI 

objects. 

     <DigitalClock    android:id="@+id/DigitalClock01"  
                      android:layout_width="wrap_content"  
                      android:layout_height="wrap_content"  
                      android:layout_gravity="center"  
                      android:layout_marginTop="30dip"  
                      android:textSize="32dip"  
                      android:textColor="#adf"  
                      android:typeface="monospace"/> 

5. Change the button text to “Go to Analog Watch: Activity #1” and leave 

the ID at Button01. Why? Because these two different XML files are 

going to be called by two different Activity classes, and thus the ID does 

not conflict. If one Activity class referenced both these XML files, we 

might have a naming conflict. 



CHAPTER 11:  Understanding Intents and Intent Filters 268 

    <Button android:id="@+id/Button01" 
            android:text="Go to Analog Watch: Activity #1" 
            android:textSize="18px" 
            android:layout_width="280px" 
            android:layout_height="60px"  
            android:layout_gravity="center"/> 

6. Finally, we change the TextView object text to read “You are Currently 

in: Activity #2” and change the android:textColor to the #ADF value we 

are using with the digital clock tag.  

    <TextView    android:layout_width="fill_parent" 
                 android:layout_height="wrap_content" 
                 android:text="You Are Currently in: Activity #2"  
                 android:textColor="#adf" 
                 android:textSize="22dip"  
                 android:paddingBottom="30dip"/> 

When you’re done, the whole UI layout should look like this (also shown in Figure 11–5): 

<?xml version="1.0" encoding="utf-8"?> 
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android" 
    android:orientation="vertical" 
    android:layout_width="fill_parent" 
    android:layout_height="fill_parent"> 
 
    <TextView    android:layout_width="fill_parent" 
                 android:layout_height="wrap_content" 
                 android:text="You Are Currently in: Activity #2"  
                 android:textColor="#adf" 
                 android:textSize="22dip"  
                 android:paddingBottom="30dip"/> 
 
    <Button android:id="@+id/Button01" 
            android:text="Go to Analog Watch: Activity #1" 
            android:textSize="18px" 
            android:layout_width="280px" 
            android:layout_height="60px"  
            android:layout_gravity="center"/> 
 
     <DigitalClock    android:id="@+id/DigitalClock01"  
                      android:layout_width="wrap_content"  
                      android:layout_height="wrap_content"  
                      android:layout_gravity="center"  
                      android:layout_marginTop="30dip"  
                      android:textSize="32dip"  
                      android:textColor="#adf"  
                      android:typeface="monospace"/> 
</LinearLayout> 

http://schemas.android.com/apk/res/android


CHAPTER 11:  Understanding Intents and Intent Filters 269 

 

Figure 11–5. XML mark-up for the digital_clock.xml user interface activity 

Wiring up the Application 
While we’re working with XML files, let’s add an activity tag in our 

AndroidManifest.xml file so our second activity can be recognized by Android, before 

finishing off the configuration.  

Right-click on the AndroidManifest.xml file name under your Chapter11 folder (at the 

bottom of the list), and select Open or hit F3. Add a second activity tag after the first 

tag (which our New Android Project dialog has already created) that points to the new 

DigitalClockActivity.java class we created earlier (see Figure 11–6). Here is the code: 

<activity android:name=".DigitalClockActivity"></activity> 



CHAPTER 11:  Understanding Intents and Intent Filters 270 

Figure 11–6. Adding the DigitalClockActivity tag to our AndroidManifest.xml file  

Now let’s make sure both Activities have user interfaces. Thanks to our handy New
Android Project dialog, our IntentExamples class is ready and pointing to the main.xml file

so that the Activity #1 side of the equation is already taken care of. So all we have to

worry about is the DigitalClockActivity class.  

Copy the import android.os.Bundle statement and the onCreate() method over to the

DigitalClockActivity.java class and change the R.layout specification to point to the

digital_clock XML user interface specification. Now we’ve implemented our user

interface logic for each of our two Activity classes as follows (and as shown in Figure

11–7): 

    public void onCreate(Bundle savedInstanceState) { 
        super.onCreate(savedInstanceState); 
        setContentView(R.layout.digital_clock); 
    } 

Figure 11–7. Adding the digital clock user interface layout 

D
ow

nl
oa

d 
fr

om
 W

ow
! e

B
oo

k 
<

w
w

w
.w

ow
eb

oo
k.

co
m

>



CHAPTER 11:  Understanding Intents and Intent Filters 271 

Sending Intents 
Now we need to add in our Button object and Intent object code to the onClick() event 

handler in each activity so each can send an intent to the other activity, allowing us to 

switch between the two activities using the button. 

So let’s get started with the main IntentExamples activity class first, and add in our 

familiar Button object instantiation and an onClick() event handler that will contain the 

code that creates our Intent object. Remember to also add in (or have Eclipse add in for 

you using the hover-over-redline method we learned earlier) the import statements for 

the android.view.View and android.widget.Button packages, as well as a new import 

we haven’t used before called android.contact.Intent, which defines our Intent object 

class. 

Since we’ve already covered adding a button and attaching it to an onClick() event 

handler routine, we’ll get right into the two lines of code that create our Intent object and 

send it over to the second activity. Here is the code, which you’ll also see in Figure 11–8.  

The screenshot shows what your Eclipse editor pane for IntentExamples.java will look 

like when we are finished. 

        Button Activity1 = (Button) findViewById(R.id.Button01); 
        Activity1.setOnClickListener(new View.OnClickListener() { 
            public void onClick(View view) { 
                Intent myIntent =  
                  new Intent(view.getContext(), DigitalClockActivity.class); 
                startActivityForResult(myIntent, 0); 
            } 
        }); 

 

Figure 11–8. Adding the Java code for the UI button, event listener, and Intent object 



CHAPTER 11:  Understanding Intents and Intent Filters 272 

To create an Intent object, we use the now familiar structure where we declare the 

object type (Intent) and our name for it (myIntent).  We set it equal to a new Intent 

object using the new keyword, along with a call to the Intent class’s constructor. The 

constructor takes the context this intent is created in (in this case, a button obtained 

from the View via a view.getContext() method call) and the activity class 

(DigitalClockActivity.class) into which we want to pass our Intent object. 

We then use the startActivityForResult() method (part of the 

android.content.Intent class we imported) to pass the intent object we just created, 

myIntent, and a parameter of zero; this is what we are sending to the other activity to be 

acted on. This would typically consist of data that your application wants to pass from 

one activity class to another via the Intent object for further processing. In this case, we 

are simply calling (switching to) the other user interface activity.  

Now let’s look at the code in our DigitalClockActivity class and see how the second 

activity talks back to the first activity. We will skip over the Button instantiation and 

onClick() event handling explanations, and get right into the intent declaration and the 

Java code that returns a result to the calling activity class via yet another Intent object. 

Here’s the code (also shown in Figure 11–9). 

        Button activity2 = (Button) findViewById(R.id.Button01); 
        activity2.setOnClickListener(new View.OnClickListener() { 
            public void onClick(View view) { 
                Intent replyIntent = new Intent(); 
                setResult(RESULT_OK, replyIntent); 
                finish(); 
            } 
        }); 

 

Figure 11–9. Java Code for the DigitalClockActivity, event listener, and intent object 

6



CHAPTER 11:  Understanding Intents and Intent Filters 273 

In this activity class, in the onClick() listener we create a new (empty) intent object 

called replyIntent, then load it with the setResult() method, which loads  a constant 

called RESULT_OK. When we have finished handling the intent (in this case by loading a 

new intent with the reply data), we call the finish() method to send the intent back, 

after the button in the second activity is clicked on to send us back to the first activity.  

Now let’s right-click on our Chapter11 folder and then Run As  Android Application so 

we can see that we can now switch back and forth between the two activities that 

contain the two different time utilities we created in one application. As you can see in 

Figure 11–10, we can switch between the two activities by clicking on the respective 

buttons, and we can do this as many times as we like, and the application performs as 

expected and does not crash. That is important, by the way, that the app does not crash 

under repeated use. 

 

Figure 11–10. Running our app in the Android 1.5 emulator and switching back and forth between activities  

Next we will use an intent object to call a service, the MediaPlayer, to play some music 

in the background and allow us to start the music and stop the music. 

To do this we first must learn what services are and how they can help us do things in 

the background without affecting our application’s user interface functionality. We will 

then get into an example that uses intents with both services and activities. 



CHAPTER 11:  Understanding Intents and Intent Filters 274 

Android Services: Data Processing in its own Class 
Android has an entire Service class dedicated to enabling developers to create services 

that run apart from the main user interface program logic. These services can either run 

in a separate process (known as a thread in Java programming as well as in other 

programming languages) or the same process as the user interface activities. 

A thread is an area of the operating system’s memory where a program function has its 

own resources and can run in parallel with other applications or other application 

components or functions. For instance, a video player can run in a different thread from 

the rest of the application so that it doesn’t hog all of the main application thread 

resources. 

Threads were originally devised for multitasking operating systems like Mac, Linux, and 

Windows, so that if a program or task crashed, it would not bring down the entire 

operating system. Instead, just that thread or process could crash or lock-up, and the 

others that were running wouldn’t be affected adversely. 

A service is a type of Android application component that needs to run asynchronously 

(not in step with the usual flow of the user interface). For example, if you have some 

processing that takes a bit longer than the user is willing to wait for, you can set off the 

processing asynchronously in the background while the main program continues. When 

the processing has finished, the results can be delivered to the main program and dealt 

with appropriately. A service can also be used by other Android applications, so it is 

more extensible than an activity. 

To create your own service class to offload programming tasks like calculating things or 

playing media such as audio or video in real-time, you need to subclass the Service 

class and implement at least its onCreate(), onStart(), and onDestroy() methods with 

your own custom programming logic. You also must declare the Service class in your 

AndroidManifest.xml file using the <service> tag, which we’ll get into a bit later on. 

Using Intents with Services 
To see how to control a service class via intent objects, we will need to add some user 

interface elements to our Chapter11 IntentExamples activity, namely two button objects 

that will start and stop our service. In this case, the service is the Android MediaPlayer, 

which needs to run in the background, independently of our user interface elements. 

1. First, let’s add a Button tag to our main.xml file by copying the Button01 

tag and pasting it underneath the AnalogClock tag.  

2. Change the id to startButton and the android:text to “Start the Media 

Player Service” and leave the other attributes in the tag the same. 

        <Button android:id="@+id/startButton" 
            android:text="Start the Media Player Service" 
            android:textSize="18px" 
            android:layout_width="280px" 
            android:layout_height="60px"  



CHAPTER 11:  Understanding Intents and Intent Filters 275 

            android:layout_gravity="center"/> 

3. Next, copy this startButton tag and paste the copy immediately below 

the startButton tag. 

4. Change the id of the copy to stopButton and the android:text to read 

“Stop the Media Player Service” so that we now have a stop button and 

a start button. Figure 11–11 shows both buttons in place in the Layout 
tab of Eclipse and Figure 11–12 shows the code in context. 

        <Button android:id="@+id/stopButton" 
            android:text="Stop the Media Player Service" 
            android:textSize="18px" 
            android:layout_width="280px" 
            android:layout_height="60px"  
            android:layout_gravity="center"/> 

 

Figure 11–11. Designing our media player user interface in the Eclipse Layout Editor in Portrait mode  

5. Now let’s change the AnalogClock tag attribute 

android:layout_marginTop to use 20dip rather than 30dip. Copy the 

attribute to the line below and change it to 

android:layout_marginBottom so that we have an even 20 pixels of 

spacing around the analog watch.  



CHAPTER 11:  Understanding Intents and Intent Filters 276 

    <AnalogClock    android:id="@+id/AnalogClock01"  
                    android:layout_width="wrap_content"  
                    android:layout_height="wrap_content"  
                    android:layout_gravity="center"  
                    android:layout_marginTop="20dip"  
                    android:layout_marginBottom="20dip" 
                    android:background="@drawable/image1" /> 

6. Click the Layout tab at the bottom of the main.xml pane to make sure the 

user interface layout looks good and check Figure 11–12 to see that 

your XML looks right. 

 

Figure 11–12. Adding start and stop buttons for our media player in main.xml  

Next we need to let our Android application know that we are going to be calling a 

service, and this is done via the AndroidManifest.xml file. We will edit that file next to 

add a service tag that points to our MediaPlayerService class, which we are going to 

code next. We will add this service tag right after the second activity tag we added in 

the previous example (see Figure 11–13 for context). This is how the service tag is 

structured: 

<service android:enabled="true" android:name=".MediaPlayerService" /> 



CHAPTER 11:  Understanding Intents and Intent Filters 277 

The first attribute of the service tag android:enabled indicates that the service is 

enabled for use. If you set this attribute to false, the service is still declared to Android 

for the application and can later be enabled via Java code. As we have seen, everything 

that can be done in XML can also be accessed and changed in our Java code. 

The second attribute, android:name, specifies the name of the service class that we will 

code. We are going to name it MediaPlayerService.java so we specify that in XML as 

.MediaPlayerService. Now we are ready to start coding the service that will play media 

files without interfering with the user interface code in our activity class. 

Note that if you haven’t created the MediaPlayerService.java class before you add the 

service tag, Eclipse may highlight this fact with a red X in the margin to the left of the 

service tag, as shown circled in Figure 11–13. 

 

Figure 11–13. Adding a Media Player Service Tag to the AndroidManifest.xml file in Eclipse  

Now that we’ve added the XML mark-up, let’s create the MediaPlayerService.java 

class, extending the Android Service class to create our own custom service class that 

we’ll call from our IntentExamples Activity class. 

Creating a Service 
To do this, we will use the same work process as before: 

1. Right-click on your Chapter11 folder in the Eclipse Package Explorer 

pane on the left and select New  Class.  

2. Fill out the New Java Class dialog as follows: 

 Source folder: Chapter11/src. Default entry, as specified by 

Eclipse 



CHAPTER 11:  Understanding Intents and Intent Filters 278 

 Package: intent.filters. Click Browse button and select from list 

 Name: MediaPlayerService 

 Modifiers: public 

 Superclass: android.app.Service 

3. When everything is filled out, select Finish. 

The completed dialog is shown in Figure 11–14. It will create an empty class where we 

can put our media player logic for creating, starting, and stopping the media player. 

 

Figure 11–14. Creating the MediaPlayerService.java class via the New Java Class dialog  

Below (and in Figure 11–15) is the empty class that the New Java Class dialog created for 

us, complete with the import statements that let us use the Service class, the Intent 

class, and the IBinder interface. We won’t actually be using the IBinder interface in this 

example but will leave in the code. This won’t affect how the app runs because it is used 

by a null method, onBind(). We need to keep this method here because Android expects 

it to be implemented when we extend the Service class, but we’ll just leave it as is.  

package intent.filters; 
 
import android.app.Service; 
import android.content.Intent; 
import android.os.IBinder; 



CHAPTER 11:  Understanding Intents and Intent Filters 279 

public class MediaPlayerService extends Service { 
    @Override 
    public IBinder onBind(Intent intent) { 
        // TODO Auto-generated method stub 
        return null; 
    } 
} 

NOTE:  Binding is a concept in services where your activity can talk with the Service class while 
it is running, and more than one time; but our example simply needs to start and stop the 

service, so the complexity of binding is not needed. 

 

Figure 11–15. Android-created MediaPlayerService base service class 

Here is the code that lets our MediaPlayerService class do things. I’ll show you each of 

the bold sections in turn as I describe what they do, so you can type them in as we go: 

package intent.filters; 
 
import android.app.Service; 
import android.content.Intent; 
import android.os.IBinder; 
import android.media.MediaPlayer; 
 
public class MediaPlayerService extends Service { 
    MediaPlayer myMediaPlayer; 
 
    @Override 
    public IBinder onBind(Intent intent) { 
        // TODO Auto-generated method stub 
        return null; 
    } 
 
    @Override 
    public void onCreate() { 
        myMediaPlayer = MediaPlayer.create(this, R.raw.mindtaffy); 
        myMediaPlayer.setLooping(true); 
    } 



CHAPTER 11:  Understanding Intents and Intent Filters 280 

    @Override 
    public void onStart(Intent intent, int startid) { 
        myMediaPlayer.start(); 
    } 

    @Override 
    public void onDestroy() { 
        myMediaPlayer.stop(); 
    } 
} 

The results are shown in Figure 11–16. 

Figure 11–16. Adding our MediaPlayer onCreate, onStart and onStop methods  

The first code structure we always add to a new class is the onCreate() method, which

tells the class what to do to set itself up when it is called the first time (i.e., created). 

We will use the onCreate() method to instantiate and configure our MediaPlayer object

and load it with our audio file. Since the audio file is an MP3 file and already optimized

for compression, we will put it in the /res/raw folder. Files in the /raw folder are left

alone by the Android app compression process and are simply put into the .apk file as

is. We’ll do that now before explaining the code in detail. 

1. Let’s create a Chapter11/res/raw folder to hold the mindtaffy.m4a file

that we will call in our MediaPlayerService class. You can either create

the new /raw folder under the /Chapter11/res folder using your

operating system’s file manager or you can right-click on the /res folder

in the Eclipse Package Explorer pane and select New  Folder and enter

raw in the Folder name: field. 

D
ow

nl
oa

d 
fr

om
 W

ow
! e

B
oo

k 
<

w
w

w
.w

ow
eb

oo
k.

co
m

>



CHAPTER 11:  Understanding Intents and Intent Filters 281 

2. Copy mindtaffy.m4a into the new /raw folder 

3. Right-click on the Chapter11 folder and select Refresh and, if necessary, 

Validate to remove any error flags you might get in Eclipse. Usually if 

Refresh does not make something visible to Android and get rid of error 

flags in Eclipse, the Validate procedure will. If it doesn’t, you may have a 

problem and need to examine your overall application structure. 

Implementing Our MediaPlayer Functions 
Now it’s time to go into the code so you can add the media player functionality to your 

own app: 

1. First, at the top of the MediaPlayerService class, declare a public global 

variable called myMediaPlayer of object type MediaPlayer. This will be 

accessed in one way or another by each of the methods that we’ll be 

coding here, so we declare it at the top of the class to make it visible to 

the whole class. 

    MediaPlayer myMediaPlayer; 

2. In the onCreate() code block, let’s set the myMediaPlayer object to 

contain the results of a create() method call with the mindtaffy.m4a file 

passed as a parameter using the R.raw.mindtaffy reference. The 

create() method call creates an instance of the media player and loads 

it with the audio file that we are going to play.  

3. Next we call the setLooping() method on the myMediaPlayer object and 

set a true parameter so that the audio file loops while we are testing the 

rest of the code. 

    @Override 
    public void onCreate() { 
        myMediaPlayer = MediaPlayer.create(this, R.raw.mindtaffy); 
        myMediaPlayer.setLooping(true); 
    } 

4. Now that our myMediaPlayer object has been declared, loaded with MP3 

data, and set to loop when started, we can trigger it with the start() 

method, which we will code next in the onStart() method (onStart() is 

called when the service is started by our activity).  

    @Override 
    public void onStart(Intent intent, int startid) { 
        myMediaPlayer.start(); 
    } 



CHAPTER 11:  Understanding Intents and Intent Filters 282 

5. In the onDestroy() method we use the stop() method to stop the 

myMediaPlayer object. onDestroy() is called when the service is closed 

and disposed of by Android, so we release memory containing the 

media player and the audio file when we exit the application. 

    @Override 
    public void onDestroy() { 
        myMediaPlayer.stop(); 
    } 

Wiring the Buttons to the Service 
Now let’s go back into our IntentExamples.java class using the Eclipse editor tab and 

add our Button objects, associated onClick() event handlers for each button, and the 

necessary calls to our Service class onStart() and onDestroy() methods, as shown in 

Figure 11–17. 

 

Figure 11–17. Implementing the start and stop buttons to control the media player  

First we have the start button.  

        Button startButton = (Button) findViewById(R.id.startButton); 
        startButton.setOnClickListener(new View.OnClickListener() { 
            public void onClick(View view) { 
                startService(new Intent(getBaseContext(), MediaPlayerService.class)); 
            } 
        }); 



CHAPTER 11:  Understanding Intents and Intent Filters 283 

As usual, we declare our startButton Button object with the startButton ID reference, 

then use the setOnClickListener() method to add onClick() event handling to the 

startButton. We are now ready to call the startService() method inside the onClick() 

programming construct. 

startService() calls the onStart() method of the Service class we just wrote, and 

requires an intent object; this intent object tells Android what service to start and call the 

onStart() method on. We will get a little tricky here and create a new intent object 

inside of the startService() call using the following code structure: 

startService(new Intent(getBaseContext(), MediaPlayerService.class)); 

To create a new intent object, we need to declare the current context as the first 

parameter and then pass the name of the service class we wish to call as the second 

parameter. In a third level of nesting (inside the new intent creation), we use another 

method called getBaseContext() to obtain the current context for the new intent object. 

As the second parameter, we will declare the name of the MediaPlayerService.class to 

complete the creation of a valid intent object. 

Now let’s go through the same procedure with the stopButton Button object, inserting 

the stopButton ID reference and then using the trusty setOnClickListener() method to 

add onClick() event handling to our new stopButton. Now we’re ready to call the 

stopService() method in our newest onClick() programming routine. 

        Button stopButton = (Button) findViewById(R.id.stopButton); 
        stopButton.setOnClickListener(new View.OnClickListener() { 
            public void onClick(View view) { 
                stopService(new Intent(getBaseContext(), MediaPlayerService.class)); 
            } 
        }); 

The stopService() method calls the onDestroy() method of our Service class and 

requires an intent object that tells Android what service to stop (destroy) and call the 

onDestroy() method on. 

We will create yet another new intent object in the stopService() call, using the 

following code structure: 

stopService(new Intent(getBaseContext(), MediaPlayerService.class)); 

To create our final intent object, we will declare the current context as our first 

parameter and then pass the name of our MediaPlayerService()class as our second 

parameter. 

Running the Application 
Now we are ready to right-click our Chapter11 folder and Run As  Android Application to 

run our app. You’ll find when you test the application that everything works perfectly 

with everything else; you can start and stop the media player as many times as you like, 

the music plays smoothly in the background without faltering, and you can switch back 

and forth between the two activities as many times as you want without affecting the 

media playback of the audio file. See Figure 11–18. 



CHAPTER 11:  Understanding Intents and Intent Filters 284 

 

Figure 11–18. Running our media player service inside the Android 1.5 emulator  

Next we are going to take a look at using Intent objects with broadcast receivers, and 

then we will have covered all three areas of Intent use within Android. 

Using Intents with Broadcast Receivers 
The final type of intent object we will look at in this chapter is the broadcast receiver, 

which is used for communication between different applications or different areas of 

Android, such as the MediaPlayer or Alarm functions. These intents send, listen to, or 

receive messages, sort of like a head’s up notification system, to let your application 

know what’s going on around it during the ongoing operation of the smartphone, 

whether that’s a phone call coming in, an alarm going off, or a media player finishing a 

file playback. 

Since we already have an analog watch and a digital clock, let’s add a timer and alarm 

function to finish off our suite. Since our analog clock user interface screen is full of UI 

elements, let’s add the alarm functions to our digital clock user interface, as that’s the 

most logical place to add an alarm anyway. Figure 11–19 shows a basic diagram of what 

we will do in XML and Java to create the intent and alarm in our next application 

segment.  



CHAPTER 11:  Understanding Intents and Intent Filters 285 

 

Figure 11–19. What we have to do in XML and Java to create the intent and alarm 

Creating the Timer User Interface via XML 
So, first, let’s add an EditText tag so we can let users enter their own custom timer 

duration. Place the following markup in your digital_clock.xml file after the 

DigitalClock tag: 

<EditText android:layout_width="wrap_content"  
        android:layout_height="wrap_content"  
        android:id="@+id/timeInSeconds" 
        android:layout_gravity="center" 
        android:hint="Enter Number of Seconds Here!"  
        android:inputType="numberDecimal" 
        android:layout_marginTop="30dip" 
        android:layout_marginBottom="30dip" /> 

The EditText tag has an ID of timeInSeconds and a layout gravity of center for 

consistency with our prior UI design. Since EditText is a new user interface object for 

us, we will add an android:hint attribute that says “Enter Number of Seconds Here!” 

NOTE: The hint attribute is text you enter to appear in the text field when it is created by 
Android and placed on the screen in the layout container. This hint tells the user what to type in 

the field, which, in this case, is the number of seconds the timer should count down. 

Next we have an important android:inputType attribute, which tells us what data type 

the field will contain, in this case a real number that is represented by the numberDecimal 

constant. The timer uses milliseconds, so if we want the timer to count 1534 

milliseconds, we can type 1.534 in this field and achieve this precise result. Finally, we 

3



CHAPTER 11:  Understanding Intents and Intent Filters 286 

add two margin attributes (top and bottom) of 30dip each to space the user interface out 

and to make it more visually attractive to the end user. 

We’ll also add a Button tag called startTimer to, well, start the timer. Let’s use an ID of 

startTimer and an android:text value of “Start Timer Countdown” to prompt the user. 

And we’ll also use our familiar android:layout_gravity="center" to center our button, 

so that the UI remains consistent.  

<Button android:layout_width="wrap_content" 
        android:layout_height="wrap_content" 
        android:layout_gravity="center"  
        android:id="@+id/startTimer"  
        android:text="Start Timer Countdown" /> 

Figure 11–20 shows how our digital_clock.xml file should look in the Eclipse IDE. 

 

Figure 11–20. Adding our timer user interface elements to the digital_clock.xml file  

Creating a Timer Broadcast Receiver 
Now let’s create our TimerBroadcastReceiver class, which is a subclass of the 

BroadcastReceiver class.  

1. As we are now used to doing, let’s create a new class using New  Class, 

and use the following parameters: 

 Source folder: Chapter11/src. Default entry, as specified by 

Eclipse 



CHAPTER 11:  Understanding Intents and Intent Filters 287 

 Package: intent.filters. Click Browse button and select from list 

 Name: TimerBroadcastReceiver 

 Modifiers: public 

 Superclass: android.content.BroadcastReceiver 

2. When everything is filled out, select Finish. 

Figure 11–21 shows what your New Java Class dialog should look like when you’ve 

entered all of the relevant new Java class information. 

 

Figure 11–21. Creating a new TimerBroadcastReceiver class via the New Java Class dialog in Eclipse  

Now we have an empty class shell with all of the import statements that we need for our 

BroadcastReceiver class and an empty onReceive() method for us to fill out with our 

programming logic. The onReceive() method will receive our intent and broadcast a 

message via the Toast class, which will notify us regarding the alarm status. 

Let’s add an import statement for the Toast widget so we can use it to broadcast a 

message to the user when the broadcast receiver is used. It is important to note that this 

Toast message could be replaced by anything we want to happen when our timer goes 

off, including but not limited to playing a song, playing a ringtone, vibrating the phone, 

playing a video, or anything else you can think of. 

import android.widget.Toast; 



CHAPTER 11:  Understanding Intents and Intent Filters 288 

The Toast widget’s makeText() method can be coded as follows: 

    public void onReceive(Context context, Intent intent) { 
        Toast.makeText(context, "Alarm Notification", Toast.LENGTH_LONG).show(); 
    } 

We first pass the Toast widget the context parameter received along with the 

onReceive() call and then tell it what to write to the screen (our “Alarm Notification” 

string) and how long to show it on the screen (the LENGTH_LONG constant). We then 

append the show() method to makeText() to draw the message to the screen.  

Figure 11–22 shows how all of this should look on the TimerBroadcastReceiver tab in 

the Eclipse IDE. 

 

Figure 11–22. Our TimerBroadcastReceiver class  

Configuring the AndroidManifest.xml file <receiver> Tag 
Now we need to declare our broadcast receiver using the receiver tag in our 

AndroidManifest.xml file so it is registered for use with Android. We will do this right 

after the service tag that we added in the previous section, entering the following line of 

XML mark-up code: 

<receiver android:name=".TimerBroadcastReceiver" android:enabled="true" /> 

This is fairly straightforward. We use the name attribute to assign our 

TimerBroadcastReceiver class name to the receiver declaration tag and then enable it 

for use in our application by setting the android:enabled attribute to true so that the 

broadcast receiver is live (Figure 11–23). 



CHAPTER 11:  Understanding Intents and Intent Filters 289 

 

Figure 11–23. Adding a <receiver> tag to our AndroidManifest.xml file  

Now our broadcast receiver is set up to notify users via a Toast message when the 

broadcast receiver is utilized. The next thing we need to do is add the code to our 

DigitalClockActivity class to implement an alarm clock function that triggers this 

Broadcast Receiver class via an intent object, so we can see how all this works 

together. 

Implementing our Intent 
The modifications to our DigitalClockActivity class will be done via several new 

import statements, an event handler for a click on our start timer countdown button, and 

the timerAlert() method that we will write to do all the heavy lifting to implement the 

new timer functionality to our application and to trigger our broadcast receiver class 

using intent objects. 

Let’s start with the onCreate() method: 

    public void onCreate(Bundle savedInstanceState) { 
        super.onCreate(savedInstanceState); 
        setContentView(R.layout.digital_clock); 
        
        Button activity2 = (Button) findViewById(R.id.Button01); 
        activity2.setOnClickListener(new View.OnClickListener() { 
            public void onClick(View view) { 
                Intent replyIntent = new Intent(); 
                setResult(RESULT_OK, replyIntent); 
                finish(); 
            } 
        }); 
         
        Button startTimer = (Button) findViewById(R.id.startTimer); 
        startTimer.setOnClickListener(new View.OnClickListener() { 
            public void onClick(View view) { 
                timerAlert(view); 
            } 
        }); 
    }  



CHAPTER 11:  Understanding Intents and Intent Filters 290 

Now let’s see how to add the highlighted code, starting with the import statements

needed. 

1. We need to import the two new widgets that we are going to use to

implement editable text and a toast notification message. Both of these

classes are from the android.widget package: 

import android.widget.EditText;
import android.widget.Toast; 

2. Next let’s create our startTimer Button object for the start timer

countdown button and use the findViewById() method to set it to the

new startTimer button tag we previously added to our

digital_clock.xml file. Place the following in the onCreate() method

after the existing button code: 

        Button startTimer = (Button) findViewById(R.id.startTimer); 

3. Now we’ll add a setOnClickListener() method to handle events

generated by the startTimer button. Inside of that construct we will

create an onClick() method that calls a timerAlert() method, which

holds all of the relevant program logic to set up intents and construct

the alarm feature for our digital clock activity: 

        startTimer.setOnClickListener(new View.OnClickListener() { 
            public void onClick(View view) { 
                timerAlert(view); 
            } 
        }); 

We will pass the view variable (the onClick view or button that was passed from the

onClick() method) to the timerAlert() method so that it has the context needed for the

PendingIntent. Here is the code for the timerAlert() method, which we will go over line

by line: 

public void timerAlert(View view) { 
    EditText textField = (EditText) findViewById(R.id.timeInSeconds); 
    int i = Integer.parseInt(textField.getText().toString()); 
    Intent timerIntent = new Intent(this, TimerBroadcastReceiver.class); 
    PendingIntent myPendingIntent = 
      PendingIntent.getBroadcast(this.getApplicationContext(), 0, timerIntent, 0); 
    AlarmManager myAlarmManager = (AlarmManager) getSystemService(ALARM_SERVICE); 
    myAlarmManager.set(AlarmManager.RTC_WAKEUP, System.currentTimeMillis() +  
      (i * 1000), myPendingIntent); 
    Toast.makeText(this, "Alarm is set for " + i + " seconds!",  
                   Toast.LENGTH_LONG).show();
} 

1. First, we need two import statements for two new classes from the

android.app package.  

android.app.AlarmManager is a class that manages alarm

functions for the Android OS.  

D
ow

nl
oa

d 
fr

om
 W

ow
! e

B
oo

k 
<

w
w

w
.w

ow
eb

oo
k.

co
m

>



CHAPTER 11:  Understanding Intents and Intent Filters 291 

 android.app.PendingIntent is a class that allows intents to be 

pending, which means they can be scheduled. This means they 

can be handled by classes in Android even if the calling class is 

paused, missing, asleep, stopped, or destroyed before the called 

intent has been processed. This is important for an alarm, 

especially if the timer is set to hours rather than minutes or 

seconds, because the phone could run out of charge before the 

Intent was ever satisfied. 

import android.app.AlarmManager; 
import android.app.PendingIntent; 

2. The timerAlert() method is void because it just performs some tasks 

relating to setting up intents and alarm functions. It takes a View object 

named view as its passed parameter. 

public void timerAlert(View view) { 

3. The first thing we do in this method’s code block is to declare the 

EditText object, name it textField, and locate it in our 

digital_clock.xml layout definition via its timeInSeconds ID parameter. 

    EditText textField = (EditText) findViewById(R.id.timeInSeconds); 

4. Once we have the textField object we can use the getText() method 

along with the toString() method to get the string that the user types 

into the field. We then use the parseInt() method to convert that string 

value into an integer value and store it in the i variable of type int (or 

integer). Later we will use this integer value with our set() method to set 

the alarm. 

    int i = Integer.parseInt(textField.getText().toString()); 

5. In the third line of code we declare an Intent object that we name 

timerIntent and set it to a new Intent object with the context of this 

and the class of TimerBroadcastReceiver.class as we have done in the 

previous sections of this chapter. We will use this timerIntent object in 

the PendingIntent object. 

    Intent timerIntent = new Intent(this, TimerBroadcastReceiver.class); 

6. Now let’s create a PendingIntent object called myPendingIntent and set 

it to the result of the getBroadcast() method call; this takes four 

parameters: 

 The context 

 Code 

 The intent object we want to use as a PendingIntent 

 Any constants 



CHAPTER 11:  Understanding Intents and Intent Filters 292 

NOTE: In this case we need no code or constants so we simply pass the current context, which 
we get using the getApplicationContext() method and the timerIntent object we 

created just prior in the previous line of code. 

    PendingIntent myPendingIntent = 
      PendingIntent.getBroadcast(this.getApplicationContext(), 0, timerIntent, 0); 

7. Now we are ready to create our alarm using the AlarmManager class. To 

do this we declare an AlarmManager object named myAlarmManager and 

call the getSystemService() method with the ALARM_SERVICE constant to 

specify that we want to get the alarm system service and set it to the 

myAlarmManager object. Once we have defined myAlarmManager as an 

alarm service object we can use the set() method to configure it for our 

use in the application. 

    AlarmManager myAlarmManager = (AlarmManager) getSystemService(ALARM_SERVICE); 

8. The next line in the code block is the one that ties everything else 

together. The set() method we will use on our myAlarmManager object 

has three parameters: 

 TYPE: The type of alarm trigger we wish to set. 

 TRIGGER TIME: The alarm will trigger when it reaches this 

system time.  

 OPERATION: The PendingIntent object containing the context 

and target intent code we wrote in 

TimerBroadcastReceiver.java, as specified using the 

getBroadcast() method. 

    myAlarmManager.set(AlarmManager.RTC_WAKEUP, System.currentTimeMillis() +  
      (i * 1000), myPendingIntent); 

In our incarnation of the set() method on the myAlarmManager object, we first specify the 

AlarmManager.RTC_WAKEUP, which uses the Real Time Clock (RTC) method and wakeup 

constant to specify that we want to wake up the phone (if it is asleep) to deliver the 

alarm. The RTC method uses the system clock in milliseconds as its time reference. 

Using RTC only (without the _WAKEUP) will not wake the phone up if it triggers while the 

phone is asleep, and thus will be delivered only when the phone wakes up again. This 

makes it not nearly as accurate as the RTC_WAKEUP constant. You can imagine how handy 

it is to be able to wake up your phone at a certain discreet time even if it is asleep, so it’s 

a good thing we are exposing you to this handy class here. 

The next parameter we need to specify is the precise system time, in milliseconds, to 

trigger the alarm. We will wax a bit tricky here, and we will specify this middle parameter 

using a bit of inline programming logic. 



CHAPTER 11:  Understanding Intents and Intent Filters 293 

We call the currentTimeMillis() method on the Android System object to get the 

current system time in milliseconds, then we add to the system time the number of 

seconds specified by our user in milliseconds, by multiplying the number of seconds in 

variable i by 1000, since there are 1000 milliseconds in one second. The system time is 

calculated in milliseconds since 1970, so it is a discrete number that we can simply add 

our timer milliseconds value to. 

This numeric result gives us the exact system time in milliseconds when the alarm needs 

to be triggered, and puts it into the set() method’s second parameter, when our inline 

code is evaluated at runtime. As we have seen, Java allows some fairly powerful 

programming constructs to be created using just a single line of programming code. 

Finally, we will specify the myPendingIntent object as our third parameter. This object, 

created earlier with two lines of code, was loaded with the current context and the 

timerIntent object that we created earlier with three lines of code. The timerIntent 

object references our TimerBroadcastReceiver class, which will ultimately be called 

when the alarm is triggered, and will send a Toast to the screen to tell our end user that 

the time is up. 

The final line of code sends a familiar Toast message to the end user, confirming that 

the alarm has been set for the proper number of seconds. This is done by passing the 

Toast makeText() method the current context (this) along with the Toast.LENGTH_LONG 

constant and two strings with the i variable between them like this:  

Toast.makeText(this, "Alarm is set for " + i + " seconds!", Toast.LENGTH_LONG).show(); 

As we’ve seen here, Java is very flexible in how it allows us to mix different data types. 

Figure 11–24 shows our newly enhanced DigitalClockActivity class with the new 

import statements, onCreate() method and timerAlert() method modifications shown. 

Notice along the top of the IDE that we now have seven open tabs with XML and Java 

code that we have either modified or written. This is the most robust application we’ve 

written so far! Now we will run and test our new app. 



CHAPTER 11:  Understanding Intents and Intent Filters 294 

 

Figure 11–24. Adding the startTimer button UI code and timerAlert() method 

Running the Timer Application via the Android 1.5 
Emulator 
Let’s right-click on our Chapter11 folder and select Run As  Android Application and get 

right into our final intent examples application. You’ll find when you run the application 

that all three sections we’ve added work perfectly together. 

This shows us that all of the different types of intents can work seamlessly together in 

Android and that they don’t interfere with each other, as we noted at the beginning of 

the chapter. 

We can now go back and forth between the analog and digital activities using the intents 

we created; turn on the music and go back and forth while it is playing; and use the 

timer function while the digital audio is playing back as a service. 

In the digital clock activity, we can use the editable text field to set our timer value and 

the start timer countdown button to trigger the broadcast intent, which broadcasts a 

Toast to the screen when the specified number of seconds has passed. 

Figure 11–25 shows the application running in the Android 1.5 emulator displaying the 

digital clock, the timer function, and the button that allows us to switch back and forth 

between our two different activities and their user interfaces. 



CHAPTER 11:  Understanding Intents and Intent Filters 295 

 

Figure 11–25. Running our timerAlert() method in the Android 1.5 emulator to show broadcast receiver intents  

Summary 
In this chapter, we’ve seen how different parts of the Android OS and the developer’s 

application components communicate to form a cohesive and seamless application. 

From user interface activities to background processing services and systems utilities, 

intent objects are used in integral ways to pass requests for processing actions on data 

structures between different types of application components. 

This serves to enforce a modular, logical programming work process on the Android 

applications developer, which ultimately increases security, decreases bugs and poorly 

constructed code, and attempts to facilitate the kind of optimization that will be needed 

in the mobile embedded environment of smartphones. 

Ultimately, the proper use of intents and the creative structuring of application 

components is what set the successful Android developer apart from the crowd, so be 

sure to practice using intents and delve deeper into this area of the Android developer 

documentation whenever you get a chance. 



 

 

297 

297 

   Chapter 

The Future 
There are a number of advanced Android topics that are beyond the scope of this book, 

but it’s good for you to know about them so you can continue learning on your own. 

This chapter will cover the more specialized areas of programming for Android, and give 

a summary of what is available and how it is implemented, as well as provide some 

resources for finding more information on implementing these attributes in your future 

Android applications. The examples, where given, will be short and sweet, to give you a 

taste of what is to come.  

Widgets: Creating Your Own Widgets in Android 
As we discussed in Chapter 7, Android has its own collection of user-interface widgets 

that can be used to easily populate your layouts with functional elements that allow your 

users to interface with the program logic that defines what your application does. These 

widgets have their own package called android.widget that can be imported into your 

application and used without further modification.  

Android extends this widget capability to its programmers by allowing us to also create 

our own widgets that can be used by Android as mini-application portals or views that 

float on the Android home screen, or even in other applications (just like the standard UI 

widgets). If you remember, user interface elements are Widgets that are sub-classed 

from View objects. 

Widgets can be used to provide cool little extras for the Android homescreen, such as 

weather reports, MP3 players, calendars, stopwatches, maps, or snazzy clocks and 

similar micro-utilities. 

To create an app widget, you utilize the Android AppWidgetProvider class, which 

extends the BroadcastReceiver class. To create your own app widget, you need to 

extend this class and override one or more of its key methods in order to implement 

your custom app widget functionality. Key methods of the AppWidgetProvider class 

include the following: 

12 



CHAPTER 12:  The Future 298 

 onUpdate(Context, AppWidgetManager, int[]) 

 onDeleted(Context, int[]) 

 onEnabled(Context) 

 onDisabled(Context) 

 onReceive(Context, Intent) 

To create an app widget, you need to create an AppWidgetProviderInfo object that will 

contain the metadata and parameters for the app widget. These are details such as the 

user interface layout, how frequently it is updated or refreshed, and the convenience 

class that it is sub-classed from (AppWidgetProvider). This can all be defined via XML, 

which should be no surprise. 

The AppWidgetProvider class defines all of the methods that allow your application to 

interface with the app widget class via broadcast events, making it a broadcast receiver. 

These broadcast events, as we discussed in Chapter 11, will update the widget, with 

some frequency if required, as well as enabling (turning it on), disabling (turning it off), 

and even deleting it if required. 

App widgets also (optionally) offer a configuration activity that can launch itself when the 

user first installs your app widget. This activity adds a user interface layout that allows 

your users to modify the app widget settings before (or at the time of) its launch. 

The app widget must be declared in the AndroidManifest.xml file, so that the application 

has registered it with the OS for communications, as it is a broadcast receiver, so we 

need the following code in our manifest: 

<receiver android:name="ExampleAppWidgetProvider" > 
    <intent-filter> 
        <action android:name="android.appwidget.action.APPWIDGET_UPDATE/> 
    </intent-filter> 
    <meta-data  android:name="android.appwidget.provider" 
                android:resource="@xml/example_appwidget_info /> 
</receiver> 

Notice that the receiver tag specifies an XML file in the /res/xml folder that sets the 

parameters for the look and operation of the widget, in a file called 

example_appwidget_info.xml, which contains the following XML mark-up code: 

<appwidget-provider 
      xmlns:android=http://schemas.android.com/apk/res/android 
      android:minWidth="294dp" 
      android:minHeight="72dp" 
      android:updatePeriodMillis="80000000" 
      android:initialLayout="@layout/example_appwidget" 
      android:configure="com.example.android.ExampleAppWidgetConfigure" > 
</appwidget-provider> 

 The minWidth and minHeight attributes define the size of the widget. 

 updatePeriodMillis defines the update period in milliseconds.  



CHAPTER 12:  The Future 299 

The updatePeriodMillis value should be set as high as possible, as updates consume 

battery power, and are called even if the smartphone is in sleep mode, which means that 

the phone is powered on to make the update. The initialLayout attribute calls the XML 

file that defines the app widget layout itself. You need to define an initialLayout XML 

file for your app widget in the /res/layout folder, or your app widget will be empty. This 

should all be old hat to you now after Chapter 6.  

The last android:configure attribute is optional, and calls the activity that is needed to 

configure the UI layout and options settings for the widget on start-up. App widget 

layouts are based on remote views, which support only the main the following three 

layout classes in Android:  

 LinearLayout 

 RelativeLayout 

 FrameLayout 

The following widget classes are also supported in the initialLayout XML file: 

 AnalogClock 

 Button 

 Chronometer 

 ImageButton 

 ImageView 

 ProgressBar 

 TextView 

More information can be found at the App Widget Design Guidelines page at: 

http://developer.android.com/guide/practices/ui_guidelines/ 
widget_design.html 

General Information on App Widgets can be found at: 

http://developer.android.com/guide/topics/appwidgets/index.html 

Location-Based Services in Android 
Location-based services and Google Maps are both very important OS capabilities 

when it comes to a smartphone device. You can access all location and maps related 

capabilities inside of Android via the android.location package, which is a collection of 

classes or routines for dealing with maps and locations, and via the Google Maps 

external library, which we will cover in the next section. 

The central component of the location services network is the LocationManager system 

service. This Android system service provides the APIs necessary to determine the 

location and (if supported) bearing of the underlying device’s GPS and accelerometer 

hardware functionality. 

http://developer.android.com/guide/practices/ui_guidelines/
http://developer.android.com/guide/topics/appwidgets/index.html


CHAPTER 12:  The Future 300 

Similar to other Android systems services, the LocationManager is not instantiated 

directly, but is instead requested as an instance from the system by calling the 

getSystemService(Context) method, which then returns a handle to the new 

LocationManager instance, like this: 

getSystemService(Context.LOCATION_SERVICE) 

Once a LocationManager has been established inside of your application, you will be 

able to do the following three things in your application: 

 Query for a list of all LocationProviders for the last known user 

location. 

 Register (or unregister) for periodic updates of the user’s current 

location. 

 Register (or unregister) for a given Intent to be fired once the device is 

within certain proximity of a specified latitude or longitude specified in 

meters. 

Google Maps in Android 
Google provides an external library called Google Maps that makes it relatively easy to 

add powerful mapping functions to your Android applications. It is a Java package 

called com.google.android.maps, and it contains classes that allow for a wide variety of 

functions relating to downloading, rendering, and caching map tiles, as well as a variety 

of user control systems and display options. 

One of the most important classes in the maps package is MapView class, a subclass of 

ViewGroup, which displays a map using data supplied from the Google Maps service. 

Essentially this class is a wrapper providing access to the functions of the Google Maps 

API, allowing your applications to manipulate Google Maps through MapView methods 

that allow maps and their data to be accessed much as though you would access any 

other View object. 

The MapView class provides programmers with all of the various user interface assets 

that can be used to create and control Google Maps data. When your application 

passes focus to your MapView object, it automatically allows your users to zoom into, and 

pan around, the map using gestures or keypresses. It can also handle network requests 

for additional map tiles or an entirely new map.  

Before you can write a Google Maps-based application, you must obtain a Google Maps 

API key to identify your app: 

1. To begin with, you need to provide Google with the signature of your 

application. To do so, run the following at the command line (this is 

again a Windows example): 

keytool -list -keystore C:\users\<username>\.android\debug.keystore  



CHAPTER 12:  The Future 301 

NOTE: The signature of your application proves to Google that your application comes from you. 
Explaining the niceties of this is beyond the scope of the book, but for now just understand that 

you are proving to Google that you created this application. 

2. When prompted, the password is android. Here is what you should see: 

Enter keystore password: 
Keystore type: JKS 
Keystore provider: SUN 
Your keystore contains 1 entry    
androiddebugkey, 21-Jan-2011, PrivateKeyEntry,
Certificate fingerprint (MD5): <fingerprint> 

3. Copy the fingerprint. You'll need it in the next step. 

4. Go to http://code.google.com/android/maps-api-signup.html and

enter the fingerprint in the "My certificate's MD5 fingerprint:" box. 

5. Accept the terms and conditions, then click Generate API Key. 

6. On the next page, note your API key. 

Now that we have our key, here are the basic steps for implementing a Google Maps

app: 

1. First you would want to create a new project and Activity called

MyGoogleMap, with a Project Build Target of Google APIs for version 1.5.

We need to do this to use the Google Maps classes. 

NOTE: You may have to install the Google APIs using the Android SDK and AVD Manager. They 

are listed as Google APIs by Google Inc. 

2. In the AndroidManifest.xml file within the <application> tag use the

<uses-library> tag to point to the Google Maps library address

specified above as follows:  

<uses-library android:name="com.google.android.maps" /> 

3. Also in the AndroidManifest.xml file and within the <application> tag,

use the <uses-permission> tag to request permission to access the

Internet as follows:  

<uses-permission android:name="android.permission.INTERNET" /> 

D
ow

nl
oa

d 
fr

om
 W

ow
! e

B
oo

k 
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

http://code.google.com/android/maps-api-signup.html


CHAPTER 12:  The Future 302 

4. Next you would want to define some simple user interface elements 

within your main.xml layout definition, using a basic linear layout with a 

vertical parameter specified, and then a Google Maps MapView user 

interface element with the clickable parameter set to true, allowing the 

user to navigate the map, as follows:  

<?xml version="1.0" encoding="utf-8"?> 
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android" 
    android:id="@+id/mainlayout" 
    android:orientation="vertical" 
    android:layout_width="fill_parent" 
    android:layout_height="fill_parent" > 
    <com.google.android.maps.MapView 
        android:id="@+id/mapview" 
        android:layout_width="fill_parent" 
        android:layout_height="fill_parent" 
        android:clickable="true" 
        android:apiKey="Your Maps API Key" 
    /> 
</LinearLayout> 

5. Now enter your unique Google Maps API key that was assigned to you 

in the apiKey parameter in the last parameter of the MapView tag. 

6. Next open your MyGoogleMap.java activity and extend your class to use 

a special sub-class of the Activity class called the MapActivity class, 

as follows:  

public class MyGoogleMap extends MapActivity {...} 

7. One of the primary methods of the MapActivity class is the 

isRouteDisplayed() method, which must be implemented, and once it 

is, you will be able to pan around a map, so add this little bit of code as 

follows to complete your basic map:  

@Override 
protected boolean isRouteDisplayed() { 
    return false; 
} 

8. At the top of your MyGoogleMap class instantiate two handles for the 

MapView and the ZoomTool controls (LinearLayout) we are going to add 

next, as follows:  

LinearLayout linearLayout; 
MapView mapView; 

9. Next in your onCreate() method, initialize your MapView UI element and 

add the ZoomControls capability to it via the setBuiltInZoomContols() 

method as follows:  

mapView = (MapView) findViewById(R.id.mapview); 
mapView.setBuiltInZoomControls(true); 

http://schemas.android.com/apk/res/android


CHAPTER 12:  The Future 303 

Note that we are using the built-in MapView zoom controls so we do not have to 

write any code and yet when we run this basic application the user will be able to 

zoom the MapView via zoom controls that will appear when the user touches the 

map and then disappear after a short time-out period (of non-use). 

10. Compile and run your MyGoogleMap application in the Android emulator. 

It is important to note that the external Google Maps library is not an integral part of the 

Android OS, but is actually something that is hosted externally to the smartphone 

environment and requires access externally via a Google Maps key that you must apply 

for and secure before your applications utilize this service from Google. This is the same 

way that this works for using Google Maps from a web site; it’s just that the MapView 

class fine-tunes this for Android usage. To learn more about the Google Maps external 

library visit: 

http://code.google.com/android/add-ons/google-apis 

Google Search in Android 
Google has built its business model on one major service that it has always offered: 

search. It should be no surprise that search is thus a well-supported core service in 

Android. Android users can search for any data that is available to them on their Android 

handset or across the Internet. 

Android, not surprisingly, provides a seamless, consistent search experience across the 

board, and Android provides a robust search implementation framework for you to 

implement search functions inside of your Android applications. 

The Android search framework provides an interface for search that includes both the 

interaction and the search itself, so that you do not have to define a separate Activity in 

Android. The advantage of this is that the use of search in your application will not 

interrupt your current Activity. 

Using Android search puts a search dialog at the top of the screen, pushing other 

content down on the screen as it is utilized. Once you have everything set up to use this 

capability in Android, you can integrate your application with search by providing search 

suggestions based on your app or recent user queries, offer you own custom application 

specific search suggestions in the system-wide quick search function, and even turn on 

voice search functions. 

Search in Android is handled by the SearchManager class; however, that class is not 

used directly, but rather is accessed via an Intent specified in XML or via your Java code 

via the context.getSystemService(context.SEARCH_SERVICE) code construct. Here are 

the basic steps to set-up capability for a search within your AndroidManifest.xml file. 

1. Specify an <intent-filter> in the <activity> section of the 

AndroidManifest.xml:  

<intent-filter> 
    <action android:name="android.intent.action.SEARCH" /> 

http://code.google.com/android/add-ons/google-apis


CHAPTER 12:  The Future 304 

</intent-filter> 
             
<meta-data android:name="android.app.searchable" 
       android:resource="@xml/searchable" /> 

2. Next, create the res/xml/searchable.xml file specified in the <meta-data> 

tag in step 1. 

3. Inside searchable.xml, create a <searchable> tag with the following 

data:  

<searchable xmlns:android="http://schemas.android.com/apk/res/android" 
        android:label="@string/search_label" 
        android:searchSuggestAuthority="dictionary" 
        android:searchSuggestIntentAction="android.intent.action.VIEW"> 
</searchable> 

4. Now in res/values/strings.xml, add a string called search_label. 

Now you are ready to implement a search in your application as described here: 

http://developer.android.com/guide/topics/search/search-dialog.html 

Note that most Android phones and devices come with a search button built in, which 

will pop up the search dialog. You can also provide a button to do this, in a menu 

maybe. That's for you to experiment with.  

Data Storage in Android 
Android has a significant number of ways for you to save data on your smartphone, from 

private data storage for your application, called shared preferences, to internal storage 

on your smartphone device’s memory chips, to external storage via your smartphone 

device’s external storage (HD card or mini HDD), to network connection (Network 

Attached Storage) via your own network server, to an entire DBMS (Database 

Management System) via open source SQLite private databases. 

Shared Preferences 
Shared preferences are persistent data pairs that remain in memory even if your 

application is killed (or crashes), and thus this data remains persistent across multiple 

user sessions. The primary use of shared preferences is to store user preferences for a 

given user’s Android applications and this is a main reason why they persist in memory 

between application runs. 

To set your application’s shared preferences Android provides us with the 

SharedPreferences class. This class can be used to store any primitive data types, 

including Booleans (on/off, visible/hidden), floats, integers, strings, and longs. Note that 

the data created with this class will remain persistent across user sessions with your 

application even if your application is killed (the process is terminated or crashes). 

http://schemas.android.com/apk/res/android
http://developer.android.com/guide/topics/search/search-dialog.html


CHAPTER 12:  The Future 305 

There are two methods in the SharedPreferences class that are used to access the 

preferences; if you have a single preference file use getPreferences() and if you have 

more than one preference files, you can name each and use 

getSharedPreferences(name) and access them by name. Here is an example of the code 

in use, where we retrieve a screen name. The settings.getString() call returns the 

screenName parameter, or the name Android Fan if the setting is not set: 

public static final String PREFS_NAME = "PreferenceFile"; 
… 
    @Override 
    public void onCreate(Bundle savedInstanceState) { 
       super.onCreate(savedInstanceState); 
       setContentView(R.layout.main); 
 
       SharedPreferences settings = getSharedPreferences(PREFS_NAME, 0); 
       String screenName = settings.getString("screenName", "Android Fan");  
       // do something with the screen name. 
    } 

We can set the screen name with the following: 

SharedPreferences settings = getSharedPreferences(PREFS_NAME, 0); 
SharedPreferences.Editor editor = settings.edit(); 
editor.putString("screenName", screenName); 
editor.commit(); 

Internal Memory 
Accessing internal memory storage on Android is done a bit differently, as that memory 

is unique to your application and cannot be directly accessed by the user or by other 

applications. When the application is uninstalled these files are deleted from memory. To 

access files in memory use the openFileOutput() with the name of the file and the 

operation needed, which will return a FileOutputStream object which you can use the 

read(), write() and close() methods to manipulate the data into and out of the file. 

Here is some example code showing this concept: 

String FILENAME = "hello_file"; 
String string = "hello world!"; 
FileOutputStream fos = openFileOutput(FILENAME, Context.MODE_PRIVATE); 
fos.write(string.getBytes()); 
fos.close(); 

External Memory 
The method that is used for accessing external memory on an Android device is 

getExternalStorageState(). It checks to see whether the media (usually an SD card or 

internal micro HDD) is in place (inserted in the case of an SD card) and available for 

usage. Note that files written to external removable storage media can also be accessed 

outside of Android and applications by PCs or other computing devices that can read 

the SD card format. This means there is no security in place on files that are written to 

external removable storage devices.  



CHAPTER 12:  The Future 306 

Using SQLite 
The most common way to store data for your application, and the most organized and 

sharable, is to create and utilize a MySQL Lite database. This is how Android stores and 

accesses its own data for users who utilize its internal applications such as the Contacts 

list or Database. Any private database you create for your application will be accessible 

to all parts of your application, but not to other parts of other developer's applications 

unless you give permission for them to access it. I will briefly outline how it would be 

done here, and you can research these methods on the developer.android site for more 

details. 

The way to create a new SQL database in Android is to create a subclass of the 

SQLiteOpenHelper class and then override the onCreate() method. This method allows 

one to create a tabular structure within the desired database format that will support 

your application’s optimal data structure. Here is some example code from the Android 

Developer site showing the SQLiteOpenHelper implemented. 

public class DictionaryOpenHelper extends SQLiteOpenHelper { 
    private static final int DATABASE_VERSION = 2; 
    private static final String DICTIONARY_TABLE_NAME = "dictionary"; 
    private static final String DICTIONARY_TABLE_CREATE = 
                "CREATE TABLE " + DICTIONARY_TABLE_NAME + " (" + 
                KEY_WORD + " TEXT, " + 
                KEY_DEFINITION + " TEXT);"; 
    DictionaryOpenHelper(Context context) { 
        super(context, DATABASE_NAME, null, DATABASE_VERSION); 
    } 
    @Override 
    public void onCreate(SQLiteDatabase db) { 
        db.execSQL(DICTIONARY_TABLE_CREATE); 
    } 
} 

To write and read from the custom database structure, you would utilize the 

getWritableDatabase() and getReadableDatabase() methods, which both return a 

SQLiteDatabase object that represents the database structure and provides methods for 

performing SQLite database operations. 

To perform SQLite database queries on your new SQLite database you would use the 

SQLiteDatabase_Query methods, which accept all common data query parameters such 

as the table to query and the groupings, columns, rows, selections, projection, and 

similar concepts that are mainstream in database programming. 

Device Administration: Security for IT Deployments 
As of Android version 2.2 (API Level 8), Google has introduced support for secure 

enterprise applications via its Android Device Administration API. This API provides 

developers with employee device administration at a lower system level, allowing the 

creation of “security aware” applications that are necessary in MIS enterprise 

applications that require that IT maintain a tight level of control over the employees 

Android Smartphone devices at all times. 



CHAPTER 12:  The Future 307 

A great example of this is the Android e-mail application, which has been upgraded in 

OS version 2.2 to implement these security features to provide more robust e-mail 

exchange security and support. Exchange Administrators can now implement and 

enforce password protection policies in the Android e-Mail application spanning both 

alphanumeric passwords and simpler numeric PINs across all of the devices in their 

organization. 

IT administrators can go as far as to remotely restore the factory defaults on lost or 

stolen handsets, clearing sensitive passwords and wiping clean proprietary data. E-mail 

Exchange End-Users can now sync their e-Mail and calendar data as well. 

Using the Android Camera Class to control a Camera 
The Android Camera class is used to control the built-in camera that is in every Android 

smartphone. This Camera class is used to set image capture settings and parameters, 

start and stop the preview modes, take the actual picture and retrieve frames of video in 

real-time for encoding to a video stream or file. The Camera class is a client for the 

camera service, which manages the camera hardware. 

To access your Android device’s camera, you need to declare a permission in your 

AndroidManifest.xml that allows the camera features to be included in your application. 

You need to use the <uses-feature> tag to declare any camera features that you wish to 

access in your application so that Android knows to activate them for use in your 

application. The following XML AndroidManifest.xml entries allow the camera to be used 

and define it as a feature along with the auto-focus capabilities: 

<uses-permission android:name="android.permission.CAMERA" /> 
<uses-feature android:name="android.hardware.camera" /> 
<uses-feature android:name="android.hardware.camera.autofocus"/> 

The developer.android website has plenty of Java code for you to experiment with. 

3D Graphics: Using OpenGL ES 1.x in Android 
One of the most impressive capabilities of the Android OS is its ability to “render” 3D 

graphics in real-time using only the open source OpenGL (Open Source Graphics 

Language) ES 1.0 API, and in later releases of Android, the OpenGL ES 1.1 and 1.2 

APIs. OpenGL ES stands for OpenGL for Embedded Systems. 

OpenGL ES is an optimized embedded devices version of the OpenGL 1.3 API that is 

used on Computers and Game Consoles. OpenGL ES is highly optimized for use in 

embedded devices, much like the Android Dalvik Virtual Machine optimizes your code 

by making sure there is no “fat” that the Smartphone CPU and memory need to deal 

with, a streamlining of sorts. OpenGL ES 1.0 is feature parallel to the full OpenGL 1.3 

standard, so if what you want to do on Android is doable in OpenGL 1.3, it should be 

possible to do it in OpenGL ES 1.0. 



CHAPTER 12:  The Future 308 

The Android OpenGL ES 1.0 is a custom implementation but is somewhat similar to the 

J2ME JSR239 OpenGL ES API, with some minor deviations from this specification due 

to its use with the Java Micro Edition (JavaME) for cell phones. 

To access the OpenGL ES 1.0 API, you need to write your own custom subclass of the 

View Class and obtain a handle to an OpenGL Context, which will then provide you with 

access to the OpenGL ES 1.0 functions and operations. This is done in the onDraw() 

method of the custom View class that you create, and once you have a handle to the 

OpenGL Object, you can use that object’s methods to access and call the OpenGL ES 

functional operations. 

More information on OpenGL ES can be found at www.khromos.org/opengles/ 

Information about version 1.0 can be found at www.khronos.org/opengles/1_X/ 

Android Developer Documents do in fact exist for OpenGL ES 1.0 and 1.1 at 

http://developer.android.com/reference/javax/microedition/khronos/opengles/pack
age-summary.html 

FaceDetector 
One of the coolest and most advanced concepts in the SDK is a facial recognition class 

called FaceDetector.  

FaceDetector automatically identified faces of subjects inside of a Bitmap graphic object. 

I would suggest using PNG24 (24-bit PNG) for the highest quality source data for this 

operation. 

You create a FaceDetector object by using the public constructor FaceDetector: 

public FaceDetector (width integer, height integer, maxFaces integer) 

The method you use to find faces in the bitmap file is findFaces(Bitmap bitmap, Face[] 
faces), which returns the number of faces successfully found. 

SoundPool 
The SoundPool class is great for game development and audio playback applications on 

Android because it manages a pool of Audio Resources in an optimal fashion for 

Android Apps that use a lot of audio or where audio is a critical part of the end-user’s 

overall experience. 

A SoundPool is a collection of audio “samples,” such as sound effects or short songs 

which need to be loaded into Android memory from an external resource either inside 

the application’s .APK file or from an external file or the internal file system. 

The cool thing about the SoundPool is that it works hand in hand with the MediaPlayer 

Class that we looked at in Chapter 8 to decode the audio into a raw PCM mono or 

stereo 16-bit CD quality audio stream. This makes it easier for an application to include 

compressed audio in it’s APK and then decompress it on application start-up, load it 

http://www.khromos.org/opengles/
http://www.khronos.org/opengles/1_X/
http://developer.android.com/reference/javax/microedition/khronos/opengles/pack


CHAPTER 12:  The Future 309 

into memory, and then play it back without hiccups when it is called or triggered within 

the application code. 

It gets even more interesting. It turns out that SoundPool can also control the number of 

audio assets that are being simultaneously “rendered” or turned from data values into 

audio sound waves. Essentially this means that the SoundPool is an Audio “Mixing 

Console” that can be used to layer audio in real-time to create custom mixes based on 

your gameplay or other applications programming logic. 

SoundPool defines a maxStreams parameter that limits the number of parallel audio 

streams that can be played so that you can put a “cap” on the amount of processing 

overhead that is used to mixdown audio in your application, in case this starts to affect 

the visual elements that are also possibly rendering in real-time on the screen. If the 

maxStreams value is exceeded then the SoundPool turns off individual audio streams 

based on their priority values, or if none are assigned, based on the age of the audio 

stream. 

Individual audio streams within the SoundPool can be looped infinitely (a value of -1) or 

any number of discreet times (0 to …) and also counts from zero so a loop setting of 

three plays the audio loop four times. Playback rates can also be scaled from 0.5 to 2.0, 

or at half the pitch to twice the pitch, allowing real-time pitch shifting and with some 

clever programming one could simulate effects such as Doppler via fairly simple Java 

code. Samples can also be pitch shifted to give a range of sound effect tones or create 

keyboard-like synthesizers. 

SoundPool also lets you assign a Priority to your individual audio samples, with higher 

numbers getting higher priority. Priority only comes into play when the maxStreams 

value specified in the SoundPool Object is hit and an audio sample needs to be 

removed from the playback queue to make room for another audio sample playback 

request with a higher priority level. Be sure to prioritize your audio samples so that you 

can have complete control of your audio and effects mixing during real-time playback. 

MediaRecorder 
In Chapter 8 we discussed the Android MediaPlayer class, which is commonly used to 

play back audio or video files. Android can also record audio and media files at a high 

level of fidelity and the counterpart to the MediaPlayer class for this is, logically, the 

MediaRecorder class. It is important to note that MediaRecorder does not currently work 

on the Android smartphone emulators. 

There are five main MediaRecorder classes that control the process of media recording. 

They are as follows (note that these are defined inside the MediaRecorder class, hence 

the dot notation): 

 MediaRecorder.AudioEncoder 

 MediaRecorder.AudioSource 

 MediaRecorder.OutputFormat 



CHAPTER 12:  The Future 310 

 MediaRecorder.VideoEncoder 

 MediaRecorder.VideoSource 

You construct a MediaRecorder object and operate on it using the public methods such 

as prepare(), release(), reset(), setAudioChannels(), setCamera(), setOutputFile(), 

and a plethora of other methods that control how the new media data is captured and 

stored on your Android device. 

More information on the MediaRecorder class can be found at  

http://developer.android.com/reference/media/MediaRecorder.html 

Summary 
There are a lot of great features in Android that we simply do not have enough time to 

cover in one book, or that are too high complex for an absolute beginners’ book. That 

doesn't mean that you should not investigate all the cool features that Android has to 

offer on your own, however, so this chapter introduced some that are very powerful and 

advanced for a mobile phone operating system. 

Where graphics are concerned there is no more powerful open source graphics library 

than OpenGL and Android implements the latest OpenGL ES 1.2 technology just like 

HTML5 does currently. Since Android phones have guilt-in GPU hardware, this means 

that you can render real-time 3D on the fly to visualize just about anything you want to 

within your application and in three dimensions to boot! 

There are many other interesting areas to be discovered in Android as well, from 

creating your own widgets to creating your own MySQLite databases to using the 

SmartPhone Camera to the Face Recognition to the SoundPool Audio Engine for games 

and the Media Recorder to capture your own new media assets. All of this is covered in 

detail on the developer.android.com website be sure to explore there at length to 

enhance your knowledge of the thousands of interesting features in Android OS with 

many more to come! 

http://developer.android.com/reference/media/MediaRecorder.html


311 

311 

Index 

■ Special Characters
and Numbers 

(/>) tag, 47 

<!-- tag, 177 

> tag, 177 

3D graphics, using OpenGL ES 1.0 API, 

307–308 

9-Patch bitmap custom scalable 

images, 170–176 

24-bit PNG file, 62 

64-bit computing platforms, IDE on,  

36–38 

64-bit Eclipse IDE, 38

64-bit JDK, 37–38 

■ A 
AbsoluteLayout subclass, 91

accelerateSpeed( ) method, 73

ACTION_BATTERY_LOW constant, 257

ACTION_CALL constant, 257

ACTION_DIAL constant, 257–258

ACTION_DOWN event, 157

ACTION_EDIT constant, 257–258

ACTION_HEADSET_PLUG constant, 

257 

ACTION_MAIN constant, 257, 259

ACTION_SCREEN_ON constant, 257

ACTION_TIMEZONE_CHANGED 

constant, 257

ACTION_VIEW constant, 258

activateOverdrive( ) method, 75

Active-Matrix Organic Light-Emitting 

Diode (AMOLED), 15

activities, 14, 81–82 

Activity classes, using intents with,  

261–273 

Activity statement, 78 

activity tag, 86–87, 269, 276, 303 

ADB (Android Debug Bridge), 33 

Add a Contact to the Database button, 

253 

Add Site dialog, 27 

addButton Button object, 238, 244

addContactButton Button tag, 237–238, 

243

addContactPhoneNumber( ) method, 

238–239, 241, 244, 247, 252

addUri object, 240–241, 252 

ADT (Android Development Tool), 

installing, 26–29

advanced topics, 297–310 

3D graphics, using OpenGL ES 1.0 

API, 307–308

Camera class, 307

data storage, 304–306 

memory, 305 

shared preferences, 304–305

using SQLite databases, 306 

Device Administration API, security

for IT deployments, 306–307 

FaceDetector class, 308 

Google Maps, 300–303 

Google Search, 303–304

location-based services, 299–300

MediaRecorder class, 309–310

SoundPool class, 308–309

widgets, 297–299 

advantages, of Android, 3

AlarmManager class, 292

ALARM_SERVICE constant, 292 

D
ow

nl
oa

d 
fr

om
 W

ow
! e

B
oo

k 
<

w
w

w
.w

ow
eb

oo
k.

co
m

>



Index 312 

AlertDialog class, 140–145 

Alpha channel, 116 

alpha, red, green, and blue (ARGB), 150 

AMOLED (Active-Matrix Organic  

Light-Emitting Diode), 15 

analog:background parameter, 110 

AnalogClock tag, 47–48, 109–110,  

264–265, 267, 274–275 

AnalogClock View element icon, 264 

Android 

advantages of, 3 

application framework, 14 

future of, 17 

history of, 2–3 

and XML markup for applications, 

13–14 

Android activities, 14 

Android Application option, Run As 

menu, 229, 252 

Android Contacts database, 230 

Android Debug Bridge (ADB), 33 

Android Developers web site, 8 

Android development environment 

components, 6 

Android Development Tool (ADT), 

installing, 26–29 

Android Development Tool plug-in, for 

Eclipse, 26 

Android Development Tools, 28 

Android Framework. See also OOP 

AndroidManifest.xml, 85–88 

and APK files, 79–80 

application components, 80–84 

activities, 81–82 

broadcast receivers, 82–83 

content providers, 83–84 

services, 82 

intent objects, 84–85 

and XML, 78–79 

Android MediaStore content providers, 

222 

Android PacKage (APK), 14 

Android Plug-In Name field, 27 

Android plug-in option, Install dialog, 28 

Android plug-ins, 13 

Android Project option, Run As menu, 

236 

Android SDK 

downloading, 8–9 

installing, 25–26 

updating, 31–33 

Android SDK and AVD Manager 

window, 31, 33 

Android SDK tools folder, 170 

android-sdk-windows folder, 30 

android-sdk_r07-windows.zip file, 25 

android statement, 78 

Android Test Project option, 96 

Android Virtual Devices. See AVDs 

Android XML File option, 96 

Android_1.5_Emulator emulator name, 

34 

android.app package, 78, 290 

android.app.Activity class, 92, 263 

android.app.AlarmManager class, 290 

android.app.PendingIntent class, 291 

android.app.Service class, 278 

android:background parameter, 110 

android:configure attribute, 299 

android.contact.Intent package, 271 

android.content.BroadcastReceiver 

class, 287 

android.content.Intent class, 255, 272 

android.database.Cursor class, 234 

android:drawable attribute, 117 

android:enabled attribute, 277, 288 

android:focusable attribute, 216 

android.graphics.drawable package, 

147, 149, 170 

android.graphics.drawable.AnimationDr

awable class, 156 

android:hint attribute, EditText tag, 285 

android:icon attribute, 86, 130 

android:id attribute, 130 

android:id tag, 202 

android:inputType attribute, 285 

android.intent.action.MAIN action, 87 

android.intent.category.LAUNCHER 

category, 87 

android:label attribute, 86 

u



Index 313 

android:layout_gravity = "center" 

attribute, 202 

android:layout_marginBottom attribute, 

275 

android:layout_marginTop attribute, 

AnalogClock tag, 275 

android.location package, 299 

AndroidManifest.xml fiile, 85–88 

AndroidManifest.xml file, 50, 288–289 

android:minSdkVersion attribute, 87 

android:name attribute, 86, 277 

android.net.Uri class, 180, 234 

android:nextFocus attribute, 211–212 

android:nextFocusDown attribute, 

Button tag, 212 

android:nextFocusUp attribute, 

contextButton tag, 211 

android:oneshot attribute, 154, 159 

android.os package, 78 

android:paddingBottom="20dip" 

attribute, 264 

android.permission.READ_CONTACTS, 

227 

android.permission.WRITE_CONTACTS 

option, 227 

android.provider package, 219 

android.provider.Contacts.People table, 

234 

android:src file, 109 

android:state_pressed attribute, 117 

android:text attribute, 58, 202, 274–275, 

286 

android:textColor attribute, 264, 268 

android:textSize attribute, 264 

android:title attribute, 130 

android:typeface="monospace" 

attribute, 267 

android.view.animation package, 147, 

160, 165 

android.view.Menu statement, 135 

android.view.MenuInflater, 135 

android.view.MenuItem, 138 

android.view.MotionEvent class, 156 

android.view.View element, 204 

android.view.View package, 271 

android.widget classes, 90 

android.widget package, 290, 297 

android.widget.Button element, 204 

android.widget.Button package, 271 

android.widget.ImageView class, 138, 

156 

android.widget.LinearLayout, 138 

android.widget.MediaController class, 

180 

android.widget.TextView class, 165 

android.widget.Toast class, 234 

android.widget.Toast element, 204 

anim folder, 44 

animation, 151–166 

frame-based, 151–159 

controlling via Java language, 

155–159 

running in emulator, 159 

tween, 160–166 

controlling via Java language, 

164–166 

text_animation.xml file, 161–164 

Animation class, 165 

animation-list tag, 154–155, 159 

AnimationDrawable class, 156 

AnimationUtils class, 165 

Anti-aliasing, 116 

apiKey parameter, 302 

APIs (application programming 

interfaces) 

Device Administration, security for IT 

deployments, 306–307 

OpenGL ES 1.0-3D graphics,  

307–308 

.apk files, 3, 14, 35, 79–80 

app package, 263 

app statement, 78 

app widgets, 18 

application components, 80–84 

activities, 81–82 

broadcast receivers, 82–83 

content providers, 83–84 

services, 82 

application framework, of Android, 14 

Application name field, 53, 96, 117, 187, 

223, 261 



Index 314 

application programming interfaces. 

See APIs 

application resources, 48–50 

alternate resource folders, 49–50 

bitmap images, 48 

<application> tag, 86–87, 301 

applyBrake( ) method, 73–74, 76 

app_name string, 100 

app_name value, 58 

app_name variable, 58 

AppWidgetProvider class, 297–298 

AppWidgetProviderInfo object, 298 

ARGB (alpha, red, green, and blue), 150 

arrays.xml file, 45 

Available Packages option, 31 

AVDs (Android Virtual Devices), 33–35 

emulators, 33–34 

external devices, 35 

■ B 
Background option, Eclipse, 265 

backgrounds, replacing default,  

124–126 

behaviors, defined, 68 

bitmap images, 149–151 

application resources, 48 

JPEG and GIF images, 151 

PNG images, 150 

Bitmap object, 308 

bkgr LinearLayout object's background, 

139 

bkgr object, 139 

bottom attribute, 286 

broadcast receivers 

overview, 82–83 

using intents with, 284–295 

BroadcastReceiver class, 83, 286–287, 

297 

Build Target field, 187, 261 

Build Target panel, 53, 96, 117 

builder definition, 143 

builder object, 142, 144 

Bundle class, 78, 92, 102 

Bundle statement, 78 

Button class, 90, 231–232, 238 

Button tags, 177, 202, 210, 212, 237, 

243, 264, 274, 286, 290 

Button variable, 238 

Button widget, 186, 192 

Button01 tag, 274 

button1.xml file, 119 

button_one, 123 

buttons, ImageButton class, 116–126 

button1.xml file, 119–122 

defining multistate graphics in XML, 

116–117 

Eclipse UI project, 117–118 

editing main.xml file, 123–124 

replacing default background,  

124–126 

■ C 
C:\android-sdk-windows folder, 25 

C:/Android_Project/res/drawable-hdpi 

folder, 63 

C:/Android_Project/res/drawable-mdpi 

folder, 64 

c:\eclipse folder, 23 

C:/ProgramFiles/Java/jre6, 21 

C:\Projects, 51 

callback methods, event, 184–185 

Camera class, 307 

Car class, 74–75 

case statements, 139 

CATEGORY_HOME constant, 259 

changeUri object, 241, 246–247,  

250–252 

Check for Updates option, 30 

chromebutton.9.png file, 174–175 

chromebutton.png file, 172 

classes, in OOP, 70–74 

clickable parameter, 302 

close( ) method, 305 

Close Project option, 223 

color folder, 44 

Color object, 133 

colors.xml file, 45 

cols column, 235 

com.apress.project host, 261 

common default resources folders, 44 



Index 315 

ComponentName field, 259 

Contact.People table, 235 

Contacts database 

adding data to, 228–231 

contact providers, 220–221 

Contacts editor utility, 243 

Contacts icon, 230, 242 

Contacts.ContactMethodsColumns 

interface, 220 

ContactsContract.CommonDataKinds.C

ommonColumns interface, 221 

ContactsContract.ContactOptionsColu

mns interface, 221 

ContactsContract.ContactsColumns 

interface, 221 

ContactsContract.ContactStatusColum

ns interface, 221 

ContactsContract.GroupsColumns 

interface, 221 

ContactsContract.PhoneLookupColumn

s interface, 221 

ContactsContract.PresenceColumns 

interface, 221 

ContactsContract.SettingsColumns 

interface, 221 

ContactsContract.StatusColumns 

interface, 221 

Contacts.ExtensionsColumns interface, 

220 

Contacts.GroupsColumns interface, 

220 

Contacts.OrganizationColumns 

interface, 220 

Contacts.People table, 228 

Contacts.PeopleColumns interface, 220 

Contacts.PhonesColumns interface, 

220 

Contacts.PhotosColumns interface, 220 

Contacts.PresenceColumns interface, 

220 

Contacts.SettingsColumns interface, 

220 

content package, 255 

content providers, 16–17, 83–84,  

217–254 

built-in, 219–222 

Android MediaStore content 

providers, 222 

Contacts database contact 

providers, 220–221 

databases and database 

management systems, 218–219 

defining, 222–231 

adding data to Contacts 

database, 228–231 

example project in Eclipse,  

223–224 

security permissions, 224–228 

working with databases, 231–254 

appending to, 237–243 

modifying data, 243–248 

querying, 231–237 

removing data, 248–254 

content resolver, 17 

content scheme, 261 

ContentProvider class, 84 

ContentResolver object, 84, 250, 252 

CONTENT_URI object, 222, 240 

contentUri object, 240 

ContentValues object, 239–240, 247 

context parameter, 288 

context-sensitive menus, 15 

Context.bindService( ) method, 85 

contextButton ID attribute, 204 

contextButton tag, 211–212 

contextFunction1( ) method, 206 

contextFunction2( ) method, 206 

context.getSystemService(context.SEA

RCH_SERVICE) code construct, 

303 

ContextMenu class, 204 

ContextMenuInfo class, 204 

Context.sendBroadcast( ) method, 85 

Context.sendOrderedBroadcast( ) 

method, 85 

Context.sendStickyBroadcast( ) 

method, 85 

Context.startActivity( ) method, 84 

Context.startService( ) method, 84 

Create Activity check box, 53, 97, 118, 

152, 187, 261 

create( ) method, 281 



Index 316 

Create new project in workspace radio 

button, 53 

Create Shortcut option, 23 

curly braces (), 71 

currentTimeMillis( ) method, 293 

Cursor object, 235 

■ D 
Dalvik Debug Monitor Server (DDMS), 

28 

Dalvik Virtual Machine (DVM), 42 

data encapsulation, 70 

data storage, 304–306 

memory, 305 

shared preferences, 304–305 

using SQLite databases, 306 

database management systems 

(DBMS), databases and,  

218–219 

DatabaseExamples activity class, 238 

databases 

Contacts 

adding data to, 228–231 

contact providers, 220–221 

and database management systems, 

218–219 

SQLite, 306 

working with, content providers, 

231–254 

DBMS (database management 

systems), databases and,  

218–219 

DDMS (Dalvik Debug Monitor Server), 

28 

default event handlers, 16 

delButton, 249 

Delete the Contact in the Database 

button, 253 

deleteContactButton, 249 

deleteContactPhoneNumber( ) database 

method, 249–250 

desktop clocks, with XML markup,  

47–48 

Developer Tools options, 28 

development environment components, 

Android, 6 

Device Administration API, security for 

IT deployments, 306–307 

Dialog class, 140, 144 

DialogInterface, 143–144 

dialogs, 140–145 

AlertDialog class, 140–145 

custom Dialog subclasses, 140 

digital clock application, 266–269 

sending intents, 271–273 

user interface layout, 269–270 

DigitalClock tag, 267, 285 

DigitalClockActivity class, 270, 272, 

289, 293 

DigitalClockActivity.class, 272 

DigitalClockActivity.java class, 266, 

269–270 

digital_clock.xml file, 267, 285–286, 

290–291 

dimens.xml file, 45 

directory structure, of Android project, 

43–45 

common default resources folders, 

44 

values folder, 45 

dismissDialog(int) method, 140 

doàwhile loop, 236 

Download JDK button, 7 

Downloads site, Java SE, 6 

downShift( ) method, 72 

Draw 9-patch startup screen, 171 

Draw 9-patch utility, 170 

draw9patch.bat file, 170–171 

drawable folder, 44, 64, 167, 265 

drawable package, 148–149 

drawable subclasses, 149 

implementing images, 148–149 

DVM (Dalvik Virtual Machine), 42 

■ E 
Eclipse, example content provider 

project in, 223–224 

Eclipse IDE, 11–13 

for Android development, 8 



Index 317 

installing, 21–25 

setting location of Android IDE,  

30–31 

Eclipse IDE Java editing pane, 135 

Eclipse menu, 26, 31 

Eclipse New Project dialog, 52 

Eclipse Package Explorer pane, 55 

Eclipse platform, example event 

handling project in, 187–188 

eclipse-SDK-3.5.2-win32-x86_64.zip 

file, 37 

Eclipse SDK, downloading, 7–8 

Eclipse toolbar, 33 

Eclipse .zip file, 22 

eclipse.exe file, 23–24 

EditText tag, 105, 285 

else block, 206 

else section, 247 

emulators 

overview, 33–34 

running event handling examples 

app in, 194 

running frame-based animation in, 

159 

running menus in, 136 

running timer application via,  

294–295 

event handling, 16 

Event Handling Examples application, 

187 

event listeners, 16 

event parameter, onKeyDown( ) 

method, 201 

event.handling package, 187 

example_appwidget_info.xml file, 298 

exampleListener variable, 186 

.exe file type, 20, 22 

explicit intents, 259–260 

extends keyword, 75 

Extensible Markup Language. See XML 

external devices, 35 

external memory, 305 

■ F 
FaceDetector class, 308 

Fields, defined, 69 

File field, Eclipse, 161 

FileOutputStream object, 305 

fill_parent parameter, 48, 94 

final keyword, 142 

final method, 142 

final variable, 142 

findFaces(Bitmap bitmap, Face[] faces) 

method, 307 

findViewById( ) method, 139, 170, 180, 

290 

finish( ) method, 273 

focus concept, 16 

focus control, 209–216 

Java for, 214–215 

setting availability, 216 

XML for, 210–213 

Folder field, Eclipse, 161 

Folder name: field, Eclipse, 280 

fps (frames per second), 151 

frame-based animation, 151–159 

controlling via Java language,  

155–159 

running in emulator, 159 

FrameLayout container, 108 

FrameLayout subclass, 91 

frames per second (fps), 151 

■ G 
Galileo package, 7 

Galileo version, Eclipse, 7 

getApplicationContext( ) method, 292 

getBackground( ) method, 156–157 

getBaseContext( ) method, 283 

getBroadcast( ) method, 291–292 

getColumnIndex( ) method, 236 

getContentResolver( ) method, 240 

getContentResolver( ).update( ) method, 

247 

getDrawable( ) method, 169 

getExternalStorageState( ) method, 305 

getIntent( ) method, 84 

getPreferences( ) method, 305 

getReadableDatabase( ) method, 306 

getResources( ) method, 170 



Index 318 

getSharedPreferences(name), 305 

getString( ) method, 236 

getSystemService( ) method, 292 

getText( ) method, 291 

getWritableDatabase( ) method, 306 

GIF (Graphics Interchange Format) 

images, 151 

Google Maps, 300–303 

Google Search, 303–304 

Graphical Layout tab, Eclipse, 175 

graphics class, 155–157 

graphics, defining multistate in XML, 

116–117 

Graphics Examples application, 152 

Graphics Interchange Format (GIF) 

images, 151 

graphics resources, 147–181 

animation, 151–166 

frame-based, 151–159 

tween, 160–166 

bitmap images, 149–151 

JPEG and GIF images, 151 

PNG images, 150 

drawable package, 148–149 

drawable subclasses, 149 

implementing images, 148–149 

NinePatch bitmap custom scalable 

images, 170–176 

playing video in apps, 176–181 

Java language for, 178 

VideoView class objects,  

176–178 

transitions, 166–170 

graphics.examples package, 152, 155 

graphics.java file, 155, 164, 169, 178 

graphics.java tab, Eclipse, 155 

■ H 
half-size video graphics array (HVGA), 

15, 147 

HandlerExample.java file, 199 

HandlerExamples activity, 187 

HandlerExamples class, 196 

HandlerExamples keyword, 189 

HandlerExamples.java file, 188–194, 

196, 204, 207 

HandlerExamples.java tab, Eclipse, 193 

handling events, via View class, 184 

hardware, Smartphone, 18 

Hello Android World, Here I Come! 

Value field, 59 

hello variable, 58–59 

Hello World example application 

adding icon to, 61–66 

adding transparency, 62 

standard sizes for, 63–66 

application files for, 55–58 

MyHelloWorld activity, 56 

strings resource file, 58 

UI definition, 56–58 

creating Android project, 52–54 

launching Eclipse, 51 

running app, 60–61 

setting variable value in strings.xml, 

59–60 

Hello.World package, 53, 56, 77, 86 

HelloWorldAndroid folder, 55 

High-resolution icon, 63 

hint attribute, 285 

history, of Android, 2–3 

HVGA (half-size video graphics array), 

15, 147 

■ I 
i variable, 293 

IBinder interface, 278 

ICar interface, 76 

icon files, 61 

icon.png files, 62, 64 

icons, 61–66 

adding transparency to, 62 

standard sizes for, 63–66 

id attribute, 267, 274–275 

ID attribute 

Button tag, 202, 211, 286 

EditText tag, 285 

IDE (integrated development 

environment), 19–39 



Index 319 

on 64-bit computing platforms, 36 

ADT, installing, 26–29 

Android SDK 

installing, 25–26 

updating, 31–33 

AVDs, 33–35 

emulators, 33–34 

external devices, 35 

Eclipse IDE, 11–13 

installing, 21–25 

setting location of Android IDE, 

30–31 

Java SE and JRE, installing, 20–21 

if condition, 206 

if statement, 235 

if-then-else loop, 205 

image object, 139, 142 

image1.png file, 265, 267 

ImageButton class, 116–126 

button1.xml file, 119–122 

defining multistate graphics in XML, 

116–117 

Eclipse UI project, 117–118 

editing main.xml file, 123–124 

replacing default background,  

124–126 

ImageButton tag, 123, 127 

images 

implementing in drawable package, 

148–149 

NinePatch bitmap custom scalable, 

170–176 

Images content provider, 222 

image.setImageResource(R.drawable.i

mage1) code, 144 

image_transition.xml file, 166, 170 

ImageView object, 128–129, 136, 139, 

144 

ImageView source imagery, 127 

ImageView tags, 109, 127–128, 170, 

177 

ImageView UI object, 138 

implements keyword, 76, 187 

implicit intents, 260–261 

import android.os.Bundle statement, 

270 

import android.view.MotionEvent 

statement, 178 

import android.widget.Button; 

statement, 191 

import statements, 56, 78, 135, 144, 

196, 232, 239, 271, 287, 290 

importing, 42 

inflate( ) method, 134 

information technology (IT) 

deployments, security for,  

306–307 

inheritance, 75–76 

initialLayout attribute, 299 

initialLayout XML file, 299 

Install dialog, 27 

Install Selected button, 32 

integrated development environment. 

See IDE 

Intent class, 272, 278 

<intent-filter> tag, 87, 260, 303 

intent filters, 17 

Intent object methods, 84–85, 87 

Intent objects, 17, 84–85 

intent resolution, 17 

IntentExamples Activity class, 277 

IntentExamples class, 270–271 

IntentExamples.java class, 262, 271, 

282 

intent.filters package, 261, 263, 278, 

287 

intents, 255–295 

description of, 255–256 

and intent filters, 17 

intent resolution, 259–261 

explicit intents, 259–260 

implicit intents, 260–261 

messaging via intent objects,  

256–259 

Service class, 274–284 

creating, 277–281 

MediaPlayer application 

functionality, 281–282 

using intents with, 274–277 

using with Activity classes, 261–273 

using with broadcast receivers, timer 

application, 285–295 



Index 320 

Intents and Intent Filter Examples 

application, 261 

Intents class, 17 

Inter-Android communication, 18 

interactive television (iTV), 1 

interactivity, of applications, 16 

interfaces, in OOP, 76–77 

internal memory, 305 

isFocusable( ) method, 216 

isFocusableInTouchMode( ) method, 

216 

isRouteDisplayed( ) method, 302 

IT (information technology) 

deployments, security for,  

306–307 

item implementations, 136–139 

item MenuItem, 139 

item tags, 117, 120, 129, 155, 167 

iTV (interactive television), 1 

■ J 
Java code, inflating menu structure via, 

134–135 

Java Development Kit (JDK), 7 

Java directory, 6 

Java EE (Java Platform, Enterprise 

Edition), 7 

Java import command, 115 

Java keyword class, 71 

Java language 

controlling animation via 

frame-based, 155–159 

tween, 164–166 

for focus control, 214–215 

for onCreateContextMenu( ) method, 

204–209 

for onKeyUp( ) and onKeyDown( ) 

methods, 199–201 

for playing video in apps, 178 

Java Platform Enterprise Edition (Java 

EE), 7 

Java Platform Standard Edition (Java 

SE), 6, 20–21 

Java Runtime Environment (JRE), 20–21 

Java SDK, downloading, 6–7 

Java SE and JRE (Java Runtime 

Environment), installing, 20–21 

Java SE Downloads section, Oracle, 6 

Java SE (Java Platform, Standard 

Edition), 6, 20–21 

java.io package, 5 

Java's AnalogClock, 47 

jdk-6u21-windows-i586.exe file, 20 

JDK icon, 20 

JDK (Java Development Kit), 7 

JPEG (Joint Photographic Experts 

Group) images, 151 

JPG file, 48 

JRE (Java Runtime Environment), 20–21 

■ K 
keyCode parameter, onKeyDown( ) 

method, 201 

KEYCODE_ENTER constant, 201 

■ L 
Layout classes, Padding values with, 

111–112 

Layout containers, 14–15 

layout folder, 44 

Layout tab, Eclipse, 202, 264, 275–276 

layout_below parameter, 105 

layout_height parameter, 110 

layout_width parameter, 110 

LENGTH_LONG constant, 288 

LinearLayout app, 102–103, 139 

LinearLayout class, 93–103 

LinearLayoutActivity.java file, 

viewing, 101–102 

main.xml file 

editing, 98–99 

updating, 100 

project in Eclipse, 95–98 

running LinearLayout app, 102–103 

strings.xml file, editing, 99–100 

LinearLayout object, 139 

LinearLayout project, 98, 104 

LinearLayout subclass, 91 

LinearLayout tag, 57, 165, 192, 212 



Index 321 

LinearLayoutActivity.java file, 101–102

listening, 183–184 

location-based services, 299–300

Location field, 27

LocationManager instance, 300

LocationManager system service,  

299–300

LocationProviders, 300

logo_animation XML file, 156

logo_animation.xml file, 153, 156–157, 

159 

logo_animation.xml tab, Eclipse, 154

LongClick event, 202 

■ M 
mainmenu object, 134

mainmenu.xml file, 131

main.xml editing window, 175

main.xml file, 192–193 

editing, 98–99, 123–124

updating, 100 

main.xml pane, Eclipse, 276 

main.xml tab, Eclipse, 192, 202, 264

makeText( ) method, 206, 236, 288, 293

managedQuery( ) method, 235

<manifest> tag, 86–87 

MapActivity class, 302 

Maps, Google, 300–303 

MapView class, 300, 303 

MapView control, 302 

MapView interface, 302 

MapView methods, 300 

MapView object, 300 

MapView tag, 302 

MapView UI element, 302 

MapView zoom controls, 303 

Margin values 

with View and Layout classes,  

111–112 

in ViewGroup class, 112–113 

markup tags, XML, 13

MediaPlayer application functionality 

overview, 281–282 

running, 283–284 

start and stop buttons, 282–283 

MediaPlayer class, 309

MediaPlayerService class, 276,  

279–281

MediaPlayerService.class, 283

MediaPlayerService.java class, 277

MediaRecorder class, 309–310

MediaStore.Audio.AlbumColumns 

interface, 221

MediaStore.Audio.ArtistColumns 

interface, 222

MediaStore.Audio.AudioColumns 

interface, 222

MediaStore.Audio.GenresColumns 

interface, 222

MediaStore.Audio.PlaylistsColumns 

interface, 222

MediaStore.Images.ImageColumns 

interface, 222

MediaStore.MediaColumns interface, 

222

MediaStore.Video.VideoColumns 

interface, 222

Medium-resolution icon, 64

memory, 305 

Menu button, 230, 242

menu folder, 44

menu.add( ) method, 205

MenuInflater code, 137

MenuItem class, 138, 204

MenuObject, 139 

menus, 129–139 

defining item string values, 131–134

item implementations, 136–139

running in emulator, 136 

structure 

creating with XML, 130–131

inflating via Java, 134–135 

menu.setHeaderTitle( ) method, 205

messaging via intent objects, 256–259

<meta-data> tag, 304

methodNameExample( ) method, 72

milliseconds (ms), 155 

MIME (Multipurpose Internet Mail 

Extensions) types, 258–259

Min SDK Version, 53 

Min SDK Version field, 97, 119, 261 

D
ow

nl
oa

d 
fr

om
 W

ow
! e

B
oo

k 
<

w
w

w
.w

ow
eb

oo
k.

co
m

>



Index 322 

mindtaffy.m4a file, 280–281 

minHeight attribute, 298 

miniature applications, 18 

Minimum SDK Version field, 187, 223 

minWidth attribute, 298 

Misc section, Eclipse, 264 

modButton Button object, 244, 249 

Modifiers field, 278, 287 

Modify the Contact in the Database 

button, 253 

modifyPhoneButton, 243 

modifyPhoneNumber( ) method,  

244–247, 251 

MotionEvent event, 157 

moveToFirst( ) method, 235 

mqCur cursor object, 235–236 

mqCur object, 235 

ms (milliseconds), 155 

Multipurpose Internet Mail Extensions 

(MIME) types, 258–259 

multistate graphics, defining in XML, 

116–117 

myContact ContentValues object, 240 

myContact object, 239–240 

myContacts Uri object, 235 

MyGoogleMap activity, 301 

MyGoogleMap application, 303 

MyGoogleMap class, 302 

MyGoogleMap.java activity, 302 

MyHelloWorld activity class, 56 

myMediaPlayer variable, 281 

myname string variable, 235–236 

myname variable, 236 

mynumber string variable, 235–236 

MySQL Lite database, 18 

MySQL RDBMS database, 219 

■ N 
name attribute, 60, 78, 288 

Name Conflict dialog box, 266 

Name field, 263, 278, 287 

navigation, 16 

NegativeButton, 143 

nesting View objects, ViewGroup class, 

90–91 

New Android Project dialog box, 54–55, 

58, 96, 118, 151, 223, 262,  

269–270 

New Android XML dialog box, Eclipse, 

161 

New Contact option, 230 

New File dialog box, 153, 166 

New Java Class dialog box, 277–278, 

287 

new keyword, 74, 272 

new media resources, 14 

New Project dialog, 52 

newGear variable, 72 

newName variable, 240 

newNumber data variable, 240 

newPhone phone number string 

variable data, 240 

newPhoneNumber ContentValues 

object, 247 

newPhoneNumber object, 247 

nextFocus attribute, 212 

nextFocusDown attribute, 212 

nextFocusLeft attribute, 212 

nextFocusRight attribute, 212 

NinePatch bitmap custom scalable 

images, 170–176 

NinePatchDrawable class, 170, 175 

non-final image, 142 

NotificationManager class, 83 

numberDecimal constant, 285 

■ O 
Object class, 89, 93 

object hierarchy, 69 

object-oriented programming. See OOP 

OHA (Open Handset Alliance), 2–3 

onBind( ) method, 278 

onClick event, 231–233, 238, 244 

onClick( ) event handler, 195, 271, 282 

onClick handler, 186, 194, 196 

onClick Listener objects, adding to 

activities, 187–194 

example event handling project in 

Eclipse platform, 187–188 

HandlerExamples.java file, 188–194 



Index 323 

main.xml file, 192–193 

running event handling examples 

app in emulator, 194 

onClick( ) method, 185–194 

adding onClick Listener objects to 

activities, 187–194 

example event handling project in 

Eclipse platform, 187–188 

HandlerExamples.java file,  

188–194 

main.xml file, 192–193 

running event handling examples 

app in emulator, 194 

implementing onClickListener 

objects for UI elements, 186 

OnClickListener interface, 186–187, 

189–190, 196, 233 

OnClickListener keyword, 190 

OnCLickListener( ) method, 143–144 

onClickListener objects, implementing 

for UI elements, 186 

onClick(View v) handler, 186 

onContextItemSelected( ) method,  

204–205 

onContextMenu event, 204, 214 

onCreate( ) method, 56, 81, 94, 156, 

186, 201, 270, 274, 290, 306 

onCreateContextMenu( ) method,  

202–209 

Java for, 204–209 

XML for, 202–203 

onCreateDialog(int) method, 140 

onCreateOptionsMenu( ) method, 134 

onDestroy( ) method, 274, 282–283 

onFocusChange( ) method, 185 

onFocusChanged( ) method, 216 

onKey event, 198, 214 

onKey( ) method, 185, 204 

onKeyDown event, 198, 204 

onKeyDown handler, 199, 201 

onKeyDown( ) method, 198–201 

Java for, 199–201 

XML for, 199 

onKeyListener interface, 198 

onKeyUp event, 198 

onKeyUp( ) method, 198–201 

Java for, 199–201 

XML for, 199 

OnLongClick event, 195 

onLongClick handler, 196 

onLongClick( ) method, 185, 195–198 

OnLongClickListener interface, 196 

onNewIntent( ) method, 84 

onOptionsItemSelected( ) method,  

137–139, 142 

onReceive( )method, 287 

onReceive( ) method, 287–288 

onSaveInstanceState(Bundle 

savedInstanceState) method, 

93 

onStarCall( ) method, 75 

onStart( ) method, 84, 274, 281–283 

onTouch handler, 195 

onTouch( ) method, 185, 195 

onTouchEvent( ) method, 157, 184 

OOP (object-oriented programming), 

68–78 

classes in, 70–74 

inheritance in, 75–76 

interfaces in, 76–77 

packages in, 77–78 

terminology, 69–70 

Open 9-patch menu item, 172 

Open Handset Alliance (OHA), 2–3 

open source, defined, 2 

Open Source Graphics Language 

(OpenGL) application 

programming interface (ES 1.0 

API), 5, 18, 307–308 

Open with option, 80 

openFileOutput( ) method, 305 

OpenGL (Open Source Graphics 

Language) ES 1.0 API, 5, 18, 

307–308 

openTop( ) method, 75 

OPERATION parameter, 292 

option menus, 15 

Oracle's Java software, 20 

os statement, 78 



Index 324 

■ P 
Package Explorer, Eclipse, 55, 155, 

161–162, 166, 187, 194, 266, 

277, 280 

package keyword, 77 

Package name field, 53, 97, 118, 187, 

223, 261, 278, 287 

Packages and Archives panel, 32 

packages, in OOP, 77–78 

Padding values, 111–112 

parse( ) method, 180 

parseInt( ) method, 291 

People table, 240, 252 

People.CONTENT_URI table, 235 

People.NAME column, 236 

People.NAME database, 229–230, 240 

People.NUMBER database, 229–230, 

236, 247 

People.Phones.CONTENT_DIRECTOR, 

240 

People.Phones.TYPE, 247 

People.TYPE_MOBILE, 247 

Permissions tab, 226 

PKZIP, 22 

Platform drop-down menu, 36 

plug-ins, Android, 13 

PNG (Portable Network Graphics) 

images, 150 

PositiveButton, 143 

preferences, shared, 304–305 

prepare( ) method, 310 

preview mode, Eclipse, 175 

primitive data types, 304 

priority attribute, 260 

private method, 235 

Project name, 223 

Project name field, 96, 118, 187, 261 

Project name folder, 53 

project/res/drawable folder, 148, 172, 

174 

project/res/raw folder, 150 

project's /res/drawable folder, 117 

Properties tab, Eclipse, 264–265 

<provider> tag, 222 

public keyword, 77 

public method, 92 

put( ) method, 240 

■ Q 
quarter VGA (QVGA), 147 

Query Contacts Database button, 253 

queryButton, 233 

queryContactPhoneNumber( ) method, 

233–234, 239 

QVGA (quarter VGA), 147 

■ R 
raw folder, 44, 150, 280–281 

read( ) method, 304 

Real Time Clock (RTC), 292 

receiver tag, 86, 288, 298 

red parameter, 79 

Refresh option, folder context menu, 

265 

registerForContextMenu( ) method, 204, 

214 

RelativeLayout class, 91, 104–108 

<RelativeLayout> tag, 104 

RelativeLayout XML tag, 109 

release( ) method, 310 

replacePhone data variable, 247 

/res/anim folder, 153, 160–162 

/res/anim/text_animation.xml file, 164 

/res/drawable-dpi folder, 62 

res/drawable folder, 131, 148, 153, 155, 

160, 166, 175 

/res/drawable-hdpi, 49, 61 

/res/drawable-ldpi, 49, 61 

/res/drawable-mdpi, 49, 61 

/res/drawables directory, 166 

/res folder, 44, 49, 148, 188 

/res/layout folder, 192, 266 

/res/raw folder, 280 

res/values folder, 45–46, 131 

reset( ) method, 310 

resolution, intent, 259–261 

explicit, 259–260 

implicit, 260–261 

<resource_name>-<config_qualifier> 

form, 49 



Index 325 

<resources> tags, 60, 78–79 

RESULT_OK constant, 273 

R.layout.main text, 56 

RTC (Real Time Clock), 292 

RTC_WAKEUP constant, 292 

Rubin, Andy, 2 

Run as Administrator context menu 

item, 171 

runtime, 20, 41 

■ S 
savedInstanceState object, 92–93 

scalable images, NinePatch bitmap, 

170–176 

screen layout design 

defining with XML 

LinearLayout class, 93–103 

Margin values, 112–113 

Padding and Margin values,  

111–112 

Padding values, 112 

RelativeLayout class, 104–108 

setting up, 92–93 

SlidingDrawer class, 108–111 

overview, 14–15 

View class hierarchies, 89–91 

screen sizes, and XML markup, 47 

screenName parameter, 305 

SDKs (Software Development Kits), 

downloading, 5–9 

Android SDK, 8–9 

Eclipse SDK, 7–8 

Java SDK, 6–7 

Search function, 242 

Search, Google, 303–304 

<searchable> tag, 304 

search_label string, 304 

SearchManager class, 303 

security, for IT deployments, 306–307 

security permissions, content providers, 

224–228 

Select the root element for the XML file 

section, Eclipse, 162 

selector tag, 117, 120 

Service class, 274–284 

creating, 277–281 

MediaPlayer application functionality 

overview, 281–282 

running, 283–284 

start and stop buttons, 282–283 

using intents with, 274–277 

service tag, 86, 274, 276–277, 288 

services, 82 

set( ) method, 291–293 

<set> tag, 162 

setAudioChannels( ) method, 310 

setBackgroundResource( ) method, 139 

setBuiltInZoomContols( ) method, 302 

setCamera( ) method, 310 

setCancelable(false) method, 143 

setClass(Context, Class) method, 260 

setComponent( ) method, 260 

setContentResolver( ).delete( ) method, 

252 

setFocusable( ) method, 216 

setFocusableInTouchMode( ) method, 

216 

setImageDrawable( ) method, 170 

setImageResource( ) method, 139 

set.Listener( ) method, 185 

setLooping( ) method, 281 

setMediaController( ) method, 180 

.setMessage( ) method, 143 

setNegativeButton( ) method, 143 

setOnClickListener( ) method, 186–187, 

191, 233, 249, 283, 290 

setOrientation(integer) method, 94 

setOutputFile( ) method, 310 

setPositiveButton( ) method, 143 

setResult( ) method, 273 

setText( ) method, 198 

settings.getString( ), 305 

setVideoURI( ) method, 180 

shared preferences, 304–305 

SharedPreferences class, 304–305 

shiftGears( ) method, 72–73 

show( ) method, 144, 206, 288 

showDialog(int) method, 140 

showimage1 name field, 133 

sizes, for icons, 63–66 



Index 326 

SlidingDrawer class, expanding UI, 

108–111 

Smartphone hardware, 18 

Software Development Kits, 

downloading. See SDKs, 

downloading 

SoundPool class, 308–309 

source code (vsrc) folder, 44 

Source folder field, 263, 277, 286 

Source tab, Eclipse, 162 

speed variable, 73 

SQLite databases, 306 

SQLiteDatabase_Query method, 306 

SQLiteOpenHelper class, 306 

/src/event.handling folder, 188 

/src folder, 155, 188 

start and stop buttons, MediaPlayer 

application functionality,  

282–283 

start( ) method, 157, 180, 281 

startActivityForResult( ) method, 

android.content.Intent class, 

272 

startAnimation( ) method, 165 

startButton tag, 275 

startService( ) method, 283 

startTransition(milliseconds) method, 

170 

state_focused=true, 117 

state_pressed=true, 117 

stop( ) method, 282 

stopService( ) method, 283 

<string> tags, 60, 78–79 

string values, menu item, 131–134 

strings.xml file 

editing, 99–100 

setting variable value in, 59–60 

styles.xml file, 45 

super keyword, 75, 92 

Superclass field, 278, 287 

Suv class, 75 

switch statement, 139, 144 

switch structure, 137 

switch(item.getItemId( )) method, 139 

■ T 
Technology Network section, Java 

directory, 6 

text label, 264 

text_animation.xml file, 161–164, 166 

textareaone string variable, 100 

textareatwo string variable, 100 

textColor attribute, 267 

text.setText( ) method, 196 

textSize attribute, 264, 267 

textUpdate( ) method, 201 

TextView attribute, 192 

TextView class, 90, 126–128 

TextView elements, 95, 98 

TextView label, 90 

TextView object, 98, 105 

TextView tag, 57–58, 104, 127, 231, 

248, 264 

TextView widget, 126, 192 

timer application 

configuring AndroidManifest.xml file 

<receiver> tag, 288–289 

creating broadcast receiver,  

286–288 

creating user interface via XML,  

285–286 

implementing intent, 289–294 

running via emulator, 294–295 

timerAlert( ) method, 289–291, 293 

TimerBroadcastReceiver class, 288, 

291, 293 

TimerBroadcastReceiver tab, Eclipse, 

288 

TimerBroadcastReceiver.java class, 292 

Toast class, 206, 287 

Toast menu, 209 

Toast message, 246 

Toast notification, 246 

Toast UI widget, 234 

Toast widget, 206, 236 

Toast.LENGTH_LONG constant, 293 

Toast.makeText( ) method, 206, 247 

top attribute, 286 

toString( ) method, 291 

touch mode, 16 

TowLightOn( ) method, 75 



Index 327 

<transition> tag, 167 

TransitionDrawable class, 166 

transitions, 166–170 

transparency, adding to icons, 62 

TRIGGER TIME parameter, 292 

turnWheel( ) method, 73–74 

tween animation, 160–166 

controlling via Java language,  

164–166 

text_animation.xml file, 161–164 

TYPE parameter, 292 

■ U 
UI events, 16 

UI (User Interface) design, 115–145 

common elements, 115–128 

ImageButton class, 116–126 

ImageView tags, 127–128 

TextView class, 126–127 

design of, 15 

dialogs, 140–145 

AlertDialog class, 140–145 

custom Dialog subclasses, 140 

expanding with SlidingDrawer class, 

108–111 

menus, 129–139 

defining item string values,  

131–134 

item implementations, 136–139 

running in emulator, 136 

structure, 130–135 

UI (User Interface) events, 183–216 

callback methods, 184–185 

controlling application focus,  

209–216 

Java for, 214–215 

setting availability, 216 

XML for, 210–213 

creating via XML, timer application, 

285–286 

handling, 183–184 

layout for digital clock application, 

269–270 

listening for, 183–184 

onClick( ) method, 185–194 

onCreateContextMenu( ) method, 

202–209 

Java for, 204–209 

XML for, 202–203 

onKeyUp( ) and onKeyDown( ) 

methods, 198–201 

Java for, 199–201 

XML for, 199 

onLongClick( ) method, 195–198 

onTouch( ) method, 195 

Uniform Resource Identifier (URI), 17, 

180 

updatePeriodMillis value, 298–299 

upShift( ) method, 72 

Uri object, 240–241 

URI (Uniform Resource Identifier), 17, 

180 

Use default location option, 53 

User Interface design. See UI design 

User Interface events. See UI events 

<uses-feature> tag, 307 

<uses-library> tag, 301 

Uses Permission entry option, 226 

uses-permission tag, 225, 227, 301 

Uses Permission type option, 227 

<uses-sdk> tag, 87 

■ V 
Validate context menu item, 155 

Validate option, 122 

Validate procedure, 281 

values folder, 44–45 

variables, setting value in strings.xml, 

59–60 

video, playing in apps, 176–181 

Java language for, 178 

VideoView class objects, 176–178 

VideoView class, 148, 176–178 

VideoView widget, 180 

View class, handling events via, 184 

View classes 

hierarchies, 89–91 

Margin values in, 111–112 

Padding values with, 111–112 

View content, 81 



Index 328 

view groups, 14 

View objects, 14–15, 89–91, 104, 297, 

300 

view variable, 290 

view.getContext( ) method, 272 

ViewGroup, 300 

ViewGroup classes 

Margin values in, 112–113 

overview, 90–91 

ViewGroup objects, 14, 92 

View.OnCLickListener interface, 185 

View.OnFocusChange interface, 185 

View.OnKeyListener interface, 185 

View.OnLongClickListener interface, 

185 

View.OnTouchListener interface, 185 

Views List, Eclipse, 264 

<vintent-filter> tag, 87 

Virtual Devices option, 33 

void keyword, 71–72 

void method, 239 

vsrc (source code) folder, 44 

■ W 
web site, Android Developers, 8 

What type of resource would you like to 

create? section, Eclipse, 161 

while( ) condition, 235 

wide video graphics array (WVGA), 15, 

147 

widgets, 297–299 

WinZip extractor, 22 

wrap_content attribute, 123 

wrap_content parameter, 48 

write( ) method, 305 

WRITE_CONTACTS, 225 

WVGA (wide video graphics array), 15, 

147 

■ X, Y 
XML editing pane, Eclipse, 155 

XML (Extensible Markup Language) 

and Android Framework, 78–79 

creating menu structure with,  

130–131 

creating UI via, timer application, 

285–286 

defining multistate graphics in,  

116–117 

defining screen layout design with 

LinearLayout class, 93–103 

Margin values, 112–113 

Padding and Margin values,  

111–112 

Padding values, 112 

RelativeLayout class, 104–108 

setting up, 92–93 

SlidingDrawer class, 108–111 

for focus control, 210–213 

for onCreateContextMenu( ) method, 

202–203 

for onKeyUp( ) and onKeyDown( ) 

methods, 199 

xml folder, 44 

XML markup, 46–48 

for applications, 13–14 

desktop clocks with, 47–48 

and screen sizes, 47 

xmlns:android attribute, 86 

■ Z 
.zip files, 22, 25 

ZoomTool control, 302 

 



   i 

Android Apps for 
Absolute Beginners 

 

 

 

 

  

■ ■ ■ 

Wallace Jackson 
 

 



Android Apps For Absolute Beginners 

Copyright © 2011 by Wallace Jackson 

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any 
means, electronic or mechanical, including photocopying, recording, or by any information 
storage or retrieval system, without the prior written permission of the copyright owner and the 
publisher. 

ISBN-13 (pbk): 978-1-4302-3446-3 

ISBN-13 (electronic): 978-1-4302-3447-0 

Printed and bound in the United States of America (POD) 

Trademarked names, logos, and images may appear in this book. Rather than use a trademark 
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos, 
and images only in an editorial fashion and to the benefit of the trademark owner, with no 
intention of infringement of the trademark. 

The use in this publication of trade names, trademarks, service marks, and similar terms, even if 
they are not identified as such, is not to be taken as an expression of opinion as to whether or not 
they are subject to proprietary rights. 

President and Publisher: Paul Manning 
Lead Editor: Matthew Moodie  
Technical Reviewer: Kunal Mittal 
Editorial Board: Steve Anglin, Mark Beckner, Ewan Buckingham, Gary Cornell, Jonathan 

Gennick, Jonathan Hassell, Michelle Lowman, Matthew Moodie, Jeff Olson, Jeffrey 
Pepper, Frank Pohlmann, Douglas Pundick, Ben Renow-Clarke, Dominic Shakeshaft, 
Matt Wade, Tom Welsh 

Coordinating Editor: Corbin Collins 
Copy Editors: Marilyn Smith, Sharon Terdeman, Tracy Brown 
Compositor: MacPS, LLC 
Indexer: BIM Indexing & Proofreading Services 
Artist: April Milne 
Cover Designer: Anna Ishchenko 

Distributed to the book trade worldwide by Springer Science+Business Media, LLC., 233 Spring 
Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail 
orders-ny@springer-sbm.com, or visit www.springeronline.com.  

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.  

Apress and friends of ED books may be purchased in bulk for academic, corporate, or 
promotional use. eBook versions and licenses are also available for most titles. For more 
information, reference our Special Bulk Sales–eBook Licensing web page at 
www.apress.com/info/bulksales. 

The information in this book is distributed on an “as is” basis, without warranty. Although every 
precaution has been taken in the preparation of this work, neither the author(s) nor Apress shall 
have any liability to any person or entity with respect to any loss or damage caused or alleged to 
be caused directly or indirectly by the information contained in this work.  

The source code for this book is available to readers at www.apress.com. You will need to answer 
questions pertaining to this book in order to successfully download the code. 

mailto:orders-ny@springer-sbm.com
http://www.springeronline.com
mailto:rights@apress.com
http://www.apress.com
http://www.apress.com/info/bulksales
http://www.apress.com


In loving memory of all of our wonderful furry companions who graced our lives with

unconditional love for decades here on our ranch in the La Purisima State Historic Park on the

Point Conception Peninsula in Northern Santa Barbara County. 

D
ow

nl
oa

d 
fr

om
 W

ow
! e

B
oo

k 
<

w
w

w
.w

ow
eb

oo
k.

co
m

>



 

v 

 

Contents 

Contents at a Glance .......................................................................................... iv
About the Author ................................................................................................. x
About the Technical Reviewer ........................................................................... xi
Acknowledgments ............................................................................................ xii
Introduction ..................................................................................................... xiii
 
■Chapter 1: Preliminary Information: Before We Get Started ........................... 1

Some History: What Is Android? ............................................................................................................................. 2
Advantage Android: How Can Android Benefit Me? ................................................................................................ 3
The Scope of This Book .......................................................................................................................................... 4

What’s Covered .................................................................................................................................................. 4
What’s Not Covered ........................................................................................................................................... 5

Preparing for Liftoff: SDK Tools to Download ......................................................................................................... 5
Java ................................................................................................................................................................... 6
Eclipse ............................................................................................................................................................... 7
Android SDK ....................................................................................................................................................... 8

Summary ................................................................................................................................................................ 8

■Chapter 2: What’s Next? Our Road Ahead ..................................................... 11
Your Android Development IDE ............................................................................................................................. 11
Java, XML, and How Android Works ..................................................................................................................... 13
The Android Application Framework ..................................................................................................................... 14
Screen Layout Design ........................................................................................................................................... 14
User Interface Design ........................................................................................................................................... 15
Graphics and Animation Design ............................................................................................................................ 15
Interactivity ........................................................................................................................................................... 16
Content Providers ................................................................................................................................................. 16
Intents and Intent Filters ....................................................................................................................................... 17
The Future of Android ........................................................................................................................................... 17
Summary .............................................................................................................................................................. 18

■Chapter 3: Setting Up Your Android Development Environment ................... 19
Installing Java, Eclipse, and Android .................................................................................................................... 19

Java SE and JRE: Your Foundation for Application Development .................................................................... 20



■ CONTENTS 

vi 

Eclipse IDE: The Development Environment .................................................................................................... 21
Android SDK: The Android Tool Kit for Eclipse ................................................................................................. 25
Android Development Tool: Android Tools for Eclipse ..................................................................................... 26
The Android Environment Within Eclipse ......................................................................................................... 30

Updating the Android SDK .................................................................................................................................... 31
Setting Up AVDs and Smartphone Connections .................................................................................................... 33

AVDs: Smartphone Emulators .......................................................................................................................... 33
USB Smartphone Drivers: External Devices ..................................................................................................... 35

Developing on 64-Bit Computing Platforms .......................................................................................................... 36
Summary .............................................................................................................................................................. 38

■Chapter 4: Introducing the Android Software Development Platform ........... 41
Understanding Java SE and the Dalvik Virtual Machine ....................................................................................... 42
The Directory Structure of an Android Project ...................................................................................................... 43

Common Default Resources Folders ................................................................................................................ 44
The Values Folder ............................................................................................................................................ 45

Leveraging Android XML (Your Secret Weapon) ................................................................................................... 46
Screen Sizes .................................................................................................................................................... 47
Desktop Clocks ................................................................................................................................................ 47

Using Your Android Application Resources ........................................................................................................... 48
Bitmap Images ................................................................................................................................................. 48
Alternate Resource Folders .............................................................................................................................. 49

Launching Your Application: The AndroidManifest.xml File .................................................................................. 50
Creating Your First Android Application ................................................................................................................ 51

Launching Eclipse ............................................................................................................................................ 51
Creating an Android Project ............................................................................................................................. 52
Inspecting and Editing the Application Files .................................................................................................... 55
Setting a Variable Value in strings.xml ............................................................................................................ 59
Running the App .............................................................................................................................................. 60
Adding an Application Icon .............................................................................................................................. 61

Summary .............................................................................................................................................................. 65

■Chapter 5: Android Framework Overview ..................................................... 67
The Foundation of OOP: The Object ...................................................................................................................... 68

Some OOP Terminology ................................................................................................................................... 69
The Blueprint for an Object: The Class ............................................................................................................. 70
Providing Structure for Your Classes: Inheritance ........................................................................................... 75
Defining an Interface ....................................................................................................................................... 76
Bundling Classes in a Logical Way: The Package ............................................................................................ 77

An Overview of XML .............................................................................................................................................. 78
The Anatomy of an Android Application: The APK File .......................................................................................... 79
Android Application Components .......................................................................................................................... 80

Android Activities: Defining the UI ................................................................................................................... 81
Android Services: Processing in the Background ............................................................................................ 82
Broadcast Receivers: Announcements and Notifications ................................................................................ 82
Content Providers: Data Management ............................................................................................................. 83

Android Intent Objects: Messaging for Components ............................................................................................. 84
Android Manifest XML: Declaring Your Components ............................................................................................ 85
Summary .............................................................................................................................................................. 87



■ CONTENTS 

vii 

■Chapter 6: Screen Layout Design: Views and Layouts .................................. 89
Android View Hierarchies ...................................................................................................................................... 89

Using the View Class ........................................................................................................................................ 90
Nesting Views: Using the ViewGroup Class ..................................................................................................... 90

Defining Screen Layouts: Using XML .................................................................................................................... 92
Setting Up for Your Screen Layout ................................................................................................................... 92
Using Linear Layouts ........................................................................................................................................ 93
Using Relative Layouts ................................................................................................................................... 104
Sliding Drawers: Expanding Your UI .............................................................................................................. 108
Using Padding and Margins with Views and Layouts .................................................................................... 111
Setting Padding in Views ............................................................................................................................... 112
Setting Margins in ViewGroups ...................................................................................................................... 112

Summary ............................................................................................................................................................ 112

■Chapter 7: UI Design: Buttons, Menus, and Dialogs .................................... 115
Using Common UI Elements ................................................................................................................................ 115

Adding an Image Button to Your Layout ........................................................................................................ 116
Adding a Text to Your Layout ......................................................................................................................... 126
Adding an Image ............................................................................................................................................ 127

Using Menus in Android ...................................................................................................................................... 129
Creating the Menu Structure with XML .......................................................................................................... 130
Defining Menu Item Strings ........................................................................................................................... 131
Inflating the Menu Structure via Java ............................................................................................................ 134
Running the Application in the Android Emulator .......................................................................................... 136
Making the Menu Work .................................................................................................................................. 136

Adding Dialogs .................................................................................................................................................... 140
Using Custom Dialog Subclasses ................................................................................................................... 140
Displaying an Alert Dialog .............................................................................................................................. 140

Summary ............................................................................................................................................................ 145

■Chapter 8: An Introduction to Graphics Resources  in Android ................... 147
Introducing the Drawables .................................................................................................................................. 148

Implementing Images .................................................................................................................................... 148
Core Drawable Subclasses ............................................................................................................................ 149

Using Bitmap Images in Android ......................................................................................................................... 149
PNG Images ................................................................................................................................................... 150
JPEG and GIF Images ..................................................................................................................................... 151

Creating Animation in Android ............................................................................................................................ 151
Frame-based or Cel 2D Animation ................................................................................................................. 151
Tween Animation in Android .......................................................................................................................... 160

Using Transitions ................................................................................................................................................ 166
Creating 9-Patch Custom Scalable Images ......................................................................................................... 170
Playing Video in Your Android Apps .................................................................................................................... 176

Adding a VideoView Object ............................................................................................................................ 176
Adding the Java for Video .............................................................................................................................. 178

Summary ............................................................................................................................................................ 181

■Chapter 9: Adding Interactivity: Handling UI Events ................................... 183
An Overview of UI Events in Android ................................................................................................................... 183

Listening for and Handling Events ................................................................................................................. 183



■ CONTENTS 

viii 

Handling UI Events via the View Class ........................................................................................................... 184
Event Callback Methods ................................................................................................................................ 184

Handling onClick Events ..................................................................................................................................... 185
Implementing an onClick Listener for a UI Element ....................................................................................... 186
Adding an onClick Listener to an Activity in Android ..................................................................................... 187

Android Touchscreen Events: onTouch ............................................................................................................... 195
Touchscreen’s Right-Click Equivalent: onLongClick ........................................................................................... 195
Keyboard Event Listeners: onKeyUp and onKeyDown ........................................................................................ 198

Adding the XML for Keyboard Events ............................................................................................................. 199
Adding the Java for Keyboard Events ............................................................................................................ 199

Context Menus in Android: onCreateContextMenu ............................................................................................. 202
Adding the XML for Context Menus ............................................................................................................... 202
Adding the Java for Context Menus ............................................................................................................... 204

Controlling the Focus in Android ......................................................................................................................... 209
Adding the XML for Focus Control ................................................................................................................. 210
Adding the Java for Focus Control ................................................................................................................. 214
Setting Focus Availability ............................................................................................................................... 216

Summary ............................................................................................................................................................ 216

■Chapter 10: Understanding Content Providers ............................................ 217
An Overview of Android Content Providers ......................................................................................................... 217

Databases and Database Management Systems ........................................................................................... 218
Android Built-in Content Providers ................................................................................................................ 219

Defining a Content Provider ................................................................................................................................ 222
Creating the Content Providers Example Project in Eclipse ........................................................................... 223
Defining Security Permissions ....................................................................................................................... 224
Adding Data to the Contacts Database .......................................................................................................... 228

Working with a Database .................................................................................................................................... 231
Querying a Content Provider: Accessing the Content .................................................................................... 231
Appending to a Content Provider: Adding New Content ................................................................................. 237
Modifying Content Provider Data: Updating the Content ............................................................................... 243
Removing Content Provider Data: Deleting Content ...................................................................................... 248

Summary ............................................................................................................................................................ 253

■Chapter 11: Understanding Intents and Intent Filters ................................. 255
What Is an Intent? ............................................................................................................................................... 255
Android Intent Messaging via Intent Objects ...................................................................................................... 256
Intent Resolution: Implicit Intents & Explicit Intents ........................................................................................... 259

Explicit Intents ............................................................................................................................................... 259
Implicit Intents ............................................................................................................................................... 260

Using Intents with Activities ............................................................................................................................... 261
Writing the Digital Clock Activity .................................................................................................................... 266
Wiring up the Application ............................................................................................................................... 269
Sending Intents .............................................................................................................................................. 271

Android Services: Data Processing in its own Class ........................................................................................... 274
Using Intents with Services ........................................................................................................................... 274
Creating a Service .......................................................................................................................................... 277
Implementing Our MediaPlayer Functions ..................................................................................................... 281
Wiring the Buttons to the Service .................................................................................................................. 282



■ CONTENTS 

ix 

Running the Application ................................................................................................................................. 283
Using Intents with Broadcast Receivers ............................................................................................................. 284

Creating the Timer User Interface via XML .................................................................................................... 285
Creating a Timer Broadcast Receiver ............................................................................................................ 286
Configuring the AndroidManifest.xml file <receiver> Tag ............................................................................. 288
Implementing our Intent ................................................................................................................................ 289
Running the Timer Application via the Android 1.5 Emulator ........................................................................ 294

Summary ............................................................................................................................................................ 295

■Chapter 12: The Future ................................................................................ 297
Widgets: Creating Your Own Widgets in Android ................................................................................................ 297
Location-Based Services in Android ................................................................................................................... 299
Google Maps in Android ...................................................................................................................................... 300
Google Search in Android ................................................................................................................................... 303
Data Storage in Android ...................................................................................................................................... 304

Shared Preferences ....................................................................................................................................... 304
Internal Memory ............................................................................................................................................. 305
External Memory ............................................................................................................................................ 305
Using SQLite ................................................................................................................................................... 306

Device Administration: Security for IT Deployments ........................................................................................... 306
Using the Android Camera Class to control a Camera ........................................................................................ 307
3D Graphics: Using OpenGL ES 1.x in Android .................................................................................................... 307
FaceDetector ....................................................................................................................................................... 308
SoundPool ........................................................................................................................................................... 308
MediaRecorder .................................................................................................................................................... 309
Summary ............................................................................................................................................................ 310

Index ............................................................................................................... 311 
 



 

x 

 

About the Author 

Wallace Jackson is the CEO of Mind Taffy Design, a new media content design 
and production company founded in 1991. Mind Taffy specializes in leveraging 
free for commercial use open source technologies to provide an extremely 
compact data footprint, royalty-free, digital new media advertising and 
branding campaigns for the leading international brands and manufacturers 
worldwide. 

Wallace has been pushing the cutting edge of i3D and Rich Media 
Application Design via viral digital content deliverables, using under 512KB of 
Total Data Footprint, for over two decades. He has worked for leading 
international brands to create custom new media digital campaigns for 

industry-leading companies, including brand marketing, PR, product demonstration, digital 
signage, e-learning, AdverGaming, logo design, and end-user training for top Fortune 500 
companies. 

He has produced new media projects in a number of digital media "verticals" or content 
deliverable areas, including: interactive 3D [i3D], Rich Internet Applications (RIA) content 
production, virtual world design, user interface (UI) design, user experience (UX) design, 
multimedia production, 3D modeling, sound design, MIDI synthesis, music composition, image 
compositing, 3D animation, game programming, mobile application programming, BrandGame 
creation, website design, CSS programming, data optimization, digital imaging, digital painting, 
digital video editing, special effects, morphing, vector illustration, IPTV Programming, iTV 
application design, interactive product demos, and tradeshow multimedia. 

Wallace has created new media digital campaigns for leading international branded 
manufacturers, including Sony, Samsung, Tyco, Dell, Epson, IBM, Mitsubishi, Compaq, TEAC, 
KDS USA, CTX International, ADI Systems, Nokia, Micron, ViewSonic, OptiQuest, SGI, Western 
Digital, Sun Microsystems, ProView, Sceptre, KFC, ICM, EIZO, Nanao, Digital Equipment [DEC], 
TechMedia, Pacific Digital, ArtMedia, Maxcall, Altrasonic, DynaScan, EZC, Smile, Kinoton 
GMBH, and many others. 

Wallace holds an MSBA post-graduate degree in Marketing Strategy from USC, an MBA 
degree in Management Information Systems Design and Implementation from the USC Marshall 
School of Business, and a Bachelor's degree in Business Economics from UCLA Anderson School 
of Management. He is currently the #2 ranked All Time Top Expert on LinkedIn, out of more than 
90,000,000 executives that use that social media business web site. 



 

xi 

 

About the Technical 
Reviewer 

Kunal Mittal serves as an Executive Director of Technology at Sony Pictures 
Entertainment, where he is responsible for the SOA, Identity Management, and 
Content Management programs. He provides a centralized engineering service 
to different lines of business and leads efforts to introduce new platforms and 
technologies into the Sony Pictures Enterprise IT environment. 

Kunal is an entrepreneur who helps startups define their technology 
strategy, product roadmap, and development plans. Having strong relations 
with several development partners worldwide, he is able to help startups and 
even large companies build appropriate development partnerships. He 
generally works in an advisor or consulting CTO capacity, and serves actively in 

the project management and technical architect functions. He has authored and edited several 
books and articles on J2EE, cloud computing, and mobile technologies. He holds a Master's 
degree in Software Engineering and is an instrument-rated private pilot. 

 



 

xii 

 

Acknowledgments 

My sincere thanks go to: 
Matthew Moodie, my lead editor, for his patience and thoughtful guidance in shaping this 

first edition of Android Apps for Absolute Beginners. Matthew, thanks for guiding me as a new 
Apress author, and I look forward to future collaborations with you. 

Kunal Mittal, my esteemed technical reviewer, for his hard work and insightful suggestions 
in shaping this edition of the book. 

Steve Anglin, my acquisitions editor, for bringing me into the Apress family to write this 
book. I wouldn’t have done it at all if it were not for you! 

Dominic Shakeshaft, editorial director, for overseeing the editorial process while I wrote. I 
appreciate your help with the higher-level issues involved. 

Corbin Collins, my coordinating editor, for listening to all of my miscellaneous and sundry 
problems during the writing of this book and helping to get them all sorted out. 

Marilyn Smith, Sharon Terdeman, and Tracy Brown, my copy editors, for their excellent 
editing and book-polishing skills and for all the great suggestions for making this a fantastic 
Android book. 

My Editorial Board, including Steve Anglin, Mark Beckner, Ewan Buckingham, Gary Cornell, 
Jonathan Gennick, Jonathan Hassell, Michelle Lowman, James Markham, Matthew Moodie, Jeff 
Olson, Jeffrey Pepper, Frank Pohlmann, Douglas Pundick, Ben Renow-Clarke, Dominic 
Shakeshaft, Matt Wade, and Tom Welsh, for making sure this is the best book for beginners about 
the esteemed open source Android operating system. 

The many loved ones and clients who patiently awaited my return to i3D content production 
from the “professional sidetracker” commonly known as writing a programming book. 


	Cover
	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	The Target: The Programming Neophyte
	The Weapon: Android, the Innovative Mobile Code Environment
	How This Book Is Organized
	The Formula for Success
	Required Software, Materials, and Equipment
	Operating System and IDE
	Software Development Kits
	Dual Monitors



	Preliminary Information: Before We Get Started
	Some History: What Is Android?
	Advantage Android: How Can Android Benefit Me?
	The Scope of This Book
	What’s Covered
	What’s Not Covered

	Preparing for Liftoff: SDK Tools to Download
	Java
	Eclipse
	Android SDK

	Summary

	What’s Next? Our Road Ahead
	Your Android Development IDE
	Java, XML, and How Android Works
	The Android Application Framework
	Screen Layout Design
	User Interface Design
	Graphics and Animation Design
	Interactivity
	Content Providers
	Intents and Intent Filters
	The Future of Android
	Summary

	Setting Up Your Android Development Environment
	Installing Java, Eclipse, and Android
	Java SE and JRE: Your Foundation for Application Development
	Eclipse IDE: The Development Environment
	Android SDK: The Android Tool Kit for Eclipse
	Android Development Tool: Android Tools for Eclipse
	The Android Environment Within Eclipse

	Updating the Android SDK
	Setting Up AVDs and Smartphone Connections
	AVDs: Smartphone Emulators
	USB Smartphone Drivers: External Devices

	Developing on 64-Bit Computing Platforms
	Summary

	Introducing the Android Software Development Platform
	Understanding Java SE and the Dalvik Virtual Machine
	The Directory Structure of an Android Project
	Common Default Resources Folders
	The Values Folder

	Leveraging Android XML (Your Secret Weapon)
	Screen Sizes
	Desktop Clocks

	Using Your Android Application Resources
	Bitmap Images
	Alternate Resource Folders

	Launching Your Application: The AndroidManifest.xml File
	Creating Your First Android Application
	Launching Eclipse
	Creating an Android Project
	Inspecting and Editing the Application Files
	Setting a Variable Value in strings.xml
	Running the App
	Adding an Application Icon

	Summary

	Android Framework Overview
	The Foundation of OOP: The Object
	Some OOP Terminology
	The Blueprint for an Object: The Class
	Providing Structure for Your Classes: Inheritance
	Defining an Interface
	Bundling Classes in a Logical Way: The Package

	An Overview of XML
	The Anatomy of an Android Application: The APK File
	Android Application Components
	Android Activities: Defining the UI
	Android Services: Processing in the Background
	Broadcast Receivers: Announcements and Notifications
	Content Providers: Data Management

	Android Intent Objects: Messaging for Components
	Android Manifest XML: Declaring Your Components
	Summary

	Screen Layout Design: Views and Layouts
	Android View Hierarchies
	Using the View Class
	Nesting Views: Using the ViewGroup Class

	Defining Screen Layouts: Using XML
	Setting Up for Your Screen Layout
	Using Linear Layouts
	Using Relative Layouts
	Sliding Drawers: Expanding Your UI
	Using Padding and Margins with Views and Layouts
	Setting Padding in Views
	Setting Margins in ViewGroups

	Summary

	UI Design: Buttons, Menus, and Dialogs
	Using Common UI Elements
	Adding an Image Button to Your Layout
	Adding a Text to Your Layout
	Adding an Image

	Using Menus in Android
	Creating the Menu Structure with XML
	Defining Menu Item Strings
	Inflating the Menu Structure via Java
	Running the Application in the Android Emulator
	Making the Menu Work

	Adding Dialogs
	Using Custom Dialog Subclasses
	Displaying an Alert Dialog

	Summary

	An Introduction to Graphics Resources in Android
	Introducing the Drawables
	Implementing Images
	Core Drawable Subclasses

	Using Bitmap Images in Android
	PNG Images
	JPEG and GIF Images

	Creating Animation in Android
	Frame-based or Cel 2D Animation
	Tween Animation in Android

	Using Transitions
	Creating 9-Patch Custom Scalable Images
	Playing Video in Your Android Apps
	Adding a VideoView Object
	Adding the Java for Video

	Summary

	Adding Interactivity: Handling UI Events
	An Overview of UI Events in Android
	Listening for and Handling Events
	Handling UI Events via the View Class
	Event Callback Methods

	Handling onClick Events
	Implementing an onClick Listener for a UI Element
	Adding an onClick Listener to an Activity in Android

	Android Touchscreen Events: onTouch
	Touchscreen’s Right-Click Equivalent: onLongClick
	Keyboard Event Listeners: onKeyUp and onKeyDown
	Adding the XML for Keyboard Events
	Adding the Java for Keyboard Events

	Context Menus in Android: onCreateContextMenu
	Adding the XML for Context Menus
	Adding the Java for Context Menus

	Controlling the Focus in Android
	Adding the XML for Focus Control
	Adding the Java for Focus Control
	Setting Focus Availability

	Summary

	Understanding Content Providers
	An Overview of Android Content Providers
	Databases and Database Management Systems
	Android Built-in Content Providers

	Defining a Content Provider
	Creating the Content Providers Example Project in Eclipse
	Defining Security Permissions
	Adding Data to the Contacts Database

	Working with a Database
	Querying a Content Provider: Accessing the Content
	Appending to a Content Provider: Adding New Content
	Modifying Content Provider Data: Updating the Content
	Removing Content Provider Data: Deleting Content

	Summary

	Understanding Intents and Intent Filters
	What Is an Intent?
	Android Intent Messaging via Intent Objects
	Intent Resolution: Implicit Intents & Explicit Intents
	Explicit Intents
	Implicit Intents

	Using Intents with Activities
	Writing the Digital Clock Activity
	Wiring up the Application
	Sending Intents

	Android Services: Data Processing in its own Class
	Using Intents with Services
	Creating a Service
	Implementing Our MediaPlayer Functions
	Wiring the Buttons to the Service
	Running the Application

	Using Intents with Broadcast Receivers
	Creating the Timer User Interface via XML
	Creating a Timer Broadcast Receiver
	Configuring the AndroidManifest.xml file <receiver> Tag
	Implementing our Intent
	Running the Timer Application via the Android 1.5 Emulator

	Summary

	The Future
	Widgets: Creating Your Own Widgets in Android
	Location-Based Services in Android
	Google Maps in Android
	Google Search in Android
	Data Storage in Android
	Shared Preferences
	Internal Memory
	External Memory
	Using SQLite

	Device Administration: Security for IT Deployments
	Using the Android Camera Class to control a Camera
	3D Graphics: Using OpenGL ES 1.x in Android
	FaceDetector
	SoundPool
	MediaRecorder
	Summary

	Index
	Special Characters and Numbers
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X, Y
	Z



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /ENU (Malloy's general settings for optimal printing.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [684.000 864.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /ENU (Malloy's general settings for optimal printing.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [684.000 864.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /ENU (Malloy's general settings for optimal printing.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [684.000 864.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /ENU (Malloy's general settings for optimal printing.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [684.000 864.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /ENU (Malloy's general settings for optimal printing.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [684.000 864.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /ENU (Malloy's general settings for optimal printing.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [684.000 864.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /ENU (Malloy's general settings for optimal printing.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [684.000 864.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /ENU (Malloy's general settings for optimal printing.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [684.000 864.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /ENU (Malloy's general settings for optimal printing.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [684.000 864.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /ENU (Malloy's general settings for optimal printing.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [684.000 864.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /ENU (Malloy's general settings for optimal printing.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [684.000 864.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /ENU (Malloy's general settings for optimal printing.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [684.000 864.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /ENU (Malloy's general settings for optimal printing.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [684.000 864.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /ENU (Malloy's general settings for optimal printing.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [684.000 864.000]
>> setpagedevice




