
this print for content only—size & color not accurate spine = 0.849" 368 page count

Books for professionals by professionals®

The Definitive Guide to
NetBeans™ Platform
Dear Reader,

I wrote this book to show you how easy Java™ application development can be.
The NetBeans™ Platform enables you to set up the underlying skeleton of your
application in, literally, minutes. This book guides you through the important
features of the underlying skeleton, starting from its internal structure, through
the central theoretical concepts, while covering many of the useful APIs along
the way. Each explanation is based on small descriptive examples that you’ll be
able to integrate into your own applications right away.

In this book, I also help you avoid reinventing the wheel over and over again.
For example, there’s no need to code your own window system, because the
NetBeans Platform provides a great one out of the box. As a result, you can
focus on implementing your business needs, without needing to think about
the underlying infrastructure.

A very important concept in the NetBeans Platform is that of “Lookup.” In
this book, you’ll learn how easy it is to implement this concept, and how it helps
in creating highly extensible and robust applications. You’ll also learn how the
NetBeans Platform simplifies the handling of files, and you’ll gain the skills to
uniformly implement, manage, and display your data.

Have fun exploring the next generation of client application development
frameworks!

Heiko Böck, M.Sc.(TUM)

Author of

NetBeans™ Platform 6–
Rich-Client-Entwicklung
mit Java (Original, German
language version of
The Definitive Guide to
Netbeans™ Platform)

Shelve in
Java Programming

User level:
Beginner–Intermediate

Böck
The Definitive Guide to

NetBeans
™ Platform

The EXPERT’s VOIce® in Open Source

The Definitive Guide to

NetBeans™

Platform

 CYAN
  MAGENTA

 YELLO W
  BLACK
 PAN TONE 123 C

Heiko Böck
Translated by the NetBeans™ Platform Community

Foreword by Jaroslav Tulach, original NetBeans™ API architect

Companion
eBook Available

www.apress.com
SOURCE CODE ONLINE

Companion eBook

See last page for details

on $10 eBook version

Learn to use the latest NetBeans™ Platform for rapid modular
development of small and large rich client applications.

ISBN 978-1-4302-2417-4

9 781430 224174

90000

Related Titles

   

Covers
NetBeans™

Platform 6.5

The Definitive Guide to
NetBeans™ Platform

■ ■ ■

Heiko Böck

24174FM_final.fm Page i Thursday, April 30, 2009 4:35 PM

The Definitive Guide to NetBeans™ Platform

Copyright © 2009 by Heiko Böck

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-4302-2417-4

ISBN-13 (electronic): 978-1-4302-2418-1

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Java™ and all Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc., in the
US and other countries. Apress, Inc., is not affiliated with Sun Microsystems, Inc., and this book was
written without endorsement from Sun Microsystems, Inc.

Lead Editor: Jim Freeman
Technical Reviewers: Jaroslav Tulach, Geertjan Wielenga
Editorial Board: Clay Andres, Steve Anglin, Mark Beckner, Ewan Buckingham, Tony Campbell, Gary

Cornell, Jonathan Gennick, Jonathan Hassell, Michelle Lowman, Matthew Moodie, Duncan Parkes,
Jeffrey Pepper, Frank Pohlmann, Douglas Pundick, Ben Renow-Clarke, Dominic Shakeshaft, Matt
Wade, Tom Welsh

Project Manager: Douglas Sulenta
Copy Editor: Damon Larson
Associate Production Director: Kari Brooks-Copony
Senior Production Editor: Laura Cheu
Compositor: Ellie Fountain
Proofreader: Nancy Sixsmith
Indexer: BIM Indexing & Proofreading Services
Artist: Kinetic Publishing Services, LLC
Cover Designer: Kurt Krames
Manufacturing Director: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or
visit http://www.springeronline.com.

For information on translations, please contact Apress directly at 2855 Telegraph Avenue, Suite 600,
Berkeley, CA 94705. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit http://
www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our Special
Bulk Sales–eBook Licensing web page at http://www.apress.com/info/bulksales.

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution
has been taken in the preparation of this work, neither the author(s) nor Apress shall have any liability to
any person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly
by the information contained in this work.

The source code for this book is available to readers at http://www.apress.com.

24174FM_final.fm Page ii Thursday, April 30, 2009 4:35 PM

Dedicated to the NetBeans Platform community

24174FM_final.fm Page iii Thursday, April 30, 2009 4:35 PM

24174FM_final.fm Page iv Thursday, April 30, 2009 4:35 PM

v

Contents at a Glance

Foreword . xvii

About the Author . xxi

About the Technical Reviewers . xxii

Acknowledgments . xxiii

Introduction . xxiv

■CHAPTER 1 Introduction . 1

■CHAPTER 2 Structure of the NetBeans Platform . 7

■CHAPTER 3 The Module System . 17

■CHAPTER 4 Actions . 45

■CHAPTER 5 User Interface Design . 61

■CHAPTER 6 Lookup . 93

■CHAPTER 7 File Access and Display . 109

■CHAPTER 8 Graphical Components . 135

■CHAPTER 9 Reusable NetBeans Platform Components . 175

■CHAPTER 10 Internationalization and Localization . 205

■CHAPTER 11 Real-World Application Development . 213

■CHAPTER 12 Updating a NetBeans Platform Application . 219

■CHAPTER 13 Persistence. 229

■CHAPTER 14 Web Services . 261

■CHAPTER 15 Extending the NetBeans IDE . 269

■CHAPTER 16 From Eclipse RCP to the NetBeans Platform 279

■CHAPTER 17 Tips and Tricks . 287

■CHAPTER 18 Example: MP3 Manager . 297

■APPENDIX Important NetBeans Extension Points and
Configuration DTDs . 331

■INDEX . 337

24174FM_final.fm Page v Thursday, April 30, 2009 4:35 PM

24174FM_final.fm Page vi Thursday, April 30, 2009 4:35 PM

vii

Contents

Foreword . xvii

About the Author . xxi

About the Technical Reviewers . xxii

Acknowledgments . xxiii

Introduction . xxiv

■CHAPTER 1 Introduction . 1

What Is a Rich Client? . 1

What Is a Rich Client Platform? . 2
Advantages of a Rich Client Platform . 2

Reduction in Development Time . 3

User Interface Consistency . 3

Updating. 3

Platform Independence . 3

Reusability and Reliability . 3

Characteristics of the NetBeans Platform . 4

User Interface Framework . 4

Data Editor . 4

Customization Display . 4

Wizard Framework . 4

Data Systems . 5

Internationalization . 5

Help System . 5

Summary . 5

■CHAPTER 2 Structure of the NetBeans Platform. 7

NetBeans Platform Architecture . 7

NetBeans Platform Distribution . 9

NetBeans Runtime Container . 12

24174FM_final.fm Page vii Thursday, April 30, 2009 4:35 PM

viii ■C O N T E N T S

NetBeans Classloader System . 13

Module Classloader . 13

System Classloader . 14

Original Classloader . 14

Summary . 15

■CHAPTER 3 The Module System . 17

Overview . 17

Module Structure . 18

Module Types . 18

Regular. 19

Autoload . 19

Eager . 19

Module Manifest . 19

Attributes . 20

Example . 24

Module Layer . 24

Order of Entries . 26

Instance Files . 27

Shadow Files . 28

Settings Files . 28

Creating and Using Your Own Contents . 29

Creating Modules . 29

Versioning and Dependencies . 32

Versioning . 33

Defining Dependencies . 34

Lifecycle . 37

Module Registry . 39

Using Libraries . 40

Library Wrapper Module . 40

Adding a Library to a Module . 42

Summary . 43

24174FM_final.fm Page viii Thursday, April 30, 2009 4:35 PM

■C O N T E N T S ix

■CHAPTER 4 Actions. 45

Overview . 45

Providing Action Classes . 46

Always Enabled Actions . 46

CallableSystemAction . 49

CallbackSystemAction . 50

CookieAction . 52

General Context-Sensitive Action Classes . 55

Registering Actions . 57

Shortcuts and Mnemonics . 58

Summary . 59

■CHAPTER 5 User Interface Design . 61

Overview . 61

Menu Bar . 62

Creating and Adding Menus and Menu Entries 62

Inserting Separators . 64

Hiding Existing Menu Entries . 64

Creating a Custom Menu Bar . 64

Toolbars . 65

Creating Toolbars . 65

Configuring Toolbars . 65

Modification by the User . 67

Creating Custom Toolbars . 68

Using Custom Control Elements . 68

Window System . 69

Introduction . 69

Configuration . 70

Customization . 72

Window: TopComponent . 72

Docking Container: Mode . 80

Groups of Windows: TopComponentGroup . 83

Status Bar . 86

Using the Status Bar . 86

Extending the Status Bar . 87

24174FM_final.fm Page ix Thursday, April 30, 2009 4:35 PM

x ■C O N T E N T S

Progress Bar . 88

Displaying the Progress of a Task . 88

Displaying the Progress of Many Related Tasks 90

Integrating a Progress Bar into Your Component 92

Summary . 92

■CHAPTER 6 Lookup . 93

Functionality . 93

Services and Extension Points . 94

Defining the Service Interface . 94

Loose Service Provisioning . 94

Providing Multiple Service Implementations 96

Ensuring Service Availability . 97

Global Services . 97

Registering Service Providers . 99

Service Provider Configuration File. 100

Services Folder . 101

Intermodule Communication . 102

Java Service Loader . 107

Summary . 108

■CHAPTER 7 File Access and Display . 109

Overview . 109

File Systems API . 110

Operations . 111

Data Systems API . 114

DataObject . 116

DataObject Factory . 121

DataLoader . 121

Nodes API . 124

Node Container . 125

Implementing Nodes and Children . 126

Explorer & Property Sheet API . 130

Summary . 133

24174FM_final.fm Page x Thursday, April 30, 2009 4:35 PM

■C O N T E N T S xi

■CHAPTER 8 Graphical Components . 135

Dialogs API . 135

Standard Dialogs. 135

Custom Dialogs . 139

Wizards . 140

MultiViews API . 151

Visual Library API . 154

Structure of the Visual Library API . 155

The Widget Classes . 155

Events and Actions . 159

The Scene: The Root Element . 164

ObjectScene: Model-View Relationship . 167

Graph . 168

VMD: Visual Mobile Designer . 172

Summary . 173

■CHAPTER 9 Reusable NetBeans Platform Components 175

Help System . 175

Creating and Integrating a Helpset . 175

Adding Links to Help Topics . 178

Context-Sensitive Help . 179

Opening the Help System . 180

Output Window . 180

Navigator . 182

Properties Window . 186

Providing Properties . 186

User-Defined Properties Editor . 188

Options Window . 189

Providing an Options Panel . 190

Settings Administration . 194

Palette . 196

Defining and Adding Palette Components via the Layer File 197

Creating a Palette from a Node Hierarchy . 198

Summary . 204

24174FM_final.fm Page xi Thursday, April 30, 2009 4:35 PM

xii ■C O N T E N T S

■CHAPTER 10 Internationalization and Localization . 205

String Literals in Source Code . 205

String Literals in the Manifest File . 207

Internationalization of Help Pages . 208

Internationalizing Other Resources . 209

Graphics. 209

Any File . 209

Folders and Files. 210

Administration and Preparation of Localized Resources 211

Summary . 212

■CHAPTER 11 Real-World Application Development . 213

Creation . 213

Customization of Platform Modules . 214

Customizing the Launcher . 215

Distribution . 216

Distribution As a ZIP Archive . 216

Distribution via Java Web Start . 217

Mac OS X Application . 217

Summary . 218

■CHAPTER 12 Updating a NetBeans Platform Application 219

Overview . 219

The Auto Update Service . 219

The NBM File . 220

Update Centers . 223

Localized NBM Files . 224

Configuring and Installing on the Client . 225

New Update Center. 226

Automatically Installing Updates . 227

Summary . 227

24174FM_final.fm Page xii Thursday, April 30, 2009 4:35 PM

■C O N T E N T S xiii

■CHAPTER 13 Persistence . 229

Java DB . 229

Integrating Java DB . 229

Driver Registration . 230

Creating and Using a Database . 230

Shutting Down a Database . 232

Database Development with the Help of the NetBeans IDE 232

Example Application . 235

Hibernate . 245

Setting Up the Hibernate Libraries . 245

Structure of the Example Application . 246

Configuring Hibernate . 247

Mapping Objects to Relations . 248

SessionFactory and Sessions . 250

Saving and Loading Objects . 251

Java Persistence API . 253

Hibernate and the Java Persistence API . 253

Java Persistence Configuration. 254

Entity Classes . 255

EntityManagerFactory and EntityManager . 257

Saving and Loading Objects . 258

Summary . 259

■CHAPTER 14 Web Services . 261

Creating a Web Service Client . 261

Using a Web Service . 264

Summary . 267

■CHAPTER 15 Extending the NetBeans IDE . 269

Palettes . 269

Defining and Registering Palette Entries . 270

Creating and Registering a PaletteController. 272

Expanding Existing Palettes. 273

Task List API . 274

Summary . 277

24174FM_final.fm Page xiii Thursday, April 30, 2009 4:35 PM

xiv ■C O N T E N T S

■CHAPTER 16 From Eclipse RCP to the NetBeans Platform 279

The NetBeans IDE . 279

Standard Components . 279

Handling Projects . 280

From Eclipse Plugins to NetBeans Modules . 280

Plugin: Lifecycle and Events . 281

Plugin Information. 282

Images . 283

Resources . 283

Settings . 284

Application Lifecycle. 284

Views and Editors . 284

Summary . 285

■CHAPTER 17 Tips and Tricks . 287

Asynchronous Initialization of Graphic Components 287

Undo/Redo . 289

Ending an Application’s Lifecycle . 291

WarmUp Tasks . 292

System Tray . 293

Desktop . 293

Logging . 294

Logger . 294

LogManager . 295

Configuration . 295

Error Reports . 296

Summary . 296

■CHAPTER 18 Example: MP3 Manager . 297

Design . 297

Creating the NetBeans Platform Application . 299

Support for MP3 . 299

Creating the JMF Module. 299

Registering the MP3 Plugin . 300

MP3 File Type . 300

ID3 Support . 302

ID3 API . 302

ID3 Editor . 304

24174FM_final.fm Page xiv Thursday, April 30, 2009 4:35 PM

■C O N T E N T S xv

Media Library . 307

Services . 308

MP3 Player . 309

Service Interface . 309

Service Provider . 311

Playback of MP3 Files . 314

User Interface . 315

Playlist . 318

Node View . 318

Node Container . 319

TopComponent . 320

Drag-and-Drop . 324

Saving the Playlist . 325

Summary . 329

■APPENDIX Important NetBeans Extension Points and
Configuration DTDs. 331

■INDEX . 337

24174FM_final.fm Page xv Thursday, April 30, 2009 4:35 PM

24174FM_final.fm Page xvi Thursday, April 30, 2009 4:35 PM

xvii

Foreword

The best way to improve what you do is to find someone who will do it for you better than you
could have done yourself. I’ve seen this principle in action over and over again. For example, it
was fine designing the NetBeans IDE and NetBeans Platform on my own. Now, however, it is
much better, since there are far more talented developers designing the various individual
parts together. Similarly, I was OK writing documentation for the NetBeans Platform, but it is
much better to have a group of enthusiastic people who produce tons of interesting tutorials
and blogs on topics that I would never have thought up myself. Along the same lines, it was
entertaining to contribute to a book about the NetBeans Platform. However, it is an order of
magnitude better to see this one by Heiko! It is richer and more interesting. Plus, it covers topics
that I never dreamed of covering myself.

My first encounter with this book dates back to 2007 when Heiko finished his German
version. I was asked to review the book’s content. However, as my German reading abilities are
close to zero, my goal was more to read the sample Java code and ensure that correct patterns
were used and described. It quickly became easy to see that everything was more than OK. Not
only that, I could immediately see that the topics were extraordinary and that they brought new
ideas into the NetBeans Platform world.

I am glad that Heiko’s interesting insights are now available to a broader audience. Thank
you Heiko! Thank you too, dear English translators!

Jaroslav Tulach
NetBeans Team Member

One of the wonderful things about the NetBeans Platform is that it is impossible to run out of
new things to do with it. For me, it has been an inexhaustible source of inspiration—and that is
still true ten years after I first started working with it!

I have coauthored two books on the NetBeans Platform in the past, and when we were
finishing up, there were always things we wished we had more time or space to cover. So there
can never be enough books about it—every author has a different perspective on the topic.

To Heiko I offer my heartfelt thanks for shining his unique insight on the NetBeans Plat-
form; to you, dear reader, I wish you happy coding and joy in learning to love a framework that
I have helped to build, and that has been a labor of love for many years.

Tim Boudreau
NetBeans Team Member

What I like most about this book is the number of interesting side roads you will find yourself
traveling as Heiko takes you by the hand and helps you explore the NetBeans Platform. Many of
the topics addressed here have not been addressed anywhere else—from persistence, to the
Task List API, to the integration of JDK 6 features into NetBeans Platform applications. You will

24174FM_final.fm Page xvii Thursday, April 30, 2009 4:35 PM

xviii ■F O R E W O R D

have a very hard time avoiding learning many new things here, regardless of the amount of
experience and skills you bring to the table.

Over the past two or three years, the NetBeans Platform has seen a continual surge in
popularity in companies around the world. This is in part because of its modular architecture,
in combination with its reliance on the standard Swing UI toolkit. But, certainly, the growing
adoption of the NetBeans Platform can also be attributed to the enthusiasm of its users.
Without them, the book you’re now holding would certainly not have come to be. In fact, a
small army from the NetBeans Platform community translated this book from scratch in the
space of a single month. As one of them, I can say that I have learned an unlikely amount of
details about the NetBeans Platform—details I would never otherwise have learned about.
Many thanks to Heiko for this great book and for all the work that went into it, as well as all the
work that went into updating it to 6.5!

Jim Freeman, the book’s editor in Prague, deserves high praise for his editing skills, as well
as for his sage advice and encouragement to me personally, and for his living room and cups of
hot coffee every morning for the duration of the translation project. Many thanks also to
Michaela Freeman for being so supportive, too. Also, much gratitude to the team at Apress for
their close cooperation and precision work throughout: Steve Anglin, Grace Wong, Douglas
Sulenta, and Damon Larson. On a personal note, based on the experiences of the past months,
Jim Freeman and Damon Larson are really very highly recommended technical editors indeed.

Finally, to the translators, who tirelessly slaved on their assigned chapters, I express my
warm gratitude: Zane Cahill, Stefan Alexander Flemming, Matthias Holzinger, Peti Horozoglu,
Martin Klähn, Pavel Kotlov, Christian Pervoelz, Christian Enrique Portilla Pauca, Sven Reimers,
Johannes Strassmayr, and Fionn Ziegler.

Some of the translators share their experiences translating the book and learning about the
NetBeans Platform in the following paragraphs.

Geertjan Wielenga
NetBeans Team Member

Having been a developer of NetBeans Platform applications for the last eight years, I am always
on the lookout for more and better documentation. And then Heiko published his book!
Without any high expectations, I started reading it to write a review, and was astonished by the
wealth of information Heiko managed to cover. So, always looking for ways to contribute to the
NetBeans Platform, I volunteered to take part in the translation project to make all this avail-
able to a much broader audience.

If you’ve already read a book on the NetBeans Platform, you may ask yourself why you
want to read this one. To make a long story short, it’s the unique and detailed content about the
basics of the NetBeans Platform that makes this book surpass the others. You will learn about
creating loosely coupled modules using the Lookup API, details of the module system, and how
to create your own full-scale applications based on the NetBeans Platform.

Thanks to Heiko for the effort he originally put into his book and the opportunity to be part
of such an extraordinary project. We all owe Geertjan big, for being the one leading us, offering
help, organizing, and pushing the translation effort.

Sven Reimers
Translator

24174FM_final.fm Page xviii Thursday, April 30, 2009 4:35 PM

■F O R E W O R D xix

This book is a great source of information and will hopefully be as valuable for other developers
as it was for me. I’m thankful for the opportunity to contribute to this project and hope all
readers will have as much fun reading as I had translating!

Johannes Strassmayr
Translator

Confronted with the task of porting a big legacy application to the NetBeans Platform, I’ve read
all the literature on the topic and found this particular book a great source of practical examples
and well-structured information.

It was a pleasure to read this book, so I was really honored to be part of the translation
team. I hope the English version will help even more people to find their way into the NetBeans
Platform community.

Pavel Kotlov
Translator

Translating this book was an interesting process—to do a good job, I had to take into account
each aspect of the NetBeans Platform, as well as Java programming in general. This book is a
good source of experience for programming in Java using the NetBeans IDE and the NetBeans
Platform underneath it, which together provide many tools and components for working with
Java. Combined with some practice and basic Java knowledge, this book will make you a better
programmer.

Translating the chapters assigned to me, I learned a great deal about actions and compo-
nents for building GUIs for Java applications—I’m confident that this book is a good reference
for these topics.

Many thanks to Geertjan for giving me the chance to work on this translation. It has
improved my translation abilities and allowed me to learn more about the NetBeans Platform.
I look forward to hearing about readers’ enjoyment of this book!

Christian Portilla Pauca
Translator

I well remember the first time I read the German version of Heiko’s book because it was the
moment when I really started understanding the ideas behind the most common NetBeans
Platform patterns. So, I’m all the more happy to have been asked to help translate a part of my
favorite NetBeans book into English.

It was a great experience to work on a team that managed to translate a whole book in just
one month!

Stefan Alexander Flemming
Translator

The book caught my attention during the development of a product based on the NetBeans
Platform. It gave me good ideas for solving many challenges and ensuring better product
quality. I improved my knowledge of the NetBeans module system while translating the book.
It is an honor to have been involved in the translation process.

24174FM_final.fm Page xix Thursday, April 30, 2009 4:35 PM

xx ■F O R E W O R D

While translating, I gained a better understanding of the window system, especially
regarding the layer.xml file and its relation to the System Filesystem. Additionally, I learned a
lot about defining and managing dependencies between modules with different versions, as
well as integrating modules into the NetBeans Platform.

Fionn Ziegler
Translator

Three years ago, I started an internship in a department developing a NetBeans Platform appli-
cation. Not having encountered NetBeans at all up to that point, I had to familiarize myself with
both the IDE and its platform. Once I realized how easy it is to develop applications with the
NetBeans IDE, I bade goodbye to my dear old friend Eclipse and welcomed the NetBeans IDE
with open arms! I was later integrated into the development team and brought up to speed
amazingly quickly. About a year later, Heiko published his book, and even more concepts
became clear to me.

Then came the day the community effort to translate Heiko’s book was announced. I
volunteered my help to broaden the distribution of knowledge contained in this book to
English-speaking readers and developers. After working on the chapter concerning the user
interface, I realized that my understanding of the concepts conveyed had increased without my
having been aware of it.

Heiko’s work putting this book together helped a lot of people to develop NetBeans Plat-
form applications, myself included. Geertjan, as manager of this project, has done tremendous
work bringing this project to fruition. We owe many thanks to Heiko and Geertjan for doing
what they did. I am hopeful that you as a reader can learn as much as I did when I first began
digging my claws into it all. And I hope you enjoy the experience while doing so!

Martin Klähn
Translator

I had seen testimonials to this book frequently pop up on mailing lists and blogs, so when the
opportunity presented itself to support a translation, I could not resist the appeal to be associ-
ated with this excellent book and a community project involving like-minded NetBeans
Platform enthusiasts.

Fortunately, part of my assignment was the Visual Library API, a feature set I never had the
opportunity to use before, so the task was also a great learning experience. At the outset, I
thought the Visual Library API would be complex with a steep learning curve. However, Heiko
shows how quick and easy it is to visualize structures, while highlighting important concepts
(such as tools that give rise to contextual actions) and providing useful tips (such as exporting
representations to PNG image files).

Hopefully you will enjoy the read as much as I have, and discover a great deal from the
experience!

Zane Cahill
Translator

24174FM_final.fm Page xx Thursday, April 30, 2009 4:35 PM

xxi

About the Author

■HEIKO BÖCK is pursuing his master’s degree in informatics at TUM, a tech-
nical university in Munich, Germany. He is the author of the book from
which this English version was translated. He is a highly respected member
of the NetBeans Platform’s developer community, and is a member of the
NetBeans Dream Team.

24174FM_final.fm Page xxi Thursday, April 30, 2009 4:35 PM

xxii

About the Technical
Reviewers

■JAROSLAV TULACH cofounded the NetBeans project, and remains a leading
guardian of the NetBeans APIs. He is the author of Practical API Design:
Confessions of a Java Framework Architect (Apress, 2008) and coauthor of
Rich Client Programming: Plugging into the NetBeans Platform (Prentice
Hall PTR, 2007). He lives in Prague, in the Czech Republic, where he
continues to work as a member of the NetBeans team.

■GEERTJAN WIELENGA is the technical writer responsible for the documenta-
tion relating to the NetBeans APIs. He writes the tutorials and JavaHelp
topics relating to this area of the NetBeans project. Like Jaroslav, he coau-
thored Rich Client Programming: Plugging into the NetBeans Platform, and
he lives in Prague and works as a member of the NetBeans team.

24174FM_final.fm Page xxii Thursday, April 30, 2009 4:35 PM

xxiii

Acknowledgments

I am very pleased that the original German book is now available in English and thus to a
worldwide readership! After long consideration, I almost wanted to reject the concept of a
translation project due to lack of time and the enormous expense involved. But then, fortu-
nately, Geertjan Wielenga joined the game, managing to get 11 other industrious translators on
board. By joining forces, the book was translated within a single month. What I had considered
impossible came true within a few weeks.

For this success, I would like to especially thank Geertjan. Through his hard work, the
project was programmed for success from the beginning. In the same way, I would like to
express my gratitude to the translators for their passionate cooperation. Many thanks also go to
Jim Freeman, the editor of the translation project. Last but not least, I offer many thanks to all
participating Apress employees for their great cooperation.

And you, dear reader: I wish you a lot of fun discovering the world of the NetBeans Platform
with its numerous features, as well as a lot of success in implementing your projects!

Heiko Böck

24174FM_final.fm Page xxiii Thursday, April 30, 2009 4:35 PM

xxiv

Introduction

Over the past several years, rich client desktop platforms have gradually increased in popu-
larity. Leading this trend have been the NetBeans Platform and the Eclipse RCP. The
popularization of these desktop platforms has been primarily driven by their related IDEs,
which are based on these platforms, providing tools for applications developed on top of their
infrastructures. While the Eclipse RCP bases itself, via SWT and JFace, on homegrown idioms
and concepts, the NetBeans Platform relies completely on the standard Java APIs, via AWT and
Swing, fully integrating the official concepts of the Java Standard Edition.

In the desktop world, rich client platforms are used first and foremost because of the archi-
tecture and flexibility they offer to continually growing applications. A significant factor is the
increased productivity and flexibility in being able to assemble an application for one purpose
and then reassemble it for a different purpose without much extra work, thanks to their flexible
modular architecture. Especially for large and professional applications, these concerns are of
particular relevance.

It is my opinion that all desktop applications stand to gain from basing themselves on a rich
client platform, regardless of their size. The case for this argument can be made by looking, in
particular, at the lifecycle management offered by rich client platforms, together with their rich
set of APIs, which provide out-of-the-box solutions for the daily challenges faced by desktop
application developers. These solutions are tailored specifically to the demands of these kinds
of developers, as a result increasing productivity significantly. However, the universal relevance
of rich client platforms requires an appropriate handling of the related concepts. At the very
least, the developer needs to be comfortable with the main idioms of the platform in question.
Only then can the real advantages in increased productivity and improved quality be realized.

The supposed complexity of rich client platform concepts is one of the central reasons why
such platforms have, so far anyway, not been adopted as a de facto standard in the development
of desktop applications. At the outset, developers often have the impression of standing in the
foothills of an overwhelming mountain of new APIs and concepts. However, once developers
integrate these APIs and concepts into their mental toolbox, a surprisingly expansive vista of
synergies and simplifications is suddenly available, making the learning curve a worthwhile
expense.

Consider the most recent enhancements in the Java Platform in relation to desktop appli-
cations, such as the improved desktop integration and the performance enhancements, and
then examine the plans for the Java Platform in the future. When you do so, you’ll notice that
the Java Platform is moving in directions that rich client desktop platforms have been exploring
from their very beginnings. When I refer to the future, I am referring in particular to the Java
Module System (JSR 277), which promises to bring the central concepts of rich client platform
development to the Java Platform.

Finally, I’d like to include a note on the NetBeans IDE in relation to the NetBeans Platform.
The IDE provides, via its thorough and helpful wizards, effective support for developers getting
started with application development on this particular rich client platform. Important for an

24174FM_final.fm Page xxiv Thursday, April 30, 2009 4:35 PM

■I N T R O D U C T I O N xxv

easy start is that many of the APIs and concepts you will learn about are directly derived from
the Java SE API. Thanks to these factors, you will be able to get started with the NetBeans Plat-
form quite quickly. Reuse of components across different applications will then also rapidly
become a possibility.

How This Book Is Structured
This book is aimed at Java developers wanting to create desktop applications on top of the
NetBeans Platform. No knowledge of the NetBeans Platform is assumed. The primary goal of
this book is the practical explanation of the basic concepts and functionalities of the NetBeans
Platform. In the process, you will be introduced to the great support for this kind of develop-
ment offered by the NetBeans IDE. You will hopefully begin asking yourself why you haven’t
been developing your desktop applications on top of a platform all along! At the very least, you
will learn about the many advantages you could have benefited from in your past Java
programming activities.

Firstly, the book discusses the definition of rich clients and rich client platforms. The argu-
ment for the general usefulness of these concepts culminates with an examination of the
advantages of rich client platforms in general and the NetBeans Platform in particular.

Next, you are introduced to the architecture of the NetBeans Platform. You’ll learn how a
rich client application is structured, how your application’s business logic is integrated into the
NetBeans Platform, and how to efficiently use the NetBeans Platform concepts and compo-
nents. You’ll also be shown how to make your applications user- and locale-specific, how to
distribute them, and how to update them after distribution.

An important discussion relating to rich client development is that of persistence. This
book dives into this topic in some detail, introducing you to the Java Persistence API in combi-
nation with Hibernate, as well as with Java DB.

The desktop integration possibilities offered by Java 6 are explained as well. The powerful
Visual Library API, which has belonged to the NetBeans Platform since version 6.0, is examined
closely, as is the increasingly relevant topic of web services.

This book discusses the similarities and differences between Eclipse RCP and the
NetBeans Platform, and walks you through the migration of an existing Eclipse RCP application
to the NetBeans Platform.

The individual chapters are structured such that they are as loosely tied to each other as
possible. The intent is for you to be able to dive directly into a chapter, without having to be too
familiar with the preceding or following parts. I think you will find this approach optimal for the
development of rich client applications on top of the NetBeans Platform. To give a practical
perspective to each chapter, and to let you use their contents immediately, the explanations in
the book are accompanied by small examples, rather than a large overarching application that
spans the whole book. At the end of the book, a complete application on the NetBeans Platform
is described in some detail, from its starting point to the implementation of business logic, in a
tutorial-like format, describing the creation of an MP3 Manager. In this application, you’ll inte-
grate the Java Media Framework together with a Java DB database.

All the examples and explanations in this book are based on Java 6, together with the
NetBeans Platform 6.5, although Java 5 should in most cases be sufficient, too. You can obtain
the Java Development Kit from http://java.sun.com, and you can download the NetBeans IDE
from http://netbeans.org. You can download the examples as complete NetBeans projects
from the Source Code section of the Apress web site, at http://apress.com.

24174FM_final.fm Page xxv Thursday, April 30, 2009 4:35 PM

24174FM_final.fm Page xxvi Thursday, April 30, 2009 4:35 PM

1

■ ■ ■

C H A P T E R 1

Introduction
Let’s Find Out What This Book Is
All About!

This chapter introduces you to the theme of “rich clients.” In the process, you will learn what
a rich client is and how a rich client platform can help you. In addition, we will briefly touch on
the main advantages and characteristics of the NetBeans Platform.

What Is a Rich Client?
In a client server architecture the term “rich client” is used for clients where the data processing
occurs mainly on the client side. The client also provides the graphical user interface. Often
rich clients are applications that are extendable via plugins and modules. In this way, rich
clients are able to solve more than one problem. Rich clients can also potentially solve related
problems, as well as those that are completely foreign to their original purpose.

Rich clients are typically developed on top of a framework. A framework offers a basic
starting point on top of which the user can assemble logically related parts of the application,
which are called modules. Ideally, unrelated solutions (such as those made available by diff-
erent providers) can work together, so that all the modules appear to have been created as one
whole. Software developers and providers can also bundle rich client distributions from distinct
modules, with the aim to make these available to specific users.

Above and beyond all that, rich clients have the advantage that they are easy to distribute
and update, such as via an automatic online update function within the client itself or through
a mechanism that enables the rich client to start over the Internet (for example, via Java Web
Start).

Here’s an overview of the characteristics of a rich client:

• Flexible and modular application architecture

• Platform independence

• Adaptability to the end user

• Ability to work online as well as offline

• Simplified distribution to the end user

• Simplified updating of the client

24174ch01_final_idx.fm Page 1 Thursday, March 26, 2009 3:22 PM

2 C H A P T E R 1 ■ I N T R O D U C T I O N

What Is a Rich Client Platform?
A rich client platform is an application lifecycle environment, a basis for desktop applications.
Most desktop applications have similar features, such as menus, toolbars, status bars, progress
visualizations, data displays, customization settings, the saving and loading of user-specific
data and configurations, splash screens, About boxes, internationalization, help systems, and
so on. For these and other typical client application features, a rich client platform provides a
framework with which the features can quickly and simply be put together.

The configurability and extensibility of an application take center stage in a framework of
this kind. As a result, you can, for example, declaratively provide the menu entries of an appli-
cation in a text file, after which the menu will be loaded automatically by the framework. This
means that the source code becomes considerably more focused and manageable, and devel-
opers are able to concentrate on the actual business needs of the application, while the menu
is maximally configurable.

The most important aspect of a rich client platform is its architecture. Applications based
on rich client platforms are written in the form of modules, within which logically coherent
parts of an application are isolated. A module is described declaratively and automatically
loaded by the platform. As a result, there is no explicit binding necessary between the source
code and the application. In this way, a relatively loosely coupled relationship is established
between independently functioning modules, by means of which the dynamic extensibility of
the application and the ability to swap its constituent parts are enormously simplified. In this
way it is also very easy to assemble user- or domain-specific applications from individual
modules.

A rich client platform also frees the developer from being concerned with tasks that have
little to do with the application’s business logic. At the end of the development cycle, you
achieve a well-deserved and modern application architecture.

Advantages of a Rich Client Platform
Aside from the modularity offered by a rich client architecture, which simultaneously implies
a high degree of robustness and end user value, the extensive development support it provides
needs to be highlighted as well. These and other advantages of rich client platforms are briefly
described here:

• Reduction in development time

• User interface consistency

• Updating

• Platform independence

• Reusability and reliability

We’ll look at each in turn.

Reduction in Development Time
A rich client platform provides a multitude of APIs for desktop application development. For
example, these can be used by developers to manage windows and menus or support the
display of customization options. Through the reusability of many predefined components,
developers are able to concentrate very closely on the business logic of the application in
question.

24174ch01_final_idx.fm Page 2 Thursday, March 26, 2009 3:22 PM

C H A P T E R 1 ■ I N T R O D U C T I O N 3

User Interface Consistency
Usability of an application is always of crucial concern, in particular when the application is
intended to be used by professionals of a particular domain. A rich client platform makes avail-
able a framework for the display of user interfaces, while taking particular care of its
consistency, accessibility, and usability.

Updating
Using a rich client platform, it becomes possible to quickly and efficiently distribute new or
updated modules to end users. As a result, not all the clients of an application need be informed
by developers to switch to a new version. Updates can be distributed and installed in the form
of modules, so distinct features can be developed and delivered by independently operating
teams. The modular architecture of the application ensures that completed modules can be
distributed without having to wait for other modules to be finalized.

Platform Independence
Rich client platforms are based on international standards and reusable components. As a
result, Java applications based on them can be automatically deployed to multiple different
systems, such as Windows or Linux, so long as an implementation of the Java Runtime Envi-
ronment is available. Since the feature set and the applicability of applications keep changing,
it is very important that they are developed in such a way that they are extendable and can be
deployed to different target systems. All this is provided by a rich client platform, saving time
and money. Applications based on rich client platforms do not require further libraries or
components, other than the Java Runtime Environment.

Reusability and Reliability
Rich client platforms make a range of features and modules available, which can be used in the
developer’s own applications. If the module does not completely match the application’s
requirements, it is entirely possible to use it as a starting point, while extending it or changing
it as needed. Since most platforms also make their source code available, it may also, in some
cases, be worth considering changing or extending the platform itself. These factors imply a
high degree of reliability and freedom.

Characteristics of the NetBeans Platform
The NetBeans Platform offers, aside from the generic advantages of a rich client platform,
numerous frameworks and several further specifics that can be particularly useful to your
applications. The important ones, which constitute the main characteristics of the NetBeans
Platform, are outlined here:

• User interface framework

• Data editor

• Customization display

• Wizard framework

• Data systems

24174ch01_final_idx.fm Page 3 Thursday, March 26, 2009 3:22 PM

4 C H A P T E R 1 ■ I N T R O D U C T I O N

• Internationalization

• Help system

We’ll look at each in turn.

User Interface Framework
Windows, menus, toolbars, and other components are made available by the platform. As a
result, you focus on specific actions, which condense your code, making it better and less
error-prone. The complete user interface offered by the NetBeans Platform is based 100% on
AWT/Swing and can be extended with your own components.

Data Editor
The powerful NetBeans editor within the NetBeans IDE can be used by your own application.
The tools and functionality of the editor can quickly and easily be extended and adapted to the
purposes of the application.

Customization Display
A display of user- and application-specific settings is needed in every application. The NetBeans
Platform makes a framework available, making it extremely simple to integrate your own
options dialogs, letting the user save and restore settings in a way that is pleasing to the eye.

Wizard Framework
The NetBeans Platform offers simple tools to create extendable and user-friendly assistants,
guiding the user through complex steps in the application.

Data Systems
In terms of the NetBeans Platform, data can be local or available via FTP, CVS, a database, or
an XML file. By means of abstraction, data access by one module is transparent to all other
modules. Actual data access itself is therefore not a concern, since it is dealt with by the
NetBeans Platform’s APIs.

Internationalization
The NetBeans Platform provides classes and methods enabling the internationalization of
JavaHelp and other resources. You can easily store text constants in properties files. The
NetBeans Platform also loads text constants and icons applicable to the current country and
language settings.

Help System
By means of the standard JavaHelp system, the NetBeans Platform offers a central system for
the integration and display of help topics to the end user. In addition, individual modules can
contribute their own topics to the application’s help system. On top of all that, the NetBeans
Platform lets you provide context-sensitive help as well.

24174ch01_final_idx.fm Page 4 Thursday, March 26, 2009 3:22 PM

C H A P T E R 1 ■ I N T R O D U C T I O N 5

Summary
In this chapter, you learned the difference that a rich client can make. We discussed advan-
tages a rich client brings to the table, including its modular architecture, made possible by a
module system unique to rich client platforms. However, a rich client platform offers many
other advantages and features. Among these, support for a consistent user interface and the
update of applications with new features at runtime. Finally, we examined the most important
characteristics of the NetBeans Platform.

24174ch01_final_idx.fm Page 5 Thursday, March 26, 2009 3:22 PM

24174ch01_final_idx.fm Page 6 Thursday, March 26, 2009 3:22 PM

7

■ ■ ■

C H A P T E R 2

Structure of the NetBeans
Platform
Let’s Find Out What It’s
Made Of!

To give you an overview of how a rich client application is structured, and to show the rela-
tionship between the application that you’re creating and the NetBeans Platform, this chapter
will discuss the architecture of the NetBeans Platform. You will also be introduced to the inde-
pendent building blocks of the NetBeans Platform and to the responsibilities that the runtime
container handles for you. Finally, the structure of the NetBeans classloader system will be
explained, together with the role it plays in applications built atop the NetBeans Platform.

NetBeans Platform Architecture
The size and complexity of modern applications has steadily increased over time. At the same
time, professional applications need to be, before anything else, flexible, so that they can
quickly and easily be extended. That makes it desirable to divide an application into distinct
parts. As a result, each distinct part is a building block making up a modular architecture. The
distinct parts must be independent, making available well-defined interfaces that are used by
other parts of the same application, with features that other parts can use and extend.

The division of application into modules—that is, as logically interdependent
parts—enhances the design of an application enormously. As opposed to a monolithic appli-
cation, in which every class can make use of code from any other class, the architecture is far
more flexible and, more importantly, far simpler to maintain. It is also possible to protect a
class from access from the outside world, although such class-level protection is too finely
grained to be useful to most applications. It is exactly this central aspect of modern client
applications that the NetBeans Platform tackles. Its concepts and structures support the devel-
opment and conceptualization of flexible and modular applications.

The basic building block of the NetBeans Platform is a module. A module is a collection
of functionally related classes, together with a description of the interfaces that the module
exposes, as well as a description of the other modules that it needs in order to function. The

24174ch02_final_idx.fm Page 7 Wednesday, April 8, 2009 1:57 PM

8 C H A P T E R 2 ■ S T R U C T U R E O F T H E N E T B E A N S P L A T F O R M

complete NetBeans Platform, as well as the application built on top of it, is divided into
modules. These are loaded by the core of the NetBeans Platform, which is known as the
NetBeans runtime container. The NetBeans runtime container loads the application’s modules
dynamically and automatically, after which it is responsible for running the application as well.

In this way, the NetBeans IDE is a very good example of a modular rich client application.
The functionality and characteristics of an IDE, such as its Java language support or the code
editor, is created in the form of modules on top of the NetBeans Platform (see Figure 2-1). That
brings with it the great advantage that the application can be extended by additional modules
and that it can be adapted to specific user needs, allowing particular modules that are not used
to be deactivated or uninstalled.

Figure 2-1. Conceptual structure of the NetBeans IDE

To enable your applications to attain this level of modularity, the NetBeans Platform on
the one hand makes mechanisms and concepts available that enable modules to be extendable
by other modules, and on the other hand enables them to communicate with each other
without being dependent on each other. In other words, the NetBeans Platform supports a
loose coupling of modules within an application.

To optimize the encapsulation of code within modules, which is necessary within a
modular system, the NetBeans Platform provides its own classloader system. Each module is
loaded by its classloader and, in the process, makes a separate independent unit of code avail-
able. As a result, a module can explicitly make its packages available, with specific functionality
being exposed to other modules. To use functionality from other modules, a module can
declare dependencies on other modules. These dependencies are declared in the module’s
manifest file and resolved by the NetBeans runtime container, ensuring that the application
always starts up in a consistent state. More than anything else, this loose coupling plays a role
in the declarative concept of the NetBeans Platform. By that we mean that as much as possible
is defined in description and configuration files, in order to avoid a hard-wired connection of
these concepts with the Java source code. A module is described by its manifest file’s data,
together with the data specified in related XML files, and therefore does not need to be explicitly
added to the NetBeans Platform. Using XML files, the NetBeans Platform knows the modules

24174ch02_final_idx.fm Page 8 Wednesday, April 8, 2009 1:57 PM

C H A P T E R 2 ■ S T R U C T U R E O F T H E N E T B E A N S P L A T F O R M 9

that are available to it, as well as their locations and the contracts that need to be satisfied for
them to be allowed to be loaded.

The NetBeans Platform itself is formed from a group of core modules (see Figure 2-2),
which are needed for starting the application and for defining its user interface. To this end, the
NetBeans Platform makes many APIs and service providers available, simplifying the develop-
ment process considerably. Included in this group (see Figure 2-2) are, for example, the Actions
API, which makes available the oft-needed action classes; the powerful Nodes API; and the
Options SPI, with whose help your own options dialogs can easily be integrated into the appli-
cation. Next to these, there are also complete reusable components in the NetBeans Platform,
such as the Output window and the Favorites window.

Figure 2-2. NetBeans Platform architecture

NetBeans Platform Distribution
Normally you don’t need to download a distribution of the NetBeans Platform, since it’s already
a basic part of the NetBeans IDE, itself a rich client application built on top of the NetBeans Plat-
form. When you develop your application in the NetBeans IDE and then create a distribution
for your application, the NetBeans Platform is extracted from the NetBeans IDE distribution
you use for development. However, you can also register multiple NetBeans Platforms in the
NetBeans IDE. To that end, you can download a separate distribution of the NetBeans Platform
from the official site, at http://platform.netbeans.org.

Let’s now look more closely at the modules that make up a NetBeans Platform
distribution:

The modules org-netbeans-bootstrap, org-netbeans-core-startup, org-openide-file-
systems, org-openide-modules, and org-openide-util form the NetBeans runtime
container. This is the core of the NetBeans Platform and is responsible for the deployment
of all the other modules in the application.

24174ch02_final_idx.fm Page 9 Wednesday, April 8, 2009 1:57 PM

10 C H A P T E R 2 ■ S T R U C T U R E O F T H E N E T B E A N S P L A T F O R M

The modules org-netbeans-core, org-netbeans-core-execution, org-netbeans-core-ui,
and org-netbeans-core-windows provide basic underlying functionality for applications
based on the NetBeans Platform.

org-netbeans-core-output2 is a predefined application module that provides a central
window for displaying and working with application output messages. More about this
module can be read in Chapter 9.

The module org-netbeans-core-multiview is a framework for multiview windows, such as
those used by the Matisse GUI Builder, and makes an API available for similar views.

The module org-openide-windows contains the Window System API, which is probably the
API most frequently used by NetBeans Platform applications. In this module you can find
foundation classes for the development of application windows and, among others, the
WindowManager, which gives you access to and information about all the windows available
to the application.

A NetBeans Platform application’s update functionality is provided by the org-netbeans-
modules-autoupdate-services module. This module contains all the functionality required
for discovery, downloading, and installation of modules into an application. The module
org-netbeans-modules-autoupdate-ui provides the Plugin Manager, with which the user
can choose and control updates to an application.

The org-netbeans-modules-favorites module provides a window that lets the user select
folders and files—i.e., a filechooser integrated into a NetBeans Platform idiom. The actions
added to folders and files via the Data Systems API can also be used in this window.

The module org-openide-actions makes a range of important system actions available,
such as Copy, Paste, and Print, each of which can be implemented in a context-sensitive
way.

org-openide-loaders is a very powerful module that contains, among others, the Data
Systems API for the integration of data loaders that can be connected to specific types of
data.

The Nodes API provided by the org-openide-nodes module enables a crucial concept in
the NetBeans Platform, that of nodes. For example, nodes can be shown in an explorer
view, have actions assigned to them, and be supported by property sheets.

The module org-openide-explorer provides a framework for the display of explorer views,
such as the Projects windows and Files window that are used in the NetBeans IDE.

The module org-netbeans-modules-editor-mimelookup provides an API for the discovery
of MIME-specific settings, services, and other objects, together with an SPI enabling
creation of MIME-specific data providers. The module org-netbeans-modules-editor-
mimelookup-impl is a special implementation of this SPI, used for the discovery of objects
for which the System Filesystem is responsible.

org-netbeans-modules-javahelp contains the JavaHelp runtime library, while making an
implementation available to the Module System API that enables it to integrate JavaHelp
helpsets provided by different modules.

24174ch02_final_idx.fm Page 10 Wednesday, April 8, 2009 1:57 PM

C H A P T E R 2 ■ S T R U C T U R E O F T H E N E T B E A N S P L A T F O R M 11

The Master Filesystem module org-netbeans-modules-masterfs provides a central
wrapper file system to your application on the NetBeans Platform.

The module org-netbeans-modules-options-api provides an options window for user
customizations and an SPI that enables you to extend the options window very quickly
and easily.

The module org-netbeans-api-progress lets you control long-running tasks. The module
org-netbeans-modules-progress-ui offers a visualization feature that enables users to end
a task manually.

org-netbeans-modules-queries makes the General Queries API available for obtaining
information about files that are handled by an application. On top of that is an SPI for
creating your own query implementations.

org-netbeans-modules-sendopts contains the Command Line Parsing API and SPI, with
which you can register your own handlers for dealing with command line arguments.

The module org-netbeans-modules-settings provides an API for saving module-specific
settings in a user-defined format. To this end, it offers several useful settings formats.

org-openide-awt accesses the UI Utilities API, which provides many helper classes for the
display of user interface elements in NetBeans Platform applications.

The module org-openide-dialogs provides an API for displaying standard and user-
specific dialogs. In addition, this module also contains the Wizard framework.

org-openide-execution makes available an API for executing long-running tasks
asynchronously.

org-openide-io provides an API and SPI for the display of input and output coming from
data within the application. The module also makes a standard implementation available
that enables the application to write to its output window.

The Text API in the module org-openide-text offers an extension to the javax.swing.text
API.

The modules org-netbeans-swing-plaf and org-netbeans-swing-tabcontrol are respon-
sible for handling the look and feel and the display of tabs, while the module org-
jdesktop-layout is a wrapper for the Swing Layout Extensions library.

The org-netbeans-api-visual module makes available the Visual Library API, for
modeling and displaying visual representations of data.

The module org-netbeans-spi-quicksearch contains the Quick Search API and SPI, which
are new in NetBeans Platform 6.5. It provides the infrastructure to implement search
providers for, e.g., menu entries, actions, or files. A central search field makes the search
accessible to the user.

Additionally, it is possible to add modules to your application from the NetBeans IDE’s
distribution.

24174ch02_final_idx.fm Page 11 Wednesday, April 8, 2009 1:57 PM

12 C H A P T E R 2 ■ S T R U C T U R E O F T H E N E T B E A N S P L A T F O R M

NetBeans Runtime Container
The basis of the NetBeans Platform and its modular architecture is the NetBeans runtime
container. It consists of the following five modules:

Bootstrap: This module is executed before any other. It carries out all registered command
handlers and prepares a boot classloader, which loads the Startup module.

Startup: This module deploys the application, at which point it initializes the module
system and the file system.

Module System: This module is responsible for the definition of modules, as well as their
settings and dependencies.

File System: This module makes a virtual data system available, with platform-indepen-
dent access. Primarily it is used to load module resources into an application.

Utilities: This module provides basic components, such as those required for intermod-
ular communication.

Figure 2-3 shows the dependencies between these five basic modules.

Figure 2-3. NetBeans runtime container

The runtime container is a minimal subset of modules that NetBeans Platform applications
require. Without other modules or settings being required, an application can be deployed
containing these five modules. Directly after deployment it will shut down, since no further
tasks have been defined. When the runtime container starts, it finds all available modules and
builds from them an internal registry. A module is normally only loaded once it is needed. To
that end, it is registered at startup. A module also has the ability to execute tasks at the time that
it is loaded by the runtime container. That takes place by means of a module installer, about
which more is discussed in Chapter 3. The runtime container also enables dynamic loading,
unloading, installing, and uninstalling of modules, all of which occur at runtime. This func-
tionality is for updating an application by the user (via the update feature) or for deactivating
unnecessary modules in an application.

24174ch02_final_idx.fm Page 12 Wednesday, April 8, 2009 1:57 PM

C H A P T E R 2 ■ S T R U C T U R E O F T H E N E T B E A N S P L A T F O R M 13

For a complete understanding of the deployment of a rich client application, it is also
important to mention that the Bootstrap module (the first module executed) is started by a
platform-specific launcher. The launcher is also responsible for identifying the Java Runtime
Environment, which is required for starting the application. The launcher is part of the
NetBeans Platform and is platform-specific, so that, for example, on Windows systems it is an
.exe file.

NetBeans Classloader System
The NetBeans classloader system is an essential part of the NetBeans runtime container and a
continuation of the encapsulation of modules and structuring of a modular architecture. This
system consists of three different types of classloaders. These are the module classloader, the
system classloader, and the original classloader. Most classes are loaded by the module class-
loader. Only in certain cases, such as when resources must be accessed outside a module, is the
system classloader used. The original classloader loads resources from the classpath of the
application launcher. The module classloader and the system classloader are multi-parent
classloaders, having an infinite number of classloaders as their parents. The relationships
between classloader types are displayed in Figure 2-4.

Figure 2-4. NetBeans classloader system

Module Classloader
For every module registered in the Module System, an instance of the module classloader is
made available, by means of which every module obtains its own namespace. Primarily, this
classloader loads classes from the module’s JAR archive, by which it may load from multiple
archives, as often happens with library wrapper modules. (You will learn more about this in
Chapter 3.)

24174ch02_final_idx.fm Page 13 Wednesday, April 8, 2009 1:57 PM

14 C H A P T E R 2 ■ S T R U C T U R E O F T H E N E T B E A N S P L A T F O R M

The original classloader is implicitly a parent classloader of every module classloader, and
is the first on the parent’s list. Further parents are those of related modules, on which depen-
dencies have been set. How dependencies are set is defined in Chapter 3.

This multi-parent module classloader enables classes to be loaded from other modules,
while avoiding namespace conflicts. The loading of classes is delegated to the parent class-
loader, rather than the modules themselves. In addition to the module JAR archive, this
classloader is responsible for loading the locale extension archives (see Chapter 10) from the
subdirectory locale, as well as the patch archives under the subdirectory patches, if these are
available.

System Classloader
The system classloader is, by default, (as is the case with the module classloader) a multi-
parent classloader. It owns all the instantiated module classloaders as its parents. As a result, it
is theoretically possible to load everything provided by a module with this classloader. Even so,
obeying the strictures of encapsulation, this approach should only be followed when abso-
lutely necessary.

Access to the system classloader can be obtained in one of two different ways: via Lookup,
about which you will hear much more later, as well as the context classloader of the current
thread. This is the default (insofar as you have not explicitly set other context classloaders) of
the system classloader.

ClassLoader cl = Lookup.getDefault().lookup(ClassLoader.class);

or

ClassLoader cl = Thread.currentThread().getContextClassLoader();

Original Classloader
The original (application) classloader is used by the launcher of the application. It loads classes
and other resources on the original classpath and, after that, from the lib directories and their
ext subdirectories. If a JAR archive is not recognized as a module (i.e., the manifest entries are
invalid), it is not added to the module system. These resources are always found first: if the
same resource is found here as in the module JAR archive, those found in the module are
ignored. This arrangement is important to the branding of modules, as well as to the prepara-
tion of multiple language distributions of a particular module.

As before, this classloader is not used for loading related resources. It is much more likely
to be used for resources that are needed in the early start phase of an application, such as for
the classes required for setting the look and feel.

24174ch02_final_idx.fm Page 14 Wednesday, April 8, 2009 1:57 PM

C H A P T E R 2 ■ S T R U C T U R E O F T H E N E T B E A N S P L A T F O R M 15

Summary
This chapter examined the structure of the NetBeans Platform. We began by looking at its
architecture, the core of which is provided by the runtime container. The runtime container
provides the execution environment of applications created atop the NetBeans Platform and
also provides an infrastructure for modular applications. The NetBeans classloader system,
which ensures the encapsulation of modules, was introduced and explained. Aside from the
runtime container, many modules form parts of the NetBeans Platform, and we looked briefly
at each of these. Finally, we noted that the NetBeans IDE is itself a rich client application
consisting of modules that are reusable in your own applications.

24174ch02_final_idx.fm Page 15 Wednesday, April 8, 2009 1:57 PM

24174ch02_final_idx.fm Page 16 Wednesday, April 8, 2009 1:57 PM

17

■ ■ ■

C H A P T E R 3

The Module System
Let’s Understand the Basic
Building Blocks!

This chapter focuses on the NetBeans module system, which is the central component of the
runtime container and is responsible for loading and managing all the modules in the applica-
tion. You’ll learn how a module is structured, how it connects with other modules, how it
integrates into the NetBeans Platform, and how its lifecycle is traced and influenced.

Overview
The NetBeans module system is responsible for managing all modules in the application. It is
also responsible for tasks such as creating the classloader, the loading of modules, and their
activation and deactivation. The concept of the NetBeans module system is based, as far as
possible, on standard Java technologies. The basic idea of the module format originates in the
Java Extension Mechanism. The fundamental ideas of the Package Versioning Specification are
used to describe and manage dependencies between application modules and dependencies
of system modules.

Basic properties, such as the description of a module and its dependencies on other
modules, are described in a manifest file. This file has the standard manifest format with addi-
tional NetBeans-specific attributes. The Java Activation Framework as well as JDK internal
functions (such as the support of executable JAR files) are used as a design model for the
module specification. Besides attributes in the manifest file, most modules do not need special
installation code, as they are added to the NetBeans Platform declaratively. The XML file
layer.xml provides application-specific information and defines the integration of a module
into the NetBeans Platform. Everything that a module adds to the NetBeans Platform is speci-
fied in this file, ranging from actions to menu items to services.

24174ch03_final_idx.fm Page 17 Friday, April 24, 2009 5:04 PM

18 C H A P T E R 3 ■ T H E M O D U L E S Y S T E M

Module Structure
A module is a simple JAR file, normally consisting of the following parts (see also Figure 3-1):

• Manifest file (manifest.mf)

• Layer file (layer.xml)

• Class files

• Resources like icons, properties bundles, helpsets, etc.

Only the manifest file is obligatory, since it identifies the module. All other content depends
on a module’s purpose. In most cases, if the module is only used as a library, the layer file is
superfluous.

Figure 3-1. NetBeans module

An XML config file (e.g., com-galileo-netbeans-module.xml) is needed by each module,
located outside the JAR file. This is the first file read—i.e., it announces the module to the
platform.

Module Types
All modules are declared in the module system by an XML configuration file, located in the
cluster folder config/Modules, outside the module file. This folder is read on application
startup by the module system and the modules are loaded according to this information. The
content of the configuration file describes the module name, version, and location, as well as
whether or not and how the module is loaded. See the document structure in Listing 3-1.

24174ch03_final_idx.fm Page 18 Friday, April 24, 2009 5:04 PM

C H A P T E R 3 ■ T H E M O D U L E S Y S T E M 19

Listing 3-1. Module configuration file: com-galileo-netbeans-module.xml

<module name="com.galileo.netbeans.module">
 <param name="autoload">false</param>
 <param name="eager">false</param>
 <param name="enabled">true</param>
 <param name="jar">modules/com-galileo-netbeans-module.jar</param>
 <param name="reloadable">false</param>
 <param name="specversion">1.0</param>
</module>

The enabled attribute defines if the module is loaded and the manner in which it is
provided to the NetBeans Platform Application. There are three ways to determine at which
point a module should be loaded. If the value of both the attributes autoload and eager is false,
the module is type regular. If one of these values is true, the module type is autoload or eager.
The module type is defined in the API Versioning section of the module properties dialog (see
Figure 3-7). By default, regular mode is used.

Regular
This is the common type of application modules. They are loaded on application start. The
application loading time is extended by the time of module initialization. Therefore, it is
recommended to keep the module initialization very short. Normally it is not necessary to run
anything during module loading, as many tasks can be defined declaratively.

Autoload
These modules are loaded only when another module requires them. Autoload modules corre-
spond to the principle of lazy-loading. This mode is usually used for those modules acting as
libraries.

Eager
Eager modules are only loaded when all dependencies are met. This is another option to mini-
mize starting time. For example, if module X depends on the modules A and B, which are not
available, it makes no sense to load module X.

Module Manifest
Each module running within the NetBeans Platform has a manifest file. This file is a textual
description of the module and its environment. When loading a module, the manifest file is the
first file read by the module system. A NetBeans module is recognized if the manifest file
contains the OpenIDE-Module attribute. This is the only mandatory attribute. Its value can be any
identifier (typically the code name base of the module is used—e.g., com.galileo.netbeans.
module); therefore, conflicts cannot occur between modules, even if created by various devel-
opers. This identifier is used to distinguish a non-ambiguous module, needed for upgrades or
dependency definitions.

24174ch03_final_idx.fm Page 19 Friday, April 24, 2009 5:04 PM

20 C H A P T E R 3 ■ T H E M O D U L E S Y S T E M

Attributes
In the following sections, all attributes of a module manifest are described briefly, each with a
short example.

Description

Consider the following frequently used attributes by which a module can be textually
described:

OpenIDE-Module: This attribute defines a unique name for the module used for recognition
by the module system. The specification of this attribute is mandatory.

OpenIDE-Module: com.galileo.netbeans.module

OpenIDE-Module-Name: This defines a displayable name of the module, also displayed in the
Plugin Manager.

OpenIDE-Module-Name: My First Module

OpenIDE-Module-Short-Description: This represents a short functionality description
provided by the module.

OpenIDE-Module-Short-Description: This is a short description of my first module

OpenIDE-Module-Long-Description: This attribute defines a long description of the
module-provided functionality. The text is displayed in the Plugin Manager. Setting this
attribute is recommended, as it informs the user about features of the module.

OpenIDE-Module-Long-Description:
 Here you can put a longer description with more than one
 sentence. You can explain the capability of your module.

OpenIDE-Module-Display-Category: Modules are summarized into a virtual group with this
attribute and thus presented to the user as a functional unit.

OpenIDE-Module-Display-Category: My Modules

OpenIDE-Module-Install: To run actions at certain times in the module lifecycle, this attri-
bute sets a module installer class (see the “Lifecycle” section later in the chapter).

OpenIDE-Module-Install: com/galileo/netbeans/module/ModuleLifecycle.class

OpenIDE-Module-Layer: This is one of the most important attributes. With it, the path is
specified to the layer file (see the “Module Layer” section later in the chapter) describing
the module integration into the platform.

OpenIDE-Module-Layer: com/galileo/netbeans/module/resources/layer.xml

OpenIDE-Module-Public-Packages: To support encapsulation, access to classes from
another module is denied by default. This attribute is used to set visible public packages
and allow other modules to use these classes. It is especially essential with libraries.

24174ch03_final_idx.fm Page 20 Friday, April 24, 2009 5:04 PM

C H A P T E R 3 ■ T H E M O D U L E S Y S T E M 21

OpenIDE-Module-Public-Packages:
 com.galileo.netbeans.module.actions.*,
 com.galileo.netbeans.module.util.*

OpenIDE-Module-Friends: If only certain modules are allowed access to these packages,
which are declared as public, then these may be stated here.

OpenIDE-Module-Friends:
 com.galileo.netbeans.module2,
 com.galileo.netbeans.module3

OpenIDE-Module-Localizing-Bundle: Here, a properties file is defined, which is used as a
localizing bundle (see Chapter 8).

OpenIDE-Module-Localizing-Bundle:
 com/galileo/netbeans/module/resource/Bundle.properties

Versioning and Dependencies

The following attributes are used to define differing versions and dependencies. Descriptions
and use of these attributes are detailed in the “Versioning and Dependencies” section later in
the chapter.

OpenIDE-Module-Module-Dependencies: Dependencies between modules are defined with
this attribute. The least-needed module version can also be specified.

OpenIDE-Module-Module-Dependencies:
 org.openide.util > 6.8.1,
 org.openide.windows > 6.5.1

OpenIDE-Module-Package-Dependencies: A module may also depend on a specific package.
Such dependencies are defined with this attribute.

OpenIDE-Module-Package-Dependencies:
 com.galileo.netbeans.module2.gui > 1.2

OpenIDE-Module-Java-Dependencies: If a module requires a specific Java version, it can be
set with this attribute.

OpenIDE-Module-Java-Dependencies: Java > 1.5

OpenIDE-Module-Specification-Version: This attribute indicates the specification version
of the module. It is usually written in the Dewey decimal format.

OpenIDE-Module-Specification-Version: 1.2.1

OpenIDE-Module-Implementation-Version: This attribute sets the module implementation
version, usually by a timestamp. This number changes with every change of the module.

OpenIDE-Module-Implementation-Version: 200701190920

OpenIDE-Module-Build-Version: This attribute has only an optional character and is
ignored by the module system. Typically, hereby, a date stamp is given.

24174ch03_final_idx.fm Page 21 Friday, April 24, 2009 5:04 PM

22 C H A P T E R 3 ■ T H E M O D U L E S Y S T E M

OpenIDE-Module-Build-Version: 20070305

OpenIDE-Module-Module-Dependency-Message: Here, text is set, which is displayed if a
module dependency cannot be resolved. In some cases it’s quite normal to have an unre-
solved dependency. In this case, it is a good idea to show the user a helpful message,
informing them where the required modules can be found or why none are needed.

OpenIDE-Module-Module-Dependency-Message:
 The module dependency is broken. Please go to the following
 URL and download the module.

OpenIDE-Module-Package-Dependency-Message: The message defined by this attribute is
displayed if a necessary reference to a package fails.

OpenIDE-Module-Package-Dependency-Message:
 The package dependency is broken. The reason could be...

OpenIDE-Module-Deprecated: Use this to mark a module as deprecated. A warning is logged
if the user tries to load the module into the platform.

OpenIDE-Module-Deprecated: true

OpenIDE-Module-Deprecation-Message: Use this optional attribute to add information to
the deprecated warning in the application log. It is used to notify the user about alternate
module availability. Note that this message will only be displayed if the attribute OpenIDE-
Module-Deprecated is set to true.

OpenIDE-Module-Deprecation-Message: Module 1 is deprecated, use Module 3 instead

Services and Interfaces

The following attributes are used to define dependencies on implementations and certain
service provider interfaces. Further information on this topic can be found in Chapter 6.

OpenIDE-Module-Provides: Use this attribute to declare a service interface to which this
module furnishes a service provider.

OpenIDE-Module-Provides: com.galileo.netbeans.spi.ServiceInterface

OpenIDE-Module-Requires: Alternatively, declare a service interface for modules needing a
service provider. It doesn’t matter which module provides an implementation to this
interface.

OpenIDE-Module-Requires: org.openide.windows.IOProvider

OpenIDE-Module-Needs: This attribute is an understated version of the Require attribute
and does not need any specific order of modules. This may be useful to API modules,
which require specific implementation.

OpenIDE-Module-Needs: org.openide.windows.IOProvider

OpenIDE-Module-Recommends: Using this attribute, you can set optional dependencies. If a
module provides, for example, a java.sql.Driver implementation, it will be activated, and
access to this module will be enabled. Nevertheless, if no provider of this token is avail-
able, the module defined by the optional dependency can be executed.

24174ch03_final_idx.fm Page 22 Friday, April 24, 2009 5:04 PM

C H A P T E R 3 ■ T H E M O D U L E S Y S T E M 23

OpenIDE-Module-Recommends: java.sql.Driver

OpenIDE-Module-Requires-Message: Like the two previous attributes, this defines a
message displayed if a required token is not found.

OpenIDE-Module-Requires-Message:
 The required service provider is not available. For more information go to...

PLATFORM-DEPENDENT MODULES

The manifest attribute OpenIDE-Module-Requires allows definition of modules that depend on a specific
operating system. This attribute is used to check the presence of a particular token. The following tokens are
available:

• org.openide.modules.os.Windows

• org.openide.modules.os.Linux

• org.openide.modules.os.Unix

• org.openide.modules.os.PlainUnix

• org.openide.modules.os.MacOSX

• org.openide.modules.os.OS2

• org.openide.modules.os.Solaris

The module system ensures that only the tokens to the operating systems already in use are available.
For example, to provide a module that automatically loads on Windows systems but automatically deactivates
on all others, set the module type to Eager and add the following line to the manifest file:

OpenIDE-Module-Requires: org.openide.modules.os.Windows

Visibility

With the following attributes, the visibility of modules within the Plugin Manager is controlled.
In this way, modules can be displayed clearly and plainly to the end user.

AutoUpdate-Show-In-Client: This attribute can be set to true or false. It determines
whether a module is displayed in the Plugin Manager or not.

AutoUpdate-Show-In-Client: true

AutoUpdate-Essential-Module: This attribute can be set to true or false. true means that
this module is essential to the application so that it cannot be deactivated or uninstalled.

AutoUpdate-Essential-Module: true

In conjunction with these attributes, the handling of kit modules is introduced in NetBeans
Platform 6.5. Each module visible in the Plugin Manager (AutoUpdate-Show-In-Client: true)
is handled as a kit module. All modules on which the kit module defines a dependency are
handled in the same way, with the exception of non-visible modules that depend on other kit

24174ch03_final_idx.fm Page 23 Friday, April 24, 2009 5:04 PM

24 C H A P T E R 3 ■ T H E M O D U L E S Y S T E M

modules. For example, if a kit module is deactivated, all dependent modules will be deacti-
vated as well.

This lets you build wrapper modules to group several related modules for display to the
user as a single unit. You can create an empty module in which the attribute AutoUpdate-Show-
In-Client is set to true, while defining a dependency on the modules to be grouped. Then, in
the dependent modules, set the attribute AutoUpdate-Show-In-Client to false.

Example
Listing 3-2 shows a manifest file with some typical attributes.

Listing 3-2. Manifest file example

OpenIDE-Module: com.galileo.netbeans.module
OpenIDE-Module-Public-Packages: -
OpenIDE-Module-Module-Dependencies:
 com.galileo.netbeans.module2 > 1.0,
 org.jdesktop.layout/1 > 1.4,
 org.netbeans.core/2 = 200610171010,
 org.openide.actions > 6.5.1,
 org.openide.awt > 6.9.0,
OpenIDE-Module-Java-Dependencies: Java > 1.5
OpenIDE-Module-Implementation-Version: 200701100122
OpenIDE-Module-Specification-Version: 1.3
OpenIDE-Module-Install: com/galileo/netbeans/module/Install.class
OpenIDE-Module-Layer: com/galileo/netbeans/module/layer.xml
OpenIDE-Module-Localizing-Bundle: com/galileo/netbeans/module/Bundle.properties
OpenIDE-Module-Requires:
 org.openide.windows.IOProvider,
 org.openide.modules.ModuleFormat1

Module Layer
In addition to the manifest file, with which the interfaces and the environment of a module are
described, there is a layer file. This is the central configuration file, in which virtually everything
is defined that a module adds to the NetBeans Platform. Partly, it can be seen as the interface
between the module and the NetBeans Platform, describing declaratively the integration of the
module into the NetBeans Platform.

The existence of the layer file is set in the manifest file with the attribute OpenIDE-Module-
Layer. This attribute defines the path to the layer file, usually using the file name layer.xml.

OpenIDE-Module-Layer: com/galileo/netbeans/module/layer.xml

The file format is a hierarchical file system containing directories, files, and attributes.
During application start, all existing layer files are summarized to a virtual file system (see
Figure 3-2). This is the System Filesystem, which is the runtime configuration of the NetBeans
Platform.

24174ch03_final_idx.fm Page 24 Friday, April 24, 2009 5:04 PM

C H A P T E R 3 ■ T H E M O D U L E S Y S T E M 25

Figure 3-2. The System Filesystem

This layer file contains certain default folders. They are defined by different modules,
which are extension points. For example, the default folder Menu looks like Listing 3-3.

Listing 3-3. Default folder of the layer file

<folder name="Menu">
 <folder name="Edit">
 <file name="MyAction.shadow">
 <attr name="originalFile"
 stringvalue="Actions/Edit/com-galileo-netbeans-module-MyAction.instance"/>
 </file>
 </folder>
</folder>

In this example, the action class MyAction is added to the Edit menu. Don’t worry about
exact syntax at this point; it is explained in the context of respective standard folders in later
chapters. First of all, we elaborate the basic structure of the layer file. In addition, the NetBeans
Platform provides practical features for working with the layer file. That’s shown in the following
chapters, as our first module is created. An index with important extension points is also found
in this book’s Appendix.

In this way, every module is able to add new menu items or create new toolbars. As each
layer file of a module is merged to the System Filesystem, the entire menu bar content is

24174ch03_final_idx.fm Page 25 Friday, April 24, 2009 5:04 PM

26 C H A P T E R 3 ■ T H E M O D U L E S Y S T E M

assembled. The window system responsible for generation of the menu bar only has to read the
Menu folder from the System Filesystem to gain the content of the entire menu bar.

This System Filesystem also contributes significantly to the fact that modules can be
added or removed at runtime. Filesystem listeners can be registered on this system. For
example, this is done by the window system. If any changes occur while a module is loaded, the
window system or menu bar notice this and are able to update contents.

Order of Entries
The order in which the entries of the layer file are read (and hence shown in the menu bar) is
defined by a position attribute, as shown in Listing 3-4.

Listing 3-4. Determining the order of layer file entries

<filesystem>
 <folder name="Menu">
 <folder name="Edit">
 <file name="CopyAction.shadow">
 <attr name="originalFile"
 stringvalue="Actions/Edit/org-openide-actions-CopyAction.instance"/>
 <attr name="position" intvalue="10"/>
 </file>
 <file name="CutAction.shadow">
 <attr name="originalFile"
 stringvalue="Actions/Edit/org-openide-actions-CutAction.instance"/>
 <attr name="position" intvalue="20"/>
 </file>
 </folder>
 </folder>
</filesystem>

Thus, the copy action is shown before the cut action. If necessary, you can also use this
attribute to define the order of the folder elements. In practice, positions with greater distance
are chosen. This facilitates the subsequent insertion of additional entries. Should the same
position be assigned twice, a warning message is logged while running the application.

In order to easily position the layer content, the NetBeans IDE offers a layer tree in the
Projects window, in which all entries of the layer files are shown. There, their order is defined
by drag-and-drop. The respective entries in the layer file are then handled by the IDE.

After we create our first module, the “Creating Modules” section of this chapter shows
where to find the layer tree. You determine the order of an action while creating actions with a
wizard (see Chapter 4). The respective attributes are then created by the wizard.

Should positions of entries in the layer tree be changed, some entries will be added into
the layer file. Those files overwrite the default positions of the entries affected by the change.
The position of an entry (also that of entries of a NetBeans Platform module) is overwritten as
follows:

<attr name="Menu/Edit/CopyAction.shadow/position" intvalue="15"/>

Use the complete file path of the affected entry before the attribute name position.

24174ch03_final_idx.fm Page 26 Friday, April 24, 2009 5:04 PM

C H A P T E R 3 ■ T H E M O D U L E S Y S T E M 27

Instance Files
Files of the type .instance in the System Filesystem describe objects of which instances can be
created. The filename typically describes the full class name of a Java object (e.g., com-galileo-
netbeans-module-MyAction.instance), which by a default constructor or static method creates
an instance. An instance is created by using the File Systems and Data Systems APIs, as follows:

public static Object getInstance(String name) {
 FileSystem f = Repository.getDefault().getDefaultFileSystem();
 FileObject o = f.getRoot().getFileObject(name);
 DataObject d = DataObject.find(o);
 InstanceCookie c = d.getCookie(InstanceCookie.class);
 return c.instanceCreate();
}

If seeking a more convenient name for an instance, the full class name can be defined by
using the attribute instanceClass. Thereby much shorter names can be used:

<file name="MyWindow.instance">
 <attr name="instanceClass" stringvalue="com.galileo.netbeans.module.MyWindow"/>
</file>

In classes not having a parameterless default constructor, create the instance via a static
method defined by the attribute instanceCreate:

<file name="MyWindow.instance">
 <attr name="instanceCreate"
 methodvalue="com.galileo.netbeans.module.MyWindow.getDefault"/>
</file>

In doing so, the FileObject of the entry is passed to the getDefault() method, if declared
so in the factory method signature. With this FileObject you read self-defined attributes.
Assume you want to define the path of an icon or any other resource in the layer file as an
attribute:

<file name="MyWindow.instance">
 <attr name="instanceCreate"
 methodvalue="com.galileo.netbeans.module.MyWindow.getDefault"/>
 <attr name="icon" urlvalue="nbres:/com/galileo/icon.gif"/>
</file>

The method getDefault(), creating an instance of the MyWindow class, looks as follows:

public static MyWindow getDefault(FileObject obj) {
 URL url = (URL) obj.getAttribute("icon");
 ...
 return(new MyWindow(...));
}

Notice that we specified the path with a urlvalue attribute type. Therefore, a URL instance
is delivered directly. In addition to the already-known attribute types stringvalue, methodvalue,
and urlvalue, there are several others. They are accessed in the Filesystem DTD (http://
netbeans.org/dtds/filesystem-1_2.dtd).

24174ch03_final_idx.fm Page 27 Friday, April 24, 2009 5:04 PM

28 C H A P T E R 3 ■ T H E M O D U L E S Y S T E M

One or more instances of a certain type can also be generated by Lookup, rather than via
an InstanceCookie, as shown previously. Thereby we create a lookup for a particular folder of
the System Filesystem. By using the lookup() or lookupAll() method, one or more instances (if
several have been defined) can be delivered.

Lookup lkp = Lookups.forPath("MyInstanceFolder");
Collection<? extends MyClass> c = lkp.lookupAll(MyClass.class);

Such a lookup is used in Chapter 5 to extend the context menu of a TopComponent with your
own actions defined in the layer file.

The basic class of the interface can be user-defined by the instanceOf attribute in the layer
file. This allows a more efficient working of Lookup and avoids Lookup having to initiate each
object in order to determine from which base class the class will inherit, or which interface it
implements. Lookup is able to create directly only instances of the desired object type.

If the class MyAction from the prior entry implements, for example, the Action interface, we
complete the entry as follows:

<file name="com-galileo-netbeans-module-MyAction.instance">
 <attr name="instanceOf" stringvalue="javax.swing.Action"/>
</file>

Shadow Files
.shadow files are a kind of link or reference to an .instance file. They are used mainly when
singleton instances of objects, as with actions, are used. These are defined by an .instance file
in the Actions folder. An entry in the Menu or Toolbars folder then refers to the action by using
the .shadow file (see Listing 3-5). A .shadow file refers to files in the System Filesystem as well as
to files on disk. In this way, the Favorites module stores its entries. The path to the .instance
file is specified by the attribute originalFile.

Listing 3-5. Connecting a .shadow file with an .instance file

<folder name="Actions">
 <folder name="Window">
 <file name="com-galileo-netbeans-module-MyAction.instance"/>
 </folder>
</folder>
<folder name="Menu">
 <folder name="Window">
 <file name="MyAction.shadow">
 <attr name="originalFile"
 stringvalue="Actions/Window/com-galileo-netbeans-module-MyAction.instance"/>
 </file>
 </folder>
</folder>

Settings Files
.settings files are an extended version of .instance files in the layer file. Information on the
type of class and how an instance is created from this class—i.e., information on what these
attributes can determine in an .instance file—is defined in a separate XML file. The main

24174ch03_final_idx.fm Page 28 Friday, April 24, 2009 5:04 PM

C H A P T E R 3 ■ T H E M O D U L E S Y S T E M 29

difference to an .instance file is that the complete class hierarchy—i.e., all superclasses and
also all implemented interfaces—can be specified in the separate XML file.

These .settings entries are used, for example, with TopComponents (see Chapter 5). The
associated XML file looks like Listing 3-6.

Listing 3-6. Type informationen for a .settings file

<!DOCTYPE settings PUBLIC
 "-//NetBeans//DTD Session settings 1.0//EN"
 "http://www.netbeans.org/dtds/sessionsettings-1_0.dtd">
<settings version="1.0">
 <module name="com.galileo.netbeans.module" spec="1.0"/>
 <instanceof class="javax.swing.JComponent"/>
 <instanceof class="org.openide.windows.TopComponent"/>
 <instanceof class="com.galileo.netbeans.module.MyTopComponent"/>
 <instance class="com.galileo.netbeans.module.MyTopComponent" method="getDefault"/>
</settings>

The layer file refers to this file by the url attribute, specifying the path relative to the XML
file:

<folder name="Windows2">
 <folder name="Components">
 <file name="MyTopComponent.settings" url="MyTopComponentSettings.xml"/>
 </folder>
</folder>

Creating and Using Your Own Contents
Your module may use folders, files, and attributes from the layer file in order to provide exten-
sion points to other modules. The readout of entries is accomplished by accessing the System
Filesystem:

Repository.getDefault().getDefaultFileSystem();

This call returns a FileSystem object. Its properties and functionality are described in
detail in Chapter 7. The “Window: TopComponent” section in Chapter 5 shows you how to
define your own entries in the layer file; it also shows how they can be read and, thereby, how
they can provide an extension point for other modules in a way that makes them available to
additional modules.

Creating Modules
Following the sections on structure and content of modules, we will now create our first
module. A good introduction to module development is also offered by the sample applica-
tions already integrated in the NetBeans IDE. Here, we will simply design a single module.

First, create a NetBeans Platform Application or a Module Suite. Both are containers for
modules. The NetBeans Platform Application project type creates a standalone rich client
application, starting from NetBeans Platform modules only, whereas a Module Suite creates a
set of related modules, starting from all the modules in the NetBeans IDE. Note, however, that

24174ch03_final_idx.fm Page 29 Friday, April 24, 2009 5:04 PM

30 C H A P T E R 3 ■ T H E M O D U L E S Y S T E M

you can also create a standalone application from a Module Suite. To that end, you need
simply use the Project Properties dialog of the Module Suite, accessed via its context menu,
and use the Build tab to select the Create Standalone Application option. Choose Exclude
when asked whether IDE-specific modules should be excluded. That way, only the modules
that are part of the NetBeans Platform remain. View them in the Libraries tab. As you continue
creating the application, only those modules are available that are set as needed by the appli-
cation. However, in both cases, you are able to add modules that are not part of the NetBeans
Platform. Do this via the Libraries tab.

The NetBeans IDE provides a wizard to create these projects. Start the NetBeans IDE and
select File ➤ New Project. The dialog shows different project categories (see Figure 3-3). Select
NetBeans Modules. Now select the project type NetBeans Platform Application on the right
side.

Figure 3-3. Creating a new NetBeans Platform Application project

On the next page, name the project, such as My Application, and chose the location where
the project is to be saved. The remaining fields can be left blank. Click the Finish button to
create the application project.

Now the first module can be created: another wizard is available for this task. Open the File
➤ New Project menu. Choose the category NetBeans Modules, and then the project type
Module on the right side. Click the Next button to go to the next page, for naming the project
(see Figure 3-4). Enter here, for example, My Module, and then select the option Add to Module
Suite, and select the previously created NetBeans Platform Application or Module Suite from
the list. On the last page, define the code name base and a module display name. Default values
for the localizing bundle and XML layer file can be kept. Then click the Finish button and let the
wizard generate the module.

24174ch03_final_idx.fm Page 30 Friday, April 24, 2009 5:04 PM

C H A P T E R 3 ■ T H E M O D U L E S Y S T E M 31

Figure 3-4. Configuration of a new module

Looking at the module in the Projects window, you see the folder Source Packages (see
Figure 3-5). At the moment, this folder contains only the files Bundle.properties and
layer.xml. The file Bundle.properties only provides a localizing bundle for the information
registered in the manifest file.

Figure 3-5. The module in the Projects window

24174ch03_final_idx.fm Page 31 Friday, April 24, 2009 5:04 PM

32 C H A P T E R 3 ■ T H E M O D U L E S Y S T E M

A special tree structure is presented for layer files within the Important Files node. The
tree structure gives two different views: first, the folder <this layer>, where you view the
entries provided by your own layer file; and second, the folder <this layer in context>, where
you find the entries of the layer files of all the modules that belong to your application. These
views represent those parts of the System Filesystem available to the NetBeans Platform at
runtime.

In these views, highlighted folders include contributions by the current module. This way,
you can see at a glance the most important folders, and you can easily add, delete, or move new
entries. The manifest file, created by the wizard that creates the module, is also found in the
Important Files node.

Without further ado, you can run your module as part of your new rich client application.
To start the application, simply choose the Run ➤ Run Main Project (F6) menu item. Your
application looks like the one in Figure 3-6.

Figure 3-6. Your first rich client application

In these very few steps, we now have the basis of our rich client application. In the
following chapters, the applications are enriched with new features by adding new modules
that contribute windows, menu items, and other business logic.

Versioning and Dependencies
To ensure that a modular system remains consistent and maintainable, it is crucial that the
modules within the system prescribe the modules they need to use. To that end, the NetBeans
Platform allows definition of dependencies on other modules. Only by defining a dependency
can one module access the code from another module. Dependencies are set in the manifest
file of a module. That information is then read by the module system when the module is
loaded.

24174ch03_final_idx.fm Page 32 Friday, April 24, 2009 5:04 PM

C H A P T E R 3 ■ T H E M O D U L E S Y S T E M 33

Versioning
To guarantee compatibility between dependencies, you must define versions. In that regard,
there is the major release version, the specification version, and the implementation version.
These versions are based on the Java Package Versioning Specification and reflect the basic
concepts of dependencies. You can define and edit dependencies in the Properties dialog of
modules, which you can access via Properties ➤ API Versioning (see Figure 3-7).

First, define the major release version in this window. This is the version notifying the user
of incompatible changes, compared to the previous version of the module. Here, the slash is
used to separate the code name base from the version within the manifest file:

OpenIDE-Module: com.galileo.netbeans.module/1

Figure 3-7. Setting the module version

The most important version is the specification version. The Dewey decimal system is
used to define this version:

OpenIDE-Module-Specification-Version: 1.0.4

The implementation version is freely definable text. Typically, a timestamp is used,
providing the date and time. In that way, you determine it is unique. If not explicitly set in the

24174ch03_final_idx.fm Page 33 Friday, April 24, 2009 5:04 PM

34 C H A P T E R 3 ■ T H E M O D U L E S Y S T E M

Properties dialog of the module, the IDE adds the implementation version when the module is
created, using the current timestamp, set within the manifest file:

OpenIDE-Module-Implementation-Version: 200701231820

On the other hand, if you define your own implementation version in the Properties
dialog, the IDE adds the OpenIDE-Module-Build-Version attribute with the current timestamp.

In the list of public packages, all packages in your module are listed. To expose a package
to other modules, check the box next to the package you want to expose. In doing so, you
define the API of your module. Exposed packages are listed as follows in the manifest file:

OpenIDE-Module-Public-Packages:
 com.galileo.netbeans.module.*,
 com.galileo.netbeans.module.model.*

To restrict access to the public packages (e.g., to allow only your own modules to access
the public packages), you can define a module’s friends. You define them beneath the list of
public packages in the API Versioning section of the Properties dialog. These are then listed as
follows in the manifest file:

OpenIDE-Module-Friends:
 com.galileo.netbeans.module2,
 com.galileo.netbeans.module3

Defining Dependencies
Based on these various versions, define your dependencies. To that end, three different types
of dependencies are available: a module depends on a module, a package, or a version of Java.

Module Dependencies

You define and edit module dependencies via Properties ➤ Libraries, as shown in Figure 3-8.

NO DEPENDENCY? NO ACCESS!

To use classes from another module, including the NetBeans Platform’s own modules, you must first define a
dependency, as described in the following sections. That means, if you use a NetBeans Platform class in your
module and the code editor cannot find the desired class, the problem can normally be fixed by simply setting
a dependency on the module that provides the class.

24174ch03_final_idx.fm Page 34 Friday, April 24, 2009 5:04 PM

C H A P T E R 3 ■ T H E M O D U L E S Y S T E M 35

Figure 3-8. Definition of module dependencies

In this window, use Add Dependency to add dependencies to your module. The NetBeans
module system offers different methods to connect dependencies to a particular module.

In the simplest case, no version is required. That means there should simply be a module
available, though not a particular version; although where possible you still specify a version:

OpenIDE-Module-Module-Dependencies: com.galileo.netbeans.module2

In addition, you may require a certain version. In this case, the module version should be
greater than 7.1. This is the most common manner in which to define dependencies:

OpenIDE-Module-Module-Dependencies: org.openide.dialogs > 7.1

If the module on which you want to depend has a major release version, it must be speci-
fied via a slash after the name of the module:

OpenIDE-Module-Module-Dependencies: org.netbeans.modules.options.api/1 > 1.5

24174ch03_final_idx.fm Page 35 Friday, April 24, 2009 5:04 PM

36 C H A P T E R 3 ■ T H E M O D U L E S Y S T E M

Finally, you may also specify a range of major release versions:

OpenIDE-Module-Module-Dependencies: com.galileo.netbeans.module3/2-3 > 3.1.5

To create tight integration to another module, set an implementation dependency. The
main reason for this approach is to make use of all the packages in the module, regardless of
whether the module has exposed them or not. A dependency of this kind must be set with care,
since it negates the principle of encapsulation. To enable the system to guarantee the consis-
tency of the application, the dependency must be set precisely on the version of the given
implementation version. However, this version changes with each change to the module.

OpenIDE-Module-Module-Dependencies: com.galileo.netbeans.module2 = 200702031823

Select the required dependency in the list (see Figure 3-8) and click the Edit button. In this
window (shown in Figure 3-9), you set various types of dependencies.

Figure 3-9. Editing module dependencies

Java Package Dependency

NetBeans lets you set a module dependency on a specific Java version. A dependency of this
kind is set in the manifest file:

OpenIDE-Module-Package-Dependencies: javax.sound.midi.spi > 1.4

Java Version Dependency

If the module depends on a specific Java version, such as Java 5, specify that in the module
properties under Properties ➤ Sources, using the Source Level setting. Aside from that, you can
require a specific version of the Java Virtual Machine:

OpenIDE-Module-Java-Dependencies: Java > 1.5, VM > 1.0

24174ch03_final_idx.fm Page 36 Friday, April 24, 2009 5:04 PM

C H A P T E R 3 ■ T H E M O D U L E S Y S T E M 37

You can require an exact version using the equal sign or require a version that is greater
than the specified version.

Lifecycle
To influence the lifecycle of a module, implement a module installer. The Module System API
provides the ModuleInstall class, from which we derive our own module installer class. The
following methods can be overridden in the module installer class:

validate(): This method is called before a module is installed or loaded. When needed,
certain load sequences, such as the verification of a module license, are set here. Should
the sequence not succeed and the module not be loaded, throw an IllegalStateException
method. This exception prevents loading or installing the module.

restored(): This method is called when an installed module is loaded. Here, actions
required to initialize the module are called.

uninstalled(): When the module is removed from the application, this method is called.

closing(): Before a module is ended, this method is called. Here, you also test whether the
module is ready to be removed. Only once this is true for all the modules in the application
can the application itself shut down. You can, for example, show the user a dialog to
confirm whether the application should really be closed.

close(): If all modules are ready to end, this method is called. Here, you call the actions for
the successful verification of the module in question.

ONLY USE THE MODULE INSTALLER WHEN ABSOLUTELY NECESSARY

When using these methods, consider whether the actions you’re calling could be set declaratively instead. In
particular, in the cases of the methods validate() and restored(), consider that these methods influence
the startup time of the whole application. For example, when services are registered, you could instead use
entries in the layer file or the Java Extension Mechanism (see Chapter 6). These enable the code to be invoked
as needed, without impacting the startup time of the application as a whole.

Listing 3-7 shows the structure of the module installer class.

Listing 3-7. Structure of a module installer class

public class ModuleLifecycleManager extends ModuleInstall {
 public void validate() throws IllegalStateException {
 // e.g., check for a license key and throw an
 // IllegalStateException if this is not valid.
 }
 public void restored() {
 // called when the module is loaded.
 }
 public void uninstalled() {

24174ch03_final_idx.fm Page 37 Friday, April 24, 2009 5:04 PM

38 C H A P T E R 3 ■ T H E M O D U L E S Y S T E M

 // called when the module is uninstalled.
 }
 public boolean closing() {
 // called to check if the module can be closed.
 }
 public void close() {
 // called before the module will be closed.
 }
}

To record the state of the module installer class over different sessions, override the
methods readExternal() and writeExternal() from the Externalizable interface, which is
implemented by the ModuleInstall class. There you store and retrieve necessary data. When
doing so, it is recommended to first call the methods to be overridden on the superclass.

To let the module system know right from the start that a module provides a module
installer, and where to find it, register it in the manifest file:

OpenIDE-Module-Install: com/galileo/netbeans/module/ModuleLifecycle.class

Look at how the module installer is created. The NetBeans IDE provides a wizard to create
this file (see Figure 3-10). Go to File ➤ New File and choose Module Development ➤ Module
Installer.

Figure 3-10. Creating a module installer

Click Next and then click Finish to complete the wizard. Now the ModuleInstall class is
created in the specified package and registered in the manifest file. You now need only override

24174ch03_final_idx.fm Page 38 Friday, April 24, 2009 5:04 PM

C H A P T E R 3 ■ T H E M O D U L E S Y S T E M 39

the required methods. For example, override the closing() method to show a dialog confirming
whether the application should really shut down, as shown in Listing 3-8.

Listing 3-8. Dialog for shutting down an application

import org.openide.DialogDisplayer;
import org.openide.NotifyDescriptor;
import org.openide.modules.ModuleInstall;
public class Installer extends ModuleInstall {
 public boolean closing() {
 NotifyDescriptor d = new NotifyDescriptor.Confirmation(
 "Do you really want to exit the application?",
 "Exit",
 NotifyDescriptor.YES_NO_OPTION);
 if (DialogDisplayer.getDefault().notify(d) == NotifyDescriptor.YES_OPTION) {
 return true;
 } else {
 return false;
 }
 }
}

Be aware that this module requires a dependency on the Dialogs API to be able to use the
NetBeans dialog support. Defining dependencies was described previously in the “Defining
Dependencies” section of this chapter, while information about the Dialogs API can be found
in Chapter 8.

To try this new functionality, invoke Run ➤ Run Main Project (F6). When the application
shuts down, the dialog is shown and you can confirm whether or not the application should
actually be shut down.

Module Registry
Modules normally need not worry about other modules. Nor should they need to know
whether other modules exist. However, it might sometimes be necessary to create a list of all
available modules. The module system provides a ModuleInfo class for each module, where all
information about modules is stored. The ModuleInfo objects are available centrally via the
Lookup, and can be obtained there as follows:

Collection<? extends ModuleInfo> modules =
 Lookup.getDefault().lookupAll(ModuleInfo.class);

The class provides information such as module name, version, dependencies, current
status (activated or deactivated), and the existence of service implementations for the current
module. Use the getAttribute() method to obtain this information from the manifest file.

To be informed of changes, register a PropertyChangeListener, which informs you of the
activation and deactivation of modules in the system. You can also register a LookupListener
that informs you of the installation and uninstallation of modules. For example, a listener
could be defined as shown in Listing 3-9.

24174ch03_final_idx.fm Page 39 Friday, April 24, 2009 5:04 PM

40 C H A P T E R 3 ■ T H E M O D U L E S Y S T E M

Listing 3-9. Reacting to changes to the module system

Lookup.Result<ModuleInfo> res = Lookup.getDefault().lookupResult(ModuleInfo.class);
result.addLookupListener(new LookupListener() {
 public void resultChanged(LookupEvent lookupEvent) {
 Collection<? extends ModuleInfo> c = res.allInstances();
 System.out.println("Available modules: " + c.size());
 }
});
res.allItems(); // initialize the listener

Using Libraries
When developing rich client applications, you’ll more than likely need to include external
libraries in the form of JAR files. Since the whole application is based on modules, it is desirable
to integrate the external JAR file in the form of a module. That has the advantage of setting
dependencies on the module, enhancing the consistency of the application as a whole. You can
also bundle multiple JAR files into a single module, after which you need no longer put the phys-
ical JAR files on the application classpath, as is normally done when developing applications.

Library Wrapper Module
To achieve the scenario just outlined, create a library wrapper module. The NetBeans IDE
provides a project type and a wizard for this purpose. To create a new Library Wrapper project,
go to File ➤ New Project, and use the dialog shown in Figure 3-11 to choose the category
NetBeans Modules, followed by the project type Library Wrapper Module.

Figure 3-11. Creating a Library Wrapper project

24174ch03_final_idx.fm Page 40 Friday, April 24, 2009 5:04 PM

C H A P T E R 3 ■ T H E M O D U L E S Y S T E M 41

Click Next to choose the required JAR files. You can choose one or more JAR files here
(hold down the Ctrl key to select multiple JAR files). You are also able to add a license file for the
JAR you are wrapping as a module. In the next step, provide a project name, as well as a loca-
tion to store the new module. Specify the Module Suite or Platform Application to which the
library wrapper module belongs. Click Next again to fill out the Basic Module Configuration
dialog, as shown in Figure 3-12.

Figure 3-12. Library wrapper module configuration

Here, you define the code name base. Normally this field is prefilled with the name of the
JAR file. Provide the module with a name and a localizing bundle (see the “Module Manifest”
section earlier in the chapter) to localize the manifest file. With a click of the Finish button, you
create your new module project.

When expanding the Source Packages folder in the Projects window, observe that there is
only a Bundle.properties file and a manifest file. The library, which is encapsulated by the
module, is found in the folder release/modules/ext, which is seen in the Files window.

To understand how a library wrapper module works, take a look at the related manifest
file. It’s found in the Projects window, within the Important Files file. Note that the following
information (in Listing 3-10) may not reflect exactly what is found in your specific manifest file.
Certain information, such as the public packages, are only created when you build the project.
To see the entire manifest file, create the module and then look at the manifest file within the
created JAR file, found in the build/cluster/modules folder of your application. The exposed

24174ch03_final_idx.fm Page 41 Friday, April 24, 2009 5:04 PM

42 C H A P T E R 3 ■ T H E M O D U L E S Y S T E M

packages are also seen in the Properties dialog of the library wrapper modules, under the API
Versioning tab. There, you can easily hide packages you do not want to have exposed.

Listing 3-10. Manifest file of a library wrapper module

Manifest-Version: 1.0
Ant-Version: Apache Ant 1.7.0
Created-By: 1.6.0-b105 (Sun Microsystems Inc.)
OpenIDE-Module: com.hboeck.mp3
OpenIDE-Module-Public-Packages:
 com.hboeck.mp3.*,
 com.hboeck.mp3.id3.*,
 ...
OpenIDE-Module-Java-Dependencies: Java > 1.4
OpenIDE-Module-Specification-Version: 1.0
OpenIDE-Module-Implementation-Version: 070211
OpenIDE-Module-Localizing-Bundle: com/hboeck/mp3/Bundle.properties
OpenIDE-Module-Requires: org.openide.modules.ModuleFormat1
Class-Path: ext/com-hboeck-mp3.jar

Two very important things have been accomplished by the wizard. First, it marked all
packages in the third-party library with the attribute OpenIDE-Module-Public-Packages, making
all these packages publicly accessible. That’s useful because it means the library can now be
used by other modules. Second, the wizard marked the library it found in the ext/ folder with
the Class-Path attribute, putting it on the module classpath. In this way, the classes in the
library can be loaded by the module classloader. The library wrapper module is automatically
assigned the Autoload type (see the “Module Types” section near the beginning of the chapter),
so that it is only loaded when needed.

Adding a Library to a Module
It is advisable to always use a library wrapper module when integrating a third-party library
into an application. Creating a new module in this way for a third-party library adds to the
value and maintainability of the application as a whole, because you can then set dependen-
cies on the library via the module that wraps it.

In some cases, it is desirable to add the third-party library directly to the module using it.
Taking this approach is simple and similar to creating library wrapper modules.

Open the Project Metadata file (project.xml) in the Important Files node in your module
project, within the Projects window. For each library you want to include in your module,
create a class-path-extension entry (see Listing 3-11). Via the runtime-relative-path attri-
bute, define the path where the library is found in the distribution. Before, this was done
automatically by the wizard. Use the binary-origin attribute to specify the location where the
original library is found. As you see, this is the same approach as taken with library wrapper
modules.

Listing 3-11. Project metadata file with classpath extension

<project xmlns="http://www.netbeans.org/ns/project/1">
 <type>org.netbeans.modules.apisupport.project</type>

24174ch03_final_idx.fm Page 42 Friday, April 24, 2009 5:04 PM

C H A P T E R 3 ■ T H E M O D U L E S Y S T E M 43

 <configuration>
 <data xmlns="http://www.netbeans.org/ns/nb-module-project/3">
 <code-name-base>com.galileo.netbeans.module</code-name-base>
 <class-path-extension>
 <runtime-relative-path>ext/org-hboeck-mp3.jar</runtime-relative-path>
 <binary-origin>release/modules/ext/org-hboeck-mp3.jar</binary-origin>
 </class-path-extension>
 </data>
 </configuration>
</project>

Via this entry in the project metadata file, the creation of the module results in the library
being copied to the ext/ folder. In the manifest file, the entry Class-Path: ext/com-hboeck-
mp3.jar is added. In contrast to a library wrapper module, the packages of the library are not
exposed. As a result, they can only be used by the module where the library is found, which is
normally the reason for taking this approach in the first place. It is also possible to define the
packages as being public, which is automatically the case with library wrapper modules.

WHEN SHOULD I FOLLOW WHICH APPROACH?

Bear in mind that putting a third-party library into a module works against its modularity and maintainability.
Put a library directly into a module only when the library will be used solely by the module in question, and if
it is not a problem to distribute the third-party library together with the module that uses it.

Finally, avoid loading the same library from two different modules. This can lead to problems that are
difficult to solve because their causes are hard to identify. Also, do not use the Class-Path attribute to refer-
ence module JAR files or libraries found in the lib/ folder.

Summary
In this chapter, you learned how the underlying module system of NetBeans Platform applica-
tions is structured and how it functions. The module system is part of the runtime container.
First, we looked at the structure of a NetBeans module. You learned about the many configura-
tion options that are defined in the manifest file. In addition to the manifest file, a module
optionally provides a layer file. You learned how to make contributions to the whole applica-
tion, via registration entries in a module layer file.

You created your first module, learned how modules use code from other modules, and
explored the lifecycle of modules and how third-party libraries integrate in a module via a
library wrapper module. Finally, you discovered how those kinds of modules work, and you got
some hands-on experience with them.

24174ch03_final_idx.fm Page 43 Friday, April 24, 2009 5:04 PM

24174ch03_final_idx.fm Page 44 Friday, April 24, 2009 5:04 PM

45

■ ■ ■

C H A P T E R 4

Actions
Let’s Make the NetBeans
Platform Do Something!

An application’s actions are among its most important and central components. In this
chapter, you’ll learn how to provide actions and how to integrate them into the application’s
menu bar, toolbar, and pop-up menus. You’ll be introduced to specific NetBeans Platform
classes that simplify the development and integration of action classes into your application.
Moreover, the concepts are explained relevant to the creation of context-sensitive actions.

Overview
The NetBeans Platform bases its actions on the Swing Action Framework. Ultimately, every
action rests upon Swing’s Action interface. In the simplest case, an action class implements the
Action interface or, even more straightforward, extends the AbstractAction class. Indeed,
actions that derive from these standard base classes can be integrated into NetBeans Platform
applications.

In addition to these standard Swing base classes, the NetBeans Platform has some of its
own base classes from which you can derive your own actions. These base classes offer better
integration with the NetBeans Platform for purposes of delivering standard action representa-
tives for entries in menu bars, toolbars, and pop-up menus. Besides these, you can support
these classes by the implementation of asynchronous tasks, as well as with the implementation
of context-sensitive actions. Figure 4-1 illustrates the class hierarchy of these abstract base
classes, while the following sections explain the purpose of each.

Actions are registered centrally in the layer file of your module, within the Actions folder.
Other classes reference these registration entries, as you will learn in Chapter 5, which discusses
the creation of menu bars and toolbars. The advantage is that actions can be used multiple
times in different places, such as in the menu bar or toolbar, or even bound to a Swing compo-
nent. However, though the action is displayed in multiple ways, only one instance is created.

24174ch04_final_idx.fm Page 45 Wednesday, April 8, 2009 2:22 PM

46 C H A P T E R 4 ■ A C T I O N S

Another reason for centralized declaration of an action is the possibility of toolbar
customization. When removing an entry from the toolbar, the action itself is not removed, only
the reference to the action.

Figure 4-1. Hierarchy of the NetBeans Platform’s action base classes

Providing Action Classes
The NetBeans IDE provides a wizard for creating new action classes. This is very practical,
particularly for the insertion and organization of actions in the menu bar or toolbar, as well as
for the insertion of separators between them. Additionally, it is handy that the registration of all
entries in the layer file is taken care of for you, as the wizard handles this task by adding the
necessary registration entries to the layer file.

Always Enabled Actions
Choose File ➤ New File ➤ Module Development ➤ Action to invoke the wizard for creating a
new action class. In the first step, select the action type. The choice is between an always
enabled and a conditionally enabled action.

We will use an always enabled action in this section. In the next step, specify how to inte-
grate your action class into the menu bar, toolbar, or both, and set a shortcut, if necessary (see
Figure 4-2).

24174ch04_final_idx.fm Page 46 Wednesday, April 8, 2009 2:22 PM

C H A P T E R 4 ■ A C T I O N S 47

Figure 4-2. Creating an action via the New Action wizard

Next, select a category for the action. The categories represent semantic groupings of the
actions. Either select a preexisting category or create a new one. In addition, assign your action
to a menu bar, a toolbar, or both, and set the position where the action will be displayed. Drop-
down menus show you possible locations for display. HERE identifies the location where
display of your action will be inserted.

Although you can allow the action to be added to an existing menu bar or toolbar, it is also
possible to tweak the layer file later, so the action will be displayed in a different position (see
Chapter 5). The wizard also makes possible inserting a separator before or after the action (or
both).

24174ch04_final_idx.fm Page 47 Wednesday, April 8, 2009 2:22 PM

48 C H A P T E R 4 ■ A C T I O N S

The dialog allows you to specify a keyboard shortcut that invokes the action. Once you
approve of your settings, click Next to reach the final step of the wizard. There you set the name
of the action class and the display name that will be shown in the menu bar. You must add an
icon for the action. Typically, this should be 16×16 pixels in size. Since the user can show the
toolbar in two different dimensions, you should provide the same icon in a different size, pref-
erably 24×24 pixels. You need not specifically select this 24×24 pixel icon. It should merely be
found in the same folder, with the same file name as the 16×16 pixel icon.

For example, if the 16×16 icon is named icon.gif, the accompanying 24×24 icon must be
named icon24.gif. (Later, you can also add icons named icon_pressed.gif, icon_disabled.gif,
and icon_rollover.gif for the related states, in the folder where icon.gif is found.) Afterward,
click Finish to end the wizard and allow the action class to be created. Let’s now look at the
newly created action class (see Listing 4-1).

Listing 4-1. Example of an always enabled action class

public final class MyFirstAction implements ActionListener {
 public void actionPerformed(ActionEvent e) {
 // TODO implement action body
 }
}

While earlier NetBeans versions used the NetBeans Platform CallableSystemAction
(see Figure 4-1, shown previously), an always enabled action is created and handled as an
ActionListener interface from NetBeans Platform 6.5 onward. Thus, we use a plain Java action
class, making the integration of existing action classes into a NetBeans Platform application
very easy. The integration into the NetBeans Platform is done in a declarative manner, via the
layer file. The required entries are generated by the Action wizard. The entries that are gener-
ated are shown in Listing 4-2, within the Actions folder.

Listing 4-2. Integration of an always enabled action into the NetBeans Platform

 <file name="com-galileo-netbeans-module-MyFirstAction.instance">
 <attr name="SystemFileSystem.localizingBundle"
 stringvalue="com.galileo.netbeans.module.Bundle"/>
 <attr name="delegate" newvalue="com.galileo.netbeans.module.MyFirstAction"/>
 <attr name="displayName"
 bundlevalue="com.galileo.netbeans.module#CTL_MyFirstAction"/>
 <attr name="iconBase" stringvalue="com/galileo/netbeans/module/icon.gif"/>
 <attr name="instanceCreate" methodvalue="org.openide.awt.Actions.alwaysEnabled"/>
 <attr name="noIconInMenu" stringvalue="false"/>
</file>

These attributes have the following meaning:

SystemFileSystem.localizingBundle: Specifies the bundle where localized string literals
are found.

delegate: Specifies the default constructor of the action class. It is also possible to specify
a factory method.

displayName: Specifies the key of the action’s name property in the properties bundle.

24174ch04_final_idx.fm Page 48 Wednesday, April 8, 2009 2:22 PM

C H A P T E R 4 ■ A C T I O N S 49

iconBase: Specifies the path and the base name of an icon for this action.

instanceCreate: Specifies the factory method responsible for the creation of the action
class. For this purpose, the utility class Actions provides the method alwaysEnabled().

CallableSystemAction
The previously described approach to creating and integrating an action into a NetBeans Plat-
form application is the approach taken since the NetBeans Platform 6.5. It is the recommended
approach to take. Previously, a NetBeans Platform CallableSystemAction class was created by
the wizard for always enabled actions. It is the superclass of the action classes that are
described later in this chapter.

Listing 4-3 shows an example. The class is derived from the CallableSystemAction class.
Rather than defining attributes in the layer file, as is done from the NetBeans Platform 6.5
onward, several methods need to be overridden to set attributes.

Listing 4-3. Always enabled action with CallableSystemAction as superclass

public final class MyFirstAction extends CallableSystemAction {
 public void performAction() {
 // TODO implement action body
 }
 public String getName() {
 return NbBundle.getMessage(MyFirstAction.Class, "CTL_MyFirstAction");
 }
 protected String iconResource() {
 return "com/galileo/netbeans/module/icon.gif";
 }
 public HelpCtx getHelpCtx() {
 return HelpCtx.DEFAULT_HELP;
 }
 protected boolean asynchronous() {
 return false;
 }
}

In the performAction() method, you add the logic of your action implementation. Using
the getName() method, you are able to provide the name displayed in the menu item or as the
toolbar button’s tooltip. This name is loaded via the bundle key CTL_MyFirstAction (further
information about this is found in Chapter 10). In the resource bundle, you can also set a
mnemonic for your action (see the section “Shortcuts and Mnemonics”).

The iconResource() method merely provides the base path of the icons you want to
display. At the appropriate time, these are loaded in a relevant size and state as required. If you
do not want an icon at all, simply do not override the iconResource() method.

The toolbar button displays the name of the action. If you want to ensure the icon assigned
to the action is not shown in the menu, set the property noIconInMenu for the action. This is
done by calling putValue("noIconInMenu", Boolean.TRUE) on the action. Setting this property
substitutes the real icon of the action with a placeholder, which is an empty icon. Using this
feature is only useful if none of the items in the menu show their icons, so that all the items
have a similar appearance.

24174ch04_final_idx.fm Page 49 Wednesday, April 8, 2009 2:22 PM

50 C H A P T E R 4 ■ A C T I O N S

The getHelpCtx() method is provided by the interface HelpCtxProvider and defines
the help ID of a specific help topic relating to the action. This topic is addressed in detail in
Chapter 9.

Finally, you should override the asynchronous() method. That method allows the action to
be created asynchronously, simply by returning true from this method. In turn, this causes
performAction() to be run in a separate thread, instead of on the event dispatch thread (EDT).
Therefore, by means of the asynchronous implementation, you ensure that access to GUI
components is put into the EDT. Returning false here, the action logic is executed synchro-
nously in the EDT. In this case, you should ensure that no long-running processes are handled
in the duties of the performAction() method, because the GUI would otherwise be blocked.

CallbackSystemAction
The abstract action class CallbackSystemAction is a subclass of CallableSystemAction. It differs
from its parent by the fact that it can delegate to another action, which is typically a context-
sensitive action.

CallbackSystemAction contains no action logic, but delegates to an action performer.
These action classes are used especially by global actions—that is, actions that provide
different behavior depending on their context. For example, these are actions such as
performing searches, copying, or pasting. Depending on the current context, such actions
behave in different ways, depending on what needs to happen in the context of the current
objects. Such global actions are offered out of the box by the NetBeans Actions API.

The action performer is made available by a Java ActionMap. It is registered in a map,
together with the key of the CallbackSystemAction class that is delivered via the method
getActionMapKey(). All classes that derive from JComponent can make use of an ActionMap. That
means the NetBeans superclass TopComponent, which creates windows that integrate into
NetBeans Platform applications (see Chapter 5 for details), also has an ActionMap.

These ActionMaps are made available via a Lookup. It is the task of the CallbackSystem-
Action class to look in the global Proxy Lookup to determine whether an ActionMap exists and,
if so, whether an action performer has been registered for a given action. If this is the case, the
action representatives (menu bar or toolbar entries) are automatically activated. If no action
performer is available, the related entries are deactivated.

In the following code listing, a refresh action is shown. This action will behave differently,
depending on which window is currently selected. Therefore, the performAction() method is
not needed, since action handling will be provided by the selected window. The class should
look like Listing 4-4.

Listing 4-4. The global action class that inherits from CallbackSystemAction and delegates to an
action performer

public final class RefreshAction extends CallbackSystemAction {
 public String getName() {
 return NbBundle.getMessage(RefreshAction.class, "CTL_RefreshAction");
 }
 protected String iconResource() {
 return "com/galileo/netbeans/module/icon.gif";

24174ch04_final_idx.fm Page 50 Wednesday, April 8, 2009 2:22 PM

C H A P T E R 4 ■ A C T I O N S 51

 }
 public HelpCtx getHelpCtx() {
 return HelpCtx.DEFAULT_HELP;
 }
 protected boolean asynchronous() {
 return false;
 }
}

Running the module, you see the action deactivated in the menu bar, as well as in the
toolbar. That is because no action performer currently exists. A general outline for creating an
action performer is described following, although the full discussion of TopComponents comes
later, in Chapter 5. Once we discuss how TopComponents are created, you can return here and try
out the action class described in Listing 4-5.

Listing 4-5. Registration of an action performer for a CallbackSystemAction

final class MyTopComponent extends TopComponent {
 private MyTopComponent() {
 ...
 RefreshAction ra = RefreshAction.get(RefreshAction.class);
 getActionMap().put(ra.getActionMapKey(), new AbstractAction() {
 public void actionPerformed(ActionEvent event) {
 // refresh content of TopComponent
 }
 });
 }
}

First obtain the singleton instance of the previously created RefreshAction class to deter-
mine the key needed for the ActionMap. Next, use the getActionMap() method, defined by the
JComponent class, to get the ActionMap of the TopComponent and to add an instance of the action
implementation as the key of the RefreshAction. Then the action created by the class
AbstractAction becomes the action performer in the context of MyTopComponent.

You can insert into the ActionMap any action that implements the Action interface. There-
fore, you can also use the CallableSystemAction class of your choice. Now, as soon as the
MyTopComponent window is active, RefreshAction becomes active. And when the action is
invoked, MyTopComponent’s actionPerformed() method is invoked.

For a comprehensive understanding, you should know how a CallbackSystemAction class
obtains an action performer. Simply adding it to the ActionMap is not enough. After all, the
RefreshAction class must somehow be connected to the ActionMap. The Lookup handles this
connection. The TopComponent’s local Lookup is made available to CallbackSystemAction via
the global Proxy Lookup.

Therefore, the TopComponent needs to ensure that the ActionMap is added to its own
Lookup. Only then will the CallbackSystemAction be able to find the action performer. By
default, the ActionMap is already in the TopComponent’s local Lookup, which means that you
don’t need to worry about it yourself. However, you do need to be aware of this when you
create your own Lookup via associateLookup(), or if you override getLookup(). In these cases,
pay attention to the fact that the ActionMap must be added to the TopComponent’s Lookup.

24174ch04_final_idx.fm Page 51 Wednesday, April 8, 2009 2:22 PM

52 C H A P T E R 4 ■ A C T I O N S

Let’s leave this discussion at this point. You are referred to Chapter 6 in this book, in which
many more details are found about the NetBeans Lookup, together with examples that illus-
trate its usage.

Note, however, that in the manner described in this chapter, you can add many action
performers to a CallbackSystemAction. These are then handled according to their context.
Possibly you’ve been wondering how to use the actions that are typically default members of
NetBeans Platform applications, such as CopyAction, CutAction, and DeleteAction. Well, all
these classes are simply CallbackSystemActions, which you can use by providing a related
action performer, as shown in this section, via the RefreshAction example.

CookieAction
The abstract superclass CookieAction is, just like CallbackSystemAction, a class you can use to
create context-sensitive actions. First, let’s talk about node actions. As indicated by its name,
actions of the type NodeAction are dependent on nodes. A node is, as you will discover in detail
in Chapter 7, the visual representation of a particular piece of data. For example, a node can be
shown in a tree structure or opened in an editor. Each TopComponent (and therefore each
window within the NetBeans Platform) can make use of one or many activated nodes.

It is precisely these activated nodes that form the context of a CookieAction. Context-
sensitivity is constructed from interfaces, which are called cookies. And now you begin to
understand how to create context-sensitive implementations of an action. The node on which
the action is to operate implements an interface specifying the method that should be invoked
by the action. The action can specify a set of cookies, the presence of which in the active node
(if the active node implements one of these interfaces) determines whether the action is
enabled.

To create an action of the type CookieAction, you again use the Action wizard. However in
this case, select the type Conditionally Enabled. Moreover, you can immediately specify the
cookies for which the action should be enabled. Later, you can change these in your code. In
the wizard, you also specify whether several nodes can be active at the same time. In the next
step of the wizard, define integration of the action into the menu bar or toolbar, as explained in
the previous section. Upon completion of the wizard, your action should look something like
Listing 4-6.

Listing 4-6. Action class of type CookieAction that is enabled if the active node implements the
EditCookie interface

public final class MyCookieAction extends CookieAction {
 protected void performAction(Node[] activatedNodes) {
 EditCookie ec = activatedNodes[0].getLookup().lookup(EditCookie.class);
 ec.edit();
 }
 protected int mode() {
 return CookieAction.MODE_EXACTLY_ONE;
 }
 protected Class[] cookieClasses() {
 return new Class[] {
 EditCookie.class
 };
 }

24174ch04_final_idx.fm Page 52 Wednesday, April 8, 2009 2:22 PM

C H A P T E R 4 ■ A C T I O N S 53

 protected boolean surviveFocusChange() {
 return false;
 }
 public String getName() {
 return NbBundle.getMessage(MyCookieAction.class, "CTL_MyCookieAction");
 }
 protected String iconResource() {
 return "com/galileo/netbeans/module/icon.gif";
 }
 public HelpCtx getHelpCtx() {
 return HelpCtx.DEFAULT_HELP;
 }
 protected boolean asynchronous() {
 return false;
 }
}

As you can see, the method performAction() distinguishes itself by the fact that it passes in
the activated nodes, which together form the context of the action. Via these nodes, you gain
access to cookies, which invoke the action. The mode() method lets you specify the conditions
for activation. On that note, the constants listed in Table 4-1 are available to you.

Via the method cookieClasses(), specify the cookies—that is, the interfaces—that the
active node must implement in order for the action to be enabled. Let’s take EditCookie as an
example. Though the surviveFocusChange() method is not added to the code by the wizard,
you should normally override this and let it return false. Since the default implementation of
the method provides true, the action will remain enabled even if the applicable TopComponent
is no longer current. The remaining methods should be familiar to you from the sections that
covered the CallableSystemAction and CallbackSystemAction classes.

We still need a node that permits an action to become enabled. The node must derive from
the abstract superclass Node. However, in general you should instead feel free to implement the
Node subclass AbstractNode. It offers a base implementation of a node and is usually exactly
what you need.

Table 4-1. Constants for setting conditions under which the action is enabled

Constant Condition for Activating the Action

MODE_ALL Action is enabled if one or several nodes are selected that imple-
ment all cookies

MODE_ANY Action is enabled if one or several nodes are selected, while at least
one of them implements cookies

MODE_EXACTLY_ONE Action is enabled if exactly one node is active that implements
cookies

MODE_ONE Action is enabled if one or several nodes are selected, of which
exactly one implements cookies

MODE_SOME Action is enabled if one or several nodes are selected, of which
some, though not all, implement cookies

24174ch04_final_idx.fm Page 53 Wednesday, April 8, 2009 2:22 PM

54 C H A P T E R 4 ■ A C T I O N S

Following, as an example, you see the MyNode class, without any other logic. In a real-life
scenario, the node represents a file of a certain type. However, here the class exists for no
reason other than to clarify the relationship between the CookieAction and Node classes. In our
CookieAction class (created in Listing 4-4), we specified that the node should implement the
EditCookie interface.

Let’s do so at this point (see Listing 4-7). The interface specifies the edit() method, which
consists of an empty implementation. The method will be called later by the action class and
exists to make the context-sensitive action logic available.

Listing 4-7. Node that provides the context of the action

public class MyNode extends AbstractNode implements EditCookie {
 public MyNode() {
 super(Children.LEAF);
 }
 public void edit() {
 // edit something depending on the data this node represents
 }
}

Now, in your TopComponent (which could be a file editor in which the file that the node
represents is opened), use the setActivatedNodes() method to define the TopComponent’s acti-
vated node. Typically, you would do this at the time when the file is opened. Rather than using
this method, you can also add the activated node to the local Lookup (see Listing 4-8). The
exact connection between the node and its various representations is described in Chapter 7.

Listing 4-8. Defining the active node, by means of which the action is enabled, to the extent the
applicable cookies of the node have been implemented

final class MyTopComponent extends TopComponent {
 private MyTopComponent() {
 MyNode node = new MyNode();
 ...
 setActivatedNodes(new Node[]{node});
 // or more general with
 // associateLookup(Lookups.fixed(node, getActionMap()));
 }
}

Let’s look again at the performAction() method of the action:

protected void performAction(Node[] activatedNodes) {
 EditCookie ec = activatedNodes[0].getLookup().lookup(EditCookie.class);
 ec.edit();
}

When the action is used, we receive the active node as parameters, which thereby provide
the context of the action. Since we defined the action as only active (and thereby selectable)
when the active node has implemented the EditCookie interface, we can assume that this
cookie is now available to us. A node has access to a local Lookup, which we obtain via the
getLookup() method. The Lookup gives us access to the EditCookie interface of the node,

24174ch04_final_idx.fm Page 54 Wednesday, April 8, 2009 2:22 PM

C H A P T E R 4 ■ A C T I O N S 55

which in this case is an instance of the MyNode type. Now only the edit() method needs to be
called, which delegates to the node. Therefore, we need not know the actual action logic of the
class in order to create our context-sensitive action.

General Context-Sensitive Action Classes
In the two previous sections you learned how to create a context-sensitive action based on the
CallbackSystemAction class and the CookieAction class. Take particular note of the fact that
the CallbackSystemAction is dependent on an ActionMap, while the CookieAction has a rela-
tionship with the Node class.

Next, yet another approach will be introduced. You will be given a starting point for
providing generic context-sensitive action classes with the help of the Lookup class (see Chapter
6 for details about Lookup). You will see how to use Lookup to create a general context-sensitive
action, by means of which you will (similar to how it is done with the CookieAction class) use a
Class object to determine when an action should be enabled. You will not, however, be depen-
dent upon a Node class, nor any other NetBeans superclass, since you will observe how any
class or interface can be used to determine the applicable context of an action.

First, we provide a generic abstract superclass that inherits from AbstractAction, while
implementing LookupListener and ContextAwareAction. As private data elements, we have
Lookup, which sets up the context, and Lookup.Result, with which we can monitor our Lookup.
The default constructor uses the global Proxy Lookup as the context. Through this Proxy Lookup
we get access to the local Lookup of the currently active window (see Chapter 6). With an addi-
tional constructor, you are able to provide a special context. If the action (such as a pop-up
menu) has a node added to it, the createContextAwareInstance() method is automatically
called, which receives the context of the node.

From this context, we receive a Lookup.Result for the class type to which the action should
be sensitive. We attach a listener to the Lookup.Result so that we are informed about the pres-
ence or absence of an instance of the class type and provide appropriate handling via the
resultChanged() method, which enables or disables the action.

We implement the actionPerformed() method and call the abstract performAction()
method, which must be implemented by the subclass. We pass the instance, which forms the
context of the action, to this method (see Listing 4-9). In this way, usage and access to the
context in the subclasses is simplified.

As you can see, this is how the context is passed via the Lookup to the concrete action
classes. Moreover, a subclass (the actual action class) must implement the contextClass()
method, which specifies the class type that determines whether the action should be enabled.

Listing 4-9. Abstract superclass for a general contextual action

public abstract class ContextAction<T> extends AbstractAction
 implements LookupListener, ContextAwareAction {
 private Lookup context = null;
 private Lookup.Result<T> result = null;
 public ContextAction(Lookup context) {
 init(context);

24174ch04_final_idx.fm Page 55 Wednesday, April 8, 2009 2:22 PM

56 C H A P T E R 4 ■ A C T I O N S

 }
 private void init(Lookup context) {
 this.context = context;
 result = context.lookupResult(contextClass());
 result.addLookupListener(this);
 resultChanged(null);
 }
 public void resultChanged(LookupEvent ev) {
 setEnabled(result.allItems().size() != 0);
 }
 public void actionPerformed(ActionEvent e) {
 performAction(result.allInstances().iterator().next());
 }
 public abstract Class<T> contextClass();
 public abstract void performAction(T context);
}

Next, let’s look at an example action that derives from the ContextAction defined previ-
ously (see Listing 4-10). First, we need to override the methods performAction() and
contextClass(). In performAction(), we call the method doSomething() of the MyInterface
interface, which is an example of a context-sensitive action. Using the contextClass() method,
we provide a class object of the MyInterface interface to which the action should react. Besides
these requirements, we must still implement createContextAwareInstance(), with which we
create a new instance for the general context. As mentioned, this method can be used (for
example) at the creation of a context-sensitive menu for a node.

Listing 4-10. Example of a context-sensitive action class that becomes active if an instance of the
interface MyInterface is in the global Proxy Lookup

public final class MySensitiveAction extends ContextAction<MyInterface> {
 public MySensitiveAction() {
 this(Utilities.actionsGlobalContext());
 }
 public MySensitiveAction(Lookup context) {
 super(context);
 putValue(NAME,
 NbBundle.getMessage(MySensitiveAction.class,"CTL_MySensitiveAction"));
 putValue(SMALL_ICON,new ImageIcon(
 ImageUtilities.loadImage("com/galileo/netbeans/module/icon.gif", true)));
 }
 public Class<MyInterface> contextClass() {
 return MyInterface.class;
 }
 public void performAction(MyInterface context) {
 context.doSomething();
 }
 public Action createContextAwareInstance(Lookup context) {
 return new MySensitiveAction(context);
 }
}

24174ch04_final_idx.fm Page 56 Wednesday, April 8, 2009 2:22 PM

C H A P T E R 4 ■ A C T I O N S 57

The example action MySensitiveAction should be active if the MyInterface interface is
available in the global Proxy Lookup (Utilities.actionsGlobalContext()).

This interface provided in the example is, as in most other cases, a window that imple-
ments the TopComponent class. In the doSomething() method of the interface, we implement the
action logic that will be invoked by the action. We must make sure that the instance of the
MyInterface interface is in the local Lookup, which will be represented by the global Proxy
Lookup.

This is achieved by using the Lookups factory to create a Lookup containing the MyTopCompo-
nent instance, while defining this Lookup as our local Lookup via a call to associateLookup()
(see Listing 4-11). As soon as the window is activated, the instance of the MyInterface interface
is in the global Proxy Lookup, causing the resultChanged() method in ContextAction to be
called, activating the action. The action is deactivated when the window is no longer current.

Listing 4-11. The class MyTopComponent is a window that shows the context for the action. If this
window has the focus, the action should be active.

final class MyTopComponent extends TopComponent implements MyInterface {
 private MyTopComponent() {
 associateLookup(Lookups.fixed(getActionMap(), this));
 }
 public void doSomething() {
 // called by the context-sensitive action
 }
}

The advantage of this approach is that you can use the contextClass() method of the
action class to provide a class type of your choice. In this case, for example, we provided the
MyInterface interface. It would be as easy to provide the TopComponent class instead, so the
action would be enabled for each and every window. Another solution would be to provide only
the MyTopComponent class, resulting in the action being active only when the MyTopComponent
window is current.

Registering Actions
In Listing 4-2, you already saw how to integrate an action into your application. Except that
with the new approach the action’s attributes are also specified, the registration with an
.instance file is the same for all mentioned action classes.

Actions are registered in the central folder Actions. There they can be divided into different
groups, essentially different folders in the layer file (see Listing 4-12). From this central actions
registry, the menu bar and toolbar are created (in Chapter 5, you’ll learn how to build menu
bars and toolbars from the actions).

Listing 4-12. Registration of actions in the layer file

<folder name="Actions">
 <folder name="Edit">
 <file name="com-galileo-netbeans-module-MyCookieAction.instance"/>
 <file name="com-galileo-netbeans-module-MyFirstAction.instance"/>

24174ch04_final_idx.fm Page 57 Wednesday, April 8, 2009 2:22 PM

58 C H A P T E R 4 ■ A C T I O N S

 <file name="com-galileo-netbeans-module-MySensitiveAction.instance"/>
 </folder>
 <folder name="Window">
 <file name="com-galileo-netbeans-module-MyAction.instance"/>
 </folder>
</folder>

The System Filesystem now has the necessary information required for the creation of
actions. Therefore, you need not instantiate them yourself. They are simply integrated in this
way—that is, declaratively. The options available for the definition and instantiation of actions
are explained in Chapter 3, which covers the general definitions of classes in the layer file and
how they are instantiated.

Shortcuts and Mnemonics
Shortcuts are also centrally defined and administered via the layer file. This is done in the
Shortcuts folder. The file element defines the shortcut, with a reference to an action class as a
file attribute. You see from this that a shortcut is not created for a menu entry, but an action. A
shortcut consists of one or more modifiers and an identifier, separated by a minus sign:

modifier-identifier

Be aware that the following keys are represented by characters in the layer file, where they
are used as modifiers for shortcuts:

C: Ctrl

A: Alt

S: Shift

M: Cmd/Meta

In addition, there are two wildcards that guarantee the platform independence of the
shortcuts. These should be used as shown here:

D: Ctrl or Cmd/Meta (on the Mac)

O: Alt or Ctrl (on the Mac)

As identifiers, all constants defined by the KeyEvent class are possible. For example, for
KeyEvent.VK_M, you simply omit VK_. The identifier would simply be M, in this case.

For example, to create the shortcut Ctrl+M for the action MyCookieAction that we created
in the “CookieAction” section, we need the code shown in Listing 4-13 in the layer file.

Listing 4-13. Definition of shortcuts in the layer file

<folder name="Shortcuts">
 <file name="D-M.shadow">
 <attr name="originalFile" stringvalue=
 "Actions/Edit/com-galileo-netbeans-module-MyCookieAction.instance"/>

24174ch04_final_idx.fm Page 58 Wednesday, April 8, 2009 2:22 PM

C H A P T E R 4 ■ A C T I O N S 59

 </file>
</folder>

■Tip It can be helpful to look in the Javadoc for the functions Utilities.keyToString() and Utili-
ties.stringToKey(). These are used for encoding shortcuts. In Table 4-2, you see example combinations
for shortcuts. And if you do not know how to write the definition of a shortcut for a certain key, you can simply
use the New Action wizard to help you (see Chapter 3 and Figure 4-2).

Mnemonics are inserted directly into the name of an action, via the insertion of an amper-
sand (&). This can be coded directly into an action, or within its related properties file:

CTL_OpenMyWindow=Open MyWind&ow

Note that the mnemonics are only shown if the user holds down the Alt key.

Summary
In this chapter, we discussed actions. You learned how to quickly and efficiently create actions
via a wizard in the NetBeans IDE. You also saw the various types of actions that are available
and learned how to make effective use of them. For example, some actions are always avail-
able, while others are only available within specific contexts. Finally, we looked at how actions
are registered, how they integrate into applications, and how to set shortcuts and mnemonics
for actions.

Table 4-2. Examples of shortcuts and their corresponding entries in the layer file

Shortcut Entry in the Layer File

Ctrl++ <file name="D-PLUS.shadow">

Ctrl+Shift+S <file name="DS-S.shadow">

F3 <file name="F3.shadow">

Alt+Enter <file name="O-ENTER.shadow">

Alt+O <file name="O-O.shadow">

Alt+Shift+S <file name="OS-S.shadow">

24174ch04_final_idx.fm Page 59 Wednesday, April 8, 2009 2:22 PM

24174ch04_final_idx.fm Page 60 Wednesday, April 8, 2009 2:22 PM

61

■ ■ ■

C H A P T E R 5

User Interface Design
Let’s Create Some Windows!

In this chapter, the structure of the user interface of NetBeans Platform applications is
discussed. You’ll learn about menu construction, toolbar creation, and window system usage.
As well, this chapter shows how windows and components are created, integrated, and
displayed within the window system.

Overview
The NetBeans Platform provides a window system, which is a container that manages the
menu bar, toolbars, and status bar, as well as the windows your modules make available (see
Figure 5-1). The following sections discuss these components in detail.

Figure 5-1. Structure of the NetBeans application window

24174ch05_final_idx.fm Page 61 Wednesday, April 8, 2009 2:39 PM

62 C H A P T E R 5 ■ U S E R I N T E R F A C E D E S I G N

Menu Bar
The menu bar of an application based on the NetBeans Platform is created by the NetBeans
Platform via the System Filesystem. Every menu (as well as the menu entries) is defined in a
module layer file. This allows each module to declaratively add its menu entries to the menu
bar. They implement the action performed when selecting a menu entry.

Creating and Adding Menus and Menu Entries
As an example, we will add a menu entry to the menu. The simplest way to do so is to use the
Action wizard as described in Chapter 4. The class shown in Listing 5-1 is used to show how an
action is added to the menu bar.

Listing 5-1. Creating an action class for a menu entry

import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;

public class MyFirstMenuAction implements ActionListener {
 public void actionPerformed(ActionEvent evt) {
 // do something
 }
}

The action class is registered in the layer file (see Listing 5-2), as shown in the “Always
Enabled Actions” and “Registering Actions” sections in Chapter 4.

Listing 5-2. Adding a menu entry in the layer file

<filesystem>
 <folder name="Actions">
 <folder name="Edit">
 <file name="com-galileo-netbeans-module-MyFirstMenuAction.instance">
 <attr name="SystemFileSystem.localizingBundle"
 stringvalue="com.galileo.netbeans.module.Bundle"/>
 <attr name="delegate"
 newvalue="com.galileo.netbeans.module.MyFirstMenuAction"/>
 <attr name="displayName"
 bundlevalue="com.galileo.netbeans.module#CTL_MyFirstMenuAction"/>
 <attr name="iconBase" stringvalue="com/galileo/netbeans/module/icon.gif"/>
 <attr name="instanceCreate"
 methodvalue="org.openide.awt.Actions.alwaysEnabled"/>
 <attr name="noIconInMenu" stringvalue="false"/>
 </file>
 </folder>
 </folder>
 <folder name="Menu">
 <folder name="Edit">
 <file name="MyFirstMenuAction.shadow">

24174ch05_final_idx.fm Page 62 Wednesday, April 8, 2009 2:39 PM

C H A P T E R 5 ■ U SE R I N T E R F A C E D E S I G N 63

 <attr name="originalFile" stringvalue="
 Actions/Edit/com-galileo-netbeans-module-MyFirstMenuAction.instance"/>
 </file>
 </folder>
 </folder>
</filesystem>

The preceding listing adds a menu entry to the Edit menu. A folder element named Edit
appears in the default folder Menu. In this folder, a file element is added, which in turn adds the
menu entry. The attribute originalFile references the action class declared in the default
folder Actions. Since the module system combines all layer files, all menu entries declared in
the Edit folder are displayed in the Edit menu. Basically, a menu is created by the simple act
of declaring a folder element. This allows arbitrarily cascaded menus. It is possible to move
the preceding action to a submenu of Edit (see Figure 5-2). The resulting layer file looks like
Listing 5-3.

Listing 5-3. Creating a submenu

 <folder name="Menu">
 <folder name="Edit">
 <folder name="My Actions">
 <file name="MyFirstMenuAction.shadow">
 <attr name="originalFile" stringvalue="
 Actions/Edit/com-galileo-netbeans-module-MyFirstMenuAction.instance"/>
 </file>
 </folder>
 </folder>
 </folder>

Figure 5-2. Menu ➤ submenu ➤ menu entry

The order of menus and menu entries is defined in the layer tree. It allows the developer to
drag and drop entries into desired positions. Doing that defines the entries’ positions via the
position attribute in the layer file. For further information, see Chapter 3.

24174ch05_final_idx.fm Page 63 Wednesday, April 8, 2009 2:39 PM

64 C H A P T E R 5 ■ U S E R I N T E R F A C E D E S I G N

Inserting Separators
Separators are displayed between menu entries and added directly in the layer file. To add a
separator below the menu entry of the preceding section, a layer file is modified as shown in
Listing 5-4.

Listing 5-4. Inserting a separator in the menu

<file name="MyFirstMenuAction.shadow">
 <attr name="originalFile" stringvalue="
 Actions/Edit/com-galileo-netbeans-module-MyFirstMenuAction.instance"/>
 <attr name="position" intvalue="10"/>
</file>
<file name="javax-swing-JSeparator.instance">
 <attr name="position" intvalue="20"/>
</file>

When creating an action with the help of the Action wizard (see Chapter 4), the developer
has the option of letting the wizard add a separator above as well as below the menu entry. The
wizard then modifies the layer file accordingly.

Hiding Existing Menu Entries
To hide existing menus or menu entries originating from either the NetBeans Platform or other
application modules, simply use the layer tree (see Chapter 3). Open the Important Files ➤
XML Layer ➤ <this layer in context> folder of a module. The module’s entries are displayed
along with all entries of the application and the NetBeans Platform modules. All menus and
menu entries are displayed in the Menu Bar folder. The desired entry is selected and then
deleted via the context menu. The entry is not physically deleted, but made invisible in the
layer file. When the View menu and the Edit ➤ Find menu entry are deleted, the entries shown
in Listing 5-5 are added to the layer file.

Listing 5-5. Hiding menu entries

<folder name="Menu">
 <folder name="View_hidden"/>
 <folder name="Edit">
 <file name="org-openide-actions-FindAction.instance_hidden"/>
 </folder>
</folder>

The suffix _hidden was added to the corresponding entries. To make these hidden entries
available again, the entries are simply removed from the layer file.

Creating a Custom Menu Bar
When creating a menu bar to be used in a module, use the NetBeans APIs. The Data Systems
API provides the MenuBar class, which is a subclass of JMenubar, and has the ability to create its
content from a DataFolder object. This enables the developer to define custom menus the
same way as default menus in the layer file.

24174ch05_final_idx.fm Page 64 Wednesday, April 8, 2009 2:39 PM

C H A P T E R 5 ■ U SE R I N T E R F A C E D E S I G N 65

To do that, create a DataFolder. The System Filesystem is accessed with the method
getDefaultFileSystem() (see Listing 5-6) and searched for the root folder of the menu, in this
case MyModuleMenu. Then a DataFolder object is created for the root folder by calling the static
method findFolder() and passing it directly to the MenuBar constructor.

Listing 5-6. Creating a menu bar that reads its content from the System Filesystem

FileSystem sfs = Repository.getDefault().getDefaultFileSystem();
FileObject menu = sfs.findResource("MyModuleMenu");
MenuBar bar = new MenuBar(DataFolder.findFolder(menu));

Toolbars
The application window of the NetBeans Platform contains a toolbar area. There you can place
your own toolbars. How to create, configure, and modify toolbars is described in the following
sections.

Creating Toolbars
Adding actions to the toolbar is accomplished the same way actions are added to the menu bar.
Toolbars are defined in the default Toolbars folder in the layer file, as shown in Listing 5-7.

Listing 5-7. Creating a toolbar and adding an action

<folder name="Toolbars">
 <folder name="MyToolbar">
 <file name="MyFirstMenuAction.shadow">
 <attr name="originalFile" stringvalue="
 Actions/Edit/com-galileo-netbeans-module-MyFirstMenuAction.instance"/>
 </file>
 </folder>
</folder>

Using this entry, the new toolbar MyToolbar is defined, and a reference to the previously
created and declared action in the Actions folder is added.

Configuring Toolbars
Which and in what order toolbars are displayed is configured in a toolbar configuration file.
The DTD for that XML format is found in this book’s Appendix. By default, there are three tool-
bars. These are defined in the Standard.xml file of the Core-UI module and look like Listing 5-8.

Listing 5-8. Default NetBeans Platform toolbar configuration: Standard.xml

<Configuration>
 <Row>
 <Toolbar name="File"/>
 <Toolbar name="Edit"/>
 <Toolbar name="Memory"/>

24174ch05_final_idx.fm Page 65 Wednesday, April 8, 2009 2:39 PM

66 C H A P T E R 5 ■ U S E R I N T E R F A C E D E S I G N

 </Row>
</Configuration>

A custom configuration can be created. For example, this allows the hiding of toolbars
based on context. In the configuration in Listing 5-9, the previously created toolbar named
MyToolbar and the default Edit toolbar are displayed. The File toolbar is hidden. The resulting
configuration looks like Listing 5-9.

Listing 5-9. Custom toolbar configuration

<!DOCTYPE Configuration PUBLIC
 "-//NetBeans IDE//DTD toolbar//EN"
 "http://www.netbeans.org/dtds/toolbar.dtd">
<Configuration>
 <Row>
 <Toolbar name="Edit"/>
 <Toolbar name="MyToolbar"/>
 </Row>
 <Row>
 <Toolbar name="File" visible="false"/>
 </Row>
</Configuration>

This newly created configuration can be stored under any given name. The configuration is
referenced in the layer file to announce its existence to the NetBeans Platform. There, the storage
path relative to the layer file is declared in an attribute named url, as shown in Listing 5-10.

Listing 5-10. Registering a toolbar configuration

<folder name="Toolbars">
 <file name="MyToolbarConfig.xml" url="Toolbars/MyToolbarConfig.xml"/>
</folder>

What remains to be done is to insert a line into the source code to activate the configura-
tion displaying the desired toolbars. The module UI Utilities provides a practical API for that
purpose:

ToolbarPool.getDefault().setConfiguration("MyToolbarConfig");

This call happens when a window is selected displaying a context-based toolbar. That is
done in the “Window: TopComponent” section, when a custom window is created.

The class ToolbarPool is responsible for managing toolbars registered in the System File-
system. Via the call to getDefault(), you get the ToolbarPool object created by the system. It is
responsible for toolbars registered in the default folder Toolbars. The provided methods are
described in Table 5-1. Additionally, you can create a separate ToolbarPool object to manage
toolbars registered in a separate folder. The constructor simply requires a DataFolder object.
How that is achieved is shown in the “Creating Custom Toolbars” section.

24174ch05_final_idx.fm Page 66 Wednesday, April 8, 2009 2:39 PM

C H A P T E R 5 ■ U SE R I N T E R F A C E D E S I G N 67

Modification by the User
Clicking the right mouse button in the application’s toolbar opens a context menu allowing the
user to toggle the visibility of a toolbar (see Figure 5-3). Additionally, toolbars can be config-
ured at runtime via the View ➤ Toolbars ➤ Customize menu. Via drag-and-drop, actions can
be added or removed.

Figure 5-3. User-defined configuration of toolbars

Table 5-1. Useful methods of the ToolbarPool class

Method Functionality

findToolbar(String name) Returns a specific toolbar

getToolbars() Returns all toolbars available in this pool

getConfiguration() Returns the name of the currently active configuration

getConfigurations() Returns an array of all available configurations

setConfiguration(String c) Changes the current toolbar configuration

setPreferredIconSize(int s) Allows sizing icons in the toolbar; valid values are 16 and 24
pixels

24174ch05_final_idx.fm Page 67 Wednesday, April 8, 2009 2:39 PM

68 C H A P T E R 5 ■ U S E R I N T E R F A C E D E S I G N

Creating Custom Toolbars
Like the menu bar (see the previous “Creating a Custom menu Bar” section), developers can
create a custom toolbar—even a pool of toolbars. For example, these toolbars can be used in a
TopComponent. The ToolbarPool class therefore offers (like the MenuBar class) a constructor to
pass in a DataFolder object representing a folder of toolbars in the System Filesystem. That
allows the developer to define toolbars in the same way as default toolbars. The necessary steps
are shown in Listing 5-11.

Listing 5-11. Creating toolbars with content read from the System Filesystem

FileSystem sfs = Repository.getDefault().getDefaultFileSystem();
FileObject tbs = sfs.findResource("MyToolbars");
ToolbarPool pool = new ToolbarPool(DataFolder.findFolder(tbs));

Further information about what components can be added to the toolbars via the System
Filesystem is located in the API documentation of the ToolbarPool class.

Using Custom Control Elements
In Chapter 4, the NetBeans superclasses for actions implementing Presenter interfaces were
shown. These interfaces specify methods providing graphic representations for menus, tool-
bars, and pop-up menus. These representations (menu entries or buttons) are regularly
provided by the CallableSystemAction superclass. If a representation other than the default
toolbar action is required, the method getToolbarPresenter() from the Presenter.Toolbar
interface can be overridden. Listing 5-12 shows an action class utilizing a combo box as a
control element to, for example, set a zoom level.

Listing 5-12. User-defined control item for the toolbar action

public class MyComboBoxAction extends CallableSystemAction {
 JComboBox box = new JComboBox(new String[]{"100%", "200%"});
 public MyComboBoxAction() {
 box.setMaximumSize(box.getPreferredSize());
 box.setAction(this);
 }
 public void performAction() {
 System.out.print("Adjust zoom to: ");
 System.out.println(box.getSelectedItem());
 }
 ...
 public Component getToolbarPresenter() {
 return box;
 }
}

24174ch05_final_idx.fm Page 68 Wednesday, April 8, 2009 2:39 PM

C H A P T E R 5 ■ U SE R I N T E R F A C E D E S I G N 69

The action class extends from either CallableSystemAction or from CookieAction. The
custom control item is added as a private field. The maximum size of the combo box is set to
its preferred size to avoid taking over the entire space of the toolbar. The connection between
the action and the control item is important. That connection is achieved via the method
setAction(), while passing a reference to the instance with the operator this. Upon activating
the combo box, the action is executed. Lastly, the method getToolbarPresenter() returns the
combo box. This way, rather than a default button, the combo box is displayed.

Window System
The window system is a framework provided by the NetBeans Platform. It is responsible for the
administration and display of all application windows. It allows the user to customize the
layout of the user interface.

Introduction
The window system is document based. That means the central section—that is, the editor
section—is all about the display of several files in tabs. View sections are placed around the
editor section. Components are arranged within the view sections. Usually, these supporting
windows offering edit functionality to the documents. In the case of the NetBeans IDE, these
windows provide the structure of the project, the Properties dialog, and the Output window.

By default, all windows are displayed in the NetBeans main application window. Since
version 6 of the NetBeans Platform, undocking windows by using the context menu or drag-
ging the window from the application window is possible. What that looks like is shown in
Figure 5-4, where the project window is undocked. Docking and undocking allows for flexible
window positioning. The floating window feature is especially useful when you are using
multiple monitors.

The window system is comprised of modes. A mode is a NetBeans Platform class that
provides a container for windows, displayed like a tab. The windows must be subclasses of
TopComponent. Every displayed window is managed by the WindowManager. Windows can be
grouped as well. The assembly of the window system is described in the layer file. This entails
a description of the available modes, the windows that are displayed within them, and a defi-
nition of which window belongs to which group of windows. In the following sections, these
windows are described in detail. How a developer uses these is illustrated.

24174ch05_final_idx.fm Page 69 Wednesday, April 8, 2009 2:39 PM

70 C H A P T E R 5 ■ U S E R I N T E R F A C E D E S I G N

Figure 5-4. NetBeans window system with floating windows

Configuration
A module configures its windows, modes, and groups in the layer file, within the folder
Windows2, as outlined in Listing 5-13.

Listing 5-13. A window system configuration in the layer file

<folder name="Windows2">
 <folder name="Components">
 <file name="MyTopComponent.settings" url="MyTopComponent.settings"/>
 <file name="MyTopComponent2.settings" url="MyTopComponent2.settings"/>
 </folder>
 <folder name="Modes">
 <folder name="explorer">
 <file name="MyTopComponent.wstcref" url="MyTopComponent.wstcref"/>
 </folder>
 <file name="MyMode.wsmode" url="MyMode.wsmode"/>
 <folder name="MyMode">
 <file name="MyTopComponent2.wstcref" url="MyTopComponent2.wstcref"/>
 </folder>
 </folder>
 <folder name="Groups">
 <file name="MyGroup.wsgrp" url="MyGroup.wsgrp"/>
 <folder name="MyGroup">

24174ch05_final_idx.fm Page 70 Wednesday, April 8, 2009 2:39 PM

C H A P T E R 5 ■ U SE R I N T E R F A C E D E S I G N 71

 <file name="MyTopComponent.wstcgrp" url="MyTopComponent.wstcgrp"/>
 <file name="MyTopComponent2.wstcgrp" url="MyTopComponent2.wstcgrp"/>
 </folder>
 </folder>
</folder>

In this example, there are

• Definitions for the windows MyTopComponent and MyTopComponent2 in the Components
folder

• A declaration that the window MyTopComponent is associated with the Mode explorer
mode, which is defined by the platform

• A declaration that the window MyTopComponent2 is associated with the newly created
mode MyMode

• A group of windows named MyGroup that were added to the windows MyTopComponent and
MyTopComponent2

This way, a module defines its windows, associates them with modes, and groups them
together. In the following sections, further details concerning different reference file types will
be shown.

This configuration is the default configuration a module defines. The default configura-
tion is used by the window system upon the first start. When exiting the application, any
changes made to the layout of the application (e.g., moving a window to another mode or
closing a window group) are stored in the user directory folder config/Windows2Local in a hier-
archy identical to the layer file (see Figure 5-5). Upon restarting, the application settings are
read first. If none exist (as is the case when starting the application for the very first time), the
settings are read from the layer file.

Figure 5-5. Window system configuration

24174ch05_final_idx.fm Page 71 Wednesday, April 8, 2009 2:39 PM

72 C H A P T E R 5 ■ U S E R I N T E R F A C E D E S I G N

Customization
From NetBeans Platform 6.5 onward, you have the possibility to customize the window
system. You can disable several features to prevent undesired changes by the end user, such as
the undocking or closing of windows.

To enable or disable these window system features, go to the Properties dialog of your
NetBeans Platform Application (or Module Suite) and open the category Build ➤ Window
System. The effect of disabling theses features is described in Table 5-2.

This new feature of window system customization allows you to define a consistent appli-
cation layout. While in NetBeans Platform 6.5, the previously described features apply to the
window system as a whole, you will be able to define them at the TopComponent level in the next
NetBeans Platform release.

Window: TopComponent
The Window System API provides the class TopComponent for windows that integrate into the
NetBeans Platform. A subclass of JComponent, it provides optional support for window interac-
tions with the window system. A TopComponent always exists inside a mode, and as such is
dockable, is automatically managed by the WindowManager, and receives lifecycle events.

Table 5-2. Window system features and the effects of disabling them

Feature Effect

Window Drag and Drop The position of all windows is fixed. The user cannot move them to
another position.

Floating Windows The Undocking feature is disabled. The user cannot move windows
out of the main window.

Sliding Windows The windows cannot be minimized to the left/right side or to the
bottom.

Maximized Windows The windows cannot be maximized (neither by double-clicking nor
via the context menu).

Closing of Non-document
Windows

TopComponents in view modes cannot be closed (neither over the
symbol nor via the context menu).

Closing of Document
Windows

TopComponents in editor modes cannot be closed (neither over the
symbol nor via the context menu).

Window Resizing The size of all windows/modes is fixed and cannot be resized by
the user.

Respect Minimum Size When
Resizing Windows

Windows can be resized to less than their minimum size.

24174ch05_final_idx.fm Page 72 Wednesday, April 8, 2009 2:39 PM

C H A P T E R 5 ■ U SE R I N T E R F A C E D E S I G N 73

Creating a TopComponent

The NetBeans IDE provides a wizard for creating TopComponents. It creates a basic framework
for new TopComponents and registers them in the layer file. It is started by calling File ➤ New
File, and selecting the category Module Development and file type Window Component (see
Figure 5-6).

Figure 5-6. Creating a TopComponent: Step 1

Next (step 2), the wizard prompts developers to select the mode in which the TopComponent
will display. Additionally, TopComponent display can be declared upon launching the applica-
tion. Initially, only modes provided by the NetBeans Platform can be selected. That selection
can be replaced in the layer file by custom modes. The last step (see Figure 5-7) of the wizard
has the developer declare a prefix for the class name and select an icon for the TopComponent.

24174ch05_final_idx.fm Page 73 Wednesday, April 8, 2009 2:39 PM

74 C H A P T E R 5 ■ U S E R I N T E R F A C E D E S I G N

Figure 5-7. Creating a TopComponent: Step 3

The files the wizard creates are displayed in this dialog. These files comprise the
TopComponent itself and two XML files that associate the TopComponent with a mode. Those files
can be examined further once the wizard is finished. Clicking Finish prompts the wizard to
initiate creation of the files.

Once the wizard finishes, everything necessary has been done. The developer is free to edit
the TopComponent with the Form Editor to fit the TopComponent to its desired functionality. The
component can be tested by selecting Run ➤ Run Main Project.

Examine the files the wizard created and the entries made to the layer file. First, the
TopComponent is defined in the folder Windows2/Components (see Listing 5-14). This required
mapping to a mode. The mapping is done in the folder Windows2/Modes.

Listing 5-14. Definition and mapping of a TopComponent in the layer file

<folder name="Windows2">
 <folder name="Components">
 <file name="MyTopComponent.settings" url="MyTopComponentSettings.xml"/>
 </folder>
 <folder name="Modes">
 <folder name="editor">
 <file name="MyTopComponent.wstcref" url="MyTopComponentWstcref.xml"/>
 </folder>
 </folder>
</folder>

24174ch05_final_idx.fm Page 74 Wednesday, April 8, 2009 2:39 PM

C H A P T E R 5 ■ U SE R I N T E R F A C E D E S I G N 75

Defining a TopComponent in the folder Windows2/Components necessitates a .settings file.
Information required by the window system to create the TopComponent is in that file. Listing
5-15 defines the method getDefault() to create an instance of the TopComponent.

Listing 5-15. Settings file to declaratively add a TopComponent

<!DOCTYPE settings PUBLIC
 "-//NetBeans//DTD Session settings 1.0//EN"
 "http://www.netbeans.org/dtds/sessionsettings-1_0.dtd">
<settings version="1.0">
 <module name="com.galileo.netbeans.module" spec="1.0"/>
 <instanceof class="org.openide.windows.TopComponent"/>
 <instanceof class="com.galileo.netbeans.module.MyTopComponent"/>
 <instance class="
 com.galileo.netbeans.module.MyTopComponent" method="getDefault"/>
</settings>

Mapping a TopComponent to a mode is done using a TopComponent Reference file (see
Listing 5-16). This file is created by the wizard.

Listing 5-16. TopComponent Reference file mapping a TopComponent to a mode

<!DOCTYPE tc-ref PUBLIC
 "-//NetBeans//DTD Top Component in Mode Properties 2.0//EN"
 "http://www.netbeans.org/dtds/tc-ref2_0.dtd">
<tc-ref version="2.0" >
 <module name="com.galileo.netbeans.module" spec="1.0"/>
 <tc-id id="MyTopComponent"/>
 <state opened="true"/>
</tc-ref>

This file contains only the unique identifier that references the TopComponent. This identi-
fier correlates with the name given in Windows2/Components (MyTopComponent.settings) and the
PREFERRED_ID. The stated element attribute opened specifies whether the TopComponent must be
opened.

With NetBeans Platform 6.5, there is no need for a separate action class to open the
TopComponent. Instead, the TopComponent class has the new static method openAction(). This
method can be used in the same way as the Actions.alwaysEnabled() method (described in
Chapter 4). This is a very nice approach because there is no need for even a single line of code.
Instead, some tags need to be added in the layer file. If you create the TopComponent with the
wizard as shown previously, the necessary tags (see Listing 5-17) are added automatically.

Listing 5-17. Definition of an action for opening a TopComponent

<file name="com-galileo-netbeans-module-MyAction.instance">
 <attr name="SystemFileSystem.localizingBundle"
 stringvalue="com.galileo.netbeans.module.Bundle"/>
 <attr name="component"
 methodvalue="com.galileo.netbeans.module.MyTopComponent.findInstance"/>

24174ch05_final_idx.fm Page 75 Wednesday, April 8, 2009 2:39 PM

76 C H A P T E R 5 ■ U S E R I N T E R F A C E D E S I G N

 <attr name="displayName"
 bundlevalue="com.galileo.netbeans.module.Bundle#CTL_MyAction"/>
 <attr name="iconBase" stringvalue="com/galileo/netbeans/module/icon.gif"/>
 <attr name="instanceCreate"
 methodvalue="org.openide.windows.TopComponent.openAction"/>
</file>

When looking at these tags in the layer file, it is evident that the TopComponent instance is
created via the method findInstance(). This method first queries the WindowManager to check
whether an instance of the TopComponent is opened. In that case, the previously created instance
is returned. By default, a TopComponent is implemented as a singleton instance by the wizard. To
create multiple instances of the TopComponent, it is easiest to use the wizard to create a JPanel
form and change the superclass from JPanel to TopComponent. A TopComponent can be created
via its constructor as well. Opening and activating remains the same as before:

TopComponent tc = new MyTopComponent();
tc.open();
tc.requestActive();

With the call to open(), the TopComponent is opened and added to the WindowManager for
administration purposes. This mainly entails the process of storing and restoring the
TopComponent when exiting or starting the application. The call to requestActive() leaves
the TopComponent focused.

A TopComponent can dock into a specific mode directly, as outlined in Listing 5-18.

Listing 5-18. Docking a TopComponent into a specific mode programmatically

TopComponent tc = new MyTopComponent();
Mode m = WindowManager.getDefault().findMode("explorer");
if(m != null)
 m.dockInto(tc);
tc.open();
tc.requestActive();

States

A TopComponent can have several states, as outlined in Table 5-3.

Table 5-3. Different states of a TopComponent

State Condition

opened A TopComponent has the state opened when it is displayed in a tab
inside one of the window system modes.

closed A TopComponent has the state closed either after it is closed or if it
hasn’t yet been opened. Even closed, a TopComponent continues to
exist.

visible If a TopComponent is alone in its mode or is in top position, it
remains in the visible state.

24174ch05_final_idx.fm Page 76 Wednesday, April 8, 2009 2:39 PM

C H A P T E R 5 ■ U SE R I N T E R F A C E D E S I G N 77

Entering a specific state is announced via a call to one of the methods shown in Table 5-4.
If a window has to perform an action in a specific state, the corresponding method simply has
to be overridden.

The “Configuring Toolbars” section earlier in the chapter showed how to create toolbar
configurations, using them to display application-specific toolbars. Display on the currently
active TopComponent is done by using two previously described methods (see Listing 5-19).

Listing 5-19. Displaying and hiding toolbars based on context

public class MyTopComponent extends TopComponent {
 private String origConfig = "Standard";
 private String myConfig = "MyToolbarConfig";

 protected void componentActivated() {
 origConfig = ToolbarPool.getDefault().getConfiguration();
 ToolbarPool.getDefault().setConfiguration(myConfig);
 }

 protected void componentDeactivated() {
 ToolbarPool.getDefault().setConfiguration(origConfig);
 }
}

invisible If one TopComponent is covered by another inside a mode, it is in
the invisible state.

active A TopComponent is in the active state when it or one of its compo-
nents is focused. In this state, the global selection context is
provided by the TopComponent.

inactive A TopComponent that is unfocused is in the inactive state.

Table 5-4. Methods for the different states

State Method

opened protected void componentOpened()

closed protected void componentClosed()

visible protected void componentShowing()

invisible protected void componentHidden()

active protected void componentActivated()

inactive protected void componentDeactivated()

Table 5-3. Different states of a TopComponent (Continued)

State Condition

24174ch05_final_idx.fm Page 77 Wednesday, April 8, 2009 2:39 PM

78 C H A P T E R 5 ■ U S E R I N T E R F A C E D E S I G N

If the TopComponent is focused, the method componentActivated() is called. The current
configuration is stored for later reactivation. Then the toolbar configuration MyToolbarConfig
(from the “Configuring Toolbars” section of the chapter) is set. When another TopComponent is
selected, the TopComponent loses focus and the method componentDeactivated() is called. The
stored configuration is set there to restore previous toolbars.

Context Menu

When clicking with the right mouse button on the title bar of a TopComponent, a context menu
is displayed, with actions like, e.g., Undock Window or Close Window. These actions are
obtained from the TopComponent class via its getActions() method. To add actions to this
context menu, override this method (see Listing 5-20). It is useful to add the actions declara-
tively. In Chapter 3, we mentioned possibly adding a folder and extension points to the layer
file. That is done here. The actions are declared in the layer file and read on demand in the
getActions() method.

Listing 5-20. Reading actions for a context menu from the layer file

public class MyTopComponent extends TopComponent {
 private List<Action> ca = null;
 @Override
 public Action[] getActions() {
 if (ca == null) {
 ca = new ArrayList<Action>(Arrays.asList(super.getActions()));
 ca.add(null); /* add separator */
 Lookup lkp = Lookups.forPath("ContextActions/MyTC");
 ca.addAll(lkp.lookupAll(Action.class));
 }
 return ca.toArray(new Action[ca.size()]);
 }
}

Firstly, the superclass’s getActions() method is called to obtain default actions. With the
help of the method Lookups.forPath(), a Lookup for the declared folder ContextActions/MyTC
is created. The method lookupAll() then obtains all registered actions implementing the
Action interface. When creating the menu, a null value is automatically replaced by a sepa-
rator in the platform. The assembled list is returned as an array. The entry with the declared
folder in the layer file looks like Listing 5-21.

Listing 5-21. Defining context menu actions in the layer file

<folder name="ContextActions">
 <folder name="MyTC">
 <file name="MyAction1.shadow">
 <attr name="originalFile"
 stringvalue="Actions/Edit/com-galileo-netbeans-module-MyAction1.instance"/>
 </file>
 <file name="MyAction2.shadow">

24174ch05_final_idx.fm Page 78 Wednesday, April 8, 2009 2:39 PM

C H A P T E R 5 ■ U SE R I N T E R F A C E D E S I G N 79

 <attr name="originalFile"
 stringvalue="Actions/Edit/com-galileo-netbeans-module-MyAction2.instance"/>
 </file>
 </folder>
</folder>

This method creates an extension point. Other modules add actions to the context menu
by adding actions to the layer files folder ContextActions/MyTC. That allows flexibly extending
the context menu from different modules without dependency.

Persistence

The window system is capable of storing opened TopComponents upon exiting the application
and restoring them upon restart. But there are use cases where storing the TopComponents is
undesired. Defining a stored TopComponent is done via the method getPersistenceType(). This
method should always be overridden. The constants listed in Table 5-5 are available as return
values.

The window system calls the Externalizable interface methods writeExternal() and
readExternal() upon storing or restoring a TopComponent. Override these methods to inject
TopComponent-specific data for persistence. Don’t forget to call the corresponding methods from
the superclass. Admittedly, this is not the preferred way of making application data persistent.
A far more flexible way is offered by the Preferences API in the form of the class NbPreferences.
In Chapter 9, this approach is dealt with in detail in connection with administering options and
settings.

Registry

Every TopComponent from the window system is centrally managed in a registry. The interface of
this registry is specified by the TopComponent.Registry interface. An instance of this registry is
obtained either directly via the TopComponent class:

TopComponent.Registry registry = TopComponent.getRegistry();

or via the WindowManager:

TopComponent.Registry registry = WindowManager.getDefault().getRegistry();

Table 5-5. Possible persistence types of a TopComponent

Constant Property

PERSISTENCE_ALWAYS When returning this constant, the TopComponent is always stored.

PERSISTENCE_ONLY_OPENED This constant defines a TopComponent stored only when opened in
a mode.

PERSISTENCE_NEVER With this constant, the TopComponent is never stored.

24174ch05_final_idx.fm Page 79 Wednesday, April 8, 2009 2:39 PM

80 C H A P T E R 5 ■ U S E R I N T E R F A C E D E S I G N

This registry will return, e.g., the currently activated TopComponents via getActivated() or
all opened TopComponents via getOpened(). Further, a PropertyChangeListener can be regis-
tered to globally react to, e.g., state changes of a TopComponent (see Table 5-6).

The code in Listing 5-22 adds a listener to the registry to react if a TopComponent is opened.

Listing 5-22. Globally following changes of TopComponent states

public class MyTopComponent
 extends TopComponent implements PropertyChangeListener {

 private MyTopComponent() {
 TopComponent.Registry reg = TopComponent.getRegistry();
 reg.addPropertyChangeListener(WeakListeners.propertyChange(this, reg));
 }

 public void propertyChange(PropertyChangeEvent evt) {
 if(evt.getPropertyName().equals(TopComponent.Registry.PROP_OPENED))
 // TopComponent opened
 }
}

Docking Container: Mode
The entire window system of the NetBeans Platform comprises sections, where multiple
components are displayed docked in tabs. These are the previously mentioned editor and view
sections. Such a section is called a mode. A mode as such is not a displayed component, but
acts as controller and container for those components displayed therein. These components
are of the type TopComponent. A mode is defined by the interface Mode from the Window System
API.

Creating a Mode

A mode is not a fixed section, but can be defined individually via an XML file. Some important
sections (e.g., the central editor section or the section where the NetBeans IDE usually opens
the project view) are defined in NetBeans Platform modules. Any and all user-defined modes
can be defined and added. The configuration file for a mode has the structure shown in
Listing 5-23.

Table 5-6. Publicly accessing a TopComponent’s state

Property Condition

PROP_ACTIVATED If a TopComponent is being activated

PROP_TC_CLOSED If a TopComponent has been closed

PROP_TC_OPENED If a TopComponent has been opened

24174ch05_final_idx.fm Page 80 Wednesday, April 8, 2009 2:39 PM

C H A P T E R 5 ■ U SE R I N T E R F A C E D E S I G N 81

Listing 5-23. Mode configuration file: MyMode.wsmode

<!DOCTYPE mode PUBLIC
 "-//NetBeans//DTD Mode Properties 2.3//EN"
 "http://www.netbeans.org/dtds/mode-properties2_3.dtd">
<mode version="2.3">
 <module name="com.galileo.netbeans.module" spec="1.0"/>
 <name unique="MyMode"/>
 <kind type="view"/>
 <state type="joined"/>
 <constraints>
 <path orientation="vertical" number="0" weight="0.2"/>
 <path orientation="horizontal" number="0" weight="1.0"/>
 </constraints>
 <empty-behavior permanent="true"/>
</mode>

First of all, a module element declares the module to which the mode belongs. Most
important is the name element, whose value is a unique identifier and matches the file name.
Additionally, the way the mode displays its components is specified in the kind element. There
are three different kinds: editor, view, and sliding. Figure 5-8 displays the appearance of each
kind via the NetBeans IDE.

Figure 5-8. Different types of modes

24174ch05_final_idx.fm Page 81 Wednesday, April 8, 2009 2:39 PM

82 C H A P T E R 5 ■ U S E R I N T E R F A C E D E S I G N

A mode of the type editor is usually centrally arranged in the application. The
TopComponents arranged surrounding this editor mode are typically displayed in modes of the
type view.

These windows are often called helper windows, because they offer features to, e.g., edit
documents in the editor mode. Aside from differently displaying the tabs in the modes, the
editor and view modes differ in that the editor type has control elements in the top-right
corner for easier navigation between documents and TopComponents.

Further, there is the type sliding. The window system moves or minimizes TopComponents
to the right, left, or bottom border of the application window. This is often useful when working
with windows that are seldom or sporadically used. When hovering above the button of a mini-
mized TopComponent, it opens above the opened windows and hides automatically when exiting
the control element. Those windows are in a mode of the type sliding.

A mode of the type sliding additionally defines the element slidingSide. It selects
borders upon which the mode is located. The following values are allowed:

<slidingSide side="left"/>
<slidingSide side="right"/>
<slidingSide side="bottom"/>

The element state defines whether the mode is docked in the application window or
undocked in a separate window. Admissible values are joined for docked and separated for
undocked display. When a TopComponent is undocked, its mode changes to separated.

The constraints element allows definition of dimension and position in relation to other
modes. The preceding example would display the mode on the top border of the application
window. Should it be on the bottom border, a bigger number (e.g., 30) is put into the attribute
number. Since this number controls the position of all modes, it is helpful to take a look at the
configuration files of the predefined modes for the NetBeans Platform. Some of them are in the
module Core-UI.

This configuration file is added to the platform via the module’s layer file. The .wsmode file
is referenced in the folder Windows2/Modes (see Listing 5-24).

Listing 5-24. Adding a new mode to the layer file

<folder name="Windows2">
 <folder name="Modes">
 <file name="MyMode.wsmode" url="MyMode.wsmode"/>
 <folder name="MyMode">
 <file name="MyTopComponent.wstcref" url="MyTopComponentWstcref.xml"/>
 </folder>
 </folder>
</folder>

The TopComponent is added to the new mode via the TopComponent Reference file the
wizard created. This allows for flexible declarative change in the arrangement of
TopComponents.

Maximize TopComponent by double-clicking the title bar in the application window. By
default, all other components are changed to a sliding mode. If a component must stay in
place and not move to the border, an attribute can be added to the corresponding TopCompo-
nent Reference file (.wstcref):

24174ch05_final_idx.fm Page 82 Wednesday, April 8, 2009 2:39 PM

C H A P T E R 5 ■ U SE R I N T E R F A C E D E S I G N 83

<docking-status maximized-mode="docked">

Modifying a Mode

At runtime, the user retains ability to move TopComponents to different modes or change
the dimension of a mode. The changes are stored in the user directory and restored upon
restarting the application (as shown in “Configuration” subsection of the “Window System”
section earlier in this chapter). Configurations are read from the layer file and the module’s
configuration files only if no data was stored. Invoke the Clean & Build Project command when
changing configuration files during development, to refresh the user directory.

Groups of Windows: TopComponentGroup
Usually, more than one window is required for certain tasks. One such case is creation of a GUI
inside the NetBeans IDE. The Inspector, Palette, and Properties windows are displayed. Upon
leaving the Form Editor mode, these windows are hidden. The NetBeans Platform provides the
ability to assemble TopComponents into a group that enables toggling the visibility of them all.
The Window System API provides the interface TopComponentGroup for this purpose. Though a
group does not change the layout of the windows, nor the assembly or dimension of modes, it
is responsible for opening and closing the groups’ windows.

Groups manage windows in accordance with user settings, allowing the following cases:

• When a group is opened, all windows not already open will be opened, if the open attri-
bute is set to true.

• Upon closing a group, all windows will be closed that were not open prior to opening the
group, and their close attribute will be set to true. That means windows the user had
open prior to opening the group will remain open.

• If a window of a group is closed by the user, the open attribute is set to false when closing
the group. When the group is reopened, the window will not be opened.

• If during the time a group is open, the user opens a window from the group he previously
closed, the open attribute is set to true, opening the window when the group is reopened.

The user influences the content of a group. The preceding describes the logic behind
groups somewhat confusingly, but it is more easily understood with a bit of experimenting.

Creating a TopComponentGroup

Groups are defined via a Group Configuration file. They are declared in the layer file in the
folder Windows2/Groups, announcing its existence to the platform. A configuration looks like
Listing 5-25.

Listing 5-25. The Group Configuration file: MyGroup.wsgrp

<!DOCTYPE group PUBLIC
 "-//NetBeans//DTD Group Properties 2.0//EN"
 "http://www.netbeans.org/dtds/group-properties2_0.dtd">
<group version="2.0">

24174ch05_final_idx.fm Page 83 Wednesday, April 8, 2009 2:39 PM

84 C H A P T E R 5 ■ U S E R I N T E R F A C E D E S I G N

 <module name="com.galileo.netbeans.module" spec="1.0"/>
 <name unique="MyGroup"/>
 <state opened="false"/>
</group>

The optional module attribute declares the module groups belong to. The name attribute
defines unique identifiers that must correspond to the file name. Whether the group is
currently displayed is set in the state attribute. Creating the group in the layer file and refer-
encing it to the Group Configuration file looks like Listing 5-26.

Listing 5-26. Adding a group to the layer file

<folder name="Windows2">
 <folder name="Groups">
 <file name="MyGroup.wsgrp" url="MyGroup.wsgrp"/>
 <folder name="MyGroup">
 <file name="MyTopComponent.wstcgrp" url="MyTopComponent.wstcgrp"/>
 </folder>
 </folder>
</folder>

Observe that this chapter’s TopComponent was added to the newly created group. It was
done by declaring a Group Reference Configuration file (.wstcgrp), where the behavior of the
TopComponent inside the group is declared as shown in Listing 5-27.

Listing 5-27. The Group Reference Configuration file: MyTopComponent.wstcgrp

<!DOCTYPE tc-group PUBLIC
 "-//NetBeans//DTD Top Component in Group Properties 2.0//EN"
 "http://www.netbeans.org/dtds/tc-group2_0.dtd">
<tc-group version="2.0">
 <module name="com.galileo.netbeans.module" spec="1.0" />
 <tc-id id="MyTopComponent"/>
 <open-close-behavior open="true" close="true" />
</tc-group>

This file references a TopComponent via its unique identifier. The TopComponent must be
declared in the layer file in the folder Windows2/Components with a .settings file, as occurs auto-
matically when using the wizard from the “Window: TopComponent” section to create
TopComponents. Behaviors considered when opening and closing are defined. Those are attri-
butes covered in the previous section.

For each window added to the group, create such a file and make an entry in the folder of
your group in the layer file. The WindowManager obtains the group, as shown in Listing 5-28.

24174ch05_final_idx.fm Page 84 Wednesday, April 8, 2009 2:39 PM

C H A P T E R 5 ■ U SE R I N T E R F A C E D E S I G N 85

Listing 5-28. Opening and closing a TopComponentGroup

TopComponentGroup group =
 WindowManager.getDefault().findTopComponentGroup("MyGroup");
if(group != null) { /* group found */
 group.open();
}

Administration: WindowManager

The WindowManager is the central component of the window system. It manages modes, compo-
nents, and groups, and provides an API to access its administrated components. The methods
for locating components, as described in Table 5-7, are very useful.

A PropertyChangeListener can be added to the WindowManager allowing notification events
when, e.g., a mode is activated. Additionally, a set of all available modes in the window system
can be obtained via a call to getModes(). The main application window is accessed via the
following call:

Frame main = WindowManager.getDefault().getMainWindow();

Window System Architecture

The architecture of the window system classes is outlined in Figure 5-9.

Table 5-7. Methods locating components from the window system

Method Description

findMode(String name) Find a mode via its name.

findMode(TopComponent t) Find the mode into which the TopComponent is docked.

findTopComponent(String id) Find a TopComponent via its unique ID.

findTopComponentID(TopComponent t) Get a TopComponent’s unique ID.

findTopComponentGroup(String name) Find a TopComponentGroup via its name.

24174ch05_final_idx.fm Page 85 Wednesday, April 8, 2009 2:39 PM

86 C H A P T E R 5 ■ U S E R I N T E R F A C E D E S I G N

Figure 5-9. Architecture of NetBeans window system

Status Bar
The application window of the NetBeans Platform has an integrated status bar. It can be used
over a global service class. Additionally, the status bar can be extended with your own
components.

Using the Status Bar
The status bar is accessed via the abstract class StatusDisplayer. Obtain the default implemen-
tation via the method getDefault(). If there is none provided, the default NetBeans Platform
status bar is returned. To provide a custom implementation of a status bar, see Chapter 6.

The method setStatusText() displays text on the status bar:

StatusDisplayer.getDefault().setStatusText("my first status");

24174ch05_final_idx.fm Page 86 Wednesday, April 8, 2009 2:39 PM

C H A P T E R 5 ■ U SE R I N T E R F A C E D E S I G N 87

To react to changes concerning the status bar, a ChangeListener can be registered with the
status bar.

When working with a status bar, declare a module dependency to the module UI
Utilities.

Extending the Status Bar
To extend the status bar, use the service interface StatusLineElementProvider from the UI
Utilities API. The interface declares the method getStatusLineElement(), which returns the
component added to the status bar.

The service implementation is accessed via, e.g., the folder META-INF/services. The service
provider implementation is shown in Chapter 6. Setting the position of the component via the
attribute #position is shown as well. The code in Listing 5-29 adds a clock to the status bar.

Listing 5-29. Extending the status bar with a clock

public class MyStatusLineClock
 implements StatusLineElementProvider {
 private static DateFormat format =
 DateFormat.getTimeInstance(DateFormat.MEDIUM);
 private static JLabel time = new JLabel(" " + format.format(new Date()) + " ");
 private JPanel panel = new JPanel(new BorderLayout());
 public MyStatusLineClock() {
 Timer t = new Timer(1000, new ActionListener() {
 public void actionPerformed(ActionEvent event) {
 time.setText(" " + format.format(new Date()) + " ");
 }
 });
 t.start();
 panel.add(new JSeparator(SwingConstants.VERTICAL), BorderLayout.WEST);
 panel.add(time, BorderLayout.CENTER);
 }
 public Component getStatusLineElement() {
 return(panel);
 }
}

The implementation must be made known publicly to be found by the status bar. Create a
file with the name of the interface in the folder META-INF/services:

org.openide.awt.StatusLineElementProvider

Add the name of the implementation to that file:

com.galileo.netbeans.module.MyStatusLineClock

This adds the clock to the Lookup by declaratively allowing the status bar to find and add
it.

24174ch05_final_idx.fm Page 87 Wednesday, April 8, 2009 2:39 PM

88 C H A P T E R 5 ■ U S E R I N T E R F A C E D E S I G N

Progress Bar
By default, the NetBeans status bar has an integrated progress bar. It is used via the Progress
API. There are classes available for visualizing the progress of simple tasks as well as moni-
toring multiple tasks that have their progress displayed as one. The progress of separate tasks
can be monitored as well.

Displaying the Progress of a Task
There are three displays available for a progressing task (see Figure 5-10):

• A finite display of percentile progress until completion, if the number of required steps
is known

• A finite display of remaining seconds until completion, if the number of required steps
and their total duration are known

• An infinite display if neither the number nor the total duration of required steps are
known

Figure 5-10. Different types of progress bars

The most basic use case entails the use of ProgressHandleFactory, creating an instance of
ProgressHandle for a specific task (see Listing 5-30). The ProgressHandle provides control of the
display of progress.

Listing 5-30. Using the progress bar for separate tasks

Runnable run = new Runnable() {
 public void run() {
 ProgressHandle p = ProgressHandleFactory.createHandle("My Task");
 p.start(100);
 // do some work
 p.progress("Step 1", 10);
 // do some more work
 p.progress(100);
 p.finish();
 }
};
Thread t = new Thread(run);
t.start(); // start the task and progress visualization

24174ch05_final_idx.fm Page 88 Wednesday, April 8, 2009 2:39 PM

C H A P T E R 5 ■ U SE R I N T E R F A C E D E S I G N 89

There are three different ways to start the display of a progress bar. These are outlined in
Table 5-8.

The methods shown in Table 5-9 allow switching between finite and infinite progress bars
during runtime.

ALWAYS EXECUTE TASKS IN A SEPARATE THREAD!

A common error working with progress bars concerns the real task performed in the event dispatch thread
(EDT) responsible for updating the GUI. Executing the task there blocks the thread, which in turn blocks the
update of the GUI. Because of this, the EDT updates the progress bar when the task is finished. To separately
execute the task, the SwingWorker class of the Java API can be used. Its use is shown via an asynchronous
initialization in Chapter 17.

There are several methods for creating a ProgressHandle with ProgressHandleFactory. One
of these allows passing the Cancellable service interface, allowing the user to abort the task
with a button displayed next to the progress bar.

createHandle(String displayName, Cancellable allowToCancel)

The suspend(String message) method pauses the progress bar and displays a message.

Table 5-8. Methods starting the different display types

Method Description

start() Lets the progress bar run until a call to the finish()
method is made

start(int workunits) Displays the progress of execution in percentiles

start(int workunits, long sec) Displays the remaining time in seconds

Table 5-9. Methods changing the display type

Method Description

switchToDeterminate(int workunits) Switches to percentile progress display

switchToDeterminate(int workunits,
long estimate)

Switches to time progress display

switchToIndeterminate() Switches to infinite mode

24174ch05_final_idx.fm Page 89 Wednesday, April 8, 2009 2:39 PM

90 C H A P T E R 5 ■ U S E R I N T E R F A C E D E S I G N

Displaying the Progress of Many Related Tasks
Additionally, the Progress API provides an extended method for monitoring progress. An
AggregateProgressHandle is created via the AggregateProgressFactory. With its help, you can
assemble the progress of multiple tasks and display them in a single progress bar. The class
ProgressContributor is additionally required. Every task requires an instance of it to commu-
nicate current progress to the AggregateProgressHandle.

The following example shows the use of this type of progress display. A number of tasks
with different durations are created for execution and display in the progress bar.

The abstract class AbstractTask extending from Thread is created. This allows the parallel
execution of tasks. Executing tasks sequentially requires not extending from Thread. This
abstract class takes care of creating and managing the instance of ProgressContributor and
communicating current progress.

public abstract class AbstractTask extends Thread {
 protected ProgressContributor p = null;
 public AbstractTask(String id) {
 p = AggregateProgressFactory.createProgressContributor(id);
 }
 public ProgressContributor getProgressContributor() {
 return p;
 }
}

The class MyTask (which creates an example task that takes ten steps to finish) is created.
The run() method is implemented, in which the task is executed and progress communicated.

public class MyTask extends AbstractTask {
 public MyTask(String id) {
 super(id);
 }
 public void run() {
 p.start(10);
 // do some work
 p.progress(5);
 // do some work
 p.progress(10);
 p.finish();
 }
}

With the MyTask2 class, another example task is created that takes more steps to finish than
class MyTask.

public class MyTask2 extends AbstractTask {
 public MyTask2(String id) {
 super(id);
 }
 public void run() {
 p.start(30);
 // do some more work
 p.progress(2);

24174ch05_final_idx.fm Page 90 Wednesday, April 8, 2009 2:39 PM

C H A P T E R 5 ■ U SE R I N T E R F A C E D E S I G N 91

 // do some more work
 p.progress(15);
 p.finish();
 }
}

Located in the MyProgram class are a list of the tasks and the processTaskList() method to
execute the tasks. The constructor creates a showcase of three tasks, adding them to the task list.
By calling the method processTaskList() via, e.g., a button, an array of ProgressContributor is
created, and every task’s ProgressContributor is added to that array. The array is then passed
to the createHandle() method of AggregateProgressFactory, creating an AggregateProgress-
Handle. When started, the progress bar is displayed and ready to receive progress notifications
from the tasks. What remains is to start the tasks. The progress bar automatically terminates
when the last task is finished.

public class MyProgram {
 private Vector<AbstractTask> tasks = new Vector<AbstractTask>();
 public MyProgram() {
 tasks.add(new MyTask("Task1"));
 tasks.add(new MyTask2("Task2"));
 tasks.add(new MyTask2("Task3"));
 }
 public void processTaskList() {
 ProgressContributor cps[] = new ProgressContributor[tasks.size()];
 int i = 0;
 for(AbstractTask task : tasks) {
 cps[i] = task.getProgressContributor();
 i++;
 }
 AggregateProgressHandle aph =
 AggregateProgressFactory.createHandle(
 "MyTasks", // displayed name
 cps, // progress contributors
 null, // not cancelable
 null); // no output
 aph.start();
 for(AbstractTask task : tasks) {
 task.start();
 }
 }
}

If notification events of a task’s execution are required, a monitor is passed to the instance
of AggregateProgressHandle. Therefore, the interface ProgressMonitor has to be implemented
(see Listing 5-31) and one of its instances passed to the AggregateProgressHandle.

Listing 5-31. Examining tasks via a ProgressMonitor

public class MyProgressMonitor implements ProgressMonitor {
 public void started(ProgressContributor pc) {
 System.out.println(pc.getTrackingId() + " started");

24174ch05_final_idx.fm Page 91 Wednesday, April 8, 2009 2:39 PM

92 C H A P T E R 5 ■ U S E R I N T E R F A C E D E S I G N

 }
 public void progressed(ProgressContributor pc) {
 System.out.println(pc.getTrackingId() + " progressed");
 }
 public void finished(ProgressContributor pc) {
 System.out.println(pc.getTrackingId() + " finished");
 }
}
AggregateProgressHandle aph = AggregateProgressFactory.create...
aph.setMonitor(new MyProgressMonitor());

Integrating a Progress Bar into Your Component
When integrating a progress bar into a component, ProgressHandleFactory and Aggregate-
ProgressFactory offer three methods to get a label with the name, a label with the details, and
the progress bar for a certain ProgressHandle or AggregateProgressHandle:

JLabel createMainLabelComponent(ProgressHandle ph)
JLabel createDetailLabelComponent(ProgressHandle ph)
JComponent createProgressComponent(ProgressHandle ph)

Summary
In this chapter, we examined user interface design on the NetBeans Platform. We began with a
birds-eye view of available components, the first of which was the menu bar. You added your
own menu items to the menu bar and learned to hide those available by default. Similarly, you
now understand that the toolbar can also be customized via configuration files.

Looking at the window system in detail, you can understand it to be the most important
part of the user interface of the NetBeans Platform, and you’ll continue to encounter it
throughout this book. You learned what a TopComponent is and how to work with it. In this
context, we looked at modes and TopComponentGroups.

Finally, the chapter discussed usage of the status bar and progress bar, as well as their
related APIs.

24174ch05_final_idx.fm Page 92 Wednesday, April 8, 2009 2:39 PM

93

■ ■ ■

C H A P T E R 6

Lookup
Let’s Talk to Other Modules!

Lookup is a concept that is as important as it is simple. Used in many places within NetBeans
Platform applications, it allows modules to communicate with each other. This chapter shows
how the concept works.

Functionality
Lookup is a central component and a commonly used concept in the NetBeans Platform for
the management of object instances. Simplified, Lookup is a Map, with Class objects as keys
and instances of those Class objects as values.

The main idea behind Lookup is decoupling components. It lets modules communicate
with each other, which plays an important role in component-based systems, such as applica-
tions based on the NetBeans Platform. Modules provide objects via Lookup, as well as searching
for or using objects.

The advantage of Lookup is its type safety, achieved by using Class objects instead of
strings as keys. With this, the key defines the type of retrieved instance. So, it is impossible to
request an instance whose type is unknown in the module. This pattern results in a more
robust application, since errors like ClassCastException do not occur. Lookup is also used to
retrieve and manage multiple instances for one key—i.e., of one type. This central manage-
ment of specific instances is used for different purposes. Lookup is used to discover service
providers, for which declarative adding and lazy-loading of instances is supported. In addition
to this, you may pass instances via Lookup from one module to another, without the modules
knowing each other. Intermodule communication is established. Even context-sensitive
actions can be realized using the Lookup component.

To clear a common misconception, within a single application it’s possible to have more
than one Lookup. The most commonly used Lookup is global, provided by default in the
NetBeans Platform. In addition, there are components, such as TopComponent, that have their
own Lookup. These are local Lookups. As described in the “Intermodule Communication”
section, it is possible to create your own Lookups and equip your components with a Lookup.

The Lookup concept is simple, efficient, and convenient. Once familiar with this pattern,
it applies to many different areas. In the following sections, the usage of Lookup in its main use
cases is shown.

24174ch06_final_idx.fm Page 93 Friday, April 24, 2009 5:07 PM

94 C H A P T E R 6 ■ L O O K U P

Services and Extension Points
A main application of Lookup is the discovery and provision of services. The role of Lookup in
this scenario is a function of a dynamic service locator, allowing separation of the service inter-
face and the service provider. A module makes use of functionality without knowing anything
about implementation. With this, loose coupling is achieved between modules.

By means of Lookup and a service interface, it is simple to define extension points for
graphic components. A good example is the NetBeans status bar, defining the interface
StatusLineElementProvider. With this interface and a service provider registration, the status
bar is extended with user-defined components (an example for this is described in the “Status
Bar” section of Chapter 5), without the status bar knowing about or having a dependency on
those components.

For a dynamic and flexible provision and exchange of services, these are added declara-
tively to the Lookup, rather than programmed in the source code. This is achieved by either of
two methods: adding the implementation of a service using a Service Provider Configuration
file in the META-INF/services directory, or using the layer file of your module. Both are shown
in the “Registering Service Providers” section later in the chapter.

The NetBeans Platform provides a global Lookup, which is retrieved using the static
method Lookup.getDefault(). This global Lookup is used to discover services, added by using
one of the available declarative registrations. Use this approach to register more than one
implementation for a single service. The declarative registration allows instantiation of imple-
mentations on the first request. This pattern is known as lazy-loading.

To achieve a better understanding of this pattern for providing and requesting services,
and to get a more practical perspective, we illustrate the creation of a search list for an MP3 file.

Defining the Service Interface
Module A is a module providing a user interface allowing the user to search for MP3 files by
special search criteria. The search results are shown in a list. To remain independent of the
search algorithm and ensure the dynamic use of multiple search variants (which may be
switched at runtime), we specify the service interface Mp3Finder in module A. This service
defines the search interface for MP3 files. The actual search algorithm is implemented in a
separate module, B, provided via declarative registration.

Loose Service Provisioning
Module B is a service provider for implementation of the interface Mp3Finder. In this example,
assume the module is searching for MP3 files in a database. This allows multiple implementa-
tions of the service provider to be registered. All implementations can be in either one or
separate modules. To create an Mp3DatabaseFinder implementation of the interface Mp3Finder
from module A, module B must define a dependency on module A. However, module A, the
search list user interface, needs no dependency on module B. This is because Lookup provides
the service based on the interface (living in module A as well) rather than the implementation
(residing in module B). Thus, module A is completely independent of the implementation of
the service (see Figure 6-1) and can use it transparently.

24174ch06_final_idx.fm Page 94 Friday, April 24, 2009 5:07 PM

C H A P T E R 6 ■ L O O K U P 95

Figure 6-1. Service Lookup pattern

In module A, the service interface Mp3Finder is specified and a user interface is imple-
mented for search and display of MP3 files (see Listing 6-1). A service provider is retrieved by
passing the Class object of the interface Mp3Finder to Lookup, returning an instance matching
the requested type. The interface Mp3Finder is also known as an extension point of module A.
Any module can register implementations for it.

Listing 6-1. Module A: MP3 searcher

public interface Mp3Finder {
 public List<Mp3FileObject> find(String search);
}
public class Mp3SearchList {
 public void doSearch(String search) {
 Mp3Finder finder =
 Lookup.getDefault().lookup(Mp3Finder.class);
 List<Mp3FileObject> list = finder.find(search);
 }
}

Module B provides a service provider allowing the search of a database for MP3 files. This
is done by implementing the interface Mp3Finder, specified by module A (see Listing 6-2). So,
module B is an extension of module A at the extension point Mp3Finder.

24174ch06_final_idx.fm Page 95 Friday, April 24, 2009 5:07 PM

96 C H A P T E R 6 ■ L O O K U P

Listing 6-2. Module B: MP3 finder

public class Mp3DatabaseFinder implements Mp3Finder {
 public List<Mp3FileObject> find(String search) {
 // search in database for mp3 files
 }
}

The newly created service provider must be registered, so it can be discovered with Lookup.
This is done via a new file in the META-INF/services directory, named after the interface (com.
galileo.netbeans.modulea.Mp3Finder) and using its fully qualified name. To associate an
implementation with the interface, add a line to the file containing the fully qualified name of
the implementation:

com.galileo.netbeans.moduleb.Mp3DatabaseFinder

Providing Multiple Service Implementations
It is useful to be able to register multiple MP3 search implementations. This is easy. Simply
create further implementations of the interface Mp3Finder—for example

public class Mp3FilesystemFinder implements Mp3Finder {
 public List<Mp3FileObject> find(String search) {
 // search in local filesystem for mp3 files
 }
}

The name of this service provider is added to the previously created Service Provider
Configuration file in META-INF/services:

com.galileo.netbeans.moduleb.Mp3FilesystemFinder

To use all registered implementations of a service, discovery of the services using Lookup
must be adopted. Rather than using the lookup() method to retrieve a single implementation,
use lookupAll() to retrieve all registered implementations of the service. Call the find()
method of all discovered services as follows:

public class Mp3SearchList {
 public void doSearch(String search) {
 Collection<? extends Mp3Finder> finder =
 Lookup.getDefault().lookupAll(Mp3Finder.class);
 List<Mp3FileObject> list = new ArrayList<Mp3FileObject>();
 for(Mp3Finder f : finder) {
 list.addAll(f.find(search));
 }
 }
}

24174ch06_final_idx.fm Page 96 Friday, April 24, 2009 5:07 PM

C H A P T E R 6 ■ L O O K U P 97

Ensuring Service Availability
A search module is of no use to the user if no search service is available allowing a search for
MP3 files. To enable module A, ensuring that at least one implementation of a service is avail-
able, the NetBeans module system provides two attributes: OpenIDE-Module-Provides and
OpenIDE-Module-Requires, which allow definition in the manifest file of a module if a special
service implementation is provided or required. These and further attributes of the manifest
file are described in more detail in the “Module Manifest” section of Chapter 3.

Within the manifest file of module A, the existence of at least one provider of the Mp3Finder
service is required, with the following entry:

OpenIDE-Module-Requires: com.galileo.netbeans.modulea.Mp3Finder

To inform the module system during loading of the modules that module B provides the
service Mp3Finder, add the following entry to the manifest file of module B:

OpenIDE-Module-Provides: com.galileo.netbeans.modulea.Mp3Finder

If no module declares such an entry in its manifest file (i.e., there is no service provider
available), the module system announces an error and does not load module A.

Global Services
Global services—i.e., services that can be used by multiple modules and that are only provided
by one module—are typically implemented using abstract (singleton) classes. With this
pattern, the services manage the implementation on their own and provide an additional
trivial implementation (as an inner class) in case there is no other implementation registered
in the system. This has the advantage that the user always gets a valid reference to a service and
never a null value.

An example would be an MP3 player service (see Listing 6-3) used by different
modules—e.g., a search list or playlist. The implementation of the player is exchangeable.

Listing 6-3. MP3 player as a global service in the MP3 Services module

public abstract class Mp3Player {
 public abstract void play(Mp3FileObject mp3);
 public abstract void stop();
 public static Mp3Player getDefault() {
 Mp3Player player = Lookup.getDefault().lookup(Mp3Player.class);
 if(player == null) {
 player = new DefaultMp3Player();
 }
 return(player);
 }

24174ch06_final_idx.fm Page 97 Friday, April 24, 2009 5:07 PM

98 C H A P T E R 6 ■ L O O K U P

 private static class DefaultMp3Player extends Mp3Player {
 public void play(Mp3FileObject mp3) {
 // send file to an external player or
 // provide own player implementation or
 // show a message that no player is available
 }
 public void stop() {}
 }
}

This service, implemented as an abstract class, specifies its interface via the abstract
methods, and at the same time provides access to the service via the static method
getDefault(). The advantage of this pattern is that there is no need for users of the service to
know anything about the Lookup API. This keeps the application logic lean, as well as indepen-
dent from Lookup API.

The abstract class should normally be part of a module, which is, in turn, part of the stan-
dard distribution of the application (in the example, this would be the MP3 Services module).
The service provider (i.e., the classes that contain the real code for playing MP3 files) can be
encapsulated in a separate module (see Listing 6-4). In the example, this is the class
MyMp3Player, for which we subsequently create a skeleton and add it to module C.

Listing 6-4. MP3 player service provider in the MP3 Player module

public class MyMp3Player extends Mp3Player {
 public void play(Mp3FileObject mp3) {
 // play file
 }
 public void stop() {
 // stop player
 }
}

Now the MyMp3Player service provider must be registered. This is done—as shown in the
previous section—via a Service Provider Configuration file in the name com.galileo.
netbeans.mp3services.Mp3Player in the META-INF/services directory (see the “Registering
Service Providers” section) with the following content:

com.galileo.netbeans.mp3player.MyMp3Player

The relationships and dependencies of the modules are shown in Figure 6-2.

24174ch06_final_idx.fm Page 98 Friday, April 24, 2009 5:07 PM

C H A P T E R 6 ■ L O O K U P 99

Figure 6-2. Dependencies and relationships of global service, service provider, and application
module

Good examples for global services inside the NetBeans Platform are StatusDisplayer and
IOProvider. The class IOProvider grants access to the Output window. The service provider
actually writing the data to the Output window is in a separate class, NbIOProvider, in a sepa-
rate module. If the module is available and the service provider registered, its implementation
is retrieved via the static method IOProvider.getDefault(). If the module is not available, the
default implementation is provided, which writes the output data to the default output
(System.out and System.err).

Registering Service Providers
To allow a dynamic and flexible registration of service providers, even after delivering the
application, and to ensure those are loaded only if needed, the registration is done declara-
tively, using configuration files.

24174ch06_final_idx.fm Page 99 Friday, April 24, 2009 5:07 PM

100 C H A P T E R 6 ■ L O O K U P

Services available inside a NetBeans Platform–based application and accessible via
Lookup, and can be registered using two different mechanisms. Both will be shown in detail in
the following sections.

Service Provider Configuration File
The preferred method of registration of service providers is using a Service Provider Configura-
tion file. This approach is part of the Java JAR File Specification. A file is named after its service
and lists in its content all service providers. The file must be placed in the META-INF/services
directory, which is part of the src/ directory of a module, or must be part of the classpath of a
module.

src/META-INF/services/com.galileo.netbeans.module.Mp3Finder
com.galileo.netbeans.module.Mp3DatabaseFinder
com.galileo.netbeans.module.Mp3FilesystemFinder

In this example, two service providers are registered for the service (i.e., the interface of
abstract class, Mp3Finder). The provided services and providers are discovered using the
META-INF services browser of the NetBeans IDE. This feature is part of the project view for
NetBeans module projects. The information is shown under Important Files ➤ META-INF
services. There, the services registered within your module are listed in <exported services>.
<all services> lists all services and service providers available inside the Module Suite (i.e.,
those registered by NetBeans Platform modules, as well as independently created modules).
Using this view, it is possible to get an overview of services provided by the NetBeans Platform.
Additionally, you can use the context menu of an existing service to add another provider for
this service.

The global Lookup (i.e., the standard Lookup) discovers the services in the META-INF/
services directory and instantiates the providers. A successful service instantiation requires
that each service provider have a default constructor so that creation from Lookup is possible.

Based on the original specification of the Service Provider Configuration file, the NetBeans
Platform provides two add-ons, allowing the removal of existing service providers or changing
the order of the registered providers. To make these additions comply with the original Java
specification, the add-ons are prefixed with the comment sign (#). So, these lines are ignored
by JDK implementations.

Removal of a Service Provider

It is possible to remove a service provider registered within another module. This feature can
be used to substitute the standard implementation of a service of the NetBeans Platform with
another implementation.

A service provider is removed by adding the following entry in your Service Provider
Configuration file. At the same time, you can provide your own implementation.

remove the other implementation (by prefixing the line with #-)
#-org.netbeans.core.ServiceImpl
provide my own
com.galileo.netbeans.module.MyServiceImpl

24174ch06_final_idx.fm Page 100 Friday, April 24, 2009 5:07 PM

C H A P T E R 6 ■ L O O K U P 101

Order of Service Providers

The order in which service providers are returned from Lookup is controlled using a position
attribute for each provider entry.

For example, this is necessary to control the order of additional entries in the status bar
(see the “Status Bar” section in Chapter 5) or to ensure that your own implementation is called
before the NetBeans Platform implementation. Optionally, you can specify a negative value for
the position attribute. The NetBeans Platform orders instances by ascending positions, so that
instances with smaller numbers are returned before instances with larger numbers. For that
purpose, the following entry is added to the Service Provider Configuration file:

com.galileo.netbeans.module.MyServiceImpl
#position=20
com.galileo.netbeans.module.MyImportantServiceImpl
#position=10

We recommend assigning position values in larger intervals, as shown in the example.
This simplifies adding further implementations later on.

Services Folder
Another way to provide a service implementation is registration using the Services folder in
the module layer file, as shown in Listing 6-5.

Listing 6-5. Registration of service providers in a layer file

<folder name="Services">
 <folder name="Mp3Services">
 <file name="com-galileo-netbeans-module-Mp3DatabaseFinder.instance">
 <attr name="instanceOf" stringvalue="com.galileo.netbeans.module.Mp3Finder"/>
 </file>
 </folder>
</folder>

If a service is requested using the default Lookup, implementations are discovered by
searching the Services folder and its subdirectories for instances, which can be assigned to the
requested service interface. So, services can be grouped using arbitrary folders, as shown with
the folder Mp3Services in our example.

In contrast to the registration using the Service Provider Configuration file, the service
provider need not provide a default constructor if registered in the layer file. With the layer file,
specifying a static method in the instanceCreate attribute is possible, creating an instance of
the service provider. Let’s assume the already created provider Mp3DatabaseFinder has a static
method getDefault() that returns the instance. The declaration can be changed by adding the
following attribute:

<attr name="instanceCreate"
 methodvalue="com.galileo.netbeans.module.Mp3DatabaseFinder.getDefault"/>

24174ch06_final_idx.fm Page 101 Friday, April 24, 2009 5:07 PM

102 C H A P T E R 6 ■ L O O K U P

With this attribute declaration, the service provider instance is not created using the
default constructor, but rather by calling the static method getDefault() (more detailed infor-
mation regarding this attribute and the corresponding .instance files are described in
Chapter 3).

Also, using the registration via the Services folder allows removing existing service
providers and controlling the order of the providers. Both mechanisms are achieved using
default features of the layer file. A service provider can be removed by adding the suffix _hidden
to its name, as is done for menu entries (see the “Menu Bar” section in Chapter 5).

<file name="com-galileo-netbeans-module-ServImp.instance_hidden">

The order in which service providers are returned is controlled using the position attri-
bute, which is the same strategy as used for other entries in the layer file (see Chapter 3).

<folder name="Services">
 <file name="com-galileo-netbeans-module-ServImp.instance">
 <attr name="position" intvalue="10"/>
 </file>
 <file name="com-galileo-netbeans-module-ServImp2.instance">
 <attr name="position" intvalue="20"/>
 </file>
</folder>

In this example, the position attributes ensure that the service provider ServImp will be
returned before ServImp2.

Intermodule Communication
Beside the global Lookup, which is provided by the NetBeans Platform and allows access to all
registered services, a local Lookup to your own components may be added. The Lookup API
offers a factory to create Lookups and an opportunity to listen to changes in Lookups. Using
the class ProxyLookup, a user can create a proxy combining multiple Lookups into one. Using
this feature of the Lookup API and SPI, we create communication between components of
different modules without making them interdependent.

A typical use case for the communication of loosely coupled modules is the visualization
of detailed information for a selected object. The selection of objects and visualization of infor-
mation is done in separate modules. As an example, imagine a list displaying the search results
for MP3 files. Selecting an entry in the list provides the selected entry via Lookup, so other parts
of the application can access the entry and display the required detailed information. This
pattern is similar to the observer pattern. The module providing the objects—in this case the
search list—is the subject, and the information display module is the observer. This allows
multiple modules to display the data or detailed information in various ways. Again, the advan-
tage is loose coupling of the modules: they are completely independent of each other. The only
thing they have in common is the provided object (or to be more precise its interface), which is
the source of the information to be processed. This loose coupling is achieved by using a proxy
object, which acts as a substitute for the subject in the registration process of the observer. So,
the observer is registered with the proxy component (in our case the Lookup), not the subject.

24174ch06_final_idx.fm Page 102 Friday, April 24, 2009 5:07 PM

C H A P T E R 6 ■ L O O K U P 103

Figure 6-3 shows the example implemented in the following paragraphs. Both windows
are in a separate module, each independent of the other (i.e., both can be exchanged or new
ones can be added arbitrarily).

Figure 6-3. Typical application example of a data exchange between two modules, without
interdependency

The structure of this concept is shown in Figure 6-4. The class Mp3SearchList in module A
represents a list of search results. A search result entry is represented by the class Mp3FileObject,
residing in a separate module, since this class is the most common denominator of all
modules. If an entry is selected in the list, the Mp3FileObject instance is added to the local
Lookup. A moderator (i.e., a proxy component depicted as the interface ContextGlobal-
Provider) is needed to decouple modules A and B. This proxy component provides the local
Lookup of module A to module B, which contains the currently selected instance. To enable
the centralized proxy component to access the local Lookup of the class Mp3SearchList, the
Lookup API provides the interface Lookup.Provider. This interface must be implemented from
the class Mp3SearchList.

Using the method getLookup(), the local Lookup can be obtained. The Lookup.Provider
interface is already implemented by the class TopComponent, which is the superclass of all
visible NetBeans window system components, as well as the Mp3SearchList. The NetBeans
window system already provides an instance of the central proxy component, the class Global-
ActionContextImpl. This class provides a proxy Lookup, which accesses the local Lookup of the
focused TopComponent. This Lookup can be obtained by calling the static utility method
Utilities. actionsGlobalContext(). So, there is no need to create our own ContextGlobal-
Provider instance, but we already have access to the global proxy Lookup. If you are interested

24174ch06_final_idx.fm Page 103 Friday, April 24, 2009 5:07 PM

104 C H A P T E R 6 ■ L O O K U P

in more details and want to know more about this concept, it may be worthwhile to investigate
the sources for the mentioned classes and methods.

Figure 6-4. Structure of the intermodule communication concept using a local Lookup via a proxy
component to decouple subject and observer

The class Mp3DetailsView gains access to the local Lookup of the Mp3SearchList by calling
Utilities.actionsGlobalContext(). Based on the global Proxy Lookup, we create a Lookup.
Result for the class Mp3FileObject. An instance of the class Lookup.Result provides a subset of
a Lookup for a special class. The main advantage is that the user can listen for changes in this
subset by using a LookupListener. So, the component will be notified as soon as another
Mp3FileObject is selected in the Mp3SearchList, or if the window showing the Mp3SearchList
loses focus. As an example, no detailed MP3 information will be displayed.

24174ch06_final_idx.fm Page 104 Friday, April 24, 2009 5:07 PM

C H A P T E R 6 ■ L O O K U P 105

Following, you find the classes of this example application. Only the important parts of the
classes are shown.

First, we have the class Mp3SearchList, which represents a window, and because of this,
extends from the base class TopComponent. To enable listening to selection changes in the result
list, we also implement the ListSelectionListener interface. As a private member, we have a
data model that manages the data in the table. For demonstration purposes, a simple data
model has been chosen, creating three example objects of the class Mp3FileObject in the
constructor and adding them to the model. This data would normally be provided using the
search algorithm. The second private member object is an instance of InstanceContent. This
enables us to dynamically change the content of the Lookup. In the constructor of the
Mp3SearchList, we can now create a local Lookup, using the class AbstractLookup and passing
our InstanceContent object into its constructor. Using the method associateLookup(), our
local Lookup is set as the Lookup of the TopComponent, so that it will be returned from the
getLookup() method.

In the method valueChanged(), which gets called if a data set is selected in the table, we get
the data set from the data model, wrap it into a collection, and pass it to our InstanceContent
instance (see Listing 6-6), which is the data storage for the Lookup. So, the selected element is
always part of the local Lookup.

Listing 6-6. Mp3SearchList displays the search results in a table and adds the actual selected data
set to the local Lookup.

public class Mp3SearchList extends TopComponent implements ListSelectionListener {
 private Mp3SearchListModel model = new Mp3SearchListModel();
 private InstanceContent content = new InstanceContent();
 private Mp3SearchList() {
 initComponents();
 searchResults.setModel(model);
 searchResults.getSelectionModel().addListSelectionListener(this);
 associateLookup(new AbstractLookup(content));
 }
 public void valueChanged(ListSelectionEvent event) {
 if(!event.getValueIsAdjusting()) {
 Mp3FileObject mp3 = model.getRow(searchResults.getSelectedRow());
 content.set(Collections.singleton(mp3), null);
 }
 }
}

Here, the data model Mp3SearchListModel of the table with the search results is just an
example and is kept quite simple (see Listing 6-7). Three objects of the type Mp3FileObject are
directly created in the constructor.

Listing 6-7. Simplified data model managing and providing the data for the result list

public class Mp3SearchListModel extends AbstractTableModel {
 private String[] columns = {"Artist", "Title", "Year"};
 private Vector<Mp3FileObject> data = new Vector<Mp3FileObject>();
 public Mp3SearchListModel() {
 data.add(new Mp3FileObject("Gigi D'Agostino", "The rain", "2006"));

24174ch06_final_idx.fm Page 105 Friday, April 24, 2009 5:07 PM

106 C H A P T E R 6 ■ L O O K U P

 data.add(new Mp3FileObject("Marquess", "El temperamento", "2006"));
 data.add(new Mp3FileObject("Floorfilla", "Cyberdream", "2006"));
 }
 public Mp3FileObject getRow(int row) {
 return(data.get(row));
 }
 public Object getValueAt(int row, int col) {
 Mp3FileObject mp3 = data.get(row);
 switch(col) {
 case 0: return mp3.getArtist();
 case 1: return mp3.getTitle();
 case 2: return mp3.getYear();
 }
 return "";
 }
}

The class Mp3DetailsView is the window showing detailed information of the selected entry
of the Mp3SearchList. To get notification of changes in the Lookup—e.g., in case of selection
changes—the LookupListener interface is implemented. A Lookup.Result, which enables us to
react to changes for a specific type (in our case Mp3FileObject), is used as a private member.
Opening a window triggers the method componentOpened(). We use this callback to obtain the
Lookup of the proxy component, using the method Utilities.actionsGlobalContext(), which
returns a Lookup that always delegates to the local Lookup of the active TopComponent. Based
on this Proxy Lookup, we now create a Lookup.Result for the type Mp3FileObject and register a
LookupListener to listen to changes on this result. If a TopComponent now gains the focus, which
has one or more instances of this type in a local Lookup, the method resultChanged() gets
called. With this, we only need to retrieve the instances and display the information accord-
ingly, as shown in Listing 6-8.

Listing 6-8. The window Mp3DetailsView shows the information of the Mp3FileObject, which is
selected in the Mp3SearchList.

public class Mp3DetailsView extends TopComponent implements LookupListener {
 private Lookup.Result<Mp3FileObject> result = null;
 private Mp3DetailsView() {
 initComponents();
 }
 public void componentOpened() {
 result = Utilities.actionsGlobalContext().lookupResult(Mp3FileObject.class);
 result.addLookupListener(this);
 resultChanged(null);
 }
 public void resultChanged(LookupEvent event) {
 Collection<? extends Mp3FileObject> mp3s = result.allInstances();
 if(!mp3s.isEmpty()) {
 Mp3FileObject mp3 = mp3s.iterator().next();
 artist.setText(mp3.getArtist());
 title.setText(mp3.getTitle());
 year.setText(mp3.getYear());
 }

24174ch06_final_idx.fm Page 106 Friday, April 24, 2009 5:07 PM

C H A P T E R 6 ■ L O O K U P 107

 }
}

The information provided via Mp3SearchList and displayed using Mp3DetailsView is part of
the class Mp3FileObject (see Listing 6-9). This class should be implemented in a separate
module to achieve the best possible encapsulation and reuse. In this example, it is module C.
To grant modules A and B access to this class, they must declare a dependency on module C. If
the class Mp3FileObject is provided only via module A, it is possible to move the class to
module A.

Listing 6-9. Mp3FileObject provides the data

public class Mp3FileObject {
 private String artist = new String();
 private String title = new String();
 private String year = new String();
 public Mp3FileObject(String artist, String title, String year) {
 this.artist = artist;
 this.title = title;
 this.year = year;
 }
 public String getArtist() {
 return this.artist;
 }
 public String getTitle() {
 return this.title;
 }
 public String getYear() {
 return this.year;
 }
}

As a proxy component, we use the global Proxy Lookup provided by the NetBeans Plat-
form, which delegates to the local Lookup of the active TopComponent. In Figure 6-4, this is
depicted with the interface ContextGlobalProvider. This global proxy Lookup is easily substi-
tuted by another implementation. This implementation has only to provide the local Lookup
of the component containing the subject to the observer.

Java Service Loader
Since Java 6, an API is available similar to Lookup: ServiceLoader. This class loads service
providers, which are registered over the META-INF/services directory. With this functionality,
the API equals the NetBeans standard Lookup that can be obtained using Lookup.getDefault().
A ServiceLoader is created for a special type using the Class object of the service interface or
the abstract service class. A static factory method is used for creating a ServiceLoader instance.
Depending on the classloader used to load the service providers, three methods for creating
service loaders are available.

By default, service providers are loaded using the context classloader of the current thread.
Inside the NetBeans Platform, this is the system classloader (for more details on the NetBeans

24174ch06_final_idx.fm Page 107 Friday, April 24, 2009 5:07 PM

108 C H A P T E R 6 ■ L O O K U P

classloader system, see Chapter 2). This allows the user to load service providers from all
modules. Such a service loader is created with the following call:

ServiecLoader<Mp3Finder> s = ServiceLoader.load(Mp3Finder.class);

You may want to use a special classloader to load service providers—e.g., a module class-
loader to restrict loading of service providers to classes from your own module. To obtain such
a ServiceLoader, the classloader to be used is passed to the factory method:

ServiceLoader<Mp3Finder> s = ServiceLoader.load(
 Mp3Finder.class, this.getClass().getClassLoader());

In addition to this, it is possible to create a service loader that only returns installed service
providers—e.g., a service provider from JAR archives located in the lib/ext directory or in the
platform-specific extension directory. Other service providers found on the classpath are
ignored. This service loader is created using the loadInstalled() method:

ServiceLoader<Mp3Finder> s = ServiceLoader.loadInstalled(Mp3Finder.class);

The service provider can be obtained using an iterator. The iterator triggers dynamic
loading of the provider on first access. The loaded providers are stored in a local cache. The
iterator returns the cached providers before loading the remaining previously unloaded
providers. If necessary, the internal cache can be cleared using the method reload(). This
ensures that all providers are reloaded.

Iterator<Mp3Finder> i = s.iterator();
if(i.hasNext()) {
 Mp3Finder finder = i.next();
}

Summary
In this chapter, you learned one of the most interesting and important concepts of the
NetBeans Platform: Lookup. We examined functionality of Lookups and you became familiar
with the service interfaces and service providers. You learned to create service interfaces and
use them within service providers, as well as how service providers are discovered in a loosely
coupled way. To that end, we began to use the various registration mechanisms.

However, Lookups do a lot more than simply discover services. In fact, they also function
to enable intermodular communication. We looked at an example, showing how information
is shared between windows without them knowing about each other. Finally, we broadened
our exploration of this topic by relating it to the JDK 6 ServiceLoader class.

24174ch06_final_idx.fm Page 108 Friday, April 24, 2009 5:07 PM

109

■ ■ ■

C H A P T E R 7

File Access and Display
Let’s Use the NetBeans Platform
to Work with Files!

This chapter illustrates concepts and APIs used to manage, manipulate, and represent data.
Upon completion, you will be able to handle and display all forms of data in a professional way.
The NetBeans Platform uses the same approach for its internal data, such as the data in the
System Filesystem.

Overview
The NetBeans Platform provides comprehensive solutions for creating, managing, manipu-
lating, and presenting data. Solutions are provided by the File Systems, Data Systems, and
Nodes APIs.

Each of these APIs can be found on its own abstraction layer. In combination with specific
data outside a NetBeans Platform application, this system is divided into four layers, as shown
in Figure 7-1.

24174ch07_final_idx.fm Page 109 Friday, April 24, 2009 5:07 PM

110 C H A P T E R 7 ■ F I L E A C C E S S A N D D I S P L A Y

Figure 7-1. The data representation architecture of the NetBeans Platform

A data system is initially abstracted using the FileSystem class. The FileSystem class lets
users address physical data from different sources in the same way. Examples of this are the
local file system, a file system organized as an XML file (the System Filesystem is built accord-
ingly—see Chapter 3), or even a JAR file.

To use it, simply provide the desired implementation of the abstract FileSystem class. This
is how the File Systems API abstracts specific data and provides a virtual file system giving
shared data access to the whole application.

All access is, in that way, completely independent of its origin. However, abstracted data
on the abstraction layer in the form of a FileObject class does not contain any information
about the kind of data it handles. Moreover, this layer contains no data-specific logic.

Just above this layer is found the Data Systems API, on the logical layer. That locates
objects representing data of specific types and is built on top of the DataObject class. A Data-
Object.Factory creates objects for every desired data type. The upper layer in this concept is
the Nodes API. This API is located on the presentation layer. A node is responsible for type-
specific representation of data in the user interface. As a result, a node represents a DataObject
and is responsible for the creation of the presentation layer.

File Systems API
The NetBeans Platform gives transparent access to files and folders by providing the File
Systems API. This API allows abstract access to files that are always handled in the same way,

24174ch07_final_idx.fm Page 110 Friday, April 24, 2009 5:07 PM

C H A P T E R 7 ■ F I L E A C C E S S A N D D I S P L A Y 111

independently, as if the data is stored in the form of a virtual XML file system, such as that used
by the System Filesystem, a JAR file, or in a normal folder.

General interfaces of a file system are specified in the abstract class FileSystem. The
abstract class AbstractFileSystem is used as a superclass for specific file system implementa-
tions. The specific implementations LocalFileSystem, JarFileSystem, and XMLFileSystem use
this class as their superclass (see Figure 7-2). The class MultiFileSystem further provides a proxy
for multiple file systems and is also used here as superclass.

Figure 7-2. Hierarchy of the FileSystem classes

Data inside the file system, such as folders and files, is represented by a FileObject class.
This is an abstract wrapper class for the standard java.io.File class. The implementation of a
FileObject is provided by the specific file system. The FileObject class provides, along with
these standard operations, the ability to listen to changes to folders and files.

Operations
Following is an outline of operations provided by the FileObject class.

Obtaining

To obtain a FileObject for an existing file on the local file system, use the helper class FileUtil:

FileObject obj = FileUtil.toFileObject(new File("C:/file.txt"));

To create a FileObject from a specific FileSystem object, call the findResource() method,
using the full path:

FileSystem fs = Repository.getDefault().getDefaultFileSystem();
FileObject obj = fs.findResource("folder/file");

24174ch07_final_idx.fm Page 111 Friday, April 24, 2009 5:07 PM

112 C H A P T E R 7 ■ F I L E A C C E S S A N D D I S P L A Y

This is the manner in which you create a FileObject for data located in the System File-
system, which is an XMLFileSystem.

Creating

The following allows you to create new files or folders using FileObjects:

File file = new File("E:/newfolder/newfile.txt");
File folder = new File("E:/newfolder2");
FileObject fo1 = FileUtil.createData(file);
FileObject fo2 = FileUtil.createFolder(folder);

If you already have a FileObject folder, create a file or folder in the corresponding file
system as follows:

FileObject folder = ...
FileObject file = folder.createData("newfile.txt");
FileObject subfolder = folder.createFolder("newfolder");

Renaming

To rename a folder or file, make sure someone else is not editing it at the same time, by using a
FileLock object. This lock is released after renaming, using a finally block.

FileObject myfile = ...
FileLock lock = null;
try {
 lock = myfile.lock();
} catch (FileAlreadyLockedException e) {
 return;
}
try {
 myfile.rename(lock, "newfilename", myfile.getExt());
} finally {
 lock.releaseLock();
}

Deleting

Deleting folders or files is straightforward. The delete() method takes care of reserving and
releasing a FileLock. Consequently, deleting only requires the following line:

FileObject myfile = …
myfile.delete();

A variant of the delete() method is available that enables users to pass their own file
FileLock, analogous to the renaming of a FileObject.

Moving

A FileObject cannot be moved in the same way as a File, simply by renaming. Instead, this is
achieved by using the method moveFile(), provided by the class FileUtil. It allows moving

24174ch07_final_idx.fm Page 112 Friday, April 24, 2009 5:07 PM

C H A P T E R 7 ■ F I L E A C C E S S A N D D I S P L A Y 113

FileObjects and handles copying files or folders to the destination folder, deleting the source
and automatically allocating and releasing the required FileLock objects.

FileObject fileToMove = ...
FileObject destFolder = ...
FileUtil.moveFile(fileToMove, destFolder, fileToMove.getName());

Reading and Writing Files

Reading and writing FileObjects is done, as usual in Java, by streams. The FileObject class
provides the methods InputStream and OutputStream for this purpose. We wrap these for
reading in a BufferedReader and for writing in a PrintWriter, as shown in Listing 7-1.

Listing 7-1. Reading and writing a FileObject

FileObject myFile = ...
BufferedReader input = new BufferedReader(
 new InputStreamReader(myFile.getInputStream()));
try {
 String line = null;
 while((line = input.readLine()) != null) {
 // process the line
} finally {
 input.close();
}
PrintWriter output = new PrintWriter(
 myFile.getOutputStream());
try {
 output.println("the new content of myfile");
} finally {
 output.close();
}

You optionally pass your own FileLock to the method getOutputStream().

Monitoring Changes

To monitor changes, register a FileChangeListener for the FileObject that responds to data
changes inside the file system (see Listing 7-2).

Listing 7-2. Responding to changes to a DataObject

File file = new File("E:/NetBeans/file.txt");
FileObject fo = FileUtil.toFileObject(file);
fo.addFileChangeListener(new FileChangeListener(){
 public void fileFolderCreated(FileEvent fe) {
 }
 public void fileDataCreated(FileEvent fe) {
 }
 public void fileChanged(FileEvent fe) {
 }

24174ch07_final_idx.fm Page 113 Friday, April 24, 2009 5:07 PM

114 C H A P T E R 7 ■ F I L E A C C E S S A N D D I S P L A Y

 public void fileDeleted(FileEvent fe) {
 }
 public void fileRenamed(FileRenameEvent fre) {
 }
 public void fileAttributeChanged(FileAttributeEvent fae) {
 }
});

The methods fileFolderCreated() and fileDataCreated(), called when a file or folder is
created, only make sense when the monitored FileObject is a folder.

While changing files, the event is always processed for the file itself, as well as its parent
directory. This means that you will be informed of changes of files, even when only monitoring
the parent directory. If you are not interested in all the events of the FileChangeListener inter-
face, use the adapter class FileChangeAdapter instead.

ONLY INTERNAL EVENTS ARE MONITORED

You are only informed about events processed on the specific FileObject inside an application. It is impos-
sible to react to changes made outside your application, such as renaming a file with Windows Explorer.

The classes FileSystem, FileObject, and FileUtil provide several additional and helpful
methods. It is worth having a closer look at the documentation of the File Systems API.

Data Systems API
The Data Systems API provides a logical layer on top of the File Systems API. While a
FileObject manages its data regardless of type, a DataObject is a wrapper for a FileObject of a
quite specific type. A DataObject extends a FileObject with type-specific features and func-
tionalities. These are specified through interfaces or abstract classes: so-called cookies. Their
implementations are published by the DataObject using the local Lookup.

By this means, the capabilities of a DataObject can be flexibly adjusted and accessed from
outside. Due to the fact that a DataObject knows the type of its managed data, it is able to
provide specific data accordingly. That means a DataObject is responsible for the creation
of a Node object, representing data in the user interface. Creating a DataObject is done by a
DataObject.Factory.

The Data Systems API provides a set of superclasses (Figure 7-3), allowing easy implemen-
tation of DataObjects and data types used in your application.

24174ch07_final_idx.fm Page 114 Friday, April 24, 2009 5:07 PM

C H A P T E R 7 ■ F I L E A C C E S S A N D D I S P L A Y 115

Figure 7-3. Base classes for the development of DataObjects

The best way to imagine the combination of the three systems is by means of an example
that shows how APIs of the three layers cooperate and build upon each other. The NetBeans
IDE provides a wizard that creates parts of the system for a file, all in one go.

Now we will use this wizard to add a DataObject for MP3 files to the module created in
Chapter 3. To achieve this, go to File ➤ New File, and in the Module Development category,
select File Type. First, define the MIME type by entering audio/mpeg. The file type is recog-
nized by its file prefix. To use XML files, make the application recognize your file type by
entering the root tag. In this case, the files are recognized by the prefix mp3, and entered accord-
ingly (see Figure 7-4).

Optionally, provide more than one prefix by entering different types separated by commas.
This is meaningful for MPEG video files when you enter, for example, mpg, mpeg.

Figure 7-4. Creating a new file type for MP3 files using the wizard

24174ch07_final_idx.fm Page 115 Friday, April 24, 2009 5:07 PM

116 C H A P T E R 7 ■ F I L E A C C E S S A N D D I S P L A Y

Click Next to enter the last page of the wizard. Enter Mp3 as the class name prefix and
choose a supporting icon with a size of 16×16 pixels. When ready, click Finish, which initiates
the creation of the file type. This creates the Mp3DataObject class containing a FileObject of
type .mp3, and registers a default DataObject.Factory in the layer file to create the DataObject.
We inspect these components in the following sections, using an example. Also presented are
features that go beyond the initial examples.

DataObject
In principle, a DataObject is specified by the abstract class DataObject, but typically
MultiDataObject is used as a superclass. This class already implements most of the methods in
DataObject. On one hand, this results in a very small class, but on the other, as the name
MultiDataObject already suggests, it contains more than one FileObject.

A DataObject always owns the FileObject as its primary file. A MultiDataObject contains
one or more additional FileObjects, which are called secondary files. Secondary files are typi-
cally used for dependent files, as in the Form Editor, where a single DataObject represents the
files myform.java, myform.form and myform.class. Here, myform.java is the primary file, and
the files myform.form and myform.class are the secondary files.

A FileObject inside a DataObject is handled using the class MultiDataObject.Entry,
whereas the subclass FileEntry is used in most cases. This class processes such standard file
operations as moving or deleting. Have a look at the class Mp3DataObject in Listing 7-3, gener-
ated by the wizard.

Listing 7-3. DataObject class for an MP3 FileObject. This class provides the logic for MP3 data.

public class Mp3DataObject extends MultiDataObject {
 public Mp3DataObject(FileObject pf, MultiFileLoader loader)
 throws DataObjectExistsException, IOException {
 super(pf, loader);
 }
 @Override
 protected Node createNodeDelegate() {
 return new DataNode(this, Children.LEAF, getLookup());
 }
 @Override
 public Lookup getLookup() {
 return getCookieSet().getLookup();
 }
}

As you already know, DataObjects are typically created by a DataObject.Factory. The
constructor of the class Mp3DataObject requires passing both the primary file, which contains
the real MP3 file, and the MultiFileLoader (DataLoader subclass) responsible for this
DataObject. We simply pass these parameters to the base class constructor, which handles
management of the DataObject.

Since a DataObject knows its data type, it is also responsible for creating the corresponding
node used to display the DataObject for the user interface. This is done by means of the factory
method createNodeDelegate(), creating and returning an instance of the Node class DataNode.

24174ch07_final_idx.fm Page 116 Friday, April 24, 2009 5:07 PM

C H A P T E R 7 ■ F I L E A C C E S S A N D D I S P L A Y 117

This is the interface to the Nodes API, located in the presentation layer (see Figure 7-1, shown
previously). We will revisit this in the “Nodes API” section.

The main difference between a FileObject and a DataObject is that DataObjects know the
data they contain. This means a DataObject distinguishes itself by the fact that it can provide
properties and functionalities for specific types of data; in our case an MP3 file.

The functionality provided by a DataObject for its data is specified by its interfaces or
abstract classes. These are called cookies. Instances of these interfaces are managed by the
DataObject, using a CookieSet. The fact that the interfaces need not be implemented by
the DataObject itself, but are managed using the CookieSet, allows a DataObject to dynamically
provide its functionality.

For example, this means it can provide an interface to allow stopping a currently playing
MP3 file, only available while the MP3 file is played. In this way, it is possible to flexibly extend
a DataObject with new functionalities. Type-safe access to these interfaces is obtained via the
Lookup provided by the DataObject using the getLookup() method.

The structure of the Mp3DataObject is now finished. The constructor obtains the FileObject
that is managed from the MultiFileLoader in the adjacent abstraction layer. The DataObject
supplies a representation for the overlying presentation layer and, finally, reveals its function-
ality to the environment via Lookup. The superclasses DataObject and MultiDataObject
provide several methods for using DataObjects.

Looking through the API documentation is very helpful when trying to understand these
classes.

Implementing and Adding Cookies

First, specify the functionality of the Mp3DataObject by an interface. Call it PlayCookie and
specify the method play(), used to play the corresponding Mp3DataObject:

public interface PlayCookie {
 public void play();
}

Also required is an implementation of functionality specified by our cookie—possibly the
direct implementation of the interface by the class Mp3DataObject. Better is to use a separate
class, a so-called support class. This permits flexibly adding and removing functionality to and
from the Mp3DataObject. Semantic grouping of multiple cookies is possible as well, and the
Mp3DataObject class remains lean.

public class PlaySupport implements PlayCookie {
 private Mp3DataObject mp3 = null;
 public PlaySupport(Mp3DataObject mp3) {
 this.mp3 = mp3;
 }
 public void play() {
 //Mp3Player.getDefault().play(mp3);
 System.out.println("play file");
 }
}

Now, adding an instance of this support class to the CookieSet of the Mp3DataObject class
is required. This is accomplished using the method getCookieSet() and adding an instance of

24174ch07_final_idx.fm Page 117 Friday, April 24, 2009 5:07 PM

118 C H A P T E R 7 ■ F I L E A C C E S S A N D D I S P L A Y

the class PlaySupport via assign(). Here, we also set the type to PlayCookie, although you can
use the PlaySupport class. But this method allows us independence from the implementation.

public class Mp3DataObject extends MultiDataObject {
 public Mp3DataObject(FileObject pf, MultiFileLoader loader)
 throws DataObjectExistsException, IOException {
 super(pf, loader);
 getCookieSet().assign(PlayCookie.class, new PlaySupport(this));
 }
}

We have now added functionality to the Mp3DataObject such that it can be used outside the
local Lookup available via getLookup().

Using Cookies

 A question remains concerning access to the functionalities of a DataObject. This is answered
by a CookieAction class. Use the class MyCookieAction created in Chapter 4 or create a new
class via the wizard with File ➤ New File ➤ Module Development ➤ Action. The Cookie class
is our Mp3DataObject. This allows our actions to be enabled only when an Mp3DataObject is
selected—that is, when its node is selected.

The method cookieClasses() is implemented as follows:

protected Class[] cookieClasses() {
 return new Class[] { Mp3DataObject.class };
}

As shown in Chapter 4, the performAction() method of the CookieAction receives selected
nodes. As you have seen in the Mp3DataObject’s createNodeDelegate() method, the node repre-
senting the Mp3DataObject receives the local Lookup from the Mp3DataObject. This Lookup
allows us querying the functionalities of the Mp3DataObject. In other words, the DataNode is a
proxy for the Mp3DataObject. It is precisely that Lookup that we obtain from the selected node
via the performAction() method. As usual, we now use the Lookup, via the getLookup() method,
to obtain an instance of PlayCookie, after which we execute its play() method.

protected void performAction(Node[] nodes) {
 PlayCookie pc = nodes[0].getLookup().lookup(PlayCookie.class);
 pc.play();
}

Test the code using the Favorites module. Make sure the Favorites module is active in the
application by going to Properties ➤ Libraries and then looking in the platform cluster. Then
start the application and open the Favorites window using Window ➤ Favorites. Click the
window with the right mouse button and select Add to Favorites. Select an MP3 file or a folder
with MP3 files and use Add to append the selected entry to the Favorites window. The displayed
MP3 files are represented by a DataNode instance, created by an Mp3DataObject, created by a
DataObject.Factory the moment the MP3 files are added to you Favorites window.

24174ch07_final_idx.fm Page 118 Friday, April 24, 2009 5:07 PM

C H A P T E R 7 ■ F I L E A C C E S S A N D D I S P L A Y 119

Providing Cookies Dynamically

By means of the example in Listing 7-4, the provided functionalities of an Mp3DataObject can be
changed at runtime, which also implicitly control the actions available to the user. Previously,
we created a cookie and a support class that plays an MP3 file. Now we create another to stop
an MP3 file. Set the current play status of the Mp3DataObject using the method playing().

Listing 7-4. Cookies and support classes required to play an Mp3DataObject

public interface PlayCookie {
 public void play();
}
public class PlaySupport implements PlayCookie {
 private Mp3DataObject mp3 = null;
 public PlaySupport(Mp3DataObject mp3) {
 this.mp3 = mp3;
 }
 public void play() {
 System.out.println("play");
 mp3.playing(true);
 }
}
public interface StopCookie {
 public void stop();
}
public class StopSupport implements StopCookie {
 private Mp3DataObject mp3 = null;
 public StopSupport(Mp3DataObject mp3) {
 this.mp3 = mp3;
 }
 public void stop() {
 System.out.println("stop");
 mp3.playing(false);
 }
}

We use the constructor to create both support classes. We can assume that the MP3 file is
not being played, and we assign the PlaySupport class to the CookieSet. Using the playing()
method, called by the support classes, we change the cookies available in the CookieSet. If the
file is currently being played, all instances of PlayCookie are removed by passing the type
without any instances to the assign() method, and adding an instance of StopCookie (see
Listing 7-5). If the file is stopped, everything happens in reverse order.

Listing 7-5. Adding and removing cookies dynamically

public class Mp3DataObject extends MultiDataObject {
 private PlaySupport playSupport = null;
 private StopSupport stopSupport = null;

 public Mp3DataObject(FileObject pf, MultiFileLoader loader)
 throws DataObjectExistsException, IOException {

24174ch07_final_idx.fm Page 119 Friday, April 24, 2009 5:07 PM

120 C H A P T E R 7 ■ F I L E A C C E S S A N D D I S P L A Y

 super(pf, loader);
 playSupport = new PlaySupport(this);
 stopSupport = new StopSupport(this);
 getCookieSet().assign(PlayCookie.class, playSupport);
 }

 public synchronized void playing(boolean value) {
 if(value) {
 getCookieSet().assign(PlayCookie.class);
 getCookieSet().assign(StopCookie.class, stopSupport);
 } else {
 getCookieSet().assign(StopCookie.class);
 getCookieSet().assign(PlayCookie.class, playSupport);
 }
 }
}

Making the example complete requires two additional action classes used to start and stop
the MP3 file. These are two CookieAction classes, using PlayCookie and StopCookie as cookie
classes (see Listing 7-6 for the PlayAction class). The menu (or toolbar) entries are activated or
deactivated automatically, depending on which cookie or support class is currently provided
by the selected MP3 file.

Listing 7-6. Context-sensitive actions that become active as soon as the selected Mp3DataObject
provides an instance of the corresponding cookie

public final class PlayAction extends CookieAction {
 protected void performAction(Node[] n) {
 PlayCookie pc = n[0].getLookup().lookup(PlayCookie.class);
 pc.play();
 }
 protected Class[] cookieClasses() {
 return new Class[] { PlayCookie.class };
 }
}
public final class StopAction extends CookieAction {
 protected void performAction(Node[] n) {
 StopCookie sc = n[0].getLookup().lookup(StopCookie.class);
 sc.stop();
 }
 protected Class[] cookieClasses() {
 return new Class[] { StopCookie.class };
 }
}

Creating a DataObject Manually

Normally, a DataObject need not be created explicitly, but is created by the DataLoader pool on
demand. Optionally, you can create a DataObject for a given FileObject using the static find()
method of the DataObject class:

24174ch07_final_idx.fm Page 120 Friday, April 24, 2009 5:07 PM

C H A P T E R 7 ■ F I L E A C C E S S A N D D I S P L A Y 121

FileObject myFile = ...
try {
 DataObject obj = DataObject.find(myFile);
} catch(DataObjectNotFoundException ex) {
 // no loader available for this file type
}

If no DataLoader or DataObject.Factory is registered for the given file, a DataObjectNot-
FoundException is thrown.

DataObject Factory
New since NetBeans Platform 6.5 is the concept of DataObject factories, which can be regis-
tered declaratively in the layer file. There is no longer a need for a separate DataLoader class. In
most cases, you can use the default factory implementation provided by the DataLoaderPool
class. A DataObject factory must implement the new interface DataObject.Factory.

In our case, the factory is named Mp3DataLoader and is registered in the folder Loaders/
audio/mpeg/Factories by the File Type wizard (see Listing 7-7). This factory is a default imple-
mentation created by the DataLoaderPool.factory() method specified via the instanceCreate
attribute. This method needs the class of the data object to create, the MIME type associated
with the object, and an icon to use by default for nodes representing data objects created with
this factory.

Listing 7-7. DataObject factory registration in layer file

<folder name="Loaders">
 <folder name="audio">
 <folder name="mpeg">
 <folder name="Factories">
 <file name="Mp3DataLoader.instance">
 <attr name="SystemFileSystem.icon"
 urlvalue="nbresloc:/com/galileo/netbeans/module/mp3.png"/>
 <attr name="dataObjectClass"
 stringvalue="com.galileo.netbeans.module.Mp3DataObject"/>
 <attr name="instanceCreate"
 methodvalue="org.openide.loaders.DataLoaderPool.factory"/>
 <attr name="mimeType" stringvalue="audio/mpeg"/>
 </file>
 </folder>
 </folder>
 </folder>
</folder>

DataLoader
In the previous section, you saw that there is no need for a special DataLoader implementation
for your file type. Although the usage of the default DataObject factory is the recommended
approach to take, we will have a look at the DataLoader classes and how you can create your
own loader.

24174ch07_final_idx.fm Page 121 Friday, April 24, 2009 5:07 PM

122 C H A P T E R 7 ■ F I L E A C C E S S A N D D I S P L A Y

Implementation

A DataLoader is a factory for a DataObject and is responsible for exactly one data type. The Data-
Loader recognizes the type of the file, either by file extension or XML root element. DataLoaders
are implemented by modules and registered via the layer file. This registration can be used to
find the corresponding DataLoader for an appropriate file type. Basically, there exist two types
of DataObjects: a DataObject representing only one file, the primary file; and a DataObject that
contains additional files, the so-called secondary files. Depending on which data type used,
you need different types of DataLoaders.

Using a DataObject with only one primary file, as in our MP3 example, select a DataLoader
of the type UniFileLoader. Whenever DataLoaders need to load additional secondary files,
choose a MultiFileLoader. The UniFileLoader is only a special variant of the MultiFileLoader,
and its created objects are of the type MultiDataObject. You can directly derive from DataLoader
and DataObject, but it is considerably easier to use the MultiFileLoader or UniFileLoader class.

The DataLoader Mp3DataLoader responsible for the creation of DataObjects of the type
Mp3DataObject was created by the NetBeans wizard. It inherits the abstract superclass UniFile-
Loader, since our Mp3DataObject solely represents an MP3 file or FileObject. Observe the
assembly and functionality of a DataLoader by means of the Mp3DataLoader (see Listing 7-8).

A DataLoader is responsible for a specific MIME type. First, define this type by a private
data element. Use the type audio/mpeg. Pass the complete name and DataObject class for which
the DataLoader is responsible to the base class constructor. This representation class is labeled
for our example as com.galileo.netbeans.module.Mp3DataObject.

Setting a displayable name for the DataLoader is done by overriding the method default-
DisplayName(), in which we read the name from a resource bundle. The initialize() method is
used to call the method of the base class and afterward to add the MIME type to the Extension-
List, accessed via the getExtensions() method. The DataLoader infers the file extension from
the MIME type, using the file Mp3Resolver.xml, created by the wizard and registered in the layer
file in the Services/MIMEResolver folder. If you don’t register the MIME type to the Extension-
List using addMimeType(), you can pass the file name directly via addExtension(), making the
file Mp3Resolver.xml and its entry in the layer file obsolete.

Registration of file name extensions or MIME types in an ExtensionList allows the Data-
Loader to recognize its responsibility for a specific file type. Checking if a DataLoader comes
into consideration for a specific file type is done by findPrimaryFile(). The UniFileLoader,
possessing the ExtensionList, already implements this method and checks if a MIME type or
the extension of the parent file matches the type of DataLoader.

If you want to use a MultiDataLoader, you need to implement the method yourself, and
should first check if the passed FileObject is the primary file. In this case, directly return it;
otherwise (if it is a secondary file), you have to find the appropriate primary file.

For that purpose, the method FileUtil.findBrother() is useful. Otherwise, the find-
PrimaryFile() method will return null, indicating the DataLoader is not responsible for the file
type. The method createMultiObject() is the DataLoader’s factory method, responsible for
creating an Mp3DataObject instance. This method is called with the primary file as a parameter
(in this case an MP3 file), which we pass to the Mp3DataObject constructor. For the creation of
MultiDataObject.Entry instances, which manage the FileObjects inside the DataObject, the
responsible methods are createPrimaryEntry() and createSecondaryEntry(). For a UniFile-
Loader, only the createPrimaryEntry() method, which is already implemented, is needed. If
you use a MultiFileLoader, you must implement both methods inside the subclass.

24174ch07_final_idx.fm Page 122 Friday, April 24, 2009 5:07 PM

C H A P T E R 7 ■ F I L E A C C E S S A N D D I S P L A Y 123

Last, a DataLoader defines a folder in the System Filesystem—the layer file in which actions
are registered for the particular data type—using the method actionsContext().

These registered actions are shown in the node’s context menu—that is, in the context
menu of the node responsible for the presentation of the DataObject.

Listing 7-8. DataLoader for the creation of DataObjects

public class Mp3DataLoader extends UniFileLoader {
 public static final String REQUIRED_MIME = "audio/mpeg";
 public Mp3DataLoader() {
 super("com.galileo.netbeans.module.Mp3DataObject");
 }
 protected String defaultDisplayName() {
 return NbBundle.getMessage(Mp3DataLoader.class, "LBL_Mp3_loader_name");
 }
 protected void initialize() {
 super.initialize();
 getExtensions().addMimeType(REQUIRED_MIME);
 }
 protected MultiDataObject createMultiObject(FileObject pf)
 throws DataObjectExistsException, IOException {
 return new Mp3DataObject(primaryFile, this);
 }
 protected String actionsContext() {
 return "Loaders/" + REQUIRED_MIME + "/Actions";
 }
}

Registration

As already mentioned, with the introduction of the DataObject.Factory interface, the Data-
Loader superclass also implements this interface. This enables you to register your own
DataLoader implementation in the layer file instead of the manifest file. The order of the
loaders can be determined by the generic position attribute (see also Chapter 3).

The preceding Mp3DataLoader can be registered as Listing 7-9 shows.

Listing 7-9. DataLoader registration in layer file

<folder name="Loaders">
 <folder name="audio">
 <folder name="mpeg">
 <folder name="Factories">
 <file name="com-galileo-netbeans-module-Mp3DataLoader.instance">
 <attr name="position" stringvalue="100"/>
 </file>
 </folder>
 </folder>
 </folder>
</folder>

24174ch07_final_idx.fm Page 123 Friday, April 24, 2009 5:07 PM

124 C H A P T E R 7 ■ F I L E A C C E S S A N D D I S P L A Y

With this entry, you have registered your own DataLoader or DataObject.Factory imple-
mentation, which creates Mp3DataObjects.

Nodes API
The Nodes API is the third and uppermost layer in the NetBeans Resource Management
System. The role of the Nodes API is visual representation of data. Closely connected to this API
is the Explorer & Property Sheet API, which is the container and manager of nodes. A node
exists to present data to the user interface of an application, as well as to give the user actions,
functionality, and properties for interacting with underlying data.

However, a node need not merely present data, since it can be used for many other things
as well. For example, an action hiding beneath a node could be invoked when the node is
double-clicked. Be aware that a node is not typically concerned with business logic, but
focuses on providing a presentation layer, delegating user interaction to action classes and,
where applicable, to its related DataObject.

The general interfaces and behavior are defined by the Node superclass. All subclasses can
be displayed and managed by an explorer view. Possible subclasses of the Node class are shown
in Figure 7-5.

Figure 7-5. Hierarchy of Node subclasses

The classes AbstractNode and FilterNode derive from the Node class. The AbstractNode
provides the simplest form of the Node class. Use this class to instantiate a new Node directly,
without needing to implement or extend any of the Node classes. On the other hand, the
FilterNode creates a proxy Node that delegates its method calls to the original Node. This kind of
Node is used when data needs to be displayed in different ways.

The BeanNode is used to represent a JavaBean. Another kind of Node, the IndexedNode, lets its
children be organized based on a given index. Finally, we have the subclass DataNode, which is
most commonly used when representing data from files. The DataNode is the Node type repre-
senting DataObjects such as those you learned about in the previous sections.

While in previous NetBeans Platform versions, the File Type wizard created a special
DataNode implementation for your file type, there is in general no more need for such a class.

24174ch07_final_idx.fm Page 124 Friday, April 24, 2009 5:07 PM

C H A P T E R 7 ■ F I L E A C C E S S A N D D I S P L A Y 125

This class has only set the icon of the file type. This is now done by the registration of the Data-
Object factory. Instead, a DataNode instance is used.

Nevertheless, there are use case where you need your own Node implementation, as you
will see in Chapters 9 and 18 (for example, if the node shall provide properties to be displayed
in the Properties window).

Node Container
Each Node object has its own Children object, providing a container for child nodes, which are
the node’s subnodes. The Children object is responsible for the creation, addition, and struc-
turing of child nodes. Each node within the Children object has the Node that owns the Children
object as its parent. For nodes that do not have their own children, such as our DataNode for
MP3 files, we pass in Children.LEAF as an empty container.

Several variations of the Children object derive from the Children superclass, as shown in
Figure 7-6.

Figure 7-6. Hierarchy of the different Children container classes

Table 7-1 shows the different container classes, their characteristics, and their uses.

Table 7-1. Different Children container class variations and their uses

Class Use

Children.Array Superclass for all other Children classes. You should not derive
from this class directly. This container class manages its nodes in
an Array. The nodes will be appended at the end of the array and
will be delivered in the same order.

Children.Keys<T> Typical superclass for your implementation. Nodes are connected
with a key. These keys are also used for ordering.

Children.Map<T> The nodes are stored in a Map. The nodes are associated with a key,
which is also used for deleting nodes.

Children.SortedArray Extends the Children.Array class with a Comparator.

Children.SortedMap<T> Extends the Children.Map<T> class with a Comparator. Therefore,
this class is very similar to Children.SortedArray.

24174ch07_final_idx.fm Page 125 Friday, April 24, 2009 5:07 PM

126 C H A P T E R 7 ■ F I L E A C C E S S A N D D I S P L A Y

Actions

 A node makes a context menu available to the user, allowing context-sensitive actions. A
DataNode obtains its context menu’s actions from the DataLoader of the DataObject it repre-
sents. For this purpose, a DataLoader defines a MIME-specific folder in the layer file via the
method actionsContext(), where actions are registered. These are read and added automati-
cally to the context menu.

For nodes that do not represent DataObjects, the getActions() method in the Node is used
to define the actions in the context menu. Override this method in your class to add more
actions to the set provided by default by the NetBeans Platform. Add actions programmatically
or use Lookup to retrieve them from the layer file (see the “Context Menu” section in Chapter
5). When overriding the getActions() method, make sure to add a call to super.getActions(),
in addition to the actions you add to the set.

You can also override the getPreferredAction() method, which provides the action
invoked when the user double-clicks the node. If you return null from this method, the first
action from the getActions() array is invoked.

Event Handling

To react to Node events, use a PropertyChangeListener, as well as a NodeListener. Use the
PropertyChangeListener to be informed of changes to Node properties provided via the
getPropertySet() method. Via the NodeListener, you can listen to internal node changes, such
as changes to the name, the parent node, and the child nodes. To that end, the Node class makes
a range of property keys available, such as PROP_NAME and PROP_LEAF. The methods listed in
Table 7-2 are offered by the NodeListener.

If you don’t want to be informed of the events, or you don’t want to implement them, use
the NodeAdapter class instead of the NodeListener interface.

Implementing Nodes and Children
 As an example, we introduce the Nodes API, together with the Data Systems API beneath it.
You’ll learn how to create your own nodes and how to build the Children container beneath
them. To that end, the nodes are presented in a tree hierarchy, representing actions registered
in the layer file. By doing so, we allow the tree structure to be extended, creating an extension

Table 7-2. Methods of the NodeListener interface

Method Event

childrenAdded(NodeMemberEvent evt) Called when child nodes are added

childrenRemoved(NodeMemberEvent evt) Called when child nodes are removed

childrenReordered(NodeMemberEvent evt) Called when child nodes are reordered

nodeDestroyed(NodeEvent evt) Called when the parent node is destroyed

propertyChange(PropertyChangeEvent evt) Called when a node property, such as its name, is
changed

24174ch07_final_idx.fm Page 126 Friday, April 24, 2009 5:07 PM

C H A P T E R 7 ■ F I L E A C C E S S A N D D I S P L A Y 127

point for other modules. To present the nodes in a tree structure, we use the Explorer & Prop-
erty Sheet API, about which you will learn more in the next section. The completed example
shows an explorer view, as depicted in Figure 7-7.

Figure 7-7. Example of the usage of the nodes and explorer views

We define content of the explorer view in the layer file, in a folder called Explorer. That
folder defines the extension point of our window and, more generally, the extension point of
our module. Within the folder, actions are registered at various levels of nesting, displayed in
the explorer view represented by nodes. The content of the layer file, as reflected in Figure 7-7,
is as shown in Listing 7-10.

Listing 7-10. Extension point in the layer file. All entries in the Explorer folder are displayed in the
Explorer window

<folder name="Explorer">
 <attr name="icon" stringvalue="com/galileo/netbeans/module/explorer.png"/>
 <folder name="MP3 Player">
 <attr name="icon" stringvalue="com/galileo/netbeans/module/player.png"/>
 <file name="PlaylistAction.shadow">
 <attr name="originalFile" stringvalue="
 Actions/Edit/com-galileo-netbeans-module-PlaylistAction.instance"/>
 </file>
 </folder>
 <folder name="Views">
 <attr name="icon" stringvalue="com/galileo/netbeans/module/views.png"/>
 <file name="OutputAction.shadow">
 <attr name="originalFile" stringvalue="Actions/Window/
 org-netbeans-core-output2-OutputWindowAction.instance"/>
 </file>
 </folder>
 <folder name="Favorites">
 <attr name="icon" stringvalue="com/galileo/netbeans/module/favorites.png"/>
 <file name="FavoritesAction.shadow">
 <attr name="originalFile" stringvalue="
 Actions/Window/org-netbeans-modules-favorites-View.instance"/>
 </file>

24174ch07_final_idx.fm Page 127 Friday, April 24, 2009 5:07 PM

128 C H A P T E R 7 ■ F I L E A C C E S S A N D D I S P L A Y

 </folder>
</folder>

You can see that actions are registered in the same way as is done for menus or toolbars,
via shadow files. Additionally, we will assign an icon to a folder with the self-defined attribute
icon.

To display this structure in a node hierarchy, we require a Node class that represents a
folder, a Children class to manage all the nodes beneath a folder (as well as all the actions and
subfolders), and a Node class that represents an action.

Start with the Node class that represents the content of a folder. We call this Node the
ExplorerFolderNode and create it from the convenience class AbstractNode. As a result, we
need nothing more than a constructor. Pass a FileObject into the constructor, representing a
folder within the layer file. The superclass constructor receives an instance of the Children
class ExplorerNodeContainer, representing all the child nodes. Then set the name and icon
path of the node from values in the layer file.

public class ExplorerFolderNode extends AbstractNode {
 public ExplorerFolderNode(FileObject node) {
 super(new ExplorerNodeContainer(node));
 setDisplayName(node.getName());
 String iconBase = (String) node.getAttribute("icon");
 if(iconBase != null) {
 setIconBaseWithExtension(iconBase);
 }
 }
}

The ExplorerNodeContainer container is derived from the Children<Keys> class normally
treated as a superclass. Pass the parent node’s FileObject into the constructor, since this is
where entries found beneath this node are loaded and used.

The addNotify() method is called automatically when the parent node is expanded. That
means the children are created on demand—that is, only when needed. Within the addNotify()
method, we set the key with the FileObject of the parent node. This object is then received as
a parameter within the createNodes() method, which is invoked automatically in order to
actually create the Children object.

Within the createNodes() method, use the getFolders() method to read all the subfolders,
create an instance of ExplorerFolderNode, and add it to a list (see Listing 7-11). That class
contains an ExplorerNodeContainer, whereby we obtain the required recursion for creating any
level of hierarchy required.

Next, read the actions from the folder. Use the FolderLookup class, which gives the
instances. This acts recursively by default, which means it passes back all the actions, not just
those wanted from the current folder. Therefore, create a subclass of FolderLookup named
ActionLookup. To prevent the recursion, simply override the acceptContainer() and accept-
Folder() methods and return null. Now use the ActionLookup to retrieve all instances of the
current folder.

Use the lookupAll() method to receive all instances that are of type Action. For each
Action, we receive an ExplorerLeafNode, which is responsible for representing an Action and
not a Children object, which therefore does not return a lower level of the hierarchy. We add

24174ch07_final_idx.fm Page 128 Friday, April 24, 2009 5:07 PM

C H A P T E R 7 ■ F I L E A C C E S S A N D D I S P L A Y 129

this Node to the list, which we return as an array. Therefore, this method provides the core of the
whole system created in this example.

Listing 7-11. Container class that loads and manages all child nodes dynamically

public class ExplorerNodeContainer extends Children.Keys<FileObject> {
 private FileObject folder = null;
 public ExplorerNodeContainer(FileObject folder) {
 this.folder = folder;
 }
 protected void addNotify() {
 setKeys(new FileObject[] {folder});
 }

 protected Node[] createNodes(FileObject f) {
 ArrayList<Node> nodes = new ArrayList<Node>();
 /* add folder nodes /
 for(FileObject o : Collections.list(f.getFolders(false))) {
 nodes.add(new ExplorerFolderNode(o));
 }
 DataFolder df = DataFolder.findFolder(f);
 FolderLookup lkp = new ActionLookup(df);
 /* add leaf nodes, which represents an action */
 for(Action a : lkp.getLookup().lookupAll(Action.class)) {
 nodes.add(new ExplorerLeafNode(a));
 }
 return(nodes.toArray(new Node[nodes.size()]));
 }

 /* non-recursive folder lookup */
 private static final class ActionLookup extends FolderLookup {
 public ActionLookup(DataFolder df) {
 super(df);
 }
 protected InstanceCookie
 acceptContainer(DataObject.Container con) {
 return(null);
 }
 protected InstanceCookie acceptFolder(DataFolder df) {
 return(null);
 }
 }
}

Finally, have a look at the ExplorerLeafNode class (see Listing 7-12). It simply contains a
single action, invoked on the double-click of a node. The action received via the ActionLookup
is passed to the constructor. Since this type of node does not contain child nodes, we pass
Children.LEAF to the superclass constructor. Then we set the name to be used when the node
is displayed.

24174ch07_final_idx.fm Page 129 Friday, April 24, 2009 5:07 PM

130 C H A P T E R 7 ■ F I L E A C C E S S A N D D I S P L A Y

Use the getPreferredAction() method to provide an action to be invoked when the node
is double-clicked. That action will obviously be the one we received as a parameter. Last but
not least, override the getIcon() method to set the icon of the action to be the icon of the node.

Listing 7-12. Leaf node that represent the action, executed by a double-click

public class ExplorerLeafNode extends AbstractNode {
 private Action action = null;
 public ExplorerLeafNode(Action action) {
 super(Children.LEAF);
 this.action = action;
 setDisplayName(Actions.cutAmpersand((String)action.getValue(Action.NAME)));
 }
 public Action getPreferredAction() {
 return action;
 }
 public Image getIcon(int type) {
 ImageIcon img = (ImageIcon) action.getValue(Action.SMALL_ICON);
 if(img != null) {
 return img.getImage();
 } else {
 return null;
 }
 }
}

In this section, you’ve seen how to create your own Node classes, and you’ve seen which
responsibilities are handled by the Children object. With these classes, we are able to display
folders and files within the layer file. To place the node in a tree structure, work with explorer
views. That part of the presentation of nodes is handled by the Explorer & Property Sheet API.
The next section affords a short introduction into this topic, ending with an example that
wraps up the code discussed in this section.

Explorer & Property Sheet API
Using the Explorer & Property Sheet API, you display and manage nodes in a wide variety of
ways. To that end, the API makes a range of explorer views available, with which you present
your nodes in one of many structures. The class hierarchy of these views is shown in Figure 7-8.

The ChoiceView class displays your node in a combo box, while the MenuView does so in a
menu structure of any depth. The most commonly used view is the BeanTreeView, displaying
nodes in a tree structure. Apart from the display of nodes, the views provide actions and
context-sensitive menus via the getActions() method.

24174ch07_final_idx.fm Page 130 Friday, April 24, 2009 5:07 PM

C H A P T E R 7 ■ F I L E A C C E S S A N D D I S P L A Y 131

Figure 7-8. Class hierarchy of different explorer views

Managing explorer views is done by the ExplorerManager class. An instance of this class is
provided by the TopComponent containing the explorer view. It is important to note that the
ExplorerManager is not connected to the explorer view via any coding on your part. The
explorer view simply examines its component hierarchy until it finds an ExplorerManager to
display it. To enable the ExplorerManager to be found by the explorer view, the TopComponent
implements the ExplorerManager.Provider interface. This interface provides the getExplorer-
Manager() method, by which the ExplorerManager and the view find each other. As a result,
multiple views are displayed by the same ExplorerManager.

A main task of the ExplorerManager is maintaining the selection of the nodes in the view. It
makes available the selected node, together with the selected node’s Lookup. To make the
selection available to the outside—either to actions, other TopComponents, or completely
different modules—we must take additional steps. Use the helper class ExplorerUtils to
define a Lookup using the createLookup() method, representing the selected node along with
the selected node’s Lookup. Define this Lookup via the associateLookup() method as the
TopComponent’s local Lookup. As a result, the Lookup is available from the outside, thanks to the
global Lookup obtained via Utilities.actionsGlobalContext().

In the “Nodes API” section, we created Node and Children classes. What remains missing is
a window containing the explorer view that displays the node. As you complete this missing
step, you’ll learn how the explorer view and the ExplorerManager relate to each other. Start by
using the Window Component wizard to create a new TopComponent named ExplorerTop-
Component. Next, add the ExplorerManager. Do this by implementing ExplorerManager.
Provider and create a private instance of the ExplorerManager. Then use getExplorerManager()
to return the ExplorerManager.

Next, add an explorer view to the TopComponent. In this case, we add a BeanTreeView. A
simple way of doing this is to drag and drop a JScrollPane onto the TopComponent, and then,
switching to the Properties dialog, set Custom Code Creation in the Code tab to “new Bean-
TreeView().” Your initComponents() method will then look as shown in Listing 7-13. As pointed
out earlier, the explorer view finds the ExplorerManager automatically, which means you need
not take extra steps to connect the view to the ExplorerManager.

24174ch07_final_idx.fm Page 131 Friday, April 24, 2009 5:07 PM

132 C H A P T E R 7 ■ F I L E A C C E S S A N D D I S P L A Y

Each view and each ExplorerManager are based on a root element from which all nodes
derive. To that end, add setRootContext() to the initTree() method and pass in an instance
of the ExplorerFolderNode. From that node, all others are created. We create the node only
once the Explorer folder is available in the System Filesystem—that is, only when a module
registers an Explorer folder in its layer file.

Listing 7-13. Explorer window that displays the nodes with a BeanTreeView. An ExplorerManager
manages the nodes.

public final class ExplorerTopComponent extends TopComponent
 implements ExplorerManager.Provider {
 private static final String ROOT_NODE = "Explorer";
 private final ExplorerManager manager = new ExplorerManager();
 private ExplorerTopComponent() {
 initComponents();
 initTree();
 initActions();
 associateLookup(ExplorerUtils.createLookup(manager, getActionMap()));
 }
 private JScrollPane jScrollPane1;
 private void initComponents() {
 jScrollPane1 = new BeanTreeView();
 setLayout(new BorderLayout());
 add(jScrollPane1, BorderLayout.CENTER);
 }
 private void initTree() {
 FileObject folder = Repository.getDefault().
 getDefaultFileSystem().findResource(ROOT_NODE);
 if(folder != null) { /* folder found */
 manager.setRootContext(new ExplorerFolderNode(folder));
 }
 }
 private void initActions() {
 CutAction cut = SystemAction.get(CutAction.class);
 getActionMap().put(cut.getActionMapKey(),
 ExplorerUtils.actionCut(manager));
 CopyAction copy = SystemAction.get(CopyAction.class);
 getActionMap().put(copy.getActionMapKey(),
 ExplorerUtils.actionCopy(manager));
 PasteAction paste = SystemAction.get(PasteAction.class);
 getActionMap().put(paste.getActionMapKey(),
 ExplorerUtils.actionPaste(manager));
 DeleteAction delete = SystemAction.get(DeleteAction.class);
 getActionMap().put(delete.getActionMapKey(),
 ExplorerUtils.actionDelete(manager, true));
 }
 public ExplorerManager getExplorerManager() {
 return manager;
 }
 protected void componentActivated() {
 ExplorerUtils.activateActions(manager, true);

24174ch07_final_idx.fm Page 132 Friday, April 24, 2009 5:07 PM

C H A P T E R 7 ■ F I L E A C C E S S A N D D I S P L A Y 133

 }
 protected void componentDeactivated() {
 ExplorerUtils.activateActions(manager, false);
 }
}

Our next step connects the standard cut, copy, paste, and delete actions to the Explorer-
Manager actions. We do this with the initActions() method. Standard actions are made
available to you by the NetBeans Platform. The ExplorerManager actions give us the Explorer-
Utils class, which we register with our TopComponent via the ActionMap key in the ActionMap. To
allow the currently selected node to be available to the view via the TopComponent Lookup,
create a ProxyLookup via the call to ExplorerUtils.createLookup(). That provides the currently
selected node via the Lookup. The ProxyLookup is defined as the local Lookup of our
TopComponent via the associateLookup() method.

To ensure that the actions in the ActionMap are active, add the ActionMap to the Lookup
(see Chapter 4). Pass the ActionMap directly into the Lookup via the createLookup() method,
ensuring that the ActionMap is available via the global Lookup.

To save resources, we add and remove the listeners of the ExplorerManager’s actions in the
componentActivated() and componentDeactivated() methods, which are called when the
window is activated and deactivated.

At this point, you are referred to the many tutorials on http://platform.netbeans.org,
which are easy to understand. Especially in the context of nodes, explorer views, and property
sheets, this site contains many code snippets of interest.

Summary
In this chapter, you learned about four of the most important NetBeans APIs, together with
their dependencies. You learned about these via an example that displays MP3 files. Of the
four, the File Systems API is found on the lowest level, as a generic abstraction layer over any
kind of data. On top of that, the Data Systems API handles the logic relating to the data
abstracted by the File Systems API. For example, you can use the Data Systems API to connect
an MP3 file with the functionality that plays it.

The Nodes API, which is above the Data Systems API, is responsible for providing a data
presentation layer, as well as for letting the user set properties and invoke actions on the
underlying data. Finally, the Explorer & Property Sheet API offers a wide range of Swing
containers that display the nodes and their properties to the user.

24174ch07_final_idx.fm Page 133 Friday, April 24, 2009 5:07 PM

24174ch07_final_idx.fm Page 134 Friday, April 24, 2009 5:07 PM

135

■ ■ ■

C H A P T E R 8

Graphical Components
Let’s Show Some Interesting
Views!

To create dialogs and wizards, the NetBeans Platform uses a set of APIs that focus on business
layer matters, rather than their infrastructural concerns. These, and additional APIs such as the
MultiViews API and the Visual Library API, are discussed in this chapter. The essentials of these
APIs are covered in several small code listings.

Dialogs API
The Dialogs API creates and displays dialogs and wizards. The dialogs are based on the Java
Dialog class. Using the Dialogs API, you can display standard dialogs, as well as custom dialogs
tailored to specific business needs. In addition, the API integrates well with the NetBeans
window system, as well as the NetBeans help system.

Standard Dialogs
Use the NotifyDescriptor class to define the properties of a standard dialog. Provide a message
in the form of a string, an icon, or a component, which display together with the dialog.
Optionally, use an array to display multiple messages in varying situations. Different types of
messages can be specified, giving control over the icon displayed. Define the type via the
predefined constants in the NotifyDescriptor, as listed in Table 8-1.

Table 8-1. String literals for displaying message types

String Literal Message/Symbol

PLAIN_MESSAGE The message is displayed neutrally, without a symbol.

INFORMATION_MESSAGE The information symbol is displayed with the message.

QUESTION_MESSAGE The question symbol is displayed with the message.

24174ch08_final_idx.fm Page 135 Friday, April 24, 2009 5:13 PM

136 C H A P T E R 8 ■ G R A P H I C A L C O M P O N E N T S

An option type defines which buttons are displayed in the dialog. Four string literals are
available, as shown in Table 8-2.

Finally, you can use the constructor or the setAdditionalOptions() method to pass in an
Object array to add additional buttons to the dialog. Typically, String objects are passed here,
though you can also use Component or Icon objects. Rather than the standard buttons, custom
buttons can be provided via the setOptions() method or by passing them in to the constructor.
Here, too, the classes String, Component, and Icon are used:

NotifyDescriptor d = new NotifyDescriptor(
 "Text", // Dialog message
 "Title", // Dialog title
 NotifyDescriptor.OK_CANCEL_OPTION, // Buttons
 NotifyDescriptor.INFORMATION_MESSAGE, // Symbol
 null, // Own buttons as Object[]
 null); // Additional buttons as Object[]

Dialog description, such as the one defined previously, is passed in to the notify()
method of the DialogDisplayer class, which is responsible for creation and display of dialogs,
and also gives a return value when the dialog closes. The DialogDisplayer is created as a global
service, with a provider obtained via the getDefault() method.

Object retval = DialogDisplayer.getDefault().notify(d);

WARNING_MESSAGE The warning symbol is displayed with the message.

ERROR_MESSAGE The error symbol is shown with the message.

Table 8-2. String literals defining dialog buttons

String Literal Buttons Displayed

DEFAULT_OPTION The standard buttons are displayed. For example, an information
dialog only has an OK button, while an entry dialog has an OK
button as well as a Cancel button.

OK_CANCEL_OPTION OK and Cancel buttons are displayed.

YES_NO_OPTION Yes and No buttons are displayed.

YES_NO_CANCEL_OPTION Yes, No, and Cancel buttons are displayed.

Table 8-1. String literals for displaying message types (Continued)

String Literal Message/Symbol

24174ch08_final_idx.fm Page 136 Friday, April 24, 2009 5:13 PM

C H A P T E R 8 ■ G R A P H I C A L C O M P O N E N T S 137

Buttons the user clicks are identified via the return values, which indicate the following in
Table 8-3.

For various dialog types, the Dialogs API provides four subclasses to the NotifyDescriptor
class, so you need to define only a few parameters.

Information Dialog

Create an information dialog via the NotifyDescriptor.Message class. Pass the text to be
displayed to the constructor, as well as an optional message type. By default, the dialog shows
the information symbol, as shown in Figure 8-1.

NotifyDescriptor nd = new NotifyDescriptor.Message("Information");

Figure 8-1. Information dialog

Question Dialog

Should the user be enabled to answer a question posed in the dialog (see Figure 8-2), use the
NotifyDescriptor.Confirmation class. To that end, a range of constructors are available for
passing in the message, message type, and additional option types.

NotifyDescriptor d = new NotifyDescriptor.Confirmation(
 "You can place any String or Component here",
 "That's a question");

Table 8-3. String literals as return values

String Literal Returned When

OK_OPTION The OK button is clicked

YES_OPTION The Yes button is clicked

NO_OPTION The No button is clicked

CANCEL_OPTION The Cancel button is clicked

CLOSED_OPTION The dialog is closed without any button having been clicked

24174ch08_final_idx.fm Page 137 Friday, April 24, 2009 5:13 PM

138 C H A P T E R 8 ■ G R A P H I C A L C O M P O N E N T S

Figure 8-2. Question dialog

Input Dialog

An input dialog is easily created via the NotifyDescriptor.InputLine class. Define the text and
title to be displayed in the input area of the dialog (see Figure 8-3). Optionally, pass in an option
type and message type so that the desired buttons and symbols are shown.

NotifyDescriptor d = new NotifyDescriptor.InputLine(
 "First and last name:",
 "Please enter your name");

Figure 8-3. Input dialog

Access text entered by the user via the getInputText() method. Optionally, enter text into
the field via the setInputText() method.

Error Dialog

To show an exception (see Figure 8-4), use the NotifyDescriptor.Exception class. Pass in a
Throwable instance to the constructor, such as an Exception object:

Exception ex = new Exception("An exception has occured");
NotifyDescriptor d = new NotifyDescriptor.Exception(ex);

Figure 8-4. Error dialog

24174ch08_final_idx.fm Page 138 Friday, April 24, 2009 5:13 PM

C H A P T E R 8 ■ G R A P H I C A L C O M P O N E N T S 139

Custom Dialogs
Custom dialogs are created via the DialogDescriptor class. The DialogDescriptor class is an
extension of the NotifyDescriptor class. Pass in a Component object to be displayed, while also
defining dialog modality and a related ActionListener that reacts when the buttons are clicked.
Optionally, pass in a HelpCtx object, providing the ID of a help topic so that the provided topic
is automatically opened when the Help button is clicked. For the DialogDescriptor, create a
Dialog object via the DialogDisplayer’s createDialog() method. Alternatively, create the
dialog directly, via the notify() or notifyLater() methods.

The following example illustrates creation of a Login dialog via the DialogDescriptor class.
It is important that the dialog be displayed at the appropriate time—when the application
starts. The application should only be blocked until login details are correctly entered. Two
approaches are supported, as discussed in the following paragraphs.

As mentioned, a Component object can be passed into the DialogDescriptor, displaying it in
the dialog. In the example (see Figure 8-5), this approach is used to integrate two text fields into
the dialog so that the user can enter a username and password. The panel makes the username
and password available via its getUsername() and getPassword() methods. To allow dialog
display as the application starts, a module installer is used (see Chapter 3), applying the
restored() method to create a DialogDescriptor, resulting in a Login dialog.

Figure 8-5. Login dialog created via a DialogDescriptor and a panel

To allow the dialog to perform asynchronously (required since it must be displayed during
the initialization sequence), it is recommended that you register an ActionListener to react to
user button clicks. Use the actionPerformed() method to handle the login logic. If the entered
values are incorrect, exit the application via the LifecycleManager class (see Chapter 17).

To allow reaction when users click the Close button (in the upper right of the dialog),
register a PropertyChangeListener, in which the application is closed. To display the dialog
immediately after the initialization phase—that is, directly after the splash screen—use the
notifyLater() method, as shown in Listing 8-1.

Listing 8-1. Login dialog displayed when application starts, blocking application until username
and password are successfully entered

public class Installer extends ModuleInstall implements ActionListener {
 private LoginPanel panel = new LoginPanel();
 private DialogDescriptor d = null;
 @Override
 public void restored() {
 d = new DialogDescriptor(panel, "Login", true, this);

24174ch08_final_idx.fm Page 139 Friday, April 24, 2009 5:13 PM

140 C H A P T E R 8 ■ G R A P H I C A L C O M P O N E N T S

 d.setClosingOptions(new Object[]{});
 d.addPropertyChangeListener(new PropertyChangeListener() {
 public void propertyChange(PropertyChangeEvent e) {
 if(e.getPropertyName().equals(DialogDescriptor.PROP_VALUE)
 && e.getNewValue()==DialogDescriptor.CLOSED_OPTION) {
 LifecycleManager.getDefault().exit();
 }
 }
 });
 DialogDisplayer.getDefault().notifyLater(d);
 }
 public void actionPerformed(ActionEvent event) {
 if(event.getSource() == DialogDescriptor.CANCEL_OPTION) {
 LifecycleManager.getDefault().exit();
 } else {
 if(!SecurityManager.login(panel.getUsername(), panel.getPassword())) {
 panel.setInfo("Wrong username or password");
 } else {
 d.setClosingOptions(null);
 }
 }
 }
}

Another way to display the dialog uses the notify() method in a separate thread, as soon
as the application is available. Do this via the invokeWhenUIReady() method, provided by the
WindowManager class. The difference between this approach and notifyLater() is that the
dialog is only displayed when the application is completely loaded.

WindowManager.getDefault().invokeWhenUIReady(new Runnable(){
 public void run() {
 DialogDisplayer.getDefault().notify(d);
 }
});

Finally, a complete dialog can be built from scratch, by extending JDialog. To that end, use
the related NetBeans IDE wizard available via File ➤ New File ➤ Java GUI Forms ➤ JDialog
Form. For the application window to be the dialog parent, obtain it like this:

Frame f = WindowManager.getDefault().getMainWindow();

Wizards
Aside from support for dialogs, the Dialogs API includes a wizard framework to create step-by-
step procedures that help users work through a particular process. These processes potentially
generate code or other artifacts as the wizard concludes. Wizards of this kind are familiar
within the NetBeans IDE itself, such as those used to create new windows or actions.

For each step, provide a panel appropriate to the related data entry required for the step.
Coordination between steps is handled by the wizard framework. The NetBeans IDE provides
a wizard for creating wizards. To show different ways in which a wizard can be displayed, while
focusing on the architecture of wizards, create a wizard for the creation of playlists. The wizard

24174ch08_final_idx.fm Page 140 Friday, April 24, 2009 5:13 PM

C H A P T E R 8 ■ G R A P H I C A L C O M P O N E N T S 141

provides two steps. The first step allows users to describe the playlist, as shown in Figure 8-6,
while the second allows music titles to be chosen and added to the playlist.

Figure 8-6. First step in the playlist-creation example

Wizard Architecture

The WizardDescriptor class describes and configures wizards. The class is a subclass of the
DialogDescriptor class, explained in the previous section. The DialogDescriptor class, in turn,
is a subclass of NotifyDescriptor. The WizardDescriptor contains and manages all panels in
the wizards and is responsible for tasks such as management of steps and display of user inter-
face components. In other words, the WizardDescriptor is the controller of the entire wizard.
Typically, the WizardDescriptor also provides the DataModel, from which data collected over
various steps is saved as properties. Rather than using this DataModel, your own can be
provided.

For each step in the wizard, provide a panel. Typically, a panel is built out of two separate
classes. The first class implements the GUI. This class is known as the visual panel, and
normally extends JPanel. The second class, handling the management and validation of the
panel, is known as the wizard panel. This class extends the NetBeans API WizardDescriptor.
Panel<Data> class. It creates the visual panel on demand and makes it available to the wizard.

In terms of the MVC paradigm, the visual panel is the view, and the wizard panel is the
controller. The visual panel only deals with user interface concerns, providing entry fields for
the user and making them available via getters and setters. The visual panel does not contain
business logic and, in particular, does not deal with wizard-specific classes or calls. As a result,
the panel is completely reusable and can be easily ported to an entirely different wizard. In this
way, the panel is reused in a dialog where data is edited in a different context. The relationship
between WizardDescriptor, WizardPanel, and VisualPanel is shown in Figure 8-7.

24174ch08_final_idx.fm Page 141 Friday, April 24, 2009 5:13 PM

142 C H A P T E R 8 ■ G R A P H I C A L C O M P O N E N T S

Figure 8-7. Architecture of a wizard

Creating Panels

The skeleton of a wizard is created in the NetBeans IDE. Go to File ➤ New File and, in the
Module Development category, choose the Wizard file type. In the next step, choose Custom as
the Registration Type, and set Static as the Wizard Step Sequence. Enter 2 for the number of
panels to be created. In the final step, provide a prefix for the name of the classes created. For
this example, use Playlist as the prefix. Finally, click Finish. The IDE then creates the skeleton
of two panels, both with a visual panel and a wizard panel. Next, customize the content of
several of the methods predefined by the wizard.

First, open the user interface of the visual panel (the PlaylistVisualPanel1 panel) in the
NetBeans Form Editor. Add the several fields the user interacts with to describe the playlist.
The user must be able to assign a name to the playlist, while choosing a genre and providing a
description and image. The completed panel should look like Figure 8-6, where the panel is
shown integrated into the wizard.

The panel is a normal Swing component, extending JPanel; however, you should bear in
mind the following implementation details:

• For each piece of data requested from the user, a public property constant is defined.
These are the name of the playlist, the genre, a description, and an image. These
constants are needed later to save and load data into the DataModel.

• In the constructor, a listener is added to each field expected to be filled with data. In our
example, make sure the name has at least three characters, the chosen image has a
maximum size of 128×128 pixels, and a warning message is shown when no image has

24174ch08_final_idx.fm Page 142 Friday, April 24, 2009 5:13 PM

C H A P T E R 8 ■ G R A P H I C A L C O M P O N E N T S 143

been selected. To that end, we register a DocumentListener for the text fields playlistName
and imagePath.

• It is important to override the getName() method. To do this, provide the names of the
panels displayed in the headers of the steps in the wizard.

• For each field, add a getter method the wizard panel uses to access data entered by the
user.

• In the DocumentListener methods changedUpdate(), insertUpdate(), and removeUpdate(),
use the firePropertyChange() method to notify all registered PropertyChangeListeners
when the related method is invoked. The interaction between the three layers of a
wizard is discussed in the next section.

Listing 8-2 shows a section from the visual panel PlaylistWizardPanel1. Notice the panel
is completely free from wizard logic, focusing only on the user interface of the wizard step.

Listing 8-2. Visual panel of the first wizard step

public final class PlaylistVisualPanel1 extends JPanel implements DocumentListener {
 public static final String PROP_PLAYLIST_NAME = "playlist";
 public static final String PROP_GENRE = "genre";
 public static final String PROP_DESCRIPTION = "description";
 public static final String PROP_IMAGE_PATH = "imagePath";
 public PlaylistVisualPanel1() {
 initComponents();
 playlistName.getDocument().addDocumentListener(this);
 imagePath.getDocument().addDocumentListener(this);
 }
 public String getName() {
 return NbBundle.getMessage(PlaylistWizardPanel1.class, "Panel1.Name");
 }
 public String getPlaylistName() {
 return playlistName.getText();
 }
 public String getGenre() {
 return (String)genre.getSelectedItem();
 }
 public String getDescription() {
 return description.getText();
 }
 public String getImagePath() {
 return imagePath.getText();
 }
 public void changedUpdate(DocumentEvent e) {
 if (playlistName.getDocument() == e.getDocument()) {
 firePropertyChange(PROP_PLAYLIST_NAME, 0, 1);
 } else if(imagePath.getDocument() == e.getDocument()) {
 firePropertyChange(PROP_IMAGE_PATH, 0, 1);
 }
 }
}

24174ch08_final_idx.fm Page 143 Friday, April 24, 2009 5:13 PM

144 C H A P T E R 8 ■ G R A P H I C A L C O M P O N E N T S

Look at the content of the related wizard panel, providing the controller for the visual
panel. The class implements the WizardDescriptor.Panel<Data> interface, defining the inter-
faces of wizard panels. Pass in a class used as the DataModel. As you need no special custom
DataModel, the class WizardDescriptor is used to define the wizard panel. In addition, imple-
ment a PropertyChangeListener, allowing reaction to changes in the visual panel. A wizard
panel has a status: valid or invalid. Validity depends on extensions provided to the wizard
panel. In our case, a panel is only valid when the name has at least three characters. The status
is saved via the private Boolean isValid.

public class PlaylistWizardPanel1 implements
 WizardDescriptor.Panel<WizardDescriptor>, PropertyChangeListener {
 private PlaylistVisualPanel1 view = null;
 private WizardDescriptor model = null;
 private boolean isValid = false;
 private ResourceBundle bundle = NbBundle.getBundle(PlaylistWizardPanel1.class);

The getComponent() method is a factory method creating the visual panel where needed.
The method is called from the WizardDescriptor when the panel is first created in the wizard.
To that end, do not create all panels initially. This will significantly improve the performance of
wizards that provide many different steps. Therefore, be very careful using the getComponent()
method. For example, do not call it in the getName() method when the wizard is created.

After creating visual panels, set properties that influence display of components in the
wizard. Use PROP_CONTENT_SELECTED_INDEX to provide the number of the panel (shown in the
table of contents on the left side of the wizard), enabling the user to see the number of the
current step, as well as how many steps must still be completed.

Set the property PROP_AUTO_WIZARD_STYLE to true, which creates wizards with a contents
section, as well as a header section. Setting this to false makes sense when the wizard has only
one step, so that these additional parts become superfluous.

Via the properties PROP_CONTENT_DISPLAYED and PROP_CONTENT_NUMBERED, specify that
names and numbers of wizard steps are shown on the left side of the wizard.

 public PlaylistVisualPanel1 getComponent() {
 if (view == null) {
 view = new PlaylistVisualPanel1();
 view.putClientProperty(
 WizardDescriptor.PROP_CONTENT_SELECTED_INDEX, new Integer(0));
 view.putClientProperty(
 WizardDescriptor.PROP_AUTO_WIZARD_STYLE, Boolean.TRUE);
 view.putClientProperty(
 WizardDescriptor.PROP_CONTENT_DISPLAYED, Boolean.TRUE);
 view.putClientProperty(
 WizardDescriptor.PROP_CONTENT_NUMBERED, Boolean.TRUE);
 }
 return view;
 }

Using the getName() method, provide the names shown in the header section of the
wizard. With getHelp(), provide a HelpCtx.DEFAULT_HELP, activating the Help button in
the wizard. Further information about the HelpCtx class and the NetBeans help system are
described in Chapter 9.

24174ch08_final_idx.fm Page 144 Friday, April 24, 2009 5:13 PM

C H A P T E R 8 ■ G R A P H I C A L C O M P O N E N T S 145

The status of panels, as discussed earlier (defining whether the wizard step is valid or not) is
provided via the isValid() method. The isValid() method is called from the WizardDescriptor,
when a panel is closed or via notifications received from the ChangeListener. When the method
returns the value true, the Next or Finish buttons are activated.

The setMessage() method is a helper method for which advice is displayed to the user. The
advice area of the wizard is provided by default and displayed in the lower part of a panel within
the wizard. Text is defined via the property WizardDescriptor.PROP_ERROR_MESSAGE. Addition-
ally, if the property is set and the isValid() method returns false, an error symbol is shown. If
the isValid() method returns true, only a warning symbol is displayed. No symbol is shown if
null is returned. You can also use the properties PROP_WARNING_MESSAGE or PROP_INFO_ MESSAGE
to display warning or normal (info) messages.

 public String getName() {
 return bundle.getString("Panel1.Name");
 }
 public HelpCtx getHelp() {
 return HelpCtx.DEFAULT_HELP;
 }
 public boolean isValid() {
 return isValid;
 }
 private void setMessage(String message) {
 model.putProperty(WizardDescriptor.PROP_ERROR_MESSAGE, message);
 }

The DataModel is accessed via the readSettings() and storeSettings() methods. The type
of DataModel depends on the template provided, which is defined via the interface specified in
the class signature. In this case, the class in question is WizardDescriptor.

The readSettings() method is called when the panel is opened. Here, values are read into
panels in the wizard. Register a PropertyChangeListener in the visual panel, informing of user
activities in the panel. Register it here to make sure the WizardDescriptor is available.

The storeSettings() method is called when panels are exited. Save the values defined by
the user in the WizardDescriptor via the property names provided by the visual panel. In this
way, the values are immediately passed from panel to panel until they are read from the
WizardDescriptor as the wizard closes.

 public void readSettings(WizardDescriptor model) {
 this.model = model;
 getComponent().addPropertyChangeListener(this);
 }
 public void storeSettings(WizardDescriptor model) {
 model.putProperty(PlaylistVisualPanel1.PROP_PLAYLIST_NAME,
 getComponent().getPlaylistName());
 model.putProperty(PlaylistVisualPanel1.PROP_GENRE,
 getComponent().getGenre());
 model.putProperty(PlaylistVisualPanel1.PROP_DESCRIPTION,
 getComponent().getDescription());
 model.putProperty(PlaylistVisualPanel1.PROP_IMAGE_PATH,
 getComponent().getImagePath());
 }

24174ch08_final_idx.fm Page 145 Friday, April 24, 2009 5:13 PM

146 C H A P T E R 8 ■ G R A P H I C A L C O M P O N E N T S

When discussing the visual panel, it was pointed out that values entered by the user must
be tested. More specifically, make sure the user has entered a name consisting of at least three
characters and that the chosen image is 128×128 pixels in size.

To be informed about changes made to the visual panel—that is, when the user enters a
name or chooses an image—register a PropertyChangeListener in the readSettings() method
within the visual panel. Implement the propertyChange() method. There, the values entered in
the wizard can be tested via the checkValidity() method. The checkValidity() method veri-
fies criteria, displays a message, and returns relevant values. Via these changes, inform the
WizardDescriptor so that relevant buttons can be activated or deactivated. The user may only
proceed to the next step when the entered data is validated and the WizardDescriptor is noti-
fied of that fact. Achieve this via the fireChangeEvent() method.

 public void propertyChange(PropertyChangeEvent event) {
 boolean oldState = isValid;
 isValid = checkValidity();
 fireChangeEvent(this, oldState, isValid);
 }
 private boolean checkValidity() {
 if(getComponent().getPlaylistName().trim().length() < 3) {
 setMessage(bundle.getString("Panel1.Error1"));
 return false;
 } else if(getComponent().getImagePath().length() != 0) {
 ImageIcon img = new ImageIcon(getComponent().getImagePath());
 if(img.getIconHeight()>128 || img.getIconWidth()>128) {
 setMessage(bundle.getString("Panel1.Error2"));
 return false;
 }
 } else if(getComponent().getImagePath().length() == 0) {
 setMessage(bundle.getString("Panel1.Warning1"));
 return true;
 }
 setMessage(null);
 return true;
 }

To register a WizardDescriptor with a wizard panel, the WizardDescriptor.Panel interface
provides the addChangeListener() and removeChangeListener() methods. Implement these in
the class. Use the fireChangeEvent() method to inform all registered listeners. To be efficient,
first verify whether the status of panels has changed, so that the WizardDescriptor is notified
only when changes occur. If the isValid() method returns true, indicating that the panel has
valid status, implement empty methods. The fireChangeEvent() method is not called in this
case. This scenario applies to the second panel of the example, which always returns true.

 private final Set<ChangeListener> listeners = new HashSet<ChangeListener>(1);
 public void addChangeListener(ChangeListener l) {
 synchronized(listeners) {
 listeners.add(l);
 }
 }
 public void removeChangeListener(ChangeListener l) {
 synchronized(listeners) {

24174ch08_final_idx.fm Page 146 Friday, April 24, 2009 5:13 PM

C H A P T E R 8 ■ G R A P H I C A L C O M P O N E N T S 147

 listeners.remove(l);
 }
 }
 protected final void fireChangeEvent(
 Object source, boolean oldState, boolean newState) {
 if(oldState != newState) {
 Iterator<ChangeListener> it;
 synchronized (listeners) {
 it = new HashSet<ChangeListener>(listeners).
 iterator();
 }
 ChangeEvent ev = new ChangeEvent(source);
 while (it.hasNext()) {
 it.next().stateChanged(ev);
 }
 }
 }
}

SHARING A BASE PANEL BETWEEN MULTIPLE WIZARD STEPS

If the wizard consists of multiple panels, create a base panel to handle listener logic and helper methods such
as the setMessage() method. The base panel implements the WizardDescriptor.Panel<Data> inter-
face, so specific panels extend the base panel. This approach is outlined in Figure 8-7.

Creating a Wizard from Panels

So far, you’ve learned about constructing panels that represent steps in a wizard. You saw how
a panel consists of a view and a controller, as well as how these work together.

Only one small detail remains to round out your understanding of wizard panels. A wizard
is represented by its WizardDescriptor class. The WizardDescriptor class manages the indi-
vidual panels. Optionally, one may instantiate the panels and then pass them in to the
WizardDescriptor. For example, that’s how the action class works that is created automatically
when using the IDE to create a wizard skeleton. In the interest of encapsulation, composition,
and reusability, it is a good idea to create an individual wizard descriptor, extending the
WizardDescriptor class. Thus, this class itself creates the panels and sets their properties. As
done with the action class that starts the wizard, create an instance of the WizardDescriptor,
which is immediately passed to the DialogDisplayer. In this way, a wizard can be called
transparently.

For example, create the PlaylistWizardDescriptor class, extending the WizardDescriptor
class (see Listing 8-3). Use the setPanelsAndSettings() method to pass in the Descriptor for
both panels, which are declared as private variables. The panels must be passed via an iterator.
One such iterator class is responsible for whole ranges of panels. Use the default ArrayIterator.
The second parameter for setPanelsAndSettings() is a DataModel, which the panel receives via
the readSettings() and storeSettings() methods. Here, use data obtained from the wizard for
loading and storing purposes. Pass this as a reference to the PlaylistWizardDescriptor, which
is used as a DataModel. Finally, carry out a few configuration tasks.

24174ch08_final_idx.fm Page 147 Friday, April 24, 2009 5:13 PM

148 C H A P T E R 8 ■ G R A P H I C A L C O M P O N E N T S

Listing 8-3. WizardDescriptor that gathers the panels to form a wizard

public class PlaylistWizardDescriptor extends WizardDescriptor {
 private PlaylistWizardPanel1 p1 = new PlaylistWizardPanel1();
 private PlaylistWizardPanel2 p2 = new PlaylistWizardPanel2();
 public PlaylistWizardDescriptor() {
 List<Panel<WizardDescriptor>> panels =
 new ArrayList<Panel<WizardDescriptor>>();
 panels.add(p1);
 panels.add(p2);
 this.setPanelsAndSettings(new ArrayIterator<WizardDescriptor>(panels), this);
 this.setTitleFormat(new MessageFormat("{0}"));
 this.setTitle(
 NbBundle.getMessage(PlaylistWizardDescriptor.class, "Wizard.Name"));
 putProperty(WizardDescriptor.PROP_AUTO_WIZARD_STYLE, Boolean.TRUE);
 putProperty(WizardDescriptor.PROP_CONTENT_DISPLAYED, Boolean.TRUE);
 putProperty(WizardDescriptor.PROP_CONTENT_NUMBERED, Boolean.TRUE);
 putProperty(WizardDescriptor.PROP_CONTENT_DATA,
 new String[]{p1.getName(), p2.getName()});
 }
}

Simpler than the WizardDescriptor is the action class that starts the wizard. Create a
simple instance of the PlaylistWizardDescriptor class and immediately pass it to the
createDialog() method, as illustrated in the “Custom Dialogs” section earlier in the chapter.
This creates a Dialog object, which contains a wizard displayed as usual, via the setVisible()
method (see Listing 8-4).

As the wizard ends, information is gleaned from the button clicked by the user, via the
getValue() method. The most important point here is how the data is managed. Since the
WizardDescriptor itself manages data, we can read it directly from the WizardDescriptor. The
best approach is to use the getProperties() method, providing a Map with all the properties
that have been saved.

Listing 8-4. Action class that creates and calls a wizard

public final class PlaylistWizardAction implements ActionListener {
 public void actionPerformed(ActionEvent evt) {
 PlaylistWizardDescriptor descriptor = new PlaylistWizardDescriptor();
 Dialog dialog = DialogDisplayer.getDefault().createDialog(descriptor);
 dialog.setVisible(true);
 dialog.toFront();
 if(descriptor.getValue() == WizardDescriptor.FINISH_OPTION) {
 Map<String, Object> props = descriptor.getProperties();
 // Create the playlist with the data stored in props
 }
 }
}

24174ch08_final_idx.fm Page 148 Friday, April 24, 2009 5:13 PM

C H A P T E R 8 ■ G R A P H I C A L C O M P O N E N T S 149

Event Handling

In this section, the relationship between the WizardDescriptor, wizard panel, and visual panel
is revised, focusing on how events and notifications are handled. In the sequence diagram in
Figure 8-8, observe the initialization of a wizard and the interaction between the various parts
of the wizard as the user enters data.

Figure 8-8. Interaction between the WizardDescriptor, wizard panel, and visual panel

In the actionPerformed() method of the action class that initialized the wizard, an instance
of the PlaylistWizardDescriptor is created. This WizardDescriptor generates its panels and
registers a ChangeListener for each, so that a notification is fired whenever the status of the
panel changes. The visual panel is then obtained via the getComponent() method of the wizard
panel. This method creates the visual panel on demand and registers a PropertyChangeListener,
informing of changes made by the user. The WizardDescriptor observes the status of its panels
via a ChangeListener, which in turn observes the status of visual panels via a
PropertyChangeListener.

When the user types data into a field to which a listener is attached, a PropertyChangeEvent
is fired, notifying the wizard panel that data has changed. The wizard panel retrieves the data

24174ch08_final_idx.fm Page 149 Friday, April 24, 2009 5:13 PM

150 C H A P T E R 8 ■ G R A P H I C A L C O M P O N E N T S

via the getters and then verifies received data. Depending on the result of the verification,
status of the panel is set.

If the status changes, a ChangeEvent is fired, notifying the WizardDescriptor, which verifies
the panel status, calling the isValid() method. Depending on the value of the isValid()
method, the WizardDescriptor enables or disables the buttons in the wizard.

Ending a Wizard Prematurely

Depending on the business scenario, it may be useful to allow the user to end the wizard
prematurely. Normally, the wizard ends when the Finish button is clicked in the last panel. To
allow the user to end the wizard in an earlier panel, implement the interface WizardDescriptor.
FinishablePanel. The WizardDescriptor.FinishablePanel interface provides the method
isFinishPanel(), which uses the return value true when the wizard can be ended. In the
example, it is conceivable to implement this interface in the first panel, allowing the user to
end the wizard without adding playlist tracks.

Final Verification of Data

Confirming the validity of a panel is provided by the WizardDescriptor’s isValid() method.
The method is called via the ChangeListener, as the panel is closed and when notifications are
sent. Should additional verifications be required when the user clicks Next or ends the wizard,
implement the WizardDescriptor.ValidatingPanel interface. The WizardDescriptor.
ValidatingPanel interface specifies the validate() method, in which additional verifications
can be performed.

Errors identified in this way are made available as a WizardValidationException. The
constructor of this exception class receives a JComponent, which obtains the focus, so that the
user can be shown related error messages. In addition, a failure message can be added, which
is then shown in the wizard.

Rather than using the validate() method of the WizardDescriptor.ValdiatingPanel inter-
face, which is executed asynchronously in the event dispatch thread (EDT) (where no long-
running tasks should be performed), use the WizardDescriptor.AsynchronousValidatingPanel
interface to asynchronously handle verification. Using this interface, the validate() method is
automatically performed in a separate thread. As a result, the user interface is available to the
user, enabling use of the Cancel button to end the process.

Since the asynchronous method is not carried out in the EDT, no access is provided to
GUI components in order to read data from them. To that end, the interface provides the
prepareValidation() method, which is called in the EDT, allowing access to data in the GUI
components, while disallowing further change. Using the data retrieved this way, the
validate() method carries out verification.

Iterators

An iterator within the WizardDescriptor creates the whole range of panels. The interface of an
iterator of this kind is described by the WizardDescriptor.Iterator class. A standard imple-
mentation of this interface provides the WizardDescriptor.ArrayIterator class, providing
panels in a sequential order. The class is also used when passing panels as an array to the
WizardDescriptor class. However, when giving the user the choice to skip one or more panels

24174ch08_final_idx.fm Page 150 Friday, April 24, 2009 5:13 PM

C H A P T E R 8 ■ G R A P H I C A L C O M P O N E N T S 151

based on entered data, provide your own iterator implementation in the WizardDescriptor.
The iterator will then handle dynamic creation of panels.

The infrastructure of a dynamic wizard can be created via a wizard in the NetBeans IDE.
Returning to the first step of the Wizard wizard, use the Wizard Step Sequence to set the
Dynamic option, letting the IDE create an iterator class.

Based on the WizardDescriptor.Iterator interface, additional classes are provided. Use the
WizardDescriptor.InstantiatingIterator interface and its instantiate() method to create a
set of objects. Alternatively, use the WizardDescriptor.AsynchronousInstantiatingIterator with
its instantiate() method, which is performed asynchronously outside the EDT, when the user
clicks the Finish button. Finally, use the WizardDescriptor.ProgressInstantiatingIterator
interface to show the user a progress bar when the wizard ends, while the instantiate() method
is processing. In this case, the instantiate() method is called in a separate thread, receiving a
ProgressHandle. Via this class, the status is shown, as is done with the standard progress bar
(see Chapter 5).

MultiViews API
Use the MultiViews API and SPI to divide a TopComponent across multiple containers. Typi-
cally, as the name suggests, this approach is used to provide more than one view for a single
DataObject. The most common example of this is the NetBeans GUI Builder, in which the user
switches from the source view to the design view. The views have, as their basis, a .java and a
.form file. However, a relationship between the views is not mandatory. The container inte-
grates several independent components that are completely independent of each other,
displaying different data. The MultiViews SPI can, as a result, be used as a generic framework,
rather than one specifically aimed at displaying a single piece of data.

The end result of a multiview includes a drop-down list, allowing the user to switch
between the different views. Optionally, one of the views, consisting of any kind of JComponent,
provides a toolbar displayed next to the drop-down list (see Figure 8-9).

Figure 8-9. Multiview TopComponent with three views

24174ch08_final_idx.fm Page 151 Friday, April 24, 2009 5:13 PM

152 C H A P T E R 8 ■ G R A P H I C A L C O M P O N E N T S

Each view consists of independent components, which must be subclasses of JComponent.
Typically, the base class JPanel is used. However, nothing prevents you from using the
TopComponent, allowing integration of one or more windows into a multiview.

To allow a component to be a view in a multiview TopComponent, implement the
MultiViewElement interface. The methods, specified by this interface, can best be illustrated via
a simple example.

public class MultiViewPanel1 extends JPanel implements MultiViewElement {
 private JToolBar toolbar = new JToolBar();
 private MultiViewElementCallback callback = null;
 public MultiViewPanel1() {
 initComponents();
 toolbar.add(new Panel1ToolbarAction1());
 toolbar.add(new Panel1ToolbarAction2());
 }

To give the view access to the TopComponent, use the setMultiViewCallback() method to
receive a MultiViewElementCallback. For example, via this object one obtains the multiview
TopComponent. To use the callback object in classes, save the data as a private element. An
instance of the view is obtained via the getVisualRepresentation() method. This method is
called whenever the view is activated, meaning that creating the component in this method
should be avoided. Normally, use this to access the current components. The toolbar of the
current view is obtained via the getToolbarRepresentation() method. This method provides a
completely created toolbar. Actions in the context menu of the multiview TopComponent are
obtained from the currently active view, via the getActions() method. First, use this method to
access the standard actions of a TopComponent via the MultiViewElementCallback object. Next,
add your own actions to the set of standard actions. Use getLookup() to obtain the current
Lookup—the part of the Lookup that is part of the current multiview TopComponent and that is
also part of the global context.

 public void setMultiViewCallback(MultiViewElementCallback c) {
 callback = c;
 }
 public JComponent getVisualRepresentation() {
 return this;
 }
 public JComponent getToolbarRepresentation() {
 return toolbar;
 }
 public Action[] getActions() {
 if(callback != null) {
 return callback.createDefaultActions();
 } else {
 return new Action[]{};
 }
 }
 public Lookup getLookup() {
 return Lookups.singleton(this);
 }

24174ch08_final_idx.fm Page 152 Friday, April 24, 2009 5:13 PM

C H A P T E R 8 ■ G R A P H I C A L C O M P O N E N T S 153

The next methods should be familiar, since they were dealt with in discussions
concerning the TopComponent class. Via these methods, access is provided to the various states
of the view and the multiview TopComponent. For example, in the following code, the title of the
TopComponent is set dynamically, based on the name of the view, whenever the view is opened
or activated. The title can be changed via the MultiViewElementCallback object, using the
updateTitle() method.

 public void componentOpened() {
 callback.updateTitle("View 1");
 }
 public void componentClosed() {}
 public void componentShowing() {}
 public void componentHidden() {}
 public void componentActivated() {
 callback.updateTitle("View 1");
 }
 public void componentDeactivated() {}

Each view offers its own undo/redo functionality, via the getUndoRedo() method. How
undo/redo is implemented via the NetBeans API is discussed in Chapter 17. If this support is
unwanted, provide UndoRedo.NONE, as shown here:

 public UndoRedo getUndoRedo() {
 return UndoRedo.NONE;
 }

Finally, implement the canCloseElement() method. This method is called on each of
the views when the multiview TopComponent closes. Only once all the views have provided
CloseOperationState.STATE_OK can the TopComponent be closed. Should a view not be immedi-
ately closeable, because (for example) changed data has not yet been saved, provide a
CloseOperationState object, created via the MultiViewFactory.createUnsafeCloseState().
This makes sense only when CloseOperationHandler has been implemented, which is passed
when the multiview TopComponent is created. This handler is available for resolving the
CloseOperationState objects of all the views. For example, within this handler, a dialog can be
shown to the user.

 public CloseOperationState canCloseElement() {
 return CloseOperationState.STATE_OK;
 }
}

For each view component, create and describe the view via the MultiViewDescription. The
main point of this class is instantiation of graphic view components, which are created on
demand by the createElement() method (see Listing 8-5). The method is called once only,
when the user opens the view for the first time. The method getPersistenceType() is used to
specify how the TopComponent is saved. Use the constants of the TopComponent class, a topic
illustrated in Chapter 5.

24174ch08_final_idx.fm Page 153 Friday, April 24, 2009 5:13 PM

154 C H A P T E R 8 ■ G R A P H I C A L C O M P O N E N T S

Listing 8-5. Description and factory creation of a view

public class MultiViewPanel1Description
 implements MultiViewDescription, Serializable {
 public MultiViewElement createElement() {
 return new MultiViewPanel1());
 }
 public String preferredID() {
 return "PANEL_1";
 }
 public int getPersistenceType() {
 return TopComponent.PERSISTENCE_NEVER;
 }
 public String getDisplayName() {
 return "View 1";
 }
 public Image getIcon() {
 return null;
 }
 public HelpCtx getHelpCtx() {
 return HelpCtx.DEFAULT_HELP;
 }
}

Finally, there remains the creation of a multiview TopComponent from independently created
views. To that end, the MultiViews SPI provides a factory class, which is the MultiViewFactory
class. It contains methods permitting the creation of TopComponents or CloneableTopComponents,
depending on need.

MultiViewDescription dsc[] = {
 new MultiViewPanel1Description(),
 new MultiViewPanel2Description(),
 new MultiViewPanel3Description()};
TopComponent tc = MultiViewFactory.createMultiView(dsc, dsc[0]);
tc.open();

First, create an array of MultiViewDescription classes, representing each of the views. Pass
this array to the createMultiView() method. The second parameter contains the initially active
view. An optional third parameter includes an implementation of the CloseOperationHandler
discussed earlier, for the creation of a CloseOperationState object. The multiview TopComponent
is then opened via the open() method.

To give access from outside to the views, use the static method
MultiViews.findMultiViewHandler() to create a MultiViewHandler for a view TopComponent. Via
this handler, you can, for example, access the currently selected view or all available views at
once.

Visual Library API
The NetBeans Visual Library API is a generic library for displaying different structures. In
particular, the library is most suited to graph-oriented representations. The Visual Library API

24174ch08_final_idx.fm Page 154 Friday, April 24, 2009 5:13 PM

C H A P T E R 8 ■ G R A P H I C A L C O M P O N E N T S 155

(version 2.0) is part of the NetBeans Platform and is used by the NetBeans IDE in numerous
modules and areas, such as visual modeling of MIDlets in a JME application, as shown in
Figure 8-10. To use the Visual Library API, you need only define a dependency on the module
(under Libraries within the module’s Properties dialog), as previously noted in examples of
other modules.

Structure of the Visual Library API
The components of the Visual Library API, like Swing, are structured and managed as a tree. The
superclass of all graphic components is the Widget class. If you consider Figure 8-10, then the
three components (Mobile Device, form, and loginScreen), as well as the edges connecting
components, are all widgets. A widget can also be a container for other widgets. Each widget has
a position relative to its parent widget. The Widget superclass is responsible for presenting the
border and background of a widget in addition to managing properties such as color and trans-
parency. Like a Swing container, a widget has a certain layout responsible for the positioning of
its child widgets. Widgets depend upon each other in order to be notified about changes. A
widget can also be linked to a series of actions that are executed when specific user events occur.

Figure 8-10. Visual model of a graph-oriented structure using the Visual Library API

The Widget Classes
All graphic components of the Visual Library API are subclasses of Widget, which manages and
provides basic features and functionalities such as layout, background, and font. A Widget is a
graphic primitive equivalent to the JComponent class in Swing. From Widget, numerous classes
are derived, making relevant Widget implementations available for most applications. This
inheritance hierarchy is represented in Figure 8-11, and the descriptions of these various
Widget classes are listed in Table 8-4. The most important are dealt with in more detail in the
following sections. For more exhaustive descriptions of these classes, see the Visual Library API
documentation, found within the Javadoc of the Visual Library.

24174ch08_final_idx.fm Page 155 Friday, April 24, 2009 5:13 PM

156 C H A P T E R 8 ■ G R A P H I C A L C O M P O N E N T S

Figure 8-11. Widget inheritance hierarchy of the Visual Library API

24174ch08_final_idx.fm Page 156 Friday, April 24, 2009 5:13 PM

C H A P T E R 8 ■ G R A P H I C A L C O M P O N E N T S 157

Table 8-4 provides an overview of the features and functionalities of various Widget
implementations.

Dependencies

Dependencies can be defined between individual widgets. You are thereby able to respond to
changes in position or size of other widgets. This dependency is realized by a listener regis-
tered on the widget. In addition, the Widget class makes available two methods,
addDependency() and removeDependency(), in order that a listener can be added or removed. A

Table 8-4. The descriptions of the different Widget subclasses

Class Description

ComponentWidget Using a ComponentWidget, AWT/Swing components are used within
a scene. This widget serves as a placeholder and is responsible for
displaying and updating the contained component.

ConnectionWidget A ConnectionWidget is used to connect two points determined by
anchors. It is responsible for the presentation of the connecting
line, as well as control points, endpoints, and anchors. Control
points, resolved by a router, specify the path of a connecting line.

ConvolveWidget A ConvolveWidget applies a convolve filter to a child element.

ImageWidget With an ImageWidget, images are represented within a scene.

LabelWidget With this widget, text is displayed. Text can be represented in four
different horizontal and vertical alignments.

LayerWidget A LayerWidget is a transparent widget, functioning similarly to a
JGlassPane. A scene uses several such layers to organize different
types of widgets.

LevelOfDetailsWidget A LevelOfDetailsWidget serves as container for its child widgets
and determines their visibility by the zoom factor of the scene.

Scene The Scene widget is the root element of the current hierarchy of
displayed widgets. It is responsible for control and representation
of the whole rendered area. This class makes a view of the scene
available in the form of a JComponent instance, which is then
embedded into any Swing component. We will look at this impor-
tant class in more detail in the “The Scene: The Root Element”
section later in the chapter.

ScrollWidget A ScrollWidget is a scrollable container whose functionality corre-
sponds to a JScrollPane. The scroll bars are only shown when
needed.

SeparatorWidget This widget represents a separator whose thickness and orienta-
tion can be set.

SwingScrollWidget This widget, like a ScrollWidget, represents a scrollable area, but
the JScrollBar class is used for the scroll bars.

IconNodeWidget An IconNodeWidget represents both an image and label that can
alternatively be placed below or next to the image.

24174ch08_final_idx.fm Page 157 Friday, April 24, 2009 5:13 PM

158 C H A P T E R 8 ■ G R A P H I C A L C O M P O N E N T S

listener is specified by the interface Widget.Dependency. The listener must implement the
method revalidateDependency(), which is called by the respective widget on a change of posi-
tion or size. By this method, you call the revalidate() method of widgets that are dependent
on other widgets.

Border

Each widget has border. By default, this is an empty border, represented by the class
EmptyBorder. Another border can be specified with the setBorder() method. A border is speci-
fied by the interface Border. And this interface is implemented by numerous Border classes. In
addition to the EmptyBorder class, there are also LineBorder, BevelBorder, DashedBorder,
ImageBorder, ResizeBorder, RoundedBorder, and SwingBorder classes. A ResizeBorder adds eight
points to the edges of your widget, which are used to change its size. Furthermore, the
SwingBorder class allows you to use any Swing javax.swing.border.Border implementation.
Last at your disposal is the CompositeBorder class, with which you can combine any number of
the Border instances mentioned.

The borders, however, are not created directly, but via a factory. This is the BorderFactory
class that provides you with numerous methods with which you can create various border
types. Instances produced by the factory can be simultaneously shared by several widgets. If
you wish to use the same border between several widgets, you need only create one instance of
it.

Layout

A widget (like a Swing container) has a special layout, managed and specified by a Layout
Manager. A layout is defined by the interface Layout and is responsible for arrangement of the
child widgets. Four different variants of layouts are available, produced by the LayoutFactory
class and added to a widget with the setLayout() method.

AbsoluteLayout

With AbsoluteLayout, child widgets are arranged according to the coordinates supplied by
getPreferredLocation(). The size of child widgets corresponds to the proportions provided by
getPreferredBounds(). If the two methods supply null, the position becomes (0, 0) and the
size becomes (0, 0, 0, 0). This is the default layout used by a widget. This layout is generated
with the following:

Layout al = LayoutFactory.createAbsoluteLayout();

FlowLayout

The FlowLayout arranges widgets in a sequential order in horizontal or vertical directions. Four
different alignments can be selected: left top, center, right bottom, and justified. Furthermore,
the gap between individual widgets can be specified. The size of widgets corresponds to the
value that getPreferredBounds() returns. The following methods are available for the creation
of this layout; alternatively, supply the alignment as a LayoutFactory.SerialAlignment type
along with the gap:

Layout hfl = LayoutFactory.createHorizontalFlowLayout();
Layout vfl = LayoutFactory.createVerticalFlowLayout();

24174ch08_final_idx.fm Page 158 Friday, April 24, 2009 5:13 PM

C H A P T E R 8 ■ G R A P H I C A L C O M P O N E N T S 159

CardLayout

A CardLayout shows only the currently active widget, which is specified by the method
setActiveCard(). The size of the active widget is determined by getPreferredBounds(). All
other widgets are represented by the size (0, 0, 0, 0), thus making them practically invisible.
Determine the currently active widget by the method getActiveCard(). Create this layout with
the following:

Layout cl = LayoutFactory.createCardLayout();

and specify the active widget with the following call:

LayoutFactory.setActiveCard(Widget parent, Widget activate);

To switch the active widget, you can use the SwitchCardAction class.

OverlayLayout

The OverlayLayout determines the minimum area containing all child widgets. Both the widget
that contain this layout and all child widgets are set to the size of this determined area and
arranged on top of each other. The last child widget displays at the top. You create this layout
as follows:

Layout ol = LayoutFactory.createOverlayLayout();

Events and Actions
A widget knows its position, size, and, content, but not information about its behavior. The
behavior of widgets is influenced by actions added arbitrarily to a widget. These actions are
specified by the interface WidgetAction, which defines a number of event methods. These
methods are called by corresponding events, such as clicking a mouse button on the widget the
action is assigned to. Implementation of the action class executes desired behaviors such as
moving a widget by drag-and-drop.

Like borders and layouts, actions are created by a factory. This is the ActionFactory class.
These actions are managed within a widget by the WidgetAction.Chain class. This class receives
user events and forwards these to the appropriate actions it manages. Each widget has an
instance of this class, which is obtained by getAction(). With the methods addAction() and
removeAction(), the WidgetAction.Chain class adds or removes actions to or from widgets.

Some of the factory methods of the ActionFactory class require a provider as a parameter.
A provider implements a specific behavior for an action. For some actions (e.g., the EditAction),
a provider implementation that is executed on double-clicking the appropriate widget must
be specified. For other actions, like the MoveAction, specify a provider if you wish the behavior
to deviate from the default. These providers are specified through special interfaces such as
EditProvider or HoverProvider.

The real advantage or purpose for managing a widget’s actions in a WidgetAction.Chain
class is grouping. For example, in some applications, you permit only certain actions for a
scene. Widgets may be moved, but not edited. This functionality is provided by setting the
current tool of a scene using the setActiveTool() method in the Scene class. The Widget class
manages different actions in separate WidgetAction.Chain instances depending on the
currently active tool. Previously, access was granted to actions via the getAction() method.
This supplied the default WidgetAction.Chain instance, which is also the case if no tool is set

24174ch08_final_idx.fm Page 159 Friday, April 24, 2009 5:13 PM

160 C H A P T E R 8 ■ G R A P H I C A L C O M P O N E N T S

(setActiveTool(null)). Now you can use a variant of the getAction(String activeTool)
method, to which you supply the name of the tool and obtain the relevant WidgetAction.Chain
instance.

AcceptAction

This action is for the treatment of drag-and-drop operations. An AcceptProvider implementa-
tion must be provided to create the action. The AcceptProvider interface specifies the method
isAcceptable(), which allows specifying whether a drop operation on this widget is allowed, as
well as the method accept(), with which you accomplish the drop operation.

ActionFactory.createAcceptAction(AcceptProvider p);

ActionMapAction

This action provides a context menu, displayed by right-clicking the widget. You create the
action using the default method without parameters, whereby actions for the menu are
inferred from the ActionMap of the scene view. Additionally, there is an option to supply the
method with an InputMap and ActionMap used for production of the menu.

ActionFactory.createActionMapAction();
ActionFactory.createActionMapAction(InputMap i, ActionMap a);

AddRemoveControlPointAction

This action can only be used by FreeConnectionWidget widgets. With it, you add or remove
control points by double-clicking them. You also indicate the sensitivity used.

ActionFactory.createAddRemoveControlPointAction();

ActionFactory.createAddRemoveControlPointAction(
 double createSensitivity,
 double deleteSensitivity);

MoveAction/AlignWithMoveAction

With the MoveAction, a widget can be moved by drag-and-drop. Please note that this action
only functions if the parent widget has an AbsoluteLayout. Similarly, the AlignWithMoveAction
behaves like the MoveAction. In contrast, however, additional “snapping” with other widgets
occurs. All widgets against which alignment is checked are gathered using an
AlignWithWidgetCollector instance or set through a LayerWidget. In the second case, the
alignment of all child widgets within each layer is checked.

ActionFactory.createMoveAction();

ActionFactory.createMoveAction(
 MoveStrategy strategy,
 MoveProvider provider);

ActionFactory.createAlignWithMoveAction(
 AlignWithWidgetCollector collector,

24174ch08_final_idx.fm Page 160 Friday, April 24, 2009 5:13 PM

C H A P T E R 8 ■ G R A P H I C A L C O M P O N E N T S 161

 LayerWidget interactionLayer,
 AlignWithMoveDecorator decorator);

ActionFactory.createAlignWithMoveAction(
 LayerWidget collectionLayer,
 LayerWidget interactionLayer,
 AlignWithMoveDecorator decorator);

ResizeAction/AlignWithResizeAction

With the ResizeAction, you change the size of widgets, while AlignWithResizeAction reviews
snapping against other widgets. With widgets needing their alignment checked against others,
provide either an AlignWithWidgetCollector instance or a LayerWidget.

ActionFactory.createResizeAction();

ActionFactory.createResizeAction(
 ResizeStrategy strategy,
 ResizeProvider provider);

ActionFactory.createResizeAction(
 ResizeStrategy strategy,
 ResizeControlPointResolver resolver,
 ResizeProvider provider);

ActionFactory.createAlignWithResizeAction(
 AlignWithWidgetCollector collector,
 LayerWidget interactionLayer,
 AlignWithMoveDecorator decorator);

ActionFactory.createAlignWithResizeAction(
 LayerWidget collectionLayer,
 LayerWidget interactionLayer,
 AlignWithMoveDecorator decorator);

ZoomAction/CenteredZoomAction

With these actions, the zoom of the whole scene is changed with the mouse wheel. These
actions are not added to a widget, but directly to a scene.

ActionFactory.createZoomAction();
ActionFactory.createZoomAction(double zoom, boolean animated);
ActionFactory.createCenteredZoomAction(double zoomMultiplier);

ConnectAction/ExtendedConnectAction/ReconnectAction

With the ConnectAction, you can connect, with the assistance of ConnectionWidgets, two
widgets. This action is added to the widget from which the connection is to be made. Only with
a ConnectProvider instance, following a check of the source and target widgets for the desired
connection, can a connection be made. Optionally, supply a specific graphic for the connecting

24174ch08_final_idx.fm Page 161 Friday, April 24, 2009 5:13 PM

162 C H A P T E R 8 ■ G R A P H I C A L C O M P O N E N T S

line using a ConnectDecorator. With the ExtendedConnectAction, a connection can be made
only as long as the Ctrl key pressed. This action is meant for cases where conflicts with other
actions occur—for example, if you want to use the ConnectAction and the MoveAction at the
same time. In these cases, use the ExtendedConnectAction.

ActionFactory.createConnectAction(
 LayerWidget interactionLayer,
 ConnectProvider provider);

ActionFactory.createConnectAction(
 ConnectDecorator decorator,
 LayerWidget interactionLayer,
 ConnectProvider provider);

ActionFactory.createExtendedConnectAction(
 LayerWidget interactionLayer,
 ConnectProvider provider);

ActionFactory.createExtendedConnectAction(
 ConnectDecorator decorator,
 LayerWidget interactionLayer,
 ConnectProvider provider);

ActionFactory.createReconnectAction(
 ReconnectProvider provider);

ActionFactory.createReconnectAction(
 ReconnectDecorator decorator,
 ReconnectProvider provider);

CycleFocusAction/CycleObjectSceneFocusAction

You shift the focus between the widgets of a scene using the Tab key, either forward or
backward. With the CycleFocusAction, you specify the behavior with which the preceding
or following widget is focused using a CycleFocusProvider. In the case of the
CycleObjectSceneFocusAction, which is applied to an ObjectScene, the order of the focusing is
determined by the return value of getIdentityCode().

ActionFactory.createCycleFocusAction(CycleFocusProvider p);
ActionFactory.createCycleObjectSceneFocusAction();

EditAction/InplaceEditorAction

In order to edit a widget by double-clicking, add an EditAction. The triggered behavior is
implemented by an EditProvider. A further option supplies an in-place editor that is displayed
upon double-clicking. For this, use the InplaceEditorAction, whereby the editor can be any
JComponent subclass. For example, with an IconNodeWidget or a LabelWidget, this would typi-
cally be a JTextField.

24174ch08_final_idx.fm Page 162 Friday, April 24, 2009 5:13 PM

C H A P T E R 8 ■ G R A P H I C A L C O M P O N E N T S 163

ActionFactory.createEditAction(
 EditProvider provider);

ActionFactory.createInplaceEditorAction(
 InplaceEditorProvider provider);

ActionFactory.createInplaceEditorAction(
 TextFieldInplaceEditor editor);

ActionFactory.createInplaceEditorAction(
 TextFieldInplaceEditor editor,
 EnumSet expansionDirections);

ForwardKeyEventsAction

With this action, you can forward keyboard events to other widgets.

ActionFactory.createForwardKeyEventsAction(
 Widget forwardToWidget,
 String forwardToTool);

HoverAction

With the HoverAction, you can react to a mouse pointer that is hovering over a widget. How the
widget behaves is specified by a HoverProvider or a TwoStateHoverProvider.

ActionFactory.createHoverAction(HoverProvider p);
ActionFactory.createHoverAction(TwoStateHoverProvider p);

MoveControlPointAction/FreeMoveControlPointAction/OrthogonalMoveControlPointAction

These actions move the control points of the connecting line of a ConnectionWidget.
The OrthogonalMoveControlPointAction is used when a ConnectionWidget has an
OrthogonalSearchRouter. The FreeMoveControlPointAction has no restrictions on positioning
the points.

ActionFactory.createMoveControlPointAction(MoveControlPointProvider provider);
ActionFactory.createFreeMoveControlPointAction();
ActionFactory.createOrthogonalMoveControlPointAction();

PanAction

If the view of a scene is contained within a JScrollPane, the PanAction allows scrolling the view
by moving the mouse while the middle button is pressed. This action is usually added to a
scene.

ActionFactory.createPanAction();

24174ch08_final_idx.fm Page 163 Friday, April 24, 2009 5:13 PM

164 C H A P T E R 8 ■ G R A P H I C A L C O M P O N E N T S

PopupMenuAction

Use the PopupMenuAction to provide a widget with a context menu. This requires implementing
a PopupMenuProvider within which you provide a JPopupMenu instance.

ActionFactory.createPopupMenuAction(
 PopupMenuProvider more provider);

SelectAction/RectangularSelectAction

The SelectAction is similar to the EditAction; however, this event is the result of a single click.
The logic is implemented within a SelectProvider, inside which you also specify whether a
widget is selected. The RectangularSelectAction is usually added to an ObjectScene or a
LayerWidget with which you select widgets by drawing rectangles around them.

ActionFactory.createSelectAction(SelectProvider provider);

ActionFactory.createRectangularSelectAction(
 ObjectScene scene,
 LayerWidget interactionLayer);

ActionFactory.createRectangularSelectAction(
 RectangularSelectDecorator decorator,
 LayerWidget interactionLayer,
 RectangularSelectProvider provider);

SwitchCardAction

This action is required for switching between widgets that are in a CardLayout.

ActionFactory.createSwitchCardAction(Widget cardLayoutWidget);

The Scene: The Root Element
The components of the Visual Library API—i.e., widgets—are arranged and managed in a hier-
archical tree structure. This means widgets, in turn, can contain other widgets. The Scene class,
which itself is a widget, represents the container for all subsequent elements and therefore is
the root element of the hierarchy (see Figure 8-11). Graphically, a scene is represented by a
view, which is a simple JComponent instance. This is then typically added to a JScrollPane. One
always starts with a scene, to which are added further widgets in hierarchical arrangement,
depending upon the application’s needs. Listing 8-6 illustrates this.

24174ch08_final_idx.fm Page 164 Friday, April 24, 2009 5:13 PM

C H A P T E R 8 ■ G R A P H I C A L C O M P O N E N T S 165

Listing 8-6. Creating a scene and adding widgets

final class SceneTopComponent extends TopComponent {
 private JScrollPane scenePane = new JScrollPane();
 private Scene sc = new Scene();

 private SceneTopComponent() {
 scenePane.setViewportView(sc.createView());
 LayerWidget layer1 = new LayerWidget(sc);
 sc.addChild(layer1);
 ImageWidget w1 = new ImageWidget(sc,
 ImageUtilities.loadImage("com/galileo/netbeans/module/node.gif"));
 layer1.addChild(w1);
 ImageWidget w2 = new ImageWidget(sc,
 ImageUtilities.loadImage("com/galileo/netbeans/module/node.gif"));
 layer1.addChild(w2);
 LayerWidget layer2 = new LayerWidget(sc);
 sc.addChild(layer2);
 ImageWidget w3 = new ImageWidget(sc,
 ImageUtilities.loadImage("com/galileo/netbeans/module/node2.gif"));
 layer2.addChild(w3);
 WidgetAction ma = ActionFactory.createMoveAction();
 w1.getActions().addAction(ma);
 w2.getActions().addAction(ma);
 w3.getActions().addAction(ma);
 }
}

We create the scene as a private variable. The createView() method provides a view for this
scene of the type JComponent, and can be embedded into any Swing container. So that the scene
or view is not limited to a certain size, we add this to a JScrollPane. We now hierarchically attach
our widgets to the scene after first creating a LayerWidget that acts like a JGlassPane and to
which we add two ImageWidgets. To illustrate the grouping and alignment of widgets, we create
a further LayerWidget instance and add an additional ImageWidget. The added LayerWidget and
contained ImageWidgets are then assigned to the scene. So that the widgets can be moved
within the scene, we add a MoveAction instance created with the ActionFactory. An example
can be seen in Figure 8-12.

Overview

In order to establish fast navigation within larger scenes, a scene offers us an overview in
the form of an interactive JComponent. This is a satellite view created using the
createSatelliteView() method. If the view of your scene is embedded in a JScrollPane and
the scene is larger than that of the displayed area, navigate the scene by moving the gray frame
present in the overview to update the view (see Figure 8-12).

24174ch08_final_idx.fm Page 165 Friday, April 24, 2009 5:13 PM

166 C H A P T E R 8 ■ G R A P H I C A L C O M P O N E N T S

Figure 8-12. An overview for a scene can be created and also used for navigation.

Exporting a Scene

In few steps and with the assistance of some Java utilities, you can export a scene generated
with the Visual Library API into an image contained within a PNG file. To this end, first produce
a BufferedImage object, into which is written the graphic data. Specify the size of this Image
instance using the current size of the view of the respective scene, to assure the complete
contents are stored. From this object, we avail ourselves of the Graphics2D context with which
we feed data into the buffer of the BufferedImage object. This context is then supplied to the
paint() method of the Scene object so that content is written to the buffer of the BufferedImage
instance rather than the screen (see Listing 8-7). Following this, dispose of the context so that
the resources can be released. With a JFileChooser, request a file name and, if necessary,
append the appropriate suffix. Once this is done, utilize the ImageIO class that looks for an
ImageWriter for PNG files, using it to write the data of the BufferedImage object into the
selected file.

Listing 8-7. Exporting a scene into a PNG file

private Scene sc = new Scene();

public void exportScene() {
 BufferedImage img = new BufferedImage(
 sc.getView().getWidth(),

24174ch08_final_idx.fm Page 166 Friday, April 24, 2009 5:13 PM

C H A P T E R 8 ■ G R A P H I C A L C O M P O N E N T S 167

 sc.getView().getHeight(),
 BufferedImage.TYPE_4BYTE_ABGR);

 Graphics2D graphics = img.createGraphics();
 sc.paint(graphics);
 graphics.dispose();

 JFileChooser chooser = new JFileChooser();
 chooser.setFileFilter(new FileNameExtensionFilter(
 "Portable Network Graphics (.png)", "png"));

 if(chooser.showSaveDialog(sc.getView()) == JFileChooser.APPROVE_OPTION) {
 File f = chooser.getSelectedFile();
 if (!f.getName().toLowerCase().endsWith(".png")) {
 f = new File(f.getParentFile(), f.getName() + ".png");
 }

 try {
 ImageIO.write(img, "png", file);
 } catch (IOException e) {
 Logger.getLogger(getName()).warning(e.toString());
 }
 }
}

ObjectScene: Model-View Relationship
The Visual Library API provides only the constituent components making up a view. That is, a
widget only possesses information about presentation or flow of data. What a widget does not
possess is a data model. This is where the ObjectScene class comes into play, representing an
extension of the Scene class. The function of this class is to manage widget mapping to an asso-
ciated data model, which can be any object displayed in a view. The class ObjectScene makes
available methods allowing widget assignment to a data model. It’s also possible to determine
the data model registered to a widget and vice versa. Besides mapping the data model to
widgets, the ObjectScene class also provides information about the current state of a widget or
data model, represented by the ObjectState class.

Data models are stored internally in a Map. For identification and comparison purposes,
data models use the equals() method. Ensure that your data model contains a meaningful
implementation of this method and note that each unique data model can only be added once.
Thus, if the data model d1 is in an ObjectScene, and a second, d2, is added, whereby
d1.equals(d2) == true applies, an exception is raised.

24174ch08_final_idx.fm Page 167 Friday, April 24, 2009 5:13 PM

168 C H A P T E R 8 ■ G R A P H I C A L C O M P O N E N T S

Table 8-5 summarizes the most important methods of the ObjectScene class and their
functions.

Graph
In order to facilitate the creation of graphs (see Figure 8-10 for an example of flow
designers)—i.e., the production of nodes and associated edges—the API based on the
ObjectScene class introduced in the previous section makes available the classes GraphScene
and GraphPinScene. For these classes, an example is shown hereafter, the basis of which clari-
fies the practical significance of the ObjectScene class.

Both GraphScene and GraphPinScene are abstract classes, whose only task is the manage-
ment of data models and widgets. The creation of widgets is dependent on subclasses and is
reliant upon data models. This is achieved by overriding the relevant abstract methods within
the subclasses. The types of data models are defined by templates and can vary in each case for
nodes, edges, and pins. In the simplest case, as in this example, use the type String. For the
nodes and edges, we provide a separate LayerWidget and add these to the scene.

public class MyGraphPinScene extends GraphPinScene<String, String, String> {
 private LayerWidget mainLayer;
 private LayerWidget connectionLayer;

 public MyGraphPinScene() {
 mainLayer = new LayerWidget(this);

Table 8-5. The most important methods of the ObjectScene class

Method Description

void addObject(
 Object model,
 Widget...widgets)

With the addObject() method, several widgets and
their associated data models are added to a scene.

void removeObject(
 Object model)

You can remove a known data model with the
removeObject() method. Note that the associated
widget is not removed, but eliminated separately
with the removeChild() method.

Object findObject(
 Widget widget)

Use the findObject() method in order to find the
data model belonging to a certain widget.

Widget findWidget(
 Object model)

This method is the counterpart to findObject(), and
finds the widget for a given data model.

List<Widget> findWidgets(
 Object model)

If several widgets are assigned to a model, these are
returned with findWidgets().

ObjectState getObjectState(
 Object model)

To receive the current state of a model, use the
getObjectState() method. If the state of a data
model changes, the state of the widget is changed
accordingly. The opposite does not occur. The status
of a widget is determined with the getState()
method.

24174ch08_final_idx.fm Page 168 Friday, April 24, 2009 5:13 PM

C H A P T E R 8 ■ G R A P H I C A L C O M P O N E N T S 169

 addChild(mainLayer);
 connectionLayer = new LayerWidget(this);
 addChild(connectionLayer);
 }

The attachNodeWidget() method is responsible for creating nodes. Therefore, we use the
IconNodeWidget class here in the example. The ImageWidget class could also be used. However,
we also manage the accompanying pins with the IconNodeWidget class. This is done by using
LabelWidget, which is accessed by the getLabelWidget() method. So that the pins can be
arranged and presented correctly, a FlowLayout is defined for this widget. In order to move the
node, a MoveAction instance is added. Last, we add the node to the MainLayer and return it.

 protected Widget attachNodeWidget(String node) {
 IconNodeWidget widget = new IconNodeWidget(this);

 widget.setImage(
 ImageUtilities.loadImage("com/galileo/netbeans/module/node.gif"));
 widget.getLabelWidget().setLayout(
 LayoutFactory.createHorizontalFlowLayout(
 LayoutFactory.SerialAlignment.JUSTIFY, 5));
 widget.getActions().addAction(ActionFactory.createMoveAction());

 mainLayer.addChild(widget);
 return widget;
 }

The attachEdgeWidget() method is responsible for creating edges. But we use the
ConnectionWidget class to enable using a router, so edges are not simply drawn as straight lines
between nodes possibly intersecting with other nodes or edges. A router permits us to have a
series of LayerWidgets, whose widgets are not to be crossed. Accordingly, the router determines
paths for edges, so that no intersections occur (see Figure 8-13). Such routers are created with
RouterFactory. The configured edges are then added to the ConnectionLayer and returned.

protected Widget attachEdgeWidget(String edge) {
 ConnectionWidget widget = new ConnectionWidget(this);
 widget.setTargetAnchorShape(AnchorShape.TRIANGLE_FILLED);
 widget.setRouter(RouterFactory.createOrthogonalSearchRouter(
 mainLayer, connectionLayer));
 connectionLayer.addChild(widget);
 return widget;
}

Pins are created with the attachPinWidget() method. A pin is an input or output of a node,
to which an edge can be connected (the red points in Figure 8-13 represent pins). A pin is
assigned to a node, which may possess multiple pins. The data model for the pin and the node
to which it will be added is received within those parameters. The findWidget() method assists
in determining the widget associated with the node to which the created pin is added.

24174ch08_final_idx.fm Page 169 Friday, April 24, 2009 5:13 PM

170 C H A P T E R 8 ■ G R A P H I C A L C O M P O N E N T S

 protected Widget attachPinWidget(String node, String pin) {
 ImageWidget widget = new ImageWidget(this,
 ImageUtilities.loadImage("com/galileo/netbeans/module/pin.gif"));
 IconNodeWidget n = (IconNodeWidget) findWidget(node);
 n.getLabelWidget().addChild(widget);
 return widget;
 }

Last, override the attachEdgeSourceAnchor() and attachEdgeTargetAnchor() methods (see
Listing 8-8). With these, the start and endpoints of an edge are specified. Here, first determine
the edge to which the pin is to be connected with the findWidget() method. Then provide the
AnchorFactory with an anchor point to the pin, which has likewise been determined by the
findWidget() method, and add this to the edge.

Listing 8-8. Implementation of a GraphPinScene class

 protected void attachEdgeSourceAnchor(
 String edge, String oldPin, String pin) {
 ConnectionWidget c = (ConnectionWidget) findWidget(edge);
 Widget widget = findWidget(pin);
 Anchor a = AnchorFactory.createRectangularAnchor(widget);
 c.setSourceAnchor(a);
 }
 protected void attachEdgeTargetAnchor(
 String edge, String oldPin, String pin) {
 ConnectionWidget c = (ConnectionWidget) findWidget(edge);
 Widget widget = findWidget(pin);
 Anchor a = AnchorFactory.createRectangularAnchor(widget);
 c.setTargetAnchor(a);
 }

Similarly, you could create an implementation of the GraphScene class, which has no pins.
Here, edges are connected directly to the node rather than a pin. The advantage of the imple-
mentation just fashioned now becomes apparent. As with a normal scene, create an instance
and add its view to a JScrollPane. What remains is the creation of individual widgets (see
Listing 8-9). You need only supply the data model (a String object) to the methods addNode(),
addPin(), or addEdge(). These internally call the methods implemented by us to create the
widgets and produce a visual representation of the data model.

Listing 8-9. Use of a GraphPinScene

final class GraphTopComponent extends TopComponent {
 private GraphTopComponent() {
 MyGraphPinScene scene = new MyGraphPinScene();
 scenePane.setViewportView(scene.createView());
 scene.addNode("Node 1");

24174ch08_final_idx.fm Page 170 Friday, April 24, 2009 5:13 PM

C H A P T E R 8 ■ G R A P H I C A L C O M P O N E N T S 171

 scene.addNode("Node 2");
 scene.addNode("Node 3");
 scene.addPin("Node 1", "p1");
 scene.addPin("Node 2", "p2");
 scene.addPin("Node 2", "p3");
 scene.addPin("Node 3", "p4");
 scene.addEdge("Edge 1");
 scene.addEdge("Edge 2");
 scene.setEdgeSource("Edge 1", "p1");
 scene.setEdgeTarget("Edge 1", "p2");
 scene.setEdgeSource("Edge 2", "p3");
 scene.setEdgeTarget("Edge 2", "p4");
 GridGraphLayout<String,String> layout = new GridGraphLayout<String,String>();
 SceneLayout sceneLayout = LayoutFactory.createSceneGraphLayout(scene, layout);
 sceneLayout.invokeLayout();
 }
}

Figure 8-13. Example of creating a graph using a GraphPinScene implementation

24174ch08_final_idx.fm Page 171 Friday, April 24, 2009 5:13 PM

172 C H A P T E R 8 ■ G R A P H I C A L C O M P O N E N T S

VMD: Visual Mobile Designer
Even easier is implementation of graphs using the VMD classes. VMD stands for Visual Mobile
Designer and marks its classes with that acronym. These classes make a GraphPinScene imple-
mentation available, as shown in the previous section. In addition to the scene, there are also
special classes for nodes, edges, and pins that offer uniform design (see Figure 8-14). Due to
this, there are no implementation details, such as creation of widgets, or setting of layout or
router; just add the necessary elements. A VMDGraphScene already has four layers, and actions
such as zoom, pan, and select. The simple example with three nodes shown in Listing 8-10 is
created using a VMDGraphScene.

Listing 8-10. Creating a graph using the VMD classes

private VMDTopComponent() {
 VMDGraphScene scene = new VMDGraphScene();
 scenePane.setViewportView(scene.createView());
 VMDNodeWidget node1 = (VMDNodeWidget)scene.addNode("Node 1");
 node1.setNodeName("Node 1");
 VMDNodeWidget node2 = (VMDNodeWidget)scene.addNode("Node 2");
 node2.setNodeName("Node 2");
 VMDNodeWidget node3 = (VMDNodeWidget)scene.addNode("Node 3");
 node3.setNodeName("Node 3");
 VMDPinWidget p1 =(VMDPinWidget)scene.addPin("Node 1", "Pin 1");
 p1.setPinName("Pin 1");
 VMDPinWidget p2 =(VMDPinWidget)scene.addPin("Node 2", "Pin 2");
 p2.setPinName("Pin 2");
 VMDPinWidget p3 =(VMDPinWidget)scene.addPin("Node 2", "Pin 3");
 p3.setPinName("Pin 3");
 VMDPinWidget p4 =(VMDPinWidget)scene.addPin("Node 3", "Pin 4");
 pin4.setPinName("Pin 4");
 scene.addEdge("Edge 1");
 scene.setEdgeSource("Edge 1", "Pin 1");
 scene.setEdgeTarget("Edge 1", "Pin 2");
 scene.addEdge("Edge 2");
 scene.setEdgeSource("Edge 2", "Pin 3");
 scene.setEdgeTarget("Edge 2", "Pin 4");
}

The VMDGraphScene uses the type String for the data models of nodes, edges, and pins. As
you know from the previous section, elements are added with the methods addNode(),
addPin(), and addEdge(). Here in the example, we give the nodes and pins a name. With
setProperties() and other methods, you can set additional properties, such as icons, for
nodes or pins.

24174ch08_final_idx.fm Page 172 Friday, April 24, 2009 5:13 PM

C H A P T E R 8 ■ G R A P H I C A L C O M P O N E N T S 173

Figure 8-14. The VMD graph classes offer additional features, suchs as hiding pins or adding
icons.

Summary
In this chapter, we looked at NetBeans Platform APIs for the creation of graphical components.
Firstly, we explored the Dialogs API, with which you can display system dialogs, as well as those
you create yourself.

Next, we looked at the Wizards API. You can use this comprehensive framework to create
your own graphic sequences that the user steps through to create artifacts or set properties in
the application.

Also, we looked at how to create multiple views within one TopComponent, using the Multi-
Views API. Finally, we dealt with the NetBeans Platform’s powerful widget library, known as
the Visual Library API. We looked at the API classes, focusing on the different widgets, layouts,
and actions supported out of the box, as well as how to extend them.

24174ch08_final_idx.fm Page 173 Friday, April 24, 2009 5:13 PM

24174ch08_final_idx.fm Page 174 Friday, April 24, 2009 5:13 PM

175

■ ■ ■

C H A P T E R 9

Reusable NetBeans Platform
Components
Let’s See What We Get for Free!

In this chapter, we introduce out-of-the-box NetBeans Platform components. These can be
integrated directly into your application, as in the case of the Output window and the Navi-
gator. You’ll learn the purpose of these components, as well as how they can best be
customized and extended.

Help System
The NetBeans help system is based on the standard JavaHelp API. The NetBeans Platform
provides a module containing the JavaHelp library and exposes a class allowing access to it. To
use the help system, set a dependency in your module on the JavaHelp Integration module.
The dependency is defined automatically when using the wizard to create a starting point for
the JavaHelp system, as described in the next section.

Then, when running the module, choose Help ➤ Help Contents, which will open the Help
window. There, you’ll see help topics from all modules in the application, integrated and
displayed as one single helpset.

Creating and Integrating a Helpset
The IDE provides a wizard to set up new helpsets. It makes an otherwise tricky process

child’s play. Choose File ➤ New File, select the Module Development category, and then select
JavaHelp Help Set. Click Next. On the last page of the wizard, you’ll see a list of files that will be
created. Click Finish to create those files, which constitute your new helpset.

The basic helpset is added to the module, together with entries that register them in the
layer file. That is done through the Services/JavaHelp extension point, in the following way:

<folder name="Services">
 <folder name="JavaHelp">
 <file name="module-helpset.xml" url="module-helpset.xml"/>
 </folder>
</folder>

24174ch09_final_idx.fm Page 175 Friday, April 24, 2009 5:24 PM

176 C H A P T E R 9 ■ R E U S A B L E N E T B E A N S P L A T F O R M C O M P O N E N T S

In the layer file, the wizard registered the module-helpset.xml file, referencing all other
files in the helpset. The module-helpset.xml file is located in the same package as the layer file.
Help topics are contained in a folder separate from the Java source files. The nbdocs protocol is
used to access the module-hs.xml file, as shown here:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE helpsetref PUBLIC
 "-//NetBeans//DTD JavaHelp Help Set Reference 1.0//EN"
 "http://www.netbeans.org/dtds/helpsetref-1_0.dtd">
<helpsetref url="nbdocs:/com/galileo/netbeans/module/docs/module-hs.xml"/>

The helpset consists of the following configuration files, all of which are created by the
wizard.

module-hs.xml
Other configuration files making up the helpset are registered in this file. Use the title element
to assign the helpset a unique name. The maps element refers to map files that register help
topics, defining their unique map IDs, used to reference help topics in the files defining tables
of contents and indexes. The view element defines the helpset search engine, tables of contents,
and indexes.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE helpset PUBLIC
 "-//Sun Microsys Inc.//DTD JavaHelp HelpSet Version 2.0//EN"
 "http://java.sun.com/products/javahelp/helpset_2_0.dtd">
<helpset version="2.0">
 <title>My Module Help</title>
 <maps>
 <homeID>com.galileo.netbeans.module.about</homeID>
 <mapref location="module-map.xml"/>
 </maps>
 <view mergetype="javax.help.AppendMerge">
 <name>TOC</name>
 <label>Table of Contents</label>
 <type>javax.help.TOCView</type>
 <data>module-toc.xml</data>
 </view>
 <view mergetype="javax.help.AppendMerge">
 <name>Index</name>
 <label>Index</label>
 <type>javax.help.IndexView</type>
 <data>module-idx.xml</data>
 </view>
 <view>
 <name>Search</name>
 <label>Search</label>
 <type>javax.help.SearchView</type>
 <data engine="com.sun.java.help.search.DefaultSearchEngine">
 JavaHelpSearch</data>
 </view>
</helpset>

24174ch09_final_idx.fm Page 176 Friday, April 24, 2009 5:24 PM

C H A P T E R 9 ■ R E U S A B L E N E T B E A N S P LA T F O R M C O M P O N E N T S 177

module-map.xml
The map file centralizes registration of help topics within the module. Using its target attri-
bute, you can register HMTL files as help topics and assign them to a unique map ID. Later,
refer to the help topics via their map ID when defining files that create tables of contents and
indexes. Map IDs are used by the HelpCtx object to call up context-sensitive help, as described
later in this section.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE map PUBLIC
 "-//Sun Microsystems Inc.//DTD JavaHelp Map Version 2.0//EN"
 "http://java.sun.com/products/javahelp/map_2_0.dtd">
<map version="2.0">
 <mapID target="com.galileo.netbeans.module.about" url="module-about.html"/>
</map>

module-toc.xml
Table of contents files connect map IDs to help topics displayed as helpset tables of contents.
Help topics are grouped into folders containing related topics by nesting elements within other
elements, as shown here:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE toc PUBLIC
 "-//Sun Microsystems Inc.//DTD JavaHelp TOC Version 2.0//EN"
 "http://java.sun.com/products/javahelp/toc_2_0.dtd">
<toc version="2.0">
 <tocitem text="My Module">
 <tocitem text="About My Module" target="com.galileo.netbeans.module.about"/>
 </tocitem>
</toc>

module-idx.xml
In the index file, use the element indexitem to register the map IDs of the help topics displayed
on the Index tab of the Help window:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE index PUBLIC
 "-//Sun Microsystems Inc.//DTD JavaHelp Index Version 2.0//EN"
 "http://java.sun.com/products/javahelp/index_2_0.dtd">
<index version="2.0">
 <indexitem text="About My Module" target="com.galileo.netbeans.module.about"/>
</index>

Help Topics
Together, the previously described XML files configure help topics in the application. In the
New File dialog, the JavaHelp Help Set wizard combines them in a very simple procedure. After
completing the wizard, simply create HTML files and register them as help topics (as described
in the previous sections) so they open in the Help window when accessed by the user.

24174ch09_final_idx.fm Page 177 Friday, April 24, 2009 5:24 PM

178 C H A P T E R 9 ■ R E U S A B L E N E T B E A N S P L A T F O R M C O M P O N E N T S

Adding Links to Help Topics
Within a help topic, you can link to external sites or other help topics, even though they are
found in other modules.

Links to External Sites
Typically, you will display external sites in an external browser, since the Help window is inad-
equate for that purpose. The NetBeans class that helps you in this regard is BrowserDisplayer.
Use the object tag in a help topic to reference it:

<object classid="java:org.netbeans.modules.javahelp.BrowserDisplayer">
 <param name="content" value="http://www.netbeans.org">
 <param name="text" value="http://www.netbeans.org">
 <param name="textFontSize" value="medium">
 <param name="textColor" value="blue">
</object >

The BrowserDisplayer class passes the link to the URLDisplayer service. The default imple-
mentation of this service is made available, opening the link in the internal Swing HTML
browser. Alternatively, you might want the external browser to open instead. Enabling this, we
create a class named ExternalURLDisplayer, extending HtmlBrowser.URLDisplayer. This inter-
face is located in the UI Utilities module, on which you set a dependency. This interface
includes the showURL() method, providing the link to open a URL. Via this link, pass in a URI to
the browse() method of the Java Desktop class, opening the appropriate page in the external
browser.

public class ExternalURLDisplayer extends HtmlBrowser.URLDisplayer{
 public void showURL(URL link) {
 try {
 Desktop.getDesktop().browse(link.toURI());
 } catch(Exception ex) {
 Logger.getLogger("global").log(Level.SEVERE, null, ex);
 // show the user a message dialog
 }
 }
}

Next, register this service provider in the module META-INF/services folder, in a file called
org.openide.awt.HtmlBrowser$URLDisplayer:

com.galileo.netbeans.module.ExternalURLDisplayer
#position=0

Links to Other Help Topics
Links to other help topics are created by simply inserting href tags or the nbdocs protocol into
your help topics:

24174ch09_final_idx.fm Page 178 Friday, April 24, 2009 5:24 PM

C H A P T E R 9 ■ R E U S A B L E N E T B E A N S P LA T F O R M C O M P O N E N T S 179

<a href="nbdocs://org.netbeans.modules.usersguide/org/netbeans/
 modules/usersguide/configure/configure_options.html">
 Using the options dialog

When using the nbdocs protocol, it is important that you use the code name base of the
module to which you will link. In the preceding example, the code name base is org.netbeans.
modules.usersguide. After the code name base, specify the path to the applicable help topic.
The help system provides an appropriate message if the specified module is not available.

Context-Sensitive Help
Context-sensitive help enables the user to directly access the help topic relating to the current
context of the application. Rather than having users search for a particular topic, it is immedi-
ately available.

Create context-sensitive help topics by connecting a specific component in your applica-
tion to a specific help ID in a map file. For a component to support context-sensitive help,
implement the HelpCtx.Provider interface and use its getHelpCtx() method to provide an ID.

Many commonly used classes in the NetBeans APIs implement the HelpCtx.Provider
interface, which makes the getHelpCtx() method available. Examples of these classes include
Node, DataObject, TopComponent, SystemAction, WizardDescriptor.Panel, and DialogDescriptor.
In its subclasses, you need only override the getHelpCtx() method, providing the map ID of the
topic to be displayed.

Typically, context-sensitive help topics are made available by means of the F1 key.
However, in a dialog or a wizard, overriding the getHelpCtx() method provides a button the
user clicks to show related help topics.

Pressing the F1 key provides the help topic, thanks to this shortcut registration in the layer
file:

<folder name="Shortcuts">
 <file name="F1.shadow">
 <attr name="originalFile" stringvalue="
 Actions/Help/org-netbeans-modules-javahelp-HelpAction.instance"/>
 </file>
</folder>

Now the user presses the F1 key, which runs the HelpAction that automatically searches
the activated component. The ID of the help topic is identified via the getHelpCtx() method. In
addition, a JComponent subclass can be used, and then the setHelpIDString() method can be
used to define the map ID:

JComponent c = ...
HelpCtx.setHelpIDString(c, "com.galileo.netbeans.module.about");

Note that your component must be in focus; otherwise, the help topic will not be found. By
default, the TopComponent is not focusable, to which end you use the isFocusable() method.
Make the window focusable simply by calling setFocusable():

final class MyTopComponent extends TopComponent {
 private MyTopComponent() {
 setFocusable(true);
 }

24174ch09_final_idx.fm Page 179 Friday, April 24, 2009 5:24 PM

180 C H A P T E R 9 ■ R E U S A B L E N E T B E A N S P L A T F O R M C O M P O N E N T S

 public HelpCtx getHelpCtx() {
 return new HelpCtx("com.galileo.netbeans.module.about");
 }
}

Now MyTopComponent is activated. The user can press the F1 key and the help topic matching
the map ID com.galileo.netbeans.module.about will be called. You define a map ID for each
help topic in the map file as shown in the “Creating and Integrating a Helpset” section earlier in
the chapter. To show the Help window without a specific topic being displayed within it, return
HelpCtx.DEFAULT_HELP. The HelpCtx determines the ID of the help topic by using the fully quali-
fied name of the class. In the preceding example, if we were to use new HelpCtx(getClass()), the
help ID would be unique, returning com.galileo.netbeans.module.MyTopComponent.

Opening the Help System
To call the help system programmatically, access it with Lookup (see Listing 9-1). There is a
registered implementation of the Help class.

Listing 9-1. Calling a specific help topic

Help h = Lookup.getDefault().lookup(Help.Class);
if(h != null)
 h.showHelp(new HelpCtx("com.galileo.netbeans.Module.about"));
 // h.showHelp(HelpCtx.DEFAULT_HELP);

We pass a HelpCtx instance representing a help topic to the method showHelp(). The
constructor receives the ID of the requested help topic, which was registered in the map file.
Instead, to show the default help topic, pass HelpCtx.DEFAULT_HELP to the constructor.

Output Window
The NetBeans Platform provides the Output window as a display area for showing messages to
the user (see Figure 9-1). Typically, messages come from tasks processed by your application.
Messages from multiple tasks display in different tabs simultaneously.

Figure 9-1. Output window

24174ch09_final_idx.fm Page 180 Friday, April 24, 2009 5:24 PM

C H A P T E R 9 ■ R E U S A B L E N E T B E A N S P LA T F O R M C O M P O N E N T S 181

To use this module in applications, go to the Project Properties dialog of the application
and activate the Output Window module and the I/O APIs module, both within the platform
cluster in the Libraries panel. Once modules are activated within the application, dependen-
cies on them can be set in the module.

Next, specify a dependency on I/O APIs in the module. In the Project Properties dialog of
the module, set I/O APIs as a dependency.

As a result of the preceding settings, the module writes to the Output window as shown in
Listing 9-2.

Listing 9-2. Using the Output window

InputOutput io = IOProvider.getDefault().getIO("Task", true);
io.getOut().println("Info message");
io.getErr().println("error message");
io.getOut().close();
io.getErr().close();

In the preceding snippet, we use IOProvider.getDefault(), using Lookup to access the
related service provider located in the Output Window module. If the Output Window module
(and thus the service provider) is not available, the standard output is used instead. The Output
window is implemented as a global service, about which further information is found in
Chapter 6.

The getIO() method provides the InputOutput through which the window is accessed.
Define the name appearing in the tab or title bar. The Boolean parameter determines whether
a new tab is created or an already existing one is used. Using the methods getOut() and
getErr(), obtain an OutputWriter, which is a subclass of the Java PrintWriter class. Use
println() for printing messages, as is normally done.

The text of the getErr() output is displayed in red in the Output window. It is important to
end the stream with the close() method again. Doing so also sets the bold text of tabs back to
normal font and signals the user that the task is complete.

If multiple tabs are displayed, use the InputOutput.select() method to ensure the appro-
priate tab is active. Open the Output window by means of the Window ➤ Output menu item.
This menu item is added by the Output Window module.

The Output window has its own toolbar, within which you integrate actions. In Figure 9-1,
you can see two actions for stopping and resuming the current process. To that end, there is a
variant on the getIO() method, anticipating an array of actions as its second parameter. You
can pass in very simple action implementations. However, it is important that your action uses
the SMALL_ICON property to provide an icon to be added to the Output window toolbar.

In the following snippet, an example of such an action is illustrated. It derives from the
AbstractAction class, which implements the Action interface. In the constructor, create an
ImageIcon and assign it to the SMALL_ICON property:

public class StopTask extends AbstractAction {
 public StopTask() {
 putValue(SMALL_ICON,
 new ImageIcon(ImageUtilities.loadImage("icon.gif", true)));
 }
 public void actionPerformed(ActionEvent evt) {
 // stop the task

24174ch09_final_idx.fm Page 181 Friday, April 24, 2009 5:24 PM

182 C H A P T E R 9 ■ R E U S A B L E N E T B E A N S P L A T F O R M C O M P O N E N T S

 }
}

Finally, pass a second parameter to the getIO() method. The second parameter is an array
of actions, in this case consisting of an instance of the StopTask class:

InputOutput io =
 IOProvider.getDefault().getIO("Task", new Action[]{new StopTask()});

Navigator
Context-sensitive panels for navigating documents shown in the editor are defined by using
the Navigator and its API. Constructors, methods, and other elements of an opened Java source
file are shown by default in the Navigator (see Figure 9-2), allowing the user to double-click
these items so that the cursor jumps to the relevant point in the document. However, this is
only one of the Navigator’s many uses. In fact, the Navigator can be used to direct the user
through any kind of document.

Figure 9-2. Navigator panel for a single Java source file

The Navigator API provides the NavigatorPanel interface, defining new panels in the Navi-
gator. Panels are added declaratively, using the folder of a specific MIME type in the module
layer file. When a file of a particular MIME type is opened, Navigator panels registered under
that MIME type are displayed.

However, providing a MIME type is not required. In some cases, a FileObject, DataObject,
or Node corresponding to a Navigator panel may not be available. In those cases, use the
NavigatorLookupHint interface, adding it to the related component Lookup. The Navigator-
LookupHint interface specifies a single method, used to return a MIME type. In this way, a
Navigator panel can be associated with a component, even if the component has no corre-
sponding MIME type.

24174ch09_final_idx.fm Page 182 Friday, April 24, 2009 5:24 PM

C H A P T E R 9 ■ R E U S A B L E N E T B E A N S P LA T F O R M C O M P O N E N T S 183

As an example, take the code from the “Intermodule Communication” section in
Chapter 6 and extend it with another module. The example in Chapter 6 searches a list and
shows Mp3FileObjects as its entries. However, the selected element is made available via the
local Lookup. This element, making music titles available, is used in a new module, where we
make all albums available in a Navigator panel, as shown in Figure 9-3 and in the sections that
follow.

The example also shows how easy it is to extend an application on the NetBeans Platform
by adding new modules and components that provide additional features.

Figure 9-3. Context-sensitive Navigator panel

The Navigator API belongs not to the standard set of modules in the NetBeans Platform,
but to those belonging to the NetBeans IDE. Therefore, specify using that API by going to the
Project Properties dialog and choosing the API from the ide cluster. First, activate the cluster,
and then select the specific module where the API is found.

Next, add a new module to the suite, with the name MP3 Navigator. Dependencies
required by this module are the Navigator API and the Utilities API. Before beginning to code,
use the New File dialog to create a new JPanel Form. Change the class created by the wizard so
that it extends JComponent instead of JPanel. Next, implement the interfaces NavigatorPanel
and LookupListener.

The contents of the JPanel are defined with the Matisse GUI Builder. For example, to
understand the code shown in Listing 9-3, you need know that two JLabels and a JList have
been added.

24174ch09_final_idx.fm Page 183 Friday, April 24, 2009 5:24 PM

184 C H A P T E R 9 ■ R E U S A B L E N E T B E A N S P L A T F O R M C O M P O N E N T S

Listing 9-3. Navigator panel implementation

public class Mp3AlbumNavigatorPanel extends JComponent
 implements NavigatorPanel, LookupListener {
 private Lookup.Result<Mp3FileObject> result = null;
 public Mp3AlbumNavigatorPanel() {
 initComponents();
 }
 public JComponent getComponent() {
 return this;
 }
 public void panelActivated(Lookup context) {
 result = Utilities.ActionsGlobalContext().lookupResult(Mp3FileObject.class);
 result.addLookupListener(this);
 }
 public void panelDeactivated() {
 result.removeLookupListener(this);
 result = null;
 }
 public void resultChanged(LookupEvent event) {
 Collection<? extends Mp3FileObject> mp3s = result.allInstances();
 if(!mp3s.isEmpty()) {
 Mp3FileObject mp3 = mp3s.iterator().next();
 // search for albums of selected artist and display it
 albumsOf.setText(mp3.getArtist());
 DefaultListModel model = new DefaultListModel();
 model.addElement(new String("Album 1 of " + mp3.getArtist()));
 model.addElement(new String("Album 2 of " + mp3.getArtist()));
 albums.setModel(model);
 }
 }
}

Use the getComponent() method specified by the NavigatorPanel interface to return the
Navigator panel. The panelActivated() and panelDeactivated() methods are called if the
panel is selected or deselected. With activation of the panel, we receive a Lookup.Result for the
Mp3FileObject via the global Lookup. Next, register a LookupListener to be able to react when
new entries need be added to the list.

When the Lookup changes, the resultChanged() method is called, which adds new
content to the panel. To simplify things, our code will simply add two new entries. In real life,
however, you’d typically search a database and display the content you find there.

To enable the Navigator to find and integrate the panel, register the panel in your layer file.
This is done in the Navigator/Panels folder. Within this folder, assign the panel to a MIME type
relevant to the entries displayed in the panel (see Listing 9-4). In this case, use the audio/mpeg
MIME type, although any MIME type could be used.

Listing 9-4. Registration of the Navigator panel

<folder name="Navigator">
 <folder name="Panels">
 <folder name="audio">

24174ch09_final_idx.fm Page 184 Friday, April 24, 2009 5:24 PM

C H A P T E R 9 ■ R E U S A B L E N E T B E A N S P LA T F O R M C O M P O N E N T S 185

 <folder name="mpeg">
 <file name="com-galileo-netbeans-module-mp3navigator-
 Mp3AlbumNavigatorPanel.instance"/>
 </folder>
 </folder>
 </folder>
</folder>

You might ask how the Navigator knows when to show our panel. The Navigator normally
shows entries that correspond to the content of the currently selected node. In cases such as
ours, in which we are not dealing with nodes, use the NavigatorLookupHint instead. The
NavigatorLookupHint interface provides the getContentType() method, with which the compo-
nent (in our case the Mp3SearchList) provides the MIME type for which a panel should be
shown. Implement this interface in the Mp3SearchList class (see Listing 9-5) and return the
audio/mpeg MIME type, which is how our panel was registered in the layer file.

Listing 9-5. Implementation of the NavigatorLookupHint interface

final class Mp3SearchList extends TopComponent implements ListSelectionListener {
 private Mp3SearchList() {
 ...
 associateLookup(new ProxyLookup(
 new AbstractLookup(content),
 Lookups.singleton(new Mp3AlbumNavigatorLookupHint())));
 }
 private static final Class Mp3AlbumNavigatorLookupHint
 implements NavigatorLookupHint {
 public String getContentType() {
 return "audio/mpeg";
 }
 }
}

Provide the inner class Mp3AlbumNavigatorLookupHint, implementing the
NavigatorLookupHint interface. Add an instance of this class to your local Lookup. Because we
defined an AbstractLookup as a local Lookup, which contains the selected entry from the
search list, we cannot display this instance directly. Provide a ProxyLookup to which we pass the
AbstractLookup and a Lookup providing the Lookups factory. Define this ProxyLookup with the
associateLookup() method as a local Lookup. As soon as the Mp3SearchList receives focus, the
Navigator is informed about the available NavigatorLookupHint in the global Lookup. As a
result, the Navigator calls the method getContentType() and, with the help of the return value,
shows the required panel.

The Navigator becomes even more interesting when multiple components are available
within it. Many panels can be created as described previously, and the related MIME types can
be registered in the layer file. The Navigator switches between panels automatically, depending
on which component is currently active.

Finally, be aware of the NavigatorHandler class. The NavigatorHandler class contains the
activatePanel() method, to which you can pass a panel that you want opened
programmatically.

24174ch09_final_idx.fm Page 185 Friday, April 24, 2009 5:24 PM

186 C H A P T E R 9 ■ R E U S A B L E N E T B E A N S P L A T F O R M C O M P O N E N T S

Properties Window
The Properties window is a component for displaying and editing node properties. Node prop-
erties represent data with which the user interacts (see the “Nodes API” section in Chapter 7),
while the Properties window allows the user to change those properties.

A group of related properties can be managed by the NetBeans Sheet class, belonging to
the Nodes API. The AbstractNode class, which is typically the superclass of your node, provides
a sheet of properties via its getSheet() method. Simply override the createSheet() method,
adding the node’s specific properties to the sheet.

Implementing a Properties window is shown by example. In the example, we show proper-
ties of the currently selected MP3 file in the Properties window. First, create a new file type for
MP3 files, together with a related Node class, as described in Chapter 7. The end result should be
as shown in Figure 9-4.

Figure 9-4. Properties of the selcted node shown in the Properties window

Providing Properties
Override the createSheet() method in the Node class (in this example the Mp3DataNode class)
representing files of the MP3 type. First, create a Sheet instance via the call to the superclass,
providing a set of default properties to the instance. You can see these default properties in the
first section of the Properties window in Figure 9-4.

If you do not want this default set of properties, provide your own Sheet instance to the
constructor. From Figure 9-4, you can see that the properties can be divided across different
areas, and expanded or collapsed by the user. Properties of each area are managed by the
Sheet.Set class (see Listing 9-6).

To create the areas for ID3v1 and ID3v2, use the createPropertiesSet() factory method to
create two Sheet.Sets. Provide a unique name for the Sheet.Set, using the method setName()
for use within the internals of the Properties window module. If you fail to name your

24174ch09_final_idx.fm Page 186 Friday, April 24, 2009 5:24 PM

C H A P T E R 9 ■ R E U S A B L E N E T B E A N S P LA T F O R M C O M P O N E N T S 187

Sheet.Set, only the most recently created Sheet.Set is shown. With the setDisplayName()
method, specify the name of the heading for the set you create.

Listing 9-6. Use createSheet() to provide a sheet of properties shown in the Properties window.

public class Mp3DataNode extends DataNode {
 protected Sheet createSheet() {
 Sheet s = super.createSheet();
 Sheet.Set id3v1 = Sheet.createPropertiesSet();
 Sheet.Set id3v2 = Sheet.createPropertiesSet();
 id3v1.setName("ID3v1");
 id3v1.setDisplayName("ID3v1");
 id3v2.setName("ID3v2");
 id3v2.setDisplayName("ID3v2");
 Mp3DataObject mp3 = getLookup().lookup(Mp3DataObject.class);
 try {
 PropertySupport.Reflection<String> artistProp =
 new PropertySupport.Reflection<String>(mp3, String.class, "artist");
 PropertySupport.Reflection<String> titleProp =
 new PropertySupport.Reflection<String>(mp3, String.class, "title");
 PropertySupport.Reflection<String> genreProp =
 new PropertySupport.Reflection<String>(mp3, String.class, "genre");
 Property trackProp = new PropertySupport.Reflection<Integer> (
 mp3, Integer.class, "getTrack", null);
 artistProp.setName("Artist");
 titleProp.setName("Title");
 genreProp.setName("Genre");
 trackProp.setName("Track");
 id3v1.put(artistProp);
 id3v1.put(titleProp);
 id3v1.put(genreProp);
 id3v2.put(trackProp);
 } catch (NoSuchMethodException ex) {
 ex.printStackTrace();
 }
 s.put(id3v1);
 s.put(id3v2);
 return s;
 }
}

We use Lookup to access a DataObject representing the MP3 file that made its properties
available. For each property, create an object. In addition, make a distinction between proper-
ties that can be changed and those that can only be displayed. For properties the user is able to
change, we provide a PropertySupport.Reflection instance with the corresponding type—in
this case a String.

As parameters, pass the DataObject, the property data type, and the name of the getter/
setter combination. For example, for the first property, we can pass in the artist, which means
that we need to create an Mp3DataObject, as well as the setArtist() and getArtist() methods.
Otherwise, a NoSuchMethodException will be thrown.

24174ch09_final_idx.fm Page 187 Friday, April 24, 2009 5:24 PM

188 C H A P T E R 9 ■ R E U S A B L E N E T B E A N S P L A T F O R M C O M P O N E N T S

Then create a different constructor for properties the user should not be able to change.
In this case, pass in the getter and setter separately. Since we do not want the user to be able
to change the property, pass in null for the setter. To illustrate these points, part of the
Mp3DataObject class is shown in Listing 9-7.

Listing 9-7. A DataObject supporting properties must include getters and setters. If the property
should not be changed, a setter is not provided.

public class Mp3DataObject extends MultiDataObject {
 public String getArtist() {
 return this.artist;
 }
 public void setArtist(String artist) {
 this.artist = artist;
 }
 ...
 public int getTrack() {
 return this.track;
 }
}

Give created instances representing individual properties a name via the setName()
method, and add them to the Sheet.Set via the put() method. Finally, use another put() to add
the Sheet.Set to the Sheet, which is returned at the end of the overridden createSheet()
method.

User-Defined Properties Editor
A Swing component can be provided as an editor for a property in the Properties window.
Doing so, you can support the user by (for example) restricting the available list of values
defined for a particular property. In Figure 9-4, you saw the value for the genre property set via
a JComboBox. To provide an editor of this kind, provide the following statement for each prop-
erty with the GenrePropertyEditor, providing a Swing component such as a JComboBox:

genreProp.setPropertyEditorClass(GenrePropertyEditor.class);

Now observe an editor of this kind being created. Focus only on the most important
classes and methods.

Start with the GenrePropertyEditor class, which is extended using the standard JDK class
PropertyEditorSupport, a base implementation that must be implemented by all user-defined
editors. In addition, implement ExPropertyEditor and InplaceEditor.Factory (see Listing 9-8)
Obtain a PropertyEnv object via the attachEnv() method, which belongs to ExPropertyEditor,
providing access to the Properties window.

Use the attachEnv() method to register an InplaceEditor.Factory instance, which is our
class, responsible for the creation of the editor. The getInplaceEditor() method retrieves the
editor. Next, provide implementation of the graphic editor’s component as a private inner
class, derived from InplaceEditor.

To use a JComboBox as the editor, create it as a private member of the class and initialize it
with desired values. Then use getComponent() to return the JComboBox from the editor. Also
important in the InplaceEditor are the setValue() and getValue() methods, which define and

24174ch09_final_idx.fm Page 188 Friday, April 24, 2009 5:24 PM

C H A P T E R 9 ■ R E U S A B L E N E T B E A N S P LA T F O R M C O M P O N E N T S 189

provide the values of the JComboBox, together with the reset() method, which returns a
changed entry to its original value, typically via the Esc key.

Listing 9-8. The user-defined editor for selecting the genre

public class GenrePropertyEditor extends PropertyEditorSupport
 implements ExPropertyEditor, InplaceEditor.Factory {
 private InplaceEditor ed = null;
 public void attachEnv(PropertyEnv propertyEnv) {
 propertyEnv.registerInplaceEditorFactory(this);
 }
 public InplaceEditor getInplaceEditor() {
 if(ed == null)
 ed = new Inplace();
 return ed;
 }
 private static Class Inplace implements InplaceEditor {
 private PropertyEditor editor = null;
 private PropertyModel model = null;
 private JComboBox genres = new JComboBox(
 new String[] {"Techno", "Trance", "Rock", "Pop"});

 public JComponent getComponent() {
 return this.genres;
 }
 public Object getValue() {
 return this.genres.getSelectedItem();
 }
 public void setValue(Object object) {
 this.genres.setSelectedItem(object);
 }
 public void reset() {
 String genre = (String) editor.getValue();
 if(genre != null)
 this.genres.setSelectedItem(genre);
 }
 }
}

Options Window
With the Options Dialog API and SPI, you easily provide extensions to the NetBeans Platform
Options window. Using the Options window, the user can easily and comfortably customize
application settings. In addition, the module providing this functionality also provides basic
scaffolding of the dialog into which your panels can be integrated declaratively via the layer
file.

Two types of integration panels are supported: primary panels and secondary panels. A
primary panel is a (main) category within the Options dialog, as, for example, the General or
Keymap categories (see Figure 9-5). A tab (subcategory) within a primary panel is a secondary
panel.

24174ch09_final_idx.fm Page 189 Friday, April 24, 2009 5:24 PM

190 C H A P T E R 9 ■ R E U S A B L E N E T B E A N S P L A T F O R M C O M P O N E N T S

Storing and loading of settings is done via the Preferences API. A specific implementation
of this API is provided by the NetBeans Platform, as will be discussed in the “Settings Adminis-
tration” section.

Figure 9-5. Standard Options window, within which you integrate your panels.

Providing an Options Panel
To create either kind of Options panel, the IDE provides a wizard. You find the wizard under
File ➤ New File ➤ Module Development ➤ Options Panel. Depending on the type of panel
being integrated, choose either the secondary panel or primary panel option.

In case of a secondary panel, you need to choose a primary panel, specify a title and a
tooltip for this panel, and define the keywords for the Quick Search. If you choose the primary
panel option, you need to specify the title, a category label, an icon, and the keywords for the
Quick Search. Click Next to specify a class name prefix for the classes to be created by the
wizard, and then click Finish.

View and Controller
An Options panel consists of a view and a controller. The view provides the GUI, as well as
the loading and storing of data. The controller generates the view and mediates between the
Options window and the view. The panel that defines the view is derived from the JPanel class.
On this panel, you place arbitrary Swing components, which are used to show options in the
panel and allow the user to select them.

For example, in Listing 9-9, two text fields are used. The values of these fields are stored
and loaded via the Preferences API (see the “Settings Administration” section) using the
methods store() and load(). These are called by the controller while opening and closing the
panel.

The Options window can be closed by the user when appropriate settings have been
selected. At that point, the panel must inform the Options window about its state, either valid
or invalid. Implement validation via the valid() method. In this example, we want to make
sure the user enters a value in the first field. Accordingly, we add a DocumentListener to the text
field. Whenever the user makes an entry in the first text field, the controller is informed via the

24174ch09_final_idx.fm Page 190 Friday, April 24, 2009 5:24 PM

C H A P T E R 9 ■ R E U S A B L E N E T B E A N S P LA T F O R M C O M P O N E N T S 191

Controller.changed(), which then calls the valid() method, only returning true when at least
one character is entered into the text field.

Listing 9-9. View of the Options panel, deriving from JPanel

public final class ModuleOptions1Panel extends JPanel
 implements DocumentListener {
 private JTextField option1;
 private JTextField option2;
 private final ModuleOptions1PanelController controller;
 public ModuleOptions1Panel(ModuleOptions1PanelController ctrl) {
 this.controller = ctrl;
 initComponents();
 option1.getDocument().addDocumentListener(this);
 }
 public void insertUpdate(DocumentEvent event) {
 controller.changed();
 }
 public void removeUpdate(DocumentEvent event) {
 controller.changed();
 }
 public void changedUpdate(DocumentEvent event) {
 controller.changed();
 }
 public void load() {
 option1.setText(NbPreferences.forModule(ModuleOptions1Panel.class).
 get("option1", "default"));
 }
 public void store() {
 NbPreferences.forModule(ModuleOptions1Panel.class).
 put("option1", option1.getText());
 }
 public boolean valid() {
 if(option1.getText().length() == 0) {
 return false;
 } else {
 return true;
 }
 }
}

Now look at the responsibilities of the controller. Since the controller needs to interact with
the Options window, its interfaces are defined by the abstract class OptionsPanelController.

The controller’s most important task is creation of the view, using getPanel(), which we
provide via the method getComponent(). As you can see in Listing 9-10, getComponent() receives
a Lookup. This is a proxy Lookup, containing the Lookups of all controllers available in the
Options window. The controller uses the getLookup() method to make a Lookup available,
which is already implemented by the abstract class OptionsPanelController. This default
implementation provides an empty Lookup. To put objects into the Lookup, override the
getLookup() method. This Lookup is received via the getComponent() method, which is used to
communicate with other Options panels. See Chapter 6 for a discussion on Lookups.

24174ch09_final_idx.fm Page 191 Friday, April 24, 2009 5:24 PM

192 C H A P T E R 9 ■ R E U S A B L E N E T B E A N S P L A T F O R M C O M P O N E N T S

The method update() is called the first time a panel is accessed. Here, we call the load()
method on the panel, which loads data to initialize the fields. When the user clicks the OK
button, the applyChanges() method in the Options window is called. Here, the data is saved via
the save() method. If the user closes the Options window, we use the cancel() method to
handle this scenario, but we obviously do not save the data. Users can also roll back the changes
that have been made.

Using the isValid() method, we inform the Options window whether data in the panels
is in order. If this is not the case, the OK button is automatically deactivated. Moreover, the
Options window must also be informed whether data has been changed. This is done with the
isChanged() method.

With the getHelpCtx() method, a HelpCtx object is provided that contains a reference to a
help topic displayed if the user clicks the Options window’s Help button.

To inform the Options window of changes in data, provide it with code that will register
changes. This is achieved via the standard JDK methods addPropertyChangeListener() and
removePropertyChangeListener().

You already know the changed() method from the view class ModuleOptions1Panel. This is
called when data changes in the view, informing the Options window, which has registered
itself as a listener. As a result, the Options window checks again whether data is valid.

Listing 9-10. Options panel controller

final class ModuleOptions1PanelController extends OptionsPanelController {
 private ModuleOptions1Panel panel;
 private final PropertyChangeSupport pcs = new PropertyChangeSupport(this);
 private boolean changed;
 public JComponent getComponent(Lookup masterLookup) {
 return getPanel();
 }
 private ModuleOptions1Panel getPanel() {
 if (panel == null) {
 panel = new ModuleOptions1Panel(this);
 }
 return panel;
 }
 public void update() {
 getPanel().load();
 changed = false;
 }
 public void applyChanges() {
 getPanel().store();
 changed = false;
 }
 public void cancel() {
 }
 public boolean isValid() {
 return getPanel().valid();
 }
 public boolean isChanged() {
 return changed;
 }

24174ch09_final_idx.fm Page 192 Friday, April 24, 2009 5:24 PM

C H A P T E R 9 ■ R E U S A B L E N E T B E A N S P LA T F O R M C O M P O N E N T S 193

 public HelpCtx getHelpCtx() {
 return null;
 }
 public void addPropertyChangeListener(PropertyChangeListener l) {
 pcs.addPropertyChangeListener(l);
 }
 public void removePropertyChangeListener(PropertyChangeListener l) {
 pcs.removePropertyChangeListener(l);
 }
 public void changed() {
 if (!changed) {
 changed = true;
 pcs.firePropertyChange(OptionsPanelController.PROP_CHANGED, false, true);
 }
 pcs.firePropertyChange(OptionsPanelController.PROP_VALID, null, null);
 }
}

Registration
Option panels can be integrated declaratively into the application via the layer file. The layer
file entries are processed by two factory methods, responsible for Options panel controller
creation, dependent on the type of the panel concerned. The wizard creates the necessary
entries in the layer file. These are shown in Listing 9-11.

Listing 9-11. Registration of a secondary Options panel

<folder name="OptionsDialog">
 <folder name="Advanced">
 <file name="com-galileo-netbeans-module-ModuleOptions1AdvancedOption.instance">
 <attr name="controller" newvalue="
 com.galileo.netbeans.module.ModuleOptions1OptionsPanelController"/>
 <attr name="displayName" bundlevalue="com.galileo.netbeans.module.Bundle
 #AdvancedOption_DisplayName_ModuleOptions1"/>
 <attr name="instanceCreate" methodvalue="
 org.netbeans.spi.options.AdvancedOption.createSubCategory"/>
 <attr name="keywords" bundlevalue="com.galileo.netbeans.module.Bundle
 #AdvancedOption_Keywords_ModuleOptions1"/>
 <attr name="keywordsCategory" stringvalue="Advanced/null"/>
 <attr name="toolTip" bundlevalue="com.galileo.netbeans.module.Bundle
 #AdvancedOption_Tooltip_ModuleOptions1"/>
 </file>
 </folder>
</folder>

The controller attribute specifies the panel controller, which we looked at earlier. The
displayName attribute is a pointer to a bundle where the name of the created panel is stored.
The same applies to the toolTip and keywords attributes. The keywordsCategory attribute spec-
ifies the relative path to your panel inside the Options window.

24174ch09_final_idx.fm Page 193 Friday, April 24, 2009 5:24 PM

194 C H A P T E R 9 ■ R E U S A B L E N E T B E A N S P L A T F O R M C O M P O N E N T S

Important is the instanceCreate attribute. It is used to specify the factory method, which is
new to version 6.5 and is responsible for the controller creation. When dealing with a secondary
panel, this is the AdvancedOption.createSubCategory() method.

The registration of a primary panel differs slightly, depending on whether the panel allows
secondary panels or not (see Listing 9-12).

Listing 9-12. Registration of a primary Options panel

<folder name="OptionsDialog">
 <file name="ModuleOptions2OptionsCategory.instance">
 <attr name="categoryName" bundlevalue="com.galileo.netbeans.module.Bundle
 #OptionsCategory_Name_ModuleOptions2"/>
 <attr name="controller" newvalue="
 com.galileo.netbeans.module.ModuleOptions2OptionsPanelController"/>
 <attr name="iconBase" stringvalue="com/galileo/netbeans/module/icon.png"/>
 <attr name="instanceCreate" methodvalue="
 org.netbeans.spi.options.OptionsCategory.createCategory"/>
 <attr name="keywords" bundlevalue="com.galileo.netbeans.module.Bundle
 #OptionsCategory_Keywords_ModuleOptions2"/>
 <attr name="keywordsCategory" stringvalue="ModuleOptions2"/>
 <attr name="title" bundlevalue="com.galileo.netbeans.module.Bundle
 #OptionsCategory_Title_ModuleOptions2"/>
 </file>
</folder>

Additional to the secondary panel, the preceding entries include the primary panel regis-
tration and an icon definition via the iconBase attribute. The factory method for a primary
panel is OptionsCategory.createCategory(). This type of registration allows no secondary
panels, because of the controller attribute, which specifies that the controller provides an
Options panel.

If you’ve checked the option allowing the primary panel to have secondary panels, the
preceding layer entry will contain the advancedOptionsFolder attribute instead of the
controller attribute:

<attr name="advancedOptionsFolder"
 stringvalue="OptionsDialog/ModuleOptions2OptionsCategory"/>

In this case, you can place your secondary panels under the folder OptionsDialog/
ModuleOptions2OptionsCategory.

Open Option Panels
Using the OptionsDisplayer class, you can access the Options window. You can access this
window directly with a particular tab opened as follows:

OptionsDisplayer.getDefault().open("ModuleOptions2OptionsCategory");

Settings Administration
Settings and configuration data within the NetBeans Platform is stored and loaded via the JDK
Preferences API. With the Preferences class, Java saves and loads settings without users

24174ch09_final_idx.fm Page 194 Friday, April 24, 2009 5:24 PM

C H A P T E R 9 ■ R E U S A B L E N E T B E A N S P LA T F O R M C O M P O N E N T S 195

needing to know their physical location. Various implementations are available, so that the
settings can be stored in a file, a system registry, or a database. Settings are stored in hierar-
chical structure in the form of key/value pairs. An instance of the Preferences class represents
one node within the hierarchy. Imagine a node as a file in a database where data can be saved.

With the NbPreferences class, the Utilities API provides an implementation of the Prefer-
ences API tailored to the NetBeans Platform. The NbPreferences class allows storage of settings
in a central configuration location within the application user directory. It does this using
properties files. Therefore, the NetBeans Platform implementation lets you handle preferences
on a per user basis.

The NbPreferences class provides two methods. The forModule() method provides a
Preferences node for each module in a properties file, stored in the config/Preferences folder
within the user directory (see Figure 9-6). The root() method provides an application-level
node that allows storing global preferences in the file config/Preferences.properties.

Figure 9-6. Settings can be stored via the NetBeans Platform Preferences implementation, either
for a specific module or globally.

Using the NetBeans Platform implementation of the Preferences class, loading and
storing user settings is easily accomplished. For example, to store the name and port of a
server, you simply make the call shown in Listing 9-13.

Listing 9-13. Loading and storing via the Preferences API

Preferences node = NbPreferences.forModule(this.getClass());
String name = node.get("server.name", "localhost");
int port = node.getInt("server.port", 8080);
node.put("server.name", name);
node.putInt("server.port", port);

Apart from the methods shown here for data access, several others are available. For
example, you can store arrays or Boolean values. Moreover, you can use the Preferences API
with a Preferences instance (which is a node) to register a NodeChangeListener as well as a

24174ch09_final_idx.fm Page 195 Friday, April 24, 2009 5:24 PM

196 C H A P T E R 9 ■ R E U S A B L E N E T B E A N S P L A T F O R M C O M P O N E N T S

PropertyChangeListener, notifying you when a child node is added or removed and when
changes to them are made.

Palette
The Palette module, which is part of the NetBeans IDE, is concerned with the graphic display
of components that can be dragged and dropped onto a surface in your application. Typical
implementations of the module aim to give the user easy access to a range of snippets, created
when a component is dropped into an editor. A good example of this is the Matisse GUI
Builder in the NetBeans IDE, which places its AWT and Swing components into the palette
(see Figure 9-7), from where the user moves them to the NetBeans editor. New components
can also be added to the palette at runtime.

The content of the palette is handled by the PaletteController. The PaletteController is
available to the TopComponent via its Lookup. Whenever a particular TopComponent is active
while a PaletteController is found in its Lookup, the palette opens automatically, displaying
its content. The PaletteController is created by a PaletteFactory class.

There are two ways to create the components displayed in the palette. You can define the
components within XML files you register in the layer file; alternatively, you can create a node
hierarchy and then display the hierarchy as components in your palette. We examine both
approaches in this chapter.

Note that you are not limited to providing palettes to your own TopComponents. Optionally,
you may register a palette in the layer file under the folder of a MIME type used by a
TopComponent in a different module. When a document of that MIME type is opened in the
editor, the palette opens. This approach is of particular use to those who want to extend the
NetBeans IDE. See the “Palette” section in Chapter 15 for further information on this particular
topic.

Figure 9-7. The NetBeans GUI Builder’s palette

24174ch09_final_idx.fm Page 196 Friday, April 24, 2009 5:24 PM

C H A P T E R 9 ■ R E U S A B L E N E T B E A N S P LA T F O R M C O M P O N E N T S 197

Defining and Adding Palette Components via the Layer File
A component placed into a palette is defined by the XML file shown in Listing 9-14.

Listing 9-14. An XML file defining a palette component

<!DOCTYPE editor_palette_item PUBLIC
 "-//NetBeans//Editor Palette Item 1.1//EN"
 "http://www.netbeans.org/dtds/editor-palette-item-1_1.dtd">
<editor_palette_item version="1.1">
 <body></body>
 <icon16 urlvalue="file:/E:/icon16.jpg"/>
 <icon32 urlvalue="file:/E:/icon32.jpg"/>
 <inline-description>
 <display-name>My Palette Item</display-name>
 <tooltip>My Palette Item</tooltip>
 </inline-description>
</editor_palette_item>

Looking at the preceding XML file, you can see that the elements icon16 and icon32 define
an icon to be shown for the component in question, assuming that the user has not chosen to
hide the component. Typically, the icons are 16 and 32 pixels in size. However, they can have
other dimensions as well. Despite that flexibility, it makes sense to use a 16-pixel icon for the
icon16 attribute because the same icon is used to represent the component in the Palette
Manager, which you can display by choosing it from the palette’s context menu. Icons shown
in the Palette Manager must be of that size. It is also interesting that, as you’ve just seen, abso-
lute paths can be used. That implies the icons need not necessarily be found within the
module. They are also defined in user-specific lists, which is useful when letting users define
their own components in the palette.

With the inline-description element and its subelements display-name and tooltip, you
set the text used for the component in the palette. As an alternative to inline-description, you
can use the description element. Then, with the attribute localising-bundle, you provide a
resource bundle that supplies the values of display name and tooltip. The attributes display
name key and tooltip key provide keys for these values. Thus, you may internationalize each
of your palette entries. For doing this, it is also useful to have a look at the DTD of the XML file
included in the Appendix.

Using the approach just described, many components for display in the palette can be
defined. When you’re ready to add them to the palette, do so by registering them in the module
layer file. Start by defining a new folder in the layer file, with any name you like. Within the
folder, create a subfolder for each category of component you want displayed in the palette.
Finally, within the category subfolder, register each of the XML files created to define the
components. A structure similar to the following results from this procedure:

<folder name="MyPaletteItems">
 <folder name="My Category">
 <file name="myitem1.xml" url="myitem1.xml"/>
 <file name="myitem2.xml" url="myitem2.xml"/>
 </folder>
</folder>

24174ch09_final_idx.fm Page 197 Friday, April 24, 2009 5:24 PM

198 C H A P T E R 9 ■ R E U S A B L E N E T B E A N S P L A T F O R M C O M P O N E N T S

Finally, we need the PaletteController added to the TopComponent for which we are
creating the palette. As stated in the introduction of this section, a PaletteFactory class is
required for this purpose. The PaletteFactory class makes a createPalette() method avail-
able, which is a factory method to which we pass the name of the palette root folder defined in
the layer file, in this case MyPaletteItems (see Listing 9-15). All remaining work is handled for
us by the PaletteFactory and PaletteController classes.

The second parameter requires implementing the PaletteAction class, offering actions for
certain events. In the simplest case, you provide an empty implementation of this abstract
class by defining each method as null or returning an empty array.

Listing 9-15. Creating a palette and connecting it to a TopComponent

private MyTopComponent() {
 ...
 try {
 associateLookup(Lookups.fixed(
 PaletteFactory.createPalette("MyPaletteItems", new MyActions())));
 } catch(IOException e) {
 // MyPaletteItems cannot be found
 }
}

Creating a Palette from a Node Hierarchy
Components in a palette are represented by NetBeans Node classes. However, in the previous
section we defined each component via an XML file. The NetBeans Platform then provided a
normal node to represent each XML file. In this section, we look at how a node implementation
is used to create palette components, rather than doing so via XML files.

It is important to realize that a node hierarchy used in this way must consist of three levels.
The uppermost level is a single root node that you pass to the createPalette() method to
generate the components. The middle level, which consists of the child nodes of the root node,
defines the categories in the palette. Finally, the second level’s children define the palette
components.

We’ll present an example to show how this fits together. We’ll create a palette that allows
the user to manage music albums via drag-and-drop onto a playlist, as shown in Figure 9-8.

24174ch09_final_idx.fm Page 198 Friday, April 24, 2009 5:24 PM

C H A P T E R 9 ■ R E U S A B L E N E T B E A N S P LA T F O R M C O M P O N E N T S 199

Figure 9-8. Using the palette for managing music albums

Node Classes for Creating and Displaying Data
As you saw in Chapter 7, the Children class creates and manages child nodes, while also acting
as their container. We use this class to manage the categories displayed as genres in the
palette. As in most such cases, we start by extending Children.Keys<String>, which has the
createNodes() method for generating nodes. In the example that follows (see Listing 9-16), this
approach is used to create three genre nodes.

It’s possible you’d create the genre nodes from records retrieved from a database. To do
this, see Chapter 13, where the connection and usage of databases in the context of NetBeans
Platform Applications is discussed, and extend the example by adding a palette.

Start with the GenreNode, which is quite a simple class. Its constructor receives a Genre as a
parameter, which is immediately passed to the AlbumNodeContainer class, at which point we
find ourselves within the second and third levels of the node hierarchy.

24174ch09_final_idx.fm Page 199 Friday, April 24, 2009 5:24 PM

200 C H A P T E R 9 ■ R E U S A B L E N E T B E A N S P L A T F O R M C O M P O N E N T S

Listing 9-16. All genres shown on the palette are managed by the GenreNodeContainer. A genre is
represented by the GenreNode.

public class GenreNodeContainer extends Children.Keys<String>{
 protected void addNotify() {
 setKeys(new String[] {"root"});
 }
 protected Node[] createNodes(String root) {
 return(new Node[]{
 new GenreNode("Techno, Trance and Dance"),
 new GenreNode("Rock and Pop"),
 new GenreNode("Country and Classic")});
 }
}
public Class GenreNode extends AbstractNode{
 public GenreNode(String genre) {
 super(new AlbumNodeContainer(genre));
 this.setDisplayName(genre);
 }
}

The AlbumNodeContainer class, responsible for the creation of albums for a particular genre,
is defined in the same way as the GenreNodeContainer class. In the example in Listing 9-17, we
again create three nodes, this time of the AlbumNode type and using the createNodes() method,
which receives the genre when the addNotify() method is invoked. That happens when users
expand the category node. Using the genre parameter, a database for suitable albums that
match the genre might be queried. Album data is managed by the Album class.

Listing 9-17. The AlbumNodeContainer class manages nodes of a certain genre for albums.

public class AlbumNodeContainer extends Children.Keys<String>{
 private String genre = new String();
 public AlbumNodeContainer(String genre) {
 this.genre = genre;
 }
 protected void addNotify() {
 setKeys(new String[] {genre});
 }
 protected Node[] createNodes(String genre) {
 return(new Node[] {
 new AlbumNode(
 new Album("Tunnel Trance Force 39", "42", "2","2007",
 "com/galileo/netbeans/Module/cover_small.jpg",
 "com/galileo/netbeans/Module/cover_big.jpg")),
 new AlbumNode(
 new Album("Dream Dance 43", "39", "3", "2007",
 "com/galileo/netbeans/Module/cover2_small.jpg",
 "com/galileo/netbeans/Module/cover2_big.jpg")),
 new AlbumNode(
 new Album("DJ Networx 31", "45", "2", "2006",
 "com/galileo/netbeans/Module/cover3_small.jpg",

24174ch09_final_idx.fm Page 200 Friday, April 24, 2009 5:24 PM

C H A P T E R 9 ■ R E U S A B L E N E T B E A N S P LA T F O R M C O M P O N E N T S 201

 "com/galileo/netbeans/Module/cover3_big.jpg"))
 });
 }
}

Finally, the AlbumNode class is responsible for display of the albums in the palette (as you
can see in Figure 9-8). Since an AlbumNode does not own its own nodes, we pass the empty
container Children.LEAF to the superclass via the constructor.

Use setDisplayName() to define the name shown on the palette. To make the display name
more attractive, you may use HTML tags as well. In Listing 9-18, you can see the getLabel()
method, which constructs an HTML string that shows the album data in a table and is used by
setDisplayName() in the constructor defining the component display name. The value of
getHtmlDisplayName() is used by the Palette Manager, which can be opened after right-clicking
inside the palette.

Next, getIcon() shows the component icon, which in this case is an album cover. The user
selects whether small or large icons are displayed, assuming that they have provided both types
of icons.

Listing 9-18. AlbumNode is responsible for displaying palette components.

public class AlbumNode extends AbstractNode {
 private Album album = null;
 public AlbumNode(Album album) {
 super(Children.LEAF);
 this.album = album;
 this.setDisplayName(getLabel());
 }
 public String getHtmlDisplayName() {
 return "" + album.getTitle() + " (" + album.getTracks() + " Tracks)";
 }
 public Image getIcon(int type) {
 return album.getIcon(type);
 }
 private String getLabel() {
 String label = new String("<html>" +
 "<table cellspacing=\"0\" cellpadding=\"1\">" +
 "<tr>" +
 "<td>Title </td>" +
 "<td>" + album.getTitle() + "</td>" +
 ...
 }
}

Creating the Palette
Once we create the node hierarchy, providing data for the palette, we initialize the palette and
add it to the Lookup of the PlaylistTopComponent. That ensures the palette is displayed when-
ever the playlist is active.

24174ch09_final_idx.fm Page 201 Friday, April 24, 2009 5:24 PM

202 C H A P T E R 9 ■ R E U S A B L E N E T B E A N S P L A T F O R M C O M P O N E N T S

Use the constructor of the PlaylistTopComponent to provide a root node, from which all
child nodes are created. The root node receives a new instance of GenreNodeContainer,
handling creation and management of child nodes. Finally, we require a PaletteAction
instance, which can simply be empty for now. Later, use createPalette() to create the
PaletteController, which is then added to the TopComponent’s local Lookup.

private PlaylistTopComponent() {
 ...
 Node root = new AbstractNode(new GenreNodeContainer());
 PaletteActions a = new MyPaletteActions();
 PaletteController p = PaletteFactory.createPalette(root, a);
 associateLookup(Lookups.fixed(p));
}

Implementing Drag-and-Drop Functionality
What’s still missing is drag-and-drop functionality, which lets us drag albums from the palette
and drop them onto the TopComponent. Two additional pieces of code are necessary to imple-
ment this functionality. First, make some changes to the Album and AlbumNode classes. Next, add
code to the TopComponent, which must react appropriately when albums are dropped onto its
surface.

The data we transfer onto the TopComponent is defined by the Album class. To allow data to
be draggable, we must define the Transferable interface in this class (see Listing 9-19). We
create a new DataFlavor, so data can be identified. We create a static instance of the DataFlavor
class in the Album. Next, with the method getTransferDataFlavors(), we return our DataFlavor.

Call the method getTransferData() from the TopComponent, using this to retrieve the
album instance, assuming the returned DataFlavor is of the type DATA_FLAVOR. If a different
DataFlavor is returned, throw an exception.

Listing 9-19. The album contains the data and implements the Transferable interface to provide
it via drag-and-drop.

public class Album implements Transferable {
 public static final DataFlavor DATA_FLAVOR =
 new DataFlavor(Album.class, "album");
 ...
 public DataFlavor[] getTransferDataFlavors() {
 return new DataFlavor[] {DATA_FLAVOR};
 }
 public boolean isDataFlavorSupported(DataFlavor flavor) {
 return flavor == DATA_FLAVOR;
 }
 public Object getTransferData(DataFlavor flavor)
 throws UnsupportedFlavorException {
 if(flavor == DATA_FLAVOR) {
 return this;
 } else {
 throw new UnsupportedFlavorException(flavor);
 }

24174ch09_final_idx.fm Page 202 Friday, April 24, 2009 5:24 PM

C H A P T E R 9 ■ R E U S A B L E N E T B E A N S P LA T F O R M C O M P O N E N T S 203

 }
}

Be aware that the user will not be dragging an Album object, but the Node that represents it.
We add the drag functionality to the Node, rather than to the Album object itself. This is done by
overriding the drag() method in the Node class, which provides a Transferable instance, in our
case the Album instance hiding behind the AlbumNode.

public class AlbumNode extends AbstractNode {
 private Album album = null;
 ...
 public Transferable drag() throws IOException {
 return album;
 }
}

Finally, we extend the PlaylistTopComponent such that it takes an action when the palette
component is dropped. We also require a TransferHandler registered on the object that
displays the result of the dropped component. In our case, we use the table albums with its
scroll pane scrollPane.

To define the data that we want to accept and process that data, we begin by implementing
our own TransferHandler, called AlbumTransferHandler. In doing so, we simply override two
methods. First, we override the canImport() method, which is called when a component is on
or over the TopComponent. Here, we determine whether the component is accepted. The test is
based on the DataFlavor defined in the Album (see Listing 9-20). If this method returns true, a
suitable mouse pointer is shown to the user, indicating that the TopComponent is able to handle
the drop event.

Second, we override the importData() method, which is called when the drop event is
invoked. Via the TransferSupport object, which is received as a parameter, we obtain the
Transferable instance provided by the drag() method from the AlbumNode. We then use
getTransferData() and our DataFlavor to obtain the related Album, and then add the data to the
JTable.

Listing 9-20. Accepting the drop of an album

final class PlaylistTopComponent extends TopComponent {
 private TransferHandler th = new AlbumTransferHandler();
 private PlaylistTopComponent() {
 ...
 albums.setTransferHandler(th);
 scrollPane.setTransferHandler(th);
 }
 private final Class AlbumTransferHandler extends TransferHandler {
 public boolean canImport(TransferSupport support) {
 return support.isDataFlavorSupported(Album.DATA_FLAVOR);
 }
 public boolean importData(TransferSupport support) {
 try {
 Album a = (Album) support.getTransferable().
 getTransferData(Album.DATA_FLAVOR);

24174ch09_final_idx.fm Page 203 Friday, April 24, 2009 5:24 PM

204 C H A P T E R 9 ■ R E U S A B L E N E T B E A N S P L A T F O R M C O M P O N E N T S

 DefaultTableModel model = (DefaultTableModel)albums.getModel();
 model.addRow(new Object [] {
 a.getTitle(), a.getTracks(), a.getCDs(), a.getYear()});
 return(true);
 } catch(Exception e) {
 e.printStackTrace();
 return false;
 }
 }
 }
}

Summary
In this chapter, you learned that the NetBeans Platform provides more than APIs. It also
provides a range of self-contained components. These can be used by services and extended by
service provider interfaces.

We started by looking at the help system, which you can very easily use in your own appli-
cations. Among other things, you learned how to create a new helpset and how to set up
context-sensitive help. We also looked at the Output window, displaying processing messages,
as well as the Navigator and the Properties window. Both are used to display data about the
structures in your application. Finally, we looked at the Options window and the palette. You
can use these or extend them quite easily via their APIs and SPIs.

24174ch09_final_idx.fm Page 204 Friday, April 24, 2009 5:24 PM

205

■ ■ ■

C H A P T E R 1 0

Internationalization and
Localization
Let’s Translate Our Code!

This chapter shows how to internationalize an application, adapting it to several languages.
You will learn the specifics on internationalizing source code and manifest files, as well as
adapting help topics and other resources, such as graphics.

Professional, flexible applications must be designed to adapt as easily as possible to their
specific target countries and languages. For this, the Java API, the NetBeans Platform, and the
NetBeans IDE support internationalization at minimum effort.

INTERNATIONALIZATION VS. LOCALIZATION

Internationalization is the process of designing/implementing an application so that it can easily be localized.
This is the first step, and is done by the software developer. For example, if you put something like
NbBundle.getMessage(...) in your code, you internationalize your application.

Localization is the process of creating/providing of resources (text, icons, etc.) for a specific country/
language. So, if you provide, for example, a Bundle_es_ES.properties file, you localize your application.

An application must be internationalized before it can be localized.

String Literals in Source Code
String literals in source code are outsourced in properties files. The language-dependent
literals can be separated and changed into other languages. This is possible even after the
release of an application. The constants are saved as key/value pairs in a properties file:

CTL_MyTopComponent = My Window
HINT_MyTopComponent = This is My Window

Any such resource file is handled by the Java class ResourceBundle. A ResourceBundle is
responsible for resources of a particular locale setting that specifies both country and language.
For easy handling of properties files and access to a ResourceBundle instance, the NetBeans

24174ch10_final_idx.fm Page 205 Friday, April 24, 2009 5:38 PM

206 C H A P T E R 1 0 ■ I N T E R N A T I O N A L I Z A T I O N A N D L O C A L I Z A T I O N

Platform provides the class NbBundle. The resource file must be named Bundle.properties, and
typically such a file is created for each package. The easiest way to create ResourceBundle
objects is by the following call:

ResourceBundle bundle = NbBundle.getBundle(MyTopComponent.class);

The class NbBundle creates a ResourceBundle object for the Bundle.properties file,
provided in the package of the class MyTopComponent. The required string literal is easily read
with the ResourceBundle method getString():

String msg = bundle.getString("CTL_MyTopComponent");

If only a few literals are required inside your class, use the method getMessage() to read a
literal directly without creating a ResourceBundle instance:

String msg = NbBundle.getMessage(MyTopComponent.class, "CTL_MyTopComponent");

Also, it is possible to add a placeholder to your string literals. This is most often required for
data or file names/paths. A pair of braces is used as a placeholder, which includes the number
of the parameter:

Result = {0} MP3-Files found for {1}

Pass these parameters to the getMessage() method, which replaces the placeholder with
the parameter. Alternatively, you can pass up to three parameters or an array with an unlimited
number of parameters:

String label = NbBundle.getMessage(MyTopComponent.class,
 "Result",
 new Integer(results.size()),
 search.getText());

For each properties file, only the literals of a single language are saved. To add another
language to your application, save the literals—with the same keys—in a properties file named
Bundle_<language>_<country>.properties in the same folder. The class NbBundle returns the
ResourceBundle using the method getBundle(). This equals the locale setting, which Locale.
getDefault() returns. The Bundle.properties file that does not contain language and country
identification is the default package. This package is used if there is no bundle for the locale
setting available. A specific bundle can also be requested by passing a Locale object to the
getBundle() method. To know in which order the bundles are searched, the method NbBundle.
getLocalizingSuffixes() lists all suffixes in the order used.

The method Locale.getDefault() returns the locale setting of the virtual machine by
default. To run the whole application with a specific locale setting, set the command-line
parameter locale. This parameter passes a language and country identification to the applica-
tion. You can find more information on this in Chapter 11.

The NetBeans IDE provides a wizard for the internationalization of string literals for your
source files. Let the wizard scan your files for strings, which can be moved to a properties file
(see Figure 10-1). You can thereby edit the key, the value, and the code to be pasted, rather than
the literal. You can find the wizard by going to Tools ➤ Internationalization ➤ International-
ization Wizard.

24174ch10_final_idx.fm Page 206 Friday, April 24, 2009 5:38 PM

C H A P T E R 1 0 ■ I N T E R N A T I O N AL I Z A T I O N A N D L O C A L I Z A T I O N 207

Figure 10-1. Move string literals automatically to a bundle and paste the needed source code with
the Internationalization wizard.

String Literals in the Manifest File
Among the string literals of the source files, you can also internationalize the textual informa-
tion of the manifest file. There are two options for doing so. The first option appends a
language identifier to the manifest attributes for using the same attribute several times:

Manifest-Version: 1.0
OpenIDE-Module: com.galileo.netbeans.module
OpenIDE-Module-Name: My Module
OpenIDE-Module-Name_de: Mein Modul

The second option (preferred by the author) is to move the attributes you intend to inter-
nationalize to a properties file. The attribute names are used as keys and are provided in the
according bundle for each language. For the attributes to be read off the bundle, notify the
manifest file by using the OpenIDE-Module-Localizing-Bundle attribute, as shown in Listings
10-1 through 10-3 (see also Chapter 3).

Listing 10-1. Manifest.mf

Manifest-Version: 1.0
OpenIDE-Module: com.galileo.netbeans.module
OpenIDE-Module-Localizing-Bundle: com/galileo/netbeans/module/Bundle.properties

24174ch10_final_idx.fm Page 207 Friday, April 24, 2009 5:38 PM

208 C H A P T E R 1 0 ■ I N T E R N A T I O N A L I Z A T I O N A N D L O C A L I Z A T I O N

Listing 10-2. Bundle.properties

OpenIDE-Module-Name = My Module

Listing 10-3. Bundle_de.properties

OpenIDE-Module-Name = Mein Modul

Internationalization of Help Pages
Generally, the help pages, including the helpset configuration files, are internationalized like
properties files (see the “String Literals in Source Code” section) by appending country and/or
language identifiers. Since a helpset typically consists of a large number of files, this results in a
confusing structure. Therefore, it is possible to store the files intended for internationalization
in a subfolder (see Figure 10-2). Language and country identification is no longer necessary, as
this is already represented by the subfolder.

Figure 10-2. Helpsets for specific languages are stored in separate folders.

Only the helpset file module-hs.xml remains in the default folder, and has no identifier. In
this file, you delegate to the corresponding folders (see Listing 10-4). The helpset file without
an identifier is always used when the active locale setting does not match with the existing files.
Normally, the default package contains the English version.

24174ch10_final_idx.fm Page 208 Friday, April 24, 2009 5:38 PM

C H A P T E R 1 0 ■ I N T E R N A T I O N AL I Z A T I O N A N D L O C A L I Z A T I O N 209

Listing 10-4. Helpset file that refers to a language-specific package

<maps>
 <homeID>com.galileo.netbeans.module.about</homeID>
 <mapref location="default/module-map.xml"/>
</maps>
<view mergetype="javax.help.AppendMerge">
 <name>TOC</name>
 <label>Contents</label>
 <type>javax.help.TOCView</type>
 <data>default/module-toc.xml</data>
</view>
<view mergetype="javax.help.AppendMerge">
 <name>Index</name>
 <label>Index</label>
 <type>javax.help.IndexView</type>
 <data>default/module-idx.xml</data>
</view>

Internationalizing Other Resources
Consider previously mentioned areas of internationalization of applications. Among those of
greatest importance, there are additional possibilities for internationalizing other application
components. The NetBeans Platform provides such possibilities.

Graphics
Not only can text be adapted as language and country specific, but also graphics such as icons.
For this purpose, the ImageUtilities class provides a version of the loadImage() method that is
usually used for loading graphics. Set a Boolean parameter for whether an available language/
country-specific version of the graphic should be loaded against the current locale setting. The
method NbBundle.getLocalizingSuffixes() lists possible identifications used as the search
order.

Image img = ImageUtilities.loadImage("resources/icon.gif", true);

If the active locale setting is, for example, de_DE on this call, first icon_de_DE.gif and
icon_de.gif are searched.

Any File
The NetBeans Platform defines a special protocol for loading other internationalized resources.
This is the nbresloc protocol, an extension of the nbres protocol that loads resources of all avail-
able modules. You can easily create a URL object for a resource addressed with this protocol:

URL u =new URL("nbresloc:/com/galileo/netbeans/module/icon.png");
ImageIcon icon = new ImageIcon(u);

24174ch10_final_idx.fm Page 209 Friday, April 24, 2009 5:38 PM

210 C H A P T E R 1 0 ■ I N T E R N A T I O N A L I Z A T I O N A N D L O C A L I Z A T I O N

If the locale setting is de_DE and a file named icon_de_DE.png or icon_de.png exists, then
this icon is loaded instead of icon.png.

Folders and Files
The System Filesystem provides two special attributes to internationalize names and icons of
folders and files. This makes sense for, e.g., menus whose names are only in the layer file
declared and cannot be read from the NbBundle class. These attributes are SystemFileSystem.
localizingBundle and SystemFileSystem.icon. With the first, link to your resource bundle,
leaving the .properties extension out. In this bundle, a key is searched that matches the full
path of the folder or file that the SystemFileSystem.localizingBundle attribute contains. In the
following example (see Listings 10-5 through 10-7), it concerns Menu/MyMenu and Menu/MyMenu/
MySubMenu. With the SystemFileSystem.icon attribute, you may additionally set an icon for the
folder or the file. Use the nbresloc protocol to load the internationalized version.

Listing 10-5. Layer.xml

<folder name="Menu">
 <folder name="MyMenu">
 <attr name="SystemFileSystem.localizingBundle"
 stringvalue="com.galileo.netbeans.module.Bundle"/>
 <folder name="MySubMenu">
 <attr name="SystemFileSystem.localizingBundle"
 stringvalue="com.galileo.netbeans.module.Bundle"/>
 <attr name="SystemFileSystem.icon"
 urlvalue="nbresloc:/com/galileo/netbeans/module/icon.png"/>
 </folder>
 </folder>
</folder>

Listing 10-6. Bundle.properties

Menu/MyMenu=Extras
Menu/MyMenu/MySubMenu=My Tools

Listing 10-7. Bundle_de.properties

Menu/MyMenu=Extras
Menu/MyMenu/MySubMenu=Meine Tools

In addition to these two special attributes, NetBeans Platform 6.5 introduces a generic
approach to localizing attributes. Instead of stringvalue or urlvalue, you can use bundlevalue
to point to a string literal in a properties bundle. You can use bundlevalue for any attributes in

24174ch10_final_idx.fm Page 210 Friday, April 24, 2009 5:38 PM

C H A P T E R 1 0 ■ I N T E R N A T I O N AL I Z A T I O N A N D L O C A L I Z A T I O N 211

an XMLFileSystem like the System Filesystem. We already used this approach while registering
actions in Chapter 4, registering DataLoaders in Chapter 7, and adding Option panels in
Chapter 9.

Let’s now look at an action registration entry in the layer file. We want to place the action’s
name in a properties bundle instead of writing it directly into the layer file. To load the value of
the displayName attribute from a properties bundle, the entry is defined as shown in Listing 10-8.

Listing 10-8. Usage of bundlevalue attributes

<file name="com-galileo-netbeans-module-MyFirstAction.instance">
 <attr name="displayName"
 bundlevalue="com.galileo.netbeans.module.Bundle#CTL_MyFirstAction"/>
</file>

With this entry, we are able to put the name of the action in a properties file, as shown in
the Listing 10-9.

Listing 10-9. Values of the layer attributes in properties files

com/galileo/netbeans/module/Bundle.properties
 CTL_MyFirstAction=My First Action

Administration and Preparation of Localized
Resources
Up until this point, localized resources have been stored in the same folder as the module,
whether Bundle.properties files or graphics are found. But how do you keep resources for each
language separated and later extend an already provided module with an additional transla-
tion? In this scenario, the NetBeans Platform shines. It easily provides an opportunity to
separate localized resources from the rest (basically the classes) of the module. It provides a
locale folder, stored under the module storage folder (see Figure 10-3). The resources for a
language in a JAR archive in this folder are extended with a language/country identifier. The
archive must have the same name as the module JAR archive. In this locale extension archive,
all language/country-specific resources are managed. They have the same package structure
as the module. The resources are separated and can be updated individually in this way. The
translation of the NetBeans Platform modules is done in the same manner.

24174ch10_final_idx.fm Page 211 Friday, April 24, 2009 5:38 PM

212 C H A P T E R 1 0 ■ I N T E R N A T I O N A L I Z A T I O N A N D L O C A L I Z A T I O N

Figure 10-3. Allocation of language-specific resources in a separate JAR archive in the locale folder

Note that the individual localized resources still need the language/country identifier. The
locale extension archive needs no manifest file, because the archive is exclusively identified by
the name of the localized packet and is added to the classpath of the module classloader (see
Chapter 2).

Here in this example, the resources for German are in the locale folder as a locale exten-
sion archive. The English resources that have no identifier are the default resources and are
provided in the JAR archive of the module. It is interesting that you can put the default resources
into a locale extension archive, because it has no identifier, has the same name as the module,
and is in the locale folder. Therefore, the resources you plan to localize are completely sepa-
rated from the module itself. Later, adding another language is done by a third party because it
is obvious which resources must be localized.

Summary
In this chapter, you learned how to prepare your application for different countries and
languages (internationalization) and how to provide different resources for different countries
and languages (localization). We started by looking at string literals in source code. You saw
that with the help of the NbBundle class, together with a NetBeans IDE wizard, it is very easy to
put your language-specific content into a separate properties file.

We also looked at the localization of help pages. Not only strings can be localized, since
there is also support for loading locale-specific graphics. You also learned how to localize layer
file values, and you learned how to distribute your localized content as a separate module.

24174ch10_final_idx.fm Page 212 Friday, April 24, 2009 5:38 PM

213

■ ■ ■

C H A P T E R 1 1

Real-World Application
Development
Let’s Understand the
Development Cycle!

This chapter shows how to create and configure a real application based on application
modules, including customizing the NetBeans Platform to fit particular application needs.
Finally, the chapter shows how to create an application distribution that can be shipped to end
users.

Creation
To deliver modules as complete and standalone applications, create a NetBeans Platform
Application. This project type, similar to a Module Suite, is a container for application modules,
providing configuration environments for the product. Normally, an application is created
before the modules that define it, which are added to the application afterward. Application
modules can be tested during the development cycle as a complete application. Furthermore,
an application is necessary to define module dependencies. The creation of a NetBeans Plat-
form application is supported inside the NetBeans IDE via a special wizard. The wizard is
started with File ➤ New Project. Select the category NetBeans Modules and the project type
NetBeans Platform Application. The application modules are added using the project proper-
ties under Sources. If you are creating a new module, define the assigned application in the
wizard.

You define the NetBeans Platform modules of your application in the Libraries category of
the application’s Project Properties dialog. There, you can activate or deactivate modules for
inclusion in the application. Note that the modules you create can define dependencies only
on modules that are activated here. If you want to define a dependency on a module but you
cannot find it, you probably simply need to activate it in the Project Properties dialog.

The application is configured using project properties beneath the category Build. If
choosing to create a standalone application, specify a branding name. Its purpose is described
in the “Customization of Platform Modules” section, which follows. Additionally, you can

24174ch11_final_idx.fm Page 213 Friday, April 24, 2009 1:30 PM

214 C H A P T E R 1 1 ■ R E A L - W O R L D A P P L I C AT I O N D E V E LO P ME N T

define the name of your application and select an icon, shown as the window icon in the
About dialog. Selecting the Build ➤ Splash Screen category, using the tree on the left-hand
side of the dialog (see Figure 11-1), the image displayed as the splash screen during startup of
the application is specified. A progress bar is used on this screen to display status of applica-
tion initializations, and to display performed actions. Position and size of these components
are defined using drag-and-drop. Color is specified using a combo box.

Figure 11-1. Configuration of the NetBeans Platform application

Customization of Platform Modules
Similar to the localization concept—as described in Chapter 8—the generic NetBeans Platform
modules can be adapted to fit specific application needs. In most cases, this is helpful or neces-
sary for labels and icons. This is accomplished using the branding ID defined for applications.
This ID is used similarly to language or country suffixes, which are appended to the expected
resources. Those suffixes can be combined. If you want to, e.g., change the name of the Favor-
ites window of the NetBeans Platform in an application using the branding ID my_application
and locale de_DE, you add a resource bundle containing the window’s new name (Bundle_my_
application_de_DE.properties). Wrap this file in a locale extension archive, using the same
package structure as the Platform module. This archive lives in the modules/locale directory.
The archive uses the same suffix: my_application_de_DE. This mechanism is used by the
NetBeans IDE to brand the modules org-netbeans-core and org-netbeans-core-windows to
customize the title of the IDE.

24174ch11_final_idx.fm Page 214 Friday, April 24, 2009 1:30 PM

C H A P T E R 1 1 ■ R E A L - W O R L D A P P L I C A T I O N D E V E L O P M E N T 215

The branding ID is defined inside the NetBeans IDE, using the properties of the application
in the Build category. Additionally, the ID can be passed using the command-line parameter
branding (see the “Customizing the Launcher” section, which follows). To query or change
the ID at runtime, do this with the static methods NbBundle.getBranding() and NbBundle.
setBranding(). As already described for the localization, the ordered search list of the possible
suffixes can be retrieved with the static method NbBundle.getLocalizingSuffixes(). First, a file
with product-, language-, and country-specific suffix(es) is searched. If no file can be found,
the file without a suffix is used. The search order for the example resource icon.png looks like
this:

• icon_<branding id>_<language code>_<country code>.png

• icon_<branding id>_<language code>.png

• icon_<branding id>.png

• icon_<language code>_<country code>.png

• icon_<language code>.png

• icon.png

Customizing the Launcher
Applications are started using a platform-specific launcher provided by the NetBeans Plat-
form. For the Windows OS, the launcher is an .exe file. Execution and start of the application
are influenced using command-line parameters (see Table 11-1). Be aware of the use of dupli-
cate backslashes or single slashes for all path definitions.

Table 11-1. Command-line parameters and their meanings

Parameter Description

clusters <path> Path to clusters containing modules, separated with ; for Windows
and : for UNIX.

branding <id> Definition of the branding ID.

jdkhome <path> Path to the JDK base path.

J<JVM Option> Used to pass parameters to the virtual machine. Frequently used
for defining properties (e.g., -J-Dorg.netbeans.core.level=100).

cp:p <classpath> Used to prepend resources to the classpath of the application.
These are available from the Java system classloader using
ClassLoader.getSystemResource().

cp:a <classpath> Used to append resources to the classpath of the application. These
are available from the Java system classloader using ClassLoader.
getSystemResource().

laf <L&F classname> Definition of the class name of the look and feel to be used.

fontsize <size> Sets a global font size for the application.

24174ch11_final_idx.fm Page 215 Friday, April 24, 2009 1:30 PM

216 C H A P T E R 1 1 ■ R E A L - W O R L D A P P L I C AT I O N D E V E LO P ME N T

These parameters are defined and passed either directly to the launcher or by adding to the
file etc/<branding id>.conf, which is part of the application distribution. In the application
configuration file, options are defined using the attribute default_options. Additionally, the
path to the selected JDK is defined, along with the user directory and further additional clusters.
To control command-line parameter settings during the application development inside the
NetBeans IDE, use the attribute run.args.extra. It is defined in the project.properties file of
the application or the standalone module (if it does not belong to an application). For example,
selecting different locale settings for testing purposes and enabling more detailed logging
require adding the following entry to the project.properties file:

run.args.extra = --locale fr:FR \
 -J-Dcom.galileo.netbeans.module.level=100

Distribution
There are different ways to distribute your application. The NetBeans IDE provides wizards for
each distribution type. We will look at them in the following sections.

Distribution As a ZIP Archive
The most common way to ship an application, besides an installer, is the ZIP distribution. For
this kind of distribution, all parts of the application are packed into one master file, where all
items necessary to execute the application are contained. For a NetBeans Platform application,
these are modules of the NetBeans Platform, your own application modules, a launcher to start
the application, and the necessary configuration files. Creating this package is done using the
build script, accessible from the context menu of the application and started with Build ZIP
Distribution. The distribution is put into the dist directory in the project directory of the appli-
cation, as shown in Figure 11-2.

locale
<language[:country]>

Locale setting to be used (e.g., de:DE). Keep in mind that the
language specifier and the country specifier are separated by a
colon.

userdir <path> Allows defining an alternative path to store user-specific applica-
tion settings. This parameter runs multiple instances of
applications, each reading its stored data from separate directories.

Table 11-1. Command-line parameters and their meanings (Continued)

Parameter Description

24174ch11_final_idx.fm Page 216 Friday, April 24, 2009 1:30 PM

C H A P T E R 1 1 ■ R E A L - W O R L D A P P L I C A T I O N D E V E L O P M E N T 217

Figure 11-2. Parts of a ZIP distribution

• The bin directory contains platform-specific launchers, one of those an .exe file.

• The etc directory contains configuration files used by the launcher. One of the files is
<branding id>.conf, which allows configuration of command-line parameters or the
path to the JDK (see the preceding “Customizing the Launcher” section).

• The directories my_application and platform9 are clusters. The cluster my_application
contains application modules, including all configuration data and customized plat-
form modules (see the “Customization of Platform Modules” section earlier in the
chapter). The cluster platform9 contains all modules from the NetBeans Platform,
including the NetBeans runtime container (see Chapter 2).

Distribution via Java Web Start
Another way to distribute your application is via Java Web Start. This technique allows applica-
tions to be downloaded and started directly from the Internet. To create a Web Start–enabled
distribution, select the Build JNLP Application item from the context menu of your application.
This results in a .war file inside the dist directory, which contains the complete application,
ready to be copied into the deploy directory of servlet containers. The file WEB-INF/web.xml is a
deployment descriptor, defining the JNLP servlet distributed in the WEB-INF/lib directory.

Mac OS X Application
The third and final approach is to build a Mac OS X application. This is done using the corre-
sponding menu item Build Mac OS X Application in the context menu of the application. Bear
in mind that this is not possible on a Windows platform, since one of the commands used is ln,
which is not available on Windows.

24174ch11_final_idx.fm Page 217 Friday, April 24, 2009 1:30 PM

218 C H A P T E R 1 1 ■ R E A L - W O R L D A P P L I C AT I O N D E V E LO P ME N T

Summary
In this chapter, you learned how to create and configure your standalone NetBeans Platform
application. We also looked at the customization of NetBeans Platform modules, where we
adapted out-of-the-box modules to our application-specific needs.

The launcher of your created application can be influenced in various ways. Therefore, we
had a look at each of the command-line parameters and how they are used. At the end of this
chapter, we dealt with the creation of deployment-ready application distributions.

24174ch11_final_idx.fm Page 218 Friday, April 24, 2009 1:30 PM

219

■ ■ ■

C H A P T E R 1 2

Updating a NetBeans Platform
Application
Let’s Allow the User to Add
Features at Runtime!

This chapter covers updating applications already distributed to end users. This is done by
providing new or updated modules in one of several different ways. The focus of this chapter is
on the creation, architecture, and distribution of update packages.

Overview
During software lifecycles, it is quite common for users to request patches when experiencing
unexpected error messages. In addition, development teams often want to make new features
available between one release and the next. It would be cumbersome to redistribute the entire
application when providing a patch or a new feature. A major advantage of modular architec-
tures is its support for the distribution of modules that provide patches or updates for existing
applications.

For the user, installation of updates must be as simple and intuitive as possible. To that
end, the NetBeans Platform provides an Auto Update service connected to the Plugin Manager.
The Plugin Manager automatically searches for updated or new modules in a set of predefined
update centers, dynamically loading them at runtime. Additionally, users are able to manually
install downloaded updates or new modules into the Plugin Manager.

The Auto Update Service
Updates are made available as NBM files. These update packages are offered via an update
center (see Figure 12-1). Within a NetBeans Platform application, users register update centers
in the Plugin Manager so that the Auto Update service can search those centers for changes.

The registration of update centers in the Plugin Manager is done manually by users or by
a module that automatically registers the update centers. Users configure the application so

24174ch12_final_idx.fm Page 219 Friday, April 24, 2009 1:43 PM

220 C H A P T E R 1 2 ■ U P D A T I N G A N E T B E A N S P L A T F O R M A P P L I C A T I O N

that update centers are polled periodically for changes. Users may manually initiate this
update task as well.

Figure 12-1. Components making up Auto Update functionality and their dependencies

The NBM File
Modules available as update packages are distributed in the form of NBM files. A file of this
type is a JAR archive containing the actual module, together with its configuration data and
update information required by the Plugin Manager (see Figure 12-2). It may also contain the
libraries required by the module. The contents of the module JAR file and its related configura-
tion files are described in Chapter 3.

One file we haven’t yet discussed is the info.xml file. This file contains information
displayed to the user when choosing modules in the Plugin Manager. The manifest element
(see Listing 12-1) provides information from the module’s manifest file, such as dependencies
that must be met for the module to be installed. If the user chooses to download a module
dependent on another module, the latter is automatically activated, so it can be downloaded
simultaneously with the selected module. If dependencies cannot be satisfied, the user installs
the module without being able to activate it.

License information may be added here, too, via the license element, which the user finds
in the Plugin Manager before installation of the module begins. This forces the user to confirm
that licensing requirements have been satisfied and the module can be installed.

24174ch12_final_idx.fm Page 220 Friday, April 24, 2009 1:43 PM

C H A P T E R 1 2 ■ U P D AT I N G A N E T B E A N S P L AT F O R M AP P L I C A T I O N 221

Figure 12-2. Content of an NBM file

Listing 12-1. The NBM information file

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE module PUBLIC
 "-//NetBeans//DTD Autoupdate Module Info 2.5//EN"
 "http://www.netbeans.org/dtds/autoupdate-info-2_5.dtd">
<module codenamebase="com.galileo.netbeans.module"
 distribution="./com-galileo-netbeans-module.nbm"
 downloadsize="7123"
 homepage="http://heikoboeck.de"
 license="AD9FBBC9"
 moduleauthor="Heiko Boeck"
 needsrestart="false"
 releasedate="2009/03/11">
 <manifest AutoUpdate-Show-In-Client="true"
 OpenIDE-Module="com.galileo.netbeans.module"
 OpenIDE-Module-Name="My Module"
 OpenIDE-Module-Implementation-Version="090311"
 ...
 OpenIDE-Module-Specification-Version="1.0"/>
 <license name="AD9FBBC9">Place your license information here
 </license>
</module>

An NBM file is created automatically by the NetBeans IDE. Right-click a module in the
Projects window and choose Create NBM.

When you choose Create NBM, the IDE attempts to sign the NBM file. To make this
possible, a keystore must be prepared and generated. Use the Keystores Manager in the IDE,
which is only available after installation of the Mobility plugin. This is part of the full as well as
the Java IDE distribution. The easiest way is to install this plugin over the Plugin Manager
(Tools ➤ Plugins).

Open the Keystores Manager via Tools ➤ Keystores. Next, create a keystore file via Add
Keystore, including a file name and location where the keystore is located. A recommended
location is the nbproject/private folder of your module (see Figure 12-3). After entering a
password of at least six characters, click OK to create the keystore.

24174ch12_final_idx.fm Page 221 Friday, April 24, 2009 1:43 PM

222 C H A P T E R 1 2 ■ U P D A T I N G A N E T B E A N S P L A T F O R M A P P L I C A T I O N

Figure 12-3. Creating a keystore

The newly created keystore must be provided with a key pair, with which the NBM file is
signed. In the Keystores Manager, choose the keystore and then click the New button. The
next dialog provides an alias, as well as certificate details, such as organization name (see
Figure 12-4). Provide the same password as when creating the keystore. Next, click OK to close
the dialog, which creates the key pair in the keystore.

Figure 12-4. Creating a key pair

To enable the IDE to find the keystore and key pair, define the following properties in the
nbproject/project.properties file (found within the Projects window, under Important Files

24174ch12_final_idx.fm Page 222 Friday, April 24, 2009 1:43 PM

C H A P T E R 1 2 ■ U P D AT I N G A N E T B E A N S P L AT F O R M AP P L I C A T I O N 223

➤ Project Properties). If this file does not exist, create it. Use the keystore key to define the path
to the keystore relative to the module project folder. Use the nbm_alias key to set the alias for
the key pair to be used, since one keystore may contain multiple key pairs.

keystore=nbproject/private/keystore.ks
nbm_alias=mymodule

Now invoke the Create NBM menu item again, which lets the IDE sign the NBM file. A
dialog is shown for entering the password assigned to the keystore. Enter the correct password,
enabling successful signature.

If you don’t want to enter this password every time, you may define it in the nbproject/
private/private.properties file (found in the Projects window, under Important Files ➤
Per-user Project Properties) as follows:

storepass=mypassword

Now, in the Plugin Manager, the user will see the module certificate, after downloading
the selected module is completed, but before the installation process begins. Be aware that a
warning will show that the module is not trusted. To prevent this, provide an official certificate
from an official certificate vendor, such as VeriSign.

Update Centers
NBM files—that is, updates for a distributed application—are put into an update center, from
which they can be downloaded. An update center is nothing more than a storage place where
the module is placed, generally on a server accessible via the Internet. Use an update center
descriptor, in the form of an XML file, to describe the module location and other details. In this
way, the Auto Update service finds the module, while determining whether the module is
updated or new.

The update center descriptor lists the content of the info.xml file (explained in the
previous section) for each of the NBM files in the update center. As a result, the Auto Update
service of the application need not open or download an NBM file to determine its version.

The license element is defined outside the module element (see Listing 12-2) to provide
license information for multiple modules concurrently, while ensuring only one license is
shown to the user. Multiple use of the license element is possible as well, providing a separate
license for each module.

Listing 12-2. Update center descriptor

<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE module_updates PUBLIC
 "-//NetBeans//DTD Autoupdate Catalog 2.5//EN"
 "http://www.netbeans.org/dtds/autoupdate-catalog-2_5.dtd">
<module_updates timestamp="08/54/21/11/03/2009">
 <module codenamebase="com.galileo.netbeans.module"
 distribution="./com-galileo-netbeans-module.nbm"
 ...
 </module>
 <module codenamebase="com.galileo.netbeans.module2"

24174ch12_final_idx.fm Page 223 Friday, April 24, 2009 1:43 PM

224 C H A P T E R 1 2 ■ U P D A T I N G A N E T B E A N S P L A T F O R M A P P L I C A T I O N

 distribution="./com-galileo-netbeans-module2.nbm"
 ...
 </module>
 <license name="AD9FBBC9">Place your license information here</license>
</module_updates>

The root element of the update center descriptor is the module_updates element. The
module_updates element contains the timestamp attribute, which the Auto Update service
compares with a timestamp obtained from previous connection to the update center. The Auto
Update service reads an update center only when the timestamp date is more recent than the
date of the last connection.

Optionally, modules may be grouped in the update center descriptor, via the module_group
element. This allows modules to be displayed as a group in the Plugin Manager. In the module
element, the distribution attribute is very important. It defines the location from which the
module will be downloaded. Rather than a relative location, as shown in Listing 12-2, an abso-
lute URL can be provided, pointing to the location of the module.

The address of an update center descriptor is defined as a URL in the update center
settings in the Plugin Manager. The update center descriptor need not be manually created.
Right-click the application project in the Projects window and choose Create NBMs. Aside
from generating an individual NBM file for each module, an XML file named updates.xml is
created. The updates.xml file is the update center descriptor. The NBMs and the update center
descriptor are found in the build/updates folder, visible in the Files window.

Localized NBM Files
In Chapter 10, localizing the language-specific content of modules was explained. Two varia-
tions were discussed. First, localized resources can be placed directly within the module.
Second, they are put in a JAR file and that file in the locale folder. In both cases, assume the
developer has access to the module or to the application of which the module forms a part. It
is possible to provide a localizing bundle for an application that has already been distributed.

Additional localizing bundles for an already distributed module are simple to create. Do
this by creating an updated or new module and making it available via an update center. The
only difference is that the manifest element in the info.xml file and in the update center
descriptor are supplemented by the l10n element. The structure is as follows:

<l10n langcode="de"
 module_major_version="1"
 module_spec_version="1.0"
 OpenIDE-Module-Name="Mein Modul"
 OpenIDE-Module-Long-Description="German localization of My Module."/>

Use the langcode attribute to define the language for the NBM file. With version attributes,
you define versions that the NBM file targets. The localizing bundle is activated only when
localizing bundle versions match those of the installed module.

24174ch12_final_idx.fm Page 224 Friday, April 24, 2009 1:43 PM

C H A P T E R 1 2 ■ U P D AT I N G A N E T B E A N S P L AT F O R M AP P L I C A T I O N 225

Configuring and Installing on the Client
To enable an application to connect to new or updated modules in an update center, the
update center must be registered in the Plugin Manager, which can be opened via Tools ➤
Plugins. There, in the Settings tab (see Figure 12-5), update centers are defined. The URL of an
update center must point to the location of the update center descriptor (see Figure 12-3). In
the same way, update centers may be deactivated, thereby excluding them from the update
process.

Figure 12-5. Configuring an update center

When switching to the Updates tab, use the Reload Catalog button to allow the Auto
Update service to look for modules in the defined update centers. Updated versions of
modules are sought for those modules that are already installed in the application. For new
modules, use the same approach in the Available Plugins tab. Found modules are displayed
immediately in a list, from which you can select those you need. Use the Update or Install
buttons to add selected modules to the application.

Modules that are locally available—that is, those that are personally downloaded—can be
installed as well. Switch to the Downloaded tab, and then click Add Plugins to open NBM files
from disk into the Plugin Manager. Finally, click Install to install the selected modules.

The last tab discussed is the Installed tab (see Figure 12-6). All currently installed modules
are listed there, organized into categories. You can deactivate modules here, as well as
completely uninstall them.

24174ch12_final_idx.fm Page 225 Friday, April 24, 2009 1:43 PM

226 C H A P T E R 1 2 ■ U P D A T I N G A N E T B E A N S P L A T F O R M A P P L I C A T I O N

Figure 12-6. The Installed tab lists all installed modules, where they can be activated and
deactivated.

New Update Center
As pointed out, users may register update centers in the application’s Plugin Manager. Rather
than by manual approach, you can add update center information to an existing or new
module. Once this module is installed, the registered update centers become automatically
available. As a result, a module may be provided that adds new update centers to an already
distributed application.

To this end, choose File ➤ New File ➤ Module Development ➤ Update Center. The wizard
registers update center information, consisting of the name and URL of the update center
descriptor. This information is registered in the layer file, within the Services/AutoupdateType
folder. Registration entries of this kind appear as follows:

<folder name="Services">
 <folder name="AutoupdateType">
 <file name="my_module_update_center.instance">
 <attr name="SystemFileSystem.localizingBundle"
 stringvalue="com.galileo.netbeans.module.Bundle"/>
 <attr name="enabled" boolvalue="true"/>
 <attr name="instanceCreate" methodvalue=
 "org.netbeans.modules.autoupdate.updateprovider.
 AutoupdateCatalogFactory.createUpdateProvider"/>
 <attr name="instanceOf"
 stringvalue="org.netbeans.spi.autoupdate.UpdateProvider"/>
 <attr name="url_key" stringvalue="my_module_update_center"/>

24174ch12_final_idx.fm Page 226 Friday, April 24, 2009 1:43 PM

C H A P T E R 1 2 ■ U P D AT I N G A N E T B E A N S P L AT F O R M AP P L I C A T I O N 227

 </file>
 </folder>
</folder>

Data referenced in the registration entries is saved centrally in the resource bundle for
localizing purposes:

my_module_update_center = http://heikoboeck.de/updates.xml
Services/AutoupdateType/my_module_update_center.instance = My Update Center

Automatically Installing Updates
An NBM file may also be installed without requiring user interaction. Put the NBM file in the
update/download folder of a cluster. The update is installed when the application is next started,
after which the NBM file is removed and the application is started afresh. Backups of original
versions of the updated modules are found in the update/backup/netbeans folder. Remember,
the update is always installed in the cluster where the update is stored, even if the module that
should be updated is installed in a different cluster.

As of NetBeans 6.0, the Auto Update Services API and SPI are public and can be used by
your own Platform Application to programmatically automate and adapt module installations,
as well as the related update processes. More information on this NetBeans API can be found
in the Javadoc.

Summary
This chapter has introduced you to the update facilities in the NetBeans Platform. Firstly, you
saw how the Auto Update service works. An NBM file is an update package and can be created
from your module by the NetBeans IDE. Next, you learned how to provide and configure
update centers. You also saw how a module is configured to provide a localized version of an
existing module. Finally, we dealt with the configuration of update centers on the client side
and how updates can be installed automatically.

24174ch12_final_idx.fm Page 227 Friday, April 24, 2009 1:43 PM

24174ch12_final_idx.fm Page 228 Friday, April 24, 2009 1:43 PM

229

■ ■ ■

C H A P T E R 1 3

Persistence
Let’s Integrate Some Databases!

Most client applications, certainly most rich client applications, are able to persist business
objects across restarts. In combination with other features of rich client applications on the
NetBeans Platform, this chapter discusses client database solutions and the implementation of
a bridge for the loosely coupled and transparent storage of business objects.

Java DB
Java DB is 100% Java and, as a result, is platform independent. For a complete DBMS, Java DB is
very small, and since no special installation procedure is necessary, can be delivered as part and
parcel of your application. Java DB is therefore ideal for usage within rich client applications.
With Java 6, Sun Microsystems delivers it as the official JDK database solution. Additionally, the
NetBeans IDE provides support in the form of tools for working with Java DB.

Integrating Java DB
You can find Java DB in the db subdirectory in your JDK 6 installation. You can also download
the latest version from http://developers.sun.com/javadb/downloads. In the lib subdirectory,
you will find derby.jar, which is the actual database system that makes the driver available
(see Figure 13-1). In addition, there’s derbyclient.jar, which you can use when Java DB is
executed on a server and you do not want to deliver it together with your application.

In this chapter, we focus mainly on the client-related aspects of Java DB, as well as
embedding it into your applications. Following the NetBeans Platform structure discussed
earlier, it makes sense to deliver Java DB as an independent and separate module within your
application.

24174ch13_final_idx.fm Page 229 Friday, April 24, 2009 1:55 PM

230 C H A P T E R 1 3 ■ P E R S I ST E N C E

To that end, create a library wrapper module. Go to File ➤ New Project, and then choose
NetBeans Modules ➤ Library Wrapper Module. Next, browse to derby.jar. As the code name
base, use org.apache.derby, and for the name, use Java DB Embedded. Then you must specify,
in the module that accesses the database, a dependency on your new Java DB module. The
database system will automatically be deployed at the first call to the JDBC driver.

Driver Registration
If you’ve ever worked with the JDBC API, the call to Class.forName() should be familiar to you.
That’s how the database driver for the database system you’re using is indirectly loaded. That’s
also how the driver manager makes a connection to your database. With the JDBC API 4.0,
which is part of Java 6, the DriverManager class was extended, such that database drivers can be
loaded if they’re registered in the META-INF/services folder.

In this way, you register the driver as an implementation of the java.sql.Driver interface.
This has the advantage that the call to Class.forName() can fail and the driver can be loaded at
the exact point needed. That’s also how Java DB registers its required drivers. For our purposes,
this means we can make a direct connection via the DriverManager to the database, without
concern over the driver.

Creating and Using a Database
After you make Java DB available to your application as a library wrapper module and set a
dependency on the library wrapper module from the module that needs it, you can simply
access the DBMS and create your first database.

Java DB creates a separate folder for each database, with the same name as the database
itself. These folders are stored in a system folder, which you must define next. An ideal place for
this folder would be the application user directory, since that is where the NetBeans Platform
also stores its user-specific settings. The path to this location is obtained via the system prop-
erties, and hence we need not care about cross-platform paths. This system folder is registered
under the name derby.system.home:

System.setProperty("derby.system.home",
 System.getProperty("netbeans.user",
 System.getProperty("user.home")) + "/databases");

We assign the property netbeans.user to the path to the application-specific file. If it has
not been set, we use the user directory obtained via the user.home property. By means of these
lines, the database is created in the databases folder. If you have not set the derby.system.home
property, Java DB will use the current working directory of the application.

24174ch13_final_idx.fm Page 230 Friday, April 24, 2009 1:55 PM

C H A P T E R 1 3 ■ P E R S I ST E N C E 231

Figure 13-1. Java DB as a library wrapper module for the integration of Java DB into your appli-
cation. The physical storage place for databases is defined by the derby.system.home property.

Very pragmatically, the database need not be started or kept running explicitly. Each data-
base is started separately at the point it is first accessed. No extra administrative effort is
required for control of the local databases, and you use them exactly as you would use data-
bases on the server.

After you set up the system properties as described previously, make a connection to the
database via the driver manager:

Connection connection =
 DriverManager.getConnection("jdbc:derby:MyDB;create=true", "user", "password");

But how to create a new database? That occurs through the declaration of the attribute
create=true, passed via the connection URL, as shown in the preceding code. If the database
MyDB is not available, it will be created. Then a connection to the database will be established. If
the database is already available, only the connection is established. This attribute is particu-
larly important in relation to the embedded, local use of Java DB, since it is used automatically
when the application is initialized or first started.

24174ch13_final_idx.fm Page 231 Friday, April 24, 2009 1:55 PM

232 C H A P T E R 1 3 ■ P E R S I ST E N C E

Java DB defines a range of further attributes, none of which are particularly relevant here.
Information about these attributes can be found in the Java DB Reference Manual, found with
the other documents in the docs folder of your Java DB distribution.

Rather than putting the attribute directly in the URL, you may also save it in a Properties
object and then pass it as a second parameter in the getConnection() method:

Properties props = new Properties();
props.put("user", "user");
props.put("password", "password");
props.put("create", "true");
Connection connection = DriverManager.getConnection("jdbc:derby:MyDB", props);

Shutting Down a Database
Starting a database occurs automatically when connecting for the first time. Shutting down
happens in much the same way. Since the database has no way of knowing when the applica-
tion exited, and hence ends abruptly, you must shut down the database explicitly when the
application shuts down to ensure that the database shuts down in a consistent state. When the
system shuts down, all active databases implicitly shut down as well. Optionally, you can shut
down a specific database instead of all of them together.

The best approach for this task is to use the ModuleInstall class (see Chapter 3) or a
LifecycleManager implementation (see Chapter 17). In a ModuleInstall class, use the close()
method, defined as follows:

public class Installer extends ModuleInstall {
 public void close() {
 try {
 DriverManager.getConnection("jdbc:derby:;shutdown=true");
 } catch (SQLException ex) {}
 }
}

If you shut down the DBMS when the application closes, as in the preceding code, the
complete Java DB system will shut down when the application closes. To shut down an indi-
vidual database, simply specify the corresponding database name after jdbc:derby:. For
example, when you wish to end the MyDB database, the command to shut down should be as
follows: DriverManager.getConnection("jdbc:derby:MyDB;shutdown=true");. Note the fact
that at shutdown (and also when you use shutdown=true), an exception is thrown. The excep-
tion simply passes information about the shutting down of the database.

Database Development with the Help of the NetBeans IDE
Simplifying the development of database-oriented applications, the NetBeans IDE provides
tooling for Java DB integration. Using the IDE, you can start and stop a database. But you can
also create a new database and make a connection to it. More than anything, the IDE simplifies
development via its graphical support for the creation and configuration of tables. Hence, you
can easily save your tables and their data types, and also change them without any problems.

24174ch13_final_idx.fm Page 232 Friday, April 24, 2009 1:55 PM

C H A P T E R 1 3 ■ P E R S I ST E N C E 233

Setting Up and Starting the Java DB System

To use the NetBeans IDE support described previously, first invoke Tools ➤ Java DB Database
➤ Settings, and specify the path to the Java DB installation. If you are using JDK 6, this path will
already be pointing to the db subdirectory of the JDK installation. If you downloaded Java DB
yourself, you can set the path to this location as well.

Further, you must specify a path where the database is created and stored. After you deal
with these settings, start the database server by selecting Tools ➤ Java DB Database ➤ Start
Server. That’s especially necessary since we’re not using the database as before (embedded
within our application), but are controlling it as an independent server. The server usually
accepts connections on port 1527, which is also shown in the Output window.

Integrating the Driver for the Java DB Server into Your Application

Since the Java DB database is not integrated into your application, but is being controlled as a
server, you are advised to add a different driver to your application. This driver, which is neces-
sary for establishing the connection to a Java DB server, is found in derbyclient.jar, as
mentioned in the “Integrating Java DB” section. Add this to your application via a library
wrapper module, and then set a dependency on that module from the module that requires a
connection to the database.

Setting Up and Configuring the Database

At this point, your application has been set up and can access the Java DB server. Now go to
Tools ➤ Java DB Database ➤ Create Database in the NetBeans IDE to create a new database.
Specify a database name, a username, and a password for the database. After you provide this
information, the database is established, as well as a connection to it. The connection is found
in the Services window, opened via Window ➤ Services. There, you’ll find all the established
connections under the Databases menu (see Figure 13-2).

You can establish a connection via the context menu item Connect. If a connection is
correctly established, the IDE shows the tables, indexes, and foreign keys of the database. New
entries may be established via the context menu. For example, use the context menu of Tables
to select Create Table and establish a new table. With View Data, you can see the content of a
table, while with Execute Command, you send any SQL query to the database.

24174ch13_final_idx.fm Page 233 Friday, April 24, 2009 1:55 PM

234 C H A P T E R 1 3 ■ P E R S I ST E N C E

Figure 13-2. Access to the Java DB database is established via the Services window, where config-
uration settings are also provided.

Access to a Database from Your Application

Now let’s take a look at the application from which you’d like to use a database. The definition
of the property derby.system.home, which was necessary for the integration of Java DB with
your application, is no longer needed. Optimally, to make a connection from your application
to a Java DB server, tweak your connection URL. Specify the name (or the IP address), as well
as the port on which the database server accepts connections:

Connection connection = DriverManager.getConnection(
 "jdbc:derby://localhost:1527/MyDB;",
 "user",
 "password");

Since the database server, in our case, is found on the same computer where the applica-
tion is running, we use the setting localhost or the IP address 127.0.0.1. We also specify port
1527. You can also take this URL from the connection information in the IDE’s Services
window.

Creating and Importing Table Structures

Finally in this discussion, let’s look at an extremely useful feature of the Database Explorer in
the Services window. You can select the SQL source text with which a table is created and copy
it into your application for initial establishment of database tables or, alternatively, into a SQL
script file. For this purpose, call up the context menu for the desired table. There, you find the
menu item Grab Structure. Click this menu item to store the structure of your data. After that,
simply choose the context menu item Recreate Table, where you then select the data that you

24174ch13_final_idx.fm Page 234 Friday, April 24, 2009 1:55 PM

C H A P T E R 1 3 ■ P E R S I ST E N C E 235

just created. A window shows the SQL source needed to create a table. You can of course use
this functionality in the way intended and import tables from foreign databases into your own.

Example Application
With a very simple example, we’ll round off this section and in the process show you some
characteristics of Java DB for creating table structures, also illustrating integration of Java DB
into your application’s lifecycle. In this example, we’ll manage music albums, assigning them
to various genres.

Configuration, Access, and Shutdown

With a module installer (also see Chapter 3), we optimally configure the Java DB database
system, access it centrally, and, at the appropriate time, shut down the system (see Listing 13-1).
First, use the restored() method, which is called at the start of the application via the derby.
system.home property, to specify the database storage path. That will be within the databases
folder in an application-specific user directory.

Next, call the method initTables(), using a SELECT statement to test whether the required
tables already exist. When the application is started for the first time, the tables do not yet exist
and a SQLException is thrown. Catch the exception and then create both the albums and genres
tables.

First create the genres table, since the albums table will depend on it. Each entry in the
table has a unique ID, which is assigned incrementally by the database. We achieve this using
the command GENERATED ALWAYS AS IDENTITY for the ID. As a result, even when a value is spec-
ified for the physical ID when an entry is added to the table, an automatically generated value
is used instead.

Alternatively, replace ALWAYS with BY DEFAULT, which means the value will be generated
only if the ID is not defined explicitly. Using PRIMARY KEY, define the physical ID as the primary
key, where connection to the entries in the albums table will be established. We then create this
immediately and define, in the same way, the physical key ID. Further columns are title,
tracks, cds, years, and genre.

Finally, don’t write a genre directly. Instead, write the ID of a genre entry from the genres
table. The genre column in albums is thus a foreign key. We define this via the FOREIGN KEY
(genre) command, and connect via REFERENCES genres (id) to the id column in the genres
table (see Figure 13-2). To allow user genre selection when creating an album, we provide three
example entries in the genres table.

Listing 13-1. Setting up the database system and initializing the database

public class Installer extends ModuleInstall {
 private static Connection conn = null;
 public void restored() {
 System.setProperty("derby.system.home",
 System.getProperty("netbeans.user",
 System.getProperty("user.home")) + "/databases");
 initTables();
 }
 private void initTables() {
 try {

24174ch13_final_idx.fm Page 235 Friday, April 24, 2009 1:55 PM

236 C H A P T E R 1 3 ■ P E R S I ST E N C E

 Statement stmt = getConnection().createStatement();
 stmt.executeQuery("SELECT id FROM genres");
 stmt.close();
 } catch(SQLException e) {
 try {
 Statement stmt = getConnection().createStatement();
 stmt.execute("CREATE TABLE genres (" +
 "id INTEGER GENERATED ALWAYS AS IDENTITY, " +
 "genre VARCHAR(100), " +
 "PRIMARY KEY(id))");
 stmt.execute("CREATE TABLE albums (" +
 "id INTEGER GENERATED ALWAYS AS IDENTITY, " +
 "title VARCHAR(100), " +
 "tracks VARCHAR(10), " +
 "cds VARCHAR(10), " +
 "years VARCHAR(10), " +
 "genre INTEGER, " +
 "PRIMARY KEY(id), " +
 "FOREIGN KEY(genre) REFERENCES genres (id))");
 stmt.execute("INSERT INTO genres (genre) VALUES('Trance & Dance')");
 stmt.execute("INSERT INTO genres (genre) VALUES('Rock & Pop')");
 stmt.execute("INSERT INTO genres (genre) VALUES('Country & Classic')");
 stmt.close();
 }
 catch(SQLException ex) {
 ex.printStackTrace();
 }
 }
 }
}

Setting up the database system and initializing the database using the static method
getConnection() provides central access to the database. Thus, the client need not worry about
the connection URL. Also, the Connection object, with its connection to the database, is central-
ized and need not be stopped and started whenever a connection is made. getConnection() is,
therefore, a factory method that creates a connection when none exists or one has been closed
(see Listing 13-2). It then returns the Connection object. The close() method informs us when
the application exits. We close the current connection in this method. We use jdbc:derby:;
shutdown=true to close the whole Java DB system and also, automatically, our MyDB database.

Listing 13-2. Centralized creation of the connection and shutting down of the database

public static Connection getConnection() throws SQLException {
 if(conn == null || conn.isClosed()) {
 conn = DriverManager.getConnection(
 "jdbc:derby:MyDB;create=true",
 "user", "password");
 }
 return conn;
}
public void close() {

24174ch13_final_idx.fm Page 236 Friday, April 24, 2009 1:55 PM

C H A P T E R 1 3 ■ P E R S I ST E N C E 237

 try {
 conn.close();
 DriverManager.getConnection("jdbc:derby:;shutdown=true");
 } catch (SQLException ex) {}
}

Data Models and Data Access Models

As shown before with the creation of tables, we want to be able to choose two different classes
of data. First, we have the albums, information for which can be chosen from the albums table;
and second, we have the genres, found within the genres table. To assist us, we create a data
model (see Listing 13-3 and Listing 13-4). The data model consists of the classes Album and
Genre, which provide relevant setters and getters. Note that no persistence logic is found in
these classes. We will put this logic in a separate class.

Listing 13-3. Data model for an album

public class Album {
 private int id = 0;
 private String title;
 private String tracks;
 private String cds;
 private String year;
 private Genre genre;
 public Album(
 int id, String title, String tracks, String cds, String year, Genre genre) {
 this.id = id;
 this.title = title;
 this.tracks = tracks;
 this.cds = cds;
 this.year = year;
 this.genre = genre;
 }
 public int getId() {
 return id;
 }
 public String getTitle() {
 return title;
 }
 ...
}

The data model for an Album in the Genre class requires overwriting both the toString()
and equals() methods. This is necessary for the correct representation and selection of a genre
in the dialog for creating a new album.

Listing 13-4. Data model for a genre

public class Genre {
 private int id = 0;
 private String genre;

24174ch13_final_idx.fm Page 237 Friday, April 24, 2009 1:55 PM

238 C H A P T E R 1 3 ■ P E R S I ST E N C E

 public Genre(int id, String genre) {
 this.id = id;
 this.genre = genre;
 }
 public int getId() {
 return id;
 }
 public String getGenre() {
 return genre;
 }
 public String toString() {
 return genre;
 }
 public boolean equals(Object obj) {
 if(obj instanceof Genre) {
 if(((Genre)obj).getId() == id) {
 return true;
 }
 }
 return false;
 }
}

To let the data model and business logic (which in this case is primarily the user interface
for selecting data) be loosely coupled to the persistence layer, we encapsulate access to the
database and SQL statements in a separate class named DataModel (see Listing 13-5). This class
performs desired changes and requests to the database, while also providing the data via the
Album and Genre data models.

The methods getAlbums() and getGenres(), implemented in the DataModel class, provide
vectors containing the chosen data. We also have the methods insertAlbum(), updateAlbum(),
and deleteAlbum(), with which we enter albums into the database and also use for changing
and deleting them.

Listing 13-5. The DataModel class encapsulates the access to Java DB and makes data available
via the related Album and Genre data models.

public class DataModel {
 public static Vector<Album> getAlbums() {
 Vector<Album> albums = new Vector<Album>();
 try {
 Statement stmt = Installer.getConnection().createStatement();
 ResultSet rs = stmt.executeQuery("SELECT * FROM albums"+
 " INNER JOIN genres ON albums.genre = genres.id");
 while(rs.next()) {
 albums.add(new Album(rs.getInt(1), rs.getString(2),
 rs.getString(3), rs.getString(4), rs.getString(5),

24174ch13_final_idx.fm Page 238 Friday, April 24, 2009 1:55 PM

C H A P T E R 1 3 ■ P E R S I ST E N C E 239

 new Genre(rs.getInt(7), rs.getString(8))));
 }
 rs.close();
 stmt.close();
 } catch(SQLException e) {
 Exceptions.printStackTrace(e);
 }
 return albums;
 }
 public static Vector<Genre> getGenres() {
 Vector<Genre> genres = new Vector<Genre>();
 try {
 Statement stmt = Installer.getConnection().createStatement();
 ResultSet rs = stmt.executeQuery("SELECT * FROM genres");
 while(rs.next()) {
 genres.add(new Genre(rs.getInt(1), rs.getString(2)));
 }
 rs.close();
 stmt.close();
 } catch(Exception e) {
 e.printStackTrace();
 }
 return genres;
 }
 public static void updateAlbum(Album a) throws SQLException {
 PreparedStatement stmt = Installer.getConnection().prepareStatement(
 "UPDATE albums SET title=?, tracks=?, cds=?, years=?, genre=? WHERE id=?");
 stmt.setString(1, a.getTitle());
 stmt.setString(2, a.getTracks());
 stmt.setString(3, a.getCDs());
 stmt.setString(4, a.getYear());
 stmt.setInt(5, a.getGenre().getId());
 stmt.setInt(6, a.getId());
 stmt.execute();
 }
 public static void insertAlbum(Album a) throws SQLException {
 PreparedStatement stmt =Installer.getConnection().prepareStatement(
 "INSERT INTO albums (title, tracks, cds, years, genre) VALUES(?,?,?,?,?)");
 stmt.setString(1, a.getTitle());
 stmt.setString(2, a.getTracks());
 stmt.setString(3, a.getCDs());
 stmt.setString(4, a.getYear());
 stmt.setInt(5, a.getGenre().getId());
 stmt.execute();
 }
 public static void deleteAlbum(Album a) throws SQLException {
 PreparedStatement stmt = Installer.getConnection().prepareStatement(
 "DELETE FROM albums WHERE id = ?");

24174ch13_final_idx.fm Page 239 Friday, April 24, 2009 1:55 PM

240 C H A P T E R 1 3 ■ P E R S I ST E N C E

 stmt.setInt(1, a.getId());
 stmt.execute();
 }
}

Displaying and Working with the Data

We now come to components that will display the data, allowing the user to create and edit
music albums. We’ll list the albums in a table within a TopComponent (see Figure 13-3). We begin
by creating the AlbumsTopComponent class, containing a JTable. To enable the table to display
the DataModel of our album, we need a model for the table.

Since the DataModel is only available to this class, we implement it as a private inner class
named AlbumTableModel (see Listing 13-6). The data is obtained from a vector of the type Album.
Since we later need access to the model, we create it as a private data element. We connect the
DataModel with the table via the setModel() method. Typically, table entries can be edited or
viewed via a double-click of the mouse. To create this functionality, we register a MouseListener
or a MouseAdapter with the JTable, which calls the editAlbumActionPerformed() method on
double-click. This will be discussed next.

Figure 13-3. Displaying the database entries in a table

Listing 13-6. TopComponent implementation with AlbumTableModel

final class AlbumsTopComponent extends TopComponent {
 private JTable albums;
 private AlbumTableModel model = new AlbumTableModel();
 private AlbumsTopComponent() {
 initComponents();
 albums.setModel(model);
 albums.addMouseListener(new MouseAdapter() {
 public void mouseClicked(MouseEvent event) {
 if(event.getClickCount() == 2) {

24174ch13_final_idx.fm Page 240 Friday, April 24, 2009 1:55 PM

C H A P T E R 1 3 ■ P E R S I ST E N C E 241

 editAlbumActionPerformed(null);
 }
 }
 });
 }
 private static final class AlbumTableModel
 extends AbstractTableModel {
 private String[] columns = {"Title", "Tracks", "CDs", "Year"};
 private Vector<Album> data = new Vector<Album>();
 public Album getRow(int row) {
 return data.get(row);
 }
 public int getRowCount() {
 return data.size();
 }
 public int getColumnCount() {
 return columns.length;
 }
 public String getColumnName(int col) {
 return columns[col];
 }
 public Object getValueAt(int row, int col) {
 Album album = data.get(row);
 switch(col) {
 case 0: return album.getTitle();
 case 1: return album.getTracks();
 case 2: return album.getCDs();
 case 3: return album.getYear();
 }
 return "";
 }
 public Vector<Album> getData() {
 return data;
 }
}

As the TopComponent opens, we need to load and display the current entries from the data-
base. For this reason, we override the method componentOpened(), where we use our data
access model DataModel, which abstracts access to the database to obtain all entries in the
database, via the getAlbums() method. We add these to the DataModel in the table and inform
the view, which is the JTable, via the fireTableDataChanged() method, that the data has
changed.

Finally, we implement three action methods that enable the user to add, edit, and delete
entries. For the creation of new albums, we have the newAlbumActionPerformed() method. We
use it to call a static method that opens a dialog where the user can enter the required data. We
create this dialog in the final step. If the method returns an Album instance, the dialog is imme-
diately closed and the data is added to the database. If that code can be run without an
exception being thrown, we add the album to the table.

24174ch13_final_idx.fm Page 241 Friday, April 24, 2009 1:55 PM

242 C H A P T E R 1 3 ■ P E R S I ST E N C E

 public void componentOpened() {
 model.getData().addAll(DataModel.getAlbums());
 model.fireTableDataChanged();
 }
 private void newAlbumActionPerformed(ActionEvent evt) {
 Album album = AlbumEditDialog.newAlbum();
 if(album != null) {
 try {
 DataModel.insertAlbum(album);
 model.getData().add(album);
 model.fireTableDataChanged();
 } catch(SQLException e) {
 Exceptions.printStackTrace(e);
 }
 }
 }

The method editAlbumActionPerformed() is invoked by means of the Edit button or by a
double-click. Similar to the way new entries are created, we again call up a dialog. However, we
need editAlbum() for that purpose, to which we pass an Album instance, allowing data to be
edited in the dialog. The currently selected row in the table invokes the getSelectedRow()
method, with the returned value allowing related data to be found in the JTable’s data model.

The user can now change the data. If the OK button is clicked, the editAlbum() method is
called, which returns the changed Album instance (see Listing 13-7). The changes are saved in
the database with the updateAlbum() method.

Finally, we need to address situations where the user deletes an entry from the database.
That will be handled by the deleteAlbumActionPerformed() method. To prevent unintended
deletion, the user is asked to confirm that the entry should be deleted. The dialog that is
required for this functionality is created in a very simple way, via the NetBeans Dialogs API (see
Chapter 8). We use the NotifyDescriptor.Confirmation instance. We show the dialog via the
notify() method. Once the user has confirmed the deletion request, the entry is removed from
the database via the deleteAlbum() method. Only when the operation can be completed
successfully do we delete the album from the JTable and update with its current entries.

Listing 13-7. TopComponent for displaying and working with the albums in the database

 private void editAlbumActionPerformed(ActionEvent evt) {
 Album album = AlbumEditDialog.editAlbum(
 model.getRow(albums.getSelectedRow()));
 if(album != null) {
 try {
 DataModel.updateAlbum(album);
 model.fireTableDataChanged();
 } catch(SQLException e) {
 Exceptions.printStackTrace(e);
 }
 }
 }

24174ch13_final_idx.fm Page 242 Friday, April 24, 2009 1:55 PM

C H A P T E R 1 3 ■ P E R S I ST E N C E 243

 private void deleteAlbumActionPerformed(ActionEvent evt) {
 Album album = model.getRow(albums.getSelectedRow());
 NotifyDescriptor d = new NotifyDescriptor.Confirmation(
 "Are you sure you want delete the album " + album.getTitle(),
 "Confirm Album Deletion");
 if(DialogDisplayer.getDefault().notify(d) == NotifyDescriptor.YES_OPTION) {
 try {
 DataModel.deleteAlbum(album);
 model.getData().remove(album);
 model.fireTableDataChanged();
 } catch(SQLException e) {
 Exceptions.printStackTrace(e);
 }
 }
 }
}

Our last task is the creation of a dialog with which the data can be created and edited.
Again, we need to use the classes of the Dialogs API; so we need not create a complete dialog of
our own, but simply the panel with required fields (see Figure 13-4). We therefore create a
simple JPanel class, via File ➤ New File ➤ Java GUI Forms ➤ JPanel Form.

Figure 13-4. Dialog for working with entries

In the constructor of the panel, we load all the genres from the database and add them to
the combo box. Additionally, we require the methods newAlbum() and editAlbum(), which you
were introduced to in the previous section. To simplify things, implement these as static
methods (see Listing 13-8). These methods are therefore factories that are concerned with the
creation of the dialog. First, create an instance of the AlbumEditDialog class. Create a dialog

24174ch13_final_idx.fm Page 243 Friday, April 24, 2009 1:55 PM

244 C H A P T E R 1 3 ■ P E R S I ST E N C E

with the help of a DialogDescriptor, pass the recently created panel, and that’s everything
needed for creating a dialog. As per usual, we show the dialog via the notify() method.

As soon as the user clicks the OK button, we use the data to create an Album object and pass
it back to the user; otherwise, we simply return null and indicate an error. In the case of the
editAlbum() method, we take the same approach with creating the dialog. Simply fill the fields
with the values of the selected album. However, when the dialog is completed, don’t create a
new Album object; simply update the data via the relevant setters and pass the updated instance
back to the user.

Listing 13-8. Dialog for editing and creating new music albums

public class AlbumEditDialog extends Jpanel {
 private AlbumEditDialog() {
 initComponents();
 for(Genre g : DataModel.getGenres()) {
 genre.addItem(g);
 }
 }
 public static Album newAlbum() {
 AlbumEditDialog d = new AlbumEditDialog();
 DialogDescriptor desc = new DialogDescriptor(d, "New...");
 if(DialogDisplayer.getDefault().notify(desc) == DialogDescriptor.OK_OPTION) {
 Album album = new Album(0,
 d.title.getText(),
 d.tracks.getText(),
 d.cds.getText(),
 d.year.getText(),
 (Genre)d.genre.getModel().getSelectedItem());
 return album;
 } else {
 return null;
 }
 }
 public static Album editAlbum(Album album) {
 AlbumEditDialog d = new AlbumEditDialog();
 d.title.setText(album.getTitle());
 d.tracks.setText(album.getTracks());
 d.cds.setText(album.getCDs());
 d.year.setText(album.getYear());
 d.genre.getModel().setSelectedItem(album.getGenre());
 DialogDescriptor desc = new DialogDescriptor(d, "Edit...");
 if(DialogDisplayer.getDefault().notify(desc) == DialogDescriptor.OK_OPTION) {
 album.setTitle(d.title.getText());
 album.setTracks(d.tracks.getText());
 album.setCDs(d.cds.getText());
 album.setYear(d.year.getText());
 album.setGenre((Genre)d.genre.getModel().getSelectedItem());
 return album;
 } else {
 return null;
 }

24174ch13_final_idx.fm Page 244 Friday, April 24, 2009 1:55 PM

C H A P T E R 1 3 ■ P E R S I ST E N C E 245

 }
}

At this point, we have explained everything relating to data access and display of data
found within Java DB databases. We also looked at an example application, showing how to set
up and use Java DB within the NetBeans Platform.

Hibernate
In the last section, you became familiar with tasks pertaining to client database solutions in the
context of a rich client application. We decomposed our Java objects to save them in our data-
base. Likewise, we adopted a conventional approach in using SQL to extract data via JDBC
interfaces from the database. And from the data we then constructed Java objects, which were
named Album and Genre. Encapsulating that functionality in our DataModel class, you probably
noticed that this might ultimately lead to a very complex and error-prone result, which we’d
prefer to avoid.

These are some of the reasons why database developers created and standardized object-
oriented databases. However, for a long time this approach was unable to make a dent in the
success of the many existing relational systems. More than anything, that was because of the
wide adoption of RDBMSs, which resulted in new applications being able to provide access to
data stored in these kinds of systems.

For these reasons, object-relational bridges were developed. Their central focus is saving
and loading objects to and from relational databases, thereby providing an abstraction layer
over the database beneath. The most well-known and widely used implementation of such a
bridge is provided by Hibernate. Hibernate handles objects and their relationships, which
must be established and maintained as transparently as possible. Ideally, we needn’t care
where or how our business objects are stored.

This section focuses on a useful example of Hibernate integration within a rich client
application based on the NetBeans Platform. We only discuss the most basic principles of
Hibernate, since we’re concerned specifically with its relation to the NetBeans Platform, not
with the details of Hibernate’s many features.

Setting Up the Hibernate Libraries
First, download the current version of the Hibernate Core distribution from http://
hibernate.org. Along with the Hibernate library, the distribution provides examples, as well as
a complete documentation set and required libraries provided by third-party vendors.

As in the previous section, begin by encapsulating the libraries as an independent
NetBeans module. Go to File ➤ New Project, and then NetBeans Modules ➤ Library Wrapper
Module. Now add all of the following libraries from Hibernate’s lib folder to the module:

• hibernate3.jar

• lib/antlr-x.x.x.jar

• lib/asm.jar

24174ch13_final_idx.fm Page 245 Friday, April 24, 2009 1:55 PM

246 C H A P T E R 1 3 ■ P E R S I ST E N C E

• lib/asm-attrs.jar

• lib/cglib-x.x.x.jar

• lib/commons-collections-x.x.x.jar

• lib/commons-logging-x.x.x.jar

• lib/dom4j-x.x.x.jar

• lib/jta.jar

• lib/log4j-x.x.x.jar

The libraries listed here are the minimum required to start Hibernate. For various reasons,
another set of libraries are also at your disposal. Further information about these can be found
in the README.txt file.

Typically, any problems arising when using libraries on the NetBeans Platform relate to
class loading. Unfortunately, this is also the case with Hibernate. The Bytecode enhancer of the
CGLIB library looks for its objects on the standard classpath, which is the application classpath.
The enhancer is necessary for the proxy creation of objects required for lazy-loading. The appli-
cation classpath simply contains a number of standard Java libraries, but not our Hibernate
library, nor the classes of our application module (further information about the NetBeans Plat-
form classloader system can be found in Chapter 2).

There’s nothing we can do other than ensure that the enhancer is used from the module
classloader, rather than from the application classloader. That way, the enhancer is able to
access the libraries in the Hibernate module, as well as the classes in the modules where
dependencies are defined.

To that end, we need to tweak the Hibernate source code slightly. The source code is
already available in your environment, within the src folder. Look in the appropriate location
for the org.hibernate.proxy.pojo.cglib.CGLIBLazyInitializer.java class. Add the following
statement in the method getProxyFactory(), after the creation of the enhancer:

e.setClassLoader(CGLIBLazyInitializer.class.getClassLoader());

The CGLIBLazyInitializer class is loaded by the module classloader of the Hibernate
module. We obtain the classloader via the getClassLoader() method, which we pass to the
enhancer object. This lets the enhancer access the required classes. After that, create the
package org.hibernate.proxy.pojo.cglib in the Hibernate wrapper module and add the
changed class there, so that it will be loaded instead of the original class.

Structure of the Example Application
You will learn to use Hibernate by an example based on the albums used in the “Example
Application” section earlier in the chapter. Along the way, the advantages of object-relational
bridges will immediately become obvious, and there will be two different approaches for
comparison. In addition, we’ve already bundled the Java DB database system, which now
needs to be used again.

Therefore, add the Hibernate module to the application created earlier. Each module that
needs to use the Hibernate functionality can simply declare its own dependency. In our
example, the module that declares this dependency is simply our only application module (My
Module). Open the Properties window via the context menu and add the Hibernate module

24174ch13_final_idx.fm Page 246 Friday, April 24, 2009 1:55 PM

C H A P T E R 1 3 ■ P E R S I ST E N C E 247

under Libraries as a new dependency. Because Hibernate can access the Java DB database
driver, add the same dependency from the Hibernate module to the Java DB module.

A further dependency must be defined between the application module My Module and the
Hibernate module. That enables us to access the functionality made available by Hibernate.

Till now, we’ve used the application module to work with the Genre and Album entities.
Since Hibernate accesses the classes, we set a dependency to the Hibernate module from the
application module, resulting in an undesirable cyclic dependency. The NetBeans Platform
runtime container then quickly throws an error and the application is unable to start.

For this reason, let’s take our entity classes and put them into a module of their own, which
solves the problem of cyclic dependencies. The architecture with the additional module (My
Entities) is shown in Figure 13-5.

Figure 13-5. The application components and your dependencies

■Tip When developing your application, it is highly recommended to not immediately use the embedded
version of Java DB (in other words, our Java DB Embedded module). It’s better to use the server variation,
which is integrated into the NetBeans IDE. Include the Java DB driver in your application, as explained in the
“Database Development with the Help of the NetBeans IDE” section earlier in the chapter. Then adapt your
hibernate.cfg.xml file to make the URL connection and start the database server in the NetBeans IDE via
Tools ➤ Java DB Database ➤ Start Server. This way, you use the Services window, which opens via Window
➤ Services, to view the database schema created by Hibernate.

Configuring Hibernate
Now that Hibernate is bundled with our application, we can set up a configuration depen-
dency. Do this via an XML file, which is named hibernate.cfg.xml by default. There, we define

24174ch13_final_idx.fm Page 247 Friday, April 24, 2009 1:55 PM

248 C H A P T E R 1 3 ■ P E R S I ST E N C E

the database driver, the connection URL, the authentication data, and the applicable SQL
dialect. The configuration data will look as shown in Listing 13-9.

Listing 13-9. Hibernate configuration data

<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE hibernate-configuration PUBLIC
 "-//Hibernate/Hibernate Configuration DTD 3.0//EN"
 "http://hibernate.sourceforge.net/hibernate-configuration-3.0.dtd">
<hibernate-configuration>
 <session-factory>
 <property name="connection.driver_class">
 org.apache.derby.jdbc.EmbeddedDriver</property>
 <property name="connection.url">jdbc:derby:hibernate-db;create=true</property>
 <property name="connection.username">user</property>
 <property name="connection.password">password</property>
 <property name="dialect">org.hibernate.dialect.DerbyDialect</property>
 </session-factory>
</hibernate-configuration>

Next, define the database driver class, which in this case is for the Java DB database system,
requiring the class org.apache.derby.jdbc.EmbeddedDriver. Since Hibernate creates a connec-
tion to the database, we also provide the connection URL.

The “Creating and Using a Database” section at the beginning of the chapter described
putting together this information for Java DB (aside from the username and the password,
which may be required for the database). We also must define the SQL dialect. For all the
popular databases, Hibernate provides the package org.hibernate.dialect, containing classes
that can be used to define the applicable dialect. The Hibernate reference documentation
should help you with any additional configuration settings that might need to be set.

Where then to place these files? Since the data is located in a separate file, we are able to
provide different Hibernate modules with different data. We can either put the file into the src
folder of an application or directly within a Hibernate wrapper module. Importantly, you
should place it in the appropriate classpath, since that is by default where the file is searched.
You also have a choice at the time the Configuration object is created to provide an alternative
URL or configuration file.

When the required libraries are added to the Hibernate wrapper module, you may notice
that Hibernate uses Hibernate Log4J. To ensure support by useful log messages, add a config-
uration file for Log4J. Use the file log4j.properties for this purpose, from the etc folder in your
Hibernate distribution. Then add the src folder to the Hibernate module.

Mapping Objects to Relations
Now that Hibernate is ready to go, we ask, “How exactly will Hibernate save our object into the
database?” In addition, how is the object structure mapped to a relation? The answer is to
create a map file for each object that we’d like to persist. That is where mapping information
will be stored. For example, this file includes information about the name and type under
which the attribute will be saved.

Even more importantly, the file defines relationships between different objects. Aside
from the complexity of the object structure, there are many possible entries, some of which are

24174ch13_final_idx.fm Page 248 Friday, April 24, 2009 1:55 PM

C H A P T E R 1 3 ■ P E R S I ST E N C E 249

mandatory to define. In this discussion, we obviously cannot delve into too much detail, and
we must limit ourselves to mapping information relevant to this section’s example application.

Have a look at a map file for our example class Genre (see Listing 13-10). Remember, we
defined a number as the unique ID and a string as the genre’s name.

Listing 13-10. Object-relational mapping for the Genre class: Genre.hbm.xml

<!DOCTYPE hibernate-mapping PUBLIC
 "//Hibernate/Hibernate Mapping DTD 3.0//EN"
 "http://hibernate.sourceforge.net/hibernate-mapping-3.0.dtd">
<hibernate-mapping package="com.galileo.netbeans.myentities">
 <class name="Genre" table="Genre" lazy="true">
 <id name="id">
 <generator class="increment"/>
 </id>
 <property name="genre" not-null="true" length="30" column="genre"/>
 </class>
</hibernate-mapping>

We use the class element to specify the class name and the name of the table where the
data of the type Genre is stored. Using the id element for the object attribute of the same name,
the primary key of the table is defined. The primary key will increment whenever needed.

Thus, we only need to define the second and last genre attribute via the property element.
Now when looking at the map file for the Album class (see Listing 13-11), things become quite
interesting, because a genre can be assigned to an album. However, multiple albums can use
the same genre. That means a many-to-one relationship exists. Define that relationship via the
element of the same name and set the lazy attribute to false.

By this, we ensure that the Genre object will load immediately, together with the Album, and
not afterward or separately. Via the assignment fetch="join", Hibernate connects the Genre
simultaneously with the query for the album data, via a JOIN query. This is, in fact, a request
optimization, since this ensures that only one request is needed instead of two, when loading
the class from the database.

Listing 13-11. We define the genre with a many-to-one relationship.

<!DOCTYPE hibernate-mapping PUBLIC
 "//Hibernate/Hibernate Mapping DTD 3.0//EN"
 "http://hibernate.sourceforge.net/hibernate-mapping-3.0.dtd">
<hibernate-mapping package="com.galileo.netbeans.myentities">
 <class name="Album" table="Album" lazy="true">
 <id name="id">
 <generator class="increment"/>
 </id>
 <many-to-one name="genre" lazy="false" fetch="join"/>
 <property name="title"
 not-null="true"
 length="30"
 column="title"/>

24174ch13_final_idx.fm Page 249 Friday, April 24, 2009 1:55 PM

250 C H A P T E R 1 3 ■ P E R S I ST E N C E

Now, put the map files into the same package as the classes. Typically, the map files end in
hbm.xml. Next, make them known to Hibernate. This occurs via an entry in the hibernate.
cfg.xml configuration file, where we have already defined our database settings.

Using the element mapping, connect all the data. In addition, define the property hbm2ddl,
using the value update (see Listing 13-12). That is how Hibernate obtains, when the application
starts, the database schema automatically. It does so via the information that you set in the
map files, so long as the database schema is not already available.

Listing 13-12. Registering the map files in the configuration file

<hibernate-configuration>
 <session-factory>
 ...
 <property name="hbm2ddl.auto">update</property>
 <mapping resource="com/galileo/netbeans/myentities/Genre.hbm.xml"/>
 <mapping resource="com/galileo/netbeans/myentities/Album.hbm.xml"/>
 </session-factory>
</hibernate-configuration>

SessionFactory and Sessions
At this stage, we’ve completed the configuration tasks. Now we’ll try to connect to Hibernate.
With that in mind, first create an object of the Configuration class, administering the configu-
ration defined earlier in the hibernate.cfg.xml file. By default, the information for this class
extracts from the hibernate.properties file.

However, our information is organized in an XML file. For that reason, we prompt the
Configuration instance, via its configure() method, to find the data in question. The method
is also available in a parameterized form, allowing you to pass in either a File or a URL pointing
to the configuration data. In this case, we’ll use the parameterless version, which immediately
expects the configuration to be available via the name hibernate.cfg.xml on the classpath.

A Configuration object is normally created only once. Based on this configuration, create
a SessionFactory, via the method buildSessionFactory(). Similar to the Configuration object,
a SessionFactory is kept alive over the duration of the application lifecycle.

That means that we must set up both the Configuration and the SessionFactory instances
within the same location in the module. Use the ModuleInstall class for that purpose (see
Chapter 3). In this way, a static instance of a SessionFactory is created (see Listing 13-13).

Listing 13-13. The central administration and preparation of a SessionFactory

import org.hibernate.Session;
import org.hibernate.SessionFactory;
import org.hibernate.cfg.Configuration;
public class Installer extends ModuleInstall {
 private static final SessionFactory sessionFactory;
 static {
 try {
 sessionFactory = new Configuration().configure().buildSessionFactory();

24174ch13_final_idx.fm Page 250 Friday, April 24, 2009 1:55 PM

C H A P T E R 1 3 ■ P E R S I ST E N C E 251

 } catch (Throwable ex) {
 throw new ExceptionInInitializerError(ex);
 }
 }
 public static Session createSession() {
 return sessionFactory.openSession();
 }
 public static Session currentSession() {
 return sessionFactory.getCurrentSession();
 }
 @Override
 public void close() {
 sessionFactory.close();
 }
}

Access to the database takes place via sessions. A session is a short-lived object, respon-
sible for the interaction between application and database. Hiding behind a session is a JDBC
connection. Thus, a Session object is also responsible for the creation of Transactions,
containing a cache for that purpose.

Using the openSession() method, create a new Session instance. Via the getCurrent-
Session() method, we receive the current Session. If none is available, a new one is created
and connected to the current thread. If a transaction that is created by the current session ends
(via commit() or rollback()), the session is automatically closed. This usage of sessions is the
simplest and most comfortable approach to adopt. It is also highly recommended for integra-
tion into your own application.

Saving and Loading Objects
Using the Installer class, we obtain a simple helper for saving and loading objects. We would
like to use these objects right away. You’ll remember that we created the DataModel to take
responsibility for interacting with the database. We also created it to be a mediator between
SQL and our objects.

All that functionality is now handled by Hibernate. However, we’d like to use the class later
on, without changing the rest of our application—and we have encapsulated Hibernate. Now
we introduce the interesting part (see Listing 13-14), since this is where the simplification takes
place.

Listing 13-14. The DataModel class integrates with the database via Hibernate.

import org.hibernate.Session;
import org.hibernate.Transaction;
public class DataModel {
 public static List<Album> getAlbums() {
 Session s = Installer.currentSession();
 Transaction t = s.beginTransaction();
 List<Album> list = (List<Album>)s.createCriteria(Album.class).list();

24174ch13_final_idx.fm Page 251 Friday, April 24, 2009 1:55 PM

252 C H A P T E R 1 3 ■ P E R S I ST E N C E

 t.commit();
 return list;
 }
 public static List<Genre> getGenres() {
 Session s = Installer.currentSession();
 Transaction t = s.beginTransaction();
 List<Genre> list = (List<Genre>)s.createCriteria(Genre.class).list();
 t.commit();
 return list;
 }
 public static void updateAlbum(Album album) {
 Session s = Installer.currentSession();
 Transaction t = s.beginTransaction();
 s.update(album);
 t.commit();
 }
 public static void insertAlbum(Album album) {
 Session s = Installer.currentSession();
 Transaction t = s.beginTransaction();
 s.save(album);
 t.commit();
 }
 public static void deleteAlbum(Album album) {
 Session s = Installer.currentSession();
 Transaction t = s.beginTransaction();
 s.delete(album);
 t.commit();
 }
}

For each action, we provide an updated or a new Session. By this approach, we continually
create another Transaction. Then we use the Session to execute a specific action (request,
store, update, etc.), after which we close the Transaction via the commit() method. As pointed
out, it isn’t necessary to explicitly close the Session, since it automatically closes when the
Transaction ends.

In this example, we’ve obviously dealt with an extremely simple scenario. As a result,
we’ve dealt with actions over a session and a transaction that have durations of equal length.
Read the Hibernate documentation for information about the correct level of granularity in
using sessions and transactions.

And with that, we’ve migrated our example (which first used SQL over a JDBC interface to
crudely transfer data from application to database) completely to Hibernate. The application
now runs entirely on top of the underlying persistence layer, and the application developer can
neatly and transparently store objects in and request objects from the database.

24174ch13_final_idx.fm Page 252 Friday, April 24, 2009 1:55 PM

C H A P T E R 1 3 ■ P E R S I ST E N C E 253

Java Persistence API
The aim of the Java Persistence API (JPA) is to specify a standardized, simple, and useful persis-
tence model. The persistence model should be relevant to the JSE world, as well as to that of
JEE. In that light, the best ideas have come from the Hibernate, TopLink, and JDO communi-
ties. As a result, applications that make use of the JPA interfaces are completely independent of
any specific framework, such as Hibernate itself. Their use encompasses the same indepen-
dence as you may have experienced with the JDBC interfaces.

JPA distinguishes itself, more than anything else, by the extent to which it is lightweight. Its
main characteristics include the ability to specify object relations, via Java annotations, directly
within the persistence object. This entails a separate map file, similar to the one shown in the
previous section on Hibernate. Unsurprisingly, there are no explicit relations between object
structures and their relations. Instead, annotations are used to influence the default mappings
between objects. This enormously simplifies the definition of entities.

Furthermore, JPA specifies SQL-like queries in the form of Java Persistence Query
Language (JPQL), for both static as well as dynamic queries. This makes your queries indepen-
dent of proprietary queries, such as those provided by HQL. JPA’s persistence encompasses
three different aspects: the API itself, which is in the package javax.persistence; the query
language JPQL; and the annotations used for the definition of relational information.

Over time, a range of projects and frameworks have provided their own JPA implementa-
tions. Among these are, of course, Hibernate and TopLink, as well as GlassFish and OpenJPA.
Since you have already been introduced to the native Hibernate interfaces, we now turn to its
JPA interfaces, which are not all that different from Hibernate’s native interfaces. Here, you can
see very clearly how closely Hibernate implements the JPA Specification.

Hibernate and the Java Persistence API
To be able to use JPA from Hibernate, we first need two further packages from the http://
hibernate.org web site. These are the packages Hibernate Annotations and Hibernate Entity-
Manager. Their libraries need be added to our Hibernate library wrapper module. Unfortunately,
it isn’t possible to add them to a preexisting library wrapper module. We can only add them
manually, and therefore it is simpler to create a new Hibernate module from scratch. The
libraries that we need are as follows:

24174ch13_final_idx.fm Page 253 Friday, April 24, 2009 1:55 PM

254 C H A P T E R 1 3 ■ P E R S I ST E N C E

• Hibernate Core:

• hibernate3.jar

• lib/antlr-x.x.x.jar

• lib/asm.jar lib/asm-attrs.jar

• lib/cglib-x.x.x.jar

• lib/commons-collections-x.x.x.jar

• lib/commons-logging-x.x.x.jar

• lib/dom4j-x.x.x.jar

• lib/javassist.jar lib/jta.jar

• lib/log4j-x.x.x.jar

• Hibernate Annotations:

• hibernate-annotations.jar

• lib/hibernate-commons-annotations.jar

• Hibernate EntityManager:

• hibernate-entitymanager.jar

• lib/ejb3-persistence.jar

• lib/hibernate-validator.jar

• lib/jboss-archive-browsing.jar

Check to make sure that you have the required libraries by reading the file lib/README.txt.
Depending on the version, this might have changed, so be very careful!

Java Persistence Configuration
Configuring persistence follows the native Hibernate approach very closely. The configuration
is done in the persistence.xml file (see Listing 13-15), which is in the META-INF folder. In addi-
tion, the files are bundled in persistence units.

Listing 13-15. Persistence configuration in the META-INF/persistence.xml file

<persistence xmlns="http://java.sun.com/xml/ns/persistence"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" version="1.0">
 <persistence-unit name="HibernateJPA" transaction-type="RESOURCE_LOCAL">
 <class>com.galileo.netbeans.myentities.Genre</class>
 <class>com.galileo.netbeans.myentities.Album</class>
 <properties>
 <property name="hibernate.connection.driver_class">
 org.apache.derby.jdbc.EmbeddedDriver</property>
 <property name="hibernate.connection.url">

24174ch13_final_idx.fm Page 254 Friday, April 24, 2009 1:55 PM

C H A P T E R 1 3 ■ P E R S I ST E N C E 255

 jdbc:derby:hibernatejpa-db;create=true</property>
 <property name="hibernate.connection.username">user</property>
 <property name="hibernate.connection.password">password</property>
 <property name="hibernate.dialect">
 org.hibernate.dialect.DerbyDialect</property>
 <property name="hibernate.hbm2ddl.auto">update</property>
 </properties>
 </persistence-unit>
</persistence>

Create a persistence unit with the name HibernateJPA, which we will use later, when
creating an EntityManagerFactory. Within that, add all the classes that will be administered
by the factory via its EntityManager. In addition, you need to define the same properties as
already done with hibernate.cfg.xml, while giving the properties the prefix hibernate. The
persistence.xml file created in that way is added via the My Entities module to the src/
META-INF folder.

Entity Classes
The advantage of implementing JPA entities, thanks to the attribute accessor methods, is that
no attribute needing to be persisted is required to have getters and setters. Nor does the attri-
bute need to be explicitly exposed in any way.

JPA can also read and write private attributes. Additionally, no special interface needs to
be implemented, nor does any need to be extended. Entities that are administered via JPA are
therefore completely normal Java objects. Only a few annotations are necessary within the
class.

In essence, the only annotations needed are those defining a class as an entity, via the
@Entity annotation or the @Id attribute and the declaration of the attribute. The extent to
which a class is constrained by specification is therefore extremely marginal. By default, a hier-
archy of objects is administered within a relation. This mapping strategy can be adapted via
annotations, for example, to customize a newly implemented object to a database schema.

From the perspective of the entity definition, once again use the classes Genre and Album.
Simply add the @Entity annotation to the class definition, after which you add the id class attri-
bute as the identity of the class via the @Id annotation (see Listing 13-16). At the same time,
specify the persistence provider (in our case Hibernate) that will provide a value for the attri-
bute. The genre attribute is a normal attribute and does not need to be identified in any
particular way. It is automatically considered, so long as it has not been marked as transient.

Optionally, you can add the @Basic annotation to normal attributes. Take note of the fact
that there is no requirement to add getters and setters for attributes. In this way, we omit the
getId() and setId() methods from the Genre class because we don’t need to do anything
special with them ourselves.

Listing 13-16. With only a few annotations, we define our class as an entity. It can then be saved in
a relational database. The previous map file is completely superfluous in this case.

import javax.persistence.Entity;
import javax.persistence.GeneratedValue;
import javax.persistence.Id;
@Entity

24174ch13_final_idx.fm Page 255 Friday, April 24, 2009 1:55 PM

256 C H A P T E R 1 3 ■ P E R S I ST E N C E

public class Genre {
 @Id
 @GeneratedValue
 private Long id;
 private String genre = new String();
 public Genre() {
 }
 ...
}

Little more than that needs be done for the Album class. To be exact, define a column name
for the year attribute. By default, the column is named after the attribute itself. However, in the
case of year, that would lead to failure at the first point of access, since year is part of SQL.
Therefore, use the @Column annotation to define a user-specific name (see Listing 13-17).
Finally, define the association for the Genre class as @ManyToOne, and right away both entities
will be ready.

Listing 13-17. Definition of the album entity with the association of the Genre class

import javax.persistence.Column;
import javax.persistence.Entity;
import javax.persistence.GeneratedValue;
import javax.persistence.Id;
import javax.persistence.ManyToOne;
@Entity
public class Album {
 @Id
 @GeneratedValue
 private Long id;
 private String title = new String();
 private String tracks = new String();
 private String cds = new String();
 @Column(name = "years")
 private String year = new String();
 @ManyToOne
 private Genre genre;
 public Album() {
 }
 ...
}

To let entities use annotations, set a dependency on the My Entities module so it uses the
Hibernate module. Fortunately, the Hibernate EntityManager makes use of the system class-
loader (see Chapter 2), so there is no need to set a dependency in the Hibernate module on our
entities, which would have led to a cyclic dependency. Had that been the case, wrapping the
entities in a separate module could have resulted in a rather complex architecture. In this way,
we arrive at the division and dependencies shown in Figure 13-6.

24174ch13_final_idx.fm Page 256 Friday, April 24, 2009 1:55 PM

C H A P T E R 1 3 ■ P E R S I ST E N C E 257

Figure 13-6. Dependencies between the modules when using Hibernate’s JPA interface

EntityManagerFactory and EntityManager
Comparable to the SessionFactory in the native Hibernate interfaces, we have an Entity-
ManagerFactory in the world of JPA. The factory creates a specific persistence unit for us. The
persistence unit is the EntityManager, which is created by this factory. It is able to save objects
that correspond to the persistence unit in their defined database and administer them there.
An EntityManagerFactory, just like the SessionFactory, normally performs its creation task
once during the application lifecycle.

We obtain an instance of this factory via the bootstrap class Persistence, using the
following call:

EntityManagerFactory emf = Persistence.createEntityManagerFactory("HibernateJPA");

The parameter HibernateJPA passes the name of the persistence unit, as defined in
persistence.xml.

The counterpart to a session that creates a wrapper for a JDBC connection is handled by
JPA in the EntityManager class. Via this manager, we gain access to the database, where we can
save, delete, query, and find objects. As a rule, one EntityManager is used for one procedure.

However, it is bad practice to create a new EntityManager for each query or action
performed. You must choose an appropriate lifecycle for an EntityManager in relation to the
application context. For example, since we’re dealing with only a few (and trivial) database
actions in Listing 13-18, we simply use a single EntityManager for the entire lifecycle, which is
not recommended.

24174ch13_final_idx.fm Page 257 Friday, April 24, 2009 1:55 PM

258 C H A P T E R 1 3 ■ P E R S I ST E N C E

As with the SessionFactory, you can manage an EntityManagerFactory in a module’s
ModuleInstall class. In that way, you can easily end the lifecycle of the factory when the appli-
cation closes.

Listing 13-18. The central administration and creation of the EntityManagerFactory

import javax.persistence.EntityManager;
import javax.persistence.EntityManagerFactory;
import javax.persistence.Persistence;
public class Installer extends ModuleInstall {
 public static final EntityManagerFactory EMF;
 public static final EntityManager EM;
 static {
 try {
 EMF = Persistence.createEntityManagerFactory("HibernateJPA");
 EM = EMF.createEntityManager();
 } catch (Throwable ex) {
 throw new ExceptionInInitializerError(ex);
 }
 }
 @Override
 public void close() {
 EM.close();
 EMF.close();
 }
}

Saving and Loading Objects
Finally, we must discuss how to use the EntityManager to access objects. Again, take the Data-
Model class, in which interaction with the native Hibernate interfaces was implemented (see
Listing 13-19). This is something we need now to let JPA handle for us. Take, for example, the
methods getAlbums() and getGenres(). As per usual, create a transaction that executes our
queries or actions. An instance of the EntityTransaction is received from the EntityManager via
the getTransaction() method. Start the transaction with the begin() statement, and then
create a new Query instance for the JPQL query SELECT a FROM Album a. The query provides us
all the objects from the albums table. We place this result in a List via the getResultList()
method. Using the commit() method, we successfully close the transaction.

Listing 13-19. Interaction with the database via the EntityManager

import javax.persistence.Query;
public class DataModel {
 public static List<Album> getAlbums() {
 Installer.EM.getTransaction().begin();
 Query q = Installer.EM.createQuery("SELECT a FROM Album a");
 List<Album> list = (List<Album>) q.getResultList();
 Installer.EM.getTransaction().commit();
 return list;
 }

24174ch13_final_idx.fm Page 258 Friday, April 24, 2009 1:55 PM

C H A P T E R 1 3 ■ P E R S I ST E N C E 259

 public static List<Genre> getGenres() {
 Installer.EM.getTransaction().begin();
 Query q = Installer.EM.createQuery("SELECT g FROM Genre g");
 List<Genre> list = (List<Genre>) q.getResultList();
 Installer.EM.getTransaction().commit();
 return list;
 }
 public static void updateAlbum(Album album) {
 Installer.EM.getTransaction().begin();
 Installer.EM.persist(album);
 Installer.EM.getTransaction().commit();
 }
 public static void insertAlbum(Album album) {
 updateAlbum(album);
 }
 public static void deleteAlbum(Album album) {
 Installer.EM.getTransaction().begin();
 Installer.EM.remove(album);
 Installer.EM.getTransaction().commit();
 }
}

Summary
In this chapter, you learned how to add database support to your application. There are a
number of different approaches. Firstly, we looked at the Java DB database system. With Java
DB, you have the possibility of integrating the complete system into your application, so there
is no need for a database server. In this case, you can store your data via SQL on the client.
Secondly, Hibernate is a very popular object-relational mapping (ORM) framework for storing
objects in relational databases. We also looked at this framework and how to integrate and use
it within a NetBeans Platform application. Thirdly, to be independent of a special ORM frame-
work, you can use the Java Persistence API (JPA). It provides an abstraction over specific
interfaces, enabling you to interchange ORM frameworks easily. We ended by adapting our
previously created example to demonstrate how JPA is used.

24174ch13_final_idx.fm Page 259 Friday, April 24, 2009 1:55 PM

24174ch13_final_idx.fm Page 260 Friday, April 24, 2009 1:55 PM

261

■ ■ ■

C H A P T E R 1 4

Web Services
Let’s Integrate the Web!

Web services have been gaining popularity over the last several years, presenting themselves
as interoperable services. In the NetBeans IDE, this trend is supported by a range of tools.
When creating NetBeans Platform applications, it is useful to be aware of how web services can
be used and integrated, which is the focus of this chapter.

Using Amazon E-Commerce Services (ECS) as an example, this chapter shows how to use
the NetBeans IDE to create classes required for the use of web services, and includes an expla-
nation of how to call them from a NetBeans Platform application. Taking this approach, your
users will be able to search for products and product information, and execute other opera-
tions relating to ECS.

Creating a Web Service Client
Before creating a NetBeans module, create an independent Java application. Do this, as in the
case of NetBeans modules, via a wizard. Go to File ➤ New Project. In the Java category, choose
the Java Application project type. Assign the name Amazon E-Commerce Service to the appli-
cation. A main class is not required in this case, so uncheck the related check box, and end the
wizard by clicking Finish.

Next, right-click the application and choose New ➤ Web Service Client. If this menu item
is not available, find it instead under Other ➤ Web Services. Specify the required WSDL file as
follows:

http://webservices.amazon.com/AWSECommerceService/AWSECommerceService.wsdl

Of course, this only works if you are online. Rather than taking the online approach, you
can download the file and feed it to the wizard as a local file (see Figure 14-1).

24174ch14_final_idx.fm Page 261 Friday, April 24, 2009 2:07 PM

262 C H A P T E R 1 4 ■ W E B S E R V I C E S

Figure 14-1. Creation of a web service client for Amazon ECS

Click Finish. The files that are required for the use of the web service are thereby created,
using the information provided by the WSDL file. For a result that is easier to understand, deac-
tivate the Wrapper Style setting, which is switched on by default. To this end, open the Web
Service References node in the Projects window. There, find an entry for AWSECommerceService,
right-click it to open the context menu, and choose Edit Web Service Attributes. On the WSDL
Customization tab, expand AWSECommerceServicePortType under the Port Types node, and
then deactivate the Enable Wrapper Style option (see Figure 14-2). The setting is applied to all
operations of this port type.

24174ch14_final_idx.fm Page 262 Friday, April 24, 2009 2:07 PM

C H A P T E R 1 4 ■ W E B S E R V I C E S 263

Figure 14-2. Deactivating the wrapper style for the Amazon web service

When you click OK, the web service client classes are updated. Now do a build, resulting in
a web service client in the form of the JAR file dist/Amazon_E-Commerce_Service.jar in the
main project directory. In the next section, we’ll wrap this JAR file in a NetBeans module and
use it as our Amazon ECS API.

24174ch14_final_idx.fm Page 263 Friday, April 24, 2009 2:07 PM

264 C H A P T E R 1 4 ■ W E B S E R V I C E S

Using a Web Service
The previous section showed how to create a JAR file containing the Java classes that allow
using Amazon ECS. In exactly the same way, you also create client files for other web services.
We will now examine how to use these files to let our NetBeans Platform application access the
web service.

To that end, create a new NetBeans Platform application by choosing File ➤ New Project
➤ NetBeans Modules ➤ NetBeans Platform Application. Give the application any name you
like. However, we need more than the modules that the NetBeans Platform provides—specifi-
cally, we need the modules JAX-WS 2.1 API, JAXWS 2.1 Library, and JAXB 2.1 Library. Activate
the first two of these in the java cluster of the application’s Project Properties dialog, and acti-
vate the third in the ide cluster. With that, our application is configured, and we can now add
the JAR file containing the web service client to our application.

Start by creating a new library wrapper module, right-clicking the Modules node, and
choosing Add New Library. In the Library field, browse to the JAR file created earlier. Click
Next. Name the module Amazon E-Commerce Service and click Next. Enter com.amazon as the
code name base, and then click Finish. Expand the new module project in the Projects window,
right-click the Libraries node, and choose Add Module Dependency. Click Show Non-API
Modules, and then select JAX-WS 2.1 API, JAXWS 2.1 Library, and JAXB 2.1 Library as depen-
dencies. Finally, within the module project’s Libraries node, right-click the JAXWS 2.1 Library
and JAXB 2.1 Library nodes, choose Edit, and then choose Implementation Version.

With that, the web service client is ready to be used within the NetBeans Platform applica-
tion. We’ll now create a new module from which we’ll call out to the web service client classes.
In the Projects window, right-click the application’s Modules node, and choose Add New. Create
a new module and set a dependency on the Amazon E-Commerce Service module. To set up a
small example, create a new TopComponent using the Window Component wizard.

In the example, use the Amazon Standard Identification Number (ASIN) to search for avail-
able pictures of a product. Looking ahead to the MP3 Manager that we’ll create in Chapter 18,
adapt the example as follows: save the ASIN into an MP3 file’s ID3 tag, enabling you to show
Amazon’s CD cover of the MP3 file currently being played. Alternatively, use the example to
search for albums of the currently playing MP3 file and display them to the user.

In the example application, as you can see in Figure 14-3, we use the ASIN to search for a
product and show its cover, as is done on the Amazon.com site. To that end, let’s look more
closely at the queries that we use to interact with the Amazon web service. The requests need to
be performed asynchronously, avoiding a situation where the whole application is blocked. At
the same time, be aware that operations on the GUI components should only be performed
over the EDT. In the end, we want to be informed when the query has succeeded, which is when
we can display the image. The simplest approach to solving these related concerns is to use the
SwingWorker class. To that end, we create our own class, deriving from SwingWorker<String,
Object>.

The doInBackground() method, which we need to override, is automatically called asyn-
chronously. This is where web service queries are coded (see Listing 14-1). When the queries
succeed, the done() method in the SwingWorker is called. That is where we then use the get()
method to access the value returned by the doInBackground() method. In the example, the
value is the URL of the product image.

24174ch14_final_idx.fm Page 264 Friday, April 24, 2009 2:07 PM

C H A P T E R 1 4 ■ W E B S E R V I C E S 265

Listing 14-1. Executing a web service request and showing the results with the help of the Swing-
Worker class

import com.amazon.webservices.awsecommerceservice.AWSECommerceService;
import com.amazon.webservices.awsecommerceservice.AWSECommerceServicePortType;
import com.amazon.webservices.awsecommerceservice.ImageSet;
import com.amazon.webservices.awsecommerceservice.Item;
import com.amazon.webservices.awsecommerceservice.ItemLookup;
import com.amazon.webservices.awsecommerceservice.ItemLookupRequest;
import com.amazon.webservices.awsecommerceservice.ItemLookupResponse;

final class ECSTopComponent extends TopComponent {
 private static final String AWS_KEY = "<your personal aws key>";
 ...
 private final class ImageLookupByASIN extends SwingWorker<String, Object> {
 private String asin = new String();

 public ImageLookupByASIN(String asin) {
 this.asin = asin;
 }

 @Override
 public String doInBackground() {
 String url = new String();
 try {
 AWSECommerceService service = new AWSECommerceService();
 AWSECommerceServicePortType port = service.getAWSECommerceServicePort();
 ItemLookupRequest request = new ItemLookupRequest();
 request.setIdType("ASIN");
 request.getItemId().add(asin);
 request.getResponseGroup().add("Images");
 ItemLookup il = new ItemLookup();
 il.setAWSAccessKeyId(AWS_KEY);
 il.getRequest().add(request);
 ItemLookupResponse response = port.itemLookup(il);
 Item i = response.getItems().get(0).getItem().get(0);
 ImageSet is = i.getImageSets().get(0).getImageSet().get(0);
 url = is.getThumbnailImage().getURL();
 } catch (Exception e) {
 e.printStackTrace();
 }
 return url;
 }
 @Override
 protected void done() {
 try {
 cover.add(new JLabel(new ImageIcon(new URL(get()))));
 cover.updateUI();
 } catch (Exception e) {
 e.printStackTrace();
 }
 }

24174ch14_final_idx.fm Page 265 Friday, April 24, 2009 2:07 PM

266 C H A P T E R 1 4 ■ W E B S E R V I C E S

 }
 private void searchActionPerformed(ActionEvent evt) {
 new ImageLookupByASIN(asin.getText()).execute();
 }
}

In the asynchronously called doInBackground() method, we get the port for Amazon ECS.
Then we invoke the ItemLookup operation. Configure the operation via the ItemLookup and
ItemLookupResult objects. Using the Request object, specify the use of the ASIN to look for a
product. Add the ASIN, which the ImageLookupByASIN object passes as a parameter, to the Item
ID list. Using the Response group, process the information received from the web service.
Since we are only interested in the URL of the product image, use the Images group type.

To use Amazon Web Services (AWS), you need an AWS access key, which you can get for
free after subscribing at http://aws.amazon.com. Pass the key in to the ItemLookup object, via
the method setAWSAccessKeyId(). Then pass in the ItemLookupRequest object. In doing so, you
prepare the required parameters for the request and can perform the itemLookup() request on
the web service port obtained earlier. The response is received in the ItemLookupResponse
object containing a list of found products in the form of an Item object. Since there is only one
product per ASIN, immediately take the first item from the list. An item includes an ImageSet,
from which the URL of the product image is extracted. That is the value returned from the
method.

And with that, the request ends and the SwingWorker class calls the done() method. In this
method, we obtain the URL via the get() method and use it to access the ImageIcon object,
which is then shown to the user (see Figure 14-3).

Figure 14-3. Product information query over the Amazon e-commerce service

24174ch14_final_idx.fm Page 266 Friday, April 24, 2009 2:07 PM

C H A P T E R 1 4 ■ W E B S E R V I C E S 267

Summary
This chapter dealt with the topic of web services. We created a Web Service API (a web service
client) for AWS from the corresponding WSDL file. To this end, we made use of the related
NetBeans IDE tooling support. Next, you learned how to integrate the web service client into
your own NetBeans Platform application. You also saw which additional libraries are necessary
in this scenario. All in all, the example showed how easy it is to use a web service in your own
application.

24174ch14_final_idx.fm Page 267 Friday, April 24, 2009 2:07 PM

24174ch14_final_idx.fm Page 268 Friday, April 24, 2009 2:07 PM

269

■ ■ ■

C H A P T E R 1 5

Extending the NetBeans IDE
Let’s Add Some Features to the
NetBeans IDE!

The NetBeans IDE itself is a rich client application. It provides its functionality in the form of
modules on top of the NetBeans Platform. That means you can extend the functionality the
IDE provides the same way you would your own rich client application—by adding modules.
For that purpose, in this chapter we discuss aspects that are important when dealing with the
IDE.

Palettes
In Chapter 9, we developed a palette. From this palette, we could drag and drop music albums
onto a specially created TopComponent. The possibility of registering a palette to a specific file
type was mentioned. Registering automatically opens a registered palette whenever a file of
that type is opened in the NetBeans editor. We will be working out an example of how that is
achieved.

Assume that we would like to create a palette for manifest (.mf) files (see Figure 15-1). To
achieve this, we do the following. For every entry the palette provides, we register an XML file
in the layer file. Then we implement a class that creates a palette for the registered palette
entries. Finally, we register that class to the manifest file type in the layer file.

24174ch15_final_idx.fm Page 269 Friday, April 24, 2009 2:09 PM

270 C H A P T E R 1 5 ■ E X T E N D I N G T H E N E T B E A N S I D E

Figure 15-1. Palette for manifest files

Defining and Registering Palette Entries
Every palette entry is defined by an XML file of the editor-palette-item type (see DTD in the
Appendix). In that file, we declare a class that is called when dragging and dropping to handle
the inserts. We also declare two icons of differing sizes, as well as the text and tooltip for the
entry. For the palette entry Module Name, the file looks like Listing 15-1.

Listing 15-1. Definition of the Module Name palette entry by means of an XML file

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE editor_palette_item PUBLIC
 "-//NetBeans//Editor Palette Item 1.1//EN"
 "http://www.netbeans.org/dtds/editor-palette-item-1_1.dtd">
<editor_palette_item version="1.1">
 <class name="com.galileo.netbeans.module.items.ModuleName"/>
 <icon16 urlvalue="com/galileo/netbeans/module/resources/ModuleName16.png"/>
 <icon32 urlvalue="com/galileo/netbeans/module/resources/ModuleName32.png"/>
 <inline-description>
 <display-name>Module Name</display-name>
 <tooltip>Module Name</tooltip>
 </inline-description>
</editor_palette_item>

24174ch15_final_idx.fm Page 270 Friday, April 24, 2009 2:09 PM

C H A P T E R 1 5 ■ E X T E N D I N G T H E N E T B E A N S I D E 271

INTERNATIONALIZATION OF PALETTE ENTRIES

To enable internationalization of palette entries, you can move the values of the text elements display-name
and tooltip into a resource bundle file. For that purpose, the inline-description element is replaced
by the description element. Instead of the values for those text elements, we declare the keys with which
the values can be retrieved from the resource bundle. Of course, we will also declare the resource bundle to
be used:

 <description localizing-bundle="com.galileo.netbeans.module.Bundle"
 display-name-key="DISPLAY"
 tooltip-key="TOOLTIP"/>

In the class element, we declared the class ModuleName. That class is called whenever the
user drags the entry from the palette into the editor of a manifest file. Therefore, the class has
to implement the ActiveEditorDrop interface. The interface is a component of the Text API to
which you must declare a dependency. Upon a drop event, the method handleTransfer() from
the ActiveEditorDrop interface is called automatically. In that call, a JTextComponent is passed
as a parameter. Via the JTextComponent, we get access to the current document—our manifest
file—where we want to insert our entry. Since the process is very repetitive for each palette
entry and differs only in the text to be inserted, we will be implementing the abstract class
ManifestItem (see Listing 15-2). That class is responsible for inserting text into the manifest
document. Text is supplied by the method getItem(), which subclasses must implement.

Listing 15-2. Abstract class taking responsibility of inserting text into the manifest file

import org.openide.text.ActiveEditorDrop;
public abstract class ManifestItem implements ActiveEditorDrop {
 public abstract String getItem();
 public boolean handleTransfer(JTextComponent editor) {
 try {
 Document doc = editor.getDocument();
 int pos = editor.getCaretPosition();
 doc.insertString(pos, getItem() + "\n", null);
 } catch (BadLocationException ex) {
 Logger.getLogger(ManifestItem.class.getName()).log(Level.SEVERE, null, ex);
 }
 return true;
 }
}

The classes for specific palette entries are trivial to implement:

public class ModuleName extends ManifestItem {
 public String getItem() {
 return "OpenIDE-Module-Name: My Module";
 }

24174ch15_final_idx.fm Page 271 Friday, April 24, 2009 2:09 PM

272 C H A P T E R 1 5 ■ E X T E N D I N G T H E N E T B E A N S I D E

}

public class ModuleSpecVersion extends ManifestItem {
 public String getItem() {
 return "OpenIDE-Module-Specification-Version: 1.0";
 }
}

You can extend these classes to allow the user to actively declare the values—in this case
the name or the version of the module—for the entries in, e.g., a dialog.

To finish the first step of defining the entries, we need to register them in the layer file in a
specially created folder. In this case, we use the folder ManifestPalette (see Listing 15-3). Every
folder declared there will be a category in the palette by which entries can be grouped.

Listing 15-3. Registration of palette entries in a separate folder

<folder name="ManifestPalette">
 <folder name="Basic">
 <file name="ModuleName.xml" url="items/ModuleName.xml"/>
 </folder>
 <folder name="Versioning">
 <file name="ModuleSpecVersion.xml" url="items/ModuleSpecVersion.xml"/>
 <file name="ModuleImplVersion.xml" url="items/ModuleImplVersion.xml"/>
 </folder>
</folder>

Creating and Registering a PaletteController
We implemented the palette entries and registered them in the ManifestPalette folder in the
layer file. We will now create a PaletteController instance for this folder that manages the
entries. Therefore, we create a class named ManifestPalette. There, we add the method
createPalette(), which will, with the help of the PaletteFactory class from the Palette API,
create a PaletteController instance, as shown in Listing 15-4.

Listing 15-4. The PaletteController is the manager of our entries.

import org.netbeans.spi.palette.PaletteActions;
import org.netbeans.spi.palette.PaletteController;
import org.netbeans.spi.palette.PaletteFactory;
public class ManifestPalette {
 private static PaletteController palette;
 public static PaletteController createPalette() {
 try {
 if (palette == null) {
 palette = PaletteFactory.createPalette(
 "ManifestPalette",
 new MyPaletteActions());
 }
 return(palette);
 } catch (Exception ex) {
 Logger.getLogger(

24174ch15_final_idx.fm Page 272 Friday, April 24, 2009 2:09 PM

C H A P T E R 1 5 ■ E X T E N D I N G T H E N E T B E A N S I D E 273

 ManifestPalette.class.getName()).log(Level.SEVERE, null, ex);
 }
 return null;
 }
 private static final class MyPaletteActions extends PaletteActions {
 ...
 }
}

As the final part of this example, we must register the PaletteController to the manifest
file type. To do that, we determine the MIME type of manifest files first. That we can do quite
easily with the layer tree in the project view of our module. You will see the MIME type text/
x-manifest under Important Files ➤ XML Layer ➤ <this layer in context> ➤ Editors. There-
fore, we register the controller in the folder Editors/text/x-manifest:

<folder name="Editors">
 <folder name="text">
 <folder name="x-manifest">
 <file name="ManifestPalette.instance">
 <attr name="instanceOf"
 stringvalue="org.netbeans.spi.palette.PaletteController"/>
 <attr name="instanceCreate" methodvalue=
 "com.galileo.netbeans.module.ManifestPalette.createPalette"/>
 </file>
 </folder>
 </folder>
</folder>

From now on, every time a manifest file is opened in the editor, a controller for manifest
palette entries is created by calling the method createPalette(). This controller is made avail-
able for the Palette module via the Lookup. It will display the corresponding entries as
depicted in Figure 15-1.

Expanding Existing Palettes
Aside from creating a palette for a file type that previously had no palette, you can add entries
to a preexisting palette. The name for the folder in the layer file must be known beforehand.
The layer tree (Important Files ➤ XML Layer) is a good place to search for already existing
palette folders. The folder for, e.g., .html files, is named HTMLPalette. Add entries to existing
folders in the same way you would add them to your own ManifestPalette folder. It should
look like Listing 15-5.

Listing 15-5. Adding entries to an existing palette

<folder name="HTMLPalette">
 <folder name="My HTML Items">
 <file name="item1.xml" url="items/item1.xml"/>
 <file name="item2.xml" url="items/item2.xml"/>
 </folder>
</folder>

24174ch15_final_idx.fm Page 273 Friday, April 24, 2009 2:09 PM

274 C H A P T E R 1 5 ■ E X T E N D I N G T H E N E T B E A N S I D E

Task List API
The Task List module of the NetBeans IDE allows the display of all-purpose information, like
tasks, notifications, or error messages, as can be seen in Figure 15-2. Task list entries can be
grouped so that the user is provided a better overview of information. The user can determine
from what sections entries shall be shown. By default, three sections—called scopes—are
defined in the Task List module. One scope corresponds to the currently opened file, another
to the main project and its opened dependent projects, and the third to all opened projects.
The entries are supplied by scanners working with the fixed scope.

Figure 15-2. Task List module of the NetBeans IDE

The Task List API dynamically expands the scope of operation of the Task List module,
primarily by providing additional scanners. These extensions integrate with the help of exten-
sion points in the layer file. We will show how that works in an example. We will need to
implement a scanner displaying all code fragments with a direct output of information, like
System.out.println(). Doing that enables us to ascertain that, prior to the release of a product,
every unwanted direct output is replaced by logging output or removed.

Our LoggingTaskScanner extends from the abstract class FileTaskScanner. Each scanner
has a name and description of its capability. There is an optional link to an options panel from
which the scanner can be configured individually. An example is the ToDo scanner of the IDE.
The tokens identified as ToDo tasks can be configured there. For reasons of simplicity, we define
these tokens directly in our scanner. The constructor of our scanner calls the superconstructor
with three parameters: the name, the description, and the path to the options panel (null if
there is none). Since the scanner is registered declaratively in the layer file to be initialized by the

24174ch15_final_idx.fm Page 274 Friday, April 24, 2009 2:09 PM

C H A P T E R 1 5 ■ E X T E N D I N G T H E N E T B E A N S I D E 275

Task List framework, we provide the factory method create() to create a LoggingTaskScanner
instance.

The important part of the scanner—as you may have guessed—is the scan() method (see
Listing 15-6). In a parameter, we access a file to be searched. With the help of a Pattern (to
identify the tokens) and a Matcher, we search the file. For every occurrence of the tokens, we
create a task instance that we add to a list that is returned once we are done searching the file.
The TodoTaskScanner provides the template for the following implementation. A task instance
is created via the static method Task.create(), with parameters for the searched file, the group
the entry belongs to, a description (usually the line with the occurrence), and the line number.

Listing 15-6. Scanner implementation

import org.netbeans.spi.tasklist.FileTaskScanner;
import org.netbeans.spi.tasklist.Task;
import org.openide.filesystems.FileObject;
public class LoggingTaskScanner extends FileTaskScanner {
 private static final String GROUP_NAME = "logging-tasklist";
 private static final String[] TOKENS = {
 "System.out.println",
 "System.err.println",
 "printStackTrace"};
 private Pattern regexp = null;
 private Callback callback = null;
 public LoggingTaskScanner(String name, String desc) {
 super(name, desc, null);
 }
 public static LoggingTaskScanner create() {
 String name = NbBundle.getBundle(LoggingTaskScanner.class).
 getString("LBL_loggingtask");
 String desc = NbBundle.getBundle(LoggingTaskScanner.class).
 getString("HINT_loggingtask");
 return new LoggingTaskScanner(name, desc);
 }
 public List<? extends Task> scan(FileObject file) {
 List<Task> tasks = new LinkedList<Task>();
 try {
 String text = getContent(file);
 int index = 0;
 int lineno = 1;
 int len = text.length();
 Matcher matcher = getScanRegexp().matcher(text);
 while (index < len && matcher.find(index)) {
 int begin = matcher.start();
 int end = matcher.end();
 ...
 String description = text.subSequence(begin, nonwhite + 1).toString();
 Task task = Task.create(file, GROUP_NAME, description, lineno);
 tasks.add(task);
 }
 } catch(Exception e) {
 Logger.getLogger(getClass().getName()).info(e);

24174ch15_final_idx.fm Page 275 Friday, April 24, 2009 2:09 PM

276 C H A P T E R 1 5 ■ E X T E N D I N G T H E N E T B E A N S I D E

 }
 return tasks;
 }
 private String getContent(FileObject file) {
 // extract the content from the file
 }
 private Pattern getScanRegexp() {
 if (regexp == null) {
 // create pattern for the tokens
 }
 return regexp;
 }
 public void attach(Callback callback) {
 if(callback == null && this.callback != null) {
 regexp = null;
 }
 this.callback = callback;
 }
 @Override
 public void notifyPrepare() {
 getScanRegexp();
 }
 @Override
 public void notifyFinish() {
 regexp = null;
 }
}

In the context menu of the Task List window, users can activate and deactivate the
scanner. We are informed of changes in scanner states of activation with a call to the method
attach(). If the value of the callback parameter is null, the scanner has been disabled. Via the
callback instance, we access the Task List framework. The method notifyPrepare() is called,
prior to the initiation of a scan, by the Task List framework. It allows us to prepare the
upcoming call of scan(). The notifyFinish() method is called last.

The Task List framework defines the following three extension points that allow the regis-
tration of extensions:

• TaskList/Groups

• TaskList/Scanners

• TaskList/Scopes

Initially, we want to create a new group for logging tasks. We have already declared the
group ID as logging-tasklist in the scanner. That allows us to assign tasks created in the
scanner to a group. Creating a group is done by simply calling the createGroup() method of the
Task class. We must specify attributes to configure the group. Among those attributes are an ID
and keys from a resource bundle (see Listing 15-7). Registering the scanner, we must declare
the base class and factory method.

24174ch15_final_idx.fm Page 276 Friday, April 24, 2009 2:09 PM

C H A P T E R 1 5 ■ E X T E N D I N G T H E N E T B E A N S I D E 277

Listing 15-7. Creation of a Task group and registration of the scanner via the extension points of
the Task List framework

<filesystem>
 <folder name="TaskList">
 <folder name="Groups">
 <file name="LoggingTaskGroup.instance">
 <attr name="instanceCreate"
 methodvalue="org.netbeans.spi.tasklist.Task.createGroup"/>
 <attr name="localizingBundle"
 stringvalue="com.galileo.netbeans.module.Bundle"/>
 <attr name="groupName" stringvalue="logging-tasklist"/>
 <attr name="diplayNameKey" stringvalue="LBL_loggroup"/>
 <attr name="descriptionKey" stringvalue="HINT_loggroup"/>
 <attr name="iconKey" stringvalue="ICON_logging"/>
 <attr name="position" intvalue="400"/>
 </file>
 </folder>
 <folder name="Scanners">
 <file name="LoggingTaskScanner.instance">
 <attr name="instanceOf"
 stringvalue="org.netbeans.spi.tasklist.FileTaskScanner"/>
 <attr name="instanceCreate" methodvalue=
 "com.galileo.netbeans.module.LoggingTaskScanner.create"/>
 </file>
 </folder>
 </folder>
</filesystem>

Summary
In this chapter, the NetBeans IDE was presented as a NetBeans Platform application. Its
features can be extended in the same way as is done with your own NetBeans Platform appli-
cations. In addition to the NetBeans Platform modules, you were exposed to several APIs
provided by the NetBeans IDE. In particular, you learned about the Palette API and the Task
List API and SPI.

24174ch15_final_idx.fm Page 277 Friday, April 24, 2009 2:09 PM

24174ch15_final_idx.fm Page 278 Friday, April 24, 2009 2:09 PM

279

■ ■ ■

C H A P T E R 1 6

From Eclipse RCP to the
NetBeans Platform
Let’s Abandon SWT!

This chapter guides the migration of applications developed on top of Eclipse RCP to the
NetBeans Platform. Related differences between the Eclipse IDE and the NetBeans IDE are also
highlighted where appropriate in migrating an application from Eclipse RCP to the NetBeans
Platform.

The NetBeans IDE
This section introduces techniques, fundamental characteristics, and functions of the
NetBeans IDE. It helps smooth the transition from the Eclipse IDE to the NetBeans IDE, and
provides an introduction to the NetBeans Platform.

Standard Components
Table 16-1 provides a basic overview of where you can find the windows and functions you
know from the Eclipse IDE.

Table 16-1. The NetBeans IDE equivalents for Eclipse components

Eclipse Component NetBeans Menu Item

Project Explorer/Package Explorer Window ➤ Projects

Projects/Navigator Window ➤ Files

Outline Window ➤ Navigating ➤ Navigator

Properties Window ➤ Properties

Console Window ➤ Output ➤ Output

Problems/Tasks Window ➤ Task List

Javadoc Window ➤ Other ➤ Javadoc View

24174ch16_final_idx.fm Page 279 Friday, April 24, 2009 2:11 PM

280 C H A P T E R 1 6 ■ F R O M E C L I P S E R C P T O T H E N E T B E A N S P L A T F O R M

Handling Projects
In the NetBeans IDE, mapping keyboard shortcuts to provided functionalities is done via a
keymap. This keymap is viewed and edited under Tools ➤ Options ➤ Keymap. Adapt the
actions to your own needs. It is also possible to administrate several keymaps at the same time.
The NetBeans IDE provides an Eclipse keymap, making it possible to switch to Eclipse
keymaps (also under Tools ➤ Options ➤ Keymap) and use the well-known shortcuts further
on—a benefit for experienced Eclipse users.

Something often missed by Eclipse users in the NetBeans IDE is the perspective feature.
However, a module providing the perspective feature is available at http://contrib.netbeans.
org/perspective. Thus, you can use perspectives in the NetBeans IDE. This module can be
downloaded and installed through the Plugin Manager (Tools ➤ Plugins).

From Eclipse Plugins to NetBeans Modules
The concept of a plugin in the Eclipse world is equivalent to a NetBeans module. As in the
Eclipse IDE, the NetBeans IDE offers a wizard providing the basic structure for a module in a
few clicks. Perform this via File ➤ New Project ➤ NetBeans Modules ➤ Module.

While creating a plugin with the Eclipse IDE, several parameters must be declared from
the beginning. Among them is the activator, the GUI, and the rich client application function-
ality of the new plugin. The NetBeans IDE Module wizard takes a more general approach. In all
three points specified before, decisions can be made later on whether the functionality is
needed. An activator—called a NetBeans module installer (more on this later on)—can be
added anytime via a separate wizard. This wizard is found under File ➤ New File ➤ Module
Development ➤ Module Installer.

No need to bother about whether the module will come with a graphic interface. On this
point, separate wizards are available, and you can use them later as needed. One of the most
important wizards is the Window Component wizard, for the construction of windows, which
are docked and administered in the NetBeans window system. Start this wizard via File ➤ New
File ➤ Module Development ➤ Window Component.

You can decide whether to provide a rich client application that the module will be a part
of, or whether this module is to become an extension of an already existing application.
Although the module wizard asks whether a standalone module or an application module is
needed, this is easily changed in the Properties dialog of a module, or simply through adding
and removing the module from an application.

For modules to become self-contained rich client applications, a NetBeans Platform
Application project is needed. This project is a container for your modules, and is responsible
for branding your application. To create a NetBeans Platform application, a wizard is also

Error Log View ➤ IDE Log File

Plug-in Registry Tools ➤ Plugins

Preferences Tools ➤ Options

Table 16-1. The NetBeans IDE equivalents for Eclipse components (Continued)

Eclipse Component NetBeans Menu Item

24174ch16_final_idx.fm Page 280 Friday, April 24, 2009 2:11 PM

C H A P T E R 1 6 ■ F R O M E C L I P S E R C P T O T H E N E T B E A N S P L A T F O R M 281

provided. Find it under File ➤ New Project ➤ NetBeans Modules ➤ NetBeans Platform Appli-
cation. Both new and existing modules can be added to the new application.

The range of NetBeans modules used by applications, and hence used by modules, is
determined under Properties ➤ Libraries. Applications are by no means limited to NetBeans
Platform modules. Arbitrary NetBeans IDE modules can be added to your application.

Plugin: Lifecycle and Events
An Eclipse plugin may contain an Activator. This class extends the abstract class Plugin or
AbstractUIPlugin, depending on whether the plugin contains graphic elements. This optional
class serves as the conceptual representation of the plugin. Containing no application logic, it
reacts to distinguished events—for instance, the methods start() and stop() specified by the
interface BundleActivator and implemented by the classes Plugin and AbstractUIPlugin.

The methods are called by the Eclipse Platform when the plugin is loaded or closed. By
overwriting these methods, special platform-specific tasks are executed at these times. An
Activator in its simplest form looks as shown in Listing 16-1.

Listing 16-1. Activator class of an Eclipse plugin

package com.galileo.eclipse.plugin;
import org.eclipse.core.runtime.Plugin;
import org.osgi.framework.BundleContext;
public class Activator extends Plugin {
 private static Activator plugin;
 public void start(BundleContext context) throws Exception {
 super.start(context);
 plugin = this;
 }
 public void stop(BundleContext context) throws Exception {
 plugin = null;
 super.stop(context);
 }
 public static Activator getDefault() {
 return plugin;
 }
}

The counterpart to the Eclipse plugin activator is the module installer of a NetBeans
module. This module installer is optional. The NetBeans platform instantiates an installer
during module startup. The installer extends the class ModuleInstall (see Listing 16-2).

This class specifies the methods restored() and close(), which are equivalent to methods
in the BundleActivator interface. Also available are validate(), for the examination of the
starting conditions; closing(), for the examination of stop conditions; and uninstalled(), for
uninstallation of the module. As in activators, these methods can be overwritten and used as
required.

Listing 16-2. The counterpart to the activator is a NetBeans module installer.

package com.galileo.netbeans.module;
import org.openide.modules.ModuleInstall;

24174ch16_final_idx.fm Page 281 Friday, April 24, 2009 2:11 PM

282 C H A P T E R 1 6 ■ F R O M E C L I P S E R C P T O T H E N E T B E A N S P L A T F O R M

public class Installer extends ModuleInstall {
 @Override
 public void restored() {
 // module started
 }
 @Override
 public void close() {
 // module stopped
 }
 public static Installer getDefault() {
 return findObject(Installer.class, true);
 }
}

While the activator of an Eclipse plugin is automatically created by a new plugin project,
the installer can be created anytime with the Module Installer wizard, found under File ➤ New
File ➤ Module Development. Thus, the installer is also registered in the manifest file. You can
find more detailed information on this in Chapter 3.

Plugin Information
Apart from reaction to starting and stopping plugins, the activator class has further functional-
ities. It can also provide plugin and manifest information via a Bundle object. Information on
NetBeans modules is offered by the NetBeans Platform in the ModuleInfo objects. Instances for
all modules within applications are available on the Lookup. ModuleInfo instances can be
found in this map. They are provided to the module user via the Installer class and the
getModuleInfo() method, as shown in Listing 16-3.

Listing 16-3. Providing the ModuleInfo instance, which contains information on the module

package com.galileo.netbeans.module;
import org.openide.modules.ModuleInfo;
import org.openide.modules.ModuleInstall;
import org.openide.util.Lookup;
public class Installer extends ModuleInstall {
 public static final String MODULE_ID = "com.galileo.netbeans.module";
 private ModuleInfo info = null;
 ...
 public ModuleInfo getModuleInfo() {
 if(info == null) {
 Collection<? extends ModuleInfo> all =
 Lookup.getDefault().lookupAll(ModuleInfo.class);
 for(ModuleInfo mi : all) {
 if(mi.getCodeNameBase().equals(MODULE_ID)) {
 info = mi; break;
 }
 }
 }
 return info;
 }
}

24174ch16_final_idx.fm Page 282 Friday, April 24, 2009 2:11 PM

C H A P T E R 1 6 ■ F R O M E C L I P S E R C P T O T H E N E T B E A N S P L A T F O R M 283

Images
Pictures and icons used within an application are not loaded over the installer, but over a
central ImageUtilities class in the NetBeans world. The method loadImage() should be used.

An icon manager manages images and icons, preventing repeated loading of resources.
Use it to load icons from all available modules. It is also possible to load localized resources, as
in the following example. If the second parameter is set to true and there is an icon named
icon_de_DE.png available, then it is loaded (if the locale setting of application is de_DE):

Image img = ImageUtilities.loadImage("resources/icon.png", true);

Resources
Any plugin resource may be accessed by using the FileLocator class in Eclipse. In order to
load resources simply from a NetBeans module, extend the Installer class by the method
getModuleResource() (see Listing 16-4). Use the module classloader that has access to all
module resources. This returns a URL which, using the URLMapper class, maps to the FileObject
instance.

Listing 16-4. The getModuleResource() method helps load module resources.

package com.galileo.netbeans.module;
import java.net.URL;
import org.openide.filesystems.FileObject;
import org.openide.filesystems.URLMapper;
import org.openide.modules.ModuleInstall;
public class Installer extends ModuleInstall {
 ...
 public FileObject getModuleResource(String path) {
 URL url = getClass().getClassLoader().getResource(path);
 FileObject resource = URLMapper.findFileObject(url);
 return resource;
 }
}

The FileObject class provides extensive methods for working with resources. The
following example proves that by loading content of the myprops.properties file out of the
resources directory of the module into the Properties object.

public final class TestAction implements ActionListener {
 public void actionPerformed(ActionEvent evt) {
 FileObject res =
 Installer.getDefault().getModuleResource("resources/myprops.properties");
 Properties props = new Properties();
 try {
 props.load(res.getInputStream());
 } catch(Exception e) {}
 }
}

24174ch16_final_idx.fm Page 283 Friday, April 24, 2009 2:11 PM

284 C H A P T E R 1 6 ■ F R O M E C L I P S E R C P T O T H E N E T B E A N S P L A T F O R M

Settings
Plugin-specific settings, used internally as well as by the user, are managed via the Preferences
class or the IPreferenceStore class in Eclipse RCP, which is set up via the Activator class. The
NetBeans Platform takes a slightly different approach. Managing settings is handled by the Java
Preferences API. Access to the Preferences instance is obtained via the NbPreferences class. An
advantage of this implementation is that data is stored in the NetBeans Platform user direc-
tory.

A distinction is made between module-specific data and application-specific data. The
root() method gives access to settings saved in the config/Preferences.properties file. The
forModule() method, on the other hand, handles access to data found in module-specific
properties files. For example, if the code name base is com.galileo.netbeans.module, settings
will be stored in the config/Preferences/com/galileo/netbeans/module.properties file.

NbPreferences.forModule(MyClass.class).put("key", "value");
NbPreferences.root().put("key", "value");

You can find more detailed information on this topic in Chapter 9.

Application Lifecycle
The lifecycle of Eclipse RCP applications is handled by the IApplication class. It implements
the start() and stop() methods. The first is responsible for starting the application, typically
used for creating and opening the main window. The stop() method handles the shutting
down of the application, where the workbench is closed and other application-specific tasks
are carried out.

NetBeans Platform applications have no access to a lifecycle manager of this kind. On the
other hand, that considerably simplifies development. For example, the main window opens
and closes on its own, without coding.

Most aspects relating to the lifecycle of an application are handled within individual
modules and dealt with via a module installer. Another possibility is to react to the closing of
the whole application, rather than the uninstalling of individual modules—this is done via the
abstract class LifecycleManager.

The default implementation of the LifecycleManager class, provided by the NetBeans Plat-
form, is responsible for shutting down applications. You can insert your own implementation
of this class before the default implementation, so application-specific tasks are handled as the
application shuts down.

Do not forget to call the default implementation from your own implementation. Some
implementations of this class are illustrated in Chapter 17. Finally, the application may be
explicitly ended via the LifecycleManager (also described in Chapter 17).

Views and Editors
The windows the Eclipse workbench displays and docks are of two types: views and editors. The
NetBeans Platform makes no such distinction. A window displayed within the NetBeans
window system is a TopComponent. The implementation of a window is derived from the
TopComponent class. This superclass integrates itself as a window into the NetBeans window
system and makes a great deal of information available, giving access to its current state as well
as its lifecycle.

24174ch16_final_idx.fm Page 284 Friday, April 24, 2009 2:11 PM

C H A P T E R 1 6 ■ F R O M E C L I P S E R C P T O T H E N E T B E A N S P L A T F O R M 285

Similar to how views and editors in an Eclipse application are organized, via the relevant
extension points, TopComponents are declaratively made available, via the layer file, within the
Mode folder. A mode is a container for TopComponents. Here, we return to the view and editor
distinction, since modes may be one of these types. TopComponents are created within one of
these modes (see Figure 5-8 in Chapter 5). A mode’s size, position, and type are described in an
XML file, registered within the layer file (see Chapter 5 and the Appendix for further informa-
tion). However, TopComponents are not required to be registered within a mode, where they are
displayed in default mode. As with the Eclipse workbench, the user places TopComponents in
various positions while the application is running.

To simplify creation and registration of TopComponents, the NetBeans IDE provides a very
useful wizard. Choose File ➤ New File ➤ Module Development ➤ Window Component and
start using it. For example, the wizard puts the TopComponent into a mode, and then handles the
registration of the window into the layer file. In addition, an action is registered in the layer file,
with which the user opens the window.

Detailed information about this and other topics relating to the design of the user interface
can be found in Chapter 5.

Summary
In this chapter, you were assumed to be an Eclipse user. You were introduced to the NetBeans
IDE as a tool, and to the NetBeans Platform as a desktop framework. We started by looking at
the most commonly used functions and windows in Eclipse and showing where they can be
used in the NetBeans IDE. You learned how to adapt the keymap to Eclipse settings. Next, we
compared Eclipse plugins to NetBeans modules. We compared the terminology of two plat-
forms, and you learned about their major similarities and differences.

24174ch16_final_idx.fm Page 285 Friday, April 24, 2009 2:11 PM

24174ch16_final_idx.fm Page 286 Friday, April 24, 2009 2:11 PM

287

■ ■ ■

C H A P T E R 1 7

Tips and Tricks
Let’s Get Some Cool Expert Tips!

This chapter looks at several helpful interfaces, classes, and concepts of the NetBeans Plat-
form. Some of the JDK’s newest features are also demonstrated in action on the NetBeans
Platform, such as the SwingWorker class.

Asynchronous Initialization of Graphic
Components
When developing GUIs, it is important to maintain fast response time throughout the compo-
nent lifecycle. This is especially true for the phase when components are initialized. A good
example of this is with wizards, as discussed in Chapter 8. If the user starts a wizard, the wizard
should open and be available immediately. Sometimes data for components needs to load
from a relatively slow data source or must be calculated from dependent data. In this case,
initialize your components in a separate thread asynchronously for all initializations in the
user interface. When doing so, take care to not access GUI components from outside the event
dispatch thread (EDT).

The NetBeans Utilities API provides an easy way to meet this requirement: the service
provider interface AsyncGUIJob. This interface specifies two methods to help initialize compo-
nents asynchronously. The construct() method is executed automatically in a separate
thread, so the EDT is not blocked. This lets you load data or perform other long-running
initializations without performance being affected. Do not access GUI components in the
construct() method, however. Rather, as soon as the construct() method has returned,
the finished() method is called, within the EDT. Here, you can add data previously loaded in
the construct() method.

In the example in Listing 17-1, data is added (loaded in construct()) to a DefaultCombo-
BoxModel. After loading, you add the created data model to the JComboBox within the finished()
method. This asynchronous process is started and connected to the component using the
method Utilities.attachInitJob(). This way, a number of components are defined and
started independently.

24174ch17_final_idx.fm Page 287 Friday, April 24, 2009 2:13 PM

288 C H A P T E R 1 7 ■ T I P S A N D T R I C K S

Listing 17-1. Asynchronously initializing graphical components using the AsyncGUIJob interface

public final class AsynchTopComponent extends TopComponent {
 private JComboBox items = new JComboBox(new String[] { "Loading..." });
 private DefaultComboBoxModel m = new DefaultComboBoxModel();
 private AsynchTopComponent() {
 initComponents();
 Utilities.attachInitJob(items, new AsyncGUIJob(){
 public void construct() {
 // long-lasting loading of data
 for(int i = 0; i < 20; i++) {
 Thread.sleep(200);
 m.addElement(new String("Item " + i));
 }
 }
 public void finished() {
 items.setModel(m);
 }
 });
 }
}

Another possibility for asynchronously initializing GUI components is the SwingWorker
class, which became part of the standard Java API in version 6. It is an abstract class, initializing
components in almost the same way as via the AsyncGUIJob interface. Using the SwingWorker
class, the previous example with AsyncGUIJob looks like Listing 17-2.

Listing 17-2. Asynchronously initializing graphic components using the SwingWorker class

SwingWorker<DefaultComboBoxModel, String> worker =
 new SwingWorker<DefaultComboBoxModel, String>() {
 protected DefaultComboBoxModel doInBackground()
 throws Exception {
 // long-lasting loading of data
 for(int i = 0; i < 20; i++) {
 Thread.sleep(200);
 m.addElement(new String("Item " + i));
 }
 return m;
 }
 protected void done() {
 try {
 items.setModel(get());
 } catch (Exception ignore) {}
 }
};
worker.execute();

Similar to the construct() method, data is created (or loaded) within the method doIn-
Background(). The difference occurs when passing the created data as a return value of the
function (see Listing 17-3). The return type is defined by the first template of the SwingWorker
class—in this example, DefaultComboBoxModel. This method is also executed outside the EDT.

24174ch17_final_idx.fm Page 288 Friday, April 24, 2009 2:13 PM

C H A P T E R 1 7 ■ T I P S A N D T R I C K S 289

The done() method is the counterpart to the finished() method, which is called from within
the EDT as soon as the doInBackground() method has finished. Using the get() method, we
receive data prepared by doInBackground().

Other very useful features of the SwingWorker class are the publish() and process()
methods. By using publish(), data can be sent from the asynchronously executed doIn-
Background() method to the EDT that is processed by calling process().

Listing 17-3. Publishing and processing with the SwingWorker class

items.setModel(m);
SwingWorker<DefaultComboBoxModel, String> worker =
 new SwingWorker<DefaultComboBoxModel, String>() {
 protected DefaultComboBoxModel doInBackground()
 throws Exception {
 for(int i = 0; i < 20; i++) {
 Thread.sleep(200);
 publish(new String("Item " + i));
 }
 return m;
 }
 protected void process(List<String> chunks) {
 m.addElement(chunks.iterator().next());
 }
};
worker.execute();

Rather than setting the data model in the done() method, the elements are added immedi-
ately. In the doInBackground() method, single entries are immediately sent to the EDT using
publish(). Those entries are received with the process() method and inserted into the combo
box, so they appear right away. The parameter types publish() and process() are defined in
the second template of the SwingWorker class.

Undo/Redo
TopComponents and multiview elements provide undo/redo-functionality for the user. This
functionality is specified by the UndoRedo interface, implemented by the UndoRedo.Manager
class. It handles the undo and redo actions provided by the NetBeans Platform in the Edit
menu and toolbar. This manager derives from the class UndoManager in the Java API, which
administrates changes liable to being undone or restored. An instance of this manager is
retrieved by calling the getUndoRedo() function.

Events added to the manager are strongly dependent on context. The interface for those
events is specified by UndoableEdit. Java already provides abstract classes for this interface.
The class AbstractUndoableEdit, for example, provides a standard implementation for all
methods, limiting override to only the classes needing special implementation. The StateEdit
class and the related StateEditable class are very handy in this context as well.

The StateEditable interface is implemented by objects whose data may be changed by
users. An example of this would be a DataObject class representing an MP3 file whose ID3
information requires a change by the user.

24174ch17_final_idx.fm Page 289 Friday, April 24, 2009 2:13 PM

290 C H A P T E R 1 7 ■ T I P S A N D T R I C K S

The example in Listing 17-4 demonstrates this principle with a very simple class that has
one attribute in a text field that is editable by the user. The UndoRedo.Manager is held as a private
data element, retrieved by calling the getUndoRedo() method. The TopComponent has two
buttons: one to read the attribute from the data object, the other to save the data from the text
field.

If a change is performed, a StateEdit object is created that implements the UndoableEdit
interface. This object needs an instance of the StateEditable interface. This, in turn, is the data
object. The UndoableEdit instance is passed to the manager by calling the undoableEdit-
Happened() method that updates all listeners. That way, all platform Undo and Redo buttons
are activated or deactivated automatically. Now all changes can be applied to the data object,
and the event is ended by the end() method.

Listing 17-4. Providing an undo/redo manager and adding an element when data is changed by
the user

public class MyTopComponent extends TopComponent {
 private UndoRedo.Manager manager = new UndoRedo.Manager();
 private MyObject obj = new MyObject();
 public UndoRedo getUndoRedo() {
 return manager;
 }
 private void loadActionPerformed(ActionEvent evt) {
 textField.setText(obj.getProp());
 }
 private void saveActionPerformed(ActionEvent evt) {
 StateEdit edit = new StateEdit(obj);
 manager.undoableEditHappened(new UndoableEditEvent(obj, edit));
 obj.setProp(textField.getText());
 edit.end();
 }
}

The data object needing changes undone or restored implements the StateEditable inter-
face. This interface specifies the methods storeState() and restoreState(). The principle of
the StateEdit class is based on storing data object attributes to a Hashtable object. This
hashtable is managed by the StateEdit object. The storeState() method is called when the
StateEdit object is created. Attributes are stored to the hashtable (that is, passed) before
changes are applied.

To undo changes, the StateEdit object calls the restoreState() method, and a hashtable
that holds the original values is passed as a parameter. Those values need only be read and
applied as shown in Listing 17-5.

Listing 17-5. Data object whose changed attributes need to be restored

public class MyObject implements StateEditable {
 private String prop = new String("init value");
 public void storeState(Hashtable<Object, Object> props) {
 props.put("prop", prop); // save original state
 }
 public void restoreState(Hashtable<?, ?> props) {

24174ch17_final_idx.fm Page 290 Friday, April 24, 2009 2:13 PM

C H A P T E R 1 7 ■ T I P S A N D T R I C K S 291

 prop = (String)props.get("prop"); // read original state
 }
 public void setProp(String value) {
 prop = value;
 }
 public String getProp() {
 return prop;
 }
}

Finally, we’ll demonstrate how easy it is to add undo/redo functionality to a text compo-
nent. Text components especially need this feature often. All subclasses of JTextComponent (
e.g. JEditorPane, JTextArea und JTextField) use a Document as a data model.

An UndoableEditListener can be added to a Document instance by calling the addUndoable-
EditListener() method. This listener interface is implemented by the NetBeans UndoRedo.
Manager. This manager, previously stored in the TopComponent and returned by the
getUndoRedo() method, is added to a Document instance as a listener. By appending a single line
of code, you can add undo/redo functionality to a text component:

textField.getDocument().addUndoableEditListener(manager);

Now the text component is able to report its events to the manager, automatically acti-
vating or deactivating the Undo and Redo buttons. You can add undo support to a text
component, as well as any component whose data model implements the Document interface or
uses an implementation of Document, as the HTMLDocument and PlainDocument classes do.

Ending an Application’s Lifecycle
When a NetBeans Platform application is shut down, all user-specific settings (such as the
information about open TopComponents, application window size, and toolbars) are saved to
the application user directory. In addition, all modules that implement a module installer (see
Chapter 3) are asked if the application can be shut down. Thus, an application is not only
closed, but it is shut down properly. Usually, an application is closed using the menu or the
Close button in the title bar. In some cases, you might close an application programmatically.
This could be an option if wrong data is entered in a login dialog, and the application should
then be closed. In this case, you must not or cannot—as usual in Java applications—close the
application using System.exit(). The process for shutting down an application is specified by
the Utilities API in the global service LifecycleManager. The NetBeans Core module offers a
service provider for that purpose, responsible for executing the tasks mentioned earlier. This
standard implementation of the LifecycleManager can be obtained by calling the getDefault()
method. Close an application by calling the following line:

LifecycleManager.getDefault().exit();

Since this LifecycleManager is implemented as a service, you can provide your own imple-
mentation of this abstract class. This does not mean that the standard implementation of the
NetBeans Platform is no longer available—you simply need to call it. This way, it is possible to
execute custom tasks before an application is closed. Listing 17-6 demonstrates how to call the
standard implementation after executing custom tasks, and shut down applications properly.

24174ch17_final_idx.fm Page 291 Friday, April 24, 2009 2:13 PM

292 C H A P T E R 1 7 ■ T I P S A N D T R I C K S

Listing 17-6. A custom LifecycleManager implementation, which calls the standard
implementation

public class MyLifecycleManager extends LifecycleManager {
 public void saveAll() {
 for(LifecycleManager manager :
 Lookup.getDefault().lookupAll(LifecycleManager.class)) {
 if(manager != this) { /* only call the Core Manager */
 manager.saveAll();
 }
 }
 }
 public void exit() {
 // perform application-specific shutdown tasks
 for(LifecycleManager manager :
 Lookup.getDefault().lookupAll(LifecycleManager.class)) {
 if(manager != this) { /* only call the Core Manager */
 manager.exit();
 }
 }
 }
}

This implementation must be registered as a service provider. It’s important to note that a
position must be declared to ensure that the custom implementation is delivered by the Lookup
and called first. The LifecycleManager would be called only if this is not done. The class is regis-
tered in the META-INF/services folder (see Chapter 6), in the file org.openide.LifecycleManager,
which contains the following two lines:

com.galileo.netbeans.module.MyLifecycleManager
#position=1

WarmUp Tasks
The NetBeans Platform offers an extension point named WarmUp, for executing asynchronous
tasks when starting applications:

<folder name="WarmUp">
 <file name="com-galileo-netbeans-module-MyWarmUpTask.instance"/>
</folder>

You can add any number of instances (that implement the Runnable interface) to this
extension point in the layer file:

public class MyWarmUpTask implements Runnable {
 public void run() {
 // do something on application startup
 }
}

Critical tasks—for example, tasks that are necessary as module-starting conditions—must
not be started here. These tasks are executed asynchronously at the start of applications, which

24174ch17_final_idx.fm Page 292 Friday, April 24, 2009 2:13 PM

C H A P T E R 1 7 ■ T I P S A N D T R I C K S 293

means there is no guarantee about when the task is started or finished. In this case, a module
installer should be used (see Chapter 3).

System Tray
Java includes enhanced desktop integration in version 6 and provides access to the system tray
of the underlying operating system. You can add one or more icons with a context menu or
double-click action. A good way to do this for a NetBeans application is with the restored()
method of the module installer (see Chapter 3). First, check whether the operating system has
a system tray. If so, gain access using the getSystemTray() method. In order to add a context
menu, create a PopupMenu whose actions are defined via an extension point in the layer file.
Thus, actions are added to the tray icon from different modules. The extension point used is
called TrayMenu, whose values are read using a Lookup. The registered actions only need to
implement the Action interface, which means NetBeans Platform action classes may also be
used. After creating the context menu, pass the menu, an icon, and a tooltip to a TrayIcon
object and add it to the system tray, as shown in Listing 17-7.

Listing 17-7. Adding a system tray icon whose context menu is built using a layer file

public void restored() {
 if (SystemTray.isSupported()) {
 SystemTray tray = SystemTray.getSystemTray();
 PopupMenu popup = new PopupMenu();
 popup.setFont(new Font("Arial", Font.PLAIN, 11));
 for(Action a : Lookups.forPath("TrayMenu").lookupAll(Action.class)) {
 MenuItem item = new MenuItem((String)a.getValue(Action.NAME));
 item.addActionListener(a);
 popup.add(item);
 }
 Image img = ImageUtilities.loadImage("com/galileo/netbeans/module/icon.gif");
 TrayIcon trayIcon = new TrayIcon(img, "My Tray Menu", popup);
 trayIcon.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 System.out.println("double click on tray icon");
 }
 });
 try {
 tray.add(trayIcon);
 } catch (AWTException e) {
 System.err.println(e);
 }
 }
}

Desktop
The Desktop class in Java 6 allows execution of standard applications like an Internet browser
or an e-mail client. Pass a File or URI object to the methods provided by the Desktop class. On

24174ch17_final_idx.fm Page 293 Friday, April 24, 2009 2:13 PM

294 C H A P T E R 1 7 ■ T I P S A N D T R I C K S

the basis of these objects, an associated standard application is launched. For example, if
Desktop.open(new File("myfile.pdf")) is executed, Acrobat Reader is started (if this is the
standard application for .pdf files). Table 17-1 shows all methods of the Desktop class.

Logging
A very important and helpful (but often disregarded) topic is logging. Logging is the practice of
recording status, warning, and error messages. Logging in the NetBeans Platform is based on
the Java Logging API.

Logger
Log output is recorded by the Logging API using a Logger object. Typically, different compo-
nents have different Logger instances. You get an instance of a Logger via the factory method
getLogger().You can also use a global logger, but you should use a named, component-specific
logger whenever possible. This way, different loggers can be turned on or off, which is very
helpful when searching for bugs. A named logger is obtained by the following:

Logger log = Logger.getLogger(MyClass.class.getName());

Typically, the full name of the class that creates the log output is used as the name for the
logger. This name is obtained from the getName() method. If a logger already exists for this
name, it is returned. The global logger can be obtained using the name
Logger.GLOBAL_LOGGER_NAME.

Table 17-1. Methods in the Desktop class

Method Function

isDesktopSupported() Checks for Desktop class support on the operating system.

isSupported(Desktop.Action a) Checks if actions like BROWSE, OPEN, EDIT, PRINT, and MAIL are
available.

getDesktop() Used to get an instance of the Desktop class. This method
throws an UnsupportedOperationException if the Desktop
class is not supported.

browse(URI uri) Opens the given URI in the file browser.

open(File file) Opens the file in the associated program (or in a file browser,
if it is a folder).

edit(File file) Opens the file in the standard editor for this file type.

print(File file) Sends the file directly to the printer using the standard file
application print functionality.

mail() Opens the e-mail edit window.

mail(URI uri) Opens the e-mail edit window where the mailto field is filled
with the e-mail address from URI.

24174ch17_final_idx.fm Page 294 Friday, April 24, 2009 2:13 PM

C H A P T E R 1 7 ■ T I P S A N D T R I C K S 295

Record log output (of a defined level) using the log() methods in the Logger class. The
following log levels are provided in the Level class: FINEST, FINER, FINE, CONFIG, INFO, WARNING,
and SEVERE. The methods finest(), finer(), fine(), config(), info(), warning(), and severe()
are also provided; these record the given message at the declared level.

LogManager
The Java Logging API specifies a central LogManager. This manager controls a hierarchical
namespace holding all named loggers. That’s why it’s reasonable to use the full names of
classes (that hold the hierarchical package structure) for logger names. For access to this
manager, use the following:

LogManager manager = LogManager.getDefault();

The LogManager provides all names of all loggers as well as the name of a NetBeans Plat-
form logger whose level may be changed for debugging purposes. A list of all loggers can be
retrieved as follows:

LogManager manager = LogManager.getLogManager();
for(String name : Collections.list(manager.getLoggerNames())) {
 System.out.println(name);
}

Configuration
The manager also administers configuration files, which are initially loaded from the lib/
logging.properties file in the JRE folder. Define configuration files by setting them to the
system property java.util.logging.config.file. Configuration data may be loaded from a
database. Implement a class that reads the data from a database and register it to the system
property java.util.logging.config.class. Registration causes it to be automatically instanti-
ated. Within this class, provide the configuration data for the LogManager via an InputStream for
the readConfiguration(InputStream) method in the LogManager.

Register Handler implementations in the configuration file so they output log data to the
console (ConsoleHandler) or into a file (FileHandler). You can register implementations like the
handler from the NetBeans Platform that displays log messages graphically. The logging system
comes with a root logger. All other loggers forward their logs to this root logger. For this root
logger, register a handler with the following property:

handlers = java.util.logging.ConsoleHandler

Multiple handlers can be listed using commas. To disable forwarding logs to the root
logger, do so by using the following:

<logger name>.useParentHandlers = false

Define a handler especially for this logger in order to obtain log output:

<logger name>.handlers = java.util.logging.FileHandler

Setting the log level is important in the configuration. A log level defines which kind of logs
are recorded. For example, set the log level globally as follows to hide simple status messages
but show warning or error messages when debugging:

24174ch17_final_idx.fm Page 295 Friday, April 24, 2009 2:13 PM

296 C H A P T E R 1 7 ■ T I P S A N D T R I C K S

.level = WARNING

Or overwrite a single logger’s log level by using its name as a prefix:

<logger name>.level = INFO

Configuration data is not only set in the configuration file, but also as system properties. Set
it at runtime using the System.setProperty() method. It is important to call the LogManager’s
readConfiguration() method in order to apply the new configuration data. Alternatively, select
the configuration at the application’s startup using command-line parameters. During devel-
opment in NetBeans, set your NetBeans Platform application start parameters in the project
properties file (under Important Files) using the property run.args.extra:

run.args.extra = -J-Dcom.galileo.netbeans.myclass.level=INFO

For distribution of your application, set command-line parameters using the property
default_options in the etc/<application>.conf file.

Error Reports
The NetBeans Platform implements and registers a special log handler that displays recorded
error messages for the user in a dialog. Therefore, use either the SEVERE or WARNING log level, and
pass the Exception directly to the log() method.

Logger logger = Logger.getLogger(MyClass.class.getName());
try {
 ...
} catch(Exception e) {
 logger.log(Level.SEVERE, null, e);
 // or
 logger.log(Level.WARNING, null, e);
}

Summary
This chapter provided a range of useful tips. We first looked at an approach for initializing GUI
components asynchronously on the EDT. In this context, you also learned how to use the
SwingWorker class, which is part of JDK 6.

Another tip covered undo/redo functionality in several components in a NetBeans Plat-
form application. You also saw how to execute tasks when the application shuts down, as well
as how to execute long-running tasks asynchronously during the application’s startup process.

In the final sections, we looked at the new JDK 6 SystemTray and Desktop classes, as well as
the NetBeans Platform logging facilities.

24174ch17_final_idx.fm Page 296 Friday, April 24, 2009 2:13 PM

297

■ ■ ■

C H A P T E R 1 8

Example: MP3 Manager
Let’s Put It All Together!

Now, as we know almost everything about the most important aspects of the NetBeans Plat-
form in detail, we will implement a full-featured example step by step. Most of what has been
learned will be incorporated into it.

The purpose of this chapter is to demonstrate the design and implementation of an execut-
able application, playing MP3 files on the NetBeans Platform. This application will be as flexible
and modular as possible. We will reuse much of the previously implemented and handled
advantages and features of the NetBeans Platform.

This chapter is useful for those who did not yet read all the previous chapters, as well as
those trying to dive directly into the NetBeans Platform world. Some parts of the chapter
requiring those instructions contain references to the applicable chapters. The following pages
will cover only the most important parts of the implementation.

The complete example can be downloaded from the Apress web site (www.apress.com).

Design
Essentially, the application should be able to play MP3 files, manage these files in playlists, and
display the relevant ID3 information. In addition, it will provide support for simple editing
functionality, and also let the user add ID3 information. The Favorites module of the
NetBeans Platform is used as base for the MP3 library. Using the Palette module, we can
manage whole MP3 albums. Also, the Output module can be useful, giving feedback to the user
while processing ID3 jobs. One of the main advantages of the application is its easy extensi-
bility, due to the module-based architecture of the NetBeans Platform. A well-designed
architecture and structure for developed applications is required as well. We must think about
how much functionality we provide and how many modules are required to do the job. To
provide proper interfaces and extension points, we also have to think about where and how the
application needs be most extensible.

Figure 18-1 clarifies the design of the application, including the NetBeans Platform, as well
as the underlying Java Runtime Environment (JRE). The application portion is marked with
“MP3 Manager” in Figure 18-1, and can be roughly divided into three layers:

24174ch18_final_idx.fm Page 297 Friday, April 24, 2009 2:33 PM

298 C H A P T E R 1 8 ■ E X A M P L E : M P 3 M AN AG E R

• Modules, which can be seen as integral parts of the application, are collected in the
lowest layer. GUIs (like the toolbar for navigation), implementations of the Java Sound
SPI for MP3 files, and Java DB databases (used by the application for several purposes)
belong to this layer.

• The middleware layer encapsulates service interfaces, providing us a decoupling of
application components, as these no longer depend on each other’s implementation,
but in most cases only on the provided interfaces.

• The third layer, based on the second, implements the application’s components,
providing actual functionality, using the independent modules (where applicable).

Figure 18-1. Partitioning of application components into modules

All modules and their respective responsibilities are listed below. We will implement
them, step by step, now.

Core: This module may be used to contain all components specifically required for proper
use of the application.

Core UI: Additional user interface parts are encapsulated by this module.

JMF Plugin: The Java Media Framework (JMF) and the MP3 implementation of the Java

24174ch18_final_idx.fm Page 298 Friday, April 24, 2009 2:33 PM

C H A P T E R 1 8 ■ E X A M P L E : M P 3 M A N A G E R 299

Sound SPI (provided by Sun Microsystems as a JAR archive) are required to play back
audio files encoded as MP3. This module encapsulates these functionalities.

Java DB: Using this module, we access the Java DB system.

Services: Services provided by the application should be dynamically extensible. To
achieve this, we define and bundle service interfaces into a module.

Player: This module provides an MP3 player with a GUI.

Playlist: This module provides MP3 file management by manipulating file and player
lists.

ID3 API: This module contains an API to read and write ID3 information for MP3 files.

Favorites Branding: This module customizes module entries of the Favorites module.

Properties Branding: This module customizes module entries of the Properties module.

Creating the NetBeans Platform Application
Every NetBeans rich client application is based on a NetBeans Platform Application (or
Module Suite), representing the whole application and containing several modules. Applica-
tion branding (naming of the application, splash screens, and so on) is also provided out of the
box. You can easily create a NetBeans Platform Application by calling File ➤ New Project in the
NetBeans IDE, followed by selecting the NetBeans Platform Application in the category
NetBeans Modules. Click Next and enter a project name, in this case MP3 Manager. The
NetBeans Platform Application is created the moment Finish is clicked.

The application contains only those modules related to the NetBeans Platform. If IDE
modules are required by the application later on, they can be added by using the Libraries cate-
gory in the Project Properties dialog. In the Project Properties dialog, select the Build tab to
choose another icon. Define the splash screen under Build ➤ Splash Screen. Click OK, and the
foundation of the application will be created.

Next, we will proceed with the application components: NetBeans modules.

Support for MP3
To support playing MP3 files in the Player module, we use JMF and an MP3 plugin. Like JMF,
the plugin is created by Sun Microsystems and represents an implementation of the Java
Sound SPI (contained in the JSE) for MP3 files. The plugin is sufficient to play back MP3s, but
using JMF simplifies further implementations, and we shouldn’t pass up this chance to use it.
Both components (JMF and the MP3 plugin) will be included in a library wrapper module that
integrates them into the application.

Creating the JMF Module
Download JMF as a cross-platform edition, as well as the MP3 plugin from Sun Microsystems’
official web site, at http://java.sun.com/products/java-media/jmf. The JAR archives lib/
jmf.jar in the JMF distribution and lib/ext/mp3plugin.jar in the MP3 plugin distribution

24174ch18_final_idx.fm Page 299 Friday, April 24, 2009 2:33 PM

300 C H A P T E R 1 8 ■ E X A M P L E : M P 3 M AN AG E R

need to be copied to a directory now, so we can add them to a module. Therefore, click File ➤
New Project ➤ NetBeans Modules ➤ Library Wrapper Module. Use the Browse button to add
the copied JAR archives (hold the Ctrl key to select both). Enter JMF Plugin as the project name
on the next wizard page and select the previously created Platform Application (Module Suite).
The following page defines the code name base of the modules. Please use javax.media here.
Click the Finish button to create the wrapper module and to add it to the MP3 Manager.

Registering the MP3 Plugin
By design, the MP3 plugin is not immediately usable by JMF. We must register it as the JMF
plugin manager. For our purposes, it would be good to ensure that the plugin is always regis-
tered at application startup, using a module installer (see Chapter 3), which is executed during
loading of the JMF plugin. In order to create such a module installer, switch to the Source
Packages folder of the MP3 plugin in the Projects window, and right-click to open the context
menu. Then select New ➤ Module Installer, and click the Finish button in the dialog box to
create the installer. The restored() method is used to implement the required registration to
the PlugInManager. Specify the plugin class, the input and output format, and the plugin type.
In our case, it is a codec plugin, so we insert the lines shown in Listing 18-1.

Listing 18-1. Registering the MP3 plugin at the JMF plugin manager during startup

package javax.media;
import javax.media.format.AudioFormat;
import org.openide.modules.ModuleInstall;
public class Installer extends ModuleInstall {
 public void restored() {
 Format input1 = new AudioFormat(AudioFormat.MPEGLAYER3);
 Format input2 = new AudioFormat(AudioFormat.MPEG);
 Format output = new AudioFormat(AudioFormat.LINEAR);
 PlugInManager.addPlugIn(
 "com.sun.media.codec.audio.mp3.JavaDecoder",
 new Format[]{input1, input2},
 new Format[]{output},
 PlugInManager.CODEC);
 }
}

MP3 File Type
Another important issue for easy-to-use and professional management of MP3 files in our
application is an MP3 file type infrastructure. The file type infrastructure of the NetBeans Plat-
form is used to manage files of a particular type. This infrastructure consists of three main
parts. First, we have the FileObject, which wraps a File object, representing the actual MP3
file. Based on this, there is a DataObject, which extends the FileObject by flexible properties
and functionalities. Finally, a Node object is used, representing a DataObject in the user inter-
face that includes the ability to accept actions. More information relating to this can be found
in Chapter 7.

Normally, the MP3 file type belongs to the core functionality of the MP3 Manager, which
means we could manage it in the Core module. But for flexible usage and to avoid cyclic

24174ch18_final_idx.fm Page 300 Friday, April 24, 2009 2:33 PM

C H A P T E R 1 8 ■ E X A M P L E : M P 3 M A N A G E R 301

dependencies, we will create a separate module for it. This can be done by invoking File ➤
New Project ➤ NetBeans Modules ➤ Module. You can use File Type as the name, and, e.g.,
com.hboeck.mp3manager.filetype, as the code name base. All other values remain as they are.
Clicking the Finish button closes the wizard and creates the module.

All components of a file type are created completely by the wizard provided by the IDE. It
can be brought up from the context menu of the File Type module using New ➤ File Type. The
MIME type for MP3 files is audio/mpeg, and the extension is mp3. On the next page, we prefix the
created class with Mp3 and define an icon for this file type. Now all required information is
collected, and the MP3 file type can be created by clicking Finish.

An instance named Mp3DataLoader, registered to the MIME type of MP3 and used to load the
Mp3DataObject, will be registered by the wizard (see Listing 18-2).

Listing 18-2. Registration of the default DataObject factory to load Mp3DataObjects

<folder name="Loaders">
 <folder name="audio">
 <folder name="mpeg">
 <folder name="Factories">
 <file name="Mp3DataLoader.instance">
 <attr name="SystemFileSystem.icon"
 urlvalue="nbresloc:/com/hboeck/mp3manager/filetype/mp3.png"/>
 <attr name="dataObjectClass"
 stringvalue="com.hboeck.mp3manager.filetype.Mp3DataObject"/>
 <attr name="instanceCreate"
 methodvalue="org.openide.loaders.DataLoaderPool.factory"/>
 <attr name="mimeType" stringvalue="audio/mpeg"/>
 </file>
 </folder>
 </folder>
 </folder>
</folder>

For any FileObject of type MP3, this factory creates an Mp3DataObject, which consists of the
skeletal structure in Listing 18-3.

Listing 18-3. The class Mp3DataObject implements the logic of an MP3 file.

import org.openide.filesystems.FileObject;
import org.openide.loaders.DataNode;
import org.openide.loaders.DataObjectExistsException;
import org.openide.loaders.MultiDataObject;
import org.openide.loaders.MultiFileLoader;
import org.openide.nodes.Node;
import org.openide.nodes.Children;
import org.openide.util.Lookup;
public class Mp3DataObject extends MultiDataObject {
 public Mp3DataObject(FileObject pf, MultiFileLoader loader)
 throws DataObjectExistsException, IOException {
 super(pf, loader);
 }

24174ch18_final_idx.fm Page 301 Friday, April 24, 2009 2:33 PM

302 C H A P T E R 1 8 ■ E X A M P L E : M P 3 M AN AG E R

 @Override
 protected Node createNodeDelegate() {
 return new DataNode(this, Children.LEAF, getLookup());
 }
 @Override
 public Lookup getLookup() {
 return getCookieSet().getLookup();
 }
}

This class puts logic into a generic FileObject and provides a Node object, useful for easily
presenting the MP3 file to several views, like the Favorites module, or in a playlist (which we
will implement next).

Automatically generated classes like those just shown are just the skeleton for what we will
develop on the following pages. We will extend these classes with additional functionality if
required.

SPECIFYING PUBLIC PACKAGES

When we implement the first module, which uses the MP3 file type, we need to set a dependency on the File
Type module. Then you will notice that it is not accessible. This is caused by NetBeans defining all packages
of a module (by default) as not public. Therefore, we must explicitly define which packages can be accessed
from outside. We do so in the Properties dialog of a module using the API Versioning category. The module is
only shown in the list if at least one package is defined as public and contains modules that another module
depends on.

ID3 Support
Inside an MP3 file, information about the file exists in the ID3 tag. Currently, two different
versions are in use. The ID3v1 tag uses a fixed number of fields (e.g., artist and title), where each
has a fixed size. The most important information is stored in the file with that tag. With the
ID3v2 tag, a more flexible concept is introduced: more standardized fields are defined, and
further customized fields may be added (a field is referred to as frame). Nonetheless, these
fields can be read by applications that do not know about the fields. A frame of an ID3v2 tag
may vary in length. Also, a frame will only exist if it is required, which means there are no empty
frames.

ID3 API
We will reuse information stored in this manner in our application by using an API supporting
retrieval and storage of ID3 data, according the specification. The Internet provides many such
APIs for free. Most of them are reasonably useful, but we created one of our own, aiming at easy
handling and integration of personal requirements. For reuse in other applications, we inten-
tionally avoided using NetBeans APIs. Although this library is still under development (only the
editing of ID3v1 tags is possible at the moment), it is sufficient for this example, which merely
demonstrates advantages and strengths of the NetBeans Platform. Of course, you are free to

24174ch18_final_idx.fm Page 302 Friday, April 24, 2009 2:33 PM

C H A P T E R 1 8 ■ E X A M P L E : M P 3 M A N A G E R 303

use another library. If you do, however, you then must adapt resulting source locations to the
selected API.

As with the JMF libraries, we put the ID3 library into a library wrapper module. It is created
by clicking File ➤ New Project and NetBeans Modules ➤ Library Wrapper Module. On the
wizard’s first page, select the library named com-hboeck-mp3manager-id3.jar (which can be
downloaded from the book’s page on the Apress web site, at www.apress.com). Name the module
ID3 API and add it to the MP3 manager. All other fields can remain with their default values.

The ID3 API is available to the File Type module only if a dependency to it is defined. We
do this using the Libraries category in the Properties dialog of the File Type module (see Figure
18-2). Click Add Dependency and select the ID3 API module.

Figure 18-2. Defining dependencies to the ID3 API

As mentioned before, the class Mp3DataObject is responsible for the information and
methods specific to MP3. Extending this class with two methods provides us access to the
ID3v1 as well as the ID3v2 tags (see Listing 18-4). It is highly important to create the tags only
when accessing the file itself. Imagine creating folders with a lot of MP3 files in the Favorites
window. For each of these file, an individual Mp3DataObject would be created. If we read the
ID3 tags of every file, we would eventually encounter a measurable delay—a behavior to be
avoided.

Listing 18-4. Extending the Mp3DataObject class with support for ID3

import com.hboeck.mp3manager.id3.v1.ID3v1Tag;
import com.hboeck.mp3manager.id3.v2.ID3v2Tag;

24174ch18_final_idx.fm Page 303 Friday, April 24, 2009 2:33 PM

304 C H A P T E R 1 8 ■ E X A M P L E : M P 3 M AN AG E R

public class Mp3DataObject extends MultiDataObject {
 private ID3v1Tag id3v1 = null;
 private ID3v2Tag id3v2 = null;
 public Mp3DataObject(FileObject pf, MultiFileLoader loader)
 throws DataObjectExistsException, IOException {
 super(pf, loader);
 }
 ...
 public ID3v1Tag getID3v1Tag() {
 if(id3v1 == null) {
 id3v1 = new ID3v1Tag(FileUtil.toFile(getPrimaryFile()));
 }
 return id3v1;
 }
 public ID3v2Tag getID3v2Tag() {
 if(id3v2 == null) {
 id3v2 = new ID3v2Tag(FileUtil.toFile(getPrimaryFile()));
 }
 return id3v2;
 }
}

Using the DataObject method getPrimaryFile() returns the FileObject of the MP3 file,
which is managed by the Mp3DataObject instance. We must pass a FileObject to the ID3 tag
constructor. This file is obtained by using the method FileUtil.toFile(), which determines
the file encapsulated by the FileObject.

Another way to obtain instances of the ID3v1Tag and ID3v2Tag classes is to provide them
using the Lookup of the Mp3DataObject. This enables us to retrieve these instances from a
simple Node or DataObject instance, without special type safety:

Node n = ...
ID3v1Tag id3v1 = n.getLookup().lookup(ID3v1Tag.class);

ID3 Editor
The next step is to display and edit the ID3 data, as shown in Figure 18-3. The NetBeans Plat-
form ships with a Properties module that is useful in combination with the MP3 file type.
Providing properties shown in the user interface is the responsibility of nodes. Rather than a
generic DataNode instance (see Listing 18-3, shown earlier), we will create our own node class.
This class is named Mp3DataNode and overrides the createSheet() method (see Listing 18-5).
This method provides the properties of nodes using a Sheet object. Usually, properties are only
readable, but some are also writable. We have such a case: ID3v1 data must be both readable
and writable, but ID3v2 data must be readable only.

First, we invoke the createSheet() method of the DataNode superclass, which creates a
default Sheet object containing base properties, such as file name and size, as well as the date
of last modification. If you do not want this data displayed, you can create your own sheet
using Sheet.createDefault(). Inside a Sheet object, properties are grouped using Set objects,
which may be hidden or shown in the Properties window. A user selects whether these groups
will be displayed or not. The static method createPropertiesSet() creates just such a grouping
set. We create two of them, to manage the ID3v1 and ID3v2 data separately. Each set should be

24174ch18_final_idx.fm Page 304 Friday, April 24, 2009 2:33 PM

C H A P T E R 1 8 ■ E X A M P L E : M P 3 M A N A G E R 305

given a unique name, using the method setName(); otherwise, the sets will be overridden inside
the sheets.

Listing 18-5. Providing ID3 information in a properties sheet for display and edit purposes

import com.hboeck.mp3manager.id3.v1.ID3v1Tag;
import com.hboeck.mp3manager.id3.v2.ID3v2Tag;
import org.openide.loaders.DataNode;
import org.openide.nodes.Children;
import org.openide.nodes.PropertySupport;
import org.openide.nodes.Sheet;
import org.openide.util.Lookup;
public class Mp3DataNode extends DataNode {
 public Mp3DataNode(Mp3DataObject obj) {
 super(obj, Children.LEAF);
 }
 public Mp3DataNode(Mp3DataObject obj, Lookup lookup) {
 super(obj, Children.LEAF, lookup);
 }
 @Override
 protected Sheet createSheet() {
 Sheet sheet = super.createSheet();
 Sheet.Set set1 = Sheet.createPropertiesSet();
 Sheet.Set set2 = Sheet.createPropertiesSet();
 set1.setName("id3v1");
 set1.setDisplayName("ID3 V1");
 set2.setName("id3v2");
 set2.setDisplayName("ID3 V2");
 Mp3DataObject m = getLookup().lookup(Mp3DataObject.class);
 ID3v1Tag id3v1 = m.getID3v1Tag();
 ID3v2Tag id3v2 = m.getID3v2Tag();
 try {
 /* ID3v1 Properties */
 Property title1 =
 new PropertySupport.Reflection<String> (id3v1, String.class, "title");
 ...
 title1.setName("Title");
 set1.put(title1);
 /* ID3v2 Properties */
 Property album2 = new PropertySupport.Reflection<String>
 (id3v2, String.class, "getAlbum", null);
 ...
 album2.setName("Album");
 set2.put(album2);
 } catch (Exception e) { }
 sheet.put(set1);
 sheet.put(set2);
 return sheet;
 }
}

24174ch18_final_idx.fm Page 305 Friday, April 24, 2009 2:33 PM

306 C H A P T E R 1 8 ■ E X A M P L E : M P 3 M AN AG E R

The Lookup of the Node provides us an instance of the Mp3DataObject represented by that
node. Using the previously created methods getID3v1Tag() and getID3v2Tag() allows access to
the ID3 information of the MP3 file. Next, we create an instance of the class PropertySupport.
Reflection<T> for every property. With the help of a template, the type of property is specified
(in this example, it is String). The name of the method for the read/write properties (the means
to read and write properties) should not contain the prefixes get or set. Passing title to the
constructor sets the title (e.g., to create the methods getTitle() and setTitle()). Properties that
are read-only are passed to a special version of the constructor taking the names of the get and
set methods separately. Passing null will prevent modification of the property. Each property
created is named using the method setName(). This name is displayed in the Properties window.
Finally, we add each instance to the Sheet object using the put() method, and return that sheet.

After creating the Mp3DataNode class, we need to adapt the Mp3DataObject class, which uses
a DataNode instance (see Listing 18-3, shown previously). Instead of this, we now return an
Mp3DataNode instance in the createNodeDelegate() method:

@Override
protected Node createNodeDelegate() {
 return new Mp3DataNode(this, getLookup());
}

Executing the application, opening the Favorites and Properties windows using the
Window menu, and then adding an MP3 file to the Favorites window will give you the results
shown in Figure 18-3.

Figure 18-3. Using the Properties window as ID3 editor

24174ch18_final_idx.fm Page 306 Friday, April 24, 2009 2:33 PM

C H A P T E R 1 8 ■ E X A M P L E : M P 3 M A N A G E R 307

The “User-Defined Properties Editor” section in Chapter 9 provides an overview for
creating and providing special editors (e.g., a combo box providing different values) for prop-
erties. This is useful for properties like the genre, which can have several predefined values.

Media Library
In the previous chapter, we made use of the Favorites module provided by the NetBeans Plat-
form. We can use this module again for a media library, where the user can add or remove
arbitrary files or directories easily. This feature is not restricted to MP3 files, but can be used for
any file type. For example, if we use the Image module from the ide cluster, we can manage and
display covers of records in JPG format. Since we can bind actions to a particular MIME type via
the layer file, we are able to work with MP3 files directly in the Favorites window. That means
we can play back files by merely double-clicking, or using the drag-and-drop feature to push
files to a separate window (like a playlist).

The Favorites window can be used only if it is activated in the application. Therefore, we
open the properties of the MP3 Manager via the context menu and ensure that the Favorites
module is activated in the Libraries category under the platform9 cluster.

Now we can change the name and the menus of the Favorites module using a branding
module, created via File ➤ New Project ➤ NetBeans Modules ➤ Module. We name it
Favorites Branding and add it to the MP3 manager. It is vitally important to use the same value
for the code name base as given by the original Favorites module (org.netbeans.modules.
favorites) (see Figure 18-4). Additionally, we must fix the Bundle.properties file by appending
the branding token (mp3_manager in our case). As an option, a locale can be appended.

The file Bundle_mp3_manager.properties should contain all the entries we want to change
from the Bundle.properties file of the Favorites module. In our case, it’s the name of the
window as well as several menu entries. So we must add the following entries to our properties
file:

ACT_Add=&Add to Media Library
ACT_AddOnFavoritesNode=&Add to Media Library...
ACT_Remove=&Remove from Media Library
ACT_View=&Media Library
ACT_Select=Media Library
ACT_Select_Main_Menu=Select in Media Library
Favorites=Media Library

24174ch18_final_idx.fm Page 307 Friday, April 24, 2009 2:33 PM

308 C H A P T E R 1 8 ■ E X A M P L E : M P 3 M AN AG E R

Figure 18-4. Creating a branding component for the Favorites module

Finally, we ensure the module is located in the directory modules/locale (see the “Custom-
ization of Platform Modules” section in Chapter 11). The best way to do this is, of course,
automatically. For that, we add the following properties to the project properties file (which
can be found in the Important Files folder of the Favorites Branding module), which over-
rides default configurations of the properties in the build script:

module.jar.dir=modules/locale
module.jar.basename=org-netbeans-modules-favorites_mp3_manager.jar

Services
Following on, we will implement the main functionality of the application. It is divided into
two sections: the service interface and the service provider. In conjunction with the registry
mechanism of the service provider and the Lookup, we can implement functionality that’s
absolutely decoupled and independent of the specific module. For this purpose, we create a
new module to bundle service interfaces for a central provision (see Figure 18-1). From this
point of view, the module can be seen as a link between different application modules. As
usual, we use File ➤ New Project to create a new module. For convenience, we name it
Services and set the code name base to com.hboeck.mp3manager.services. Even for this
module, we have remember to enable public access for the packages to be created (Properties
➤ API Versioning), because only then can we define a dependency to the Services module and
be able to use its classes.

24174ch18_final_idx.fm Page 308 Friday, April 24, 2009 2:33 PM

C H A P T E R 1 8 ■ E X A M P L E : M P 3 M A N A G E R 309

MP3 Player
In the previous section, we created the base for our player design by dividing the Services
module into two parts: a service interface and a service provider. Now we’ll consider the inter-
faces the player should provide, as well as other components of our application. These
interfaces are described in an abstract class—not an interface—as the player should be seen as
a global service, which means that requesting modules are normally interested in a single
player instance only. You will notice, in this and the following sections, that this behavior can
be ensured much more easily using an abstract class than an interface.

Service Interface
Inside the Services module, we create a new package named player with an abstract class
named Mp3Player. Of course, a player must be able to play back, pause, and stop MP3 files.
Additionally, a user should be able to mute the playback, control the volume, and see the
current playback position and total duration. Beside that, seek functionality would be great. All
these desired functionalities of the player are specified in the abstract class in Listing 18-6.

Listing 18-6. Defining the player’s interfaces and providing an implementation using the
getDefault() method

package com.hboeck.mp3manager.services.player;
import com.hboeck.mp3manager.filetype.Mp3DataObject;
import org.openide.util.Lookup;
public abstract class Mp3Player {
 public static Mp3Player getDefault() {
 Mp3Player p = Lookup.getDefault().lookup(Mp3Player.class);
 if (p == null) {
 p = new DefaultMp3Player();
 }
 return p;
 }
 public abstract void play(Mp3DataObject mp3);
 public abstract void play(ListIterator<Mp3DataObject> mp3s);
 public abstract void pause();
 public abstract void stop();
 public abstract void previous();
 public abstract void next();
 public abstract void setMute(boolean mute);
 public abstract void setVolume(int volume);
 public abstract int getDuration();
 public abstract int getMediaTime();
 public abstract void setMediaTime(int seconds);
}

The most important method for service requesters—the modules that want to use the
player—is getDefault(), which searches for registered Mp3Player implementations using the
Lookup. If an implementation is found, the Lookup returns an instance of it. If no implemen-
tation is found, we nonetheless ensure that a requester never obtains a null reference, but
always an instance of the Mp3Player class. Therefore, we provide a default implementation

24174ch18_final_idx.fm Page 309 Friday, April 24, 2009 2:33 PM

310 C H A P T E R 1 8 ■ E X A M P L E : M P 3 M AN AG E R

inside the abstract Mp3Player class, which is named DefaultMp3Player and will do—in the
simplest case—nothing but telling the user it will do nothing (see Listing 18-7). Another easy
and smart solution would be to delegate the MP3 file to an external application.

Listing 18-7. Providing a default implementation inside the abstract class

public abstract class Mp3Player {
 ...
 private static class DefaultMp3Player extends Mp3Player {
 public void play(Mp3DataObject mp3) {
 Logger.getLogger(Mp3Player.class.getName()).info("not supported");
 }
 public void stop() { }
 ...
 }
}

Considering a module using the player, we notice that a module needs to be notified about
the events that may occur in the player. A user interface, for example, needs to notice the end
of the playback of a file. For this purpose, we define a listener interface named
Mp3PlayerEventListener, which might look like this in its simplest version:

package com.hboeck.mp3manager.services.player;
public interface Mp3PlayerEventListener extends EventListener{
 public void playing(Mp3DataObject mp3);
 public void stopped();
}

The functionality to add and remove Mp3PlayerEventListeners to the player is imple-
mented directly in the abstract class (see Listing 18-8), so the concrete player implementation
does not need to care about this. Additionally, we provide two fire methods for listener inter-
faces to notify listeners about events.

Listing 18-8. Methods to manage listeners interested in events

public abstract class Mp3Player {
 ...
 private final Set<Mp3PlayerEventListener> listeners =
 new HashSet<Mp3PlayerEventListener>(1);
 public void addEventListener(Mp3PlayerEventListener l) {
 synchronized (listeners) {
 listeners.add(l);
 }
 }
 public void removeEventListener(Mp3PlayerEventListener l) {
 synchronized (listeners) {
 listeners.remove(l);
 }
 }
 protected final void firePlayEvent(Mp3DataObject mp3) {
 Iterator<Mp3PlayerEventListener> it;

24174ch18_final_idx.fm Page 310 Friday, April 24, 2009 2:33 PM

C H A P T E R 1 8 ■ E X A M P L E : M P 3 M A N A G E R 311

 synchronized (listeners) {
 it = new HashSet<Mp3PlayerEventListener>(listeners).
 iterator();
 }
 while (it.hasNext()) {
 it.next().playing(mp3);
 }
 }
 protected final void fireStopEvent() {
 Iterator<Mp3PlayerEventListener> it;
 synchronized (listeners) {
 it = new HashSet<Mp3PlayerEventListener>(listeners).
 iterator();
 }
 while (it.hasNext()) {
 it.next().stopped();
 }
 }
}

Service Provider
Our first service has been defined, so we can now start implementing the service providers.
This means we use the JMF module and its functionality for the playback of MP3 files. This
brings us back to the MP3 file type. As indicated previously in Figure 18-1, the MP3 player is
implemented by a separate module. We create this module with the name Player and the code
name base com.hboeck.mp3manager.player. Using Properties ➤ Libraries, we define depen-
dencies to the other required modules: File Type, JMF Plugin, and Services.

First, we create an Mp3PlayerImpl class, which inherits the service interface Mp3Player, and
implement its methods by means of JMF (see Listing 18-9). Let’s start with the method play(),
by which an MP3 file is given as Mp3DataObject. The central class of JMF is the Manager class. It
is used to obtain system-dependent resources. This manager creates a Player instance for the
MP3 file passed as a URL. But before starting that Player using the start() method, we register
a ControllerListener so that we’ll be informed of the different states of the Player.

Listing 18-9. Implementation of the service provider using JMF

package com.hboeck.mp3manager.player;
import com.hboeck.mp3manager.filetype.Mp3DataObject;
import com.hboeck.mp3manager.services.player.Mp3Player;
import javax.media.ControllerEvent;
import javax.media.ControllerListener;
import javax.media.EndOfMediaEvent;
import javax.media.GainControl;
import javax.media.Manager;
import javax.media.Player;
import javax.media.RealizeCompleteEvent;
import javax.media.Time;
public class Mp3PlayerImpl extends Mp3Player implements ControllerListener {
 private static final Logger LOG =

24174ch18_final_idx.fm Page 311 Friday, April 24, 2009 2:33 PM

312 C H A P T E R 1 8 ■ E X A M P L E : M P 3 M AN AG E R

 Logger.getLogger(Mp3PlayerImpl.class.getName());
 private Player player = null;
 private GainControl volumeControl = null;
 private int volume = 20;
 private boolean mute = false;
 private Mp3DataObject mp3 = null;
 private Enumeration<Mp3DataObject> list = null;
 public Mp3PlayerImpl() {
 }
 public void play(Mp3DataObject mp3) {
 try {
 this.mp3 = mp3;
 if(player != null) {
 player.stop();
 player.close();
 }
 player = Manager.createPlayer(mp3.getPrimaryFile().getURL());
 player.addControllerListener(this);
 player.start();
 } catch(Exception e) {
 LOG.log(Level.SEVERE, e.getMessage(), e);
 }
 }
 public void play(ListIterator<Mp3DataObject> mp3s) {
 list = mp3s;
 if(list.hasNext()) {
 play(list.next());
 }
 }
 public void pause() {
 if(player != null) {
 player.stop();
 }
 }
 public void stop() {
 if(player != null) {
 fireStopEvent();
 player.stop();
 player.setMediaTime(new Time(0));
 player.close();
 }
 }
 public void previous() {
 if (list != null && list.hasPrevious()) {
 play(list.previous());
 }
 }
 public void next() {
 if (list != null && list.hasNext()) {

24174ch18_final_idx.fm Page 312 Friday, April 24, 2009 2:33 PM

C H A P T E R 1 8 ■ E X A M P L E : M P 3 M A N A G E R 313

 play(list.next());
 }
 }

The ControllerListener interface defines the controllerUpdate() method, which is used
to get the current state of the player. We are particularly interested in two states. First, we’re
interested in the RealizeCompleteEvent state of the player, because only if the player is fully
initialized can we access the volume control. Thereby we notify listeners about the playback
start of the MP3 file, using firePlayEvent() (see Listing 18-10). The second state of interest is
EndOfMediaEvent, which allows us to stop the player, and then reset the current playback posi-
tion to the beginning. If the play() method was provided with a list of MP3 files, we start
playback with the next file in the list.

Listing 18-10. Handling events of the JMF player

 public void controllerUpdate(ControllerEvent evt) {
 if (evt instanceof RealizeCompleteEvent) {
 LOG.info("Realized");
 firePlayEvent(mp3);
 volumeControl = player.getGainControl();
 setVolume(volume);
 setMute(mute);
 } else if (evt instanceof EndOfMediaEvent) {
 LOG.info("End of Media");
 stop();
 if(list != null && list.hasNext()) {
 play(list.next());
 } else {
 list = null;
 }
 }
 }

Finally, we implement the missing control and information methods in our service
provider class, as shown in Listing 18-11.

Listing 18-11. Methods to control volume and playback position

 public void setVolume(int volume) {
 this.volume = volume;
 if(volumeControl != null) {
 volumeControl.setLevel((float)(volume/100.0));
 }
 }
 public void setMute(boolean mute) {
 this.mute = mute;
 if(volumeControl != null) {
 volumeControl.setMute(mute);
 }
 }
 public int getDuration() {

24174ch18_final_idx.fm Page 313 Friday, April 24, 2009 2:33 PM

314 C H A P T E R 1 8 ■ E X A M P L E : M P 3 M AN AG E R

 return (int)player.getDuration().getSeconds();
 }
 public int getMediaTime() {
 return (int)player.getMediaTime().getSeconds();
 }
 public void setMediaTime(int seconds) {
 player.setMediaTime(new Time((double)seconds));
 }
}

Accessing this implementation of the MP3 player should be done via the Mp3Player.
getDefault() method. However, we must register the Mp3PlayerImpl class to enable this
method to find the implementation using the Lookup. This is done by creating a META-INF/
services folder in the Source Packages folder of the Player module. In this folder, we add a file
with a name reflecting the full class name of the abstract class Mp3Player. Now we can insert the
fully qualified class name of our implementation to this file:

META-INF/services/com.hboeck.mp3manager.services.player.Mp3Player
 com.hboeck.mp3manager.player.Mp3PlayerImpl

Playback of MP3 Files
We are done with the implementation of the MP3 player’s service provider and can proceed to
registering an action for our MP3 file type. Using this action enables us to begin the playback via
the context menu of an MP3 file in the Favorites window, or by merely double-clicking the file.
Such an action can be easily created and registered using the NetBeans Action wizard (File ➤
New File ➤ Module Development ➤ Action). For the action type, select Conditionally Enabled,
and select DataObject as the cookie class. On the next page, we can associate this action with a
predefined category or create a new one. Additionally, we associate the action with a menu and
enable the File Type Context Menu Item option to add the action to the context menu of an
MP3 file. While creating the MP3 file type, we already used the content type audio/mpeg, so we
do so here again. The last page of the wizard is used to specify a class name, a label, and an icon.
Click Finish. Now we only need to add a few lines within the performAction() method, as
shown in Listing 18-12.

Listing 18-12. Context-sensitive action to play MP3 files

public final class PlayAction extends CookieAction {
 protected void performAction(Node[] activatedNodes) {
 Mp3DataObject mp3 = activatedNodes[0].getLookup().lookup(Mp3DataObject.class);
 if(mp3 != null) {
 Mp3Player.getDefault().play(mp3);
 }
 }
}

24174ch18_final_idx.fm Page 314 Friday, April 24, 2009 2:33 PM

C H A P T E R 1 8 ■ E X A M P L E : M P 3 M A N A G E R 315

With this action, we immediately test the MP3 player. Start the application and open the
Favorites window. Add an MP3 file or a directory with MP3 files to it. Now you can start the
playback by double-clicking or using the context menu.

User Interface
Having only an action is not really useful, so we will create a complete user interface for an MP3
player in this section. This user interface uses the functionality provided by the MP3 player
service. Therefore, we create a new package in the Player module named com.hboeck.
mp3manager.player.gui. With the help of the Window Component wizard, invoked via File ➤
New File ➤ Module Development, we create a TopComponent class. Specify a mode (e.g., the
explorer mode), and use Mp3Player as the class name prefix. Next, build a TopComponent that
looks like Figure 18-5 using the Matisse GUI Builder.

Figure 18-5. User interface for the MP3 player

Of course, it’s not very pretty, but it’s functional and offers all the relevant MP3 player
functionalities. Most of the work required for designing the TopComponent is done by the
Matisse GUI Builder; we simply have to implement the actions (see Listing 18-13). But first, we
provide access to an instance of the Mp3Player delivered by the getDefault() method in the
constructor. For this instance, register an Mp3PlayerEventListener, for which we defined an
interface in the “Service Interface” section to notify starting and stopping of an MP3 file (as you
may remember). Now the player events are required to update information displayed on the
user interface.

24174ch18_final_idx.fm Page 315 Friday, April 24, 2009 2:33 PM

316 C H A P T E R 1 8 ■ E X A M P L E : M P 3 M AN AG E R

Listing 18-13. Most of the methods are really simple and only delegate the relevant values to the
MP3 player.

final class Mp3PlayerTopComponent extends TopComponent
 implements Mp3PlayerEventListener {
 private static final SimpleDateFormat SDF = new SimpleDateFormat("mm:ss");
 private JSlider duration;
 private JSlider volume;
 private JToggleButton mute;
 private JButton next;
 private JButton open;
 private JButton pause;
 private JButton play;
 private JButton previous;
 private JButton stop;
 private JLabel time;
 private JLabel title;
 private Timer t = null;
 private Mp3Player player = null;
 private Mp3PlayerTopComponent() {
 initComponents();
 ...
 player = Mp3Player.getDefault();
 player.addEventListener(this);
 }
 private void pauseActionPerformed(ActionEvent evt) {
 player.pause();
 }
 private void stopActionPerformed(ActionEvent evt) {
 player.stop();
 }
 private void nextActionPerformed(ActionEvent evt) {
 player.next();
 }
 private void previousActionPerformed(ActionEvent evt) {
 player.previous();
 }
 private void muteActionPerformed(ActionEvent evt) {
 player.setMute(mute.isSelected());
 }
 private void volumeStateChanged(ChangeEvent evt) {
 player.setVolume(volume.getValue());
 }
 private void durationMouseReleased(MouseEvent evt) {
 player.setMediaTime(duration.getValue());
 }
}

24174ch18_final_idx.fm Page 316 Friday, April 24, 2009 2:33 PM

C H A P T E R 1 8 ■ E X A M P L E : M P 3 M A N A G E R 317

Clicking the Play button invokes the playActionPerformed() method, in which we can
access TopComponent.Registry (see Listing 18-14). This will provide the currently activated
nodes independently of the TopComponent they belong to. Resulting from this behavior, an MP3
file will be played if it is selected in any TopComponent (regardless of whether that’s the Media
Library window, the Favorites window, or somewhere else) when the Play button is clicked.

Listing 18-14. Using TopComponent.Registry, the currently selected MP3 file can be played.

 private void playActionPerformed(ActionEvent evt) {
 Node n[] = getRegistry().getActivatedNodes();
 if(n != null) {
 Mp3DataObject mp3 = n[0].getLookup().lookup(Mp3DataObject.class);
 if(mp3 != null) {
 player.play(mp3);
 }
 }
 }
 private void openActionPerformed(ActionEvent evt) {
 JFileChooser c = new JFileChooser();
 c.setFileFilter(new FileNameExtensionFilter("MP3 Files", "mp3"));
 if(c.showOpenDialog(this) == JFileChooser.APPROVE_OPTION) {
 try {
 player.play(Mp3DataObject.find(c.getSelectedFile()));
 } catch(Exception e) {
 e.printStackTrace();
 }
 }
 }

Within the playing() method, called by Mp3Player, we can display title and time informa-
tion in the user interface. Thus, we are not restricted to the file name, and we can access the
ID3 tag and its stored information (see Listing 18-15). The timer is used to update playback
time. In the stopped() method (indicating that the playback of the MP3 file was stopped), we
reset all displayed information and stop the timer.

Listing 18-15. Updating the displayed information of the current MP3 file

 public void playing(Mp3DataObject mp3) {
 resetInfos();
 title.setText(mp3.getName());
 duration.setMaximum(player.getDuration());
 ID3v1Tag id3v1 = mp3.getID3v1Tag();
 title.setText(id3v1.getArtist()+" – "+id3v1.getTitle());
 ActionListener updateInfo = new ActionListener() {
 public void actionPerformed(ActionEvent evt) {
 duration.setValue(player.getMediaTime());
 time.setText(SDF.format(new Date(player.getMediaTime() * 1000)));

24174ch18_final_idx.fm Page 317 Friday, April 24, 2009 2:33 PM

318 C H A P T E R 1 8 ■ E X A M P L E : M P 3 M AN AG E R

 }
 };
 if (t != null) {
 t.stop();
 }
 t = new Timer(1000, updateInfo);
 t.start();
 }
 public void stopped() {
 resetInfos();
 if(t != null) {
 t.stop();
 }
 }
 private void resetInfos() {
 duration.setValue(0);
 time.setText("00:00");
 title.setText("Title");
 }
}

Playlist
The object of this section is to create a playlist, with the additional goal of enabling the user to
manage multiple playlists simultaneously. And of course we want the user to be able to add
MP3 files from the media library to the playlist by merely using drag-and-drop. All this func-
tionality is provided in a separate module. So, we create a new module via File ➤ New Project
➤ NetBeans Modules ➤ Module, name it Playlist, and set the code name base to com.hboeck.
mp3manager.playlist. The File Type and Services modules are added as dependencies.

For the playlist, another TopComponent is used, containing a TreeTableView taken from the
Explorer API. Using such a view eases the management of MP3 files with the help of the
Mp3DataNode class.

Node View
Let’s display our nodes. First, create a subclass of TreeTableView and name it PlaylistView. This
class is used to hide the configuration and to have a handier class. The only thing we need to
configure is the default action processor, because by default a double-click executes the default
action of a node, which is the PlayAction we created in the “Playback of MP3 files” section. But
this action plays only one single file, while the desired behavior of a playlist is to play the
complete list automatically. Therefore, we implement the setDefaultActionProcessor()
method (see Listing 18-16), which takes an instance of an ActionListener. The action-
Performed() method of this listener is executed (instead of the node’s default action) when the
node is double-clicked or the Enter key is pressed.

24174ch18_final_idx.fm Page 318 Friday, April 24, 2009 2:33 PM

C H A P T E R 1 8 ■ E X A M P L E : M P 3 M A N A G E R 319

Listing 18-16. This view is used to represent MP3 files in a list view.

package com.hboeck.mp3manager.playlist;
import org.openide.explorer.view.TreeTableView;
public class PlaylistView extends TreeTableView {
 public PlaylistView() {
 setRootVisible(false);
 }
 public void setDefaultActionProcessor(
 final ActionListener action) {
 setDefaultActionAllowed(false);
 tree.addMouseListener(new MouseAdapter() {
 @Override
 public void mouseClicked(MouseEvent me) {
 if (me.getClickCount() == 2) {
 action.actionPerformed(null);
 }
 }
 });
 treeTable.registerKeyboardAction(action,
 KeyStroke.getKeyStroke(KeyEvent.VK_ENTER, 0, false),
 JComponent.WHEN_FOCUSED);
 }
}

Node Container
All nodes represented in the PlaylistView are managed by a container. A container is based on
the class Children, which can have several characteristics, depending on its purpose. We will
use the class Index.ArrayChildren as superclass for our node container (see Listing 18-17). The
nodes to be added to a playlist are stored in an object of type ArrayList, delivered by the
method initCollection(). It will initially be empty, because the nodes are inserted via drag-
and-drop from the media library. Using the getRemaining() method, we return a list of
remaining MP3 files, which can be directly shown to the player to play back the playlist.

Listing 18-17. Container class to manage MP3 files contained in a playlist

package com.hboeck.mp3manager.playlist;
import com.hboeck.mp3manager.filetype.Mp3DataObject;
import org.openide.nodes.Index;
import org.openide.nodes.Node;
public final class NodeContainer extends Index.ArrayChildren {
 private ArrayList<Node> list = new ArrayList<Node>();
 @Override
 protected List<Node> initCollection() {
 return list;
 }

24174ch18_final_idx.fm Page 319 Friday, April 24, 2009 2:33 PM

320 C H A P T E R 1 8 ■ E X A M P L E : M P 3 M AN AG E R

 public ListIterator<Mp3DataObject> getRemaining(Node n) {
 Vector<Mp3DataObject> v = new Vector<Mp3DataObject>();
 for (Node n : list.subList(indexOf(n), list.size())) {
 v.add(n.getLookup().lookup(Mp3DataObject.class));
 }
 return v.listIterator();
 }
 public void add(Node n) {
 add(new Node[]{n});
 }
}

TopComponent
Now we begin creating the playlist, again based on a TopComponent. This time, we will not create
it using the Window Component wizard, as this wizard creates TopComponents as singletons.
Rather, we will use the JPanel wizard, which is accessible via File ➤ New File ➤ Swing GUI
Forms ➤ JPanel Form. Name it Playlist and change the base class from JPanel to TopCompo-
nent, using the source view of the Matisse GUI Builder. (To have this class on hand, we specify
a dependency to the Window System API.) In addition, we must override the preferredID()
and getPersistenceType() methods as shown here:

package com.hboeck.mp3manager.playlist;
import com.hboeck.mp3manager.filetype.Mp3DataObject;
import com.hboeck.mp3manager.services.player.Mp3Player;
import org.openide.explorer.ExplorerManager;
import org.openide.explorer.ExplorerUtils;
import org.openide.nodes.AbstractNode;
public class Playlist extends TopComponent implements ExplorerManager.Provider {
 public static final String ICON_PATH =
 "com/hboeck/mp3manager/playlist/playlist.png";
 private static final String PREFERRED_ID = "Playlist";
 private static final String PREF_CURRENTDIR = "currentdir";
 private Preferences PREF = NbPreferences.forModule(Playlist.class)
 private ExplorerManager manager = new ExplorerManager();
 private NodeContainer container = new NodeContainer();
 private PlaylistView playlist = new PlaylistView();
 public Playlist() {
 initComponents();
 setName(NbBundle.getMessage(Playlist.class, "CTL_Playlist"));
 setToolTipText(NbBundle.getMessage(Playlist.class, "CTL_Playlist"));
 setIcon(ImageUtilities.loadImage(ICON_PATH, true));
 manager.setRootContext(new AbstractNode(container));
 playlist.setDefaultActionProcessor(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 Mp3Player.getDefault().play(
 container.getRemaining(manager.getSelectedNodes()[0]));
 }
 });
 associateLookup(ExplorerUtils.createLookup(manager, getActionMap()));
 }

24174ch18_final_idx.fm Page 320 Friday, April 24, 2009 2:33 PM

C H A P T E R 1 8 ■ E X A M P L E : M P 3 M A N A G E R 321

 @Override
 protected String preferredID() {
 return PREFERRED_ID;
 }
 @Override
 public int getPersistenceType() {
 return TopComponent.PERSISTENCE_ALWAYS;
 }
 public ExplorerManager getExplorerManager() {
 return manager;
 }
 ...
}

Figure 18-6. Playlist TopComponent

We enhance the TopComponent by adding a toolbar with three buttons, using the Matisse
GUI Builder (see Figure 18-6). These buttons are used to add and remove files, and to name the
playlist. Finally, we add a panel that uses the BorderLayout and occupies the whole area of the
TopComponent (see Figure 18-6). This panel is used as the container for the node view.

Management of the nodes in our PlaylistView is done by an ExplorerManager. Therefore,
we implement the interface ExplorerManager.Provider, create a private instance of the
ExplorerManager, and return this manager in the getExplorerManager() method. Additionally,
we have to create a NodeContainer instance. Every manager has a root context, which is a node
that is used as root for all the other nodes. This context is set by the method setRootContext().
We will use an AbstractNode as the root context (as we do not want to display it anyway) and
pass it to the container carrying the MP3 files of the playlist.

24174ch18_final_idx.fm Page 321 Friday, April 24, 2009 2:33 PM

322 C H A P T E R 1 8 ■ E X A M P L E : M P 3 M AN AG E R

Finally, we create an instance of PlaylistView to which we pass the action to be performed
when double-clicking an MP3 file in the playlist. To pass the action, we use the method
setDefaultActionProcessor(). Our default behavior is to play back the complete list starting at
the selected file. Therefore, the method getRemaining() delivers all files still remaining in the
list, except those above the selected one. Now the view needs to be added to the panel we
created in a previous step with the Matisse GUI Builder. To do so, select Customize Code from
the context menu of the panel and insert the following lines after the layout initialization:

panel.add(playlist, BorderLayout.CENTER);

Lastly, we shouldn’t forget the buttons in the toolbar, as they are used to add and remove
MP3 files by invoking a file chooser dialog, as well as to rename the playlist itself. It should be
possible to select multiple files and folders to add to the playlist. Therefore, we add the method
addAllFiles() (see Listing 18-18), which recursively parses the selection and adds all files to
the node container. Removing files (done by the removeActionPerformed() method) is much
easier, as the ExplorerManager returns all selected entries, and the remove() method of the
container removes an array of nodes in one step. Renaming the playlist (invoked by the
method renameActionPerformed()) is easy as well, using the Dialogs API.

Listing 18-18. Actions to edit the playlist

public class Playlist extends TopComponent implements ExplorerManager.Provider {
 ...
 private void addActionPerformed(ActionEvent evt) {
 JFileChooser fc = new JFileChooser(PREF.get(PREF_CURRENTDIR, ""));
 fc.setFileSelectionMode(JFileChooser.FILES_AND_DIRECTORIES);
 fc.setFileFilter(new FileNameExtensionFilter("MP3 Files", "mp3"));
 fc.setMultiSelectionEnabled(true);
 if(fc.showOpenDialog(this) == JFileChooser.APPROVE_OPTION) {
 addAllFiles(fc.getSelectedFiles());
 PREF.put(PREF_CURRENTDIR, fc.getCurrentDirectory().getAbsolutePath());
 }
 }
 private void addAllFiles(File[] files) {
 for(File f : files) {
 if(f.isFile()) {
 try {
 container.add(Mp3DataObject.find(f).getNodeDelegate());
 } catch(Exception e) {}
 } else if(f.isDirectory()) {
 addAllFiles(f.listFiles());
 }
 }
 }
 private void removeActionPerformed(ActionEvent evt) {
 container.remove(manager.getSelectedNodes());
 }
 private void renameActionPerformed(ActionEvent evt) {
 NotifyDescriptor.InputLine nf = new NotifyDescriptor.InputLine(
 "New Playlist Name", "Rename");
 nf.setInputText(getName());

24174ch18_final_idx.fm Page 322 Friday, April 24, 2009 2:33 PM

C H A P T E R 1 8 ■ E X A M P L E : M P 3 M A N A G E R 323

 if(DialogDisplayer.getDefault().notify(nf) == NotifyDescriptor.OK_OPTION) {
 setName(nf.getInputText());
 }
 }
}

Since we didn’t create the TopComponent for the playlist using the Window Component
wizard, a menu entry allowing us to open a new playlist is missing. The simplest way to access
such an action is using the Action wizard, via File ➤ New File ➤ Module Development ➤
Action. We will use the always enabled action, add it to the Window menu, and name the new
class NewPlaylist. The wizard will then create an action class (see Listing 18-19). Next, we add
the following lines to the method actionPerformed().

Listing 18-19. Action class to open a new playlist

public final class NewPlaylist implements ActionListener {
 public void actionPerformed(ActionEvent evt) {
 Playlist pl = new Playlist();
 pl.open();
 pl.requestActive();
 }
}

We are ready to execute the application. Open one or more playlists and add MP3 files
using the toolbar (see Figure 18-7).

Figure 18-7. Using the playlist toolbar, files can be added to the playlist.

24174ch18_final_idx.fm Page 323 Friday, April 24, 2009 2:33 PM

324 C H A P T E R 1 8 ■ E X A M P L E : M P 3 M AN AG E R

It isn’t possible to drag files from the Media Library window to the playlist, because the
Mp3DataNode class (containing the objects we want to transfer between windows) and the
PlaylistView class are not yet prepared for dragging actions. We will cover this in the next
section, as drag-and-drop is very important for easy and intuitive use.

Drag-and-Drop
First, extend the Mp3DataNode class. Its superclass, AbstractNode, already implements the
drag() method, which is invoked if a drag event occurs. For example, a drag event will be fired
when we drag files from the media library to the playlist. This method delivers an instance of
type Transferable. So we will implement the Transferable interface and its methods in the
class Mp3DataNode (see Listing 18-20). The drag() method is overridden and just returns a refer-
ence to itself. To access the data, and for identification purposes during a drag-and-drop
operation, we have to create a DataFlavor object that can be accessed from outside.

Listing 18-20. Extension to the Mp3DataNode class to enable drag-and-drop

package com.hboeck.mp3manager.filetype;
import java.awt.datatransfer.DataFlavor;
import java.awt.datatransfer.Transferable;
import java.awt.datatransfer.UnsupportedFlavorException;
public class Mp3DataNode extends DataNode implements Transferable {
 public static final DataFlavor DATA_FLAVOR =
 new DataFlavor(Mp3DataNode.class, "Mp3DataNode");
 ...
 @Override
 public Transferable drag() {
 return this;
 }
 public DataFlavor[] getTransferDataFlavors() {
 return new DataFlavor[]{DATA_FLAVOR};
 }
 public boolean isDataFlavorSupported(DataFlavor flavor) {
 return flavor == DATA_FLAVOR;
 }
 public Object getTransferData(DataFlavor flavor)
 throws UnsupportedFlavorException {
 if(flavor == DATA_FLAVOR) {
 return this;
 } else {
 throw new UnsupportedFlavorException(flavor);
 }
 }
}

An Mp3DataNode can now be transferred, but our playlist is still not able to accept it. We can
enable it to do so by adding a DropTarget to our PlaylistView. We create an object of type
DropTarget and pass a DropTargetAdapter to it (see Listing 18-21). Now we are notified
regarding drag as well as drop events. The only methods we need to implement are dragEnter()
and drop(). The first one is called at the moment a file is dragged to our playlist. As we only want

24174ch18_final_idx.fm Page 324 Friday, April 24, 2009 2:33 PM

C H A P T E R 1 8 ■ E X A M P L E : M P 3 M A N A G E R 325

to allow drops of MP3 files, we check the type of data using the DataFlavor. In case it is not an
Mp3DataNode, we call rejectDrag() to prevent a drop. The second method of implementation is
invoked during the real drop event. Herein we extract the Mp3DataNode from the parameter and
add the node to the ExplorerManager, or rather the container responsible for the view.

Listing 18-21. To enable adding of MP3 files via drag-and-drop, a DropTarget is required for the
PlaylistView.

package com.hboeck.mp3manager.playlist;
import java.awt.dnd.DropTarget;
import java.awt.dnd.DropTargetAdapter;
import java.awt.dnd.DropTargetDragEvent;
import java.awt.dnd.DropTargetDropEvent;
public class PlaylistView extends TreeTableView {
 public PlaylistView() {
 setRootVisible(false);
 setDropTarget();
 }
 private void setDropTarget() {
 DropTarget dt = new DropTarget(this, new DropTargetAdapter() {
 @Override
 public void dragEnter(DropTargetDragEvent dtde) {
 if(!dtde.isDataFlavorSupported(
 Mp3DataNode.DATA_FLAVOR)) {
 dtde.rejectDrag();
 }
 }
 public void drop(DropTargetDropEvent dtde) {
 try {
 Mp3DataNode n = (Mp3DataNode)dtde.getTransferable().
 getTransferData(Mp3DataNode.DATA_FLAVOR);
 ExplorerManager.find(getParent()).
 getRootContext().getChildren().add(new Node[]{n});
 } catch(Exception e) {
 e.printStackTrace();
 dtde.rejectDrop();
 }
 }
 });
 setDropTarget(dt);
 }
}

Thus, we are able to drag MP3 files from the media library or other sources directly into a
playlist.

Saving the Playlist
You may have already noticed that the content of the playlist is lost when restarting the appli-
cation. This is because the window system stores the playlist itself, but is unable to store the

24174ch18_final_idx.fm Page 325 Friday, April 24, 2009 2:33 PM

326 C H A P T E R 1 8 ■ E X A M P L E : M P 3 M AN AG E R

contained data. In other words, we have to extend the load and store functions for our applica-
tion. A good approach is to store the lists into embedded databases (e.g., Java DB). This client-
side database system was already used in the “Java DB” section in Chapter 13. To use it for our
playlist, we need to bind it to our application, using a module again.

The module is a library wrapper module, and is created like any other module—via File ➤
New Project ➤ NetBeans Modules ➤ Library Wrapper Module. We add to it the files lib/
derby.jar and lib/derbyLocale_de_DE.jar from the Java DB distribution. Further information
on how to bind and use Java DB, as well as where to obtain a distribution, can be found in the
“Java DB” section of Chapter 13. Name the module Java DB and use org.apache.derby for the
code name base. After creating the module, we add a module installer, which is used to
initialize centralized access. Such an installer can be created via File ➤ New File ➤ Module
Development ➤ Module Installer. Afterward, rename it with Refactor ➤ Rename to Database.

In the restored() method, called while starting the module, we set the system directory of
Java DB and execute the initTables() method. This method will first check whether the table
playlist exists, by performing a SELECT query (see Listing 18-22). If the table does not exist, a
SQLException will be thrown, which we will catch in order to create the table. Using the
getConnection() method, we obtain a connection to the database. The close() method allows
the database system to be correctly shut down after the application is finished.

Listing 18-22. The database class initializes the database and provides a central connection.

package org.apache.derby;
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.SQLException;
import java.sql.Statement;
import org.openide.modules.ModuleInstall;
public class Database extends ModuleInstall {
 private static Connection conn = null;
 public void restored() {
 System.setProperty("derby.system.home",
 System.getProperty("netbeans.user",
 System.getProperty("user.home")) + "/databases");
 initTables();
 }
 private void initTables() {
 try {
 Statement stmt = getConnection().createStatement();
 stmt.executeQuery("SELECT id FROM playlist");
 stmt.close();
 } catch(SQLException e) {
 try {
 Statement stmt = getConnection().createStatement();
 stmt.execute("CREATE TABLE playlist (" +
 "id VARCHAR(12)," +
 "filename VARCHAR(100))");
 stmt.close();
 } catch(SQLException ex) {
 ex.printStackTrace();
 }

24174ch18_final_idx.fm Page 326 Friday, April 24, 2009 2:33 PM

C H A P T E R 1 8 ■ E X A M P L E : M P 3 M A N A G E R 327

 }
 }
 public static Connection getConnection() throws SQLException {
 if(conn == null || conn.isClosed()) {
 conn = DriverManager.getConnection(
 "jdbc:derby:Mp3Manager;create=true",
 "user", "password");
 }
 return conn;
 }
 public void close() {
 try {
 conn.close();
 DriverManager.getConnection("jdbc:derby:;shutdown=true");
 } catch (SQLException ex) {}
 }
}

Do not forget to make the org.apache.derby package containing the Database class public.
To enable the Playlist module to access the database, we specify a dependency to the Java DB
module. As you already know, the nodes for a view have to be provided by the class
NodeContainer. Knowing this, it would be best to just extend this class so it reads the content of
the playlist from the database for itself and can store it when the application closes. To do so,
we add the methods load() and update() to the NodeContainer class (see Listing 18-23). The
load() method will perform a query to read all entries for a particular playlist. When the
getNodeDelegate() method is used, each entry will result in an Mp3DataObject that delivers its
corresponding node.

Listing 18-23. The load() method reads all playlist entries from the database and adds them to the
container.

package com.hboeck.mp3manager.playlist;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
import java.sql.SQLException;
import org.apache.derby.Database;
public final class NodeContainer extends Index.ArrayChildren {
 ...
 public void load(String id) {
 try {
 String sql="SELECT filename FROM playlist WHERE id = ?";
 PreparedStatement stmt = Database.getConnection().prepareStatement(sql);
 stmt.setString(1, id);
 ResultSet rs = stmt.executeQuery();
 while (rs.next()) {
 try {
 add(Mp3DataObject.find(rs.getString(1)).getNodeDelegate());
 } catch(Exception e) {}
 }
 rs.close();
 stmt.close();

24174ch18_final_idx.fm Page 327 Friday, April 24, 2009 2:33 PM

328 C H A P T E R 1 8 ■ E X A M P L E : M P 3 M AN AG E R

 } catch(SQLException e) {
 LOG.severe(e.toString());
 }
 }

To store the playlist, we use the update() method (see Listing 18-24). First, remove all
entries of this specific playlist to avoid lost entries. Then use the getNodes() method to obtain
all nodes of this container and store the path of the related MP3 file for each node.

Listing 18-24. The update() method stores the container’s entries in the database.

 public void update(String id) {
 try {
 String sql = "DELETE FROM playlist WHERE id = ?";
 PreparedStatement stmt = Database.getConnection().prepareStatement(sql);
 stmt.setString(1, id);
 stmt.execute();
 stmt.close();
 sql="INSERT INTO playlist (id, filename) VALUES (?, ?)";
 stmt = Database.getConnection().prepareStatement(sql);
 for(Node n : getNodes()) {
 stmt.setString(1, id);
 stmt.setString(2, n.getLookup().lookup(Mp3DataObject.class).
 getPrimaryFile().getPath());
 stmt.execute();
 }
 stmt.close();
 } catch(Exception e) {
 LOG.severe(e.toString());
 }
 }
}

You might be wondering how these methods are being called. The answer can be found
if we open the Playlist class. Its base class, TopComponent, defines a method named
componentOpened(), called while opening the window. Here, we determine the unique ID of the
TopComponent, while in a subsequent step we call the container’s load() method with this ID
(see Listing 18-25). The writeExternal() method of the superclass is used to store data while
the application is closing. We will override this method and invoke the update() method with
the ID we stored as a private variable. Finally, we must invoke the writeExternal() method of
the superclass; otherwise, the TopComponent will not be stored.

Listing 18-25. The Playlist class is responsible for loading and storing the container’s content.

public class Playlist extends TopComponent implements ExplorerManager.Provider {
 ...
 private String id;
 ...
 @Override

24174ch18_final_idx.fm Page 328 Friday, April 24, 2009 2:33 PM

C H A P T E R 1 8 ■ E X A M P L E : M P 3 M A N A G E R 329

 public void componentOpened() {
 id = WindowManager.getDefault().findTopComponentID(this);
 LOG.info("Load playlist with ID: " + id);
 container.load(id);
 }
 @Override
 public void writeExternal(ObjectOutput oo) throws IOException {
 LOG.info("Save playlist with ID: " + id);
 container.update(id);
 super.writeExternal(oo);
 }
}

Summary
In this chapter, we created a bigger example to apply a lot of the concepts you learned about in
the previous chapters. Firstly, we defined a modular application structure based on NetBeans
modules. We created a module, enabling our example application to play MP3 files. The
module contains the JMF classes, as well as the MP3 plugin.

To handle MP3 files within the NetBeans Platform, we created an MP3 file type, as
explained in Chapter 7. Next, we included an ID3 library in our NetBeans Platform application,
implementing an MP3 player service module. In this module, we also implemented a small
GUI for the player.

Next, we created playlist functionality. To that end, we created our own node view and
node container. To implement drag-and-drop functionality from the Media Library window,
we extended our Node class.

Finally, this chapter demonstrated how easy it is to incrementally build a modular
NetBeans Platform application. The extensibility of such an application has also been
highlighted.

24174ch18_final_idx.fm Page 329 Friday, April 24, 2009 2:33 PM

24174ch18_final_idx.fm Page 330 Friday, April 24, 2009 2:33 PM

331

■ ■ ■

A P P E N D I X

Important NetBeans Extension
Points and Configuration DTDs

This Appendix outlines the most important extension points and configuration DTDs of the
NetBeans Platform. The extension points are outlined first, in Table A-1. Following that, List-
ings A-1 through A-6 describe the DTDs for some important configuration files, including
modes, toolbars, and TopComponent group configurations.

Table A-1. Important NetBeans Extension Points

Extension Point Usage

Actions Registers all actions used throughout the application. In other
words, this extension point creates the central action pool, the
content of which can be referenced from other classes. See
Chapter 4.

Menu Registers all the entries in the application menus. An application
menu is built from the folders and files in this extension point. See
Chapter 5.

Navigator/Panels Registers all the available Navigator panels by MIME type. See
Chapter 9.

OptionsDialog Registers all panels that extend the Options window. Do so by regis-
tering the OptionsCategory implementation in the form of
.instance entries. See Chapter 9.

Services Registers service providers that are available via the standard
Lookup. Alternatively, use META-INF/services or the filesystem.
See Chapter 9.

Services/AutoupdateType Registers update center configurations. See Chapter 12.

Services/JavaHelp Registers JavaHelp helpsets, which are then combined with all
helpsets from the other modules, resulting in a single JavaHelp
system for the end user. See Chapter 9.

Services/MIMEResolver Registers specific data types to a DataLoader, which in turn is a
factory for its DataObject. See Chapter 7.

Shortcuts Registers keyboard shortcuts for an action. Provides a central over-
view of all existing shortcuts. See Chapter 3.

24174app_final.fm Page 331 Wednesday, April 22, 2009 12:30 PM

332 A P P E N D I X ■ I M P O R T A N T N E T B E A N S E X T E N S I O N P O I N T S A N D C O N F I G U R A T I O N D T D S

Listing A-1. Mode definitions

<!-- //NetBeans//DTD Mode Properties 2.2//EN -->
<!ELEMENT mode (
 module?,
 name,
 kind,
 state,
 constraints?,
 (bounds | relative-bounds)?,
 frame?,
 active-tc?,
 empty-behavior?,
 slidingSide?,
 slideInSize*) >
<!ATTLIST mode
 version CDATA #REQUIRED >

<!ELEMENT module EMPTY >
<!ATTLIST module
 name CDATA #REQUIRED
 spec CDATA #IMPLIED >

<!ELEMENT name EMPTY >
<!ATTLIST name
 unique CDATA #REQUIRED >

<!ELEMENT kind EMPTY >
<!ATTLIST kind

TaskList/Groups Registers task groups that are shown in the NetBeans Platform’s
task list. See Chapter 15.

TaskList/Scanners Registers custom scanner implementations that provide tasks for
the NetBeans Platform’s task list. See Chapter 15.

TaskList/Scopes Registers custom scopes for task list searches.

Toolbars Registers new toolbars and their actions. You can also add actions
to preexisting toolbars via this extension point. See Chapter 5.

WarmUp Registers instances of the Runnable class, which are executed auto-
matically and asynchronously as applications start. See Chapter 17.

Windows2/Components Registers module TopComponents. See Chapter 9.

Windows2/Groups Registers groups of related TopComponents that should behave in
concert with each other. See Chapter 9.

Windows2/Modes Registers custom modes—i.e., areas within the application where
TopComponents can be displayed. See Chapter 9.

Table A-1. Important NetBeans Extension Points (Continued)

Extension Point Usage

24174app_final.fm Page 332 Wednesday, April 22, 2009 12:30 PM

A P P E N D I X ■ I M P O R T A N T N E T B E A N S E X T E N S I O N P O I N T S A N D C O N F I G U R A T I O N D T D S 333

 type (editor | view | sliding) #REQUIRED >

<!ELEMENT slidingSide EMPTY >
<!ATTLIST slidingSide
 side (left | right | bottom) #REQUIRED >

<!ELEMENT slideInSize EMPTY >
<!ATTLIST slideInSize
 tc-id CDATA #REQUIRED
 size CDATA #REQUIRED >

<!ELEMENT state EMPTY >
<!ATTLIST state
 type (joined | separated) #REQUIRED >

<!-- This entry is used when a window is moved out of the application
 via the „Undock" function. -->
<!ELEMENT bounds EMPTY >
<!ATTLIST bounds
 x CDATA #REQUIRED
 y CDATA #REQUIRED
 width CDATA #REQUIRED
 height CDATA #REQUIRED >

<!ELEMENT relative-bounds EMPTY >
<!ATTLIST relative-bounds
 x CDATA #REQUIRED
 y CDATA #REQUIRED
 width CDATA #REQUIRED
 height CDATA #REQUIRED >

<!-- The current status of the windows. The value is represented by an integer.
 Settable values can be found in the java.awt.Frame class.
 Default: Frame.NORMAL (0) -->
<!ELEMENT frame EMPTY >
<!ATTLIST frame
 state CDATA #IMPLIED >

<!ELEMENT constraints (path*) >
<!ATTLIST constraints >

<!ELEMENT path EMPTY >
<!ATTLIST path
 orientation (horizontal | vertical) #REQUIRED
 number CDATA #REQUIRED
 weight CDATA #IMPLIED >

<!ELEMENT active-tc EMPTY >
<!ATTLIST active-tc
 id CDATA #IMPLIED > // ID of the active TopComponent

24174app_final.fm Page 333 Wednesday, April 22, 2009 12:30 PM

334 A P P E N D I X ■ I M P O R T A N T N E T B E A N S E X T E N S I O N P O I N T S A N D C O N F I G U R A T I O N D T D S

<!-- If set to true permanently, the mode will continue to exist even when no
 TopComponent is docked within it -->
<!ELEMENT empty-behavior EMPTY >
<!ATTLIST empty-behavior
 permanent (true | false) #IMPLIED >

Listing A-2. Ordering of TopComponents in modes

<!-- //NetBeans//DTD Top Component in Mode Properties 2.2//EN -->
<!ELEMENT tc-ref (
 module?,
 tc-id,
 state,
 previousMode,
 docking-status?,
 slide-in-status?) >
<!ATTLIST tc-ref
 version CDATA #REQUIRED>

<!-- This optional element is used to kill the TopComponent
 when the specified module is deactivated -->
<!ELEMENT module EMPTY >
<!ATTLIST module
 name CDATA #REQUIRED // Code name base of the module
 spec CDATA #IMPLIED > // Specification version of the module

<!ELEMENT tc-id EMPTY >
<!ATTLIST tc-id
 id CDATA #REQUIRED > // Unique ID of the TopComponent

<!ELEMENT state EMPTY >
<!ATTLIST state
 opened (true | false) #REQUIRED >

<!-- This attribute is used by the sliding views to put the TopComponent back
 into its original state -->
<!ELEMENT previousMode EMPTY >
<!ATTLIST previousMode
 name CDATA
 index CDATA #IMPLIED>

<!ELEMENT docking-status EMPTY >
<!ATTLIST docking-status
 maximized-mode (docked | slided) #IMPLIED
 default-mode (docked | slided) #IMPLIED >

<!ELEMENT slide-in-status EMPTY >
<!ATTLIST slide-in-status
 maximized (true | false) #IMPLIED >

24174app_final.fm Page 334 Wednesday, April 22, 2009 12:30 PM

A P P E N D I X ■ I M P O R T A N T N E T B E A N S E X T E N S I O N P O I N T S A N D C O N F I G U R A T I O N D T D S 335

Listing A-3. TopComponent group definitions

<!-- //NetBeans//DTD Group Properties 2.0//EN -->
<!ELEMENT group (
 module?,
 name,
 state) >
<!ATTLIST group
 version CDATA #REQUIRED >

<!ELEMENT module EMPTY >
<!ATTLIST module
 name CDATA #REQUIRED
 spec CDATA #IMPLIED >

<!ELEMENT name EMPTY >
<!ATTLIST name
 unique CDATA #REQUIRED >

<!ELEMENT state EMPTY >
<!ATTLIST state
 opened (true | false) #REQUIRED >

Listing A-4. Ordering of TopComponents in groups

<!--//NetBeans//DTD Top Component in Group Properties 2.0//EN -->
<!ELEMENT tc-group (
 module?,
 tc-id,
 open-close-behavior) >
<!ATTLIST tc-group
 version CDATA #REQUIRED >

<!ELEMENT module EMPTY >
<!ATTLIST module
 name CDATA #REQUIRED
 spec CDATA #IMPLIED >

<!ELEMENT tc-id EMPTY >
<!ATTLIST tc-id
 id CDATA #REQUIRED > // unique ID of the TopComponent

<!ELEMENT open-close-behavior EMPTY >
<!ATTLIST open-close-behavior
 open (true | false) #REQUIRED
 close (true | false) #REQUIRED
 was-opened (true | false) #IMPLIED >

24174app_final.fm Page 335 Wednesday, April 22, 2009 12:30 PM

336 A P P E N D I X ■ I M P O R T A N T N E T B E A N S E X T E N S I O N P O I N T S A N D C O N F I G U R A T I O N D T D S

Listing A-5. Toolbar definition and configuration

<!-- //NetBeans//DTD Toolbar Configuration //EN -->
<!ELEMENT Configuration (Row+) >
<!ELEMENT Row (Toolbar*) >
<!ELEMENT Toolbar EMPTY >
<!ATTLIST Toolbar
 name CDATA #REQUIRED
 position CDATA #IMPLIED
 visible (true | false) #IMPLIED >

Listing A-6. Palette item definition

<!-- //NetBeans//DTD Editor Palette Item 1.1//EN -->
<!ELEMENT editor_palette_item (
 (class|body),
 icon16,
 icon32,
 (description|inline-description)) >
<!ATTLIST editor_palette_item
 version CDATA #REQUIRED >

<!-- Name of the class that implements the
 org.openide.text.ActiveEditorDrop interface -->
<!ELEMENT class EMPTY>
<!ATTLIST class
 name CDATA #REQUIRED >

<!-- Textual description, which can also contain HTML tags -->
<!ELEMENT body (#PCDATA)>

<!ELEMENT icon16 EMPTY>
<!ATTLIST icon16
 urlvalue CDATA #REQUIRED >
<!ELEMENT icon32 EMPTY>
<!ATTLIST icon32
 urlvalue CDATA #REQUIRED >

<!ELEMENT description EMPTY>
<!ATTLIST description
 localizing-bundle CDATA #REQUIRED
 display-name-key CDATA #REQUIRED
 tooltip-key CDATA #REQUIRED >

<!ELEMENT inline-description (display-name, tooltip)>
<!ELEMENT display-name (#PCDATA)>
<!ELEMENT tooltip (#PCDATA)>

24174app_final.fm Page 336 Wednesday, April 22, 2009 12:30 PM

337

Index

■A
AbstractFileSystem class, 111

AbstractNode class, 124

actions

overview, 45–46

providing, 46–57

registering, 57–58

shortcuts, 58–59

Activator class, 281

ActiveEditorDrop class, 271

always enabled actions, 46–49

application development

creation, 213–214

distribution, 216–217

launcher customization, 215–216

platform module customization, 214–215

application lifecycle, ending, 291–292

AsyncGUIJob class, 287–288

asynchronous graphic component
initialization, 287–289

Auto Update service, 219

autoload modules, 19

■B
BeanTreeView class, 130

branding ID, 213–215

■C
CallableSystemAction class, 49–50

CallbackSystemAction class, 50–52

Children class, 125–130, 319

ChoiceView class, 130

classloader system, 8–9, 13–14

conditionally enabled actions, 46, 52

ConsoleHandler class, 295

context classloader, 14

ContextAction class, 55

ContextAwareAction class, 55

context-sensitive actions, 50–57

CookieAction class, 52–55, 120

cookies, 52–55, 114, 117–120

custom dialogs, 139–140

■D
Data Systems API

DataLoader class, 121–124

DataObject class, 116–121

DataObjectFactory class, 121

overview, 114–116

DataLoader class, 121–124

DataNode class, 125

DataObject class, 114, 116–121, 300

DataObjectFactory class, 114, 121

DBMS, 229–230, 232

decoupling components, 93

dependencies, 8, 17

Desktop class, 293–294

DialogDisplayer class, 136

Dialogs API

custom dialogs, 139–140

renaming playlists, 322

standard dialogs, 135–138

wizards, 140–151

distribution, application, 216–217

docking containers. See modes

drag-and-drop operations, 318, 324–325

DropTarget class, 324

■E
eager modules, 19

Eclipse, transition from

NetBeans IDE, 279–280

plugins, 280–285

encapsulation, code, 8

2417-4index.fm Page 337 Thursday, April 30, 2009 12:22 PM

338 ■I N D E X

EntityManager class, 255

EntityManagerFactory class, 255

error dialogs, 138

Explorer & Property Sheet API, 130–133

ExplorerManager class, 131–133, 321

extending NetBeans IDE

palettes, 269–274

Task List API, 274–277

extension points

adding to layer file, 78–79, 127

defined, 25

defining for graphic components, 94–95

overview, 331–332

providing, 29

system tray, 292–293

■F
Favorites module, 118, 307–308

file access and display

Data Systems API, 114–124

Explorer & Property Sheet API, 130–133

File Systems API, 110–114

Nodes API, 124–130

overview, 109–110

File Systems API, 109–114

file type, 115

FileHandler class, 295

FileObject class, 111–113, 300

FilterNode class, 124

■G
global services, 97–99

graphical components

Dialogs API, 135–151

MultiViews API, 151–154

Visual Library API, 154–173

graphs, 168–171

■H
help system

adding links to topics, 178–179

context-sensitive help, 179–180

helpsets, 175–177

opening, 180

HelpCtx method, 179

Hibernate

configuring, 247–248

mapping objects to relations, 248–250

saving and loading objects, 251–252

Session object, 250–251

setting up libraries, 245–246

structure of example application, 246–247

hibernate.cfg.xml file, 247, 250

■I
ID3 API, 302–307

information dialogs, 137

InplaceEditor class, 188

input dialogs, 138

.instance files, 27–28

intermodule communication, 102–107

internationalization

files and folders, 210–211

graphics, 209

help pages, 208–209

nbresloc protocol, 209–210

string literals in manifest file, 207–208

string literals in source code, 205–207

■J
JarFileSystem class, 111

Java DB

creating databases, 230–232

developing databases, 232–235

driver registration, 230

example application, 235–245

integrating, 229–230

playlists, 326

shutting down databases, 232

Java Media Framework, 299, 311

Java Persistence API

configuring, 254–255

entity classes, 255–257

EntityManager class, 257–258

Hibernate, 253–254

saving and loading objects, 258–259

JavaHelp API, 175

2417-4index.fm Page 338 Thursday, April 30, 2009 12:22 PM

339■I N D E X

■K
keymaps, 280

keystores, 221–223

■L
layer file, 17–18, 24–26

layer tree, 26

lazy-loading, 94

libraries, 40–43

library wrapper module, 40–43, 230–231, 326

LifecycleManager class, 284, 291

locale extension archives, 14, 211–212, 214

LocalFileSystem class, 111

localization

administration and preparation of
resources, 211–212

files and folders, 210–211

graphics, 209

help pages, 208–209

nbresloc protocol, 209–210

string literals in manifest file, 207–208

string literals in source code, 205–207

localizing bundles, 224

Logger object, 294–295

Logging API, 294–296

Login dialog, 139

LogManager class, 295

Lookup

functionality, 93

global services, 97–99

intermodule communication, 102–107

registering service providers, 99–102

service requesters, 309

ServiceLoader class, 107–108

services and extension points, 94–97

loose coupling, 8, 94, 102

■M
manifest file, 17, 19–20, 32–34, 207–208,

269–270

media library, 307–308

menu bar, 62–65

MenuView class, 130

META-INF/services directory, 96, 100

mnemonics, 58–59

modes

creating, 80–83

definitions, 332–334

modifying, 83

overview, 69–70

module classloader, 13–14

Module Installer, 12, 37, 300

Module Registry, 39

Module Suite, 29

module system, 17

creating, 29–32

dependencies, 34–37

layer file, 24–29

libraries, 40–43

lifecycle, 37–39

manifest file, 19–24

overview, 7–8, 17, 280–281

registry, 39–40

structure, 18

types of, 18–19

versioning, 32–34

ModuleInfo class, 282

MP3 Manager

design, 297–299

ID3 support, 302–307

media library, 307–308

MP3 support, 299–302

player, 309–318

playlists, 318–329

services, 308

MultiDataObject class, 116

multi-parent classloader, 13

MultiViewElement class, 152

MultiViews API, 151–154

■N
Navigator API, 182

NbBundle class, 206

nbdocs protocol, 176, 178

NBM files, 220–223, 227

NbPreferences class, 195, 284

nbresloc protocol, 209

2417-4index.fm Page 339 Thursday, April 30, 2009 12:22 PM

340 ■I N D E X

NetBeans Platform

architecture, 7–9

characteristics of, 3–4

classloader system, 13–14

distribution, 9–11

extending, 269–277

runtime container, 12–13

NetBeans runtime container, 8, 12–13

Node container, 125–126, 319

nodes, 124–126, 133, 300

Nodes API, 124–130

NotifyDescriptor class, 135

■O
ObjectScene class, 167–171

Options Dialog API, 189

Options window, 189–196

original classloader, 13

Output window, 180–182

■P
palette entries, 270–272

palette item definition, 336

PaletteController, 272

palettes, 196–204, 269–273

patch archives, 14

persistence

Hibernate, 245–252

Java DB, 229–245

Java Persistence API, 253–259

persistence.xml file, 254–255

perspective feature, 280

playlists, 318–329

Plugin Manager, 10, 225

plugins. See module system

Preferences API, 194–195

progress bar, 88–89, 92

Properties module, 304

Properties window, 186–189

ProxyLookup class, 185

public packages, 302

■Q
question dialogs, 137–138

■R
regular modules, 19

reusable components

help system, 175–180

Navigator, 182–185

Options window, 189–196

Output window, 180–182

palettes, 196–204

Properties window, 186–189

rich client platforms, 1–3

■S
scenes, 164–167

Service Interface, 94

Service Loader, 107

Service Provider, 311

Ordering, 101

Registering, 99

Removing, 100

Service Provider Configuration, 100

services

global, 97–99

Lookup, 94–97

MP3 Manager, 308

web, 261–266

Session class, 250–251

SessionFactory class, 250

.settings files, 28–29

.shadow files, 28

Sheet class, 186–187

shortcuts, 58–59

shutting down applications, 291–292

splash screen, 214

standard dialogs, 135–138

status bar, 86–87

SwingWorker class, 264, 288

system classloader, 13–14

System Filesystem, 24–25

system tray, 293

■T
Task List API, 274–277

toolbars, 65–69, 336

2417-4index.fm Page 340 Thursday, April 30, 2009 12:22 PM

341■I N D E X

TopComponent class, 72–80, 320

TopComponentGroup class, 83–86, 335

Transferable class, 202, 324

TransferHandler class, 203

TrayIcon class, 293

TrayMenu class, 293

TreeTableView class, 318

■U
UndoableEdit class, 290

UndoManager class, 289

undo/redo functionality, 289–291

UniFileLoader class, 122

update centers, 223–226

updates

Auto Update service, 219–220

configuring and installing on client,
225–227

NBM files, 220–224

overview, 3

update centers, 223–224

user interface design

menu bar, 62–65

overview, 61

progress bar, 88–92

status bar, 86–87

toolbars, 65–69

window system, 69–86

■V
Visual Library API

events and actions, 159–164

ObjectScene class, 167–171

overview, 154–155

scenes, 164–167

structure, 155

Visual Mobile Designer, 172–173

Widget class, 155–159

■W
Warm-Up class, 292, 332

web services

creating client, 261–263

using, 264–266

Widget class, 155–159

window system

configuration, 70–71

customization, 72

modes, 80–83

overview, 61, 69–70

TopComponent class, 72–80

TopComponentGroup class, 83–86

WindowManager class, 85

WizardDescriptor class, 141

wizards

architecture, 141–142

ending prematurely, 150

event handling, 149–150

final verification of data, 150

iterators, 150

overview, 140–141

panels, 142–148

Wrapper Style setting, 262

WSDL files, 261

.wsmode file, 82

.wstcgrp file, 84

.wstcref file, 75

■X
XMLFileSystem class, 111

■Z
ZIP distribution, 216

2417-4index.fm Page 341 Thursday, April 30, 2009 12:22 PM

Offer valid through 12/09.

2417-4index.fm Page 342 Thursday, April 30, 2009 12:22 PM

	Prelims

	Contents at a Glance
	Contents
	Introduction Let’s Find Out What This Book Is All About!
	What Is a Rich Client?
	What Is a Rich Client Platform?
	Advantages of a Rich Client Platform
	Reduction in Development Time
	User Interface Consistency
	Updating
	Platform Independence
	Reusability and Reliability

	Characteristics of the NetBeans Platform
	User Interface Framework
	Data Editor
	Customization Display
	Wizard Framework
	Data Systems
	Internationalization
	Help System

	Summary

	Structure of the NetBeans Platform Let’s Find Out What It’s Made Of!
	NetBeans Platform Architecture
	NetBeans Platform Distribution
	NetBeans Runtime Container
	NetBeans Classloader System
	Module Classloader
	System Classloader
	Original Classloader

	Summary

	The Module System Let’s Understand the Basic Building Blocks!
	Overview
	Module Structure
	Module Types
	Regular
	Autoload
	Eager

	Module Manifest
	Attributes
	Description
	Versioning and Dependencies
	Services and Interfaces
	Visibility

	Example

	Module Layer
	Order of Entries
	Instance Files
	Shadow Files
	Settings Files
	Creating and Using Your Own Contents

	Creating Modules
	Versioning and Dependencies
	Versioning
	Defining Dependencies
	Module Dependencies
	Java Package Dependency
	Java Version Dependency

	Lifecycle
	Module Registry
	Using Libraries
	Library Wrapper Module
	Adding a Library to a Module

	Summary

	Actions Let’s Make the NetBeans Platform Do Something!
	Overview
	Providing Action Classes
	Always Enabled Actions
	CallableSystemAction
	CallbackSystemAction
	CookieAction
	General Context-Sensitive Action Classes

	Registering Actions
	Shortcuts and Mnemonics
	Summary

	User Interface Design Let’s Create Some Windows!
	Overview
	Menu Bar
	Creating and Adding Menus and Menu Entries
	Inserting Separators
	Hiding Existing Menu Entries
	Creating a Custom Menu Bar

	Toolbars
	Creating Toolbars
	Configuring Toolbars
	Modification by the User
	Creating Custom Toolbars
	Using Custom Control Elements

	Window System
	Introduction
	Configuration
	Customization
	Window: TopComponent
	Creating a TopComponent
	States
	Context Menu
	Persistence
	Registry

	Docking Container: Mode
	Creating a Mode
	Modifying a Mode

	Groups of Windows: TopComponentGroup
	Creating a TopComponentGroup
	Administration: WindowManager
	Window System Architecture

	Status Bar
	Using the Status Bar
	Extending the Status Bar

	Progress Bar
	Displaying the Progress of a Task
	Displaying the Progress of Many Related Tasks
	Integrating a Progress Bar into Your Component

	Summary

	Lookup Let’s Talk to Other Modules!
	Functionality
	Services and Extension Points
	Defining the Service Interface
	Loose Service Provisioning
	Providing Multiple Service Implementations
	Ensuring Service Availability

	Global Services
	Registering Service Providers
	Service Provider Configuration File
	Removal of a Service Provider
	Order of Service Providers

	Services Folder

	Intermodule Communication
	Java Service Loader
	Summary

	File Access and Display Let’s Use the NetBeans Platform to Work with Files!
	Overview
	File Systems API
	Operations
	Obtaining
	Creating
	Renaming
	Deleting
	Moving
	Reading and Writing Files
	Monitoring Changes

	Data Systems API
	DataObject
	Implementing and Adding Cookies
	Using Cookies
	Providing Cookies Dynamically
	Creating a DataObject Manually

	DataObject Factory
	DataLoader
	Implementation
	Registration

	Nodes API
	Node Container
	Actions
	Event Handling

	Implementing Nodes and Children

	Explorer & Property Sheet API
	Summary

	Graphical Components Let’s Show Some Interesting Views!
	Dialogs API
	Standard Dialogs
	Information Dialog
	Question Dialog
	Input Dialog
	Error Dialog

	Custom Dialogs
	Wizards
	Wizard Architecture
	Creating Panels
	Creating a Wizard from Panels
	Event Handling
	Ending a Wizard Prematurely
	Final Verification of Data
	Iterators

	MultiViews API
	Visual Library API
	Structure of the Visual Library API
	The Widget Classes
	Dependencies
	Border
	Layout

	Events and Actions
	AcceptAction
	ActionMapAction
	AddRemoveControlPointAction
	MoveAction/AlignWithMoveAction
	ResizeAction/AlignWithResizeAction
	ZoomAction/CenteredZoomAction
	ConnectAction/ExtendedConnectAction/ReconnectAction
	CycleFocusAction/CycleObjectSceneFocusAction
	EditAction/InplaceEditorAction
	ForwardKeyEventsAction
	HoverAction
	MoveControlPointAction/FreeMoveControlPointAction/OrthogonalMoveControlPointAction
	PanAction
	PopupMenuAction
	SelectAction/RectangularSelectAction
	SwitchCardAction

	The Scene: The Root Element
	Overview
	Exporting a Scene

	ObjectScene: Model-View Relationship
	Graph
	VMD: Visual Mobile Designer

	Summary

	Reusable NetBeans Platform Components Let’s See What We Get for Free!
	Help System
	Creating and Integrating a Helpset
	module-hs.xml
	module-map.xml
	module-toc.xml
	module-idx.xml
	Help Topics

	Adding Links to Help Topics
	Links to External Sites
	Links to Other Help Topics

	Context-Sensitive Help
	Opening the Help System

	Output Window
	Navigator
	Properties Window
	Providing Properties
	User-Defined Properties Editor

	Options Window
	Providing an Options Panel
	View and Controller
	Registration
	Open Option Panels

	Settings Administration

	Palette
	Defining and Adding Palette Components via the Layer File
	Creating a Palette from a Node Hierarchy
	Node Classes for Creating and Displaying Data
	Creating the Palette
	Implementing Drag-and-Drop Functionality

	Summary

	Internationalization and Localization Let’s Translate Our Code!
	String Literals in Source Code
	String Literals in the Manifest File
	Internationalization of Help Pages
	Internationalizing Other Resources
	Graphics
	Any File
	Folders and Files

	Administration and Preparation of Localized Resources
	Summary

	Real-World Application Development Let’s Understand the Development Cycle!
	Creation
	Customization of Platform Modules
	Customizing the Launcher
	Distribution
	Distribution As a ZIP Archive
	Distribution via Java Web Start
	Mac OS X Application

	Summary

	Updating a NetBeans Platform Application Let’s Allow the User to Add Features at Runtime!
	Overview
	The Auto Update Service
	The NBM File
	Update Centers
	Localized NBM Files
	Configuring and Installing on the Client
	New Update Center
	Automatically Installing Updates

	Summary

	Persistence Let’s Integrate Some Databases!
	Java DB
	Integrating Java DB
	Driver Registration
	Creating and Using a Database
	Shutting Down a Database
	Database Development with the Help of the NetBeans IDE
	Setting Up and Starting the Java DB System
	Integrating the Driver for the Java DB Server into Your Application
	Setting Up and Configuring the Database
	Access to a Database from Your Application
	Creating and Importing Table Structures

	Example Application
	Configuration, Access, and Shutdown
	Data Models and Data Access Models
	Displaying and Working with the Data

	Hibernate
	Setting Up the Hibernate Libraries
	Structure of the Example Application
	Configuring Hibernate
	Mapping Objects to Relations
	SessionFactory and Sessions
	Saving and Loading Objects

	Java Persistence API
	Hibernate and the Java Persistence API
	Java Persistence Configuration
	Entity Classes
	EntityManagerFactory and EntityManager
	Saving and Loading Objects

	Summary

	Web Services Let’s Integrate the Web!
	Creating a Web Service Client
	Using a Web Service
	Summary

	Extending the NetBeans IDE Let’s Add Some Features to the NetBeans IDE!
	Palettes
	Defining and Registering Palette Entries
	Creating and Registering a PaletteController
	Expanding Existing Palettes

	Task List API
	Summary

	From Eclipse RCP to the NetBeans Platform Let’s Abandon SWT!
	The NetBeans IDE
	Standard Components
	Handling Projects

	From Eclipse Plugins to NetBeans Modules
	Plugin: Lifecycle and Events
	Plugin Information
	Images
	Resources
	Settings
	Application Lifecycle
	Views and Editors

	Summary

	Tips and Tricks Let’s Get Some Cool Expert Tips!
	Asynchronous Initialization of Graphic Components
	Undo/Redo
	Ending an Application’s Lifecycle
	WarmUp Tasks
	System Tray
	Desktop
	Logging
	Logger
	LogManager
	Configuration
	Error Reports

	Summary

	Example: MP3 Manager Let’s Put It All Together!
	Design
	Creating the NetBeans Platform Application
	Support for MP3
	Creating the JMF Module
	Registering the MP3 Plugin
	MP3 File Type

	ID3 Support
	ID3 API
	ID3 Editor

	Media Library
	Services
	MP3 Player
	Service Interface
	Service Provider
	Playback of MP3 Files
	User Interface

	Playlist
	Node View
	Node Container
	TopComponent
	Drag-and-Drop
	Saving the Playlist

	Summary

	Important NetBeans Extension Points and Configuration DTDs
	Index

