
Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:47:50 WET 2013.
http://ebooks.cambridge.org/ebook.jsf?bid=CBO9780511667572
Cambridge Books Online © Cambridge University Press, 2013

Unlocking the Power of OPNET Modeler

For fast, easy modeling, this practical guide provides all the essential information you
need to know. A wide range of topics is covered, including custom protocols, program-
ming in C++, External ModelAccess (EMA) modeling, and co-simulation with external
systems, giving you the guidance not provided in the OPNET documentation. A set of
high-level wrapperAPIs is also included to simplify programming custom OPNET mod-
els, whether you are a newcomer to OPNET or an experienced user needing to model
ef ciently. From the basic to the advanced, you’ll nd topics are easy to follow with
theory kept to a minimum, many practical tips and answers to frequently asked ques-
tions spread throughout the book, and numerous step-by-step case studies and real-world
network scenarios included.

Zheng Lu received his Ph.D. from the University of Essex, after which he stayed on to
research optical networks and wireless sensor networks. He is experienced in modeling
network protocols and has many years of experience using OPNET Modeler in his
research and laboratory demonstrations.

Hongji Yang is currently a Professor at the Software Technology Research Laboratory,
De Montfort University. He received his Ph.D. from Durham University in 1994 and
was a main contributor to the Distributed Computer Networks project sponsored by the
Chinese Ministry of Education, 1982–1986.

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:47:50 WET 2013.
http://ebooks.cambridge.org/ebook.jsf?bid=CBO9780511667572
Cambridge Books Online © Cambridge University Press, 2013

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:47:50 WET 2013.
http://ebooks.cambridge.org/ebook.jsf?bid=CBO9780511667572
Cambridge Books Online © Cambridge University Press, 2013

Unlocking the Power
of OPNET Modeler

ZHENG LU

HONGJI YANG

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:47:50 WET 2013.
http://ebooks.cambridge.org/ebook.jsf?bid=CBO9780511667572
Cambridge Books Online © Cambridge University Press, 2013

cambridge university press
Cambridge, New York, Melbourne, Madrid, Cape Town,
Singapore, São Paulo, Delhi, Tokyo, Mexico City

Cambridge University Press
The Edinburgh Building, Cambridge CB2 8RU, UK

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org
Information on this title: www.cambridge.org/9780521198745

© Cambridge University Press 2012

This publication is in copyright. Subject to statutory exception
and to the provisions of relevant collective licensing agreements,
no reproduction of any part may take place without the written
permission of Cambridge University Press.

First published 2012

Printed in the United Kingdom at the University Press, Cambridge

A catalogue record for this publication is available from the British Library

Library of Congress Cataloguing in Publication data
Lu, Zheng.

Unlocking the power of OPNET modeler / Zheng Lu, Hongji Yang.
p. cm.

Includes bibliographical references and index.
ISBN 978-0-521-19874-5 (hardback)
1. Computer networks – Mathematical models. 2. Computer networks – Simulation methods.
3. Computer network protocols. I. Yang, Hongji. II. Title.
TK5105.5.L825 2011
005.7′13–dc23 2011032466

ISBN 978-0-521-19874-5 Hardback

Additional resources for this publication at www.cambridge.org/9780521198745

Cambridge University Press has no responsibility for the persistence or
accuracy of URLs for external or third-party Internet websites referred to in
this publication, and does not guarantee that any content on such websites is,
or will remain, accurate or appropriate.

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:47:50 WET 2013.
http://ebooks.cambridge.org/ebook.jsf?bid=CBO9780511667572
Cambridge Books Online © Cambridge University Press, 2013

Contents

Preface xi
List of abbreviations xiii

Part I Preparation for OPNET Modeling 1

1 Introduction 3

1.1 Network modeling and simulation 3
1.2 Introduction to OPNET 4
1.3 OPNET Modeler 5
1.4 Summary 6
1.5 Theoretical background 6

1.5.1 Simulation and principles of simulator 6
1.5.2 Hybrid simulation 9

2 Installation of OPNET Modeler and setting up environments 11

2.1 System requirements for using OPNET Modeler 11
2.2 Installation on Windows 11

2.2.1 Installation of OPNET Modeler 12
2.2.2 Installation and con guration of Microsoft Visual C++ 15
2.2.3 OPNET Modeler preferences for C/C++ compiler 17
2.2.4 Licensing 19

2.3 Installation on Linux 20
2.3.1 Installation of OPNET Modeler 20
2.3.2 Installation and con guration of GCC compiler 21
2.3.3 OPNET Modeler preferences for GCC

compiler 21
2.3.4 Licensing 22

2.4 Theoretical background 23
2.4.1 Compilation and linking options 23
2.4.2 Simulation models compilation and linking 23

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:48:01 WET 2013.
http://ebooks.cambridge.org/ebook.jsf?bid=CBO9780511667572
Cambridge Books Online © Cambridge University Press, 2013

vi Contents

3 OPNET Modeler user interface 24

3.1 Project management 24
3.2 Modeler preferences 26
3.3 OPNET editors 29

3.3.1 Project Editor 29
3.3.2 Node Editor 31
3.3.3 Process Editor 31
3.3.4 Link Editor 32
3.3.5 Packet Format Editor 32
3.3.6 ICI Editor 34
3.3.7 PDF Editor 35
3.3.8 Probe Editor 35

3.4 Simulation Results Browser 37
3.5 Animation Viewer 37
3.6 Using OPNET documentation 39

Part II Modeling Custom Networks and Protocols 41

4 OPNET programming interfaces 43

4.1 Introduction to OPNET programming 43
4.2 OPNET API categorization 44
4.3 Kernel APIs/Kernel Procedures (KPs) 45

4.3.1 Distribution Package 46
4.3.2 Packet Package 49
4.3.3 Queue Package and Subqueue Package 51
4.3.4 Statistic Package 51
4.3.5 Segmentation and reassembly package 52
4.3.6 Topology package 52
4.3.7 Programming Support APIs 54

4.4 Theoretical background 54
4.4.1 Proto-C speci cations 54
4.4.2 Process model and external model access (EMA) program 56
4.4.3 OPNET Modeler model programming external interfaces:

co-simulation, external tool support (ETS) and OPNET
Development Kit (ODK) 56

5 Creating and simulating custom models using OPNET APIs 58

5.1 General procedure for creating and simulating custom models 58
5.2 Custom models 59

5.2.1 Case 1 59
5.2.2 Case 2 68
5.2.3 Case 3 70

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:48:01 WET 2013.
http://ebooks.cambridge.org/ebook.jsf?bid=CBO9780511667572
Cambridge Books Online © Cambridge University Press, 2013

Contents vii

5.2.4 Case 4 74
5.2.5 Case 5 79
5.2.6 Case 6 83
5.2.7 Case 7 95

5.3 Model optimization and validation 96

6 High-level wrapper APIs 100

6.1 Why and how to use wrapper APIs 100
6.2 Wrapper APIs provided with the book 101

6.2.1 Geo_Topo wrapper APIs 102
6.2.2 Routing wrapper APIs 104
6.2.3 Flow wrapper APIs 106

6.3 How to write your own wrapper API 107

7 Modeling with high-level wrapper APIs 110

7.1 Revisit of previous case 110
7.2 Creating connection-oriented communications 112

7.2.1 Single ow 114
7.2.2 Trunk of ows 119

Part III Modeling and Modifying Standard Networks and Protocols 123

8 Modeling wired networks with standard models 125

8.1 Client/server structure 125
8.1.1 Creating a network model 125
8.1.2 Task, application, and pro le con gurations 127
8.1.3 Choosing and viewing statistic results 131

8.2 Local area network 132
8.3 Wide area IP network 132
8.4 Automatic network deployment 134
8.5 Summary 135

9 Modeling wireless networks with standard models 137

9.1 Basics of wireless modeling 137
9.2 Wireless local area networks (WLANs) 138

9.2.1 Communication within WLANs 138
9.3 Communication between WLANs 140
9.4 Wireless mobile networks 143

9.4.1 Movement via trajectories 143
9.4.2 Facilities for random mobility 146
9.4.3 Movement via programming interfaces 148

9.5 Automatic network deployment 148

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:48:01 WET 2013.
http://ebooks.cambridge.org/ebook.jsf?bid=CBO9780511667572
Cambridge Books Online © Cambridge University Press, 2013

viii Contents

10 Modifying standard models 151

10.1 Introduction 151
10.2 Case study 151

Part IV OPNET Modeling Facilities 165

11 Debugging simulation 167

11.1 Debugging facilities in OPNET Modeler 167
11.1.1 Prerequisites for debugging 168
11.1.2 Preparing simulation scenario 168
11.1.3 Debugging with ODB 169
11.1.4 Debugging with CDB/GDB 175
11.1.5 Debugging with Microsoft Visual C++ Debugger 177
11.1.6 Debugging with animation 179

12 OPNET programming in C++ 182

12.1 Proto-C, C, and C++: language and library differences 182
12.2 Memory management differences between Proto-C APIs and

C/C++ standard library functions 182
12.3 Proto-C data structures and algorithms packages, C++ standard template

libraries (STL) and Boost C++ libraries 184
12.4 Environment con gurations for C++ programming in OPNET 185
12.5 Case study on programming OPNET models in C++ 187

13 Traffic in OPNET simulation 194

13.1 Introduction 194
13.2 Explicit traf c 194

13.2.1 Explicit traf c based on application 195
13.2.2 Explicit traf c based on traf c generation parameters 196
13.2.3 Explicit self-similar traf c based on raw packet generator (RPG)

model 197
13.3 Background traf c and hybrid simulation 200

13.3.1 Background traf c based on baseline load 201
13.3.2 Background traf c based on traf c ow 202

14 External model access (EMA) 207

14.1 What EMA is and reasons to use it 207
14.2 EMA case study 208

15 OPNET co-simulation with third-party programs 215

15.1 Co-simulation with external programs 215

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:48:01 WET 2013.
http://ebooks.cambridge.org/ebook.jsf?bid=CBO9780511667572
Cambridge Books Online © Cambridge University Press, 2013

Contents ix

15.1.1 Introduction 215
15.1.2 Co-simulation with an external C program 216
15.1.3 Creating simulation models 217
15.1.4 Creating an external C co-simulation controller program 221
15.1.5 Running co-simulation 224
15.1.6 Co-simulation with other systems 225

15.2 Co-simulation with MATLAB 225
15.2.1 Setup of environment variables 226
15.2.2 Modifying OPNET models and external code 226

16 Model authoring and security 232

16.1 Introduction 232
16.2 Protecting a model 232
16.3 Making a demo model 234
16.4 Licensing a model 234

References 236
Index 237

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:48:01 WET 2013.
http://ebooks.cambridge.org/ebook.jsf?bid=CBO9780511667572
Cambridge Books Online © Cambridge University Press, 2013

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:48:01 WET 2013.
http://ebooks.cambridge.org/ebook.jsf?bid=CBO9780511667572
Cambridge Books Online © Cambridge University Press, 2013

Preface

Network simulation is an important methodology in network research elds and OPNET
Modeler is a very useful tool for network modeling and simulation. OPNET Modeler
is generally used by researchers, protocol designers, university teachers and students in
the elds of electronic engineering, computer science,management information systems,
and related disciplines. The friendly design of its graphical user interface (GUI) makes
it nice and easy to start with. However, the complexity of OPNET Modeler and lack of
useful support material make it dif cult for many users to fully make use of its bene ts.
OPNET Modeler has its documentation covering many aspects on using the modeler.
However, it covers too many aspects in parallel form rather than a step-forward form,
making users unable to decide where to start and causing them to lose focus.

This book is an effort to partially ll this gap and should be useful for courses on
network simulation and OPNET modeling for university students, as well as for the
researchers on this topic. The book covers a wide range of knowledge from basic top-
ics to advanced topics. All case studies in the book are step-by-step and progressive.
Relevant les and sources can be downloaded from the publisher’s website. A set of
high-level wrapper APIs are provided to help even new users to write complex models,
and experienced users to write large, complex models ef ciently. Question-and-answer
pairs are spread over the chapters to answer the most common questions users may
experience in practice.

The book is composed of four parts. Part I: Preparation for OPNET Modeling intro-
duces OPNET and OPNET Modeler. It leads the reader through the required basics on
using OPNET Modeler and provides familiarization with OPNET Modeler user inter-
faces. Part II: Modeling Custom Networks and Protocols rst teaches the reader how to
create custom models by directly using OPNETAPI packages. It then introduces a high-
level wrapper API package and demonstrates how to model systems easily using these
high-level wrapper API packages instead. Part III: Modeling and Modifying Standard
Networks and Protocols teaches the reader how to model networks and protocols based
on existing standard OPNET modules and how to modify existing standard models in
order to extend standard protocols by adding custom features. Part IV: OPNETModeling
Facilities covers content that is used to facilitate OPNET modeling, including debug-
ging, hybrid simulation, External Model Access (EMA), co-simulation, programming
OPNET models in C++, etc.

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:48:06 WET 2013.
http://dx.doi.org/10.1017/CBO9780511667572.001

Cambridge Books Online © Cambridge University Press, 2013

xii Preface

We thank deeply the various people who, during the months over which this
endeavor lasted, provided us with useful and helpful assistance. Without their care and
consideration, this book would likely not have matured.

First, we thank Dr. David K. Hunter and Dr. Yixuan Qin, who gave us useful
suggestions and comments before and during the writing of the book.

Second, we thank the publisher and people who demonstrated interest in publishing
this book. The production team at Cambridge University Press has been great. Many
thanks go to people who helped us with the book development, including Mrs. Sarah
Marsh and Dr. Julie Lancashire.

Dr. Zheng Lu would like to thank his wife Dr. Gui Gui; without her support, he could
not have got through that dif cult time and thrown himself into nishing the book.

Professor Hongji Yang would like to thank his wife, Xiaodong Zhang, for her full
support in nishing the writing of this book.

Trademark acknowledgments: OPNET is a trademark of OPNET Technologies, Inc.
All other product names mentioned herein are the trademarks of their respective own-
ers. The relevant screenshots in this book are used with authorization by OPNET
Technologies, Inc.

Zheng Lu
Hongji Yang

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:48:06 WET 2013.
http://dx.doi.org/10.1017/CBO9780511667572.001

Cambridge Books Online © Cambridge University Press, 2013

Abbreviations

API application programming interface
BSS basic service set
CDB Microsoft Console Debugger
CMO Categorized Memory
DB diagnostic block
DES discrete event simulation
EMA External Model Access
ESA External Simulation Access
ESD External System De nition
Esys External System
ETS external tool support
FB function block
FPP Fractal Point Process
GDB GNU Project Debugger
GUI graphic user interface
HB header block
ICI Interface Control Information
IDE Integrated Development Environment
KP Kernel Procedure
LAN local area network
MSVC Microsoft Visual C++ Debugger
ODB OPNET Simulation Debugger
ODK OPNET Development Kit
PDF probability density function
PMO Pooled Memory
PPP Point to Point Protocol
QoS quality of service
RPG raw packet generator
SDK software development kit
STD state transition diagram
STL Standard Template Library

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:48:30 WET 2013.
http://ebooks.cambridge.org/ebook.jsf?bid=CBO9780511667572
Cambridge Books Online © Cambridge University Press, 2013

xiv List of abbreviations

SV state variable
TB termination block
TV temporary variable
UI user interface
WAN wide area network
WLAN wireless local area network

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:48:30 WET 2013.
http://ebooks.cambridge.org/ebook.jsf?bid=CBO9780511667572
Cambridge Books Online © Cambridge University Press, 2013

Part I

Preparation for OPNET Modeling

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:48:38 WET 2013.
http://ebooks.cambridge.org/ebook.jsf?bid=CBO9780511667572
Cambridge Books Online © Cambridge University Press, 2013

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:48:38 WET 2013.
http://ebooks.cambridge.org/ebook.jsf?bid=CBO9780511667572
Cambridge Books Online © Cambridge University Press, 2013

1 Introduction

This chapter introduces network modeling and simulation, and both OPNETand OPNET
Modeler. If you already have relevant background, you can quickly read through this
chapter and go to Chapter 2.

1.1 Network modeling and simulation

There are several feasible methods for investigating networking protocols and evaluating
network performance (Leemis and Park 2006; www.opnet.com):

• Analysis and mathematical modeling
• Simulation – typically time-based simulation or discrete event-based simulation
• Hybrid simulation with both analysis and simulation
• Test-bed emulation

Analysis and mathematical modeling can provide quick insights and answers to the
problems being studied. It is generally faster than simulation, but in many cases is inac-
curate or inapplicable. Analytical models are not available for many situations. Even so,
many of the available models lack accuracy and some are modeled through approxima-
tions. Especially for a network of queues, it can either be decomposed via the Kleinrock
independence assumption or be solved using a hop-by-hop single system analysis, both
of which lose accuracy. The modeling dif culties and loss of accuracy can be greatly
exacerbated when the networking protocols become even slightly complex. It is often
necessary to resort to approximation by reducing the general model to a typical and
representative analytical path in order to reduce the analytical dif culties (Kleinrock,
1976).

Network simulation provides a way to model the network behaviors by calculating the
interactions between modeling devices. Discrete event simulation (DES) is the typical
method in large-scale simulation studies instead of a simpler time-based method. DES
enables modeling in a more accurate and realistic way, and has broad applicability
(Leemis and Park 2006). DES creates an extremely detailed, packet-by-packet model for
the activities of network to be predicted. However, it often has signi cant requirements
for computing power; in particular, for very large-scale simulation studies, the process
can be time-consuming. It can take several hours or even days to complete. However,

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:48:50 WET 2013.
http://dx.doi.org/10.1017/CBO9780511667572.002

Cambridge Books Online © Cambridge University Press, 2013

4 Introduction

simulation can always provide accurate solutions for either a single-node queuing system
or a network of queues, from simple algorithm to complex protocol.

One way to work around these issues in mathematical analysis and explicit sim-
ulation is combining the methods in the simulation in order to gain access to the
advantages of both while overcoming their disadvantages. This combined method is
typically called hybrid simulation, i.e., partially modeling in DES for accuracy and
partially in mathematical analysis for faster speed and less computational burden (see
www.opnet.com).

There are many network simulators like OPNET (see www.opnet.com), NS
(www.isi.edu/nsnam/ns), and OMNeT++ (www.omnetpg.org) which are popular and
widely used. Among them, OPNET is capable of simulating in both explicit DES and
hybrid simulation modes, and supports other simulation features like co-simulation, par-
allel simulation, high-level architecture, and system-in-the-loop interactive simulations.

Test-bed emulation typically involves implementing the studied algorithms and proto-
cols into real-world hardware but in amuch smaller scale or size. Since test-bed emulation
considers the aspects of both protocols and real-world situations, it is the best way to
provide a benchmark estimating how feasible the algorithms and protocols are and how
close they are to the actual situation. Also, it is a useful way demonstrate new network-
ing concepts. The disadvantage is it will also deal with all other real-world dif culties
and some unexpected engineering problems which can be completely irrelevant to the
studied algorithms and protocols but can be signi cant in the overall emulation results.
Further, the cost of building an emulation test-bed may be signi cant. Test-beds are not
suitable for investigating large systems.

Accordingly, research methodologies for data traf c and networking can be a combi-
nation of some or all of these methods. These methods can be used to cross-check each
other in order to capture the system in a more accurate, ef cient, and cost-effective way.

1.2 Introduction to OPNET

OPNET stands for OPtimized Network Engineering Tools, and was created by OPNET
Technologies, Inc., which was founded in 1986. OPNET is a network simulation tool set;
its products and solutions address the following aspects of communications networks
(see www.opnet.com):

• Application performance management
• Planning
• Engineering
• Operations
• Research and development

This tool set is powerful and can create and test large network environments via soft-
ware. To address each of these aspects, OPNETprovides corresponding product modules
throughout its product line.

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:48:50 WET 2013.
http://dx.doi.org/10.1017/CBO9780511667572.002

Cambridge Books Online © Cambridge University Press, 2013

1.3 OPNET Modeler 5

OPNETproducts for “application performancemanagement” includeACEAnalyst for
analytics for networked applications, ACE Live for end-user experience monitoring and
real-time network analytics, OPNET Panorama for real-time application monitoring and
analytics, and ITGuruSystemsPlanner for systems capacitymanagement for enterprises.

OPNET products for “network planning, engineering, and operations” include IT/SP
Guru Network Planner for network planning and engineering for enterprises and service
providers, SP Guru Transport Planner for transport network planning and engineering,
NetMapper for automated up-to-date network diagramming, IT/SP Sentinel for network
audit, security and policy-compliance for enterprises and service providers, SP Sentinel
for network audit, security and policy-compliance for service providers, and OPNET
nCompass for providing a uni ed, graphical visualization of large, heterogeneous
production networks for enterprises and service providers.

OPNET products for “network research and development” include OPNET Modeler,
OPNET Modeler Wireless Suite, and OPNET Modeler Wireless Suite for Defense.

The products applicable in this book are OPNET Modeler and OPNET Modeler
Wireless Suite.

1.3 OPNET Modeler

OPNET Modeler is the foremost commercial product that provides network modeling
and simulation software solution among the OPNET product family. It is used widely
by researchers, engineers, university students, and the US military. OPNET Modeler is a
dynamic discrete event simulator with a user-friendly graphic user interface (GUI), sup-
ported by object-oriented and hierarchical modeling, debugging, and analysis. OPNET
Modeler is a discrete event simulator that has evolved to support hybrid simulation, ana-
lytical simulation, and 32-bit and 64-bit fully parallel simulation, as well as providing
many other features. It has grid computing support for distributed simulation. Its System-
in-the-Loop interface allows simulation with live systems which feed real-world data
and information into the simulation environment. It provides an open interface for inte-
grating external object les, libraries, and other simulators. It incorporates a broad suite
of protocols and technologies, and includes a development environment to enable mod-
eling of a very wide range of network types and technologies.With the ongoing release of
updated versions, OPNET Modeler incorporates more and more features in order to keep
up with the evolution of communication networks, devices, protocols, and applications.
Hundreds of protocols and vendor device models with source code are already incorpo-
rated in the modeler. OPNET Modeler accelerates the research and development (R&D)
process for analyzing and designing communication networks, devices, protocols, and
applications (see www.opnet.com). OPNET Modeler GUI makes it user-friendly, and
makes it easy for users to begin learning about it and working with it. However, when
trying to progress beyond this initial phase, its full-featured functionalities and powerful
programming interfaces make it dif cult for people to grasp.

OPNET Modeler provides a comprehensive development environment with a full
set of tools including model design, simulation, data collection, and data analysis and

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:48:50 WET 2013.
http://dx.doi.org/10.1017/CBO9780511667572.002

Cambridge Books Online © Cambridge University Press, 2013

6 Introduction

supporting the modeling of communication networks and distributed systems. OPNET
Modeler can be used as a platform to develop models of a wide range of systems. These
applications include: standard-based local area network (LAN) and wide area network
(WAN) performance modeling, hierarchical internetwork planning, R&D of protocols
and communication network architecture, mobile network, sensor network and satellite
network. Other applications include resource sizing, outage and failure recovery, and
so on.

OPNET Modeler is used in the case studies throughout this book. Readers of this
book are assumed to have the license for this particular OPNET product to be able to
go through the book content in practice. This book is based on OPNET Modeler 14.5
and later versions, but the modeling methodologies discussed are applicable to earlier
versions.

1.4 Summary

This chapter discusses the methodologies for network modeling and simulation. OPNET
and its products are introduced. Among OPNET products, OPNET Modeler is the one
to address network research and development, and is the product to be used in the case
studies throughout this book.

1.5 Theoretical background

1.5.1 Simulation and principles of simulator

Network simulations can be categorized into time-clocked simulation and discrete event
simulation. In time-clocked simulation, simulation progresses through the iterative pro-
gressing of time slots. Events within the iterated time slot are executed while simulation
is progressing. The owchart of time-clocked simulation is shown in Figure 1.1.

In discrete event simulation, simulation progresses by the execution of the scheduled
next event. Simulation time is updated after the next scheduled event is executed. The
owchart of DES simulation is shown in Figure 1.2.

Q1.1 What are the differences between the time slots in time-based simulation and
simulation time?

The time slots in time-based simulation refer to the clock time in the real world.
Simulation time refers to the time used in running the model. Thus, the simulation time
and the time elapsed in a run of the simulation are two different concepts.

Compared with discrete event simulation, time-clocked simulation will iterate all time
slots regardless of whether there are events within a particular time slot or not. For a
burstlike system with long silent periods, i.e., there are no events in many continuous
slots, the time-clocked simulation will be inef cient since it still needs to iterate all
those time slots without events being processed. Instead, discrete event simulation only

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:48:50 WET 2013.
http://dx.doi.org/10.1017/CBO9780511667572.002

Cambridge Books Online © Cambridge University Press, 2013

1.5 Theoretical background 7

Initialize

Update simulation
time: t = t + Δ

No

Yes

No

Yes

Finish

t > tmax

Process events
during [t, t + Δ]

Events during
[t, t + Δ]

Figure 1.1 Time-based simulation (Robinson 2004, Hayes 2004)

iterates the scheduled events which must be processed in an ordered fashion, to avoid the
inef ciency incurred in time-clocked simulation. For this reason,mostmodern simulators
support the approach of discrete event simulation, i.e., DES.

Tobe able to executeDES, a basicDESsimulator framework shouldhave the following
elements:

• The random generators representing different random variables as initial system inputs
like packet size, packet interarrival times, system processing time and noise, etc.

• Simulation time which can be updated to allow simulation to progress
• Prioritized event lists to store events to be executed one by one
• Simulation nish conditions such as simulation duration, which is the normal way of

nishing a simulation, and some other customized termination conditions.

Figure 1.3 shows the pseudo-code of the structure of the basic DES simulator. It
has three phases: initialization, simulation, and cleanup. In initialization phase, all state
variables are populated with initial values, like simulation time, event list, statistics,
and memories. In simulation kernel phase, a main loop is used to run the simulation
until a simulation termination condition is reached such as simulation nish time. If

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:48:50 WET 2013.
http://dx.doi.org/10.1017/CBO9780511667572.002

Cambridge Books Online © Cambridge University Press, 2013

8 Introduction

Initialize

Pop out next
event from event

list

Process next
event

Update event list:
push new events

into event list

Event list size > 0
No

Yes

Yes

Finish

Update simulation
time t

t > tmax
No

Figure 1.2 Event-based simulation (Robinson 2004, Hayes 2004)

the termination condition is not satis ed, the next scheduled event is popped out and
processed. The processing of an event may include: calculating formulas, recording
statistics, spawning more events and pushing them into event list, cleaning up invalid
variables and free memories, creating new variables and memories, etc.After an event is
processed, the simulation timewill be updated.The updated value is calculated according
to the particular event being executed.This process continues until termination conditions
are reached. After leaving the simulation kernel phase, some cleanup work will be done
before nishing the simulation, such as writing records into les, freeing memories, and
so on.

The simple simulator framework demonstrated in Figure 1.3 is to model a single-
process system. However, sometimes systems with concurrent behaviors need to be
modeled such as TCP server applications. To model the concurrent behaviors, multiple-
processes simulation support will be required inside the simulator’s kernel.

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:48:50 WET 2013.
http://dx.doi.org/10.1017/CBO9780511667572.002

Cambridge Books Online © Cambridge University Press, 2013

1.5 Theoretical background 9

void main()

{

//∼ initialization

initialize_variables ();

alocate_memories ();

...

//∼ simulation kernel operations

while(simulation_time < finish_time)

{

current_event = pop_next_event_from_list ();

process_event(current_event);

update_simulation_time ();

...

}

//∼ finishing up

write_records_to_file ();

free_memories ();

...

}

Figure 1.3 Pseudo-code for simulation

Q1.2 What are the differences between an operating system process and a simulation
process?

An operating system can concurrently run multiple system processes, and a system
process can have multiple system threads running within it. A system process must
have at least one system thread as its main thread. However, a system thread is lighter
than a system process from the perspectives of startup speed, resource occupance, and
management burden. Different from a system process, a simulation process here refers
to the simulated task such as “transfer of packets,” which is an abstract concept used
in simulation and is irrelevant to the operating system. In this book, process anywhere
refers to a simulation process.

1.5.2 Hybrid simulation

Explicit DES provides accurate simulation results, while analytical methods generally
take much less time to compute. Hybrid simulation is a methodology of combining both
explicit DES methods and analytical methods in order to take advantages of both. Hybrid
simulation may take different forms in actual implementations. In OPNET simulation,
the simplest form of hybrid simulation is background traf c simulation. In simulation,
traf c through a node can be divided into two parts: explicit traf c and background traf-
c. Explicit traf c is simulated accurately through the DES method while background

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:48:50 WET 2013.
http://dx.doi.org/10.1017/CBO9780511667572.002

Cambridge Books Online © Cambridge University Press, 2013

10 Introduction

traf c is derived analytically. For explicit traf c, each packet’s arrival and departure
times together with other data of interest are explicitly modeled and recorded. However,
for background traf c, there is no tracking of individual packets. The traf c is generated
by the workload of the modeled background traf c, and the workload is produced by
analytical modeling. Background traf c represents high-level information and is col-
lected over long periods of time. Background traf c is used to characterize and simulate
part of a network at an abstracted level in contrast to explicit traf c, which is modeled
at a detailed level. The objective in incorporating background traf c is to dramatically
reduce the computing power and memory required, in order to save simulation run time.

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:48:50 WET 2013.
http://dx.doi.org/10.1017/CBO9780511667572.002

Cambridge Books Online © Cambridge University Press, 2013

2 Installation of OPNET Modeler and
setting up environments

This chapter shows the steps for installing and con guring the OPNET Modeler and its
related environment variables. Having followed this chapter, one should be able to run
the OPNET Modeler correctly. If OPNET Modeler and relevant software have already
been installed and environment variables have been con gured on the target machine,
this chapter can be skipped. If you have problems compiling OPNET models, especially,
compiling standardOPNETmodelswhich should have no compilation and linking errors,
please check this chapter to make sure your software is properly installed and environ-
ment variables are correctly con gured, since many OPNET model compilation and
linking errors come from incorrect con guration of the C/C++ compiler’s environment
variables.

This chapter rst describes the system requirements for usingOPNETModeler, includ-
ing both hardware and software requirements. Then it shows the steps for installing
and con guring OPNET Modeler on both Windows and Linux operating systems
respectively.

2.1 System requirements for using OPNET Modeler

This section lists the requirements for using OPNETModeler 14.5 and later versions, and
also highlights the relevant key points. For other versions of OPNET Modeler, please
check the system requirements datasheet and installation manual shipped with corre-
sponding products, or visit the OPNET website for more information (www.opnet.com).
Tables 2.1–2.3 list the system support and hardware and software requirements for using
OPNET Modeler.

2.2 Installation on Windows

On Windows, you need to install OPNET Modeler and Microsoft Visual Studio or
Microsoft Visual C++ for OPNET Modeler to compile C/C++ based simulation models.
The order of installing Visual Studio and OPNET Modeler is irrelevant. However, after
nishing installing both of them, you need to check the relevant environment variables

to make sure they are correctly con gured. If not, you can go through the following steps
to make sure everything is installed and con gured correctly and ready for modeling and
simulation.

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:48:53 WET 2013.
http://dx.doi.org/10.1017/CBO9780511667572.003

Cambridge Books Online © Cambridge University Press, 2013

12 Installation of OPNET Modeler and setting up environments

Table 2.1 Supported operating systems and processors

Operating system Processor

Windows 2000 Professional and Server x86 or EM64T (Intel Pentium III, 4,
Windows Server 2003 (32-bit and 64-bit) Xeon, or compatible), 1.5 GHz or better
Windows XP Professional (32-bit and 64-bit) x86 AMD or AMD64, 1.5 GHz or better
Windows Vista Business (32-bit and 64-bit)
Red Hat Enterprise Linux 3 and 4
Fedora Linux 3 and 4

For Windows XP Professional and Windows Vista Business, at least Service Pack 1 is required for
OPNET Modeler to work correctly. Since simulation is a computation-intensive process, powerful
processors can generally help accelerate the simulation speed.

Table 2.2 General hardware requirements

RAM Disk space Display

512 MB is minimum RAM Up to 3–5GB free disk space Minimum resolution is 1024× 768
requirement; 1–2 GB RAM required for installation
recommended

For simulating complexmodels generating large amount of events,moreRAMmaybe required. Running
out of memory is quite common in simulation. For disk space, at least several GB free disk space is
required for storing simulation les. Sometimes, single simulation scenarios can generate temporary
les with several GB. The display resolution is required to allow a simulation graphic user interface

(GUI) to be presented in an appropriate form.

Table 2.3 Other requirements

C/C++ compiler Internet browser Others

For Linux, gcc 3.4 or higher Internet Explorer 5.0 or higher TCP/IP networking
For Windows, Visual C++ 6.0 Netscape 7.0 or higher protocol support
or higher Mozilla Firefox 1.06 or higher

C/C++ compiler is required to build and debug OPNET models. An internet browser is used for
viewing OPNET documentation. The browser should be con gured to allow viewing pages with
HTML frames and JavaScript. TCP/IP networking software is required to perform some network
communication-related tasks like accessing a remote licensing server or serving license for remote
clients, and communicating with real network devices. The TCP/IP networking software is generally
shipped with the operating system as part of the networking protocol stack.

2.2.1 Installation of OPNET Modeler

The following steps demonstrate how to install OPNET Modeler on a Windows system.

• Log in to Windows as Administrator.

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:48:53 WET 2013.
http://dx.doi.org/10.1017/CBO9780511667572.003

Cambridge Books Online © Cambridge University Press, 2013

2.2 Installation on Windows 13

Figure 2.1 License server settings

• Install OPNET Modeler from the Modeler installation executable le or from the
Modeler CD/DVD. During the installation process, you will be prompted to specify
the type of licensing scheme:

• Standalone
• Floating: access licenses from a remote server
• Floating: server licenses from this computer.

In “Standalone” mode, one should have license les installed on the local machine
and OPNET Modeler can be run only on the machine on which these license les
are installed. In “Floating: access licenses from a remote server” mode, the OPNET
Modeler installed on the machine will access an OPNET license server either on
the local area network (LAN) or on other IP networks. In “Floating: server licenses
from this computer” mode, the current machine will act as OPNET license server.
For normal OPNET users, one may choose either “Standalone” or “Floating: access
licenses from a remote server” scheme. If you choose “Standalone” mode, you can
continue installation and you need to add the license or register the product after
installation through OPNET Modeler’s “License Management” facility. If you choose
“Floating: access licenses from a remote server” and press the “Next” button, you will
see the dialog as in Figure 2.1. The “Hostname (or IPAddress)” refers to the OPNET
license server’s hostname or its IP address, and “Port” refers to the OPNET license
server’s prede ned listening port. Every time the OPNET Modeler is starting up, it
will connect to the speci ed host and port to acquire licenses. If you do not know your
license server, you can just leave them at this moment and specify your license server
in OPNET Modeler’s “License Management” dialog later after nishing installation.

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:48:53 WET 2013.
http://dx.doi.org/10.1017/CBO9780511667572.003

Cambridge Books Online © Cambridge University Press, 2013

14 Installation of OPNET Modeler and setting up environments

Figure 2.2 Environment variables

• Install OPNETModels from the models installation executable le or from the Models
CD/DVD.

• Install OPNET Modeler Documentation from the documentation installation exe-
cutable le or from the Documentation CD/DVD.

• Check and con gure OPNET environment variables. Open “Control Panel –
System dialog” (or right click on “My Computer” and choose “Properties”); select
the “Advanced” tab; press the “Environment Variables” button and you will see the
dialog as in Figure 2.2.

In the “System variables” dialog, check whether the environment variables and their
values are correctly con gured. If any variable is missing, just add it and its value to
“System variable” by pressing the “New” button. If the variable is there, but some
values are missing, then press the “Edit” button and append these missing values to
the end of the “Variable value” string in the pop-up dialog (values are separated by
semicolons). Tables 2.4–2.5 list the environment variables that need to be con gured
for OPNET Modeler. (Note: when you add a value to a variable, you should use a
single semicolon to separate them without any space.)

Q2.1 Why should we set environment variables?
The reason for setting these variables is to allow Windows-wide access of relevant

les without particularly specifying the paths of these les. For example, if you access
the OPNET command “oprunsim” in the command line console without setting the
OPNET commands path beforehand, this command cannot be found in command line,
as the command line console application will search environment variables for this
command. It is the same process for OPNET Modeler to nd commands and other
dependent les.

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:48:53 WET 2013.
http://dx.doi.org/10.1017/CBO9780511667572.003

Cambridge Books Online © Cambridge University Press, 2013

2.2 Installation on Windows 15

Table 2.4 Environment variables for OPNET Modeler

System Variable Value

32-bit PATH C:\Program Files\OPNET\14.5.A\sys\pc_intel_win32\bin;
64-bit PATH C:\Program Files (x86)\OPNET\14.5.A\sys\pc_amd_win64\bin;

The variables set in “User variables” are only applicable for current login user, and not valid for any
other users regardless of user account types. The variables set in “System variables” are applicable for
all system users. Therefore, to make software function correctly not only for current user but for other
users, variables are generally set as “System variables”, especially for those software items running as
Windows Service.

Table 2.5 Environment variables for Microsoft Visual Studio/Visual C++ 2008 on a 32-bit system

Variable Value

PATH C:\Program Files\Microsoft Visual Studio 9.0\Common7\IDE;
C:\Program Files\Microsoft Visual Studio 9.0\Common7\Tools;
C:\WINDOWS\Microsoft.NET\Framework\v3.5;
C:\WINDOWS\Microsoft.NET\Framework\v2.0.50727;
C:\Program Files\Microsoft Visual Studio 9.0\VC\VCPackages;
C:\Program Files\Microsoft SDKs\Windows\v6.0A\bin;

INCLUDE C:\Program Files\Microsoft Visual Studio 9.0\VC\ATLMFC
\INCLUDE;
C:\Program Files\Microsoft Visual Studio 9.0\VC\INCLUDE;
C:\Program Files\Microsoft SDKs\Windows\v6.0A\include;

LIB C:\Program Files\Microsoft Visual Studio 9.0\VC\ATLMFC\LIB;
C:\Program Files\Microsoft Visual Studio 9.0\VC\LIB;
C:\Program Files\Microsoft SDKs\Windows\v6.0A\lib;

LIBPATH C:\WINDOWS\Microsoft.NET\Framework\v3.5;
C:\WINDOWS\Microsoft.NET\Framework\v2.0.50727;
C:\Program Files\Microsoft Visual Studio 9.0\VC\ATLMFC\LIB;
C:\Program Files\Microsoft Visual Studio 9.0\VC\LIB;

VSINSTALLDIR C:\Program Files\Microsoft Visual Studio 9.0;
VS90COMNTOOLS C:\Program Files\Microsoft Visual Studio 9.0\Common7\Tools;
VCINSTALLDIR C:\Program Files\Microsoft Visual Studio 9.0\VC;
WindowsSdkDir C:\Program Files\Microsoft SDKs\Windows\v6.0A;
FrameworkVersion v2.0.50727
Framework35Version v3.5
FrameworkDir C:\WINDOWS\Microsoft.NET\Framework;
DevEnvDir C:\Program Files\Microsoft Visual Studio 9.0\Common7\IDE

SDK: software development kit

2.2.2 Installation and configuration of Microsoft Visual C++

The following steps demonstrate how to con gure environment variables forMicrosoft
Visual C++ on a Windows system.

• Install Microsoft Visual C++.

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:48:53 WET 2013.
http://dx.doi.org/10.1017/CBO9780511667572.003

Cambridge Books Online © Cambridge University Press, 2013

16 Installation of OPNET Modeler and setting up environments

Table 2.6 Environment variables for Microsoft Visual Studio/Visual C++ 2008 on a 64-bit system

Variable Value

PATH C:\Program Files (x86)\Microsoft Visual Studio 9.0\VC\BIN\amd64;
C:\WINDOWS\Microsoft.NET\Framework64\v3.5;
C:\WINDOWS\Microsoft.NET\Framework64\v3.5
\Microsoft .NET Framework 3.5;
C:\WINDOWS\Microsoft.NET\Framework64\v2.0.50727;
C:\Program Files (x86)\Microsoft Visual Studio 9.0\VC\VCPackages;
C:\Program Files (x86)\Microsoft Visual Studio 9.0\Common7\IDE;
C:\Program Files (x86)\Microsoft Visual Studio 9.0\Common7\Tools;
C:\Program Files (x86)\Microsoft Visual Studio 9.0\Common7\Tools
\bin;
C:\Program Files\Microsoft SDKs\Windows\v6.0A\bin\x64;
C:\Program Files\Microsoft SDKs\Windows\v6.0A\bin;

INCLUDE C:\Program Files (x86)\Microsoft Visual Studio 9.0\VC\ATLMFC
\INCLUDE;
C:\Program Files (x86)\Microsoft Visual Studio 9.0\VC
\INCLUDE;
C:\Program Files\Microsoft SDKs\Windows\v6.0A\include;

LIB C:\Program Files (x86)\Microsoft Visual Studio 9.0\VC\ATLMFC
\LIB
\amd64;
C:\Program Files (x86)\Microsoft Visual Studio 9.0\VC\LIB
\amd64;
C:\Program Files\Microsoft SDKs\Windows\v6.0A\lib\x64;

LIBPATH C:\WINDOWS\Microsoft.NET\Framework64\v3.5;
C:\WINDOWS\Microsoft.NET\Framework64\v2.0.50727;
C:\Program Files (x86)\Microsoft Visual Studio 9.0\VC\ATLMFC
\LIB\amd64;
C:\Program Files (x86)\Microsoft Visual Studio 9.0\VC\LIB\amd64;

VSINSTALLDIR C:\Program Files (x86)\Microsoft Visual Studio 9.0;
VS90COMNTOOLS C:\Program Files (x86)\Microsoft Visual Studio 9.0\Common7\Tools;
VCINSTALLDIR C:\Program Files (x86)\Microsoft Visual Studio 9.0\VC;
WindowsSdkDir C:\Program Files\Microsoft SDKs\Windows\v6.0A;
FrameworkVersion v2.0.50727
Framework35Version v3.5
FrameworkDir C:\WINDOWS\Microsoft.NET\Framework64;
DevEnvDir C:\Program Files (x86)\Microsoft Visual Studio 9.0\Common7\IDE;

• Check and con gure Visual C++ environment variables to allow OPNET Modeler
to function correctly. In “System variables,” check whether the variables and their
values are correctly con gured. Table 2.5 and Table 2.6 list the environment vari-
ables to be con gured for different versions of Visual C++ under Windows XP.
For users under other systems and other versions of Visual C++, check Q2.2 for
general solutions. To test whether the Visual C++ compiler is ready for modeling
and simulation, after nishing setting up all these variables, you can type “cl” in the

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:48:53 WET 2013.
http://dx.doi.org/10.1017/CBO9780511667572.003

Cambridge Books Online © Cambridge University Press, 2013

2.2 Installation on Windows 17

@SET VSINSTALLDIR=C:\ Program Files\Microsoft Visual ...

@SET VCINSTALLDIR=C:\ Program Files\Microsoft Visual ...

@SET FrameworkDir=C:\ WINDOWS\Microsoft.NET\Framework

@SET FrameworkVersion=v1 .1.4322

@SET FrameworkSDKDir=C:\ Program Files\Microsoft Vis...

@rem Root of Visual Studio common files.

...

@rem

@set DevEnvDir =% VSINSTALLDIR%

@rem

@rem Root of Visual C++ installed files.

@rem

@set MSVCDir =% VCINSTALLDIR %\VC7

...

@set PATH=% DevEnvDir %;% MSVCDir %\BIN;% VCINSTALLDIR %\Comm ...

@set INCLUDE =% MSVCDir %\ ATLMFC\INCLUDE ;% MSVCDir %\ INCLUDE ...

@set LIB=% MSVCDir %\ ATLMFC\LIB;% MSVCDir %\LIB ;...

@goto end

...

:end

Figure 2.3 Visual Studio environment variables batch processing le

command line console to check whether the compiler is con gured correctly, and
type “link” to see whether the linker is con gured correctly.

Q2.2 How to con gure environment variables for other Visual C++ versions in
general?

To gure out environment variables for other Visual Studio versions, you can
inspect the “vsvars32.bat” or “vsvars64.bat” Windows batch processing le located in
“\Common7\Tools” folder within Visual Studio installation path. Assume you’ll set up
environment variables for Visual Studio 2003. “vsvars32.bat” is the le for setting up
environment variables. Its content looks like that in Figure 2.3.You should check “System
variables” according to the lines starting with “@set” in the “vsvars32.bat” le. After
setting these variables, they will be applicable to Windows-wide applications. (Note:
Running the “vsvars32.bat” batch le itself can only set up Visual Studio environment
variables for current command line session, not for Windows-wide applications.)

2.2.3 OPNET Modeler preferences for C/C++ compiler

The following steps demonstrate how to con gure OPNET Modeler’s preferences to
support the right C/C++ compiler:

• Start OPNET Modeler and go to “Edit – Preferences” to open the Preferences dialog
as shown in Figure 2.4.

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:48:53 WET 2013.
http://dx.doi.org/10.1017/CBO9780511667572.003

Cambridge Books Online © Cambridge University Press, 2013

18 Installation of OPNET Modeler and setting up environments

Table 2.7 Visual Studio Compilation configurations

Name Tag Value

C Compilation Script comp_prog comp_msvc
C++ Compilation Script comp_prog_cpp comp_msvc
Compilation Flags comp_ ags_devel /Z7 /Od

Figure 2.4 Visual Studio environment variables batch processing le

• In Preferences dialog, search for “compilation.” Make sure the highlighted attributes
and values at the right side of the dialog match the attributes and values in Table
2.7. The rst two attributes shown in Table 2.7 are used to set C/C++ compilation
script to “comp_msvc.c” C program le which is used to interface OPNET Modeler
to Visual C++ compiler. The third attribute in Table 2.7 is used to disable C/C++ code
optimization and add debugging information into compiled .obj object les. The third
attribute is important when you want to debug your models. By disabling optimization
and incorporating debugging information into object les, you are able to track your
model code while running your models in debug mode.

• In Preferences dialog, search for the attributes shown in Table 2.8. Make sure their
values in Preferences dialog match those in Table 2.8. The rst attribute in Table 2.8 is
to set C/C++ dynamical linking script to the “bind_so_msvc.c” C program le which
is used to interface OPNET to Visual C++ linker in order to generate shared libraries.
These shared libraries are “.dll” les on Windows and “.so” les on Linux. The second

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:48:53 WET 2013.
http://dx.doi.org/10.1017/CBO9780511667572.003

Cambridge Books Online © Cambridge University Press, 2013

2.2 Installation on Windows 19

Table 2.8 Visual Studio Linking configurations

Name Tag Value

Network Repositories Linking Script bind_shobj_prog bind_so_msvc
Static Simulation Linking Script bind_static_prog bind_msvc
Network Repositories Flags bind_shobj_ ags_devel /DEBUG
Static Simulation Flags bind_static_ ags_devel /DEBUG

attribute is used to set C/C++ static linking script to the “bind_msvc.c” le to interface
OPNET to Visual C++ linker in static linking mode. The last two attributes are used
to set linking options to debug mode, so that debugging information will be added to
linked shared libraries for dynamical linking or to executable les for static linking.

Q2.3 Why are there “msvc_binder_error” error, “mspdb??.dll not found” error, “???.h
le cannot be found” error, or other similar errors when simulations are running?
It is probably that the environment variables of Visual Studio are not correctly con-

gured. You can check Section 2.2.2 to x this. If similar problems still exist after
con guring the variables, you can check whether you have more than one version of
Visual Studio installed on your machine. If so, the variable value of the newer version
should be put at the beginning of the value string. This is because OPNET Modeler will
look for the rst matched variable value. For example, if the rst occurrence of compiler
path value in “PATH” variable is for Visual Studio 2003 C/C++ compiler, and the rst
library path value in “LIBPATH” variable is for Visual Studio 2008 library path, then
OPNET Modeler will not be able to resolve which version of Visual Studio to use in a
consistent manner, i.e., it will use Visual Studio 2003 when it looks for “PATH” variable,
but when it looks for “LIBPATH” it expects Visual Studio 2003 library path value to
come rst rather than Visual Studio 2008 library path.

2.2.4 Licensing

The following steps demonstrate how to make licensing con gurations.

• In Section 2.2.1, if the “Floating: access licenses from a remote server” mode is chosen
and the right license server and port are set, you can ignore this section. If you do not
set the correct license server and port in Section 2.2.1, you can specify the license
server and port in OPNET Modeler’s “Preferences” dialog as shown in Figure 2.5.

• In Section 2.2.1, if the “Standalone” mode or “Floating: server licenses from this com-
puter” mode is chosen, you need to register your license. Run the “License Manager”
program, select “Tools – Register New License” from its main menu, then follow the
wizard to complete the license registration process.

If you changed or added environment variables in the above steps, you need to restart
OPNET Modeler in order to allow new variables to be refreshed and re ected in OPNET
Modeler. Then OPNET Modeler is ready to run simulation models.

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:48:53 WET 2013.
http://dx.doi.org/10.1017/CBO9780511667572.003

Cambridge Books Online © Cambridge University Press, 2013

20 Installation of OPNET Modeler and setting up environments

Figure 2.5 Licensing preferences

2.3 Installation on Linux

On Linux, you need to install OPNET Modeler and GCC compiler for OPNET Modeler
to compile C/C++ based simulation models. The order of installing GCC compiler and
OPNET Modeler is not important. However, after nishing installing both of them,
you need to check the relevant environment variables to make sure they are correctly
con gured. You can go through the following steps to make sure everything is installed
and con gured correctly and ready for modeling and simulation.

2.3.1 Installation of OPNET Modeler

The following steps demonstrate how to install OPNET Modeler on a Linux system.

• Log in Linux as root.
• Install OPNET Modeler from the modeler installation bin le or from the Modeler

CD/DVD. During the installation process, you will be prompted to specify the type
of licensing schemes. The speci cation is the same as in Section 2.2.1.

• Install OPNET Models from the Models installation bin le or from the Models
CD/DVD.

• Install OPNET Modeler Documentation from the documentation installation bin le
or from the Documentation CD/DVD.

• Check and con gure OPNET environment variables. You need to check whether the
bin path for OPNET Modeler’s executable les is in “PATH” environment variable.

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:48:53 WET 2013.
http://dx.doi.org/10.1017/CBO9780511667572.003

Cambridge Books Online © Cambridge University Press, 2013

2.3 Installation on Linux 21

To do so, open a command line shell session, type “echo $PATH” to see if the OPNET
bin path is there. If not, you need to set it in the user login initialization le so that once
you log in, the OPNET bin path will be automatically set for the user. For a different
Linux shell, the initialization le is a little different. To check your shell type, open
a shell session and type “echo $SHELL.” If it is C-shell, go to your user home path,
open “.cshrc” le in an editor and add the following line to the le:

“setenv PATH /usr/opnet/14.5.A/sys/unix/bin:$PATH”

Save the “.cshrc” le and in shell type “source /.cshrc” to force the commands in this
le to be executed.Next time,when the user logs into the system, the path con guration

commands in the initialization le will be automatically executed. If it is a bash-shell,
in your user home path nd the “.bashrc“ le and add the following line to the le:

“export PATH=/usr/opnet/14.5.A/sys/unix/bin:$PATH”

Save the “.bashrc” le and in shell type “source /.bashrc” to refresh changes.

Q2.4 What are “.cshrc” and “.bashrc” les?
Both les are used to initialize user preferences when the user logs into the sys-

tem, like setting environment variables, alias, and other setting-up commands. “.cshrc”
is for C-shell and “.bashrc” is for bash-shell. These les have “hidden” attribute by
default and are located in the user’s home directory, i.e., “/[username]/.cshrc” and
“/[username]/.bashrc,” where “[username]” refers to current login user. The commands
in these les will be automatically executed once the user logs into the system.

2.3.2 Installation and configuration of GCC compiler

The following steps demonstrate how to con gure GCC compiler on Linux:

• Install GCC compiler if it is not installed. You can check if it is installed by typing
“gcc” in shell.

• Check GCC to allow OPNET Modeler to function correctly. Open a shell session, type
“gcc -v” to check the GCC version which should satisfy the requirement in Table 2.3.
Type “echo $PATH” to see if gcc bin path is there. If not, add it to “$PATH” variable.

2.3.3 OPNET Modeler preferences for GCC compiler

The following steps demonstrate how to con gure OPNET Modeler’s preferences to
support GCC compiler:

• In Preferences dialog, search for the keyword “compilation”. Make sure the high-
lighted attributes and values at the right side of the dialog match the attributes and
values in Table 2.9. The rst two attributes in Table 2.9 are used to set C and C++
compilation scripts to “comp_gcc.c” and “comp_g++.c” C program les respectively.
These two C program les are used to interface OPNET Modeler to the gcc compiler.
The third attribute in Table 2.9 is used to produce debugging information for compiled

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:48:53 WET 2013.
http://dx.doi.org/10.1017/CBO9780511667572.003

Cambridge Books Online © Cambridge University Press, 2013

22 Installation of OPNET Modeler and setting up environments

Table 2.9 gcc Compilation configurations

Name Tag Value

C Compilation Script comp_prog comp_gcc
C++ Compilation Script comp_prog_cpp comp_g++
Compilation Flags comp_ ags_devel -g

Table 2.10 gcc Linking configurations

Name Tag Value

Network Repositories Linking Script bind_shobj_prog bind_so_gcc
Static Simulation Linking Script bind_static_prog bind_gcc
Network Repositories Flags bind_shobj_ ags_devel -g
Static Simulation Flags bind_static_ ags_devel -g

object les. The third attribute is important when you want to debug your models. By
setting up these attributes, you are able to track the codes of your models while running
your models in debug mode.

• In Preferences dialog, search for the attributes in Table 2.8. Make sure their values in
Preferences dialog match those in Table 2.10. The rst attribute in Table 2.10 is to set
C/C++ dynamical linking script to “bind_so_gcc.c” C program le which is used to
interface OPNET to GCC linker to generate shared objects. Shared objects are “.so”
binary les on Linux. The second attribute in Table 2.10 is to set C/C++ static linking
script to “bind_gcc.c” le to interface OPNET to the gcc linker in static linking mode.
The last two attributes in Table 2.10 are used to set linking options to debug mode, so
that debugging information will be added to linked “.so” les for dynamical linking
or to executable les for static linking.

2.3.4 Licensing

To make licensing con gurations on Linux, you should rst check if the license directory
“/opt/OPNET_license” exists. If not, you need to create that directory. Then you should
set the license directory with “read, write and execute” privileges by typing the following
command in shell:

> chmod 777 /opt/OPNET_license

Now you can start OPNET license manager by typing the command:

> op_license_manager

Finally, add the license in OPNET License Manager by following the same process as
in Section 2.2.4. If you changed or added environment variables in the above steps, you
need to restart OPNET Modeler in order to allow new variables to be refreshed and
re ected in OPNET Modeler. Then you should be able to start OPNET Modeler to run
simulation.

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:48:53 WET 2013.
http://dx.doi.org/10.1017/CBO9780511667572.003

Cambridge Books Online © Cambridge University Press, 2013

2.4 Theoretical background 23

2.4 Theoretical background

2.4.1 Compilation and linking options

Compiler is used to compile source codes into object codes and link object codes into
executable, so that the operating system can load that executable into memory to run it.
Compiler’s compilation and linking options are used to control compiling and linking
processes in customized ways. For example, you can change some options to allow
codes to be built with debugging information. In OPNET Modeler, the “Development”
simulation kernel preference means building simulation models in debug mode, and
“Optimized” simulation kernel preference means building simulation models in release
mode, i.e., the models are optimized and built without debugging information. With
“Development” simulation kernel preference, the simulation process can be debugged
but will run slower than “Optimized” simulation kernel. With “Optimized” simulation
preference, the simulation will run faster than “Development” simulation kernel, but it
cannot be correctly debugged. In OPNET Modeler, you can choose the C/C++ compiler
you would like to compile OPNET models with customized compilation and linking
options. For more detailed documentation on compiler options, please check the of cial
manuals of the corresponding compiler.

2.4.2 Simulation models compilation and linking

In OPNET simulation, the simulator will follow the same process as normal compilation
and linking processes, i.e., the simulator will invoke chosen C/C++ compiler to compile
the model code into object code with pre-con gured compilation and linking options,
then load the compiled models into process to run simulation. Assume “kernel.cpp”
includes the implementation of simulator engine and relevant facilities. “library1.cpp”
and “library2.cpp” contain the required libraries and other dependent models for simula-
tion. Your own models are stored in the “mymodel.cpp” le. To build a “Development”
simulation with debugging capability, the simulation les can be built by entering the
following command:

For Visual C++:

> cl /Od /Zi /OUT:sim_dev.exe kernel.cpp library1.cpp library2.cpp mymodel.cpp

For gcc:

> g++ -g -o sim_dev kernel.cpp library1.cpp library2.cpp mymodel.cpp

Then the executable le sim_dev will be generated and can be loaded into process to
run the simulation. However, OPNET encapsulates all the underlying details and many
other facilities for you within the Modeler. Therefore, with OPNET Modeler, a user does
not need to know the underlying details on how to compile and build simulation models.

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:48:53 WET 2013.
http://dx.doi.org/10.1017/CBO9780511667572.003

Cambridge Books Online © Cambridge University Press, 2013

3 OPNET Modeler user interface

This chapterwalks through graphic user interfaces ofOPNETModeler to help familiarize
the reader with the modeler’s basic operations. If you are already familiar with OPNET
Modeler, its user interface and basic operations, you may ignore this chapter.

The user interfaces described in this chapter include: Project Management Dialog,
Modeler Preferences Dialog, OPNET Editors, Simulation Results Browser, and OPNET
Documentation Browser.

3.1 Project management

OPNET projects can be easily managed in OPNET Modeler. In “File” menu, a user can
choose to create a new project, open an existing project, delete a project, or add a model
directory, etc. To create and open a custom project within a directory, you can follow
these steps:

• Create a directory where you want your OPNET model project les to be saved. For
different projects, you may create individual directories.

• From OPNETModeler, go to “File – Manage Model Files” menu, choose “Add Model
Directory” to add the newly created directory. Then you’ll be prompted to con rm
model directory as shown in Figure 3.1. You can check both “Include all subdirec-
tories” and “Make this the default directory” options. It is noted that “Make this the
default directory” option will force les of other new projects to be saved in this direc-
tory. Therefore, it is advisable to always select this option for a new project in order
to save the les of the new project into a separate directory.

• From OPNET Modeler, go to “File – Manage Model Files” menu, choose “Refresh
Model Directories” to update the new model directory just added. This refresh oper-
ation will enable OPNET Modeler to load the new model directory and display it in
the project dialog.

• From OPNET Modeler, go to “File” menu, choose “New...” to create a new project.
You will be prompted by the “Enter Name” dialog to enter the name for the project
and the rst scenario of the project. To create a new project using the wizard, in “Enter
Name” dialog, you can select “Use Startup Wizard when creating new scenarios”
option and press “OK” button to proceed with the project wizard. To manually create
a new project, in “Enter Name” dialog, you can unselect “Use Startup Wizard when

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:48:55 WET 2013.
http://dx.doi.org/10.1017/CBO9780511667572.004

Cambridge Books Online © Cambridge University Press, 2013

3.1 Project management 25

Figure 3.1 Con rm Model Directory dialog

Figure 3.2 Open Project dialog

creating new scenarios” option and press “OK” button to directly go to Project Editor.
In Project Editor, you can manually create the project scenario.

• After a new project and scenario are created, in Project Editor, press the “Save” button
or enter Ctrl+S to save project les.All project les can be saved into the newly created
directory.

• To open an existing project, from OPNET Modeler, go to the “File” menu, choose
“Open...” to show an Open Project dialog as in Figure 3.2. From the dialog, you can
choose the model directory where your project is located from the left column of the
Open Project dialog, then choose the actual project you want to open from the right
column of the Open Project dialog.

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:48:55 WET 2013.
http://dx.doi.org/10.1017/CBO9780511667572.004

Cambridge Books Online © Cambridge University Press, 2013

26 OPNET Modeler user interface

3.2 Modeler preferences

OPNETModeler and simulation can be customized via the modeler’s Preferences Editor.
Preferences Editor allows the user to change the con gurations for modeler user inter-
faces (UI), simulation compiling and linking, trouble shooting, memory management
and licensing, etc. From OPNET Modeler, go to the “Edit” menu, choose “Preferences”
to open modeler Preferences Editor. Since there are many preferences in the dialog, you
may use the “Search for” box to nd the preference of interest. In the following are some
examples of preferences that a user may be interested to con gure at the beginning.

If you want to add/remove/reorder model directories saved in OPNET Modeler,
in Preferences Editor you can search for “model directories”. Figure 3.3 shows the
preference found in Preferences Editor.

You can click the value of this preference to change the model directories as shown
in Figure 3.4.

OPNET Modeler 14.5 and later versions support automatic le backup. Therefore, if
a user opens an OPNET project and leaves it there, the project les will be automatically
saved after some time. This feature is useful to avoid loss of data under some unexpected
circumstances such as power outage, program failure, and so on. The default backup
interval preference is 60 minutes. You may want to change it to some other value. The
preference for changing the backup interval can be found by searching for “backup
interval” in Preference Editor as shown in Figure 3.5.

Figure 3.3 Preferences

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:48:55 WET 2013.
http://dx.doi.org/10.1017/CBO9780511667572.004

Cambridge Books Online © Cambridge University Press, 2013

3.2 Modeler preferences 27

Figure 3.4 Preferences

Figure 3.5 Preferences

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:48:55 WET 2013.
http://dx.doi.org/10.1017/CBO9780511667572.004

Cambridge Books Online © Cambridge University Press, 2013

28 OPNET Modeler user interface

Figure 3.6 Preferences

During simulation, if there are error noti cations or con rmationnoti cations,OPNET
Modeler will force your machine to beep. Since this beep comes from the system internal
speaker rather than the sound card, adjusting volume will not affect it. If your project
is at initial debugging stage, there might be many errors; then every time you run your
simulation, it keeps beeping. To stop the beeping, in Preferences Editor you can search
for “beep” preference; in the results found, set the preferences “Beep Count for Con rm
Noti cation” and “Beep Count for Error Noti cation” to 0, as shown in Figure 3.6. Value
0 means “No Beep.”

When you edit code in the process model, by default, OPNET Code Editor will be
triggered. You can write process model code in this code editor. However, if you are not
comfortable with OPNET Code Editor, you can change it via the Preferences dialog as
well. In Preferences dialog, you can search for “path to text editor program” preference.
Then you can change the value of this preference to the executable path of your favorite
code editor. In Figure 3.7, the value is set to the path of Visual Studio program. Then
when you open the process model, you can write your OPNET process model code in
Visual Studio. If you want to go back to OPNET Code Editor, you can simply change
the value of “Path to Text Editor Program” preference to “builtin.”

After simulation completes, the user often needs to process the simulation data in a
spreadsheet program for analysis. In OPNET Modeler, simulation data can be directly
exported to a preselected spreadsheet program. To preselect a spreadsheet program, in
Preferences Editor you can search for “path to spreadsheet program” preference and
change the value of this preference to the path of your favorite spreadsheet program.

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:48:55 WET 2013.
http://dx.doi.org/10.1017/CBO9780511667572.004

Cambridge Books Online © Cambridge University Press, 2013

3.3 OPNET editors 29

Figure 3.7 Preferences

Then when you export simulation data to the spreadsheet in Simulation Results Browser,
the data will be loaded into your speci ed spreadsheet program. For more information on
how to export simulation data into a spreadsheet program, check Section 3.4, “Simulation
Results Browser.”

There are many other preferences that can customize your modeling and simulation.
You can go through all categories of preferences to nd the interesting ones.

3.3 OPNET editors

In OPNET Modeler, there are many editors that facilitate and simplify the modeling
and simulation tasks by means of easy-to-use graphic user interfaces. In this section,
we will go through some of the most frequently used editors including: Project Editor,
Node Editor, Process Editor, Link Editor, Packet Format Editor, ICI Editor, PDF Editor,
and Probe Editor. For other editors, you can check OPNET documentation for details
(www.opnet.com).

3.3.1 Project Editor

Project Editor is the one you may use for every simulation task. Simulation projects
and scenarios can be managed by Project Editor. The user can open Project Editor by
creating a new project, or opening an existing project. From OPNET Modeler, choose

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:48:55 WET 2013.
http://dx.doi.org/10.1017/CBO9780511667572.004

Cambridge Books Online © Cambridge University Press, 2013

30 OPNET Modeler user interface

Figure 3.8 Project Editor

“File” menu – “New...” – “Project” to create a new project, or choose “File” menu –
“Open...” – “Project” to open an existing project. Figure 3.8 shows the Project Editor
with a loaded simulation project scenario.

Project Editor allows you to:

• Create and edit network models
• Create and manage project scenarios
• Con gure and import network topology
• Con gure and import network traf c
• Customize the network environments
• Verify link connectivity
• Record packet ow animation and node movement animation for subnet
• Con gure and run simulations for project scenarios.

These tasks can be achieved by choosing corresponding menu items or clicking the
shortcut tool buttons in Project Editor.

OPNET models have a three-layer structure: network model, node model, and process
model. Network models are created within Project Editor.You can drag and drop network

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:48:55 WET 2013.
http://dx.doi.org/10.1017/CBO9780511667572.004

Cambridge Books Online © Cambridge University Press, 2013

3.3 OPNET editors 31

objects such as subnetworks, network devices/nodes, and links from the Object Palette
into Project Editor, and connect them into a network. Node models and process models
are created within Node Editor and Process Editor respectively. Node Editor and Process
Editor are described in the following sections.

3.3.2 Node Editor

Node Editor is the UI tool by which a user can create and edit the internal structure
of a device or node. A node can represent a computer, a switch, a router, or a net-
work cloud. A node is composed of several modules. These modules are generally
separated by logical functionalities and are able to communicate with each other via
packet streams and statistic streams. Packets can ow through these modules via packet
streams. Each module represents a particular functionality of that node. Modules can
be used to transmit packets, receive packets, process data, store data, route packets, etc.
From OPNET Modeler, you can open an empty node editor by choosing “File” menu –
“New...” – “Node Model”. You can also open the Node Editor by double-clicking a
device or a node in Project Editor. Figure 3.9 shows the Node Editor with a node model
loaded.

Node Editor allows you to create and edit modules for the node model. The modules
include processor module, queue module, transceiver module, antenna module, and
external system module. These modules can be connected by packet streams and statistic
streams.

Q3.1 What are the differences between processor module and queue module?
Both processor module and queue module can be used to model the logic process. The

only difference is that queue module can also be used to model a buffer, but processor
module cannot.

3.3.3 Process Editor

Process Editor is the actual place where you can write code to implement algorithms
and protocols. The process model is created and edited in Process Editor. A node model
may contain several modules, each of which has a particular functionality. A module
should contain a process model that actually implements the functionality or logic this
module represents. You can open an empty Process Editor from “File” menu – choose
“New...” – choose “Process Model”. You can also open the Process Editor by double-
clicking a module in Node Editor. Process Editor allows you to visually depict the logic
process via state transition diagrams (STDs). In STDs, a logic is composed of several
states. States can transition between each other if certain conditions are triggered. You
can write C/C++ codes within a state to perform some operations. Figure 3.10 shows an
example of STDs of a process model within Process Editor.

Process Editor allows you to implement the actual functionalities by code for
corresponding modules.

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:48:55 WET 2013.
http://dx.doi.org/10.1017/CBO9780511667572.004

Cambridge Books Online © Cambridge University Press, 2013

32 OPNET Modeler user interface

dncp

rip

tcpodp rsvp

CPU

ip_encap

ip

arp

mac

hub_rx_0_0 hub_tx_0_0

tpal

application

Figure 3.9 Node Editor

3.3.4 Link Editor

Link Editor allows you to create and de ne a link model. A link model represents a
physical connection between nodes. In Link Editor, you can de ne data rate, bit error
rate, channel count, propagation delay, transmission delay, error model, error correction
model, supported packet formats, etc. You can open the Link Editor to create a new link
model from “File” menu – choose “New...” – choose “Link Model”. Figure 3.11 shows
the Link Editor with a link model loaded.

Link model supports the following link types: simplex, duplex, bus, or bus tap. It can
be con gured in “Supported link types” in Link Editor as shown in Figure 3.11.

3.3.5 Packet Format Editor

OPNET Modeler allows you to model packets in both unformatted and formatted forms.
For unformatted packets, you can directly create the packet objects in code by invoking

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:48:55 WET 2013.
http://dx.doi.org/10.1017/CBO9780511667572.004

Cambridge Books Online © Cambridge University Press, 2013

3.3 OPNET editors 33

INIT WAIT

DECAP

0/0

264/0

113/037/0

(FROM_TRANSPORT)(FROM_TRANSPORT)

(FROM_NETWORK)
(FROM_NETWORK)

332/0

STRM_DMEL

ENCAP

Figure 3.10 Process Editor

unformatted packet APIs. For formatted packets, you should rst visually create and
format them via Packet Format Editor, then create the formatted packet objects in code
by invoking formatted packet APIs. A formatted packet is composed of different elds.
In Packet Format Editor, you can specify the type and size of each eld. You can open
the Packet Format Editor to create a new formatted packet from “File” menu – choose
“New...” – choose “Packet Format”. Figure 3.12 shows the Packet Format Editor with a
packet format loaded.

Fields can be added to Packet Format Editor by using the “Create New Field” button.
A user can edit the eld’s attributes such as type, encoding, size and color, etc. The eld
type can be: integer, oating point, structure, packet, information, packet ID, or object
ID. The supported eld types enable the packet to carry any possible information, which
may or may not have real-world entity. The encoding can be big-endian or little-endian
to model endianness. To edit attributes of a eld, right click the eld of interest and select
“Edit Attributes” from context menu.

Q3.2 Why do we need both formatted and unformatted packets?
For formatted packets, each eld in the packet is named. Fields of a formatted packet

can be accessed by name. For unformatted packets, each eld in the packet is indexed.
Fields of an unformatted packet can be accessed by index. Therefore, a formatted packet
is often used to model the real-world packet, while an unformatted packet is often used
to model a dummy packet or an encapsulated packet.

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:48:55 WET 2013.
http://dx.doi.org/10.1017/CBO9780511667572.004

Cambridge Books Online © Cambridge University Press, 2013

34 OPNET Modeler user interface

Figure 3.11 Link Editor

Figure 3.12 Packet Format Editor

3.3.6 ICI Editor

ICI (Interface Control Information) is an OPNET internal structure that is able to carry
information and facilitate interrupt-based inter-process communications. A process can
access the ICI objects associated with interrupts to communicate with other processes.
ICI Editor can be used to visually edit the ICI format. You can open the ICI Editor to

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:48:55 WET 2013.
http://dx.doi.org/10.1017/CBO9780511667572.004

Cambridge Books Online © Cambridge University Press, 2013

3.3 OPNET editors 35

Figure 3.13 ICI Editor

create a new ICI format from “File” menu – choose “New...” – choose “ICI Format.”
Figure 3.13 shows the ICI Editor with several attributes de ned.

Q3.3 What are OPNET internal structures?
OPNET internal structures are de ned for Proto-C. These structures are not general-

purpose data structures. They are particularly used in OPNET simulation to facilitate
design and development. Other OPNET internal structures include: Packet, Objid,
Prohandle, Stathandle, Distribution, and OpT_Packet_Size.

3.3.7 PDF Editor

PDF Editor allows you to create, edit, and view probability density functions (PDFs)
of a data sequence. You can load a data sequence into PDF Editor to view and edit.
Simulation statistical results can be exported to PDF Editor for analysis as well. You
can open the PDF Editor from “File” menu – choose “New...” – choose “PDF Model”.
Figure 3.14 shows the PDF editor with a data sequence loaded.

You can modify an existing PDF model based on a data sequence, or make a new PDF
model. PDF model can be visually edited in PDF Editor by operations such as “Add
Impulse”, “Normalize”, “Set Abscissa and Ordinate Bounds”, “Set Sampling Resolu-
tion”, and “Smooth”. The modi ed or newly created PDF model can be loaded in code
by using OPNET Distribution APIs in the process model to model stochastic processes
such as system failure, packet size, interarrival times, etc.

3.3.8 Probe Editor

In OPNET simulation, there are many types of statistic – global statistic, node statistic,
link statistic, path statistic, etc. However, you may just want to see the ones in which you
are interested. To do this, you can use Probe Editor to customize the statistics you want
to view after simulation completes. You can open the Probe Editor from “File” menu –
choose “New...” – choose “Probe Model”. Figure 3.15 shows the Probe Editor loaded
with the statistics of interest.

There are different types of statistic you can probe, such as “Global Statistic Probe,”
“Node Statistic Probe,” “Link Statistic Probe,” and “Path Statistic Probe.” A type of

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:48:55 WET 2013.
http://dx.doi.org/10.1017/CBO9780511667572.004

Cambridge Books Online © Cambridge University Press, 2013

36 OPNET Modeler user interface

Figure 3.14 PDF Editor

Figure 3.15 Probe Editor

new statistic probe can be created by pressing the corresponding tool button in Probe
Editor. For example, if you want to create a statistic probe for a node, you can press the
“Create Node Statistic Probe” tool button (the fth tool button as shown in Figure 3.15).
Right click the newly created node statistic probe, and from the Context menu select

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:48:55 WET 2013.
http://dx.doi.org/10.1017/CBO9780511667572.004

Cambridge Books Online © Cambridge University Press, 2013

3.5 Animation Viewer 37

“Choose Probed Object” to choose the node objects to probe. The procedure is similar
for creating other statistic probes. It is noted that statistics can be collected in different
ways. The default one is to collect “All values”. This means that during simulation,
all statistic points will be recorded. You can choose other, different ways of collecting
statistics. To do that, right click the statistic probe of interest, and from the Context menu
choose the preferred way of collecting the statistic. For example, if you choose “Collect
TimeAverage Over Default Buckets”, the time-averaged statistic will be recorded during
simulation instead of the all-values statistic.

3.4 Simulation Results Browser

In OPNET Modeler, for a simulation model, you may have several scenarios to simulate.
These scenarios can be based on different topologies, routings, traf c, load parameters,
etc. Further, in every scenario you may have many statistics to probe. In OPNET Mod-
eler, simulation Results Browser allows you to view and compare all simulation results
for all scenarios of your simulation project in the uni ed user interface. Simulation
Results Browser can be opened from “DES” menu – choose “Results” – choose “View
Results...”. If your simulation nishes and your model has statistics to probe, you can
open Simulation Result Browser to show the statistics in graphs. Simulation Result
Browser provides lots of statistical tools to allow you to view and compare the statistical
results in different scales such as logarithm, reciprocal, time average, and sample sum.
You can also generate distributions from the results, or export results into a spreadsheet
for further processing. Figure 3.16 shows the Simulation Results Browser.

To display several statistics in one panel for comparison, you can simply tick the
checkboxes of these statistics.

3.5 Animation Viewer

OPNET modeler allows you to record and play animation for packet ows, node move-
ment, and statistic value changes. You can view the recorded animation during the
simulation (real-time display), or after simulation nishes. Animation is loaded and
played in Animation Viewer. Animation can be controlled in Animation Viewer via
operation buttons such as play, pause, stop, restart, speed up, slow down, and skip to
next. To open Animation Viewer: in Project Editor, from the “DES” menu choose “Play
2DAnimation.” If there is animation recorded in this project scenario,AnimationViewer
will start and will play the recorded animation automatically. A screenshot ofAnimation
Viewer is shown in Figure 3.17.

You can control the animation using the operation tool buttons in Animation Viewer.

Q3.4 What can one do with Animation Viewer?
AnimationViewer visually demonstrates the process of packet ow and/or nodemove-

ment. It can help users to visually check if there are some obvious problems in the

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:48:55 WET 2013.
http://dx.doi.org/10.1017/CBO9780511667572.004

Cambridge Books Online © Cambridge University Press, 2013

38 OPNET Modeler user interface

Figure 3.16 Simulation Results Browser

Profile Config Application Config

1382

1606
Server

Client

Figure 3.17 Animation Viewer

simulation model. One example: if you model packet routing between several nodes,
you can inspect the animation to see if packets are routed in the way you expect.
Another example: if you model a mobile network, you can check the animation to
see if the mobile nodes move correctly. Animation of the model can also be recorded

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:48:55 WET 2013.
http://dx.doi.org/10.1017/CBO9780511667572.004

Cambridge Books Online © Cambridge University Press, 2013

3.6 Using OPNET documentation 39

Figure 3.18 OPNET documentation

into video for demonstration using screen recording tools such as SMRecorder (see
www.video2down.com) and Snagit (www.techsmith.com/snagit).

3.6 Using OPNET documentation

OPNET documentation provides a very comprehensive description of OPNET Modeler,
modeling and simulation. OPNET documentation is managed via a Java-based docu-
mentation tool and can be viewed in a standard web browser. The documentation can be
opened from “Help” menu of OPNET Modeler. The OPNET documentation tool pro-
vides three tools to help you nd a particular topic or content. You can nd a topic via
“Content” tool, “Index” tool, or “Search” tool in OPNET Documentation Browser.

The “Contents” tool lists all topics in a hierarchical structure as shown in Figure 3.18.
To check basic knowledge, operations, and user interfaces of OPNET modeler, you can
look in the “Modeler Reference” root topic. To check other modeler extension tools, you
can look in the “Modules” section. To check OPNET modeling functions/APIs, you can
look in the “Programmers Reference” section. For a modeling and simulation tutorial,
you can look in the “Tutorials” section. For protocols, algorithms and device models,
you can look in the “Models” section.

With the “Index” tool, you can nd your topic by following an alphabetical structure,
as shown in Figure 3.19.

To quickly nd content containing some keywords, you may use the “Search” tool, as
shown in Figure 3.20. In the search box, you can enter keywords you want to search for

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:48:55 WET 2013.
http://dx.doi.org/10.1017/CBO9780511667572.004

Cambridge Books Online © Cambridge University Press, 2013

40 OPNET Modeler user interface

Figure 3.19 OPNET documentation

Figure 3.20 OPNET documentation

and hit Return to start searching. There is one thing to note: for some earlier versions of
OPNET Modeler, if you want to search some keywords containing special symbols like
underline and brackets, you should replace them with a space, otherwise, you will not
nd any results. For example, if you want to search for “op_pk_send()” function, you

should enter “op pk send” instead.

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:48:55 WET 2013.
http://dx.doi.org/10.1017/CBO9780511667572.004

Cambridge Books Online © Cambridge University Press, 2013

Part II

Modeling Custom Networks
and Protocols

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:48:56 WET 2013.
http://ebooks.cambridge.org/ebook.jsf?bid=CBO9780511667572
Cambridge Books Online © Cambridge University Press, 2013

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:48:56 WET 2013.
http://ebooks.cambridge.org/ebook.jsf?bid=CBO9780511667572
Cambridge Books Online © Cambridge University Press, 2013

4 OPNET programming interfaces

This chapter covers OPNET API (application programming interface) packages and
provides an in-depth discussion on a number of commonly usedAPIs. Practical examples
are provided to explain the studied OPNET APIs. If the reader is familiar with OPNET
APIs and programming OPNET models, this chapter can be skipped.

4.1 Introduction to OPNET programming

The programming language for writing OPNET Models is called Proto-C. There are
not many syntax differences between programming in C and Proto-C, since Proto-C
preserves generality by incorporating all the capabilities of the C/C++ programming
language, i.e., you can program OPNET models in the same way as you program C/C++
applications. The major difference is the methodology adopted by Proto-C to program
models. Unlike programming standalone C/C++ applications, Proto-C is designed to
handle OPNET prede ned data types via an existing simulation engine, which can be
regarded as a half-done application in a standalone C/C++ application. This simulation
engine needs to incorporate the Proto-C model code to generate a nal runnable and
debuggable standalone simulation application. The simulation engine can be regarded
as pre-written skeleton or framework which is the kernel in every simulation application.
Your OPNET model code is the custom part of the simulation application. Your OPNET
model code is inserted into the designated positions of the simulation engine framework
to generate the nal complete source les. These les will be compiled and linked into
a normal C/C++ application. The simulation actually starts only when this application
is loaded into the operating system.

However, unlike programming general C/C++ applications, to write OPNET model
code you will not directly participate in the whole application-building process, i.e.,
you do not touch the whole C/C++ sources. What you write is the custom parts of the
sources which are abstracted as process models in OPNET Modeler. Further, in the
process model, Proto-C adopts a methodology called state transition diagrams (STDs)
to help you construct the model logic and handle the underlying C/C++ code. In short,
in OPNET programming you do not program the whole sources of an application: just
the custom parts of the simulation application. The entire C/C++ simulation application
building process will be handled by OPNET Modeler. This service is the most important
and kernel service OPNET Modeler provides.

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:48:58 WET 2013.
http://dx.doi.org/10.1017/CBO9780511667572.005

Cambridge Books Online © Cambridge University Press, 2013

44 OPNET programming interfaces

OPNET modeling code can be written in three places:

• The process model via Process Editor or Transceiver Pipeline stages – the OPNET
Modeler’s kernel GUI services

• Text le via external model access (EMA) interfaces
• Third-party programs via external tool support (ETS) interfaces.

Coding via the process model can handle most tasks. Therefore, we will focus on this
in this book. Programming in OPNET can serve different purposes and provide different
services. OPNET provides a full set of API packages to serve these purposes. OPNET
model developers can use these functions in their code to invoke OPNET simulation
services. The breakdown of the major services OPNET provides is as follows.

• Writing discrete event simulation (DES) models like networking algorithms and pro-
tocols. This is the kernel service provided by OPNET Modeler and it requires the
basic OPNET Modeler license. Writing DES models can take two different forms: (1)
via graphic user interface, i.e., the model programs can be written in process model
via OPNET modeler’s user interface, Process Editor; (2) via text le, external model
access (EMA) interface.

• Extending and customizingOPNETModeler’s user interfaces and functionalities, such
as adding a new button to OPNET Modeler to perform a user-de ned operation. With
this capability, users can extend or customize their OPNET Modeler user interfaces
to incorporate more features. This capability is known as external tool support (ETS),
and now is included in the OPNET Development Kit (ODK) module.

• Others: these include extra avors to facilitate modeling, design, and presentations
such as adding visualization effects, providing co-simulation supports, and writing
models into HTML. Some of them may require particular licenses apart from the
OPNET Modeler license.

Most OPNETModeler users who are intending to design and program their algorithms
and protocols will generally focus on building discrete-event simulations. To invoke
different services, OPNET Modeler provides a couple of categorized API packages.

4.2 OPNET API categorization

This section categorizes various OPNETAPIs and explains the differences between these
categories to remove confusion about how to choose and use OPNET APIs. OPNET
APIs can be categorized into different packages according to their different functional-
ities: Application Access, Data Structures and Algorithms, Discrete Event Simulation,
Generic Runtime System, Model File Access, OPNET Runtime, OPNET Visualization,
and Simulation Control. These packages can start with pre xes such as “op_”, “prg_”,
“Ema_”, “Ets_”, “Oma_”, “Osys_”, “Ovis_” and “Esa_”. Each of these API packages
may contain a couple of sub-packages. Some of the packages may provide similar func-
tionalities. However, based on the services they provide, they can be separated into
two main groups. One is for writing DES models and providing the kernel services for

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:48:58 WET 2013.
http://dx.doi.org/10.1017/CBO9780511667572.005

Cambridge Books Online © Cambridge University Press, 2013

4.3 Kernel APIs/Kernel Procedures (KPs) 45

OPNET Modeler. The APIs in this group cover different packages such as Data Struc-
tures and Algorithms packages, Discrete Event Simulation packages, Generic Runtime
System packages, Model File Access packages, OPNET Runtime packages and Simu-
lation Control packages. APIs in this group have pre xes “op_”, “prg_”, “Ema_” and
“Esa_”, etc.Another group is for providing extensive services such as extending OPNET
user interfaces and functionalities, providing versatile visualization effects and provid-
ing extra supports. TheAPIs in this group include:ApplicationAccess packages, Design
and Analysis packages, Model File Access packages, and OPNET Visualization pack-
ages. In this group, theAPI pre xes can be “Ets_”, “Ace_”, “Html_”, “Imex_”, “Oma_”,
“Hcon_”, “nrac_”, “Optim_”, “Osys_” and “Ovis_”, etc.

Q4.1 How does one nd documentation on a particular OPNET API?
To search for a description of OPNET APIs, in some earlier versions of OPNET

Documentation you should enter the the API name without underline since the search
functionality in these versions cannot interpret non-letter characters. For example, if you
wish to search “op_pk_send”, you should enter three strings separated by white spaces,
i.e., “op pk send” in the search box. For OPNET 16.0 and later, the documentation tool is
able to interpret non-letter characters. In this case, you can enter the search term as it is.

Among Group One APIs, the DES packages contain the most important set of APIs,
which can be invoked from within process models and provide kernel DES modeling
capabilities. These APIs are called Kernel Procedures (KPs) or kernel APIs. OPNET
kernelAPIs beginwith “op_”.OPNETkernelAPIs performmostOPNETDESModeling
tasks and are capable of providing useful tracing and debugging information.

Q4.2 What licenses are required to write discrete-event simulation (DES) models?
As discussed at the beginning of this section, for different purposes, different API

packages and corresponding licenses are required. For programming DES models, only
the OPNET Modeler license is required. For other purposes, such as extending OPNET
Modeler’s user interface, programming visualization and exporting models to HTML,
or modeling wireless networks, the individual module licenses are required.

4.3 Kernel APIs/Kernel Procedures (KPs)

In this section, a number of APIs which are dif cult to use or are insuf ciently doc-
umented will be explained and exempli ed. The APIs discussed here cover packages
of Kernel Procedures, i.e., APIs for writing DES models and providing the kernel ser-
vices by OPNET Modeler. APIs involved include kernel APIs or Kernel Procedures
(KPs) beginning with “op_” and Programming Support APIs beginning with “prg_”.
To be able to ef ciently write DES models, readers should be familiar with these APIs.
Topics on Group Two APIs for extending OPNET Modeler user interfaces, i.e., ODK
development, are not parts of this book and are not discussed in this section.

The following sub-sections will explain and exemplify the uses of theseAPIs based on
their package categories. Uses of otherAPIs can be found in OPNETdocumentation. The

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:48:58 WET 2013.
http://dx.doi.org/10.1017/CBO9780511667572.005

Cambridge Books Online © Cambridge University Press, 2013

46 OPNET programming interfaces

exempli cation is carried out using complete self-contained code blocks, offering users
the ability to reference and copy them directly into their own models. Several APIs may
be exempli ed in the same code block. The explanations of these APIs within OPNET
documentation may involve the Multi-Threading Safety issue, which is an important
topic in OPNET parallel simulations. Parallel simulation is used to help accelerate simu-
lation by utilizing multiple CPU processors. TheAPIs marked as “thread-safe” internally
support synchronization of parallel executions, while those marked as “thread-unsafe”
must be further processed by users to provide multi-threading synchronization protec-
tion or explicitly serialized into a one-after-another manner of execution, under parallel
simulation contexts. Multi-threading safety can be ignored by readers if the simulation is
not going to run in a parallel mode. In the remaining chapters, if not particularly speci ed
the simulation and its con gurations are performed in the single-processor mode, i.e.,
event executions are performed in a synchronized manner.

As discussed in Section 4.1, there are three main places to write OPNET code. One
of them is in the process model or in the Transceiver Pipeline stage. Kernel Proce-
dures should be written in this place. Most simulation model programming tasks can
be achieved by writing code in process models and the Transceiver Pipeline stage. In
the following chapters, if not explicitly speci ed the programming-related tasks are
programmed in process models and/or Tranceiver Pipeline stages.

The following sub-sections will explain and exemplify the usage of KPs based on
their KP package categories.

4.3.1 Distribution Package

Functions within Distribution Package can be used to generate random data with
prede ned distribution models or with user-de ned distribution models. Prede ned
distribution models can be loaded via the distribution API simply by specifying the
distribution model name, as shown in Figure 4.3. To be able to load user-de ned or
EMA-speci ed models, it should be rst ensured these models are in the Modeler’s
model directory. If they are in the model directory, they can be loaded via distribution
APIs in the same way as loading prede ned distributions, i.e., providing the custom
model’s name without suf x asAPI input. TheAPIs do not accept any model arguments
for the custom model. This is because the custom model is generated only from experi-
ment samples and is not formulated. Take a custom PDF model with a model le called
“mypdf.pd.s” as an example: when this PDF model is loaded via the distribution API,
only “mypdf” is to be supplied to the API as parameter. The following paragraphs will
describe how to use APIs in this package.

Figures 4.1–4.3 show the loading of prede ned, user-de ned, andEMA-speci ed PDF
models via distribution APIs.

In Figure 4.1, handles of distribution models are declared. The rst three lines are
prede ned distributions, the fourth line is a user-de ned custom distribution, and the
last is an EMA-speci ed distribution.

Figure 4.2 shows the declarations of arguments for prede ned distributions.
In Figure 4.3, for prede ned distribution, all necessary arguments have been

assigned values before invoking “op_dist_load”; for user-de ned and EMA-speci ed

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:48:58 WET 2013.
http://dx.doi.org/10.1017/CBO9780511667572.005

Cambridge Books Online © Cambridge University Press, 2013

4.3 Kernel APIs/Kernel Procedures (KPs) 47

/*
* Declare distribution handles for different PDF models
* Declared in state variable block
*/

Distribution *dist_uniform;
Distribution *dist_exp;
Distribution *dist_pareto;
Distribution *dist_myuser;
Distribution *dist_myema;

Figure 4.1 Code in Process Editor

/*
* Declare and initialize arguments for predefined PDF
* models
* Declared in temporary variable block
*/

double uniform_min = 0;
double uniform_max = 0;
double exp_mean = 0;
double pareto_location = 0;
double pareto_shape = 0;

Figure 4.2 Code in Process Editor

/*
* Set model arguments and load predefined distributions
* with arguments.
* Invoked in states of process model
*/

uniform_min = ...;
uniform_max = ...;
dist_uniform = op_dist_load("uniform", uniform_min , \

uniform_max);
exp_mean = ...;
dist_exp = op_dist_load ("exponential", exp_mean , 0.0);
pareto_location = ...;
pareto_shape = ...;
dist_pareto = op_dist_load ("pareto", pareto_location , \

pareto_shape);
dist_myuser = op_dist_load("myuser", 0.0, 0.0);
dist_myema = op_dist_load("myema", 0.0, 0.0);

Figure 4.3 Code in Process Editor

distributions, no arguments are needed. For a user-de ned distribution, its name
is “myuser” and its model le should be “myuser.pd.s”. For an EMA-de ned
distribution, its name is “myema” and its model le should be “myema.em.c”
correspondingly.

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:48:58 WET 2013.
http://dx.doi.org/10.1017/CBO9780511667572.005

Cambridge Books Online © Cambridge University Press, 2013

48 OPNET programming interfaces

/*

* Declare and initialize variables

* Declared in temporary variable block

*/

double pksize = 0;

Packet *pkptr = OPC_NIL;

int i = 0;

Figure 4.4 Code in Process Editor

/*

* Generate and send 1000 unformatted packets with packet

* sizes following the loaded exponential distribution.

* Invoked in states of process model

*/

for(i = 0; i < 1000; ++i)

{

/* Generate a random packet size following the loaded

* exponential distribution

*/

pksize = op_dist_outcome(dist_exp);

/* Create an unformatted packet with pksize length */

pkptr = op_pk_create (pksize);

/* Send this packet to output stream 0 */

op_pk_send(pkptr , 0);

}

Figure 4.5 Code in Process Editor

Figures 4.4 and 4.5 show how to produce random values from the loaded distributions
and provide an example of utilizing the generated random values. It is shown that 1000
packets are created with random packet sizes following an exponential distribution.

It is noted that in Distribution Package, there are some APIs whose function
names include prede ned distribution model names, such as op_dist_exponential() and
op_dist_uniform(). They are used to generate random values with exponential and
uniform distributions directly, without calling “op_dist_load()” beforehand. They are
provided for convenience and as alternatives, since these two prede ned PDF models
are more frequently used.

After nishing using distributions, these distributions and their allocated memo-
ries held by the simulation kernel should be released. This is done by invoking
“op_dist_unload()” with the desired distribution handle as its argument, as shown in
Figure 4.6. This unloading function can be called once the distribution is not needed in
order to save memory. However, when the distribution will be used throughout the whole
simulation process, invoking this function is not necessary. This is because after nishing
simulation, all allocated memories for current simulation will be automatically freed.

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:48:58 WET 2013.
http://dx.doi.org/10.1017/CBO9780511667572.005

Cambridge Books Online © Cambridge University Press, 2013

4.3 Kernel APIs/Kernel Procedures (KPs) 49

/*

* Unload specified distribution by providing the

* distribution handle

* Invoked in states or termination block of process

* model

*/

op_dist_unload(dist_uniform);

op_dist_unload(dist_exp);

op_dist_unload(dist_pareto);

op_dist_unload(dist_myuser);

op_dist_unload(dist_myema);

Figure 4.6 Code in Process Editor

/*

* Define custom structure

*/

typedef struct

{

int int_value;

double double_value;

char string [1024];

} sample_struct;

/*

* Declare temporary variables

*/

Packet *fmt_pktptr;

Packet *payload_pktptr;

sample_struct *s_structptr;

Figure 4.7 Code in Process Editor

4.3.2 Packet Package

Functions in this package are used to create, send, receive, and destroy packets, and to set
and get content of packets. The packet can be con gured to carry varied information and
different types of data, from raw data types such as int, double, char to prede ned types
and structures such as Objid, OpT_Packet_Id, Packet, Ici, Vvec_Vector, and other user-
de ned structures. By utilizing procedures in this package, the packet is able to carry any
information. This information can be used not only for the purpose of representing packet
data, but for purposes of carrying routing table, node information, protocol, and algorithm
information, and even other simulation-speci c information that is not implemented in
real-world packets.

In Figure 4.7, a custom structure is de ned and temporary variables are declared.
Figure 4.8 shows how to create both formatted and unformatted packets, and how to

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:48:58 WET 2013.
http://dx.doi.org/10.1017/CBO9780511667572.005

Cambridge Books Online © Cambridge University Press, 2013

50 OPNET programming interfaces

/*

* Create packets

*/

// Create a formatted packet and set tota size of this

// packet to 1024

fmt_pktptr = op_pk_create_fmt ("sample_packet");

op_pk_total_size_set (fmt_pktptr , 1024);

// Set integer and double value to corresponding fields

op_pk_nfd_set (fmt_pktptr , "sample_field_int", 120);

op_pk_nfd_set (fmt_pktptr , "sample_field_double", \

120.23);

// Dynamically allocate memory for sample_struct and

// assign structure pointer to a field

s_structptr = \

(sample_struct *) op_prg_mem_alloc (\

sizeof (sample_struct));

op_pk_nfd_set (fmt_pktptr , "sample_field_struct", \

&s_structptr , op_prg_mem_copy_create , \

op_prg_mem_free , sizeof(sample_struct));

// Create unformatted packet and assign an integer

// value to the first field of the packet

payload_pktptr = op_pk_create (512);

op_pk_fd_set (payload_pktptr , 0, \

OPC_FIELD_TYPE_INTEGER , 111, 0);

// Set the unformatted packet pointer to corresponding \

// field of the formatted packet

op_pk_nfd_set (fmt_pktptr , "sample_field_packet", \

payload_pktptr);

// Send the formatted packet to the output port indexed \

// as 0

op_pk_send(fmt_pktptr , 0);

Figure 4.8 Code in Process Editor

assign integer, double, structure, and packet types to elds of a packet. These may have
corresponding real-world entities or be only for facilitating modeling. Particularly, to
assign a structure to a packet, you have to dynamically create this structure and pass
the address of its pointer to the op_pk_nfd_set function. Also, you need to pass the
addresses of a memory copy function and a memory free function to op_pk_nfd_set
so that it knows how to copy the structure to the packet and how to free the memory
of the structure when it is not used. The purpose of this design is to make it possible

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:48:58 WET 2013.
http://dx.doi.org/10.1017/CBO9780511667572.005

Cambridge Books Online © Cambridge University Press, 2013

4.3 Kernel APIs/Kernel Procedures (KPs) 51

to assign a hierarchical non- at data structure to a packet, so that all memories of that
structure can be correctly copied and freed via custom copy and free callback functions.
However, if the data structure is a at format, i.e., the structure has no references to other
dynamical memories, you can typically use OPNET memory copy and free functions:
op_prg_mem_copy_create and op_prg_mem_free.

For creating unformatted packets, you can follow the code in Figure 4.8 directly
without any extra work. However, for creating formatted packets, you must rst visu-
ally create a prototype for that formatted packet via Packet Format Editor, then invoke
op_pk_create_fmt in code to create the packet. The name passed to op_pk_create_fmt
must match the one created in Packet Format Editor.

Q4.3 What are the differences between op_pk_bulk_size_get/set() and op_pk_total_
size_get/set()?

op_pk_bulk_size_get/set() is used to get and set a packet’s bulk data size.
op_pk_total_size_get/set() is to get and set the total packet size in gross. Bulk data
size is a property of a packet that is used to model the amount of data that is not explic-
itly attributed to individual elds. Modifying the bulk data size of a packet proportionally
modi es the total size of the packet, which is the sum of the bulk data size and the sizes
of the packet’s elds.

Q4.4 What are the differences between op_pk_nfd_access() and op_pk_nfd_get()?
Both functions can retrieve the eld value from a packet. op_pk_nfd_get() retrieves

the eld value and removes the eld from the packet. op_pk_nfd_access() only retrieves
the eld value without removing the eld from the packet.

4.3.3 Queue Package and Subqueue Package

In OPNET APIs, a queue object may contain one or more subqueues. The functions
in Queue Package are used to access the queue as a whole, while functions in Sub-
queue Package are used to access an individual subqueue within the queue object.
Unlike the queue for a general algorithm, the queue and subqueue here contains only
OPNET Packet objects. Functions within these two packages are easy to use. The only
point to emphasize is that functions in Subqueue Package support abstract subqueue
index and abstract packet position index within a subqueue. Unlike a numeric index,
the abstract index can be used to access a subqueue or packet within a subqueue in a
particular way. For example, to nd a subqueue with the maximum number of pack-
ets, the user can write code to loop through all subqueues in order to nd the one with
most packets by using op_subq_stat function on each subqueue.Alternatively, op_subq_
index_map(OPC_QSEL_MAX_IN_PKSIZE) can simply be used to nd the numeric
index of the subqueue with the most packets. OPC_QSEL_MAX_IN_PKSIZE is the
abstract index referring to a subqueue with the maximum number of packets.

4.3.4 Statistic Package

The Statistic Package allows you to read/write customized statistics during simula-
tion. After simulation completes, these statistics can be visualized in Result Browser.

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:48:58 WET 2013.
http://dx.doi.org/10.1017/CBO9780511667572.005

Cambridge Books Online © Cambridge University Press, 2013

52 OPNET programming interfaces

// Declare statistics handle as state variable

Stathandle sample_stat_handle;

// Register local statistic and return the handle of

// this statistic

sample_stat_handle = op_stat_reg ("sample_statistic", \

OPC_STAT_INDEX_NONE , OPC_STAT_LOCAL);

// Write data at current simulation time to statistic

op_stat_write (sample_stat_handle , \

op_pk_total_size_get(pktptr));

Figure 4.9 Code in Process Editor

Figure 4.9 shows how to register a local statistic and write data for current simulation
time to that statistic. After simulation completes, you can view this statistic from the
Results dialog. The statistic in this example is the current packet size in bits. Local
statistic is speci ed by the OPC_STAT_LOCAL macro. You can also register a global
statistic by specifying OPC_STAT_GLOBAL. The difference between a local statistic
and a global statistic is that the former allows only the current process to access the
statistic, while the latter allows all processes to access the statistic.

It is noted that the statistic name passed to op_stat_reg must match the one created
in “Local Statistics” dialog, which can be accessed from the current process model
“Interfaces” menu – “Local Statistics.”

4.3.5 Segmentation and reassembly package

Segmentation and Reassembly Package provides functions to allow user to split original
packets data into segments of any size and reassemble these segments back into the
original packets. You can use this package to simulate traf c ows or streams in which
traf c is transmitted and routed in units of segments instead of packets. A segment can
be spread over several packets or can be part of one packet depending on segment size.
In Figure 4.10, segmentation and reassembly buffers are declared and created. Figure
4.11 shows how to create a stream from raw packets and send segments of the stream
into the network. Figure 4.12 shows how to add segments into the reassembly buffer
and recover raw packets from the reassembly buffer. It is noted that if a segment of a
stream is lost during transportation, then the raw packet containing this segment cannot
be recovered from the reassembly buffer. The code in Figure 4.11 is implemented at the
sender and the code in Figure 4.12 is implemented at the receiver.

4.3.6 Topology package

Topology Package provides functions to allow you to traverse objects like links, nodes
and modules in a network. You can use functions in this package to obtain the identi ers

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:48:58 WET 2013.
http://dx.doi.org/10.1017/CBO9780511667572.005

Cambridge Books Online © Cambridge University Press, 2013

4.3 Kernel APIs/Kernel Procedures (KPs) 53

// Declare segment buffer and reassembly buffer as

// state variables

Sbhandle seg_buf;

Sbhandle rsm_buf;

// Create segment buffer and reassembly buffer

seg_buf = op_sar_buf_create(OPC_SAR_BUF_TYPE_SEGMENT ,\

OPC_SAR_BUF_OPT_DEFAULT);

rsm_buf = op_sar_buf_create(\

OPC_SAR_BUF_TYPE_REASSEMBLY , \

OPC_SAR_BUF_OPT_DEFAULT);

Figure 4.10 Code in Process Editor

// Add packets into segment buffer to form a stream

for(i = 0; i < 1000; ++i)

op_sar_segbuf_pk_insert(seg_buf , \

op_pk_create (1024) , i);

// Empty stream by sending all segments from segment

// buffer

for(i = 0; i < 1000*1024/ SEGMENT_SIZE; ++i)

op_pk_send(op_sar_srcbuf_seg_remove(\

seg_buf , SEGMENT_SIZE), 0);

Figure 4.11 Code in Process Editor

// Insert received segment info reassembly buffer

op_sar_rsmbuf_seg_insert (rsm_buf , op_pk_get (0));

// Get the total number of original packets within

// reassembly buffer

pkt_num = op_sar_rsmbuf_pk_count (rsm_buf);

// Remove and destroy all original packets from

// reassembly buffer

for(int i = 0; i < pkt_num; ++i)

{

pktptr = op_sar_rsmbuf_pk_remove (rsm_buf);

op_pk_destroy(pktptr);

}

Figure 4.12 Code in Process Editor

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:48:58 WET 2013.
http://dx.doi.org/10.1017/CBO9780511667572.005

Cambridge Books Online © Cambridge University Press, 2013

54 OPNET programming interfaces

of all objects in the network. Figure 4.13 shows how to obtain the object IDs of the nodes
connecting to the current module via packet streams. The current module refers to the
module where the current process model resides.

In Figure 4.13, the IDs of the nodes are obtained by crawling from the ID of the current
module. Users can easily obtain the IDs of other nodes, modules, or links by modifying
these codes appropriately.

4.3.7 Programming Support APIs

Programming Support APIs (begin with ’prg_’ pre x) provide many facilities, some
of which serve similar purposes to certain OPNET kernel APIs. However, they do not
provide tracing and debugging information. In OPNET kernel APIs, those functions
provide the same capabilities as the counterparts in Programming SupportAPIs that start
with “op_prg_” pre x. Functions in Programming Support package can be invoked by
EMAprograms, external tool programs and process model code. The Simulation Kernel
Programming package functions can be called only by process model code. Therefore,
for DES Modeling via OPNET graphic interface services, i.e. via process models, if
there is a kernel API alternative to programming support API, kernel API should always
be used since it provides extra debugging information. However, for EMA and ETS
programs, Programming Support API prg_??? should be used instead.

4.4 Theoretical background

4.4.1 Proto-C specifications

Proto-C is based on generic C programming language. It supports C programming lan-
guage speci cations and, thus, it can be programmed the same way as programming
in C. With Proto-C, the user can invoke existing C library functions as well. However,
Proto-C has its own prede ned data types and interface library functions (APIs) which
distinguish it from generic C language. From this point of view, Proto-C can be regarded
as a sub-class of generic C language and is designed speci cally for programming sim-
ulation models. Further, the Proto-C framework also supports programming in C++;
therefore, you can use the standard template library (STL) and Boost libraries in your
process models. In all, for programming OPNET models, the user can choose from a
variety ofAPI functions including: OPNETAPIs, functions de ned for OPNET standard
models (discussed in Chapter 10), custom wrapper API functions (Chapters 6 and 7),
and third-party C/C++ functions like C library, STL, Boost, etc.

Q4.5 What are the differences between C and C++ libraries and OPNET APIs?
Since C and C++ are designed for programming for generic purposes, they only

provide standard libraries to achieve functionalities like I/O processing, character/mem-
ory handling, basic mathematical calculations, and generic algorithms. However, if a
program requires speci c functionalities other than those provided by C/C++ standard
libraries, such as graphic interface, networking capability, or audio/video processing

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:48:58 WET 2013.
http://dx.doi.org/10.1017/CBO9780511667572.005

Cambridge Books Online © Cambridge University Press, 2013

4.4 Theoretical background 55

// Declare temporary variables

int strm_num;

int i = 0;

int j = 0;

int node_num;

Objid strm_id;

Objid tx_id;

Objid link_id;

Objid node_id;

// Get the total number of streams associated with

// current module

strm_num = op_topo_assoc_count(op_id_self (), \

OPC_TOPO_ASSOC_OUT , OPC_OBJTYPE_STRM);

for(i = 0; i < strm_num; ++i)

{

// Find the ith stream id

strm_id = op_topo_assoc(op_id_self (), \

OPC_TOPO_ASSOC_OUT , OPC_OBJTYPE_STRM , i);

// Find transmitter id from stream id

tx_id = op_topo_assoc(strm_id , OPC_TOPO_ASSOC_OUT ,\

OPC_OBJTYPE_PTTX , 0);

// Find the link id from transmitter id

link_id = op_topo_assoc(tx_id , OPC_TOPO_ASSOC_OUT , \

OPC_OBJTYPE_LKDUP , 0);

// Get the total number of nodes connected by the link

node_num = op_topo_assoc_count(link_id , \

OPC_TOPO_ASSOC_OUT , OPC_OBJTYPE_NODE_FIX);

// Get all nodes ids associated with the link

for(j = 0; j < node_num; ++j)

{

node_id = op_topo_assoc(link_id , OPC_TOPO_ASSOC_OUT , \

OPC_OBJTYPE_NODE_FIX , j);

...

}

}

Figure 4.13 Code in Process Editor

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:48:58 WET 2013.
http://dx.doi.org/10.1017/CBO9780511667572.005

Cambridge Books Online © Cambridge University Press, 2013

56 OPNET programming interfaces

functions, then other non-standard and platform-speci c libraries such as GUN C library,
Win32 API library, or .NET library may be used. OPNETAPIs provide a set of libraries
used particularly for simulation, i.e., these libraries are used only in OPNET modeling
and simulation and cannot be used for other non-simulation purposes such as program-
ming real-world networking protocols. From this point of view, OPNETAPIs are simply
another set of C libraries.

Although the OPNET standard models andAPIs are implemented in C, OPNET Modeler
supports programming in C++ as well. Check Chapter 12 for OPNET programming in
C++.

4.4.2 Process model and external model access (EMA) program

OPNET code can be developed in process models or in external model access (EMA)
programs.

If a user wants to do general DES modeling, then the code should be written in
process models. Programming in process models is able to handle most modeling
tasks.

External model access is the technique of accessing a model external to the OPNET
analysis software, i.e., accessing a model without using the services provided by the
graphical editors. In this context, the de nition of accessing a model includes creating
the model, modifying the model, and accessing data from the model. External model
access is supported via a library of C and C++ accessible functions that serve as a
programmatic speci cation andquery language.This library is named theExternalModel
Access (EMA) package and can be viewed as an API for creating and extracting data
from model les. EMA provides a text-based alternative to accessing OPNET models
instead of graphic interfaces. For how to use EMA, see Chapter 14.

4.4.3 OPNET Modeler model programming external interfaces: co-simulation,
external tool support (ETS) and OPNET Development Kit (ODK)

OPNET Modeler’s model programming external interfaces refer to the programming
ability to allowOPNETModeler to communicatewith external systems.There are several
different needs for OPNET Modeler to communicate with external devices, tools, or
programs, either hardware, software, or both. To suit these different needs, OPNET
Modeler provides different external interfaces.

To facilitate co-simulation with other programs, OPNET provides an external system
de nition (ESD) model. An ESD model de nes a set of interfaces that allow process
models in OPNET modeler to communicate with external programs. These interfaces
can be read or written by both OPNET process models and external programs.

To allow users to extend the interfaces and functionalities ofOPNETModeler, OPNET
provides a set of programming packages. The Application Access Package is used with
OPNET Development Kit (ODK) to extend OPNET Modeler’s default user interface
and functionalities, e.g., ODK and Application Access Package can be used to create

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:48:58 WET 2013.
http://dx.doi.org/10.1017/CBO9780511667572.005

Cambridge Books Online © Cambridge University Press, 2013

4.4 Theoretical background 57

individual services in OPNET Modeler, like adding a new menu item in the modeler’s
menu list to perform customized operation. Extending OPNET interface and function-
alities are not topics covered in this book. Readers who are interested in these topics can
refer to ODK documentation. A separate license is required to be able to use the ODK
module. ODK is inherited from ETS, which was originally part of OPNET Modeler, and
now ODK replaces and extends ETS and becomes another OPNET module. The ETS
package was introduced in OPNET 7.0 to interact with user-de ned modeler interface
elements. In the subsequent versions of OPNET, ETS evolved into a formal and com-
plete customization environment for extending OPNET Modeler’s user interface and
functionalities and is named OPNET Development Kit (ODK).

To avoid confusion, note that:

• External model access (EMA) is not OPNETModeler’s external interface; it is de ned
as a technique for accessing OPNET models via a non-graphic interface rather than
accessing OPNET models via Modeler’s graphic editors, such as Network Editor,
Node Editor, Process Editor and Packet Editor, etc. Therefore, in EMA, “external”
refers to text-based model access ability external to OPNET Modeler’s graphic model
access ability.

• External interfaces here particularly refer to the OPNET programming ability to allow
OPNET models to communicate with external systems, tools or programs, which is
different fromother general external interface concepts like external debugger support.

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:48:58 WET 2013.
http://dx.doi.org/10.1017/CBO9780511667572.005

Cambridge Books Online © Cambridge University Press, 2013

5 Creating and simulating custom
models using OPNET APIs

This chapter shows how to create and program custom models in OPNET Modeler with
progressive case studies, to help readers gradually build up their knowledge on custom
model creation. The chapter covers basic knowledge and techniques on custom model
creation,model optimization, simulation, results visualization, comparison, and analysis.
If readers already know the basics of simulation and how to create custom models, this
chapter can be skipped.

5.1 General procedure for creating and simulating custom models

There are several ways to create simulation models and execute simulation. However, in
this section, a general procedure of doing these via OPNETModeler’s GUI is introduced.

Q5.1 What are OPNET models?
OPNET models include node model, process model, link model, path model, network

model, packet format models and ICI format model. Models are saved in .m les. For a
node model, the le extension is “.nd.m.” For a link model, the le extension is “.lk.m.”
For a process model, the le extension is “.pr.m.” These model les are saved in the
model directory, which can be found from OPNET Modeler: choose menu “Edit” –
“Preferences” – search for “Model Directories.”

First, custom models need to be created, and then a simulation scenario to test the
custom models is created.

The following are the steps for creating custom models:

• Design the custom node in Node Editor by separating different logic functionalities
into different modules.

• Implement process models of these modules via a state transition diagram (STD) in
Process Editor.

• Optimize and validate models.
• Compile and debug process models.

The following are the steps for simulating custom models:

• Create a project in Project Editor.
• Create a scenario within this project.

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:49:03 WET 2013.
http://dx.doi.org/10.1017/CBO9780511667572.006

Cambridge Books Online © Cambridge University Press, 2013

5.2 Custom models 59

• Create a network topology for this scenario by placing the created custom models on
the Project Editor.

• Verify link connectivity of this network.
• Select statistics of interest.
• Run simulation for this scenario.
• View, compare, and analyze statistic results.
• If necessary, export statistics data to a spreadsheet for further processing.

It is not necessary to follow the above steps exactly in the given order. For model opti-
mization and validation, they are always performed repetitively throughout the modeling
life cycle.

5.2 Custom models

In this section, progressive case studies are provided to help readers understand the nec-
essary concepts for creating custom models. Creating custom models generally involves
creating custom node models and process models. Before any scenario is prepared, the
model directory that can be used to store the project and model les needs to be checked.
By default, the project and model les will be saved in pre-de ned model directory or
standard model directory. To change default model directory, from “Edit” menu, choose
“Preferences.” In Preferences Editor, search for “Model Directories.” In the “Model
Directories” dialog, insert the new model directory before the current rst directory,
because the rst directory in the “Model Directories” dialog is the default model-saving
directory. Then, all project and models les will be placed in this new model directory.

Q5.2 Why are there write permissions errors when running simulation?
This is because the relevant model directories have no write permissions. The relevant

model directories can be either standard model directory or custom model directory. So
check all directories containing models that are used in the simulation scenario, to make
sure they all have write permissions.

5.2.1 Case 1

Case 1 creates a custom traf c source node model and relevant process models. To
create a new custom node model, from “File” menu, choose “New...” – “Node Model.”
This will open Node Editor. In the editor, add four modules: two processor modules, a
point-to-point receiver module, and a point-to-point transmitter module. Create packet
streams (blue lines) between thesemodules.The packet stream lines allowpackets to ow
between these modules following stream line direction. Create logic Tx/Rx association
(orange line) between receiver and transmitter. The association is used to bind a particular
receiver module to a particular transmitter module to make them work in duplex mode.
This custom node is shown in Figure 5.1.

Finally, save this node model as “basic_source.”

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:49:03 WET 2013.
http://dx.doi.org/10.1017/CBO9780511667572.006

Cambridge Books Online © Cambridge University Press, 2013

60 Creating and simulating custom models using OPNET APIs

p_0

p_1

pr_0 pt_0

Figure 5.1 Custom node model

Q5.3 Can custom link models be created?
Yes. Individual pipeline models can be created to model customized features of the

link. To create pipeline models, from “File” menu, choose “New...” – Pipeline Stage
(C code) or (C++ code) to open a new pipeline code editor. Corresponding code to
implement customized link features such as link error model and propagation delay
model can be created. After the pipeline models have been completed and saved, these
pipeline models in a link model can be chosen. To do this, right-click a link model, choose
“EditAttributes (Advanced)”; for the attributes such as “ecc model,” “error model,” and
“propdel model,” the corresponding pipeline models just created can be chosen.

Right click processor module “p_0,” choose “Edit Attributes” to show attributes
table. For “process model” attribute, choose “simple_source.” For “Packet Interarrival
Time,” choose “exponential.” Now, module “p_0” is able to generate Poisson traf c with
exponential packet interarrival times.

Next, a new process model for the processor module “p_1” can be created so that this
module is able to forward packets to the transmitter and destroy packets from the receiver.
From “File” menu, choose “New...” – “Process Model” to show Process Editor. Process
Editor enables the creation of process models via state transition diagrams (STDs), which
separates the process logic into different states and makes these states connected to each
other via state transition lines. Add four states to the process editor. Make three states
forced, connect these states via transition lines, and set the names for these states, as
shown in Figure 5.2.

Q5.4 What are the differences between forced and unforced states?
Astate has two parts for code execution: enter part and exit part, which are represented

by the upper half and the lower half of the state circle respectively. A forced state will
execute the code in both enter part and exit part, then transition to another state via the
state transition line. An unforced state will execute only code in the enter part and pause

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:49:03 WET 2013.
http://dx.doi.org/10.1017/CBO9780511667572.006

Cambridge Books Online © Cambridge University Press, 2013

5.2 Custom models 61

from_src

idleinit

from_recv

0/0

0/0

0/0

0/0

Figure 5.2 Process model

until a further interrupt is triggered by the transition condition. Then it executes the code
in the exit part and transitions to the next state. A forced state is in green color and an
unforced state is in red. State can be set to forced or unforced by right-clicking state and
choosing “Make State Forced” or “Make State Unforced.”

The three forced states transition to “idle” state without a transition condition. However,
unforced “idle” state needs two transition conditions to allow it to transition to “from_src”
and “from_recv” states. In an OPNET process model, the transition condition can be set
in the transition line’s “condition” attribute and de ned as a C macro in header block
(HB). For transition from “idle” state to “from_src” state, set the transition condition to
“UPPER_STRM.” For transition from “idle” state to “from_recv” state, set the transition
condition to “LOWER_STRM.” For “idle” state, add a default transition to the state
itself; this is to avoid possible transitions without true value. The STD is shown in
Figure 5.3.

At this point, the state transition diagram of this process model is completed. Save this
process model as “traf c_source.” This process model will be used in “p_1” module. The
logic ow of this state transition diagram is as follows: the control initially enters “init”
state and executes the code in “init” state, then transitions to “idle” state; the control
waits in “idle” state until either “UPPER_STRM” or “LOWER_STRM” condition is
triggered; once the transition condition is triggered, state will transition from “idle” state
to either “from_src” or “from_recv” state, and then transition back to “idle” state to
wait for new interrupt. This process will repeat itself. It is noted that a process model is
not restricted to a particular state transition diagram, i.e., you may implement a process

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:49:03 WET 2013.
http://dx.doi.org/10.1017/CBO9780511667572.006

Cambridge Books Online © Cambridge University Press, 2013

62 Creating and simulating custom models using OPNET APIs

init

0/0 0/0

idle

(UPPER_STRM)

(default)

(LOWER_STRM)

9/0

from_src

from_recv

Figure 5.3 Process model

#define UPPER_IN_STRM_INDEX 1

#define LOWER_IN_STRM_INDEX 0

#define LOWER_OUT_STRM_INDEX 0

#define UPPER_STRM (\

(op_intrpt_type () == OPC_INTRPT_STRM) && \

(op_intrpt_strm () == UPPER_IN_STRM_INDEX))

#define LOWER_STRM (\

(op_intrpt_type () == OPC_INTRPT_STRM) && \

(op_intrpt_strm () == LOWER_IN_STRM_INDEX))

Figure 5.4 HB block

model via different STDs to re ect the same logic. In this case study, only one possible
STD for describing a process model is demonstrated.

Next, code is added to this process model. The code can be placed in several places:
states (both enter part and exit part), SV, TV, HB, FB, DB, TB code blocks. First,
add the macro de nitions for the state transition conditions “UPPER_STRM” and
“LOWER_STRM”, which are actually triggered by process model interrupts. This is
shown in Figure 5.4.

Q5.5 What are SV, TV, HB, FB, DB, and TB in Process Editor?
SV,TV, HB, FB, DB, andTB are several code blocks where C/C++ code can be placed.

These code blocks can be edited via corresponding toolbar buttons on Process Editor. SV
stands for state variable. In OPNET process model, state variable keeps valid between
state transitions. TV stands for temporary variable. A temporary variable is only valid

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:49:03 WET 2013.
http://dx.doi.org/10.1017/CBO9780511667572.006

Cambridge Books Online © Cambridge University Press, 2013

5.2 Custom models 63

within a state. HB stands for header block. A header block is similar to a C/C++ header
le which can be used to include other header les and de ne macros, etc. FB stands

for function block, which contains de nitions of functions. DB stands for diagnostic
block, which contains diagnostic statements that print out diagnostic information to the
standard output device. The diagnostic block procedure can be triggered by the OPNET
Simulation Debugger (ODB). For more information on debugging in OPNET Modeler,
checkChapter 11.TBstands for termination block.The code in this blockwill be executed
just before the current process is destroyed.Therefore, readers canwrite termination code
in this block.

Q5.6 What is interrupt in process model?
Interrupt in process model is used as a way to switch the direction of simulation exe-

cution. In process model, code execution can be switched to different states by triggering
an interrupt. There are many types of interrupt: packet stream interrupt, statistic inter-
rupt, self-interrupt, etc. Self-interrupt can be used to schedule users’ own interrupts at
speci ed simulation times in order to execute the desired code.

In Figure 5.4, both “UPPER_STRM” and “LOWER_STRM” are de ned as stream
interrupt. The difference is that the input stream index for “UPPER_STRM” is 1 and for
“LOWER_STRM” is 0. The stream index can be identi ed in Node Editor by checking
the packet stream’s “src stream” or “dest stream” attribute, depending on whether the
stream is input or output relative to the studied module; in this case the studied module
is “p_1,” as shown in Figure 5.5.

In Figure 5.5, it is shown that there are two packet streams owing into “p_1” module.
The packet stream from “p_0” to “p_1” has “dest stream” value 1 and the packet stream
from “pr_0” to “p_1” has “dest stream” value 0. These two values correspond to the

Figure 5.5 Stream attributes

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:49:03 WET 2013.
http://dx.doi.org/10.1017/CBO9780511667572.006

Cambridge Books Online © Cambridge University Press, 2013

64 Creating and simulating custom models using OPNET APIs

pk = op_pk_get(UPPER_IN_STRM_INDEX);

op_pk_send(pk, LOWER_OUT_STRM_INDEX);

Figure 5.6 “from_src” state

Packet *pk = OPC_NIL;

Figure 5.7 TV block

pk = op_pk_get(LOWER_IN_STRM_INDEX);

op_pk_destroy(pk);

Figure 5.8 “from_recv” state

input stream indices for “UPPER_STRM” and “LOWER_STRM” respectively. There
is another packet stream owing from “p_1” to “pt_0.” The “src stream” value is 0,
which is the output stream index for the “p_1” module.

In “from_src” state, one can add the code shown in Figure 5.6 to get the packet in
the input packet stream from “p_0” module and send the packet to the output stream to
“pt_0” module.

In a TV code block, one can add the declaration of the packet temporary variable, as
in Figure 5.7.

In “from_recv” state, one can add the code shown in Figure 5.8 to destroy the packet
in the input packet stream from “pr_0” module.

Frommenu“Interfaces,” choose “Process Interfaces.” Set “begsim intrpt” and “endsim
intrpt” to “enabled”, so that the process model will be started by a begin simulation
interrupt and nished by an end simulation interrupt instead of other interrupts.

By pressing the toolbar button labelled “Compile Process Model” compile the process
model into an object le, which will be linked with other simulation object les when
simulation is starting. The compilation will generate the C or C++ source le (.pr.c or
.pr.cpp) of the process model in the model directory. If there is a compilation error, follow
the error message to correct the error and compile it again. Repeat this process until no
compilation error is reported.

In “basic_source” node editor, set the “process model” attribute of “p_1” module to
“traf c_source” and save “basic_source” node model.

At this point, a custom node model has been created that is capable of generating and
forwarding packets to its transmitter and destroying packets received from the receiver.
Next, a new link model is going to be created that is able to connect the custom nodes.

From “File” menu, choose “New...” to create a new Link Model. In the Link Model
Editor, in “Supported link types,” set “ptdup” to “yes” and all others to “no.” This is
to create a link model only in a point-to-point duplex version. Save this link model as
“basic_link.” In “Attributes” of this link, set “propdelmodel” to “dpt_propdel,” set “txdel
model” to “dpt_txdel,” set “closuremodel,” “collmodel,” “eccmodel” and “errormodel”
to “NONE.” This is to make the link model’s propagation delay and transmission delay
follow point-to-point duplex models. However, “dpt_propdel” and “dpt_txdel” models

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:49:03 WET 2013.
http://dx.doi.org/10.1017/CBO9780511667572.006

Cambridge Books Online © Cambridge University Press, 2013

5.2 Custom models 65

belong to an external link delay le, and then it is required to declare this link delay le.
To declare an external link delay le, from the Link Model Editor’s “File” menu choose
“Declare External Files...” and tick the “link_delay” checkbox. And then save this link
model as “basic_link.”

Q5.7 Why are there unresolved external symbol errors when running a simulation after
adding a model into a project?

This is because this model may contain some les that are external to OPNET kernel.
Therefore, one needs to declare them explicitly. To do that, in Project Editor, from “File”
menu, choose “Declare External Files...” and tick the external les that may be used in
your project.

Finally, a simulation project and a scenario can be created to test the custom node model.
To do that, one can go through the following steps:

• From “File” menu, choose “New...” to create a new project. In the “Enter Name”
dialog, set the “Project name” to “chapter5” and the “Scenario name” to “case1,” and
tick off the “Use Startup Wizard when creating new scenarios” checkbox.

• In Project Editor, press the “Open Object Palette” toolbar button. On the right side of
the palette dialog, choose “Subnet” object and place this object on the Project Editor.
This subnet is named “subnet_0”, as in Figure 5.9.

• In “subnet_0,” add two node objects to the Project Editor. The node model is
“basic_source,” which can be found in Object Palette Dialog.

• In Object Palette Dialog, nd a link model called “basic_link.” Connect the two
“basic_source” node objects by this link object. The topology is shown in Figure 5.10.

Figure 5.9 Network model

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:49:03 WET 2013.
http://dx.doi.org/10.1017/CBO9780511667572.006

Cambridge Books Online © Cambridge University Press, 2013

66 Creating and simulating custom models using OPNET APIs

Figure 5.10 Network model

Figure 5.11 Network model

• From the “Topology” menu, choose “Verify Links...” to verify the connectivity
between the link and nodes’ transmitters and receivers. If there is a red cross over
the link as in Figure 5.11, it means the link and nodes’ transmitters and receivers are
not connectable and some modi cations are required to make them correctly con-
nected. To correct connectivity errors, you can check (1) whether the link object’s
“data rate” attribute value matches the channel “data rate (bps)” attribute value for
connected nodes’ transmitters and receivers; (2) whether the link object’s supported
packet format matches the channel “packet formats” attribute of the connected nodes’
transmitters and receivers; (3) whether the link object’s “transmitter a,” “receiver a,”
“transmitter b,” and “receiver b” attributes have the correct values that should refer to
the corresponding transmitters and receivers of connected nodes. Repeat this process
until there are no connectivity errors.

• Choose some statistics of interest for the simulation kernel to collect. Right click the
link object in Project Editor, select “Choose Individual DES Statistics.” In the statistic
results dialog, choose any statistic of interest for this link. In this case, “queuing delay
(sec)” and “throughput (bits/sec)” are chosen in the “point-to-point” category.

• Now this simulation for this scenario can be run. In Project Editor, from the “DES”
menu, choose “Con gure/Run Discrete Event Simulation....” In the simulation con-
guration dialog, one may adjust some parameters. Then, press the “Run” button to

start simulation.

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:49:03 WET 2013.
http://dx.doi.org/10.1017/CBO9780511667572.006

Cambridge Books Online © Cambridge University Press, 2013

5.2 Custom models 67

Figure 5.12 Results browser

• If there is no problem, the simulation will complete normally. Then, check the statistic
results collected during simulation. In Project Editor, from the “DES” menu, choose
“Results” – “View Results...” to show “Results Browser” (one can also right click
any empty space in Project Editor, in the Context menu, and choose “View Results”
to show “Results Browser”). In “Results Browser,” tick the statistic results that are of
interest. The statistic results will be shown in the “Results Browser” as in Figure 5.12.
The results can be compared in “Results Browser.” They can also be presented in
different forms of distributions.

• To further process the statistic results via more advanced toolkits such as Excel
and MATLAB, the statistic results can be exported to datasheet via OPNET Mod-
eler’s user interface. To do that, in “Results Browser,” choose the statistics that are
of interest, and press the “Show” button to show the results in a separate dialog.
Right click the mouse on this separate dialog and choose “Export All Graph Data to
Spreadsheet” to export the selected statistic results to a spreadsheet. This is shown in
Figure 5.13.

Q5.8 Why does simulation output an “unsupported format” error?
This might be because the chosen link, transmitter and receiver data rates, or/and

supported packet formats do not match, causing a connectivity error. One should check
connectivity in Project Editor: from menu “Topology,” choose “Verify Links” to see if
there are connectivity errors.

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:49:03 WET 2013.
http://dx.doi.org/10.1017/CBO9780511667572.006

Cambridge Books Online © Cambridge University Press, 2013

68 Creating and simulating custom models using OPNET APIs

Figure 5.13 Statistic results

Figure 5.14 Local statistics

5.2.2 Case 2

In Case 1, the existing statistics are collected and viewed. In Case 2, custom statistics will
be created in process model. Custom statistics in a “traf c_source” process model are
created.Open the “traf c_source” processmodel in ProcessEditor. From the “Interfaces”
menu, choose “Local Statistics.” In the statistics dialog, add a new statistic as shown in
Figure 5.14.

It is noted that the “Capture mode” of this statistic is “bucket/default total/sum_time.”
This is because this statistic is calculated as the accumulated statistic value divided by
the elapsed time. Figure 5.15 shows how this capture mode is con gured.

Q5.9 What are the differences between local statistics and global statistics?
Local statistics can only be accessed in the current process model, while global statis-

tics can be accessed not only by the current process model but by other process models
as well.

In Process Editor, open SVblock to add a state variable “throughput”, which is the handle
of the custom statistic, as shown in Figure 5.16.

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:49:03 WET 2013.
http://dx.doi.org/10.1017/CBO9780511667572.006

Cambridge Books Online © Cambridge University Press, 2013

5.2 Custom models 69

Figure 5.15 Capture mode

Figure 5.16 SV block

throughput = op_stat_reg("Throughput�(bits/sec)", \

OPC_STAT_INDEX_NONE , OPC_STAT_LOCAL);

Figure 5.17 “init” state

pk = op_pk_get(UPPER_IN_STRM_INDEX);

op_stat_write(throughput , op_pk_total_size_get(pk));

op_pk_send(pk, LOWER_OUT_STRM_INDEX);

Figure 5.18 “from_src” state

In “init” state, add code to register the custom statistic as in Figure 5.17. Note that the
statistic name to register should be exactly the same as that set in the Local Statistics
dialog, i.e., “Throughput (bits/sec)” in this case.

In “from_src” state, add code to record the throughput statistic, as in Figure 5.18. It is
shown that the op_stat_write() function records the current received packet size in bits
into the statistic. For the throughput statistic, its “Capture Mode” was previously set to
“bucket/default total/sum_time.” Therefore, the recorded packet sizes will be summed
and divided by time elapsed to generate the throughput statistic.

Next, a new project scenario will be created and this custom statistic will be chosen
before running the simulation. This new scenario is based on the scenario in Case 1. Open
“chapter5-case1” scenario in Project Editor from “Scenarios” menu, choose “Duplicate

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:49:03 WET 2013.
http://dx.doi.org/10.1017/CBO9780511667572.006

Cambridge Books Online © Cambridge University Press, 2013

70 Creating and simulating custom models using OPNET APIs

Figure 5.19 “Choose Results” dialog

Figure 5.20 Statistic results

Scenario....”Name the scenario “case2.”Right click “node_0,” select “Choose Individual
DES Statistics.” In the “Choose Results” dialog, tick the “Throughput (bits/sec)” statistic
of “p_1” module, as shown in Figure 5.19.

Now this simulation can be started from the “DES” menu.Alternatively, simply press
“Ctrl+R” and “Alt+R”consecutively to start the simulation.After this simulation nishes,
the custom statistic “Throughput (bits/sec)” can be viewed in “Results Browser”, as
shown in Figure 5.20.

5.2.3 Case 3

Both node model and modules have some prede ned attributes. For node model, the pre-
de ned attributes can be “name,” “model,” “x position,” “y position,” etc. For modules
within node model, the prede ned attributes can be “name,” “process model,” “icon

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:49:03 WET 2013.
http://dx.doi.org/10.1017/CBO9780511667572.006

Cambridge Books Online © Cambridge University Press, 2013

5.2 Custom models 71

name,” “begsim intrpt,” etc. In Case 3, we will demonstrate how to add custom attributes
both to modules and the containing node model, and how to access these attributes by
code in process model.

5.2.3.1 Adding custom attribute to modules and the containing node model
Open “basic_source” node model in Node Editor. Right click “p_1” module, choose
“Edit Attributes.” In “(p_1) Attributes” dialog, press the “Extended Attrs.” button to
add attributes. In the “Extended Attributes” dialog, add a custom attribute as shown in
Figure 5.21.

Now, “p_1” module has an extended custom attribute called “printed”, as shown in
Figure 5.22.

The initial value of the “printed” attribute is “promoted.” If the value of the module’s
attribute is “promoted,” this attribute will be exposed to the containing node model

Figure 5.21 Custom attributes

Figure 5.22 Attributes

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:49:03 WET 2013.
http://dx.doi.org/10.1017/CBO9780511667572.006

Cambridge Books Online © Cambridge University Press, 2013

72 Creating and simulating custom models using OPNET APIs

as well, i.e., both “p_1” module and “basic_source” node model will have the custom
attribute “printed.” However, if you want to expose this attribute in “p_1” module only,
you can set the value of the “printed” attribute to any integer number. To add a custom
attribute to a node object, alternatively you can extend the node object’s attribute directly
by pressing the “Extended Attr.” button in the node model’s Attributes Dialog.

5.2.3.2 Accessing attributes by code in process model
Next, we will access the attributes by code in the process model. Double-click the “p_1”
module to open the “traf c_source” process model in Process Editor. In SV block, add
two new state variables, as shown in Figure 5.23.

In “init” state, add the code to get node object ID and store it in the “node_id” state
variable, as shown in Figure 5.24.

In TV block, add two temporary variables as shown in Figure 5.25.
In “from_src” state, add the code shown in Figure 5.26 to implement such functional-

ity: if the containing node model has “printed” attribute and if the value of this attribute
is greater than 0, then print out the number of received packets in the simulation message
console.

Save the “traf c_source” process model and compile it. In Project Editor, open
chapter5 project and case2 scenario. Duplicate “chapter5-case2” project scenario and
name it case3. Open the attribute dialog for “node_0” as in Figure 5.27; set attribute
“p_1.printed” to an integer value greater than 0 if you want to print out the packet
number, otherwise, set it to 0.

Figure 5.23 SV block

throughput = op_stat_reg("Throughput�(bits/sec)", \

OPC_STAT_INDEX_NONE , OPC_STAT_LOCAL);

node_id = op_topo_parent(op_id_self ());

Figure 5.24 “init” state

Packet *pk = OPC_NIL;

int printed = 0;

char msg [128];

Figure 5.25 TV block

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:49:03 WET 2013.
http://dx.doi.org/10.1017/CBO9780511667572.006

Cambridge Books Online © Cambridge University Press, 2013

5.2 Custom models 73

pk = op_pk_get(UPPER_IN_STRM_INDEX);

op_stat_write(throughput , op_pk_total_size_get(pk));

if(op_ima_obj_attr_exists(node_id , "p_1.printed") \

== OPC_TRUE)

{

if(op_ima_obj_attr_get(node_id , "p_1.printed", \

&printed) == OPC_COMPCODE_SUCCESS)

{

if(printed > 0)

{

sprintf(msg , "Total�packet�number:�%d", \

++ pk_num);

op_sim_message(\

"Custom�attribute�<printed >�is�ON", msg);

}

}

}

op_pk_send(pk, LOWER_OUT_STRM_INDEX);

Figure 5.26 “from_src” state

Figure 5.27 Attributes

Press “Ctrl+R” and “Alt+R” consecutively to start simulation. If “p_1.printed”
attribute is set to a value greater than 0, the simulation message console will print out
the packet number every time a packet is received in “node_0” node’s “p_1” module, as
shown in Figure 5.28.

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:49:03 WET 2013.
http://dx.doi.org/10.1017/CBO9780511667572.006

Cambridge Books Online © Cambridge University Press, 2013

74 Creating and simulating custom models using OPNET APIs

Figure 5.28 Simulation console

5.2.4 Case 4

In previous case studies, the packets had “NONE” packet format, i.e., unformatted pack-
ets. These packets are generated in the “p_0” module of the “basic_source” node model.
You can also modify the corresponding attributes of the “p_0” module to generate either
unformatted packets or formatted packets, and change packet size and interarrival times,
etc, as shown in Figure 5.29.

In Case 4, we will demonstrate how to create and access the formatted packet in the
process model, and how to create and use function in the process model. To create a
formatted packet, you need Packet Format Editor. In “File” menu, choose “New...” to
create a new “Packet Format.” In the Packet Format Editor, press the “Create New Field”
toolbar button to place two elds on the Packet Format Editor, as shown in Figure 5.30.

Edit the attributes of these two elds. For the rst eld, set the “name” attribute to
“header” and set the “type” attribute to “integer.” For the second eld, set the “name”
attribute to “payload,” set the “type” attribute to “packet” and set the size to “inherited.”
Setting a eld size to “inherited” will allow this eld to have the actual data size. For
example, if this eld is a packet eld and the packet put into this eld is 1024 bits, then
this eld size is 1024 bits. If the eld size is not “inherited,” then the eld always has
the size you set regardless of the actual data size in this eld. You can add more elds if
you need the packet to carry more information. You may also play with other attributes

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:49:03 WET 2013.
http://dx.doi.org/10.1017/CBO9780511667572.006

Cambridge Books Online © Cambridge University Press, 2013

5.2 Custom models 75

Figure 5.29 Attributes

Figure 5.30 Packet Format Editor

of these elds, like the “color” attribute. Save this packet format as “wrapper_pk.” The
nal created formatted packet is shown in Figure 5.31.
Open the “traf c_source” process model in Process Editor. In SV block, add a state

variable that is a distribution handle used to generate a random number for the header.
This is shown in Figure 5.32.

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:49:03 WET 2013.
http://dx.doi.org/10.1017/CBO9780511667572.006

Cambridge Books Online © Cambridge University Press, 2013

76 Creating and simulating custom models using OPNET APIs

Figure 5.31 Packet Format Editor

Figure 5.32 SV block

throughput = op_stat_reg("Throughput�(bits/sec)", \

OPC_STAT_INDEX_NONE , OPC_STAT_LOCAL);

node_id = op_topo_parent(op_id_self ());

header_dist = op_dist_load("uniform_int", 0, 10);

Figure 5.33 “init” state

Packet *pk = OPC_NIL;

Packet *wrapper_pk = OPC_NIL;

int printed = 0;

int header = 0;

char msg [128];

Figure 5.34 TV block

In “init” state, add code to load a uniform distribution between integer 0 and 10, shown
in Figure 5.33.

InTVblock, add declarations of two temporary variables: “wrapper_pk” and “header,”
shown in Figure 5.34.

In HB block, add declaration of a function called “print_pk_size,” which is used to
print out packet size, shown in Figure 5.35. The function is set to static so that the

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:49:03 WET 2013.
http://dx.doi.org/10.1017/CBO9780511667572.006

Cambridge Books Online © Cambridge University Press, 2013

5.2 Custom models 77

#define UPPER_IN_STRM_INDEX 1

#define LOWER_IN_STRM_INDEX 0

#define LOWER_OUT_STRM_INDEX 0

#define UPPER_STRM (\

(op_intrpt_type () == OPC_INTRPT_STRM) && \

(op_intrpt_strm () == UPPER_IN_STRM_INDEX))

#define LOWER_STRM (\

(op_intrpt_type () == OPC_INTRPT_STRM) && \

(op_intrpt_strm () == LOWER_IN_STRM_INDEX))

static void print_pk_size(Packet *);

Figure 5.35 HB block

static void print_pk_size(Packet *pk)

{

char msg [128];

FIN(print_pk_size(pk));

sprintf(msg , "Payload�packet�size:�%d", \

op_pk_total_size_get(pk));

op_sim_message("Wrapper�packet�header�>�5", msg);

FOUT;

}

Figure 5.36 FB block

function is valid only in the current source le and there is no naming con ict if other
process model les de ne a function having the same name.

Q5.10 Why do we use “static” keywords?
This is because different process models are saved as different source les. A “static”

keyword de ned for a function is used to limit the function in the scope of the current
source le of the simulation program. In other source les of the program, functions with
the same name can be de ned without a “rede nition” error.

In FB block, add code to implement the function, shown in Figure 5.36. The macros
“FIN” and “FOUT” are used inOPNETfunctions to enable theOPNETdebugging kernel
to print out function information. For more details, check Chapter 11 on the topics of
debugging in OPNET Modeler.

In “from_src” state, add code to create the formatted packet “wrapper_pk,” set the
“header” eld of the formatted packet to a random integer number from 0 to 10, and

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:49:03 WET 2013.
http://dx.doi.org/10.1017/CBO9780511667572.006

Cambridge Books Online © Cambridge University Press, 2013

78 Creating and simulating custom models using OPNET APIs

pk = op_pk_get(UPPER_IN_STRM_INDEX);

op_stat_write(throughput , op_pk_total_size_get(pk));

if(op_ima_obj_attr_exists(node_id , "p_1.printed") \

== OPC_TRUE)

{

if(op_ima_obj_attr_get(node_id , "p_1.printed", \

&printed) == OPC_COMPCODE_SUCCESS)

{

if(printed > 0)

{

sprintf(msg , "Total�packet�number:�%d", ++ pk_num);

op_sim_message(\

"Custom�attribute�<printed >�is�ON", msg);

}

}

}

wrapper_pk = op_pk_create_fmt("wrapper_pk");

op_pk_nfd_set(wrapper_pk , "header", \

(int)op_dist_outcome(header_dist));

op_pk_nfd_set(wrapper_pk , "payload", pk);

op_pk_send(wrapper_pk , LOWER_OUT_STRM_INDEX);

Figure 5.37 “from_src” state

wrapper_pk = op_pk_get(LOWER_IN_STRM_INDEX);

op_pk_nfd_get(wrapper_pk , "header", &header);

op_pk_nfd_get(wrapper_pk , "payload", &pk);

if(header > 5)

print_pk_size(pk);

op_pk_destroy(pk);

op_pk_destroy(wrapper_pk);

Figure 5.38 “from_recv” state

set the “payload” eld to the unformatted packet received from the upper layer. This is
shown in Figure 5.37.

In “from_recv” state, add code to get the elds of the received formatted packet. If
the value of the “header” eld is greater than 5, then print the size of the payload packet.
Finally, destroy both payload packet and wrapper packet. This is shown in Figure 5.38.

Save and compile the “traf c_source” model. In Project Editor, open chapter5 project
and case3 scenario. Duplicate “chapter5-case3” project scenario and name it case4. Press
“Ctrl+R” and “Alt+R” consecutively to start simulation. During simulation, the payload
packet size will be printed out if the wrapper packet’s header value is greater than 5, as
shown in Figure 5.39.

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:49:03 WET 2013.
http://dx.doi.org/10.1017/CBO9780511667572.006

Cambridge Books Online © Cambridge University Press, 2013

5.2 Custom models 79

Figure 5.39 Simulation message console

5.2.5 Case 5

In this case, we will create a node that is capable of switching packets to different ports.
The node is able to switch packets at a certain rate. Incoming packets will rst be pushed
into a buffer, and packets in the buffer will be removed and sent out at a certain switching
rate. If the incoming packet rate is greater than the switching rate, then packets will be
queued in the buffer until the incoming packet rate is reduced. First, we will create a
new node model called “pk_switch.” This node has ve pairs of transmitter/receiver
connected to a queue module, as shown in Figure 5.40.

Q5.11 What are the differences between processor module and queue module?
Both processor module and queue module can be used as processor. However, for

the queue module, it is also able to access queuing facilities via OPNET Queue and
Subqueue API packages.

Now, you need to create a process model for the “q_0” module so that it is capable of
switching packets. Create a new process model called “pk_switch”; the state transition
diagram is shown in Figure 5.41.

In SV block, declare a state variable for storing a timeout event handle, shown in
Figure 5.42.

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:49:03 WET 2013.
http://dx.doi.org/10.1017/CBO9780511667572.006

Cambridge Books Online © Cambridge University Press, 2013

80 Creating and simulating custom models using OPNET APIs

pr_0

pr_1

pr_4

pr_2

pr_3 pt_4

pt_3

pt_2q_0

pt_1

pt_0

Figure 5.40 Custom node model

0/0 0/0

0/0

slot

0/0

(TIMEOUT)

init idle

(default)
(STRM)

switch

Figure 5.41 STD of process model

In TV block, add two temporary variables, shown in Figure 5.43.
In HB block, add macro de nitions for “STRM” and “TIMEOUT” state transition

conditions. “STRM” is de ned as packet stream interrupt. “TIMEOUT” is de ned as
self-interrupt, which is scheduled by user code. “SLOT_DURATION” is the interval
between scheduled self-interrupts. “PORT_NUM” is the number of output ports that the
“q_0” module has. This is shown in Figure 5.44.

In “init” state, add code to schedule the rst self-interrupt that will trigger the slot
state for removing the packet in the buffer. This is shown in Figure 5.45.

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:49:03 WET 2013.
http://dx.doi.org/10.1017/CBO9780511667572.006

Cambridge Books Online © Cambridge University Press, 2013

5.2 Custom models 81

Figure 5.42 SV block

Packet *pk = OPC_NIL;

int header = 0;

Figure 5.43 TV block

#define STRM (op_intrpt_type () == OPC_INTRPT_STRM)

#define TIMEOUT_INTRPT_CODE 0

#define TIMEOUT (\

(op_intrpt_type () == OPC_INTRPT_SELF) && \

(op_intrpt_code () == TIMEOUT_INTRPT_CODE))

#define SLOT_DURATION 0.2

#define PORT_NUM 5

Figure 5.44 HB block

timeout_handle = op_intrpt_schedule_self(\

op_sim_time () + SLOT_DURATION , TIMEOUT_INTRPT_CODE);

Figure 5.45 “init” state

pk = op_pk_get(op_intrpt_strm ());

op_subq_pk_insert (0, pk , OPC_QPOS_TAIL);

Figure 5.46 “switch” state

In “STRM” state, add code to push the incoming packet to the end of the rst subqueue,
shown in Figure 5.46. To access a buffer via OPNET queue or subqueue APIs, you must
use a queue module instead of a processor module. In this case, we use a queue module
“q_0.” Make sure the “subqueue” attribute of “q_0” module has at least one subqueue
row as shown in Figure 5.47, otherwise the API used to access the rst subqueue will
fail. If you want to access more subqueues, you need to add more rows in the “subqueue”
attribute table of “q_0” module.

In “slot” state, add code to remove the packet from the rst subqueue and schedule
another self-interrupt at the next time slot, shown in Figure 5.48.

The process model “pk_switch” models a leaky-bucket scenario. Incoming packets
will be pushed into a buffer. Self-interrupt is scheduled at an interval for the slot to remove
packet in the buffer. The removal rate is xed and is limited by “SLOT_DURATION.”
Save and compile “pk_switch” process model.

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:49:03 WET 2013.
http://dx.doi.org/10.1017/CBO9780511667572.006

Cambridge Books Online © Cambridge University Press, 2013

82 Creating and simulating custom models using OPNET APIs

Figure 5.47 Subqueue table

if(op_ev_valid(timeout_handle))

{

if(op_subq_empty (0) == OPC_FALSE)

{

pk = op_subq_pk_remove (0, OPC_QPOS_HEAD);

op_pk_nfd_access(pk , "header", &header);

op_pk_send(pk, header%PORT_NUM);

}

timeout_handle = op_intrpt_schedule_self(\

op_sim_time () + SLOT_DURATION , \

TIMEOUT_INTRPT_CODE);

}

Figure 5.48 “slot” state

Next, we will create a project scenario for simulation. In Project Editor, open chapter5
project and case4 scenario. Duplicate “chapter5-case4” project scenario and name it
case5. Create a network that is the same as in Figure 5.49. “switch” has “pk_switch” node
model type. “node_0” to “node_4” have “basic_source” node model type. Choose “sub-
queue” statistics for “switch” node object. Press “Ctrl+R” and “Alt+R” consecutively
to start simulation. After simulation nishes, view the “subqueue” statistic results for
“switch” node object. Figure 5.49 shows the results.

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:49:03 WET 2013.
http://dx.doi.org/10.1017/CBO9780511667572.006

Cambridge Books Online © Cambridge University Press, 2013

5.2 Custom models 83

Figure 5.49 Statistic results

Next, we will increase the packet rate for the traf c source node to see how switch node
performs. Double-click any of the “node_0” to “node_4” to open “basic_source” node
model in Node Editor. Set the “Packet Interarrival Time” attribute of the “p_0” module
to 0.5. Save the “basic_source” node model. Run the simulation again. After simulation
nishes, view the “subqueue” statistic results for “switch” node object. Figure 5.50 shows

the results.
It is seen that after increasing the packet rate for traf c source nodes, the switch is

not fast enough to remove the packets in the buffer, so the buffer of the switch keeps
growing.You can also reduce the value of “SLOT_DURATION” in “pk_switch” process
model to increase the switch node’s switching rate.

5.2.6 Case 6

In Case 5, we showed how to switch packets without checking any routing table. In
Case 6, we will demonstrate how to build a routing table and how to apply a shortest
path routing algorithm to our model.

The graph is the base for a building routing table. First, we will show how to con-
struct a graph for a particular network topology. A network topology can be modeled
as a graph. Nodes can be modeled as vertices and links can be modeled as edges in
the graph. If the links are simplex, the graph can be regarded as a directed graph.
In OPNET API, there is a Graph package which can be used to model the network
topology.

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:49:03 WET 2013.
http://dx.doi.org/10.1017/CBO9780511667572.006

Cambridge Books Online © Cambridge University Press, 2013

84 Creating and simulating custom models using OPNET APIs

Figure 5.50 Statistic results

Figure 5.51 Network model

In Project Editor, open chapter5 project and case5 scenario. Duplicate “chapter5-
case5” project scenario and name it case6. Create a network that is the same as in
Figure 5.51; “switch_0” to “switch_4” have “pk_switch” node model type; “node_0”
and “node_1” have “basic_source” node model type.

Among these nodes, “switch_0” to “switch_4” are capable of routing and “node_0”
and “node_1” are end-to-end traf c source nodes. The simulation task is to allow traf c
sent from “node_0” to be routed to “node_1” and traf c sent from “node_1” to be routed
to “node_0.” The actual routing graph is shown in Figure 5.52.

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:49:03 WET 2013.
http://dx.doi.org/10.1017/CBO9780511667572.006

Cambridge Books Online © Cambridge University Press, 2013

5.2 Custom models 85

Figure 5.52 Actual routing graph

Figure 5.53 SV block

First, this routing graph will be built by using Graph APIs. Open the “pk_switch”
process model in Process Editor. In SV block, add declarations of several state variables
as shown in Figure 5.53.

In TV block, add declarations of several temporary variables, shown in Figure 5.54.
In HB block, include header les for graph, routing, and vector API packages, and

add macro de nitions for graph namespace and graph state, as shown in Figure 5.55.
Next, you will build a graph for the network topology shown in Figure 5.51. The graph

is built in “init” state, shown in Figures 5.56 and 5.57.
In Figures 5.56 and 5.57, you rst register a state handler with a de ned graph name-

space name and state name, and then create an empty graph with the graph namespace
name. Namespace names allow creation of different dimensions of graphs. The returned
“graph_state_id” and “graph”objects canbeused to access other graphs and routingAPIs.
Then, you can retrieve all object IDs of the nodes in the network. These object IDs will be
associated with corresponding vertices in the graph. Next, you can add vertices and edges
into the graph. Especially for vertices, you can associate them with the corresponding
node’s object ID. Now, the “graph” object contains all topology information for the
network shown in Figure 5.51.

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:49:03 WET 2013.
http://dx.doi.org/10.1017/CBO9780511667572.006

Cambridge Books Online © Cambridge University Press, 2013

86 Creating and simulating custom models using OPNET APIs

Packet *pk = OPC_NIL;

int header = 0;

int i = 0;

int j = 0;

int count = 0;

int count2 = 0;

Boolean found = FALSE;

Objid strm_id;

Objid tx_id;

Objid link_id;

Objid next_hop_node_id;

Objid tmp_node_id;

int out_port = 0;

PrgT_Vector *shortest_paths;

PrgT_Vector *shortest_path;

int path_nodes_size;

PrgT_Vector *path_nodes;

Objid *temp_id_ptr = OPC_NIL;

Figure 5.54 TV block

#include <prg.h>

#include <prg_vector.h>

#include <prg_graph.h>

#include <prg_djk.h>

#define STRM (op_intrpt_type () == OPC_INTRPT_STRM)

#define TIMEOUT_INTRPT_CODE 0

#define TIMEOUT (\

(op_intrpt_type () == OPC_INTRPT_SELF) && \

(op_intrpt_code () == TIMEOUT_INTRPT_CODE))

#define SLOT_DURATION 0.2

#define PORT_NUM 5

#define GRAPH_NAMESPACE_NAME "graph_namespace"

#define GRAPH_STATE_NAME "graph_state_name"

Figure 5.55 HB block

In this simulation scenario, we want to route traf c from “node_0” to “node_1” and
in the reverse direction as well. Since there are several different ways to route traf c
between these two nodes, you need to nd the shortest path to do that. In OPNET, the
DJK package provides APIs that are capable of nding a set of shortest paths from
a source vertex to a destination vertex in a graph. “Shortest path” is the least-cost

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:49:03 WET 2013.
http://dx.doi.org/10.1017/CBO9780511667572.006

Cambridge Books Online © Cambridge University Press, 2013

5.2 Custom models 87

graph_state_id = prg_graph_state_handler_register(\

GRAPH_NAMESPACE_NAME , GRAPH_STATE_NAME , \

PRGC_NIL , PRGC_NIL);

graph = prg_graph_create(GRAPH_NAMESPACE_NAME);

// Get nodes ’ id

switch_nodes [0] = op_id_from_hierarchical_name(\

"top.subnet_0.switch_0");

switch_nodes [1] = op_id_from_hierarchical_name(\

"top.subnet_0.switch_1");

switch_nodes [2] = op_id_from_hierarchical_name(\

"top.subnet_0.switch_2");

switch_nodes [3] = op_id_from_hierarchical_name(\

"top.subnet_0.switch_3");

switch_nodes [4] = op_id_from_hierarchical_name(\

"top.subnet_0.switch_4");

switch_nodes [5] = op_id_from_hierarchical_name(\

"top.subnet_0.node_0");

switch_nodes [6] = op_id_from_hierarchical_name(\

"top.subnet_0.node_1");

// Add vertices to graph

// Associate vertices with nodes’ id

vertices [0] = prg_graph_vertex_insert(graph);

prg_vertex_client_state_set(vertices [0], \

graph_state_id , &switch_nodes [0]);

vertices [1] = prg_graph_vertex_insert(graph);

prg_vertex_client_state_set(vertices [1], \

graph_state_id , &switch_nodes [1]);

vertices [2] = prg_graph_vertex_insert(graph);

prg_vertex_client_state_set(vertices [2], \

graph_state_id , &switch_nodes [2]);

vertices [3] = prg_graph_vertex_insert(graph);

prg_vertex_client_state_set(vertices [3], \

graph_state_id , &switch_nodes [3]);

vertices [4] = prg_graph_vertex_insert(graph);

prg_vertex_client_state_set(vertices [4], \

graph_state_id , &switch_nodes [4]);

vertices [5] = prg_graph_vertex_insert(graph);

prg_vertex_client_state_set(vertices [5], \

graph_state_id , &switch_nodes [5]);

vertices [6] = prg_graph_vertex_insert(graph);

prg_vertex_client_state_set(vertices [6], \

graph_state_id , &switch_nodes [6]);

Figure 5.56 “init” state

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:49:03 WET 2013.
http://dx.doi.org/10.1017/CBO9780511667572.006

Cambridge Books Online © Cambridge University Press, 2013

88 Creating and simulating custom models using OPNET APIs

// Add edges to graph

edges [0] = prg_graph_edge_insert(graph , vertices [0], \

vertices [1], PrgC_Graph_Edge_Duplex);

edges [1] = prg_graph_edge_insert(graph , vertices [0], \

vertices [3], PrgC_Graph_Edge_Duplex);

edges [2] = prg_graph_edge_insert(graph , vertices [1], \

vertices [2], PrgC_Graph_Edge_Duplex);

edges [3] = prg_graph_edge_insert(graph , vertices [1], \

vertices [4], PrgC_Graph_Edge_Duplex);

edges [4] = prg_graph_edge_insert(graph , vertices [2], \

vertices [4], PrgC_Graph_Edge_Duplex);

edges [5] = prg_graph_edge_insert(graph , vertices [3], \

vertices [4], PrgC_Graph_Edge_Duplex);

edges [6] = prg_graph_edge_insert(graph , vertices [5], \

vertices [3], PrgC_Graph_Edge_Duplex);

edges [7] = prg_graph_edge_insert(graph , vertices [6], \

vertices [2], PrgC_Graph_Edge_Duplex);

Figure 5.57 “init” state

path, where cost is the sum of the edge weights of a path. You can set the weights
of edges in a graph to model the actual cost. Weight in a graph is a relative value. For the
graph de ned for the network in Figure 5.51, you can set the following weights for the
edges:

• Edge for “switch_0” and “switch_1”: 1
• Edge for “switch_0” and “switch_3”: 1
• Edge for “switch_1” and “switch_2”: 1
• Edge for “switch_1” and “switch_4”: 0.2
• Edge for “switch_2” and “switch_4”: 1.5
• Edge for “switch_3” and “switch_4”: 1
• Edge for “node_0” and “switch_3”: 1
• Edge for “node_1” and “switch_2”: 1

From manual calculation, the shortest path between “node_0” and “node_1” should
be “switch_3” – “switch_4” – “switch_1” – “switch_2.” The weight sum for this path is
4.2. In “init” state, add code to set weights for edges, compute the routing table, and get
the shortest path between “node_0” and “node_1,” shown in Figure 5.58.

In Figure 5.58, “path_nodes_id_list” is a list containing IDs of objects of the shortest
path.

In “slot” state, add code to check the next hop node, based on the computed shortest
path and switch packet to the corresponding output port connected to the next hop node,
as shown in Figures 5.59 and 5.60.

Save and compile the process model.

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:49:03 WET 2013.
http://dx.doi.org/10.1017/CBO9780511667572.006

Cambridge Books Online © Cambridge University Press, 2013

5.2 Custom models 89

prg_djk_graph_init(graph);

// Set weight for all edges

prg_djk_edge_weight_set(edges[0], 1);

prg_djk_edge_weight_set(edges[1], 1);

prg_djk_edge_weight_set(edges[2], 1);

prg_djk_edge_weight_set(edges[3], 0.2);

prg_djk_edge_weight_set(edges[4], 1.5);

prg_djk_edge_weight_set(edges[5], 1);

prg_djk_edge_weight_set(edges[6], 1);

prg_djk_edge_weight_set(edges[7], 1);

prg_djk_all_sources_compute(graph);

// Get all shortest paths from vertices [5] to vertices [6]

shortest_paths = prg_djk_path_get(vertices [5], \

vertices [6]);

// Get the first shortest path of all shortest paths

shortest_path = \

(PrgT_Vector *) prg_vector_access(shortest_paths , 0);

// Get all vertices for this shortest path

path_nodes = \

prg_graph_path_vector_to_node_vector_create(\

shortest_path , vertices [5], vertices [6]);

// Get all nodes ’ id associated with these vertices

path_nodes_size = prg_vector_size(path_nodes);

path_nodes_id_list = prg_list_create ();

for(i = 0; i < path_nodes_size; ++i)

{

temp_id_ptr = (int *) prg_vertex_client_state_get(\

(PrgT_Graph_Vertex *) prg_vector_access(\

path_nodes , i), graph_state_id);

prg_list_insert(path_nodes_id_list , temp_id_ptr , \

PRGC_LISTPOS_TAIL);

}

// Get current module id and node id

mod_id = op_id_self ();

node_id = op_topo_parent(mod_id);

Figure 5.58 “init” state

Q5.12 The “wrapper_pk” packet’s “header” eld is int type. Why can Objid type vari-
able be assigned to it?

This is because Objid type is internally de ned as int type in the “p_objid_type.h”
header le, which is located in the [OPNET Home]\sys\include directory.

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:49:03 WET 2013.
http://dx.doi.org/10.1017/CBO9780511667572.006

Cambridge Books Online © Cambridge University Press, 2013

90 Creating and simulating custom models using OPNET APIs

if(op_ev_valid(timeout_handle) == OPC_FALSE)

return;

if(op_subq_empty (0) == OPC_TRUE)

return;

pk = op_subq_pk_remove (0, OPC_QPOS_HEAD);

// "header" contains the destination node id

op_pk_nfd_access(pk , "header", &header);

count = prg_list_size(path_nodes_id_list);

// Check if destination node id is at the top or

// at the tail of shortest path nodes list

if(*(int *) prg_list_access(path_nodes_id_list , \

PRGC_LISTPOS_TAIL) == header)

{

// If destination node id is at the tail ,

// the next hop node id is 1 after current node id

for(i = 0; i < count; ++i)

{

if(*(int *) prg_list_access(\

path_nodes_id_list , i) == node_id)

{

next_hop_node_id = *(int *) prg_list_access(\

path_nodes_id_list , i + 1);

break;

}

}

}

else // Destination node id is at the top of id list

{

// If destination node id is at the top ,

// the next hop node id is 1 before current node id

for(i = count - 1; i >= 0; --i)

{

if(*(int *) prg_list_access(\

path_nodes_id_list , i) == node_id)

{

next_hop_node_id = *(int *) prg_list_access(\

path_nodes_id_list , i - 1);

break;

}

}

}

Figure 5.59 “slot” state

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:49:03 WET 2013.
http://dx.doi.org/10.1017/CBO9780511667572.006

Cambridge Books Online © Cambridge University Press, 2013

5.2 Custom models 91

count = op_topo_assoc_count(mod_id , \

OPC_TOPO_ASSOC_OUT , OPC_OBJTYPE_STRM);

found = FALSE;

// Check all surrounding modules to see which one is

// connected to next hop node. If a module is found

// to be able to connect to next hop node , retrieve

// the output stream port leading to that module

for(i = 0; i < count; ++i)

{

strm_id = op_topo_assoc(mod_id , OPC_TOPO_ASSOC_OUT , \

OPC_OBJTYPE_STRM , i);

tx_id = op_topo_assoc(strm_id , OPC_TOPO_ASSOC_OUT , \

OPC_OBJTYPE_PTTX , 0);

if(op_topo_assoc_count(tx_id , OPC_TOPO_ASSOC_OUT , \

OPC_OBJTYPE_LKDUP) == 0)

continue;

link_id = op_topo_assoc(tx_id , OPC_TOPO_ASSOC_OUT , \

OPC_OBJTYPE_LKDUP , 0);

count2 = op_topo_assoc_count(link_id , \

OPC_TOPO_ASSOC_OUT , OPC_OBJTYPE_NODE_FIX);

for(j = 0; j < count2; ++j)

{

tmp_node_id = op_topo_assoc(link_id , \

OPC_TOPO_ASSOC_OUT , OPC_OBJTYPE_NODE_FIX , j);

if(tmp_node_id == next_hop_node_id)

{

op_ima_obj_attr_get(strm_id , \

"src�stream", &out_port);

found = TRUE;

break;

}

}

if(found == TRUE)

break;

}

// Send packet to the found output port

op_pk_send(pk, out_port);

timeout_handle = op_intrpt_schedule_self(\

op_sim_time () + SLOT_DURATION , TIMEOUT_INTRPT_CODE);

Figure 5.60 “slot” state

In Figure 5.59, the “header” eld of the wrapper packet contains the object ID of the
destined node. You should also modify the “traf c_source” process model to allow
“node_0” and “node_1” nodes to send packets with “header” eld containing the object
ID of the destined node. Open the “traf c_source” process model in Process Editor. In

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:49:03 WET 2013.
http://dx.doi.org/10.1017/CBO9780511667572.006

Cambridge Books Online © Cambridge University Press, 2013

92 Creating and simulating custom models using OPNET APIs

pk = op_pk_get(UPPER_IN_STRM_INDEX);

op_stat_write(throughput , op_pk_total_size_get(pk));

if(op_ima_obj_attr_exists(node_id , "p_1.printed") \

== OPC_TRUE)

{

if(op_ima_obj_attr_get(node_id , "p_1.printed", \

&printed) == OPC_COMPCODE_SUCCESS)

{

if(printed > 0)

{

sprintf(msg , "Total�packet�number:�%d", \

++ pk_num);

op_sim_message(\

"Custom�attribute�<printed >�is�ON", msg);

}

}

}

// Create wrapper packet and set the "header" field

// of wrapper packet to the destination node id

// Note: the destination node id is obtained from

// destination node name which is specified in source

// node’s "dest node name" attribute

wrapper_pk = op_pk_create_fmt("wrapper_pk");

if(op_ima_obj_attr_exists(node_id , "dest�node�name") \

== OPC_TRUE)

{

if(op_ima_obj_attr_get(node_id , "dest�node�name", \

&dest_node_name) == OPC_COMPCODE_SUCCESS)

{

dest_node_id = op_id_from_hierarchical_name(\

dest_node_name);

op_pk_nfd_set(wrapper_pk , "header", dest_node_id);

}

}

op_pk_nfd_set(wrapper_pk , "payload", pk);

op_pk_send(wrapper_pk , LOWER_OUT_STRM_INDEX);

Figure 5.61 “from_src” state

“from_src” state, add code to set the object ID of the destination node to the “header”
eld of the wrapper packet, shown in Figure 5.61. The object ID of the destination node

is obtained from the name of the destination node, which is set in the custom attribute
“dest node name” of “node_0” and “node_1” nodes.

Save and compile the process model.
For both “node_0” and “node_1,” add a custom attribute “dest node name.” For

“node_0,” set the value of “dest node name” attribute to “top.subnet_0.node_1.” For

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:49:03 WET 2013.
http://dx.doi.org/10.1017/CBO9780511667572.006

Cambridge Books Online © Cambridge University Press, 2013

5.2 Custom models 93

Figure 5.62 Attribute dialogue

S10?0

S9?W144 W141 W138 W135 W132 W129 W126

S12?

S13?0

S15?

S16?9

S18?

Figure 5.63 Animation Viewer

“node_1,” set the value of “dest node name” attribute to “top.subnet_0.node_0.” This is
shown in Figure 5.62.

We are now nearly ready to run the simulation scenario to see if these models work
correctly. The OPNET animation facility can be used to see how packet streams are
transferred in the subnet and to validate traf c routing. To record animation for the
simulation scenario, in Project Editor, from the “DES” menu choose “Record Packet
Flow 2DAnimation For Subnet.” Now, you can run the simulation for the case6 scenario.
After simulation nishes, from the “DES” menu, choose “Play 2D Animation” to show
Animation Viewer, which is shown in Figure 5.63.

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:49:03 WET 2013.
http://dx.doi.org/10.1017/CBO9780511667572.006

Cambridge Books Online © Cambridge University Press, 2013

94 Creating and simulating custom models using OPNET APIs

From Figure 5.63, it is seen that the packet ow route is the same as the shortest path
you manually calculated.

Next, you will model an error situation where the edge between “switch_1” and
“switch_4” is unavailable. In this case, the manually calculated shortest path becomes
“switch_3” – “switch_4” – “switch_2.” To model this error situation, in “init” state of the
“pk_switch” process model, use the “prg_djk_edge_disable()” function to disable the
edge between “switch_1” and “switch_4,” which is “edges[3],” as shown in Figure 5.64.

prg_djk_graph_init(graph);

prg_djk_edge_weight_set(edges[0], 1);

prg_djk_edge_weight_set(edges[1], 1);

prg_djk_edge_weight_set(edges[2], 1);

prg_djk_edge_weight_set(edges[3], 0.2);

prg_djk_edge_weight_set(edges[4], 1.5);

prg_djk_edge_weight_set(edges[5], 1);

prg_djk_edge_weight_set(edges[6], 1);

prg_djk_edge_weight_set(edges[7], 1);

// Disable edges [3]

prg_djk_edge_disable(edges [3]);

prg_djk_all_sources_compute(graph);

shortest_paths = prg_djk_path_get(vertices [5], \

vertices [6]);

shortest_path = (PrgT_Vector *) prg_vector_access(\

shortest_paths , 0);

path_nodes = \

prg_graph_path_vector_to_node_vector_create(\

shortest_path , vertices [5], vertices [6]);

path_nodes_size = prg_vector_size(path_nodes);

path_nodes_id_list = prg_list_create ();

for(i = 0; i < path_nodes_size; ++i)

{

temp_id_ptr = (int *) prg_vertex_client_state_get(\

(PrgT_Graph_Vertex *) prg_vector_access(\

path_nodes , i), graph_state_id);

prg_list_insert(path_nodes_id_list , temp_id_ptr , \

PRGC_LISTPOS_TAIL);

}

mod_id = op_id_self ();

node_id = op_topo_parent(mod_id);

Figure 5.64 “init” state

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:49:03 WET 2013.
http://dx.doi.org/10.1017/CBO9780511667572.006

Cambridge Books Online © Cambridge University Press, 2013

5.2 Custom models 95

S19?0

S18?0

S15?

S13?0

S12?

S10?0
W144 W141 W138 W135 W132 W129 W12

S18?

Figure 5.65 Animation Viewer

Save and compile the process model “pk_switch.” Run the simulation scenario for
case6 again. Figure 5.65 shows the animation results. It is shown that the alterna-
tive shortest path under such an error situation is the same as the manually calculated
shortest path.

Animation of these scenarios can also be recorded into video for demonstration by
using screen recording tools such as SMRecorder and Snagit.

5.2.7 Case 7

InCase 7,wewill demonstrate how to carry extra informationwith packets. In case 4, you
used the “header” eld to carry information with the packet. It models the real packet’s
functions. However, sometimes you want a packet to carry some extra information that
does not exist in the real packet and is only used to facilitate simulation control. For this
purpose, you can use Interface Control Information (ICI) Package to manipulate the ICI
object and associate it with a packet. ICI is a data type in OPNET. It can be used to carry
integer, double, and structure types of data. ICI can also be associated with a packet so
that the packet can carry extra control information.

Figure 5.66 ICI format

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:49:03 WET 2013.
http://dx.doi.org/10.1017/CBO9780511667572.006

Cambridge Books Online © Cambridge University Press, 2013

96 Creating and simulating custom models using OPNET APIs

Figure 5.67 SV block

Packet *pk = OPC_NIL;

Packet *wrapper_pk = OPC_NIL;

int printed = 0;

int header = 0;

char msg [128];

char dest_node_name [128];

Objid dest_node_id;

Ici *ici = OPC_NIL;

int temp;

Figure 5.68 TV block

To use ICI, you need to create an ICI format rst. From “File” menu, choose “New...” –
choose “ICI Format.” In the ICI Format Editor, add a new attribute and save this ICI
format, as shown in Figure 5.66.

Now, you need to add code to see how to associate the ICI object with packets and
how to access ICI objects. Open the “traf c_source” process model in Process Editor.
In SV block, add a state variable as shown in Figure 5.67.

In TV block, add a temporary variable as shown in Figure 5.68.
In “from_src” state, add code to create an ICI object, set the attribute of the ICI object

and associate it with a wrapper packet, shown in Figure 5.69.
In “from_recv” state, add code to get the ICI object associated with the wrapper

packet, get the attribute value, and print this value and destroy the ICI object, shown in
Figure 5.70.

Save and compile “traf c_source” process model. Now, you can run the simulation
to see the output, as shown in Figure 5.71. However, you can use the ICI to carry any
control information.

5.3 Model optimization and validation

Optimizing the model can make simulation run faster. Optimizing process model code
is similar to optimizing general C/C++ code. In particular, if a value can be obtained at
the beginning of simulation and will be used frequently during simulation invocations,

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:49:03 WET 2013.
http://dx.doi.org/10.1017/CBO9780511667572.006

Cambridge Books Online © Cambridge University Press, 2013

5.3 Model optimization and validation 97

pk = op_pk_get(UPPER_IN_STRM_INDEX);

op_stat_write(throughput , op_pk_total_size_get(pk));

if(op_ima_obj_attr_exists(node_id , "p_1.printed") \

== OPC_TRUE)

{

if(op_ima_obj_attr_get(node_id , "p_1.printed", \

&printed) == OPC_COMPCODE_SUCCESS)

{

if(printed > 0)

{

sprintf(msg , "Total�packet�number:�%d", \

++ pk_num);

op_sim_message(\

"Custom�attribute�<printed >�is�ON", msg);

}

}

}

wrapper_pk = op_pk_create_fmt("wrapper_pk");

if(op_ima_obj_attr_exists(node_id , "dest�node�name") \

== OPC_TRUE)

{

if(op_ima_obj_attr_get(node_id , "dest�node�name", \

&dest_node_name) == OPC_COMPCODE_SUCCESS)

{

dest_node_id = op_id_from_hierarchical_name(\

dest_node_name);

op_pk_nfd_set(wrapper_pk , "header", dest_node_id);

}

}

// Create ICI object , assign a value to its "id"

// attribute , and associate it with wrapper packet

op_pk_nfd_set(wrapper_pk , "payload", pk);

ici = op_ici_create("extra_info");

op_ici_attr_set_int32(ici , "id", ++ ici_id);

op_pk_ici_set(wrapper_pk , ici);

op_pk_send(wrapper_pk , LOWER_OUT_STRM_INDEX);

Figure 5.69 “from_src” state

then you should get this value at the initialization stage and assign it to a state variable,
and reference this state variable during simulation. Optimization of such frequently
invoked states as stream interrupt states canmake signi cant performance improvements.
Further, if you are not going to debug your model during simulation, you can set the
“Simulation Kernel Type” preference to “optimized.” This preference can be found
from the “Edit” menu – Preferences, as shown in Figure 5.72. Alternatively, you can

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:49:03 WET 2013.
http://dx.doi.org/10.1017/CBO9780511667572.006

Cambridge Books Online © Cambridge University Press, 2013

98 Creating and simulating custom models using OPNET APIs

wrapper_pk = op_pk_get(LOWER_IN_STRM_INDEX);

// Get the ICI object associated with wrapper

// packet , print out the value of "id"

// attribute for this ICI object and destroy

// this object afterwards

ici = op_pk_ici_get(wrapper_pk);

op_ici_attr_get_int32(ici , "id", &temp);

sprintf(msg , "ICI�id:�%d", temp);

op_sim_message("ICI�test", msg);

op_ici_destroy(ici);

op_pk_nfd_get(wrapper_pk , "header", &header);

op_pk_nfd_get(wrapper_pk , "payload", &pk);

if(header > 5)

print_pk_size(pk);

op_pk_destroy(pk);

op_pk_destroy(wrapper_pk);

Figure 5.70 “from_recv” state

Figure 5.71 Simulation message console

set “Simulation Kernel” to “Optimized” in simulation con guration dialog as shown in
Figure 5.73.

There is no perfect method for model validation. However, a good practice to validate
a model is to validate progressively throughout the model creation process, i.e., validate
the model whenever a new functionality is added to it. The validation process can be
repetitive. Here are some methods that can be applied during the model validation pro-
cess: check and compare simulation statistic results to see if they match common sense,
experience, or are close to mathematical results if a math model is available; debug

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:49:03 WET 2013.
http://dx.doi.org/10.1017/CBO9780511667572.006

Cambridge Books Online © Cambridge University Press, 2013

5.3 Model optimization and validation 99

Figure 5.72 Preferences dialogue

Figure 5.73 Simulation con guration dialog

the model repetitively by applying debugging techniques discussed in Chapter 11; use
animation to validate models since animation shows how packets ow between nodes
in the subnet and modules within a node; compare simulation results with experimental
results.

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:49:03 WET 2013.
http://dx.doi.org/10.1017/CBO9780511667572.006

Cambridge Books Online © Cambridge University Press, 2013

6 High-level wrapper APIs

This chapter demonstrates how to write your own high-level wrapper APIs which
encapsulate many OPNET programming details, in order to facilitate and accelerate
design and programming of OPNET models. We also provide several wrapper API
packages to help users to quickly build their models. To be able to follow this chapter,
you are assumed to know how to write custom models as shown in Chapter 5, and the
basics of generic programming.

6.1 Why and how to use wrapper APIs

When creating a simulation model, one often needs to repetitively write code with some
similar functionalities. To speed up modeling and coding, one can write some wrapper
functions that implement those commonly used functionalities. These wrapper functions
will savemodeling time and reduce the chances ofmaking errors.WrapperAPIs here refer
to the functions that encapsulate many programming details and implement particular
functionalities at higher level. Figure 6.1 shows an example of a wrapper API that
is de ned in a header le called “geo_topo.h”, which can be downloaded from the
publisher’s website.

Figure 6.1 shows that a wrapperAPI is simply a function that wraps some functionali-
ties and provides a higher-level interface. To use the wrapperAPIs in the process model,
one needs to include the header le containing the APIs. By default, OPNET Modeler
will look for header les in its installation path and in model paths. Therefore, in practice,
the wrapper API les can be saved in the model paths to allow OPNET Modeler to pick
them up when building the simulation. In this example, the “geo_topo.h” le is saved
in the “hlw” folder within a model path. In the HB block of the process model, one can
include this wrapper API le path, as shown in Figure 6.2.

Now the user can use all wrapper APIs de ned in the “geo_topo.h” le in the process
model without problem. It is noted that the model path should be included in the “Model
Directories” preference. This preference can be found in OPNET Modeler: go to the
“Edit” menu – choose “Preferences” – search for “Model Directories” in the preferences
dialog.

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:49:04 WET 2013.
http://dx.doi.org/10.1017/CBO9780511667572.007

Cambridge Books Online © Cambridge University Press, 2013

6.2 Wrapper APIs provided with the book 101

/* Get next node id from current node’s transmitter id */

/* Previous node and current node are connected by link */

/* "recv" is the current node’s transmitter module id */

/* Returns the next node id or -1 if no node connected */

Objid w_get_next_node_from_xmit(Objid xmit)

{

int count , i;

Objid link , current_node , next_node;

FIN(w_get_next_node_from_xmit(xmit));

if(op_topo_assoc_count(xmit , OPC_TOPO_ASSOC_OUT , \

OPC_OBJMTYPE_LINK) == 0)

return -1;

link = op_topo_assoc(xmit , OPC_TOPO_ASSOC_OUT , \

OPC_OBJMTYPE_LINK , 0);

count = op_topo_assoc_count(link , OPC_TOPO_ASSOC_OUT , \

OPC_OBJMTYPE_NODE);

current_node = op_topo_parent(op_id_self ());

for(i = 0; i < count; ++i)

{

next_node = op_topo_assoc(link , OPC_TOPO_ASSOC_OUT , \

OPC_OBJMTYPE_NODE , i);

if(current_node != next_node)

break;

}

FRET(next_node);

}

Figure 6.1 Sample wrapper API

#include "hlw/geo_topo.h"

#define STREAM (op_intrpt_type () == OPC_INTRPT_STRM)

typedef enum { Destroy , Deliver } pp_status;

static pp_status check_packet (Packet *);

Figure 6.2 Code in HB block

6.2 Wrapper APIs provided with the book

In this book we provide several wrapper API packages that can help users to build
their models more ef ciently. These wrapper APIs are written in C in order to target a

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:49:04 WET 2013.
http://dx.doi.org/10.1017/CBO9780511667572.007

Cambridge Books Online © Cambridge University Press, 2013

102 High-level wrapper APIs

wider audience. You can also modify these wrapperAPIs to make them more functional.
These wrapper API les are included in “hlw” folder and can be downloaded from the
publisher’s website. You can copy this folder to one of your model paths and include
relevant les in the HB block of your process model in order to use these wrapper APIs.
All of these wrapper APIs are commented in the source les, but in this section we will
explain some of them to help you better understand these wrapperAPIs. If a function has
“_self” suf x, then this “_self” refers to the current process model’s containing module
or node. If a wrapper API function is thread-unsafe, this is explicitly commented at
the beginning of the function. Otherwise, the function is thread-safe. For thread-unsafe
APIs, users should serialize the accessing of shared objects between multiple threads
themselves. In parallel simulation, thread-safety should be considered. The topics of
parallel simulation and thread-safety are not covered in this version of the book.

6.2.1 Geo_Topo wrapper APIs

In this section, we introduce a wrapper API package called Geo_Topo package, which
includes some useful functions to allow users to handle issues of geography, topology,
and mobility. For implementations of these APIs in the Geo_Topo package, check the
“hlw/geo_topo.h” le which is shipped with this book. The following are descriptions
of these functions:

• double w_get_straight_distance(Objid n1, Objid n2) – Computes the straight line
distance between two nodes by their object IDs. “n1”and “n2” are object IDs for two
nodes. Returns the distance in meters.

• double w_get_straight_distance_by_name(char *name1, char *name2) – Computes
the straight line distance between two nodes by name. “name1” and “name2” are
full hierarchical names of nodes, like “top.subnet_0.node_0”. Returns the distance in
meters.

• doublew_get_circle_distance(Objid n1,Objid n2) –Computes the great circle distance
between two nodes by object IDs. “n1” and “n2” are object IDs for two nodes. Returns
the distance in meters.

• double w_get_circle_distance_by_name(char *name1, char *name2) – Computes the
great circle distance between two nodes by name. “name1” and “name2” are full
hierarchical names of nodes, like “top.subnet_0.node_0”. Returns the distance in
meters.

• void w_move_node(Objid n, double xpos, double ypos, double altitude) – Change
mobile node position by setting the three components of the position of the commu-
nications node by object IDs. “n” is the ID of the node to move; “xpos”, “ypos”, and
“altitude” are the three components of the position.

• void w_move_node_self(double xpos, double ypos, double altitude) – Change current
mobile node position. “xpos”, “ypos”, and “altitude” are the three components of the
position.

• voidw_move_node_by_name(char *name, double xpos, double ypos, double altitude)
– Change mobile node position by setting the three components of the position of the

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:49:04 WET 2013.
http://dx.doi.org/10.1017/CBO9780511667572.007

Cambridge Books Online © Cambridge University Press, 2013

6.2 Wrapper APIs provided with the book 103

communications node by name. “name” is full hierarchical name of the node to move,
like “top.subnet_0.node_0”. “xpos”, “ypos”, and “altitude” are the three components
of the position.

• void w_get_node_pos(Objid n, double *xpos, double *ypos, double *altitude) – Get
the position of a communication node by object IDs. “n” is the object ID of the node;
“xpos”, “ypos”, and “altitude” are the three components of the position.

• void w_get_node_pos_self(double *xpos, double *ypos, double *altitude) – Get the
position of a current communications node. “xpos”, “ypos”, and “altitude” are the
three components of the position.

• Objid w_get_surrounding_module_by_in_strm(Objid module, int strm) – Get the sur-
rounding module object ID from input stream index. “module” is the surrounded
module. “strm” is the index of the input stream. Returns the surrounding module ID.

• Objid w_get_surrounding_module_by_in_strm_self(int strm) – Get the ID of current
module’s surrounding module from the input stream index. “strm” is the index of the
input stream. Returns the ID of current module’s surrounding module.

• Objid w_get_surrounding_module_by_out_strm(Objid module, int strm) – Get sur-
roundingmodule ID from the output stream index. “module” is the surroundedmodule.
“strm” is the index of the output stream. Returns the surrounding module object ID.

• Objid w_get_surrounding_module_by_out_strm_self(int strm) – Get the ID of current
module’s surrounding module from the output stream index. “strm” is the index of the
output stream. Returns the ID of current module’s surrounding module.

• int w_get_surrounding_modules_in(Objid module, PrgT_List *modules) – Get IDs of
surrounding modules that initiate packet streams. “module” is the surrounded module.
“modules” receives IDs of surrounding modules initiating packet streams. Returns the
number of IDs. This function is thread-unsafe.

• int w_get_surrounding_modules_in_self(PrgT_List *modules) – Get IDs of current
module’s surrounding modules that initiate packet streams. “modules” receives IDs
of surrounding modules initiating packet streams. Returns the number of IDs. This
function is thread-unsafe.

• int w_get_surrounding_modules_out(Objid module, PrgT_List *modules) – Get IDs
of surrounding modules that receive packet streams. “module” is the surrounded mod-
ule. “modules” receives IDs of surroundingmodules receiving packet streams. Returns
the number of IDs. This function is thread-unsafe.

• int w_get_surrounding_modules_out_self(PrgT_List *modules) – Get IDs of the cur-
rent module’s surrounding modules that receive packet streams. “modules” receives
IDs of surrounding modules receiving packet streams. Returns the number of IDs.
This function is thread-unsafe.

• int w_get_input_indices_from_prev_module(Objid module, PrgT_List *indices) –
Get indices of the current module’s input streams from the speci ed previous mod-
ule. “module” is the previous module initating packet streams. “indices” receives
indices of input packet streams. Returns the number of indices. This function is thread-
unsafe.

• int w_get_output_indices_from_next_module(Objid module, PrgT_List *indices) –
Get indices of the current module’s output streams to the speci ed next module.

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:49:04 WET 2013.
http://dx.doi.org/10.1017/CBO9780511667572.007

Cambridge Books Online © Cambridge University Press, 2013

104 High-level wrapper APIs

“module” is the next module receiving packet streams. “indices” receives indices
of output packet streams. Returns the number of indices. This function is thread-
unsafe.

• int w_get_surrounding_recvs(Objid module, PrgT_List *recvs) – Get object IDs of
surrounding receiver modules. “module” is the surrounded module. “recvs” receives
IDs of surrounding receiver modules. Returns the number of IDs. This function is
thread-unsafe.

• int w_get_surrounding_recvs_self(PrgT_List *recvs) – Get IDs of the current mod-
ule’s surrounding receiver modules. “recvs” receives IDs of the current module’s
surrounding receiver modules. Returns the number of IDs. This function is thread-
unsafe.

• int w_get_surrounding_xmits(Objid module, PrgT_List *xmits) – Get IDs of sur-
rounding transmitter modules. “module” is the surrounded module. “xmits” receives
IDs of surrounding transmitter modules. Returns the number of IDs. This function is
thread-unsafe.

• int w_get_surrounding_xmits_self(PrgT_List *xmits) – Get object IDs of the current
module’s surrounding transmitter modules. “xmits” receives IDs of the current mod-
ule’s surrounding transmitter modules. Returns the number of IDs. This function is
thread-unsafe.

• Objid w_get_prev_node_from_recv(Objid recv) – Get the previous node ID from cur-
rent node’s receiver module object ID. Previous node and current node are connected
by link. “recv” is the current node’s receiver module ID. Returns the previous node
ID, or −1 if no node is connected.

• Objid w_get_next_node_from_xmit(Objid xmit) – Get next node ID from the current
node’s transmitter module object ID. Previous node and current node are connected
by link. “recv” is the current node’s transmitter module object ID. Returns the next
node object ID, or −1 if no node is connected.

• int w_get_connected_nodes_in(PrgT_List *nodes) – Get the current node’s connected
input nodes by links within the same subnet. “nodes” receives the IDs of the current
node’s connected input nodes. Returns the number of IDs. This function is thread-
unsafe.

• int w_get_connected_nodes_out(PrgT_List *nodes) – Get the current node’s con-
nected output nodes by links within the same subnet. “nodes” receives the IDs of
current node’s connected output nodes. Returns the number of IDs. This function is
thread-unsafe.

6.2.2 Routing wrapper APIs

In this section, we will introduce a wrapperAPI package called Routing package, which
includes some useful functions to allow users to handle graph and routing issues. For
implementations of these APIs in this package, please check the “hlw/routing.h” le.
Some structures are used in these APIs, as de ned in Figure 6.3. The following are the
descriptions of these functions:

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:49:04 WET 2013.
http://dx.doi.org/10.1017/CBO9780511667572.007

Cambridge Books Online © Cambridge University Press, 2013

6.2 Wrapper APIs provided with the book 105

typedef struct

{

/* pointer to the graph */

PrgT_Graph *graph;

/* graph state id */

PrgT_Graph_State_ID state_id;

} W_Graph_Info;

typedef struct

{

/* pointer to the vertex */

PrgT_Graph_Vertex *vertex;

/* object id of the node that is associated

with the vertex */

Objid id;

} W_Vertex_Info;

typedef struct

{

/* source vertex of an edge */

PrgT_Graph_Vertex *src;

/* destination vertex of an edge */

PrgT_Graph_Vertex *dest;

/* flag that specifies if the edge is duplex or not */

Boolean duplex;

/* pointer to the edge */

PrgT_Graph_Edge *edge;

/* the weight of the edge */

double weight;

} W_Edge_Info;

Figure 6.3 Structures for wrapper API

• W_Graph_Info w_init_graph(const char *namespace_name, const char *state_name)
– Initialize and prepare the graph for routing. “namespace_name” and “state_name”
are names of namespace and state for registering the client state handlers. Returns
graph info that can be used to manipulate the graph.

• void w_uninit_graph(W_Graph_Info *graph_info) – Uninitialize and destroy the
graph. “graph_info” refers to the graph info object.

• voidw_set_graph_vertices(W_Graph_Info *graph_info, PrgT_List *vertex_info_list)
– Set vertices for a graph. “graph_info” refers to the graph info object. “ver-
tex_info_list” contains a list of W_Vertex_Info objects.

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:49:04 WET 2013.
http://dx.doi.org/10.1017/CBO9780511667572.007

Cambridge Books Online © Cambridge University Press, 2013

106 High-level wrapper APIs

• void w_set_graph_edges(W_Graph_Info *graph_info, PrgT_List *edge_info_list) –
Set edges for a graph.The “graph_info” refers to the graph info object. “edge_info_list”
contains a list of W_Edge_Info objects.

• void w_compute_shortest_path(W_Graph_Info *graph_info, PrgT_List *edge_
info_list) – Compute DJK shortest path routing algorithm for a graph. “graph_info”
refers to the graph info object. “edge_info_list” contains a list ofW_Edge_Info objects.

• PrgT_List * w_get_shortest_path_nodes(W_Graph_Info *graph_info, PrgT_Graph_
Vertex *src, PrgT_Graph_Vertex *dest, int index) – “graph_info” refers to the graph
info object. “src” is the source vertex. “dest” is the destination vertex. “index” is the
index of which shortest path to query in case of multiple shortest paths. Returns a list
of object IDs of the nodes along the shortest path. It is the user’s responsibility to free
this list.

6.2.3 Flow wrapper APIs

In this section, we will introduce a wrapper API package called Flow package, which
includes some useful functions to allow users to handle single and multiple connection-
oriented communications such as ow and trunk of ows. For implementations of these
APIs in this package, please check “hlw/ ow.h” le. Some structures are used in these
APIs, as de ned in Figure 6.4. The following are descriptions of these functions:

typedef struct

{

/* input of the flow */

Sbhandle begin;

/* output of the flow */

Sbhandle end;

/* weight of the flow */

double weight;

/* specify if the flow object is allocated

via pooled memory */

Boolean pooled;

} W_Flow;

typedef struct

{

/* list of flows in the trunk */

PrgT_List *flows;

/* weight of the trunk */

double weight;

} W_Trunk;

Figure 6.4 Structures for wrapper API

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:49:04 WET 2013.
http://dx.doi.org/10.1017/CBO9780511667572.007

Cambridge Books Online © Cambridge University Press, 2013

6.3 How to write your own wrapper API 107

• W_Flow * w_create_ ow(double weight) – Create ow object. “weight” speci es the
weight of the ow. Returns the created ow object.

• void w_destroy_ ow(W_Flow * ow) – Create ow object. “ ow” is the ow to
destroy.

• W_Trunk * w_create_trunk(int id, double weight, int ow_num) – Create trunk
object. “id” is the ID of the trunk. “weight” speci es the weight of the trunk.
“ ow_num” is the number of ows to create within the trunk. Returns the created trunk
object.

• void w_destroy_trunk(W_Trunk *trunk) – Destroy trunk object. “trunk” is the trunk
to destroy.

• void w_trunk_add_ ow(W_Trunk *trunk, double weight) – Add a ow to the trunk.
“trunk” is the trunk to which the ow is added. “weight” speci es the weight of the
ow.

• void w_trunk_remove_ ow(W_Trunk *trunk, int index) – Add a ow to the trunk.
“trunk” is the trunk from which the ow is removed. “index” is the index of the ow
to remove.

• void w_ ow_push_packet(W_Flow * ow, Packet *pkt, OpT_Int64 pkt_tag) – Push
a packet into the ow. “ ow” is the ow into which a packet is pushed. “pkt” is the
packet to be pushed into the ow. “pkt_tag” is the user-de ned tag associated with the
packet.

• OpT_Sar_Size w_ ow_size(W_Flow * ow) – Get the total traf c size within a ow.
“ ow” is the ow. Returns the total traf c size within the ow.

• Packet * w_ ow_pop_segment(W_Flow * ow, OpT_Sar_Size segment_size) –
Remove a segment from ow with speci ed size if ow size is greater than 0; other-
wise, return nil. “ ow” is the ow from which a segment is removed. “segment_size”
is the size of the segment. Returns the removed segment.

• void w_ ow_push_segment(W_Flow * ow, Packet *segment) – Push a segment into
the ow. “ ow” is the ow into which a segment is pushed. “segment” is the segment
to push.

• int w_ ow_packet_count(W_Flow * ow) – Get the total number of packets within a
ow. “ ow” is the ow. Returns the total number of packets within the ow.

• Packet * w_ ow_pop_packet(W_Flow * ow) – Remove a packet from the ow if
one exists; otherwise, return nil. “ ow” is the ow from which a packet is removed.
Returns the removed packet.

6.3 How to write your own wrapper API

This section demonstrates how to create wrapperAPIs and use them in the process model.
AwrapperAPI can be any function that does something. However, we would like to show
some guidelines on how to write wrapperAPIs more ef ciently. The following are some
guidelines on how to write and compile your own wrapper APIs. However, you are not
restricted to following these rules.

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:49:04 WET 2013.
http://dx.doi.org/10.1017/CBO9780511667572.007

Cambridge Books Online © Cambridge University Press, 2013

108 High-level wrapper APIs

/* Divide two integers */

/* "a" is the first integer and "b" is the second */

/* Return the result of the division */

int w_div(int a, int b)

{

int ret;

FIN(w_div(a, b));

if(b == 0)

handle_error ();

else

ret = a/b;

FRET(ret);

}

Figure 6.5 Sample wrapper API

• You can write your own wrapper APIs in either C or C++. They have their own indi-
vidual bene ts. For ef ciency and portability, it is better to encapsulate functionalities
into C, which provides opportunities for wider audiences, i.e., so that both C and
C++ programmers are able to use them. For simplicity and better encapsulation, C++
is a good option, which can be used to encapsulate functionalities into templates,
classes, making them self-contained and easier to use. For how to use C++ in OPNET
modeling, refer to Chapter 12.

• It is suggested that you add comments at the beginning of each API function. The
comments should explain the functionality this function provides, the input and output
parameters, and the return value.

• WrapperAPI function naming should follow some simple routines: starting with “w_”,
the name of the function should re ect the functionality it provides.

• Add necessary error-handling mechanisms to provide more robust APIs and make the
code easy to debug.

• It is suggested that you use FIN, FRET, and FOUT macros within the function to
facilitate ODB debugging. For details on FIN, FRET, and FOUT macros, refer to
Chapter 11.

• There are several different ways of compiling and using your own wrapper API
libraries. The rst method is to compile the wrapper APIs into dynamic libraries
and link these dynamic libraries with simulation kernel executable at runtime. The
second method is to compile the wrapperAPIs into static libraries and link these static
libraries into simulation kernel executable. The third method is simply include the
wrapperAPI les in the simulation model code which will be compiled into simulation
kernel executable as a whole. However, in practice the rst two methods require more
effort to manually manipulate the simulation kernel and wrapper API libraries. For

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:49:04 WET 2013.
http://dx.doi.org/10.1017/CBO9780511667572.007

Cambridge Books Online © Cambridge University Press, 2013

6.3 How to write your own wrapper API 109

the third method, the only drawback is the amount of compilation overhead incurred
by the included wrapper API les each time you compile your models. However, this
overhead is generally negligible.

You can also check the wrapper APIs provided with this book to see how they are
implemented. Figure 6.5 shows a simple example that demonstrates how to write a
wrapper API by following these guidelines.

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:49:04 WET 2013.
http://dx.doi.org/10.1017/CBO9780511667572.007

Cambridge Books Online © Cambridge University Press, 2013

7 Modeling with high-level
wrapper APIs

This chapter rst revisits the cases described inChapter 5 but utilizing high-levelwrapper
APIs instead. Then, another case is demonstrated to illustrate how to create connection-
oriented communications. To follow this chapter, it is assumed that a reader understands
the content covered in Chapter 5 and Chapter 6.

7.1 Revisit of previous case

In this section, Case 6 in Chapter 5 is revisited but this time with wrapper APIs.
Open “pk_switch” process model in Process Editor. Save it as “pk_switch_v2”. Now,

you can edit “pk_switch_v2” and replace relevant code with wrapperAPIs. In SV block,
replace the declarations of state variables, as shown in Figure 7.1.

In TV block, replace the declarations of temporary variables, as shown in Figure 7.2.
In HB block, include header les: “routing.h” and “geo_topo.h”, as shown in

Figure 7.3. These two les include relevant wrapper APIs for performing routing and
topology related operations.

In “init” state, replace previous code for building the graph and routing table with the
new code that utilizes wrapper APIs, as shown in Figures 7.4 and 7.5.

From Figures 7.4 and 7.5, it is seen that after applying the wrapper APIs, the
processing of vertices and edges in the routing graph is performed by dealing with
W_Vertex_Info andW_Edge_Info objects. The steps for implementing routing algorithm
can be represented by the corresponding wrapper APIs in the following way:

• Initialize graph – w_init_graph().
• Set vertices of the graph – w_set_graph_vertices().
• Set edges of the graph – w_set_graph_edges().
• Compute the shortest path – w_compute_shortest_path().
• Get the shortest path – w_get_shortest_path_nodes().
• Uninitialize the graph if necessary – w_uninit_graph().

In “slot” state, replace the code shown in Figure 7.6 with the code shown in Figure 7.7.
The code in both Figure 7.6 and Figure 7.7 is used to get the appropriate packet
switching port that leads to the next hop node; however, the code in Figure 7.6 is reduced
signi cantly by utilizing wrapper APIs in “geo_topo” package.

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:49:06 WET 2013.
http://dx.doi.org/10.1017/CBO9780511667572.008

Cambridge Books Online © Cambridge University Press, 2013

7.1 Revisit of previous case 111

Figure 7.1 Code in SV block

Packet *pk = OPC_NIL;

int header = 0;

int i = 0;

int j = 0;

int count = 0;

int count2 = 0;

Objid next_hop_node_id;

Objid tmp_xmit;

int out_port = 0;

Figure 7.2 Code in TV block

#include "hlw/routing.h"

#include "hlw/geo_topo.h"

#define STRM (op_intrpt_type () == OPC_INTRPT_STRM)

#define TIMEOUT_INTRPT_CODE 0

#define TIMEOUT (\

(op_intrpt_type () == OPC_INTRPT_SELF) && \

(op_intrpt_code () == TIMEOUT_INTRPT_CODE))

#define SLOT_DURATION 0.2

#define PORT_NUM 5

#define GRAPH_NAMESPACE_NAME "graph_namespace"

#define GRAPH_STATE_NAME "graph_state_name"

Figure 7.3 Code in HB block

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:49:06 WET 2013.
http://dx.doi.org/10.1017/CBO9780511667572.008

Cambridge Books Online © Cambridge University Press, 2013

112 Modeling with high-level wrapper APIs

timeout_handle = op_intrpt_schedule_self(\

op_sim_time () + SLOT_DURATION , \

TIMEOUT_INTRPT_CODE);

vertices_info [0].id = op_id_from_hierarchical_name(\

"top.subnet_0.switch_0");

vertices_info [1].id = op_id_from_hierarchical_name(\

"top.subnet_0.switch_1");

vertices_info [2].id = op_id_from_hierarchical_name(\

"top.subnet_0.switch_2");

vertices_info [3].id = op_id_from_hierarchical_name(\

"top.subnet_0.switch_3");

vertices_info [4].id = op_id_from_hierarchical_name(\

"top.subnet_0.switch_4");

vertices_info [5].id = op_id_from_hierarchical_name(\

"top.subnet_0.node_0");

vertices_info [6].id = op_id_from_hierarchical_name(\

"top.subnet_0.node_1");

graph_info = w_init_graph(GRAPH_NAMESPACE_NAME , \

GRAPH_STATE_NAME);

vertex_info_list = prg_list_create ();

for(i = 0; i < 7; ++i)

prg_list_insert(vertex_info_list , &vertices_info[i], \

PRGC_LISTPOS_TAIL);

w_set_graph_vertices (&graph_info , vertex_info_list);

Figure 7.4 Code in “init” state

Save and compile the “pk_switch_v2” process model. Open chapter5-case6 scenario
in Project Editor. Change the process model of “q_0” module in “pk_switch” node model
from “pk_switch” to “pk_switch_v2”. Now you can run the chapter5-case6 scenario. It
works exactly the same as in the case with “pk_switch” as process model. Compared
with the code in the “pk_switch” process model, wrapperAPIs reduce the programming
burden by making simpler code and making the code more readable.

7.2 Creating connection-oriented communications

In this section, we will demonstrate how to model connection-oriented communications
via ow wrapper APIs. The ow wrapper API package encapsulates the functions in
OPNET Segmentation and Reassembly Package. This package is used to segment a
buffer of packets into any size of segments, and it is possible to reassemble them into
original packets. This process can be used to model the connection-oriented communi-
cation, where at one end source packets are pushed into buffer and the buffer data are

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:49:06 WET 2013.
http://dx.doi.org/10.1017/CBO9780511667572.008

Cambridge Books Online © Cambridge University Press, 2013

7.2 Creating connection-oriented communications 113

edge_info_list = prg_list_create ();

edges_info [0]. src = vertices_info [0]. vertex;

edges_info [0]. dest = vertices_info [1]. vertex;

edges_info [0]. weight = 1;

edges_info [1]. src = vertices_info [0]. vertex;

edges_info [1]. dest = vertices_info [3]. vertex;

edges_info [1]. weight = 1;

edges_info [2]. src = vertices_info [1]. vertex;

edges_info [2]. dest = vertices_info [2]. vertex;

edges_info [2]. weight = 1;

edges_info [3]. src = vertices_info [1]. vertex;

edges_info [3]. dest = vertices_info [4]. vertex;

edges_info [3]. weight = 0.2;

edges_info [4]. src = vertices_info [2]. vertex;

edges_info [4]. dest = vertices_info [4]. vertex;

edges_info [4]. weight = 1.5;

edges_info [5]. src = vertices_info [3]. vertex;

edges_info [5]. dest = vertices_info [4]. vertex;

edges_info [5]. weight = 1;

edges_info [6]. src = vertices_info [5]. vertex;

edges_info [6]. dest = vertices_info [3]. vertex;

edges_info [6]. weight = 1;

edges_info [7]. src = vertices_info [6]. vertex;

edges_info [7]. dest = vertices_info [2]. vertex;

edges_info [7]. weight = 1;

for(i = 0; i < 8; ++i)

{

edges_info[i]. duplex = TRUE;

prg_list_insert(edge_info_list , &edges_info[i], \

PRGC_LISTPOS_TAIL);

}

w_set_graph_edges (&graph_info , edge_info_list);

w_compute_shortest_path (& graph_info , edge_info_list);

path_nodes_id_list = w_get_shortest_path_nodes(\

&graph_info , vertices_info [5]. vertex , \

vertices_info [6]. vertex , 0);

mod_id = op_id_self ();

node_id = op_topo_parent(mod_id);

xmits = prg_list_create ();

out_ports = prg_list_create ();

Figure 7.5 Code in “slot” state

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:49:06 WET 2013.
http://dx.doi.org/10.1017/CBO9780511667572.008

Cambridge Books Online © Cambridge University Press, 2013

114 Modeling with high-level wrapper APIs

count = op_topo_assoc_count(mod_id , \

OPC_TOPO_ASSOC_OUT , OPC_OBJTYPE_STRM);

found = FALSE;

for(i = 0; i < count; ++i)

{

strm_id = op_topo_assoc(mod_id , \

OPC_TOPO_ASSOC_OUT , OPC_OBJTYPE_STRM , i);

tx_id = op_topo_assoc(strm_id , \

OPC_TOPO_ASSOC_OUT , OPC_OBJTYPE_PTTX , 0);

if(op_topo_assoc_count(tx_id , OPC_TOPO_ASSOC_OUT ,\

OPC_OBJTYPE_LKDUP) == 0)

continue;

link_id = op_topo_assoc(tx_id , OPC_TOPO_ASSOC_OUT , \

OPC_OBJTYPE_LKDUP , 0);

count2 = op_topo_assoc_count(link_id , \

OPC_TOPO_ASSOC_OUT , OPC_OBJTYPE_NODE_FIX);

for(j = 0; j < count2; ++j)

{

tmp_node_id = op_topo_assoc(link_id , \

OPC_TOPO_ASSOC_OUT , OPC_OBJTYPE_NODE_FIX , j);

if(tmp_node_id == next_hop_node_id)

{

op_ima_obj_attr_get(strm_id , "src�stream", \

&out_port);

found = TRUE;

break;

}

}

if(found == TRUE)

break;

}

Figure 7.6 Code in “slot” state

segmented without knowing the boundaries of packets, and at the other end the segments
are reassembled into original source packets. In this section, two cases will be modeled:
one is single ow, another is a trunk of ows. Here, ow is the same as connection in
general, i.e., all segments within the same ow have a common feature, like the same
destination address.

7.2.1 Single flow

First, you need to create a node model that is capable of making source packets into ow
segments at one end and recovering source packets from ow segments at another end.

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:49:06 WET 2013.
http://dx.doi.org/10.1017/CBO9780511667572.008

Cambridge Books Online © Cambridge University Press, 2013

7.2 Creating connection-oriented communications 115

count = w_get_surrounding_xmits_self(xmits);

for(i = 0; i < count; ++i)

{

tmp_xmit = *(Objid *) prg_list_access(xmits , i);

if(w_get_next_node_from_xmit(tmp_xmit) == \

next_hop_node_id)

{

w_get_output_indices_from_next_module(\

tmp_xmit , out_ports);

out_port = *(int *) prg_list_access(out_ports , 0);

break;

}

}

Figure 7.7 Code in “slot” state

pr_0

p_0

pr_1 pt_1

pt_0

Figure 7.8 Node model

The new node model is shown in Figure 7.8. There are two interfaces in this node model.
One interface (“pr_0” and “pt_0”) is for receiving and transmitting source packets and
another interface (“pr_1” and “pt_1”) is for receiving and transmitting ow segments.
“p_0” processor module is for handling the traf c from or to these interfaces.

Save the node model as “ ow_handler”. Next, you can create a new process model
that will be used by “p_0” module in “ ow_handler” node. The state transition diagram
of this process model is shown in Figure 7.9.

In SV block, add declarations of state variables like ow object, as shown in
Figure 7.10.

In TV block, add declarations of temporary variables, as shown in Figure 7.11.

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:49:06 WET 2013.
http://dx.doi.org/10.1017/CBO9780511667572.008

Cambridge Books Online © Cambridge University Press, 2013

116 Modeling with high-level wrapper APIs

init

5/0 0/0

idle (default)

35/0

stream

(STRM)

Figure 7.9 State transition diagram

Figure 7.10 Code in SV block

Packet *pk = OPC_NIL;

Packet *src_pk = OPC_NIL;

Packet *segment = OPC_NIL;

Packet *flow_segment = OPC_NIL;

int in_port;

char pk_fmt [128] = "";

OpT_Sar_Size size;

int i;

int count;

Figure 7.11 Code in TV block

InHBblock, include the header le for owwrapper package, as shown in Figure 7.12.
In HB block, segment size is also de ned, which is independent of source packet sizes.

In “init” state, add code to create a ow object, as shown in Figure 7.13.
In “stream” state, add code to handle traf c from two interfaces, as shown in

Figure 7.14: if the format of the received packet is not “ ow_segment”, it is a source

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:49:06 WET 2013.
http://dx.doi.org/10.1017/CBO9780511667572.008

Cambridge Books Online © Cambridge University Press, 2013

7.2 Creating connection-oriented communications 117

#include "hlw/flow.h"

#define STRM (op_intrpt_type () == OPC_INTRPT_STRM)

#define SEGMENT_SIZE 128

Figure 7.12 Code in HB block

flow = w_create_flow (0);

pk_num = 0;

Figure 7.13 Code in “init” state

packet and it should be pushed into ow, and data is sent out of the ow as seg-
ments; if the format of the received packet is “ ow_segment”, it is a ow segment
and it should be pushed into ow, and source packets are recovered and removed from
the ow.

In Figure 7.14, the formatted packet “ ow_segment” should be created in Packet
Format Editor. There are two elds in “ ow_segment” format. “ ow_id” is an integer
type, and “segment” is a packet type with “inherited” size. “ ow_id” stores the identi er
of the ow that this segment belongs to. “segment” stores the actual segment data packet.
It is shown in Figure 7.15.

Save this process model as “ ow_handler”. From the “Interfaces” menu of Process
Editor, choose “Process Interfaces”. Set “begsim intrpt” and “endsim intrpt” attributes
to “enabled”, as shown in Figure 7.16.

Save and compile “ ow_handler” process model. set the “process model” attribute of
“p_0” module in “ ow_handler” node to “ ow_handler”.

Next, you can create a simulation scenario for this model. Create a new project and
scenario with project name “chapter7” and scenario name “case1”. Create a network
topology as shown in Figure 7.17.Themodel of “ ow_handler_0” and “ ow_handler_1”
nodes is “ ow_handler”. The model of “source_node_0” and “source_node_1” nodes is
“basic_source”, which was created in Chapter 5. The model of the links between these
nodes is “basic_link”, which was created in Chapter 5.

In Project Editor, from the “DES” menu, check “Record Packet Flow 2D Animation
For Subnet”. Press “Ctrl+R” and “Alt+R” consecutively to start simulation. After sim-
ulation nishes, in Project Editor, from the “DES” menu choose “Play 2D Animation”.
In Animation Viewer, it is seen that packets ow faster between “ ow_handler_0” and
“ ow_handler_1” nodes than between “source_node_0” and “ ow_handler_0” nodes,
and faster than between “ ow_handler_1” and “source_node_1” nodes. This is because
the packets owing between “ ow_handler_0” and “ ow_handler_1” nodes are actually
ow segments that have smaller sizes than the original source packets.

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:49:06 WET 2013.
http://dx.doi.org/10.1017/CBO9780511667572.008

Cambridge Books Online © Cambridge University Press, 2013

118 Modeling with high-level wrapper APIs

in_port = op_intrpt_strm ();

pk = op_pk_get(in_port);

op_pk_format(pk , pk_fmt);

if(strcmp(pk_fmt , "flow_segment") != 0)

{

// If packet format is not flow segment ,

// add this packet to outgoing flow , get

// segments from the flow and send them out

w_flow_push_packet(flow , pk, pk_num ++);

size = w_flow_size(flow);

for(; size > 0; size -= SEGMENT_SIZE)

{

segment = w_flow_pop_segment(flow , SEGMENT_SIZE);

flow_segment = op_pk_create_fmt("flow_segment");

op_pk_nfd_set(flow_segment , "flow_id", 0);

op_pk_nfd_set(flow_segment , "segment", segment);

if(in_port == 0)

op_pk_send(flow_segment , 1);

else

op_pk_send(flow_segment , 0);

}

}

else

{

// If packet format is flow segment ,

// add this segment into incoming flow ,

// recover original packets from the flow

// and send recovered packets to destination

op_pk_nfd_get(pk, "segment", &segment);

w_flow_push_segment(flow , segment);

count = w_flow_packet_count(flow);

for(i = 0; i < count; ++i)

{

src_pk = w_flow_pop_packet(flow);

if(in_port == 0)

op_pk_send(src_pk , 1);

else

op_pk_send(src_pk , 0);

}

op_pk_destroy(pk);

}

Figure 7.14 Code in “stream” state

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:49:06 WET 2013.
http://dx.doi.org/10.1017/CBO9780511667572.008

Cambridge Books Online © Cambridge University Press, 2013

7.2 Creating connection-oriented communications 119

7.2.2 Trunk of flows

Now, you can modify “ ow_handler” process model so that it can model the behaviors
of a number of ows. In wrapper ow package, a number of ows can be modeled via
the W_Trunk object.

Open “ ow_handler” process model in Process Editor. In SV block, declare state
variables like trunk object, as shown in Figure 7.18.

In TV block, declare temporary variables as shown in Figure 7.19.
In “init” state, add code to create a trunk object, as shown in Figure 7.20.

Figure 7.15 Packet format

Figure 7.16 Process interfaces

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:49:06 WET 2013.
http://dx.doi.org/10.1017/CBO9780511667572.008

Cambridge Books Online © Cambridge University Press, 2013

120 Modeling with high-level wrapper APIs

Figure 7.17 Network topology

Figure 7.18 Code in SV block

W_Flow *flow;

Packet *pk = OPC_NIL;

Packet *src_pk = OPC_NIL;

Packet *segment = OPC_NIL;

Packet *flow_segment = OPC_NIL;

int in_port;

char pk_fmt [128] = "";

OpT_Sar_Size size;

int i;

int count;

int flow_id;

Figure 7.19 Code in TV block

trunk = w_create_trunk (0, 0, FLOW_NUM);

pk_num = 0;

Figure 7.20 Code in “init” state

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:49:06 WET 2013.
http://dx.doi.org/10.1017/CBO9780511667572.008

Cambridge Books Online © Cambridge University Press, 2013

in_port = op_intrpt_strm ();

pk = op_pk_get(in_port);

op_pk_format(pk , pk_fmt);

if(strcmp(pk_fmt , "flow_segment") != 0)

{

// If packet format is not flow segment ,

// add this packet to outgoing flow identified by

// flow_id , get segments from the flow , set "flow_id"

// attributes for these segments and send them out

flow_id = pk_num % FLOW_NUM;

flow = (W_Flow *) prg_list_access(trunk ->flows , flow_id);

w_flow_push_packet(flow , pk, pk_num ++);

size = w_flow_size(flow);

for(; size > 0; size -= SEGMENT_SIZE)

{

segment = w_flow_pop_segment(flow , SEGMENT_SIZE);

flow_segment = op_pk_create_fmt("flow_segment");

op_pk_nfd_set(flow_segment , "flow_id", flow_id);

op_pk_nfd_set(flow_segment , "segment", segment);

if(in_port == 0)

op_pk_send(flow_segment , 1);

else

op_pk_send(flow_segment , 0);

}

}

else

{

// If packet format is flow segment , get "flow_id"

// attribute value which is used to identify the

// incoming flow this segment belongs to, add this

// segment into this incoming flow , recover original

// packets from the flow and send them to destination

op_pk_nfd_get(pk, "flow_id", &flow_id);

op_pk_nfd_get(pk, "segment", &segment);

flow = (W_Flow *) prg_list_access(trunk ->flows , flow_id);

w_flow_push_segment(flow , segment);

count = w_flow_packet_count(flow);

for(i = 0; i < count; ++i)

{

src_pk = w_flow_pop_packet(flow);

if(in_port == 0)

op_pk_send(src_pk , 1);

else

op_pk_send(src_pk , 0);

}

op_pk_destroy(pk);

}

Figure 7.21 Code in “stream” state

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:49:06 WET 2013.
http://dx.doi.org/10.1017/CBO9780511667572.008

Cambridge Books Online © Cambridge University Press, 2013

122 Modeling with high-level wrapper APIs

In “stream” state, add code to evenly allocate received source packets to all the ows
in the trunk and recover original source packets from ow segments in the corresponding
ow. This is shown in Figure 7.21.
Save and compile this process model. Now you can run the simulation to model many

ows. You can modify this example to model hierarchical and QoS (quality of service)-
based ows. With the ow wrapper API package, you can easily model and manage
connection-oriented communications.

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:49:06 WET 2013.
http://dx.doi.org/10.1017/CBO9780511667572.008

Cambridge Books Online © Cambridge University Press, 2013

Part III

Modeling and Modifying Standard
Networks and Protocols

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:49:10 WET 2013.
http://ebooks.cambridge.org/ebook.jsf?bid=CBO9780511667572
Cambridge Books Online © Cambridge University Press, 2013

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:49:10 WET 2013.
http://ebooks.cambridge.org/ebook.jsf?bid=CBO9780511667572
Cambridge Books Online © Cambridge University Press, 2013

8 Modeling wired networks with
standard models

This chapter shows how to construct wired networks with standard OPNET models in
an evolutionary style. Differently from Chapters 5–7, where custom OPNET models
are developed, in this chapter standard OPNET models are discussed. These standard
models are pre-created and shipped with the OPNET Modeler. Standard OPNET models
include TCP, IP, IPV6, ATM, MPLS, OSPF, TDMA, WiMAX, ZigBee, etc. To follow
this chapter, it is preferable to know the basic operations of OPNET Modeler, though
not necessary.

The process for simulating standard models is similar to that for simulating custom
models as demonstrated in Chapter 5. The following are the steps of simulating standard
models:

• Create a project via Project Editor.
• Create a scenario within this project.
• Create a network topology for this scenario by placing the standard models on the

Project Editor.
• Verify the link connectivity of this network.
• Select the statistics in which you are interested.
• Run the simulation for this scenario.
• View, compare, and analyze statistic results.
• If necessary, export statistic data to a spreadsheet for further processing.

In the following sections, case studies on how to model standard wired networks are
demonstrated.

8.1 Client/server structure

In this section, a simple client/server structure will be created and modeled. The client
and server are computers that are connected by links.

8.1.1 Creating a network model

To create a client/server network model, go through the following steps:

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:50:07 WET 2013.
http://dx.doi.org/10.1017/CBO9780511667572.009

Cambridge Books Online © Cambridge University Press, 2013

126 Modeling wired networks with standard models

• Create a new project and scenario with project name “chapter8” and scenario name
“case1”. In Project Editor, press “Open Object Palette” toolbar button. On the right
side of the palette dialog, choose “Subnet” object and place this object on the Project
Editor, as shown in Figure 8.1.

• Double click the “Subnet” object to go inside the subnet.
• Place “ethernet_wkstn” (client) and “ethernet_server” (server) objects in the subnet.
• Place “Task Con g”, “Application Con g”, and “Pro le Con g” objects onto subnet.
• Use a link to connect the client and server. The link model is “10BaseT”. This structure

is shown in Figure 8.2.

subnet_0

Figure 8.1 Network model

Figure 8.2 Network model

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:50:07 WET 2013.
http://dx.doi.org/10.1017/CBO9780511667572.009

Cambridge Books Online © Cambridge University Press, 2013

8.1 Client/server structure 127

Now you can verify link connectivity. From “Topology”, choose “Verify Links...” to
verify whether nodes and links are correctly connected. If there are connectivity errors,
a red cross will be shown on the link. To resolve the connectivity problem, right-click
link object, select “Edit Attributes (Advanced)” to modify “transmitter” and “receiver”
attributes appropriately. Since a link connects two nodes, the values of transmitters and
receivers should be set to corresponding transceiver objects for connected nodes. After
con guration, verify link connectivity again.

Q8.1 When running a simulation, why are there “Recoverable Errors” saying “Packets
with packet format (???) are not supported by link or transceiver channel”?

You see this error because the links and transceivers (transmitters and receivers) have
incompatible con gurations. For example, a duplex link object is connected to a node
object’s transceiver object. The link object’s data rate is “1024 bps” and supported packet
format is “ip_dgrm_v4”. The transceiver object’s data rate is “1024 bps” and supported
packet format is “ethernet_v2”. The data rate attributes of link object and transceiver
object are the same. However, the supported packet formats of link and transceiver do
not match each other. Then, if you run simulation, there will be an error report about this
mismatch. Therefore, before starting simulation, you should verify link connectivity and
clear possible errors. If there are connectivity errors, you can change the corresponding
link and transceiver’s “data rate” and/or “packet formats” attributes appropriately to
make them match each other. For some custom node models, if you are not sure what
data rate this node’s transceivers should support at the beginning, you can set the value
of the “data rate” attribute for the transceiver to “unspeci ed”, which means it supports
any data rate. By setting this special value, links of any data rate can be connected to
this node’s transceivers without a problem.

8.1.2 Task, application, and profile configurations

In this scenario, there are a client and a server connected to each other. However, at this
moment there is no traf c running between the client and server. The client and server
are models of computer. The internal node model structure is shown in Figure 8.3.

The node structure shows a typical protocol stack for a computer. From this protocol
stack, you can see that the root is “application” module. The source of traf c is also
“application” module. In the real world, the application in computer can be web, email,
database, video/audio, etc, and these applications are sources of traf c owing between
computers. In the simulation model, applications have the same de nitions. Therefore, in
order to generate traf c for this simulation model, you need to de ne model applications.
There are three objects that can be used to de ne model applications in OPNET: Task
Con g,Application Con g, and Pro le Con g. These objects can be found in the Object
Palette. The relationship between these con guration objects is: Task Con g →Applica-
tion Con g → Pro le Con g. “Task Con g” de nes the fundamental traf c features for
tasks. These features include task phases, source/destination, request/response, request
size, interarrival times and timeout, etc. With “Task Con g”, you can de ne custom
tasks. The custom task can be referenced in “Application Con g” object to de ne an

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:50:07 WET 2013.
http://dx.doi.org/10.1017/CBO9780511667572.009

Cambridge Books Online © Cambridge University Press, 2013

128 Modeling wired networks with standard models

rip

odp

dncp

tcp

tpal

application CPU

rsvp

ip_encap

ip

arp

mac

hub_rx_0_0 hub_tx_0_0

Figure 8.3 Node model

application. However, “Application Con g” also contains some pre-de ned application
types such as “Database”, “Email”, “Ftp”, “Http”, “Voice” and “Video Conferencing”. If
your application falls into these prede ned application types, you do not need to de ne
tasks for the application. In “Pro le Con g”, a pro le can be de ned by incorporat-
ing several applications. These applications can be operated in serial or simultaneous
mode and each application’s duration and repeatability can be con gured as well. Next,
you can de ne a pro le to be used by client and server to generate traf c. In this pro-
le, there are three prede ned applications: Database, Http, and Video Conferencing.

These applications should be set in the “Application Con g” object. To set these appli-
cations, right click “Application Con g” object, select “Edit Attributes (Advanced)”,
edit “Application De nitions” attribute. In the Application De nitions table, add a row
called “My Database”. In the Description table of “My Database” application, set the
value of the “Database” attribute to “Medium Load” as shown in Figure 8.4. This de nes
“My Database” as a medium-load database application. In the same way, add “My Http”
and “My Video Conferencing” applications as well. For “My Http” application, set the
“Http” attribute value to “Heavy Browsing”. For “My Video Conferencing” application,
set the “Video Conferencing” attribute value to “Low Resolution Video”.

In thismodel, since there is no customapplication, the “TaskCon g” object is not used.
However, you can de ne tasks in the “Task Con g” object and set these tasks to custom
application in “Application Con g” in the same way as for a prede ned application.

Now you can de ne the pro le via “Pro le Con g” object. To de ne the pro le,
right click “Pro le Con g” object, select “Edit Attributes (Advanced)”, edit “Pro le

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:50:07 WET 2013.
http://dx.doi.org/10.1017/CBO9780511667572.009

Cambridge Books Online © Cambridge University Press, 2013

8.1 Client/server structure 129

Figure 8.4 Application de nitions

Figure 8.5 Pro le con guration

Con guration” attribute. In the Pro le Con guration table, add a new row of pro le
called “My Pro le”. In this example, set “Operation Mode” to “Serial (Ordered)”. Then,
you can add three application rows to the Application table of “My Pro le”. Each row
refers to an application set in “Application Con g”. The con guration of “My Pro le”
is shown in Figure 8.5.

Next, you can set this pro le in client and server nodes so that application traf c
can be generated. For client and server nodes, there are three node attributes often used
for interacting with application traf c: “Application: Supported Pro les”, “Application:
Supported Services”, and “Application: Destination Preferences”. If a computer acts as

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:50:07 WET 2013.
http://dx.doi.org/10.1017/CBO9780511667572.009

Cambridge Books Online © Cambridge University Press, 2013

130 Modeling wired networks with standard models

application traf c originator, a pro le should be set to the “Application: Supported Pro-
les” attribute. If a computer acts as a server, then the “Application: Supported Services”

attribute should be con gured to support relevant applications de ned in the “Application
Con g” object. However, in some cases, a computer can act as both application traf c
originator and server at the same time. For these cases, both “Application: Supported
Pro les” and “Application: Supported Services” attributes should be set appropriately.
You can specify traf c destination by setting the “Application: Destination Preferences”
attribute. However, if the value of the “Application: Destination Preferences” attribute is
set to “None”, a random destination will be chosen from among the destination nodes that
support the application of interest. Selection weight speci ed in the “Application: Sup-
ported Services” attribute on the destination will determine the probability with which
the destination will get chosen. You can go through the following steps to con gure
client and server nodes:

• Right click “client” object, select “Edit Attributes (Advanced)”, edit “Application:
Supported Pro les” attribute and add a “My Pro le” row as shown in Figure 8.6.

• Right click “client” object, select “Edit Attributes (Advanced)”, set “Application:
Destination Preferences” attribute to “None”. Alternatively, in this example, you can
set destination to “server” node explicitly as shown in Figure 8.7.

• Right click “server” object, select “Edit Attributes (Advanced)”, set “Application:
Supported Services” attribute to “All”.

• Right click “server” object, select “Edit Attributes (Advanced)”, set “Application:
Destination Preferences” attribute to “None”. Alternatively, in this example, you can
set destination to “client” node explicitly.

In this example, we set the pro le only for client node but not server node. This is
because we only want client node to act as traf c originator and server node to act as

Figure 8.6 Application: supported pro les

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:50:07 WET 2013.
http://dx.doi.org/10.1017/CBO9780511667572.009

Cambridge Books Online © Cambridge University Press, 2013

8.1 Client/server structure 131

Figure 8.7 Application: destination preferences

service provider. If you want these two nodes to act as both client and server at the same
time, then you should set the pro le for both nodes.

Until now, the model has been con gured to run application traf c. However, before
starting simulation, you need to choose the statistics of interest.

8.1.3 Choosing and viewing statistic results

For standard models, there are many prede ned statistics. In this example, you can
choose three statistics related to the applications for client node as follows:

• Right click “client” object, select “Choose IndividualDESStatistics” to show statistics
dialog.

• From “Node Statistics”, choose “Client DB” application statistics.
• From “Node Statistics”, choose “Client Http” application statistics.
• From “Node Statistics”, choose “Video Conferencing” application statistics.

Q8.2 What are the differences between “Choose Individual DES Statistics” and
“Choose Statistics (Advanced)”?

“Choose Individual DES Statistics” allows you to simply choose the statistics of inter-
est for any object. “Choose Statistics (Advanced)” will invoke “Probe Editor”, which
can be used to choose statistics to probe for any object, edit probe attributes, change
probe capture mode, create new statistic probe, and so on.

In Project Editor, you can start simulation from the “DES” menu by choosing “Run
Discrete Event Simulation”. After completion of simulation, right click “client” object
and select “ViewResults”. In the “Object Statistics” list, choose “Traf c Sent (bytes/sec)”
statistic for “Client DB”, “Client Http”, and “Video Conferencing” applications. The
results are shown in Figure 8.8.

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:50:07 WET 2013.
http://dx.doi.org/10.1017/CBO9780511667572.009

Cambridge Books Online © Cambridge University Press, 2013

132 Modeling wired networks with standard models

Figure 8.8 Statistic results

From Figure 8.8, you can see that three applications are scheduled in serial order
as con gured in “My Pro le”. You can also choose other statistics of interest and run
simulation again to view results.

8.2 Local area network

In this section, you can build a Local Area Network (LAN) model based on the
client/server model made in the last section. This scenario demonstrates how to build a
switched local area network model. You can go through the following steps to build this
LAN model:

• In Project Editor, from “Scenarios” menu, choose “Duplicate Scenario...” to create a
new scenario called “case2”.

• Copy/paste client node four times to reproduce four client nodes.
• In Object Palette, nd “ethernet16_switch_adv” model and place it on Project Editor.
• Connect all client and server nodes to the switch with “10BaseT” links as shown in

Figure 8.9.

From “Topology”, choose “Verify Links...” to verify link connectivity. If there is no
problem, you can choose statistics of interest and start simulation. In this case, all client
nodes will generate application traf c that is switched to server node, and server node
will provide supported application services for all client nodes.

8.3 Wide area IP network

First, create a new scenario called “case3”. There are two subnets in this scenario. The
traf c in these subnets is routed to an IP cloud object via gateway routers. The topmost
network topology is shown in Figure 8.10.

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:50:07 WET 2013.
http://dx.doi.org/10.1017/CBO9780511667572.009

Cambridge Books Online © Cambridge University Press, 2013

8.3 Wide area IP network 133

Figure 8.9 Network model

Figure 8.10 Network model

The “Application De nition” and “Pro le De nition” objects should be con gured in
a similar way to that in the client/server scenario. The Core Network is an “ip32_cloud”
model object. Two subnets and Core Network are connected by links of “PPP_DS3”
model. In “subnet_0”, two client nodes are connected to a switch which is connected
to a gateway router of the “ethernet4_slip4_gtwy_adv” model. The connection links
are objects of the “10Base” model. The client nodes’ “Application: Supported Pro le”
attribute should be con gured in a similar way to that in the client/server scenario. The
topology of “subnet_0” is shown in Figure 8.11.

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:50:07 WET 2013.
http://dx.doi.org/10.1017/CBO9780511667572.009

Cambridge Books Online © Cambridge University Press, 2013

134 Modeling wired networks with standard models

Figure 8.11 Network model

Figure 8.12 Network model

In “subnet_1”, two server nodes are connected to a switch which is also connected to
a gateway router. The server nodes’ “Application: Supported Services” attribute should
be con gured appropriately. The topology of “subnet_1” is shown in Figure 8.12.

From “Topology”, choose “Verify Links...” to verify link connectivity. If there is no
problem, you can choose statistics of interest and start simulation.

Until now, you’ve created a client/server model, a local area network model, and a
wide area IP network model. However, by following similar techniques, you can create
other models as well.

8.4 Automatic network deployment

In previous sections, you manually con gured the network nodes, links, and topologies.
However, OPNET Modeler provides a rapid con guration tool that allows you to deploy
network topology in an automatic way. The rapid con guration tool not only deploys
topology, but also allows you to choose node model and link model to deploy via a

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:50:07 WET 2013.
http://dx.doi.org/10.1017/CBO9780511667572.009

Cambridge Books Online © Cambridge University Press, 2013

8.5 Summary 135

Figure 8.13 Rapid con guration

Figure 8.14 Network model

deployment wizard. It is suitable for deploying a network that has typical or regular
topology. In Project Editor, from the “Topology” menu, choose “Rapid Con guration”
to show the con guration wizard as shown in Figure 8.13.

Figure 8.14 shows a full-meshed network deployed via the Rapid Con guration
wizard.

Rapid con guration allows you to quickly deploy baseline network. However, you
can make more detailed and customized con gurations based on the deployed network.

8.5 Summary

In this chapter, we demonstrated the basics of how to model networks with standard
OPNET models including standard node model, link model, task/application/pro le
model, etc. These models implement standard protocols and algorithms. We also showed

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:50:07 WET 2013.
http://dx.doi.org/10.1017/CBO9780511667572.009

Cambridge Books Online © Cambridge University Press, 2013

136 Modeling wired networks with standard models

how to apply practical applications and the pro le of applications to workstations and
servers to generate appropriate traf c based on these applications. However, there are
other ways of generating traf c between standard nodes, such as generating traf c based
on the traf c characteristics (packet interarrival times and packet size distributions)
rather than applications, generating self-similar traf c (Park and Willinger 2000) and
even generating hybrid traf c (some explicit discrete event traf c and some background
analytical traf c), etc. For more information on traf c generation, check Chapter 13.

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:50:07 WET 2013.
http://dx.doi.org/10.1017/CBO9780511667572.009

Cambridge Books Online © Cambridge University Press, 2013

9 Modeling wireless networks
with standard models

This chapter explains the concepts and techniques of buildingwireless networks based on
standard OPNETmodels. It is essential to understand the concepts described in Chapter 8
when reading this chapter, and a basic knowledge of wireless technology is required.

9.1 Basics of wireless modeling

The processes for modeling wireless networks are similar to those for modeling wired
networks in OPNET Modeler. However, there are some differences. For wireless net-
works, nodes are connected via invisible radio links instead of cable links. Unlike xed
cable links, a radio link can be in uenced by interference, antenna pattern, and move-
ment of mobile nodes. Therefore, it requires simulation to dynamically compute radio
link connectivity, propagation delay, and power levels.

In Node Editor, there are three modules used for modeling wireless nodes: Radio
transmitter, Radio receiver and Antenna, as shown in Figure 9.1.

In Figure 9.1, the module marked no. 1 is the radio receiver module, the module
marked no. 2 is the radio transmitter module, and the module marked no. 3 is the antenna
module. Radio transceiver modules allow packets to be sent or received via radio links.
The antenna module can be used to exchange packets with other nodes when antenna
directionality or gain needs to be modeled. Antenna module is associated with Radio
transmitter and Receiver modules by means of packet streams as shown in Figure 9.1.
Antenna location in three-dimensional space can be determined by Antenna module’s
“latitude”, “longitude”, and “altitude” attributes. Antenna module can be pointed by
setting Antenna module’s “pointing ref.phi” and “pointing ref.theta” attributes. Antenna
pattern maps gain to all directions in a three-dimensional object whose shape indicates
the relative magnitudes of gain in each direction. Antenna pattern can be designed via
Antenna Pattern Editor, which can be invoked from “File” menu – “New...” – “Antenna
Pattern”. An antenna pattern model is shown in Figure 9.2.

Figure 9.2 shows the antenna pattern model representing an isotropic pattern which
radiates power equally in all directions, and its gain is equal to 0 dB in all directions. You
can design other custom antenna patterns within Antenna Pattern Editor by adjusting
power levels appropriately in all directions. An antenna pattern model can be associated
with an antenna module by specifying the “pattern” attribute of the Antenna module.
Antenna module’s behaviour will be based on the associated antenna pattern.

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:50:07 WET 2013.
http://dx.doi.org/10.1017/CBO9780511667572.010

Cambridge Books Online © Cambridge University Press, 2013

138 Modeling wireless networks with standard models

mobile_ip

manet_rte_mgr

tcp

tpal

application CPU

rsvp

ip_encap

ip

arp

1 2

3

wimax_mac

wimax_port_rx_0_0

wimax_ant_0_0

wimax_port_tx_0_0

Figure 9.1 Node model

9.2 Wireless local area networks (WLANs)

Modeling WLANs (Bing 2002) is similar to modeling LANs. The main difference is that
clients and server communicate via radio links in a WLAN instead of visible wired links.
You can create two network scenarios in this section: one for communication within a
WLAN and another for communication between WLANs.

9.2.1 Communication within WLANs

First, create a project called “chapter9” and scenario called “case1”. The network domain
topology of a WLAN is shown in Figure 9.3. The model of client nodes is mobile
“wlan_wkstn_adv” and the model of the server node is “wlan_server_adv”.

Next, de ne an HTTP application called “My Http” via theApplication Con g object
and set the “Http” attribute to “Heavy Browsing”, as shown in Figure 9.4.

De ne a pro le called “My Pro le” via the Pro le Con g object and add “My Http”
application to Applications table as shown in Figure 9.5.

For all client nodes, set “Application: Supported Pro les” to “My Pro le”. For server
node, set “Application: Supported Services” to “All”. Before starting simulation, you

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:50:07 WET 2013.
http://dx.doi.org/10.1017/CBO9780511667572.010

Cambridge Books Online © Cambridge University Press, 2013

9.2 Wireless local area networks (WLANs) 139

Figure 9.2 Antenna pattern model

Application Config Profile Config

Figure 9.3 Network model

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:50:07 WET 2013.
http://dx.doi.org/10.1017/CBO9780511667572.010

Cambridge Books Online © Cambridge University Press, 2013

140 Modeling wireless networks with standard models

Figure 9.4 Application De nitions

Figure 9.5 Pro le con guration

should choose statistics of interest. In this example, you can choose “Global Statistics –
HTTP” statistics.After simulation completes, you can view statistic results such as “Page
Response Time” and “Traf c Sent”, as shown in Figure 9.6.

9.3 Communication between WLANs

For “case2” scenario, you can copy “case1” scenario by choosing “scenario” menu –
“Duplicate Scenario...”.Add a node object of “wlan2_router_adv” model type. This node
acts as a router responsible for communications between two WLANs. The network
topology is shown in Figure 9.7.

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:50:07 WET 2013.
http://dx.doi.org/10.1017/CBO9780511667572.010

Cambridge Books Online © Cambridge University Press, 2013

9.3 Communication between WLANs 141

Figure 9.6 Statistic results

Figure 9.7 Network model

AWLAN is de ned by the basic service set (BSS), which is a set of wireless nodes that
can communicate with each other. In order to group wireless nodes into two WLANs,
we should explicitly con gure these nodes. Select “client”, “client_0”, and “client_1”,
right click the selection, choose “Edit Attributes (Advanced)” to show the Attributes
table. Set the “BSS Identi er” attribute to “0” from the “Wireless LAN” – “Wireless
LAN Parameters” table, as shown in Figure 9.8. Setting this attribute will explicitly
make “client”, “client_0”, and “client_1” wireless nodes in BSS 0 wireless LAN. In
the same way, set “client_2”, “client_3”, and “server” nodes’ “BSS Identi er” attribute

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:50:07 WET 2013.
http://dx.doi.org/10.1017/CBO9780511667572.010

Cambridge Books Online © Cambridge University Press, 2013

142 Modeling wireless networks with standard models

Figure 9.8 Node attributes

to “1”. Now there are BSS 0 and BSS 1 wireless LANs in the network. To make BSS
0 network nodes communicate with BSS 1 network nodes, we need to con gure the
“router” object. The “router” object has two wireless LAN interfaces. We should make
one interface interact withBSS 0 network and another interact withBSS 1 network. Right
click the “router” object, choose “Edit Attributes (Advanced)” to show Attributes table.
Set “Wireless LAN”– “Wireless LANParameters (IF0 P0)” – “BSS Identi er” to “0” and
set “Wireless LAN” – “Wireless LAN Parameters (IF1 P0)” – “BSS Identi er” to “1”.

You can run two simulations and compare results for the two simulations. One sim-
ulation is with “router” object disabled and another is with “router” object enabled. To
disable an object, select objects, then press the “Fail Selected Objects” tool button. To
enable an object, select objects, then press the “Recover Selected Objects” tool button.
The statistic we are interested is “Traf c Received” for “server” object. Right click
“server” object and select “Choose Individual DES Statistics”. In “Choose Results” dia-
log, choose “Node Statistics” – “Server Http” – “Traf c Received (bytes/sec)”. Next,
run two simulations. Figure 9.9 shows “Traf c Received (bytes/sec)” statistics for two
simulations. The statistic results are averaged.

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:50:07 WET 2013.
http://dx.doi.org/10.1017/CBO9780511667572.010

Cambridge Books Online © Cambridge University Press, 2013

9.4 Wireless mobile networks 143

Figure 9.9 Statistic results

In Figure 9.9, the lower trace is the traf c “server” received when “router” is disabled
and the upper trace is when “router” is enabled. The compared results can be interpreted
as follows: when “router” is disabled, “server” received traf c only from “client_2” and
“client_3” nodes, since these three wireless nodes are in the same WLAN, i.e., BSS 1;
when “router” is enabled, “router” can route traf c from BSS 0 to BSS 1, so “server”
can receive traf c sent from “client”, “client_1”, and “client_2” nodes in WLAN BSS 0
as well.

9.4 Wireless mobile networks

In wireless networks, since wireless nodes may change their positions, modeling node
movement is necessary. In this section, three techniques used to model mobile net-
works will be described: movement via trajectories, facilities for random mobility, and
movement via programming interfaces.

9.4.1 Movement via trajectories

There are two types of trajectory in OPNET Modeler: segment-based and vector-based
trajectories. Segment-based trajectories de ne movement path with a series of segments
separated by pre-de ned points. Vector-based trajectories de ne movement via bearing,
ground speed, and ascent rate attributes of a mobile node.

Segment-based trajectory
To demonstrate segment-based trajectory, you need a new scenario. The following
procedure creates a prototype scenario “case3” based on scenario “case1”.

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:50:07 WET 2013.
http://dx.doi.org/10.1017/CBO9780511667572.010

Cambridge Books Online © Cambridge University Press, 2013

144 Modeling wireless networks with standard models

Figure 9.10 Network model

• Open “chapter9” project. Switch to “case1” scenario from the menu “Scenarios” –
“Switch to Scenario” – “case1”.

• Copy scenario “case1” from menu “Scenarios” – “Duplicate Scenario...”. Name the
duplicated scenario “case3”.

• Change the positions of these wireless nodes so that the network looks like that shown
in Figure 9.10.

Next, you can de ne a segment-based trajectory. A segment-based trajectory is com-
posed of a series of path segments. Each path segment can have individual features.
There are two segment-based trajectory types: xed-interval and variable-interval. For
xed-interval trajectory, a mobile node takes the same amount of time to traverse every

path segment. For variable-interval trajectory, each point along the trajectory has its
own speci ed altitude, wait time, segment traversal time, and orientation. The wait time
makes a mobile node pause at each segment point before traversing the next segment.
You can go through the following steps to create a segment-based trajectory object with
xed interval. It is similar to creating a segment-based trajectory with variable interval.

The main difference is that when de ning each path segment, the “Segment Information”
dialog will show up to ask you to specify parameters for this de ned segment, since each
segment can have individual parameters in variable-interval trajectory.

• From themenu “Topology”, choose “De neTrajectory...” to show “De neTrajectory”
dialog.

• Make the Trajectory name “trajectory1”.
• For Trajectory type, choose “Fixed interval”.
• Set Time step to “0h30m0s”, i.e., 30 minutes for traversing each trajectory segment.
• Check the “Coordinates are relative to object’s position” checkbox. This is to make

sure the trajectory’s initial position can follow the node object’s initial position on the
network.

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:50:07 WET 2013.
http://dx.doi.org/10.1017/CBO9780511667572.010

Cambridge Books Online © Cambridge University Press, 2013

9.4 Wireless mobile networks 145

Figure 9.11 Network model

• Press the “De ne Path” button.Work with the mouse to de ne the segments of the path
on the network. De ne two segments to form a trajectory path as shown in Figure 9.11.

• Right click mouse at workspace, choose “Complete trajectory de nition” to nish
de ning the trajectory.

• Select all clients, right click selected objects, choose “Edit Attributes (Advanced)” to
show the “Attributes” dialog, set the “Trajectory” attribute to “trajectory1”. Now, all
clients have “trajectory1” as their movement trajectories, as shown in Figure 9.12.

Now you can choose the statistics in which we are interested and run simulation. To
view node movement in OPNETAnimation Viewer, in Project Editor, you should check
the menu “DES” – “Record Node Movement 2D Animation for Subnet” before starting
simulation.After simulation completes, choose the “DES” menu – “Play 2DAnimation”
to play animation in Animation Viewer.

Vector-based trajectory
In contrast to segment-based trajectory, there is no explicit end point for vector-based
trajectory. Vector-based trajectory follows the circular path around the Earth. The path is
determined by the bearing, ground speed, and ascent rate attributes of the mobile node.
First, you can create a new scenario “case4” by duplicating scenario “case3”. You can
go through the following steps to make clients have vector-based trajectories:

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:50:07 WET 2013.
http://dx.doi.org/10.1017/CBO9780511667572.010

Cambridge Books Online © Cambridge University Press, 2013

146 Modeling wireless networks with standard models

Figure 9.12 Network model

• Select all clients, right click selected objects, choose “Edit Attributes (Advanced)” to
show Attributes dialog, set “Trajectory” attribute to “VECTOR”.

• Set “Bearing” attribute to “120”. This attribute is to specify bearing off magnetic north:
0, North; 90, East; 180, South; 270, West.

• Set “ground speed” to “1 meter/sec”. This attribute is to specify the initial speed
relative to the ground.

• Set “ascent rate” to “1 meter/sec”. This attribute is to specify the vertical speed.
• Press the OK button to con rm con gurations. Figure 9.13 shows scenario “case4”

after con guration.

Now you can choose the statistics of interest and run the simulation. Unlike segment-
based trajectory, which uses multiple segments to form a trajectory path, vector-based
trajectory relies on the circle around the Earth, so the trajectory path is determined once
the bearing, ground speed, and ascent rate are determined.

9.4.2 Facilities for random mobility

OPNET Modeler provides a “Mobility Con g” object which can be used to con gure
random movement for mobile nodes. You can go through the following steps to set
random mobility.

• Create a new scenario called “case5” by duplicating scenario “case1”.

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:50:07 WET 2013.
http://dx.doi.org/10.1017/CBO9780511667572.010

Cambridge Books Online © Cambridge University Press, 2013

9.4 Wireless mobile networks 147

Figure 9.13 Network model

Figure 9.14 Random mobility pro les

• Find the “Mobility Con g” object in Object Palette. Place a “Mobility Con g” object
on the network.

• Right click the “Mobility Con g” object, choose “EditAttributes (Advanced)” to show
the “Attributes” dialog. In “Random Mobility Pro les”, add a new pro le called “My
Pro le”. We can con gure the parameters in “My Pro le” to produce the expected
randomness. In the following example, default parameters are used. The randomness
parameter table of “My Pro le” is shown in Figure 9.14.

• Select all nodes on the network, choose the menu “Topology” – “Random Mobility” –
“Set Mobility Pro le...”, select “My Pro le”.All the selected nodes will be con gured

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:50:07 WET 2013.
http://dx.doi.org/10.1017/CBO9780511667572.010

Cambridge Books Online © Cambridge University Press, 2013

148 Modeling wireless networks with standard models

Figure 9.15 Network model

with random mobility based on the randomness set in “My Pro le”. Figure 9.15 shows
the network after con guration.

Now you can choose the statistics in which we are interested and run the simulation.
During simulation, these nodes will move randomly based on the randomness pro le
“My Mobility”.

9.4.3 Movement via programming interfaces

In OPNET, node position can be dynamically changed via programming interfaces as
well. This method is the most exible, but one needs to create a custom process model
or modify a current process model, because some extra code for dynamically chang-
ing positions is required. In OPNET, the position of a communication node consists
of three components: “x position”, “y position”, and “altitude” attributes. We can use
the “op_ima_obj_attr_set_dbl()” function to dynamically change the attributes related
to node position during simulation. In geo_topo wrapper APIs, there are some useful
functions that can be used to facilitate node movement. Consult Chapter 6 for more
information.

9.5 Automatic network deployment

In previous sections, you manually deployed network nodes and topologies. Similarly
to the automatic deployment tool for wired networks, OPNET Modeler also provides
an automatic deployment tool for wireless networks. This deployment tool allows you
to deploy a wireless network by specifying: the wireless technology (WLAN, WiMAX,
etc.), the network topology (Hexagon, Square), a model of wireless mobile node, and

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:50:07 WET 2013.
http://dx.doi.org/10.1017/CBO9780511667572.010

Cambridge Books Online © Cambridge University Press, 2013

9.5 Automatic network deployment 149

Figure 9.16 Wireless deployment wizard

Figure 9.17 Network model

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:50:07 WET 2013.
http://dx.doi.org/10.1017/CBO9780511667572.010

Cambridge Books Online © Cambridge University Press, 2013

150 Modeling wireless networks with standard models

mobility of nodes. In Project Editor, from the “Topology” menu, choose “Deploy
Wireless Network...” to show the wireless network deployment wizard as shown in
Figure 9.16.

Figure 9.17 shows a hexagon cellular wireless network deployed via the wireless
network deployment wizard.

The automatic deployment tool does not deploy network in a very detailed way, but,
it does allow fast deployment of large-baseline networks with some common features.
More custom con gurations can also be made on the automatically deployed baseline
networks.

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:50:07 WET 2013.
http://dx.doi.org/10.1017/CBO9780511667572.010

Cambridge Books Online © Cambridge University Press, 2013

10 Modifying standard models

In this chapter, we will demonstrate how to modify standard models. To follow this
chapter, you should understand the modeling concepts and know how to create custom
models in OPNET Modeler, as demonstrated in Chapter 5.

10.1 Introduction

In practice, one often needs to design a node or a protocol that functions mostly like
a standard node or protocol, but with some special features that a standard node or
protocol does not provide. To model this scenario in OPNET Modeler, you can modify
the standard model to suit these needs instead of creating the whole model from scratch.
All OPNET standard models can be modi ed, such as node model, process model, link
model, packet format model, etc. To modify a model, you need to analyze what you want
tomodify: simply extend themodel’s functionality or change themodel signi cantly.You
can modify a standard node model by adding a custom module to interact with existing
modules in that node. You can modify a standard process model by adding your own
code. However, the modi cation should not in uence the correct execution of other code.

10.2 Case study

In this case, you can design a node that functions like a standard PPP (Point
to Point Protocol) workstation, which is capable of modifying the IP datagram
header’s destination address to allow the IP datagram to be routed to a different
server from the initially scheduled server. To make such a node model, you need
to rst open the standard node model “ppp_wkstn_adv” on which the new node
model is based. In Node Editor, from “File” menu, choose “Save As...” to save
“ppp_wkstn_adv” to “ppp_wkstn_adv_modi ed”. Now you can safely modify the
“ppp_wkstn_adv_modi ed” node model without worrying about changing the original
“ppp_wkstn_adv” node model. In “ppp_wkstn_adv_modi ed” model, add a new mod-
ule called “extra_layer” and connect it by packet streams to “ip” module, “ip_rx_0_0”
module and “ip_tx_0_0” module, as shown in Figure 10.1.

There are four packet streams, as shown in Figure 10.1. These packet streams’ “src
stream” and “dest stream” attributes should have the following values, so that the code

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:50:09 WET 2013.
http://dx.doi.org/10.1017/CBO9780511667572.011

Cambridge Books Online © Cambridge University Press, 2013

152 Modifying standard models

rip

dhcp odp tcp

tpal

application CPU

rsvp

ip_encap

ip

extra_layer

ip_rx_0_0 ip_tx_0_0

Figure 10.1 Node model

in the corresponding process model can match the correct packet stream input and output
ports:

• Packet stream from “extra_layer” module to “ip” module: src stream [0] and dest
stream [1]

• Packet stream from “ip” module to “extra_layer” module: src stream [1] and dest
stream [0]

• Packet stream from “ip_rx_0_0” module to “extra_layer” module: src stream [0] and
dest stream [1]

• Packet stream from “extra_layer” module to “ip_tx_0_0” module: src stream [1] and
dest stream [0].

Note: These stream indices can be adjusted by connecting these modules in different
orders.

Add a custom“toggle” type attribute called “modify_dest” to the “extra_layer”module
and make this attribute “promoted” in order to expose it to the node model, as shown in
Figure 10.2.

Next, you can create a process model for the “extra_layer” module. The state transition
diagram of this process model is shown in Figure 10.3.

If a packet comes from an upper layer module, in this case the “ip” module, then the
state transitions to “upper_in” state. If a packet comes from a lower layer module, in this

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:50:09 WET 2013.
http://dx.doi.org/10.1017/CBO9780511667572.011

Cambridge Books Online © Cambridge University Press, 2013

10.2 Case study 153

Figure 10.2 Attributes

init idle

2/0 0/0

lower_in

(STRM_LOWER_IN)

(STRM_UPPER_IN)

11/0

upper_in

(default)

3/0

Figure 10.3 Process model

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:50:09 WET 2013.
http://dx.doi.org/10.1017/CBO9780511667572.011

Cambridge Books Online © Cambridge University Press, 2013

154 Modifying standard models

Figure 10.4 SV block

Packet *pk = OPC_NIL;

int modify_dest;

IpT_Dgram_Fields *fields;

unsigned int dest_addr_int;

char ip_str [32];

Figure 10.5 TV block

#include "ip_dgram_sup.h"

#include "ip_addr_v4.h"

#include <prg_ip_address.h>

#define UPPER_IN_STRM_INDEX 0

#define UPPER_OUT_STRM_INDEX 0

#define LOWER_IN_STRM_INDEX 1

#define LOWER_OUT_STRM_INDEX 1

#define STRM_UPPER_IN (\

(op_intrpt_type () == OPC_INTRPT_STRM) && \

(op_intrpt_strm () == UPPER_IN_STRM_INDEX))

#define STRM_LOWER_IN (\

(op_intrpt_type () == OPC_INTRPT_STRM) && \

(op_intrpt_strm () == LOWER_IN_STRM_INDEX))

Figure 10.6 HB block

case “ip_rx_0_0” module, then the state transitions to “lower_in” state. In SV block, add
declarations of state variables as shown in Figure 10.4.

In TV block, declarations of temporary variables are added as shown in Figure 10.5.
In HB block, the required header les and de ne macro conditions used in the state

transition diagram are included, as shown in Figure 10.6.
To modify standard models, you should be familiar with the data structures and func-

tions de ned in header les in the path “C:\[OPNET installation path]\std\include”. This
folder contains the data structures and function de nitions of OPNET standard protocols
and models. In the HB block, include “ip_dgram_sup.h” and “ip_addr_v4.h”, which are
located in this path.The reason to include the “ip_dgram_sup.h” header le is that you can

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:50:09 WET 2013.
http://dx.doi.org/10.1017/CBO9780511667572.011

Cambridge Books Online © Cambridge University Press, 2013

10.2 Case study 155

use both “IpT_Dgram_Fields” data structure and the “ip_dgram_ elds_access()” func-
tion, both of which are de ned in “ip_dgram_sup.h” header le. “IpT_Dgram_Fields”
data structure contains the elds of the IP datagram. The “ip_dgram_ elds_access()”
function allows you to access the “IpT_Dgram_Fields” object in an IP datagram. So
you can use this function to read/write the dest_addr member of “IpT_Dgram_Fields” to
modify the IPdatagram’s destination address. It is noted that “src_addr” and “dest_addr”
members in “IpT_Dgram_Fields” are “InetT_Address” type, which is de ned in the
“ip_addr_v4.h” header le, so you should include “ip_addr_v4.h” in the HB block as
well. “IpT_Address” is also de ned in the “ip_addr_v4.h” header le as unsigned int, so
you can manipulate this IP address by using the OPNET IPAddressAPI package, which
allows you to convert an IP address between unsigned int and string.

Q10.1 What are the differences between OPNET API functions and the functions
de ned in standard models’ include header les?

OPNET API functions are the basic simulation interfaces that OPNET provides to
allow you to model the fundamental simulation elements such as packet, queue, radio,
process, interrupt, etc. The functions de ned in standard models’ include header les are
functions that implement some functionalities by utilizing OPNET API functions and
provide higher-level interfaces.

HB block also de nes four packet stream indices, which correspond to the packet stream
src and dest ports for the “ppp_wkstn_adv_modi ed” node.

In “init” state, add initialization code to this process model, as shown in Figure 10.7.
In “upper_in” state, add the code as in Figure 10.8.
In “upper_in” state, we rst check whether the “modify_dest” toggle attribute is

enabled in node object. If it is enabled, then the destination IP address of this IP datagram
will always be set to the rst server IP address. The original destination IP address will
be printed out in the simulation console. Finally, this IP datagram will be sent to the
lower layer module, in this case, the “ip_tx_0_0” module.

Q10.2 What are the differences between “ip_dgram_ elds_access()” and “ip_dgram_
elds_get()”?
Both functions can be used to retrieve the IP datagram elds structure from a packet.

However, “ip_dgram_ elds_access()” only retrieves a pointer to the elds structure,
while “ip_dgram_ elds_get()” not only retrieves a pointer to the elds structure but also
strips off the elds from the packet.

In “lower_in” state, add code to deliver the packet received from “ip_rx_0_0” to the
upper layer module, i.e., “ip” module, shown in Figure 10.9.

server_addr = 0;

node_id = op_topo_parent(op_id_self ());

Figure 10.7 “init” state

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:50:09 WET 2013.
http://dx.doi.org/10.1017/CBO9780511667572.011

Cambridge Books Online © Cambridge University Press, 2013

156 Modifying standard models

pk = op_pk_get(UPPER_IN_STRM_INDEX);

op_ima_obj_attr_get_toggle(node_id , \

"extra_layer.modify_dest", \

&modify_dest);

if(modify_dest == OPC_TRUE)

{

fields = ip_dgram_fields_access(pk);

dest_addr_int = fields ->dest_addr.address.ipv4_addr;

// If no previous IP address stored , then store this

// address as the first IP address

if(server_addr == 0)

server_addr = dest_addr_int;

else

{

// Set the IP packet ’s destination address to

// the first recorded IP address

if(fields ->dest_addr.address.ipv4_addr != \

server_addr)

fields ->dest_addr.address.ipv4_addr = server_addr;

}

// Print the IP address

prg_ip_address_value_to_string(dest_addr_int , ip_str);

op_sim_message(\

"IP�destination�address�modified", ip_str);

}

op_pk_send(pk, LOWER_OUT_STRM_INDEX);

Figure 10.8 “upper_in” state

pk = op_pk_get(LOWER_IN_STRM_INDEX);

op_pk_send(pk, UPPER_OUT_STRM_INDEX);

Figure 10.9 “lower_in” state

In Process Editor, from the “Interfaces” menu, choose “Process Interface”. Set
“begsim intrpt” and “endsim intrpt” attributes as “enabled”. Save this process model
as “extra_layer” and compile it.

Open the “ppp_wkstn_adv_modi ed” node model in Node Editor. For the
“extra_layer” module, set its “process model” attribute to “extra_layer”. Save
“ppp_wkstn_adv_modi ed” node model.

Next, you need to create a network to test this modi ed node model. Create a new
project and scenario with project name “chapter10” and scenario name “case1”. Add a
new subnet object to the scenario in Project Editor, as in Figure 10.10.

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:50:09 WET 2013.
http://dx.doi.org/10.1017/CBO9780511667572.011

Cambridge Books Online © Cambridge University Press, 2013

10.2 Case study 157

Within the subnet object, add the followingobjects: an “ApplicationDe nition” object,
a “Pro le De nition” object, a “ppp_wkstn_adv_modi ed” node object named “client”,
a “slip4_gtwy_adv” node object named “router”, and two “ppp_server_adv” objects
named “server_a” and “server_b”, respectively. Connect “client”, “router”, “server_a”,
and “server_b” by using “PPP_DS0” model link objects. This is shown in Figure 10.11.

In “Application De nition” object, add a new Http application called “My Http”, as
shown in Figure 10.12.

In “Pro le De nition” object, add a new pro le called “My Pro le” containing the
“My Http” application, as shown in Figure 10.13.

For a “client” node object,make its “Application: Supported Pro les” attribute include
“My Pro le”, as shown in Figure 10.14.

Figure 10.10 Network model

Figure 10.11 Network model

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:50:09 WET 2013.
http://dx.doi.org/10.1017/CBO9780511667572.011

Cambridge Books Online © Cambridge University Press, 2013

158 Modifying standard models

Figure 10.12 Application De nitions

Figure 10.13 Pro le Con guration

For both “server_a” and “server_b” node objects, simply make their “Application:
Supported Services” support “All”, as shown in Figure 10.15.

In this case, you can verify the function of the modi ed node by using both statistics
and animation. For the links of “router” ←→ “server_a” and “router”←→“server_b”,
choose individual DES statistics, as shown in Figure 10.16.

You should choose throughput statistics for these links so that you can see whether
there is traf c owing within these links.

In Project Editor, from the “DES” menu, check “Record Packet Flow 2D Animation
For Subnet” to record packet movement in the subnet during simulation. Press “Ctrl+R”
and “Alt+R” consecutively to start simulation. After simulation completes, from the

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:50:09 WET 2013.
http://dx.doi.org/10.1017/CBO9780511667572.011

Cambridge Books Online © Cambridge University Press, 2013

10.2 Case study 159

Figure 10.14 Supported pro les

Figure 10.15 Attributes

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:50:09 WET 2013.
http://dx.doi.org/10.1017/CBO9780511667572.011

Cambridge Books Online © Cambridge University Press, 2013

160 Modifying standard models

Figure 10.16 Choose statistics

“DES” menu, choose “Play 2D Animation”. The packet ow animation shows that the
packets are owing within both “router”←→“server_a” and “router”←→“server_b”
links, as shown in Figure 10.17.

We can also double-check it from the statistic results for “router”←→“server_a” and
“router”←→“server_b” links. Right click any empty space in Project Editor, in the
context menu choose “View Results” to show Results Browser. In the “Object Statistics”
list, check the throughput statistics for both links. The results are shown in Figure 10.18.
It is seen that the traf c owing within these two links has similar loads.

Next, you can set “extra_layer.modify_dest” attribute to “enabled” for “client”
node object, as shown in Figure 10.19. After setting this attribute to “enabled”, the
“extra_layer” module within the “client” node object will change the destination IP
address, so that all IP datagrams will be routed to one server. Press “Ctrl+R” and
“Alt+R” consecutively to run the simulation again. After simulation completes, play
the 2D animation for the subnet. It is seen that the packets are owing within the
“router”←→“server_b” link, but not in the “router”←→“server_a” link, as shown in
Figure 10.20.

Again, you can inspect the throughput statistics for “router”←→“server_a” and
“router”←→“server_b” links, as shown in Figure 10.21.

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:50:09 WET 2013.
http://dx.doi.org/10.1017/CBO9780511667572.011

Cambridge Books Online © Cambridge University Press, 2013

10.2 Case study 161

Figure 10.17 Network model

Figure 10.18 Statistic results

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:50:09 WET 2013.
http://dx.doi.org/10.1017/CBO9780511667572.011

Cambridge Books Online © Cambridge University Press, 2013

162 Modifying standard models

Figure 10.19 Attributes

Figure 10.20 Network model

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:50:09 WET 2013.
http://dx.doi.org/10.1017/CBO9780511667572.011

Cambridge Books Online © Cambridge University Press, 2013

10.2 Case study 163

Figure 10.21 Statistic results

It is seen that there is no traf c owing within the “router”←→“server_a” link, but
the traf c owing in the “router”←→“server_b” is nearly doubled. From comparison
of the two simulation scenarios in both statistic results and packet ow animations, you
can verify that the modi ed node model functions as expected.

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:50:09 WET 2013.
http://dx.doi.org/10.1017/CBO9780511667572.011

Cambridge Books Online © Cambridge University Press, 2013

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:50:09 WET 2013.
http://dx.doi.org/10.1017/CBO9780511667572.011

Cambridge Books Online © Cambridge University Press, 2013

Part IV

OPNET Modeling Facilities

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:50:10 WET 2013.
http://ebooks.cambridge.org/ebook.jsf?bid=CBO9780511667572
Cambridge Books Online © Cambridge University Press, 2013

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:50:10 WET 2013.
http://ebooks.cambridge.org/ebook.jsf?bid=CBO9780511667572
Cambridge Books Online © Cambridge University Press, 2013

11 Debugging simulation

This chapter describes the debugging facilities that OPNET Modeler provides and shows
how to debug OPNET models with different techniques. This chapter assumes that the
reader understands general debugging concepts, such as call stack, breakpoint, trace and
watch, etc.

11.1 Debugging facilities in OPNET Modeler

OPNET Modeler provides two levels of debugging capability: object-level debugging
and source-level debugging. In object-level debugging, object refers to an OPNET simu-
lation entity like packet, event, process, etc. The object-level debugging process follows
the order in which discrete events are scheduled; therefore, it is normally used when
you want to track the simulation on an event-by-event basis and track and inspect the
simulation objects associated with these events. Object-level debugging re ects the
internal logic of discrete event simulation. In source-level debugging, source refers
to the simulation source code. The source-level debugging process follows the exe-
cution of source code; therefore, it is suitable if you want to track and watch the
value of variables and inspect the details of your code. The object-level debugging
technique is speci c for debugging event-based simulation programs, and the source-
level debugging technique is for debugging general software programs. In practice, it
is advisable to combine both debugging techniques in order to produce more reliable
models.

An object-level debugger is integrated with OPNETModeler itself. It is called OPNET
Simulation Debugger (ODB). For a source-level debugger, most general source code
debuggers can be used to debug OPNET programs, such as Microsoft Console Debug-
ger (CDB), Microsoft Visual C++ Debugger (MSVC), and GNU Project Debugger
(GDB). CDB and MSVC are source-level debuggers on Windows platforms and GDB is
generally used on Linux platforms.Among them, CDB and GDB can be used in conjunc-
tion with OPNET debugger, i.e., source code debugging operations can be performed
with CDB and GDB within the OPNET debugging window. For MSVC, source code
debugging operations are performed within either MSVC’s own Integrated Develop-
ment Environment (IDE) or command line instead of the OPNET debugging window
(see www.microsoft.com for Microsoft Visual C++ and Microsoft Console Debugger;
www.gnu.org/software/gdb for the GNU Project Debugger).

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:50:16 WET 2013.
http://dx.doi.org/10.1017/CBO9780511667572.012

Cambridge Books Online © Cambridge University Press, 2013

168 Debugging simulation

11.1.1 Prerequisites for debugging

Before debugging simulation, certain preferences need to be set. In the “Edit” menu,
choose “Preferences” to show Preferences Editor. The following preferences will be set
appropriately:

• Search for “Simulation Kernel Type” preference and set its value to “development”.
This is to make simulation in development mode so that the simulation program will
not be optimized and debugging information, pro ling data, and symbols will be
reserved.

• For CDB debugging, search for “Show Console Window” preference and set its value
to “TRUE”.

• For CDB debugging, search for “Path to ??-bit Windows Command-line Debugger”
(?? can be either 32 or 64 depending on CPU and OS support on target machine) and
set its value to the path of CDB executable le (cdb.exe).

• Search for “Compilation Flags for Development Code” preference. For CDB and
MSVC debugging, set its value to “/Zi /Od”. For GDB debugging, set its value to
“-g”. This is to include debugging information in the compiled object le and turn off
all optimizations.

It is also assumed that appropriate source-level debuggers such as CDB, GDB, and
MSVC have been installed on the target machine.

11.1.2 Preparing simulation scenario

In this section, a simulation scenario will be created in order to demonstrate different
debugging techniques. You can rst create a new Project with project name “chapter11”
and scenario name “case1”. In Network Editor of the “case1” scenario, add a node as
shown in Figure 11.1.

The node model is “debug_node1”. The “debug_node1” node model contains three
modules. The “source” and “sink” modules respectively generate and destroy packets
and the “processor” module acts as an intermediate module for processing and relaying
packets. The node model structure is shown in Figure 11.2.

debug_node

Figure 11.1 Network model

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:50:16 WET 2013.
http://dx.doi.org/10.1017/CBO9780511667572.012

Cambridge Books Online © Cambridge University Press, 2013

11.1 Debugging facilities in OPNET Modeler 169

source processor sink

Figure 11.2 Node model

init

0/0 0/0 22/0

procidle

(STREAM)

Figure 11.3 Process model

For the “source” module, its “process model” attribute is set to “simple_source” and
“Packet Interarrival Time” attribute is set to “exponential (0.001)”. For the “sink” mod-
ule, its “process model” attribute is set to “sink”. For the “processor” module, its “process
model” attribute is set to “debug_process1”, which is a custom process model we create.
The logic of “debug_process1” is shown in Figure 11.3.

Figure 11.4 shows the code in the “debug_process1” model. The comments in
Figure 11.4 show which block of code should be placed in which state. The
“debug_process1” process model needs to be compiled before starting simulation.

In Project Editor, from the “DES”menu, choose “Con gure/RunDiscrete Event Simu-
lation...” to show the simulation con guration dialog. Expand the “Execution” category
from the category list and select “OPNET Debugger” to show debugger settings, as
shown in Figure 11.5. Make sure the “Use OPNET Simulation Debugger (ODB)” item
is checked so that the OPNET debugging window will show up when running the sim-
ulation. This item should be checked for either object-level debugging or source-level
debugging.

11.1.3 Debugging with ODB

Since ODB debugging is an object-level debugging, it controls the simulation process
in an event-by-event manner, i.e., simulation progresses on completion of events. For

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:50:16 WET 2013.
http://dx.doi.org/10.1017/CBO9780511667572.012

Cambridge Books Online © Cambridge University Press, 2013

170 Debugging simulation

/* Header Block (HB) */

#define STREAM (op_intrpt_type () == OPC_INTRPT_STRM)

typedef enum { Destroy , Deliver } pp_status;

static pp_status check_packet (Packet *);

/* Temporary Variables */

int strm_index = 0;

Packet *pkptr = OPC_NIL;

char info_string [32];

/* "proc" state */

op_prg_odb_bkpt ("label_breakpoint1");

strm_index = op_intrpt_strm ();

pkptr = op_pk_get (strm_index);

if(check_packet(pkptr) == Destroy)

{

if (op_prg_odb_ltrace_active("label_trace1"))

{

op_prg_odb_print_major(\

"=====�Packet�to�Destroy�=====", OPC_NIL);

sprintf(info_string , "Size:�%d", \

op_pk_total_size_get(pkptr));

op_prg_odb_print_minor (info_string , OPC_NIL);

sprintf(info_string , "Creation�Time:�%f", \

op_pk_creation_time_get(pkptr));

op_prg_odb_print_minor (info_string , OPC_NIL);

}

op_pk_destroy(pkptr);

}

else op_pk_send(pkptr , 0);

/* Function Block (FB) */

static pp_status check_packet (Packet *pkptr)

{

OpT_Packet_Size pkt_size;

pp_status status;

FIN(check_packet(pkptr));

pkt_size = op_pk_total_size_get(pkptr);

if(pkt_size < 500) status = Destroy;

else status = Deliver;

FRET(status);

}

Figure 11.4 Code in process model

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:50:16 WET 2013.
http://dx.doi.org/10.1017/CBO9780511667572.012

Cambridge Books Online © Cambridge University Press, 2013

11.1 Debugging facilities in OPNET Modeler 171

Figure 11.5 Simulation con guration

debugging in ODB, OPNET provides several classes of commands to control the simu-
lation process. To use these commands, the simulation should be in running state. When
the simulation starts running, the OPNET debugging window will show up. In the ODB
prompt of the OPNET debugging window, type “help” to see all classes of ODB com-
mands available. To view the help for a particular ODB command, you can type “help”
followed by the desired command you want to know:

ODB> help next

This will print the usage for the ODB “next” command. With these ODB commands,
you can pause simulation at a speci ed breakpoint, trace the functions used in your
model, display memory allocation details, and more. For example, to stop simulation at
a speci ed simulation time, you can type the following commands:

ODB> tstop 22.33

ODB> cont

The “tstop” command sets a breakpoint at the simulation time 22.33 seconds. The “cont”
command continues running the simulation. Simulationwill be running until the speci ed
breakpoint is reached. Once simulation is paused by hitting the breakpoint, the ODB
command can be used to obtain the debugging information, such as printing speci ed
packet information and event details, and so on.

Along with ODB commands, OPNET also provides programming interfaces to facili-
tate ODB debugging. These interfaces allow you to set labeled breakpoints, trace custom
functions, write diagnostic code for the process model, and more.

11.1.3.1 Setting labeled breakpoints
A labeled breakpoint refers to one that is con gured in the process model via the
op_prg_odb_bkpt()API. Since the labeled breakpoint is con gured in the process model,
you can accurately place the labeled breakpoint anywhere in the process model’s code

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:50:16 WET 2013.
http://dx.doi.org/10.1017/CBO9780511667572.012

Cambridge Books Online © Cambridge University Press, 2013

172 Debugging simulation

Figure 11.6 ODB console output

and make the breakpoint conditional. Therefore, a labeled breakpoint complements the
normal breakpoint that is set by ODB commands. The usage of labeled breakpoints is
shown in Figure 11.4, where a labeled breakpoint named “label_breakpoint1” is con g-
ured in “proc” state by using op_prg_odb_bkpt(). During simulation, labeled breakpoints
are not enabled unless they are set to be enabled explicitly via particularODBcommands.
To set labeled breakpoint to enabled, type the following ODB command:

ODB> lstop label_breakpoint1

ODB> cont

Then simulation execution will stop at “label_breakpoint1”, as in Figure 11.4. The
console output after executing these commands is shown in Figure 11.6.

The labeled breakpoint’s ID is “#1”. This labeled breakpoint can also be deleted
using the “delstop” command. In contrast to use of the “lstop” command, the “del-
stop” command requires the breakpoint’s ID as its parameter. In this case, the ID of
“label_breakpoint1” is 1.

ODB> delstop 1

The IDs of breakpoints can also be found in the ODB debugging window’s “ODB
Breakpoints” tab.

11.1.3.2 Tracing user-defined functions
During debugging, one often needs to know the structure of a function and variables
in that function. To display information about functions used in simulation models,
ODB trace commands can be used to print out the traces of these functions. The trace
information includes function name, arguments’ names and values, and invocations of
other functions. In particular, to display information about user-de ned functions via
ODB trace commands, some macros should be added to these custom functions. These
macros are used in the “check_packet()” function as shown in Figure 11.4. Macro “FIN”
should be placed right after declarations of function variables.Macro “FRET”or “FOUT”
should be placed at the end of the function. “FIN” marks the start of a user-de ned

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:50:16 WET 2013.
http://dx.doi.org/10.1017/CBO9780511667572.012

Cambridge Books Online © Cambridge University Press, 2013

11.1 Debugging facilities in OPNET Modeler 173

Figure 11.7 OPNET debugging window

function. “FRET” returns a value in a user-de ned function. “FOUT” returns void in a
user-de ned function. After adding these macros to your custom function, you can print
the trace of the function by typing the following commands:

ODB> protrace <process id>

ODB> cont

<process id> should be replaced by the actual ID of “debug_process1” process model.
The ID of a process model can be found in ODB debugging window’s “Model” tab, as
shown in Figure 11.7.

After executing these commands, the console will print out function traces for the
“debug_process1” process model. The trace of the “check_packet()” function will be
printed out as well. It is noted that: if “FIN/FOUT/FRET” macros are not used, the
function will not be traced.

11.1.3.3 Using diagnostic block
To debug a model, one often expects that some code can be executed to check possi-
ble issues and print out relevant information, and the code to be executed when asked.
Diagnostic block can be used to serve this purpose. The diagnostic block consists of a
sequence of statements which are only executed under the control of ODB commands.
Diagnostic block can be used to diagnose model code and print out some useful infor-
mation if certain conditions are met. In this context, labeled trace is often used alongside
ODB commands to trigger the execution of diagnostic block at simulation runtime.
Labeled trace is similar to the concept of labeled breakpoint, which can be set to active
or inactive by ODB commands. The “op_prg_odb_ltrace_active()” function is used to

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:50:16 WET 2013.
http://dx.doi.org/10.1017/CBO9780511667572.012

Cambridge Books Online © Cambridge University Press, 2013

174 Debugging simulation

check whether a labeled trace is set to active by ODB command and to decide whether the
diagnostic block should be executed. In Figure 11.4, the labeled trace is “label_trace1”.
If this labeled trace is activated by ODB command, the diagnostic block will be exe-
cuted to print out information about packet size and creation time. The labeled trace can
be activated and the diagnostic block will be printed out by typing the following ODB
commands in OPNET debugging window’s ODB command prompt:

ODB> ltrace label_trace1 c

ODB> cont

You can disable the labeled trace using the “susptrace” ODB command or delete
the labeled trace using the “deltrace” ODB command. Unlike the “ltrace” command,
“susptrace” and “deltrace” accept trace ID as a parameter instead of trace label. Trace
ID can be found in the OPNET debugging window’s “ODB Traces” tab, as shown in
Figure 11.8. In this case, the trace ID for “label_trace1” is 0.

To disable “label_trace1”:

ODB> susptrace 0

To delete “label_trace1”:

ODB> deltrace 0

With these ODB commands, you can tell simulation to execute code in diagnostic
block when it is necessary. Diagnostic block provides the capability of executing certain
debugging code for the development simulation kernel and not executing this code for
the optimized simulation kernel. Thus, diagnostic block does not impose CPU processing
and memory burdens on the nal optimized simulation kernel.

Figure 11.8 OPNET debugging window

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:50:16 WET 2013.
http://dx.doi.org/10.1017/CBO9780511667572.012

Cambridge Books Online © Cambridge University Press, 2013

11.1 Debugging facilities in OPNET Modeler 175

11.1.4 Debugging with CDB/GDB

In contrast to ODB debugging, CDB/GDB debugging is source-level debugging. There-
fore, CDB/GDB debugging controls simulation process in a statement-by-statement
manner, i.e., simulation progresses after executing source code statements. CDB is used
for Windows platforms and GDB is generally used for Linux platforms.

First, run the simulation to show the OPNET debugging window. In this window’s
“Simulation” menu, choose “Attach Windows Debugger (CDB)”. Now CDB is attached
to simulation and the CDB command prompt is shown in the Console tab, as shown in
Figure 11.9.

At this point, the source code is not available. To load source code into the debugging
window, you can use the CDB command to trap a breakpoint in the source code. For
example, if you want simulation to stop at the rst line of “debug_process1” process
model, you can set a breakpoint for the “debug_process1” process model by typing the
following command in the CDB command prompt:

CDB> bp debug_process1

CDB> g

The rst command sets a breakpoint for the “debug_process1” symbol and the sec-
ond continues running the simulation. Then, simulation will stop at the entry point of
the “debug_process1” process model and related source code will be loaded into the
debugging window, as shown in Figure 11.10.

Now, we can set more breakpoints in the source code and evaluate variable values
in the debugging window. To set more breakpoints in the loaded source code, you can
set the cursor at a speci ed line and simply right click the mouse and choose the “Set
Breakpoint” menu item, as shown in Figure 11.11.

Figure 11.9 OPNET debugging window

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:50:16 WET 2013.
http://dx.doi.org/10.1017/CBO9780511667572.012

Cambridge Books Online © Cambridge University Press, 2013

176 Debugging simulation

Figure 11.10 OPNET debugging window

Figure 11.11 OPNET debugging window

Similarly, we can disable or delete a breakpoint at a speci ed line by choosing the
context menu “Disable Breakpoint” or “Delete Breakpoint” menu item. Once a break-
point is trapped, we can evaluate the values of local and state variables in the OPNET
debugging window’s “Local and State Variables” tab, as shown in Figure 11.12.

Alternatively, you can use CDB commands to control the debugging process as well.
For more information on CDB commands, refer to CDB help documentation.

The debugging process for GDB is similar to that for CDB. We should rst attach
GDB to the simulation by choosing “Attach GDB” in the OPNET debugging window’s

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:50:16 WET 2013.
http://dx.doi.org/10.1017/CBO9780511667572.012

Cambridge Books Online © Cambridge University Press, 2013

11.1 Debugging facilities in OPNET Modeler 177

Figure 11.12 OPNET debugging window

“Simulation” menu. Then, you can use CDB commands to trap a breakpoint in order
to load source code into the debugging window. In GDB prompt, type the following
commands to set breakpoint at the speci ed source le’s speci ed function:

GDB> break debug_process1.pr.c:debug_process1

GDB> continue

The rst command sets a breakpoint at the entry point of the “debug_process1” func-
tion in the debug_process1.pr.c source le. Then, simulation will stop at the entry line
of the “debug_process1” function and related source code will be loaded into the debug-
ging window. Now you can control the debugging process either via GDB commands,
or from the graphic interface by setting breakpoints at speci ed lines in source code in
the same way as in CDB debugging. For more information on GDB commands, refer to
GDB help documentation.

It is noted that in the OPNET debugging window you can switch between ODB
debugging and CDB/GDB debugging by selecting the corresponding command prompt
in the console. Hence, you can easily debug your models at object level and source level
at the same time.

11.1.5 Debugging with Microsoft Visual C++ Debugger

Microsoft Visual C++ Debugger (MSVC) is another source-level debugger onWindows.
The main difference between MSVC and CDB is that MSVC provides a comprehensive
graphic user interface and IntelliSense capability for autodisplay and auto-completion.
To debug source code in MSVC, follow these steps:

• Run the simulation to show the OPNET debugging window.
• Start MSVC.

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:50:16 WET 2013.
http://dx.doi.org/10.1017/CBO9780511667572.012

Cambridge Books Online © Cambridge University Press, 2013

178 Debugging simulation

Figure 11.13 Process window

• From MSVC’s “Tools” menu, choose “Attach to Process...” to show process win-
dow. Here, a process refers to a program loaded into memory by the operating
system.

• From the process window, select a process called “op_runsim_dev.exe” and press the
“Attach” button to attach Visual C++ Debugger to this selected process, as shown in
Figure 11.13.

Q11.1 What is the “op_runsim_dev.exe” process?
“op_runsim_dev.exe” is the nally built simulation kernel process for development.

If you set “Simulation Kernel” to “Development”, this process will be loaded. The
development simulation kernel process provides debugging information. In contrast
to the “Development” simulation kernel, there is the “Optimized” simulation kernel,
which corresponds to the “op_runsim_opt.exe” process. The optimized simulation
kernel process does not provide particular debugging information, but it runs faster
than the development simulation kernel process. Simulation kernel type can be set in
the “Simulation Con guration” dialog or “OPNET Preferences” dialog.

• In MSVC, you can open all process models’ containing source les which you want
to debug, then set breakpoints within these source les. For example, to debug source
code in the “debug_process1” process model, in MSVC open the containing source le
“debug_process1.pr.c”, which in this example is located in the “C:\MyOPNET” path.
To debug the “simple_source” processmodel, inMSVCopen the “simple_source.pr.c”
le from “C:\Program Files\OPNET\[version]\models\std\traf_gen”. Now we can set

breakpoints in the “debug_process1.pr.c” and “simple_source.pr.c” les.
• In the OPNET debugging window, type the following ODB command to continue

simulation:

ODB> cont

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:50:16 WET 2013.
http://dx.doi.org/10.1017/CBO9780511667572.012

Cambridge Books Online © Cambridge University Press, 2013

11.1 Debugging facilities in OPNET Modeler 179

Figure 11.14 MSVC debugging window

Then, simulation will stop at the breakpoints set in the “debug_process1.pr.c” and
“simple_source.pr.c” les in MSVC. This is shown in Figure 11.14.

From now on, you can debug these source les in MSVC like normal C/C++ pro-
grams by fully utilizing MSVC’s powerful debugging user interface, such as by setting
breakpoints or conditional breakpoints, evaluating and watching variables, checking
call stack, and a lot more. For more information on MSVC, refer to MSVC help
documentation.

11.1.6 Debugging with animation

OPNET Modeler provides an animation facility that allows you to visually inspect the
packet ows between nodes in a subnet and/or between modules within a node. By
utilizing animation, we can easily nd communication problems between modules and
nodes. To record packet ow animation for the subnet, in Project Editor, from the “DES”
menu choose “Record Packet Flow 2D Animation For Subnet”. Examples for recording
packet ow animation for a subnet can be found in Chapter 5. In this section, we will

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:50:16 WET 2013.
http://dx.doi.org/10.1017/CBO9780511667572.012

Cambridge Books Online © Cambridge University Press, 2013

180 Debugging simulation

show how to record ow animation for a particular node. In case1 scenario, select the
“debug_node” node, right click this node and select “Choose individual DES statistics”
from the context menu. In the dialog, choose “Results Node Animation”, as shown in
Figure 11.15.

Figure 11.15 “Choose Results” dialog

source processor sink

Figure 11.16 Flow animation within node model

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:50:16 WET 2013.
http://dx.doi.org/10.1017/CBO9780511667572.012

Cambridge Books Online © Cambridge University Press, 2013

11.1 Debugging facilities in OPNET Modeler 181

Now you can run this simulation scenario.After simulation completes, in Project Edi-
tor, from the “DES” menu choose “Play 2D Animation” to play animation for node and
process in Animation Browser. Figure 11.16 shows the packet ow animation between
modules within the “debug_node” node. If there are communication problems between
“source”, “processor”, and “sink” modules, then there will be no packet ow anima-
tion between these modules. Therefore, this animation can help identify communication
issues between these modules.

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:50:16 WET 2013.
http://dx.doi.org/10.1017/CBO9780511667572.012

Cambridge Books Online © Cambridge University Press, 2013

12 OPNET programming in C++

This chapter brie y describes the differences between Proto-C, C, and C++ languages
and shows how to con gure OPNET to program models in C++. A case study is also
provided to help the reader grasp the important points on programming OPNET models
in C++. If you are intending to program only in C style, this chapter can be ignored. If
you are familiar with C++ and are interested in programming models in object-oriented
C++ style, you may read this chapter. The chapter requires basic knowledge of generic
C++ programming.

12.1 Proto-C, C, and C++: language and library differences

OPNET provides a programming language called Proto-C to allow users to model var-
ious systems. Proto-C preserves generality by incorporating all the capabilities of the
C/C++ programming language, i.e., a user can program in Proto-C in a similar way to
in C/C++, and in Proto-C you can use the libraries that are accessible to C/C++ as well.
On the other hand, Proto-C provides a set of its own APIs to model communication
networks. Proto-C supports modeling with the state transition diagram (STD) method,
which makes it possible to accurately describe most systems. Figure 12.1 shows that
Proto-C allows you to use both C/C++ and Proto-C libraries and write models in both C
and C++ styles.

In Figure 12.1, Proto-C APIs, C functions, and C++ methods are mixed together.
Figure 12.2 shows the state transition diagram that models the simplest on/off system.

System state transits to on or off depending on the trigger conditions. The Proto-C code
can be embedded in each state. If a state is triggered, the Proto-C code within that
state may be executed in response. By combining Proto-C and state transition diagrams,
complex systems can be modeled.

12.2 Memory management differences between Proto-C APIs and
C/C++ standard library functions

Memory can be allocated in either a static way or a dynamical way. In most situations,
you declare and allocate memory for a variable in a static way, i.e., at compilation time.
However, in some situations, the amount of memory to allocate is known only when

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:50:16 WET 2013.
http://dx.doi.org/10.1017/CBO9780511667572.013

Cambridge Books Online © Cambridge University Press, 2013

12.2 Memory management differences between Proto-C APIs and C/C++ 183

strm_index = op_intrpt_strm ();

pktptr = op_pk_get (strm_index);

switch(strm_index)

{

case 0:

{

// Proto -C

op_pk_send(pktptr , 0);

// C

sprintf(str , "%d", ++ sent_count);

// C++

w.write(std:: string("sending�-�") + str);

}

break;

case 1:

{

// Proto -C

op_pk_destroy(pktptr);

// C

sprintf(str , "%d", ++ received_count);

// C++

w2.write(std:: string("receiving�-�") + str);

}

break;

}

Figure 12.1 Code in process model

init Off On

(TurnOn)

(TurnOff)

0/0 0/00/0

Figure 12.2 State transition diagram

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:50:16 WET 2013.
http://dx.doi.org/10.1017/CBO9780511667572.013

Cambridge Books Online © Cambridge University Press, 2013

184 OPNET programming in C++

a condition is reached at runtime. For these cases, dynamical memory allocation and
a management mechanism are required. In the generic C/C++ programming domain,
there are many standard library functions for memory management: C functions such as
“malloc()”, “realloc()”, “memcpy()”, and “free()”, and C++ new/delete operators. In
OPNET programming, these functions and operators can be used to manage memory as
well. However, these standard functions and operators provide only generic C/C++mem-
ory management facilities, i.e., no OPNET speci c information is provided. Therefore,
if there are memory management problems, only generic memory tracking information
is provided. This information may be too general to analyze and may not be helpful
for resolving the actual problems. Fortunately, Proto-C APIs include a set of mem-
ory management functions that manage memory in a dynamical way and provide extra
OPNET-speci c information and error tracking information. With these memory man-
agement functions, if there are memory errors, more speci c error tracking information
will be provided to help you identify the actual cause.

Proto-C memory functions have three sub-packages for different purposes. These
sub-packages are “Memory” sub-package, “Categorized Memory (CMO)” sub-package,
and “Pooled Memory (PMO)” sub-package. The memory sub-package includes Proto-
C alternatives to C functions like “malloc()”, “realloc()”, “memcpy()”, “free()”, etc.
You can use APIs in this sub-package to allocate, reallocate, copy, and free memory
in a dynamical way, while extra OPNET-speci c tracking information is provided for
debugging. The Categorized Memory sub-package allows you to de ne your own mem-
ory types and group memory objects into different categories. In this way, memory
reports and memory tracking can be more speci c. The Pooled Memory sub-package
is used to deal with the problem that a large number of xed-size memory allocation
and deallocation operations degrade the performance. This situation happens when you
model a repetitive process many times and this process requires dynamical memory
allocation and deallocation. If you simply repetitively use memory allocation and deal-
location functions to work it out, the performance will degrade to an extent depending
on the number of such repetitive operations. The performance is especially important
in simulation, because a bottleneck performance degradation may delay the whole sim-
ulation process considerably. The Pooled Memory sub-package will help resolve this
issue. Repetitive memory allocation and deallocation can be de ned via Pooled Mem-
ory APIs, and system-speci c memory optimization is performed by Pooled Memory
APIs to accomplish memory operations.

For details on these Proto-C memory APIs, you can consult the following section
in OPNET documentation via documentation browser: “Programmers Reference” –
“Discrete Event Simulation” – “Programming Package”.

12.3 Proto-C data structures and algorithms packages, C++ standard
template libraries (STL) and Boost C++ libraries

To write a simulation model, one often needs to design the protocols for this model.
Choosing the right data structure and algorithms can greatly facilitate the design. For

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:50:16 WET 2013.
http://dx.doi.org/10.1017/CBO9780511667572.013

Cambridge Books Online © Cambridge University Press, 2013

12.4 Environment configurations for C++ programming in OPNET 185

OPNET modeling, there are many options. OPNET Proto-C provides a set of data
structures and functions to help you design your algorithms. To design a routing algo-
rithm, you may utilize the DJK package, Geo package, IP Address package, and Graph
package. To design a generic algorithm, you may need List package, Mapping pack-
age, Hash package, Random package and Vector package. For details on these Proto-C
APIs, you can consult the following section in OPNET documentation: “Programmers
Reference” – “Data Structures and Algorithms”. If you write your model in C++, you
can alternatively choose C++ standard template libraries (STL) or more versatile Boost
C++ Libraries for designing generic algorithms. In particular, if you want to use Boost
C++ libraries, you should add the Boost include path to compilation ags. This include
path can be added via Preferences Editor. In Preferences Editor, search the “compilation
ags for all code” preference. Add “IC:\Boost\include\boost-?_?? to the end of the pref-

erence’s value string, where ?_?? should be replaced by the actual version of installed
Boost C++ libraries. Now you can include Boost C++ headers in the process model’s
header block and use Boost libraries in your process models without problems. Simi-
larly, if you want to use some other third-party C/C++ libraries in OPNET, you should
set the corresponding compilation ags and/or linking ags to make sure the correct
include paths and/or linking paths are set. Users should install Boost libraries rst. For
instructions on how to install Boost, refer to its of cial website (www.boost.org).

12.4 Environment configurations for C++ programming in OPNET

With Proto-C, models may be programmed in C style; however, you can also program
your models in C++ style. Some con gurations must be made before programming in
C++ in OPNET. To allow OPNET compiler to compile and link your process model in
C++ style, you need to make the following con gurations:

• In the process model’s header block, add the OPC_COMPILE_CPP ag to the rst
line. This is to tell OPNET compiler to compile code with C++ awareness. By default,
OPNET compiler will compile code only in C.

• In “Edit” menu, choose “Preferences”. In the “Preferences” dialog, search the
“comp_prog_cpp” tag.You shouldmake sure its value is “comp_g++” for gcc compiler
or “comp_msvc” for Visual C++ compiler.

• In the “Preferences dialog”, search the “bind_shobj_prog” and “bind_static_prog”
tags. For Visual C++ compiler, you should make sure “bind_shobj_prog” tag’s value
is “bind_so_msvc” and “bind_static_prog” tag’s value is “bind_msvc”. These two
preferences are used to specify which linker programs should be used for creating
dynamical and static model libraries.

From now on, you can write your models in C++ style in your process models. All
C++ include les should be added to header block. The C++ classes can be declared
and de ned in the same way as structure data types. Figure 12.3 shows de nitions and
declarations of both structure andC++ class. In Figure 12.3, “writer” is a normal structure

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:50:16 WET 2013.
http://dx.doi.org/10.1017/CBO9780511667572.013

Cambridge Books Online © Cambridge University Press, 2013

186 OPNET programming in C++

// Define structure and class in header block

OPC_COMPILE_CPP

#define STREAM (op_intrpt_type () == OPC_INTRPT_STRM)

#include <iostream >

#include <string >

struct writer

{

void write(const std:: string &str)

{

std::cout << str << std::endl;

}

};

class writer2

{

public:

void write(const std:: string &str)

{

std::cout << str << std::endl;

}

};

// Declare structure and class objects in temp block

writer w;

writer2 w2;

Figure 12.3 Structure and class

and “writer2” is a C++ class. They are de ned in the header block and declared in the
temp block in the same way.

The work ows for writing models in C and in C++ are similar. You can just treat
C++ class in the same way as structure. However, once you turn on C++ support in
OPNET, you can declare temporary variables directly within states, i.e., you do not
need to declare temporary variables in “TV” block. Figures 12.4 and 12.5 shows this
difference.

Figure 12.4 shows how to declare temporary variables and write code in state in
C style. Figure 12.5 shows how to declare variables and write code in C++ style. It is
noted that with C++ support turned on, you can declare variables and write code straight
away in states. However, for C style, you have to declare variables in TV block and use
these variables in states. Therefore, from the point of view of programming exibility,
it is convenient to turn on C++ support.

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:50:16 WET 2013.
http://dx.doi.org/10.1017/CBO9780511667572.013

Cambridge Books Online © Cambridge University Press, 2013

12.5 Case study on programming OPNET models in C++ 187

// Declare temporary variables in temp block (TV)

int size = 0;

int i = 0;

Packet *pktptr = OPC_NIL;

// Write process code in state

for(i = 0; i < 10; ++i)

{

size += i;

pktptr = op_pk_create (1024);

op_pk_send(pktptr , 0);

}

Figure 12.4 Variable declarations

// Declare temporary variables in state

// Write process code in state

int size = 0;

for(int i = 0; i < 10; ++i)

{

size += i;

Packet *pktptr = op_pk_create (1024);

op_pk_send(pktptr , 0);

}

Figure 12.5 Variable declarations

12.5 Case study on programming OPNET models in C++

In this case study section, we will use a simple case to help users understand how to
write C++ codes and use third-party C++ libraries in OPNET. The C++ libraries used in
this case study include those from both STL and Boost.

In this case study, there is a network with two identical nodes connecting each other.
These two nodes send unformatted packets to each other. The packet size and interarrival
times are not important in this case, i.e., you can set arbitrary values. However, in every
packet there is one structure eld which carries a string. This string is actually a sequence
of many random numbers concatenated by “@” symbols. For example, a sequence may
look like: “121@101@32@15@68@100@137”.You can also de ne a set of commands
which are represented as numbers. The task is: any node receiving a packet sent by the
other node should check whether the sequence carried by this packet contains one or
more numbers that are the same as the de ned commands; if so, pick them up and print
them in console. Otherwise, print “No Command” in console.

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:50:16 WET 2013.
http://dx.doi.org/10.1017/CBO9780511667572.013

Cambridge Books Online © Cambridge University Press, 2013

188 OPNET programming in C++

Figure 12.6 shows the network domain topology for this case model.
Figure 12.7 shows the node domain modules. There are four modules: transmitter,

receiver, traf c generator, and processor. For traf c generator module, the process model
is “simple_source” and the packet format is “NONE”. For transmitter and receiver mod-
ules, set data rate to “unspeci ed” and packet formats as “all formatted, unformatted”. For
processor module, we need to create a custom process model called “command_parser”,
which has three states: “init”, “idle”, and “process”. Figure 12.8 shows the state transition
diagram of the “command_parser” process model.

The process starts from “init” state, where initialization codes can be placed. Process
control stays in “idle” state until a packet arrives. The packet arrival interrupt is de ned
as “STREAM” condition. Packet arrival interrupt will cause process transits from “idle”
state to “process” state, where the packet will be processed: sequence will be generated
and parsed.

node_0 node_1

Figure 12.6 Network domain topology

traffic_generator processor

receiver

transmitter

Figure 12.7 Node domain modules

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:50:16 WET 2013.
http://dx.doi.org/10.1017/CBO9780511667572.013

Cambridge Books Online © Cambridge University Press, 2013

12.5 Case study on programming OPNET models in C++ 189

init idle process

37/00/0

(STREAM)

3/0

Figure 12.8 State transition diagram for “processor” module

Figure 12.9 State variables

OPC_COMPILE_CPP

#include <iostream >

#include <string >

#include <vector >

#include <sstream >

#include <boost/tokenizer.hpp >

#define STREAM (op_intrpt_type () == OPC_INTRPT_STRM)

Figure 12.10 Code in header block (HB)

In “command_parser” process model, two C++ classes are de ned. One class is
“sequence_generator”, which is used to generate a sequence containing a number of
arbitrary integer numbers. These numbers are concatenated by “@” symbols. Another
class is “command_parser”, which is able to parse a sequence into a list containing all
numbers within that sequence. “command_parser” also checks if this list contains one or
more numbers that are equal to the numbers of prede ned commands. If this sequence
contains one or more command numbers, then these command numbers will be printed
out in console; otherwise, “No Command” will be printed out.

Two state variables (SV) are declared, as shown in Figure 12.9.
Figure 12.10 shows the rst several lines in the header block (HB). The rst line turns

on support for C++. The following lines include the required headers for third-party C++
libraries. The last line de nes the packet arrival condition that triggers state transition.

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:50:16 WET 2013.
http://dx.doi.org/10.1017/CBO9780511667572.013

Cambridge Books Online © Cambridge University Press, 2013

190 OPNET programming in C++

struct data

{

std:: string sequence;

};

class sequence_generator

{

Distribution *number_dist;

std:: string sequence;

int number_count;

public:

sequence_generator(int start = 0, int end = 200, \

int number_count = 20)

{

number_dist = op_dist_load ("uniform_int", \

start , end);

this->number_count = number_count;

}

sequence_generator ()

{

op_dist_unload(number_dist);

}

std:: string& generate ()

{

sequence.clear ();

for(int i = 0; i < number_count; ++i)

sequence += to_string(\

op_dist_outcome (number_dist)) + "@";

return sequence;

}

template <class T>

inline std:: string to_string(const T& val)

{

std:: stringstream strstrm;

strstrm << val;

return strstrm.str ();

}

};

Figure 12.11 Code in header block (HB)

˜

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:50:16 WET 2013.
http://dx.doi.org/10.1017/CBO9780511667572.013

Cambridge Books Online © Cambridge University Press, 2013

12.5 Case study on programming OPNET models in C++ 191

class command_parser

{

std:: vector <std::string >commands;

public:

typedef enum

{

command1 = 100,

command2 ,

command3

} command_type;

std:: vector <std::string > &parse(\

const std:: string &data , \

const std:: string &delims)

{

typedef boost :: tokenizer \

< boost :: char_separator <char> > tokenizer_type;

boost :: char_separator <char> sep(delims.c_str ());

tokenizer_type parser(data , sep);

commands.clear ();

for(tokenizer_type :: iterator it = parser.begin (); \

it != parser.end(); ++it)

{

int number = atoi(it ->c_str ());

if(number >= command1 && number <= command3)

commands.push_back (*it);

}

return commands;

}

};

Figure 12.12 Code in header block (HB)

Figure 12.11 de nes “data” structure and “sequence_generator” class. By default, this
class generates 20 random integers between 0 and 200, and concatenates them together
by “@” symbols to produce a sequence. This sequence is a string stored in the “data”
structure which will be associated with packets from the packet generator.

Figure 12.12 de nes “command_parser” class. This class is able to parse a sequence
string into a list of integer numbers, and check if this list contains numbers that are equal
to numbers of prede ned commands. Within this class, three commands are de ned.
They are numbered 100, 101, and 102. Therefore, if a sequence contains one or more
numbers that are equal to 100 or 101 or 102, this sequence contains commands.

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:50:16 WET 2013.
http://dx.doi.org/10.1017/CBO9780511667572.013

Cambridge Books Online © Cambridge University Press, 2013

192 OPNET programming in C++

int strm_index = op_intrpt_strm ();

Packet *pktptr = op_pk_get (strm_index);

myFunc(pktptr);

data *d = OPC_NIL;

switch(strm_index)

{

case 0:

{

d = (struct data *) op_prg_mem_alloc(\

sizeof (data));

d->sequence = generator.generate ();

op_pk_fd_set(pktptr , 0, \

OPC_FIELD_TYPE_STRUCT , d, 0,

op_prg_mem_copy_create , op_prg_mem_free , \

sizeof(data));

op_pk_send(pktptr , 0);

}

break;

case 1:

{

op_pk_fd_get(pktptr , 0, &d);

std::cout << "----------------------------" \

<< std::endl;

std::cout << "Packet�Id:�" << op_pk_id(pktptr) \

<< std::endl;

std:: vector <std::string >& commands = \

parser.parse(d->sequence , "@");

if(commands.size() > 0)

{

for(std:: vector <std::string >:: iterator it = \

commands.begin (); it != commands.end (); ++it)

std::cout << "Command:�" << *it << std::endl;

}

else std::cout << "No�Command" << std::endl;

std::cout << "----------------------------" \

<< std::endl;

op_pk_destroy(pktptr);

}

break;

}

Figure 12.13 Code in “process” state

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:50:16 WET 2013.
http://dx.doi.org/10.1017/CBO9780511667572.013

Cambridge Books Online © Cambridge University Press, 2013

12.5 Case study on programming OPNET models in C++ 193

Figure 12.14 Console output

Figure 12.13 shows the code in “process” state. “process” state will be triggered
if a packet arrives. If the packet comes from a stream indexed 0, the packet is sent
by the “traf c_generator” module and it should be sent to the transmitter module via
“op_pk_send”. Before it is sent to transmitter, a sequence is generated and set into a eld
of this packet. If the packet comes from a stream indexed 1, the packet is sent by the other
node. For this case, the sequence will be extracted from the packet and parsed to nd out
whether this sequence contains command numbers. If it contains one or more command
numbers, these numbers will be printed out in console; otherwise, “No Command” text
will be printed out. After that, this packet is destroyed.

This model is completed; now you can run the simulation. In order to see the output,
you should run your simulation in debugging mode, which allows console output to
be displayed. To enable the simulation debugger, in “Con gure/Run DES” dialog, in
“Execution” – “OPNETDebugger”, tick the “UseOPNETSimulationDebugger (ODB)”
checkbox. Figure 12.14 shows the console output.

This case study demonstrates how to turn onC++ support, how to include and use third-
party libraries, and how to write OPNET models in C++ in general. You can modify this
model to allow packets to carry any information of interest and parse them appropriately
to achieve some modeling tasks. The information carried by packets can have real-world
entities or can be just simulation control information.

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:50:16 WET 2013.
http://dx.doi.org/10.1017/CBO9780511667572.013

Cambridge Books Online © Cambridge University Press, 2013

13 Traffic in OPNET simulation

This chapter shows how to generate traf c in OPNET Modeler in different ways,
including explicit traf c and background traf c. To follow this chapter, it is assumed
that a reader knows the basic concepts and operations of OPNET modeling.

13.1 Introduction

In Chapters 8 and 9, we demonstrated how to generate traf c based on application and
pro le models. However, it is also possible to generate traf c based on the traf c charac-
teristics (packet interarrival times and packet size distributions) rather than applications.
The custom models demonstrated in Chapter 5 generate traf c in this way. You can gen-
erate traf c this way with standard models as well. Further, you can generate self-similar
traf c, background traf c which is based on analytical model, and even hybrid traf c
which combines both explicit traf c and background traf c.

From the perspective of simulation methodology, traf c in OPNET modeling can be
categorized into two groups: explicit DES traf c and background traf c. Explicit traf c
includes traf c based on applicationmodel, traf c based on traf c generation parameters,
and self-similar traf c based on a raw packet generator (RPG) model. Background traf c
includes traf c based on baseline load and traf c based on traf c ow. In the following
sections, we will demonstrate how to generate these different types of traf c in OPNET
Modeler.

13.2 Explicit traffic

Explicit traf c models traf c in a packet-by-packet basis. It models packet creation,
transmission, queuing, and destruction explicitly through a discrete-event simulation
process. Therefore, explicit traf c can accurately model the details of protocols. This
is the default option for modeling. Explicit traf c can be used to model every detail in
discrete-event simulation. However, it takes more time and more resources. In order to
reduce the computational burden, background traf c can be used, which will be intro-
duced in the next section. In this section, we demonstrate how to generate explicit traf c
in different ways for different uses.

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:50:18 WET 2013.
http://dx.doi.org/10.1017/CBO9780511667572.014

Cambridge Books Online © Cambridge University Press, 2013

13.2 Explicit traffic 195

13.2.1 Explicit traffic based on application

Create a newproject scenariowith project name “chapter 13” and scenario name “case1”.
Add several models to the Project Editor, as shown in Figure 13.1.

“Application De nition” object’s model is the “Application Con g” type. “Pro le
De nition” object’s model is of “Pro le Con g” type. “client” object’s model is of
“ppp_wkstn_adv” type. “router” object’s model is of “slip2_gtwy_adv” type. “server”
object’s model is of “ppp_server_adv” type. The model of the links between “client”
and “router”, and “router” and “server” is “PPP_DS1”.

For Application De nition, an application called “My Http” is de ned, as shown in
Figure 13.2.

client

router
server

Figure 13.1 Network model

Figure 13.2 Custom node model

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:50:18 WET 2013.
http://dx.doi.org/10.1017/CBO9780511667572.014

Cambridge Books Online © Cambridge University Press, 2013

196 Traffic in OPNET simulation

Figure 13.3 Pro le Con guration

Figure 13.4 Application Supported Pro les

For Pro le De nition, a pro le called “My Pro le” including “My Http” application
is de ned, as shown in Figure 13.3.

For “client” node object, “Application: Supported Pro les” is set to “My Pro le”, as
shown in Figure 13.4.

For “server” node object, its “Application: Supported Services” is set to “All”, as
shown in Figure 13.5.

Now you can run the simulation. The traf c based on application will be generated
during the simulation.

13.2.2 Explicit traffic based on traffic generation parameters

In practice, one often wants to generate traf c that has a certain data rate and follows
a certain distribution. Traf c based on application cannot guarantee the data rate and
traf c distribution. However, OPNET Modeler also provides a set of standard models
that are capable of generating traf c which can be parameterized by packet interarrival
time and packet size distributions. In OPNET Modeler, the node models that end with

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:50:18 WET 2013.
http://dx.doi.org/10.1017/CBO9780511667572.014

Cambridge Books Online © Cambridge University Press, 2013

13.2 Explicit traffic 197

Figure 13.5 Attributes

“_station” and “_uni_src” can be used to generate parameterized traf c. Some of these
nodes include “atm_uni_src”, “ethernet_station”, “ppp_ip_station”, and “fddi_station”.
These nodes can be found in Object Palette. Next, we will demonstrate how to generate
parameterized traf c with these node models, based on the case1 scenario.

In Project Editor, from the “Scenarios” menu, choose “Duplicate Scenario...” to
save the duplicated scenario as “case2”. Change both “client” and “server” objects’
“model” attributes to “ppp_ip_station”. Now you can edit the “Traf c Generation Param-
eters” attribute of both “client” and “server” nodes to generate parameterized traf c. This
attribute can be found in “IP” – “Traf c Generation Parameters”. For both “client” and
“server” nodes, in the “Traf c Generation Parameters” table, add a new traf c row and
set the packet interarrival time and packet size distributions, as shown in Figure 13.6.
You can adjust these traf c parameters to control the traf c data rate.

Now you can run the simulation. The parameterized traf c will be generated during
the simulation.

13.2.3 Explicit self-similar traffic based on raw packet generator (RPG) model

If you want to model more bursty traf c like self-similar traf c, you can use a raw packet
generator model which models the Fractal Point Processes (FPPs) such as Sup-FRP,
PowON-PowOFF, PowON-ExpOFF, ExpON-PowOFF, etc. RPG models are imple-
mented over IP and MAC layers, including “ppp_rpg_wkstn” and “ethernet_rpg_wkstn”

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:50:18 WET 2013.
http://dx.doi.org/10.1017/CBO9780511667572.014

Cambridge Books Online © Cambridge University Press, 2013

198 Traffic in OPNET simulation

Figure 13.6 Traf c Generation Parameters

(Ryu and Laven, 1998, Ryu, 2000). Therefore, you can generate IP and Ethernet traf c
with self-similarity.

To generate such self-similar traf c via RPG models, you need a scenario with RPG
nodes. In Project Editor, from “Scenarios” menu, choose “Duplicate Scenario...” to save
the duplicated scenario as “case3”. Change both “client” and “server” objects’ “model”
attributes to “ppp_rpg_wkstn_adv”. Now you can edit the “RPG Traf c Generation
Parameters” attribute of both “client” and “server” nodes to generate parameterized
RPG traf c, as shown in Figure 13.7.

In Figure 13.7, you can choose the “Sup-FRP” FPP arrival process, but you can also
choose other arrival processes. It is possible to edit the parameters of the FPP arrival
process. To do that, click the arrival process to show “Arrival Process” table, where you
can change the FPP process parameters such as “Hurst” and “Peak-to-Mean Ratio”, as
shown in Figure 13.8.

In the “RPGTraf c Generation Parameters” table, click the “Destination Information”
item; in the “Destination Information” table, click the “Destination Name” item, for the
“Node Name” attribute; choose “subnet_0.server” if current node is “client”, otherwise,
choose “subnet_0.client”, as shown in Figure 13.9.

Now you can run the simulation. The parameterized RPG traf c with self-similarity
will be generated during the simulation.

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:50:18 WET 2013.
http://dx.doi.org/10.1017/CBO9780511667572.014

Cambridge Books Online © Cambridge University Press, 2013

13.2 Explicit traffic 199

Figure 13.7 RPG Traf c Generation Parameters

Figure 13.8 Arrival Process

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:50:18 WET 2013.
http://dx.doi.org/10.1017/CBO9780511667572.014

Cambridge Books Online © Cambridge University Press, 2013

200 Traffic in OPNET simulation

Figure 13.9 Destination Name

13.3 Background traffic and hybrid simulation

Traf c is generally modeled explicitly in discrete-event simulation because explicit traf-
c modeling allows detailed control of the modeled protocol and provides more accurate

results. However, modeling every detail is a time-consuming and resource-consuming
process. Modeling explicit traf c in a large network can take a very long time and
require more computing resources. In this situation, background traf c can be helpful.
Background traf c is modeled via analytical means rather than discrete-event simula-
tion; therefore, it takes much less time and consumes a very small amount of computing
resources. You can combine explicit traf c and background traf c in your simulation
model. For this case, the performance of explicit traf c is actually affected by the addi-
tional delays analytically calculated based on the background traf c load. This is also
called hybrid simulation. It is noted that the background traf c cannot be used for all
simulation scenarios, since it is based on analytical models; thus only statistics related
to the introduced delays may be analytically modeled and other statistics that cannot be
derived from the delays will not be affected by background traf c. The implementation
of background traf c is limited to IP traf c, statistics of protocols at higher layers than
IP, such as TCP, UDP, and applications, are not affected by background traf c modeling.
However, OPNET is improving its capability: always check OPNET documentation for
updated information on background traf c. In this section, we will demonstrate how
to generate background traf c in baseline load and in traf c ow, and how to combine
both explicit traf c and background traf c in the simulation as a compromise between

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:50:18 WET 2013.
http://dx.doi.org/10.1017/CBO9780511667572.014

Cambridge Books Online © Cambridge University Press, 2013

13.3 Background traffic and hybrid simulation 201

accuracy and ef ciency. Simulation by combining both explicit traf c and background
traf c is also called hybrid simulation.

13.3.1 Background traffic based on baseline load

A baseline load is a static throughput. A baseline load can be con gured only for one
object from its attribute. The object can be a link model or a node model.

In Project Editor, from the “Scenarios” menu, choose “Duplicate Scenario...” to save
the duplicated scenario as “case4”. For “client” node and “server” node, choose the
“RPG – Delay (secs)” statistic, as shown in Figure 13.10.

The simulation for the case4 scenario can now be run. After simulation completes,
statistic results for “client” node or “server” node can be viewed. The RPG delay statistic
result is shown in Figure 13.11.

In Project Editor, from the “Scenarios” menu, choose “Duplicate Scenario...” to save
the duplicated scenario as “case5”. Next, we will add baseline loads for links between
“client” and “server” nodes in case5. First, select the link between “client” and “router”,

Figure 13.10 “Choose Results” dialog

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:50:18 WET 2013.
http://dx.doi.org/10.1017/CBO9780511667572.014

Cambridge Books Online © Cambridge University Press, 2013

202 Traffic in OPNET simulation

Figure 13.11 Statistic results

edit the “Traf c Information” attribute in the “Traf c Information” table, edit baseline
load for “subnet_0.client→subnet_0.router” direction to show “A→B” table, as shown
in Figure 13.12. Also edit baseline load for the “subnet_0.router→subnet_0.client”
direction in the same way.

In “A→B” table, click the “Traf c Load (bps)” attribute to add a new baseline load
pro le. In the traf c load pro le, add background traf c loads for three intervals along
the simulation time axis, as shown in Figure 13.13.

Set the baseline load traf c for the link between “router” to “server” in the same way.
Run the simulation. After the simulation completes, view statistic results for “client”
node or “server” node. The RPG delay statistic result is shown in Figure 13.14.

It is noted that the RPG delay statistic resonates with the background traf c load set
in link objects. Compared with Figure 13.11, the RPG delay with background traf c is
longer than without background traf c. In this simulation scenario, the traf c generated
includes both explicit traf c from RPG nodes and background traf c within links. There-
fore, it is a hybrid simulation scenario. The background traf c set in the links ranges
from 100 Kbps to 500 Kbps. If we model this volume of traf c explicitly in RPG nodes
rather than in links via baseline load, then it takes a lot longer to complete the simulation
and more computing resources are required for this simulation.

13.3.2 Background traffic based on traffic flow

In case4, you can change baseline load to model the background traf c within the links
between “client” and “server” nodes. However, if there are many links between “client”
and “server” nodes, then you can change the baseline loads for all these links en route.
Every time you model different background traf c, you have to change the baseline loads

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:50:18 WET 2013.
http://dx.doi.org/10.1017/CBO9780511667572.014

Cambridge Books Online © Cambridge University Press, 2013

13.3 Background traffic and hybrid simulation 203

Figure 13.12 Traf c Information

Figure 13.13 Baseline load pro le

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:50:18 WET 2013.
http://dx.doi.org/10.1017/CBO9780511667572.014

Cambridge Books Online © Cambridge University Press, 2013

204 Traffic in OPNET simulation

Figure 13.14 Statistic results

Figure 13.15 Network model

for all links as well. To reduce the work involved with con guring baseline loads for all
links en route, OPNET Modeler provides another model to help con gure background
traf c in a uni ed way: Traf c Flow model. With this model, you just need to con gure
the background traf c load once in the Traf c Flow model object, then all objects along
the ow path will have that background traf c load automatically.

Open the case4 scenario, from “Scenarios” menu, choose “Duplicate Scenario...” to
save the duplicated scenario as “case6”. It is noted that in case4, the background traf c

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:50:18 WET 2013.
http://dx.doi.org/10.1017/CBO9780511667572.014

Cambridge Books Online © Cambridge University Press, 2013

13.3 Background traffic and hybrid simulation 205

is not con gured for the links between “client” and “server”. In case6, you can use the
“Traf c Flow” object to con gure the background traf c for all objects between “client”
and “server”. In the Object Palette, nd the “ip_traf c_ ow” model. Connect “client”
and “server” by using the “ip_traf c_ ow” object, as shown in Figure 13.15.

“ip_traf c_ ow” is a simplex model. You can also connect “server” and “client” to
model duplex background traf c between these two nodes. Next, you can con gure
the background traf c via the “ip_traf c_ ow” object. Edit the “Traf c (bits/second)”
attribute of the “ip_traf c_ ow” object. For this attribute, add a pro le as shown in
Figure 13.16.

Figure 13.16 Traf c pro le

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:50:18 WET 2013.
http://dx.doi.org/10.1017/CBO9780511667572.014

Cambridge Books Online © Cambridge University Press, 2013

206 Traffic in OPNET simulation

Figure 13.17 Statistic results

It is seen that setting background traf c in the “Traf c Flow” object is the same as in
the link object. However, for the case of Traf c Flow, you need to con gure it for only
one object without worrying about how many objects are between the “client” and the
“server”.

Now you can run the simulation. Figure 13.17 shows the RPG delay statistic for
“client” node. The RPG delay statistic is similar to that in Figure 13.14.

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:50:18 WET 2013.
http://dx.doi.org/10.1017/CBO9780511667572.014

Cambridge Books Online © Cambridge University Press, 2013

14 External model access (EMA)

This chapter shows the concept of external model access (EMA; a text le representation
alternative to OPNET modeler’s graphic representation for modeling), the bene ts of
using EMA in some circumstances, and how simulation models can be constructed via
EMA instead of OPNET Modeler’s graphic interfaces.

14.1 What EMA is and reasons to use it

Usually, a user can access OPNET models by creating a node model or link model and
reading/writing that model from OPNET modeler’s graphic user interfaces (GUI) such
as Node Editor, Link Editor, etc. This way can be called WYSIWYG – “WhatYou See Is
What You Get.” Differing from this WYSIWYG method, EMA is a technique provided
by OPNET Modeler that allows you to access OPNET models from external programs
in a text format; i.e., models can be accessed via code rather than GUI. EMA code can
be written in an external C/C++ program. It is different from the C/C++ code written in
OPNETprocessmodel,which is via theOPNETgraphic interface.Therefore, the external
C/C++ program with EMA capability can interface with other programs, libraries, and
databases just like a general C/C++ program. The EMA C/C++ program is compiled
and linked into an executable le. By running that executable le, models and/or objects
of models can be read or written or created. To write such an EMA program, you can
use any text editor or C/C++ IDE (Integrated Development Environment). The models
which can be accessed and created via EMA code include most of the OPNET Modeler
model types such as project model, network model, node model, process model, link
model, etc. For a full list of model EMAAPI supports, consult OPNET documentation
“Programmers Reference”, “Model File Access” section.

OPNET Modeler provides both GUI and EMA methods to allow users to access its
models, such as create model, read and write model attributes and so on. However,
GUI and EMA have their own advantages and disadvantages. With GUI, the user can
create prototype models or read/write models’ attributes in an intuitive way without the
need for any programming knowledge or EMA-speci c knowledge and issues. The GUI
method can be applied in most situations. However, in some circumstances, using the
GUI method is awkward. For example, in a wireless network there are many wireless
nodes and you want to change the power attribute of these nodes’ transmitters in two
scenarios. In scenario one, all nodes’power attributes should have different power values.

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:50:19 WET 2013.
http://dx.doi.org/10.1017/CBO9780511667572.015

Cambridge Books Online © Cambridge University Press, 2013

208 External model access (EMA)

In scenario two, all nodes’power attributes values should follow a particular distribution
model. With the GUI method, for scenario one you can change the power attributes of
these nodes one by one from the attribute dialog; however, this is tedious if there aremany
nodes in the network. For scenario two, it is more dif cult to achieve the task with the
GUI method. Considering a network with hundreds of nodes, modifying attributes one
after another takes toomuch time.TheEMAmethod provides an easier andmore scalable
solution for these scenarios. With EMA, you can easily loop through objects to change
the power attributes of all nodes via programming interfaces. However, in practice, you
may combine the bene ts of both GUI and EMA methods to access OPNET models.

14.2 EMA case study

You may create a model completely via the EMAmethod. However, it is easier to create
a basic prototype model via the graphic interface and add customized features via EMA.
Combining both GUI and EMAmethods reduces the burden of writing the same routines
every time. In this example, we will create a network model that contains 100 nodes,
each of which has a uniformly distributed random altitude ranging from 0 to 1000 meters.
This network model may simulate a wireless sensor network (Sohraby et al., 2007) with
sensor nodes spread over an uneven area.

First, you can create a node model in Node Editor, within which a “processor”‘ module
is connected to a radio receiver module and radio transmitter module. This node model
is saved as “ema_node1”. It is shown in Figure 14.1.

Secondly, you can create a new project with project name “chapter14” and scenario
name “case1”. A subnet object is placed on the network. The subnet contains only one
instance of the “ema_node1” node model. Save this project scenario. This is shown in
Figure 14.2.

Next, you can generate the EMA code from the current network model. From the
Project Editor’s “File” menu, choose “Generate Ema Code” to generate EMA code for
the current prototype network model. This is shown in Figure 14.3.

“Generate Ema Code” will generate EMA code. Save the code into a le named
“chapter14-case1.em.c” in the model directory. Now you can modify this EMA le in
order to create the network model.

processor

rr_o rt_o

Figure 14.1 Node model

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:50:19 WET 2013.
http://dx.doi.org/10.1017/CBO9780511667572.015

Cambridge Books Online © Cambridge University Press, 2013

14.2 EMA case study 209

Figure 14.2 Network model

Figure 14.3 Network model

In “chapter14-case1.em.c” le, there are some routines for constructing an EMA pro-
gram. These routines are general EMA functions starting with the pre x “Ema_”. The
details of EMA APIs can be found in “Programmers Reference” – “Model File Access
API” – “External Model Access” section of OPNET documentation.

Before you can modify this EMA le, we will explain the existing EMA code. In the
“chapter14-case1.em.c” le, the EMA code can be separated into ve sections. The rst
section is the line with Ema_Init() function, which is used in every EMA program to
initialize the EMA package. After “Ema_Init()” is invoked, other EMA functions can be
used. The second section is the line with the “Ema_Model_Create()” function, which cre-
ates an empty model to be completed by adding other dependent objects to it. In this case,
the model is a network model. The third section contains “Ema_Object_Create()” invo-
cations. The “Ema_Object_Create()” function is used to create an instance of the model,
i.e., an object. In this case, subnet-related objects, node object, and ISO elevation map
color objects are created. The fourth section contains “Ema_Model_Attr_Set()” invoca-
tions. The “Ema_Model_Attr_Set()” function is used to set attributes for an object. These

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:50:19 WET 2013.
http://dx.doi.org/10.1017/CBO9780511667572.015

Cambridge Books Online © Cambridge University Press, 2013

210 External model access (EMA)

attributes are the same as you can see from the model instance’s “Attributes” dialog via
the OPNET graphic interface. Since all objects created here are instances of the network
model, all invocations related to these objects should reference “model_id” returned
from “Ema_Model_Create()”. The fth section is the line with “Ema_Model_Write()”
invocation, which will nally write the completed EMA model into a model le within
the primary model directory. The EMA-created model le can be loaded in OPNET

// Section 1

Ema_Init (EMAC_MODE_ERR_PRINT | EMAC_MODE_REL_60 , \

argc , argv);

// Section 2

model_id = Ema_Model_Create (MOD_NETWORK);

// Section 3

obj [0] = Ema_Object_Create (model_id , \

OBJ_NT_SUBNET_FIX);

obj [1] = Ema_Object_Create (model_id , \

OBJ_NT_SUBNET_VIEW);

...

obj [4] = Ema_Object_Create (model_id , \

OBJ_NT_NODE_FIXED);

...

obj [8] = Ema_Object_Create (model_id , \

OBJ_NT_ISO_ELEV_MAP_COLOR_SETTING);

obj [9] = Ema_Object_Create (model_id , \

OBJ_NT_ISO_ELEV_MAP_COLOR_SETTING);

...

// Section 4

Ema_Object_Attr_Set (model_id , obj[5], \

"elevation", COMP_CONTENTS , (double) 1e+100, \

"color", COMP_CONTENTS , 1090519039 , \

EMAC_EOL);

Ema_Object_Attr_Set (model_id , obj[6], \

"elevation", COMP_CONTENTS , (double) 5000, \

"color", COMP_CONTENTS , 1073741824 , \

EMAC_EOL);

...

// Section 5

Ema_Model_Write (model_id , "chapter14 -case1");

Figure 14.4 EMA code

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:50:19 WET 2013.
http://dx.doi.org/10.1017/CBO9780511667572.015

Cambridge Books Online © Cambridge University Press, 2013

// Section 3

obj [0] = Ema_Object_Create (model_id , \

OBJ_NT_SUBNET_FIX);

obj [1] = Ema_Object_Create (model_id , \

OBJ_NT_SUBNET_VIEW);

obj [2] = Ema_Object_Create (model_id , \

OBJ_NT_SUBNET_FIX);

obj [3] = Ema_Object_Create (model_id , \

OBJ_NT_SUBNET_VIEW);

obj [4] = Ema_Object_Create (model_id , \

OBJ_NT_NODE_FIXED);

obj [5] = Ema_Object_Create (model_id , \

OBJ_NT_ISO_ELEV_MAP_COLOR_SETTING);

obj [6] = Ema_Object_Create (model_id , \

OBJ_NT_ISO_ELEV_MAP_COLOR_SETTING);

obj [7] = Ema_Object_Create (model_id , \

OBJ_NT_ISO_ELEV_MAP_COLOR_SETTING);

obj [8] = Ema_Object_Create (model_id , \

OBJ_NT_ISO_ELEV_MAP_COLOR_SETTING);

obj [9] = Ema_Object_Create (model_id , \

OBJ_NT_ISO_ELEV_MAP_COLOR_SETTING);

Figure 14.5 EMA code

// Declare variables

int base_index;

int node_count;

// Section 3

obj [0] = Ema_Object_Create (model_id , \

OBJ_NT_SUBNET_FIX);

obj [1] = Ema_Object_Create (model_id , \

OBJ_NT_SUBNET_VIEW);

obj [2] = Ema_Object_Create (model_id , \

OBJ_NT_SUBNET_FIX);

obj [3] = Ema_Object_Create (model_id , \

OBJ_NT_SUBNET_VIEW);

base_index = 4;

node_count = 100;

for(i = 0; i < node_count; ++i)

obj [base_index + i] = Ema_Object_Create (\

model_id , OBJ_NT_NODE_FIXED);

for(i = 0; i < 5; ++i)

obj [base_index + node_count + i] = \

Ema_Object_Create (model_id , \

OBJ_NT_ISO_ELEV_MAP_COLOR_SETTING);

Figure 14.6 EMA code

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:50:19 WET 2013.
http://dx.doi.org/10.1017/CBO9780511667572.015

Cambridge Books Online © Cambridge University Press, 2013

212 External model access (EMA)

Modeler’s graphic interface in the same way as any other model created directly via the
modeler’s graphic interface. The breakdown of these sections is shown in Figure 14.4.

To create the new network model speci ed at the beginning of this section, you only
need tomodify code in the third and fourth sections and leave other sections intact. Before
modifying these sections, you need to include the header le “stdlib.h”, since you’ll
use “rand()” function to generate random numbers. Change the size of the global array
variable “obj” from current 10 to 109, since in current EMAcode only one “ema_node1”
instance is created while in the new network model there are 100 nodes. Then, you can
modify the code in the third section. The existing code for the third section is shown in
Figure 14.5.

We are only interested in the code that creates a node, as shown in Figure 14.5. The
code for creating a node is replaced by a loop statement thatwill create 100 node instances
of the “ema_node1” model. After 100 node objects are created, ISO elevation map color
objects are also created via a loop statement. This modi cation is shown in Figure 14.6.

Next, you can modify the code in the fourth section to set the attributes for the
100 node objects created. These attributes include “altitude” attribute. There are many
“Ema_Model_Attr_Set()” invocations in Section 4. However, you should only look for
the one that sets the attributes for “node_0”. This is shown in Figure 14.7.

// Section 4

Ema_Object_Attr_Set (model_id , obj [4],

"name", COMP_CONTENTS , node_name ,

"name", COMP_USER_INTENDED , EMAC_ENABLED ,

"model", COMP_CONTENTS , "ema_node1",

"model", COMP_USER_INTENDED , EMAC_ENABLED ,

"x�position", COMP_CONTENTS , (double) -125.24,

"x�position", COMP_USER_INTENDED , EMAC_ENABLED ,

"y�position", COMP_CONTENTS , (double) 6.2496 ,

"y�position", COMP_USER_INTENDED , EMAC_ENABLED ,

"doc�file", COMP_CONTENTS , "",

"doc�file", COMP_INTENDED , EMAC_DISABLED ,

"doc�file", COMP_USER_INTENDED , EMAC_ENABLED ,

"subnet", COMP_CONTENTS , obj [2],

"alias", COMP_INTENDED , EMAC_DISABLED ,

"tooltip", COMP_CONTENTS , "",

"tooltip", COMP_INTENDED , EMAC_DISABLED ,

"tooltip", COMP_USER_INTENDED , EMAC_ENABLED ,

EMAC_EOL);

Ema_Object_Attr_Set (model_id , obj [4],

"ui�status", COMP_CONTENTS , 0,

"view�positions", COMP_INTENDED , EMAC_DISABLED ,

EMAC_EOL);

Figure 14.7 EMA code

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:50:19 WET 2013.
http://dx.doi.org/10.1017/CBO9780511667572.015

Cambridge Books Online © Cambridge University Press, 2013

14.2 EMA case study 213

// Declare variables

char node_name [256];

int direction_x , direction_y;

// Section 4

srand(time(NULL));

for(i = 0; i < node_count; ++i)

{

sprintf(node_name , "node_%d", i);

rand ()%2 == 0 ? \

(direction_x = -1) : (direction_x = 1);

rand ()%2 == 0 ? \

(direction_y = -1) : (direction_y = 1);

Ema_Object_Attr_Set (model_id , obj [base_index + i],

"name", COMP_CONTENTS , node_name ,

"name", COMP_USER_INTENDED , EMAC_ENABLED ,

"model", COMP_CONTENTS , "ema_node1",

"model", COMP_USER_INTENDED , EMAC_ENABLED ,

"x�position", COMP_CONTENTS , \

(double) (-126 + direction_x*rand ()%10) ,

"x�position", COMP_USER_INTENDED , EMAC_ENABLED ,

"y�position", COMP_CONTENTS , \

(double) (-6 + direction_y*rand ()%10) ,

"y�position", COMP_USER_INTENDED , EMAC_ENABLED ,

"altitude", COMP_CONTENTS , (double) (rand ()%1000) ,

"altitude", COMP_USER_INTENDED , EMAC_ENABLED ,

"doc�file", COMP_CONTENTS , "",

"doc�file", COMP_INTENDED , EMAC_DISABLED ,

"doc�file" COMP_USER_INTENDED , EMAC_ENABLED ,

"subnet", COMP_CONTENTS , obj [2],

"alias", COMP_INTENDED , EMAC_DISABLED ,

"tooltip", COMP_CONTENTS , "",

"tooltip", COMP_INTENDED , EMAC_DISABLED ,

"tooltip", COMP_USER_INTENDED , EMAC_ENABLED ,

EMAC_EOL);

Ema_Object_Attr_Set (model_id , obj [base_index + i],

"ui�status", COMP_CONTENTS , 0,

"view�positions", COMP_INTENDED , EMAC_DISABLED ,

EMAC_EOL);

}

Figure 14.8 EMA code

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:50:19 WET 2013.
http://dx.doi.org/10.1017/CBO9780511667572.015

Cambridge Books Online © Cambridge University Press, 2013

214 External model access (EMA)

Figure 14.9 Network model

You should also modify this code in response to the modi cation made in Section 3,
i.e., use a loop to set attributes for all 100 nodes created in Section 3. Furthermore, you
can make random x and y position attributes for these nodes so that they will be randomly
positioned on the network. For “altitude” attributes, they are random numbers between
0 and 1000. This modi cation is shown in Figure 14.8.

At this point, all EMA code modi cations have been made. Next, you can compile
and link the EMAprogram into an executable. Before building an EMAexecutable, you
should make sure your “op_mkema” command’s path is set in the PATH environment
variable. Then, you can type the following command in console within your model’s
project path (assume the EMA source le is chapter14-case1.em.c):

$ op_mkema -m chapter14-case1

This command will build an EMA executable le in the project folder. This executable
le is named “chapter14-case1.dev32.i0.em.x”. Now, you can run this EMA executable

to create model les:

$ chapter14-case1.dev32.i0.em.x

After running this executable, the model les will be generated in the project folder.
Now you can open the project named “chapter14” from OPNET Modeler’s graphic
interface to load the EMA created network model. The new network model is shown in
Figure 14.9.

These nodes are randomly positioned in the network.You can also check the “altitude”
attributes of these nodes to see if they have different values randomly distributed between
0 and 1000.

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:50:19 WET 2013.
http://dx.doi.org/10.1017/CBO9780511667572.015

Cambridge Books Online © Cambridge University Press, 2013

15 OPNET co-simulation with
third-party programs

In this chapter, the co-simulation capability of OPNET Modeler is introduced. The
co-simulation interface allows OPNET Modeler to interact with external systems dur-
ing simulation. These external systems can be software programs, hardware devices, or
simply humans. Co-simulation is often used in situations where some third-party pro-
grams need to be used to process or analyze the intermediate simulation results, or some
real-world data needs to be collected and fed back to OPNETModeler during simulation.

15.1 Co-simulation with external programs

15.1.1 Introduction

OPNET Modeler provides a mechanism to support live interaction with an exter-
nal system during simulation. This co-simulation mechanism involves the following
concepts:

• External System De nition (ESD) model. The ESD model de nes a set of interfaces
that allow processmodels inOPNETmodeler to communicatewith external programs.
These interfaces can be read or written by both OPNET process models and external
programs.

• Esys (External System) module. The Esys module is a node domain module that can
be placed into a node domain and processed as are other node domain modules, like
processor module and queue module. However, the Esys module has extra features: it
supports process models with external system communication capability and supports
ESD models. The Esys module allows the user’s simulation model to talk to external
systems.

• Simulator description le. The simulation description le is a plain-text le contain-
ing statements that specify how to build co-simulation. This text le should be placed
in the OPNET model directory and has the lename extension “.sd”.

• Esys API package. The Esys API package contains functions that can read and write
interfaces’values de ned in theESDmodel fromprocessmodels during co-simulation.

• External Simulation Access (ESA) API package. The ESA API package contains
functions that can read and write interfaces’ values de ned in the ESD model from
external code during co-simulation. The external code refers to the code of an external
system or a link to another external program. This package also contains functions that

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:50:20 WET 2013.
http://dx.doi.org/10.1017/CBO9780511667572.016

Cambridge Books Online © Cambridge University Press, 2013

216 OPNET co-simulation with third-party programs

are able to control the simulation ow process, read/write text, and issue debugging
commands from external code.

• External system. External system represents any external program, device, or code
that is in co-simulation with OPNET Modeler.

15.1.2 Co-simulation with an external C program

In this section, a case study is demonstrated to show how to write a co-simulation model
that can communicate with an external C program in a bidirectional way.

15.1.2.1 Creating a simulator description file
A simulator description le de nes statements that tell OPNET Modeler how to build
co-simulation. The content of this le is shown in Figure 15.1. This description le is
saved as “cosim_desc1.sd”.

In the simulation description le, lines beginning with “#” are comment lines. “Plat-
form” can be either “windows” or “linux_x86” depending on your operating system.
“use_esa_main” can be either “yes” or “no”. If it is “yes”, the external program will
be used in OPNET modeler as external dynamical libraries and entry point main() is
declared in OPNET Modeler, i.e., the OPNET Modeler drives the co-simulation con-
trol ow. If it is “no”, OPNET models are linked with the external program and entry
point main() is declared in the external program, i.e., the external program drives the
co-simulation control ow. “bind_obj” speci es the external program’s object le that
will be linked with OPNET models for co-simulation. “bitness” can be either “32bit” or
“64bit”, depending on your system’s capability. “kernel” can be either “development” for
debugging models or “optimized” for releasing models. “bind_lib” speci es the exter-
nal static library to be used in co-simulation. “dll_lib” speci es the external dynamical
library to be used in co-simulation. In this case study, only three statements are de ned:
“platform”, “use_esa_main”, and “bind_obj”. “use_esa_main” is set to “no” to allow
the external C program to act as main controller for co-simulation. “bind_obj” is set to
“cosim_external_code1.obj”, which is the compiled object le name of the external C
program. The name of the external C program is “cosim_external_code1.c”.

Simulator Description

start_definition

platform: windows

use_esa_main: no

bind_obj: cosim_external_code1.obj

#bind_lib: xxx.lib

#bitness: 32bit

#kernel: development

#dll_lib: xxx.dll

end_definition

Figure 15.1 Simulator description le

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:50:20 WET 2013.
http://dx.doi.org/10.1017/CBO9780511667572.016

Cambridge Books Online © Cambridge University Press, 2013

15.1 Co-simulation with external programs 217

Figure 15.2 External system de nition

15.1.2.2 Creating an external system definition (ESD) model
The ESD model de nes all interfaces that are used to allow OPNET process mod-
els to communicate with an external program. To create a new ESD model, choose
“File” menu – “New...” – “External System De nition”. For “Simulator description”,
you should select the created simulation description lename “cosim_desc1”. If it is not
shown in the list, you need to refresh model les by choosing “File” menu – “Manage
Model Files” – “Refresh Model Directories”. For “Interfaces”, we create two interfaces:
“size” as integer type and “desc” as string type. These types should be compatible C
language types in external C program, i.e., integer is int type and string is char[] type.
The direction refers to the way that OPNET models communicate with the external
program. If the direction is “OPNET to Cosim”, it implies that OPNET models may
read/write interface and the external program may read interface only. If the direction is
“Bidirectional”, it implies both OPNET models and the external program may read/write
interface. The con guration of this ESD model is shown in Figure 15.2. This ESD model
is saved as “cosim_esd1”.

15.1.3 Creating simulation models

First, you can create an empty project and scenario with project name as “chapter15”
and scenario name as “case1”. Next, you need to create the network domain topology
within the scenario “case1”. The network has two nodes: one is traf c source node “src”
and another is traf c destination node “dest”. This topology is shown in Figure 15.3.

The node domain logic for traf c source node is shown in Figure 15.4. The process
model of the “traf c_generator” module is “simple_source”. The “Packet Interarrival

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:50:20 WET 2013.
http://dx.doi.org/10.1017/CBO9780511667572.016

Cambridge Books Online © Cambridge University Press, 2013

218 OPNET co-simulation with third-party programs

srcsrc destsrc dest

Figure 15.3 Network model

traffic_generator

pr_0 pt_0

Figure 15.4 Node domain

pr_0 pt_0

cosim_esys

Figure 15.5 Node domain

Time” and “Packet Size” are “exponential (1.0)” and “exponential (1024)” respectively
in this case.

The node domain logic for traf c destination node is shown in Figure 15.5. There is
an external system module placed on the node domain. This external system module is
responsible for communicating with the external program.

However, the actual communication code is implemented in the process model of this
external system module. A process model called “cosim_process1” is created for this
purpose. In the attributes of this external system module, you should set its “process
model” to “cosim_process1” and “esd model” to “cosim_esd1”. The state transition
diagram of the “cosim_process1” process model is shown in Figure 15.6. Packet arrival
will trigger state transition from “idle” to “strm”. In “strm” state, interface values will be
changed and the change will be noti ed to the external program. The external program

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:50:20 WET 2013.
http://dx.doi.org/10.1017/CBO9780511667572.016

Cambridge Books Online © Cambridge University Press, 2013

15.1 Co-simulation with external programs 219

9/0

init idle

esys

strm

(STRM)
(default)

(ESYS)

0/0

6/0

14/0

Figure 15.6 Process model

// State variables

Esys_Interface inf_size;

Esys_Interface inf_desc;

int total_pk_num;

char desc [256];

// Temporary variables

Packet * pkptr;

Figure 15.7 Code in process model

may change an interface value as well. The change of interface value by the external
program will trigger state transition from “idle” to “esys”, where the changed interface
value will be printed out.

This state transition diagram has two transition conditions. One is packet arrival inter-
rupt. Another is external system interface interrupt. Packet arrival interrupt is scheduled
when a packet is delivered to “cosim_esys” module. External system interface interrupt
is scheduled when an interface value de ned in the ESD model is changed and noti ed
by the external program. There are two API packages related to co-simulation: Esys
(External System) API package and External Simulation Access (ESA) API package.
In OPNET process models, you should use functions in the Esys API package to read-
/write interface value. In the external program, you should use functions in ESA API
package to read/write interface value and/or control simulation ow. Therefore, in the
“cosim_process1” process model, the Esys API package is used to read/write interface
value. Figure 15.7 shows the declarations of state variables and temporary variables.
Two Esys_Interface type variables are declared, corresponding to two interfaces de ned
in the ESD model.

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:50:20 WET 2013.
http://dx.doi.org/10.1017/CBO9780511667572.016

Cambridge Books Online © Cambridge University Press, 2013

220 OPNET co-simulation with third-party programs

total_pk_num = 0;

inf_size = op_id_from_name(\

op_id_self (), OPC_OBJTYPE_ESINTERFACE , "size");

inf_desc = op_id_from_name(\

op_id_self (), OPC_OBJTYPE_ESINTERFACE , "desc");

Figure 15.8 Code in process model

#include "stdlib.h"

#include "stdio.h"

#include "string.h"

#define STRM \

(op_intrpt_type () == OPC_INTRPT_STRM)

#define ESYS \

(op_intrpt_type () == OPC_INTRPT_ESYS_INTERFACE)

Figure 15.9 Code in process model

pkptr = op_pk_get(op_intrpt_strm ());

op_esys_interface_value_set(inf_size , \

OPC_ESYS_NOTIFY_IMMEDIATELY , \

op_pk_total_size_get(pkptr), 0);

sprintf(desc , \

"No.�of�packets:�%d�-�time:�%f�(process�model)", \

++ total_pk_num , op_sim_time ());

op_esys_interface_value_set(\

inf_desc , OPC_ESYS_NOTIFY_NEVER , &desc , 0);

op_pk_destroy (pkptr);

Figure 15.10 Codes in process model

Figure 15.8 shows the code in “init” state. In “init” state, the IDs of interfaces “size”
and “desc” de ned in ESD mdoel are obtained. With the interface IDs, you can access
these interfaces via Esys APIs then.

Figure 15.9 shows the header block code. In header block, two state transition
conditions are de ned.

Figure 15.10 shows the code in “strm” state. State transition from “idle” to “strm”
is triggered by the STRM condition. In “strm” state, “size” interface value is set to the

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:50:20 WET 2013.
http://dx.doi.org/10.1017/CBO9780511667572.016

Cambridge Books Online © Cambridge University Press, 2013

15.1 Co-simulation with external programs 221

inf_desc = op_id_from_name(\

op_id_self (), OPC_OBJTYPE_ESINTERFACE , "desc");

op_esys_interface_value_get(inf_desc , (void *)&desc , 0);

printf("Process�model\n%s\n\n\n", desc);

Figure 15.11 Code in process model

current received packet size, and the change of this interface value will be noti ed to the
external program immediately. This interface value change noti cation will be posted
to the external program via a callback function which will be invoked in the external
program. For “desc” interface, its value is a formatted string that shows the total number
of packets and current simulation time recorded in the process model. Although the
value of “desc” interface is set, the value change noti cation is not posted to the external
program, i.e., no callback function for “desc” interface is invoked in the external program
after the interface value is changed.

Figure 15.11 shows the code in “esys” state. State transition from “idle” to “esys”
is triggered by the ESYS condition. ESYS condition de nes external system interface
interrupt that is triggered by external program after “desc” interface value is changed.
In “esys” state, “desc” interface value is printed out. The “desc” interface value can be
changed in both the process model and the external program, since it is a “bidirectional”
interface. However, the “size” interface is not printed in “esys” state. It is an “OPNET
to Cosim” interface and therefore can be changed in the process model but not in an
external program.

15.1.4 Creating an external C co-simulation controller program

In this case study, the external program is a C program which constructs a basic frame-
work for interacting with OPNET modeler. However, co-simulation is not limited to
C programs as the external program.This C program can be used to act as a co-simulation
controller which controls the co-simulation ow and links the communication between
OPNET Modeler’s process model and another external program. An example of this
case is demonstrated in Section 15.2, “Co-simulation with MATLAB.” This C program
is treated as an ordinary executable program, but functions in the External Simulation
Access (ESA) API package are used in order to control the co-simulation ow and read-
/write interfaces. Since “use_esa_main” is set to “no” in the simulation description le,
this C program will act as main controller for co-simulation, and the co-simulation pro-
gram entry function “main()” should be declared by this C program instead of by OPNET
modeler. To use functions in the ESApackage, the header le “esa.h” should be included
in this C program. Figures 15.12, 15.13, and 15.15 show the code in main() function of
the external C program.

In Figure 15.12, “EsaT_State_Handle object” is declared. This object is required in
order to access ESA APIs. Two “EsaT_Interface” objects are declared. These objects
are used to access the external system interfaces “size” and “desc” de ned in the ESD
model.

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:50:20 WET 2013.
http://dx.doi.org/10.1017/CBO9780511667572.016

Cambridge Books Online © Cambridge University Press, 2013

222 OPNET co-simulation with third-party programs

EsaT_State_Handle esa_handle;

int evt_num;

double ret_time;

EsaT_Interface *interfaces;

EsaT_Interface inf_size;

EsaT_Interface inf_desc;

int num;

int status;

int i = 0;

char desc [256];

Figure 15.12 Code in external program

// Initialize co-simulation and load ESA library

Esa_Main(argc , argv , ESAC_OPTS_NONE);

Esa_Init(argc , argv , ESAC_OPTS_NONE , &esa_handle);

Esa_Load(esa_handle , ESAC_OPTS_NONE);

// Obtain interfaces and register interface

// callback function

Esa_Interface_Group_Get(esa_handle , &interfaces , &num);

inf_size = interfaces [0];

inf_desc = interfaces [1];

Esa_Interface_Callback_Register(\

esa_handle , &status , inf_size , \

notification_callback , 0, 0);

Figure 15.13 Code in external program

In Figure 15.13, the rst block of code initializes co-simulation and ESA library and
loads the simulation network and associated les. The second block of code obtains the
“size” and “desc” interfaces and registers a callback function for the “size” interface.
This callback function will be invoked after the “size” interface value is changed in the
OPNET process model “cosim_process1”. The implementation of this callback function
is shown in Figure 15.14. This callback function simply accumulates the value of “size”
interface and prints it out.

Figure 15.15 shows the loop that controls the co-simulation process. The func-
tion “Esa_Execute_Until()” is used to run simulation until a speci ed simulation
time is reached. Once the time is reached, “Esa_Execute_Until()” returns. After it
returns, the “desc” interface value is obtained by the “Esa_Interface_Value_Get()”
function and printed out. Then, a new value is assigned to the “desc” inter-
face by the ‘Esa_Interface_Value_Set()” function and a noti cation of this change
is sent to the OPNET process model to schedule an interrupt by the setting
ESAC_NOTIFY_IMMEDIATELY ag. This process will keep running until simulation

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:50:20 WET 2013.
http://dx.doi.org/10.1017/CBO9780511667572.016

Cambridge Books Online © Cambridge University Press, 2013

15.1 Co-simulation with external programs 223

void notification_callback(\

void *state , double time , void *value)

{

printf(\

"Total�packet�no.:�%d,�total�size:�%d�bits\n", \

++ total_pk_num , total_size += *(int *)value);

return;

}

Figure 15.14 Code in external program

while(1)

{

printf("External�program\n");

Esa_Execute_Until(esa_handle , &status , 10*++i, \

ESAC_UNTIL_INCLUSIVE , &ret_time , &evt_num);

if(status == ESAC_STATUS_TERMINATION)

{

printf("Simulation�finished\n");

break;

}

Esa_Interface_Value_Get(esa_handle , &status , \

inf_desc , &desc);

printf("%s\n\n\n", desc);

sprintf(desc , \

"No.�of�pkts:�%d�-�time:�%f�(external�program)", \

total_pk_num , ret_time);

Esa_Interface_Value_Set(esa_handle , &status , \

inf_desc , ESAC_NOTIFY_IMMEDIATELY , &desc);

}

Figure 15.15 Codes in external program

time runs out or simulation is interrupted. In this case, the simulation interval for this loop
is 10 seconds set by the “Esa_Execute_Until()” function. You can simply insert other
external processing code within this loop and set corresponding interface values to feed
back to the OPNET process model. In this way, the co-simulation process is completely
controlled and the OPNET process model and external codes can easily communicate
with each other via interfaces.

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:50:20 WET 2013.
http://dx.doi.org/10.1017/CBO9780511667572.016

Cambridge Books Online © Cambridge University Press, 2013

224 OPNET co-simulation with third-party programs

This external C program is saved as “cosim_external_code1.c” in your OPNET
model’s folder.

15.1.5 Running co-simulation

In this case, external codes are used for co-simulation, sowewill bindOPNETsimulation
code, associated models and libraries, and external codes into an executable by using
the op_mksim command. First, you should make sure OPNET Modeler’s bin path is in
the PATH variable in order to use OPNET modeler commands. If not, you can add the
path to the PATH variable in the following way:

For Windows: path=%PATH%;[OPNET modeler win32 bin path]

For Linux: PATH=$PATH:[OPNET modeler unix bin path]

“[OPNET modeler win32 bin path]” should be replaced by the actual OPNET Modeler
win32 bin path and “[OPNET modeler unix bin path]” should be replaced by the actual
OPNET Modeler unix bin path. For Windows, it is better to use Visual Studio command
line prompt tool to start a console session; otherwise, you need to add Visual Studio bin
paths as well.

Next, you can compile the external C code into an object le. This is achieved by
typing the following command in console under your OPNET project path:

For Visual C++ compiler:

$ CL /c cosim_external_code1.c /I"C:\Program Files\OPNET\[version]\ sys\include”
/D_X86_

For gcc compiler:

$ gcc -c cosim_external_code1.c -I/usr/opnet /[version]/sys/include

“[version]” should be replaced by the actual version number ofOPNETModeler installed
on your system.

This command will generate an object le “cosim_external_code1.obj” for Windows
or “cosim_external_code1.o” for Linux within your project path. To bind this object le,
simulation models, and libraries, type the following command in console:

$ op_mksim -net_name chapter15-case1 -c

The command option “-net_name” should be followed by the network model name.
In this case, our project name is “chapter15” and the scenario name is “case1”, so the
network model name is “chapter15-case1”. You can check OPNET documentation for
more options of this command. If there are errors, you should resolve these errors before
continuing. One possible error is failure of compilation of process models. For this error,

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:50:20 WET 2013.
http://dx.doi.org/10.1017/CBO9780511667572.016

Cambridge Books Online © Cambridge University Press, 2013

15.2 Co-simulation with MATLAB 225

you should check if there are compilation issues in your OPNET process models by
hitting the “Compile Process Model” tool button in Process Editor. If there are no errors,
this command will generate an executable called “chapter15-case1.dev32.i0.sim” in the
chapter15.project sub-folder in the model directory. To run the co-simulation, type the
following command line in console under your OPNET project path:

$ chapter15.project\chapter15-case1.dev32.i0.sim -duration 2000

The command line option “-duration” is to tell how long the simulation runs in seconds.
The default simulation duration is 1000 seconds. The command options of the simulation
executable are the same as op_runsim. For more options, refer to OPNET documentation
for the op_runsim command.

The results of this co-simulation are: in OPNET process model, if a packet is received,
the interfaces’ values will be changed and noti ed to external code; external code will
print out the value if an interface change noti cation is received in the form of a callback
function; in external code, for every 10 seconds, an interface value will be modi ed and a
noti cation will be sent to OPNET process model; OPNET process model will print out
the value if an interface change noti cation is received in the form of a process interrupt.
This case demonstrates how to make an OPNET process model to talk to external code
to achieve co-simulation tasks.

15.1.6 Co-simulation with other systems

With this external C controller program, you can actually allow OPNET Modeler to
interact with any external system that has basic inter-process communication capability.
For example, if you want Modeler to communicate with a hardware device, you can write
code in this controller program to talk to the software layer of the device via a socket or
shared memory object. If you want OPNET Modeler to communicate with other open-
source programs, you can invoke the public methods of those programs directly within
this external C program. Furthermore, some programs provide direct C support, like
MATLAB; for these programs, you can invoke the functions of these programs directly
in this external C interface as well. To interact with humans, you can simply write code
in this external C controller program to support command line read and write operations
via scanf(), printf(), etc. If you want to write a large external program and prefer other
object-oriented programming languages, you can write the program in your preferred
language and build it into a library with C interfaces which can be addressed in this
controller C program.

15.2 Co-simulation with MATLAB

Co-simulation with MATLAB is frequently used in OPNET modeling. For example, you
are running a network to model a routing protocol in OPNET Modeler and the routing
algorithm needs to be computed and analyzed at each intermediate node. However, the

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:50:20 WET 2013.
http://dx.doi.org/10.1017/CBO9780511667572.016

Cambridge Books Online © Cambridge University Press, 2013

226 OPNET co-simulation with third-party programs

computation and analysis processes can easily be formulated in MATLAB, so you will
want MATLAB to share the computation and analysis burden of the routing algorithm,
and you will probably want MATLAB to plot the analysis results live during simulation.
The MATLAB engine library contains routines that allow you to invoke MATLAB
commands from your own programs. This engine supports C/C++ and Fortran programs
directly (see www.mathworks.com/products/maths).

15.2.1 Setup of environment variables

Since theMATLABengine librarywill be used in our co-simulation program, the relevant
library paths should be added to the environment variable; otherwise, the co-simulation
executable will not be able to nd some required dynamical libraries during runtime.
On Windows, they are DLL les. These DLL les include some OPNET dynamical
libraries and MATLAB dynamical libraries. To add these paths, check “My Computer”
– “Properties” – “Advanced” tab – “Environment Variables” button and add the “PATH”
variable to the user variables. The value of the “PATH” variable should include the
following two paths:

“C:\Program Files\OPNET\[version]\sys\pc_intel_win32\bin”

“C:\[MATLAB install path]\bin\win32”

Note: “[version]” should be replaced by the actual version of OPNET Modeler installed
on your system and “[MATLAB install path]” should be replaced by the MATLAB
installation root path.

Q15.1 Why do I get “libeng.dll” not found error when I run co-simulation executable?
This is because you did not set the paths of the necessary dynamical libraries to the

“PATH” environment variable. If the co-simulation program uses the MATLAB engine
library, the co-simulation executable will look for the dependent dynamical libraries at
runtime. If it cannot nd them in default paths, it will check the “PATH” environment
variable for more search places.

15.2.2 Modifying OPNET models and external code

To prepare for co-simulation with MATLAB, you can modify the models and code
made in Section 15.1. First, you need to modify the simulator description le so that
the co-simulation program can be built with the MATLAB engine library support. You
should make a copy of “cosim_desc1.sd” le and name it “cosim_desc2.sd”. Modify
“cosim_desc2.sd” so that it is the same as in Figure 15.16.

There are three statements different from “cosim_desc1.sd”. For “bind_obj”, the value
is changed to “cosim_external_code2.obj”. Furthermore, two static libraries have been
added for build. The library “libeng.lib” is used for MATLAB engine routines and
“libmx.lib” is for manipulating MATLAB types.

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:50:20 WET 2013.
http://dx.doi.org/10.1017/CBO9780511667572.016

Cambridge Books Online © Cambridge University Press, 2013

15.2 Co-simulation with MATLAB 227

Next, in OPNET Modeler, open the external system de nition (ESD) model
“cosim_esd1”, then choose “cosim_desc2” in the ESD model and save it. This is shown
in Figure 15.17.

Q15.2 Why do I get “unresolved external symbol” link error when I use op_mksim
command to build a co-simulation executable?

This is because you did not include the necessary static libraries in the .sd le. You
should rst investigate which third-party libraries are used, then include dependent

Simulator Description

start_definition

platform: windows

use_esa_main: no

bind_obj: cosim_external_code2.obj

bind_lib: "C:\\ MATLAB7 \\ extern \\lib\\win32\\

������������������microsoft \\ msvc71 \\ libeng.lib"

bind_lib: "C:\\ MATLAB7 \\ extern \\lib\\win32\\

������������������microsoft \\ msvc71 \\ libmx.lib"

#bitness: 32bit

#kernel: development

#dll_lib: xxx.dll

end_definition

Figure 15.16 Simulator description le

Figure 15.17 External system de nition

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:50:20 WET 2013.
http://dx.doi.org/10.1017/CBO9780511667572.016

Cambridge Books Online © Cambridge University Press, 2013

228 OPNET co-simulation with third-party programs

EsaT_State_Handle esa_handle;

int evt_num;

double ret_time;

EsaT_Interface *interfaces;

EsaT_Interface inf_size;

EsaT_Interface inf_desc;

int num;

int status;

int i = 0;

char desc [256];

Engine *matlab_engine;

Figure 15.18 Code in external program

// Open MATLAB engine

if(!(matlab_engine = engOpen("\0")))

{

printf("Fail�to�open�MATLAB�engine .\n");

return 1;

}

// Initialize co-simulation and load ESA library

Esa_Main(argc , argv , ESAC_OPTS_NONE);

Esa_Init(argc , argv , ESAC_OPTS_NONE , &esa_handle);

Esa_Load(esa_handle , ESAC_OPTS_NONE);

// Obtain interfaces and register interface

// callback function

Esa_Interface_Group_Get(esa_handle , &interfaces , &num);

inf_size = interfaces [0];

inf_desc = interfaces [1];

Esa_Interface_Callback_Register(\

esa_handle , &status , inf_size , \

notification_callback , 0, 0);

Figure 15.19 Code in external program

libraries into the .sd le. For example, if you use MATLAB engine libraries in your
co-simulation program, you should include “libeng.lib” and “libmx.lib” in the .sd le.

Next, you can modify the external C program to manipulate MATLAB. The rst thing
is to copy “cosim_external_code1.c” and name the copy “cosim_external_code2.c”,
which corresponds to the “cosim_external_code2.obj” set in the “cosim_desc2.sd” le.
Then, you can modify “cosim_external_code2.c”. You should make sure the “engine.h”
header le is included in the “cosim_external_code2.c” le. “engine.h” declares symbols

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:50:20 WET 2013.
http://dx.doi.org/10.1017/CBO9780511667572.016

Cambridge Books Online © Cambridge University Press, 2013

15.2 Co-simulation with MATLAB 229

while(1)

{

printf("External�program\n");

Esa_Execute_Until(esa_handle , &status , 10*++i, \

ESAC_UNTIL_INCLUSIVE , &ret_time , &evt_num);

if(status == ESAC_STATUS_TERMINATION)

{

printf("Simulation�finished\n");

break;

}

// Interact with OPNET process model via interfaces

Esa_Interface_Value_Get(esa_handle , &status , \

inf_desc , &desc);

printf("%s\n\n\n", desc);

sprintf(desc , \

"No.�of�pkt:�%d�-�time:�%f�(external�program)", \

total_pk_num , ret_time);

Esa_Interface_Value_Set(\

esa_handle , &status , inf_desc , \

ESAC_NOTIFY_IMMEDIATELY , &desc);

// Handle MATLAB tasks

handle_matlab_tasks(matlab_engine);

array_index = 0;

}

Figure 15.20 Code in external program

of routines of the MATLAB engine library. In “main()” function, the MATLAB engine
object should be declared. This is shown in Figure 15.18.

Figure 15.19 shows the code for initializing the MATLAB engine and co-simulation
ESA library. The MATLAB engine routine “engOpen()” function is used to open the
engine and return the pointer to the engine object if successful. This pointer will be used
to access other engine routines.

Figure 15.20 shows the co-simulation loop where OPNET Modeler, external code,
and MATLAB can interact with each other. Most of the operations are the same as
in “cosim_external_code1.c”, but a function “handle_matlab_tasks()” is added to the
end of the loop. This function will handle all MATLAB-related tasks. In this case,
“handle_matlab_tasks()” will dynamically plot a gure with received packet number
versus packet size. The implementation of this function is shown in Figure 15.21. The
“mxCreateNumericMatrix()” function is used to create a MATLAB-compatible matrix.
The “engPutVariable()” function is used to assign a variable value from external code

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:50:20 WET 2013.
http://dx.doi.org/10.1017/CBO9780511667572.016

Cambridge Books Online © Cambridge University Press, 2013

230 OPNET co-simulation with third-party programs

void handle_matlab_tasks(Engine *matlab_engine)

{

mxArray *x_pkt_num = NULL , *y_pkt_size = NULL;

x_pkt_num = mxCreateNumericMatrix (1, ARRAY_LEN , \

mxUINT32_CLASS , mxREAL);

memcpy ((void *) mxGetPr(x_pkt_num), \

(void *)num_array , sizeof(num_array));

engPutVariable(matlab_engine , \

"x_pkt_num", x_pkt_num);

y_pkt_size = mxCreateNumericMatrix (1, ARRAY_LEN , \

mxUINT32_CLASS , mxREAL);

memcpy ((void *) mxGetPr(y_pkt_size), \

(void *) size_array , sizeof(size_array));

engPutVariable(matlab_engine , \

"y_pkt_size", y_pkt_size);

engEvalString(matlab_engine , \

"plot(x_pkt_num ,y_pkt_size);");

engEvalString(matlab_engine , "hold�on;");

printf("Matlab�operations�finished .\n");

mxDestroyArray(x_pkt_num);

}

Figure 15.21 Code in external program

to the MATLAB work space, so that you can use the variable the same way as in the
MATLAB work space. The “engEvalString()” function allows you to invoke MATLAB
commands and functions within external code provided that these MATLAB commands
and functions are passed to “engEvalString()” in the form of strings. For details on
MATLAB engine library routines, consult the MATLAB manual.

Finally, at the end of “main()” function, use the “engClose()” function to close the
MATLAB engine. Now, OPNET Modeler can talk with MATLAB via an external C
program which acts as a controller. The last thing is to run the co-simulation. Follow
the steps below to build and run this OPNET modeler and MATLAB co-simulation
project.

• In command line console, within OPNET model path, type the following command
to compile the external C program:

$ CL /c cosim_external_code2.c /I"C:\Program Files\OPNET\[version]\sys\ include”
/I"C:\[MATLAB install path]\extern\include” /D_X86_

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:50:20 WET 2013.
http://dx.doi.org/10.1017/CBO9780511667572.016

Cambridge Books Online © Cambridge University Press, 2013

15.2 Co-simulation with MATLAB 231

This will generate an object le called “cosim_external_code2.obj” in the current
project folder.

• In command line console, type the following command to build the co-simulation
executable:

$ op_mksim -net_name chapter15-case1 -c

This will generate an executable within the “chapter15.project” sub-folder.
• In command line console, type the following command to run the co-simulation:

$ chapter15.project\chapter15-case1.dev32.i0.sim -duration 5000

While the co-simulation session is running, MATLAB keeps plotting a gure by using
the live data fed back from OPNET network simulation. At the same time, the OPNET
process model and the external C program will print out exchanges from each other.

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:50:20 WET 2013.
http://dx.doi.org/10.1017/CBO9780511667572.016

Cambridge Books Online © Cambridge University Press, 2013

16 Model authoring and security

OPNET Modeler provides an authoring tool to allow authors to protect their models
against unauthorized use. This chapter demonstrates how to use this authoring tool to
protect and license user OPNET models. In order to follow this chapter, a reader should
understand the basic concepts of OPNET models.

16.1 Introduction

In practice, you often need to publish models to allow other people to use them. However,
sometimes you want them only to use these models but not to view the implementation
details of these models, and/or to use these models for a limited time, like a demo
version with limited access ability. To handle these issues, OPNET Modeler provides an
authoring tool that allows you to encrypt your models to provide three levels of access:
Use, Inspect, and Full. For “Use” access, users can only use the model in a simulation, but
cannot inspect this model’s structure or code via either the GUI editor or programming
interface. For “Inspect” access, users can use this model in a simulation and inspect the
model with certain programming interface procedures, but cannot view the structure of
the model via the GUI editor. For “Full” access, users have full access to the model, i.e.
they can use it, view it, and modify it in either the GUI editor or programming interface.
By default, a model is not protected by the authoring tool, which therefore has “Full”
access.

Model protection in OPNET Modeler is achieved via the “op_man le” commands,
which is a utility performing management operations related to the tracking and identi -
cation of model les, including le location, locks, security protection/registration, and
header contents. However, in this chapter, we utilize only its ability to protect and reg-
ister model les. For a full list of command preferences for the “op_man le” program,
type “op_man le -help” in the OPNET command line console.

16.2 Protecting a model

First, a user needs to open the OPNET command line console. To protect a model with
encryption, type the following command in the OPNET command line console:

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:50:21 WET 2013.
http://dx.doi.org/10.1017/CBO9780511667572.017

Cambridge Books Online © Cambridge University Press, 2013

16.2 Protecting a model 233

In order to generate information which will be used
to encrypt the file and uniquely identify it, enter
at least sixteen characters at the following prompt;
the actual value is not important and need not be retained.

>
> 123456789qwertyuio

Enter a descriptive name for the model or model suite.
Model (suite) name>

Enter one or more lines of additional information
(e.g. copyright, contact info, general comments, etc.);
enter a line containing only a period (.) to finish.

Success.

.

My First Model

Figure 16.1 Command line

Available instances of model (mymodel) are listed below:

0) Node Model

1) Process Model (Portable Data)

Please enter model type index:
Index > 1

Figure 16.2 Command line

> op_man le -protect -m mymodel

where “mymodel” is the OPNET model to be protected. The OPNET model is saved as
an .m le. For example, a process model will be saved as “mymodel.pr.m”, a node model
will be saved as “mymodel.nd.m”, and a link model will be saved as “mymodel.lk.m”.
This command will prompt a user to enter a key for encrypting the model and ask the
user for a descriptive name for the model, as shown in Figure 16.1.

It is possible that several models have the same name. For example, a process model
and a node model can have the same name “mymodel”, but their le names are different:
“mymodel.pr.m” and “mymodel.nd.m” respectively. In this case, this command will
prompt you to choose which model you want to protect, as shown in Figure 16.2.

The process model will then be protected. You can enter the following command to
see authoring and security information for a model:

> op_man le -header_print -m mymodel

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:50:21 WET 2013.
http://dx.doi.org/10.1017/CBO9780511667572.017

Cambridge Books Online © Cambridge University Press, 2013

234 Model authoring and security

Access to the model file will be enabled for all users.
Enter the desired access level (full, inspect, or use):

Access level >
Enter the desired access expiration date
(enter "0" for indefinite access):

Expiration date (m/d/yyyy) > 1/1/2012

use

Success.

Figure 16.3 Command line

If you distribute this model to other client users, they will not be able to access it because
of this protection. It is noted that the author always has full access, whether a model is
protected or not. The protection is only against unauthorized client users.

16.3 Making a demo model

In some cases, you will want to publish your models. However, you want to give client
users only limited access privilege and access time; for example, only allow them to
use your models instead of viewing the details of your models or modifying them. To
achieve this, you can enter the following command in OPNET command line console:

> op_man le -register -world -m mymodel

This command will prompt you to choose an access privilege and expiration date for the
model, as shown in Figure 16.3.

Now, you can distribute this model to your client users. They can only use this model
in their simulation and they are unable to view the details of the model or modify it.
Further, they are only able to use the model until January 1st 2012.

16.4 Licensing a model

In some other cases, you will want to distribute your models but only want your approved
users to be able to access them by registering these models. This can be achieved via
a licensing process which is a three-way handshake process. First, you should protect
a model in the same way as in Section 16.2. Next, distribute this protected model to
client users and ask them to send you back a transaction code. Client users can retrieve
this transaction code by entering the following command in their OPNET command line
console:

> op_man le -register -m mymodel

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:50:21 WET 2013.
http://dx.doi.org/10.1017/CBO9780511667572.017

Cambridge Books Online © Cambridge University Press, 2013

16.4 Licensing a model 235

Send the following transaction code to the model vendor:
Transaction code > 66AD.DA14.2AD1.B73A

Figure 16.4 Command line

Enter the transaction code sent by the client:
Transaction code > 66AD.DA14.2AD1.B73A

0

use

The client’s group ID is 7356.
Enter the desired access level (full, inspect, or use):

Access level >
Enter the desired access expiration date
Expiration date (m/d/y) >

Send the following approval code to the client:
Approval code > DE56.0D3F.CB27.5D8D.68E0.A73B

Figure 16.5 Command line

This command will produce a transaction code, as shown in Figure 16.4. Client users
should let you know their transaction codes. In this case, the transaction code that the
client user should send to you is 66AD.DA14.2AD1.B73A.

When you receive the transaction code sent from the client user, you she or he should
run the same command on this model:

> op_man le -register -m mymodel

This command will prompt you to enter the transaction code received from the client
user and set an access level and expiration date for this model. Finally, it will generate an
approval code which will be sent to the corresponding client user for registration. This
is shown in Figure 16.5.

After the client user receives the corresponding approval code from you, she or he
should enter the following “op_man le” command again on this model for registration:

> op_man le -register -m mymodel

This command will prompt the client user to enter the approval code to register this
model. After registration completes, the client user can access the model according to
the access level set by you; meanwhile, other client users are unable to access the model
before having their own approval codes for it. In this way, you can license your models
to approved client users only.

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:50:21 WET 2013.
http://dx.doi.org/10.1017/CBO9780511667572.017

Cambridge Books Online © Cambridge University Press, 2013

References

Bing B. Wireless Local Area Networks: The New Wireless Revolution. Wiley, 2002.
Hayes J. F. Modeling and Analysis of Telecommunications Networks. Wiley-Interscience, 2004.
Kleinrock L. Queueing Systems. Volume II C. Computer Applications. Wiley Interscience, 1976.
Leemis L., Park S. Discrete Event Simulation: A First Course. Pearson Prentice-Hall, 2006.
Park K., Willinger W. Self-Similar Network Traf c and Performance Evaluation. Wiley-

Interscience, 2000.
Robinson S. Simulation - The Practice of Model Development and Use. Wiley, 2004.
Ryu B. A tutorial on fractal traf c generators in OPNET for internet simulations. OPNETWORK

2000, Washington D.C., August 2000.
Ryu, B. LowenS. Point processmodels for self-similar network traf cwith applications. Stochastic

Models, 1998.
Sohraby K., Minoli D., Znati T. Wireless Sensor Networks: Technology, Protocols, and Applica-

tions. Wiley-Interscience, 2007.

Useful internet resources

www.boost.org/
www.gnu.org/software/gdb/
www.isi.edu/nsnam/ns/
www.mathworks.com/products/matlab/
www.microsoft.com/
www.omnetpp.org/
www.opnet.com
www.techsmith.com/snagit/
www.video2down.com/

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:50:24 WET 2013.
http://dx.doi.org/10.1017/CBO9780511667572.018

Cambridge Books Online © Cambridge University Press, 2013

Index

ACE Analyst, 5
ACE Live, 5
analytical models, 3
animation, 93, 99, 145, 160, 179
Animation Viewer, 117, 145
antenna module, 137
Application Con g, 127
Application De nition, 157, 195
application performance management, 5
Attributes dialog, 72
authoring tool, 232

background traf c, 9, 194
baseline load, 201
Boost, 185
breakpoint, 167, 171, 176

Categorized Memory (CMO), 184
co-simulation, 56, 215, 216, 224
compilation, 18
connection-oriented, 112
connection-oriented communications, 110, 112
connectivity errors, 66, 67, 127
custom model directory, 59
custom models, 100
custom wrapper API, 54

debugging information, 23
development simulation kernel, 23, 174
diagnostic block, 63, 174
discrete-event simulation (DES), 3, 44
DJK package, 86
dynamical linking, 19, 22

edges, 85
environment variables, 14, 17, 19, 20
event-based simulation, 6
explicit traf c, 9, 194
external model access, 44, 56
External Simulation Access (ESA), 215
External System De nition (ESD), 56, 215
external tool support (ETS), 44, 56

forced state, 60
formatted packet, 33, 74, 77, 117
Fractal Point Processes (FPPs), 197
function block, 63

GCC, 20
GDB, 167
global statistic, 35, 52, 68
graph state, 85
graphic user interfaces, 5, 12, 24, 207

header block (HB), 61
hybrid simulation, 3, 9

interarrival times, 7, 74, 136
Interface Control Information, 34, 95
IT Guru Systems Planner, 5
IT/SP Guru Network Planner, 5
IT/SP Sentinel, 5

Kernel Procedures, 45

License Manager, 19, 22
licensing scheme, 13
link connectivity, 132, 137
Link Editor, 32
link error model, 60
link model, 32
Link Model Editor, 64
Linux, 20
local area network (LAN), 6, 13, 132
local statistics, 52, 68, 69

macro de nitions, 80, 85
MATLAB, 67
Microsoft Console Debugger (CDB), 167
Microsoft Visual C++, 11, 15
Microsoft Visual C++ Debugger (MSVC),

167
model directories, 26
modeling and simulation, 3
Multi-Threading Safety, 46

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:50:27 WET 2013.
http://ebooks.cambridge.org/ebook.jsf?bid=CBO9780511667572
Cambridge Books Online © Cambridge University Press, 2013

238 Index

namespace, 85
NetMapper, 5
network planning, engineering, and operations, 5
network research and development, 5
network simulation, 3
network topology, 83, 85, 117, 132
Node Editor, 63, 137, 156
NS, 4

Object Palette, 147
Object Palette dialog, 65
object-level debugging, 167
OMNeT++, 4
OPNET, 4
OPNET APIs, 44
OPNET debugging kernel, 77
OPNET development kit (ODK), 44, 56
OPNET internal structure, 34
OPNET Modeler, 5
OPNET Modeler Wireless Suite, 5
OPNET Modeler Wireless Suite for Defense, 5
OPNET nCompass, 5
OPNET Panorama, 5
OPNET Simulation Debugger (ODB), 63, 167
optimization, 59
OPtimized Network Engineering Tools, 4
optimized simulation kernel, 23, 174

Packet Format Editor, 33, 74, 117
Packet Interarrival Time, 83, 169, 196, 218
packet stream interrupt, 63
PDF Editor, 35
pipeline models, 60
Pooled Memory (PMO), 184
Preferences dialog, 21
Preferences Editor, 26
probability density functions, 35
Probe Editor, 35
Process Editor, 31, 44, 91, 96, 156
Process Interface, 156
process model, 83, 115, 222
processor modules, 59, 79, 115
Pro le Con g, 127
Pro le De nition, 157, 196
Project Editor, 58, 65, 78, 82, 201
propagation delay, 137
propagation delay model, 60
Proto-C, 182
protocol stack, 127
pseudo-code, 7

queue module, 79

R&D (research and development), 6
random mobility, 146
random mobility and movement, 143

rapid con guration, 135
raw packet generator (RPG), 194
reassembly, 52
receiver module, 59
recoverable errors, 127
routing graph, 85

segmentation, 52
Segmentation and Reassembly Package,

112
self-interrupt, 63, 80
shortest path routing algorithm, 83
simulation con guration dialog, 66
simulation kernel, 23, 66
simulation process, 9
Simulation Result Browser, 37
source-level debugging, 167, 175
SP Guru Transport Planner, 5
SP Sentinel, 5
Standard Template Libraries (STL), 185
state transition conditions, 80
state transition diagram (STD), 31, 60, 61, 79, 154,

182, 219
state variable, 62, 72, 219
static linking, 19, 22
statistic interrupt, 63
statistics dialog, 68
subqueue, 51, 81
synchronization, 46

Task Con g, 127
TCP/IP, 12
temporary variable, 62, 72, 80, 115, 154,

219
termination block, 63
thread-safe, 102
thread-unsafe, 102
time-clocked simulation, 6
timeout event, 79
trajectories, 143
Transceiver, 46
transition condition, 61
transmitter module, 59

unforced state, 60
unformatted packet, 74, 78, 187
unresolved external symbol, 227
user-de ned functions, 172

validation, 59, 98
vertices, 85

wide area network (WAN), 6
wired network, 125, 148
wireless network, 148
wrapper APIs, 101, 110

Downloaded from Cambridge Books Online by IP 130.194.20.173 on Mon Jan 14 15:50:27 WET 2013.
http://ebooks.cambridge.org/ebook.jsf?bid=CBO9780511667572
Cambridge Books Online © Cambridge University Press, 2013

	Cover
	About
	Unlocking the Powerof OPNET Modeler
	©
	Contents
	Abbreviations
	Part I: Preparation for OPNET Modeling
	1 Introduction
	2 Installation of OPNET Modeler and setting up environments
	3 OPNET Modeler user interface
	Part II: Modeling Custom Networksand Protocols
	4 OPNET programming interfaces
	5 Creating and simulating custom models using OPNET APIs
	6 High-level wrapper APIs
	7 Modeling with high-level wrapper APIs
	Part III: Modeling and Modifying StandardNetworks and Protocols
	8 Modeling wired networks with standard models
	9 Modeling wireless networks with standard models
	10 Modifying standard models
	Part IV: OPNET Modeling Facilities
	11 Debugging simulation
	12 OPNET programming in C++
	13 Traffic in OPNET simulation
	14 External model access (EMA)
	15 OPNET co-simulation with third-party programs
	16 Model authoring and security
	Index

