
Joel	on	Software

The	Joel	Test:	12	Steps	to
Better	Code
by	Joel	Spolsky

Wednesday,	August	09,	2000
Have	you	ever	heard	of	SEMA?	It's	a	fairly	esoteric	system	for
measuring	how	good	a	software	team	is.	No,	wait!	Don't	follow
that	link!	It	will	take	you	about	six	years	just	to	understand	that
stuff.	So	I've	come	up	with	my	own,	highly	irresponsible,	sloppy
test	to	rate	the	quality	of	a	software	team.	The	great	part	about
it	is	that	it	takes	about	3	minutes.	With	all	the	time	you	save,
you	can	go	to	medical	school.

The	Joel	Test
1.	 Do	you	use	source	control?
2.	 Can	you	make	a	build	in	one	step?
3.	 Do	you	make	daily	builds?
4.	 Do	you	have	a	bug	database?
5.	 Do	you	fix	bugs	before	writing	new	code?
6.	 Do	you	have	an	up-to-date	schedule?
7.	 Do	you	have	a	spec?
8.	 Do	programmers	have	quiet	working

conditions?
9.	 Do	you	use	the	best	tools	money	can	buy?

10.	 Do	you	have	testers?
11.	 Do	new	candidates	write	code	during	their

interview?
12.	 Do	you	do	hallway	usability	testing?

The	neat	thing	about	The	Joel	Test	is	that	it's	easy	to	get	a	quick
yes	or	no	to	each	question.	You	don't	have	to	figure	out	lines-
of-code-per-day	or	average-bugs-per-inflection-point.	Give	your
team	1	point	for	each	"yes"	answer.	The	bummer	about	The	Joel
Test	is	that	you	really	shouldn't	use	it	to	make	sure	that	your
nuclear	power	plant	software	is	safe.

A	score	of	12	is	perfect,	11	is	tolerable,	but	10	or	lower	and
you've	got	serious	problems.	The	truth	is	that	most	software
organizations	are	running	with	a	score	of	2	or	3,	and	they	need
serious	help,	because	companies	like	Microsoft	run	at	12	full-
time.	

Of	course,	these	are	not	the	only	factors	that	determine
success	or	failure:	in	particular,	if	you	have	a	great	software
team	working	on	a	product	that	nobody	wants,	well,	people
aren't	going	to	want	it.	And	it's	possible	to	imagine	a	team	of
"gunslingers"	that	doesn't	do	any	of	this	stuff	that	still	manages
to	produce	incredible	software	that	changes	the	world.	But,	all
else	being	equal,	if	you	get	these	12	things	right,	you'll	have	a
disciplined	team	that	can	consistently	deliver.

1.	Do	you	use	source	control?
I've	used	commercial	source	control	packages,	and	I've	used
CVS,	which	is	free,	and	let	me	tell	you,	CVS	is	fine.	But	if	you
don't	have	source	control,	you're	going	to	stress	out	trying	to
get	programmers	to	work	together.	Programmers	have	no	way
to	know	what	other	people	did.	Mistakes	can't	be	rolled	back
easily.	The	other	neat	thing	about	source	control	systems	is
that	the	source	code	itself	is	checked	out	on	every
programmer's	hard	drive	--	I've	never	heard	of	a	project	using
source	control	that	lost	a	lot	of	code.

2.	Can	you	make	a	build	in	one	step?
By	this	I	mean:	how	many	steps	does	it	take	to	make	a	shipping
build	from	the	latest	source	snapshot?	On	good	teams,	there's
a	single	script	you	can	run	that	does	a	full	checkout	from

scratch,	rebuilds	every	line	of	code,	makes	the	EXEs,	in	all	their
various	versions,	languages,	and	#ifdef	combinations,	creates
the	installation	package,	and	creates	the	final	media	--	CDROM
layout,	download	website,	whatever.

If	the	process	takes	any	more	than	one	step,	it	is	prone	to
errors.	And	when	you	get	closer	to	shipping,	you	want	to	have
a	very	fast	cycle	of	fixing	the	"last"	bug,	making	the	final	EXEs,
etc.	If	it	takes	20	steps	to	compile	the	code,	run	the	installation
builder,	etc.,	you're	going	to	go	crazy	and	you're	going	to	make
silly	mistakes.

For	this	very	reason,	the	last	company	I	worked	at	switched
from	WISE	to	InstallShield:	we	required	that	the	installation
process	be	able	to	run,	from	a	script,	automatically,	overnight,
using	the	NT	scheduler,	and	WISE	couldn't	run	from	the
scheduler	overnight,	so	we	threw	it	out.	(The	kind	folks	at	WISE
assure	me	that	their	latest	version	does	support	nightly	builds.)

3.	Do	you	make	daily	builds?
When	you're	using	source	control,	sometimes	one	programmer
accidentally	checks	in	something	that	breaks	the	build.	For
example,	they've	added	a	new	source	file,	and	everything
compiles	fine	on	their	machine,	but	they	forgot	to	add	the
source	file	to	the	code	repository.	So	they	lock	their	machine
and	go	home,	oblivious	and	happy.	But	nobody	else	can	work,
so	they	have	to	go	home	too,	unhappy.

Breaking	the	build	is	so	bad	(and	so	common)	that	it	helps	to
make	daily	builds,	to	insure	that	no	breakage	goes	unnoticed.
On	large	teams,	one	good	way	to	insure	that	breakages	are
fixed	right	away	is	to	do	the	daily	build	every	afternoon	at,	say,
lunchtime.	Everyone	does	as	many	checkins	as	possible	before
lunch.	When	they	come	back,	the	build	is	done.	If	it	worked,
great!	Everybody	checks	out	the	latest	version	of	the	source
and	goes	on	working.	If	the	build	failed,	you	fix	it,	but
everybody	can	keep	on	working	with	the	pre-build,	unbroken
version	of	the	source.

On	the	Excel	team	we	had	a	rule	that	whoever	broke	the	build,
as	their	"punishment",	was	responsible	for	babysitting	the	builds
until	someone	else	broke	it.	This	was	a	good	incentive	not	to
break	the	build,	and	a	good	way	to	rotate	everyone	through	the
build	process	so	that	everyone	learned	how	it	worked.	

Read	more	about	daily	builds	in	my	article	Daily	Builds	are	Your
Friend.

4.	Do	you	have	a	bug	database?
I	don't	care	what	you	say.	If	you	are	developing	code,	even	on	a
team	of	one,	without	an	organized	database	listing	all	known
bugs	in	the	code,	you	are	going	to	ship	low	quality	code.	Lots	of
programmers	think	they	can	hold	the	bug	list	in	their	heads.
Nonsense.	I	can't	remember	more	than	two	or	three	bugs	at	a
time,	and	the	next	morning,	or	in	the	rush	of	shipping,	they	are
forgotten.	You	absolutely	have	to	keep	track	of	bugs	formally.

Bug	databases	can	be	complicated	or	simple.	A	minimal	useful
bug	database	must	include	the	following	data	for	every	bug:

complete	steps	to	reproduce	the	bug
expected	behavior
observed	(buggy)	behavior
who	it's	assigned	to
whether	it	has	been	fixed	or	not

If	the	complexity	of	bug	tracking	software	is	the	only	thing
stopping	you	from	tracking	your	bugs,	just	make	a	simple	5

column	table	with	these	crucial	fields	and	start	using	it.

For	more	on	bug	tracking,	read	Painless	Bug	Tracking.

5.	Do	you	fix	bugs	before	writing	new	code?
The	very	first	version	of	Microsoft	Word	for	Windows	was
considered	a	"death	march"	project.	It	took	forever.	It	kept
slipping.	The	whole	team	was	working	ridiculous	hours,	the
project	was	delayed	again,	and	again,	and	again,	and	the	stress
was	incredible.	When	the	dang	thing	finally	shipped,	years	late,
Microsoft	sent	the	whole	team	off	to	Cancun	for	a	vacation,
then	sat	down	for	some	serious	soul-searching.

What	they	realized	was	that	the	project	managers	had	been	so
insistent	on	keeping	to	the	"schedule"	that	programmers	simply
rushed	through	the	coding	process,	writing	extremely	bad
code,	because	the	bug	fixing	phase	was	not	a	part	of	the
formal	schedule.	There	was	no	attempt	to	keep	the	bug-count
down.	Quite	the	opposite.	The	story	goes	that	one
programmer,	who	had	to	write	the	code	to	calculate	the	height
of	a	line	of	text,	simply	wrote	"return	12;"	and	waited	for	the
bug	report	to	come	in	about	how	his	function	is	not	always
correct.	The	schedule	was	merely	a	checklist	of	features	waiting
to	be	turned	into	bugs.	In	the	post-mortem,	this	was	referred
to	as	"infinite	defects	methodology".

To	correct	the	problem,	Microsoft	universally	adopted
something	called	a	"zero	defects	methodology".	Many	of	the
programmers	in	the	company	giggled,	since	it	sounded	like
management	thought	they	could	reduce	the	bug	count	by
executive	fiat.	Actually,	"zero	defects"	meant	that	at	any	given
time,	the	highest	priority	is	to	eliminate	bugs	before	writing	any
new	code.	Here's	why.	

In	general,	the	longer	you	wait	before	fixing	a	bug,	the	costlier
(in	time	and	money)	it	is	to	fix.

For	example,	when	you	make	a	typo	or	syntax	error	that	the
compiler	catches,	fixing	it	is	basically	trivial.

When	you	have	a	bug	in	your	code	that	you	see	the	first	time
you	try	to	run	it,	you	will	be	able	to	fix	it	in	no	time	at	all,
because	all	the	code	is	still	fresh	in	your	mind.

If	you	find	a	bug	in	some	code	that	you	wrote	a	few	days	ago,	it
will	take	you	a	while	to	hunt	it	down,	but	when	you	reread	the
code	you	wrote,	you'll	remember	everything	and	you'll	be	able
to	fix	the	bug	in	a	reasonable	amount	of	time.

But	if	you	find	a	bug	in	code	that	you	wrote	a	few	months	ago,
you'll	probably	have	forgotten	a	lot	of	things	about	that	code,
and	it's	much	harder	to	fix.	By	that	time	you	may	be	fixing
somebody	else's	code,	and	they	may	be	in	Aruba	on	vacation,	in
which	case,	fixing	the	bug	is	like	science:	you	have	to	be	slow,
methodical,	and	meticulous,	and	you	can't	be	sure	how	long	it
will	take	to	discover	the	cure.

And	if	you	find	a	bug	in	code	that	has	already	shipped,	you're
going	to	incur	incredible	expense	getting	it	fixed.

That's	one	reason	to	fix	bugs	right	away:	because	it	takes	less
time.	There's	another	reason,	which	relates	to	the	fact	that	it's
easier	to	predict	how	long	it	will	take	to	write	new	code	than	to
fix	an	existing	bug.	For	example,	if	I	asked	you	to	predict	how
long	it	would	take	to	write	the	code	to	sort	a	list,	you	could	give
me	a	pretty	good	estimate.	But	if	I	asked	you	how	to	predict
how	long	it	would	take	to	fix	that	bug	where	your	code	doesn't
work	if	Internet	Explorer	5.5	is	installed,	you	can't	even	guess,

because	you	don't	know	(by	definition)	what's	causing	the	bug.
It	could	take	3	days	to	track	it	down,	or	it	could	take	2	minutes.

What	this	means	is	that	if	you	have	a	schedule	with	a	lot	of
bugs	remaining	to	be	fixed,	the	schedule	is	unreliable.	But	if
you've	fixed	all	the	known	bugs,	and	all	that's	left	is	new	code,
then	your	schedule	will	be	stunningly	more	accurate.

Another	great	thing	about	keeping	the	bug	count	at	zero	is	that
you	can	respond	much	faster	to	competition.	Some
programmers	think	of	this	as	keeping	the	product	ready	to	ship
at	all	times.	Then	if	your	competitor	introduces	a	killer	new
feature	that	is	stealing	your	customers,	you	can	implement	just
that	feature	and	ship	on	the	spot,	without	having	to	fix	a	large
number	of	accumulated	bugs.

6.	Do	you	have	an	up-to-date	schedule?
Which	brings	us	to	schedules.	If	your	code	is	at	all	important	to
the	business,	there	are	lots	of	reasons	why	it's	important	to	the
business	to	know	when	the	code	is	going	to	be	done.
Programmers	are	notoriously	crabby	about	making	schedules.
"It	will	be	done	when	it's	done!"	they	scream	at	the	business
people.

Unfortunately,	that	just	doesn't	cut	it.	There	are	too	many
planning	decisions	that	the	business	needs	to	make	well	in
advance	of	shipping	the	code:	demos,	trade	shows,	advertising,
etc.	And	the	only	way	to	do	this	is	to	have	a	schedule,	and	to
keep	it	up	to	date.

The	other	crucial	thing	about	having	a	schedule	is	that	it	forces
you	to	decide	what	features	you	are	going	to	do,	and	then	it
forces	you	to	pick	the	least	important	features	and	cut	them
rather	than	slipping	into	featuritis	(a.k.a.	scope	creep).

Keeping	schedules	does	not	have	to	be	hard.	Read	my	article
Painless	Software	Schedules,	which	describes	a	simple	way	to
make	great	schedules.

7.	Do	you	have	a	spec?
Writing	specs	is	like	flossing:	everybody	agrees	that	it's	a	good
thing,	but	nobody	does	it.	

I'm	not	sure	why	this	is,	but	it's	probably	because	most
programmers	hate	writing	documents.	As	a	result,	when	teams
consisting	solely	of	programmers	attack	a	problem,	they	prefer
to	express	their	solution	in	code,	rather	than	in	documents.
They	would	much	rather	dive	in	and	write	code	than	produce	a
spec	first.

At	the	design	stage,	when	you	discover	problems,	you	can	fix
them	easily	by	editing	a	few	lines	of	text.	Once	the	code	is
written,	the	cost	of	fixing	problems	is	dramatically	higher,	both
emotionally	(people	hate	to	throw	away	code)	and	in	terms	of
time,	so	there's	resistance	to	actually	fixing	the	problems.
Software	that	wasn't	built	from	a	spec	usually	winds	up	badly
designed	and	the	schedule	gets	out	of	control.		This	seems	to
have	been	the	problem	at	Netscape,	where	the	first	four
versions	grew	into	such	a	mess	that	management	stupidly
decided	to	throw	out	the	code	and	start	over.	And	then	they
made	this	mistake	all	over	again	with	Mozilla,	creating	a	monster
that	spun	out	of	control	and	took	several	years	to	get	to	alpha
stage.

My	pet	theory	is	that	this	problem	can	be	fixed	by	teaching
programmers	to	be	less	reluctant	writers	by	sending	them	off
to	take	an	intensive	course	in	writing.	Another	solution	is	to	hire
smart	program	managers	who	produce	the	written	spec.	In

either	case,	you	should	enforce	the	simple	rule	"no	code
without	spec".

Learn	all	about	writing	specs	by	reading	my	4-part	series.

8.	Do	programmers	have	quiet	working	conditions?
There	are	extensively	documented	productivity	gains	provided
by	giving	knowledge	workers	space,	quiet,	and	privacy.	The
classic	software	management	book	Peopleware	documents
these	productivity	benefits	extensively.

Here's	the	trouble.	We	all	know	that	knowledge	workers	work
best	by	getting	into	"flow",	also	known	as	being	"in	the	zone",
where	they	are	fully	concentrated	on	their	work	and	fully	tuned
out	of	their	environment.	They	lose	track	of	time	and	produce
great	stuff	through	absolute	concentration.	This	is	when	they
get	all	of	their	productive	work	done.	Writers,	programmers,
scientists,	and	even	basketball	players	will	tell	you	about	being	in
the	zone.

The	trouble	is,	getting	into	"the	zone"	is	not	easy.	When	you	try
to	measure	it,	it	looks	like	it	takes	an	average	of	15	minutes	to
start	working	at	maximum	productivity.	Sometimes,	if	you're
tired	or	have	already	done	a	lot	of	creative	work	that	day,	you
just	can't	get	into	the	zone	and	you	spend	the	rest	of	your	work
day	fiddling	around,	reading	the	web,	playing	Tetris.

The	other	trouble	is	that	it's	so	easy	to	get	knocked	out	of	the
zone.	Noise,	phone	calls,	going	out	for	lunch,	having	to	drive	5
minutes	to	Starbucks	for	coffee,	and	interruptions	by
coworkers	--	especially	interruptions	by	coworkers	--	all	knock
you	out	of	the	zone.	If	a	coworker	asks	you	a	question,	causing
a	1	minute	interruption,	but	this	knocks	you	out	of	the	zone
badly	enough	that	it	takes	you	half	an	hour	to	get	productive
again,	your	overall	productivity	is	in	serious	trouble.	If	you're	in
a	noisy	bullpen	environment	like	the	type	that	caffeinated
dotcoms	love	to	create,	with	marketing	guys	screaming	on	the
phone	next	to	programmers,	your	productivity	will	plunge	as
knowledge	workers	get	interrupted	time	after	time	and	never
get	into	the	zone.

With	programmers,	it's	especially	hard.	Productivity	depends	on
being	able	to	juggle	a	lot	of	little	details	in	short	term	memory	all
at	once.	Any	kind	of	interruption	can	cause	these	details	to
come	crashing	down.	When	you	resume	work,	you	can't
remember	any	of	the	details	(like	local	variable	names	you	were
using,	or	where	you	were	up	to	in	implementing	that	search
algorithm)	and	you	have	to	keep	looking	these	things	up,	which
slows	you	down	a	lot	until	you	get	back	up	to	speed.

Here's	the	simple	algebra.	Let's	say	(as	the	evidence	seems	to
suggest)	that	if	we	interrupt	a	programmer,	even	for	a	minute,
we're	really	blowing	away	15	minutes	of	productivity.	For	this
example,	lets	put	two	programmers,	Jeff	and	Mutt,	in	open
cubicles	next	to	each	other	in	a	standard	Dilbert	veal-fattening
farm.	Mutt	can't	remember	the	name	of	the	Unicode	version	of
the	strcpy	function.	He	could	look	it	up,	which	takes	30
seconds,	or	he	could	ask	Jeff,	which	takes	15	seconds.	Since
he's	sitting	right	next	to	Jeff,	he	asks	Jeff.	Jeff	gets	distracted
and	loses	15	minutes	of	productivity	(to	save	Mutt	15	seconds).

Now	let's	move	them	into	separate	offices	with	walls	and	doors.
Now	when	Mutt	can't	remember	the	name	of	that	function,	he
could	look	it	up,	which	still	takes	30	seconds,	or	he	could	ask
Jeff,	which	now	takes	45	seconds	and	involves	standing	up	(not
an	easy	task	given	the	average	physical	fitness	of
programmers!).	So	he	looks	it	up.	So	now	Mutt	loses	30

seconds	of	productivity,	but	we	save	15	minutes	for	Jeff.	Ahhh!

9.	Do	you	use	the	best	tools	money	can	buy?
Writing	code	in	a	compiled	language	is	one	of	the	last	things
that	still	can't	be	done	instantly	on	a	garden	variety	home
computer.	If	your	compilation	process	takes	more	than	a	few
seconds,	getting	the	latest	and	greatest	computer	is	going	to
save	you	time.	If	compiling	takes	even	15	seconds,
programmers	will	get	bored	while	the	compiler	runs	and	switch
over	to	reading	The	Onion,	which	will	suck	them	in	and	kill	hours
of	productivity.

Debugging	GUI	code	with	a	single	monitor	system	is	painful	if
not	impossible.	If	you're	writing	GUI	code,	two	monitors	will
make	things	much	easier.

Most	programmers	eventually	have	to	manipulate	bitmaps	for
icons	or	toolbars,	and	most	programmers	don't	have	a	good
bitmap	editor	available.	Trying	to	use	Microsoft	Paint	to
manipulate	bitmaps	is	a	joke,	but	that's	what	most
programmers	have	to	do.

At	my	last	job,	the	system	administrator	kept	sending	me
automated	spam	complaining	that	I	was	using	more	than	...	get
this	...	220	megabytes	of	hard	drive	space	on	the	server.	I
pointed	out	that	given	the	price	of	hard	drives	these	days,	the
cost	of	this	space	was	significantly	less	than	the	cost	of	the
toilet	paper	I	used.	Spending	even	10	minutes	cleaning	up	my
directory	would	be	a	fabulous	waste	of	productivity.

Top	notch	development	teams	don't	torture	their
programmers.	Even	minor	frustrations	caused	by	using
underpowered	tools	add	up,	making	programmers	grumpy	and
unhappy.	And	a	grumpy	programmer	is	an	unproductive
programmer.

To	add	to	all	this...	programmers	are	easily	bribed	by	giving
them	the	coolest,	latest	stuff.	This	is	a	far	cheaper	way	to	get
them	to	work	for	you	than	actually	paying	competitive	salaries!

10.	Do	you	have	testers?
If	your	team	doesn't	have	dedicated	testers,	at	least	one	for
every	two	or	three	programmers,	you	are	either	shipping	buggy
products,	or	you're	wasting	money	by	having	$100/hour
programmers	do	work	that	can	be	done	by	$30/hour	testers.
Skimping	on	testers	is	such	an	outrageous	false	economy	that
I'm	simply	blown	away	that	more	people	don't	recognize	it.

Read	Top	Five	(Wrong)	Reasons	You	Don't	Have	Testers,	an
article	I	wrote	about	this	subject.

11.	Do	new	candidates	write	code	during	their
interview?
Would	you	hire	a	magician	without	asking	them	to	show	you
some	magic	tricks?	Of	course	not.

Would	you	hire	a	caterer	for	your	wedding	without	tasting	their
food?	I	doubt	it.	(Unless	it's	Aunt	Marge,	and	she	would	hate
you	forever	if	you	didn't	let	her	make	her	"famous"	chopped
liver	cake).

Yet,	every	day,	programmers	are	hired	on	the	basis	of	an
impressive	resumé	or	because	the	interviewer	enjoyed	chatting
with	them.	Or	they	are	asked	trivia	questions	("what's	the
difference	between	CreateDialog()	and	DialogBox()?")	which
could	be	answered	by	looking	at	the	documentation.	You	don't
care	if	they	have	memorized	thousands	of	trivia	about
programming,	you	care	if	they	are	able	to	produce	code.	Or,

even	worse,	they	are	asked	"AHA!"	questions:	the	kind	of
questions	that	seem	easy	when	you	know	the	answer,	but	if
you	don't	know	the	answer,	they	are	impossible.

Please,	just	stop	doing	this.	Do	whatever	you	want	during
interviews,	but	make	the	candidate	write	some	code.	(For	more
advice,	read	my	Guerrilla	Guide	to	Interviewing.)

12.	Do	you	do	hallway	usability	testing?
A	hallway	usability	test	is	where	you	grab	the	next	person	that
passes	by	in	the	hallway	and	force	them	to	try	to	use	the	code
you	just	wrote.	If	you	do	this	to	five	people,	you	will	learn	95%
of	what	there	is	to	learn	about	usability	problems	in	your	code.

Good	user	interface	design	is	not	as	hard	as	you	would	think,
and	it's	crucial	if	you	want	customers	to	love	and	buy	your
product.	You	can	read	my	free	online	book	on	UI	design,	a
short	primer	for	programmers.

But	the	most	important	thing	about	user	interfaces	is	that	if	you
show	your	program	to	a	handful	of	people,	(in	fact,	five	or	six	is
enough)	you	will	quickly	discover	the	biggest	problems	people
are	having.	Read	Jakob	Nielsen's	article	explaining	why.	Even	if
your	UI	design	skills	are	lacking,	as	long	as	you	force	yourself
to	do	hallway	usability	tests,	which	cost	nothing,	your	UI	will	be
much,	much	better.

Next:	Wasting	Money	on	Cats	

Want	to	know	more?	You’re	reading	Joel	on	Software,
stuffed	with	years	and	years	of	completely	raving	mad	articles
about	software	development,	managing	software	teams,
designing	user	interfaces,	running	successful	software
companies,	and	rubber	duckies.	

About	the	author.	I’m	Joel	Spolsky,	co-founder	of	Fog	Creek
Software,	a	New	York	company	that	proves	that	you	can	treat
programmers	well	and	still	be	highly	profitable.	Programmers
get	private	offices,	free	lunch,	and	work	40	hours	a	week.
Customers	only	pay	for	software	if	they’re	delighted.	We	make
Trello,	insanely	simple	project	management,	FogBugz,	an
enlightened	bug	tracker	designed	to	help	great	teams	develop
brilliant	software,	and	Kiln,	which	simplifies	source	control.	I’m
also	the	co-founder	and	CEO	of	Stack	Exchange.	More	about
me.

©	2000-2013	Joel	Spolsky
joel@joelonsoftware.com

Have	you	been
wondering	about
Distributed	Version
Control?	It	has	been
a	huge	productivity
boon	for	us,	so	I	wrote	Hg
Init,	a	Mercurial	tutorial—
check	it	out!

