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Preface

For the purpose of this book, let us agree that Statistics1 is the study of data for
some purpose. The study of the data includes learning statistical methods to analyze
it and draw conclusions.
Here is a question and answer session about this book. Skip the answers to those

questions that do not interest you.

• Who is this book intended for?

The book is intended for students, researchers and practitioners both in and out
of academia. However, no prior knowledge of statistics is assumed. Consequently, the
presentation moves from very basic (but not simple) to sophisticated. Even if you know
statistics and R, you may find the many many examples with a variety of real world
data, graphics and analyses useful. You may use the book as a reference and, to that
end, we include two extensive indices. The book includes (almost) parallel discussions
of analyses with the normal density, proportions (binomial), counts (Poisson) and
bootstrap methods.

• Why “Statistics and data with R”?

Any project in which statistics is applied involves three major activities: preparing
data for application of some statistical methods, applying the methods to the data
and interpreting and presenting the results. The first and third activities consume by
far the bulk of the time. Yet, they receive the least amount of attention in teaching
and studying statistics. R is particularly useful for any of these activities. Thus, we
present a balanced approach that reflects the relative amount of time one spends in
these activities.
The book includes over 300 hundred examples from various fields: ecology, envi-

ronmental sciences, medicine, biology, social sciences, law and military. Many of the
examples take you through the three major activities: They begin with importing the
data and preparing it for analysis (that is the reason for “and data” in the title), run
the analysis (that is the reason for “Statistics” in the title) and end with presenting
the results. The examples were applied through R scripts (that is the reason for “with
R” in the title).

1From here on, we shall not capitalize Statistics.
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Our guiding principle was “what you see is what you get” (WYSIWYG). Thus,
whether examples illustrate data manipulation, statistical methods or graphical pre-
sentation, accompanying scripts allow you to produce the results as shown. Each script
is presented as code snippets or as line-numbered statements. These enhance explana-
tion of the scripts. Consequently, some of the scripts are not short and there are plenty
of repetitions. Adhering to our goal, a wiki website, http://turtle.gis.umn.edu
includes all of the scripts and data used in the book. You can download, cut and
paste to reproduce all of the tables, figures and statistics that are shown. You are
invited to modify the scripts to fit your needs.
Albeit not a database management system, R integrates the tasks of preparing

data for analysis, analyzing it and presenting it in powerful and flexible ways. Power
and flexibility do not come easily and the learning curve of R is steep. To the novice—
in particular those not versed in object oriented computer languages—R may seem at
times cryptic. In Chapter 1 we attempt to demystify some of the things about R that
at first sight might seem incomprehensible.
To learn how to deal with data, analysis and presentation through R, we include

over 300 examples. They are intended to give you a sense of what is required of
statistical projects. Therefore, they are based on moderately large data that are not
necessarily “clean”—we show you how to import, clean and prepare the data.

• What is the required knowledge and level of presentation?

No previous knowledge of statistics is assumed. In a few places (e.g. Chapter 5),
previous exposure to introductory Calculus may be helpful, but is not necessary. The
few references to integrals and derivatives can be skipped without missing much. This
is not to say that the presentation is simple throughout—it starts simple and becomes
gradually more advanced as one progresses through the book. In short, if you want
to use R, there is no way around it: You have to invest time and effort to learn it.
However, the rewards are: you will have complete control over what you do; you will be
able to see what is happening “behind the scenes”; you will develop a good-practices
approach.

• What is the choice of topics and the order of their presentation?

Some of the topics are simple, e.g. parts of Chapters 9 to 12 and Chapter 14.
Others are more advanced, e.g. Chapters 16 and 17. Our guiding principle was to cover
large sample normal theory and in parallel topics about proportions and counts. For
example, in Chapter 12, we discuss two sample analysis. Here we cover the normal
approach where we discuss hypotheses testing, confidence intervals and power and
sample size. Then we cover the same topics for proportions and then for counts.
Similarly, for regression, we discuss the classical approach (Chapter 14) and then
move on to logistic regression (Chapter 16). With this approach, you will quickly
learn that life does not end with the normal. In fact, much of what we do is to
analyze proportions and counts. In parallel, we also use Bootstrap methods when one
cannot make assumptions about the underlying distribution of the data and when
samples are small.

• How should I teach with this book?

The book can be covered in a two-semester course. Alternatively, Chapters 1 to 14
(along with perhaps Chapter 15) can be taught in an introductory course for seniors
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and first-year graduate students in the sciences. The remaining Chapters, in a second
course. The book is accompanied by a solution manual which includes solutions to
most of the exercises. The solution manual is available through the book’s site.

• How should I study and use this book?

To study the book, read through each chapter. Each example provides enough
code to enable you to reproduce the results (statistical analysis and graphics) exactly
as shown. Scripts are explained in detail. Read through the explanation and try to
produce the results, as shown. This way, you first see how a particular analysis is done
and how tables and graphics may be used to summarize it. Then when you study the
script, you will know what it does. Because of the adherence to the WYSIWYG
principle, some of the early examples might strike you as particularly complicated.
Be patient; as you progress, there are repetitions and you will soon learn the common
R idioms.
If you are familiar with both R and basic statistics, you may use the book as a

reference. Say you wish to run a simple logistic regression. You know how to do it
with R, but you wish to plot the regression on a probability scale. Then go to Chapter
16 and flip through the pages until you hit Figure 16.5 in Example 16.5. Next, refer
to the example’s script and modify it to fit your needs. There are so many R examples
and scripts that flipping through the pages you are likely to find one that is close to
what you need.
We include two indices, an R index and a general index. The R index is organized

such that functions are listed as first entry and their arguments as sub-entries. The
page references point to applications of the functions by the various examples.

• Classical vs. Bayesian statistics

This topic addresses developments in statics in the last few decades. In recent
years and with advances in numerical computations, a trend among natural (and
other) scientists of moving away from classical statistics (where large data are needed
and no prior knowledge about it is assumed) to the so-called Bayesian statistics (where
prior knowledge about the data contributes to its analysis) has become fashionable.
Without getting into the sticky details, we make no judgment about the efficacy of
one as opposed to the other approach. We prescribe to the following:

• With large data sets, statistical analyses using these two approaches often reach
the same conclusions. Developments in bootstrap methods make “small” data sets
“large”.

• One can hardly appreciate advances in Bayesian statistics without knowledge of
classical statistics.

• Certain situations require applications of Bayesian statistics (in particular when
real-time analysis is imperative). Others, do not.

• The analyses we present are suitable for both approaches and in most cases should
give identical results. Therefore, we pursue the classical statistics approach.

• A word about typography, data and scripts

We use monospaced characters to isolate our code work with R. Monospace lines
that begin with > indicate code as it is typed in an R session. Monospace lines that
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begin with line-number indicate R scripts. Both scripts and data are available from
the books site (http://turtle.gis.umn.edu).

• Do you know a good joke about statistics?

Yes. Three statisticians go out hunting. They spot a deer. The first one shoots
and misses to the left. The second one shoots and misses to the right. The third one
stands up and shouts, “We got him!”

Yosef Cohen and Jeremiah Cohen
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1

Basic R

Here, we learn how to work with R. R is rooted in S, a statistical computing and
data visualization language originated at the Bell Laboratories (see Chambers and
Hastie, 1992). The S interpreter was written in the C programming language. R pro-
vides a wide variety of statistical and graphical techniques in a consistent computing
environment. It is also an interpreted programming environment. That is, as soon as
you enter a statement, or a group of statements and hit the Enter key, R computes
and responds with output when necessary. Furthermore, your whole session is kept
in memory until you exit R. There are a number of excellent introductions to and
tutorials for R (Becker et al., 1988; Chambers, 1998; Chambers and Hastie, 1992;
Dalgaard, 2002; Fox, 2002). Venables and Ripley (2000) was written by experts and
one can hardly improve upon it (see also The R Development Core Team, 2006b). An
excellent exposition of S and thereby of R, is given in Venables and Ripley (1994).
With minor differences, books, tutorials and applications written with S are rele-
vant in R. A good entry point to the vast resources on R is its website, http://
r-project.org.
R is not a panacea. If you deal with tremendously large data sets, with mil-

lions of observations, many variables and numerous related data tables, you will
need to rely on advanced database management systems. A particularly good one
is the open source PostgreSQL (http://www.postgresql.org). R deals effectively—
and elegantly—with data that include several hundreds of thousands of observations
and scores of variables. The bulkier your system is in memory and hard disk space,
the larger the data set that R can handle. With all these caveats, R is a most flexible
system for dealing with data manipulation and analysis. One often spends a large
amount of time preparing data for analysis and exploring statistical models. R makes
such tasks easy. All of this at no cost, for R is free!
This chapter introduces R. Learning R might seem like a daunting task, partic-

ularly if you do not have prior experience with programming. Steep as it may be,
the learning curve will yield much dividend later. You should develop tolerance of

Statistics and Data with R:  An applied approach through examples         Y. Cohen and  J.Y.  Cohen
©
2008 John Wiley & Sons, Ltd.  ISBN: 978-0-470-75805
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ambiguity. Things might seem obscure at first. Be patient and continue. With plenty
of repetitions and examples, the fog will clear. Being an introductory chapter, we are
occasionally compelled to make simple and sweeping statements about what R does
or does not do. As you become familiar with R, you will realize that some of our
statements may be slightly (but not grossly) inaccurate. In addition to R, we discuss
some abstract concepts such as classes and objects. The motivation for this seemingly
unrelated material is this: When you start with R, many of the commands (calls to
functions) and the results they produce may mystify you. With knowledge of the gen-
eral concepts introduced here, your R sessions will be clearer. To get the most out
of this chapter, follow this strategy: Read the whole chapter lightly and do whatever
exercises and examples you find easy. Do not get stuck in a particular issue. Later, as
we introduce R code, revisit the relevant topics in this chapter for further clarification.
It makes little sense to read this chapter without actually implementing the code

and examples in a working R session. Some of the material in this chapter is based on
the excellent tutorial by Venables et al. (2003). Except for starting R, the instructions
and examples apply to all operating systems that R is implemented on. System specific
instructions refer to the Windows operating systems.

1.1 Preliminaries

In this section we learn how to work with R. If you have not yet done so, go to
http://r-project.org and download and install R. Next, start R. If you installed R
properly, click on its icon on the desktop. Otherwise, click on Start | Programs | R | R
x.y.z where x.y.z refers to the version number you installed. If all else fails, find where
R is installed (usually in the Program Files directory). Then go to the bin directory
and click on the Rgui icon. Once you start R, you will receive a welcome statement
that ends with a prompt (usually >).

1.1.1 An R session

An R session consists of starting R, working with it and then quitting. You quit R
by typing q() or (in Windows) by selecting File | Exit.1 R displays the prompt at the
beginning of the line as a cue for you. This is where you interact with the system
(you do not type the prompt). The vast majority of our work with R will consist of
executing functions. For now, we will say that a function is a small, single-purpose
executable program that R can be instructed to run. A function is identified by a
name followed by parentheses. Often the parentheses are separated by words. These
are called arguments. We say that we execute a function when we type the function’s
name, with the parentheses (and possibly arguments) and then hit the Enter key.
Let us go through a simple session. This will give you a feel for R. At any point,

if you wish to quit, type q() to end the session. To quit, you can also use the File |
Exit menu. At the prompt, type (recall that you do not type the prompt):

> help.start()

1As a rule, while working with R, we avoid menus and graphical interface and stick with
the command line interface.
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This will display the introductory help page in your browser. You can access help.
start() from the Help | Html help menu. In the Manuals section of the HTML page,
click on the title An Introduction to R. This will bring up a well-written tutorial that
introduces R and its capabilities.

R as a calculator

Here are some ways to use R as a simple calculator (note the # character—it tells R
to treat everything beyond it to the end of the line as is):

> 5 - 1 + 10 # add and subtract

[1] 14

> 7 * 10 / 2 # multiply and divide

[1] 35

> pi # the constant pi

[1] 3.141593

> sqrt(2) # square root

[1] 1.414214

> exp(1) # e to the power of 1

[1] 2.718282

The order of execution obeys the usual mathematical rules.

Assignments

Assignments in R are directional. Therefore, we need a way to distinguish the direc-
tion:

> x <- 5 # The object (variable) x holds the value 5

> x # print x

[1] 5

> 6 -> x # x now holds the value 6

> x

[1] 6

Note that to observe the value of x, we type x and follow it with Enter. To save space,
we sometimes do this:

> (x <- pi) # assign the constant pi and print x

[1] 3.141593

Executing functions

R contains many function. We execute a function by entering its name followed by
parentheses and then Enter. Some functions need information to execute. This infor-
mation is passed to the function by way of arguments.

> print(x) # print() is a function. It prints its argument, x

[1] 6

> ls() # lists the objects in memory

[1] "x"
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> rm(x) # remove x from memory

> ls() # no objects in memory, therefore:

character(0)

A word of caution: R has a large number of functions. When you create objects (such
as x) avoid function names. For example, R includes a function c(); so do not name
any of your variables (also called objects) c. To discover if a function name may collide
with an object name, before the assignment, type the object’s name followed by Enter,
like this:

> t

function (x)

UseMethod("t")

<environment: namespace:base>

From this response you may surmise that there is a function named t(). Depending
on the function, the response might be some code.

Vectors

We call a set of elements a vector. The elements may be floating point (decimal)
numbers, integers, strings of characters and so on. Many common operations in R
require sequences. For example, to generate a sequence of 20 numbers between 0 and
19 do:

> x <- 0 : 19

To see the values stored in the vector x we just created, type x and hit Enter. R prints:

> x

[1] 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

[19] 18 19

Note the way R lists the values of the vector x. The numbers in the square brackets
on the left are not part of the data. They are the index of the first element of the
vector in the listed row. This helps you identify the order of the data. So there are
18 values of x listed in the first row, starting with the first element. The value of this
element is 0 and its index is 1. This index is denoted by [1]. The second row starts
with the 19th element and so on. To access the value of the fifth element, do

> x[5]

[1] 4

Behind the scenes

To demystify R, let us take a short detour. Recall that statements in R are calls to
functions and that functions are identified by a name followed by parentheses (e.g.
help()). You may then ask: “To print x, I did not call a function. I just entered the
name of the object. So how does R know what to do?” To fully answer this question
we need to discuss objects (soon). For now, let us just say that a vector (such as x) is
an object. Objects belong to object-types (sometimes called classes). For example x
belongs to the type vector. Objects of the same type have (inherit) the properties of
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their type. One of these properties might be a print function that knows how to print
the object. For example, R knows how to print objects of type vector. By entering the
name of the vector only, you are calling a function that knows how to print the vector
object x. This idea extends to other types of objects. For example, you can create
objects of type data.frame. Such objects are versatile. They hold different kinds of
data and have a comprehensive set of functions to manipulate the data. data.frame
objects have a print function different from that of vector objects. The specific way
that R accomplishes the task of printing, for example, may be different for different
object-types. However, because all objects of the same type have similar structure,
a print function that is attached to a type will work as intended on any object of
that type.
In short, when you type x <- 0 : 19 you actually create an object and enter the

data that the object stores. Other actions that are common to and necessary for such
objects are known to R through the object-type.

Plots

Back to our session. Let us create a vector with some random numbers and plot it.
We create a vector y from x. To each element of x, we add a random value between
10 and 20. Here is how:

> y <- x + runif(20, min = 10, max = 20)

Here we assign each value of x + (a random value) to the vector y. When you assign
an object to a named object that does not exist (y in our example), R creates the
object automatically. The function runif(), standing for “random uniform,” produces
random numbers. The call to it includes three arguments. The first argument, 20, tells
R to produce 20 random numbers. The second and third, min = 10 and max = 20,
ask that each number between the values of 10 and 20 have the same probability
of occurring. The addition of the random numbers to x is done element by element.
Thus, the statement above produces

y[1] <- x[1] + the first random number

y[2] <- x[2] + the second random number

...

y[20] <- x[20] + the 20th random number

To plot the values of y against x, type

> plot(x, y)

In response, you should get something like Figure 1.1.

Statistics

R is a statistical computing environment. It contains a large number of functions that
apply statistical analyses to data. Two familiar statistics are the mean and variance
of a set (vector) of numbers:

> mean(x)

[1] 9.5

> var(x)

[1] 35
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Figure 1.1 plot(x,y).

The function mean() takes—in this case—a single argument, a vector of the data (x).
It responds with the mean of the data. The function var() responds with the variance.

1.1.2 Editing statements

You can recall and edit statements that you have already typed. R saves the statements
in a session in a buffer (think of a buffer as a file in memory). This buffer is called
history. You can use the ↑ and the ↓ keys to recall previous statements or move down
from a previous statement. Use the ← and → arrows to move within a statement in
the active line. The active line is the last line in the session window. It is the line
that is executed when you hit Enter. The Delete or Backspace keys can be used to
delete characters on the command line. There are other commands you can use. See
the Help | Console menu.

1.1.3 The functions help(), help.search() and example()

Suppose that you need to generate uniform random numbers. You remember that
there is such a function, named runif(), but you do not exactly remember how to
call it. To see the syntax for the call and other information related to runif(), call
the function help() with the argument set to runif(), like this:

> help(runif)

(or help('runif')). In response, R displays a window that contains the following
(some output was omitted and line numbers added):

1 Uniform package:base R Documentation

2

3 The Uniform Distribution

4

5 Description:

6 These functions provide information about ,,,

7
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8 Usage:

9 ...

10 runif(n, min=0, max=1)

11

12 Arguments:

13 ...

14 n: number of observations. ....

15 min,max: lower and upper limits of the distribution.

16 ...

17

18 Details:

19 If 'min' or 'max' are not specified they assume ...

20 '0' and '1' respectively.

21 ...

22

23 References:

24 ....

25

26 See Also:

27 '.Random.seed' about random number generation, ....

28

29 Examples:

30 u <- runif(20)

31 ...

You can access help for all of the functions in R the same way—type
help(function-name ), where function-name is a name of a function you need help
with. If you are sure that help is available for the requested topic and you get no
response, enclose the topic with quotes. Functions’ help is standard, so let us go
through the help text for runif() in detail. In line 1, the header of the help window
for runif() declares that the function resides in a package, named base—we will talk
about packages soon. The Description section starts in line 5. Since this help window
provides help for all of the functions that relate to the so-called uniform distribution,
the description mentions all of them.
The Usage section begins on line 8. It explains how to call this function. In line

10, it says that runif() is called with the arguments n, min and max. Because
n represents the number of random numbers you wish to generate and because
it is not written as argument-name = argument-value , you should realize that
this is a required argument. That is, if you omit it, R will respond with an error
message. On line 12 begins a section about the Arguments. As it explains, n is
the number of observations. min and max are the limits between which the ran-
dom numbers will be generated. Note that in the call (line 10), they are specified
as min = 0 and max = 1. This means that you do not have to call these argu-
ments explicitly. If you do not, then the default values will be 0 and 1. In other
words, runif(n) will produce n random numbers between 0 and 1. Because it is
the uniform distribution, each of the numbers between 0 and 1 is equally likely
to occur. We say that n is an unnamed argument while min and max are named
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arguments. Usually, named arguments have default values and unnamed arguments
are required.
The Details section explains other issues related to the functions on this help

page. There is usually a Reference section where more details about the functions
may be found. The See Also section names relevant functions and finally there is
an Examples section. All functions are documented according to this template. The
documentation is often terse and it takes time to get used to.
Suppose that you forgot the exact function name. Or, you may wish to look for a

concept or a topic. Then use the function help.search(). It takes a single argument.
The argument is a string and strings in R are delineated by single or double quotes.
So you may look for a topic such as

> help.search('random')

This will bring up a window with a list such as this (line numbers were added and
the output was edited):

1 Help files with alias or concept or title matching 'random'

2 using fuzzy matching:

3

4 REAR(agce) Fit a autoregressive model with ...

5 r2dtable(base) Random 2-way Tables with ...

6 Random.user(base) User-supplied Random Number ...

7 ...

Line 4 is the beginning of a list of topics relevant to “random.” Each topic begins
with the name of a function and the package it belongs to, followed by a brief
explanation. For example, line 6 says that the function Random.user()resides in
the package base. Through it, the user may supply his or her own random number
generator.
Once you identify a function of interest, you may need to study its documentation.

As we saw, most of the functions documented in R have an Examples section. The
examples illustrate various applications of the documented function. You can cut and
paste the code from the example to the console and study the output. Alternatively,
you can run all of the examples with the function example(), like this:

> example(plot)

The statement above runs all the examples that accompany the documentation of
the function plot(). This is a good way to quickly learn what a function does and
perhaps even modify an example’s code to fit your needs. Copy as much code as you
can; do not try to reinvent the wheel.

1.1.4 Expressions

R is case sensitive. This means that, for example, x is different from X. Here x or
X refer to object names. Object names can contain digits, characters and a period.
You may be able to include other characters in object names, but we will not. As
a rule, object names start with a letter. Endow ephemeral objects—those you use
within, but not between, sessions—with short names and save on typing. Endow per-
sistent object—those you wish to use in future sessions—with meaningful names.
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In object names, you can separate words with a period or underscore. In some
cases, you can names objects with spaces embedded in the name. To accomplish
this, you will have to wrap the object name in quotes. Here are examples of correct
object names:

a A hello.dolly the.fat.in.the.cat hello.dOlly Bush_gore

Note that hello.dolly and hello.dOlly are two different object names because R
is case sensitive.
You type expressions on the current (usually last) line in the console. For example,

say x and y are two vectors that contain the same number of elements and the elements
are numerical. Then a call to

> plot(x, y)

is an expression. If the expression is complete, R will execute it when you hit Enter
and we get a plot of y vs. x. You can group expressions with braces and separate
them with semicolons. All statements (separated by semicolons) on a single line are
grouped. For example

> x <- seq(1 : 10) ; x # two expressions in one line

[1] 1 2 3 4 5 6 7 8 9 10

creates the sequence and prints it.

1.1.5 Comments, line continuation and Esc

You can add comments almost anywhere. We will usually add them to the end of
expressions. A comment begins with the hash sign # and terminates at the end of the
line. For example

# different from seq(1, 10, by = 2); try it

> (x <- seq(1, 10, length = 5))

[1] 1.00 3.25 5.50 7.75 10.00

> # also different from seq(1 : 10)

If an expression is incomplete, R will allow you to complete it on the next line once
you hit Enter. To distinguish between a line and a continuation line, R responds with
a +, instead of with a > on the next line. Here is an example (the comments explain
what is going on):

> x <- seq(1 : 10 # no ')' at the end

+ ) #now '(' is matched by ')'

> x

[1] 1 2 3 4 5 6 7 8 9 10

If you wish to exit a continuation line, hit the Esc key. This key also aborts executions
in R.

1.1.6 source(), sink() and history()

You can store expressions in a text file, also called a script file and execute all of them
at once by referring to this file with the function source(). For example, suppose
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we want to plot the normal (popularly known as the bell) curve. We need to create
a vector that holds the values of x and then calculate the values of y based on the
values of x using the formula:

y (x) =
1

σ
√
2π
e−(x−μ)

2/2σ2 . (1.1)

Here σ and μ (the Greek letters sigma and mu) are fixed, so we choose σ = 1 and
μ = 0. With these values, y (x) is known as the standard normal probability density.
Suppose we wish to create 101 values of x between −3 and 3. Then for each value of
x, we calculate a value for y. Then we plot y vs. x. To accomplish this, open a new
text file using Notepad (or any other text editor you use) and save it as normal.R
(you can name it anything). Note the directory in which you saved the file. Next, type
the following (without the line numbers) in the text editor:

1 x <- seq(-3, 3, length = 101)

2 y <- dnorm(x) # assign standard normal values to y

3 plot(x, y, type = 'l') # 'l' stands for line

and save it. Click on the File | Change dir. . . menu in the console and change to the
directory where you saved normal.R. Next, type

> source('normal.R')

or click on File | Source R code. . . . Either way, you should obtain Figure 1.2. Note the
statement in line 2. We use the 101 values of x to generate 101 values of y according
to (1.1). The function dnorm()—for density normal—does just that. The function
source() treats the content of the argument—a string that represents a file name—
as a sequence of commands. It will read one line at a time and execute it. Because
the argument to source() must be a constant string of characters representing a file
name, you must delineate the string with single or double quotes.

Figure 1.2 The standard normal (bell) curve.

The complement of source() is the function sink(). Occasionally you may find
it useful to divert output from the console to a file. Let us create a vector of 100
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elements, all initialized to zero and write the vector to a file. Type the following
(without the line numbers) in your console:

1 > x <- vector(mode = 'numeric', length = 100) #create the vector

2 > sink('x.txt') #open a text file named x.txt

3 > x #write the data to the file

4 > sink() #close the file

Go to the directory in which R is working now and open the file x.txt. You should
see the output exactly as if you did not redirect the output away from the console.
In line 1 of the code, the function vector() creates a vector of length 100.2 If you

do not specify mode = 'numeric', vector() will create a vector of 100 elements all
set to FALSE. The latter are logical elements that have only two values, TRUE or FALSE.
Note that TRUE and FALSE are not strings (you do not enclose them in quotes and
when R prints them, it does not enclose them in quotes). They are special values that
are simply represented by the tokens TRUE or FALSE. You will later see that vector()
and logical variables are useful.

history() is another useful housekeeping function. Now that we have worked a
little in the current session, type

> history(50)

In response, a new text window will pop up. It will include your last 50 statements
(not output). The argument to history is any number of lines you wish to see. You
can then copy part or all of the text to the clipboard and then paste to a script file.
This is a good way to build scripts methodically. You try the various statements in
the console, make sure they work and then copy them from a history window to your
script. You can then edit them. It is also a good way to document your work. You
will often spend much time looking for a particular function, or an idiom that you
developed only to forget it later. Document your work.

1.2 Modes

In R, a simple unit of data occupies the same amount of memory. The type of these
units is called mode. The modes in R are:

LOGICAL Has only two values, TRUE or FALSE.
character A string of characters.
numeric Numbers. Can be integers or floating point numbers, called double.
complex Complex numbers. We will not use this type.
raw A stream of bytes. We will not use this type.

You can test the mode of an object like this:

> x <- integer() ; mode(x)

[1] "numeric"

> mode(x <- double())

[1] "numeric"

> mode(x <- TRUE)

2You can use x <- numeric(100) instead of a call to vector().
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[1] "logical"

> mode(x <- 'a')

[1] "character"

1.3 Vectors

As we saw, R works on objects. Objects can be of a variety of types. One of the
simplest objects we will use is of type vector. There are other, more sophisticated
types of objects such as matrix, array, data frame and list. We will discuss these in
due course. To work with data effectively, you should be proficient in manipulating
objects in R. You need to know how to construct, split, merge and subset these objects.
In R, a vector object consists of an ordered collection of elements of the same mode.
The length of a vector is the number of its elements. As we said, all elements of

a vector must be of the same mode. There is one exception to this rule. We can mix
with any mode the special token NA, which stands for Not Available. It will be worth
your while to remember that NA is not a value! Therefore, to work with it, you must
use specific functions. We will discuss those later. We call a vector of dimension zero
the empty vector. Albeit devoid of elements, empty vectors have a mode. This gives
R an idea of how much additional memory to allocate to a vector when it is needed.

1.3.1 Creating vectors

Vectors can be constructed in several ways. The simplest is to assign a vector to a
new symbol:

> v <- 1 : 10 # assign the vector of elements 1...10 to v

> v <- c(1, 5, 3) # c() concatenates its elements

You can create a vector with a call to

> v <- vector() # vector of length 0 of logical mode

> (v <- vector(length = 10))

[1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

[10] FALSE

From the above we conclude that vector() produces a vector of mode logical by
default. If the vector has a length, all elements are set to FALSE. To create a vector
of a specific mode, simply name the mode as a function, with or without length:

> v <- integer()

> (v <- double(10))

[1] 0 0 0 0 0 0 0 0 0 0

> (v <- character(10))

[1] "" "" "" "" "" "" "" "" "" ""

You can also create vectors by assigning vectors to them. For example the function
c() (for concatenate) returns a vector. When the result of c() is assigned to an
object, the object becomes a vector:

> v <- c(0, -10, 1000)

[1] 0 -10 1000

Because a vector must include elements of a simple mode, if you concatenate vectors
with c(), R will force all modes to the simplest mode. Here is an example:
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1 > (x <- c('Alice', 'in', 'lalaland'))

2 [1] "Alice" "in" "lalaland"

3 > (y <- c(1, 2, 3))

4 [1] 1 2 3

5 > (z <- c(x,y))

6 [1] "Alice" "in" "lalaland" "1" "2"

7 [6] "3"

Study this code snippet. It will pay valuable dividends later. In line 1 we assign
three strings to x. Because the function c() constructs the vector and returns it, the
assignment in line 1 creates the vector x. Its type is character and so is its mode. In
line 3, we construct the vector y with the elements 1, 2 and 3. The mode(y) is numeric
and the typeof(y) is double. In line 5 we concatenate (with c()) the vectors x and y.
Because all elements of a vector must be of the same mode, the mode of z is reduced
to character. Thus, when we print z (lines 6 and 7), the numbers are turned into
their character representation. They therefore are enclosed with quotes. This may be
confusing, but once you realize that R strives to be coherent, it is no longer so.

1.3.2 Useful vector functions

Working with data requires manipulating vectors frequently. R provides functions that
allow such manipulations.

length()

The length of a vector is obtained with length():

> (t.f <- c(TRUE, TRUE, FALSE, TRUE)) ; length(t.f)

[1] TRUE TRUE FALSE TRUE

[1] 4

sum()

Here is an example where we need the length() of a vector and the sum() of its
elements:

> (a <- 1 : 11)

[1] 1 2 3 4 5 6 7 8 9 10 11

> (average <- sum(a) / length(a))

[1] 6

As you might expect, mean() does this and then some (see help(mean)).

1.3.3 Vector arithmetic

The binary (in the sense that they need two objects to operate on) arithmetic oper-
ations addition, subtraction, multiplication and division, +, -, * and /, respectively,
can be applied to vectors. In such cases, they are applied element-wise:

1 > (x <- 1.2 : 6.4)

2 [1] 1.2 2.2 3.2 4.2 5.2 6.2

3 > x * 2
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4 [1] 2.4 4.4 6.4 8.4 10.4 12.4

5 > x / 2

6 [1] 0.6 1.1 1.6 2.1 2.6 3.1

7 > x - 1

8 [1] 0.2 1.2 2.2 3.2 4.2 5.2

In line 1 we create a sequence from 1.2 to 6.4 incremented by 1 and print it. In line
2 we multiply x by 2. This results in multiplying each element of x by 2. Similarly
(lines 5 and 7), division and subtraction are executed element-wise.
When two vectors are of the same length and of the same mode, then the result

of x / y is a vector whose first element is x[1] / y[1], the second is x[2] / y[2]

and so on:

> (x <- seq(2, 10, by = 2))

[1] 2 4 6 8 10

> (y <- 1 : 5)

[1] 1 2 3 4 5

> x / y

[1] 2 2 2 2 2

Here, corresponding elements of x are divided by corresponding elements of y. This
might seem a bit inconsistent at first. On the one hand, when dividing a vector by a
scalar we obtain each element of the vector divided by the scalar. On the other, when
dividing one vector by another (of the same length), we obtain element-by-element
division. The results of the operations of dividing a vector by a scalar or by a vector
are actually consistent once you realize the underlying rules.
First, recall that a single value is represented as a vector of length 1. Second, when

the length of x > the length of y and we use binary arithmetic, R will cycle through
the elements of y until its length equals to that of x. If x’s length is not an integer
multiple of y, then R will cycle through the values of y until the length of x is met,
but R will complain about it.
In light of this rule, any vector is an integer multiple of the length of a vector

of length 1. For example, a vector with 10 elements is 10 times as long as a vector
of length 1. If you use a binary arithmetic operation on a vector of length 10 with
a vector of length 3, you will get a warning message. However, if one vector is of
length that is an integer multiple of the other, R will not complain. For example, if
you divide a vector of length 10 by a vector of length 5, then the vector of length
5 will be duplicated once and the division will proceed, element by element. The
same rule applies when the length of x < the length of y: x’s length is extended (by
cycling through its elements) to the length of y and the arithmetic operation is done
element-by-element. Here are some examples.
First, to avoid printing too many digits, we set

> options(digits = 3)

This will cause R to print no more than 3 decimal digits. Next, we create x with length
10 and y with length 3 and attempt to obtain x / y:
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> (x <- 1 : 10) ; (y <- 1 : 3) ; x / y

[1] 1 2 3 4 5 6 7 8 9 10

[1] 1 2 3

[1] 1.0 1.0 1.0 4.0 2.5 2.0 7.0 4.0 3.0 10.0

Warning message:

longer object length

is not a multiple of shorter object length in: x/y

Note that because x is not an integer multiple of y, R complains. Here is what happens:

x y x/y

1 1 1 1.0

2 2 2 1.0

3 3 3 1.0

4 4 1 4.0

5 5 2 2.5

6 6 3 2.0

7 7 1 7.0

8 8 2 4.0

9 9 3 3.0

10 10 1 10.0

As expected, y cycles through its values until it has 10 elements (the length of x)
and we get an element by element division. The same rule applies with functions that
implement vector arithmetic. Consider, for example, the square root function sqrt().
Here R follows the rule of operating on one element at a time:

> (x <- 1 : 5) ; sqrt(x)

[1] 1 2 3 4 5

[1] 1.00 1.41 1.73 2.00 2.24

1.3.4 Character vectors

Data, reports and figures require frequent manipulation of characters. R has a rich set
of functions to deal with character manipulations. Here we mention just a few. More
will be introduced as the need arises. Character strings are delineated by double or
single quotes. If you need to quote characters in a string, switch between double and
single quotes, or preface the quote by the escape character \. Here is an example:

> (s <- c("Florida; a politician's",'nightmare'))

[1] "Florida; a politician's"

[2] "nightmare"

The vector s has two elements. Because we need a single quote in the first element
(after the word politician), we add '. To create a single string from s[1] and s[2],
we paste() them:

> paste(s[1], s[2])

[1] "Florida; a politician's nightmare"
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By default, paste() separates its arguments with a space. If you want a different
character for spacing elements of characters, use the argument sep:

> paste(s[1], s[2], sep = '-')

[1] "Florida; a politician's-nightmare"

The examples above demonstrate how to include a single quote in a string and how
to paste() character strings with different separators (see help(paste) for further
information).

1.3.5 Subsets and index vectors

One of the most frequent manipulations of vectors (and other classes of objects that
hold data) is extracting subsets. To extract a subset from a vector, specify the indices
of the elements you wish to extract or exclude. To demonstrate, let us create

> x <- 15 : 30

Here x is a vector with elements 15, 16, . . . , 30. To create a new vector of the second
and fifth elements of x, we do

> c(x[2], x[5])

[1] 16 19

A more succinct way to extract the second and fifth elements is to execute

> x[c(2, 5)]

[1] 16 19

Here c(2, 5) is an index vector. The index vector specifies the elements to be
returned. Index vectors must resolve to one of 4 modes: logical, positive integers,
negative integers or strings. Examples are the best way to introduce the subject.

Index vector of logical values and missing data

Here is a typical case. You collect numerical data with some cases missing. You might
end up with a vector of data like this:

> (x <- c(10, 20, NA, 4, NA, 2))

[1] 10 20 NA 4 NA 2

You wish to compute the mean. So you try:

> sum(x) / length(x)

[1] NA

Because operations on NA result in NA, the result is NA. So we need to find a way
to extract the values that are not NA from the vector. Here is how. x above has six
elements, the third and the fifth are NA. The following statement identifies the NA
elements in i:

> (i <- is.na(x))

[1] FALSE FALSE TRUE FALSE TRUE FALSE

The function is.na(x) examines each element of the vector x. If it is NA, it assigns
the element the value TRUE. Otherwise, it assigns it the value FALSE. Now we can use
i as an index vector to extract the not NA values from x. Recall that i is a vector.
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If an element of x is a value, then the corresponding element of the vector i is FALSE.
If an element of i has no value, then the corresponding element of i is TRUE. So i
and not i, denoted by !i give:

> i ; !i

[1] FALSE FALSE TRUE FALSE TRUE FALSE

[1] TRUE TRUE FALSE TRUE FALSE TRUE

Therefore, to extract the values of x that are not NA, we do

> (y <- x[!i])

[1] 10 20 4 2

Now to calculate the mean of x, a vector with some elements containing missing
values, we do:

> n <- length(x[!i]) ; new.x <- x[!i] ; sum(new.x) / n

[1] 9

The same result can be achieved with

> mean(x, na.rm = TRUE)

[1] 9

na.rm is a named argument. Its default value is FALSE. If you set it to TRUE, mean()
will compute the mean of its unnamed argument (x in our example) even though the
latter contains NA.

Index vector of positive integers

Here is another way to exclude NA data:

> (x <- c(160, NA, 175, NA, 180))

[1] 160 NA 175 NA 180

> (no.na <- c(1, 3, 5))

[1] 1 3 5

> x[no.na]

[1] 160 175 180

Again, we use no.na as an index vector. Another example: we wish to extract elements
20 to 30 from a vector x of length 100:

> x <- runif(100) # 100 random numbers between 0 and 1

> round(x[20 : 30], 3) # print rounded elements 20 to 30

[1] 0.249 0.867 0.946 0.593 0.088 0.818 0.765 0.586 0.454

[10] 0.922 0.738

First we create a vector of 100 elements, each a random number between 0 and 1. To
interpret the second statement, we go from the inner parentheses out: 20 : 30 creates
an index vector of positive integers 20, 21, . . . , 30. Then x[20 : 30] extracts the
desired elements. We wish to see only the first 3 significant digits of the elements. So
we call round() with two arguments—the data and the number of significant digits.
Here is a variation on the theme:

> (i <- c(20 : 25, 28, 35 : 40)) # 20 to 25, 28 and 35 to 40

[1] 20 21 22 23 24 25 28 35 36 37 38 39 40

> round(x[i], 3)

[1] 0.249 0.867 0.946 0.593 0.088 0.818 0.454 0.675 0.834

[10] 0.131 0.281 0.636 0.429
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Index vector of negative integers

The effect of index vectors of negative integers is the mirror of positive. To extract
all elements from x except elements 20 to 30, we write x[-(20 : 30)]. Here we must
put 20 : 30 in parenthesis. Otherwise R thinks that we want to extract elements −20
to 30. Negative indices are not allowed.

Index vector of strings

We measure the weight (x) and height (y) of 5 persons:

> x <- c(160, NA, 175, NA, 180)

> y <- c(50, 65, 65, 80, 70)

Next, we associate names with the data:

> names(x) <- c("A. Smith", "B. Smith",

+ "C. Smith", "D. Smith", "E. Smith")

The function names() names the elements of x. To see the data, we column-bind it
with the function cbind():

> cbind(x, y)

x y

A. Smith 160 50

B. Smith NA 65

C. Smith 175 65

D. Smith NA 80

E. Smith 180 70

Now that the indices are named, we can extract elements by their names:

> x[c('B. Smith', 'D. Smith')]

B. Smith D. Smith

NA NA

Observe this:

> y[c('A. Smith', 'D. Smith')]

[1] NA NA

Because y has no elements named A. Smith and D. Smith, R assigns NA to such
elements.

1.4 Arithmetic operators and special values

R includes the usual arithmetic operators and logical operators. It also has a set of
symbols for special values, or no values at all.

1.4.1 Arithmetic operators

Arithmetic operators consist of +,−, ∗, / and the power operator ˆ. All of these oper-
ate on vectors, element by element:

> x <- 1 : 3 ; x^2

[1] 1 4 9
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1.4.2 Logical operators

Logical operators include “and” and “or”, denoted by & and |. We compare values with
the logical operators >, >=, <, <=, == and != standing for greater than, greater equal
than, less than, less equal than, equal and not equal. ! is the negation operator. Upon
evaluation, logical operators return the logical values TRUE or FALSE. If the operation
cannot be accomplished, then NA is returned. With vectors, logical operators work as
usual—one element at a time. Here are some examples:

> 5 == 4 & 5 == 5

[1] FALSE

> 5 != 4 & 5 == 5

[1] TRUE

> 5 == 4 | 5 == 5

[1] TRUE

> 5 != 4 | 5 == 5

[1] TRUE

> 5 > 4 ; 5 < 4 ; 5 == 4 ; 5 != 4

[1] TRUE

[1] FALSE

[1] FALSE

[1] TRUE

Like any other operation, if you operate on vectors, the values returned are element
by element comparisons among the vectors. The rules of extending vectors to equal
length still stand. Thus,

> x <- c(4, 5) ; y <- c(5, 5)

> x > y ; x < y ; x == y ; x != y

[1] FALSE FALSE

[1] TRUE FALSE

[1] FALSE TRUE

[1] TRUE FALSE

Here is an example that explains what happens when you compare two vectors of
different lengths:

1 > x <- c(4,5) ; y <- 4

2 > cbind(x, y)

3 x y

4 [1,] 4 4

5 [2,] 5 4

6 > y

7 [1] 4

8 > x == y

9 [1] TRUE FALSE

10 > x < y

11 [1] FALSE FALSE

12 > x > y

13 [1] FALSE TRUE
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In line 1 we create two vectors, with lengths of 2 and 1. We column bind them. So
R extends y with one element. When we implement the logical operations in lines 8,
10 and 12, R compares the vector 5, 4 to 4, 4. To make sure that you get what you
want, when comparing vectors, always make sure that they are of equal length.

1.4.3 Special values

Because R’s orientation is toward data and statistical analysis, there are features to
deal with logical values, missing values and results of computations that at first sight
do not make sense. Sooner or later you will face these in your data and analysis. You
need to know how to distinguish among these values and test for their existence. Here
are the important ones.

Logical values

Logical values may be represented by the tokens TRUE or FALSE. You can specify them
as T or F. However, you should avoid the shorthand notation. Here is an example why.
We wish to construct a vector with three logical elements, all set to TRUE. So we do this

> T <- 5

...

> (x <- c(T, T, T))

[1] 5 5 5

Some time earlier during the session, we happened to assign 5 to T. Then, forgetting
this fact, we assign c(T, T, T) to x. The result is not what we expect. Because TRUE
and FALSE are reserved words, R will not permit the assignment TRUE <- 5. The
tokens TRUE and FALSE are represented internally as 1 or 0. Thus,

> TRUE == 0 ; TRUE == 1

[1] FALSE

[1] TRUE

> TRUE == -0.1 ; FALSE == 0

[1] FALSE

[1] TRUE

NA

This token stands for “Not Available” It is used to designate missing data. In the
next example, we create a vector x with five elements, the first of which is missing.
To test for NA, we use the function is.na(). This function returns TRUE if an element
is NA and FALSE otherwise.

> (x <- c(NA, 2 : 5))

[1] NA 2 3 4 5

> (test <- is.na(x))

[1] TRUE FALSE FALSE FALSE FALSE

It is important to realize that is.na() returns FALSE if the element tested for is not
NA. Why? Because there are other values that are not numbers. They may result from
computations that make no sense, but they are not NA.
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NaN and Inf

These designate “Not a Number” and infinity, respectively. Division by zero does not
result in a number; it therefore returns NaN. You may wish to assign Inf to a vector
(for example when you wish any vector to be smaller than Inf in a comparison). In
both cases, these are not NA; they are NaN and Inf, respectively. Furthermore, Inf
is a number (you can verify this with the function is.numeric()); NaN is not. To
distinguish among these possibilities, use the function is.nan().

Distinguishing among NA, NaN and Inf

Distinguishing among these in data can be confusing. Unless interested, you may skip
this topic. Consider the following vector:

> (x <- c(NA, 0 / 0, Inf - Inf, Inf, 5))

[1] NA NaN NaN Inf 5

Here 0/0 is undefined and therefore not a number. So is Inf-Inf. Albeit not a real
number, Inf is part of the set of numbers called extended real numbers. We need to
distinguish among vector elements that are a number, NA, NaN and Inf in x. First, let
us test for NA:

> is.na(x)

[1] TRUE TRUE TRUE FALSE FALSE

As you can see, NA and NaN are undefined and therefore the test returns TRUE for
both. Now let us test x with is.nan():

> is.nan(x)

[1] FALSE TRUE TRUE FALSE FALSE

The first element of x is NA. It is distinguishable from NaN and we get FALSE for it.
Finally, because Inf is a value, we test it as usual with the logical operator ==. This
operator returns TRUE if the left equals the right hand side:

> x == Inf

[1] NA NA NA TRUE FALSE

Note what happens. Because NA and NaN are undefined, comparing them to a defined
value (Inf), we get NA. We therefore expect to get the similar result of the test

> x == 5

[1] NA NA NA FALSE TRUE

The next table summarizes these results.

x is.na(x) is.nan(x) Inf == x 5 == x

1 NA TRUE FALSE NA NA

2 NaN TRUE TRUE NA NA

3 NaN TRUE TRUE NA NA

4 Inf FALSE FALSE TRUE FALSE

5 5 FALSE FALSE FALSE TRUE
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1.5 Objects

We discussed objects on numerous occasions before. That was necessary because we
introduced other topics that required the notion of objects (learning R cannot be
linear). Here we discuss these and additional object-related topics in more detail.
Understanding objects is key to working with R effectively.
In the next few statements, we assign values to x. We also explore the type of

object created by the assignments:

> x <- 2 # x is a vector of length 1

> x <- vector() # x is a vector of 0 length

> x <- matrix() # x is a matrix of 1 column, 1 row

> x <- 'Hello Dolly' # x is a vector containing 1 string

> x <- c('Hello', 'Dolly') # x is a vector with 2 strings

> x <- function(){} # x is a function that does nothing

As we have seen, vectors are atomic objects—all of their elements must be of the same
mode. In most cases, we work with vectors of modes logical, numeric or character.
Most other types of objects in R are more complex than vectors. They may consist of
collections of vectors, matrices, data frames and functions. When an object is created
(for example with the assignment <-), R must allocate memory for the object. The
amount of memory allocated depends on the mode of the object. Beside their mode
and length, objects have other properties which we will learn about as we progress.

1.5.1 Orientation

The following is a general exposition of the idea of objects. This section is not related
to R directly. Rather, it is conceptual. It is intended to demystify some of the baffling
aspects of R.
Usually, computer software that deals with data (e.g. Excel, Oracle, other database

management systems, programming languages) distinguish between what we call data
types. For example, in Excel, you can format a column so that it is known to con-
tain numbers, or text, or dates. In the programming language C, you distinguish
between data that represent integers, floating (decimal point) numbers, single char-
acters, collections of characters (called strings) and so on. “Why do we need to make
these distinctions?” you might ask. The short answer is because of efficiency and
error checking. If the software knows the intended use of data, it will allocate as
much memory as is needed for it and no more. For example, the amount of memory
that is needed to represent an integer is less than the amount needed to represent
a string that contains 100 characters. So if you tell the software that x is intended
to represent integers and y strings, computations will be more efficient than oth-
erwise. Other reasons for specifying data types are consistency, ability to check for
errors, pointer arithmetic and so on. For example, if the software knows that x and
y represent numbers, then it will take special actions if you ask it to compute x/y
when y = 0.
This leads to the definition of simple data types. These are types that can-

not be broken into simpler data types.3 An integer, a decimal number and a

3Unless you are ready to deal with bits.
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character are examples. From these, more elaborate data types can be constructed.
For example, a string is a collection of characters and a collection of integers is a
vector.
This gives rise to the idea of structures. Instead of defining simple data types, such

as integers, floating point numbers and characters, we can define data structures. For
example, we can define a structure named vector and specify that such a structure
contains a set of numbers. Then we can tell the software that x is a vector and
assign data to it with a statement like x <- c(1, 2, 3). Better yet, we can define
a structure named matrix, for example, that contains two or more vectors of the
same data type and same length. We can then tell the software that y is a matrix
and write

> (y <- cbind(letters[1 : 4], LETTERS[1 : 4]))

[,1] [,2]

[1,] "a" "A"

[2,] "b" "B"

[3,] "c" "C"

[4,] "d" "D"

(cbind() is a function that binds vectors as columns). Structures do not need to be
atomic. For example, a structure may contain a numeric and a character vector. In
short, structures are user-defined data types. But why should we stop with structures?
After all, we often apply similar actions to similar structures. Consider, for example,
printing. All matrices are printed in the same way: numbers arranged in columns
and rows. The only difference in printing matrix objects is their number of rows and
columns. This leads to the idea of object types (also called classes). An object type
is a definition of a collection of structures (data) and actions (functions) that we may
apply to these structures.
Viewing a vector as a type, we can define it as a collection of elements (data)

and a collection of actions (functions), such as printing and multiplying one vector
by another.
An object type is a specification. As such, it is an abstract definition. It simply

says what kinds of data and actions an object that is declared to be of that type can
have. An object is a realization of a type. When we say that x is an object of type
vector, we are creating a concrete object of type vector. By concrete we mean that
R actually assigns memory to the object and we can assign data to it.
Suppose that we define a function print() for the object type vector. We also

define objects of type matrix and a print() for it. Next, we say that x is an object of
type vector and y is an object of type matrix. When we say print(x), the software
knows that we are calling print() for vectors by context; that is, it knows we are
asking for print() for vectors because x is of type vector. If we type print(y) then
print() for matrices is invoked.
As you may guess, the whole approach can become much more syntactically

involved, but we will not pursue it further. Instead, let us get back to R and see
how all of this applies. Say we define a vector to be a collection of numbers:

> x <- 1 : 10

and a matrix

> y <- cbind(letters[1 : 4], LETTERS[1 : 4])
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We can print x and y by simply saying

> x

[1] 1 2 3 4 5 6 7 8 9 10

and

> y

[,1] [,2]

[1,] "a" "A"

[2,] "b" "B"

[3,] "c" "C"

[4,] "d" "D"

By the assignments above, R knows that we wish to create a vector x and a matrix y.
When we say y, R knows that we wish to print y and it invokes the matrix print()
function because y is an object of type matrix. To convince yourself that this in fact
is the case, try this:

> x <- 1 : 10 ; x

[1] 1 2 3 4 5 6 7 8 9 10

> print(x)

[1] 1 2 3 4 5 6 7 8 9 10

Observe that x and print(x) produce identical results; in other words, the statement
x and the function-call print(x) are one and the same.
Of course we can have object types that are more complicated than the atomic

types vector and matrix. Both are atomic because they must contain a single mode—
strings of character only, numbers, or logical values. Lists and data frames are complex
objects. Lists, for example, may consist of a collection of objects of any type (mode),
including lists.
This, then, is the story of objects—behind every object lurks a type.

1.5.2 Object attributes

Object attributes can be examined and set with various functions: mode(),
attributes(), attr(), typeof(), dim() (for dimension) and dimnames() (for dimen-
sion names). Instead of defining object attributes, we shall discuss these functions.
Here we discuss mode(), is.x () and as.x () where x is the object type. The

other functions to set and explore object attributes will be discussed when needed.

The functions mode(), is.object () and as.object ()

The mode attribute of an object is obtained with the function mode():

> x <- 1 : 5 ; mode(x)

[1] "numeric"

> x <- c('a', 'b', 'c') ; mode(x)

[1] "character"

> x <- c(TRUE, FALSE) ; mode(x)

[1] "logical"
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Here are the modes we will deal with:

> mode(mean) ; mode(1) ; mode(c(TRUE, FALSE))

[1] "function"

[1] "numeric"

[1] "logical"

> mode(letters)

[1] "character"

Any of these can be created, tested and set (coerced) with the functions “mode name”,
“is” and “as”. Setting a mode from one to another is called coercion. Beware of
coercion. If the coercion is not well defined (for example, attempting to change the
mode of a vector from character to numeric), R will go through the coercion but will
set all the elements to NA. Keep in mind that objects of types other than vector

also have functions mode(), is.x () and as.x (), where x stands for the object type.
For example, x may be matrix, list or data.frame. Then, mode(), is.list() and
as.list() parallel mode(), is.vector() and as.vector(). All of these functions
take the object name as an argument.
We follow with some examples. Generalizing these examples to R’s rules of coercion

and naming is immediate. First, we create vectors of various modes:

> logical(3) # a vector of 3 logical elements

[1] FALSE FALSE FALSE

> (x <- numeric(3)) # a vector of 3 numeric values

[1] 0 0 0

> (x <- integer(3)) # a vector of 3 integers

[1] 0 0 0

> (x <- character(3)) # a vector of 3 empty strings

[1] "" "" ""

Here we test a vector of mode logical for its mode:

> x <- c(TRUE, FALSE, TRUE, FALSE)

> # test for mode:

> is.logical(x) ; is.numeric(x) ; is.integer(x)

[1] TRUE

[1] FALSE

[1] FALSE

> is.character(x)

[1] FALSE

Here we coerce a logical vector to numeric and character modes:

> as.numeric(x) ; as.character(x)

[1] 1 0 1 0

[1] "TRUE" "FALSE" "TRUE" "FALSE"

Here we test a numeric vector for its mode:

> (x <- runif(3, 0, 20))

[1] 0.97567 0.14065 12.31121

> is.numeric(x) ; is.integer(x) ; is.character(x)
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[1] TRUE

[1] FALSE

[1] FALSE

> is.logical(x)

[1] FALSE

Here we coerce a numeric vector (x above) to integer, character and logical modes:

> as.integer(x) ; as.character(x) ; as.logical(x)

[1] 0 0 12

[1] "0.975672248750925" "0.140645201317966" "12.3112069442868"

[1] TRUE TRUE TRUE

> # integer is numeric but numeric is not an integer

> is.numeric(as.integer(x))

[1] TRUE

The code indicates that TRUE is coerced to 1 and FALSE to 0. Note that in the coer-
cion from numeric to character, R attempts to produce x in its internal representation,
hence the added decimal digits to the numeric strings above. Exact internal represen-
tation is not guaranteed. So you may lose precision in the process of

> as.numeric(as.character(x))

(where x is originally numeric) due to rounding errors.

Length

This object attribute is obtained with the function length():

> (x <- c(1 : 5, 8)) ; length(x)

[1] 1 2 3 4 5 8

[1] 6

length() applies to matrix, data.frame and list objects as well.

1.6 Programming

Like other programming languages, R includes the usual conditional execution, loops
and such constructs. In this section, we discuss these constructs briefly. Because of its
rich collection of functions and packages and because of its object oriented approach,
we will avoid programming in R as much as possible. There are, however, situations
where we will need to rely on programming.

1.6.1 Execution controls

Occasionally, we need to execute some statements based on some condition. On other
occasions we need to repeat execution.
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Conditional execution

Conditional execution is accomplished with the if else idiom. It has the following
syntax

if (test) {

executes something

} else {

executes something else

}

test must return a logical value. If the result of test is TRUE then R executes

something (a collection of zero or more statements), otherwise, R executes some-

thing else (also a collection of zero or more statements). Here is an example

> x <- TRUE

> if(x) y <- 1 else y <- 0

> y

[1] 1

Note that because there are single statements following if and else, we do not need
to group them with braces {}. If you do not need the alternative for if, you can drop
the else.

> x <- FALSE ; if(!x){y <- 1 ; z <- 2} ; y ; z

[1] 1

[1] 2

You can use & and | or && and || with if to accomplish more elaborate tests than
shown thus far. The operators & and | apply to vectors element-wise. The operators
&& and || apply to the first element of vectors.

Repetitive execution and break

To repeat execution, you can use the loop statements for, repeat and while. While
you are within a repetitive execution you can break out of the loop with the break
statement. Here is an example:

1 > x <- as.logical(as.integer(runif(5, 0, 2))) ; x

2 [1] FALSE FALSE FALSE FALSE TRUE

3 > y <- vector() ; y

4 logical(0)

5 > for(i in 1 : length(x)){if(x[i]){y[i] <- 1}

6 + else {y[i] <- 0}}

7 > y

8 [1] 0 0 0 0 1

The first line produces a 5-element logical vector with randomly dispersed TRUE FALSE
values. To see this, we parse the innermost statement and then move out (always follow
this approach to analyze code). First, we use runif(5, 0, 2) to produce 5 random
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numbers between 0 and 2. All the numbers between 0 and 2 have the same probability
of occurrence. It so happens that the first 4 were less than 1 and the last one was
greater than 1. Once these numbers are produced, they are coerced into integers. So
the first 4 are turned into 0 and the last into 1. Next, the integers are coerced into
logical values. By now we know that 0 is turned into FALSE and 1 into TRUE. Finally
we assign these 5 numbers to x. The assignment generates a vector of mode logical.
In the third line, we create an empty vector y. By default, its mode is logical. If we

assign data of any other mode to y, then y will be coerced into the appropriate mode
automatically. In the fifth line we use both for and if. We add the braces to clarify
the execution groupings. We repeat the loop for i in the sequence 1 : 5 where 5 is the
length of x. Now inside the loop, if x[i] is TRUE, then y[i] is set to 1. Otherwise, it
is set to zero. Because the first 4 elements of x are FALSE, the first four elements of
y are set to 0. The result can be achieved with fewer statements, but here we do not
intend to be unduly terse.
As we progress with our study of statistics and R, we shall meet loops and execution

controls again. Please be aware that because R is object oriented, you can accomplish
many tasks without having to resort to loops. Avoid loops whenever you can. The
execution will be faster and less prone to errors. Here is how the previous example is
done with vectors.

> x

[1] FALSE FALSE FALSE FALSE TRUE

> (y <- vector())

logical(0)

[1] 0

> ifelse(x, y <- 1, y <- 0)

[1] 0 0 0 0 1

The function ifelse(a, b, c) executes, element by element, b[i] if a[i] is TRUE
and c[i] if a[i] is FALSE.
To use R efficiently, you should avoid using loops. There are numerous functions

that help, but without motivation, it makes little sense to talk about them now. We
shall meet these functions when we need them.

1.6.2 Functions

R has a rich set of functions. Before deciding to write a function of your own, see if
one that does what you need already exists (refer to Section 1.7 for more details).
Occasionally, you may need to write your own functions.
A function has a name and zero or more arguments. It has a body and often

returns values. So the general form of a function is

function.name <- function(arguments){

body and return values

}

Here is a simple example:

> dumb <- function(){1}

> dumb()

[1] 1
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dumb() takes no arguments and when called it returns 1. Another example:

> dumber <- function(x){x + 1}

> dumber

function(x){x + 1}

> dumber()

Error in dumber() : Argument "x" is missing, with no default

> x <- runif(2) ; dumber(x)

[1] 1.1064 1.0782

dumber() takes one argument, adds 1 to it and returns the result. To see its code,
type the function name without the parentheses. Because no default value is specified
for the argument, you must call dumber() with one argument. Yet another example:

> dumbest <- function(x = 1){x}

> dumbest()

[1] 1

> dumbest() ; dumbest(2) ; dumbest(vector(length = 3))

[1] 1

[1] 2

[1] FALSE FALSE FALSE

dumbest() takes one optional argument. It is optional because it has a default value
of 1.
A word about scope. When you create an object, say x, it is stored in memory and

is accessible during your session. We then say that the scope of the variable is the
workspace. When you define a function, like this:

> a.function <- function(z){

+ y <- 2 * z

+ y

+ }

Then function objects have a scope within the function only. Thus, calling a.function
like this:

> a.function(2)

[1] 4

> y

Error: Object "y" not found

Note the error message above. Because y is defined inside the function, its scope is
inside the function. When you try to access y from the workspace, you receive an
error message. To elaborate slightly on the issue, consider this:

> (y <- 4)

[1] 4

> a.function(y) ; y

[1] 8

[1] 4

Here we assign 4 to y. Then we call a.function() with the argument y. The function
multiples the value of y by 2 and returns 8. Once the function returned that value,
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we are back to the workspace. The y in the function is out of scope. Therefore, the
recognized value of y is 4.
If you want to assign an object to be globally available (global scope) then use

<<-:

> a.function <- function(z){

+ y <<- 2 * z

+ y

+ }

> y

[1] 4

> a.function(y)

[1] 8

> y

[1] 8

From the examples above, we glean the following rules about function arguments:

1. If you do not specify a default value, then the function argument is required.
Therefore,

2. if you specify more than one argument with no default value, the arguments are
required and the order they appear in the function argument list identifies them.

3. Arguments with default values are not required.
4. Arguments with no default values must appear first. After that, the order of
named arguments is arbitrary.

5. Unless <<- or assign() are used for an assignment, the scope of variables in the
function’s body is local.

Lest you think all functions are dumb or dumber, here is a useful example. The
example is from Venables et al. (2003). It is designed to address the following problem.
Matrices and other structures in R have dimensions (1 for vector, 2 for matrix).
These dimensions have assigned or default names. When you print such structures,
the dimension names are printed as well. Here is an example:

> x <- as.integer(runif(5, 10, 20))

> y <- x + 2

> cbind(x, y)

x y

[1,] 11 13

[2,] 19 21

[3,] 16 18

[4,] 19 21

[5,] 14 16

The rows of the matrix created by cbind() are not named. Therefore, the row numbers
[1,], . . . , [5,] are printed. The columns are named x and y. We do not wish to print
these so-called dimnames. Therefore, we need to define empty dimension names. The
function no.dimnames() accomplishes this task:

> no.dimnames <- function(a) {

+ d <- list()

+ l <- 0
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+ for(i in dim(a)) {

+ d[[l <- l + 1]] <- rep("", i)

+ }

+ dimnames(a) <- d

+ a

+ }

We did not discuss lists, dimensions and dimension indexing with [[]]. So we will
not explain no.dimnames() here. However, this should not deter you from using the
function. It is quite useful. With no.dimnames() defined, we get:

> no.dimnames(cbind(x, y))

11 13

19 21

16 18

19 21

14 16

At this time, this is all we say about functions. When the need to write functions
arises later, we will linger on the syntax and explain things in detail.

1.7 Packages

R is modular. Modularity is achieved by implementing the idea of packages. These are
cohesive units that provide functions, data and other facilities to implement specific
topics that might not be of interest to many R users. For example, many of the
tables used in this book were formatted in R. To accomplish this task, we used a
package named xtable. This package provides functions that allow one to format R’s
output according to LATEX (a typesetting software) specifications. One can then paste
the output directly into a LATEX file (this book was written in LATEX). Other topic-
specific packages relate to time series analysis (ts), survival analysis (survival),
spatial analysis (splancs is but one of them) and many others. Click on the Help |
Html menu. Then, in the Html page that is loaded to your browser, click on Packages
to see what packages are installed with R on your system. Study the R’s Packages
menu for further options. In the ensuing chapters, we will use packages frequently.
We will then explain what they do.
Except for a few core ones, packages are not loaded automatically when you invoke

R (otherwise R will consume much of your memory). You need to load them manually.
To load a package, use

> library(package-name)

where package-name is the name of the package you wish to load. All of the package’s
functions and data are then available for the remainder of the session or until you
detach the package. It is a good idea to detach loaded packages as soon as you are
done with them for two reasons. First, packages consume memory and therefore may
slow down computations. Second, some packages have functions with names that
conflict with similarly named functions in other packages. For example, date includes
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functions that allow you to work with dates. Using functions in date, you can add,
subtract and use other date-related operations:

> library(date)

Attaching package: 'date'

The following object(s) are masked from

package:survival :

as.date date.ddmmmyy date.mdy date.mmddyy

date.mmddyyyy ...

Note that when date loads, it prints information about function names that may be
masked in other packages (the shown output was edited). For example, if you load
date, a call to date.mdy will execute this function from the date package, not from
the survival package. You can load packages that you frequently use automatically
by calling for them in .First() or in the Rprofile file (see Section 1.9). Once done
working with a package, unload it with

> # ... work with the package and then detach it:

> detach(package:date)

Along with R’s installation, you can choose to install various packages. If you have
plenty of hard disk space and memory, install all of them. You have two choices: you
can download the packages and then install them from your download directory, or
you can install them directly from the Web. You can also update these packages from
the Web. To accomplish any of these tasks, use the menu Packages.
If you wish to install directly from the Web, use the menu Packages | Install pack-

age(s) from CRAN. . . . The other menus under Packages are self-explanatory.

1.8 Graphics

In addition to its rich statistical procedures and data-handling facilities, R excels
in its graphics facilities. With few exceptions, all of the graphs in this book were
produced with R. We will talk about these when they occur. For now, we shall just
introduce the subject. Graphical display of data is an integral (and important) part of
data analysis. With versatile graphics, your expertise in data and statistical analysis
become versatile as well.
All executable graphics statements (calls to graphics functions) are directed to an

active graphics window (unless you explicitly specify not to) called the graphics device
or graphics driver. You can have several graphics windows open in a single session,
but only one is active at a time. You start a graphics window with the command

> windows()

in the Windows environment. In Unix, you start a graphics window with the call to
x11(). Some functions start the device driver on their own. Once a graphics device
is open, most plotting commands will be directed to it. Thus, you can, for example,
create a plot and add lines, points, annotations and so on to it.
Plotting functions are categorized into high-level, low-level and interactive.

Dynamic plotting is in a category by itself. The first category produces complete
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plots from data that you pass to the high-level plotting functions as arguments. Low-
level functions allow you to add information to plots. Here you annotate the plots,
add lines and points and so on. With interactive graphics functions you identify data
on the plot, add or remove data and further annotate the plot. Dynamic plotting
provides facilities such as three dimensional rotation of plots.

1.8.1 High-level plotting functions

High-level plotting functions produce complete plots. If a graphics window is active,
these functions erase whatever is displayed in it and plot into it. Otherwise, they open
a new graphics window and plot into it. The most frequently used plotting function
is plot(). The type of plot produced by plot() depends on the type of object that
is given as arguments to it. We have already seen plot() in action (Figure 1.1).

Example 1.1. A so-called scatter plot, where the values of y are plotted against the
values of x is common. So let us create vectors with 20 points of random data, between
0 and 1 and plot the data (Figure 1.3—we will learn how to improve upon figures
later):

> x <- runif(20) ; y <- runif(20) ; plot(x, y) ut

Figure 1.3 A scatter plot.

Other high-level plotting functions are:

pairs() plots all possible pairs of matrix or data frame columns.4

coplot() plots pairs of vectors for fixed values of a third.
hist() plots histograms.
perspective() produces three dimensional plots.

We shall discuss these and other plotting functions when we use them.

4We will talk about data frame objects later.
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1.8.2 Low-level plotting functions

We use low-level plot functions to modify and enhance plots. Among the commonly
used such functions are points(), lines(), polygon() and legend().

Example 1.2. If you still have the graphics window with Figure 1.3 active, type

> lines(x, y)

and you will get something like Figure 1.4. ut

Figure 1.4 Lines added to Figure 1.3.

1.8.3 Interactive plotting functions

locator() and identify() are two commonly used functions to identify specific data
in a plot and add annotation. We shall have the opportunity to use them later.

1.8.4 Dynamic plotting

Rotating three-dimensional plots is extremely useful. Often a cloud of points might
not reveal relationships among variables. When rotated or viewed from the right angle,
trends may become obvious. Another useful feature of dynamic plots is highlighting
pairs of data points simultaneously in different scatter plots. To access such facilities,
you need to install the extensive dynamic graphics facilities available in the system
XGobi. You may download and install the system from http://www.research.att.

com/areas/stat/xgobi/. Once xgobi is installed, you can access its facilities directly
from R.

1.9 Customizing the workspace

You can customize your workspace (or environment) in ways that suit your work
habits. For example, if you work with this book, you may wish to create a different
project for each chapter (see Section 1.10). Then if you want to remind yourself which
chapter you are working on, you can do something like this:
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> options(prompt = 'ch1> ', continue = "+ ")

ch1> #this is the new prompt

Here you tell R to use “ch1> ” as a prompt. A continuation line will begin with
“+ ” (note the 3 spaces after +). prompt and continue are but two named arguments
to the function options(). It has many other arguments (see help(options)). The
problem with this approach is that every time you start the ch1 project, you will need
to type the options() command.
To avoid this extra step, you can type the line above (without the prompt) in spe-

cial files that R executes every time it starts. If you wish to set the same options for
all projects—for example the continue option may be applied for all projects—then
type your options in the Rprofile file. This file resides in R’s installation directory,
in the etc subdirectory. The default R’s installation directory in the Windows envi-
ronment is C:\Program files \R\rwxxxx where xxxx stands for the version number
of R. Here is one possible setup in Rprofile:

options(prompt = '$ ', continue = "+ ",

digits = 5, show.signif.stars = FALSE)

The prompt and continue arguments are set to $ and +, respectively. The number
of significant digits is set to 5. The effect of setting show.signif.stars to FALSE is
that no extra stars are printed to indicate significance (we shall talk about significance
later).
If R finds an Rprofile file in the working directory, it executes it next. So in a

directory named ch1, you can place the following in your Rprofile file:

options(prompt = 'ch1> ')

Now every time you start a different chapter’s project, you will be reminded by the
prompt where you are.
We already talked about the function .First() in Example 1.3. You can place

your options in .First(). It is executed at the environment’s initialization after
Rprofile. .First() is then saved in .RData when you save the workspace. Upon
starting R in the appropriate project (workspace), R will run it first. Another function,
.Last(), can be coded and saved in .RData. It will be executed upon exiting the
workspace.
Keep in mind that R executes Rprofile and .First() when it starts in a particu-

lar workspace, not when you switch to a workspace. So if you wish to switch form ch1

project to ch2 project, use the File | Load workspace. . . menu. However, your prompt
will change only after you issue .First() once you load the workspace. Also note
that switching workspace is different from switching the active directory with the File
| Change dir. . . menu. The latter simply changes the directory from which R reads
and to which it writes files. These distinctions might be confusing at first. Experiment
and things will become clear.

1.10 Projects

In this section, we will learn how to organize our work. As you will see, working
with R requires special attention to organization. In R, anything that has a name,
including functions, is an object. When objects are created, they live in memory for
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the remainder of the session. If you assign a new value to an already named object,
the old value vanishes.
To see what objects are currently stored in memory, use the function

> ls()

[1] "x" "y" "z"

The function ls(), short for “list”, lists the objects in memory. You can click the menu
Misc | List objects to achieve the same result. All the objects comprise the workspace.
Upon exit, R asks if you wish to save the workspace. If you click Yes, then all objects
(your workspace) will be saved as an image (binary) file named .RData in the current
directory. When you restart R from this directory (by, say, double-clicking on .RData),
the image of the workspace is loaded into memory. As you keep working and saving
your workspace, the number of objects increases. You will soon forget which object
holds which data. Also, objects consume memory and slow down execution. To keep
your work organized, follow these rules:

1. Isolate your work into well defined projects and create a different workspace for
each project. To create a workspace for a project

(a) Click on the File | Change dir. . . menu and change to a directory in which you
wish to work (or create one).

(b) Click on the File | Save workspace. . . menu. This will create a .RData file in
the directory. The file stores your current workspace.

2. Next time you start R, Click on File | Load workspace. . . menu to load the project’s
workspace.

3. Occasionally, use rm() to remove from the workspace objects which are no-longer
needed.

4. If you want R to load a particular workspace every time you start it, do this:

(a) Right click on R’s shortcut (on the Programs menu or on the desktop) and
choose Properties.

(b) In the Properties window, specify in which directory you wish to start R in
the space to the right of Start in:.

Let us implement these suggestions anticipating further work with R. Follow the
spirit of the example on your computer.

Example 1.3. Because we anticipate working with R throughout the book, we create
a directory named Book somewhere in the directory tree. Book will be our root direc-
tory. Next, we create a directory named ch1 for Chapter 1. All the work that relates
to this chapter will reside in the ch1 directory. Next, to start with a clean workspace,
we remove all objects and then list whatever is left:

> rm(list = ls())

> ls()

Let us analyze the first line, from inside out. The function ls() lists all the objects.
The list is assigned to list. The function rm() removes whatever is stored in list and
we end up with a workspace devoid of objects. You can achieve the same result by
clicking on the Misc | Remove all objects menu. Use this feature carefully. Everything,
whether you need it or not, is removed!
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To have something to save in the workspace, type (including the leading period):

> .First <- function(){options(prompt = 'ch1> ')}

The effect of this statement is to create a special function, named .First(). Every
time you start a session, R executes .First() automatically. Here, we use .First()
to modify the appearance of the workspace. From within the body of the function
.First()—we use braces, {}, to group statements—we call the function options()

with the argument prompt = 'ch1> '. This has the effect of changing the prompt
to ch1>. Next, we click on the File | Save workspace. . . menu and save the workspace
in the ch1 directory. The function options() is useful. It takes time to learn to take
full advantage of it. We will return to options() frequently.
Because we anticipate working for a while in ch1, we next set up R to start in

ch1. So, we type q() to quit R. Alternatively, select File | Exit and answer Yes to save
the workspace. Next, we right click on the shortcut to R on the desktop and choose
Properties. In the Properties window we instruct R to start in ch1. Now we start R
again. Because it starts in ch1 and because .First() is stored in .RData—the latter
was created when we saved the workspace—the workspace is loaded and we get the
desired prompt. ut

To see the code that constitutes .First(), we type .First without the parenthesis.
You can view the code of many R functions by typing their name without the parenthe-
sis. Use this feature liberally; it is a good way to copy code and learn R from the pros.

1.11 A note about producing figures and output

Nearly all the figures in this book were produced by the code that is explained in
detail with the relevant examples. However, if you wish to produce the figures exactly
as they are scaled here and save them in files to be included in other documents, you
will need to do the following.
Use the function openg() before plotting. When done, call saveg(). To produce

some of the histograms, use the function h() and to produce output with no quotes
and no dimension names, use nqd(). These functions are explained next.

1.11.1 openg()

This function opens a graphics device in Windows. If you do not set the width and
the height yourself, the window will be 3 × 3 inches. Here is the code

openg <- function (width = 3, height = 3, pointsize = 8)

{

windows(width = width, height = height,

pointsize = pointsize)

}

and here are examples of how to use it

> openg() # 3in by 3in window with font point size set to 8

> openg(width = 4, height = 5, pointsize = 10)

> openg(4, 5, 10) # does the same as the above line

The second call draws in a window 4 × 5 inches and font size of 10 point.
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1.11.2 saveg()

This function saves the graphics device in common formats.

saveg <- function (fn, width = 3, height = 3, pointsize = 8)

{

dev.copy(device = pdf, file = paste(fn, ".pdf", sep = ""),

width = width, height = height,

pointsize = pointsize)

dev.off()

dev.copy(device = win.metafile, file = paste(fn, ".wmf",

sep = ""), width = width, height = height,

pointsize = pointsize)

dev.off()

dev.copy(device = postscript, file = paste(fn, ".ps",

sep = ""),

width = width, height = height,

pointsize = pointsize)

dev.off()

}

The first (and required) argument is fn, which stands for file name. The function saves
the plotting window in PDF, WMF and PS formats. You can use these formats to
import the graphics files into your documents. PDF is a format recognized by Adobe
Acrobat, WMF by many Windows applications and PS by application that recognize
postscript files. Here are a couple of examples of how to use saveg():

> saveg('a-plot')

> saveg('b-plot', 5, 4, 11)

The first statement saves the current graphics device in three different files, named
a-plot.pdf, a-plot.wmf and a-plot.ps. The second statement saves three b-plot
files, each with width of 5 in, height of 4 in and font size of 11 point. To avoid distortions
in the graphics files, always use the same width, height and pointsize in both openg()
and saveg().

1.11.3 h()

This function is a modification of hist(). Its effect is self-explanatory.

h <- function(x, xlab = '', ylab = 'density', main = '', ...){

hist(x, xlab = xlab, main = '', freq = FALSE,

col = 'grey90', ylab = ylab, ...)

}

1.11.4 nqd()

This function prints data with no quotes and no dimension names.

nqd <- function(x){

print(noquote(no.dimnames(x)))

}
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1.12 Assignments

Exercise 1.1. Answer briefly:

1. What is the difference between help() and help.search()?
2. Show an output example for each of these two functions.
3. List and explain the contents of each section in the help() window.
4. When you type the command help.search(correlation) you get an error mes-
sage. Why?

5. How would you correct this error?
6. In response to help.search('variance') you get a window that shows two items:

var(base) and Var(car). Explain the difference between these. If you do not see
these two items, explain why they do not show up.

7. When you type example(plot), you end up with a single plot. Yet, if you
look at the Examples section in the help window for plot(), you will see that
there is code that produces more than one plot. Why do you end up with only
one plot?

Exercise 1.2.

1. Give the command that creates the sequence 0, 2, 4, . . . , 20.
2. Give the command that creates the sequence 1, 0.99, . . . , 0. Do not use the by
argument. Use the length argument.

3. Create a sequence that includes the first 5 and last 5 of the English lower case
letters. Use the symbol :, c() and length() in a single statement to create this
sequence.

4. Do the same, but the last 5 letters should be in upper case.

Exercise 1.3. Answer the following briefly:

1. What prompt do you get following the statement seq(1 : 10, by?
2. Why?
3. How would you restart typing the statement above by getting out of the contin-
uation prompt?

Exercise 1.4.

1. Create a file, named script.R. The file should include statements that plot 100
uniform random values of x against 100 uniform random values of y, both between
0 and 100. Attach a printout of the file to your answers.

2. Attach the plot you produced. The plot should be embedded in your favorite word
processor.

3. Print the values of x and y that you created to two separate files, x.txt and
y.txt. Attach a printout of these files with your answers.

4. Attach an unadulterated history file of the last 50 statements that you used in
producing the answers to this exercise.

Exercise 1.5.

1. Create two projects in a root directory named book on your computer. Call one
project ch2 and the other ch3.
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2. In each project directory, save a .First() function in .RData. Set in .First()

the prompt to 'ch1> ' and 'ch2> ' (without the single quotes).
3. Your answer should include instructions about how to accomplish these tasks.

Exercise 1.6.

1. How would you prove that the assignment x <- 1 produces a vector?
2. Will the following addition work? Why?

x <- c(1, '2', 3) ; y <- 5

x + y

3. If it did not work, how would you fix the code above such that x + y would work?
4. What is the mode and length of x in the statement x <- vector()?
5. How would you create a zero length vector of numeric mode?
6. Let x <- c(1 : 1000, by = 2). What is the value of x[1]2 + ∙ ∙ ∙+ x[n]2 divided
by the number of elements of x?

7. Let x <- 1 : 6 and y <- 1 : 3. What is the length of the vector x * y? What
are the values of its elements? Why?

8. Let x <- 1 : 7 and y <- 1 : 2. What is the length of the vector x + y? What
are the values of its elements? Why?

9. Will the assignment x <- c(4 < 5, 'a' < 'b') work? What do you get?
10. What are the return values of the following statements? Explain!
(a) 4 == 4 & 5 == 5

(b) 5 != 5 | 6 == 6

(c) 5 == 5 | 6 != 6

(d) x <- 5 & y <- 6

(e) x <- NA ; y <- 5 ; x == NA & y == 5

11. Even though it is not as terse, you should insist on using TRUE instead of T in
expressions. Why?

12. Discuss the difference between the functions is.na() and is.nan().
13. How would you show that R treats Inf as a number?
14. What will be the modes of x under the following assignments? Explain.
(a) x <- c(TRUE, 'a')

(b) x <- c(TRUE, 1)

(c) x <- c('a', 1)

15. Give examples (with code) of how to subset vectors using the following index
types:
(a) The index is a vector of logical values.
(b) The index is a vector of positive integers.
(c) The index is a vector of negative integers.
(d) The index is a vector of strings.

16. Explain the following result:

> x <- c(160, NA, 175, NA, 180)

> y <- c(NA, NA, 65, 80, 70)

> cbind(x = x[!is.na(x) & !is.na(y)],

+ y = y[!is.na(x) & !is.na(y)])

x y

[1,] 175 65

[2,] 180 70
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Exercise 1.7.

1. Execute x <- letters in R. What did you get?
2. Execute x <- LETTERS in R. What did you get?
3. Use your discovery of letters and LETTERS to create a vector x of the first 10
lower case alphabet letters.

4. What is the mode of x?
5. What happens when you coerce x to logical?
6. What happens when you coerce x to numeric?
7. Now let x <- 0 : 10. What happens when you coerce x to logical?

Exercise 1.8.

1. What would be the results of the following statements? Why?

> x <- c(TRUE, TRUE, FALSE) ; y <- c(0, 0, 0)

> x & y

> x && y

2. Write a short script that uses a for loop to create a vector x of length 10. Each
element of x must be a uniform random number between 0 and 1.

Exercise 1.9.Write a function that takes a vector x as input and returns
√
x+ 1.

Show the code and the results of calling the function with the sequence −1 : 10. Call
the R function sqrt() from within your function.

Exercise 1.10. Find the package to which the function cor.test() belongs. Run
cor.test() on x <- runif(10) and y <- runif(10) and display the results. If you
cannot find the package on your system, install it from the Web.

Exercise 1.11. Customize your environment so that no more than 60 characters per
line are written on the console. Show the content of the appropriate file or function
that accomplishes this task for every R project.
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Data in statistics and in R

You cannot use statistics without data. Different statistical methods are appropriate
for different types of data. Moreover, different statistical analyses require different
representations of the same data. This means that we have to know something about
how data are categorized, represented, manipulated and managed. Database manage-
ment is a vast field that is independent of statistics. To analyze data effectively, some
knowledge of database concepts is helpful. Statistical analysis requires a significant
amount of time preparing data for analysis.
Here we introduce basic ideas about data: What types we recognize, how to orga-

nize them and some principles of manipulating them.

2.1 Types of data

Data are either provided to you or you collect them yourself. In the latter case,
it will be worth your while to think about how you enter (key in) the data. For
example, counts are represented as nonnegative integers while measurements are real
numbers. Like any other computer language, R has what one might call basic data
types. Furthermore, when it comes to analyzing and presenting data, the same method
will display data differently based on their type.

2.1.1 Factors

A factor is the most general data type. Factors are also called categories or enumerated
types . Think of a factor as a set of category names. Factors are qualitative classification
of objects. Categories do not imply order. A black snake is different from a brown
snake. It is neither larger nor smaller.

Statistics and Data with R:  An applied approach through examples         Y. Cohen and  J.Y.  Cohen
©
2008 John Wiley & Sons, Ltd.  ISBN: 978-0-470-75805
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Example 2.1. Here are some examples of categorical data:

• a division of a population into males and females
• the number of dots that appear on the face of a die
• head or tail in flipping a coin
• species
• color of flowers ut

Categorical data may be presented in graphs. However, the location of categories
along the x or the y axes does not imply order.

Example 2.2. The results of the 2000 presidential election in the U.S. were contro-
versial. The vote count for Gore and Bush in Florida was close and the winner was
to become the next president (Adams and Fastnow, 2000). Figure 2.1 shows the vote
count results. The fact that Gore appears first on the x-axis and Nader last does
not mean that Gore got more votes than Bush or that Nader got fewer votes than
Buchanan.The following script produces Figure 2.1.

1 e <- read.csv('elections2000.csv')

2 barplot(sapply(e[, 2 : 5] / 1000, sum), las = 2,

3 main = 'elections 2000, Florida', ylab = 'in thousands',

4 col = 'gray90')

In the book’s site, the script is stored in a file named elections-2000-barplot.R.
To run it, we

> source('elections-2000-barplot.R')

Figure 2.1 Florida vote counts in the 2000 U.S. presidential election. Votes for only
4 candidates are shown.
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In line 1 we read the data from a comma separated values text file. read.csv()
returns a data frame. We name it e. Here are the first few lines of the data frame:

> head(e)

County Gore Bush Buchanan Nader

1 ALACHUA 47365 34124 263 3226

2 BAKER 2392 5610 73 53

3 BAY 18850 38637 248 828

4 BRADFORD 3075 5414 65 84

5 BREVARD 97318 115185 570 4470

6 BROWARD 386561 177323 788 7101

The function head() prints the first few lines of the data. A related function, tail()
prints the last few lines of the data. We need to sum the total votes for each candidate.
The number of votes by candidate and county appear in columns 2 to 5. To extract
these columns, we use e[, 2 : 5]. Nothing followed by a comma refers to all the
rows. On the right side of the comma we use the index notation to extract the needed
columns. The sum is large, so we divide each county votes by 1 000. To sum the
columns in one stroke, we use the function sapply(). The function takes two unnamed
(required) arguments: the data (e[, 2 : 5] in our case) and a function to be applied
to the elements of the data (columns in our case). The function we apply is sum().
So the effect of sapply(e[, 2 : 5],sum) is to apply sum to each column and return
them in an array, like this:

> sapply(e[, 2 : 5], sum)

Gore Bush Buchanan Nader

2909117 2910078 17465 97416

Now barplot() puts the column name (candidate) on the x-axis and uses the
data to scale the heights of the bars. The heights of these bars reflect the number
of votes per candidate, divided by 1 000. main and ylab set the main title and the
label of the y-axis. The named argument las is set to 2. This sets the ticks’ text
perpendicular to the axes. The named argument col sets the bars’ color to light gray
(see Figure 2.1). ut

A factor is said to have levels. Calling the different values that a factor can take levels
is somewhat misleading because we usually think of levels as reflecting order. In the
context of factors, this is not always the case. In Example 2.2, a candidate is a factor
variable. It has four levels, labeled Gore, Bush, Buchanan and Nader. These levels do
not imply order. To create factors in R, use the function factor(). However, many
operations on data in R create factors by default. If you ever grade exams, you may
find the next example useful.

Example 2.3. There are 65 students in your class. You score (in %) the final test and
wish to assign a letter grade to the score. You used to work with Excel and decided
it is time to switch to R. First, you save the Excel file as a comma separated values
file (.csv) and then import it like this:

> grades <- read.table('score.csv', sep = ',', header = TRUE)

This creates a data frame named grades from the file score.csv. The named argu-
ment sep tells R that columns are separated by commas. Use the comma separator
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even though score.csv has one column with no commas. Otherwise, R will use space
as field separator and you might get undesired results. The named argument header
tells R that the first row in the data file contains the names of the data columns.
Next, we use the first four upper case letters for the grade:

> (grade <- LETTERS[4 : 1])

[1] "D" "C" "B" "A"

Next, we want to cut the scores into categories: D = [60, 70), C = [70, 80), B = [80, 90)
and A ≥ 90. The symbol [x, y) says “an interval between x and y, including x, but
not y.” This is accomplished like this:

> (letter <- cut(grades$score,

+ breaks = c(60, 70, 80, 90, 101),

+ labels = grade, include.lowest = TRUE, right = FALSE))

[1] A D D C D D B C C A C A A C A C D C C B B B B D B C B B

[29] D C D B C C C D B D C C B D C D C C B B C B C C C A B C

[57] D C C D C C B B C

Levels: D C B A

Here are the first few lines of grades:

> head(grades, 5)

score letter

1 97.9 A

2 63.0 D

3 68.1 D

4 70.9 C

5 65.3 D

With the letter grade as a factor, it makes working with the data easy. For example,

> table(grades[, 2])

D C B A

14 28 17 6

counts the number of students receiving each letter grade. ut

2.1.2 Ordered factors

Factors have levels. Sometimes we use the levels to indicate order, but not necessarily
magnitude. For example, we can define the label of presidential candidates as implying
order from the most popular (having the most number of votes) to the least popular.
Then in the U.S. elections, we might have the factor variable named candidate, with
4 levels such that Gore > Bush > Nader > Buchanan.1 One candidate might have
gotten 10 million votes and the other 1 vote. Ordinal data do not reveal this kind of
information. For example, we generally agree that rabbits are faster than turtles. We
rarely know by how much. To order factors, use

1Gore was first in the number of votes, but did not win the election.
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> (grade <- LETTERS[1 : 4])

[1] "A" "B" "C" "D"

> (grade.factor <- factor(grade))

[1] A B C D

Levels: A B C D

> (grade.ordered <- factor(grade, ordered = TRUE))

[1] A B C D

Levels: A < B < C < D

You can check if a factor is ordered with

> is.ordered(grade.factor)

[1] FALSE

> is.ordered(grade.ordered)

[1] TRUE

2.1.3 Numerical variables

Numerical variables reflect magnitude and, as such, order. Numerical variables can be
discrete or continuous. Counts, for example, are discrete variables that can take only
nonnegative integer values. Other variables can take on any value (real numbers).
Examples are:

• height of trees (continuous);
• concentration of a pollutant in the air in units of parts per million (discrete);
• weight of an animal (continuous);
• number of birds in a flock (discrete);
• average number of birds per flock (continuous);
• density of animal population (continuous).

From a strictly mathematical point of view, the distinction we make here between
continuous and discrete is not correct. For our purpose, the distinction is useful. In
R, numbers can be either integer or decimal. Decimal numbers are stored in what is
called double-precision. Here is an example:

> x <- 1

> is.numeric(x) ; is.integer(x) ; is.double(x)

[1] TRUE

[1] FALSE

[1] TRUE

By default, x is stored as a decimal number. Therefore, x is numeric; it is not an
integer and it is stored in memory as a double. If you want x to be an integer,
do this:

> x <- as.integer(1)

> is.numeric(x) ; is.integer(x) ; is.double(x)

[1] TRUE

[1] TRUE

[1] FALSE

Now x is numeric, it is an integer and it is not a double.
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2.1.4 Character variables

In addition to numbers and factors, we can store data as strings of characters. Here
is an example:

Example 2.4.We create a vector of strings and store it in a data frame.

> v <- c('The', 'rain', 'in', 'Spain')

> df <- data.frame(factors = v, strings = v)

By default, R will convert the strings to factors:

> c(is.character(df$factors), is.character(df$strings))

[1] FALSE FALSE

We turn the second column of df to characters:

> df[, 2] <- as.character(df[, 2])

> c(is.character(df$factors), is.character(df$strings))

[1] FALSE TRUE

You can change the default conversion of strings to factors with

> options(stringsAsFactors = FALSE)

This will result in creating data frames without converting characters to factors. ut

R includes a rich set of functions that manipulate character strings. We will discuss
them as needed.

2.1.5 Dates in R

Dates are not easy to deal with. They are written in different order (month-day-
year in the U.S., day-month-year in most of the rest of the world), different number
of digits (01-01-01, 1-1-01, 1-01-2001 or any other combination you like), or mixed
digit-character format (June-20-2002 or any other combination you like). Represent-
ing dates in R (or any other system) and conversion from different formats is tedious.
We will discuss dates when we need them. For now, just notice this seemingly esoteric
behavior:

> Sys.Date()

[1] "2008-04-11"

> Sys.time()

[1] "2008-04-11 17:33:41 Central Daylight Time"

> c(Sys.Date(), Sys.time())

[1] "2008-04-11" "9233-09-07"

> c(Sys.time(), Sys.Date())

[1] "2008-04-11 17:34:35 Central Daylight Time"

[2] "1969-12-31 21:53:00 Central Standard Time"

All of these relate to the current computer system date and time.

2.2 Objects that hold data

In addition to vectors, matrices, lists and data frames are object types that hold data.
Learning to work with these objects is essential to working with data in R.
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2.2.1 Arrays and matrices

Arrays generalize the concept of vectors. Recall that a vector has a dimension 1 and a
length of at least 0. The ith element of a vector is accessed via the subscript notation;
e.g. v[i]. Matrices are two-dimensional arrays. They are rectangular. The element in
the intersection of the ith row and jth column is accessed with m[i, j]. Arrays have k
dimensions. Each element of an array is accessed with k indices, a[i1, i2, ... , ik].
An array object of dimension 1 differs from a vector object by virtue of having a

dimension vector. The dimension vector is a vector of positive integers. The length of this
vector gives the dimension of the array. The dimension vector is an attribute of an array.
The name of the attribute is dim. Here are some statements that clarify these ideas:

> (v <- 1 : 10) # a vector

[1] 1 2 3 4 5 6 7 8 9 10

> c('vector?' = is.vector(v), 'array?' = is.array(v))

vector? array?

TRUE FALSE

> dim(v) <- c(10) # endow v with dim and it is an array

> c('vector?' = is.vector(v), 'array?' = is.array(v))

vector? array?

FALSE TRUE

> v # array of dimension 1 prints like a vector

[1] 1 2 3 4 5 6 7 8 9 10

A matrix object is a two-dimensional array. It therefore has a dim attribute. Its
dimension vector has a length of 2. The first element indicates the number of rows
and the second the number of columns. Here is an example of how to create a matrix
with 3 columns and 2 rows with matrix():

> (m <- matrix(0, ncol = 3, nrow = 2))

[,1] [,2] [,3]

[1,] 0 0 0

[2,] 0 0 0

Next, we verify that m is in fact an array with is.array():

> c('matrix?' = is.matrix(m), 'array?' = is.array(m))

matrix? array?

TRUE TRUE

As is.matrix() illustrates, m is both a matrix and an array object. In other words,
every matrix is an array, but not every array is a matrix. Like any other object, you
get information about the attributes of a matrix with

> attributes(m)

$dim

[1] 2 3

Just like vectors, you index and extract elements from arrays with index vectors (see
Section 1.3.5). In the next example, we create a matrix of 5 columns and 4 rows and
extract a submatrix from it:

> (m <- matrix(1 : 20, ncol = 5, nrow = 4))

[,1] [,2] [,3] [,4] [,5]

[1,] 1 5 9 13 17
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[2,] 2 6 10 14 18

[3,] 3 7 11 15 19

[4,] 4 8 12 16 20

> i <- c(2, 3) ; j <- 2 : 4 # index vectors

> m[i, j] # extract rows 2,3 and columns 2 to 4

[,1] [,2] [,3]

[1,] 6 10 14

[2,] 7 11 15

Note how the matrix is created from a sequence of 20 numbers. The first column is
filled in first, then the second and so on. This is a general rule. Matrices are filled
column-wise because the leftmost index runs the fastest. This rule applies to dimen-
sions higher than 2 (i.e., to arrays). You can fill matrix by row by using the named
argument byrow in your call to matrix(). You can also name the matrix dimensions
by using the named argument dimnames.
Arrays are constructed with array():

> v <- 1 : 24 ; (a <- array(v, dim = c(3, 5, 2)))

, , 1

[,1] [,2] [,3] [,4] [,5]

[1,] 1 4 7 10 13

[2,] 2 5 8 11 14

[3,] 3 6 9 12 15

, , 2

[,1] [,2] [,3] [,4] [,5]

[1,] 16 19 22 1 4

[2,] 17 20 23 2 5

[3,] 18 21 24 3 6

The printing pattern follows the array filling rule: from the slowest running index
(depth of 2), to the next slowest (5 columns) to the fastest (3 rows). Note the cycling—
v is not long enough to fill the array, so after 24 elements, its values start recycling.
We have already seen how to construct matrices with matrix(). Matrices can also

be constructed with the cbind() (column bind) and rbind() (row bind) functions.
We discussed them in Section 1.3.5.

2.2.2 Lists

Lists are objects that can contain arbitrary objects. The elements of a list constitute
an ordered collection of objects. To construct a list, use list(). In the next example,
we make a list of a character vector, integer vector and a matrix. Each component of
the list is named during construction:

> ch.v <- letters[1 : 5] #character vector

> int.v <- as.integer(1 : 7) # integer vector

> m <- matrix(runif(10), ncol = 5, nrow = 2) # matrix

> (hodge.podge <- list(integers=int.v, # list

+ letter = ch.v, floats = m))
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$integers

[1] 1 2 3 4 5 6 7

$letter

[1] "a" "b" "c" "d" "e"

$floats

[,1] [,2] [,3] [,4] [,5]

[1,] 0.5116554 0.3470034 0.2139750 0.3776336 0.3646456

[2,] 0.5246382 0.8092359 0.4230139 0.7846506 0.7316200

When the components of the list are named, they can be accessed in two ways—by
name or by index:

> rbind(hodge.podge$letter, hodge.podge[[2]]) # row bind

[,1] [,2] [,3] [,4] [,5]

[1,] "a" "b" "c" "d" "e"

[2,] "a" "b" "c" "d" "e"

Single list components are accessed by double square brackets, not by single square
brackets: We use single brackets to access elements of an array or a vector. Here we
extract the second and third elements from the second component of hodge.podge:

> cbind(hodge.podge$letter[2 : 3], # column bind

+ hodge.podge[[2]][2 : 3])

[,1] [,2]

[1,] "b" "b"

[2,] "c" "c"

The length attribute of a list is the number of its components. Here are the lengths
of various parts of hodge.podge: Try to decipher the following

> length(hodge.podge) # no. of list components

[1] 3

> length(hodge.podge$floats) # no. of elements in floats

[1] 10

> length(hodge.podge$floats[, 1]) # no. of rows in floats

[1] 2

> length(hodge.podge$floats[1, ])# no. of columns in floats

[1] 5

> length(hodge.podge[[3]][1, ]) # no. of columns in floats

[1] 5

Another way to access named list components is using the name of the component in
double square brackets. Compare the following:

> (x <- hodge.podge$integers)

[1] 1 2 3 4 5 6 7

> (y <- hodge.podge[['integers']])

[1] 1 2 3 4 5 6 7

Like any other object in R, lists can be concatenated with c().
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2.2.3 Data frames

As you will quickly find out, we do much of our work with objects of type data.frame.
These objects fit somewhere in between matrices and lists. They are not as rigid as
matrices—they can contain columns of different modes—but they are not as loose as
lists—they are required to have a rectangular structure.
Data frames are closest to what we think of as data tables (see Example 2.7 and

Figure 2.2). You refer to their objects as you do in matrices. Many functions in R use
data frames as the starting point for analysis. For this reason alone, you should put
your data into data frames before analysis. We shall use the convenience that data
frames provide frequently.
We construct data frames with data.frame() from appropriate objects. They can

be of almost any mode. But they all must have equal length:

> composers <-c ('Sibelius', 'Wagner', 'Shostakovitch')

> grandiose <- c(1, 3, 2)

> (music <- data.frame(composers, grandiose))

composers grandiose

1 Sibelius 1

2 Wagner 3

3 Shostakovitch 2

We can also construct a data frame with read.table() which reads appropriately
saved data from a text file directly into a data frame (see Section 2.4). Appropriate
objects can be coerced into data.frames with as.data.frame():

> as.data.frame(matrix(1 : 24, nrow = 4, ncol = 6))

V1 V2 V3 V4 V5 V6

1 1 5 9 13 17 21

2 2 6 10 14 18 22

3 3 7 11 15 19 23

4 4 8 12 16 20 24

In the case above, data.frame() will also work, except that it will name the columns
as X1, . . . , X6, instead of V1, . . . , V6. This (at the time of writing) small inconsis-
tency might get you if such calls are embedded in scripts that refer to columns by
name.
You can refer to columns of a data frame by index or by name. If by name, associate

the column name to the data frame with $. For example, for the music data frame
above, you access the composer column in one of three ways:

> noquote(cbind('BY NAME' = music$composer,

+ '|' = '|', 'BY INDEX' = music[, 1],

+ '|' = '|', 'BY NAMED-INDEX' = music[, 'composers']))

BY NAME | BY INDEX | BY NAMED-INDEX

[1,] Sibelius | Sibelius | Sibelius

[2,] Wagner | Wagner | Wagner

[3,] Shostakovitch | Shostakovitch | Shostakovitch

To access a row, use, for example, music[1, ]. Index vectors work the usual way
on rows and columns, depending on whether they come before or after the comma
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in the square brackets. Instead of accessing composer with music$composer, you can
attach() the data frame and then simply indicate the column name:

> attach(music) ; composer

[1] "Sibelius" "Wagner" "Shostakovitch"

Attaching a data frame can also be by position. That is, attach(music, pos = 1)

attach music ahead of other objects in memory. So if you have another vector named
composer, for example, then after attaching music to position 1, composer refers to
music’s composer. If you change the attached column’s data by their name, instead
of with the data frame name followed by $ and the column name, then the data in
the data frame do not change. Once done with your work with a data frame you can
detach() it with

> detach(music)

attach() and detach() work on objects of just about any type that you can name:
lists, vectors, matrices, packages (see Section 1.7) and so on. Judicious use of these
two functions allows you to conserve memory and save on typing. Data frames have
many functions that assist in their manipulation. We will discuss them as the need
arises.

2.3 Data organization

Data that describe or measure a single attribute, say height of a tree, are called uni-
variate. They are composed of a set of observations of objects about which a single
value is obtained. Bivariate data are represented in pairs. Multivariate data are com-
posed of a set of observations on objects. Each observation contains a number of
values that represent this object.
Statistical analysis usually involves more than one data file. Often we use several

files to store different data that relate to a single analysis. We then need to somehow
relate data from different files. This requires careful consideration of how the data are
to be organized. Once you commit the data to a particular organization it is difficult
to change. The way the data are organized will then dictate how easy they are to
prepare for different types of statistical analyses.
Data are organized into tables and tables are related to each other. The tables,

their relationship and other auxiliary information form a database. For example, you
may have data about air pollution. The pollution is measured in numerically labeled
stations and the data are stored in one table. Another table stores the correspon-
dence between the station number and the name of the closest town (this is how
the U.S. Environmental Protection Agency saves many of its pollution-related data).
Tables are often stored in separate files.

2.3.1 Data tables

We arrange data in columns (variables) and rows (observations). In the database ver-
nacular, we call variables fields and observations cases or rows. The following example
demonstrates multivariate data. It is a good example of how data should be reported
succinctly and referenced appropriately.
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Example 2.5. R comes with some data frames bundled. You can access these data
with data() and use its name as an argument. If you give no argument, then R will
print a list of all data that are installed by default. The table below shows the first
10 observations from a data set with 6 variables

> data(airquality)

> head(airquality)

Ozone Solar.R Wind Temp Month Day

1 41 190 7.4 67 5 1

2 36 118 8.0 72 5 2

3 12 149 12.6 74 5 3

4 18 313 11.5 62 5 4

5 NA NA 14.3 56 5 5

6 28 NA 14.9 66 5 6

We view the data frame by first bringing it into our R session with data() and then
printing its head(). The data represent daily readings of air quality values in New
York City for May 1, 1973 through September 30, 1973. The data consist of 154
observations on 6 variables:

1. Ozone (ppb) – numeric values that represent the mean ozone in parts per billion
from 1300 to 1500 hours at Roosevelt Island.

2. Solar.R (lang) – numeric values that represent solar radiation in Langleys in the
frequency band 4000–7700 Angstroms from 0800 to 1200 hours at Central Park.

3. Wind (mph) – numeric values that represent average wind speed in miles per hour
at 0700 and 1000 hours at La Guardia Airport.

4. Temp (degrees F) – numeric values that represent the maximum daily temperature
in degrees Fahrenheit at La Guardia Airport.

5. Month – numeric month (1–12)
6. Day – numeric day of month (1–31)

The data were obtained from the New York State Department of Conservation (ozone
data) and the National Weather Service (meteorological data). The data were reported
in Chambers and Hastie (1992). ut

The output in Example 2.5 illustrates typical arrangement of data and reporting:

• the data in a table with observations in rows and variables in columns;
• the variable names and their type;
• the units of measurement;
• when and where the data were collected;
• the source of the data;
• where they were reported.

This is a good example of how data should be documented. Always include the
units and cite the source. Give variables meaningful names and you will not have to
waste time looking them up. The distinction between variables and observations need
not be rigid. They may even switch roles, based on the questions asked.

Example 2.6. The data on vote counts in Florida were introduced in Example 2.2.
In Table 2.1, the candidates are variables. Each column displays the number of votes
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Table 2.1 Number of votes by county and candidate. U.S. 2000
presidential elections, Florida counts.

County Gore Bush Buchanan Nader

ALACHUA 47 365 34 124 263 3 226
BAKER 2392 5 610 73 53
BAY 18 850 38 637 248 828
BRADFORD 3075 5 414 65 84
BREVARD 97 318 115 185 570 4 470

for the candidate. The counties are the observations (rows). In Table 2.2, the counties
are the variables. The columns display the number of votes cast for different candi-
dates in a county. Now if you want to compute the total votes cast for Gore, you
might have to present the data in Table 2.1 to your statistical package. If you want
the total number of votes cast in a county, you might have to produce the data in
Table 2.2 to your statistical package. Contrary to appearances, switching the roles
of rows and columns may not be a trivial task. We shall see that R is particularly
suitable for such switches. ut

Table 2.2 Number of votes by candidate and county. U.S. 2000 presidential
elections, Florida counts.

Candidate ALACHUA BAKER BAY BRADFORD BREVARD

Gore 47 365 2 392 18 850 3 075 97 318
Bush 34 124 5 610 38 637 5 414 115 185
Buchanan 263 73 248 65 570
Nader 3 226 53 828 84 4 470

2.3.2 Relationships among tables

Many tables may be part of a single project that requires statistical analysis. Creating
these tables may require data entry—a tedious and error-prone task. It is therefore
important to minimize the amount of time spent on such activities. Sometimes the
tables are very large. In epidemiological studies you might have hundreds of thou-
sands of observations. Large tables take time to compute and consume storage space.
Therefore, you often need to minimize the amount of space occupied by your data.

Example 2.7. The World Health Organization (WHO) reports vital statistics from
various countries (WHO, 2004). Figure 2.2 shows a few lines from three related tables
from the WHO data. One table, named who.ccodes stores country codes under the
variable named code and the country name under the variable named name. Another
table, named who.pop.var.names stores variable names under the column var and
description of the variable under the column descr. For example the variable Pop10
stores population size for age group 20 to 24. The third table, who.pop.2000, stores
population size for country (rows) by age group (columns).
If you wish to produce a legible plot or summary of the data, you will have to relate

these tables. To show population size by country and age group, you have to read the
country code from who.pop.2000 and fetch the country name from who.ccodes. You
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Figure 2.2 Sample of WHO population data from three related tables.

will also have to read population size for a variable and fetch its description from
pop.var.names. In the figure, the population size in 2000 in Armenia for age group
20–24 was 158 400. ut

We could collapse the three tables in Example 2.7 into one by replacing the country
code by the country name and variable name by its description. With a table with
thousands of records, the column code would store names instead of numbers. If, for
example, some statistical procedure needs to repeatedly sort the table by country, then
sorting on a string of characters is more time-consuming than sorting by numbers.
Worse yet, most statistical software and database management systems cannot store
a variable name such as 20–24. The process of minimizing the amount of data that
needs to be stored is called normalization in database “speak.” If the tables are not
too large, you can store them in R as three distinct data frames in a list.

2.4 Data import, export and connections

Unless you enter data directly into R (something you should avoid), you will need to
know how to import your data to R. To exchange data with those poor souls that do
not use R, you also need to learn how to export data. If you routinely need to obtain
data from a database management system (DBMS), it may be tedious to export the
data from the system and then import it to R. A powerful alternative is to access
the data directly from within R. This requires connection to the DBMS. Connecting
directly to a DBMS from within R has three important conveniences: Automation
(thus minimizing errors), working with a remote DBMS (that is, data that do not
reside on your computer) and analysis in real time. R comes with an import/export
manual (The RDevelopment Core Team, 2006a). It is well written and you should read
it for further details. We will discuss some of these R’s capabilities when we need them.

2.4.1 Import and export

Exporting data from R is almost a mirror to importing data. We will concentrate
on importing. There are numerous functions that allow data imports. Some of them
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access binary files created with other software. You should always strive to import
text data. If the data are in another system and you cannot export them as text from
that system, then you need to import the binary files as written by the other system
without conversion to text first.

Text data

The easiest way to import data is from a text file. Any self-respecting software allows
data export in a text format. All you need to do is make sure you know how the data
are arranged in the text file (if you do not, experiment). To import text data, use one
of the two: read.table() or read.csv(). Both are almost identical, so we shall use
them interchangeably.

Example 2.8.We discussed the WHO data in Example 2.7. Here is how we import
them and the first few columns and rows:

> who <- read.table('who.by.continents.and.regions.txt',

+ sep = '\t', header = TRUE)

> head(who[, 1 : 3], 4)

country continent region

1 Africa Africa <NA>

2 Eastern Africa Africa Eastern Africa

3 Burundi Africa Eastern Africa

4 Comoros Africa Eastern Africa

We tell read.table() that columns are separated by the tab character (sep = '\t').
The first row of the text file holds the headers of the data columns. The data were
obtained as an Excel spreadsheet and then saved as a text file with tab as the sepa-
rating character. ut

A useful function to import text data is scan(). You can use it to read files and control
various aspects of the file to be read. We find it particularly useful in situations like
this: You browse to a web page that contains a single column data; a string of numbers;
something like:

10

50

120

.

.

.

Then copy the numbers to your clipboard and in R do this:

> new.data <- scan()

1:

The number prompt indicates that you are in input mode. Paste the data you copied
to the clipboard and enter a return (extra blank line) when done. You can also use
scan() to enter data manually.
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Data from foreign systems

The package foreign includes functions that read and write in formats that other
system recognize. At the time of writing, you can import data from SAS, DBF,
Stata, Minitab, Octave, S, SPSS and Systat. Let us illustrate import from a Stata
binary file.

Example 2.9. The data were published in Krivokapich et al. (1999) and down-
loaded from the University of California, Los Angeles Department of Statistics site at
http://www.stat.ucla.edu/. Import cardiac.dta like this:

> library(foreign)

> cardiac <- read.dta('cardiac.dta')

> head(cardiac[, 1:4])

bhr basebp basedp pkhr

1 92 103 9476 114

2 62 139 8618 120

3 62 139 8618 120

4 93 118 10974 118

5 89 103 9167 129

6 58 100 5800 123

Importing from other systems is done much the same way. ut

2.4.2 Data connections

Here we discuss one way to connect to data stored in formats other than R. Such
connections allow us to both import data and manipulate it before importing.
Often, we need to import—or even manipulate—data stored in a variety of for-
mats. For example, Microsoft’s Excel is widely used to both analyze and store data.
Another example would be cases where tremendous amounts of data are stored
in a DBMS such as Oracle and dBase and large statistical software such as SAS,
SPSS and Stata. R is not a DBMS and as such, is not suitable to hold large
databases.
Open Data Base Connectivity (ODBC) is a protocol that allows access to database

systems (and spreadsheets) that implement it. The protocol is common and is imple-
mented in R. Among others, the advantages of connecting to a remote database are:
Data safety and replication, access to more than one database at a time, access to
(very) large databases and analysis in real time of changing data. In the next example,
we connect to a worksheet in an Excel file. The package RODBC includes the necessary
functions.

Example 2.10. An Excel file was obtained from WHO (2004). The file name is who-
population-data-2002.xls. Minor editing was necessary to prepare the data for R.
These include, for example, changing the spreadsheet notation for missing data from
.. to NA. So we created a new worksheet in Excel, named MyFormat. Here we connect
to this worksheet via RODBC and import the data. The task is divided into two steps.
First, we make a connection to the spreadsheet at the operating system level. Then
we open the connection from within R.
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If you are using a system other than Windows, read up on how to name an ODBC
connection. A connection is an object that contains information about the data loca-
tion, the data file name, access rights and so on. To name a connection, go to your
systems Control Panel and locate a program that is roughly named Data Sources
(ODBC).2 Next, activate the program. A window, named ODBC Data Source Admin-
istrator pops up. We are adding a connection, so click on Add .... A window, named
Create a New Data Source shows up. From the list of ODBC drivers, choose Microsoft
Excel Driver (*.xls) and click on Finish. A new window, named ODBC Microsoft Excel
Setup appears. We type who in the Data Source Name entry and something to describe
the connection in the Description entry. Then we click on Select Workbook... button.
Next, we navigate to the location of the Excel file and click on it. We finally click on
OK enough times to exit the program. So now we have an ODBC connection to the
Excel data file. The connection is named who and any software on our system that
knows how to use ODBC can open the who connection.
Next, we connect and import the data with

> library(RODBC) ; con <- odbcConnect('who')

> sqlTables(con) ; who <- sqlFetch(con, 'MyFormat')

> odbcClose(con)

Here, we load the RODBC package (by Lapsley and Ripley, 2004) and use
odbcConnect() with the argument 'who' (a system-wide known ODBC object)
to open a connection named con. sqlTables() lists all the worksheet names that
the connection con knows about. In it, we find the worksheet MyFormat. Next, we
access the MyFormat worksheet in the data source with sqlFetch(). This function
takes two unnamed arguments, the connection (con in our case) and the worksheet
name (MyFormat). sqlFetch() returns a data frame object and we assign this object
to who. Now who is a data.frame. When done, we close the connection with
odbcClose(). ut

In the next example, we show how to access data from a MySQL DBMS that resides
on another computer. We use MySQL not because it is the best but because it is
common (and yes, it is free). We recommend the more advanced and open source
DBMS from http://archives.postgresql.org.

Example 2.11.We will use a MySQL database server installed on a remote machine.
The database we use is called rtest. Before accessing the data from R, we need to
create a system-wide Data Source Name (DSN). To create a DSN, follow these steps:

1. Download the so-called MySQL ODBC driver from http://MySQL.org and install
it according to the instructions.

2. Read the instructions that come with the driver on how to create a DSN under a
Windows system.

Now in R, we open a connection to the data on the remote server:

> library(RODBC)

> (con <- odbcConnect('rtest', case = 'tolower'))

RODB Connection 13

2In Windows XP, the program resides in the Control Panel, under Administrative Tools.
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Details:

case=tolower

DATABASE=rtest

DSN=rtest

OPTION=0

PWD=xxxxxx

PORT=0

SERVER=yosefcohen.org

UID=root

The argument case causes all characters to be converted to lower case. The details
tell us that rtest is open, the server has been located and the user ID is root (a user
known to the remote DBMS).
We communicate with the data via the Simple Query Language (SQL)—a standard

language that provides database facilities. To see what data tables are available in
the database, we do

> (sqlTables(con))

TABLE_CAT TABLE_SCHEM TABLE_NAME TABLE_TYPE REMARKS

1 rtest who TABLE MySQL table

Next, we import the data in who into a data frame:

> who.from.MySQL <- sqlQuery(con, 'select * from who')

Let us see some data and close the connection:

> head(who.from.MySQL[, 1 : 3])

country continent region

1 Africa Africa <NA>

2 Eastern Africa Africa Eastern Africa

3 Burundi Africa Eastern Africa

4 Comoros Africa Eastern Africa

5 Djibouti Africa Eastern Africa

6 Eritrea Africa Eastern Africa

> (odbcClose(con))

[1] TRUE

Be sure to close a connection once you are done with it. ut

Let us upload data from R to the rtest database.

Example 2.12. The data for this example are from United States Department of
Justice (2003). It lists all of the 7 658 capital punishment cases in the U.S. between
1973 and 2000 (data prior to 1973 were collapsed into 1973). We load the data, open
a connection and use sqlSave():

> load('capital.punishment.rda')

> con <- odbcConnect('rtest')

> (sqlTables(con))

TABLE_CAT TABLE_SCHEM TABLE_NAME TABLE_TYPE REMARKS

1 rtest who TABLE MySQL table

> sqlSave(con, capital.punishment,

+ tablename = 'capital_punishment')
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Next, we check that all went well and close the connection:

> (sqlTables(con))

TABLE_CAT TABLE_SCHEM TABLE_NAME TABLE_TYPE REMARKS

1 rtest capital_punishment TABLE MySQL table

2 rtest who TABLE MySQL table

> odbcClose(con)

Because we cannot use dots for names in MySQL, we specify tablename =

'capital punishment'. ut

In addition to the mentioned connections, you can open connections to files and read
and write directly to them and to files on the Web.

2.5 Data manipulation

The core of working with data is the ability to subset, merge, split and perform other
such data operations. Applying various operations to subsets of the data wholesale
is as important. These are the topics of this section. Unlike traditional programming
languages (such as C and Fortran), executing loops in R is computationally inefficient
even for mundane tasks. Many of the functions we discuss here help avoid using loops.
We shall meet others as we need them. We discussed how to subset data with index
vectors in Section 1.3.5.

2.5.1 Flat tables and expand tables

If you chance upon data that appear in a contingency table format, you may read
(or write) them with read.ftable() (or write.ftable()). If you use table()

(we will meet it again later), you can expand.table(), a function in the package
epitools.

Example 2.13. Back to the capital punishment data (Example 2.12). First, we load
the data and view the unique records from two columns of interest:

> load('capital.punishment.rda')

> cp <- capital.punishment

> unique(cp[, c('Method', 'Sex')])

Method Sex

1 9 M

27 Electrocution M

130 Injection M

1022 Gas M

1800 Firing squad M

2175 Hanging M

7521 9 F

7546 Injection F

7561 Electrocution F
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(9 stands for unknown or NA). unique() returns only unique records. This reveals the
plethora of execution methods, including the best one, NA. Next, we want to count
the number of executions by sex:

> (tbl <- table(cp[, c('Method', 'Sex')]))

Sex

Method F M

9 133 6842

Electrocution 1 148

Firing squad 0 2

Gas 0 11

Hanging 0 3

Injection 4 514

Let us expand rows 3 to 5 of the table. This should give us 2 + 11 + 3 records:

> library(epitools)

> (e.tbl <- expand.table(tbl[3 : 5, ]))

Method Sex

1 Firing squad M

2 Firing squad M

3 Gas M

4 Gas M

5 Gas M

6 Gas M

7 Gas M

8 Gas M

9 Gas M

10 Gas M

11 Gas M

12 Gas M

13 Gas M

14 Hanging M

15 Hanging M

16 Hanging M

You may need such an expansion for further analysis. For example, you can now do

> tapply(e.tbl$Method, e.tbl$Method, length)

Firing squad Gas Hanging

2 11 3

which is another way of counting records. tapply() takes three unnamed arguments.
In our case, the first is a vector, the second must be a factor vector and the third is a
function to apply to the first based on the factor levels. You can use most functions
instead of length(). ut

2.5.2 Stack, unstack and reshape

From the R help page on stack() and unstack(): “Stacking vectors concatenates
multiple vectors into a single vector along with a factor indicating where each obser-
vation originated. Unstacking reverses this operation.” The need for stack() can best
be explained with an example.
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Example 2.14. Let us stack the 2000 U.S. presidential elections in Florida (see
Example 2.2). First, we import the data and look at their head:

> e <- read.csv('elections-2000.csv')

> head(e)

County Gore Bush Buchanan Nader

1 ALACHUA 47365 34124 263 3226

2 BAKER 2392 5610 73 53

3 BAY 18850 38637 248 828

4 BRADFORD 3075 5414 65 84

5 BREVARD 97318 115185 570 4470

6 BROWARD 386561 177323 788 7101

A box plot is a way to summarize data (we will discuss it in detail later). The data
on the x-axis are factors. So we stack() the data and, for posterity, add a column
for the counties:

> stacked.e <- cbind(stack(e), county = e$County)

> head(stacked.e)

values ind county

1 47365 Gore ALACHUA

2 2392 Gore BAKER

3 18850 Gore BAY

4 3075 Gore BRADFORD

5 97318 Gore BREVARD

6 386561 Gore BROWARD

Next, we do

> plot(stacked.e[, 2 : 1])

(see Figure 2.3)

reshape() works much like stack().

Figure 2.3 Candidates and county votes for the Florida 2000 U.S. presidential
elections. ut
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2.5.3 Split, unsplit and unlist

Occasionally, we need to split a data frame into a list based on some factor. A case
in point might be when the frame is large and we wish to analyze part of it. Here is
an example.

Example 2.15. The data refer to a large study about fish habitat in streams, con-
ducted by the Minnesota Department of Natural Resources. The data were collected
from two streams, coded as OT and YM under the factor CODE. We wish to split the
data into two components, one for each of the streams. So we do this:

> load('fishA.rda')

> f.s <- split(fishA, fishA$CODE)

> (is.list(f.s))

[1] TRUE

> (names(f.s))

[1] "OT" "YM"

is.list() verifies that the result of split() is a list and names() gives the names
of the list components. ut

The functions unsplit() and unlist() do the opposite of what split() does.

2.5.4 Cut

From the R’s help page for cut(): “cut divides the range of x into intervals and codes
the values in x according to which interval they fall. The leftmost interval corresponds
to level one, the next leftmost to level two and so on.” The need for cut is illustrated
with the next example.

Example 2.16. The site http://icasualties.org maintains a list of all U.S.
Department of Defense confirmed military casualties in Iraq. To import the data,
we save the HTM page, open it with a spreadsheet and save the date column. We
then cut dates into 10-day intervals and use table() to count the dead. First, we
import the data and turn them into “official” date format:

> casualties <- read.table('Iraq-casualties.txt', sep = '\t')

> casualties$V1 <- as.Date(casualties$V1, '%m/%d/%Y')

> head(casualties, 5)

V1

1 2007-01-04

2 2006-12-30

3 2006-12-27

4 2006-12-26

5 2006-12-26

as.Date() turns the data in the only column of casualties to dates according to
the format it was read: month, day and four-digit year ('%m/%d/%Y'). Next, we sort
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the dates by increasing order, add a Julian day column that corresponds to the date
of each casualty and display the first few rows of the data frame:

> casualties$V1 <- sort(casualties$V1)

> jd <- julian(casualties$V1)

> casualties <- data.frame(Date = casualties$V1, Julian = jd)

> head(casualties)

Date Julian

1 2003-03-21 12132

2 2003-03-21 12132

3 2003-03-21 12132

4 2003-03-21 12132

5 2003-03-21 12132

6 2003-03-21 12132

Julian date is a count of the number of days that elapsed since some base date. We
now determine the number of 10-day intervals, cut the Julian dates into these intervals
and count the number of deaths within each interval:

> (b <- ceiling((jd[length(jd)] - jd[1]) / 10))

[1] 139

> cnts <- table(cut(jd, b))

ceiling() returns the smallest integer larger than a decimal number and cut() cuts
the data in b equal intervals and returns a vector, like this:

> head(cut(jd, b))

[1] (1.213e+04,1.214e+04] (1.213e+04,1.214e+04]

[3] (1.213e+04,1.214e+04] (1.213e+04,1.214e+04]

[5] (1.213e+04,1.214e+04] (1.213e+04,1.214e+04]

(the intervals are factors named after the Julian date). Finally, we count the number
of occurrences of each interval, i.e. the number of reported deaths during 10-day
intervals. So the counts look like this:

> head(cnts, 5)

(1.213e+04,1.214e+04] (1.214e+04,1.215e+04]

60 57

(1.215e+04,1.216e+04] (1.216e+04,1.217e+04]

14 8

(1.217e+04,1.218e+04]

4

During the first 10-day interval, there were 60 reported dates (which refer to 60
casualties). Finally we plot the data (Figure 2.4). We shall see how the plot was
produced later. ut
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Figure 2.4 U.S. military casualties in Iraq. Counts are shown in 10-day intervals.

2.5.5 Merge, union and intersect

These operations are best explained with an example.

Example 2.17. Let us create a vector of the first six upper case letters, the corre-
sponding integer code of these letters and a data frame of these two:

> a <- data.frame(letter = LETTERS[1 : 6])

> a <- data.frame(a, code = apply(a, 1, utf8ToInt))

LETTERS (for upper case) and letters (for lower case) are data vectors supplied with
R that hold the English letters. utf8ToInt() is a function that returns the integer
code of the corresponding letter in the so called UTF-8 format. apply() applies to
the data frame a, by rows (1) the function utf8ToInt(). Next, we create a similar
data frame b and display both data frames:

> b <- data.frame(letter = LETTERS[4 : 9])

> b <- data.frame(b, code = apply(b, 1, utf8ToInt))

> cbind(a, '|' = '|', b)

letter code | letter code

1 A 65 | D 68

2 B 66 | E 69

3 C 67 | F 70

4 D 68 | G 71

5 E 69 | H 72

6 F 70 | I 73

cbind() binds the columns of a and b and a column of separators between them.
Now here is what merge() does:

> merge(a, b)

letter code

1 D 68

2 E 69

3 F 70
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Contrast this with union():

> union(a, b)

[[1]]

[1] A B C D E F

Levels: A B C D E F

[[2]]

[1] 65 66 67 68 69 70

[[3]]

[1] D E F G H I

Levels: D E F G H I

[[4]]

[1] 68 69 70 71 72 73

which creates a list of the columns in a and b. Note the asymmetry of intersect():

> cbind(intersect(a, b), '|' = '|', intersect(b, a))

letter | letter

1 D | A

2 E | B

3 F | C

4 G | D

5 H | E

6 I | F

The data frames do not have to have equal numbers of rows. ut

2.5.6 is.element()

This is a very useful functions that in “Data Speak” relates many records in one,
say, data frame, to many records in another, based on common values. The function
is.element() takes two vector arguments and checks for common elements in the
two. It returns an index vector (TRUE or FALSE) that gives the common argument
values (as TRUE) in its first argument. You can then use the returned logical vector
as an index to extract desired elements from the first vector. Thus, the function is
not symmetric. The next example illustrates one of the most commonly encountered
problems in data manipulation. Its solution is not straightforward.

Example 2.18. In longitudinal studies, one follows some units (subjects) through
time. Often, such units enter and leave the experiment after it began and before it
ends. A two-year imaginary diet study started with six patients:

> begin.experiment

name weight

1 A. Smith 270

2 B. Smith 263

3 C. Smith 294
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4 D. Smith 218

5 E. Smith 305

6 F. Smith 261

After one year, three patients joined the study:

> middle.experiment

name weight

1 G. Smith 169

2 H. Smith 181

3 I. Smith 201

Five patients, some joined at the beginning and some joined in the middle, finished
the experiment:

> end.experiment

name weight

1 C. Smith 107

2 D. Smith 104

3 A. Smith 104

4 H. Smith 102

5 I. Smith 100

Imagine that each of these data frames contains hundred of thousands of records.
The task is to merge the data for those who started and finished the exper-
iment. First, we identify all the elements in end.experiment that are also in
begin.experiment:

> (m <- is.element(begin.experiment$name, end.experiment$name))

[1] TRUE FALSE TRUE TRUE FALSE FALSE

Next, we create a vector of those patient names that started in the beginning and
ended in the end:

> (begin.end <- begin.experiment[m, ])

name weight

1 A. Smith 270

3 C. Smith 294

4 D. Smith 218

> (p.names <- begin.experiment[m, 1])

[1] "A. Smith" "C. Smith" "D. Smith"

We merge the data for the weights at the beginning and end of the experiment:

> (patients <- cbind(begin.experiment[m, ],

+ end.experiment[is.element(end.experiment$name, p.names), ]))

name weight name weight

1 A. Smith 270 C. Smith 107

3 C. Smith 294 D. Smith 104

4 D. Smith 218 A. Smith 104
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patients is still not very useful. Our goal is to obtain this:

name time weights

1 A. Smith begin 270

2 C. Smith begin 294

3 D. Smith begin 218

4 C. Smith end 107

5 D. Smith end 104

6 A. Smith end 104

(you will see in a moment why). To achieve this goal, we stack names and then
weights:

> (p.names <- stack(patients[, c(1, 3)]))

values ind

1 A. Smith name

2 C. Smith name

3 D. Smith name

4 C. Smith name.1

5 D. Smith name.1

6 A. Smith name.1

> (weights <- stack(patients[, c(2, 4)])[, 1])

[1] 270 294 218 107 104 104

Now create the data frame:

> (experiment <- data.frame(p.names, weights))

values ind weights

1 A. Smith name 270

2 C. Smith name 294

3 D. Smith name 218

4 C. Smith name.1 107

5 D. Smith name.1 104

6 A. Smith name.1 104

This is it. All that is left is to rename columns and factor levels:

> levels(experiment$ind) <- c('begin', 'end')

> names(experiment)[1 : 2] <- c('name', 'time')

and we achieved our goals. Why do we want this particular format for the data frame?
Because

> tapply(experiment$weights, experiment$time, mean)

begin end

260.6667 105.0000

is so easy. To handle data with hundreds of thousands of subjects, all you have to do
is change the indices in this example. ut

2.6 Manipulating strings

R has a rich set of string manipulations. Why are these useful? Consider the next
example.
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Example 2.19. One favorite practice of database managers is to assign values to
a field (column) that contain more than one bit of information. For example, in
collecting environmental data from monitoring stations, the European Union (EU)
identifies the stations with code such as DE0715A. The first two characters of the
station code give the country id (DE = Germany). For numerous reasons, we may
wish to isolate the two first characters. We are given

> stations

[1] "IT15A" "IT25A" "IT787A" "IT808A" "IT452A" "DE235A"

[7] "DE905A" "DE970A" "DE344A" "DE266A"

and we want to rename the stations to their countries:

> stations[substr(stations, 1, 2) == 'DE'] <- 'Germany'

> stations[substr(stations, 1, 2) == 'IT'] <- 'Italy'

> stations

[1] "Italy" "Italy" "Italy" "Italy" "Italy"

[6] "Germany" "Germany" "Germany" "Germany" "Germany"

Here substr() returns the first two characters of the station id string. ut

We have already seen how to use paste(), but here is another example.

Example 2.20.

> paste('axiom', ':', ' power', ' corrupts', sep = '')

[1] "axiom: power corrupts" ut

Sometimes, you might get a text file that contains data fields (columns) separates by
some character. Then strsplit() comes to the rescue.

Example 2.21.

> (x <- c('for;crying;out;loud', 'consistency;is;not;a virtue'))

[1] "for;crying;out;loud"

[2] "consistency;is;not;a virtue"

> rbind(strsplit(x, ';')[[1]], strsplit(x, ';')[[2]])

[,1] [,2] [,3] [,4]

[1,] "for" "crying" "out" "loud"

[2,] "consistency" "is" "not" "a virtue" ut

In cases where you are not sure how character data are formatted, you can transform
all characters of a string to upper case with toupper() or all characters to lower case
with tolower(). This often helps in comparing strings with ==. We shall meet these
again.

2.7 Assignments

Exercise 2.1. Classify the following data as categorical or numerical. If numerical,
classify into ordinal, discrete or continuous.

1. Number of trees in an area
2. Sex of a trapped animal
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3. Carbon monoxide emission per day by your car
4. Order of a child in a family

Exercise 2.2. For the following questions, use the literature cited in the article you
found as a template to cite the article you found. Also, list the data as given in the
paper. If you do not wish to type the data, then you may attach a copy of the relevant
pages.
Cite one paper from a scientific journal of your choice where the data are:

1. Categorical
2. Numerical
3. Univariate
4. Bivariate
5. Multivariate

Exercise 2.3.

1. Create a vector of factors with the following levels: Low, Medium, High.
2. Create the same vector, but with the levels ordered.

Exercise 2.4. In the following, show how you verify that your answer is correct.

1. Create a vector of double values 1, 2, 3.
2. Create the same vector, but now with integer values.

Exercise 2.5.

1. Create a vector of strings that hold the following data: “what” “a” “shame”.
2. How would you test that the vector you created is in fact a vector of strings?
3. By default, when R reads a character input vector into a data frame, it converts
it to a factor variable. How would you override this default?

Exercise 2.6.What is the difference in the output between sys.Date() and
Sys.time()

Exercise 2.7.

1. Prove that x produced with x <- 1:10 is not an array.
2. Turn x into an array.
3. Is x produced with matrix(0, ncol=3, nrow=2) an array? Is it a matrix?
Prove it!

Exercise 2.8. You are given a list of 10 “names” and 10 test scores:

names <- c(A, B, C, D, E, F, G, H, I, J)

scores <- c(59, 51, 72, 79, 79, 83, 69, 81, 51, 87)

Show the code and the result for the following:

1. Make a data frame with the first column named “score” and the second named
“names.”

2. Make a list with the first element named “names” and the second named “score.”
3. Show two ways to access names in the list you just created.

Exercise 2.9. Pick 10 people at random (5 males and 5 females) and create a data
frame with the following columns: Gender—a factor with two levels, M and F, Height—
a numeric variable holding the height of each person (in cm), First Name—a character
variable and Last Name—a character variable.
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Exercise 2.10. Use scan() to create a vector of 10 integers

Exercise 2.11. Import data directly to R from an Excel file of your choice.

Exercise 2.12. Given i, which was produced as follows:

> set.seed(1)

> (i <- as.integer(runif(10, 1, 5)))

[1] 2 2 3 4 1 4 4 3 3 1

how would you use R to tally the number of occurrences of each digit?
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Presenting data

In this chapter we will learn how to present data in tables and graphics. Often, tables
require a good deal of data manipulations. Graphics is an important tool not only in
presenting data but also in cleaning them and later analyzing them.

3.1 Tables and the flavors of apply()

Strictly speaking, table()s in R produce counts of categorical variables. They are
useful in exploring associations among factors in data (e.g. contingency tables). We
used table() in Example 2.3, where we discussed how to create letter grades from
exam scores, Example 2.13, where we saw how to use expand.table() and Example
2.16, where we counted the number of U.S. casualties in Iraq in 10-day intervals.
Often, we need to produce marginal values for tables (e.g. totals at the bottom or

the right end of a table). The various flavors of apply() are extremely useful. Let us
learn about these through examples.

Example 3.1. The following data pertain to high school graduation rates (%) and
number of graduates (n) in the U.S. for the academic years 2000–01, 2001–02 and
2002–03, by state. Data were obtained from the U.S. Department of Education Web
site. We import the data, name the columns and view the first three rows and six
columns of the data frame:

> graduation <- read.table('graduation.txt',

+ header = TRUE, sep = '\t')

> names(graduation) <- c('region', 'state', '% 00-01',

+ 'n 00-01', '% 01-02', 'n 01-02',

+ '% 02-03', 'n 02-03')

> (head(graduation[, 1 : 6]))

region state % 00-01 n 00-01 % 01-02 n 01-02

Statistics and Data with R:  An applied approach through examples         Y. Cohen and  J.Y.  Cohen
©
2008 John Wiley & Sons, Ltd.  ISBN: 978-0-470-75805
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1 S Alabama 63.7 37082 62.1 35887

2 NW Alaska 68.0 6812 65.9 6945

3 SW Arizona 74.2 46733 74.7 47175

4 S Arkansas 73.9 27100 74.8 26984

5 W California 71.6 315189 72.7 325895

6 M Colorado 73.2 39241 74.7 40760

Next, we want to spell fully the region names in graduation. So we use the R internal
data frame, called state.region:

> region <- c(as.character(state.region[1 : 8]),

+ as.character(state.region[4]),

+ as.character(state.region[9 : 50]))

> graduation$region <- as.factor(region)

> (head(graduation[, 1 : 6], 3))

region state % 00-01 n 00-01 % 01-02 n 01-02

1 South Alabama 63.7 37082 62.1 35887

2 West Alaska 68.0 6812 65.9 6945

3 West Arizona 74.2 46733 74.7 47175

We want to obtain the average graduation rate (%) and the number that graduated. So
we do:

> (round(apply(graduation[, 3 : 8], 2, mean), 1))

% 00-01 n 00-01 % 01-02 n 01-02 % 02-03 n 02-03

73.0 50376.5 73.9 51402.6 74.9 53332.3

apply() applies to the data graduation[, 3 : 8], by column (hence the unnamed
argument 2) the function mean(). To obtain the average by state, we do:

> pct <- round(apply(graduation[, c(3, 5, 7)], 1, mean), 1)

> n <- round(apply(graduation[, c(4, 6, 8)], 1, mean), 1)

> by.state <- data.frame(graduation[, 'state'], pct, n)

> names(by.state) <- c('state', '%', 'n')

> head(by.state)

state % n

1 Alabama 63.5 36570.0

2 Alaska 67.3 7018.0

3 Arizona 74.9 47964.7

4 Arkansas 75.1 27213.0

5 California 72.8 327393.7

6 Colorado 74.8 40793.3

Here we use the unnamed argument 1 to apply() mean() to the appropriate
rows. ut

Next, let us examine a few related functions: tapply(), sapply(), lapply() and
mapply().

Example 3.2. Continuing with the U.S. high school graduation rate data (Example
3.1), we wish to compute means by region:
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> pct.region <- round(tapply(by.state[, 2],

+ graduation$region, mean), 0)

> n.region <- round(tapply(by.state[, 3],

+ graduation$region, mean), 0)

> rbind('%' = pct.region, n = n.region)

North Central Northeast South West

% 80 77 68 73

n 54713 51717 52702 47612

Next, we want to calculate the average graduation rate and the average number of
graduates by year and by region. So we first split graduation by region:

> grad.split <- split(graduation[, 3 : 8],

+ graduation$region)

> names(grad.split)

[1] "North Central" "Northeast" "South" "West"

and then sapply() means to the list components (the regions):

> round(sapply(grad.split, mean), 0)

North Central Northeast South West

% 00-01 79 77 67 73

n 00-01 53731 50849 50982 46161

% 01-02 80 77 68 74

n 01-02 54303 51275 52391 47521

% 02-03 81 78 69 74

n 02-03 56104 53027 54734 49152

Let us double check that we are getting the right results for, say, the Western region of
the U.S.:

> round(apply(grad.split$West, 2, mean), 0)

% 00-01 n 00-01 % 01-02 n 01-02 % 02-03 n 02-03

73 46161 74 47521 74 49152 ut

From the R help page, “sapply is a user-friendly version of lapply by default returning
a vector or matrix if appropriate.” mapply() gives results identical to those obtained
from sapply() in Example 3.2. See Example 7.18 for an application of mapply().

3.2 Bar plots

Bar plots are the familiar rectangles where the height of the rectangle represents some
quantity of interest. Each bar is labeled by the name of that quantity. Bar plots are
particularly useful when you have two-column data, one categorical and the other
numerical (usually counts). For example, you may have data where the first column
holds species names and the second the number of individuals.

Example 3.3. The WHO data were introduced in Example 2.7. Figures 3.1 and
3.2 show data about the distribution of the population over age in two countries
with very different cultures, economies and histories. The following script produces
Figures 3.1 and 3.2.
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1 load('who.pop.2000.rda') # population data

2 load('who.ccodes.rda') # country codes

3 load('who.pop.var.names.rda')#variable names in who.pop.2000

4

5 cn <- 'Austria' # country name

6 #cn <- 'Armenia' # uncomment for Armenia bar plot

7 cc <- who.ccodes$code[who.ccodes$name == cn] # country code

8

9 par(mfrow = c(2, 1))

10 bl <- as.character(pop.var.names$descr[2 : 26]) # bar labels

11 gender <- 1 # males

12 rows <- who.pop.2000$code == cc & # row to be plotted

13 who.pop.2000$sex == gender

14 columns <- 5 : 29 # columns to be plotted

15

16 barplot(t(who.pop.2000[rows, columns])[, 1]/1000,

17 names.arg = bl, main = paste(cn, ', males'),

18 las = 2, col = 'gray90')

19 gender <- 2 # females

20 rows <- who.pop.2000$code == cc &

21 who.pop.2000$sex == gender

22 barplot(t(who.pop.2000[rows, columns])[, 1]/1000,

23 names.arg = bl, main = paste(cn, ', females'),

24 las = 2, col = 'gray90')

The script illustrates several important features of R. In particular, linking data from
different data frames and using barplot(). It merits a detailed examination.
To produce the annotation in Figures 3.1 and 3.2, we need three data frames: who.

ccodes contains the country codes which match a country code to a country name.
pop.var.names matches variable names in who.pop.2000 to meaningful names. For
example, in who.pop.2000, there is a variable named Pop10. This variable holds the
population of age group 20 to 24. Using pop.var.names, we can display the variable
description (the string 20-24 that corresponds to the variable Pop10). who.pop.2000
holds the data—population by age and countries. Figure 2.2 shows typical observa-
tions (rows) for each frame and the links that we need to display the bar plot properly.
In lines 1 to 3 we load the data. In line 5 we assign Austria to cn. If you wish

to produce the bar plot for Armenia, comment line 5 and uncomment line 6. In line
7 we extract country codes from who.ccodes. This is how it is done: The statement
inside the square brackets,

who.ccodes$names == cn

creates an unnamed logical vector. The length of this vector is the length of who.
ccodes$code. All elements of this vector are set to FALSE except those elements
whose value is Austria. These elements are set to TRUE. Because this unnamed log-
ical vector appears in the square brackets, the index of the TRUE elements is used to
extract the desired values from who.ccodes$code. These extracted values are stored
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Figure 3.1 Austria’s age distribution by gender.

in the vector cc. Thus, using the country name we extract the country code. Country
names and country codes are unique. Therefore, cc contains one element only.
In line 9 we divide the graphics window into two rows and one column, so that

we can plot both sexes on the same graphics window. Preparing a graphics window
(also called a device) to accept more than one plot is common. It is done by spec-
ifying the number of rows and columns with the argument mfrow. In our case, we
specify 2 rows and 1 column with c(2,1). We then set the argument mfrow with a
call to par(). In line 10, we assign labels to the bars we are going to produce. The
labels we need are for variables 2 to 26. The labels reside in the descr column of the
pop.var.names data frame. In line 11 we set the gender to males. In lines 12 to 14 we
prepare the logical vectors that will be used to extract the necessary row and columns
from who.pop.2000. We need to extract the row whose code value corresponds to the
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Figure 3.2 Armenia’s age distribution by gender.

country code of Austria. We have this value in cc. The row we need to extract is
for males, so the row we choose must have a value of gender = 1 in the sex column
in who.pop.2000. The condition for extraction is stored in rows. Columns 5 to 29 in
who.pop.2000 contain the age group populations.
We are now ready to call barplot(). In line 16, we extract the row and needed

columns from the data frame. Before plotting, we must transpose the data because
now the columns’ populations must be represented as data (rows) to barplot(). This
is done with a call to the transpose function t(). Note the division by 1 000. In line
17 we set the labels for the bars with the named argument names.arg. We also create
the main title for the bar plot with paste(). In line 18 we set las to 2. This plots
the tick labels perpendicular to the axes. The named argument col is set to gray90.
This color is known to R as light gray. To find out color names in R, type colors().
Lines 19 to 24 repeat the bar plot, this time for females. ut
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In Example 3.3, the x-axis shows the age categories into which the populations are
divided. For example, in both countries, ages 10–14 and 15–19 are the most prevalent
in the population. The example reveals interesting differences between and within
countries with respect to gender. Think about answers to these questions:

• Why is there a dip in both male and female populations at the ages of 25–40 in
Armenia compared to Austria?

• Why are there more older females than older males in Austria?
• Why is there a big jump in the age group from age 4 to ages 5–10 in both countries?

3.3 Histograms

Histograms are close relatives of bar plots. The main difference is that in histograms
we are interested in the distribution of data. In other words, we wish to know if there
is regularity in the number of observations that fall within a category. This means
that how the data are binned takes on an additional importance.

Example 3.4. One of the most important activities that field ecologists pursue is
estimating population densities by recording distances to observed organisms (see
Buckland et al., 2001). It turns out that the way distance data are binned affects the
way the data are adjusted and later used to infer population densities. When it comes
to endangered and rare species, the decision on how to bin the data can influence
decision making—about conservation actions, court rulings, etc. A circular plot is
used to census birds. The observer sits at the center of an imagined disc with radius
r and records distance and species for spotted individuals. In a study of bird density
in the Sierra Nevada, such data were recorded for the Nashville warbler. Here are the
84 observations of distances, recorded from 20 such plots (personal data), each with
a radius of 50m:

15 16 10 8 4 2 35 7 5 14 14 0 35 31 0

10 36 16 5 3 22 7 55 24 42 29 2 4 14 29

17 1 3 17 0 10 45 10 9 22 11 16 10 22 48

18 41 4 43 13 7 7 8 9 18 2 5 6 48 28

9 0 54 14 21 23 24 35 14 4 10 18 14 21 8

14 10 6 11 22 1 18 30 39

Figure 3.3 summarizes the data for different numbers of binning categories. breaks =

11 is the default chosen by R. For breaks = 4, the data clearly indicate a regular
(monotonic) decay in detectability of Nashville warblers as distance increases. This is
not so for the other binned histograms.
The following script produces Figure 3.3.

1 load('distance.rda')

2 par(mfrow = c(2, 2))

3 hist(distance, xlab = '', main = 'breaks = 11',

4 ylab = 'frequency', col = 'gray90')

5 hist(distance, xlab = '', main = 'breaks = 20',

6 ylab = '' , breaks = 20, col = 'gray90')
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7 hist(distance, xlab = 'distance (m)', main = 'breaks = 8',

8 ylab = 'frequency', breaks = 8, col = 'gray90')

9 hist(distance, xlab = 'distance (m)', main = 'breaks = 4',

10 ylab = '', breaks = 4, col = 'gray90')

We use load() to load the R data (a vector) distance in line 1. In line 2 we instruct
the graphics device to accept four figures in a 2 by 2 matrix with a call to par() and
with the named argument mfrow set to a 2× 2 matrix of plots. The matrix is filled
columns first. If we draw more than four, they will recycle in the graphics window.
In lines 3 and 4 we call hist() to plot the data with the default number of breaks,

(which happens to be 11) with our own y-axis label (ylab) and with color (col) set
to gray90. In lines 5 and 6 we plot the same data. But now we ask to break them
into 20 categories of distances. In lines 7–10 we do the same for different numbers of
breaks. ut

Figure 3.3 is revealing. You may arrive at different conclusions about the distribution
of the data based on different numbers of breaks. This provides an opportunity to

Figure 3.3 Histograms of distances to 84 observed Nashville warblers in twenty 50m
circular plots. The histograms are shown for different numbers of binning categories
(breaks) of the data.
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question conclusions from data. You should strive to have some theoretical (mechanis-
tic) idea about what the distribution of the data should look like. The fact that there
are some “holes” in observations when breaks = 20 indicates that perhaps there are
too many of them. Histograms are useful in exploring differences among treatments
in experiments. Here is an example.

Example 3.5. The data, included with R’s distribution, are about plant growth
(Dobson, 1983). The data set compares yields—as measured by dry weight of plants—
from a control and two treatments. There are 30 observations on 2 variables: weight
(g) and treatment with three levels: ctrl, trt1 and trt2. From Figure 3.4 it seems
that the most frequent weight under the control experiment was between 5 and 5.5 g.
In treatment 1, it was between 4 and 5 and in treatment 2 between 5.25 and 5.75. Note
the insistence on consistent scales among the histograms of the different treatments.
The following code was used in this example to produce Figure 3.4.

1 data(PlantGrowth) ; attach(PlantGrowth)

2 par(mfrow = c(1, 3))

3 xl <- c(3, 6.5) ; yl <- c(0, 4)

4 a <- hist(weight[group == 'ctrl'], xlim = xl, ylim = yl,

5 xlab = '', main = 'control',

6 ylab = 'frequency', col = 'gray90')

7 b <- hist(weight[group == 'trt1'], xlim = xl, ylim = yl,

8 xlab = 'weight', ylab = '', main = 'treatment 1',

9 col = 'gray90')

10 c <- hist(weight[group == 'trt2'], xlim = xl, ylim = yl,

11 xlab = '', ylab = '', main = 'treatment 2',

12 col = 'gray90')

Figure 3.4 Control and two treatments in a plant growth experiment. Weight refers
to dry weight.
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The PlantGrowth data come with R. To load them, we call data() in line 1. To avoid
extra typing, we attach() the data frame (also in line 1). In line 2 we tell the graphics
device to accept one row of 3 plots. Because we wish all the plots to scale identically
for all figures, we set xl and yl in line 3 and then in line 4 we specify the x- and y-axis
limits with the xlim and ylim arguments. We do the same for the other 2 histograms.
In line 4, we choose a subset of the weight data that corresponds to the values of

group = 'ctrl'. We do it similarly for the other two histograms in lines 7 and 10.
We also set the x label to xlab = 'weight' in line 8. The y label (ylab) is set to
frequency. Because we do not wish to clutter the graphs, we set ylab = '' for the
other two histograms in lines 8 and 11. We distinguish between the histograms by
specifying different main titles to each in lines 5, 8 and 11.
Note the assignment of the histograms to a, b and c. These create lists that store

data about the histograms. This allows us to examine the breakpoints (breaks) and
frequencies that hist() uses. We often use the data stored in the histogram list for
further analysis. Let us see what a, for example, contains:

> a

$breaks

[1] 4.0 4.5 5.0 5.5 6.0 6.5

$counts

[1] 2 2 4 1 1

$intensities

[1] 0.4 0.4 0.8 0.2 0.2

$density

[1] 0.4 0.4 0.8 0.2 0.2

$mids

[1] 4.25 4.75 5.25 5.75 6.25

$xname

[1] "weight[group == \"ctrl\"]"

$equidist

[1] TRUE

attr(,"class")

[1] "histogram"

a stores vectors of the breaks, their counts and their density. intensities give the
same information as density. The mid (mids) values of the binned data are listed
as well. If you do not specify xlab, hist() will label x with xname. In this case
the label will be weight[group == "ctrl"]. The extra backlashes are called escape
characters. They ensure that the quotes are treated as characters and not as quotes.
Another piece of information is whether the histogram is equidistant or not. Finally,
we see that the attribute (attr()) of a is a class and the classname is histogram.
You can use this information to later build your own graphs or tables. ut
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3.4 Dot charts

Dot charts are a good way to examine simple data-derived statistics such as means.
Whenever you think “pie chart,” think dot chart. Here is a direct citation from R’s
help page for pie():

“Pie charts are a very bad way of displaying information. The eye is good
at judging linear measures and bad at judging relative areas. A bar chart or
dot chart is a preferable way of displaying this type of data.
Cleveland (1985), page 264: ‘Data that can be shown by pie charts always

can be shown by a dot chart. This means that judgments of position along a
common scale can be made instead of the less accurate angle judgments.’ This
statement is based on the empirical investigations of Cleveland and McGill as
well as investigations by perceptual psychologists.”

One then wonders why pie charts are so popular in corporate financial reports.

Example 3.6.We discussed the WHO data in Example 2.7. The death rates, grouped
by the WHO classified regions, are instructive (Figure 3.5). Africa stands apart from
other regions in its high death rate. So does (to a lesser extent) Eastern Europe. The
following script produces Figure 3.5.

1 who <- read.csv('who.by.continents.and.regions.txt',

2 sep = '\t')

3 m.region <- tapply(who$dr, who$region, mean, na.rm = TRUE)

4 dotchart(m.region, xlab = 'death rate')

Figure 3.5 Death rate (per 1000). Based on WHO 2003 data, pertaining to 1995–
2000.

The data are stored in a comma separated value (csv) text file. The file was saved
from the WHO Excel file. In line 1 we import the data with read.csv(). The data



86 Presenting data

columns in the file are separated by tabs. Therefore, we set the Argument. sep = '\t'
In line 3 we compute the means by region with tapply(). Note how the argument to
mean(), na.rm (remove NA data), is specified. The call to tapply() returns an array
object m.region. In line 4 we call dotchart(). ut

3.5 Scatter plots

In scatter plots we assign one variable to the x-axis and the other to the y-axis. We
then plot the pairs (xi, yi) of the data.

Example 3.7. In the WHO data (first introduced in Example 2.7), birth rate is
defined as the number of births per 1 000 people in the population in a year. Death
rate is defined similarly. Figure 3.6 shows the scatter plot for 222 nations. There
seems to be some regularity—nations with high birth rate also have high mortality
rate. Nations with very low birth rate seem to have higher mortality than nations
with moderate birth rate. Some nations of interest are identified by name.
Figure 3.6 was obtained thus:

1 who.fertility.mortality <- read.table(

2 'who.by.continents.and.regions.txt', sep = '\t',

3 header = TRUE)

4 names(who.fertility.mortality) <- c('country', 'continent',

5 'region', 'population', 'density', '% urban', '% growth',

6 'birth rate', 'death rate', 'fertility',

7 'under 5 mortality')

8

9 save(who.fertility.mortality,

10 file = 'who.fertility.mortality.rda')

11 d <- who.fertility.mortality

12 plot(d[, 'birth rate'], d[, 'death rate'],

13 xlab = 'birth rate', ylab = 'death rate')

14 unusual <- identify(d[, 8], d[, 9], labels = d[, 1])

15 points(d[unusual, 8], d[unusual, 9], pch = 19)

The script demonstrates the low level plotting function points() and other fancy plot
enhancements. In lines 1–3 we import the data and in lines 4–8 we name the columns
and save the data. We plot the data in lines 11–12. In line 13, we use identify()
to click on the points we wish to annotate. As labels for these points, we use the
country names in the first column of the data frame. identify() returns the index
of the points we clicked on. We store these indices in unusual. To differentiate these
from the remaining points, we plot the unusual with points() again in line 14, with
the plot character pch = 19 (solid circles). ut

The variable on the x-axis can be and often is, time. In such cases, it makes sense
to create a time series object, as opposed to a data frame. Here is an example.
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Figure 3.6 Death rate vs. birth rate for 222 nations.

Example 3.8. A celebrated data set is the one that raised the suspicion of global
climate change (Keeling et al., 2003). As stated in their report,

“Monthly values are expressed in parts per million (ppm) and reported in
the 1999 SIO manometric mole fraction scale. The monthly values have been
adjusted to the 15th of each month. Missing values are denoted by −99.99.
The ‘annual’ average is the arithmetic mean of the twelve monthly values. In
years with one or two missing monthly values, annual values were calculated
by substituting a fit value (4-harmonics with gain factor and spline) for that
month and then averaging the twelve monthly values.”

The data are reported for the years 1958 through 2002. First, we import the data.
This time, we shall do it with scan():

> manua <- scan()

1:

The data are in a single-column text file. So we copy all of it to the clipboard and
then paste it into the work space. Here are the first few lines as they paste themselves:

1: NA

2: 315.98

3: 316.91

4: 317.65

5: 318.45

6: 318.99

7: NA

8: 320.03

When pasting is done, we hit the enter for an empty line. We now have the vector
manua with the yearly CO2 measurements. Next, we turn manua into a time series
object like this:

> manua.ts <- ts(manua, start = 1958, end = 2002)
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Figure 3.7 Atmospheric CO2 (ppm) from Manua-Loa, Hawaii.

Now that we have the time series, plot() will display it appropriately:

> plot(manua.ts, xlab = 'year', ylab = expression(CO[2]))

(Figure 3.7). To show how time series plots deal with NA (not available) data, we
plot the data with lines (the default) and add points. We assign a label to the y-axis
with expression(). This function allows you to specify mathematical (TEX-like)
expressions. Thus, CO[2] appears as CO2. See plotmath() for further details on
how to typeset mathematics in plots. expression() returns an expression object.
Such objects can be later evaluated with a call to eval(). These two functions are
very useful in cases where you wish to evaluate expression that you may build as
strings. ut

A good way to display potential paired interactions among variables in a multivariate
data frame is the pairs() scatter plot.

Example 3.9. Let us continue with the WHO fertility and mortality data (see
Example 3.7). We load the data and then plot columns 7–9 (% growth, birth rate
and death rate) in pairs

> load('who.fertility.mortality.rda')

> pairs(who.fertility.mortality[, 7 : 9])

(Figure 3.8). Note the seemingly positive relationship between birth rate and % annual
growth and negative relationship between death rate and % annual growth. In the lat-
ter, there are numerous countries that float above the seemingly negative relationship.
We shall examine this in a moment. ut

3.6 Lattice plots

So far, we discussed mostly univariate and bivariate data (bar, scatter and paired
plots). Let us see how we may present trivariate data where one or two of the variables
are factors.
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Figure 3.8 Growth, death and birth in 222 nations.

Example 3.10. In Example 3.9, we examined pairs of variables where the relation-
ship between % growth (x-axis) and death rate were seemingly negative with a cloud
of countries overhanging most others (bottom left, Figure 3.8). Let us see if we can
isolate these countries by region. To that end, we

> load('who.fertility.mortality.rda')

> d <- who.fertility.mortality

> library(lattice)

and plot the data with

> xyplot(d[, 9] ~ d[, 7] | d[, 3], xlab = '% growth',

+ ylab = 'death rate', par.strip.text = list(cex = 0.6))

(Figure 3.9). Here we use R’s formula syntax for the plot. Anything on the left
side of ∼ is a dependent variable and on the right an independent variable. In
our case, we have death rate and % growth (columns 9 and 7 in d). The ver-
tical bracket, |, indicates conditioning. We condition the xyplot() on the region
factor (column 3 in d). Thus, we obtain a separate scatter plot for each level of
region. Because the names of the regions are too long to fit in their space, we use
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Figure 3.9 Death rate vs. % growth by region for 222 nations.

the strip-text argument. This argument reads a list(). One of the list compo-
nents it knows about is cex—an argument that specifies the relative size of text
in the graphics. Hence the list(cex = 0.6). Compare Figure 3.9 to the bottom
left corner of Figure 3.8: The cloud of countries above the main trend (of nega-
tive relationship) is produced mostly by countries from Western, Middle and Eastern
Africa. ut

3.7 Three-dimensional plots and contours

Three-dimensional plots and contour plots are used to represent relief, scatter plots
and surfaces. The main functions and their corresponding packages are listed in the
data frame graphics.3d.rda (available at the book website). We will use 3D plots
here and there and illustrate them when the need arises.

3.8 Assignments

Exercise 3.1. The following data appeared in the World Almanac and Book of Facts,
1975 (pp. 315–318). It was also cited by McNeil (1977) and is available with R. It lists
the number of discoveries per year between 1860 and 1959.
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Start = 1860

End = 1959

5 3 0 2 0 3 2 3 6 1 2 1 2 1 3 3 3 5 2 4

4 0 2 3 7 12 3 10 9 2 3 7 7 2 3 3 6 2 4 3

5 2 2 4 0 4 2 5 2 3 3 6 5 8 3 6 6 0 5 2

2 2 6 3 4 4 2 2 4 7 5 3 3 0 2 2 2 1 3 4

2 2 1 1 1 2 1 4 4 3 2 1 4 1 1 1 0 0 2 0

1. Load the data. Then, of the reported data, in how many cases were there between
0 and less than 2 discoveries? Between 2 and less than 4 discoveries, between 4
and less than 6 and so on up to 12?

2. Based on the results in (1), plot a histogram of discoveries.
3. Do the data remind you of some regular curve that you may be familiar with?
What is that curve?

Exercise 3.2.

1. Compare the age distribution of males to females in Austria (Figure 3.1). Specu-
late about the reasons for the difference in the survival of females and males.

2. Compare the age distribution of males to females in Armenia (Figure 3.2). Spec-
ulate about the reasons for the difference in the survival of females and males.

3. Compare the age distribution of males in Austria (Figure 3.1) and Armenia
(Figure 3.2). Speculate about the differences in the survival of males in these
two countries.

4. Compare the age distribution of females in Austria (Figure 3.1) and Armenia
(Figure 3.2). Speculate about the differences in the survival of females in these
two countries.

5. What information would you need to verify that your speculations are reasonable?

Exercise 3.3. Go to http://www.google.com. In the search box, enter the following
string exactly as shown (including the quotes) “wind energy in X” where X stands for
a state name. Spell the state names fully, including upper case letters. For example for
X = New York, you enter (including the quotes) “wind energy in New York”. Once you
enter the string, click on the Google Search button. Under the search button, you will
see how many items were found in the search. Record the number of items found and
the state name. Repeat the search for X = all of the contiguous states in the U.S. Using
the data you thus gathered (state name vs. the number of search items that came up):

1. Plot a histogram of the data.
2. What is the most common number of items found per state? How many states
belong to this number?

3. What is the least common number of items found per state?
4. Using a histogram, identify a region in the U.S. (e.g. Northeast, Northwest, etc.)
where most of the found items show up.

5. Why this particular region compared to others?

Exercise 3.4. Sexual dimorphism is a phenomenon where males and females of a
species differ with respect to some trait. Among species of spiders, sexual dimorphism
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is widespread. Females are usually much larger than males (so much so, that they
often eat the male after mating). Plot—by hand or with R—an imaginary graph that
reflects the histogram of weights of individuals from various spider species. Explain the
plot. If you choose R to generate the data, you can use rnorm() (look it up in Help).

Exercise 3.5. Use the discoveries data shown in Exercise 3.1:

1. Introduce a new factor variable named period. The variable should have 20 year
periods as levels. So the first level of period is “1860–1879,” the second is “1880–
1899” and so on.

2. Compute the mean number of discoveries for each of these periods.
3. Construct a dot chart for the data.
4. Draw conclusions from the chart.

Exercise 3.6. For this exercise, you will need to use the function rnorm() (see Help).
You have a vector that contains data about tree height (m). The first 30 observations
pertain to aspen, the next 25 to spruce and the last 34 to fir.

1. Use a single statement to create imagined data from a normal distribution with
means and standard deviations set to aspen: 5, 2; spruce: 8, 3; fir: 10.4.

2. Use a single statement to create an appropriate factor vector
3. Use a single statement to create a data frame from the two vectors.

No need to report the data. Just the code.

Exercise 3.7. Use a single statement to compute the mean height for aspen, spruce,
fir and spruce from the data.frame created in Exercise 3.6

Exercise 3.8. Continuing with Exercise 3.6:

1. Use a single statement to reorder the levels of the species column in the data.frame
you created in Exercise 3.6 such that species is an ordered factor with the levels
aspen > spruce > fir.

2. Use an appropriate printout to prove that the factor is ordered.
3. Use a single statement to compute the means of the species height. The printout
should arrange the means according to the ordered levels.

Exercise 3.9. In this exercise, before every call to a function that generates random
numbers, call the function set.seed(1) exactly as shown. This will have the effect
of getting the same set of random numbers every time you answer the exercise. You
will also need to use the functions runif() and round().

1. Create a matrix with 30 columns and 40 rows. Each element is a random number
from a normal distribution with mean 10 and standard deviation 2. Show the
code, not the data.

2. Create a submatrix with 6 rows and 6 columns. The rows and columns are chosen
at random from the matrix. Show the code, not the data.

3. Print the submatrix with 3 decimal digits and without the row and column coun-
ters shown in the printout (i.e. without the dimension names; see no.dimnames()
on page 32). Show the printout; it should look like this:
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9.220 9.224 10.122 10.912 9.671 10.445

13.557 8.984 10.508 4.006 11.976 11.321

7.905 8.579 11.953 10.150 10.004 10.389

8.688 9.950 7.087 12.098 11.141 10.305

11.890 9.409 6.299 5.620 11.083 13.288

10.198 11.002 12.363 8.662 4.222 9.074

Exercise 3.10. In 2003, there were 35 students in my statistics class. To protect their
identity, they are labeled S1, . . . , S35.

1. With a single statement, including calls to factor() and paste(), create a factor
vector that contains the student labels.

2. Here are the results of the midterm exam

68 76 66 90 78 66 79 82 80 71 90 78 68 52 86

74 74 84 83 80 84 82 75 55 81 74 73 60 70 79

88 73 78 74 61

and final

67 76 87 65 74 76 80 73 90 73 78 82 71 66 89

56 82 75 83 78 91 65 87 90 75 55 78 70 81 77

80 77 83 72 68

Both results above are sorted by student label. Save the data as text files, named
midterm.txt and final.txt. Import the data to R.

3. Create a data frame, named exams, with student labels and their grades on the
midterm and final. Name the columns student, midterm and final. You may
need to use dimnames() to name the columns.

4. Create a vector, named average that holds the mean of the midterm and final
grade.

5. Add this vector to the exams data frame. When done with this part of the exercise,
the exams data frame should look like this (only the first 5 records are shown;
your frame should have 35 records).

> exams[1 : 5,]

student midterm final average

1 S1 68 67 67.5

2 S2 76 76 76.0

3 S3 66 87 76.5

4 S4 90 65 77.5

5 S5 78 74 76.0

6. Create a data frame named class. Your data frame should look as follows (your
data frame should include values for grades instead of NA):

> class

exam grade

1 midterm NA

2 final NA

3 total NA
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7. Create a list, named class.03. The list has two components, class and exams;
both are the data frames you created. The list should look as shown next (your list
should include data instead of NA). Only the first 5 rows of the second component
are shown.

> class.03

$class.mean

exam grade

1 midterm NA

2 final NA

3 total NA

$student.grades

student midterm final average

1 S1 68 67 67.5

2 S2 76 76 76.0

3 S3 66 87 76.5

4 S4 90 65 77.5

5 S5 78 74 76.0

8. Show two ways to access the first 5 records of the students.grades data frame
in the class.03 list.

Exercise 3.11. Download the file elections-2000.csv from the book’s website and:

1. Create a data frame named Florida.
2. How many counties are present in the data file?
3. In how many counties did the majority vote for Gore? For Bush?
4. Suppose that all the votes for Buchanan were to go to Bush and all the votes for
Nader were to go to Gore. Who wins the election? By how many votes?
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Probability and random
variables

Probability theory involves the study of uncertainty. It is a branch of applied mathe-
matics and statistics. The latter permeates every aspect of human endeavor: science,
engineering, behavior and games. In building safe cars, airplanes, trains and bridges,
engineers address the issue of safety with probability. Statistical inference is closely
related to probability. To introduce the subject, we begin with an example. The
example demonstrates how often uncertainty influences our everyday perceptions.

Example 4.1. This example was cited in Dennett (1995) in reference to evolution.
I claim that I can produce a person who guesses correctly ten consecutive flips of
a coin. I can produce such a person even if the coin is not fair; but let us assume
it is. With flipping a fair coin, heads are as likely to show up as tails. Your initial
reaction would be disbelief. “After all,” you might reason, “the probability that a
person guesses right a single flip of a fair coin once is 1/2, twice 1/2 × 1/2 = 2−2,
. . . , 10 times in a row 2−10 ≈ 0.00 098.” Certainly an unlikely event. But imagine the
following experiment. We pick 210 = 1024 people for a tournament. Of each pair of
players, the one who guesses the outcome of a coin-flip wrong is eliminated. In the
first round, we start with 1 024 contestants and end with 512 winners. In the second
round we end with 256 winners; all of them guessed right two flips in a row. After 10
rounds, we are guaranteed to have a single winner who guessed correctly 10 flips in
a row.
When evolution is regarded as practically an infinite number of elimination con-

tests, with few winners, it’s no wonder that things look so unlikely to have happened
without divine intervention! ut

What do we mean when we say probability? Intuitively, we mean the chance that a
particular event (or a set of events) will occur. This chance is quantified with a real
number between 0 and 1. The closer the number is to 1, the more likely the event. To
deal with probability, we need to start with set theory.
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4.1 Set theory

In this section we first discuss sets and algebra of sets. Next, we discuss applications
of R to set theory.

4.1.1 Sets and algebra of sets

A set is a collection of objects. These objects are called elements. We say that B is
a subset of A if all the elements of B are also elements of A. We write it as B ⊂ A.
Accordingly, any set is a subset of itself. We denote sets with upper-case letters and
elements of sets with lower-case letters. To indicate that a collection of elements form
a set we enclose the elements, or their description, in braces. The expression

A = {a1, a2, . . . , an} (4.1)

says that the set A consists of a collection of n elements, a1 through an. A set can
be characterized by its individual elements—as in (4.1)—or by the properties of its
elements. For example,

A = {a : a > 1} (4.2)

says that the set A consists of elements a such that a > 1. Often we need to be more
explicit about the set from which the elements are drawn. For example, (4.2) describes
two different sets when a is an integer, or when it is a real number. In the present
context, the integers or the real numbers are the underlying spaces or the universe.
We often denote the universal set by S. We call a set with no elements the empty or
the null set and denote it by ∅.

Example 4.2. An organism is either alive (a) or dead (d). Therefore we write

S = {a, d} .

The set of all possible subsets of S is

P = {∅, {a} , {d} , S} .

The set of all subsets, P, consists of 22 = 4 subsets. ut

Elements of sets can be sets. We call the set of all possible subsets the power set and
denote it by P. It can be shown that the power set of any set with n elements consists
of 2n subsets.
To understand how probabilities are constructed and manipulated, we need to be

familiar with set operations. We introduce these operations with the help of Venn
diagrams. In the following diagrams, squares represent the universal set S.

Transitivity If A ⊂ B and B ⊂ C then A ⊂ C (Figure 4.1). Thus, for any set A,

A ⊂ A , ∅ ⊂ A , A ⊂ S .

Example 4.3. Let C be the set of all people in South Africa, B be the set of all
black people in South Africa and A the set of all black men in South Africa. Then A
is a subset of B and B is a subset of C. Obviously, A is a subset of C. Here we may
identify S with C. ut
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Figure 4.1 Transitivity.

Equality Set A equals set B if and only if every element of A is an element of B and
every element of B is an element of A. That is,

A = B if and only if A ⊂ B and B ⊂ A .

Union The union of two sets A and B is a set whose elements belong to A, or
to B, or to both (Figure 4.2). The union is denoted by ∪ and A ∪B reads “A
union B.”

Figure 4.2 Union.

Example 4.4. Let A be the set of all baseball, basketball and football players and
B the set of all basketball and hockey players. Then A ∪B = {baseball, basketball,
football, hockey players}. Note that basketball players are not counted twice. In
unions, common elements are never counted twice. ut

Associativity For any sets A, B and C

A ∪B ∪ C = (A ∪B) ∪ C = A ∪ (B ∪ C) .

Example 4.5. Consider a small hospital with 3 wards. Let A, B and C be the sets
of patients in each of these wards. Then, A ∪B ∪ C is the set of all patients in
the hospital. Now take D := A ∪B. Obviously, D ∪ C is the set of all patients in
the hospital. Also, for D := B ∪ C, we have that A ∪D is the set of all patients in the
hospital. ut

Commutativity Using the same reasoning as for associativity, you can easily verify
that

A ∪B = B ∪A .
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Also,
A ∪∅ = A , A ∪ S = S,

and if B ⊂ A then A ∪B = A.

Example 4.6. Let

A = {oranges, tomatoes} ,

B = {bananas, apples} ,

S = {fruits} .

Then
A ∪B = {oranges, tomatoes, bananas, apples}

and
B ∪A = {bananas, apples, oranges, tomatoes} .

Because order is not important, we can rearrange the items in A ∪B such that A ∪B
= B ∪A. Also, the union of A with nothing gives A. And the union of A with S gives
fruits because all member of the union are fruits. ut

Intersection The intersection of two sets, A and B, is a set consisting of all elements
belonging to both A and B. This is written as A ∩B. From Figure 4.3,

(A ∩B) ∩ C = A ∩ (B ∩ C) = A ∩B ∩ C .

It then follows that

Figure 4.3 Intersection.

A ∩A = A , A ∩∅ = ∅ , A ∩ S = A .

Example 4.7. Let

A = {1, 2, 3, 4} ,

B = {3, 4, 5, 6} ,

C = {4, 5, 6, 7} ,

S = the set of all integers .
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The elements 1, 2, 3 and 4 are members of the set A. The common elements of A ∩A
are also these elements. Therefore, A ∩A = A. There are no elements common to
A and ∅. Therefore, A ∩∅ = ∅. Finally, the elements common to A and S are the
elements of A. Therefore, A ∩ S = A.
Note that

A ∩B = {3, 4} .

Then
(A ∩B) ∩ C = {3, 4} ∩ {4, 5, 6, 7} = {4} .

Similarly,
B ∩ C = {4, 5, 6} .

Then
A ∩ (B ∩ C) = {1, 2, 3, 4} ∩ {4, 5, 6} = {4} .

Again, note that common elements are not counted twice. ut

If two sets have no elements in common then

A ∩B = ∅ .

A and B are then said to be disjoint sets (or mutually exclusive sets).

Distribution As Figure 4.4 illustrates, the distributive law for sets is

Figure 4.4 Distribution.

A ∩ (B ∪ C) = A ∩B ∪A ∩ C .

Example 4.8. Returning to Example 4.7, we have

D := B ∪ C = {3, 4, 5, 6, 7}

and

A ∩D = {1, 2, 3, 4} ∩ {3, 4, 5, 6, 7}

= {3, 4} .

Similarly,
D := A ∩B = {3, 4} , E := A ∩ C = {4} .

Therefore,
D ∪ E = {3, 4} ∪ {4} = {3, 4} .

ut
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Figure 4.5 Complement.

Complement The complement of the set A, denoted by A, is the set of all elements
of S that are not in A (Figure 4.5). Thus,

∅ = S , S = ∅ ,

A = A , A ∪A = S ,
A ∩A = ∅ ,
if B ⊂ A then B ⊃ A ,
if A = B then A = B .

Example 4.9. Let S be the set of all integers. Then in the defined space, ∅ has no
elements. All of the elements that are not in ∅ are integers and they constitute S. In
notation, ∅ = S. Similarly, because S includes all of the integers, the set that has no
integers in the space of all integers is empty. In notation, S = ∅.
Let A = {1, 2}. Then, A is the set of all integers except 1 and 2. The set of all

elements that are not in A is A = {1, 2} = A.
Let B = {1}. Then, B ⊂ A. Also, B is the set of all integers except 1 and A is the

set of all integers except 1 and 2. Therefore, A ⊂ B.
Finally, let C = {1, 2}. Then obviously A = C. ut

Difference The set A−B consists of all of the elements of A that are not in B.
Similarly, the set B −A consists of all elements of B that are not in A (Figure 4.6).
To distinguish the “−” operation on sets from the usual subtraction operation,
we sometimes write A−B := B\A. Note that

A−B = A ∩B = A−A ∩B .

Figure 4.6 Difference.
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To convince yourself that this indeed is the case, trace the sets B, A ∩B and
A ∩B in Figure 4.6. In general, (A−B) ∪B does not equal A. Furthermore,

(A ∪A)−A = ∅ while A ∪ (A−A) = A .

Further reflection will convince you that for any A,

A−∅ = A , A− S = ∅ , S −A = A .

Example 4.10. Let A = {1, 2, 3, 4}, B = {3, 4, 5, 6} and S the set of all integers.
Then

A−B = {1, 2} , B −A = {5, 6} .

Also,

A ∩B = {1, 2, 3, 4} ∩ {all integers except 3, 4, 5, 6}

= {1, 2} = A−B

and

A−A ∩B = {1, 2, 3, 4} − {3, 4}

= {1, 2} = A−B .
ut

Sum The sum of two sets is a new set with all the elements of both. Common elements
are counted twice. Thus,

A+B = A ∪B +A ∩B .

Therefore,
A ∪B = A+B −A ∩B .

Example 4.11. The sum of sets A and B in Example 4.4 is

A ∪B = {Baseball, basketball, football, basketball, hockey players} .

Basketball players are counted twice! ut

4.1.2 Set theory in R

The most obvious applications of set theory ideas in R relate to data manipulation and
spatial analysis. Examples of common tasks are union and intersection of polygons
and tests for whether points are within a polygon. R includes several packages that
make such work easy.
Some of the spatially related packages are geoR, gstat, splancs and gpclib.

Review the help for these packages and you will probably find functions that do what
you need. We discussed merge(), union() and intersect() in Example 2.17.

4.2 Trials, events and experiments

It is beyond our scope to define probabilities, events, probability spaces, sample spaces
and chance experiments rigorously. The exposition below is heuristic and therefore
not entirely correct because (technical) details must be omitted. However, you should
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get a feel for what these concepts mean. The following sections are based on Papoulis
(1965) and Evans et al. (2000).
We start with the following definition:

Outcome Any observable phenomenon is said to be an outcome.

In the context of probability theory, we define a set of outcomes from the description
of an experiment. The outcomes may not be unique, so we must agree upon their
definition to avoid ambiguity. We associate uncertainty with outcomes. The uncer-
tainty is measured with probability. The latter ranges from 0 to 1. The probability
of an outcome that is certain to occur is 1 and the probability of an outcome that
never occurs is 0. An experiment here does not necessarily mean some activity that
we undertake. It refers to anything we wish to observe.

Example 4.12. Table 4.1 illustrates some experiments and their outcomes. Note that
the outcomes can be factors, integers, real numbers or anything else you wish to define
as an outcome. ut

Table 4.1 Experiments and outcomes.

Experiment Outcomes

Observing a sick person sick, healthy, dead
Treating a sick person sick, healthy, dead
Rolling a die number of dots facing up
Earthquake magnitude
Weighing an elephant the elephant’s weight

The definition of outcome leads to another important concept in probability
theory, namely the definition of

Sample space The set of all possible outcomes, denoted by S, is called the sample
space. A sample space is also known as an event space, possibility space or simply
the space.

Example 4.13. The sample space of the state of two organisms (dead (d) or alive
(a)) is

S = {aa, ad, da, dd} .

The sample space of the magnitude of an earthquake is

S = the set of all real numbers .
ut

With the concept of sample space, we have the definition of

Event An event is a subset of the sample space.

In notation, if S is a sample space, then E ⊂ S is an event. Because sets are subsets
of themselves, S is also an event.

Example 4.14. In the context of an experiment, we may define the sample space of
observing a person as

S = {sick, healthy, dead} .
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Therefore, the following are all events:

{sick} , {healthy} , {dead} ,
{sick, healthy} , {sick, dead} , {healthy, dead} ,
{sick, healthy, dead} , {none of the above} .

The sample space of elephant weights is

S = real numbers .

Therefore, the following are all events:

the set of all real numbers between −∞ and ∞ ,

the set of all real numbers between − 10 and 5.32 ,

any real number .
ut

You may object to some event definitions for elephant weights. However, we can assign
0 probability to events. Therefore, negative weights are acceptable as weights, as long
as we assign zero probability to them. A special kind of event is an

Elementary (or simple) event An event that cannot be divided into subsets.

Example 4.15. Consider a study of animal movement. We classify behaviors as a -
standing, b - walking and c - running. Then A := {a}, B := {b} and C := {c} are all
elementary events. a, b and c are not events at all because they are not sets. We may
consider an observation as a complete sequence (in any order) of A, B and C. Then
{a, b, c} is an elementary event, but {A, B, C} is not. ut

Because events are subsets of S, they can include more than one outcome. If one of
these outcomes occurred, we say that the event occurred.

Example 4.16. In a study of animal behavior, we classify the following events: A =
standing, B = walking, C = running, D = lying and E = other. We are interested in
two events: F - moving, G - not moving. Then if we observe the animal walking, we
say that event F occurred. Similarly, if we observe the animal laying, then we say
that event G occurred. ut

Recall that we defined disjoint sets as those sets whose intersection is empty. For
events, we define

Disjoint events A and B are said to be disjoint events if A ∩B = ∅.

Example 4.17. Let A = pneumonia, B = gangrene and C = dead be possible out-
comes of the observation that a person is alive. Then A and C are disjoint events. A
and B are not. ut

The ideas of outcome, sample space and event lead to the following definition:

Trial A single performance of an experiment whose outcome is in S. The following are
examples of trials: flipping a coin, rolling a die, treating a pond with rotenone,
treating a patient with a particular drug and recording the magnitude of an
earthquake. The simplest trial is defined as
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Bernoulli trial A trial with only two possible outcomes, one arbitrarily named a
success and the other a failure.

Example 4.18. A single flip of a coin is one example of a Bernoulli trial. It may
consists of an idealized coin—a circular disk of zero thickness. When flipped, it will
come to rest with either face up (“heads”, H, or “tails”, T ) with equal probability. A
regular coin is a good approximation of the idealized coin. ut

Chance experiment A chance experiment (or experiment for short) is a trial with
more than one possible outcomes where the amount of uncertainty of different
outcomes and their combinations is known or deducible.

Example 4.19. Flipping a fair coin, with outcomes defined as H and T is a chance
experiment. The sample space is

S = {H,T} .

and the amount of uncertainty of any outcome or their combinations is known.
In a medical study, giving patients a drug and observing the outcome is a chance

experiment. The outcome is uncertain and we assign hypothetical probability to out-
comes (e.g. healthy, sick, or dead). When the experiment is over, we may use the
results to test if our hypotheses about the probabilities—of being healthy, sick, or
dead—were justified. ut

Here is an example where a chance experiment is defined and the sample space is
determined.

Example 4.20. You observe deer crossing the highway. The experiment consists of
observing the sex of two consecutive deer. Let M be the event that a male crossed
the highway and F the event that a female did. To define the sample space, we use
a tree diagram (Figure 4.7). Here, the set of all possible outcomes is a female crossed
the road and then a female or a male, a male crossed the road and then a female or
a male. Therefore,

S = {FF, FM,MF,MM} .

Figure 4.7 A tree diagram.



Trials, events and experiments 107

To create the sample space with R, we use combn().

> no.dimnames(t( combn(c('F', 'M', 'F', 'M'), 2)))

"F" "M"

"F" "F"

"F" "M"

"M" "F"

"M" "M"

"F" "M"

From the innermost parentheses out: We create a vector that labels the possible out-
comes in the first and second pair of observations. Next, combn() creates a matrix of all
possible combinations of two from the vector. Next, we transpose the matrix (i.e. rows
become columns) with t(). Finally, we print this matrix with no.dimnames() (see
page 32). ut

When the number of possible outcomes is small, we can present the possible outcomes
with a tree diagram. In Example 4.20, an elementary event consists of two (not one)
crossings. Here is another example.

Example 4.21. Mist nets are used to catch birds. They are made of fine nylon mesh
so birds do not see them. The nets hang somewhat loosely and when a bird flies into
one, it gets tangled. Different meshes are used to catch different sizes of birds. Suppose
you have four mist nets, each of a different mesh. Call them nets 1, 2, 3 and 4. You
wish to allocate each of these nets to one of four study areas named a, b, c and d.
Here are the possible outcomes:

> p <- t(expand.grid(letters[1 : 4], 1 : 4))

> no.dimnames(noquote(p))

a b c d a b c d a b c d a b c d

1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4

The function expand.grid() creates a data frame from all combinations of the sup-
plied vectors. We give it a vector of the letters a through d and the sequence of
numbers 1 through 4. With t() we switch columns and rows in the resulting data
frame p. To see the combinations without quotes, we use noquote() and to see it with-
out the dimension names we use no.dimnames(). The latter is discussed on page 32.
The output from the calls above produces the sampling space S. Here we label

an elementary event by a pair of one letter and one digit—for example, (a, 1) means
that net 1 was assigned to area a. Because they are subsets of S, the following are
events. The set of all events such that the chosen area is a is

> (A <- no.dimnames(noquote(p[, p[1, ] == 'a'])))

a a a a

1 2 3 4

From the inside out, the expression p[1, ] =='a' returns TRUE for all those columns
in the first row of p that have the value a. Next, p[, p[1, ] == 'a'] returns the
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subset of the data frame that has a in its first row. To avoid clutter, we print A with
no dimension names. The events where mist net 1 is allocated to all areas are obtained
with

> (B <- no.dimnames(noquote(p[, p[2, ] == 1])))

a b c d

1 1 1 1

Again, from the inside out, the expression p[2, ] == 1 returns TRUE for all those
columns in the second row of p that have the value 1. Next, p[, p[2, ] == 1]

returns the subset of the data frame that has 1 in its second row. Again, to avoid
clutter, we print B with no dimension names. Now the intersection of the events A
and B gives the single event

> noquote(intersect(A, B))

[1] a 1

You could accomplish all of this without R. However, if your sets are more complex
and the combinations and subsets more elaborate, deriving the results by hand may be
tedious. ut

One of the most fundamental and pervasive experiments is the Bernoulli experiment.

Bernoulli experiment We call an experiment with a single event and two outcomes
a Bernoulli experiment.

Example 4.22. The simplest example of a Bernoulli experiment is a flip of a coin.
The event is a side of a coin landing face up. The two possible outcomes are heads
(H) or tails (T ). ut

A Bernoulli experiment is important in its own right. In many situations in life we
face binary choices with no certain outcomes. We drive a car and may or may not get
into an accident. Any aspect of computer logic and computations whose outcome may
not be certain involves binary operations. In decision making we often reduce choices
to binary operations—to act or not to act. Bernoulli trials serve as the starting point
for many other probability models which we shall meet as we proceed.

4.3 Definitions and properties of probability

There are several competing interpretations—and therefore definitions—of probabil-
ity. Yet, they all agree that a probability is a real number between 0 and 1 and that
the larger its value, the more likely the event. We write P (E) to mean the probability
of event E.

4.3.1 Definitions of probability

As a prelude to the definition of probability, let us consider two examples. These
illustrate two different approaches to the definition of probability.

Example 4.23. Consider a global disease epidemic that infects one quarter of the
world’s population. You work for the World Health Organization, so you travel the
world and record whether every person you meet (independent of any other person) is
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uninfected or infected. Assign the value 1 to an infected person and 0 to an uninfected
person. What would be the running proportion of infected persons you record? Let
nS (success) be the event that a person is infected and n the total number of persons
you encounter. The first person you meet may be infected or uninfected. Suppose they
turn out to be infected. Then the current proportion is p1 = 1. The next person you
encounter is uninfected and the current proportion is p2 = 1/2. After n encounters,
you have pn = nS / n. As n increases, you expect that pn ≈ 1/4. Instead of physically
counting the infected, let us simulate the process.

1 set.seed(100)

2 n.S <- ifelse(runif(1, 0, 1) < 0.25, 1, 0)

3 p <- vector()

4 for(n in 2 : 10000){

5 n.S <- n.S + ifelse(runif(1, 0, 1) < 0.25, 1, 0)

6 p[n] <- n.S / n

7 }

In line 1, we set.seed(). This allows us to repeat the same sequence of random
numbers every time we run the script. Thus, the numbers we generate are called
pseudo-random numbers. In line 2, we set our first “success” to zero or one. We
generate a single random number that has equal probability of being between zero
and one. Hence the call to runif(1,0,1). Accordingly, ifelse() assigns 1 if the
random number is < 0.25 and 0 otherwise. If we runif() many times with these
argument values, then approximately 1/4 of them will be less than 0.25.
In line 3, we initiate the vector of proportions with vector(). Then, we “encoun-

ter” 10 000 individuals with for(). We accumulate the number of infected persons
we meet in nS in line 5. In line 6, we accumulate the proportion of infected persons
to the total number of persons we met thus far. This is an inefficient way of doing
things in R, but we do it for heuristic reasons. The “process” above can be generated
with the single line

p <- cumsum(ifelse(runif(10000, 0, 1) < 0.25, 1, 0)) / (1:10000)

To see our experiment, we plot the accumulating proportions with this:

plot(p, type = 'l', ylim = c(0, 0.3),

xlab = expression(italic(n)), ylab = expression(italic(p)))

The type = 'l' argument ensures that a line (as opposed to the default points) is
drawn. To zoom in on the results, we set the limits of the y-axis between 0 and 0.3
with ylim = c(0, 0.3). To annotate the axes with xlab and ylab with italics, we
call the function italic() and run the function expression() on the result. Finally,
we add a horizontal line using abline() with the argument h (for horizontal) at 0.25:

abline(h = .25)

Figure 4.8 illustrates the results of our experiment. As we accumulate samples, the
proportion of infected persons approaches the true proportion of 0.25. The fact that
this happens seems trivial. The mathematical proof that this will happen every time
you run a similar experiment is not. ut
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Figure 4.8 A simulation of a disease epidemic.

The result in Example 4.23 is based on an experiment. Next, we obtain results
based on reasoning.

Example 4.24. Select a card from a well-mixed deck. Let C be the event that the
selected card’s suit is clubs. There is a 25% chance that the selected card’s suit is
clubs. How are we to interpret this statement? Imagine that we draw a card many
times. In approximately 25% of the draws the card’s suit will be clubs. After all, a
single draw must be of a card with only one suit. Thus we write

relative frequency of C =
number of times C occurs

number of draws
.

Therefore,
P (C) = 0.25 .

Also,
not C = 1− P (C) = 0.75 .

Now draw five cards. Let F be the event that all five cards are of the same suit.
Dealing 5 cards repeatedly, we write

relative frequency of F =
number of times F occurs

number of draws
.

Therefore,

P (F ) =
13

52
×
12

51
×
11

50
×
10

49
×
9

48
= 0.000 495 . ut

By the same token, instead of tossing a coin and determining the probability of heads,
we could have assumed that the coin is perfect, there is no wind, it falls on a flat,
horizontal surface, etc. In other words, under ideal conditions, we reason that the
probability of heads is 1/2.
As you can see, the perception of probability in Examples 4.23 and 4.24 dif-

fers. The former relies on experimentation and limit arguments, the latter on logical
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consequences of the assumptions. Both examples reflect the view of probability as a
frequency. We call this the frequentist view of probability. The distinction between
the two is that in Example 4.23, relying on the law of large numbers, probability is
defined as a limit:

p = lim
n→∞

nA

n

where nA is the number of times the event A occurs in n trials. The notation indicates
that p equals the right hand side in the limit as n→∞. According to Example 4.24,

p =
nA

n

is a logical consequence of the assumptions.
There is a different view of probability called the Bayesian view. Here probability

is treated somewhat subjectively. Probability is presumed to have a distribution. A
statistical procedure is then applied to estimate the parameters of the underlying
distribution based on the observed distribution. We will not discuss this view at all
(for further details, see Jaynes, 2003).
Our working definition of probability corresponds to the frequentist view. There-

fore, we define probability as follows:

Probability The probability of event E, denoted by P (E), is the value approached
by the relative frequency of occurrences of E in a long series of replications of a
chance experiment.

4.3.2 Properties of probability

From the above discussion, we conclude the following:

1. For any event E, 0 ≤ P (E) ≤ 1.
2. The probabilities of all elementary events must sum to 1.
3. Let E be composed of a set of elementary events. Then, P (E) is the sum of the
probabilities of all elementary events contained in E.

4. For any event E, P (E) + P (not E) = 1.

A more general version of these propertiesis called the probability axioms. These were
first articulated by Kolmogoroff (1956).

Example 4.25. Assume that a certain forest tract is visited by individual birds
randomly and independent of each other. Based on a few days of observations you
conclude that 30% of the birds visiting the tract are birds of prey and the rest are
song birds. Of the song birds, 25% are finches, 18% are warblers, 15% are vireos and
12% are chickadees. Define the event E as the next visiting bird is a song bird and
D as the event that the next visiting bird is a bird of prey. Then from the second
property of probabilities, we have

P (E) + P (D) = 1 or P (E) = 1− 0.3 = 0.7 .

Another way of achieving the same result is

P (E) = 0.25 + 0.18 + 0.15 + 0.12 = 0.7 .
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The probability that the next visiting bird is not a song bird is obviously 0.3. This
probability can also be obtained from

P (not E) = 1− P (E) = 1− 0.7 = 0.3 . ut

From the properties of probability, we conclude the following. Recall that elementary
events are disjoint and when calculating probabilities of their combinations, we simply
add the probabilities of the elementary events. Some combined events can be disjoint
as well. Thus, let E1, E2, . . . , En be disjoint events. Then

1

P (E1 or E2 or ∙ ∙ ∙ or En) = P (E1) + P (E2) + ∙ ∙ ∙+ P (En) .

4.3.3 Equally likely events

Equally likely events refer to events with equal probability of occurrence. When we say
an individual is chosen randomly, we mean that all individuals have equal probability
of being chosen.

Example 4.26. In a field research project, a crew of four students, two males and two
females, is selected to set traps in a certain area. They decide to divide themselves
randomly into two pairs. Denote the female students by f1 and f2 and the male
students by m1 and m2. The possible pairs are

{(f1, f2), (f1,m1), (f1,m2), (f2,m1), (f2,m2), (m1,m2)}

and therefore

P{(f1, f2)} = ∙ ∙ ∙ = P{(m1,m2)} =
1

6
.

Let E = both members of a pair are of the same gender. Then

E = {(f1, f2), (m1,m2)} , P (E) =
2

6
.

Let F be the event that at least one of the members of a pair is a female. Then

P (F ) =
5

6
. ut

When the number of elementary events is large, finding various combinations of events
is difficult. We then rely on counting rules (see Section 4.5.4).

4.3.4 Probability and set theory

Let us reflect upon the connection between probability and set theory. Recall that a
set is a collection of elements. The elements themselves can be sets. To establish the
connection between sets and events we shall use a specific example. Generalization is
immediate.
Suppose that 24 people are interviewed as potential jurors for a trial. One of them

is to be chosen randomly. Of the 24, 6 are black, 6 are Asian and 12 are white. Label

1The equation needs a proof, which we skip.
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the blacks by a1, . . . , a6, the Asians by b1, . . . , b6 and the whites by c1, . . . , c12. The
set of all elements is

S = {a1, . . . , a6, b1, . . . , b6, c1, . . . , c12} .

There are three obviously disjoint subsets,

A = {a1, . . . , a6} ,
B = {b1, . . . , b6} ,
C = {c1, . . . , c12} .

Let Ei be the event that the ith person is chosen as a juror randomly. Then,
P (Ei) = 1/24. The sets A, B and C correspond to the events EA, that one of the
selected jurors is black, EB , that one is Asian and EC , that one is white. Then the
correspondence between probabilities and sets is detailed in Table 4.2. Events are
mapped to probabilities. Therefore, set operations apply to the corresponding prob-
abilities. For example, corresponding to the set elements we have simple events, each
with equal probability. Also,

P (EA) = P (E1) ∪ ∙ ∙ ∙ ∪ P (E6) .

Table 4.2 Correspondence between set theory and probability.

Set theory Events Probabilities

Elements Elementary, Ei P (Ei) = 1/24
Disjoint subsets Mutually exclusive P (EA) , P (EB) , P (EC)
S Sample space P (S) = 1

Because elementary events are disjoint,

P (EA) = P (E1) ∪ ∙ ∙ ∙ ∪ P (E6)
= P (E1) + ∙ ∙ ∙+ P (E6)

=
6

24
=
1

3
.

P (EB) and P (EC) are computed similarly. We conclude that the probability of choos-
ing a black juror is 1/3. The probability that the selected juror is Asian or white
is

P (EB) ∪ P (EC) = P (EB) + P (EC)− P (EB) ∩ P (EC)

=
6

24
+
12

24
− 0

=
2

3

4.4 Conditional probability and independence

Conditional probability and independence deal with how to compute probabilities and
the meaning of probability. They are directly related to the description of Bayesian
probability that we alluded to in Section 4.3.1.
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4.4.1 Conditional probability

The occurrence of one event might change the likelihood of another. For example you
may be asked about the likelihood that a day was cloudy when you know it rained
during that day. In such a case, you would say that the likelihood is 100%. If you
are asked about the likelihood of rain given that it was cloudy during the day, your
answer will be less than 100%.

Example 4.27. Suppose that in a population, 0.1% have a certain disease. A diag-
nostic test is available, but it is correct in only 80% of the cases—; diagnosing the
disease when a person is actually infected. The other 20% show false positives. Now
choose a person from the population randomly and consider the following events:
E, an individual carries the disease and F , an individual’s diagnostic test result is
positive. Let P (E|F ) denote the probability of E given F . Then from the data

P (E) = 0.001 , P (E|F ) = 0.8 .

From this, we conclude that before having the test result, the probability of E is
unlikely. Once we have the test result, the probability that the person is infected has
increased several folds. ut

Here is another example of how conditional probabilities are calculated.

Example 4.28. For reasons one might guess, identical drugs are more expensive in
the U.S. than in Canada. Some states that border Canada decided to offer their resi-
dents the option to buy drugs from Canada. As you might expect, the drug companies
oppose this effort voraciously. They claim that drugs from Canada may be tainted—
more so than drugs bought in the U.S. The data for this example are imagined. Yet,
it can serve as a model to resolve the drug manufacturers claim.
You buy 25 pills, manufactured by a single company, from Canada and from the

U.S. Some of the pills are tainted according to the following data:

Not tainted Tainted Total

Canada 11 4 15
US 7 3 10
Total 18 7 25

Select a pill randomly for analysis and let E be the event that the chosen pill is from
Canada and F the event that the chosen pill is tainted. From the table above we
conclude:

P (E) =
15

25
= 0.60 , P (F ) =

7

25
= 0.28 , P (E and F ) =

4

25
= 0.16 .

Now suppose that the analysis revealed that the pill is tainted. How likely is it that
the pill came from Canada? Again, based on the table

P (E|F ) =
4

7
≈ 0.571 .
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This is smaller than the original P (E) because there is a lower percentage of tainted
pills from Canada than from the U.S. The same conditional probability can also be
calculated according to:

P (E|F ) =
4

7
=
4

25
÷
7

25
=
P (E and F )

P (F )
.

In other words, P (E|F ) is the ratio of the probability that both events occur divided
by the probability of the conditioning event F .

Figure 4.9 Conditional probability.

The idea of conditional probability can be represented with a Venn diagram
(Figure 4.9). We know that the outcome was F . The likelihood that E also occurred
is the size of E and F relative to the size of F . ut

We thus arrive at the definition of:

Conditional probability Let E and F be two events with P (F ) > 0. Then the
conditional probability of E given that F has occurred is

P (E|F ) =
P (E and F )

P (F )
.

Example 4.29. The seed banks in two prairie areas, labeled A and B, were studied.
The data consist of the relative number of seeds of three major grass species; call
them a, b and c. The table below shows the fraction of the seeds from each species
and area.

Species
Area a b c Total

A 0.40 0.21 0.09 0.70
B 0.10 0.09 0.11 0.30
Total 0.50 0.30 0.20 1.00

Tables such as this are called joint probability tables. Examples from the table: 70% of
all seeds were from area A, 50% of the seeds came from species a. Denote the following
events: E, a selected seed is from A and F , a selected seed is from a. Now select a
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seed at random and identify it. It turns out to be from a. What is the probability
that the seed was collected from A?

P (E|F ) =
P (E and F )

P (F )
=
0.40

0.50
= 0.80 .

In other words, 80% of the seeds from species a came from area A. Here

P (E|F ) = 0.80 > P (E) = 0.70 .

Furthermore,

P (F |E) =
P (E and F )

P (E)
=
0.40

0.70
= 0.571 > 0.5 = P (F ) .

It is not always the case that conditional probability improves chances that an event
will occur. For example, let C be the event that the selected seed came from b. Then

P (E|C) =
P (E and C)

P (C)
=
0.21

0.30
= 0.70 = P (E) .

In other words, P (E|C) = P (E). That is, if we are told that the seed belongs to a,
the likelihood that it came from A remains unchanged. ut

Throughout the preceding (and future) discussion of probability, we always interpret
it in frequentist terms: “If we repeat the experiment many times, then the probability
is obtained from the ratio of the number of times an event occurred to the total
number of repetitions.”

4.4.2 Independence

If the occurrence of one event does not change the probability that another event will
occur, we say that the events are independent.

Independent events (first definition) Events E and F are said to be indepen-
dent if

P (E|F ) = P (E) .

If E and F are not independent then we say that they are dependent.

Similarly, if P (F |E) = P (F ) then E and F are said to be independent. Independence
implies the following:

P (not E|F ) = P (not E) ,

P (E|not F ) = P (E) ,

P (not E|not F ) = P (not E) .

Another way to define independent events is:

Independent events (second definition) The events E and F are independent if
and only if

P (E and F ) = P (E)P (F ) .
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This identity is called the multiplicative rule. The “if and only if” statement above
implies that if E and F are independent, then the multiplicative rule is true and if
the multiplicative rule is true, then the events are independent.

Example 4.30. Let E be the event that a statistics class begins on time and F
the event that an ornithology class begins on time. The professors of both classes are
unaware of each other’s behavior. We therefore assume that E and F are independent.
Suppose that P (E) = 0.9 and P (F ) = 0.6. Then

P (E and F ) = P (both classes begin on time)

= P (E)P (F )

= 0.9× 0.6 = 0.54 .
Also

P (not E and not F ) = P (neither class begins on time)

= P (not E)P (not F )

= 0.1× 0.4 = 0.04 .

The probability that exactly one of the two classes begins on time is

P (exactly one class begins on time) = 1 − (0.54 + 0.04)
= 0.42 .

ut
Independence applies to more than two events. If E1, E2, . . . , En are independent
then

P (E1 and E2 and . . . and En) = P (E1)P (E2) ∙ ∙ ∙P (En) . (4.3)

Note that the relations are not if and only if. In other words, if (4.3) is true, it
does not necessarily mean that the events are independent. We say that n events are
independent if and only if (4.3) is true and all possible pairs of events are independent
and all possible triplets are independent and so on. To see this, consider the following
example.

Example 4.31. In Figure 4.10 the proportion of the size of the rectangles A, B and
C to the rectangular space S reflects their probability and the inset darker rectangle
represents A ∩B ∩ C. Given that

P (A) = P (B) = P (C) =
1

6

Figure 4.10 Seemingly independent events that are not.
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we have

P (A ∩B) = P (A ∩ C) = P (B ∩ C) = P (A ∩B ∩ C) =
1

36
.

Also

P (A)P (B) = P (A)P (C) = P (B)P (C) =
1

36
,

so the events appear to be independent. However,

P (A ∩B ∩ C) 6= P (A)P (B)P (C) =
1

216
.

In other words, pairs of events are independent, but their triplet is not. Therefore,
the events A, B and C are not independent. ut

4.5 Algebra with probabilities

As we have seen, we combine probabilities in different ways for dependent and indepen-
dent events. When the number of outcomes is small, we can enumerate all outcomes
and compute probabilities. This is not possible when the number of outcomes is large.
Thus, we need to have some (when possible) rules about how to deal with addition,
subtraction and in general, how to combine events and obtain their probabilities.

4.5.1 Sampling with and without replacement

Sampling with replacement refers to drawing a sample from a population and then
putting the sample units back in the population before drawing another sample. Sam-
pling without replacement refers to removing the sample from the population after it
is drawn. When the population is small, sampling without replacement may change
probabilities significantly. In other words, for a small population, sampling without
replacement introduces noticeable dependency among the probabilities of events. Here
is an example with a small population.

Example 4.32. Last semester, there were 35 students in my statistics class, 20
females and 15 males. Of the females, 15 had blond hair. Of the males, 10 were
blond. Consider the following experiment: select a student at random with replace-
ment and record gender and hair color. Let B1 denote the event that the first chosen
student is a male blond, B2 the second chosen student is a male blond and B3 the
third chosen student is a male blond. Then

P (B3) =
10

35
= 0.28 571

regardless of whether B1 or B2 occurred. Next, sample without replacement. Then

P (B3|B1 and B2) =
10− 2
35− 2

= 0.24 242 .

Also

P (B3|not B1 and not B2) =
10

35− 2
= 0.30 303 .

Thus, probabilities may be noticeably different, depending on whether we sample with
or without replacement. ut

Next, consider a large population.
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Example 4.33. The Minnesota Vikings and the Green Bay Packers are two football
teams with a long history of rivalry. Of the 10 000 people that show up to a game
between these teams, 2 500 are Packers fans. The rest are Vikings fans. Choose 3 fans
without replacement and define the following events: E1, the first choice is a Packers
fan, E2, the second choice is a Packers fan and E3, the third choice is a Packers fan.
Then

P (E3|E1 and E2) =
2 498

9 998
= 0.24 985

and

P (E3|not E1 and not E3) =
2 500

9 998
= 0.25 005 .

Thus, for all practical purposes, E1, E2 and E3 are independent. ut

A rule of thumb If at most 5% of the population is sampled without replacement,
then we may consider the sample as if it is with replacement.

4.5.2 Addition

As we already saw in Section 4.3.4, adding dependent events is like adding sets that
are not disjoint. Consequently, the probabilities of adding two events when they are
dependent or independent are different. We need to subtract the common outcomes
of the events. For two events, we have the

Addition rule For any two events, E and F ,

P (E or F ) = P (E) + P (F )− P (E and F ) .

In words, the probability that the events E or F occur equals the sum of the proba-
bilities that each event occurs, minus the probability that both E and F occur.

Example 4.34. Of the students in an Ecology class, 60% took statistics, 40% took
calculus and 25% took both. Select a student randomly. What is the probability that
the student took at least one of these two courses? Let E be the event that the
selected student took statistics, F that the selected student took calculus and G that
the selected student took at least one of the courses. Then

P (E) = 0.6 , P (F ) = 0.4 , P (E and F ) = 0.25 .

Therefore,

P (G) = P (E or F )

= P (E) + P (F )− P (E and F )

= 0.60 + 0.40− 0.25

= 0.75 .

Now let H be the event that the selected student took none of the courses. Then

P (H) = P (not (E or F ))

= 1− P (E or F )

= 0.25 .
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Let I be the event that the selected student took exactly one of the courses. Then

P (I) = P (E or F )− P (E and F )

= 0.75− 0.25

= 0.50 .
ut

4.5.3 Multiplication

Recall that for conditional probability with P (F ) > 0, we have

P (E|F ) =
P (E and F )

P (F )
.

Therefore,
P (E and F ) = P (E|F )P (F ) . (4.4)

When E and F are independent, P (E|F ) = P (E) and the last equation reduces to

P (E and F ) = P (E)P (F ) . (4.5)

Multiplication rule If two events E and F are dependent, then (4.4) holds. If the
events are independent, then (4.5) holds.

Example 4.35. You are told that in a certain area, 70% of the birds are song birds.
Of these, 20% are sparrows. Also, 30% of the birds in the area are hummingbirds and
of these, 40% are Calliope hummingbirds. Suppose that your best guess of what bird
you will be seeing next as you walk in the forest is that it will be a random individual
among the birds in the area. What is the probability that you will see a sparrow next?
First, we write the data in a convenient format:

% of birds Of these
Songbirds 70% 20% sparrows

Hummingbirds 30% 40% Calliope

Let D be the event that a song bird is observed and E a sparrow is observed. From
the data

P (D) = 0.70 ,

P (E|D) = 0.20 .

Therefore,
P (D and E) = P (E|D)× P (D) = 0.70× 0.20 = 0.14 . ut

4.5.4 Counting rules

So far, we have dealt with a small number of events. Drawing tree diagrams and
computing probabilities of events with and without replacement was relatively easy.
When the number of outcomes is large, computing all possible outcomes becomes
impossible. We have to be a bit more clever in calculating probabilities. We deal with
these issues next.
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Multiplication

Multiplication applies to sampling with replacement. When we have two experiments,
the first with n1 possible outcomes and the second with n2 possible outcomes, then
the total number of outcomes, n, is

n = n1 × n2 .

Example 4.36. Ten single males and 12 single females are invited to a party. In how
many ways can they be paired? Identify each male as Mi, i = 1, . . . , 10 and each
female as Fi, i = 1, . . . , 12. Here n1 = 10 and n2 = 12. Now M1 can be paired in 12
different ways (with F1, . . . , F12). M2 can be paired in 12 different ways and so on
up to M10. Therefore, the number of possible pairs is

n = 10× 12 = 120 .

Next suppose that 3 of the males are from England and 4 of the females are from
France. Let C be the event that the male member of a pair is from England and the
female from France. Assume that pairs are formed randomly. Then

P (C) =
(number of pairs in C)

n
=
3× 4
120

= 0.10 .
ut

When we combine k experiments, each with ni outcomes, the number of possible
outcomes, n, is

n = n1 × n2 × ∙ ∙ ∙ × nk .

Example 4.37. In a group of suspected terrorists, 10 speak English fluently, 15 are
combat trained and 12 can fly planes. In how many ways can the group divide itself
into subgroups of three? Here

n = 10× 15× 12 = 1 800 .

Suppose that 3 of the English speaking suspected terrorists, 4 of the combat trained
and 3 of those who can fly planes are from Saudi Arabia. Triplets are chosen randomly.
What is the probability that all members of a triplet are from Saudi Arabia?

P (all are from Saudi Arabia) =
3× 4× 3
1 800

= 0.02 .
ut

Permutations

In the previous section, we chose members of a pair or a triplet with replacement.
When the order of choosing is important and when it is done without replacement,
the rule for finding the number of possible events is different.

Example 4.38. Twelve students apply for summer field work that requires 5 different
tasks: trapping (s1), mist-netting (s2), collecting vegetation data (s3), entering data
(s4) and analyzing data (s5). All students are equally skilled at these tasks. How
many different teams can be formed? We start with n = 12 students. For s1 we can
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choose one student out of 12. Therefore, there are 12 possibilities. For a particular
choice of a student for task s1, there are 11 students to choose from for task s2 and
so on. Therefore, the number of different teams that can be chosen is

n (n− 1) ∙ ∙ ∙ (n− 4) = 12× 11× 10× 9× 8

= 95 040 . ut

To generalize the example, we consider n objects. They are to be arranged into an
ordered subset of k objects. Thus, for the first slot in k we can choose one of the n
objects in n different ways. For the second slot in k we can choose one of the objects
in n− 1 ways. Therefore the first and the second slots in k can be chosen in n(n− 1)
ways and so on. For the last kth slot, we have n− (k − 1) objects to choose from. We
thus have the following definition:

Permutation The number of permutations of k objects selected randomly from a
population of n objects, denoted by Pn,k is

Pn,k = n (n− 1) (n− 2) ∙ ∙ ∙ (n− k + 1) . (4.6)

Instead of writing the permutations explicitly, we use a short hand notation, called
factorial.

Factorials

n! := n× (n− 1)× ∙ ∙ ∙ × 2× 1 ,

0! := 1 .

Therefore, we can write equation (4.6) as

Pn,k :=
n!

(n− k)!
. (4.7)

To see this, expand the numerator and denominator and cancel equal elements.
Equation (4.7) is called the permutations equation. It gives the number of permu-
tations (ways to arrange) of k objects taken from a population of size n, when the
order of selecting the objects is important.

Example 4.39. In a random mating experiment, there are 10 females available for
mating. A male mates with 6 of them. The mating order is important because the
male’s viability deteriorates with more matings. In how many ways can that male
mate with 6 females?

P10,6 =
10!

(10− 6)!
= 151 200 .

Now suppose that another male chooses the 6 females in the same order. In other
words, both males chose the same permutation out of 151 200. We will then conclude
that it is highly unlikely that the choice of mating order is random. ut

Often, we wish to produce the permutations themselves, instead of counting the num-
ber of permutations. Here is how we do it in R.
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Example 4.40.We wish to produce a list of all permutations of the last five letters.
First, we create a vector of these letters and print it:

> x <- letters[22 : 26]

> nqd(array(x))

v w x y z

The function nqd() prints an array with no quotes and no dimension names. Its code
is

nqd <- function(x) print(noquote(no.dimnames(x)))

Next, we create a list of all permutations of the letters.

> library(combinat)

> px <- unlist(permn(x))

permn() returns a list of all permutations. We collapse the list into a vector with
unlist(). Here are the first two permutations:

> nqd(array(px[1 : 10]))

v w x y z v w x z y

To display all permutations compactly, we cut the matrix pmx into two and then
column bind them with space between them. Finally, we print the results:

> pmx <- matrix(px, ncol=4, byrow=TRUE)

> pmx <- cbind(pmx[1 : 6, ], ' ', pmx[7 : 12, ],

+ ' ', pmx[13 : 18, ], ' ', pmx[19 : 24, ])

> nqd(pmx)

w x y z w y z x z y x w x z y w

w x z y w y x z y z x w z x y w

w z x y y w x z y x z w z x w y

z w x y y w z x y x w z x z w y

z w y x y z w x x y w z x w z y

w z y x z y w x x y z w x w y z ut

Combinations

Recall that in the case of permutations, order was important. When order is not impor-
tant we deal with combinations. It should be clear that the number of possibilities
when order is not important is smaller than otherwise.

Example 4.41. Consider five genes: A, B, C, D and E. In how many ways can you
arrange three of these genes when their order is important?

P5,3 =
5!

(5− 3)!
= 60 .

If order is not important, the first gene in the arrangement can be in one of three
positions (first, second or third), the second gene in one of two remaining positions and
the last in the one remaining position. This means that we count fewer choices because
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different orders represent the same choice if the same three genes were selected. How
many fewer choices? As many as the number of permutations of the three genes. In
other words, by a factor of 3!. Therefore, when order is not important, the number of
distinct arrangements of three out of five genes is

5!

3! (5− 3)!
= 10 .

With R, we do this:

> library(combinat)

> nc <- nCm(5, 3)

> np <- nCm(5, 3) * fact(3)

> (c(comb = nc, perm = np))

comb perm

10 60

Note that the number of permutations (np) = the number of combinations (nc) × 3!.
To list the combinations, do

> x <- LETTERS[1 : 5]

> nqd(combn(x, 3))

A A A A A A B B B C

B B B C C D C C D D

C D E D E E D E E E
ut

Thus we have the following definition:

Combination An unordered subset of k objects chosen from among n objects is
called a combination. The number of such combinations is computed with

Cn,k :=

(
n

k

)

:=
Pn,k

k!
=

n!

k! (n− k!)
.

Example 4.42. In Example 4.39, we had 10 females and a male was to mate with 6
of them. We found that the male could mate with the 6 females in

P10,6 =
10!

(10− 6)!
= 151 200

different ways when order was important. Suppose that the male’s viability does
not deteriorate with more matings. Then the order of mating is not important. The
number of possible matings with 6 females out of 10 now becomes

C10,6 =

(
10

6

)

=
10!

6! (10− 6)!
= 210 .

This represents a large number of choices. If another male mates with the same
combination of females, we conclude that the choice of mates is not random.
Suppose that after the mating, the male shows a particular preference for 2 of the

females. Now the male is presented with 8 females and is going to choose 4 of them
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randomly. What is the probability that his 2 preferred females will be included in the
male’s choice? Let E be the event that both preferred females are chosen. Assume
that all possible choices (4 out of 8) are equally likely. Then

P (E) =
number of outcomes in E

number of ways to select 4 out of 8 females

=

(
6
2

)

(
8
4

) =
6!

2! (6− 2)!
×
4! (8− 4)!
8!

≈ 0.214

ut

Let us contrast permutations and combinations with and without replacement
using R.

Example 4.43. The genome of an organism is carried in its DNA. Genes code for
RNA, which in turn codes for amino acids. Genes that code for amino acids are
composed of codons. When strung together (in a specific order), these amino acids
form a protein. In RNA, each codon sub-unit consists of three of the following four
nucleotide bases: adenine (A), cytosine (C), guanine (G) and uracil (U).
Imagine a brine with billions of A, C, G and U. In how many ways can a codon

be arranged? The first slot of the sequence of three can be filled with four differ-
ent nucleotides, the second with four and the third with four. Therefore, we have
43 = 64 different codon combinations. These 64 permutations are called the RNA
Codon Table. Here is how we make the table in R:

1 nucleotide <- c('U', 'C', 'A', 'G')

2 library(gtools)

3 RNA.codons <- permutations(4, 3, v = nucleotide,

4 repeats.allowed = TRUE)

5 RNA.table <- data.frame(RNA.codons[ 1 : 16, ], ' ')

6 for(i in 2 : 4){

7 RNA.table <- data.frame(

8 RNA.table, RNA.codons[ (16 * (i - 1) + 1) : (16 * i),

9 ], ' ')

10 }

11 nqd(as.matrix(RNA.table))

To use the function permutations(), we first load the package gtools with a call
to library() (line 2). In lines 3 and 4 we call permutations() with the appropriate
arguments v (a vector) and allowing repetition (repeats.allowed). We then create
the RNA table as a data.frame() and print it as.matrix(). The output from this
script is

A A A C A A G A A U A A

A A C C A C G A C U A C

A A G C A G G A G U A G

A A U C A U G A U U A U

A C A C C A G C A U C A
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A C C C C C G C C U C C

A C G C C G G C G U C G

A C U C C U G C U U C U

A G A C G A G G A U G A

A G C C G C G G C U G C

A G G C G G G G G U G G

A G U C G U G G U U G U

A U A C U A G U A U U A

A U C C U C G U C U U C

A U G C U G G U G U U G

A U U C U U G U U U U U

Next, suppose that the brine is limited in the supply of A, C, G and U. Then change
all 16 to 6 in the script above and change the call to permutations() to

RNA.codons <- permutations(4, 3, v = nucleotide,

repeats.allowed=FALSE)

Now you get fewer permutations (because replacement is not allowed):

A C G C A G G A C U A C

A C U C A U G A U U A G

A G C C G A G C A U C A

A G U C G U G C U U C G

A U C C U A G U A U G A

A U G C U G G U C U G C

Order is important here because every codon sequence produces a different amino
acid. Suppose that identical amino acids were produced with the same three nucleo-
tides, regardless of their sequence with unlimited supply of nucleotides. Then the
script

1 nucleotide <- c('U', 'C', 'A', 'G')

2 library(gtools)

3 RNA.codons <- combinations(4, 3, v = nucleotide,

4 repeats.allowed = TRUE)

5 RNA.codons <- data.frame(RNA.codons[1 : 10, ], ' ',

6 RNA.codons[11 : 20, ])

7 nqd(as.matrix(RNA.codons))

produces

A A A C C C

A A C C C G

A A G C C U

A A U C G G

A C C C G U

A C G C U U

A C U G G G
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A G G G G U

A G U G U U

A U U U U U

and if the supply of the nucleotides is limited (combination is without replacement),
then change the call to combinations()

RNA.codons <- combinations(4, 3, v = nucleotide,

repeats.allowed = FALSE)

and you you get the possible combinations

A C G

A C U

A G U

C G U

Observe that sampling with and without replacement for permutations and combina-
tions result in a different number of outcomes! ut

4.6 Random variables

Events are associated with probabilities. A function that assigns real values to events
associates the events’ probabilities with those real values. Such functions are appro-
priately called random variables. From here on, we will use rv to denote both random
variable and random variables.
Assigning real values to events lead to rv. The values of the rv inherit the prob-

abilities (and operations on these probabilities) of their corresponding events. The
links between the values that a rv takes and the probabilities assigned to these values
then lead to densities and distributions. These links are illustrated in Figure 4.11. We
discussed the link P (E) throughout this chapter—it corresponds to the definition of
probability. The remaining links are discussed here.

Figure 4.11 A random variable is a mapping of events to the real line.

Throughout, we use the concept of a real line. The real line is the familiar line
that extends from −∞ to ∞. It has an origin at 0 and each point on the line has a



128 Probability and random variables

value. The latter reflects the distance of the point from the origin. These values are
called real numbers . We will agree that the (extended) real line includes both −∞
and ∞.
We define rv thus:

Random variable A function that assigns real numbers to events, including the null
event.

We usually denote rv with upper case letters, such as X and Y . As Figure 4.11
illustrates, a rv is a mapping of events to values on the real line. In this context, we
say that the sample space, S, is the domain and the real line, R, is the range. We
write this as

X (E) : S → R .

The definition of a rv implies that the assignment of real numbers to events can be
arbitrary. Because the definition includes the null event, we are free to assign any real
value or range of values to the null event.

4.7 Assignments

Exercise 4.1. Males and females cross a street in no particular order. We note the
gender of the first and second people who cross the street. The possible outcomes
consist of male first and male second, male first and female second, and so on. Let F
and M be the events that a female or a male crossed the street, respectively. Then S
= {MM, MF , FM , FF}. Verify that the power set consists of 24 = 16 subsets.

Exercise 4.2. This exercise demonstrates DeMorgan’s Laws. Draw a Venn diagram
picturing A and B that partially overlap.

1. Shade not (A or B). On a separate diagram, shade (not A) and (not B). Compare
the two diagrams.

2. Shade not (A and B). On a separate diagram shade (not A) or (not B). Compare
the two diagrams.

Exercise 4.3. An experiment consists of rolling a die and flipping a coin.

1. What is the sample space S? How many outcomes are in the sample space?
2. What are the outcomes of the event E that the side of the die facing up shows an
even number of dots?

3. What are the outcomes of the event F that the coin lands on H?
4. What are the outcomes of E ∪ F?
5. What are the outcomes of E ∩ F?
6. Suppose that outcomes are equally likely. Compute:
(a) P (E)
(b) P (F )
(c) P (E ∪ F )
(d) P (E ∩ F )

Exercise 4.4.What is the sample space of an experiment that consists of drawing a
card from a standard deck and recording its suit?
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Exercise 4.5. Last semester, I took note of students late to class. The results from
22 students were:

0 2 5 0 3 1 8 0 3 1 1 9 2 4 0 2 9 3 0

1 9 8

1. What proportion of the students was never late?
2. What proportion of the students was late to class at most 8 times? At least 8
times?

3. What proportion of the students was late between 3 and 6 times during the
semester?

Exercise 4.6.We record the fate of patients who arrive at a hospital emergency
room. The two possible outcomes are the patient is admitted for further treatment or
released. To test the hypothesis (we shall do that later) that the fate of two consecutive
patients is independent, we choose the first patient at random and record his/her fate.
Then we record the fate of the next arrival.

1. What is the sample space, i.e. the set of all possible outcomes?
2. Show the sample space in a tree diagram.
3. List the outcomes of the event B that at least one patient was released.
4. List the outcomes of the event C that exactly one patient was released.
5. List the outcomes of the event D that none of the patients were released.
6. Which of the events B, C and D is elementary?
7. List the outcomes in the events B and C.
8. List the outcomes in the events B or D.

Exercise 4.7. To test the efficacy of admissions or release, an emergency room
embarks on a controlled experiment. Each experiment (there are many of them, but
we shall examine only one) consists of choosing 4 patients at random on a particu-
lar night. The patients are selected from a group where the doctors are not certain
whether they should be admitted or not. Name the patients P1, P2, P3 and P4. Of
these 4 patients, we choose 2 at random. The first patient will be released and the
second admitted.

1. Display a tree diagram of the possible outcomes.
2. Denote by A the event that at least one of the patients has an even numbered
index (P2 and P4 have even numbered indices). Which outcomes are included in
A?

3. Suppose that P1 and P2 are over 50 years old and P3 and P4 are less than 40
years old. Denote by B the event that exactly one of the patients selected is over
50 years old. Which outcomes are included in B?

Exercise 4.8. Starting at a certain time, you observe deer crossing a road and record
their sex (M = male, F = female). The experiment terminates as soon as a male is
observed.

1. Give 5 possible experimental outcomes.
2. How many outcomes are there in the sample space?
3. Let E = number of deer observed is even. What outcomes are in E?
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Exercise 4.9. The following is a subset of the vital statistics data obtained from
WHO (see Example 2.7). The data were collected during 1995 to 2000 and reported
in 2003 . Data include the death rate (per 1000 per year) for Eastern African countries
only.

country dr

2 Eastern Africa 18.8

3 Burundi 20.6

4 Comoros 8.4

5 Djibouti 17.7

6 Eritrea 11.9

7 Ethiopia 17.7

8 Kenya 16.7

9 Madagascar 13.2

10 Malawi 24.1

11 Mauritius 6.7

12 Mozambique 23.5

13 Reunion 5.5

14 Rwanda 21.8

16 Somalia 17.7

17 Uganda 16.7

18 United Republic of Tanzania 18.1

19 Zambia 28.0

20 Zimbabwe 27.0

A person is picked at random from Eastern Africa.

1. Which country (or countries) could the person have come from if you are told
that his probability of dying during the next year is greater than 0.0 167?

2. Which country (or countries) could the person have come from if you are told
that his probability of dying during the next year is smaller than 0.0 067?

3. Which country (or countries) could the person have come from if you are told that
his probability of dying during the next year is larger than 0.00 167 and smaller
than 0.0 181?

Exercise 4.10. All of the terrorists in the 9/11 attack on the Twin Towers came from
Middle Eastern Arab countries. The populations of Middle Eastern Arab countries
(from the WHO data, see Example 2.7) are as follows (in 1 000):

country pop

1 Bahrain 724

2 Egypt 71931

3 Iran (Islamic Republic of) 68919

4 Iraq 25174

5 Jordan 5472

6 Kuwait 2521

7 Lebanon 3652

8 Libyan Arab Jamahiriya 5550

9 Occupied Palestinian Territory 3557

10 Oman 2851
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11 Saudi Arabia 24217

12 Syrian Arab Republic 17799

13 United Arab Emirates 2994

14 Yemen 20010

Suppose that these terrorists were assembled independently.

1. What is the probability that one of the terrorists came from Saudi Arabia?
2. What is the probability that one of the terrorists came from Saudi Arabia or
Egypt?

3. What is the probability that one of the terrorists came from neither Saudi Arabia
nor from Egypt?

Exercise 4.11. A single card is randomly selected from a well-mixed deck.

1. How many elementary events are there?
2. What is the probability of an elementary event?
3. What is the probability that the selected card is a diamond? A face card (Jack,
Queen or King)?

4. What is the probability that the selected card is both a diamond and a face card?
5. Let A be the event that the selected card is a face and B the event that the
selected card is a diamond. What is P (A or B)?

Exercise 4.12. Based on a questionnaire, a matching service finds 4 men and 4
women that match perfectly and are predicted to have a happy marriage. Any incor-
rect matching is predicted to result in a failed marriage. In their infinite wisdom, the
matching service pairs the customers completely randomly. That is, all outcomes are
equally likely. Label the males as A, B, C and D. To simplify the notation, consider
one possible outcome: A is paired with B’s perfect match, B is paired with C’s perfect
match, C is paired with D’s perfect match and D is paired with A’s perfect match.
We write this outcome as {B,C,D,A}.

1. List the possible outcomes.
2. Consider the event that exactly two of the matchings result in a happy marriage.
List the outcomes contained in this event.

3. What is the probability of this event?
4. What is the probability that exactly one matching results in a happy marriage?
5. What is the probability that exactly three matchings result in happy marriages?
6. What is the probability that at least two of the four matches result in happy
marriages?

Exercise 4.13. Five drug addicts are shooting heroin in a crack house. Name them
A, B, C, D and E. Each of them is equally likely to die from overdose. Two of them
will die by the end of the evening.

1. List the possible outcomes.
2. What is the probability of each elementary event?
3. What is the probability that one of the dead addicts is A?

Exercise 4.14. Of five people in the emergency room (ER) of a certain hospital, A
and B are first time patients. For patients C, D and E, it is their second visit to the
ER. Two of the five are chosen randomly for treatment by the ER intern.
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1. What is the probability that both selected patients are first-time visitors?
2. What is the probability that both selected patients are second-time visitors?
3. What is the probability that at least one of the selected patients is a first-time
visitor?

4. What is the probability that of the selected patients, one is a “first-timer” and
the other is a “second-timer?”

Exercise 4.15. A patient is seen at a clinic. A recent epidemic in town shows that
the probability that the patient suffers from the flu is 0.75. The probability that he
suffers from walking pneumonia is 0.55. The probability that he suffers from both is
0.50. Denote by F the event that the patient suffers from the flu and by M that he
suffers from pneumonia.

1. Interpret and compute P (F |M).
2. Interpret and compute P (M |F ).
3. Are F and M independent? Explain.

Exercise 4.16. The probability that a randomly selected student on a typical univer-
sity campus showered this morning is 0.15. The probability that a randomly selected
student on the campus had breakfast this morning is 0.05. The probability that a
randomly selected student on the campus both took a shower and had breakfast is
0.009.

1. Given that the student took a shower, what is the probability that he had breakfast
as well?

2. If a randomly selected student had breakfast, what is the probability that she also
took a shower?

3. Are the events “took a shower” and “had breakfast” independent? Explain.

Exercise 4.17. In the U.S., racial profiling describes the practice of law enforcement
agencies to search, stop and sometimes arrest people of a particular ethnic group
more than their relative number in the population. Suppose that a population in a
certain city is composed of 30% belonging to ethnic group 1 and 70% to ethnic group
2. Members of the ethnic groups are visibly different. Court records reveal that crime
rate in group 1 is 25% and in group 2 it is 10%. A police officer stops a person at
random. Let E1 be the event that the person belongs to group 1, E2 the event that
the person belongs to group 2 and E3 the event that the person is a criminal.

1. What is the probability that the person is a criminal?
2. What is the probability that the person is from A if he is a criminal?
3. What is the probability that the person is from B if she is a criminal?
4. In your opinion, do the results justify racial profiling?

Exercise 4.18. A small pond has 12 fish in it. Seven of them are walleye and five are
Northern pike. On a particular day, only two fish are caught. Suppose that the two
fish are caught randomly.

1. What is the probability that the first fish caught is a walleye?
2. What is the probability that the second fish caught is a walleye given that the
first is a walleye?

3. What is the probability that the first and the second fish caught are walleye?
4. Explain the difference in the probabilities between case 2 and case 3.
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Figure 4.12 Dam gates.

Exercise 4.19. A series of gated dams along two parallel streams is shown in Figure
4.12. Denote E1 as the event that gate A functions properly, E2 as the event that gate
B functions properly and so on. Suppose that P (Ei) = 0.95, i = 1, 2, 3, 4 and that
gates function independently. A closed gate is considered to be functioning improperly.

1. What is the probability that water will flow uninterrupted through branch c?
2. What is the probability that water will flow uninterrupted through branch b?
3. What is the probability that water will flow through both branches uninterrupted?
4. What is the probability that water will flow through the system uninterrupted?

Exercise 4.20. To successfully treat a disease, a patient goes through a two-step
treatment with clear criteria for successful treatment at each step. Let E denote the
event that the first step of the treatment succeeds and F the event that the second
step succeeds. The respective probabilities are P (E) = 0.45 and P (F ) = 0.25. The
probability that the two-step treatment succeeds is P (E and F ) = 0.20.

1. What is the probability that at least one step of the treatment succeeds?
2. What is the probability that neither step succeeds?
3. What is the probability that exactly one of the two steps succeeds?
4. What is the probability that only the first step succeeds?

Exercise 4.21. Tuberculosis is becoming a global health problem. There are strains
of the bacillus that are resistant to antibiotics. Suppose that 0.2% of individuals in a
population suffer from tuberculosis. Of those who have the disease, 98% test positive
when administered a diagnostic test. Of those who do not have the disease, 85% test
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negative when the test is applied. Choose an individual at random and administer
the test. Let E be the event that a person has tuberculosis and F the event that the
test is positive.

1. Construct a tree diagram with two branches: infected with tuberculosis and not
infected. From each of these branches, show two branches: test positive and test
negative. Show the appropriate probabilities on each of the four branches.

2. What is P (E and F )?
3. What is P (F )?
4. What is P (E|F )?

Exercise 4.22. At the time of writing, the Minneapolis - St. Paul metropolitan area
has 4 major-sport teams: the Vikings (football), the Timberwolves (basketball), the
Twins (baseball) and the Wild (hockey). When the teams are successful (they usually
are not), game tickets are hard to come by. A scalper (a person who buys tickets at
their box-office price and then sells them to the highest bidder—oddly deemed illegal
in a capitalistic society) buys 5 tickets to 5 different Vikings games, 4 to 4 different
Timberwolves games, 3 to 3 different Twins games and no Wild tickets. He then lets
you select 3 tickets randomly.

1. In how many ways can you select one ticket for each team game?
2. In how many ways can you select 3 tickets without regard to the team?
3. If 3 tickets are selected completely randomly, what is the probability that the 3
are for different team games?

Exercise 4.23. You are shopping for a computer system. You have a choice of mon-
itor from 6 manufactures, main unit (CPU) from 4 manufacturers and printer from 7
manufacturers. All are about equally priced. How many different system combinations
can you assemble?

Exercise 4.24. You suspect that 1 of a 25-cow herd is sick with mad cow disease.
The remaining 24 are healthy. You select one cow at a time and test for the disease.
Once you detect the disease, you stop the experiment. What is the probability that
you must examine at least 2 cows?

Exercise 4.25. You are admitted to a hospital for brain surgery. Before submitting
to the operation, you wish to have an opinion from two physicians. You obtain a list
of 5 physicians, along with their years of practice. The list says that the 5 physicians
have been in practice for 2, 5, 7, 9 and 12 years. You choose two physicians randomly.
What is the probability that the chosen two have a total of at least 13 years of practice
experience?

Exercise 4.26. Each mouse entering a maze in an experiment can turn left (L), right
(R), or go straight (S). The experiment terminates as soon as a mouse goes straight.
Let Y denote the number of mice observed.

1. What are the possible values of Y ?
2. List 5 different outcomes and their associated Y values.

Exercise 4.27. The deepest point in a lake is 100 ft. A point is randomly selected
on the surface of the lake. Y = the depth of the lake at the randomly selected point.

What are the possible values of Y ?
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Exercise 4.28. A box contains four chocolate bars marked 1, 2, 3 and 4. Two bars are
selected without replacement. Once you select a bar, you receive as many additional
bars as the numbers that appear on the bars you select. List the possible values for
each of the following random variables:

1. X = the sum of the numbers on the first and second bar
2. Y = the difference between the numbers on the first and second bar
3. Z = the number of bars selected that show an even number
4. W = the number of bars selected that show a 4

Exercise 4.29. During its 6 hour trans-Atlantic flight, it takes an airplane 15 minutes
to reach a cruising altitude of 25 000 ft. It takes the airplane 15 minutes to descend
from the cruising altitude until landing. Select a random time, T , between take-off
and landing. Let X (T ) be the altitude of the plane at T .

1. What are the possible values of T?
2. What are the possible values of X?
3. Is X a rv? Justify your answer.
4. What is the probability that X = 25 000?
5. In answering (4), do we have to assume that the speed of the plane is approxi-
mately constant throughout the flight? Explain.
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Discrete densities
and distributions

In this chapter, we define discrete densities and distributions and learn how to con-
struct them. Our goal is to develop an understanding of what these mean and their
relation to rv. Consequently, we will discuss specific densities and distributions that
we will find useful later. There are numerous distributions (and their densities) that
describe natural phenomena. Refer, among others, to Ross (1993), Johnson et al.
(1994), McLaughlin (1999), Evans et al. (2000) and Kotz et al. (2000).
The notation P (X = x) reads “the probability that the rv X takes on a value

x.” Similarly, the notation P (X ≤ x) reads “the probability that the rv X takes on
any value ≤ x.” If we do not state otherwise, x is a real number (a point on the real
line). To emphasize that P (X = x) may depend on some given values that we call
parameters, we write P (X = x|θ), where θ is a vector of given constants.
The following distinctions will allow us to be succinct in our narrative. Let R

denote the set of real numbers. Then an alternative way to saying that x is a real
number is x ∈ R, or in words, x is a member of (∈) the set R. Similarly, we identify the
nonnegative integers 0, 1, . . . with the symbol Z0+. Thus, n ∈ Z0+ means that n takes
on any value that is a nonnegative integer. We denote the set of positive integers with
Z+. We distinguish between sets whose elements are countable or not countable. For
example R is a noncountable set and x ∈ R can take an infinite number of values. A
countable set is a set whose elements can be counted. For example Z0+ is a countable
set and n ∈ Z0+ can take an infinite number of values that can be counted. Other
examples are: x ∈ [0, 1] is not countable while n ∈ A := {0, 1, . . . , 10} is countable
with a finite number of values (A has a finite number of elements).

5.1 Densities

Let

A := {E1, E2, . . .}
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be a countable (finite or infinite) set of simple events. A includes only those simple
events with a positive probability. Each of these events is identified by a unique
nonnegative integer i and corresponds to a probability πi. Let X ∈ R be a rv such
that P (X(Ei) = xi) = πi > 0. Therefore, X(Ei) (or equivalently xi) are countable
subsets of R with P (X(A)) = 1. Here each event Ei corresponds to a real value xi.
Let A be the complement of A and S be the event space. Then S = A ∪A. Define
P (X(A)) = 0. Thus, P (X (S)) = 1 for X ∈ R. Note that X (A) is countable while
X
(
A
)
is not necessarily.

We define a discrete probability density (discrete density for short) thus:

Discrete probability density Let X ∈ R and x ∈ R. Define the countable (finite
or infinite) set of events A := {E1 , E2, . . .} and assign P (X (Ei) = xi) = πi > 0.
Then the function

P (X = x|π) =

{
πi for x = xi
0 otherwise

(5.1)

(where π := [π1 ,π2, . . .]) is a discrete density.

Defining discrete densities this way conforms to the requirement that rv are real
numbers. Furthermore, as we shall see, the R functions that provide discrete densities
and distributions treat the rv X as real for both discrete and continuous densities.

Example 5.1. Consider the following experiment: An observer sits at the corner of
a busy intersection and records whether a person crossing the street made it. Each
person has the same probability, π, of being hit by a car and these are independent.
The experiment continues until the first person is hit. Each trial (a person crossing
the street) has one of two outcomes: success with probability π and failure (the person
is not hit) with probability 1 − π. Define the event Ei as the number of people that
crossed the street successfully by the time the experiment ends. Then

A = {E0, E1, . . .} .

Here E0 is the event that the first person to cross the street was hit (i.e. no person
crossed the street successfully), E1 is the event that one person crossed the street
successfully and second was hit and so on. Define the rv X as the number of people
that crossed the street successfully. So X (Ei) := i. Then

P (X (E0) = 0) = π , P (X (E1) = 1) = (1− π)π , . . . ,

P (X (En) = n) = (1− π)
n
π , . . . , n ∈ Z0+ .

Simplifying the notation, we write the density as

P (X = x|π) =

{
(1− π)x π for x = xi
0 otherwise

(5.2)

where π is the probability of accident and xi ∈ Z0+. ut

Equation (5.2) is known as the geometric density. It is constructed from a sequence
of independent Bernoulli trials where (1 − π) is the probability of failure and π is
the probability of success. The density describes the number of failures until the first
success. Figure 5.1 illustrate two geometric densities, for π = 0.3 and for π = 0.7.
Here is the script that produces Figure 5.1:
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1 PI <- c(0.3, 0.7) ; x <- 0 : 10

2 xlab <- expression(italic(x))

3 par(mfrow = c(1, 2))

4 for(i in 1 : 2){

5 density <- dgeom(x, PI[i])

6 ylab <- bquote(italic(P(X==x)~~~~~pi) == .(PI[i]))

7 plot(x, density, type = 'h', lwd = 2,

8 xlab = xlab, ylab = ylab)

9 abline(h = 0, lwd = 2)

10 }

Figure 5.1 Geometric densities.

In line 1 we create a vector (with a call to c()) for the two π values of the
geometric densities and a vector of x values (with :). In line 2 we prepare the label
for the x-axis. The function expression() creates an R expression from its argument.
In R, mathematical notations (including italic()) are produced with expression().
When the argument to expression() invokes text plotting functions (such as xlab
= 'something'), R treats the argument as a mathematical expression. So italic(x)
causes the function that draws the label for the x-axis (xlab in line 8) to draw x in
italic. In line 3 we set the graphics device to accept two plots with a call to par()

and the argument mfrow set to a matrix of one row and two columns. The densities
are produced for π = 0.3 or 0.7 in line 5. We ask dgeom() (for geometric density) to
produce one value for each x with the probability PI[i]. For example, for x = 2 and
PI[1] = 0.3 we obtain

P (X = 2|π = 0.3) = 0.720.3 = 0.147 .

Line 6 produces the mathematical notation for the label of the y-axis. The function
bquote() (for back quote) quotes its argument (that is, it produces a string) with
one exception. A term wrapped in .() is evaluated. So the effect of bquote() here
is to produce the string “P (X = x) π = 0.3” (or 0.7). The effect of ∼∼∼∼∼ is to
produce five spaces before PI (see help for plotmath()). We then call plot() with
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plot type type = 'h' and line width lwd = 2 in lines 7 and 8. This produces the stick
plot. In line 9 we add a horizontal zero-line of width 2 with the arguments h and lwd
given to abline(). We do this to emphasize that the rv X can be defined for any
real value x with P (X = x) ≥ 0 for some isolated (countable) values of x and zero
everywhere else.
From Example 5.1 we derive the following definition:

Geometric density Equation (5.2) is known as the family of geometric densities.
For a specific value of π, it is known as the geometric density.

We think of a density as a family. Densities have parameters that determine their
shape, dispersion and location. A parameter is assigned a fixed value. For each param-
eter value we have a member of the family. Because the geometric has a single
parameter (π), we sometimes say that the geometric is a single parameter density.
With this definition of the geometric density, a full (and correct) representation of a
density should show P (X = x|π) for all values of x.
In research, we are often interested in empirical (experimentally based) densities.

Such densities are constructed from data. Empirical densities can be presented with
histograms (see Section 3.3).

Example 5.2. Beginning on 9/27/2000, the Israeli Foreign Ministry has posted infor-
mation of incidents of terrorist attacks on Israelis (MFA, 2004). The data referred to
a war dubbed the Second Intifada, including the date and a short description of
the incident. The description includes the number killed, the number injured and
the organization or organizations that claimed responsibility for the attack. Occa-
sionally, the description details the number of children and women that were killed
and injured in the attack (see Chapter 17 for further details). Here we are inter-
ested in the density of the number of Israelis that were killed per attack by Hamas
(Figure 5.2).
An “experiment” is an attack. An event is the number of people that were killed in

the attack. Because the distance between breaks in the histogram is 5, to compute the

Figure 5.2 The density of the number of people killed per attack by Hamas. An
exponential function fits the data.
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probabilities, we multiply the densities shown in Figure 5.2 by 5. Thus we construct
the density:

Event: 0-4 5-9 10-14 15-19 20-24 ∅
Dead (X) : [0, 5) [5, 10) [10, 15) [15, 20) [20, 25) otherwise

P (X = x|π) : 0.581 0.140 0.163 0.070 0.0 465 0

The following script was used in this example.

1 load('terror.by.Hamas.rda')

2 terror <- terror.by.Hamas

3 lambda <- 1 / mean(terror$Killed) ;

4 x <- 0 : 25

5 h(terror$Killed, xlab = 'killed by Hamas')

6 lines(x, dexp(x, lambda))

In line 1, we load the data frame terror.by.Hamas from a file. Here are the first
three rows of the data:

Julian Date Killed Injured Org.1 Org.2 Org.3

44 15038 3/4/2001 3 60 Hammas

47 15062 3/28/2001 2 4 Hammas

52 15087 4/22/2001 1 60 Hammas

Julian refers to Julian day, Date refers to the date of the attack, Killed and Injured
give the number of people killed or injured by the attack and Org.1, Org.2 and Org.3
refer to the organization that claimed responsibility for the attack (in few cases there
were more than one).
To save on typing, we assign the data frame to terror in line 2. In line 3, we

compute an estimate of a parameter named λ of the exponential density (we will
discuss it soon). In line 5, we plot the histogram of the number of Israelis killed
per attack. We use a modified hist(), as detailed on page 40. We fit a curve
to the histogram with a call to dexp() with the parameter lambda, embedded in
lines(). ut

5.2 Distributions

Corresponding to each discrete density P (X = x|π) there exists a

Discrete probability distribution If P (X = x|π) is a discrete density, as defined
in (5.1), then P (X ≤ x|π) is a discrete distribution.

What do we mean by P (X ≤ x|π)? From the definition of rv, we have X (E) = x.
Let A be the set of all events such that X (A) ≤ x. Then the distribution function is
P (X (A) ≤ x|π). Here is an example of how to construct a distribution.
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Figure 5.3 The distribution of a Bernoulli experiment of rain vs. no rain with X (R)
= 0.75 and X

(
R
)
= 0.25.

Example 5.3. Consider a day in a tropical rainy season. Let R be the event that it
rained during the day and R the event that it did not. Rain occurs with π = 0.75 and
rains on different days are independent. So we have X (R) = 0.75 and X

(
R
)
= 0.25.

The density of R is

P (X = x|π = 0.75) =






0.75 x = 0
0.25 x = 1
0 otherwise

.

The corresponding distribution is illustrated in Figure 5.3. From the figure, we
conclude:

P (X ≤ x|x < 0, 0.75) = 0 ,

P (X ≤ x|0 ≤ x < 1, 0.75) = 0.75 ,

P (X ≤ x|x ≥ 1, 0.75) = 1

or

P (X ≤ x|0.75) =






0 x < 0
0.75 0 ≤ x < 1 .
1 x ≥ 1

(5.3)

Therefore, P (X ≤ x) is defined for all real x. ut

Equation (5.3) is a distribution. It describes the outcome of Bernoulli trials and is
known as the Bernoulli distribution with parameter π where π is the probability of
success. In the next example, we construct the geometric distribution.

Example 5.4. In Example 5.1 we constructed the geometric density. To obtain the
geometric distribution, we need to establish P (X ≤ x|π) for all values of x. For x < 0,
no accident can occur because no one crossed the street. Therefore, P (X < 0|π) =
0. At x = 0, we have no successful crossing and an accident on the first crossing.
Therefore, P (X ≤ 0|π) = π. For 0 < x < 1 no event can occur (we are counting
integers). Therefore, P (X < 1|π) = P (X ≤ 0|π) + P (0 < X < 1|π) = π. At x = 1
we have one successful crossing and then an accident. Therefore,

P (X ≤ 1|π) = P (X < 0|π) + P (X = 0|π) + P (0 < X < 1|π) + P (X = 1|π)

= 0 + π + 0 + (1− π)π

= (1− π)0π + (1− π)1π .
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Continuing in this manner, we find that

P (X ≤ x|π) =
∫ x

−∞
P (X = ξ|π) dξ (5.4)

=

∫ x

−∞

x∑

i=0

(1− π)i−1πδ(ξ − i) dξ

where i ∈ Z0+ and x, the floor of x, is the largest integer ≤ x. The function δ(x) is
zero for any value of x 6= 0. Also,

∫ ∞

−∞
f(a)δ(x− a) dx = f(a) .

δ(x) is called the Dirac delta function. Because P (X ≤ x|π) = 0 for any x /∈ Z0+,
(5.4) simplifies to

P (X ≤ x|π) =
x∑

i=0

P (X = xi|π) . (5.5)

To produce a value for of P (X ≤ x|π) for any x, with, say π = 0.1, use

> pgeom(10, 0.1)

[1] 0.6861894

> pgeom(10.5, 0.1)

[1] 0.6861894

and note this

> sum(dgeom(0 : 10, 0.1))

[1] 0.6861894

pgeom() and dgeom() are the geometric distribution and density, respectively. Also
note this:

> dgeom(0.1, 0.1)

[1] 0

Warning message:

non-integer x = 0.100000

In other words, it is not an error to ask for dgeom() of a number other than an integer.
However, R wants to remind you that you provided a discrete density with a value
for x that is not an integer. ut

Equation (5.4) is known as the geometric distribution. Figure 5.4 illustrates what it
looks like. To produce the figure, follow the script on p. 138. However, instead of using
dgeom(), use pgeom().

5.3 Properties

From the definitions of discrete densities and distributions and the discussion above,
we deduce their properties.
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Figure 5.4 Geometric distributions (compare to Figure 5.1).

5.3.1 Densities

P (X = x|π) ≥ 0
This property is a direct consequence of the definition of probability.∑
i P (X = xi|π) = 1
Here xi is a subset of x at which P (X = x|π) > 0. This property is a conse-
quence of the fact that xi for i indexing all possible x is a map of all events with
P (X > x|π) to the real numbers.

5.3.2 Distributions

P (X ≤ −∞|π) = 0
This is a consequence of the definition of X. Specifically, that X > −∞.

P (X ≤ ∞|π) = 1
This is a consequence of the definition of X. Specifically, that X <∞.

P (X ≤ xi|π) ≤ P (X ≤ xj |π) for i ≤ j
The distribution at xj , P (X ≤ xj |π), is the union of all density values at xi.
These density values are ≥ 0. Therefore, P (X ≤ xi|π) ≤ P (X ≤ xj |π).

P (xi < X ≤ xj |π) = P (X ≤ xj |π) − P (X ≤ xi|π) for i < j
This property can be observed from the distributions illustrated in Figures 5.1,
5.3 and 5.4.

In the last two properties, xi and xj are members of subset of x for which P (X = x|π)
> 0. We discuss these properties in more detail in Section 6.3.

5.4 Expected values

Because a rv takes on certain values with certain probabilities, to obtain a mean value,
we must sum over all the values that the rv might take, each value weighed by its
probability.

Example 5.5. Say somebody offers you the following gamble: You are given a biased
coin with probability of head = 0.9. You win $1 when head (H) shows up and lose
$10 when tail (T ) shows up. Should you take the gamble expecting to win? Our rv is
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X(H) := $1 and X(T ) := −$10. After many experiments, you should expect to win
$1 × 0.9 − $10 × 0.1 = − $0.1. ut

Recall that we defined A := {E1, E2, . . .} as the countable set of all events such that
P (X(Ei)) = xi) = πi > 0. Using the same argument that leads to (5.5), we define

Expected value The expected value of a discrete density P (X = x|π) is

E [X] :=
∑

i

xiP (X = xi|π) .

Note that because P (X = x|π) = 0 for x 6= xi (for all i), we simply sum over the
discrete values of xi × P (X = xi|π) and thus avoid integration for the remaining
(real) values of x. The expected value of a discrete density is not necessarily a typical
value. In fact, it may even be a value that the rv from the density might take with
probability zero. Furthermore, the expected value of any density is not a rv.

Example 5.6.We arbitrarily assign values to X based on the number of dots that
show on the face of a die:

Event: 1 2 3 4 5 6 ∅
xi: 100 − 1.2 10 12.4 1 000 − 5.24

P (X = x|π) : 1/6 1/6 1/6 1/6 1/6 1/6 0

Therefore, the expected value of X is

> x <- c(100, -1.2, 10, 12.4, 1000, -5.24)

> PI <- rep(1/6, 6)

> (E.x <- round(sum(x * PI), 2))

[1] 185.99

or in vector notation

> round(x %*% PI, 2)

[,1]

[1,] 185.99

In our notation,

E [X] =

6∑

i=1

xiP (X = xi|π) ≈ 185.99 .

In R, the sum of element by element multiplication of two vectors can be achieved in
one of two ways

> x <- c(1 : 3) ; y <- c(4 : 6)

> sum(x * y)

[1] 32

> x %*% y

[,1]

[1,] 32

Although we get the same answer, the objects returned from these two operations are
different. Both operations correspond to the so-called vector dot-product. ut
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The computation above is identical to the intuitive definition of the mean because
each value of the rv is equally probable. This is not the case when probabilities of
events are not equal. For some densities, it is possible to derive the expected value of
the rv in a closed form.

Example 5.7. Using (5.2), we write

E [X] =

∞∑

i=1

i (1− π)i−1 π

In Exercise 5.15, you are asked to prove that

E [X] =
1

π

is the expectation of the geometric density. ut

5.5 Variance and standard deviation

Intuitively, the variance of a rv from a known density reflects our belief that a particu-
lar value of a rv will be within some range. With the notation preceding the definition
of expected values in mind and again, using the same argument that leads to (5.5),
we define

Variance The variance of a discrete density P (X = x|π) is

V [X] =
∑

i

(xi − E [X])
2
P (X = xi|π) .

Like the expected value, the variance of a density is not a rv.

Example 5.8. Yellowstone was the first national park to be established in the U.S.
A total of 3,019,375 people visited the park in 2003 (NPS, 2004). Two of the busiest
entrances to the park are the Western and Northern. You obtain a summer job at the
park and are asked to record the number of passengers in a car entering the park.
You find that it ranges between 1 and 5. The densities of the number of passengers
in a car (X and Y for the Western and Northern entrances) are shown in Table 5.1.
We have

> Yellowstone <- cbind(passengers = c(1, 2, 3, 4, 5),

+ p.west = c(.4, .3, .2, .1,0),

+ p.north = c(.2, .6, .2, 0, 0))

> (E.west <- sum(Yellowstone[, 1] * Yellowstone[, 2]))

[1] 2

> (E.north <- sum(Yellowstone[, 1] * Yellowstone[, 3]))

[1] 2

or in our notation,

E [X] = 2 , E [Y ] = 2 .
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Table 5.1 Passengers in cars entering Yellow-
stone National Park.

Probabilities

Passengers West entrance North entrance

1 0.400 0.200
2 0.300 0.600
3 0.200 0.200
4 0.100 0.000
5 0.000 0.000

For the variance, we obtain

> sum((Yellowstone[, 1] - E.west)^2 * Yellowstone[, 2])

[1] 1

> sum((Yellowstone[, 1] - E.north)^2 * Yellowstone[, 3])

[1] 0.4

or in our notation
V [X] = 1 , V [Y ] = 0.4 .

In passing, we note that because we are talking about the expectation and variance of
the density, we must assume that the probabilities in Table 5.1 represent the propor-
tions for all cars entering the park. Such proportions are sometimes called the true
(or population) proportions. ut

As was the case for the expected value, the variances of some distributions are known
in a closed form.

Example 5.9. In Exercise 5.17 you are asked to show that the variance of the geo-
metric distribution is

V [X] =
1− π
π2

where π is the probability of success. ut

Standard deviation The standard deviation of a discrete density with variance
V [X] is

√
V [X].

The standard deviation describes a typical deviation of a value of X away from E [X].
The units of the standard deviation are identical to those of X.

5.6 The binomial

Recall that in a Bernoulli experiment, we have either success with probability π or
failure with probability 1 − π. The binomial density addresses the question of the
probability of m successes in n independent repetitions of a Bernoulli experiment.

Example 5.10. Suppose that 20% of the people in a crowd at a concert liken Mozart’s
music to bubble gum. The experiment is picking a person at random and asking if
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he thinks that Mozart’s music reminds him of bubble gum. Yes is a success. Assign
1 to success and 0 to failure. Let the rv X be the number of successes. What is the
probability that 2 out of 4 chosen people say yes? Let us enumerate the possible
outcomes.

Person: first second third fourth
1 1 0 0
1 0 1 0
1 0 0 1
0 1 1 0
0 1 0 1
0 0 1 1

Because π = 0.2, the first outcome has a probability of

P (X = 2|n = 4 in the order {1,1,0,0}) = π × π × (1− π)× (1− π)

= 0.2× 0.2× 0.8× 0.8

= 0.0 256 .

The remaining outcomes have the same probability. Because the events are indepen-
dent, the probability that X = 2 is the sum of the probabilities of each of the rows
above. Two successes and two failures in 4 repetitions can occur in 6 different ways.
Therefore, we must add 0.0 256 six times. Thus,

P (X = 2 in any order |n = 4) = 6× 0.0 256 = 0.1 536 . (5.6)

Arrangements of 1 and 0 above is a combination of 2 in 4 slots. ut

To generalize the example, denote by n = 4 the number of trials and by m = 2 the
number of successes. We can write equality (5.6) thus

P (X = m |π, n ) =

(
n

m

)

πm (1− π)n−m

=

(
4

2

)

π2 (1− π)2

= 0.1 536 .

The same result (with round off error) is obtained from calling for the binomial density
with two successes in four trials with probability of success = 0.2:

> round(dbinom(2, 4, 0.2), 3)

[1] 0.154

The so-called binomial coefficient
(
n

m

)

:=
n!

m!(n−m)!

is the number of ways that m successes can occur in n trials (a combination). You
can calculate it in R with choose(n,m). Because the events are independent, the
probability of m successes is πm. The remaining n−m are failures with probability
(1− π)n−m. So to arrive at the probability, we must add πm × (1− π)n−m as many



The binomial 149

times as
(
n
m

)
. To formally define the family of binomial densities and distributions,

we abandon the restriction that the number of successes is an integer. To construct
the binomial, we denote the event of 0 successes in n Bernoulli trials with probability
of success π by E0, the event of one success by E1, . . . , the event of n successes by
En. Therefore,

A = {E0, E1, . . . , En} .

We map the events to the rv by assigning the index of Ei to i, i = 0, 1, . . . , n where
i is the number of successes in n trials. Next, we let P (X(Ei) = x) = πi for x = i.
From the construction we see that P (X(A)) = 1. We also see that A ∪ A = R. Thus
we define the

Binomial density Let n ∈ Z0+. The probability of x successes in n independent
Bernoulli trials with probability of success π,

P (X = x|π, n) =

{(
n
x

)
πx (1− π)n−x for x = 0, 1, . . . , n

0 otherwise

is called the binomial density.

Note that n is not the number of repetitions of the experiment. It is the number of
trials in a single experiment. We now also have

Binomial distribution The function

P (X ≤ x|π, n) =
∫ x

−∞

x∑

i=0

(
n

i

)

πi (1− π)n−i δ(ξ − i)dξ

defines the two-parameter (π and n) binomial distribution.

Now that we know that the rv of discrete densities and distributions takes on any
value on the real line, we can simplify the notation. Because P (X = x|π) = 0 except
for x = 0, 1, . . . , n, we can ignore the integral sign—as was the case in (5.4)—and sum
over the values of x for which P (X = x|π) > 0. So from now on, instead of writing
the binomial density or distribution as above, we will write them with respect to the
rv X as

P (X = m|π, n) =

(
n

m

)

πm (1− π)n−m , m = 0, 1, . . . , n ,

P (X ≤ m|π, n) =
m∑

i=0

(
n

i

)

πi (1− π)n−i

while keeping in mind that the binomial rv X can take a value x where x is a real
number. Let us see what the binomial densities and distributions look like.

Example 5.11. Let n = 10 and π = 0.3 or π = 0.7. Then Figure 5.5 illustrates two
binomial densities for X = x with parameters π and n. Note the longer tail to the
right or to the left for π = 0.3 or 0.7, respectively. To produce Figure 5.5, follow the
script on page 138 changing line 6 from

d <- dgeom(x, p[i])
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Figure 5.5 Binomial densities.

to

d <- dbinom(x, n, p[i])

Figure 5.6 illustrates the corresponding distributions. To obtain the figure, replace
line 6 in the script on p. 138 with

d <- pbinom(x, n, p[i])

and the plot from type = 'h' to type = 's'. Note that R responds correctly to the
following:

> dbinom(5.2, 10, 0.5)

[1] 0

Warning message:

non-integer x = 5.200000

> pbinom(5.2, 10, 0.5)

[1] 0.623046875

> pbinom(-1, 10, .5)

[1] 0

> dbinom(-1, 10, .5)

[1] 0 ut

Figure 5.6 Binomial distributions of the densities illustrated in Figure 5.5.
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5.6.1 Expectation and variance

We leave the proof of the following for Exercise 5.16:

Expected value of the binomial The expected value of the binomial density with
n trials and a probability of success π, is

E [X] = nπ .

Variance of the binomial The variance of the binomial n trials and a probability
of success π, is

V [X] = nπ (1− π) .

Example 5.12. A survey of 1 550 men in the UK revealed that 26% of them smoke
(Lader and Meltzer, 2002). Pick a random sample of n = 30. Then

E [X] = 30× 0.26 = 7.8

and
V [X] = 30× 0.26× 0.74 = 5.772 .

We interpret these results as saying that if we were to take many samples of 30 men,
we expect 7.8% of them to be smokers, with a variance of 5.772. ut

5.6.2 Decision making with the binomial

We often use distributions to decide if an assumption is plausible or not. The binomial
distribution is a good way to introduce this subject, which later mushrooms into
statistical inference. We introduce the subject with an example and then discuss the
example.

Example 5.13. Consider the data introduced in Example 5.12 and assume that the
survey results represent the UK population of men. That is, the probability that
a randomly chosen man smokes is π = 0.26. We wish to verify this result. Not
having government resources at our disposal, we must use a small sample. After
deciding on how to verify the government’s finding, we will select a random sample
of 30 English men from the national telephone listing and ask whether they smoke
or not. ut

If the sample happens to represent the population, between 7 or 8 of the respondents
should say yes. Because of the sample size, it is unlikely that we get exactly 7 or 8
positive responses, even if in fact 26% of all English men smoke. So, we devise

Decision rule 1 If the number of smokers in the sample is between 6, 7, 8 or 9, then
we have no grounds to doubt the government’s report. Otherwise, we reject the
government’s report.

Because we use a single sample, we will never know for certain whether the govern-
ment’s finding is true. So we must state our conclusion with a certain amount of
probability (belief) in our conclusion. Let M be the number of smoking men in a
sample of 30 and assume that the government finding is true. What is the probability
that we will conclude from the sample that the government’s claim is true? Based on
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our decision rule, the probability that the number of smokers in our sample, M , will
be 6, 7, 8 or 9 is

P (6 ≤M ≤ 9|π = 0.26, n = 30) =
9∑

i=6

(
n

i

)

× 0.26i × 0.74n−i = 0.596 .

With R, we obtain this result in one of two ways: using the binomial density,

> n <- 30 ; PI <- 0.26 ; i <- 6 : 9

> round(sum(dbinom(i, n, PI)), 3)

[1] 0.596

or better yet, the binomial distribution

> round(pbinom(9, n, PI) - pbinom(5, n, PI), 3)

[1] 0.596

What is the probability that we will conclude that the government’s claim is not true?
That is, the number of smokers in our sample should be less than 6 and greater than
9. So

P (M ≤ 5) + P (M ≥ 10) = 1− 0.596 = 0.404 .

Next, we collect the data and find that we have 8 smokers in our sample. We therefore
conclude that we have no grounds to reject the government’s finding. How much faith
do we have in our decision? Not much. The probability that there will be between 6
and 9 smokers in a sample of 30—assuming that government’s finding is correct—is
0.596.
Does our decision rule make sense? Not really. Why? Because we have to make a

decision based on a single sample and the distinction between “right” and “wrong” is
not very clear (0.596 vs. 0.404). Can we improve upon the decision rule? Let us see.

Decision rule 2 If the number of smokers in the sample is 4, or 5, . . . , or 11, then
we have no grounds to doubt the government’s report. Otherwise, we reject the
government’s report.

We examine this decision rule with the assumption that the government claim is
correct (π = 0.26). Now

P (4 ≤M ≤ 11|π = 0.26, n = 30) =
11∑

i=4

(
n

i

)

× 0.26i × 0.74n−i = 0.905

and

P (M ≤ 3|π = 0.26, n = 30) + P (M ≥ 12|π = 0.26, n = 30) = 1− 0.905

= 0.095 .

In R:

> round(pbinom(11, n, PI) - pbinom(3, n, PI), 3)

[1] 0.905

Next, we collect the data and find that we have 9 smokers in our sample. We therefore
conclude that we have no grounds to reject the government’s finding. How much faith
do we have in our decision? Much. The probability that there will be between 4 and
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11 smokers—assuming the government’s finding is correct—is 0.905. That is, given
π = 0.26, if we repeat the sample many times, then 90.5% of them will have between
4 and 11 smokers.
So which decision rule is better? On the basis of the analysis so far, Rule 2. If this

is the case, then perhaps we can do even better.

Decision rule 3 If the number of smokers in the sample is between 0 and 30, then
we have no grounds to doubt the government’s report. Otherwise, we reject the
government’s report.

Now

P (0 ≤M ≤ 30|π = 0.26, n = 30) =
n∑

i=0

(
n

i

)

× 0.26i × 0.74n−i = 1.0 .

Something is wrong. Based on this decision rule, we will never reject the government’s
finding; no matter how many smokers turn up in our sample (we might as well not
sample at all). What happens is that by willing to accept a wider range of smokers in
the sample as a proof of the government’s finding, we lose the ability to distinguish
among other possibilities. The true proportion of smokers may be π = 0.30. Let us
see why.
So far, we assumed that the government was right and we used the sample’s data to

reach a decision. Assume that the government is wrong and that the true proportion
of smokers is π = 0.30. Let use now use the three decision rules:

P (6 ≤M ≤ 9|π = 0.30, n = 30) =
9∑

i=6

(
n

i

)

× 0.30i × 0.70n−i = 0.512 ,

P (4 ≤M ≤ 11|π = 0.30, n = 30) =
11∑

i=4

(
n

i

)

× 0.30i × 0.70n−i = 0.831

and

P (0 ≤M ≤ 30|π = 0.30, n = 30) =
n∑

i=0

(
n

i

)

× 0.30i × 0.70n−i = 1.0 .

Thus, if the government’s claim is wrong and we offer an alternative (of π = 0.30),
then the wider the range we select for accepting the government’s finding, the higher
the probability we will not reject the government’s finding in spite of the fact that
our alternative might be true. So what shall we do? The rule of thumb is to choose
the narrowest range of M that makes sense. A more satisfactory answer will emerge
later, when we discuss statistical inference.

5.7 The Poisson

The Poisson density models counting events, usually per unit of time (rates). It is also
useful in counting intensities—events per unit of area, volume and so on. It is one of
the most widely used densities. It applies in fields such as physics, engineering and
biology. In astronomy, the density is used to describe the spatial density of galaxies
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and stars in different regions of the Universe. In engineering, it is routinely used in
queuing theory. In physics, the Poisson is used to model the emission of particles. The
spatial distribution of plants (see Pielou, 1977) is often described with the Poisson.
Geneticists use it to model the distribution of mutations. Wildlife biologists sometimes
use the Poisson to model the distribution of animals’ droppings. In neuroscience, the
Poisson is used to model impulses emitted by neurons.
The Poisson density depends on a single intensity parameter, denoted by λ. The

mechanism that gives rise to this density involves the following assumptions:

1. Events are rare (the probability of an event in a unit of reference, such as time,
is small).

2. Events are independent.
3. Events are equally likely to occur at any interval of the reference intensity unit.
4. The probability that events happen simultaneously is negligible (for all practical
purposes it is zero).

The first assumption can be satisfied in any counting process by dividing the interval
into many small subintervals. Small subintervals also ensure that the fourth assump-
tion is met. The second and third assumptions must be inherent in the underlying
process. This does not diminish the importance of the Poisson process—we often use
the second and third assumption as a testable hypothesis about the independence of
events. Furthermore, the Poisson process can be generalized to include intensity that
is a function (e.g. of time) as opposed to a fixed parameter. We now skip the details
of mapping events to rv and assigning them probabilities and move directly to the
definition of the

Poisson density Denote the intensity of occurrence of an event by λ. Then

P (X = x|λ) =

{
λx

x!
e−λ for x ∈ Z0+
0 otherwise

.

is called the Poisson density.
Poisson distribution The function

P (X ≤ x|λ) =
x∑

i=0

λi

i!
e−λ .

is called the Poisson distribution.

Often, the interval is time; so λ is in unit of counts per unit of time (a rate). In such
cases, we write the Poisson density for the time interval [0, t] as

P (X = x|λ, t) =

{
(λt)x

x!
e−λt for x ∈ Z0+
0 otherwise

where x ∈ Z0+. To simplify the notation, we will usually write the Poisson densities
and distributions as

P (X = m|λ) =
λm

m!
e−λ ,

P (X ≤ m|λ) =
m∑

i=0

λi

i!
e−λ .
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To see why the Poisson is so useful, consider the following examples:

Example 5.14.We start with a population of n individuals, all born at time 0. If
death of each individual is equally likely to occur at any time interval, if the prob-
ability of death of any individual is equal to that of any other individual and if
deaths are independent of each other, then the density of the number of deaths in
a subinterval is Poisson. Similar considerations hold for the spatial distribution of
objects. Instead of deaths, we may count defective products, or any other counting
process. ut

In the next section, we show that the Poisson density approximates the binomial
density. Here, we introduce an example that uses this approximation to demonstrate
the widespread phenomena to which Poisson densities apply.

Example 5.15.We start with a large cohort of individuals and follow their lifetimes
during the interval [0, t]. As in Example 5.14, we assume that individuals die inde-
pendently of each other and each has the same probability of dying at any time.
Evidence suggests that the Poisson mortality model applies to trees and birds. Now
divide [0, t] into n subintervals, each of length t/n. Take n to be large enough so
that the subintervals t/n are very short. Therefore, the probability of more than one
death during these short subintervals is negligible and we can view the death of an
individual during any subinterval t/n as a Bernoulli trial—an individual dies during
the subinterval with probability π or survives with probability 1 − π. Because the
subintervals are short, π is small. Also, because the death of an individual during a
particular subinterval is independent of the death of other individuals during other
subintervals, we have the binomial density. The probability that m individuals die
during [0, t] is binomial; i.e.

P (X = m|π, n) =

(
n

m

)

πm (1− π)n−m . (5.7)

The expected number of deaths during [0, t] is E [X] = nπ. Denote the death rate
by λ. The number of deaths during [0, t] is approximately λt. Therefore, E [X] ≈
λt or π ≈ λt/n. As n → ∞, we can assume that nπ → λt. With this in mind, we
rewrite (5.7)

P (X = m|λt, n) =

(
n

m

)(
λt

n

)m(

1−
λt

n

)n−m
.

Using the Poisson approximation to the binomial (Equation 5.8 below), we obtain

lim
n→∞

(
n

m

)(
λt

n

)m(

1−
λt

n

)n−m
=
(λt)

m

m!
e−λt .

ut

The example demonstrates the fact that any phenomenon in nature in which the
events are rare (π is small), n is large (many short subintervals are used), the events
are independent and the probability of the event is constant, the Poisson density
applies.

5.7.1 The Poisson approximation to the binomial

The Poisson approximation to the binomial holds when the expectation of the bino-
mial, nπ, is on the order of 1 and the variance, nπ(1− π) is large. Both conditions
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imply that π is small and n is large. Under these conditions,
(
n

m

)

πm(1− π)n−m ≈
(nπ)

m

m!
e−nπ . (5.8)

The approximation improves as n→∞ and π → 0. This approximation was first
proposed by Poisson in 1837.
Let λ ∈ R, n ∈ Z+ and m ∈ Z0+. We wish to show that

lim
n→∞

(
n

m

)(
λ

n

)m(

1−
λ

n

)n−m
=
λm

m!
e−λ .

Now λ and m are constants, so the left hand side can be written as

λm

m!
lim
n→∞

n!

(n−m)!
1

(n− λ)m

(

1−
λ

n

)n
.

The identity

lim
n→∞

(

1−
λ

n

)n
= e−λ

is well known. Also,

lim
n→∞

n!

(n−m)!
1

(n− λ)m
= lim
n→∞

n (n− 1) ∙ ∙ ∙ (n−m+ 1)
(n− λ) ∙ ∙ ∙ (n− λ)

= 1

because m and λ are fixed and n→∞. Therefore

λm

m!
lim
n→∞

n!

(n−m)!
1

(n− λ)m

(

1−
λ

n

)n
=
λm

m!
e−λ .

It can also be shown that
∞∑

m=0

λm

m!
e−λ = 1 .

Therefore,

P (X = m|λ) =
λm

m!
e−λ

is a density.

Example 5.16. Suppose that the density of mutations in a collection of subpopula-
tions is Poisson with parameter λ mutations per unit of time. What is the probability
that there is at least one mutant in a particular subpopulation?

P {X ≥ 1|λ} = 1− P {X = 0|λ} = 1− e−λ . ut

5.7.2 Expectation and variance

Next, we show that the Poisson’s expected value and variance can be obtained in a
closed form.

Expected value of the Poisson density The expected value of the Poisson den-
sity with parameter λ is

E [X] = λ .
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Here is why:

E [X] =

∞∑

m=0

m
λm

m!
e−λ

= λ

∞∑

x=1

λm−1

(m− 1)!
e−λ .

Now for n = m− 1 we have

E [X] = λ

∞∑

n=0

λn

n!
e−λ

= λP (X ≤ ∞|λ)

= λ .

5.7.3 Variance of the Poisson density

The variance of the Poisson density with parameter λ is

V [X] = λ .

Here is why: Let

P (X = m|λ) =
λm

m!
e−λ .

Then

V [X] =

∞∑

m=0

(m− λ)2 P (X = m|λ)

=
∞∑

m=0

m2P (X = m|λ)− 2λ
∞∑

m=0

mP (X = m|λ)

+ λ2
∞∑

m=0

P (X = m|λ)

=

∞∑

m=0

m×m
λm

m!
e−λ − 2λ2 + λ2

= λ

∞∑

m=1

m
λm−1

(m− 1)!
e−λ − λ2 .

For n = m− 1 we write

V [X] = λ

∞∑

n=0

(n+ 1)
λn

n!
e−λ − λ2

= λ
∞∑

n=0

n
λn

n!
e−λ + λ

∞∑

n=0

λn

n!
e−λ − λ2

= λ2 + λ− λ2

= λ .
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Example 5.17.We return to the suicide bombings by Palestinian terrorists (Example
5.2). This time, we pool all the data instead of discussing attacks by Hamas only. In
all, 278 attacks were reported in 1 102 days. To obtain the Poisson parameter λ, we
divide the period into 10-day intervals. There were 111 such intervals. Therefore,

λ =
278

111
≈ 2.505 .

There were 17 10-day intervals during which no attacks happened, 25 in which one
attack happened and so on (Table 5.2). These frequencies are shown as dots in
Figure 5.7. The expected values were obtained by multiplying the sum of the Fre-
quency column by

P (X = m|2.505) =
2.505m

m!
e−2.505

where m corresponds to the Count column. These are represented as the theoreti-
cal density in Figure 5.7. We shall later see that the fit thus obtained is “good.”

Table 5.2 Frequency and Poisson based
expected frequency of the number of suicide
attacks by Palestinian terrorists on Israelis.

Count Frequency Expected

0 17 9
1 25 23
2 22 28
3 21 24
4 10 15
5 5 7
6 8 3
7 0 1
8 0 0
9 1 0
10 1 0
11 0 0
12 0 0
13 0 0
14 1 0

Let us see how to produce Figure 5.7 from the raw data. It is worthwhile to go
through the details because they involve data manipulations. First, we load the data
and examine the first few rows:

> load('terror.rda')

> head(terror)

Julian Date Killed Injured Org.1 Org.2 Org.3

1 14880 9/27/2000 1 0 None

2 14882 9/29/2000 1 0 None

3 14884 10/1/2000 1 0 None
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4 14885 10/2/2000 2 0 None

5 14891 10/8/2000 1 0 None

6 14895 10/12/2000 1 0 None

We need to divide the events into 10-day intervals and then count the number of
attacks during these intervals. It is most convenient to work with the Julian date. So
we decide on the number of breaks in the 10-day intervals:

> (n.breaks <- ceiling((max(terror$Julian) -

+ min(terror$Julian)) / 10))

[1] 111

Next, we cut the dates into the 10-day intervals:

> head(cuts <- cut(terror$Julian, n.breaks,

+ include.lowest = TRUE), 4)

[1] [14879,14889] [14879,14889] [14879,14889] [14879,14889]

111 Levels: [14879,14889] (14889,14899] (14899,14909] ...

As you can see, cut() returns a vector of factors that represent the intervals. This
makes tabulation and counting easy:

> attacks <- table(cuts)

> (a <- table(attacks))

attacks

0 1 2 3 4 5 6 9 10 14

17 25 22 21 10 5 8 1 1 1

We need to use table() twice: First to count the number of occurrences of the 10-day
intervals and second to count the frequency of these occurrences. So there were 17
10-day intervals in which no attacks occurred, 25 intervals in which 1 attack occurred
and so on. We now have a problem. No occurrences are data. For example, there
were no 10-day intervals in which 7 attacks had occurred (similarly for 8, 11, 12

Figure 5.7 The empirical (dots) and the theoretical (fitted) Poisson (see Table 5.2).
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and 13 attacks per 10 days). We therefore need to fill in the blanks. Let us do it
with array indices. Note that a is a table. In it, the number of attacks (per 10 days)
are represented as the dimension names of the table. We turn them into integers
with

> (idx <- as.numeric(names(a)) + 1)

[1] 1 2 3 4 5 6 7 10 11 15

(we add 1 because we are going to use idx as a vector of indices). Next, we create a
sequence from zero to the maximum attack rate (for plotting later) and a vector of
zero frequencies:

x <- 0 : (max(idx) - 1)

frequency <- rep(0, length(x))

Doing this

(frequency[idx] <- a)

results in this:

[1] 17 25 22 21 10 5 8 0 0 1 1 0 0 0 1

and we thus have zeros included as data. To obtain the theoretical (Poisson) density,
we estimate λ from the mean attack rate:

> (lambda <- length(terror[, 1]) / n.breaks)

[1] 2.504505

So now we have

> z <- 0 : (length(frequency) - 1)

> expected <- round(sum(frequency) * dpois(z, lambda), 0)

> lets.see <- rbind(attacks = z, frequency = frequency,

+ expected = expected)

> d <- list()

> d[[1]] <- dimnames(lets.see)[[1]]

> d[[2]] <- rep('', 15)

> dimnames(lets.see) <- d

> lets.see

attacks 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

frequency 17 25 22 21 10 5 8 0 0 1 1 0 0 0 1

expected 9 23 28 24 15 7 3 1 0 0 0 0 0 0 0

for the number of attacks per 10 days (see Table 5.2). frequency is our empir-
ical density. Finally, we compare the empirical density to the theoretical density
with

> plot(x, frequency, pch = 19, cex = 1.5, ylim = c(0, 30),

+ ylab = 'frequency', xlab = 'attacks per 10 days',

+ main = 'suicide attacks on Israelis')

> lines(x, dpois(x, lambda) * n.breaks)

(points and line segments in Figure 5.7). Because the example indicates that the den-
sity of attacks is Poisson, we conclude that the attacks were equally likely at any time.
Further, the attacks were independent of each other in their timing. ut
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5.8 Estimating parameters

We have seen that densities have parameters. For example, the probability of success,
π, in the binomial and the intensity, λ, in the Poisson, are parameters. Often we have
some reason to believe that data come from an underlying density. To examine this
belief, we fit the density to the data. This means that we use some criterion to search
for the best value of the parameters. The criterion is based on some function of the
data and the parameters. Here is an example.

Example 5.18.We have n observations (counts per unit of time) that we believe are
from a process that obeys the Poisson density. Each count, denoted by xi ∈ Z0+, is
independent of another count. If the parameter value is λ, then

P (X = xi|λ) =
λxi

xi!
e−λ.

Because the observations are independent, we write

L (λ|X1 = x1, . . . , Xn = xn) := P (X1 = x1|λ)× ∙ ∙ ∙ × P (Xn = xn|λ) (5.9)

=

n∏

i=1

P (Xi = xi|λ) =
n∏

i=1

λxi

xi!
e−λ .

The notation
∏n
i=1 xi is defined thus:

n∏

i=1

xi := x1 × ∙ ∙ ∙ × xn .

L in (5.9) is called the likelihood function. It is a function that captures the probability
of observing the data (xi) given λ. Naturally, we are interested in the value of λ that
maximizes the likelihood of the data. In (5.9), the only unknown is λ. That value of
λ that maximizes L is called the maximum likelihood estimate of λ. We denote this
maximum value by λ̂. So we established a function (the likelihood function) and the
criterion (maximization) which allows us to choose the appropriate value for λ. ut

Generally, we write (5.9) like this:

L (θ |X = x ) :=
n∏

i=1

P (X = xi|θ )

where P is any density, θ := [θ1, . . . , θm] holds the values of the m parameters of P ,
X = [X1 ,. . . ,Xn] and x = [x1 ,. . . ,xn]. Note that x represents data (known values).
For an arbitrary function f (x), each value of x is mapped to a single value in log f (x)
and the opposite is also true. Also, log f (x) is a monotonic function of f (x). This
means that if, for some values of x, f(x) increases, decreases or remains unchanged,

so will log f(x). Therefore, if θ̂ maximizes L, it is also maximizes logL. So instead
of using L as the criterion to maximize, we use

L (θ |X = x ) := logL (θ |X = x ) (5.10)

=

n∑

i=1

logP (Xi = xi|θ ) .
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L is called the log maximum likelihood function. Thus we arrive at the following
definition:

Maximum likelihood estimator (MLE) Thevalueθ thatmaximizesL (θ|X = x)
given in (5.10) is called themaximum likelihood estimator of θ.We denote this value

by θ̂ .

Example 5.19. Continuing with Example 5.18, we wish to maximize

L (λ |X = x ) =
n∑

i=1

log

(
λxi

xi!
e−λ

)

.

To simplify the notation, we write L instead of L (λ |X = x ). There are several ways
to find the maximum of L. One is to take the derivative, equate it to zero and solve
for λ; i.e.

L =
∂

∂λ̂

[
n∑

i=1

log

(
λ̂xi

xi!
e−λ̂

)]

= 0 .

The notation here implies that we first take the derivative with respect to λ̂ and then
solve for λ̂. Rewriting the last equation, we obtain

L =
∂

∂λ̂

[
n∑

i=1

(
log
(
λ̂xi
)
− log (xi!) + log

(
e−λ̂

))
]

=
∂

∂λ̂

[
n∑

i=1

(
xi log

(
λ̂
)
− log (xi!)− λ̂

)
]

= 0 .

Switching the sum and derivative and taking the derivatives we obtain

n∑

i=1

(

xi
1

λ̂
− 1

)

= 0

which simplifies to
1

λ̂

n∑

i=1

xi − n = 0

or

λ̂ =
1

n

n∑

i=1

xi .

Thus, the MLE of λ in the Poisson is the mean of the sample, X. ut

Depending on the densities, obtaining MLE may not be analytically tractable. In
such cases, we must rely on numerical optimization. We write the ML function and
use appropriate R functions to find the values of parameters that maximize the ML
function. One such function is optim(), a general-purpose optimization function.
fitdistr() provides MLE for some densities and thereby you can avoid relying on
optim() directly. There are numerous other functions that provide MLE. We will
demonstrate some of these soon.
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In Exercises 5.18 and 5.19 you are asked to show the following MLE:

binomial: π̂ = nS/n , σ̂2 = nπ̂(1− π̂) .
Poisson: λ̂ = X , σ̂2 = λ̂ .

Here π̂ is the MLE of π, σ̂2 is the MLE of σ2 and nS is the number of successes in n
trials. The estimates of the density parameters are based on specific data.

5.9 Some useful discrete densities

Recall that P (X = x|θ) denotes a density and P (X ≤ x|θ) denotes a distribution. θ is
the set of the density’s parameters. So for a named density (distribution), if we supply
x (along with the necessary parameters) to an appropriate function in R, we obtain the
corresponding values for the named density (distribution). Suppose that the named
density is binomial. Then dbinom(x,...) provides the value of the binomial density
for x. pbinom(x,...) responds with the value of the binomial distribution for x.
Often, we wish to know the value of x such that P (X ≤ x|θ) = p, where p is a

probability for a named density. In this case, x is called a quantile. For the binomial, we
obtain it with qbinom(p,...). Finally, to generate a random number from a named
density, we use, for example, rbinom(...). The same rule of prefixing with d, p, q or
r holds for all named densities (distributions) available in R.
Next, we discuss briefly some useful discrete densities and distributions that are

available in R. The list is not comprehensive.

5.9.1 Multinomial

The binomial models situations where there are n Bernoulli trials with probability of
success π. The multinomial is a generalization of the binomial in the following sense:
Instead of having only two outcomes (success or failure) in a single trial, we might
havem outcomes (categories) in a single trial. Each possible outcome has a probability
associated with it (πi, i = 1, . . . , m). We wish to know the joint probability of X1 =
x1, . . . , Xm = xm successes in n trials, where n = x1 + ∙ ∙ ∙ + xm.

Density

The notation in the case of multivariate densities can be complicated. However, it is
worthwhile to go through it at least once so that the basic ideas are clear.

Example 5.20. A pride of lions chase a prey. The chase can end with one of the
following m = 3 outcomes: 1 = the prey is killed, 2 = the prey escapes without injury
and 3 = the prey escapes with injury. Suppose that the corresponding probabilities
are π1 = 0.2, π2 = 0.7 and π3 = 0.1. That is, π := [π1, π2, π3] = [0.1, 0.7, 0.1].
The outcome of each chase is independent of the outcome of another chase. Let n =
10 be the number of chases by the pride. Here n is the number of trials in a single
experiment. We are interested in the probability that on the lth experiment with 10
trials, xl1 = 2 ended in the prey killed, xl2 = 5 ended with the prey escaping and
xl3 = 3 ended with the injured prey escaping (l ∈ Z+). We write the sample space
this way

S = {E1 (i, j, k) , . . . , El (i, j, k) , . . .} , {i+ j + k = n} ∩ {Z0+ × Z0+ × Z0+} .
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The notation indicates that although El (i, j, k) is independent of any other event,
i, j and k are dependent (they must sum to 10). We now create the following rv
Y (El (i, j, k)) := (i, j, k). With this understanding, we simplify the notation and
write the outcome of the lth experiment thus: Xl := Y (El (i, j, k)). We are interested
in the outcome of a single experiment, so we may drop the subscript on X. Let x :=
(i, j, k). Then from our definitions, the multivariate density is

P (X = x) = P (Y (El (i, j, k)) = (i, j, k)) . ut

X is said to have a multinomial density if its joint probability function is

P (X = x|π, n,m) =






n!
m∏

i=1

xi

m∏

i=1

πxii for xi ∈ Z0+

0 otherwise

.

The distribution of the multinomial requires multidimensional integrals, so we shall
not write it formally. Interestingly, when X is multinomial with parameters n and π,
then the rv

Y =

m∑

i=1

(Xi − nπi)
2

nπi

has approximately a χ2 (read “chi-square”) density with m− 1 degrees of freedom.
Here nπi is the expected number of successes of the ith outcome (with m possible
outcomes in each trial) and n is the total number of successes. Y then measures the
relative deviation of the obtained results from the experiment Xi, compared to the
expected result.

Estimating parameters

In the case of the binomial, we estimated π from the number of successes divided by
the number of trials (π ≈ π̂ := nS / n). Similarly, we estimate each πi ≈ π̂i := xi /
n, where xi are the number of successes of the ith possible outcomes.

Applications

In genetics, the multinomial arises in the Hardy-Weinberg law. The law states that for
a large population at equilibrium where mating is random, the frequency of genotypes
with respect to alleles A and a in a diploid population is (1 − π), 2π (1− π) and π2

for genotypes AA, Aa, and aa, respectively. Other examples are the probabilities of
using different habitat types by animals, colors of organisms that belong to a species
and so on.

Example 5.21. The ecological and animal behavior literature are replete with the
following scenario: You record the location of an animal n times. The animal’s habitat
is divided into m types. Geographical analysis indicates that the proportion of each
habitat type in the area is π1, . . . , πm. Based on the n locations, you estimate πi by
the xi / n where xi is the number of points where the animal was located in habitat
i. Do the location-derived proportions differ from the expected proportions nπi where
i = 1, . . . , m?
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To examine numerical results, let us create some data. We imagine 1000 locations,
in six habitats:

> n <- 1000 ; hab <- LETTERS[1 : 6] ; m <- 6

Next, we imagine that the proportion of the habitats are:

> PI <- c(0.1, 0.2, 0.3, 0.2, 0.1, 0.1)

Next, we create 1 000 random multinomial deviates

> set.seed(100) ; nqd((d <- rmultinom(1, n, PI)))

105

218

296

186

87

108

and obtain a data frame

> (df <- data.frame(habitat = hab, observed = d, PI,

+ expected = round(n * PI, 3)))

habitat observed PI expected

1 A 105 0.1 100

2 B 218 0.2 200

3 C 296 0.3 300

4 D 186 0.2 200

5 E 87 0.1 100

6 F 108 0.1 100

Finally we compare the observed to the expected “data”

> plot(df$habitat, df$expected, ylim = c(0, 300),

+ xlab = 'habitat', ylab = 'multinomial frequencies')

> points(df$habitat, df$observed, pch = 20, cex = 3)

(Figure 5.8). We set the plot character to 20 with pch in points() and triple the
point size with cex. As expected, the fit between the observed and expected data is
is good. We will learn later how to test the goodness of fit. ut

5.9.2 Negative binomial

The negative binomial is a generalization of the geometric density. It can also be
regarded as a generalization of the Poisson density where the variance exceeds the
mean. The conditions that give rise to this density are discussed in detail by Bliss and
Fisher (1953). Let n ∈ Z0+. The negative binomial addresses the following question:
What is the density of the number of Bernoulli trials required to achieve the nth
success? Equivalently, the question is: What is the number of failures until we achieve
the nth success?
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Figure 5.8 Multinomial expected frequencies (horizontal line sections) and observed
frequencies (circles).

Density

Let X be the number of failures before the nth success. Then X is said to have the
negative binomial density with parameters n and π if

P {X = x|π, n} =

{(
x+n−1
n−1

)
πn (1− π)x for x ∈ Z0+
0 otherwise

. (5.11)

Here is why: The number of failures until the first success is (1 − π)x1−1π, until
the second success (1− π)x2−1π, . . . , until the nth success is (1− π)xn−1π. Because
sequences are independent, we write

(1− π)x1−1 π ∙ ∙ ∙ (1− π)xn−1 π = (1− π)x πn

where x = x1 + ∙ ∙ ∙ + xn. Now the last trial is a success. The remaining n− 1
successes can be assigned to the remaining x− 1 trials in

(
x+n−1
n−1

)
ways. Hence we

have (5.11).
The general definition of the negative binomial does not require that n be a non-

negative integer. However, because we are interested in the physical interpretation of
the density, we will focus our attention on positive integers.

Parameter estimation

The expectation and variance of a negative binomial rv X are

E [X] =
n(1− π)
π

, V [x] =
n (1− π)
π2

.

To estimate the sample-based parameters we write the negative binomial in a more
general way:

P (X = x) =
(
1 +
m

k

)−k Γ (k + x)
x!Γ (k)

(
m

m+ k

)x
. (5.12)



Some useful discrete densities 167

The function Γ (α) is called the gamma function. It is defined by

Γ (α) =

∫ ∞

0

e−xxα−1dx.

For an integer α, say α = n,

Γ (n) = (n− 1)!

Now use the following to estimate m and k

m̂ = X k̂ =
X
2

S2 −X
(5.13)

whereX and S2 are the sample mean and variance (see Anscombe, 1948). The estima-
tion of the parameters is difficult and should be avoided unless necessary. Estimation
methods often fail or are unstable.

Applications

The variance of the binomial is smaller than its mean. For the Poisson the variance
and the mean are equal. The variance of the negative binomial is larger than its mean:
A common feature in data. The phenomenon of count data (usually modeled with the
Poisson) with variance larger than the mean is called overdispersion. Ecologically
oriented applications of the negative binomial are discussed by Krebs (1989). The
negative binomial is also applicable in the following situations:

• Denote by p the probability of success in a sequence of independent Bernoulli
trials. From (5.12) we conclude that p = m/ (m+ k) . If k is an integer, then the
negative binomial is the density of the number of successes up to the kth failure.

• In cases where the parameter λ varies over time, instead of using the Poisson, the
negative binomial may be a good candidate.

• The negative binomial may be a plausible model of the density of insect counts,
when they hatch in clumps, the density of the count of plants when their distri-
bution is clumped, the distribution of ant-hills in space (where X is the distance
between hills) and so on.

• The negative binomial is applicable as a population-size model (birth/death pro-
cess) when the birth and death rates per individual are constant, with a constant
rate of immigration.

Example 5.22. Bliss and Fisher (1953) published one of the earliest applications of
the negative binomial density. They studied the distribution of the number of ticks on
a sheep. Table 5.3 shows agreement between the observed and expected frequencies. To
compute the expected frequency from the observed distribution, compute the sample
mean and variance and then m and k using (5.13). Then substitute these values in
(5.12) and compute N × P (X = x) for x = 0, 1, . . . , 10 where the total number of
observations is N = 60 (see Exercise 5.21). ut

Here is an example in which we use the negative binomial in R.
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Table 5.3 Ticks sheep.

Ticks Observed Expected

0 7 6
1 9 10
2 8 11
3 13 10
4 8 8
5 5 5
6 4 4
7 3 2
8 0 1
9 1 1
10+ 2 2

Example 5.23. Consider a Bernoulli trial with probability of success π = 0.2. We
wish to conduct 100 experiments. In each experiment, we stop as soon as we get 20
successes. The density of X (the number of trials until we achieve 20 successes) is
negative binomial. Let us see what the density and distribution look like. First, we
set the parameters, generate random values and calculate their mean (we need the
mean later):

n <- 100 ; k <- s <- 20 ; PI <- 0.2 ; set.seed(200)

X <- rnbinom(n, size = s, prob = PI) ; m <- mean(X)

Next, we plot the histogram and superimpose on it the true density and the sample
based density:

> par(mfrow = c(1, 2))

> h(X, xlab = 'count')

> x <- 0 : 400

> lines(x, dnbinom(x, size = s, prob = PI), lwd = 3)

> lines(x, dnbinom(x, size = s, mu = m), lwd = 3,

> lty = 2, col = 'red')

(the code for h() is on p. 40). The sample-based density (the broken line in Figure 5.9)
is generated from the target number of successes (20) and from the mean of the
sample, m. To compare the sample-based distribution to the true distribution, we plot
the empirical cumulative distribution function with ecdf() and add the lines for the
true distribution with pnbinom():

plot(ecdf(X), main = '', ylab = expression(italic(P(X<=x))))

lines(x, pnbinom(x, size = s, prob = PI), type = 's')

Note the use of type = s. This results in a step plot. ut

In Section 17.1 we apply the negative binomial to the density of U.S. casualties in Iraq.

5.9.3 Hypergeometric

The hypergeometric is the multivariable extension of the negative binomial. The den-
sity can be describes as follows. Suppose that a population of size n consists of n1
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Figure 5.9 The negative binomial density (left) and distribution (right).

types A and n2 = n− n1 types a. Let the rv X denote the number of types A in a
sample of size k, taken without replacement. The hypergeometric describes the density
of X.

Density

The rv X is said to have hypergeometric density if given n1, n2 and k, its density is

P (X = x|n1, n2, k) =






(
n1
x

)(
n2
k−x

)

(
n1+n2
k

) for x ∈ Z0+

0 otherwise

.

To see that the density represents the process just described let us think about
X ∈ Z0+ for a moment. We realize that the number of ways to select a sample of
size k from a population of size n is

(
n
k

)
. The number of ways to select x from n1 is(

n1
x

)
. For each of those, we can select the remaining k − x from n2 in

(
n2
k−x

)
number

of ways. Thus, the number of samples having x type a is
(
n1
x

)(
n2
k−x

)
. To get the prob-

abilities, we divide the last expression by
(
n
k

)
. These probabilities may be computed

for max (0, k − n2) ≤ x ≤ min (k, n1).

Parameter estimation

To derive the expectation and variance, let Y ∈ Z0+. The rv Y denotes the number
of types A in a sample of size k, taken without replacement from a population with
two types. Define

Xi =

{
1 if type A occurred
0 otherwise

.

Then Y =
∑k
i=1 Yi. We have E [Yi] = n1/n and E [Y ] = kn1/n = kp. This is also the

E [X] where X is a binomial rv. In other words, sampling with or without replacement



170 Discrete densities and distributions

have identical expectations. Now Y 2i = Yi. Therefore, E
[
X2i
]
= n1/n and

V [Yi] =
n1

n
−
(n1
n

)2
=
n1

n

(
1−
n1

n

)
= p (1− p) .

The joint distribution of (Yi, Yj) , i 6= j are identical because all such pairs are equally
likely to occur, regardless of the values of i and j. Therefore,

Cov [Yi, Yk] = Cov [Y1, Y2] = E [Y1Y2]− E [Y1]E [Y2] , i 6= k.

Also,

E [Y1Y2] = 1 ∙ P {Y1Y2}

= 1 ∙ P {Y1 = 1 and Y2 = 1}

=
n1

n

n1 − 1
n− 1

.

Therefore,

Cov [Yj , Yk] =
n1

n

n1 − 1
n− 1

−
(n1
n

)2

= −
n1

n

n− n1
n

1

n− 1
.

Therefore, we have

V [Y ] =

k∑

i=1

V [Yi] + 2
∑

j <l

Cov [yj , yl]

= kp (1− p)− 2

(
k

2

)

p (1− p)
1

n− 1

= kp (1− p)
n− k
n− 1

.

For sampling with replacement we have kp (1− p) .

Applications

The distribution is applicable in genetics to situations where we model genotypes of
haploids with 2 alleles and random mating. In quality control, it is used to determine
the number of items that should be tested for quality in a particular batch.

Example 5.24. A population of n objects consists of n1 defective objects and n2
non-defective objects. Let X be the number of defective objects in a sample of size k.
If we are at least 90% certain that the population has at least 1 defective object, we
will discard the population. What should be the sample size k such that we are 90%
certain that at least 1 defective object is in the sample?
Let X denote the number of defective objects in the sample. We wish to choose

the smallest sample size k, such that

P {X ≥ 1} ≥ 0.9 . ut
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Example 5.25. A state lottery requires 6 matches from a total of 53 numbers. Let
Y be the number of matches. Then the probability of drawing y matches is

P {Y = y} =

(
6
y

)(
47
6−y

)

(
53
6

) .

Therefore, the probability of winning is

> n1 <- 6 ; n2 <- 47 ; k <- 6 ; Y <- 6

> dhyper(Y, n1, n2, k)

[1] 4.355879e-08

The same result can be obtained with

> choose(n1, x) * choose(n2, k - x) / choose(n1 + n2, k)

[1] 4.355879e-08

The function choose(a, b) returns the binomial coefficient for
(
a
b

)
. ut

5.10 Assignments

Exercise 5.1. Four patients, A, B, C and D are being readied for today’s surgeries.
The surgeon estimates that A will need 1000 cc of blood transfusion during the oper-
ation, B will need 2000, C will need 3000 and D will need 4000 cc. The anesthetist
was late to work and only two patients will be operated upon today. To avoid the
appearance of favoritism, the surgeon is going to choose the first patient randomly
and operate on him. He then is going to choose the second patient randomly and
operate on him. List the possible values for each of the following random variables.

1. LetX denote the total amount of blood needed for the day. List the possible values
of X.

2. List the probabilities for these values.
3. After computing (1), the surgeon realizes that the blood supply is low, and he
cannot afford to spend more than 5000 cc for the day. Yet, he wishes to operate on
two patients. What is the probability that patient A will be chosen for surgery?
Patient B? C? D?

Exercise 5.2. An experiment consists of the event of rolling a die with an even num-
ber of dots showing face up and flipping a coin with either H or T showing up.

1. List all possible outcomes.
2. What are the probabilities associated with each outcome?
3. Assign a value of 2 to H and 4 to T and 6− n to the number of points with face
up. Here n denotes the values 2, 4 or 6. Let X be the rv with values xi = value
from the outcome of flipping the coin +6 − n. What values does the rv X take?

4. What are the probabilities, P (X = xi), that X takes?
5. Is P in (4) a distribution function? Why?
6. Plot P in (4).
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Exercise 5.3. The director of a small local clinic needs to decide how many flu shots
he should order before the flu season begins. Let X be the number of people who
show up or call for the shot. The manager examines past years’ data and obtains the
following probability distribution for X:

p

less than 105 0.065

105 0.033

106 0.055

107 0.081

108 0.106

109 0.126

110 0.133

111 0.126

112 0.106

113 0.081

114 0.055

115 0.033

He decides to order 110 shots. The clinic is going to be open for shots on Wednesday,
from 9:00 to 10:00 am. Some people call before to reserve a shot, others just walk in.

1. What is the probability that everybody who shows up or called before gets the
shot?

2. Suppose that 110 people called to reserve a shot. You walk in at 9:00 am sharp
and are told that all the shots are reserved for people who called. However, some
of those who call do not show up. You could wait an hour and if people do not
show up, you will be the first on line to get the shot. What is the probability that
you will get the shot if you wait?

3. Another person walked in at 9:10. He is the fourth one to walk in. What is the
probability that he will get the shot?

Exercise 5.4. Northwestern Minnesota is prone to widespread flooding in the Spring.
Suppose that 20% of all farmers are insured against flood damage. Four farmers
are selected at random. Let M denote the number among the four who have flood
insurance.

1. What is the probability distribution of M?
2. What is the most likely value of M?
3. What is the probability that at least two of the four selected farmers have flood
insurance?

Exercise 5.5. One in 1 000 pedestrians in a busy intersection gets hit by a car. Acci-
dents are independent.

1. Plot the density of the number of pedestrians crossing the intersection until the
first accident occurs.

2. Plot the distribution of the above.
3. Let X be the number of pedestrians that crossed the intersection. How many
pedestrians crossed the intersection until the first accident if P (X ≤ m) = 0.05,
0.10, 0.90, 0.95?
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Exercise 5.6. A sample of 20 students is drawn from a population where 60% of the
student body is female.

1. Plot the density of the number of females in the sample.
2. Plot the distribution of the number of females in the sample.
3. Plot the density of the number of males in the sample.
4. Plot the distribution of the number of males in the sample.
5. Let X be the number of females. How many females will be in the sample if
P (X ≤ m) = 0.05, 0.10, 0.90, 0.95?

6. LetX be the number of males. How many males will be in the sample if P (X ≤ m)
= 0.05, 0.10, 0.90, 0.95?

Exercise 5.7. The U.S. National Science Foundation conducts surveys about college
graduates. In 2001, 79.5% of the graduates who qualified for the survey (based on the
survey’s definition of college graduates) responded (see http://srsstats.sbe.nsf.
gov/htdocs/applet/docs/techinfo.html. We wish to know why some did not
answer. We have the list of graduates, but we do not know who did not respond.
So we contact random people from the list until we find one that did not answer.

1. Define the event of interest.
2. What are the outcomes and their associated probabilities?
3. Define an appropriate rv that reflects how many college graduates we contact
until we find one who did not respond to the survey.

4. Construct the distribution function of this rv.
5. Plot it for n = 1, 2, . . . , 10 where n is the number of graduates we ask until we
find one that did not respond.

Exercise 5.8. Let X be the ticket price for a political fund-raising dinner. Suppose
that the probability distribution of X is:

x 100.00 120.0 140.00 160.00 180.00 200.00

p 0.22 0.2 0.18 0.16 0.13 0.11

1. What is the probability that a randomly selected attendee paid more than $140
for the ticket? Less than $160?

2. Compute the expected value and the standard deviation of X.

Exercise 5.9. The probability that a female wolf gives birth to a male is 0.5. Give
the probability distribution of the rv variable X = the number of female puppies in
a litter of size 5.

Exercise 5.10. The probability distribution of the size of a wolf litter is

Litter size (x) 1 2 3 4 5 6 7 8
P (X = x) 005 0.10 0.12 0.30 0.30 0.11 0.01 0.01

1. What is the expected litter size?
2. What is the probability that X is within 2 of its expected value?
3. What is the variance of the litter size?
4. What is the standard deviation of the litter size?
5. What is the probability that the number of pups is within 1 standard deviation
of the expected value of litter size?
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6. What is the probability that the number of pups in the litter is more than two
standard deviations from its expected value?

Exercise 5.11. Show that for the binomial distributions with parameters n and π,

1. E[X] = n× p
2. V [X] = np(1− p)

Exercise 5.12. You take a multiple-choice exam consisting of 50 questions. Each
question has 5 possible responses of which only one is correct. A correct answer is
worth 1 point. You have not studied for the exam and therefore decide to guess the
correct answers. Let X = the number of correct responses on the test.

1. What is of probability distribution of X?
2. What score do you expect?
3. What is the variance of X?

Exercise 5.13. You are given the following distribution of the rv X:

x 26.00 38.00 34.00 38.00 28.00 27.00 37.00 21.000

p 0.10 0.15 0.14 0.15 0.11 0.11 0.15 0.095

Is this possible?

Exercise 5.14. Given the following scenarios, identify the most appropriate proba-
bility distribution and draw the shape of the density and the shape of the distribution
in each case.

1. Choose a deer and identify its sex.
2. The number of quarters you insert into a slot machine until you win.
3. The number of individual plants in a plot.
4. The number of females in a sample of 10 students.
5. The time until a light bulb is out.

Exercise 5.15. For the geometric distribution, prove that E[X] = 1/π.

Exercise 5.16. Show that for the binomial density with parameters π and n:

1. E[X] = nπ.
2. V [X] = nπ(1− π).

Exercise 5.17. For the geometric distribution, prove that V [X] = (1− π)/π2.

Exercise 5.18. For the binomial density, our data resulted in nS successes in n trials.
Use the MLE technique to prove the following:

1. π̂ = p := nS / n.
2. σ̂2 = np(1− p) where σ2 is the variance of the density and σ̂2 is the MLE of σ2.

Exercise 5.19. For the Poisson density, our data resulted in xi counts, i = 1, . . . n.
Use the MLE technique to prove the following:

1. λ̂ = X where X is the mean of the sample.
2. σ̂2 = X.
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Exercise 5.20. A working hypothesis is that plants are randomly distributed and
independent of each other in an area. You establish a large number of 1 × 1 m2 plots
in the area and count the number of plants in each plot. The mean number of plants
per plot is 2.5.

1. Plot the hypothesized density of the number of plants in a plot.
2. Plot the distribution of the above.
3. Let X be the number of plants in a plot. How many plants might be in a plot if
P (X ≤ m) = 0.05, 0.10, 0.90, 0.95?

Exercise 5.21. Use R to compute the expected values column in Table 5.3.
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Continuous distributions
and densities

In Chapter 5, we discussed densities first and then distributions. Now that we know
about distributions, it is convenient to start with distributions and then move on to
densities.

6.1 Distributions

Let X ∈ R and x ∈ R. Then we define

Continuous probability distribution The function P (X ≤ x|θ) (where θ is a vec-
tor of parameters), is called the probability distribution function (distribution for
short) of the rv X.

Example 6.1. Denote the two-hour time interval between a = 13:00 hours and b =
15:00 hours by [a, b]. Intelligence reports that a suicide bomber is going to explode
herself in a busy intersection in Baghdad anytime within [a, b]. Let Et be the event
that the bombing occurred at t. Then

B := {Et : t ∈ [a, b]} , B = {Et : t /∈ [a, b]} , S = B ∪B , t ∈ R .

The notation reads “B is the set of all events Et such that the explosion occurred at
t between 13:00 and 15:00.” Recall that B is the complement of B and S is the event
space. To obtain the distribution of these events, we must construct the rv T (Et)
and assign a probability to Et for all possible t. Because of the way Et is defined,
we simply map T (Et) to t. Instead of constructing probabilities for Et, we construct
probabilities for the compound event

Bt = {Eτ : τ ≤ t, t ∈ R} .

With our definition of T, we simply have T (Bt) ≤ t. Once we assign probabilities to
all Bt, our distribution is defined.

Statistics and Data with R:  An applied approach through examples         Y. Cohen and  J.Y.  Cohen
©
2008 John Wiley & Sons, Ltd.  ISBN: 978-0-470-75805
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Obviously
P (Bt) = 0 , t ≤ a

(the explosion cannot occur before 13:00) and the probability that it will occur pre-
cisely at t = a is zero (a is one among an infinite number of points). Now consider the
middle point of the interval [a, b] and let t ≤ a + (b− a)/2. Imagine the line segment
(a, b] with the point a + (b− a)/2 in the middle. Drop a fine-tipped needle from such
a height over the line that its tip will be equally likely to hit anywhere to the left or
right of the middle point. If the tip hits outside (a, b], ignore the outcome (i.e. this
will be our ∅ event) because no event is defined for this case. Drop the needle many
times and count the number of times its tip hits to the left or to the right of the
middle of the interval. In this idealized experiment, the tip will hit half of the times
in the interval (a, a+ (b− a)/2]. Therefore, for t = a + (b− a)/2 we have P (Bt) =
1/2.
What we have just illustrated is that the relative size of the section from a to t

(for t inside [a, b]) is in fact the probability of

P (T (Bt|a, b) = t) = P (T (Et|a, b) ≤ t)

or simply P (T ≤ t|a, b). Therefore,

P (T ≤ t|a, b) =
t− a
b− a

, t ∈ (a, b].

Finally, because any probability for t > b is zero,

P (T ≤ t|a, b) = 1 , t > b .

The probability the explosion may occur any time before t = 14:00 hours is

P (T ≤ 14:00|a, b) =
14 : 00− 13 : 00
15 : 00− 13 : 00

=
1

2
.

(see top left inset in Figure 6.1). Here is the script for this example:

1 a <- 13 ; b <- 15 ; x <- seq( -1, b + 1, length = 2001)

2 par(mfrow = c(2, 2))

3 xlabel <- c('', '', rep(expression(italic(t)), 2))

4 ylabel <- c('', expression(italic(P(T < t))), '',

5 expression(italic(P(T==t))))

6 y <- cbind(punif(x), punif(x, a, b),

7 dunif(x), dunif(x, a, b))

8 x.limits <- rbind(c(-0.1, 1.1), c(a - 0.1, b + 0.1),

9 c(-0.1, 1.1), c(a - 0.1, b + 0.1))

10 for(i in c(2, 1, 4, 3)){

11 plot(x, y[, i], type = 'l', xlab = xlabel[i],

12 xlim = x.limits[i, ], ylab = ylabel[i],

13 ylim = c(0, 1.1), lwd = 2)

14 }
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Figure 6.1 Uniform distributions and their corresponding densities. Left column:
the suicide bombing example. Right column: the standard uniform.

Let us examine the script. In line 1 we set the parameters for the uniform and with
seq(), we let x hold the x-values to be plotted. We have four plots to produce, so
in line 2 we tell the graphics device to accept a matrix of 2 × 2 plots (par() and
mfrow). In lines 3 to 5 we set the labels (including expression() and italic()) as
vectors of length four (the number of panels we are going to draw). In lines 6 and 7
we set the y-data to be plotted. Note the use of punif() and dunif() to produce
the distributions and densities respectively (lines 6 and 7). In lines 8 and 9 we set the
limits for the x-axis. The plots are produced within the loop in lines 10 to 14. ut

The family of distributions illustrated in Figure 6.1 defines the

Uniform distribution The rv X has a uniform distribution on the interval [a, b] if

P (X ≤ x| a, b) =






0 for x < a
x− a
b− a

for a ≤ x ≤ b

1 for b < x

. (6.1)

The uniform with a = 0 and b = 1 is called the standard uniform distribution. Another
distribution that is closely related to the uniform is the exponential.

Example 6.2. Let events occur equally likely at any time interval with mean 1/λ
events per hour. Every time an event occurs, reset a time interval to 0 and observe
the time until the next event occurs. Denote by T the time interval between two
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consecutive events. In other words, T = t means that the next event did not occur
until t. Obviously, as t increases, P (T ≤ t|a, b) decreases. The probability that the
next event does not occur at t = 0 is 1 (two events cannot occur at exactly the same
time). It can be shown that P (T ≤ t|λ) decreases exponentially with a rate λ as time
increases:

P (T ≤ t|λ) =

{
1− e−λt for t ≥ 0
0 for t < 0

. (6.2)

ut

From Example 6.2 we have the following definition:

Exponential distribution (6.2) defines the exponential distribution.

6.2 Densities

Once we define continuous distributions, the definition of continuous densities follows
immediately:

Continuous probability density The continuous density probability function
(density, for short) of a rv with distribution P (X ≤ x|θ) is

P (X = x|θ) :=
dP (X ≤ x|θ)

dx
. (6.3)

Example 6.3. In Example 6.1 we constructed the uniform distribution. The corre-
sponding densities for two distributions are shown in the bottom two insets of Figure
6.1. To see this, we take the derivative of P (X ≤ x|a, b) in (6.1):

P (X = x|a, b) =
dP (X ≤ x|a, b)

dx
=

1

b− a
.

Therefore, the uniform density is

P (X = x|a, b) =






0 for x < a
1

b− a
for a ≤ x ≤ b

0 for x > b

. (6.4)

ut

Because P (X = x|θ) is continuous, we cannot interpret it as the probability at X = x.
Why? Because there are uncountably infinite values of x between a and b and the
probability of choosing a specific value is therefore zero. The way around this is to
interpret P (X = x|θ) as a limit (see the alternative definition of P (X = x|θ) below).
From Example 6.3 we have the following definition:

Uniform density The uniform density is given by (6.4).

Here is another example of a continuous density:

Example 6.4. Continuing with Example 6.2,

P (T = t|λ) =
d
(
1− e−λt

)

dt
= λe−λt , t ≥ 0 .
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The interval between events cannot be negative and we have

P (X = x|λ) =

{
λe−λt for t ≥ 0
0 for t < 0

. (6.5)

ut

And so we define

Exponential density (6.5) defines the exponential density.

6.3 Properties

From the definitions of continuous distributions and densities and the discussion
above, we deduce their properties. Because of our insistence on treating discrete den-
sities and distributions as functions of X ∈ R, all of the properties of continuous
densities and distributions apply to discrete densities and distributions (Section 5.3).

6.3.1 Distributions

P (X ≤ −∞|θ) = 0
This property is an immediate consequence of the definition of a rv, where we
require that X > −∞.

P (X ≤ ∞|θ) = 1
This property is an immediate consequence of the definition of a rv, where we
require that X < ∞.

P (X ≤ x1|θ) ≤ P (X ≤ x2|θ) for x1 ≤ x2
Let A be the set of events that combine to give P (X (A) ≤ x1|θ) and B the
set of events that combine to give P (X (B) ≤ x2|θ). Then, A ⊂ B. A direct
consequence of the definition of probability is then that P (A|θ) ≤ P (B|θ) and
therefore P (X ≤ x1|θ) ≤ P (X ≤ x2|θ). Functions that have this property are
called nondecreasing.

P (x1 < X ≤ x2|θ) = P (X ≤ x2|θ) − P (X ≤ x1|θ) for x1 ≤ x2
To see this, let A be the set of events that give P (X (A) ≤ x1|θ) and B the set of
events that give P (x1 < X ≤ x2|θ). From their definition, we conclude that the
events A and B are mutually exclusive. Therefore

P (X ≤ x2|θ) = P (X ≤ x1|θ) + P (x1 < X ≤ x2|θ)

or
P (x1 < X ≤ x2|θ) = P (X ≤ x2|θ)− P (X ≤ x1|θ) .

We can use the last property to derive another definition of continuous densities. From
(6.3) and the definition of derivatives, we have

P (X = x|θ) = lim
Δx→0

P (X ≤ x+Δx|θ)− P (X ≤ x|θ)
Δx

.

From P (x1 < X ≤ x2|θ) = P (X ≤ x2|θ) − P (X ≤ x1|θ) for x1 ≤ x2, we have
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Alternative definition of continuous density

P (X = x|θ) = lim
Δx→0

P (x ≤ X ≤ x+Δx|θ)
Δx

.

6.3.2 Densities

P (X = x|θ) ≥ 0
Because P (X ≤ x|θ) is non-decreasing, its derivative, P (X = x|θ) ≥ 0.∫∞

−∞ P (X = x|θ) dx = 1
The fundamental theorem of calculus states that

∫ b

a

P (X = x|θ) dx = P (X ≤ b|θ)− P (X ≤ a|θ) . (6.6)

From the properties of distributions, we have

P (X ≤ ∞|θ)− P (X ≤ −∞|θ) = 1− 0 = 1 .

P (x1 ≤ X ≤ x2|θ) =
∫ x2
x1
P (X = x|θ) dx for x1 < x2

This property is an immediate consequence of the definition of P (X = x|θ):

P (x1 ≤ X ≤ x2|θ) = P (X ≤ x2|θ)− P (X ≤ x1|θ)

=

∫ x2

−∞
P (X = x|θ) dx−

∫ x1

−∞
P (X = x|θ) dx

=

∫ x2

x1

P (X = x|θ) dx .

P (X = x|θ) = 0
This property is a direct consequence of (6.6).

The next example illustrates the properties of continuous distributions and densities
with the uniform distribution.

Example 6.5. Personal observations of songbirds indicate that shortly after dawn,
they spend 1–3 hours feeding. A simple assumption is that the probability that a
songbird spends any amount of time feeding from 1–3 hours per morning is 1. Let X
be the amount of time a songbird spends feeding in the morning. Then

P (X = x|0, 3) =






0 for x < 1
1

2
for 1 ≤ x ≤ 3

0 for x > 3

, P (X ≤ x|0, 3) =






0 for x < 1
x

2
for 1 ≤ x ≤ 3

1 for x > 3

.

From these equations we see that P (X ≤ −∞|0, 3) = 0, P (X ≤ ∞|0, 3) = 1 and for
x1 ≤ x2 we have P (X ≤ x1|0, 3) ≤ P (X ≤ x2|0, 3). Obviously P (X = x|0, 3) ≥ 0
and the area under the density from −∞ to ∞ is

∫∞
−∞ P (X = x|0, 3) dx = 1.
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Let us use R to verify these properties with the standard uniform P (X ≤ x|0, 1):

> c(punif(-Inf), punif(Inf))

[1] 0 1

> x.1 <- 0.6 ; x.2 <- 0.7 ; punif(x.1) <= punif(x.2)

[1] TRUE

Here punif(x) corresponds to P (X ≤ x|0, 1) and Inf in R is ∞. ut

For P (X = x|θ) satisfying the properties we just discussed, it should be clear by now
that the fundamental difference between continuous and discrete densities is this: For
continuous densities, X ∈ R and P (X = x|θ) ≥ 0. For discrete densities, P (X = y|θ)
> 0 where y is a discrete subset of x.

6.4 Expected values

In direct parallel to the expected values of discrete distributions, we have

Expected value of a continuous rv The expected value of a continuous rvX with
density P (X = x|θ) is

E [X] =

∫ ∞

−∞
xP (X = x|θ) dx .

Example 6.6. For the uniform density we have

E [X] =
1

b− a

∫ b

a

xdx

=
1

b− a

(
1

2
b2 −

1

2
a2
)

=
1

2

1

b− a

(
b2 − a2

)

=
1

2

(b− a) (b+ a)
b− a

=
a+ b

2
.

This is what one might expect—in the long run, the expected value will be in the
middle between a and b. ut

Example 6.7. For the exponential density (6.5) and for λ > 0 we obtain

E [T ] =

∫ ∞

0

tλe−λtdt =
1

λ
.

ut

Example 6.8. Figure 5.2 shows a histogram of the number of people killed per attack
by Hamas terrorists (data sources are given in Example 5.2). The smooth curve in
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the figure shows the exponential density (6.5) with λ = 1/6.698 = 0.149, where E[X]
= 1/λ = 6.698 is the average (expected) number of people killed per attack. ut

Example 6.9. Continuing with Example 5.2, the histogram and exponential density
of time between attacks are shown in Figure 6.2. The mean number of days between
attacks was 21.881. The fitted exponential density is drawn with

λ =
1

21.881
= 0.046 .

Figure 6.2 Days between attacks on Israelis by Hamas.

As we discussed, a uniform random density of events in time gives rise to an exponen-
tial density of intervals between events. Therefore, we conclude that there is evidence
to support the hypothesis that the attacks occurred uniformly randomly in time. We
will make the statement “evidence to support” more rigorous in due time. Figure 6.2
was produced with the following script:

1 load('terror.by.Hamas.rda')

2 terror <- terror.by.Hamas

3 lambda <- 1 / mean(terror$Killed)

4 j1 <- terror$Julian ; j2 <- j1

5 j1 <- j1[-length(j1)] ; j2 <- j2[-1]

6 h(j2 - j1, xlab = 'days between attacks')

7 x <- 0 : 120

8 lines(x, dexp(x, 1 / mean(j2 - j1)))

(the code for h() is on p. 40) which should be self-explanatory by now. ut

6.5 Variance and standard deviation

The definitions of variance and standard deviation of continuous densities are similar
to those of discrete densities:
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Variance of a continuous rv The variance of a continuous rv X with density
P (X = x) is

V [X] =

∫ ∞

−∞
(x− E [X])2 P (X = x|θ) dx .

Standard deviation of a continuous rv The standard deviation of a continuous
rv X with variance V [X] is

S [X] =
√
V [X] .

Example 6.10. The variance of the uniform is given by

V [X] =

∫ b

a

(

x−
a+ b

2

)2
1

b− a
dx

=
(a− b)2

12
.

ut

Example 6.11. For λ > 0, the variance of the exponential is given by

V [X] =

∫ ∞

0

(

x−
1

λ

)2
λe−λxdx =

1

λ2
.

For the Hamas attacks, we found λ = 0.046 where 1/λ is the mean (expected) number
of days between attacks. The variance of the days between attacks is 1/λ2 = 472.59.
The standard deviation is 21.74 days between attacks. ut

6.6 Areas under density curves

According to our definitions, P (X = x|θ) is either discrete or continuous. Therefore,

P (X ≤ x|θ) =
∫ x

−∞
P (X = ξ|θ) dξ (6.7)

for both discrete and continuous densities. From (6.7) we conclude that P (X ≤ x|θ)
is the area under P (X = ξ|θ) for ξ from −∞ up to x. Using the rules of integration,

P (X > b|θ) = 1− P (X ≤ b|θ)

=

∫ ∞

−∞
P (X = ξ|θ) dξ −

∫ b

−∞
P (X = ξ|θ) dξ

=

∫ ∞

b

P (X = ξ|θ) dξ

and

P (a < X ≤ b|θ) = P (X ≤ b|θ)− P (X ≤ a|θ)

=

∫ b

−∞
P (X = ξ|θ) dξ −

∫ a

−∞
P (X = ξ|θ) dξ (6.8)

=

∫ b

a

P (X = ξ|θ) dξ .
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Figure 6.3 Distributions and areas under densities.

Example 6.12. The shaded areas in Figure 6.3 represent the values of P (X ≤ a|θ),
1 − P (X ≤ b|θ) and P (X ≤ b|θ) − P (X ≤ a|θ) for the so-called normal density.
Let us see how to produce P (X ≤ a|θ) in R (the remaining figures are produced
similarly):

1 x <- seq(-4, 4, length = 1000) ; y <- dnorm(x)

2 plot(x, y, axes = FALSE, type = 'l', xlab = '', ylab = '',

3 main = expression(italic(P(X<=a))))

4 abline(h = 0)

5 x1 <- x[x <= -1] ; y1 <- dnorm(x1)

6 x2 <- c(-4, x1, x1[length(x1)], -4) ; y2 <- c(0, y1, 0, 0)

7 polygon(x2, y2, col = 'grey90')

8 axis(1, at = c(-1, 1), font = 8,

9 vfont = c('serif', 'italic'), labels = c('a', 'b'))

In line 1 we set x’s range from −4 to 4 and assign the values of the normal densities
at x values to y with a call to dnorm() (we will discuss the normal density in detail
later). In lines 2 and 3 we plot without axes (axes = FALSE) and set the main label
to italic for the expression P (X ≤ a). In line 4 we plot a horizontal line at x = 0.
Next, we need to create a polygon for x = −4 to 4 at y = 0, then from x = −1 to
P (X = 1), then P (X = x) for x = −1 to −4 and shade it. In lines 5 and 6 we set the
x and y vertices of the desired polygon. In line 7 we call polygon() with the x and
y coordinates of the polygon. We fill the polygon with the color grey90. Finally, in
lines 8 and 9 we call axis(). Note the call to vfont(). Producing various fonts in a
graph is a specialized topic (see R’s documentation). ut

Here is a numerical example.

Example 6.13. In Example 6.5, we constructed the uniform distribution for the feed-
ing times of songbirds. We now calculate some probabilities of interest. For example,
the probability that a bird spends between 4 and 6 hours a day feeding is the area
under the curve between 4 and 6 in Figure 6.4. This area is

P (4 ≤ X ≤ 6|4, 6) = (6− 4)× 0.5 = 1
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Figure 6.4 Probabilities and areas under the uniform density.

Or more formally according to (6.8)

P (X ≤ 6|4, 6)− P (X ≤ 4|4, 6) =
∫ 6

4

1

2
dx = 1 .

Similarly, the probability that the bird spends between 4.5 and 5.5 hours a day
feeding is

P (4.5 ≤ X ≤ 5.5|4, 6) = (5.5− 4.5)× 0.5 = 0.5 .

The probability that the bird spends more than 5.5 hours a day feeding is

P (X > 5.5|4, 6) = (6− 5.5)× 0.5 = 0.25

(Figure 6.4). We interpret each of these cases as follows: With a large number of
observations, about 100% of the birds will spend between 4 and 6 hours feeding, 50%
between 4.5 and 5.5 and 25% more than 5.5 hours a day feeding. The areas under the
curve in these 3 cases represent the corresponding probabilities. The script for this
example is almost identical to the script in Example 6.12. ut

6.7 Inverse distributions and simulations

If P (X ≤ x|θ) is a given distribution, then we can calculate its value for a given x.

Example 6.14. Consider the uniform with parameters 0 and 4 and the exponential
with parameter 0.2. To obtain the probabilities that x ≤ 2 and 10, we do

> round(c(punif(2, 0, 4), pexp(10, 0.2)), 4)

[1] 0.5000 0.8647

This means that if we repeatedly draw a random value from the uniform, then 50%
of these values will be ≤ 2. Similarly, about 86.5% of the values from the exponential
will be ≤ 10. ut

Often, we are interested in the inverse of a distribution. That is, given a probability
value p, we wish to find the quantile, x, such that P (X ≤ x|θ) = p.
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Example 6.15. Continuing with Example 6.14,

> round(c(qunif(0.5, 0, 4), qexp(0.8647, 0.2)), 2)

[1] 2 10 ut

Next, we want to draw a random value from a density. This means that if certain
values of x are more probable under the density than others, then they should appear
more frequently in a random sample from the density. For example, for the densities
shown in Figure 6.3, most of the random values should be clumped around the center
of the density (these have the highest probabilities of occurring). The process of
generating random values from a density is called simulation (some call it Monte
Carlo simulation). Simulations is a wide topic and details can be found in books such
as Ripley (1987) and Press et al. (1992). To generate random values from a particular
density, we first realize that a priori, there is no reason to prefer one random value
(quantile) over another. However, the density itself should produce more quantiles for
those values that are more probable under it. To generate a random value, x, from a
known distribution P (X ≤ x|θ) = p, we define the inverse of the distribution by x =
P−1 (p|θ). Because we have no a priori reason to prefer one value of p over another,
we use the uniform on [0, 1] to generate a random value of p and then use P−1 (p|θ)
to generate x. In other words, in the case of P (X ≤ x|θ) = p, x is given and p is
therefore known. In the case of P−1 (p|θ), p is the rv (with a uniform density with
parameters 0 and 1) and so x is also a rv. In order not to confuse issues, we stray, in
this case, from the convention that a rv is denoted by an upper case letter.

Example 6.16. Let us generate a random value from the exponential distribution
P (X ≤ x|λ) = 1 − e−λt. To generate x, solve p = 1 − e−λx for x:

x = −
log (1− p)
λ

. (6.9)

Now generate a random deviate p from a uniform distribution on [0, 1] and use it in
(6.9) to compute x. We achieve this in R with:

> round(rexp(5, 0.1), 3)

[1] 7.291 12.883 6.723 4.265 11.154

Here we produce five random values from the exponential distribution with parameter
λ = 0.1. Figure 6.5 illustrates the process of generating three random values from the
exponential distribution. The figure was produced with

1 x <- seq(0, 10, length = 101) ; lambda <- 0.5

2 set.seed(10) ; u <- runif(3) ; r.x <- qexp(u, lambda)

3 plot(x, pexp(x, lambda), type = 'l', xlim = c(0, 10))

4 for(i in 1 : 3){

5 arrows(-1, u[i], r.x[i], u[i], code = 2,

6 length = 0.1, angle = 20)

7 arrows(r.x[i], u[i], r.x[i], -0.04, code = 2,

8 length = 0.1, angle = 20)

9 }
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Figure 6.5 Generating random values from the exponential distribution.

In line 1 we set the values of x for which we generate values from the exponential
distribution with parameter λ = 0.5. In line 2 we set.seed() to 10 (so that we can
repeat the simulation), produce three random probabilities from the standard uniform
and obtain their corresponding values from the exponential distribution with qexp()

(here q stands for quantile). We then plot the distribution with the values of x and
the corresponding values from the distribution with pexp(). Finally, we loop through
the three values and draw arrows() with the arrows at the end of the line segments
(code = 2). The angle and length of the arrows are set to 20 and 0.1. ut

6.8 Some useful continuous densities

Here we discuss some useful continuous densities and the situations under which they
arise. For further discussion about these and many other densities, consult Johnson
et al. (1994).

6.8.1 Double exponential (Laplace)

The double exponential, also called the Laplace, is the density of the difference
between two independent rv with identical exponential densities.

Density and distribution

The density of the double exponential is

P (X = x|μ, σ) =
1

2σ
exp

[

−

∣
∣
∣
∣
x− μ
σ

∣
∣
∣
∣

]

.

Here μ and σ are the location and scale parameters. The standard double exponential is

P (X = x|0, 1) =
1

2
exp [− |x|]
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and the distribution is

P (X ≤ x|μ, σ) =
1

2

[

1 + sign (x− μ)

(

1− exp

[

−
|x− μ|
σ

])]

where sign (x) is + if x > 0, − if x < 0 and zero if x = 0.

Estimating parameters

For the double exponential, E [x] = μ and V [x] = 2σ2. For a sample of size n with
mean X, we estimate μ and σ with

μ̂ = X , σ̂ =
1

n

n∑

i=1

∣
∣Xi −X

∣
∣ .

Applications

Example 6.17. During the breeding season, bull elk fight with other male elk for
the privilege to mate with females. Let X1 be the giving up time of the losing bull
on its first match and X2 on the second. Assume that giving up times on the first or
second fights are independent with the same mean. Then Y = X1 −X2 is a double
exponential rv. ut

Here are R functions for generating random double exponential, density and distribu-
tion values:

rdouble.exp <- function(n, mu = 0, sigma = 1){

return(rexp(n, 1 / sigma) *

ifelse(runif(n) <= 0.5, -1, 1))

}

ddouble.exp <- function(x, mu = 0, sigma = 1){

return(1 / (2 * sigma) * exp(-abs((x - mu) / sigma)))

}

pdouble.exp <- function(x, mu = 0, sigma = 1){

return(1/2 * (1 + sign(x - mu) *

(1 - exp(-abs(x - mu) / sigma))))

}

Let us put these functions to the test.

Example 6.18.We wish to verify that the double exponential functions above work.
So we generate random values with

> set.seed(5) ; y <- rdouble.exp(10000)
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Figure 6.6 Left: density of a random sample from the double exponential (his-
togram) and the true and estimated densities (both curves are nearly identical). Right:
the corresponding distributions.

Next, we plot the histogram of the random values and superimpose on it the theoret-
ical and estimated values (Figure 6.6 left) with

> par(mfrow = c(1, 2))

> h(y, xlab = 'x', ylim = c(0, 0.5))

> lines(x, ddouble.exp(x), type = 'l')

> mu.hat <- mean(y)

> sigma.hat <- sum(abs(y - mu.hat))/ length(y)

> lines(x, ddouble.exp(x, mu.hat, sigma.hat), lwd = 3)

The histogram, estimated and true densities are nearly identical. Finally, we compare
the true distribution, the empirical distribution and the estimated distribution (Figure
6.6 right) with

> plot(x, pdouble.exp(x), col = 'blue', pch = 21)

> lines(ecdf(y))

> lines(x, pdouble.exp(x, mu.hat, sigma.hat), col = 'red')

Again, note the nearly perfect agreement among these three. ut

6.8.2 Normal

In statistics, the normal is the most important of all densities.

Density and distribution

The rv X is said to have a normal density if

P (X = x|μ, σ) =
1

σ
√
2π
exp

[

−
1

2

(
x− μ
σ

)2]
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where μ and σ are the location and scale parameters. When μ = 0 and σ2 = 1, the rv
X is said to have standard normal density. The closed form of the distribution is not
known and must be computed numerically. The standard normal rv is often denoted
by Z.

Estimating parameters

It turns out that

E [X] = μ , V [X] = σ2 .

Define the sample variance

S2 :=
1

n− 1

n∑

i=1

(
Xi −X

)2
.

To estimate μ and σ2, use

μ̂ = X , σ̂2 =
1

n

n∑

i=1

(
Xi −X

)2
=
n− 1
n
S2 ,

where X is the sample mean and n is the sample size. Because the estimates of the
mean and variance are based on a sample, they themselves are realizations of random
variables. It can be shown that these two random variables—the sample mean and
the sample variance—are independently distributed.
Departures from normality can be of two types. One is from symmetry, called

skewness, and the other is reflected in differences in the proportion of the data that
are in the center and tails of the distribution, called kurtosis. These departures are
characterized by two additional parameters. We estimate skewness and kurtosis with

γ̂1 =
n
∑n
i=1

(
Xi −X

)3

(n− 1) (n− 2) σ̂3
,

γ̂2 =
(n+ 1)n

∑n
i=1

(
Xi −X

)4

(n− 1) (n− 2) (n− 3) σ̂4
.

The estimates of skewness and kurtosis measure departures from normality. Small
values of both indicate normality. Negative γ̂1 indicates skewness to the left, while
positive indicates skewness to the right. Negative γ̂2 indicates long tails, positive indi-
cates short tails. Skewness and kurtosis are discussed further in Johnson et al. (1994).
It is easy to show that any linear combination of independent normally distributed
random variables is also normally distributed.

Applications

The normal distribution is widely used in statistics. We shall meet its applications as
we proceed.
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6.8.3 χ2

If Zi, i = 1, . . . , ν, are independent standard normal, then the distribution of the rv
X =

∑ν
i=1 Z

2
i is chi-square with ν degrees of freedom. Heuristically, the degrees of

freedom in a statistical model are defined as

ν = n−m− 1

where n is the number of data points and m is the number of parameters to be fitted
to a statistical model of the data.

Density and distribution

The χ2 density is a special case of the gamma density with parameters 1/2 and 1/2
(gamma is discussed in Section 6.8.7). The χ2ν density is

P (X = x|ν) =
e−x/2xν/2−1

2ν/2Γ (ν/2)

where ν denotes the degrees of freedom and Γ is the gamma function (not to be
confused with the gamma density), defined as

Γ (α) =

∫ ∞

0

tα−1e−tdt . (6.10)

The distribution is given by

P (X ≤ x|ν) =
Γx (ν/2, x/2)

Γ (ν/2)

where Γx is the so-called incomplete gamma function, given by

Γx (α) =

∫ x

0

tα−1e−tdt .

If X and Y are χ2ν1 and χ
2
ν2
, then X + Y is χ2ν1+ν2 . Figure 6.7 shows the χ

2
ν for ν

= 5, 10, 15 (solid, broken and dotted curves). Note that the density becomes less
skewed as the number of degrees of freedom increases. The figure was produced with
the following code:

1 x <- seq(0, 35, length = 101)

2 nu <- c(5, 10, 15)

3 ylabel <- c('dchisq(x, nu)', 'pchisq(x, nu)')

4 par(mfrow = c(1, 2))

5 plot(x, dchisq(x, nu[1]), type = 'l', ylab = ylabel[1])

6 lines(x, dchisq(x, nu[2]), lty = 2)

7 lines(x, dchisq(x, nu[3]), lty = 3)

8 text(locator(), labels = c('nu = 5', 'nu = 10', 'nu = 15'),

9 pos = 4)

10 plot(x, pchisq(x, nu[1]), type = 'l', ylab = ylabel[2])
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11 lines(x, pchisq(x, nu[2]), lty = 2)

12 lines(x, pchisq(x, nu[3]), lty = 3)

13 text(locator(), labels = c('nu = 5', 'nu = 10', 'nu = 15'),

14 pos = 4)

Figure 6.7 The χ2 density and distribution for three different degrees of freedom.

The code is fairly standard by now. Note the use of lty (line type) in lines 6, 7, 11 and
12. Lines of type 2 result in broken curves and lines of type 3 result in dotted curves.
Also note the use of text() and locator() in lines 8, 9, 13 and 14. text() draws
text where locator() picks the coordinates from a mouse click. The text is provided
in labels. So in the first click, we get 'nu = 5' on the plot where we click the mouse.
pos = 4 specifies that the label should be drawn to the right of the location clicked.

Estimating parameters

The expectation and the variance are

E [X] = n , V [X] = 2n .

In Section 5.8, we discussed the MLE method for estimating parameters. There, we
briefly mentioned that in some cases, it is not possible to solve the MLE for a density
analytically. In such cases one has to rely on numerical solutions. One of the functions
that accomplish this task in R is called fitdistr(). Let us see how we might use this
function to estimate the parameters from a sample we believe comes from a χ2 density.

Example 6.19.We draw 1 000 values from a χ210 like this:

> n <- 1000 ; set.seed(1000) ; df <- 10 ; X <- rchisq(n, df)

Next, we examine the histogram of the data with

> h(X, ylim = c(0, 0.1), xlab = 'x')

(Figure 6.8). Because we know the parameter value (df = 10), we can compare the
empirical density to the theoretical density with

> lines(x, dchisq(x, df), lwd = 2, col = 'red')
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Figure 6.8 χ210

(solid curve in Figure 6.8). Now let us use MLE to estimate the parameter df:

> df.hat <- fitdistr(X, densfun = 'chi-squared',

+ start = list(df = 5))

df.hat is a list containing the MLE of the parameter and its standard error:

> df.hat

df

9.8281250

(0.1331570)

Next, we compare the empirical density
(
χ2
d̂f

)
to the theoretical one:

> lines(x, dchisq(x, df.hat[[1]]), lwd = 2,

+ lty = 2, col = 'blue')

(broken curve in Figure 6.8). Looks good! ut

Applications

The χ2 describes the density of the variance of a sample taken from a normal popula-
tion. It is used routinely in nonparametric statistics, for example in testing association
of categorical variables in contingency tables. It is also used in testing goodness-of-fit.
We shall discuss all of these topics later. Testing for goodness-of-fit with χ2 is use-
ful because the only underlying assumption about the observations is that they are
independent.

6.8.4 Student-t

The Student-t density (called after its discoverer, Student) is used to draw conclusions
from small samples from normal populations. It behaves much like the normal, but it
has longer tails.

Density

If Z is a standard normal rv and U is χ2ν , and Z and U are independent, then Z/
√
U/ν

is said to come from a t density with ν degrees of freedom.
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The density of t with ν degrees of freedom is

P (X = x|ν) =

(
1 + x2/ν

)−ν/2

B (1/2, ν/2)
√
ν

where B is the beta function and ν is a positive integer (usually denotes the degrees
of freedom). The beta function is

B (α, β) =

∫ 1

0

tα−1 (1− t)β−1 dt . (6.11)

The tails of the t density are flatter than those of the normal. Here is an example
that compares the standard normal to t.

Figure 6.9 t1, t3 and t12 compared to the standard normal.

Example 6.20. Figure 6.9 illustrates the convergence of t to standard normal as the
number of degrees of freedom increases. It was produced with the following script:

1 x <- seq(-6, 6, length = 201)

2 plot(x, dnorm(x), xlab = expression(paste(italic(z), ' or ',

3 italic(t))), ylab = 'density', type = 'l', lwd = 2)

4 df <- c(1, 3, 12) ; for (i in df) lines(x, dt(x, i))

5 labels <- c('normal', expression(italic(t[1])),

6 expression(italic(t[3])))

7 atx <- c(2, 0, 0) ; aty <- c(0.35, 0.26, 0.34)

8 text(atx, aty, labels = labels)

We plot the t density with a call to dt() for 1, 3 and 12 degrees of freedom in line
4. Note the production of subscripted text (t1 and t3) with calls to expression() in
lines 5 and 6. ut
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Estimating parameters

For ν = 1, the density has no expectation. Otherwise it is zero. The variance is

V [X] =
ν

ν − 2
.

Applications

The t density is used routinely in testing pairs of samples for significant differences in
means. The importance of the density arises from the following fact. For the normal
rv X with parameters μ and σ, the sample mean

X =
1

n

n∑

i=1

xi

and the sample variance

S2 =
1

(n− 1)

n∑

i=1

(
Xi −X

)2

themselves are random variables. They have densities (named the sampling density)
and it can be shown that they are independent random variables. Furthermore, they
are related to each other by the rv

T =
X − μ
S2/
√
n

where T comes from tn−1 (the t density with n− 1 degrees of freedom). In R, the func-
tions dt(), pt(), qt() and rt() provide access to the density, distribution, inverse
distribution and random values from the density, respectively.

6.8.5 F

Let U and V be independent chi-square random variables with ν1 and ν2 degrees of
freedom. Define the ratio

X :=
U/ν1

V/ν2
.

Then X has the so-called F density.

Density and distribution

The density of F is

P (X = x|ν1, ν2) =
Γ

(
ν1 + ν2
2

)(
ν1

ν2

)ν1/2
xν1/2−1

Γ (ν1/2)Γ (ν2/2) (1 + ν1x/ν2)

ν1 + ν2
2

where ν1 and ν2 are the degrees of freedom and the gamma function Γ is defined in
(6.10). The distribution is

P (X ≤ x|ν1, ν2) = 1− IK (ν2/2, ν1/2)
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where

K :=
ν2

ν2 + ν1x
, IK (X,α, β) :=

∫ x
0
tα−1 (1− t)β−1 dt

B (α, β)
.

IK is the called the beta regularized function. Its numerator is the incomplete beta
function and its denominator, B, is the beta function defined in (6.11). Figure 6.10
illustrates the F density and distribution for ν1 = 1, ν2 = 1 (solid curves) and ν1 =
10, ν2 = 1 (broken curves). If X comes from a tn, then X

2 is distributed according to
F with 1 and n degrees of freedom. To obtain Figure 6.10, use df() and pf() instead
of dchisq() and pchisq() in the code on p. 193.

Figure 6.10 The F density and distribution.

Estimating parameters

One rarely needs to estimate the parameters of F because it is usually used for testing
hypotheses. For a standard F (the location and dispersion parameters are 0 and 1),

E [X] =
ν2

ν2 − 2
, V [X] =

2ν22 (ν1 + ν2 − 2)

ν1 (ν2 − 2)
2
(ν2 − 4)

, ν2 > 4 .

Applications

The F density is used routinely in analysis of variance. It is also used to test for
equality of two variances—the so-called F -test. We will meet applications of the F
later.

6.8.6 Lognormal

Let Y come from a normal density and X = log Y . Then the density of X is lognormal.

Density and distribution

The lognormal density is

P (X = x|μ, σ) =
1

xσ
√
2π
exp

[

−
1

2

(
log (x− μ)

σ

)2]

, σ > 0 .
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Here μ and σ are the location and shape parameters. When μ = 0 and σ = 1, we have
the so-called standard lognormal density

P (X = x|0, 1) =
1

x
√
2π
exp

[

−
1

2
(log x)

2

]

.

The distribution of the standard lognormal is given by the standard normal P (Z ≤
z|0, 1) where z = log x.
Figure 6.11 illustrates the densities and distributions for P (X = x|0, 1) and

P (X ≤ x|0, 1) (solid curves) and P (X = x|0, 2) and P (X ≤ x|0, 2) (dashed curves).
To obtain the figure, use dlnorm() and plnorm() instead of dchisq() and pchisq()
in the code on p. 193. Note that the log of the parameter values are given, not the
values themselves.

Figure 6.11 The lognormal for log μ = 1, 1 and log σ = 1, 2.

Estimating parameters

The maximum likelihood estimates of μ and σ2 are

μ̂ =
1

n

n∑

i=1

logXi , σ̂
2 =

1

n− 1

n∑

i=1

(logXi − μ̂)
2
.

For P (X = x|0, 1) we have

E [X] = exp

[
1

2
σ2
]

, V [X] = exp
[
σ2
] (
exp

[
σ2
]
− 1
)
.

Applications

The lognormal is most frequently used in reliability applications and survival analysis.
It is also used in modeling failure times. Limpert et al. (2001) provide a detailed survey
of the widespread applications of the lognormal.

6.8.7 Gamma

The gamma density arises in many applications, in particular in processes where the
distribution of times between events is exponential and the counts are Poisson.
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Density and distribution

The gamma density is given by

P (X = x|α, σ) =
1

σ2Γ (α)
xα−1 exp

[
−
x

σ

]
, α, σ > 0 (6.12)

where α and σ are the shape and scale parameters. Here Γ is the gamma function
(see Equation 6.10). For α = 1, (6.12) reduces to the exponential (see Equation 6.5).

Estimating parameters

We have
E [X] = σα , V [X] = σ2α .

There are several methods to estimate the parameters based on data. The method of
moments is one approach. According to this method, the parameters are estimated
with

σ̂ =
S2

X
, α̂ =

X
2

S2

where X and S2 are the sample mean and variance, respectively.

Applications

There is an interesting link between the gamma and exponential and Poisson densities.

Example 6.21. Suppose that the lifetime of individual i, in a population of n indi-
viduals, is a rv Xi with exponential density with rate parameter λ (see Equation 6.5).
Furthermore, suppose that the lifetime of an individual is independent from that of
others in the population. Then it can be shown that the density of X = X1 + ∙ ∙ ∙ +
Xn is gamma with the shape parameter λ and the scale parameter n

P (X = x|λ, n) =
1

λΓ (n)

(x
λ

)n−1
exp

[
−
x

λ

]
;

i.e. the sum of the lifetimes of all individuals is gamma. ut

Another interesting relationship is the following. If X1, . . . , Xn are independent rv
from gamma each with parameters α1, . . . , αn and σ, then Y =X1+ ∙ ∙ ∙+Xn is a
gamma rv with parameters α==α1+ ∙ ∙ ∙+αn and σ. Also, if X1 and X2 are inde-
pendent from gamma with parameters (α1, σ) and (α2, σ), then Y = X1/ (X1 +X2)
has a beta density (see Equation 6.13) with parameters (α1, α2).
Here is an example of applying the r, d and p versions of the gamma with R.

Example 6.22. Figure 6.12 illustrates the densities and distributions for P (X =
x|2, 1) and P (X =x|2, 2) (solid curves) and P (X =x|1, 2) and P (X ≤x|1, 2) (dotted
curves). The following code produced the figure:
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1 alpha <- 2 ; sigma <- 2

2 set.seed(10) ; r.gamma <- rgamma(1000, alpha, scale = sigma)

3 x <- seq(0, 20, length = 201)

4 par(mfrow = c(1, 2))

5 h(r.gamma, xlab = 'x', ylim = c(0, 0.2))

6 lines(x, dgamma(x, alpha, scale = sigma), type = 'l')

7 m <- mean(r.gamma) ; v <- var(r.gamma)

8 sigma.hat <- v / m ; alpha.hat <- m^2 / v

9 lines(x, dgamma(x, alpha.hat, scale = sigma) , lwd = 3)

10

11 plot(x, pgamma(x, alpha, scale = sigma),

12 col = 'blue', pch = 21)

13 lines(ecdf(r.gamma))

14 lines(x, pgamma(x, alpha.hat, scale = sigma.hat),

15 col = 'red')

Figure 6.12 The gamma density for α = 2 and σ = 1, 2.

The script is similar to the script on page 193 with the appropriate substitutions for
the gamma. ut

6.8.8 Beta

The beta pertains to random variables that take values between zero and one. As
such, it is used in modeling probabilities and proportions.

Density and distribution

The beta density is given by

P (X = x|α, β) =
Γ (α+ β)

Γ (α)Γ (β)
xα−1 (1− x)β−1 , α, β > 0 . (6.13)



202 Continuous distributions and densities

The beta distribution is given by

P (X ≤ x|α, β) = I (x|α, β) , α, β > 0

where

I (x|α, β) =

∫ x
0
tα−1 (1− t)β−1 dt

B (α, β)

is the called the beta regularized function. Its numerator is the incomplete beta func-
tion and its denominator, B, is the beta function (see Equation 6.11).

Estimating parameters

The expectation and variance of the beta distribution are

E [X] =
α

α+ β
, V [X] =

αβ

(α+ β)
2
(α+ β + 1)

.

Applications

The beta density is extremely useful in Bayes analysis (see for example Berger, 1985;
Gelman et al., 1995). It is also useful in analyzing ratios. In fact, it arises naturally
from the gamma distribution. Let X be a standard uniform rv. It turns out that the
density of the ith highest value of X in a sample of size i + j − 1 is beta, P (X =
x|j, i). In the next example we verify this claim numerically.

Example 6.23. Suppose that the proportion of a population of n neurons that fire
in any particular time interval is uniform between 0 and 1. Firing in one interval is
independent of firing in another. We sample 12 neurons 10 000 times and record the
proportion of these that fire. What is the density of the third highest proportion of
neurons firing?
Here i = 3, j = 12 − 3 + 1 = 10. Our rv X is the third highest proportion of

neurons that fire. Let us generate data by simulation. We set the data like this:

> j <- 10 ; n.samples <- 10000

> i <- 3 ; i.largest <- vector()

Next, we repeat the following 10 000 times: Take a sample of size 12 values from a
standard uniform, sort the proportion and record the third highest value:

> for(k in 1 : n.samples){

+ x <- sort(runif(i + j - 1), decreasing = TRUE)

+ i.largest[k] <- x[i]

+ }

Next, we plot the histogram of the data and the corresponding beta density with
parameters i and j:

> par(mfrow = c(1, 2))

> h(i.largest, xlab = 'x')

> xx <- seq(0, 1, length = 101)

> lines(xx, dbeta(xx, j, i))
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Finally, we examine the beta distribution P (X ≤ x|10, 3) and the empirical
(simulation-based) distribution with:

> plot(ecdf(x), ylab = expression(italic(P(X<=x))), main = '',

+ xlim = c(0, 2))

> lines(xx, pbeta(xx, j, i))

Figure 6.13 illustrates the results. We will learn how to evaluate the goodness-of-fit
between the theoretical and empirical densities later. ut

Figure 6.13 Density and distribution of third highest occurrence of a uniform rv
compared to the theoretical beta.

6.9 Assignments

Exercise 6.1. A professor never dismisses his class early. Let X denote the amount
of time past the hour (in minutes) that elapses before the professor dismisses class.
The probability that he dismisses the class is equal for any late dismissal between 0
and 10 minutes. He never dismisses the class more than 10 minuets late.

1. What is the density of X?
2. Plot the density and the distribution of X.
3. What is the probability that at most 5 min elapse before dismissal?
4. What is the probability that between 3 and 5 min elapse before dismissal?
5. What is the expected value of the time that elapses before dismissal? Explain.
6. If X has a uniform distribution on the interval from a to b, then it can be shown
that the standard deviation of X is (b− a)/

√
12. What is the standard deviation

of elapsed time until dismissal?
7. What is the probability that the elapsed time is within 1 standard deviation of
its mean value on either side of the mean?

Exercise 6.2.

1. What is the probability that an event will occur if its density is uniform between
one and four?

2. What is the expected value of the event?
3. Its variance?
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4. What is the probability that the value of the event will be less than four?
5. What is the probability that the value of the event will be less than or equal
to 4?

6. What is the probability that the value of the event will be between two and three?

Exercise 6.3. Trees die randomly, independent of each other and a tree might die at
any moment in time. The average death rate is 2 trees per month.

1. What is the probability density of the time between two consecutive deaths?
2. What is the expected number of deaths per month?
3. Its variance?
4. What is the probability that 10 months pass between two consecutive deaths?
5. What is the probability that at least 2 months pass between two consecutive
deaths?

6. What is the probability that between 2 and 3 month pass between two consecutive
deaths?

Exercise 6.4. The density of bill length of a bird species is normal with mean of
12mm and standard deviation of 2mm.

1. What is the expected bill length?
2. Its variance?
3. What is the probability that a randomly picked individual will have a bill length
of 12mm?

4. What is the probability that a randomly picked individuals will have bill length
of at least 12mm?

5. What is the probability that a randomly picked individuals will have bill length
of at most 12mm?

Exercise 6.5. Let X be the weight of deer in the winter. Mean weight is 150 kg with
standard deviation 20 kg. The density of weight in the population is normal.

1. What is the value of x such that less than 5% of the population weigh less than
x?

2. What is the value of x such that more than 95% of the population weigh more
than x?

Exercise 6.6. Given the standard normal:

1. What is the value of z such that P (Z ≤ z) = 0.95?
2. What is the value of z such that P (Z ≤ z) = 0.05?
3. What is the value of z such that P (Z ≤ z) = 0.975?
4. What is the value of z such that P (Z ≤ z) = 0.025?
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The normal and sampling
densities

One of the central issues in statistics is how to make inferences about population
parameters from a sample. For example, when we sample organisms and measure
their weight, we may be interested in the following question: What is the relationship
between the mean weight of the organisms in the sample and the mean weight of
organisms in the population? A sample is a random collection of observations from a
population of interest. Here population refers to the collection of all objects of interest.
All objects in the population and all possible subsets of objects in the population
constitute the sampling space. Because the sample values are rv, any function of the
sample values is a rv. Such functions have well-defined densities, called the sampling
densities. With knowledge of a sampling density, we can infer something about the
corresponding population parameters.
We shall study the sampling densities of a sample mean (denoted by X), sample

proportion (denoted by p) and sample intensity (denoted by l). Here p is the propor-
tion of objects in a sample that have some property and l is a count of the occurrences
of an event of interest over a unit of reference (such as time). Both p and l are rv and
are two cases where we depart from our convention that upper case letters represent
rv and lower case letters values that they may take. We are interested in the relation-
ship between the sampling densities of X, p and l and values of μ, π and λ from the
normal, binomial and Poisson densities. By its subject matter, this chapter has one
foot in this part and one in the next part. For balance, we placed it here.

7.1 The normal density

The normal density is

φ (x|μ, σ) := P (X = x|μ, σ) =
1

√
2πσ2

exp

[

−
1

2

(
x− μ
σ

)2]

Statistics and Data with R:  An applied approach through examples         Y. Cohen and  J.Y.  Cohen
©
2008 John Wiley & Sons, Ltd.  ISBN: 978-0-470-75805
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Figure 7.1 The normal density with location parameter μ and scale σ.

where μ and σ are the location and scale parameters (see Section 6.8.2 and Figure 7.1).
Figure 7.1 was produced with the following script:

1 x <- seq(-3, 3, length = 501)

2 plot(x, dnorm(x), axes = FALSE, type = 'l', xlab = '',

3 ylab = '') ; abline(h = 0)

4 x <- 0 ; lines(c(0, 0), c(dnorm(x), -0.01))

5 x <- -1 ; lines(c(-1, 0), c(dnorm(x), dnorm(x)))

6 arrows(-1, dnorm(x), 0, dnorm(x), code = 3, length = 0.1)

7 text(0.2, 0.2, expression(italic(mu)))

8 text(-0.5, 0.26, expression(italic(sigma)))

In line 1 we create a vector, x, between -3 and 3 with increments that result in 501 ele-
ments. In lines 2 and 3 we plot the standard normal density with no axes and no labels.
The call to dnorm(x) returns a vector of 501 values of the normal density. Each value
corresponds to an element of x. In line 3 we draw a horizontal line at zero with a call to
abline(). In line 4 we draw the vertical line from the top of the density (dnorm() at x
= 0) to slightly below the horizontal zero line (−0.01). In line 5 we draw a horizontal
line from x = −1 to 0 at y = dnorm(-1). In line 6 we add arrows() to the line. We ask
for arrows at both ends (code = 3). The named argument length specifies the edges
of the arrow head (in inches). In lines 7 and 8 we draw the letters μ and σ in the
appropriate locations with calls to text() and expression().
The normal distribution is given by

Φ (X ≤ x|μ, σ) := P (X ≤ x|μ, σ) =
1

√
2πσ2

∫ x

−∞
exp

[

−
1

2

(
ξ − μ
σ

)2]

dξ .

There is no known closed form solution to the integral above. Tables for the standard
normal distribution P (X ≤ x|0, 1) are published in some statistics books. If you use
R, there is no reason for you to use such tables.
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7.1.1 The standard normal

Because of its ubiquity, we denote the standard normal density (μ = 0 and σ = 1)
and distribution with φ(x) and Φ(x) and drop the dependence on parameter values
so that

φ (x) =
1
√
2π
e
−
1

2
x2

.

Example 7.1. Figure 7.2 compares the standard normal density to another normal
density with the scale and location parameters as shown. Here is the script that
produced Figure 7.2:

1 x <- seq(-3, 5, length = 501)

2 plot(x, dnorm(x), type = 'l', ylim = c(0, 1), xlab = 'x',

3 ylab = 'density')

4 lines(x, dnorm(x, 2, .5))

5 text(0, .44, expression(paste(italic(mu[X]) == 0, ', ',

6 italic(sigma[X]) == 1)))

7 text(2, .84, expression(paste(italic(mu[Y]) == 2, ', ',

8 italic(sigma[Y]) == 0.5)))

Figure 7.2 The standard normal density compared to another normal density.

Except for the calls to text(), the code is nearly identical to the code that produces
Figure 7.1. In particular, the call to expression() in lines 5 to 8 produces the sub-
scripts (see help(plotmath)). This is done with mu[Y] and sigma[Y]. The effect of
the square brackets within a call to expression() is to produce the subscripts. Also,
because we wish to display two mathematical expression (one for μ and one for σ),
we need to paste() their expressions. ut

To distinguish a standard normal rv from other rv, we write Z instead of X. It is
important to learn how to interpret the areas under the standard normal curve (see
also Section 6.6). Here is an example.
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Figure 7.3 Areas under the standard normal density.

Example 7.2. Three areas under the standard normal curve are illustrated in
Figure 7.3. The first shows

Φ (−1) =
∫ −1

−∞
φ (x) dx .

This is the area under the curve from −∞ to −1 standard deviation to the left of the
mean. The second shows

1− Φ (1) = 1−
∫ 1

−∞
φ (x) dx =

∫ ∞

1

φ (x) dx .

The third shows

Φ (1)− Φ (−1) =
∫ 1

−∞
φ (x) dx−

∫ −1

−∞
φ (x) dx .

This is the area between ±1 standard deviations away from the mean. Note that all of
these areas are expressed in term of standard deviations away from the mean and in
terms of the standard normal distribution Φ (x). The script that produced Figure 7.3
goes like this:

1 pg <- function(x, i){

2 if (i == 1){

3 x1 <- x[x <= -1] ; y1 <- dnorm(x1)

4 x2 <- c(-3, x1, x1[length(x1)], -3)

5 }

6 if (i == 2){

7 x1 <- x[x >= 1] ; y1 <- dnorm(x1)
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8 x2 <- c(1, x1, x1[length(x1)], 1)

9 }

10 if(i == 3){

11 x1 <- x[x >= -1 & x <= 1] ; y1 <- dnorm(x1)

12 x2 <- c(-1, x1, 1, - 1)

13 }

14 y2 <- c(0, y1, 0, 0)

15 polygon(x2, y2, col = 'grey90')

16 }

17

18 xl <- expression(italic(x))

19 yl <- c(expression(italic(phi(x))), '', '')

20 m <- c(expression(italic(P(X <= -1))),

21 expression(italic(P(X >= 1))),

22 expression(paste(italic('P('), italic(-1 <= X),

23 italic(phantom()<= 1), ')', sep = '')))

24 par(mfrow = c(1, 3))

25 x <- seq(-3, 3, length = 501) ; y <- dnorm(x)

26 for(i in 1 : 3){

27 plot(x, y, type = 'l', xlab = xl, ylab = yl[i],

28 main = m[i]) ; abline(h = 0) ; pg(x, i)

29 }

Much of the code resembles that of Figures 7.1 and 7.2 and is shown here for the sake
of completeness. ut

To determine the values of the shaded areas in Figure 7.3 with R, keep the following
in mind:

φ (z) = dnorm(z) , (7.1)

Φ (z) = pnorm(z) .

Example 7.3. To find the probability that Z takes on values ≤ −1.76, that is,
Φ (−1.76) := P (Z ≤ −1.76), we do:

> pnorm(-1.76)

[1] 0.039204

To find the probability that P (−1.76 < Z ≤ 1.76), we note that

P (−1.76 < Z ≤ 1.76) = Φ (1.76)− Φ (−1.76)

= pnorm(1.76)− pnorm(−1.76)

so1

> pnorm(1.76) - pnorm(-1.76)

[1] 0.9216

1Because the normal is a continuous density, ≤ and < give the same results. To be
consistent with discrete densities, we will keep the distinction.
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Finally, to determine

P (Z ≤ −1.76) + P (Z > 1.76) = Φ (1.76) + (1− Φ (1.76))

= pnorm(1.76) + 1− pnorm(−1.76)

we use

> 1 - pnorm(1.76) + pnorm(-1.76)

[1] 0.078408

Of course we chose −1.76 arbitrarily. ut

In the next example, we do the reverse of what we did in Example 7.3: instead of
finding the probability that Z takes on values to the left, right or between given
standard deviations away from the mean, we wish to determine the values of z such
that

Φ (z) = p or Φ−1 (p) = z .

To accomplish this in R, we use

Φ−1 (p) = qnorm(p) . (7.2)

Here is an example.

Example 7.4. To determine z such that Φ (z) = 0.67, we do:

> qnorm(0.67)

[1] 0.43991

To determine z such that P (Z > z) = 0.05, we note that it is the same as Φ(z) =
0.95. So

> qnorm(0.95)

[1] 1.6449

To determine z such that P (−z < Z ≤ z) = 0.95 (recall that the normal is a symmetric
density), we use:

> c(qnorm(0.025), qnorm(0.975))

[1] -1.9600 1.9600

The first element of the vector is Φ(−z) = 0.025 and the second is P (Z > z) = 0.975,
so that the probability of Z between −z and z is 0.95. We “concatenate” (c()) the
results to obtain a vector. ut

So far, we dealt with the standard normal. In the next section we explain how to use
arbitrary normals; that is, normals with any value of μ and σ.

7.1.2 Arbitrary normal

To determine probabilities (areas under the density curve) for arbitrary normals,
i.e. those with mean (μ) and standard deviation (σ) different from 0 and 1, we can
standardize the density, find the desired values (as in Examples 7.3 and 7.4) and then
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reverse the standardization process. If you use R, you do not need to go through the
conversion process. Instead of using (7.1) and (7.2), use

φ (x|μ, σ) = dnorm(x, mu, sigma),

Φ (x|μ, σ) = pnorm(x, mu, sigma)

and
Φ−1 (p|μ, σ) = qnorm(p, mu, sigma) .

Example 7.5. Let X be a rv distributed according to the normal with μ = 30 and
σ = 2. We wish to find the probability that X is in the interval (27, 36]. Here is how:

> mu <- 30 ; sigma <- 2

> pnorm(36, mu, sigma) - pnorm(27, mu, sigma)

[1] 0.9318429 ut

Let us look at an example where these ideas are applicable.

Example 7.6. The results from the data in this example were published in Kri-
vokapich et al. (1999). The data were obtained from the University of California,
Los Angeles Department of Statistics site at http://www.stat.ucla.edu/. The
researchers in this study wished to determine if a drug called Dobutamine could
be used to test for a risk of having a heart attack. The reason for looking for
such a drug is that the normal heart stress test (running on a treadmill) cannot
be used with older patients. In all, 553 people participated in the study. One of the
variables measured was the base blood pressure—the participant’s blood pressure
before the test. The histogram of the data with the normal density superimposed is
shown in Figure 7.4. Here we refer to the sample of 533 people as the population,
not as a sample from some population. The data are in Stata format, so we import
it with

> library(foreign) ; cardiac <- read.dta('cardiac.dta')

Figure 7.4 Histogram of base blood pressure. Data are from Krivokapich et al.
(1999).
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The mean and the standard deviation are

> (mu <- mean(cardiac$basebp))

[1] 135.3244

> (sigma <- sqrt(sum((cardiac$basebp - mu)^2) /

+ length(cardiac$basebp)))

[1] 20.75149

We select a random record from the data and wish to know the probability that the
recorded base blood pressure is between 125 and 145mmHg:

P (125 < X ≤ 145|μ, σ) = Φ (145|μ, σ)− Φ (125|μ, σ)

= pnorm(145, mu, sigma)−

pnorm(125, mu, sigma)

which gives

> pnorm(145, mu, sigma) - pnorm(125, mu, sigma)

[1] 0.3692839

This we interpret as saying that if we sample a single record from the data many
times, about 37% will be in the range between 125 and 145. Here is the script that
produced Figure 7.4:

1 library(foreign) ; cardiac <- read.dta('cardiac.dta')

2 h(cardiac$basebp, xlab = 'base blood pressure')

3 x <- seq(80, 220, length = 201)

4 mu <- mean(cardiac$basebp)

5 sigma <- sqrt(sum((cardiac$basebp - mu)^2) /

6 length(cardiac$basebp))

7 lines(x, dnorm(x, mu, sigma))

The script demonstrates how to import data from Stata version 5-8 or 7/SE binary
format into a data frame (Stata is a widely used commercial statistical software). First
we load the package foreign with a call to library() (line 1). Next, we import the
Stata binary file cardiac.dta to the data frame cardiac with a call to read.dta().
The remaining code should be familiar by now. Note the direct calculation of the
standard deviation in lines 5 and 6. We do this because the functions var() and sd()
in R compute the sample variance and sample standard deviation, not the population
variance and standard deviation, i.e. the sum of squares are divided by n− 1, not by
the sample size n. ut

7.1.3 Expectation and variance of the normal

Recall (Section 6.8.2) that E [x] = μ and V [x] = σ2, i.e. the location and scale param-
eters of the normal density are also its expected value and variance. This may not be
the case for other densities. Furthermore, the MLE (Section 5.8) of μ and σ are μ̂ =
X and σ̂ = S[X], where S[X] is the sample standard deviation. We demonstrate this
fact with an example. The example is not a proof of the assertion; it is an illustration.
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Example 7.7. Consider a normal density with parameters μ = 10 and σ = 2. We
draw a random sample of size = 100 from the density and plot a histogram of the
sample values. Next, we plot the normal density with μ = 10 and σ = 2 and with the
sample mean X and sample standard deviation S (Figure 7.5). Here is the script for
this example:

1 mu <- 10 ; sigma <- 2 ; x <- seq(0, 20, length = 101)

2 set.seed(4) ; X <- rnorm(100, mu, sigma)

3 h(X, xlab = 'x')

4 lines(x, dnorm(x, mu, sigma), lwd = 3)

5 lines(x, dnorm(x, mean(X), sd(X)))

Figure 7.5 Histogram of a sample of 100 random values from the normal density
with μ = 10 and σ = 2. Thick curve shows the normal with μ and σ; thin curve shows
the normal with the sample mean and sample standard deviation.

In line 1 we create a vector of x values. In line 2, we set the seed of the random number
generator to 4 with a call to set.seed(4). This allows us to repeat the same sequence
of random numbers every time we call rnorm(), which we do in line 2. In line 3 we
draw a histogram of the 100 values of X, where X is our sample from a population
with normal density with mean and standard deviations of 10 and 2. Because X is
a sample, its mean and standard deviation are different from mu and sigma. In line
4 we draw the population normal with a call to the normal density dnorm() with
the population parameters mu and sigma. To distinguish this line, we plot it thick
with the line width named argument lwd = 3. Finally, in line 5 we draw the normal
approximation of the sample by calling dnorm() with the sample mean and sample
standard deviation with calls to mean() and sd(). ut

7.2 Applications of the normal

Because of the central limit theorem (which we discuss in Section 7.6.1), the normal
is widely applicable. Here, we discuss a few useful applications.
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7.2.1 The normal approximation of discrete densities

Often, we have values of rv from discrete densities. We wish to investigate the normal
approximate to these values. This requires that we first bin the data into a range of
values, construct a histogram and then fit a normal curve to the histogram. The fit
requires finding sample-based values that approximate μ and σ such that the normal
curve approximates the middle height and the spread of the histogram bars best. Here
is an example.

Example 7.8. The data for this example are fabricated. An observer records the
number of animals visiting a water hole in Kruger National Park, South Africa. A
total of 1 000 hours were recorded, where the beginning of a particular 1-hour interval
was selected at random from a set of integers between 1 and 24. A histogram of the
data are shown in Figure 7.6 which was produced with

Figure 7.6 Density of the number of animals counted (per hours) in a watering hole
at Kruger National Park, South Africa.

> set.seed(1) ; y <- rnorm(1000, 18, 6)

> h(y, xlab = 'animals at the watering hole')

> x <- seq(0, 40, length = 1001) ; lines(x, dnorm(x, 18, 6))

The mean and standard deviation of the data are 17.93 and 6.21. A plot of the normal
density with μ = 17.93 and σ = 6.21 is superimposed. It seems to fit the data well.
Therefore, we accept the data as representing the true density of the number of animals
in a watering hole, as opposed to a sample. Because the number of animals per hour is
a discrete rv, it makes sense to calculate the probability that X = 20 even though the
normal density is continuous and P (X = 20) = 0. To find this probability, we write

φ (20|17.93, 6.21) = P (19.5 < X ≤ 20.5|17.93, 6.21)

= pnorm(20.5, 17.93, 6.21)− pnorm(19.5, 17.93, 6.21)

or

> mu <- 17.93 ; sigma <- 6.21

> pnorm(20.5, mu, sigma) - pnorm(19.5, mu, sigma)

[1] 0.06071193
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Figure 7.7 Normal approximation to a discrete rv.

The dark area in Figure 7.7 corresponds to the desired probability. Here is the script
that produced the figure:

1 mu <- 18 ; sigma <- 6

2 boundary <- c(mu - 3 * sigma, mu + 3 * sigma)

3 x <- seq(boundary[1], boundary[2], length = 1001)

4 y <- dnorm(x, mu, sigma)

5 plot(x, y, type='l', xlab = expression(italic(x)),

6 ylab = expression(italic(P(X==x))))

7 abline(h = 0)

8 x1 <- x[x <= 20.5] ; y1 <- dnorm(x1, mu, sigma)

9 x2 <- c(boundary[1], x1, x1[length(x1)], boundary[2])

10 y2 <- c(0, y1, 0, 0)

11 polygon(x2, y2, col = 'grey80')

12 x1 <- x[x <= 19.5]

13 y1 <- dnorm(x1, mu, sigma)

14 x2 <- c(boundary[1], x1, x1[length(x1)], boundary[2])

15 y2 <- c(0, y1, 0, 0)

16 polygon(x2, y2, col = 'grey90')

In lines 5 and 7 we plot the density and add a horizontal line at zero. In line 8 to 11
we produce the shaded polygon with a right side at 20.5. In lines 12 to 16 we produce
the shaded polygon with right side at 19.5. The polygons are shaded with different
grays (grey80 and grey90). ut

7.2.2 Normal approximation to the binomial

Under certain conditions, the normal can be used to approximate the binomial. Before
stating these conditions, let us convince ourselves that the approximation is valid with
an example.
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Example 7.9.We set n = 20 and π = 0.4 and calculate the density of the binomial,

P (X = x|n, π) =

(
n

x

)

πx (1− π)n−x

for x = 0, 1, . . . , 20 and zero otherwise. The result is the left stick plot in Figure 7.8.
Next, we set μ = nπ and σ =

√
nπ (1− π) and plot the normal density with param-

eters μ and σ. The result is the smooth curve in the left panel of Figure 7.8. For the
right panel, we set n = 4 and π = 0.04 and calculate the density of the binomial for x
= 0, 1, . . . , 4 and zero otherwise. The result is the right stick plot in Figure 7.8. Again,
we set μ = nπ and σ =

√
nπ (1− π) and plot the normal density with parameters

μ and σ. The result is the smooth curve in the right panel of Figure 7.8. In the first
case, where π = 0.4, the approximation looks good; in the second, where π = 0.04, it
does not. The script for this example is:

1 par(mfrow = c(1, 2)) ; n <- c(20, 4) ; PI <- c(0.4, 0.04)

2 ylimits <- rbind(c(0, 0.2), c(0, 1.0))

3 ylabel <- c(expression(italic(P(X == x))), '')

4 for(i in 1 : 2){

5 xy <- list(cbind(0 : n[i], dbinom(0 : n[i], n[i], PI[i])),

6 seq(0, n[i], length = 1001))

7 plot(xy[[1]], type = 'h', lwd = 2, ylim = ylimits[i, ],

8 xlab = expression(italic(x)), ylab = ylabel[i])

9 lines(xy[[2]], dnorm(xy[[2]], n[i] * PI[i],

10 sqrt(n[i] * PI[i] * (1 - PI[i]))))

11 abline(h = 0, lwd = 2)

12 }

We make no apologies for the fact that it is somewhat terse. In line 1 we set the
plotting device to accept 2 figures. We also set the parameters n and PI. In lines 2
and 3 we construct the vectors that hold the limits and labels for the y-axes. In lines
4 to 12 we create the left and right panels of Figure 7.8. We first create a list to hold

Figure 7.8 Normal approximation to two binomial densities.
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the data for the panel. The list contains the following elements: the values of x and y
for the plots and the values of x (1 001 of them) that are used in plotting the smooth
normal approximation. Then in lines 7 and 8 we construct the sticks (type = 'h')
with a line width lwd = 2 and the appropriate limits on the y-axis along with the
labels. In lines 9 and 10 we plot the smooth curve of the normal with μ = nπ and
σ =

√
nπ(1− π). In line 11 we add a horizontal line at y = 0 to indicate that the

binomial is defined for X ∈ R. ut

Example 7.9 illustrates a well-known theorem with the following application:

The normal approximation to the binomial Let the number of successes X be
a binomial rv with parameters n and π. Also, let

μ = nπ , σ =
√
nπ(1− π) .

Then if
nπ ≥ 5 , n (1− π) ≥ 5 ,

we consider φ (x |μ, σ ) an acceptable approximation of the binomial.

Let m1,m2 = 0, 1, . . . , n. Then under the conditions above, we use the following
normal approximation to calculate binomial probabilities of interest:

P (m1 < X ≤ m2|μ, σ) = Φ (m2 + 0.5|μ, σ)− Φ (m1 − 0.5|μ, σ)

= pnorm(m.2+ 0.5, mu, sigma)

− pnorm(m.1− 0.5, mu, sigma) .

For left-tail probability, we use

P (X ≤ m2|μ, σ) = Φ (m2 + 0.5|μ, σ)

= pnorm(m.2+ 0.5, mu, sigma)

and for right-tail probability we use

P (X > m1|μ, σ) = 1− Φ (m1 − 0.5|μ, σ)

= 1− pnorm(m.1− 0.5, mu, sigma) .

Example 7.10. In Example 5.13 we discussed a survey of 1 550 men in the UK.
Of these, 26% were smokers (Lader and Meltzer, 2002). We assume that the sur-
vey results represent the UK population of men and that π = 0.26 is the pro-
portion of English men who smoke. Now we pick 250 English men randomly and
assume that they smoke independently (this assumption will not be true if the
sample was taken from a small area, or from within families). Thus, we have a
binomial density with n = 250 and π = 0.26. We wish to establish the proba-
bility that between 80 and 90 people in the sample will turn out to be smok-
ers. First, we check that n × π = 250 × 0.26 = 65 > 5. Also, n × (1− π) =
250 × 0.74 = 185 > 5. Therefore, we may use the normal approximation to the
binomial. So

μ = 65 , σ =
√
250× 0.26× 0.74 ≈ 6.94 .
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Because

> PI <- 0.26 ; n <- 250 ; mu <- n * PI

> sigma <- sqrt(n * PI * (1 - PI))

> (p.approx <- pnorm(90.5, mu, sigma) -

+ pnorm(79.5, mu, sigma))

[1] 0.01815858

we conclude that
P (80 ≤ X ≤ 90|250, 0.26) ≈ 0.018 .

The exact value is obtained with

> (p.exact <- pbinom(90, n, PI) - pbinom(79, n, PI))

[1] 0.01968486

This results in a

> (p.approx - p.exact) / p.exact * 100

[1] -7.753617

% underestimate. The probability that more than 50 people in the sample are smokers
is

P (X > 49.5|250, 0.26) = 1− Φ (49.5|250, 0.26)

≈ 0.99 ;

i.e.

> 1- pnorm(49.5, 65, 6.94)

[1] 0.98724

The probability that less than 45 people in the sample are smokers is

Φ (45.5|250, 0.26) ≈ 0.002 ;

i.e.

> pnorm(45.5, 65, 6.94)

[1] 0.0024786

Note the adjustments with 0.5. We use them because the rv (number of smokers) is
discrete. ut

7.2.3 The normal approximation to the Poisson

In Section 5.7 we saw that one way to write the Poisson density is

P (X = x|λ) =
λx

x!
e−λ

for x ∈ Z0+ ∩ R and zero otherwise. We also saw that under some conditions, the
Poisson approximates the binomial. Because the normal approximates the binomial,
we expect that the normal also approximates the Poisson. Here is an example.
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Figure 7.9 Normal approximation to the Poisson.

Example 7.11. Figure 7.9 illustrates the normal approximation to Poisson for λ =
2, 10, 25, 35. Note the increasingly better approximation. Here is the script for this
example:

1 rm(list = ls())

2 x <- 0 : 60 ; lambda <- c(2, 10, 25, 35)

3 y <- seq(0, 40, length = 501)

4 xl <- expression(italic(x)) ; xlabel <- c('', '', xl, xl)

5 yl <- expression(italic(P(X==x)))

6 ylabel <- c(yl, '', yl, '')

7 xlimit <- rbind(c(0, 10), c(0, 20), c(5, 45), c(15, 60))

8 par(mfrow = c(2, 2))

9 for(i in 1 : 4){

10 plot(x, dpois(x, lambda[i]), type = 'h', xlab = xlabel[i],

11 ylab = ylabel[i], xlim = xlimit[i, ]) ; abline(h = 0)

12 points(x, dpois(x, lambda[i]), pch = 19, cex = 1.5)

13 lines(y, dnorm(y, lambda[i], sqrt(lambda[i])))

14 }

In lines 1–7 we prepare for the four panels in Figure 7.9 and in lines 8–13 we draw
them. ut
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Example 7.11 illustrates a well-known theorem with the following application:

The normal approximation to the Poisson Let the number of counts per inter-
val unit, X, be a Poisson rv with parameter λ. If λ ≥ 20, then we consider
φ
(
x
∣
∣
∣λ,
√
λ
)
an acceptable approximation of the Poisson.

7.2.4 Testing for normality

Some of the classical statistical methods we will discuss rely on the assumption that
a sample of n observations is drawn from a normal population. Thus, we often need
to test for normality. One useful, albeit informal, test is with normal scores.

Normal scores

Suppose that you chose a sample of size n = 10 from a population distributed accord-
ing to the standard normal. Sort the 10 values from smallest to largest. Next, choose
another sample of 10 and sort them from smallest to largest. Repeat the process, say,
100 times and then calculate the mean for the smallest value, the next smallest values,
up to the largest value (the 10th value). If you repeat the process many times, you
will come up with the following 10 means (from smallest to largest) in many samples
of 10 values from standard normal:

> library(SuppDists)

> normOrder(10)

[1] -1.5387755 -1.0013504 -0.6560645 -0.3757113 -0.1226703

[6] 0.1226703 0.3757113 0.6560645 1.0013504 1.5387755

(SuppDists is a package of supplemental distributions and normOrder() is the density
of normal order scores). Next, consider a sample of size 10 from a normal density
with μ and σ. First, standardize the sample values. Suppose that the sample values
represent a perfect normal. Then the standardized values represent a perfect standard
normal. Therefore, your sample should have the same sequence of numbers as above.
A plot of the sample against the expected values above should result in the points
aligned along a 45◦ straight line. Because no sample is perfect, the points will not
align exactly. Yet, this approach can be used to judge how well the data approximate
the normal density.

Example 7.12. Personal data of 10 bill lengths (in cm) of a song bird species from
the Sierra Nevada are

> bill.length <- c(2.50, 2.83, 2.95, 3.24, 3.32, 3.43, 3.60,

+ 3.82, 4.00, 4.40)

A plot the data against standard normal scores, with a best-fit line, is shown in
Figure 7.10. Apparently the data are from a normal density. The plot was achieved
with:

> score <- normOrder(10)

> plot(score, bill.length) ; r = lm(bill.length ~ score)

> abline(reg = r)

The score vector is created in the first statement and plotted against the data in the
second. To show the best fit line between the data and the scores, we create a linear
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Figure 7.10 Bill lengths vs. normal scores.

model (we shall talk about linear models and regression later) with a call to lm()

in the third statement. Here bill.length and score represent variables. They are
separated by the ∼ symbol. This indicates to R that the left and right hand sides
relate though a formula—in our case, the linear formula bill.length = a + b ×
score, where a and b are to be computed by lm(). Finally, we add the regression
line with a call to abline() with the named argument reg. Such a call extracts the
regression parameters a and b from the object r and plots the appropriate line. ut

Q-Q plots

The quantile-quantile (Q-Q) plot is a graphical technique. It is used to determine if two
data sets come from populations with a common density. We shall use it to examine
normality. Q-Q plots are sometimes called probability plots, especially when data
are examined against a theoretical density. To construct the plot, we use quantiles,
defined as follows:

x%-quantile We say that q is the x% quantile if x% of the data values are ≤ q.

Here is the value of the 10% quantile of the standard normal:

> qnorm(0.1)

[1] -1.281552

and here is the 50% quantile (the median) of the standard normal:

> qnorm(0.5)

[1] 0

We plot the quantiles of the normal against the quantiles of the data. If the data
come from a population with a normal density, the points should fall along a straight
line. This should be true for at least the points in the interquartile range (between the
25 and 75% quantiles). Interpretation of Q-Q plots requires some experience. The next
series of examples will give you a feel for how to judge the density of data against the
normal with Q-Q plots. We will compare normal data to normal density and centered,
right and left skewed data to the normal density.
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Example 7.13. Here we produce “empirical” data from a normal density and com-
pare them to the theoretical normal density (Figure 7.11). The left panel is drawn
with

> par(mfrow = c(1, 2))

> set.seed(1) ; x <- rnorm(101, .5, .15)

> h(x, xlab = 'x') ; y <- seq(0, 1, length = 101)

> lines(y, dnorm(y, .5, .15), type = 'l')

and the right with

> qqnorm(x, main = '') ; qqline(x)

From the left panel we conclude that the empirical density corresponds to the theo-
retical density. The right panel supports this conclusion. ut

Figure 7.11 Theoretical (normal) vs. a random sample from the theoretical density
(left) and the corresponding Q-Q plot.

Now let us see an example with data from a density with tails fatter than those of
the normal.

Example 7.14. The data are from a centered density with no tails (we choose the
beta; see Section 6.8.8) are compared to the normal. Figure 7.12 was produced with

x <- rnorm(101, .5, .15)

Figure 7.12 Theoretical (normal) vs. a random sample of values from a tail-less
density (left) and the corresponding Q-Q plot.
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in the code on page 222 replaced with

x <- rbeta(101, 2, 2)

Because the tails are not as flat as those of the normal, we see departures from the
Q-Q line at both ends (right panel of Figure 7.12). ut

Next, we examine the case where the data are from a density that is skewed to the
left.

Example 7.15. From the right panel of Figure 7.13 we conclude that left-skewed
data produce a larger departure at the lower tail than otherwise. To produce the
figure, use

x <- rbeta(101, 1.5, 3)

instead of rnorm() in the code on page 222 ut

Finally, let us compare right-skewed data to the normal.

Figure 7.13 Theoretical (normal) vs. a random sample of values from a left-skewed
density (left) and the corresponding Q-Q plot.

Example 7.16. From the right panel of Figure 7.14 we conclude that data from den-
sity with tails fatter than the normal on the right display the shown departure from
the Q-Q-line. To produce the figure, use

x <- rbeta(101, 6, 3)

instead of rnorm() in the code on page 222 ut

Other tests of normality

The tests of normality discussed thus far are semi formal. Formal tests, which
we discuss only briefly here, are the one-sample Kolmogorov-Smirnov (K-S) test
(Chakravarti et al., 1967), the Anderson-Darling test (Stephens, 1974) and the
Shapiro-Wilk normality test (Shapiro and Wilk, 1965). The latter is used most fre-
quently.
The Kolmogorov-Smirnov (K-S) test is used to decide if a sample comes from a

population with a specific density. It is used because the distribution of the K-S test
statistic does not depend on the underlying cumulative distribution function being
tested and because it is an exact test. Its limitations are: The test applies to continuous
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Figure 7.14 Theoretical (normal) vs. a random sample of values from a right-skewed
density (left) and the corresponding Q-Q plot.

densities only; it is more sensitive near the center of the density than at the tails than
other tests; the location, scale and shape parameters cannot be estimated from the
data (if they are, then the test is no longer valid).
The Anderson-Darling test is used to test if a sample of data comes from a specific

density. It is a modification of the K-S test and gives more weight to the tails of the
density than does the K-S test. It is generally preferable to the K-S test.

Example 7.17. The results of one of the midterm tests in a statistics class were as
follows:

> midterm

[1] 61 69 55 47 49 58 66 57 73 56 45 67 88 61

[15] 62 85 83 76 71 82 84 73 86 81 57 74 89 71

[29] 93 59 89 108 90 87 71

Here,

> round( c(mean = mean(midterm), sd = sd(midterm)), 1)

mean sd

72.1 15.0

Is the density of the test scores normal? We run the K-S test thus:

> ks.test(midterm, 'pnorm', mean(midterm), sd(midterm))

One-sample Kolmogorov-Smirnov test

data: midterm

D = 0.0958, p-value = 0.9051

alternative hypothesis: two.sided

Warning message:

cannot compute correct p-values with ties in:

ks.test(midterm, "pnorm", mean(midterm), sd(midterm))

We will learn to interpret the results later. For now, suffice it to say that a large
p-value (larger than, say, 0.05) indicates that the sample is not different from normal
with the sample’s mean and standard deviation. ut
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To find out about the Anderson Darling test in R, we do

> help.search('Anderson Darling')

which tells us that

ad.test(nortest)

Anderson-Darling test for

normality

In other words, the ad.test() resides in the package nortest. The Shapiro-Wilk test
can be applied with shapiro.test().

7.3 Data transformations

Many of the statistical tests that we use rely on the assumption that the data, or some
function of them, are distributed normally. When they do not, we may transform the
data to obtain normality. Once the statistical procedure is applied, we then reverse
the transformation so that we may interpret the data.
Log and square root transformations are used routinely. Data with values ≤ 0

cannot be thus transformed. Both transformations reduce the variability in the data.
In bivariate (or multivariate) data analysis, transformations are applied to various
variables differently to arrive at appropriate linear models.

Example 7.18. Figure 7.15 illustrates the log and square root transformation.
Observe the better (but not satisfactory) conformity to the assumption of linearity
of the normal Q-Q plot of the log-transformed data. The square root transformation
looks even better. The figure was obtained with this script:

1 par(mfrow = c(3, 2)) ; set.seed(5) ; x<- rexp(100, .5)

2 xx <- list(x = x, 'log(x)' = log(x), 'sqrt(x)' = sqrt(x))

3 xlabels <- c('x', 'log(x)', 'sqrt(x)')

4 for(i in 1 : 3){

5 h(xx[[i]], xlab = xlabels[i])

6 qqnorm(xx[[i]], main = '') ; qqline(xx[[i]])

7 }

In line 1 we set the graphics window to accept the 6 panels, set.seed() and generate
100 random values from the exponential density (see Section 6.2) with parameter λ =
0.5. In line 2 we create a list with each component corresponding to x, log(x) and

√
x.

In lines 4–7 we draw the six panels. To test x and its transformations for normality,
we use the Shapiro-Wilk test:

> test <- mapply(shapiro.test, xx)

> rbind(x = unlist(test[1 : 2, 1]),

+ 'log(x)' = unlist(test[1 : 2, 2]),

+ 'sqrt(x)' = unlist(test[1 : 2, 3]))

statistic.W p.value

x 0.8482443 1.021926e-08

log(x) 0.9373793 1.339048e-04

sqrt(x) 0.9786933 1.050974e-01
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Figure 7.15 Top: histogram of 100 random points from exponential density with
parameter λ = 0.5 and the corresponding normal Q-Q plot. Middle: The log-
transformed data. Bottom: the square root transformed data.

We will discuss hypothesis testing and p-values later (in Section 10.5). Suffice it to
say that the p-value of the square root transformed data is the largest. Therefore, the
square root transformation does the best job of conforming to normality. In the code
above, mapply() applies shapiro.test() to each component of the list xx and stores
the results in the list test. For easier access to the components of test, we unlist()
it and row bind the results with rbind(). ut

See Venables and Ripley (2002) for further details about data transformations.

7.4 Random samples and sampling densities

One of the fundamental assumptions we make when we sample a population is that
the sample is random. Furthermore, if a sample is random, any computed value
from it is a rv, which, in turn, has a density. In talking about random samples
and sampling densities, we must distinguish between a theoretical density, a den-
sity of some trait in the population and the corresponding density in a subset of the
population.
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7.4.1 Random samples

Let a population consist of N ∈ Z+ objects. We are interested in the population
density of values, x ∈ R, of a certain property of these objects. Suppose that the
theoretical density of x is P (X = x|θ) where θ := [θ1, . . . , θm] m. Pick a uniform
random value, p1, between zero and one and assign x1 = P

−1 (p1) to one object in
the population. Repeat this process for all N objects. Then

lim
N→∞

P (X = xi|θ) = P (X = x|θ) , i = 1, . . . , n

where on the left is the density of x in the population and on the right is the theoretical
density. To bring events into the picture, we simply let Ei, i = 1, . . . , N , be the event
that the ith chosen object has a property value x so that X(Ei) = xi. From now on,
we shall write X instead of X(Ei).

Example 7.19. Consider a population of 3 × 108 people (about the U.S. population
at the time of writing). Let Ei be the event that the ith person in the population is
h cm tall. Then it makes sense to define the rv X(Ei) = Ei. It is well known that the
theoretical density of height is φ(x|μ, σ) where μ and σ are the mean and standard
deviation of height in an infinite population. Note that X is not discrete because we
assume a theoretical density of a population with N → ∞. ut

Now let the experiment be choosing n < N objects from the population, i.e.

E := {E1, . . . , En} .

We define a

Sample Let n < N . Then
X := [X1, . . . , Xn]

is a sample.

Samples may be dependent or independent.

Independent sample If

P (X1 = x1|θ) = ∙ ∙ ∙ = P (Xn = xn|θ)

then we say that the sample is independent. Otherwise it is dependent.

Example 7.20. A sample of objects from a small population without replacement
is dependent. For all practical purposes, a sample from a large population without
replacement is independent. ut

Example 7.20 points to the need of the following:

Rule of thumb Let X and Y be samples without and with replacement, each of
size n from a population of size N . Then if P (Xi = xi|θ) ≥ 0.95 × P (Yi = yi|θ),
i = 1, . . . , n, we consider X an independent sample.

The density P (Xi = xi|θ) = pi, i = 1, . . . , n (where n is the sample size) has the
inverse P−1 (pi|θ) = xi.
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Simple random sample Consider a population of N objects and draw from it a
sample of n objects. If each individual in the population has the same probability
of being chosen for the sample, then we say that the sample is a simple random
sample, or random sample for short.

We will mostly deal with independent samples where each object has the same prob-
ability of being chosen. Here is an example of how to obtain a random sample.

Example 7.21.We have a population of 1 000 objects. Each object is assigned an
index, i (i = 1, . . . , 1 000). To draw a sample of 10 objects from the population, do:

> x <- 1 : 1000

> sample(x, 10)

[1] 194 774 409 234 591 700 684 582 272 21

The first statement produces the “names” of the objects. Then we take a sample of
10, which in this case happens to be objects numbered 194, 774 and so on. ut

From the discussion in Section 6.7, we conclude that a sample needs to be random if
the density of values of a trait of interest in the sample is to represent its density in
the population. This brings us to the concept of

Statistic A statistic is a computed value from a random sample.

Formally, a statistic, Y , is defined as a function, f(X) that maps X ∈ Rn to Y ∈ R.

Example 7.22. The mean of a random sample

X (X) :=

n∑

i=1

piXi =
1

n

n∑

i=1

Xi

is a function of all the sample’s values and is therefore a statistic. So is the variance
of a random sample

V (X) =

n∑

i=1

pi
(
Xi −X

)2
=
1

n

n∑

i=1

(
Xi −X

)2
.

From here on, we shall denote the mean and variance of a sample by X and V with
the understanding that they are in fact functions of the sample X. Note that V (X)
is not the same as the sample-based best estimate of the population variance, S2 :=
σ̂2, where the denominator is 1/(n− 1), not 1/n. ut

The relationships between the sample, population and theoretical densities are illus-
trated in Figure 7.16. As n → N , the density of the sample approaches that of the
population. Similarly, as N → ∞, the population density approaches the theoretical
density. Because they reflect values of objects, the sample and population densities
can be obtained only from density histograms of the property values of the population
objects.

7.4.2 Sampling densities

Because a statistic is a rv, it also has a density. We thus have

Sampling density The probability density of a statistic is called the sampling den-
sity of the statistic.
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Figure 7.16 From left to right: theoretical, population and sample densities.

A sampling density is a property of a statistic, which itself is obtained from a sample.
A sample density is a property of the sample values, not of a statistic of the sample
values. We obtain the sample density from a single sample and the sampling density
from many samples, each used to calculate a single value of the statistic. The sampling
density of samples’ statistic from a single population is not unique. It depends on the
sampling scheme. Because we will always use simple samples, we will not be concerned
with this issue.

What is the sampling density of a statistic? As we shall see, for some statistics,
the sampling densities are known. When we do not know the sampling density, we can
always resort to numerical methods to determine it. In the next example, we learn
how to construct the sampling density of the variance for samples from an exponential
density. We will do the computations inefficiently. The next section will teach you how
to execute them efficiently.

Example 7.23. The left and right panels of Figure 7.17 show the sampling density
of the variance for samples from the exponential density. We shall see soon why the
right panel is there. To learn how to construct a sampling density, let us examine the
relevant code snippet:

> set.seed(10)

> v <- vector()

> for(i in 1 : 50000) v[i] <- var(rexp(20))

Figure 7.17 The sampling density of sample variance for samples from an exponen-
tial density.
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The loop produces a vector of 50 000 variances, each computed for a random sample
of 20 from the exponential (rexp(20)) with the default parameter value λ = 1. We
shall talk about the remaining code that produces Figure 7.17 in the next section. ut

7.5 A detour: using R efficiently

If you run the code in Example 7.23 you will discover that its execution is slow. Let
us see how we can improve on such code.

7.5.1 Avoiding loops

As we discussed,

> v <- vector()

> for(i in 1 : 50000) v[i] <- var(rexp(20))

produces a vector of variances from 50 000 repetitions of a random sample of 20 values
from the exponential density with the parameter λ = 1. We can accomplish the same
task in about half as much time with

> v <- rexp(50000 * 20) ; g.l <- gl(50000, 20)

> mapply(var, split(v, g.l))

First, we generate a vector, v, of random values from the exponential density. Next,
we use gl() (for generate levels) to generate a factor vector (g.l) of 50 000 levels, each
repeated 20 times. We split() v into a list of 50 000 components, each of length 20.
Finally, we mapply() the function var() to each component of the list. This produces
the same results as the loop (compare the left and right panels of Figure 7.17). We
claim that avoiding the for loop cuts execution time by about half. In the next
section, we prove this statement.

7.5.2 Timing execution

Here is the script that produces Figure 7.17 and times execution:

1 par(mfrow = c(1,2)) ; ylimits <- c(0, 1)

2 R <- 50000 ; n <- 20

3

4 s.loop <- function(R, n){

5 set.seed(10)

6 v <- vector()

7 for(i in 1 : R) v[i] <- var(rexp(n)) ; v

8 }

9 fast <- system.time((v <- s.loop(R, n)))[1 : 3]

10 h(v, xlab = 'fast', ylim = ylimits) ; lines(density(v))

11

12 s <- function(R, n){



A detour: using R efficiently 231

13 set.seed(10)

14 g.l <- gl(R, n); v <- rexp(R * n)

15 mapply(var, split(v, g.l))

16 }

17 faster <- system.time((v <- s(R, n)))[1 : 3]

18 h(v, xlab = 'faster', ylab = '', ylim = ylimits)

19 lines(density(v))

20

21 s.1 <- function(R, n){

22 set.seed(10)

23 m <- matrix(rexp(R * n), nrow = n, ncol = R)

24 apply(m, 2, var)

25 }

26

27 fastest <- system.time((v <- s.1(R, n)))[1 : 3]

28 h(v, xlab = 'fastest', ylab = '', ylim = ylimits)

29 lines(density(v))

30

31

32 cpu <- rbind(faster, fastest)

33 dimnames(cpu)[[2]] <- c('user', 'system', 'elapsed')

34 print(cpu)

35

In line 2, we set the number of repetitions to 50 000 and the sample size to 20. In
lines 4 to 8, we declare the function s.loop(). It produces the data from which we
obtain the sampling density using the for loop. In line 9, we assign the data that
s.loop() produces to the vector of variances, v and wrap the assignment with the
function system.time(). This function returns a vector whose first three elements
contain the amount of time the central processing unit (CPU) spent on user related
tasks, system-related tasks and the time elapsed from beginning to end of executing
its argument. The argument to system.time() is any valid R expression. In our case,
the argument is the call to s.loop() and the assignment to v. The first three elements
of the vector that system.time() returns are assigned to fast (still in line 9). In line
10 we plot the density of v and fit a smooth density to it with a call to density(),
hence the left panel of Figure 7.17.
The same tasks accomplished in lines 4–10 are accomplished in lines 12–19, this

time with mapply() (compare the left and right panels in Figure 7.17). Here are the
CPU times obtained from the script:

user system elapsed

fast 18.27 1.06 19.45

faster 9.21 0.00 9.22

The execution times are not the same for different calls to system.time() with the
same expression because the CPU’s background tasks differ. The changes, however,
are small.
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Another way to avoid the loop is with

> s.1 <- function(R, n){

+ set.seed(10)

+ m <- matrix(rexp(R * n), nrow = n, ncol = R)

+ apply(m, 2, var)

+ }

where here we put the random exponential values in a matrix and apply() var() to
the matrix columns (50 000 of them) with the unnamed argument constant 2. This
approach, is slightly slower than the list approach. There is a subtle point here that
we shall not pursue. You are invited to explore it by switching the values of R and n
in line 2.

7.6 The sampling density of the mean

The law of large numbers and the central limit theorem are often referred to as the
fundamental laws of probability. As we shall see, much of statistical inference relies
on the central limit theorem.

7.6.1 The central limit theorem

Let X1, . . . , Xn be a set of n independent rv. Each of these rv has an arbitrary density
with mean μi and finite variance σ

2
i . Then the limiting density of X := X1 + ∙ ∙ ∙ +

Xn is normal with mean and standard deviation

n∑

i=1

μi ,

√√
√
√

n∑

i=1

σ2i .

By limiting density we mean that as n→∞, the density of X approaches the normal.
If Xi are independent and identically distributed, then all μi are equal (denote

them by μ) and all σ2i are equal (denote them by σ
2). Now the limiting density of X

is normal with mean and standard deviation

nμ , σ
√
n .

In practice, the approach to normality is fast. When n is about 30 we may already use
the assumption that X is normal. Note that we place no restrictions on the probability
density of the population but one: that it has a finite variance.

7.6.2 The sampling density

Consider a finite sample of size n from a population with mean μ and standard
deviation σ. Denote the mean of this sample by X. Because X is a rv, it has a density.
We call it the sampling density of the sample mean, or, for short, the sampling density
of the mean. This density has a mean and a standard deviation.
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The sampling density of the mean Let X be the mean of a sample of size n from
a population with arbitrary density with mean μ and standard deviation σ. Then
the sampling density of X is

φ

(

X

∣
∣
∣
∣μ,

σ
√
n

)

.

To see this, we note that according to the central limit theorem

lim
n→∞

E [X1 + ∙ ∙ ∙+Xn] = nμ .

Therefore,

lim
n→∞

E

[
1

n
(X1 + ∙ ∙ ∙+Xn)

]

=
1

n
lim
n→∞

E [(X1 + ∙ ∙ ∙+Xn)]

=
1

n
nμ = μ .

Also,
lim
n→∞

V [X1 + ∙ ∙ ∙+Xn] = nσ
2 .

Therefore,

lim
n→∞

V

[
1

n
(X1 + ∙ ∙ ∙+Xn)

]

=
1

n2
lim
n→∞

V [X1 + ∙ ∙ ∙+Xn]

=
1

n2
nσ2 =

σ2

n
.

The standard deviation of the sampling density of the mean plays an important role
in statistics. It is thus goes by the name

The standard error is defined as σ/
√
n where n is the sample size and σ is the

population standard deviation.

The following example demonstrates that the sampling density of a sample mean from
an arbitrary population probability density is normal with mean μ and standard error
σ/
√
n.

Example 7.24.We introduced the data about the U.S. Department of Defense con-
firmed reports of U.S. military casualties in Iraq in Example 2.16 (see http://

icasualties.org). Let us examine the density of the days between consecutive
reported casualties. One of the columns of the data frame includes the Julian day
of the reported casualty. So here is what we do:

> par(mfrow = c(1, 2))

> load('casualties.rda')

> h(d <- diff(casualties$Julian), xlab = 't')

After loading the data, we use diff() to difference consecutive Julian dates, store
the new vector in d and draw the density (see left panel of Figure 7.18). The den-
sity is reminiscent of the exponential, but it has holes (zeros) in it and drops more
precipitously than the exponential does. In short, it looks like none of the theoretical
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Figure 7.18 The density of the “population” of days between consecutively reported
U.S. military casualties in Iraq.

densities we discussed thus far. Next, we draw 10 000 samples from the casualties
“population” (with replacement of course),2 each of size 30:

> set.seed(10)

> m <- matrix(sample(d, 30 * 10000, replace = TRUE),

+ nrow = 30, ncol = 10000)

> h(apply(m, 2, mean), xlab = 'mean')

From these, we construct the sampling density of the mean (right panel of Figure 7.18).
To verify that this density is approximately normal with

> c(mu = mean(d), sigma = sd(d))

mu sigma

0.4608985 0.7457504

we superimpose φ
(
X |μ, σ/

√
n
)
:

> x <- seq(0, 1.2, length = 201)

> lines(x, dnorm(x, mean(d), sd(d) / sqrt(n)))

This is not a proof that the sampling density is normal, it is an experimental illustra-
tion of a well known result from mathematical statistics. ut

7.6.3 Consequences of the central limit theorem

The discussion so far focused on large samples. We know that the sampling density
of the mean for samples from a population with mean μ and standard deviation σ
is normal with μ and σ/

√
n. The sampling density of means for small samples (say n

< 30) from a normal population with μ and σ is also normal with μ and σ/
√
n. We

can now summarize the consequences of the central limit theorem for the sampling
density of the mean.
Denote by μX the mean of the sampling density of a sample mean and by σX its

standard deviation. The corresponding population parameters are μ and σ. Then:

1. μX = μ: the sampling density of X is centered at μ.
2. σX = σ/

√
n: as the sample size increases, the standard deviation of the sampling

density (the standard error) of X decreases.

2At the time of writing, thank goodness, the number of casualties was far less than 10 000.
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3. When n is large, the sampling density of X approximates the normal, regardless
of the probability density of the population.

4. When the population density is normal, so is the sampling density of X for any
sample size n.

5. When the population density is not normal and n is small, we cannot assume that
the sampling density of the mean is normal.

In practice, we have

A rule of thumb For a sample size of n > 30, we consider the sampling density of
the mean from any population density with mean μ and standard deviation σ to
be normal with mean μ and standard deviation σ/

√
n.

With this in mind, we can compute probabilities for ranges of values.

Example 7.25. The results of the final examination in a statistics course were μ
= 52.5, σ = 12.1 and there were 35 students in the class. Consider the class as the
population. We wish to determine the probability that a student’s score in a randomly
picked sample of 10 scores will be between 45 and 55.
Based on the sampling density of the mean, we have

P
(
45 < X ≤ 55

∣
∣
∣52.5, 12.1/

√
10
)
= Φ

(
55
∣
∣
∣52.5, 12.1/

√
10
)

− Φ
(
45
∣
∣
∣52.5, 12.1/

√
10
)

and the answer is

> mu <- 52.5 ; se <- 12.1 / sqrt(10)

> pnorm(55, mu, se) - pnorm(45, mu, se)

[1] 0.71825

As usual, we interpret this result to mean that if we take many many samples of
10, then about 72% of the students in the samples will have scores between 45
and 55%. ut

When n is small and the population density is not normal, all we can say is that

1. μX = μ: the mean of the sampling density of the mean equals the mean of the
population.

2. σX = σ/
√
n: the standard deviation of the sampling density of the mean equals

the standard error.

In other words, we do not know the sampling density of X. One way around this is to
proceed with the bootstrap (see, for example, Efron and Tibshirani, 1993). We shall
return the bootstrap method later.

7.7 The sampling density of proportion

In statistical analyses, we are often interested in the proportions of individuals in
a population that exhibit a certain trait. For example, we may be interested in the
proportion of young fish in the population, the proportion of the population that
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voted, the proportion of the sample that is recaptured after marking, the proportion
of birds’ tag return and so on. In such cases, we label the object of concern (a person,
a bird, a trap, a patient, an answer) that exhibits the trait as S (success) and the
one that does not as F (failure). Here S and F refer to events, not to statistics. We
denote the proportion of S in the population by π and in the sample by p where by
definition, p is a rv. Here is one case where we stray from our usual convention that
upper case letters denote rv for p is a sample-based function and is therefore a rv.

7.7.1 The sampling density

We wish to study the sampling density of p where

p :=
number of successes in the sample

sample size
=
nS

n

(nS is a rv). It turns out that, with some constraints, we can approximate the binomial
with the normal (see Section 7.2.2). With these constraints, the central limit theorem
applies to the sampling density of proportions.
Recall that for nπ ≥ 5 and n (1− π) ≥ 5, we may approximate the rv nS (the

number of successes) with the normal with

E [nS ] = nπ = μ , V [nS ] = nπ (1− π) = σ
2 .

Here n is the number of trials and π is the population probability of success. Therefore,
the sampling density of np (where the rv p is the proportion of successes in n trials) is

φ (np |μ, σ ) , μ = nπ , σ =
√
nπ (1− π) .

From the properties of expectation and variance that

E [ax] = aE [x] , V [ax] = a2V [x]

(where a is a constant) we obtain

E [p] = E
[nπ
n

]
= π , V [p] =

1

n2
nπ (1− π) =

π (1− π)
n

.

To summarize,

The sampling density of the sample proportion (for short, the sampling den-
sity of proportions) Let the rv p be the proportion of successes in a binomial
experiment with n trials and with probability of success π. Then the sampling
density of p is

φ

(

p

∣
∣
∣
∣
∣
π,

√
π(1− π)

n

)

.

In the following example, we examine the effect of increasing the number of trials on
the normal approximation to the sampling density of proportions.

Example 7.26. The data for this example are from International Program Center
(2003). We find that in 2000, the sex ratio of males/females of all ages in the West
Bank was 1.0 342. The ratio of males in the population is therefore 0.50 842. Imagine
sampling the population of Palestinians in the West Bank. With S denoting a male,
the density of males in the sample is binomial, with parameters n (sample size) and
π ≈ 0.508 (ratio of males in the population). We choose n = 7 and n = 40. The top
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Figure 7.19 The binomial density (left panel) and the sampling density of p (right
panel). Histograms show the simulated sampling density (for 5 000 repetitions) and
curves the theoretical normal sampling density. Top panel is for n = 7 trials and
bottom for 40 trials.

panel of Figure 7.19 shows the binomial with parameters 0.508 and 7 (left) and the
normal approximation (curve) to the sampling density of p for 5 000 repetitions.
The bottom panel of Figure 7.19 illustrates the results for n = 40. Note that

both the binomial density and the simulated sampling density converge to their corre-
sponding normal density. To produce Figure 7.19, we first set the necessary constants,
parameters and axis labels:

1 par(mfrow = c(2, 2)) ; PI <- 0.508 ; n <- c(7, 40)

2 sigma <- sqrt(PI * (1 - PI) / n)

3 R <- 5000 ; x <- seq(0, 1, length = 201)

4 xlabel.1 <- expression(italic(x))

5 xlabel.2 <- c(expression(italic(paste(n == 7))),

6 expression(italic(paste(n == 40))))

7 ylabel <- c(expression(italic(paste(P(X<=x), ', n = ', 7))),

8 expression(italic(paste(P(X<=x), ', n = ', 40))))
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The constants that we use are self-explanatory. The setting of labels is not so, but we
did discuss paste(), expression() and italic() before (e.g. Examples 3.8 and 5.2).
The simulation and drawing are produced with this chunk of script:

1 set.seed(7)

2 for (i in 1 : 2){

3 plot(1 : n[i], dbinom(1 : n[i], n[i], PI), type = 'h',

4 lwd = 2, xlab = xlabel.1, ylab = ylabel[i])

5 abline(h = 0, lwd = 2)

6 p <- rbinom(R, n[i], PI) / n[i]

7 h(p, xlim = c(0, 1), ylim = c(0, 5), axes = FALSE,

8 xlab = xlabel.2[i])

9 axis(1, at = c(0, PI, 1), las = 2) ; axis(2)

10 lines(x, dnorm(x, PI, sigma[i]))

11 }

Let us elaborate. In lines 2–4 we plot the binomial density with parameters n = 7 (or
40) and π = 0.508. In line 5 we produce 5 000 random number of success for the given
number of trials. To obtain p = π̂, we divide each value by the appropriate number
of trials. So in lines 6 and 7, we obtain the simulated sampling density of p. Fitting
the axis tick marks in a small plot is tricky. So we show the histogram without axes
by setting axes = FALSE. Then in line 8 we add the axes; first the x and then the y
(by setting the argument to axis to 1 or 2, respectively). When we draw the x-axis,
we ask to put the tick marks at = zero, π and 1. To prevent the tick labels from
colliding, we ask to draw them perpendicular to the axis (hence las = 2). Finally, in
line 9 we draw the theoretical sampling density. ut

7.7.2 Consequence of the central limit theorem

In Example 7.26, π is nearly 0.5. If π is closer to zero or one, we need ever larger
number of trials to use the normal approximation to the sampling density of p. Denote
by μp the proportion of successes for the sampling density of the probability of success.
The population density is binomial with parameters n and π. From the central limit
theorem and with the observation we made about Figure 7.19 we conclude that:

1. μp = π: the sampling density of p is centered at π.

2. σp =
√
π (1− π) /n: as the number of trials increases, the standard deviation of

the sampling density of p decreases.
3. The sampling density of p approaches normal as n increases.
4. The farther π is from 0.5, the larger the value of n that is needed for the normal
approximation to be accurate.

To address the last point, we have

A rule of thumb If nπ ≥ 5 and n (1− π) ≥ 5, then the central limit theorem may
be used for the sampling density of p.
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7.8 The sampling density of intensity

Recall that intensity refers to counts per unit of something. For example, rates refer
to counts per unit of time. Examples are the arrival rate of patients to an emergency
room, birth rate, cancer rate, the number of plants per m2, the number of organ-
isms per unit of volume and so on. As we saw in Section 5.7, the Poisson density is
appropriate for modeling such phenomena. Also, in Section 7.2.3, we saw that for the
Poisson (intensity) parameter λ > 20, we can use the normal approximation with μ
= λ and σ2 = λ.

7.8.1 The sampling density

Let nC be the number of counts in n units of intervals from a population with intensity
parameter λ (counts per unit interval). Then

E [nC ] = nλ , V [nC ] = nλ .

Therefore, for the sample based intensity (the rv l = nC / n) we have

E [l] = E
[nC
n

]
=
1

n
E [nC ] =

nλ

n
= λ ,

V [l] = V
[nC
n

]
=
1

n2
V [nC ] =

nλ

n2
=
λ

n
.

So from the central limit theorem we obtain

The sampling density of the sample intensities (or the sampling density of int-
ensities) Let the rv l be the number of counts per n unit intervals from a
population with Poisson density with parameter λ. Then the sampling density
of l is

φ

(

l

∣
∣
∣
∣
∣
λ,

√
λ

n

)

.

In the next example, we illustrate the properties of the sampling density of l.

Example 7.27. The R library UsingR includes data about murder rates in 30 South-
ern US cities (see documentation about the data). We examine the histogram with

> library(UsingR) ; data(south) ; n <- c(5, 10, 100)

> par(mfrow = c(2, 2))

> h(south, xlab = 'murder rate', ylim = c(0, 0.1))

loading the package and attaching the data south. Then we prepare the window
to accept four drawings and finally draw the histogram (Figure 7.20). The empirical
density is perhaps Poisson. We consider the data to be the population. So we calculate
λ = the mean of the data. We draw the theoretical density with:

> lambda <- mean(south)

> x <- 0 : 30

> lines(x, dpois(x, lambda), type = 'h', lwd = 2)

> abline(h = 0, lwd = 2)



240 The normal and sampling densities

It looks “good” and we move on:

> set.seed(100)

> ylab = c('', 'density', '')

> for(i in 1 : 3){

+ m <- matrix(rpois(n[i] * 500, lambda), nrow = n[i],

+ ncol = 500)

+ l <- apply(m, 2, mean)

+ h(l, ylim = c(0, 1.1), xlim = c(10, 18),

+ xlab = bquote(italic(list(l,~~ n==.(n[i])))),

+ ylab = ylab[i])

+ x <- seq(0, 20, length = 201)

+ lines(x, dnorm(x, lambda, sqrt(lambda/n[i])))

+ }

The for loop illustrates what happens to the sampling density as the sample increases
from 5 to 10 to 100. We need the loop (over the index i) three times for the three
sample sizes. For each of these, we matrix() the number of Poisson random deviates,
rpois(), into m. Then, using apply() with its second argument set to 2, we mean()
the matrix columns into l (the length of these columns represent the sample size
and the number of columns represent the repetitions) for the population murder rate
lambda. The 500 values of the rv l are then used to compare the simulated sampling
densities (the next three histograms in Figure 7.20) to the theoretical normal sampling

Figure 7.20 Sampling density of the intensity of murders in some Southern
U.S. cities.
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density with mean λ and standard error
√
λ/n. As n increases, the standard error

decreases and all densities are centered around the population rate λ. ut

7.8.2 Consequences of the central limit theorem

Denote by μl the mean intensity for a sample of size n from a Poisson population
with parameter λ. From the central limit theorem and from the observation we made
about Figure 7.20 we conclude that:

1. μl = λ: the sampling density of l is centered at λ.
2. σl =

√
λ/n: as the sample size increases, the standard deviation of the sampling

density of l decreases.
3. The sampling density of l approaches normal as n increases.

7.9 The sampling density of variance

To discuss the sampling density of the variance of any density, we need the idea of a
central moments of the density P (X = x|θ). The mth central moment is defined as

ψm :=

∫ ∞

−∞
P (X = x|θ) (x− ψ)m dx

(where ψ := ψ1). The corresponding central moments of a sample of size n are defined
thus:

Cn :=
1

n

n∑

i=1

(Xi − C)
n

where X = C is the sample mean. Let S2 be the sample variance. Then

E
[
S2
]
= E [C2] =

n− 1
n

ψ2 (7.3)

is the expected value (the mean) of the sample variance and

E
[
V
[
S2
]]
= E [V [C2]] =

(n− 1)2

n3
ψ4 −

(n− 1) (n− 3)
n3

ψ22 (7.4)

is the expected variance of the sample variance. In words, the mean of the sampling
density of the sample variance is given by (7.3) and its variance by (7.4). To proceed,
we must determine ψ2 and ψ4. This may be accomplished if the density P (X = x|θ)
is specified.

Example 7.28. The sampling density of the variance of a sample from a normal
population is known analytically. For the normal, ψ2 = σ2 and ψ4 = 3σ

4. Therefore,
for the normal, the first and second central moments (mean and variance) of the
sampling density of the sample-variance are

C1 [V ] =
n− 1
n

σ2 , C2 [V ] =
2 (n− 1)

n2
σ4 .

In our usual vernacular, this means that for the sampling density of the variance we
have

μV =
n− 1
n

σ2 , σV =
1

n
σ2
√
2(n− 1) .
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In other words, the sampling density of the variance is centered (asymptotically)
around the population variance σ2. The standard error,

√
2(n− 1)σ2/n, goes to zero

as n → ∞. We can say even more. The sampling density of the sample variance is
known as Pearson type III; it is given by

P (V = v) =

( n

2σ2

)(n−1)/2

Γ

(
n− 1
2

) v(n−3)/2 exp
[
−

n

2σ2
v
]
.

You can use parpe3(), quape3() and cdfpoe3() (in the package lmomco) to compute
the moments, quantiles and distribution of the Pearson type III. ut

7.10 Bootstrap: arbitrary parameters of arbitrary densities

In this section we discuss the bootstrap method. Because the bootstrap we use pro-
vides confidence intervals for the estimated mean, we also discuss the exact methods
for estimating confidence intervals. We introduce the bootstrap method with an
example. To compare our results to those that appear in the literature routinely,
we shall use a common data set.

Example 7.29. The data are about the percentage of the Swiss population in 1888
with years of education (Tukey, 1977):

> edu <- c(12, 9, 5, 7, 15, 7, 7, 8, 7, 13, 6, 12, 7, 12,

+ 5, 2, 8, 28, 20, 9, 10, 3, 12, 6, 1, 8, 3, 10, 19,

+ 8, 2, 6, 2, 6, 3, 9, 3, 13, 12, 11, 13, 32, 7, 7, 53,

+ 29, 29)

> length(edu)

[1] 47

We wish to estimate the population variance. There are 47 observations. We take a
sample of 47 with replacement from edu and compute its variance. Next, we take
another sample with replacement and compute its variance. We repeat the process
1 000 times and thus get 1 000 variances. We can now compute the sampling density
of the variance. It can be shown that if the sample represents the population, then as
the number of repetitions increases, the mean of the sampling density of the variance
approaches the population variance. To obtain the variance statistic, we first create
a bootstrap object with this call:

> library(boot)

> bs <- boot(edu, var, seed = 1)

(see help(boot) for details). Now we can examine the density of the variance with

> plot(bs, main = '', ylab = 'density', col = 'gray90')

which produces Figure 7.21. To obtain the confidence interval, we call

> summary(bs)

Call:

boot(data = edu, statistic = var, seed = 1)

Replications: 1000
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Statistics:

Observed Bias Mean SE

var 92.46 -3.573 88.88 37.50

Empirical percentiles:

2.5% 5% 95% 97.5%

var 28.07 36.26 160.2 173.3

bca confidence limits:

2.5% 5% 95% 97.5%

var 43.19 48.78 194.6 219.2

Figure 7.21 Density of the bootstrap variance of the Swiss education data. Solid
vertical line indicates the bootstrap variance, broken line the variance computed from
the data.

Here bca stands for bootstrap bias-correct, adjusted confidence limits. From the sum-
mary, our point estimate of the variance is 88.88 while the observed variance is 92.46.
This results in a bias of −3.57. Our 95% confidence interval is between 43.19 and 219.2.
The density of the bootstrap variance is not normal (Figure 7.22). This confirms the
need for bootstrap to obtain the confidence interval. ut

Note that in the example we do not assume a density; we construct it. Also, we
constructed a confidence interval for the variance. With the bootstrap, we can obtain
point estimate and confidence intervals on any statistic we desire. We shall discuss
point estimates and confidence intervals later.

7.11 Assignments

Exercise 7.1. Determine the following standard normal curve areas:

1. Area to the left of 1.76
2. Area to the left of −.65
3. Area to the right of 1.40
4. Area to the right of −2.52
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Figure 7.22 Normal Q-Q plot of the Swiss education data.

5. Area between −2.22 and 0.63
6. Area between −1 and 1
7. Area between −3.5 and 3.5

Exercise 7.2. Z is a rv with a standard normal density. Determine

1. P (Z < 2.4)
2. P (Z ≤ 2.4)
3. P (Z < −1.25)
4. P (1.15 < Z < 3.4)
5. P (−0.75 < Z < −0.65)
6. P (−2.80 < Z < 1.35)
7. P (1.9 < Z)
8. P (−3.35 ≥ Z)
9. P (Z < 4.9)

Exercise 7.3. Determine the value of z that satisfies the following (Z is standard
normal):

1. P (Z < z) = 0.6
2. P (Z < z) = 0.5
3. P (Z < z) = 0.004
4. P (−z < Z < z) = 0.8
5. P (Z < z) = 0.90
6. P (Z < z) = 0.95
7. P (−z < Z < z) = 0.99
8. P (z > Z) = 0.05
9. P (z > Z) = 0.025
10. P (z < Z) = 0.01

Exercise 7.4. The following table is from Table 10, Sample et al. (1997). It gives
weights of brown bats (in g).
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brown.bat

state sex n average sd

1 New Mexico male 5 8.47 0.81

2 New Mexico female 3 6.96 0.27

3 Indiana male 6 6.03 NA

4 Indiana female 40 6.99 NA

Suppose that the distributions of weights in the New Mexico and Indiana populations
are normal. For Indiana, use the standard derivations of the New Mexico population.

1. Complete the last two columns of the following table:

state sex n average sd P(X<8) P(6.5<X<7.5)

1 New Mexico male 5 8.47 0.81

2 New Mexico female 3 6.96 0.27

3 Indiana male 6 6.03 0.81

4 Indiana female 40 6.99 0.27

2. You are told that a bat from one of these two states was caught. It weighs 8.5 g.
Where was it most likely to be collected from? What was its most likely sex?

Exercise 7.5. The mean weight of a bird in a population is 31 g and the stan-
dard deviation is 0.2 g. The distribution of weights in the population is normal.
Determine:

1. The probability that the weight for a randomly selected bird exceeds 30.5 g.
2. The probability that the weight for a randomly selected bird is between 30.5 and
31.5 g. Between 30 and 32 g.

3. Suppose that a bird is classified as underweight if its weight is less than 30.4 g.
What is the probability that at least one bird in a sample is underweight?

Exercise 7.6. The rv X denotes the IQ score of a randomly selected individual.
Suppose that the density of X is approximately normal with mean 100 and standard
deviation 15. Furthermore, X must be an integer. Calculate the following:

1. The probability that a randomly selected person has an IQ of 100.
2. The probability that a randomly selected person has an IQ of 100 or less. 110 or
less.

3. What percentage of the population will have an IQ between 75 and 125?
4. What percentage of the population will have an IQ larger than 120?

Exercise 7.7. Suppose that the distribution of the weight of young seals in a certain
population is approximately normal with mean 150 kg and standard deviation 10 kg.
The scale is accurate to the nearest kg.

1. What is the probability that a randomly selected young of the year seal weighs
120 kg at most?

2. What is the probability that a randomly selected young of the year seal will weigh
at least 125 kg?

3. What is the probability that it will weigh between 135 and 160 kg?

Exercise 7.8. From http://www.cdc.gov/nchs/data/hus/tables/2003/03hus061

.pdf we learn that in 1990–92, the percentage of U.S. adults that smoked (adult
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population is defined as 18 years or older, age adjusted) was 27.9. In 1999–2001,
that percentage dropped to 21.1. Consider these percentages as reflecting population
values.

1. What is the probability that 50 individuals smoke in a sample of 200 individuals
from the 1990–92 population? From the 1999–2001 population?

2. What is the probability that 100 individuals smoke in a sample of 200 individuals
from the 1990–92 population? From the 1999–2001 population?

3. What is the probability that between 50 and 100 individuals smoke in a sample of
200 individuals from the 1990–92 population? From the 1999–2001 population?

4. What is the probability that between 51 and 99 individuals smoke in a sample of
200 individuals from the 1990–92 population? From the 1999–2001 population?

Exercise 7.9. Suppose that 25% of the anthrax scares are false alarms. Let X denote
the number of false alarms in a random sample of 100 alarms. What are the approx-
imate values of the following probabilities?

1. P (20 ≤ X ≤ 30)
2. P (20 < X < 30)
3. P (35 ≤ X)
4. The probability that X is more than 2 standard deviations from its mean.

Exercise 7.10. Live traps manufactured by a certain company are sometimes defec-
tive.

1. If 5% of such traps are defective, could the techniques introduced thus far be used
to approximate the probability that at least five of the traps in a random sample
of size 50 are defective? If so, calculate this probability; if not, explain why not.

2. Compute the probability that at least 20 traps in a random sample of 500 traps
are defective.

Exercise 7.11. The following is a sample of 20 independent measurements of the
concentration of a pollutant in ppm, along with the expected standard normal score
for a sample of 20.

ppm score

1 25 -1.867

2 27 -1.408

3 31 -1.131

4 36 -0.921

5 36 -0.745

6 37 -0.590

7 38 -0.448

8 41 -0.315

9 41 -0.187

10 42 -0.062

11 43 0.062

12 43 0.187

13 53 0.315

14 55 0.448

15 57 0.590
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16 62 0.745

17 76 0.921

18 78 1.131

19 89 1.408

20 103 1.867

Are the data approximately normal?

Exercise 7.12. The amount of time that an individual animal spends near a water
hole at Kruger National Park in South Africa is a normal rv with mean 60 min and
standard deviation of 10 min.

1. What is the probability that the next observed animal will spend more than 45
min at the water hole?

2. What amount of time is exceeded by only 10% of the animals?

Exercise 7.13.We need to make sure that the following data are approximately
distributed according to the normal. Would you use a transformation and if yes,
which one?

0.7552 1.1816 0.1457 0.1398 0.4361 2.8950 1.2296 0.5397

0.9566 0.1470 1.3907 0.7620 1.2376 4.4239 1.0545 1.0352

1.8760 0.6547 0.3369 0.5885 2.3645 0.6419 0.2941 0.5659

0.1061 0.0594 0.5787 3.9589 1.1733 0.9968 1.4353 0.0373

0.3240 1.3205 0.2035 1.0227 0.3017 0.7252 0.7515 0.2350

Exercise 7.14.

1. Explain the difference between a population characteristic and a statistic.
2. Does a statistic have a density? Does a population parameter have a density?

Exercise 7.15. Describe how you would select a random sample from each of the
following:

1. students enrolled at a university;
2. books in a bookstore;
3. registered voters in your state;
4. subscribers to the local daily newspaper.

Exercise 7.16.We have a population with measurements X = 1, 2, 3, 4.

1. A random sample of 2 is selected without replacement and with order important.
There are 12 possible samples. Compute the sample mean for each of the 12
possible samples and show the sampling distribution in a table.

2. A random sample of 2 is selected with replacement. Show the sampling distribu-
tion in a table.

Exercise 7.17.We have a population with measurements X = 5, 3, 3, 4, 4. Here μ =
3.8. Suppose the researcher does not know this value, but wishes to estimate it from
samples. The statistics available are: the sample mean, the sample median and the
average of the largest and smallest values in the sample. The researcher decides to
use a random sample of 3. Order is not important. Therefore, there are 10 possible
samples. For each of the 10 samples, compute the 3 statistics. Construct the sampling
distribution for each of these statistics. Which statistic would you recommend for
estimating μ? Explain.
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Exercise 7.18. A population consists of 5 values: 8, 14, 16, 10, 11.

1. Compute the population mean.
2. Select a random sample of 2 (write 1, . . . , 5 on 5 slips of paper and draw 2 of
them at random). Compute the mean of the sample.

3. Repeat the procedure for 25 samples of 2, calculating the mean for each pair.
4. Draw a histogram of the mean of the 25 samples. Are most of the sample means
near the population mean? Do the values of sample means differ a lot from sample
to sample, or do they tend to be similar?

Exercise 7.19.What are the sampling distributions of the following?

1. The means of samples of size 34 from a normal population.
2. The means of samples of size 22 from a normal population.
3. The proportions of males of a sample of 30 from a population with approximately
equal number of males and females.

Exercise 7.20.

1. Create a vector of 101 values of x, where x is between −3 and 3 where the vector
values are from F (X ≤ x) where F is the standard normal density.

2. Plot the results.
3. For the same values of x, create a vector of f(x) where f is the standard normal.
4. Plot the results.

Exercise 7.21. For the following exercises, use set.seed(2) in the appropriate
places.

1. Create a random sample of 100 values from the standard normal.
2. Report the variance and standard deviation of this sample.
3. Create a random sample of 1 000 values from the standard normal.
4. Report the variance and the standard deviation.
5. Which of the means and standard derivations were closer to the theoretical density
(sample size 100 or 1 000)? Why?
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Exploratory data analysis

Deduction and induction are two major approaches to science. In deduction, one
reaches a conclusion from known facts. In induction, the known facts are believed to
support the conclusions with high probability. In a nutshell, Exploratory Data Anal-
ysis (EDA) takes more of an inductive approach than say, formal hypothesis testing,
where the approach is mostly deductive. Consequently, EDA is not a collection of
unique statistical techniques. It is an approach which emphasizes using data to gen-
erate hypotheses. As such, it lets the data “speak” for themselves and is particularly
appropriate for massive amounts of data.
EDA uses primarily data summaries and graphical techniques to examine the data

(for outliers for example), explore potential cause and effect or trends in data and to
model relations among related variables in data. EDA was originated by Tukey (1977),
followed by works such as Velleman and Hoaglin (1981) and Chambers et al. (1983).
Among the useful EDA graphical methods are histograms, Q-Q plots and box plots.
Among the frequently used numerical methods are measures of the center and spread
of data, Chebyshev’s rule, the empirical rule and correlation.
The difference between EDA and the classical (hypothesis testing) approach is

illustrated in Figure 8.1. The illustrated differences are idealized. In reality, we move
between the stages freely, but always with a major approach in mind. Most statistical
analyses use random sample data and assume some underlying population density.
Consequently, we make two basic:

Assumptions

1. Random samples (all objects from a population have the same probability of
membership in a sample).

2. The population density did not change while a sample was obtained and its
variance is finite.

Statistics and Data with R:  An applied approach through examples         Y. Cohen and  J.Y.  Cohen
©
2008 John Wiley & Sons, Ltd.  ISBN: 978-0-470-75805
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Figure 8.1 The classical statistics vs. EDA approaches.

8.1 Graphical methods

Simple graphical methods can be used to examine the two assumptions above. Some,
we have discussed: histograms in Section 3.3; scatter plots and paired scatter plots
in Section 3.5; lattice plots in Section 3.6. To complete the picture, we discuss run-
sequence plots.
Let X := X1, . . . , Xn be a sample. The assumptions imply that the order of the

values of Xi, i = 1, . . . , n is not important. This leads to the statistical model

Xi = a+ εi

where a is some constant and εi = Xi − a. For densities with location and scale,
we usually assume that a = μ, mean ε = 0 and V [ε] = σ2 where μ and σ are the
location and scale parameters of the density (mean and standard deviation in the
case of the normal). If the observations are independent, then εi must be independent
and we say that εi are independent and identically distributed (iid) random variables.
To examine the assumptions, we use run-sequence plots. They consist of the vector
index, i, plotted on the x-axis and Xi on the y-axis. In time series, i often maps to
dates.

Example 8.1. In Example 2.16 we introduced the time series of the U.S. military
casualties in Iraq, as reported by the U.S. Department of Defense. Let us assume that
the casualties count is a Poisson process. Then the model is

Xi = λ+ εi

where the location (mean) of εi = 0 and the standard deviation is
√
λ. So as

in the code in Example 2.16, we produce the casualty counts per 10-day inter-
vals. These counts are the mean and variance of the presumed density. The top
panel of Figure 8.2 shows the standard deviation and the bottom the counts,
crossed by the mean counts λ̂. The data show no trend in the mean, but there
are cycles in the variance (which means that εi are not iid). Note the two excep-
tionally bloody 10-day periods that began on April 3, 2004 and on November 8,
2004. This inspection of the data leads one to conclude that the variance of the data
is larger than its mean. Thus, the data are overdispersed and instead of using the
Poisson to model it, we might use the negative binomial (see Section 5.9.2). ut
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Figure 8.2 Run sequence plot of the U.S. Department of Defense reported
U.S. military casualties in 10-day intervals in Iraq.

8.2 Numerical summaries

Numerical methods in EDA allow us to examine data summaries with regard to central
tendency of the data and their dispersion.

8.2.1 Measures of the center of the data

A computed value that reflects the center of the data is often considered a typical
data value. There are different ways to assess a central value of data. These depend
on how values are distributed across the population or the sample.

Mean

For data that are clumped around some central value, the mean of the sample reflects
typical population values. The sample mean is the expected value of the sample,
where each value has a probability of 1/n (where n is the sample size). If the random
values are not equally probable, the mean must be weighted by the values’ respective
probabilities. To wit, we define the weighted mean as

Weighted sample mean Let X := [X1 , . . . , Xn] be a random sample of objects
with p = [p1 , . . . , pn], the probability of selecting each object from the population.
Then the weighted sample mean is the rv

X :=
n∑

i=1

piXi . (8.1)

In matrix notation, X := X ∙ p, where the dot product is defined in (8.1).
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Sample mean We say thatX is the sample mean if pi = 1/n for the weighted sample
mean, i.e.

X :=
1

n

n∑

i=1

Xi .

We distinguish between sample mean and

Population mean For a population of size N and with x1, . . . , xN , the population
mean is

μ :=
1

N

N∑

i=1

xi . (8.2)

We are also interested in the sample-based estimate of the population mean.

MLE estimate of the population mean The MLE estimate of the population
mean, denoted by μ̂, is the sample mean X.

If we analyze a random sample from a population, we have to assume a (empirical
or theoretical) probability density for the population. So we have four mean-related
values: the sample mean, X, the population mean, μ, the expected value of probability
density of the population, E[x] and the estimated population mean, μ̂. If we can
consider the population infinite, then μ = E[x]. Otherwise, μ is given in (8.2). Let us
compare these quantities by example.

Example 8.2. The density of height in humans is thought to be normal. Consider a
population of N = 501 on a small island in Fiji. Let the theoretical density of height
(in cm) be φ (x |180, 10). For all practical purposes, we consider INFINITY = 10 000
to be infinitely large. So we plot the theoretical density with

> x <- seq(120, 240, length = INFINITY)

> y <- dnorm(x, 180, 10)

> plot(x, y, type = 'l',

+ xlab = 'x', ylab = 'density')

(Figure 8.3). We draw E[x] thus:1

> abline(v = 180, lwd = 2, col = 'blue')

Next, we take a random sample from the theoretical density of 501 (the population).
From it, we obtain a mean height and draw it: This is our μ:

> set.seed(79) ; population <- rnorm(N, 180, 10)

> abline(v = mean(population),

+ lwd = 4, col = 'red', lty = 2)

Finally, we draw a sample of n = 30 from the population, calculate its mean (μ̂ = X)
and draw it:

> X <- sample(population, n)

> abline(v = mean(X), lty = 3)

1We use x instead of X to emphasize that x is not a rv.
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Figure 8.3 The curve is the theoretical density φ (x |E[x], S[x] ). The solid line is
E[X] = 180, the dashed line is the population mean μ and the dotted line is the
sample-based estimate of the theoretical mean, namely μ̂ = X.

Table 8.1 Differences between theoretical density,
population density and sample-derived values for the
mean and standard deviation.

Density Population Sample

E [X] = 180 μ = 180.57 μ̂ = X = 183.14
S [X] = 10 σ = 10.23 σ̂ = S [X] = 8.83
X ∈ R N = 501 n = 30

The arguments col and lty and lwd specify the color, line type (solid, dashed or
dotted) and line width. The remaining results are shown in Table 8.1. The upshot
is this: If the population from which we draw the sample is large enough, then μ
≈ E[X]. Otherwise, we have to distinguish between the theoretical density and the
population density (which in this case becomes an empirical density). We shall always
distinguish between the sample density and the population density. ut

Here is an example with a small population.

Example 8.3. For this example, we use estimates of the height (in ft) of the 18
faculty members in a Department at a University. First, we create the name and
height vectors:

> name <- c('Ira A', 'David A', 'Todd A', 'Robert B',

+ 'Yosef C', 'James C', 'Francesca A', 'David F',

+ 'Rocky G', 'Peter J', 'Anne K', 'Kristen N', 'Ray N',

+ 'James P', 'Peter S', 'George S', 'Ellen S', 'Bruce V')

> height <- c(5 + 4 / 12, 6 + 11 / 12, 5 + 11 / 12,

+ 5 + 11 / 12, 6, 5 + 10 / 12, 5 + 10 / 12, 5 + 11 / 12,

+ 5 + 3 / 12, 5 + 10 / 12, 5 + 8 / 12, 5 + 7 / 12,

+ 5 + 10 / 12, 5 + 9 / 12, 5 + 10.5 / 12, 5 + 10.5 / 12,

+ 5 + 10 / 12, 6)
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Next, we combine them into a data frame

> faculty <- data.frame(name, height)

Because we will use these data again, we save the data frame to a file

> save(faculty, file = 'faculty.rda')

Recall that by convention, we save R data with the object name, appended with the
.rda extension. Thus, after loading faculty.rda, we obtain the data frame object
named faculty. You may use your own convention. Consider the faculty as our pop-
ulation. First, we wish to examine a run sequence plot for the sorted (by height)
population and identify() some interesting values. So we load the data and sort
them

> load('faculty.rda')

> head(faculty, 3)

name height

1 Ira A 5.333333

2 David A 6.916667

3 Todd A 5.916667

> idx <- sort(faculty$height, decreasing = TRUE,

+ index.return = TRUE)

To sort the data frame on a particular column, we need to establish the indices
of the sorted column. Thus, we use sort() on faculty$height; set the sort order
to decreasing and ask sort() to return the sorted index of faculty$height by
specifying index.return = TRUE. We store the returned list in idx:

> idx

$x

[1] 6.92 6.00 6.00 5.92 5.92 5.92 5.88 5.88 5.83 5.83 5.83

[12] 5.83 5.83 5.75 5.67 5.58 5.33 5.25

$ix

[1] 2 5 18 3 4 8 15 16 6 7 10 13 17 14 11 12 1 9

The ix element of idx contains the sorted indices of faculty$height. Now to sort
the data frame, we do

> f <- faculty[idx$ix, ]

plot f and identify() points of interest:

> plot(f$height, xlab = 'sorted faculty index',

+ ylab = 'height (ft)')

> identify(f$height, label = f$name)

[1] 1 17 18

(Figure 8.4). Next, we compare the population mean to the sample mean for n = 5:

> round(mean(faculty$height), 2)

[1] 5.84
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Figure 8.4 Sorted faculty heights.

or μ ≈ 5.84. Here we round the value of the mean height to two decimal digits because
the values are estimates. It makes no sense to report them with high accuracy. Next
we compute the height of a random sample of the faculty. So we wrote the numbers
1 through 18 on 18 small pieces of paper, put them in a box, mixed them and picked
5 of these pieces of paper. The numbers 5, 7, 10, 14 and 3 turned up. Therefore, the
heights in the random sample data were Yosef C = 6.00, Francesca A = 5.83 and so
on. The mean of the sample was X= 5.87. In R, we do

> idx

Error: Object "idx" not found

> idx <- c(5, 7, 10, 14, 3)

> round(mean(faculty$height[idx]), 2)

[1] 5.87

or more directly

> set.seed(1) ; mean(sample(faculty$height, 5))

[1] 5.866667

Note the error message. Because we want to use an index vector named idx, we first
verify that no such object or function exist in R. sample() takes a random sample from
its first argument. set.seed() ensures that we repeat the same sequence of random
numbers. ut

The mean of a sample is sensitive to extreme values. Extreme values may arise in a
sample either by chance or because the population density is skewed. In the former
case, we call these values outliers. In the latter, extreme values in the sample represent
extreme values in the population; they are therefore not outliers. If we happen to
have outliers in a sample from a symmetric population density, or an asymmetric
population density, then the sample mean may not represent typical values in the
population.

Example 8.4. Consider the data in Example 8.3. As Figure 8.5 illustrates, David A
is unusually tall and Rocky G and Ira A are short. They therefore influence the mean
unduly in the sense that it no longer represents a typical observation.
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Figure 8.5 Faculty height in a department.

Figure 8.5 was produced with the following script:

1 load('faculty.rda')

2 plot(faculty$height, xlab = 'faculty index',

3 ylab = 'height (ft)')

4 identify(faculty, label = faculty$name)

Here we annotate a plot with the low level plotting function identify(). In line 1 we
load the faculty data frame. In line 2 we plot the data with the appropriate labels.
In line 4 we label whichever points we wish—the extreme points in this case. The
function identify() is applied to the active graphics window. It identifies the data
point nearest the point that you click. Once a point is identified, identify() labels
this point by the value of the corresponding faculty$name, based on the value of
the faculty$height. This can be done because for each mouse click near a point,
identify() returns the index of the point in the data. Because we identify a vector
of labels with the named argument label, identify() draws this label. Once we
identify all the points of interest (3 points in our case), we hit the escape key (or
click the right button and then click on stop). This terminates the process of labeling
points on the plot. ut

Median

To get around the problem of outliers or to represent a typical value in a population
with skewed density, we define the

Median the middle value of the data.

To compute the sample median, first sort the data and then find the value of the
middle observation. If the number of data points is odd, then the middle observation
is chosen such that there is equal number of observations with values smaller and
larger than the identified observation. If the number of observations is even, locate
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the middle two observations and compute their mean. This will then be the median.
The R function median() does what its name implies. Here is an example.

Example 8.5. Two homeless persons—with zero annual income—are sitting in a bar
complaining about how poor they are. Bill Gates2 enters the bar and one person
says to the other: “On the average, we are extremely wealthy; on the median, we are
exactly as poor as we were before.” ut

Here is a more substantial (and not a funny) example.

Example 8.6. Figure 8.6 shows the trend in U.S. mean and median income (see Table
A-1 in DeNavas-Walt et al., 2003, p. 17). The disparity in income between rich and
poor becomes obvious when the median is compared to the mean. This is so because
the density of income in the U.S. population is highly skewed. Figure 8.6 was obtained
as follows: First we load() the data:

> load('us.income.rda')

Here are the first few rows of the data:

> head(us.income, 3)

year median mean

1 2002 42409 57852

2 2001 42900 59134

3 2000 43848 59664

Next, we plot mean/1 000 vs. year with the following arguments: type = 'l', mean-
ing the plot type is lines between the points; ylim = c(30, 60) means the limits
of the y-axis are between 30 and 60. The label of the y-axis is set with the named
argument ylab:

> plot(us.income$year, us.income$mean / 1000,

+ type = 'l', ylim = c(30, 60), ylab = 'income in $1000')

Figure 8.6 Mean (thin) and median (thick) income per household in the U.S., in
$1 000.

2who at the time of writing is one of the richest people on Earth.
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Finally, we do

> lines(us.income$year, us.income$median / 1000, lwd = 3)

This adds lines() between the points of the median / 1 000 and sets the line’s width
to 3 with lwd = 3. Income distribution is usually measured with the Gini Coefficient.
We show the income distribution to illustrate the difference between mean and median
in skewed densities. ut

If the population density is symmetric, then the population mean and median coincide.

Mode

Like the median, the mode is a location measure that is insensitive to extreme data
values:

Mode The most frequently occurring value in a sample.

For symmetrically distributed data, the mode is an indicator of the population center.
For skewed densities, the mode indicates the bulk of the observation values. When
ties occur, there are as many modes as there are ties.

Example 8.7. Consider the weight of 10 Nashville warblers (in g) from the Sierra
Nevada (personal data):

12 14 17 10 8 12 9 16 13 10

The modes are 12 g and 10 g. ut

Trimmed mean

If you wish to report a mean, but minimize the influence of outliers on it, then use the

x% trimmed mean The mean with (x/2)% of the largest values and (x/2)% of the
smallest values removed from the data.

To compute a trimmed mean, sort the data and remove equal percentage of the data
from the top and bottom. When reporting values of trimmed means, be sure to report
the percent of the data trimmed. With R, you trim means with the function mean()

and the named argument trim. Specify trim as proportion of the data to be trimmed
from one side; this proportion will be trimmed from the other side automatically.
Before you trim a mean, be sure to justify why. After all, if the density is likely to
produce extreme values, they should not be trimmed because they do represent the
underlying density. This is the case, for example, with the exponential density.

Example 8.8. Consider the faculty height data in Example 8.3. There are 18 observa-
tions. If we trim 1/18× 100 ≈ 5.5% of the data from the top and 5.5% of the data from
the bottom, we remove David D and Rocky G from the data. The untrimmed mean is

> load('faculty.rda')

> mean(faculty$height)

[1] 5.842593

and the trimmed is

> mean(faculty$height, trim = 1 / 18)

[1] 5.8125

Not much of a change. ut
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8.2.2 Measures of the spread of data

The spread of the data values reflects how probable data values are. A sample from
a density with little spread will have predictable values.

Range

One way to express the spread of data in a sample is using the

Range The value of the difference between the smallest and largest values in
the data.

The range is not very informative about the spread of the data. Here is an example.

Example 8.9. Consider x and y and their ranges:

> (xy <- list(x = c(0, rep(100, 4)),

+ y = c(100, 140, 180, 200, 100)))

$x

[1] 0 100 100 100 100

$y

[1] 100 140 180 200 100

> mapply(range,xy)

x y

[1,] 0 100

[2,] 100 200

Both x and y have a range of 100. However, y is more variable than x:

> mapply(var, xy)

x y

2000 2080

We sometimes use the sample’s range to estimate its variance. ut

Variance, standard deviation and coefficient of variation

We define

Sample variance We also have

S2 :=
1

n− 1

n∑

i=1

(
Xi −X

)2
(8.3)

where n is the sample size.

Population variance The variance of a population of size N is

σ2 :=
1

N

N∑

i=1

(xi − μ)
2

where μ is the population mean.

To compute the sample variance, we divide by n− 1, not by n. This is so because it
turns out that by dividing the sample sum of squares by n− 1 we get a sample variance
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that is not biased. As was the case for the mean, we have the sample variance, S2, the
population variance, σ2, a sample-based estimate of the population variance, σ̂2 =
S2 and the population underlying density variance V [X]. Both V [X] and σ2 are not
rv. If we can assume that for all practical purposes the population is infinite, then σ2

≈ V [X]. Corresponding to the sample and population and density variances we have
their standard deviations, S, σ and S[X] :=

√
V [X]. The units of the sample variance

are the square of the units of measurement. The units of the standard deviation are
the same as the unit of the measurement. The standard deviation is interpreted as
the magnitude of a typical deviation from the mean.

Example 8.10. The data for this example were obtained from the WHO (see
Example 2.7 for data source and description). Here we wish to compare the mortality
rate of children under the age of 5 (per 1 000) in Western Africa and Northern Europe.
Table 8.2 shows the data along with means, variances and standard deviations. Note
the following:

• There are missing values. These must be handled properly. We exclude them from
the computations.

• The variance and the standard deviation are calculated by dividing the sum of
squares by n− 1, not by n, because we treat these data as samples.

• n refers to the numbers of observations for which there are no missing data; not
to the sample size.

Table 8.2 Western Africa and Northern Europe children (under 5) mor-
tality per 1000 children under 5.

Western Africa Northern Europe
Country Mortality Country Mortality

Benin 155.73 Channel Islands 6.53
Burkina Faso 160.20 Denmark 6.49
Cape Verde 35.87 Estonia 11.44
Cte d’Ivoire 173.08 Faeroe Islands 4.79
Gambia 134.07 Finland 4.17
Ghana 93.40 Iceland 7.03
Guinea 175.78 Ireland 17.65
Guinea-Bissau 209.81 Isle of Man 11.25
Liberia 229.33 Latvia 5.89
Mali 180.96 Lithuania 4.34
Mauritania 156.35 Norway 6.52
Niger 209.94 Sweden 4.34
Nigeria 132.69 United Kingdom 6.52
Saint Helena
Senegal 112.08
Sierra Leone 307.31
Togo 136.39

Mean 162.69 7.83
Variance 3 758.19 16.56
Standard deviation 61.30 4.07
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The example requires new and useful function calls in R. So we isolate the R imple-
mentation for this example in the next example. ut

In the next example we demonstrate how to use the database access capabilities of R
for Example 8.10.

Example 8.11. First we present the script and then we analyze it.

1 western.africa <- 1 ; northern.europe <- 2

2 region.name <- c('Western Africa', 'Northern Europe')

3 file.name <- c('WesternAfrica.tex','NorthernEurope.tex')

4

5 # 1. import the data

6 library(RODBC) ; c <- odbcConnect('who')

7 sqlTables(c) ; who <- sqlFetch(c, 'MyFormat')

8 odbcClose(c) ; save(who, file = 'who.fertility.mortality.rda')

9

10 # comment/uncomment for desired table

11 # region = western.africa

12 region = northern.europe

13

14 # 2. make data frame

15 ifelse(region == western.africa, rows <- c(50 : 66),

16 rows <- c(135 : 147))

17 mort <- who$'under 5 mort'[rows]

18 stats <- c(mean(mort, na.rm = TRUE),

19 var(mort, na.rm = TRUE),

20 sd(mort, na.rm = TRUE))

21 mort <- data.frame(c(mort, stats))

22 rnames <- c(as.character(who$country[rows]),

23 '\\hline Mean', 'Variance',

24 'Standard deviation')

25 dimnames(mort) <- list(rnames, c('Mortality'))

26

27 # 3. table

28 library(Hmisc)

29 cap1 <- paste(region.name[region],

30 ', children (under 5) mortality')

31 cap2 <- 'per 1000 children under 5.'

32 latex(mort, file = file.name[region],

33 caption = paste(cap1, cap2),

34 label = paste('table:',region.name[region],'mortality'),

35 cdec = 2,

36 rowlabel = 'Country',

37 na.blank = TRUE,

38 where = '!htbp',

39 ctable = TRUE)
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The code here demonstrates several useful features of R. In particular, it demon-
strates:

1. how to import data from a database directly into R (lines 6 to 8);
2. how to create a data frame, subset data and deal with missing values (lines 15
to 25);

3. how to create a LATEX table such as Table 8.2 (lines 28 to 39).

In lines 1 through 3 we create some objects that we need to use later to modify the
script output if desired. We now go through the first two topics (the third is presented
for the sake of completion). The topics are independent. If you are not interested in a
particular one, skip it. The code is not simple. Study it carefully and you will obtain
useful skills.

1. How to import data from a database directly into R (lines 6 to 8)

This task is accomplished with the package RODBC. See Example 2.10 for further
details.

2. How to create a data frame, subset data and deal with missing values (lines 15–25).

In the who data frame, rows 50–66 contain data about countries in Western Africa.
Rows 135–147 contain data about countries in Northern Europe. Based on the choice
of region, we assign the appropriate rows to index vectors in lines 15 and 16. The
function ifelse() takes three arguments: The first is the condition—region ==

western.africa. The second is executed if the condition is true and the third is
executed if the condition is false.
In line 17 we store the mortality data for the chosen region in mort. In lines 18–

20, we store the mean, variance and standard deviation of the mortality with calls to
mean(), var() and sd(). There are missing data, so each of these functions is called
with na.rm = TRUE—otherwise, the requested values will be returned as NA by the
respective calls. We add the stats to mort in line 21. The concatenated vector is then
casted into a data.frame named mort. In lines 22–24 we assign names to the rows of
mort. The names are the country names from the who data. Here we must coerce the
factor column country into character strings with a call to as.character(). Without
this, the return value will be the integer value of the factors, not the string value. To
the row names vector rnames we also add the names of the stats. The \\hline in
line 23 is a LATEX command, so we shall leave it at that. In line 25, we assign the row
names and the column name Mortality to the mort data.frame with dimnames().
Here are the first few rows of mort:

> mort

Mortality

Channel Islands 6.532000

Denmark 6.494000

Estonia 11.444000

Faeroe Islands NA

Finland 4.792000

The data frame is now ready for creating a LATEX table. We will not discuss the
rest of the code as it produces Table 8.2. The code is presented for the sake of com-
pleteness. However, note the use of the library(Hmisc), a rather useful library by
Frank Harrell. ut
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All of the measures we discussed thus far have units. In Example 8.10, the units
of measurement are deaths of children under 5 per 1000 per year. The units of the
mean are the units of measurement. To derive the units of the variance, consider a
sample of Xi, i = 1, . . . , n where Xi are measured in calories (denoted by cal). We
write the formula for the variance and below it the formula in units:

S2 =
1

n− 1

n∑

i=1

(
Xi −X

)2
,

cal2 =
1

no units

n∑

i=1

(cal− cal)2 .

In the units formula, n− 1 is a count and therefore has no units. In the sum, we
subtract cal from cal. The result is therefore expressed in cal. Then we square the
result. This gives cal2. Then we sum cal2. Summing units preserves the unit, so we
end with a sum expressed in cal2. Dividing this sum by a unitless quantity, we end
with the units of the variance, cal2. Obviously, the units of the standard deviation
are those of the units of measurement.
Sometimes, we wish to make comparisons among observations that we measure in

different units. In such cases we use the

Coefficient of variation (CV)

CV := 100×
S

X
.

The CV is rarely used to compare values for populations, so we will not invent notation
for the population CV. Because S and X have the same units as the measurement, the
CV carries no units. We multiply the ratio S/X by 100 to express CV as a percentage.

Example 8.12. From Table 8.2 we find

> sqrt(3758.19) / 162.69

[1] 0.3768153

> sqrt(16.56) / 4.07

[1] 0.999852

for the CV of Western Africa and Northern Europe. Thus, relatively speaking, under-
five mortality in Western Africa is (roughly) uniformly high across countries; not so
in Northern Europe. ut

As was the case for the mean, the measures of data spread we discussed thus far are
sensitive to outliers. The next measure we discuss is not.

Interquartile range

Exactly as was the case with the median, we sort the data and find the

Lower quartile The value of the observation for which 25% of the values are smaller.
Upper quartile The value of the observation for which 25% of the values are larger.
Interquartile range (IQR) The difference between the upper and lower quartiles,

IQR = upper quartile − lower quartile .



266 Exploratory data analysis

As for the median, when the number of observations is even, the value of the quartile
is the mean of the two observations at the respective location. Because IQR is used
mostly with samples, as opposed to with populations, we will not invent a population
notation for it. Here is an example that illustrates the sensitivity of variance to outliers
and the insensitivity of IQR.

Example 8.13. Returning to Example 8.3, we compare the variances with and with-
out the tallest faculty member, David A:

> round(c(with = var(faculty$height),

+ without = var(faculty$height[-2])), 2)

with without

0.11 0.04

And the IQR

> rbind(with = summary(faculty$height),

+ without = summary(faculty$height[-2]))

Min. 1st Qu. Median Mean 3rd Qu. Max.

with 5.25 5.771 5.833 5.843 5.917 6.917

without 5.25 5.750 5.833 5.779 5.917 6.000

summary() gives the summary statistics and -2 excludes the second element from the
faculty$height vector. ut

To obtain any quantile (not only quartiles), use quantile(). This function presents
one method (another is ecdf()) to build an empirical density of the data, which may
be compared to a presumed density.

Example 8.14. In Example 7.6, we compared the empirical density of base blood
pressure (hist() with freq = FALSE) to the normal (Figure 7.4). Here are the same
results, this time comparing the distributions of base blood pressure. After loading
the data, we compute sample-based estimates of the normal parameters:

> (mu.hat <- mean(cardiac$basebp))

[1] 135.3244

> (sigma.hat <- sd(cardiac$basebp))

[1] 20.77011

Next, we plot the normal distribution with the estimated parameters:

> par(mfrow = c(1, 2))

> x <- seq(80, 220, length = 201)

> plot(x, pnorm(x, mu.hat, sigma.hat), type = 'l')

(smooth curve in left panel, Figure 8.7). To compute the empirical distribution, we
create a vector of probabilities (for which the data-based quantiles will be computed),
obtain the quantiles and add points to the left panel of Figure 8.7:

> p <- seq(0, 1, length = 21)

> q <- quantile(cardiac$basebp, probs = p)

> points(q, p)

For visual comparison, we draw the empirical distribution with

> plot(ecdf(cardiac$basebp))

As we can see, quantile() is the inverse of ecdf(). ut
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Figure 8.7 Left: the normal distribution with sample-based mean and standard
deviation (smooth curve) and the empirical distribution derived from quantile()

(points). Right: the empirical distribution from ecdf(). x is the base blood pressure.

8.2.3 The Chebyshev and empirical rules

This topic is not considered traditionally in EDA. So far we discussed data sum-
maries that provide a numerical value that we can use for comparisons. Often, we are
interested in making probability statements that relate to the data in general. For
example, we may wish to know the probability that a random value of the data will
be within a certain range of values. This generalizes the idea of the value of a typical
observation. We may also be interested in graphical methods that aid in visualizing
data properties such as mean, IQR and so on. We discuss such methods next.

Chebyshev’s rule

This rule gives a lower limit on the number of observations that fall within specified
standard deviations of the mean. All we need to know is the mean and standard
deviation of the sample. We do not need to know anything about the density of the
data.

Chebyshev’s rule For k greater than 1, at least 1 − 1/k2 proportion of the obser-
vations are within k standard deviations of the mean.

With this rule, we construct Table 8.3. The last column of the table shows that 75%
of the data fall within 2 standard deviation of the mean and 95% of the data fall
within 4.5 standard deviations of the mean.

Example 8.15. The data for this example were obtained from United Nations (2003).
We are interested in the percent population growth per year for countries around the
world. The data summarize values for 1995–2000. Because the data are based on
surveys, X, the percent growth per year, is a rv with:

> options(stringsAsFactors = TRUE)

> UN <- read.table('who-population-data-2002.txt',

+ header = TRUE, sep = '\t')

> names(UN)[c(6, 7, 8, 9, 11)] <- c('% urban', '% growth',



268 Exploratory data analysis

+ 'birth rate', 'death rate', 'under 5 mortality')

> save(UN, file = 'UN.rda')

>

> (X.bar <- mean(UN$'% growth', na.rm = TRUE))

[1] 1.355263

> (S <- sd(UN$'% growth', na.rm = TRUE))

[1] 1.150491

Table 8.3 Chebyshev’s rule.

Standard
deviation 1− 1/k2 Proportion

2 1−1/4 0.75
3 1−1/9 0.89
4 1−1/16 0.94
4.472 1−1/20 0.95
5 1−1/25 0.96
10 1−1/100 0.99

options() directs functions such as data.frame() and read.table() to convert
input strings to factors. If you set this option to FALSE, then strings will remain so in
the newly created data frame. (Note how we rename UN’s columns.) In at least 95%
of the countries around the world the growth rate is between

> Chebyshev <- c(low = X.bar - 4.472 * S,

+ high = X.bar + 4.472 * S)

> round(Chebyshev, 2)

low high

-3.79 6.50

per year. We will return to this conclusion in a moment. ut

Empirical rule

If the data are close to normal, we can obtain a narrower estimate of the proportion
of the population within a certain range of values than we do with Chebyshev’s rule.
Thus, we have

Empirical rule If the histogram of the data is approximately normal, then roughly:
68% of the observations are within one standard deviation of the mean.
95% are within two standard deviations of the mean.
99.7% are within three standard deviations of the mean.

Example 8.16. Continuing with Example 8.15, we examine the empirical density
with

> par(mfrow = c(1, 2))

> h(UN$'% growth', xlab = '% growth per year')

> x <- seq(-2, 5, length = 201)

> lines(x, dnorm(x, X.bar, S))
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(left panel, Figure 8.8). The superimposed φ (x |1.36, 1.15) indicates that the empirical
density is approximately normal. Therefore, in at least 95% of Earth’s nations, the
growth rate is between

> empirical <- c(low = X.bar - 2 * S,

+ high = X.bar + 2 * S)

> round(rbind(Chebyshev, empirical), 2)

low high

Chebyshev -3.79 6.50

empirical -0.95 3.66

Note the narrower range of the empirical estimate, compared to the Chebyshev esti-
mate. For good measure, we also draw the empirical and theoretical, Φ (x |μ̂, σ̂ ),
densities

> mu.hat <- X.bar ; sigma.hat <- S

> x <- seq(min(UN$'% growth'), max(UN$'% growth'), length = 201)

> plot(x, pnorm(x, mu.hat, sigma.hat), type = 'l',

+ xlab = 'quantile (% growth / year)',

+ ylab = expression(italic(Phi(x))))

> p <- seq(0, 1, length = 51)

> q <- quantile(UN$'% growth', probs = p)

> points(q, p)

(right panel, Figure 8.8). See Example 8.14 for explanation of the code. ut

8.2.4 Measures of association between variables

The correlation coefficient measures how strongly two variables are related. Various
types of relations may be observed in the following example and we are looking for
ways to quantify them.

Example 8.17. Figure 8.9 shows various associations between X and Y : no apparent
association (top left):

> X <- rnorm(20, 0, .25) ; Y <- rnorm(20, 0, .25)

> plot(X, Y, axes = FALSE, xlim = c(-1, 1), ylim = c(-2, 2),

+ xlab = '', ylab = '') ; abline(h = 0) ; abline(v = 0)

Figure 8.8 Density and distribution of annual % growth rate for 228 nations.
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positive association (top right):

> X <- seq( -1, 1, length = 20) ; Y <- X + rnorm(X, 0, .25)

> plot(X, Y, axes = FALSE, xlim = c(-1, 1), ylim = c(- 2, 2),

+ xlab = '', ylab = '') ; abline(h = 0) ; abline(v = 0)

negative association (bottom left):

> Y <- -X + rnorm(X, 0, .25)

> plot(X, Y, axes = FALSE, xlim = c(-1, 1), ylim = c(-2, 2),

+ xlab = '', ylab = '') ; abline(h = 0) ; abline(v = 0)

and quadratic association:

> Y <- -.5 + X * X + rnorm(X, 0, .25)

> plot(X, Y, axes = FALSE, xlim = c(-1, 1), ylim = c(-2, 2),

+ xlab = '', ylab = '') ; abline(h = 0) ; abline(v = 0)

In all associations, we add rnorm() “noise” to the otherwise deterministic equation.
In a deterministic equation, x predicts y with certainty. ut

Next, we develop ways to quantify the relationship between two variables.

Covariance and Pearson’s correlation coefficient

Consider a population of N objects. We are interested in the relation between the
values of two population traits, (xi, yi), for object i. To proceed, we first need to
construct the mathematical space in which we make our observations. So we define a

Euclidean product Let (xi, yi) be a pair of trait values for an object i from a
population of size N and define

x := [x1, . . . , xN ] , y := [y1, . . . , yN ] , xi, yi ∈ R .

Figure 8.9 Various associations between X and Y .
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Then

x× y :=






(x1, y1) . . . (x1, yN )
...

. . .
...

(xN , y1) . . . (xN , yN )






is said to be the Euclidean product of x and y, where x × y ∈ R × R (also
written as R2).

Here R2 defines the familiar Euclidean plane. Each point in the plane is defined by
the pair (xi, yi). Thus, (Xi, Yi), i = 1, . . . , n, is a random sample of size n from the
population where (Xi, Yi) ∈ R2. To quantify the association (positive, negative or
none) between the pairs of rv values, we use the

Sample covariance For a sample of size n,

SXY :=
1

n− 1

n∑

i=1

(
Xi −X

) (
Yi − Y

)
(8.4)

(we divide by n− 1 and not by n for the same reason we did in equation 8.3) is
the sample covariance.

Parallel to the sample covariance, we have the

Population covariance For a population of size N ,

σxy :=
1

N

N∑

i=1

(xi − μx) (yi − μy) (8.5)

(where μx and μy are the population means of x and y) is the population covari-
ance.

Densities also have covariances, but we shall not discuss them here. From both (8.4)
and (8.5) we observe the following qualitative relations:

• If Xi, Yi have a positive relationship; i.e. as Xi gets larger (smaller) so does Yi,
then SXY > 0.

• If Xi, Yi have a negative relationship; i.e. as Xi gets larger (smaller), Yi gets
smaller (larger)), then SXY < 0.

• If Xi, Yi have no relationship; i.e. as Xi gets larger (smaller) Yi gets either larger
or smaller), then SXY ≈ 0.

The magnitude of the covariance depends on the units of measurement. To get around
this problem, we note that in the sum in (8.4), we multiply the units of X by the
units of Y . Therefore, to standardize the measure of association between X and Y , we
divide by a quantity that is the product of these units. Thus, we divide the average
of the relation between X and Y in equation (8.4) by SX × SY and define

Pearson’s sample correlation coefficient (RXY ) For a sample of size n from a
population with paired traits xi, yi ∈ R2,

RXY :=
1

(n− 1)SXSY

n∑

i=1

(
Xi −X

) (
Yi − Y

)
. (8.6)
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Pearson’s population correlation coefficient (ρXY ) For a population of size N
with paired traits xi, yi,

ρxy :=
1

Nσxσy

N∑

i=1

(xi − μx) (yi − μy) . (8.7)

Using the definition of SXY in (8.4), we have

RXY =
SXY

SXSY
. (8.8)

In words, Pearson’s sample correlation coefficient is the covariance between X and Y ,
scaled by the product of the standard deviation of X and the standard deviation of
Y . When no ambiguity arises, we drop the subscripts on R and ρ. Note that SXY , R
and ρ map values in R2 into R.

Example 8.18. The following data are from Focazio et al. (2001). The title of the
document, “Occurrence of Selected Radionucleotides in GroundWater Used for Drink-
ing Water in the United States: A Reconnaissance Survey, 1998,” says it all. Let us
do some EDA. First, the data description:

> load('wells.info.rda')

> wells.info

name explanation

1 USGS.SN USGS serial number

2 reading reading in pCi/L (pico-Curie per liter)

3 sd standard deviation

4 mdc minimum detectable concentration

5 nucleotide Ra-224, Ra226 or Ra228

Next, some data massaging:

> load('wells.nucleotides.rda')

> s <- split(wells.nucleotides, wells.nucleotides$nucleotide)

> nuc <- data.frame(s[[1]]$reading, s[[2]]$reading,

+ s[[3]]$reading)

> names(nuc) <- names(s)

We split the data frame by the nucleotide factor (with levels Ra224, Ra226 and
Ra228). Then we put together a new data frame, nuc, with the factor levels as columns.
Finally, we name the columns accordingly. Now

> pairs(nuc)

produces Figure 8.10. Obviously, there are positive relations between pairs. From the
increasing scatter of the points with increasing concentration, we conclude that a
log-log transformation might accentuate the paired relations. So we do

> round(cor(nuc, use = 'pairwise.complete.obs'), 2)

Ra224 Ra226 Ra228

Ra224 1.00 0.54 0.55

Ra226 0.54 1.00 0.52
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Ra228 0.55 0.52 1.00

> round(cor(log(nuc), use = 'pairwise.complete.obs'), 2)

Ra224 Ra226 Ra228

Ra224 1.00 0.61 0.63

Ra226 0.61 1.00 0.70

Ra228 0.63 0.70 1.00

cor() computes the Pearson R by default. We tell it what to do with missing values by
assigning appropriate value to the named argument use. From the correlation matrix
we find that increase of the concentration of any of the nucleotides is associated with
increase of the other two. Based on this finding, we might recommend that in future
research, only one nucleotide should be measured, but in more wells.

Figure 8.10 Radionucleotides in 137 U.S. wells. ut

Properties of the correlation coefficient

• In (8.6), the units in the numerator are the units of X times the units of Y . In
the denominator we have a count (i.e. n− 1) which has no units and then the
standard deviations of X and Y , which carry the units of X and the units of Y .
Therefore, R has no units. This allows us to compare R values across samples of
different entities and different units of measurement.
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• We can exchange the role of the variables and assign Y to X and X to Y . This
will not affect the value of R.

• The values of R range from −1 to 1. When R is close to zero (e.g. between −0.2
and 0.2) we conclude that there is no relationship between X and Y . When R is
close to −1 (e.g. −1.0 to −0.8), we conclude that there is negative relationship
between X and Y . Finally, when R is between 0.8 and 1.0, we conclude that there
is positive relationship between X and Y .

• R = 1 or R = −1 only when the points that represent the data fall exactly on a
straight line.

Note that large values of R do not necessarily imply a simple linear relationship
between Y and X. They imply trends.

Example 8.19. Let

> x <- c(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20)

> set.seed(111) ; Y <- x^2 + rnorm(length(x), 0, 10)

> plot(x, Y) ; cor.test(x, Y)[[4]]

cor

0.9442931

(as in Figure 8.11). Here R ≈ 0.94, yet the relation between X and Y is not simple
linear (Y = a + bX). ut

Like the mean and variance, Pearson’s correlation coefficient is unduly affected by
outliers; thus, our next topic.

Spearman’s rank correlation coefficient

The sample Spearman’s rank correlation coefficient, denoted by RS , overcomes the
effect of outliers on R by considering the rank of the data, not their magnitude. The
computation of RS is simple. In the data, replace the smallest value of X by 1, the
next smallest by 2 and so on. Do the same for Y (do not change the paired order

Figure 8.11 A realization of Y = x2 + ε where the density of εi is φ (xi |0, 10),
i = 1, . . . , 12.
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of the observations). Next, compute Pearson’s correlation coefficient. Because values
were transformed to ranks, the computation can be simplified:

The sample Spearman’s rank correlation coefficient For a sample of size n,

RS =
12

n (n− 1) (n+ 1)

n∑

i=1

(

rank (Xi)−
n+ 1

2

)(

rank (Yi)−
n+ 1

2

)

.

RS has the same properties as R. R [x, y] is the population Spearman’s rank correla-
tion coefficient.

Example 8.20. For the data in Example 8.19, Spearman’s rank correlation is more
appropriate than Pearson’s:

> Pearson <- cor.test(x, Y)[[4]]

> Spearman <- cor.test(x, Y, method = 'spearman')[[4]]

> round(c(Pearson = Pearson, Spearman = Spearman), 2)

Pearson.cor Spearman.rho

0.94 0.93

Because we explore rank relation, the outlier influences RS like any other point. ut

8.3 Visual summaries

In addition to graphical methods for EDA (Section 8.1), there are techniques to exam-
ine data summaries visually. Prominent among them are box plots, lag plots and dot
charts. We discussed the latter in Example 3.6, so here we discuss box plots and lag
plots.

8.3.1 Box plots

Box plots are used with categorized numerical data. For example, in an experiment
you may measure plant growth under control and treatment conditions. Then the
factor has two levels and the numerical data are the plants’ dry weight. Box plots are
(roughly) standard. In the next example, we display and interpret box plots.

Example 8.21.We continue with the UN data (Example 8.15). Let us summarize
the % growth rate by continent:

> par(mar = c(14, 4, 4, 2) + 0.1)

> boxplot(UN$'% growth' ~ UN$continent, las = 2,

+ main = '% growth rate by continent')

> identify(UN$'% growth' ~ UN$continent, labels = UN$country)

First, we recognize that some continent names are long and will not fit on the
category axis (the x-axis). So we specify the margins parameter, mar (which sets
the plot margins in line units), for the bottom, left, top and right of the plot.
Then we use the formula that plots the growth as a function of continent with
UN$'% growth' ~ UN$continent. Because continent is a factor, boxplot() knows
how to group the data and display them (Figure 8.12). Finally, we recognize two coun-
tries in Europe: one with exceptionally high and one with exceptionally low growth



276 Exploratory data analysis

Figure 8.12 Growth rate (% per year) for countries by continent.

rate. To identify them, we use identify(). Consequently, the plot is waiting for
mouse clicks. We tell identify() how to find the data for the plot exactly as we
specify them for boxplot(). The labels for the points come from UN$country.
Let us interpret the box plot. Take, for example, Africa. The lowest horizontal

line section is the lower whisker. The lower boundary of the rectangle is the lower
hinge, which is placed at the first quartile. Quartiles are produced with quantile().
The first quartile is produces with quantile(x, 1/4). The thick line is the median.
The upper boundary of the rectangle is the upper hinge, the third quartile, which
is produced by quantile(x, 3/4). The upper horizontal line section is the upper
whisker. Whiskers are 1.5 quartiles away from the mean. Beyond hinges, points are
plotted individually. They may be suspected outliers. If the median is not in the
middle between the whiskers, then the density of the data is not symmetric. The
unnecessary proliferation of names for the box plot can be replaced by “boundary of
the box” and the “outer vertical line sections.” ut

8.3.2 Lag plots

Lag plots relate to time series data. Because the rv values are time dependent, we can
no longer talk about simple random samples. Thus, the classical statistical methods we
discuss do not apply (see the classic text by Box and Jenkins, 1976). The dependency
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Figure 8.13 Autocorrelation function for the 10-day intervals of the U.S. casualties
in Iraq. The lags span 500 days. The broken horizontal lines are 95% confidence on
the lagged correlations.

structure of the time series might be of interest because if there is none, we can
proceed with the usual statistical methods. Let Xt be a discrete time series data (t ∈
Z0+). Then in lag plots, we explore the relationship

Xt vs. Xt−1, . . . , Xt−m

where m is the maximum lag. For example, consider a series of daily maximum tem-
peratures for say 101 days. The pairs (Xt, Xt−1), t = 1, . . . , 100, is a (not necessarily
simple) sample of n = 100 consecutive daily maximum temperatures. We can thus
use this sample to compute R. When many lags are combined, we obtain the auto-
correlation function. The analysis is not limited to a single time series.

Example 8.22.We go back to the U.S. military casualties in Iraq (the data were
introduced in Example 2.16). What can we say about the correlation between the
number of casualties during a particular 10-day interval and the count during a 10-day
interval 200 days earlier? 190 days earlier? We do

> load('Iraq.cnts.rda')

> acf(cnts, lag.max = 50)

and thus obtain Figure 8.13. Apparently, the number of casualties during a time
interval depends on the number of casualties one interval earlier and none other. This
indicates that deaths among the time intervals are independent (the broken horizontal
strip shows the boundaries of the 95% confidence level—we will talk about these
later). ut

8.4 Assignments

Exercise 8.1. The following data (e-Digest of Environmental Statistics, 2003a) show
the concentrations of mercury in Cod and Plaice (from the Southern Blight, the North
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Sea) and Whiting (from Liverpool Bay, Irish Sea) for 1983 through 1996 (mg/kg wet
weight).

Year Cod Plaice Whiting1 Whiting2

1983 0.09 0.08 0.17 0.14

1984 0.08 0.06 0.12 0.11

1985 0.08 0.05 0.13 0.09

1986 0.08 0.04 0.13 0.11

1987 0.08 0.05 0.12 0.11

1988 0.08 0.06 0.12 0.12

1989 0.10 0.05 0.13 0.10

1990 0.09 0.05 0.13 NA

1991 0.06 0.05 0.11 NA

1992 NA NA NA 0.10

1993 0.07 0.05 0.13 0.09

1994 0.07 0.05 NA NA

1995 NA NA NA 0.09

1996 0.07 NA NA NA

The data are in uk.metals.in.fish.txt.
Compute:

1. The mean for each species.
2. The median for each species.
3. The mode for each species.
4. Compare the values and interpret.

Exercise 8.2. In Exercise 8.1, we computed the means and the medians of tissue
mercury for 3 species. For Whiting1:

1. Identify potential outlier(s).
2. Compare the means with and without the outlier.
3. What percentage would you use for the computation of trimmed mean for whiting?
Why?

Exercise 8.3. Over 65% of residents in Minneapolis - St. Paul earn less than the
average. Flow can this be? Explain.

Exercise 8.4. Use the data in Exercise 8.1.

1. Compute the range for each of the species.
2. Can you identify any relationship between the range and the mean for the 4
species?

3. Compute the interquartile range for each species.
4. Compute the variance for each species.
5. Which of the two measures—interquartile range or range—would you use to esti-
mate the variance if the latter is not available?

Exercise 8.5. About mean and variance:

1. Give two sets of five numbers that have the same mean but different standard
deviations.
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2. Give two sets of five numbers that have the same standard deviation but different
means.

Exercise 8.6. The data are shown in Exercise 8.1. Consider Whiting1 and Whiting2
separately.

1. What are the variances of tissue mercury for each species?
2. Standard deviations?
3. What are the units of the mean, variance and standard deviation?
4. Interpret the data.
5. Compute the CV of the data and explain the results.

Exercise 8.7. For this exercise, combine the data for Whiting1 and Whiting2 in
Exercise 8.1. Recall that both Whiting data sets were collected from Liverpool Bay,
Irish Sea. The E.U. and the Oslo/Paris Commissions (OSPARCOM) Environmen-
tal Quality Standard for mercury is 0.30 mg mercury per kg of wet flesh from a
representative sample of commercial fish species.

1. What are the mean and standard deviation of mercury in Whiting (mg/kg wet
weight)?

2. Suppose that the density of mercury concentrations in Whiting is not known.
What is the range of mercury concentrations (mg/kg wet weight) in which you
would expect 75% of the fish to be?

3. Suppose that the density of mercury concentrations in Whiting is known to be
normal. What is the range of mercury concentrations (mg/kg wet weight) in which
you would expect 95% of the fish?

4. Draw a histogram of the data. Based on it, which rule would you use to draw
conclusions about the density of the data: Chebyshev’s or Empirical?

5. Based on the results above, would you eat a Whiting from Liverpool Bay? Justify.

Exercise 8.8. The following are data of the number of 100 admissions to a typical
U.S. emergency room per hour:

3.77591 5.90821 0.72853 0.69898 2.18034 14.47484

6.14781 2.69841 4.78284 0.73523 6.95368 3.81015

6.18802 22.11967 5.27272 5.17622 9.38018 3.27373

1.68467 2.94240 11.82258 3.20946 1.47060 2.82933

0.53036 0.29720 2.89356 19.79466 5.86656 4.98406

7.17643 0.18634 1.62005 6.60234 1.01755 5.11363

1.50870 3.62607 3.75771 1.17514 5.39941 5.14123

6.46131 6.26553 2.77321 1.50641 6.46562 4.97278

2.57087 10.03916 2.11121 10.89386 16.08895 2.78915

2.97309 4.88698 1.04933 1.54724 5.52968 3.87094

0.44837 5.54088 1.23632 7.85993 24.16406 2.15566

13.65195 5.68416 4.06684 4.18503 8.92383 11.56236

14.54944 1.42795 1.94393 0.26028 1.75935 7.82621

4.07268 13.79622 1.93097 5.04128 4.09257 0.29631

11.41927 4.02085 7.91848 6.16896 6.72822 10.50189

5.17549 2.23726 5.21804 1.30414 3.40615 1.31869

2.23303 1.05303 0.66286 1.74444
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The data are in ERAdmissionsRate.txt.

1. Show the histogram of the data.
2. Compute the mean and the standard deviation of the number of arrivals per hour.
3. What proportion of the data are within 0 to 14.518 2 arrivals per hour?

Exercise 8.9. For this exercise, use the UK fish contaminants data (e-Digest of Envi-
ronmental Statistics, 2003a). The data are in uk.metals.in.fish.txt.
For Cod only:

1. Compute the upper and lower quartile for each contaminant.
2. Compute the interquartile range for each contaminant.
3. How large or small should an observation be to be considered an outlier for each
contaminant?

4. How large or small should an observation be to be considered an extreme outlier
for each contaminant?

5. Are there any mild or extreme outliers in the data for each contaminant? If yes,
which are they?

6. Construct a box plot for each contaminant and draw conclusions from it.

Exercise 8.10. The average and standard deviation for the midterm were 50 and 20.
For the final they were 55 and 10. Your test score on the midterm was 75 and on
the final 70. The instructor is going to “curve” the results. On which test did you do
better?

Exercise 8.11. Regarding Pearson’s correlation coefficient (r) and Spearman’s rank
correlation coefficient (rS) :

1. Give an example of data of interest to you where Pearson’s r is more appropriate
than Spearman’s rank r. Show the data and compute r.

2. Give an example of data of interest to you where Spearman’s rank r is more
appropriate than Pearson’s r. Show the data and compute rS .

In both cases, explain why you prefer one over the other.

Exercise 8.12. For this exercise, use the faculty height data introduced in Example
8.3.

1. Reproduce Figure 8.5 with Ira A. identified on the plot.
2. Reproduce Figure 8.5 with height sorted from tallest to shortest. You need to use

sort() with the arguments decreasing and index.return set to TRUE. sort()
returns a list that contains a vector of the sorted indices of faculty height. Access
the vector of indices (a component of the returned list) to sort both columns of
the faculty data frame.

3. On the plot produced in (2), show the data points and connect them with a broken
line.

Exercise 8.13. For this exercise, consult the code for Example 8.10.

1. Copy the WHO excel file to a convenient location on your system.
2. Create a named ODBC connection to it (from your system’s control panel).
3. Import the mortality data to R.
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4. Produce results as shown in Table 8.2 (no need to produce a LATEX table) for
Northern, Eastern, Western and Southern Africa.

5. Comment on the results.

Exercise 8.14. The following data (e-Digest of Environmental Statistics, 2003a)
show the atmospheric inputs of metals from UK sources to the North Sea from 1987
to 2000.

Arsenic Cadmium Chromium Copper Nickel Lead Titanium Zinc

1987 NA 98 280 970 360 3500 770 5400

1988 NA 100 320 930 340 3500 970 5300

1989 210 77 260 1100 440 3000 1100 6100

1990 200 67 150 590 340 1400 500 4900

1991 140 59 130 1400 450 2400 800 5800

1992 57 31 180 350 250 880 630 2800

1993 57 34 48 330 150 760 240 2700

1994 69 29 59 400 220 980 390 5700

1995 57 27 140 480 290 940 320 3100

1996 56 23 130 380 250 880 310 4100

1997 70 28 71 450 67 810 480 3300

1998 34 12 99 240 79 430 280 2300

1999 38 13 67 280 72 400 180 1400

2000 48 19 55 330 83 392 83 3500

The data are in UKAtmosphericInput.txt.

1. Use pairs() to display the relationship between pairs of variables.
2. Use cor.test() and a for loop twice to create a correlation matrix that shows
correlations between pairs of heavy metals’ dumping into the North Sea by the
U.K.

3. Which metals seem to be most correlated? Why?
4. Which metals seem to be least correlated? Why?

Exercise 8.15. The following data (e-Digest of Environmental Statistics, 2003b)
show sources of pollution by enumeration area in 2001. Data source: Advisory
Committee on Protection of the Sea (ACOPS), e-Digest of Environmental Statis-
tics, Published August 2003, Department for Environment, Food and Rural Affairs
http://www.defra.gov.uk/environment/statistics/index.htm

tanker fishing support coastal.tanker cargo

1 2 3 0 4 6

2 0 2 1 0 4

3 0 1 0 2 4

4 0 1 0 3 3

5 0 10 0 1 2

6 0 12 0 4 4

7 1 4 1 1 0

8 0 26 0 0 4

9 0 3 0 1 0
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10 0 3 6 2 2

pleasure.craft wreck other

1 0 0 3

2 0 1 0

3 1 0 2

4 7 0 8

5 2 0 7

6 0 0 2

7 1 0 1

8 1 1 4

9 0 0 0

10 1 0 0

The data are in UK.pollution.by.enumeration.txt).
Because the data represent enumeration, it is appropriate to use rank correlations.

1. Create a rank correlation matrix for the data above.
2. When you run the rank correlation, you get a warning message. Explain it.
3. Which types of vessels seem to be correlated?
4. Which do not?
5. Speculate about the results.

Exercise 8.16. The following data (e-Digest of Environmental Statistics, 2003a)
describe metal contaminants (mg/kg wet weight) analyzed in fish muscle. Pesticides
and PCBs were analyzed in fish liver. Total DDT = ppDDE + ppTDE + ppDDT,
Total HCH = a HCH + g HCH. PCBs were measured on a formulation basis (as
Arcolor 1254). For 1993 data, only larger fish were available.
The data are saved in a list file named uk.metals.in.fish. Load the list. Find

the data in the list and then:

1. Draw a box plot of the concentrations of metals in fish tissue.
2. What conclusions can you draw from the plots about:
(a) mean concentration in the 4 species?
(b) variance of concentrations of metals in the 4 species?
(c) the symmetry of the density of concentration of metals in the tissue of these
4 species?

(d) How are these related to the life-history of the species?
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Point and interval estimation

In this chapter, we put to work our understanding of sampling densities. Our goal
is to estimate the value of a population parameter (e.g. mean, proportion, variance,
rate) from a sample. Once a single value is estimated from the sample, we wish to
say something about the corresponding population value. Because the estimates are
sample-based, they are rv. Thus, their relation to the population values are uncertain.
We quantify this uncertainty with interval estimates. We state the probability that a
computed interval contains the population value.
For the most part, the generic approach is to study the sampling density of a

sample-based estimate of a population a parameter. We will learn how to make prob-
ability statements about the population parameter value based on a sample estimate
of the parameter and the latter’s sampling density. This is where the central limit
theorem plays a crucial role. Table 9.1 lists the notation we follow in this chapter.
Because we do not wish to limit our point and interval estimates to the normal density
only, we must start with some general considerations and follow them with density-
specific expositions.

Table 9.1 Notation

Parameter Population Estimate Sample Units

Mean μ μ̂ X Measurement

Variance σ2 σ̂2 S2 (Measurement)
2

Standard deviation σ σ̂2 S Measurement
Ratio or proportion π π̂ p Unit-free

Intensity λ λ̂ l Count per unit
of measurement

Statistics and Data with R:  An applied approach through examples         Y. Cohen and  J.Y.  Cohen
©
2008 John Wiley & Sons, Ltd.  ISBN: 978-0-470-75805
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9.1 Point estimation

Consider a population described by the density family P (X = x |θ ) where θ :=
[θ1, . . . , θm] is the set of the density’s parameters. Density family refers to a sin-
gle density with different possible values for θ. A single set of values for θ specifies
the density exactly. By our definitions, P (X = x |θ ) is a continuous or discrete den-
sity and X ∈ R. We address the case where θ ∈ Rm. We wish to estimate θ based on
a sample from the population. Among the available techniques to estimate θ are the
method of moments, maximum likelihood estimators (MLE) and Bayes estimators.
We discuss MLE only.
We should mention, however, the R package lmomco (for L-moment and L-

comoments). L-moments are useful in the estimation of density parameters. Parameter
estimates based on L-moments are generally better than standard moment-based esti-
mates. The estimators are robust with respect to outliers and their small sample bias
tends to be small. L-moment estimators can often be used when MLE are not avail-
able, or are difficult to compute. R functions that use numerical approaches to obtain
MLE often require a guess of starting values. You may use the results from L-moments
estimation as starting values.

9.1.1 Maximum likelihood estimators

We quickly summarize the ideas of MLE first introduced in Section 5.8. Let X :=
[X1, . . . , Xn] be a sample from a population with density P (X = x |θ ). One realiza-
tion of the sample (one sample data) is x := [x1, . . . , xn]. Given the data, we write
the likelihood function as

L (θ |x ) :=
n∏

i=1

P (X = xi |θ )

and its log as

L (θ |x ) := logL (θ |x ) =
n∑

i=1

logP (X = xi |θ ) . (9.1)

We then define

Maximum likelihood estimator (MLE) The value θ, denoted by θ̂ , that maxi-
mizes (9.1) is called the maximum likelihood estimator of θ.

Another definition, which has important consequences in our work is

Statistic If θ̂ is free of unknown parameters, then θ̂ is said to be a statistic.

The definition implies that the estimation rule (e.g. MLE) that defines θ̂ is free of

unknown parameters. It does not imply that the density of θ̂ is free of unknown
parameters. We shall always assume that our estimators are statistics and therefore

use statistic or MLE interchangeably. If L is differentiable, then we may determine θ̂
by solving

∂

∂θi
L (θ |x ) = 0 , i = 1, . . . ,m

(see Examples 5.18 and 5.19). If it is not, we need to determine θ̂ numerically.
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Example 9.1. Our sample is X = [X1, . . . , Xn]. We wish to estimate θ = [μ , σ
2
]

for the normal. The likelihood function is

L (θ|x) =
1

(√
2πσ2

)n exp

[

−
1

2

n∑

i=1

(
xi − μ
σ

)2]

and the log likelihood is

L (θ|x) = −
n

2
log
(
2πσ2

)
−
1

2

n∑

i=1

(
xi − μ
σ

)2
. (9.2)

So we need to simultaneously solve

∂

∂μ
L (θ|x) =

1

σ2

n∑

i=1

(xi − μ) = 0

and
∂

∂σ2
L (θ|x) = −

n

2σ2
+
1

2σ4

n∑

i=1

(xi − μ)
2
= 0 .

This gives

μ̂ = X , σ̂ =
n− 1
n
S2

where S2 is the sample variance. ut

The example illustrates that sometimes there is a difference between the MLE of a
population parameter (e.g. σ̂2) and the sample-based estimate (e.g. S2).

9.1.2 Desired properties of point estimators

To proceed, we need the definition of

Mean squared error (MSE) Let E
[
θ̂− θ

]
be the expected difference between a

parameter and its estimate. Then

(
E
[
θ̂− θ

])2
= V

[
θ̂
]
+
(
E
[
θ̂
]
− θ
)2

(9.3)

(where V denotes variance) is called the mean squared error.

With MSE in mind, we have the following desired properties of point estimators:

Unbiased We define the bias of an estimator to be E
[
θ̂
]
− θ. If E

[
θ̂
]
− θ = 0,

we say that θ̂ is an unbiased estimator of θ. From (9.3) we conclude that for an

unbiased estimator, MSE = V
[
θ̂
]
.

Precision An estimator θ̂1 is said to be more precise than estimator θ̂2 if V
[
θ̂1

]
<

V
[
θ̂2

]
.



286 Point and interval estimation

Consistency We say that θ̂ is a consistent estimator of θ if θ̂ is unbiased and V [θ̂] →
0 as the sample size n → ∞.

Efficiency An estimator θ̂1 is said to be more efficient than estimator θ̂2 if V
[
θ̂1

]
/

V
[
θ̂2

]
< 1.

Best estimator The variance of the most efficient amongst all estimators is the
smallest. Such an estimator is called the best estimator.

Example 9.2. Let X1, . . . , Xn be independent and identically distributed rv from a
population with mean μ and variance σ2. Then E

[
X
]
= μ is an unbiased estimator

and
(
E
[
X − μ

])2
= V

[
X
]
=
σ2

n
.

Recall that we defined the standard error (the standard deviation of the sampling
density of X) to be σ/

√
n. ut

It is difficult to establish these desired properties for small samples. Thus, we often
rely on asymptotic (or large sample) properties. By asymptotic properties we mean
that as n → ∞, the estimator converges to a limit (either the estimator itself or a
probability).

Asymptotic desired properties of point estimators

1. If limn→∞

(
E
[
θ̂
]
− θ
)
= 0 then θ̂ is said to be an asymptotically unbiased

estimator of θ.
2. If limn→∞ V

[
θ̂
]
= min{θ} V

[{
θ̂
}]
where

{
θ̂
}
is the set of all estimators,

then θ̂ is said to be an asymptotically efficient estimator of θ.
3. If θ̂ is both asymptotically unbiased and asymptotically efficient, then θ̂ is
said to be an asymptotically best estimator of θ.

Example 9.3.We wish to estimate μ. Possible estimators are:

1. the sample mean, X;
2. a random value of the sample, Xi;
3. the smallest value in the sample, Xmin := minX;
4. X + 1/n.

Regarding bias, (1) and (2) are unbiased because E
[
X
]
= E [Xi] = μ. Because

E [Xmin] < E
[
X
]
= μ, (3) is biased and so is (4).

Regarding precision, because σ2/n < σ2, (1) is more precise than (2). The efficiency
of (2) relative to (1) is 1/n. Both (3) and (4) are biased. Therefore, their efficiency
cannot be measured with a variance ratio.
Regarding asymptotic properties, (1), (2) and (4) are unbiased; (3) is. The variance

of (1) and (4) are asymptotically zero. Therefore, (1) and (4) are consistent. Overall,
(1) is the best estimator. ut
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Figure 9.1 Population parameters (short line segments), estimators (long line seg-
ments) and sampling densities of the estimators. The densities are all centered around
the estimator (statistic).

Figure 9.1 illustrates these ideas visually:

(a) The estimator is biased.
(b) The estimator is unbiased, but it is not as efficient as the estimator in (c).
(c) This is the best estimator.

The left panel in Figure 9.1 was produced with the following script:

1 par(mfrow = c(1,3), mar = c(2, 1, 2, 1))

2 x <- seq(-4, 4, length = 1000)

3 plot(x, dnorm(x), axes = FALSE,

4 xlab = expression(plain('(a)')),

5 ylab = '', type = 'l')

6 abline(h = 0) ; abline(v = 0)

7 axis(1, at = -1,

8 labels = expression(italic('parameter')),

9 lwd = 3)

10 axis(3, at = 0, labels = expression(italic('estimator')))

mar in line 1 sets the distance (in lines) of each graphics from the bottom, left, top
and right. Note in line 3 that we plot without the axes by setting the named argument
axes to FALSE. Then, in line 7 we plot the x-axis only with a call to axis() with
the first unnamed argument set to 1. The named argument at tells axis() where to
draw the axis line in relation to the value on the y-axis. In line 10 we plot the y-axis
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with the value of the first unnamed argument set to 3. The y-axis crosses the x-axis
at 0. Similar code was used to draw the right two panels of Figure 9.1.
We are now ready to discuss point estimates of parameters of some specific den-

sities.

9.1.3 Point estimates for useful densities

For some densities, parameter estimates that have the desired properties (the best esti-

mates) are well known (Table 9.1): λ̂ = X and σ̂2 = λ̂ for the Poisson (Example 5.19
and Exercise 5.19), π̂ = p and σ̂2 = nπ̂ (1− π̂) for the binomial (Exercise 5.18). Esti-
mates for other densities were discussed in Sections 5.9 and 6.8. Here, we apply these
estimates to populations with common densities and in the context of EDA.

Normal

For a population with normal density, X is the best estimate of μ. If the population
density is not normal, but is symmetric with heavy tails, then a trimmed mean is a
better statistic than X for estimating μ. In the next example we do some EDA and
examine this issue.

Example 9.4. The data for the following example are from the United States Depart-
ment of Justice (1995). They include survey results of crime on 680 U.S. college
campuses for 1994. Figure 9.2 shows the density of the (log) ratio of enrollment to
full-time faculty. To obtain the figure, we need to prepare the data for analysis. The
data frame contains 382 columns. We extract those we need with:

Figure 9.2 Left: empirical and theoretical densities of the log of the ratio of
enrollment to full-time faculty in 541 U.S. universities and colleges for 1994. Right:
run-sequence of the data.
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> load('college.crime.rda')

> c.c <- college.crime[, c('school', 'city', 'state',

+ 'enrollment', 'full-time faculty')]

We want to analyze a subset of the data for a particular range of enrollment and
full-time faculty. Why? Because alas, in the original data, exceedingly large or small
numbers designate missing values (NA in our vernacular). So we want to use

> condition <- (c.c[, 4] >= 2520 & c.c[, 4] <= 56348) &

+ (c.c[, 5] >= 1 & c.c[, 5] <= 10378)

to subset the data (columns 4 and 5 contain the enrollment and full-time faculty
data). We subset the data with this:

> c.c <- c.c[condition, ]

and compute the ratio and its log

> r <- c.c[, 'enrollment'] / c.c[, 'full-time faculty']

> log.r <- log(r)

The left panel of Figure 9.2, produced with

> h(log.r, xlab = 'log(enrollment / faculty)')

> x <- seq(-1, 5, length = 201)

> lines(x, dnorm(x, mean(log.r), sd(log.r)))

reveals heavy tails (narrow center). This is confirmed with

> qqnorm(log.r, main = 'log(enrollment / faculty)')

> qqline(log.r)

(Figure 9.3). Thus, a trimmed mean would represent the center of the data (typi-
cal values) better than a mean. A run-sequence plot (right panel, Figure 9.2) also
illustrates the heavy tails. We draw it with

> plot(r, ylab = 'ratio')

Figure 9.3 The Q-Q plot reveals heavy tails (compare to the density in Figure 9.2).
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While at it, we wish to identify some schools with exceptionally high ratio of enroll-
ment to full-time faculty. So we do:

> idx <- identify(r)

and click on those points we are interested in. We store the index of these ratios in
idx and retrieve the corresponding school anmes from c.c with

> bad <- cbind(c.c[idx, 1 : 4], ratio = round(r[idx], 1))

(Table 9.2). Therefore, the best estimator of the ratio for all U.S. universities and
colleges is a trimmed mean:

> round(c( '0%' = mean(r),

+ '10%' = mean(r, trim = 0.1),

+ '20%' = mean(r, trim = 0.2)), 1)

0% 10% 20%

24.3 22.5 22.3

Table 9.2 In 1994, student enrollment to full-time faculty ratios in six out
of 542 universities and colleges in the U.S. exceeded 100.

School City State Ratio

Golden Gate University San Francisco CA 101.3
Purdue University, North Central Campus Westville IN 118.4
Baker College of Flint Flint MI 104.3
Davenport College Grand Rapids MI 101.9
Ferris State University Big Rapids MI 147.9
Fairleigh Dickinson University-Madison Madison NJ 149.0

Because the difference between 10% and 20% trimmed means is small, we conclude
that reporting a 10% trimmed mean is adequate. ut

Binomial

For the binomial density, the ratio of the number of successes to the number of trials,
p, is the best estimate of the probability of success, π. The reason is that because of
the central limit theorem, the sampling density of p approaches normal with μp = π

and standard error
√
π (1− π) /n (see Section 7.7.1).

Example 9.5. The following data and information are from e-Digest of Environmen-
tal Statistics (2003a). Radon-222 (222Rn) is a radioactive decay product of naturally
occurring uranium-238. It is a gas with a half-life of 3.8 days. It is known to cause
lung damage if further radioactive decay occurs while it is in the lung. It is measured
in units of Becquerel (Bq). In the UK, 200 Bq per m3 is deemed an action level.
Larger concentrations in a dwelling are thought to contribute significantly to the risk
of lung cancer. Therefore, some remedial action to decrease radon concentrations is
called for.
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Radon levels in 67,800 dwellings were measured in the Cornwall area. In 15,800 of
them, the concentrations of radon were above the action level. In the Greater London
area, radon concentrations were measured in 450 dwellings. None of the measurements
was above the action level. We wish to determine the true proportion (π) of dwellings
with radon concentrations above the action level in each of the locations. To proceed,
we define a Bernoulli experiment where success is a reading above the action level.
The rv is X, the number of successes. The number of trials is the number of read-
ings. The number of dwellings with readings above the action level is the number of
successes. Then it makes sense to use

π̂1 = p1 =
15 800

67 800
= 0.23 , π̂2 = p2 =

0

450
= 0

to estimate the true ratio in Cornwall and London, π1 and π2. Here we tacitly assume
that sample units are independent, which may not be true. ut

Poisson

For the Poisson density, counts per unit of measurement, (e.g. n/T , where T denotes
time, n/A, where A denotes area, n/V , where V denotes volume) are the best esti-
mates of the intensity parameter λ. In the context of population studies, we often talk
about crude and age-adjusted rates.

Crude rate For n events, counted from a population of N individuals, during period
T , the crude rate is

d :=
n

N × T
.

Age-adjusted rate Denote by si the proportion of individuals of age group i in the
standard population1 (e.g. 100,000). Let ni and Ni denote the number of events in
age group i and the population of age group i. Then the age-adjusted rate, D, is

D :=

m∑

i=1

si
ni

Ni

where m is the number of age groups.

For the age-adjusted rate, ni/Ni is the weight of age group i. Therefore, D is inter-
preted as the weighted sum of m Poisson rv. These definitions can be generalized. A
rate is not necessarily time-related. Counts per unit area, for example, are also rates.

Example 9.6. Here are some examples where the Poisson and “rates” are applicable:

1. The number of nerve impulses emitted per second.
2. The number of accidents per 100 cars in an intersection, per month.
3. The number of individual plants of a species per plot.
4. The number of eggs (clutch-size) laid by a female bird. ut

To assume Poisson density for rates, we must invoke the usual assumptions about the
process: First, that the probability of events (that are counted) is small; second, that

1The standard, or reference population, is a population for which the data are adjusted.
For example, the age distribution of U.S. population in 1960 may be defined as the standard
population.



292 Point and interval estimation

the events are independent; and third, that the distribution (in time or space) of the
events is uniform. In other words, they are equally likely to occur at any interval.

Example 9.7. In this example we compute the crude incidence rate of all cancers
reported in the U.S. (data are from National Cancer Institute, 2004). Figure 9.4 shows
the crude cancer rate in the U.S. from 1973 to 2001. Also shown are the 95% confidence
intervals, to be discussed later. The figure was produced with

1 load('cancerCrudeRate.rda') ; attach(cancerCrudeRate)

2 plot(year, lambda, type = 's',

3 ylab = 'crude rate')

4 lines(year, lower, type = 's')

5 lines(year, upper, type = 's')

To obtain a step plot, we use type = 's' in the call to plot(). ut

Figure 9.4 U.S. crude cancer rate (per 100 000 per year) on the date of first diagnosis
for 1973 through 2001 with 95% confidence intervals. Rates are considered constant
during a year; hence the step plot.

Exponential

For the exponential density, l := 1/X is the best estimate of the decay parameter, λ.

Example 9.8. Example 5.2 illustrates the fit of the exponential density of the time
until the next attack by Hamas (see also Figure 5.2). ut

9.1.4 Point estimate of population variance

We discussed the sampling density of a sample variance in Section 7.9. From (7.3) we
conclude that the unbiased estimator of the population variance (for any continuous
density), σ2, is

σ̂2 =
n− 1
n
S2
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where n is the sample size and S2 is the sample variance. Because σ̂2 is an unbi-
ased estimator of σ2, you might think that σ̂ is an unbiased estimator of σ. Not so:
The sample standard deviation consistently underestimates the population standard
deviation. For convenience, we will use S to estimate σ.

9.1.5 Finding MLE numerically

R includes numerous functions to obtain numerical estimates of the MLE of population
parameters from a sample. The idea is to supply the negative of the log-likelihood
function along with initial guesses of the parameter values and R will try to minimize
it in the parameter space. One of the most difficult issues that you will need to deal
with is reasonable initial guesses for the parameters. This means that you will have
to supply initial values of the parameter that are close enough to their optimal values
(those values that will minimize the negative of the log-likelihood function). Because
you do not know these values, any auxiliary information helps. To obtain a reasonable
initial guess, try to use functions from the package lmomco.
There is no guarantee that the optimizing function (which minimizes the negative

of the log-likelihood function) will find the global minimum. To address this issue,
look for MLE from a variety of permutations of initial guesses. If they all converge on
a single point in the parameter space, then you are lucky. There are some optimization
algorithms that presumably find the global minimum (simulated annealing is one of
them). However, their use is beyond our scope.

Example 9.9. Let us create a sample from a normal with known μ and σ2:

> mu <- 20 ; sigma.2 <- 4 ; set.seed(33)

> X <- rnorm(100, mu, sqrt(sigma.2))

Next, we define −L according to (9.2):

> log.L <- function(mu.hat = 15, sigma.2.hat = 6){

+ n <- length(X)

+ n / 2 * log(2 * pi * sigma.2.hat) +

+ 1/2 * sum((X - mu.hat)^2 / sigma.2.hat)

+ }

In the function, we set the initial guesses for μ and σ2 to 15 and 6. We now use mle()
from the stats4 package:

> library(stats4)

> (fit <- mle(log.L))

Call:

mle(minuslogl = log.L)

Coefficients:

mu.hat sigma.2.hat

20.118984 4.022548

Warning message:

NaNs produced in: log(x)
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mle() returns an object of class mle-class that we shall use later to analyze the
parameter estimates. The warning message arises perhaps because of negative values
during search for the minimum. ut

9.2 Interval estimation

LetX1, . . . , Xn be a random sample with distribution P (X ≤ x |θ ). We wish to obtain
an interval estimate I (X |θi ) of θi ∈ θ. The estimate is provided in terms of the so-
called coverage probability that θi ∈ I (X |θi ). Because θi is not known, we cannot
obtain the coverage probability. We can, however, obtain a sample-based interval, e.g.

I
(
X
∣
∣
∣θ̂i
)
, that has a known probability of including θi. We refer to this probability

as the confidence coefficient and to the interval as the confidence interval associated
with a particular confidence coefficient.

Example 9.10. If X1, . . . , Xn are independent and identically distributed rv (with
large enough n) with mean μ and variance σ2, then from the central limit theorem,
the sampling density of X is normal with μX = μ and standard deviation σ/

√
n.

Therefore, we let θ := [μ ,σ/
√
n]. The covering probability of the interval for μ, for

example, is

I1−α (X |μ ) =

[

Φ−1
(

α/2

∣
∣
∣
∣μ,
σ
√
n

)

, Φ−1
(

1− α/2

∣
∣
∣
∣μ,
σ
√
n

)]

(9.4)

is 1 − α, α ∈ [0, 1] (see Figure 7.3). Because μ and σ/
√
n are not known, we do not

know the interval. Suppose that σ/
√
n is known, but μ is not. From the sample, we

obtain μ̂. Now the confidence interval (of μ̂) for the confidence coefficient 1 − α is

I1−α (X |μ̂ ) =

[

Φ−1
(

α/2

∣
∣
∣
∣μ̂,
σ
√
n

)

, Φ−1
(

1− α/2

∣
∣
∣
∣μ̂,
σ
√
n

)]

. (9.5)

Since μ̂ is a single value from a single sample with the said sampling density (centered
on μ), all we can say is that for repeated samples, (1 − α) × 100% of the μ̂ are within
the interval (9.4). Therefore, the probability that (9.5) includes μ is 1 − α. This fact
is often stated as: “We are (1 − α) × 100% confident that (9.5) contains μ.” ut

The argument in Example 9.4 works only if μ and σ2 are independent, or the variance
is known. If they are not, then, in most cases,

I1−α
(
X
∣
∣μ, σ2

)
6= I1−α

(
X
∣
∣μ̂, σ̂2

)
.

Shifting the center of the interval from μ to μ̂ results in change in the coverage
probability because the variance changes. Next, we examine Example 9.10 through
R’s lens.

Example 9.11.We set the parameters

> alpha <- 0.05 ; mu <- 10 ; sigma <- 2 ; n <- 35

> set.seed(222) ; X <- rnorm(n, mu, sigma)

> mu.hat <- mean(X) ; S <- sd(X)



Interval estimation 295

and estimate the “unknown” interval

> I.mu <- c(low = qnorm(alpha / 2, mu, sigma / sqrt(n)),

+ high = qnorm(1 - alpha / 2, mu, sigma / sqrt(n)))

Next, we estimate the confidence interval with σ presumed known

> I.mu.hat <- c(qnorm(alpha / 2, mu.hat, sigma / sqrt(n)),

+ qnorm(1 - alpha / 2, mu.hat, sigma / sqrt(n)))

and with σ estimated from the sample:

> I.mu.sigma.hat <- c(

+ qnorm(alpha / 2, mu.hat, S / sqrt(n)),

+ qnorm(1 - alpha / 2, mu.hat, S / sqrt(n)))

Here are the results:

> round(rbind(

+ 'true interval' = I.mu,

+ 'estimated interval, sigma known' = I.mu.hat,

+ 'estimated interval, sigma unknown' =

+ I.mu.sigma.hat), 2)

low high

true interval 9.34 10.66

estimated interval, sigma known 9.17 10.50

estimated interval, sigma unknown 9.18 10.49

We were lucky enough with our sample—the interval with S is narrower than the
interval with σ. This does not usually happen. ut

We are now ready to discuss interval estimation for some specific densities.

9.2.1 Large sample confidence intervals

Because of the central limit theorem, we can use the fact that the sampling density of
the mean is normal with μX = μ and standard deviation σ/

√
n where n is the sample

size. This is true regardless of the population probability density; i.e. regardless of
the density from which the random sample is drawn. In Sections 7.7 and 7.8 we
learned how to obtain the normal sampling density for proportions and rates. With
this knowledge, we also learn how to construct confidence intervals for proportions
and rates.

Mean

We assume that σ2 is known. This may seem unrealistic. After all, if we know σ2, then
we probably know μ. For large samples, we use this assumption routinely because the
sample variance, S2, is likely to be close to σ2. We adopt the following

Rule of thumb about sample size For a sample size larger than 30 we set
σ2 = S2 .
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Figure 9.5 Areas excluded and included in computing confidence interval for 1 − α
confidence coefficient.

To obtain the confidence interval, we first need to choose the confidence coeffi-
cient, 1 − α. As Figure 9.5 illustrates, the choice of α dictates the area that the inter-
val must cover (or equivalently, the areas under the normal that must be excluded).
To determine the values of X1 and X2 that result in the desired confidence coefficient,
let us rewrite (9.5) in R terms:

I1−α (X |μ̂ ) =

[

Φ−1
(

α/2

∣
∣
∣
∣μ̂,
S
√
n

)

, Φ−1
(

1− α/2

∣
∣
∣
∣μ̂,
S
√
n

)]

= c(qnorm(alpha/2, mu.hat, S/sqrt(n)), (9.6)

qnorm(1− alpha/2, mu.hat, S/sqrt(n)))

where n is the sample size, mu.hat is the sample mean and S is the sample standard
deviation.

Example 9.12.We can sharpen our understanding of confidence intervals by ana-
lyzing the code that produces Figure 9.5. First, we draw a sample from a known
normal:

> mu <- 10 ; sigma <- 2 ; n <- 35 ; alpha <- 0.05

> set.seed(5) ; X <- rnorm(n, mu, sigma)

> mu.hat <- mean(X) ; S <- sd(X)

This will allow us to determine if the confidence intervals capture the true mean. By
assigning α = 0.05, we are setting the confidence coefficient to 0.95. Next, we create
a vector to draw the densities and shaded polygon:

> x <- seq( mu.hat - 4 * S / sqrt(n),

+ mu.hat + 4 * S / sqrt(n), length = 201)

We now plot the sampling density of mean(X):

> plot(x, dnorm(x, mu.hat, S / sqrt(n)), axes = FALSE,

+ type = 'l', xlab = expression(x), ylab = '',

+ cex.main = 1,
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+ main = expression(italic(area) == 1 -

+ (alpha / 2 + alpha / 2)))

> abline(h = 0) ; abline(v = mu.hat)

We do not want axes just yet, but we want a title, so we set cex.main to 1 and then
we draw the main title using expression(). Finally, we draw a horizontal line at zero
and a vertical line at μ̂ = X. We obtain the boundaries (quantiles) of the interval
according to (9.6):

> X.1 <- qnorm(alpha / 2, mu.hat, S / sqrt(n))

> X.2 <- qnorm(1 - alpha / 2, mu.hat, S / sqrt(n))

We prepare the polygon and draw it shaded with:

> x.CI <- seq(x.1, x.2, length = 201)

> x.poly <- c( x.1, x.CI, x.2, x.2)

> y.poly <- c(0, dnorm(x.CI, mu.hat, S / sqrt(n)), 0, 0)

> polygon(x.poly, y.poly, col = 'grey90')

Here is how we prepare the annotation:

> l <- c(

+ expression(italic(X[1])), expression(italic(mu)),

+ expression(hat(mu)), expression(italic(X[2])))

For example, X[1] enclosed in expression draws X1 and hat(mu) draws μ̂. We draw
the x-axis (by specifying the unnamed argument 1)

> axis(1, at = c( X.1, mu, mu.hat, X.2), labels = l)

and tell axis() to draw the tick marks with at. We add the text in the shaded
polygon with

> text(mu.hat, .1, expression(italic(area)))

The arrows() are drawn with

> lx <- X.1 - 0.1 ; hx <- X.2 + 0.1

> ly <- 0.04 ; hy <- 0.5

> arrows(lx, ly, lx, hy, code = 1, angle = 15, length = .15)

> arrows(hx, ly, hx, hy, code = 1, angle = 15, length = .15)

including control of the arrows’ angle and length. Finally, we annotate the arrows
with

> text(lx, hy + 0.05, expression(alpha / 2))

> text(hx, hy + 0.05, expression(alpha / 2))

The confidence interval is

> round(c(low = X.1, high = X.2), 2)

low high

9.69 11.079

We conclude that we are 95% certain that the confidence interval captures the true
mean, which we happen to know is μ = 10. ut

So far, we examined simulated data. In the next example, we use real data.
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Example 9.13. The data for this example are from United States Department of
Justice (2003). Between 1973 and 2000, there were 7 658 cases of capital punishment
in the U.S. The mean (μ) and standard deviation (σ) of age at the time of sentencing
were

> load('capital.punishment.rda')

> cp <- capital.punishment

> age <- (cp[, 26 ] * 12 + cp[, 25] -

+ (cp[, 12] * 12 + cp[, 11])) / 12

> mu <- mean(age, na.rm = TRUE)

> sigma <- sd(age, na.rm = TRUE)

> round(c(mu = mu, sigma = sigma),2)

mu sigma

30.31 8.91

Note how we calculate the age of sentencing. A few records from the data should
clarify the assignment to age above:

> head(cp[, c(26, 25, 12, 11)], 3)

SentenceYear SentenceMonth DOBYear DOBMonth

1 1971 11 1927 10

2 1971 3 1946 8

3 1971 6 1950 3

(DOB stands for date of birth). Here is a typical scenario. The U.S. Department of
Justice reports that the mean age of convicts at sentencing to death was 30.3 years.
We have no access to (or resources to analyze) the whole data set. We manage to get
hold of 30 random records from the data or from press reports:

> set.seed(3) ; n <- 30 ; X <- sample(age, n)

> summary(X)

Min. 1st Qu. Median Mean 3rd Qu. Max.

17.00 22.02 27.29 28.16 33.08 50.08

To obtain the 95% confidence interval, we use (9.6):

> mu.hat <- mean(X) ; S <- sd(X) ; alpha <- 0.05

> round(c(low = qnorm(alpha / 2, mu.hat, S / sqrt(n)),

+ high = qnorm(1 - alpha / 2, mu.hat, S / sqrt(n))), 2)

low high

25.31 31.01

We conclude that we have no grounds to reject the U.S. Department of Justice claim
that the average age at sentencing to death was 30.31 years. ut

Proportions

As we have seen, estimating ratios is one way to analyze presence/absence data
(Example 9.5). Other examples are estimating sex ratios in animal populations,
habitat selection by animals and plants, nesting success ratio, proportions of people
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answering yes or no to a question in a survey and the proportion of patients that die
in spite of a treatment.
Here we develop confidence intervals for proportions. Let us quickly review what

we know about proportions that is relevant to our discussion here. As usual, we
identify a Bernoulli experiment with success or failure. We obtain a rv by assigning 1
to success and 0 to failure. Let N be the population size and n the sample size. We
denote the number of objects in the population that exhibit a property that we define
as success by NS , similarly for nS in the sample. Accordingly,

π :=
NS

N
, π̂ = p =

nS

n
.

The density of the number of successes in a sample, X, is binomial with mean and
variance X = n× p and S2 = n× p× (1− p). In Section 7.2.2, we established the
normal approximation to the binomial. The approximation holds when

n× p ≥ 5 and n× (1− p) ≥ 5 . (9.7)

In Section 7.7.2 we also stated the consequences of the central limit theorem for sample
proportions:

1. μp = π: the sampling density of p is centered at π.

2. σp =
√
π (1− π) /n: as the number of trials increases, the standard deviation of

the sampling density of p decreases.
3. The sampling density of p approaches normal as n increases.

And in Exercise 5.18 we established that the MLE of π is π̂ = p. Therefore, if (9.7)
is satisfied, then according to (9.6), the confidence interval for confidence coefficient
1− α is

I1−α (p |π̂ ) =

[

Φ−1

(

α/2

∣
∣
∣
∣
∣
π̂,

√
π̂ (1− π̂)
n

)

, Φ−1

(

1− α/2

∣
∣
∣
∣
∣
π̂,

√
π̂ (1− π̂)
n

)]

(9.8)

= c(qnorm(alpha/2, pi.hat, sqrt(pi.hat ∗ (1− pi.hat)/n)),

qnorm(1− alpha/2, pi.hat, sqrt(pi.hat ∗ (1− pi.hat)/n)))

where pi.hat is the sample proportion of successes and n is the sample size.

Example 9.14. In 2006, there were 45 students in a Statistics class at the University
of Minnesota, 15 of them blond. Assuming that the students in the class were a
random sample from the population of students at the University of Minnesota (with
regard to hair color), let us estimate the number of blonds at the University with 95%
confidence. Using (9.8), we write

> rm(list = ls())

> n <- 45 ; n.S <- 15 ; pi.hat <- n.S / n ; alpha <- 0.05

> round(c(low = qnorm(alpha / 2, pi.hat,

+ sqrt(pi.hat * (1 - pi.hat) / n)),

+ high = qnorm(1 - alpha / 2, pi.hat,

+ sqrt(pi.hat * (1 - pi.hat) / n))), 2)

low high

0.20 0.47
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Now let us compare this (asymptotic in the sense of the normal approximation) con-
fidence interval to some others:

> library(Hmisc)

> round(binconf(n.S, n, method = 'all'), 2)

PointEst Lower Upper

Exact 0.33 0.20 0.49

Wilson 0.33 0.21 0.48

Asymptotic 0.33 0.20 0.47

The Wilson and asymptotic intervals are equally wide, but centered around different
locations. The exact method gives the widest interval. It is obtained directly from the
binomial density. We shall talk about the exact and Wilson methods later. ut

Intensities

In Section 7.2.3, we saw that the normal approximation for the Poisson is μ = λ and
σ2 = λ. In Example 5.19 we showed that the MLE of λ is λ̂ = l where l is the events
count per unit interval (time, area, etc.). For λ ≥ 20, we use the normal approximation

to the Poisson, φ
(
x
∣
∣
∣λ,
√
λ
)
. Therefore,

I1−α

(
l
∣
∣
∣θ̂
)
=

[

Φ−1
(

α/2

∣
∣
∣
∣λ̂,
√
λ̂/n

)

, Φ−1
(

1− α/2

∣
∣
∣
∣λ̂,
√
λ̂/n

)]

(9.9)

= c(qnorm(alpha/2, lambda.hat, sqrt(lambda.hat/n)),

qnorm(1− alpha/2, lambda.hat, sqrt(lambda.hat/n))) .

Example 9.15.We wish to verify a claim that the average count of a plant species is
25 individuals per 1m2 plot. So we count 25 plants in 100 plots. We count 24 plants
in a different set of 100 plots and set the confidence coefficient to 0.95. Let R generate
the data:

> lambda <- 25 ; n <- 2 ; alpha <- 0.05

> set.seed(10) ; counts <- sum(rpois(n, lambda))

We estimate λ with

> lambda.hat <- counts / n

and use (9.9) to obtain the confidence interval:

> round(c(lambda.hat = lambda.hat,

+ low = qnorm(alpha / 2, lambda.hat,

+ sqrt(lambda.hat / n)),

+ high = qnorm(1 - alpha / 2, lambda.hat,

+ sqrt(lambda.hat / n))), 2)

lambda.hat low high

24.50 17.64 31.36

We conclude that we have no grounds to reject the claim. You can obtain the same
results with
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> library(epitools)

> round(pois.approx(counts, pt = 2), 2)

x pt rate lower upper conf.level

1 49 2 24.5 17.64 31.36 0.95

where approximate refers to the asymptotic confidence interval as given in (9.9).
The package epitools provides three other estimates of confidence intervals for the
Poisson parameters named pois.exact(), pois.daly() and pois.byar(). ut

9.2.2 Small sample confidence intervals

Because of the central limit theorem, large sample confidence intervals can be devel-
oped regardless of the density of the data. This is so because the sampling density
of the mean is normal. What do we do when the sample size is small? Assume a
specific density for the population and use that assumption to develop the sampling
density of the parameter of interest. Then use knowledge of the sampling density to
develop confidence intervals. In the following sections we discuss the case of small
sample sizes (< 30). We address the following situations: the population density is
normal, binomial or Poisson. Finally, we discuss the case where no assumption about
the population density is made and we wish to estimate the confidence interval of
whatever function of the sample values we please.

Normal population

Let X be a rv from a normal with mean μ and standard deviation σ. Then

Z =
X − μ
σ

is a rv with μ = 0 and σ = 1 (the standard normal). Now for n > 30, the sampling
density of Z is (asymptotically) normal with μZ = 0 and standard error σZ = 1/

√
n.

When n < 30, the sampling density of Z is t with n − 1 degrees of freedom. Denote by
P (Z ≤ z |n− 1) the t density with n − 1 degrees of freedom. Then in our framework,
the confidence interval of μ̂ = Z is given by

I
′

1−α (Z |μ̂ ) =
[
P−1 (α/2 |n− 1) , P−1 (1− α/2 |n− 1)

]

= c(qt(alpha/2, n− 1), qt(1− alpha/2, n− 1)) .

To translate I
′

1−α (Z |μ̂ ) back to the scale of X, we center the confidence interval
around X and scale it by S/

√
n. Therefore, the modified confidence interval is now

I1−α (X |μ̂ ) = X ±
S
√
n
I
′

1−α (Z |μ̂ )

= (mu.hat+ S/sqrt(n) ∗ (9.10)

c(qt(alpha/2, n− 1), qt(1− alpha/2, n− 1)) .

Example 9.16. The data for this example are from Patten and Unitt (2002). The
authors reported wing-chord measurements for three subspecies of sage sparrow
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Table 9.3 Chord lengths of 3 sage sparrow subspecies.

Subspecies Chord (mm) sd n

A. b. Cinera (male) 65.4 3.10 13
A. b. Canescens (male) 70.9 2.88 45
A. b. Nevadensis (male) 78.7 2.79 38
A. b. Cinera (female) 63.0 2.77 12
A. b. Canescens (female) 67.2 2.77 42
A. b. Nevadensis (female) 73.4 2.30 30

(Table 9.3). To estimate the 95% confidence interval for the mean of A. b. Cinera
males, we implement (9.10)

> S <- 3.10 ; n <- 13 ; mu.hat <- 65.4 ; alpha <- 0.05

> t.ci <- c(low = qt(alpha / 2, n - 1),

+ high = qt(1 - alpha / 2, n - 1))

> round(mu.hat + S / sqrt(n) * t.ci, 2)

low high

63.53 67.27

We do not have access to the original data. If you have data, you can achieve the
same results with t.test(). ut

Binomial experiments

If we know that the density of a rv of interest is binomial, then we can use the approach
suggested by Vollset (1993). Agresti and Coull (1998) showed that this method, called
the Wilson method, works better than exact computation of confidence intervals. The
sampling density of p according to the exact method is F . Let

ν1 = 2 (n− nS + 1) , ν2 = 2nS

be the degrees of freedom. Then the lower value of the confidence interval is

pL =
nS

nS + F−1 (1− α/2 |ν1, ν2 ) (n− nS + 1)
. (9.11)

For the upper value of the confidence interval, we first get the degrees of freedom:

ν
′

1 = 2nS + 2 , ν
′

2 = 2 (n− nS)

and then

pH =
(nS + 1)F

−1
(
1− α/2

∣
∣
∣ν
′

1, ν
′

2

)

n− nS + (nS + 1)F−1
(
1− α/2

∣
∣ν′1, ν

′

2

) . (9.12)

For the Wilson method, let

zC = −Φ
−1
(α
2

)
, p =

nS

n
.

Define

A := p+
z2C/2

n
, B = zC

√√
√
√p (1− p) +

z2C/4

n
n

.
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Then

p
′

L =
A−B
1 + z2C/n

, p
′

H =
A+B

1 + z2C/n
. (9.13)

The computations are available through binconf() in the library Hmisc. Here is an
example.

Example 9.17.We record as success the event that one or more individuals of a
species are identified in a one m2 plot. We examine 30 such plots and wish to obtain
the confidence interval for π̂. To compare the results to π, we simulate the data and
compute the confidence interval:

> library(Hmisc)

> n <- 30 ; PI <- 0.4 ; set.seed(1)

> (n.S <- rbinom(1, n, PI))

[1] 10

> round(binconf(n.S, n, method = 'all'), 3)

PointEst Lower Upper

Exact 0.333 0.173 0.528

Wilson 0.333 0.192 0.512

Asymptotic 0.333 0.165 0.502

The asymptotic result should not be used here because the sample is small (we show
it for the sake of comparison). As expected, the Wilson method gives the narrowest
confidence interval for 95% confidence coefficient. ut

Poisson counts

Recall from Section 5.7 that the Poisson density may be written as

P (X = x) =
λx

x!
e−λ

where λ is the intensity parameter (e.g. events per unit of time, number of individuals
of a plant species in a plot). We also found that

E [X] = λ , σ2 = λ , λ̂ = l

(Section 5.8) where l is the sample count rate. Data that represent counts are common
and we are often interested in the confidence interval estimate of the intensity param-
eter λ. When the sample is large, we can invoke the central limit theorem and use the
large sample confidence interval procedure outlined in Section 9.2.1. When the sample
is small (or large) and the sample comes from a population with Poisson density, then
the sampling density of l is approximately χ2 (see Section 6.8.3). Therefore, we can
compute confidence intervals.
Let the intensity l be the count of events per unit of measurement (e.g. time, area)

and P (X ≤ x |ν ) the χ2 distribution with ν degrees of freedom. Then (see Ulm, 1990;
Dobson et al., 1991)

I1−α

(
x
∣
∣
∣λ̂
)
=

[
P−1 (α/2 |2l )

2
,
P−1 (1− α/2 |2 (l + 1))

2

]

= c(qchisq(alpha/2, 2 ∗ l)/2, (9.14)

qchisq(1− alpha/2, 2 ∗ (l+ 1))/2) .
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Example 9.18. Consider a count of 11 deaths per day per 1 000 individuals. To
estimate the 95% confidence interval, we refer to (9.14):

> l <- 11 ; alpha <- 0.05

> round(c(low = qchisq(alpha / 2, 2 * l) / 2,

+ high = qchisq(1 - alpha / 2, 2 * (l + 1)) / 2), 1)

low high

5.5 19.7

Compare this to the following:

> library(epitools)

> round(pois.exact(l), 2)

x pt rate lower upper conf.level

1 11 1 11 5.49 19.68 0.95

The package epitools contains functions that are used routinely in epidemiological
research. ut

9.3 Point and interval estimation for arbitrary densities

The results in this section apply to both small and large samples. They also apply to
arbitrary population parameters. Next to the worst case scenario is when we have a
small sample and no idea about the sampling density of a statistic.2 In such cases,
we can use the bootstrap method to estimate confidence intervals for a statistic.
You may find detailed discussion of the bootstrap method in (among others) Efron
(1987), Efron and Tibshirani (1993), DiCiccio and Efron (1996) and Davison and
Hinkley (1997).
In a nutshell, the bootstrap procedure repeats sampling (with replacement) and

pretends that each new sample is independent and is taken from the population (as
opposed to from the sample).3 The fundamental assumption is that the sample repre-
sents the population. Implementation of the bootstrap in R is quite easy: use sample()
with size = n (sample size) and with replace = TRUE. Calculate the statistic of
interest and accumulate it in a vector. After many repetitions (in the thousands), you
will have enough data to obtain the empirical sampling density and analyze it (with
respect to point and interval estimates). R includes several functions that bootstrap
(see also Section 7.10).

Example 9.19. One of the most celebrated power laws in biology is the relationship
between metabolic rate at rest, called basal metabolic rate (BMR) (ml O2 per hr)
and body mass (g) within mammals. The data we use are from White and Seymour
(2003). Consider small animals (between 10 and 20 g) from two mammalian orders,
Insectivora (insect-eating) and Rodentia (rodents). The density for known species data
of body mass and BMR are shown in the top panel of Figure 9.6. (n = 13 and 24). We
are interested in the following questions: What is the sampling density of the mean

2In the worst case scenario we have no data.
3This is why it is called bootstrap—it is as if we are lifting ourselves by pulling on our

bootstraps.
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Figure 9.6 Results for known species with body mass between 10 and 20 g for two
mammalian orders. Top: density of body mass and BMR. Bottom: scatter of the data
for Insectivora (filled circles) and Rodentia (open circles).

of the ratio of BMR / mass for these two orders? What are the corresponding means
and confidence intervals for 95% confidence coefficient?
To focus attention on the issue at hand, we shall not go over the data bmr.rda

manipulations that allow us to answer these questions. Suffice it to say that we end
with two data frames, one for Insectivora and the other for Rodentia. The relationship
between mass and BMR / mass are shown in the bottom panel of Figure 9.6. Let us
move on to the bootstrap. First, we set the number of bootstrap repetitions, prepare
a matrix with two columns that will hold the BMR / mass means and remember the
sample sizes (the number of species from each order for which data are available):

> B <- 10000

> n <- c(length(Insectivora), length(Rodentia))

Next, we compute the B means for each order using bootstrap:

> set.seed(3)

> m.i <- matrix(sample(Insectivora, n[1] * B,

+ replace = TRUE), ncol = B, nrow = n[1])

> m.r <- matrix(sample(Rodentia, n[2] * B,

+ replace = TRUE), ncol = B, nrow = n[2])

> mean.BMR.M <- cbind(apply(m.i, 2, mean),

+ apply(m.r, 2, mean))
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We now have enough information to examine the bootstrapped sampling densities
of the mean BMR / mass for the two mammalian orders. We start with Insectivora
(Figure 9.7 left):

> x.limits <- c(1.5, 3.5)

> h(mean.BMR.M[, 1], xlab = 'Insectivora',

+ xlim = x.limits, ylim = c(0, 1.25))

Figure 9.7 Sampling densities for the mean of BMR / mass for known species with
body mass between 10 and 20 g for two mammalian orders. Left: Insectivora. Shown
are the 95% confidence interval, mean for Insectivora and mean for Rodentia (broken
line). Right: Same, this time for Rodentia.

We add the 95% confidence limits with

> ci <- matrix(ncol = 2, nrow = 2)

> ci[1, ] <- quantile(mean.BMR.M[, 1],

+ prob = c(0.025, 0.975))

> abline(v = ci[1, 1]) ; abline(v = ci[1, 2])

draw the mean of the ratio for Insectivora

> abline(v = mean(mean.BMR.M[, 1]), col = 'red', lwd = 2)

and add a broken line for the mean of Rodentia

> abline(v = mean(mean.BMR.M[, 2]),

+ col = 'red', lwd = 2, lty = 2)

Note that the latter’s mean ratio is outside the confidence interval for the mean of
the former. We repeat the same steps for Rodentia (Figure 9.7 right):

> h(mean.BMR.M[, 2], xlab = 'Rodentia', ylab = '',

+ xlim = x.limits, ylim = c(0, 3))

> ci[2, ] <- quantile(mean.BMR.M[, 2],

+ prob = c(0.025, 0.975))

> abline(v = ci[2, 1]) ; abline(v = ci[2, 2])

> abline(v = mean(mean.BMR.M[, 2]), col = 'red', lwd = 2)

> abline(v = mean(mean.BMR.M[, 1]), col = 'red',

+ lwd = 2, lty = 2)
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In both cases, we observe that the other Order’s mean ratio of BMR / mass is outside
the 95% confidence interval. This raises questions about the common practice of
lumping all orders of mammals into a single power law of body mass vs. BMR. ut

9.4 Assignments

Exercise 9.1. Figure 9.8 shows 3 sampling distributions of 3 different statistics along
with the true value of the population characteristic. Which of the statistics would you
choose? Why?

Figure 9.8 Three sampling distributions of three statistics.

Exercise 9.2. One of the criteria for choosing the best estimate of a statistic
is that its sampling distribution has the smallest variance. Why is this impor-
tant?

Exercise 9.3. Fill in the appropriate estimates in Table 9.4

Table 9.4 E[X] and V[X] denote the expected
value and variance of the rv X.

Distribution Statistic Best sample-based
estimate

normal E[X] ...
V [X] ...

binomial E[X] ...
V [X] ...

Poisson E[X] ...
V [X] ...

Exercise 9.4.What is the confidence level that corresponds to significance value
of α?

Exercise 9.5.

1. Why does the standard deviation of the sampling distribution of X decrease as
the sample size increases?

2. What other name is this standard deviation is known by?
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3. Let

Z =
X̄ − μ
σ/
√
n
.

What are the expected value and variance of Z?

Exercise 9.6. In a sample of 1 000 randomly selected people in the U.S., 320 said
that they oppose abortion. Let π denote the proportion of the U.S. population that
opposes abortion. Give a point estimate of π.

Exercise 9.7. The U.S. Environmental Protection Agency (EPA) publishes rules
about safe values of radionucleotides (isotopes of elements that emit radiation) in
water. These radionuclides are carcinogens. The EPA’s rules for drinking water safety
are called Maximum Contaminant Levels (MCL) in drinking water. Levels higher than
MCL are considered unsafe. As of the year 2000, the MCL for Ra-226, Ra-228 and
gross alpha-particle activity in community water systems are: (a) Combined Ra-226
and Ra-228: 5 pCi/L; (b) Gross alpha-particle activity (including Ra-226 but exclud-
ing radon and uranium): 15 pCi/L. The data file is named nucleotides-usgs.txt.
The data include the following columns:

name explanation

1 USGS.SN USGS serial number

2 result reading in pCi/L (pico-Curie per liter

3 sd standard deviation

4 mdc minimum detectable concentration (1 SD)

5 nucleotide of radium (Ra-224, Ra226 or Ra228)

(see Focazio et al., 2001). Download the data and import them into R.

1. Are the data about the variable named result normal? If not, what transforma-
tion would you use on this variable?

2. Give an estimate of μ. (If you use a transformation, compute μ on the transformed
variable first and then reverse the transformation to provide μ.)

3. Give an estimate of σ2 of the data (or its transform if you decide to transform
it). Exclude the negative values from the estimate.

4. Estimate the probability that a randomly chosen well will exceed the MCL for
the combined Ra-226 and Ra-228.

5. Create a data frame for the data and save the data frame in an R file named
nucleotides.rda.

Exercise 9.8. Discuss how each of the following factors affects the width of the large
sample confidence interval for μ when σ is known.

1. Confidence level
2. Sample size
3. Population standard deviation

Exercise 9.9. The formula used to compute a confidence interval for μ when n is
large and σ is known is X± z1−α/2 × σ/

√
n. What is the value of z1−α/2 for each of

the following confidence levels?

1. 95%
2. 90%
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3. 99%
4. 80%
5. 85%

Exercise 9.10. Suppose that 50 random samples of deer urine in snow are analyzed
for the concentration of uric acid. Denote by μ the average concentration of urea uric
acid in the population. Suppose that the sample resulted in a 95% confidence interval
of [9, 11].

1. Would a 90% confidence interval be narrower or wider than the given interval?
Explain.

2. Consider the statement: There is a 95% chance that μ is between 9 and 11. Is the
statement correct? Explain.

3. Consider the statement: If the process of selecting a sample of size 50 and then
computing the corresponding 95% confidence interval is repeated 100 times, then
95 of the resulting intervals will include μ. Is the statement correct? Explain.

Exercise 9.11. The following data summarize the nucleotide data (see Exercise 9.7):

mean sd n

Ra224 7.690137 16.939224 90

Ra226 2.088269 3.148321 90

Ra228 2.383604 8.176315 90

Compute

1. The 90% confidence intervals for the mean pCi/L for Ra224, Ra226 and Ra228.
2. Are the intervals similar? Do you think that there is a difference in mean concen-
trations of radium isotopes for Ra224, Ra226 and Ra228? Explain.

Exercise 9.12. For the following data summaries, compute the 95% confidence inter-
vals for the mean (here SD refers to the sample standard deviation and σ refers to
the population standard deviation):

1. n = 40, X= 50, SD = 4, σ = 5, population distribution is normal.
2. n = 30, X= 50, SD = 4, σ = 5, population distribution is normal.
3. n = 40, X= 50, SD = 4, σ = 5, population distribution is unknown.
4. 10 successes in 40 independent Bernoulli trials with π = 0.4.
5. 10 successes in 40 independent Bernoulli trials.
6. 4 success in 54 independent Bernoulli trials.
7. 30 plants per 50 plots.
8. 10 plants per 50 plots.
9. n = 20, X= 10, SD = 2, population distribution is normal.

Exercise 9.13. Use the package Hmisc to compute the binomial confidence intervals
for confidence level = 0.95 for the following:

nS n

10 40

4 10

3 20

10 100
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Exercise 9.14.

1. Write two expressions that calculate the low and high values for the confidence
interval of Poisson counts and for a 0.95 confidence interval.

2. Compute the 95% confidence intervals for the following:
(a) 10 plants per 50 plots;
(b) average of 1 plant per plot;
(c) 5 plane landings per hour in a nearby airport.

Exercise 9.15. For this exercise, use the functions bootstrap() and summary(),
which you may find in the script file named bootstrap.R.
If you write a script for this exercise, to use the functions in bootstrap.R, start

your script with the statement source('bootstrap.R'). If you use the workspace in
R for this exercise, then run the statement source('bootstrap.R')

1. Create a new data frame from nucleotides that looks like this:

Ra224 Ra226 Ra228

1 -0.200 0.1300 0.0512

2 NA 0.1310 NA

3 0.484 0.1090 NA

4 NA 0.1590 0.1750

5 0.020 0.0492 0.3370

6 NA 0.0860 0.4350

where the values correspond to the variable result in nucleotides.
2. Run pairs() on the new data frame. From the pairs, it seems that there are
relationships among the various isotopes of radium. Use an appropriate trans-
formation on the data to obtain linear relationships. Show the outcome of the
transformation in a pairs() plot.

3. Use the function bootstrap() to create the densities of the means of the 3 iso-
topes. Show the densities.

4. Do the same for the variance.
5. Use summary() on the objects produced in the previous two items to provide
confidence intervals on the means and variances of the 3 isotopes. What are they?

6. Draw and report conclusions about the relationships among the isotopes in wells
across the U.S.

Exercise 9.16. Explain the meaning of t15,0.95.

Exercise 9.17. For the following, use the appropriate R functions.

1. The upper 5th percentile of a t distribution with 21 df.
2. The lower 5th percentile of a t distribution with 18 df.
3. P (X < 2) where P is the t distribution with 15 df.
4. P (X > 1.8) where P is the t distribution with 17 df.
5. P (X < 0) where P is the t distribution with 22 df.
6. P (X > 0) where P is the t distribution with 10 df.
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Exercise 9.18.

1. A sample of 10 fishermen revealed that their weight (in kg) before going out on a
fishing trip was

93.7 101.8 91.6 116.0 103.3 91.8 104.9 107.4 105.8 96.9

What is the 95% CI around the mean sample weight?
2. During the trip, 1 fisherman disappeared. Upon their return, the remaining 9
fishermen were weighed. Now the data were

104 112 102 126 113 102 115 117 116

What is the 95% CI now?

Exercise 9.19.Write the equation you would use to construct confidence intervals
around the mean under the given conditions.

1. Sample of 35 chord lengths from birds where chord length has a uniform distri-
bution in the population. Variance of chord length in the population is known.

2. Sample of 32 weights of birds where the weights have a normal distribution in the
population. Variance in the population not known.

3. Sex ratio in a sample of 33 birds, under the assumption that the sex ratio is 1 : 1.
4. Twenty five boats arriving to a dock every day.
5. Chord length from a sample of 22 birds, where chord length has a normal distri-
bution in the population.

6. Unknown population distribution, small sample (10).

Exercise 9.20. Identity three functions in R that compute confidence intervals for a
binomial experiment with 10 trials and 5 successes. Run the functions and explain
the results.

Exercise 9.21. You are interested in estimating the true value of the number of ticks
per oak tree in you neighborhood. What will be the 95% interval within which you are
are likely to capture the true value of the number of ticks per oak tree if you counted
30 ticks per tree?
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Single sample hypotheses
testing

Here we meet inferential statistics for the first time. So far we dealt with the problem
of how to estimate a population parameter such as mean (μ), proportion (π), intensity
(λ) and a range of values within which it may reside. We can use samples to test the
plausibility of claims. For example, a biologist tells us that the average litter size of
a sample taken from a population of wolves is 8. Based on the analysis we develop
here and with a sample of our own, we will be able to make a statement about how
plausible this claim is. The plausibility of a claim is stated in terms of probability.
If the probability is high, then we deem our claim correct. Otherwise, we reject it as
being incorrect.
For the most part, we follow the sequence in Chapter 9—we will discuss large

sample hypothesis testing and then small sample. For large samples, we deal with
hypothesis testing for means, ratios and intensities. We follow a similar sequence for
small samples, where to make progress, we may need to assume a density. So we discuss
small sample hypotheses testing for a sample from a normal, binomial or a Poisson
population. Finally, we discuss the general case, where we wish to test hypotheses for
an arbitrary parameter from a population with arbitrary density. Here, as in Chapter
9, we rely on the bootstrap method.

10.1 Null and alternative hypotheses

A hypothesis is an assumption about the value or values of a population parameter
or parameters.
For example, we may assume that the average density of grasses (plants per m2) in

an area is λ = 10. We may assume that the proportion of females in the population is
π > 0.5. Recall that Greek letters represent population parameters. As before, we shall
use a sample statistic and its density to estimate the plausibility of an assumption.

Statistics and Data with R:  An applied approach through examples         Y. Cohen and  J.Y.  Cohen
©
2008 John Wiley & Sons, Ltd.  ISBN: 978-0-470-75805
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We always formulate two mutually exclusive and, if possible, exhaustive hypothe-
ses. Exhaustive hypotheses are such that their union covers all possible outcomes of
an experiment, i.e. their union is the sampling space. By formulating contradictory
hypotheses, we are forced to choose between them.

Example 10.1. In set theory terms, a hypothesis might be that θ ∈ A. Then the
alternative hypothesis is θ ∈ A (the complement of A) or equivalently, θ /∈ A. ut

10.1.1 Formulating hypotheses

The standard procedure in hypothesis testing is to assume that one hypothesis is
true. We then reject this hypothesis in favor of an alternative hypothesis if the sample
evidence is incompatible with the original hypothesis. As a rule, the hypothesis we
choose as true (before running the analysis) should be such that the burden of proof
is on us. Analogous to a court case, the original hypothesis is that the accused is
innocent unless proved otherwise. The alternative hypothesis is guilty and the burden
of proof falls on the prosecutor. Thus, we have the following definitions.

Null hypothesis (H0) The claim that is initially assumed true.

Alternative hypothesis (HA) The claim that is initially assumed not true.

We assume that H0 is true and reject it in favor of HA if the sample evidence strongly
suggests that H0 is false. This is the idea of “beyond a reasonable doubt” in a court
analogy. In general, we formulate H0 such that if we do not reject it, then we take no
action.

Example 10.2. Let λ be the average number of daily visits to a hospital emergency
room. Assume that the number of daily visits are independent on different days and
visits are independent of each other. The hospital management is interested in estimat-
ing λ, the true “population” daily visits. If λ > 25 patients per day, then management
will invest $10 million in emergency room renovations. Otherwise, no investment will
be considered. There are two sets of null and alternative hypotheses:

H0 : λ ≤ 25 vs. HA : λ > 25 or

H0 : λ ≥ 25 vs. HA : λ < 25 .

Which one should we choose? If management chooses the first alternative, then unless
there is strong evidence that λ > 25, we will not reject the hypothesis that λ ≤ 25 and
no investment will be made. If management chooses the second alternative, then unless
there is strong evidence that λ < 25, we will not reject the hypothesis that λ ≥ 25 and
the investment will be made. So administrators concerned about patients’ well-being
should choose the second pair. Administrators concerned about profit might choose
the first pair. In the first alternative, the burden of the proof is on λ > 25. In the
second, it is on λ < 25. ut

The situation is a little different in the next example.
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Example 10.3. Field biologists often use darts filled with anesthetics to capture
animals for data collection, translocation and so on. It is important to know precisely
the concentration of the active ingredient in the solution; otherwise, the animal might
die or endanger its handler. A pharmaceutical company claims that the concentration
of the anesthetizing agent in the solution is μ = 1ml per 10 cc saline. We wish to test
the manufacturer’s claim. Let μ be the mean concentration of the active ingredient
in the imaginary population of all solutions that the company manufactures. Because
the consequences of both cases (μ > 1 or μ < 1) are unacceptable, we set

H0 : μ = 1 vs. HA : μ 6= 1 .

In other words, we believe the manufacturer. The burden of proof that μ 6= 1 is then
on us. ut

Suppose that the hospital administrators in Example 10.2 choose H0 : λ ≤ 25. That is,
they’d rather not invest the money unless they have to. Were they to choose H0 : λ =
25 and the evidence was in fact λ < 25, then they would have taken no action. In other
words, they would have erred on the side of caution (according to their perception of
caution). So instead of using H0 : λ ≤ 25 they could use

H0 : λ = 25 vs. HA : λ < 25 .

Similarly, suppose the administrators choose H0 : λ ≥ 25. That is, they’d rather invest
the money. Were they to choose H0 : λ = 25 and the evidence was in fact λ > 25,
then they would have invested the money. In other words, they would have erred on
the side of caution (according to their now different perception of caution). So instead
of using H0 : λ ≥ 25 they could use

H0 : λ = 25 vs. HA : λ > 25 .

Let θ be the parameter of interest and let θ0 be a specific value that θ might take.
Then for the null hypothesis, we shall always choose

H0 : θ = θ0 vs. one of HA : θ






< θ0
6= θ0
> θ0

. (10.1)

The choice of H0 vs. HA for a specific problem is not unique. It often depends on the
purpose of the study and the bias of the investigator. This is why we should always
prefer to err on the side of caution; that is, we should choose the null hypothesis that
is the opposite of what we would have liked.

Example 10.4. Continuing with Example 10.3, the manufacturer claims that μ = 1.
If the animal’s safety is of more concern than the fact that we may fail to anesthetize
it, then we choose

H0 : μ = 1 vs. HA : μ > 1 .

So if we reject H0, we prefer the alternative hypothesis that the concentration is actu-
ally greater than 1. This will lead us to reject a solution because it contains too much
of the anesthetizing ingredient more often than if we were to choose HA : μ < 1. ut
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The upshot? Choose HA such that if you reject H0, then HA represents the more
cautious action. Similar considerations apply when dealing with proportions and
intensities.

Example 10.5. Suppose that a new AIDS drug is to be tested on humans. The drug
has terrible side effects and is intended for patients that usually die within a month.
We decide that if at least 10% of the patients to whom the drug is administered
survive for two months or more, then the drug should be administered.
In this case we set

H0 : π = 0.1 vs. HA : π > 0.1 .

So if we reject H0 (and we err in rejecting it), then we would administer the drug
anyway. We do this because the drug is designed for gravely ill patients. We would
rather give them the drug than not. ut

In any case, we always have to guard against drawing the wrong conclusion. We may
decide to reject H0 while it is true. We may also decide not to reject H0 while it is
false. We deal with these kinds of errors next.

10.1.2 Types of errors in hypothesis testing

As we have seen, a statistic such as X is a rv. Therefore, its value is subject to uncer-
tainty. This uncertainty may lead to errors in reaching conclusions about rejecting
H0 based on hypothesis testing. Because of the way H0 and HA are chosen, there are
two fundamental types of errors.

Type I error H0 is correct, but we reject it.

Type II error H0 is incorrect, but we fail to reject it.

Example 10.6. Consider a court of law analogy. Our H0 is that the accused is inno-
cent. Under this hypothesis, the two possibilities are:

Type I error The accused is in fact innocent, but is found guilty.
Type II error The accused is in fact guilty, but is found innocent.

These errors arise because of uncertainty and because of the way H0 and HA are
set—mutually exclusive and exhaustive. ut

Table 10.1 Type I and type II errors.

Action

State of nature H0 not rejected H0 rejected

H0 is true No error Type I error
H0 is false Type II error No error

Table 10.1 summarizes these errors. With regard to H0, nature can be in one of
two states: true or false. We have two possible actions: declare the state of nature true
or false. If H0 is true and we reject it, then we commit a type I error. If H0 is false and
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we do not reject it, we commit a type II error. Our goal is to minimize the possibility
that we commit any of these two errors based on the sample data. It is important
to keep in mind that type I and II errors refer to H0, not to HA. As we shall see,
minimizing the possibility of type I error conflicts with the goal of minimizing the
possibility of type II error.

Example 10.7. In North America (and elsewhere), waterfowl population studies
often include tagging birds. The tags are small, light-weight sleeves that go on the
bird’s leg. They usually include a return address and an offer of reward for those who
find and return them. Tag returns are then used to analyze and draw conclusions
about the populations. Suppose that in a normal year, 25% of all tags are returned.
To increase this percentage, a researcher designs a one-year experiment: Increase the
reward for a returned tag in the hope of increasing the proportion of tag returns. If the
experiment succeeds, then the increased reward will continue. To set the hypothesis,
the researcher defines π to be the true proportion of returned tags. From next year’s
return, the researcher wishes to test:

H0 : π = 0.25 vs. HA : π > 0.25 .

One possible outcome of the experiment is that the increased reward had no effect
on the proportion of returned tags (i.e. π = 0.25). Yet, the results of the experiment
lead the researcher to conclude that it did. The researcher then rejects H0 in favor of
HA (i.e. he concludes that π > 0.25). This is a type I error.
Another possible outcome of the experiment is that the increased reward had an

effect (i.e. π > 0.25). Yet, the results of the experiment lead us to conclude that it
did not. The researcher then does not reject H0 in favor of HA (i.e. he concludes that
π = 0.25). This is a type II error.
Because the conclusion is based on a sample and because a sample is subject to

random variations, there is no guarantee that the researcher did not commit one of the
two errors. However, the researcher’s goal is to determine the likelihood of committing
one of the two errors. The consequences of type I and type II errors differ. Type I error
results in continuing the higher reward while the investment is not justified. Type II
error results in discontinuing the higher reward while the investment is justified. ut

10.1.3 Choosing a significance level

Each error type has a probability associated with it: The probability of type I error,
denoted by α and the probability of type II error, denoted by β. A test of a hypothesis
with α = 0.05 is said to have significance level of 0.05. For one reason or another,
traditional values for α are set to 0.1, 0.05 or 0.01.
When we choose α = 0.05, we in effect say that if we were to repeat sampling the

population and testing the same hypotheses many times, then we will reject a true
H0 in about 5% of the repetitions. A smaller α means that we elect to minimize the
risk of rejecting a true null hypothesis. Why then not choose α = 0.01, or better yet,
α = 0.001? The problem is that the smaller α is (the smaller the likelihood of type I
error), the larger β is (the larger the likelihood of type II error). Therefore, we have

Rule of thumb Choose the largest value of α that is tolerable (traditional values
for α are 0.1, 0.05 and 0.01).
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Example 10.8. The U.S. president is concerned about his reelection. He therefore
decides to go to war based on results from a public opinion survey. If, he says, at least
75% of the people support going to war, then we will go to war; otherwise, we will
not. So he sets

H0 : π = 0.75 vs. HA : π < 0.75 .

Type I error is rejecting the null hypothesis in favor of the alternative hypothesis when
the null hypothesis is true. That is, type I error means that the president might choose
not to go to war when in fact he should have. Now suppose the president says: If at
least 25% of the people object to the war, we will not go to war. So he wishes to test

H0 : π = 0.25 vs. HA : π < 0.25 .

Here type I error is rejecting π = 0.25 in favor of π < 0.25. So type I error means
that the president might decide to go to war in spite of the fact that he should not.
In the first case, type I error does not have grave consequences—under the assump-

tion that erring on the side of not going to war is better than erring on the side of
going to war. So we advice the president to choose α = 0.1 or perhaps even larger. In
the second case, type I error has serious consequences and we advise the president to
choose α = 0.01 or even smaller. The better alternative in the second case is to set
HA: π > 0.25. Anyway, a politician perhaps should not decide to go to war based on
public opinion. ut

10.2 Large sample hypothesis testing

In the next few sections, we examine testing hypotheses for large samples where
the parameters of interest are mean, proportion or intensity. To keep the notation
consistent with things to come, we will, from now on, write SE := S/

√
n for the

standard error.

10.2.1 Means

Recall from Section 9.2.1 that when the sample size n > 30, we may use the sample
standard deviation, S, to approximate the population standard deviation, σ. Further-
more, the sampling density of the sample mean, φ (x |μ̂, SE), is centered on μX̂ = μ
(the population mean). We assume that μ = μ0, where μ0 is given and wish to test
one of the pairs in (10.1)—with μ replacing θ—with a significance level α. We have
a sample of size n (> 30) with X and standard deviation S. Because we assume that
μ = μ0 is true, the sampling density of the rv X is φ (x |μ0, SE). With this in mind,
let us construct the test for each pair of H0, HA in (10.1), one at a time.

Lower-tailed test

Our pair of hypotheses is

H0 : μ = μ0 vs. HA : μ < μ0 .

Based on what we know (that the sampling density of X is φ (x |μ0, SE) and that the
significance level is α), we compute

xL = Φ
−1 (α |μ0, SE) (10.2)

= qnorm(alpha, mu.0, SE)



Large sample hypothesis testing 319

Figure 10.1 The sampling density of X under the null hypothesis is φ (x |μ0, SE).
xL is the critical value in the sense that the probability of any X to the left of it is
small (= α) and therefore if we do get X < xL, then we reject H0.

(Figure 10.1) where xL is a critical value in the following sense. The probability that
X ≤ xL is α, or by our notation,

Φ (xL |μ0, SE) := P
(
X ≤ xL

)
= α .

If we do getX ≤ xL from the sample, then we must reject H0 because under it, suchX
is very unlikely. In fact, if X ≤ xL, we conclude that μ < μ0, which is our alternative
hypothesis. Incidentally, to obtain Figure 10.1, we recycle the code we used to obtain
Figure 9.5 (see Example 9.12). To wit, for lower-tailed hypothesis testing, use (10.2)
to obtain xL. If the sample-based X ≤ xL, reject H0 in favor of HA.

Example 10.9. In Example 9.13 we constructed the confidence interval of the age
at sentencing for a sample from the population of death penalty convicts in the U.S.
We concluded that the true population mean was captured by the interval. Let us
examine the following situation: The government says, “The mean age at sentencing
to death is 30.31 years.” You say, “I do not believe you. I think it is smaller. Let me
see the data.” They say, “We cannot give you the data, but we are willing to provide
you with a random sample of 30 cases.” We use the same sample as in Example 9.13
to test the hypothesis that

H0 : μ = 30.31 vs. HA : μ < 30.31 .

with α = 0.05. So we obtain the sample, X , exactly as we did in Example 9.13 and
specify the data thus:

> mu.0 <- mean(age, na.rm = TRUE)

> n <- 30 ; alpha <- 0.05

> X.bar <- mean(X) ; S <- sd(X) ; SE <- S / sqrt(n)
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We are now ready to implement (10.2):

> c(mu.0 = mu.0, x.L = qnorm(alpha, mu.0, SE), X.bar = X.bar,

+ alpha = alpha)

mu.0 x.L X.bar alpha

30.31 27.92 28.16 0.05

Because X > xL, we do not reject H0 and consequently believe the government’s
claim. Similar to the confidence interval we interpret the result thus: If we were to
take many samples of size n from the population of death penalty convicts, then in
the limit, 95% of the samples’ means will be larger than xL = 27.92. Therefore, based
on our rejection probability (α), we believe that our sample is typical and therefore
do not reject H0. ut

Upper-tailed test

Our pair of hypotheses is

H0 : μ = μ0 vs. HA : μ > μ0 .

From the information we have (φ (x |μ0, SE) and α), we compute

xH = Φ
−1 (1− α |μ0, SE) (10.3)

= qnorm(1− alpha, mu.0, S/sqrt(n))

(Figure 10.2) where xH is a critical value in the following sense. The probability that
X > xH is α, or by our notation,

1− Φ (xH |μ0, SE) := 1− P
(
X ≤ xH

)
= α

is small (= α). If we do get X > xH from the sample, then we must reject H0 because
under it, such X is very unlikely. In fact, if X > xH , we conclude that μ > μ0, which
is our alternative hypothesis. To wit, for upper-tailed hypothesis testing, use (10.3)
to obtain xH . If the sample-based X > xH , reject H0 in favor of HA.

Figure 10.2 The sampling density of X under the null hypothesis is φ (x |μ0, SE).
xH is the critical value in the sense that the probability of any X to the right of it is
small (= α).
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Example 10.10. We continue with analysis of capital punishment as it relates to
race (the data were introduced in Example 9.13). The mean age at sentencing for
blacks is 28.38 years. We take a sample from the population of inmates. We assume
that μ0 = 28.38 and ask: Would the sample mean make us reject the hypothesis
that the mean age of the population of convicts at the time of sentencing to death is
μ = μ0? Our hypotheses are

H0 : μ = 28.38 vs. HA : μ > 28.38

and we choose α = 0.05 and sample size n = 40. So we specify the data

> set.seed(5) ; n <- 40 ; alpha <- 0.05

> mu.0 <- mean(age[cp$Race == 'Black'], na.rm = TRUE)

> X <- sample(age, n)

> X.bar <- mean(X) ; S <- sd(X) ; SE <- S / sqrt(n)

and use (10.3)

> round(c(mu.0 = mu.0, x.H = qnorm(1 - alpha, mu.0, SE),

+ X.bar = X.bar, alpha = alpha), 2)

mu.0 x.H X.bar alpha

28.38 30.86 31.09 0.05

Because X > xH , we reject H0 and conclude that μ > 28.38 with 95% certainty.
This means that if we repeat the samples, under H0, 95% of the means will be
≤ xH . Because under the null hypothesis model we obtained a rare result (5% of
the means under H0 will be > xH), we reject H0. However, we may be wrong because
our sample might be one of those 5%. So we admit that we may erroneously reject a
true H0 (that μ = μ0). Our type I error has a chance of 0.05 to occur. ut

The last two examples bring up two important points. First, because we have data
for the population, we do not really need to do any statistical tests for the mean. We
know that the mean age at sentencing for the black population of convicts who were
sentenced to death is 28.38 years and we know that it is 30.31 for the whole population.
The question whether these differences are significant is no longer statistical. It is a
matter of opinion whether a difference of 30.31 − 28.38 = 1.93 is large enough to
reflect social issues (such as discrimination). Second, we can go even further. If we
have a very large sample, say n = 100 000, with a small S, say 1, then the standard
error is SE = 0.003. Such a small standard error reflects the fact that X is very close
to μ. In other words, for all practical purposes, our sample is the population. Again,
statistics are hardly needed in such cases. We do use statistics in Example 10.10 for
heuristic reasons and to make a point: Sometimes you have to sample the population.

Two-tailed test

Our pair of hypotheses is

H0 : μ = μ0 vs. HA : μ 6= μ0 .

Because we are testing on both sides of μ0, we need to specify α on the left and
right extremes. Traditionally, we use α/2 on each tail of the test. However, in decision
making and risk analysis, it may make sense to choose different values for αL on the
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left tail and αH on the right tail. For now, we shall be content with equal rejection
regions on both tails of the density. In Chapter 11, we will examine other possibilities.
From the information we have (φ (x |μ0, SE) and α), we compute

xL = Φ
−1 (α/2 |μ0, SE) (10.4)

= qnorm(alpha/2, mu.0, S/sqrt(n))

and

xH = Φ
−1 (1− α/2 |μ0, SE) (10.5)

= qnorm(1− alpha/2, mu.0, S/sqrt(n))

(Figure 10.3)
where xL and xH are critical values in the usual sense. The probability that X ≤

xL or X > xH is α, or by our notation,

Φ (xL |μ0, SE) := P
(
X ≤ xL

)
= α/2 or

1− Φ (xH |μ0, SE) := 1− P
(
X ≤ xH

)
= α/2

is small (= α). If we do get X ≤ xL or X > xH from the sample, then we must reject
H0 because under it, such X is very unlikely. In fact, if X /∈ [xL ,xH ], we conclude
that μ 6= μ0, which is our alternative hypothesis. To wit, for two-tailed hypothesis
testing, use (10.4) to obtain xL and (10.5) to obtain xH . If X /∈ [xL ,xH ], reject H0
in favor of HA.

Figure 10.3 The sampling density of X under the null hypothesis is φ (x |μ0, SE).
xL and xH are the critical values in the sense that the probability of any X to the
left of xL or to the right of xH is small (= α).

Example 10.11. Continuing with the capital punishment data, there have been a
total of 138 women convicted to death. Let us take a sample of n = 40 of them and
ask: Assume that for the whole population, μ = μ0 = 30.31. Does the sample of
women’s age at sentencing to death confirm this assumption? Our hypotheses are

H0 : μ = 30.31 vs. HA : μ 6= 30.31 .

and we choose α = 0.05. So we specify the data
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> set.seed(33) ; n <- 40 ; alpha <- 0.05

> X <- sample(age[cp$Sex == 'F'], n)

> mu.0 <- mean(age, na.rm = TRUE)

> X.bar <- mean(X) ; S <- sd(X) ; SE <- S / sqrt(n)

and use (10.4) and (10.5)

> round(c(mu.0 = mu.0, x.L = qnorm(alpha/2, mu.0, SE),

+ x.H = qnorm(1 - alpha/2, mu.0, SE), X.bar = X.bar,

+ alpha = alpha / 2), 3)

mu.0 x.L x.H X.bar alpha

30.307 26.640 33.974 34.490 0.025

Because X = 34.49 /∈ [xL ,xH ] = [26.64 ,33.97], we reject H0 and conclude that
μ 6= 30.31 with 95% certainty. This means that if we repeat the samples from the
population of female convicts, under H0, 95% of the means will be within the interval
[xL ,xH ]. Because we obtained a rare result (5% of the means under H0 will not be
in the interval), we reject H0. However, we may be wrong because our sample might
be one of those 5%. So we admit that we may erroneously reject a true H0 (that μ =
μ0). Our error has a chance of 0.05 to occur (this is type I error). ut

Note the duality between confidence intervals (Example 9.13) and two-tailed
hypotheses testing (Example 10.11). In the former, we estimate μ and construct a
random interval centered on X. In the latter, we assume that μ = μ0 and construct
a true interval centered on μ0. In the former, our confidence coefficient is 1 − α, in
the latter, our significance is α.
Because the normal is symmetric, we could use absolute values to make the nota-

tion (in the case of two-tailed hypotheses testing) more compact. However, we wish
to keep the notation general. Because not all sampling densities are necessarily sym-
metric, xL and xH are not necessarily equidistant from θ0.

10.2.2 Proportions

Recall that an unbiased estimator of a population proportion with regard to some
property, π, is

π̂ = p =
nS

n

where n is the sample size and nS is the number of observations that posses the
property. As we have seen in Section 7.7.1, for nπ ≥ 5 and n(1− π) ≥ 5, we treat the
sampling density of p as approximately normal, or in the case of hypothesis testing, as

φ
(
p
∣
∣
∣π0,

√
π0 (1− π0) /n

)
.

Therefore, to test hypotheses, we replace θ in the pairs in (10.1) with π and proceed
exactly as in Section 10.2.1 replacing μ with π and SE with

√
π0 (1− π0) /n. There

is potentially one additional step: Because the binomial is discrete and the normal
is continuous, if 1/(2n) ≥ |p − π0|, we need to adjust π0 to π0 − 1/(2n). We will
consider the normal approximation when samples are large. Therefore, we shall not
use this so-called continuity correction (its use is controversial anyway).
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Example 10.12. The following was analyzed by Kaye (1982). The plaintiff in
Swain v. Alabama (1965) alleged discrimination against blacks in grand jury selection.
At the time, 25% of those eligible to serve on a grand jury were blacks. Of the 1 050
individuals called to potentially serve on a grand jury, 177 were blacks. Do the data
support the assertion of discrimination? If the proportion of blacks in the “sample”
(those who were called for jury duty) is significantly smaller then their proportion in
the population, then we yell “discrimination.”
We use π0 = 0.25. Our hypotheses are

H0 : π = π0 vs. HA : π < π0 .

for α = 0.01. We have n = 1050, nS = 177, π0 = 0.25, p = 177/1 050 ≈ 0.169. Here
n × π = 1050 × 0.25 ≥ 5 and n × (1− 0.25) ≥ 5. Therefore, we may proceed with
the large sample test for proportions. Modifying the code in Example 10.9, we obtain

> n <- 1050 ; n.S <- 177 ; PI.0 <- 0.25 ; alpha <- 0.01

> SE <- sqrt(PI.0 * (1 - PI.0) / n)

> round(c(PI.0 = PI.0, x.L = qnorm(alpha, PI.0, SE),

+ p = n.S / n, alpha = alpha), 2)

PI.0 x.L p alpha

0.25 0.22 0.17 0.01

Because 0.17 < 0.22, we reject H0 and conclude that in fact there is evidence of dis-
crimination. Note that we use π0 in the standard error term (SE) because by assuming
π = π0 we obtain the standard deviation of the binomial. In other words, in the case
of the binomial, by virtue of assuming π, we are specifying σ. Interestingly, the court
concluded that there was no evidence for discrimination. The judge claimed that
the difference between the ratio of blacks in the population and their ratio among
potential jurors (−0.081) was small! ut

10.2.3 Intensities

In Section 7.2.3, we saw that the normal approximation for the Poisson is μ = λ and
σ2 = λ. We also saw that a sample-based intensity, l = X, is the best estimate of λ.
From Section 7.8.1 we conclude that to test hypotheses, we use

φ

(

l

∣
∣
∣
∣
∣
λ0,

√
λ0

n

)

.

Therefore, we replace θ in the pairs in (10.1) with λ and proceed exactly as in Section
10.2.1 replacing μ with λ and SE with

√
λ0/n.

Example 10.13. One year of data about the daily number of arrivals of visitors to
Park Lomumba revealed that the number of visitors per day is Poisson with parameter
λ0 = 25. The average number of arrivals to Park Kasabubu is l = 30. Could this
average come from a density with λ0 = 25 with the possibility of 5% error if the
answer is no?
Based on the question, we need to test

H0 : λ = 25 vs. HA : λ > 25

at α = 0.05. Modifying the code in Example 10.10, we obtain
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> n <- 1 ; lambda.0 <- 25 ; l <- 30 ; alpha <- 0.05

> SE <- sqrt(lambda.0 / n)

> round(c(lambda.0 = lambda.0,

+ x.H = qnorm(1 - alpha, lambda.0, SE),

+ l = l, alpha = alpha), 2)

lambda.0 x.H l alpha

25.00 33.22 30.00 0.05

Because 30.00 < 33.22 we conclude with high certainty that λ = 30.00 in
Kasabubu. ut

10.2.4 Common sense significance

At this point, we have enough understanding to discuss an important issue—the
difference between statistical and common sense significance. Sometimes we may reject
H0 based on the significance test. However, the difference between values we test for
may be so small, that it no longer makes sense to distinguish between them. Here is
an imaginary example that clarifies the issue.

Example 10.14. A bigot claims that the IQ of his “race” is higher than the average
IQ in the population, which equals 100. He sets the hypotheses to

H0 : μ = 100 vs. HA : μ > 100

at α = 0.01. He reports the following about the IQ of children of his race:

n = 10 000 , X = 100.5 , S = 20 .

From (10.3), we obtain

> n <- 10000 ; alpha <- 0.01 ; mu.0 <- 100 ;

> X.bar <- 100.5 ; S <- 20 ; SE <- S / sqrt(n)

> round(c(mu.0 = mu.0, x.H = qnorm(1 - alpha, mu.0, SE),

+ X.bar = X.bar, alpha = alpha), 2)

mu.0 x.H X.bar alpha

100.00 100.47 100.50 0.01

He therefore concludes that “to a high degree of statistical significance, children of
my race are more intelligent than an average child.”
The bigot’s implied conclusion—that children of his race are smarter than average

—is practically nonsense. Why? Because with n = 10 000, the point estimate X =
100.5 is very close to μ = 100. In fact, he established a new population average.
Furthermore, a child with an IQ of 100.5 is unlikely to do consistently better in
anything that is related to IQ than a child with an IQ of 100 (a difference of 0.5
points in a population with a standard deviation of 20 is meaningless). In other
words, in reality, a 0.5-point difference in IQ is meaningless—particularly in light of
the inaccuracy of measuring IQ in the first place. Finally, IQ test results most likely
fluctuate, even for the same person at different times, by more that 0.5, which then
requires an Analysis of Variance (see Chapter 15). ut
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Example 10.14 illustrates the fact that with a large enough sample we can always
establish significance. However, at some point, the large sample represents the popu-
lation, not a sample from the population. To get around the problem of significance
because of large sample sizes we should either determine the necessary sample size to
detect a specified difference with a particular significance or admit that no statistics
are necessary. In the latter case, whatever differences we find are hardly random and
we need to address how meaningful these differences are. We address this issue in
Chapter 11.

10.3 Small sample hypotheses testing

When samples are small, we can no longer invoke the central limit theorem. If the
population is normal, then we can use the t density to construct hypothesis tests.
Otherwise, we have to assume a density (e.g. binomial, Poisson). If we cannot assume
a density and we still wish to test hypotheses about the value of an arbitrary parameter
from an arbitrary density, we can use the bootstrap method. These, then, are the
subjects of this section and the next.

10.3.1 Means

Here, we deal with small samples (n < 30) from normal populations. As was the case
for confidence intervals, we use the t density for inference. Recall from Section 9.2.2
that for small samples (n < 30), the sampling density of X is t (z |n− 1), where n− 1
are the so-called degrees of freedom and

Z =
X − μ
σ/
√
n
or X = μ+ Z

σ
√
n
.

We estimate σ with S. Therefore, for lower-tailed hypotheses tests with SE := S/
√
n,

we use

xL = μ0 − t
−1 (α |n− 1) SE (10.6)

= mu.0− qt(alpha, n− 1) ∗ SE

and reject H0 if X < xL. For upper-tailed tests we use

xH = μ0 + t
−1 (1− α |n− 1) SE (10.7)

= mu.0+ qt(1− alpha, n− 1) ∗ SE

and reject H0 if X > xH . For two-tailed tests we use

[xL, xH ] =
[
μ0 − t

−1
(α
2
|n− 1

)
SE, μ0 + t

−1
(
1−
α

2
|n− 1

)
SE
]

= c(mu.0− qt(alpha/2, n− 1) ∗ SE, (10.8)

mu.0+ qt(1− alpha/2, n− 1) ∗ SE)

and reject H0 if X < xL or X > xH .
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Example 10.15. Based on a large number of nests, the clutch size of yellow-headed
blackbirds in Iowa was reported to be 3.1 eggs per nest (Orians, 1980, p. 269). A
sample of 26 nests in Minneapolis showed a mean clutch size of 4.0 eggs per nest
with S2 = 1.6. Can we claim that the mean clutch size of the sample from Minnesota
represents the mean clutch size of the Iowa population with 0.05 significance?
Here μ0 = 3.1, X= 4.0, α = 0.05, σ ≈ S =

√
1.6, and n = 26. We wish to test

H0 : μ = 3.1 vs. HA : μ > 3.1 .

Based on (10.7), we obtain

> mu.0 <- 3.1 ; X.bar <- 4.0 ; n <- 26 ; S <- sqrt(1.6)

> SE <- S / sqrt(n) ; alpha <- 0.05

> x.H <- mu.0 + qt(1 - alpha, mu.0, SE) * SE

> round(c(mu.0 = mu.0, x.H = x.H,

+ X.bar = X.bar, alpha = alpha), 2)

mu.0 x.H X.bar alpha

3.10 3.79 4.00 0.05

and thus reject H0. ut

10.3.2 Proportions

In Section 9.2.2, we introduced two common methods to compute confidence intervals
for small samples from a population with binomial density. These referred to the exact
method (9.11) and (9.12) and the Wilson method (9.13). The function binconf() in
the package Hmisc calculates confidence intervals for the binomial (Example 9.17).
We can use it to obtain pL and pH for hypothesis testing. Here is how.

Example 10.16. Sex ratio at birth in sexually reproducing population is generally
considered to be 1 : 1. A sample of 40 individuals revealed a ratio of 0.45 females in
the population. Is the proportion of females smaller than 0.5?
The hypotheses are

H0 : π = 0.5 vs. HA : π < 0.5 .

and we use α = 0.05. Then

> library(Hmisc) ; n <- 40 ; n.S <- 20 ; p <- 0.45

> PI.0 <- n.S / n ; a <- 0.1

> x <- binconf(n.S, n, method = 'wilson', alpha = a)

> round(c(PI.0 = PI.0, p.L = x[2], p = p, alpha = a/2), 2)

PI.0 p.L p alpha

0.50 0.37 0.45 0.05

and we cannot reject H0. Let us explain what is going on. According to H0,
π0 = 20/40. Now binconf() computes confidence intervals, so whatever α you pass
on to it, it will calculate α/2 for the tails on each side of π0. Therefore, we set a
= 2α = 0.1. Because the sample is small, we use the Wilson method, hence method =

'wilson' (it is the default method anyway). In this case, binconf() returns a vector.
We store it in x and retrieve pL from x[2]. Were we to test for HA: π > π0, then we
retrieve pH from x[3]. To test HA: π 6= π0, pass to binconf() your original α, not
2α and retrieve pL and pH from x[2] and x[3]. ut
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10.3.3 Intensities

Recall from Section 9.2.2 that the Poisson density with parameter λ is

P (X = x) =
λx

x!
e−λ x = 1, 2, . . . .

We use λ̂ = l (counts per unit of measurement) to estimate λ. We compute confidence
intervals for a particular confidence coefficient according to (9.14). Let P (X ≤ x |n )
be the χ2 distribution with n degrees of freedom. Then for lower-tailed hypothesis
testing with H0: λ = λ0 and significance level α, we use

lL = P
−1 (α |2λ0 ) /2 (10.9)

= qchisq(alpha, 2 ∗ lambda.0)/2

and reject H0 if l < lL. For upper-tailed testing we use

lH = P
−1 (1− α |2 (λ0 + 1)) /2 (10.10)

= qchisq(1− alpha, 2 ∗ (lambda.0+ 1))/2

and reject H0 if l > lH . For two-tailed testing we use

[lL, lH ] =
[
P−1

( α
2

∣
∣
∣ 2λ0

)
/2, P−1

(
1−
α

2

∣
∣
∣ 2 (λ0 + 1)

)
/2
]

= [c(qchisq(alpha/2, 2 ∗ lambda.0)/2, (10.11)

qchisq(1− alpha, 2 ∗ (lambda.0+ 1))/2]

and reject H0 if l < lL or l > lH .

Example 10.17. People who fish in Lake of the Woods, in Northern Minnesota, claim
that on the average, they catch (and release some) 6.5 fish per day. Suppose that the
number of fish caught per day is Poisson and because you are gullible, you set λ =
λ0 = 6.5. You went fishing on Lake of the Woods recently and encountered 3 fish per
day. Given your experience, would you believe the claim with α = 0.05?
We wish to test

H0 : λ = 6 vs. HA : λ < 6 .

Using (10.9) we obtain

> lambda.0 <- 6.5 ; l <- 3 ; alpha <- 0.05

> round(c(lambda.0 = lambda.0,

+ l.L = qchisq(alpha, 2 * lambda.0) / 2, l = l,

+ alpha = alpha), 2)

lambda.0 l.L l alpha

6.50 2.95 3.00 0.05

and we conclude that people’s claims are more than fish stories (that is, we do not
reject H0). ut
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10.4 Arbitrary statistics of arbitrary densities

As was the case in Section 9.3, we can use the bootstrap method to obtain the sampling
density of any statistic from arbitrary density of interest. From the density and for
a given α, we compute critical values. In Example 9.19 we used bootstrap to build
confidence intervals. In the next example, we examine the density of xL and xH (which
can be used for confidence intervals at half their α values).

Example 10.18. Consider an experiment in which the growth rate of n = 35 tumors
are recorded:

> set.seed(1) ; n <- 20

> X <- runif(n, 0, 10)

We calculate the confidence intervals for the confidence coefficients 1 − α = 0.90 and
0.95 with

> p <- c(0.025, 0.05, 0.95, 0.975)

> qnorm(p, mean(X), sd(X) / sqrt(n))

These confidence intervals are rv. Now put the above statements in a loop with R
repetitions and collect the quantiles (associated with p and the sampling density of
X). These quantiles are then the sampling density of the lower and upper boundaries
of the confidence intervals. Here is the chunk that does the bootstrap:

1 set.seed(1) ; n <- 35 ; X <- runif(n, 0, 10)

2 R <- 100000 ; p <- c(0.025, 0.05, 0.95, 0.975)

3

4 m <- matrix(sample(X, size = n * R, replace = TRUE),

5 ncol = R, nrow = n)

6 X.bar <- apply(m, 2, mean) ; SE <- apply(m, 2, sd) / sqrt(n)

7 xp <- cbind(matrix(p, nrow = R, ncol = length(p),

8 byrow = TRUE), X.bar, SE)

9

10 x <- qnorm(xp[, 1 : 4], xp[, 5], xp[, 6])

Let us examine the top left panel of Figure 10.4. The histogram is the sampling
density of the lower boundary of the confidence interval of X for α = 0.025. The
left-most vertical line shows the lower boundary of the sampling density of the lower
confidence interval of X for the confidence coefficient = 0.05. The rightmost vertical
line is the corresponding upper boundary. The inner vertical lines delineate the same
as the outer vertical lines, but for confidence coefficient = 0.1. The graph to the right
of the sampling density shows the normal approximation of the sampling density of
the upper boundary of the confidence interval of X (the sampling density itself is
shown in the lower right corner of the figure). The vertical lines were obtained this
way:

> for(i in 1 : 4){

+ q <- quantile(x[, j], prob = p)

+ critical.x[j, ] <- q

+ }
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Figure 10.4 Bootstrapped densities of tumor growth.

Here are their values:

significance | lower-tailed upper-tailed

alpha | 0.025 0.050 0.050 0.025

confidence coefficient | 0.050 0.100 0.900 0.950

----------------------------- + ------------ ------------

sampling densities: |

lower boundary, alpha = 0.025 | 3.280 3.418 4.979 5.135

lower boundary, alpha = 0.050 | 3.426 3.566 5.125 5.280

upper boundary, alpha = 0.950 | 4.916 5.075 6.671 6.815

upper boundary, alpha = 0.975 | 5.055 5.217 6.824 6.965

The results can be used to test hypotheses or for confidence intervals. The remaining
panels in Figure 10.4 were obtained similar to the top left. The confidence coefficients
and α in the results above illustrate the duality between confidence interval and
hypothesis testing. ut

10.5 p-values

So far, we compared the value of our statistic to the values of xL or xH that we
obtained from the statistic’s sampling density. But if we assume a sampling density,
then instead of comparing values, we can compare probabilities.
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Example 10.19. Suppose we wish to use a lower-tailed test for a mean with α and
μ0 given for a large sample. We take a sample and obtain X. Because under H0 we
know the sampling distribution; it is

Φ (xL |μ0, SE) = α, Φ
(
X |μ0, SE

)
= p-value .

Now to obtain the p-value, we do

> p.value <- pnorm(X.bar, mu.0, S / sqrt(n))

So if p-value < α, we know that X is to the left of the lower critical value, xL and we
reject H0. With the p-value given, we do not need to calculate xL. ut

Example 10.19 is specific. Let the sampling distribution of a statistic under H0 be
P (X ≤ x0 |θ ) where the rv X is the statistics and x is its value we obtain from a
sample. Then, in general, we define the p-values thus:

lower-tailed: p-value = P (X ≤ x |θ ) ,
upper-tailed: p-value = P (X > x |θ ) ,
two-tailed: p-value] = min [P (X ≤ x |θ ) , P (X > x |θ )] .

So for the one-tailed tests, if p-value < α we reject H0. For two-tailed tests, if p-value
< α/2 we reject H0.
There is a subtle, but important point here. Just like α (which is associated with

xL and xH), the p-value is not associated with a rv. It is associated with a given
quantity (e.g. the computed sample mean, x). To clarify this point, suppose that we
obtain x0 and y0 for the statistic from two different samples with identical sampling
density. Now suppose that both p-values indicate significance (i.e. rejection of H0)
with the p-value associated with x0 < than the p-value associated with y0. Because
x0 and y0 are not rv, we cannot say that x0 is more significant than y0. It is useful to
know (and consider) that x0 is more extreme on the sampling density than y0, but it
has nothing to do with more or less significant. Next, we repeat some of our examples
with p-values this time.

Example 10.20. In Example 10.9 (lower-tailed test) we calculated

> round(c(mu.0 = mu.0, x.L = qnorm(alpha, mu.0, SE),

+ X.bar = X.bar, alpha = alpha), 2)

mu.0 x.L X.bar alpha

30.31 27.92 28.16 0.05

and thus did not reject H0. Instead we calculate

> round(c(mu.0 = mu.0, X.bar = X.bar, alpha = alpha,

+ p.value = pnorm(X.bar, mu.0, SE)), 2)

mu.0 X.bar alpha p.value

30.31 28.16 0.05 0.07

Because 0.07 > 0.05, we do not reject H0. In Example 10.10 (upper-tailed test), we
calculated

> round(c(mu.0 = mu.0, x.H = qnorm(1 - alpha, mu.0, SE),

+ X.bar = X.bar, alpha = alpha), 2)

mu.0 x.H X.bar alpha

28.38 30.86 31.09 0.05
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and therefore rejected H0. Here we calculate

> round(c(mu.0 = mu.0, X.bar = X.bar, alpha = alpha,

+ p.value = 1 - pnorm(X.bar, mu.0, SE)), 2)

mu.0 X.bar alpha p.value

28.38 31.09 0.05 0.04

In Example 10.11 (two-tailed), we obtained

mu.0 x.L x.H X.bar alpha

30.307 26.640 33.974 34.490 0.025

For the p-value we have

> round(c(mu.0 = mu.0, X.bar = X.bar, alpha = alpha / 2,

+ p.value = min(pnorm(X.bar, mu.0, SE),

+ 1 - pnorm(X.bar, mu.0, SE))), 3)

mu.0 X.bar alpha p.value

30.307 34.490 0.025 0.013

ut

In Example 10.20 we use large samples and consequently the normal sampling density.
Both the normal and t are symmetric and the notation can be simplified. However,
to keep the discussion general, we should keep the upper- and lower-tail calculations
intact in case we use asymmetric sampling densities such as χ2, binomial and Poisson.
At any rate, as the next example illustrates, one must use these ideas with caution.

Example 10.21. In Example 10.17, we discussed lower-tailed hypothesis testing with
a small Poisson sample. Let’s use a two-tailed test with a somewhat different story.
Recall that people claim that on the average, they catch (and release some) 6.5 fish
per day in Lake of the Woods. We supposed that the number of fish caught per day is
Poisson. You wish to test for λ = λ0 = 6.5. Because you have no idea whether people
are exaggerating or underestimating their catch rate, you decide on a two-tailed test
with α = 0.1. You went fishing and caught 5 fish in two days. So

> lambda.0 <- 6.5 ; l <- 2.5 ; alpha <- 0.1

> round(c(lambda.0 = lambda.0,

+ x.L = qchisq(alpha / 2, 2 * lambda.0) / 2,

+ x.H = qchisq(1 - alpha / 2, 2 * (lambda.0 + 1)) / 2, l = l,

+ alpha = alpha / 2), 3)

lambda.0 x.L x.H l alpha

6.500 2.946 12.498 2.500 0.050

Because l = 2.5 < xL = 2.946, you reject people’s claim. To obtain p-values, we use

> (lower.p <- pchisq(2 * l, 2 * lambda.0))

[1] 0.02480687

> round(c(lambda.0 = lambda.0, l = l, alpha = alpha / 2,

+ p.value = lower.p), 3)

lambda.0 l alpha p.value

6.500 2.500 0.050 0.025
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Note the duality

> (p.value <- pchisq(l * 2, 2 * lambda.0))

[1] 0.02480687

> qchisq(p.value, 2 * lambda.0) / 2

[1] 2.5

Figure 10.5 illustrates the idea of the p-value. The left panel shows the sampling den-
sity for the lower-tailed density (solid curve) and the upper-tailed density (broken
curve) and the regions of rejection for two-tailed test (light gray). The right panel
magnifies the lower region and shows the relationship between the rejection prob-
ability (light gray) and the p-value (black) and their corresponding xL and l0. In
this case, we reject the null hypothesis because l0 < xL and consequently, p-value <
P (X ≤ xL |2λ0 ) /2 where P is the χ2 distribution with 2λ0 degrees of freedom. ut

Figure 10.5 The relationship between l, xL and their corresponding areas under the
sampling density.

10.6 Assignments

Unless otherwise stated, use α = 0.05 where necessary.

Exercise 10.1. Is X a legitimate value about which we may test hypotheses? Why?

Exercise 10.2.Which of the following statements does not follow the rules of setting
up hypotheses? Why?

1. H0 : μ = 15 vs. HA : μ = 15
2. H0 : π = 0.4 vs. HA : π > 0.6
3. H0 : μ = 123 vs. HA : μ < 123
4. H0 : π = 0.1 vs. HA : π 6= 0.1

Exercise 10.3. Suppose that in protecting airplanes from colliding with birds, the
local Airport Commission sets a rule that the number of nesting birds around the
airport should not exceed 200. An inspection team—whose main concern is airport
safety—decides to test

H0 : μ = 200 vs. HA : μ > 200

where μ is the average number of nesting birds around the airport during the breeding
season. Would that be preferable to testing HA : μ < 200? Explain.
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Exercise 10.4. Use R with the data in teen-birth-rate-2002.txt to produce the
data in Table 10.2.

Table 10.2 Teen birth rates under the assump-
tion of normal distribution.

X S na Z pb

Black 76.14 15.60 44 4.79 0
Hispanic 88.96 23.66 48 7.05 0
White 32.51 11.71 51 −19.74 0

a Based on states data.
b p is the area under the normal that gives the
probability of getting the vlaue Z or larger.

Exercise 10.5. The Faculty Senate at the University of Minnesota decided to change
the grading system from straight letter grades to letter grades with + or −. Imagine
that before changing the grading system the University administration decided to
implement the change if more than 60% of the faculty favor the change. A random
sample of 20 faculty was selected for a survey. Denote by π the proportion of all faculty
that are in favor of adding + or − to the letter grade. Which pair of hypothesis tests
would you recommend to the administration:

H0 : π = 0.6 vs. HA : π < 0.6

or
H0 : π = 0.6 vs. HA : π > 0.6 .

Explain.

Exercise 10.6. The U.S. Environmental Protection Agency (EPA) decides that a
concentration of arsenic in drinking water that exceeds π0, where π0 is some constant,
is unsafe. A farmer uses these guidelines to sample her well for testing for arsenic
concentration.

1. Use the EPA website to find the level that the EPA chose for π0.
2. Recommend specific hypotheses (H0 vs. HA) for the farmer to test.

Exercise 10.7. Imagine that a spokesman for the Russian nuclear power industry
says: “From the available data, there is no convincing evidence of increased risk of
death from cancer due to living near nuclear facilities. Yet, no study can prove the
absence of increased risk.”

1. Denote by π0 the proportion of the population in areas near a nuclear power
plants who die of cancer during a given year. Consider the hypotheses

H0 : π = π0 vs. HA : π > π0 .

Based on the quote above, did the spokesman reject H0 or fail to reject H0?
2. If the spokesman was incorrect in his conclusion, would he be making a type I or
a type II error? Explain.

3. Do you agree with the spokesman’s statement that no study can prove the absence
of increased risk? Explain.
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Exercise 10.8. Prairie Island is a nuclear power plant next to an Indian reservation
in Minnesota. The plant releases its cooling water into the Mississippi river. Assume
that by law, the plant is not allowed to discharge water warmer than 125◦C into
the river because warmer water causes damage to downstream ecosystems. Suppose
that the Minnesota Pollution Control Agency (PCA) wishes to investigate whether
the plant is in compliance. PCA employees take 50 temperature readings at random
times during a month from the river water from near the plant. The hypotheses to be
tested are

H0 : μ = 125 vs. HA : μ > 125 .

Describe the consequences of type I and type II errors. Which error would you consider
to be more serious? Explain.

Exercise 10.9. Suppose that the U.S. Park Service wishes to increase the entry fee
to National Parks by 20%. Before increasing the entry fee, officials decide to conduct a
market survey to determine how well such an increase will be accepted by the public.
The survey includes the following question: “Would a 20% increase in entry fee to
a National Park reduce the number of visits to National Parks you plan next year?
Denote by π0 the fraction of the population who would answer yes. Set the hypotheses
to be tested to

H0 : π = π0 vs. HA : π > π0 .

Describe the consequences of type I and type II errors.

Exercise 10.10. Suppose that the EPA decides that if mercury concentration of fish
in a lake exceeds 5 ppm, then fishing in the lake must be banned.

1. Which pair of hypothesis would you prefer?

H0 : μ = 5 vs. HA : μ > 5

or

H0 : μ = 5 vs. HA : μ < 5 .

Explain.
2. What significance level would you prefer for the test? 0.1 or 0.01? Explain.

Exercise 10.11. An imaginary study of oil spills attempts to answer the following
question: What area of the ocean surface would a 1 gal oil spill cover? Denote by μ
the average area covered by 1 gal of oil spill. The researcher pours 1 gal in open water
and measures the area. The experiment is repeated 50 times. The researcher wishes
to test the hypotheses

H0 : μ = μ0 vs. μ > μ0

where μ0 is some area constant, measured in m
2. What is the appropriate test statistic

and the rejection values for the following significance values:

1. α = 0.01
2. α = 0.05
3. α = 0.10
4. α = 0.13
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Exercise 10.12. Imagine that a high-ranking politician has an affair with an intern.
The politician’s image-makers decide to carry a public opinion survey in which they
ask registered voters to rate how much they like the politician on a scale of −5 (hate)
to +5 (love). Denote by μ the population average of how much registered voters like
the politician. The image makers are going to use a large sample z-statistic to test

H0 : μ = 0 vs. HA : μ < 0 .

What is the appropriate critical-z for each of the following significance values?

1. 0.001
2. 0.01
3. 0.05
4. 0.1

Exercise 10.13. For each pair of p-value and α, state whether the observed p-value
will lead to rejection of H0 at the given α:

1. p-value = 0.07, α = 0.10
2. p-value = 0.2, α = 0.10
3. p-value = 0.07, α = 0.05
4. p-value = 0.5, α = 0.05
5. p-value = 0.03, α = 0.01
6. p-value = 0.003, α = 0.001

Exercise 10.14. Find the p-value associated with each given z-statistic for testing

H0 : μ = μ0 vs. μ 6= μ0
where μ0 is given:

1. z? = 2.2
2. z? = −1.4
3. z? = −0.5
4. z? = 1.25
5. z? = −5.2

Exercise 10.15. A sample of 36 birds is caught in mist nets. The mean carpal length
is 12.1 cm and S = 0.2 cm. We wish to test the hypothesis that the mean carpal
length is

H0 : μ = 12 vs. μ > 12 .

1. What is the value of the Z statistic?
2. What is the p-value associated with the value of this Z?
3. Let α = 0.05; should H0 be rejected? State your conclusions.

Exercise 10.16. Zebras spend on the average 75min at a watering hole. To test
their sensitivity to the presence of predators in the area, we play a tape of lion roars.
A sample of 100 observations with the tape played reveals that the zebras spend
an average of 68.5min at the watering hole. The standard deviation is 9.4min. Let
α = 0.01. Set up the hypotheses, write the test statistic and determine the p-value
of the sample mean. Does the experiment indicate that the tape playing shortens the
time the zebras spend at the watering hole?
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Exercise 10.17. Bui et al. (2001) conducted a cross-sectional survey in three districts
of Quang Ninh province, Viet Nam, to find out what proportion of the people who
lived there engaged in behavior that put them at risk of becoming infected with
HIV and to measure their knowledge about HIV infection and AIDS. The survey was
conducted in a rural district, Yen Hung; a mountainous district inhabited primarily by
ethnic minority groups, Binh Lieu; and an urban district, Ha Long. Here is a sample
of the data:

age.at district gender mean sd n

5 interview Ha Long men 31 9.2 210

7 marriage Binh Leiu men 21 3.4 210

10 marriage Yen Hung women 22 3.0 210

14 first intercourse Binh Leiu women 20 3.0 210

3 interview Yen Hung men 30 8.8 210

(the data may be found in marriage-Viet-Nam.txt. Assume that the urban dis-
trict represents the population. Formulate the appropriate hypotheses and answer
the following questions for a significance level of α = 0.05.

1. Do women marry at a younger age in the rural district compared to women in
the urban district?

2. Do women marry at a younger age in the mountainous district compared to women
in the urban district?

3. Do men in the rural district engage in first sexual intercourse at a younger age
than men in the urban district?

4. Do men in the mountainous district engage in first sexual intercourse at a younger
age than men in the urban district?

5. Discuss your findings based on the results and the p-values for each of the questions
above.

Exercise 10.18. Write a function that returns a hypothesis test for a small sample
from a normal population. Use the following function as a guideline

1 zp <- function(alpha = 0.05 , n , nS , pi0 ,

2 HA = c('greater' , 'smaller' , 'neq')){

3

4 p <- nS / n ; se <- sqrt(p * (1 - p) / n)

5 correction <- 1/(2 * n)

6 ifelse(correction < abs(p - PI) , correction , 0)

7 Z <- (p - PI - correction) / se

8 critical.z <- qnorm(1 - alpha)

9 HO <- ifelse(Z > critical.z , 'reject' ,

10 'do not reject')

11 if (HA == 'smaller') {

12 critical.z <- qnorm(alpha)

13 HO <- ifelse(Z < critical.z , 'reject' ,

14 'do not reject')

15 }

16 if (HA == 'neq') {
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17 critical.z <- qnorm(1 - alpha / 2)

18 HO <- ifelse(abs(Z) > critical.z , 'reject' ,

19 'do not reject')

20 }

21 results <- list(Z , critical.z , alpha , HO)

22 names(results) <- c('Z' , 'critical.z' , 'alpha' , 'HO')

23 class(results) <- 'table'

24 print(results)

25 }

Exercise 10.19. Write a function similar to zp() (see Exercise 10.18 and code in
Example 10.12) that returns a hypothesis test for a small sample from a binomial
population. (Hint: use library(Hmisc) and then type binconf in R before writing
the function.)

Exercise 10.20. Write a function similar to zp() (see Exercise 10.18 and code in
Example 10.12) that returns a hypothesis test for a small sample from a Poisson
population.

Exercise 10.21. For this exercise, use the data in capital.punishment.rda (see
United States Department of Justice, 2003).

1. What is the proportion of blacks in the population of inmates for the whole data?
2. Use the Internet to find the proportion of blacks in the U.S. population at large
for the year 2000 (be sure to cite the data source properly). Denote this proportion
by π0.

3. Does the proportion of black inmates on death row in 2000 represent a sample
from the population at large?

4. Take a random sample of 10 cases from the data. Does the proportion of blacks
in the sample represent the proportion of black inmates on death row?

Exercise 10.22. Data from pollution sensors in a busy intersection indicate that for
1 000 consecutive days, particulates in the air were above the minimum allowed once
every 10 days. The data (available in an R file, named accidents.rda indicate that
the probability of exceeding the minimum at each day is as likely as any other day.
The local pollution control authority forces a nearby coal electricity generating plant
to add extra scrubbers at a considerable cost. Let λA be the number of incidents of
exceeding the allowed minimum per day after the scrubbers were put into operation.
What would the value of λA need to be for you to believe that the scrubbers are
effective in reducing the average number of days when pollution exceeds the allowed
maximum?

Exercise 10.23. Endangered species are difficult to study because any sampling must
be non-destructive and obtaining a sample of sufficient size in the first place is very
difficult. An intensive study of a population of 10 female Siberian tigers in the wild
resulted in the following data about litter size:
2, 4, 3, 1, 2, 3, 5, 1, 3, 1 .
A standard deviation of litter size that is above 3 can lead to extinction of the

population. Based on the data, is this value likely to occur?
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Exercise 10.24. The notation X ∼ N(μ, σ) means that X has a normal density with
mean μ and standard deviation σ. X ∼ Binomial(n, p) means that X has a binomial
density with parameters n (the number of trials) and p (the probability of success).
Determine the p-value of the following and state whether they are significant or not:

1. X = 1.96, X ∼ N(0, 1), upper-tailed test.
2. X = 1.96, X ∼ N(0, 1), lower-tailed test.
3. X = 1.96, X ∼ N(0, 1), two-tailed test.
4. X = 1.7, X ∼ N(0, 1), upper-tailed test.
5. X = 1.7, X ∼ N(0, 1), lower-tailed test.
6. X = 1.7, X ∼ N(0, 1), two-tailed test.
7. X = 18, X ∼ Binomial(50, 0.5), upper-tailed test.
8. X = 18, X ∼ Binomial(50, 0.5), lower-tailed test.
9. X = 18, X ∼ Binomial(50, 0.5), two-tailed test.
10. X = 4, X ∼ Poisson(8), upper-tailed test.
11. X = 4, X ∼ Poisson(8), lower-tailed test.
12. X = 4, X ∼ Poisson(8), two-tailed test.
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Power and sample size
for single samples

In this chapter, we are interested in the question of power and sample size. Roughly
speaking, power refers to our ability to distinguish between two alternative models;
i.e. between H0: θ = θ0 and HA: θ = θA where θ0 and θA are given. Recall that type
II error is the probability of not rejecting H0 while it is false. Related to this error is
the probability of rejecting the null hypothesis given that the alternative hypothesis
is true. Sample size refers to the problem of deciding on a sample size based on
desired power, specified detectable difference (between θ0 and θA, for example) and
significance level. We deal with these issues in this chapter.
Associated with the decision to reject H0 or not are the following potential con-

sequences:

1. Do not reject H0 when H0 is true (no error)
2. Reject H0 when H0 is false (no error)
3. Reject H0 when H0 is true (type I error)
4. Do not reject H0 when H0 is false (type II error)

Formally, we define a

Power of a test The probability of correctly rejecting H0 for a given θA; i.e.

power := 1− P (type II error given θA)

= 1− β given θA .

Our plan is to discuss power and sample size for means, proportions and intensities
for large and then small samples.

11.1 Large sample

In this section, we show how to compute the power to distinguish between a statistical
model according to H0 and according to HA for large sample sizes. We shall also
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©
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discuss the sample size one needs to obtain given significance, power and the so-called
detectable difference between the statistic under H0 vs. under HA. We address means
(μ), proportions (π) and intensities (λ).

11.1.1 Means

Here we discuss the case where we wish to compute the power of our ability to
distinguish between μ0 and a given alternative μA. We also discuss sample size.

Power

To formalize the idea of power, we summarize what we have learned thus far about
large sample hypotheses testing. We assume that each observed value in the sample of
size n is independent of other values in the sample. We also assume that these values
come from a population with mean μ and standard deviation σ. Because n is large,
we invoke the central limit theorem. We take σ ≈ S, the sample standard deviation.
Then in the limit, the sampling density of X is normal with mean μ and standard
deviation (= standard error) S/

√
n. With these in mind, we can decide whether we

accept or reject H0. Let us introduce the idea of power with an example.

Example 11.1. Prostate cancer often leads to prostatectomy. This in turn causes
erectile dysfunction (ED). Sildenafil citrate, better known as Viagra, is then used to
treat ED. To determine the efficacy of the treatment, urologists use a short form (5
questions) of the so-called International Index of Erectile Function (IIEF). Raina et al.
(2003) treated patients that underwent prostatectomy for 3 years with 50 or 100mg
of Sildenafil. At the end of the first year of treatment, they reported an average score
on the IIEF of 18.52 ± 1.23 (n = 48) on the IIEF test.
Suppose that the average test score for a population of males who underwent

prostatectomy and were not treated for a year with Sildenafil citrate is μ0 = 18. We
wish to test the hypothesis that the treatment was not effective. Namely,

H0 : μ = μ0 vs. HA : μ > μ0

where μ is the average score for the population of males who were treated for a year
with Sildenafil citrate. We use α = 0.05. The sample is large enough to justify the
use of the central limit theorem. Therefore, based on (10.3) and similar to Example
10.10, we obtain

> mu.0 <- 18 ; S <- 1.23 ; n <- 48 ; SE <- S / sqrt(n)

> X.bar <- 18.52 ; alpha <- 0.05

> round(c(mu.0 = mu.0, x.H = qnorm(1 - alpha, mu.0, SE),

+ X.bar = X.bar, alpha = alpha,

+ p.value = 1 - pnorm(X.bar, mu.0, SE)), 3)

mu.0 x.H X.bar alpha p.value

18.000 18.292 18.520 0.050 0.002

and we conclude that the treatment was effective. The rejection region for the sampling
density under H0 is shown in Figure 11.1 (the code to produce the figure was hijacked
from Example 9.12). The gray area is the type I error—rejecting the null hypothesis
when it is true.
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Figure 11.1 Rejection region (gray) for the Viagra treatment.

Next, suppose that in reality, the mean score on the IIEF test for the untreated
population is 18.1. Denote this mean by μA. Under H0, any X that falls to the left
of approximately 18.3 will prompt us not to reject H0. But here we commit an error.
The probability of this error is β. It is shown as the dark region to the left of critical
value of 18.3 under the null model in Figure 11.2A. To compute β in Figure 11.2A,
we write

β = Φ (xH |μA, SE) (11.1)

= pnorm(x.H, mu.A, SE)

(where xH := the critical value x.H) which gives

> mu.A <- 18.1 ; round(pnorm(x.H, mu.A, SE), 2)

[1] 0.86

Next, suppose that μA = 18.2. Now β is

> mu.A <- 18.2 ; round(pnorm(x.H, mu.A, SE), 2)

[1] 0.7

(see Figure 11.2B). In Figure 11.2C and D, μA = 18.3 and 18.4. Here is a summary
of what we have done thus far:

> mu.A <- c(18.1, 18.2, 18.3, 18.4)

> x.H <- qnorm(1 - alpha, mu.0, SE)

> beta <- matrix(nrow = 2, ncol = length(mu.A))

> beta[1, ] <- mu.A

> beta[2, ] <- round(pnorm(x.H, mu.A, SE), 2)

> dimnames(beta) <- list(c('mu.A', 'beta'),

+ rep('',length(mu.A))) ; beta

mu.A 18.10 18.2 18.30 18.40

beta 0.86 0.7 0.48 0.27

From these results we conclude that if we reject μ0 = 18 in favor of μA = 18.3,
for example, then there is 48% chance that we will not reject 18 (in favor of 18.3)
while μ0 = 18 is false. Figure 11.2 was produced with a script similar to that for
Figure 11.1. ut
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Figure 11.2 The dark gray regions indicate type II error for 4 alternative models of
μA = 18.1, 18.2, 18.3 and 18.4 in A, B, C and D. Note the decrease in the size of the
type II error as μA moves away from μ0 = 18.

As the example illustrates, the larger the difference between μ0 and the supposed
alternative state of nature μA, the smaller the β. What we have just illustrated is the
fact that the

Magnitude of type II error (β ) decreases as the difference between a null and
alternative models increases.

This motivates the definition of power of hypothesis testing with H0: θ = θ0 as

Power = 1− β The probability of correctly rejecting H0 for a given θA.

Usually, as a

Rule of thumb about power A power of 1 − β = 0.8 is considered acceptable.

Instead of choosing a small set of values for μA, we can choose a range of values to
obtain the power profile.

Example 11.2. Continuing with Example 11.1, let us compute β and power, for α
= 0.05 and n = 48 for μA = 18 to 19. Figure 11.3 illustrates the duality between the
decrease in the type II error and increase in the power (the probability of rejecting
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H0 when HA is true) with increase in |μ0 − μA|. To produce Figure 11.3 we first
specify the data:

> mu.0 <- 18 ; S <- 1.23 ; n <- 48 ; SE <- S / sqrt(n)

> mu.A <- seq(18, 19, length = 201) ; alpha = 0.05

> x.H <- qnorm(1 - alpha, mu.0, SE)

Note that xH is the critical value for the upper-tailed test under H0 (i.e. μ = μ0).
xH is the right boundary for which we calculate β. Next, we use (11.1) to calculate
β:

> beta <- pnorm(x.H, mu.A, SE)

The plotting is done with

> par(mfrow=c(1, 2))

> plot(mu.A, beta, type = 'l',

+ xlab = expression(italic(mu[A])),

+ ylab = expression(beta))

> plot(mu.A, 1 - beta, type = 'l',

+ xlab = expression(italic(mu[A])),

+ ylab = 'power')

Figure 11.3 The duality between type II error (β) and power profiles for the Viagra
experiment.

and given our work thus far, hardly needs an explanation. ut

Let us interpret our findings in Examples 11.1 and 11.2.

Example 11.3. The higher the test score on the IIEF, the more successful the treat-
ment with Viagra. If the score is high enough, continued treatment is justified. The
data indicate that the score was 18.52± 1.23 for n = 48. We assume that the mean
score for the untreated population is μ = 18 with S = 1.23. Therefore, under H0, the
sampling density of X is φ

(
x
∣
∣18, 1.23/

√
48
)
. From this, we find that at α = 0.05,

xH ≈ 18.3 and we reject the null hypothesis that the treatment is not effective if
the sample X > 18.3. The researchers found X = 18.52 and we conclude that the
treatment is effective with rejecting H0 in only 5% of repeated samples (of size n)
when H0 is correct. Suppose that being conservative, the researchers decide that the
mean score of the treated population is μA = 18.4 (compared to their finding of
X = 18.52). Then
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> round(1 - pnorm(x.H, 18.4, SE), 2)

[1] 0.73

In other words, the probability of rejecting the mean test score of the untreated
population as a representative value of the mean of the treated population is 0.73.
In repeated sampling, we will reach the correct conclusion (that the treatment is
effective) in 73% of the samples. ut

Next, we generalize the example-based results concerning power to include lower-
, upper- and two-tailed hypothesis testing. Consider the rv X from a population
with arbitrary density with mean μ and standard deviation σ. Take a sample of
size n (> 30) from the population. Then the sampling density of X is approximately
φ (x |μ, SE). We have three versions of hypothesis testing and therefore, three versions
of power calculations. In all tests, the significance value is α.

Lower-tailed power

Because our test is
H0 : μ = μ0 vs. HA : μ < μ0 ,

it makes sense to consider μA < μ0 only. To obtain the power, we first compute

xL = Φ
−1 (α |μ0, SE) (11.2)

= qnorm(alpha, mu.0, SE)

and then the power

1− β = Φ (xL |μA, SE) (11.3)

= pnorm(x.L, mu.A, SE)

where x.L := xL.

Upper-tailed power

Our test is
H0 : μ = μ0 vs. HA : μ > μ0 .

Therefore, we consider only μA > μ0. Recall that

xH = Φ
−1 (1− α |μ0, SE) (11.4)

= qnorm(1− alpha, mu.0, SE) .

The power is then

1− β = 1− Φ (xH |μA, SE) (11.5)

= 1− pnorm(x.H, mu.A, SE) .

Two-tailed power

Because our test is
H0 : μ = μ0 vs. HA : μ 6= μ0 ,

we separate the power calculation into the alternatives μL < μ0 and μH > μ0. We
also wish to stay away from symmetric α (for reasons we explain in Example 11.5
below). So we specify αL and αH . Without further information, we may choose
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some Δ > 0 and specify μL = μ0 − Δ for the power of H0 vs. HA: μ < μ0 and
μH = μ0 + Δ for the power of H0 vs. HA: μ > μ0. With some auxiliary informa-
tion (such as when the risk of type II error when μ0 is underestimated is higher
than when μ0 is overestimated), you may choose different distances for μL and μH
from μ0.
First, we compute the lower-tailed part of the power:

xL = Φ
−1 (αL |μ0, SE) (11.6)

= qnorm(alpha.L, mu.0, SE)

and

1− βL = Φ (xL |μL, SE)

= pnorm(x.L, mu.L, SE) .

Next, we compute the power for the upper-tailed part:

xH = Φ
−1 (1− αH |μ0, SE)

= qnorm(1− alpha.H, mu.0, SE)

and

1− βH = 1− Φ (xH |μH , SE) (11.7)

= 1− pnorm(x.H, mu.H, SE) .

The power is then
1− β = (1− βL) + (1− βH) . (11.8)

Example 11.4. The U.S. Environmental Protection Agency (EPA) publishes data
about maximum allowed consumption of mercury-contaminated fish (Table 11.1).
For sharks caught off the coast of Florida, we have the data in Table 11.2 (adapted

from Adams and McMichael, 1999). Suppose that we combine all of the data in Table
11.2. How much can we distinguish among the means of mercury concentrations for the
various shark species and how should that affect the consumption recommendations
in Table 11.1?

Table 11.1 Fish meals per month based on
consumer adult body weight of 154 lbs (≈ 70 kg)
and average meal size of 8 oz (≈ 225 g)

Meals/month Mercury (ppm)

16 0.03-0.06
12 0.06-0.08
8 0.08-0.12
4 0.12-0.24
3 0.24-0.32
2 0.32-0.48
1 0.48-0.97
0.5 0.97-1.90
None > 1.9
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Table 11.2 Total mercury in sharks caught off the coast of Florida.

Mercury (ppm)
Species Common name n Mean SD

Carcharhinus leucas Bull shark 53 0.77 0.32
Carcharhinus limbatus Blacktip shark 21 0.77 0.71
Rhizoprionodon Atlantic sharpnose 81 1.06 0.63
Sphyrna tiburo Bonnethead shark 95 0.50 0.36

First, we combine the data for all the shark species into a single model. This
requires a weighted average of the means and the square root of the weighted averages
of the variances (mu.0 and S below):

> X.bars <- c(0.77, 0.77, 1.06, 0.5)

> ns <- c(53, 21, 81, 95) ; n <- sum(ns)

> Ss <- c(0.32, 0.71, 0.63, 0.36)

> mu.0 <- sum(X.bars * ns)/ n

> S <- sqrt(sum(Ss * ns) / n) ; SE <- S / sqrt(n)

> round(c(mu.0 = mu.0, n = n, S = S, SE = SE), 2)

mu.0 n S SE

0.76 250.00 0.68 0.04

Our model is φ (x |0.76, 0.04), so we are in the category of one fish meal per month.
What is our power to distinguish between 0.76 and 0.97 (the low boundary on 0.5
fish meals per month) at α = 0.05? We set μA = 0.96 and from (11.4) and (11.5) we
obtain

> x.H <- qnorm(1 - alpha, mu.0, SE) ; mu.A <- 0.97

> (power <- 1 - pnorm(x.H, mu.A, SE))

[1] 0.9992515

This is reassuring, but not really what we want if we are concerned with consumers
health. Why? Because we want to make sure that we have power to distinguish the
low boundary and our current mean value. Otherwise, we might err and actually rec-
ommend two meals as opposed to one. So now we choose μA = 0.48 and obtain the
power to distinguish between φ (x |0.76, 0.04) and φ (x |0.48, 0.04), at α = 0.05. Using
(11.2) and (11.3) we obtain

> x.L <- qnorm(alpha, mu.0, SE) ; mu.A <- 0.48

> (power <- pnorm(x.L, mu.A, SE))

[1] 0.9999994

and we are reassured again that chances are that we will not reject a true null (that μ
= 0.76) in favor of a lower value that might lead us to recommend no more than two
fish meals a month, as opposed to no more than one. In Exercise 11.2 you are asked
to explore some potentially wrong recommendations for the number of fish meals per
month. ut
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Sample size

As we saw in the previous section, the sample’s standard error enters into all of the
power calculations. The standard error is based on the estimate of the population
σ from the sample’s standard deviation (S) and on the sample size n. Therefore, if
we specify a power, before taking a sample, then the only unknowns in the power
equations are the standard error and n. So if we can find a way to estimate σ, the
only remaining unknown is n. Thus, we can determine the sample size that is needed
to obtain a significant difference between μ0 and μA for a given power and given α.
For practical reasons, we adopt the following:

Rule of thumb for estimating σ If the population density is approximately sym-
metric, then

σ ≈
data range

4
.

We wish to calculate the sample size (under a large sample and normal sampling
distribution) such that we obtain a significance level of α with a given power level
1 − β and a detectable difference between μ0 and μA.

Lower-tailed sample size

For the power, we have
xL = Φ

−1
(
α
∣
∣μ0, σ/

√
n
)

and
1− β = Φ

(
xL
∣
∣μA, σ/

√
n
)
.

Therefore,
xL = Φ

−1
(
1− β

∣
∣μA, σ/

√
n
)
.

Standardizing xL both ways, we obtain

μ0 − Φ
−1 (α |0, 1)

σ
√
n
= μA + Φ

−1 (1− β |0, 1)
σ
√
n
.

Solving for n and recalling that, by convention, we drop the parameters from the
notation for the standard normal, we obtain

n =
σ2

(μ0 − μA)
2

[(
Φ−1 (α) + Φ−1 (1− β)

)]2

= sigmaˆ2/(mu.0− mu.A)ˆ2 ∗ (11.9)

(qnorm(alpha) + qnorm(1− beta))ˆ2 .

Upper-tailed sample size

For the power, we have
xH = Φ

−1
(
1− α

∣
∣μ0, σ/

√
n
)

and
1− β = 1− Φ

(
xH
∣
∣μA, σ/

√
n
)

or
β = Φ

(
xH
∣
∣μA, σ/

√
n
)
.
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Therefore,
xH = Φ

−1
(
β
∣
∣μA, σ/

√
n
)

or
μ0 + Φ

−1 (1− α)
σ
√
n
= μA − Φ

−1 (β)
σ
√
n
.

Therefore,

n =
σ2

(μ0 − μA)
2

[(
Φ−1 (1− α) + Φ−1 (β)

)]2

= sigmaˆ2/(mu.0− mu.A)ˆ2 ∗ (11.10)

(qnorm(1− alpha) + qnorm(beta))ˆ2 .

Two-tailed sample size

In the most general case, to obtain the sample size, we need to specify αL, αH , μL
< μ0, μH > μ0, 1 − βL and 1 − βH . Then we calculate the sample size for the lower
tail, nL, by modifying (11.9):

nL =
σ2

(μ0 − μL)
2

[(
Φ−1 (αL) + Φ

−1 (1− βL)
)]2

= sigmaˆ2/(mu.0− mu.L)ˆ2 ∗ (11.11)

(qnorm(alpha.L) + qnorm(1− beta.L))ˆ2 .

We obtain the sample size for the upper tail, nH , by modifying (11.10):

nH =
σ2

(μ0 − μH)
2

[(
Φ−1 (1− αH) + Φ

−1 (βH)
)]2

= sigmaˆ2/(mu.0− mu.H)ˆ2 ∗ (11.12)

(qnorm(1− alpha.H) + qnorm(beta.H))ˆ2 .

Summing both we obtain
n = nL + nH .

For all cases, always adjust n upward to the nearest integer.

Example 11.5. In this example, we deal with Atlantic sharpnose (Table 11.2). The
data indicate that the mean and standard deviation of mercury concentrations were
1.06 and 0.63 ppm, respectively, with a sample size of 81. Suppose that for all practical
purposes, a difference of 0.1 ppm is negligible. That is, from the perspective of a
consumer, there is as much risk if one eats fish with μL = 0.96, μ0 = 1.06 or μH =
1.16 ppm of tissue mercury. Underestimating mercury concentration may result in too
high a limit on consumption (bad idea). Overestimating may result in too low a limit
on consumption (not such a bad idea). Underestimating μ0 happens when we do a
lower-tailed test and reject a true H0 in favor of HA: μ < μ0. This is type I error and
we want to minimize it. So we choose αL = 0.01 and αH = 0.025.
What about power? Because we wish to be cautious, we do not mind much about

rejecting H0 in favor of HA: μ < μ0 when μL < μ0 is true. So we set 1 − βL = 0.7
and 1 − βH = 0.8. What should the sample size be for these specifications? First,
we specify some of the data and plot the power profile for the left and right sides
according to (11.6) and (11.7):
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> sigma <- 0.63 ; alpha.L <- 0.01 ; alpha.H <- 0.025

> mu.0 <- 1.06 ; n <- 81 ; SE <- sigma /sqrt(n)

> x.L <- qnorm(alpha.L, mu.0, SE)

> mu.a <- seq(0.7, mu.0, length = 201)

> power.L <- pnorm(x.L, mu.a, SE)

> mu.A <- seq(mu.0, 1.4, length = 201)

> x.H <- qnorm(1 - alpha.H, mu.0, SE)

> power.H <- 1 - pnorm(x.H, mu.A, SE)

> plot(mu.a - mu.0, power.L, type = 'l',

+ xlim = c(-0.3, 0.3),

+ xlab = expression(italic(Delta*mu)),

+ ylab = expression(italic(1-beta)))

> lines(mu.A - mu.0, power.H)

(left panel of Figure 11.4). To obtain an estimate of the sample size we compute nL
with (11.11) and nH with (11.12)

Figure 11.4 Left - Power profiles for two-tailed hypothesis testing with αL = 0.01
and αH = 0.025. Right - Sample size profiles for two-tailed hypothesis testing and
asymmetric decision rules about α and 1 − β.

> mu.0 <- 1.06 ; mu.a <- 0.96 ; mu.A <- 1.16

> beta.L <- 0.3 ; beta.H <- 0.2

> n.L <- ceiling(sigma^2 / (mu.0 - mu.a)^2 *

+ (qnorm(alpha.L) + qnorm(1-beta.L))^2)

> n.H <- ceiling(sigma^2 / (mu.0 - mu.A)^2 *

+ (qnorm(1 - alpha.H) + qnorm(beta.H))^2)

The necessary sample size is

> c(n.L = n.L, n.H = n.H, n = n.L + n.H)

n.L n.H n

129 50 179

The bulk of n is eaten up by the requirements on the left side (nL = 129). The
reported sample size of 81 does not meet our specifications. It comes with inadequate
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power to distinguish among desired alternatives. To observe the sample size profiles,
we do

> n.l <- n.L ; n.h <- n.H

> mu.a <- seq(0.7, mu.0, length = 201)

> n.L <- sigma^2 / (mu.0 - mu.a)^2 *

+ (qnorm(alpha.L) + qnorm(1-beta.L))^2

> mu.A <- seq(mu.0, 1.4, length = 201)

> n.H <- sigma^2 / (mu.0 - mu.A)^2 *

+ (qnorm(1 - alpha.H) + qnorm(beta.H))^2

> plot(mu.a - mu.0, n.L, type = 'l', ylim = c(0, 150),

+ xlim = c(-0.3, 0.3),

+ xlab = expression(italic(Delta*mu)),

+ ylab = expression(italic(n)))

> lines(mu.A - mu.0, n.H)

> abline(v = c(0.96 - mu.0, 1.06 - mu.0, 1.16 - mu.0),

+ lty = c(2, 1, 2), lwd = 2)

Here we calculate a sequence of nL on a sequence of μL and similarly for μH . We
then plot the lower sample size profile for the difference μL − μ0 and add lines() for
the upper size profile for μH − μ0 (right panel of Figure 11.4). The vertical broken
abline()s show the values we used for μL and μH to obtain nL and nH (adjusted
for the difference from μ0). The solid vertical line is μ0 adjusted for itself. ut

Because the normal is symmetric, the equations for power and sample size can be
simplified. For example, the required sample size for two-sided hypothesis testing is
often written as

n =
2σ2

(μ0 − μA)
2

(
z1−α/2 + zβ

)2
.

Albeit more cumbersome, we prefer to stick with our notation because it is closer to
how one eventually address these issues with R. Furthermore, keeping the notation
with the distributions explicit (e.g., Φ (α) instead of zα) allows for the flexibility in
decision making that we used in Example 11.5.

11.1.2 Proportions

Recall from Section 7.7.1 that the sampling density of large sample proportions is

φ
(
p
∣
∣
∣π,
√
π(1− π)/n

)
. Because we deal with large samples, we shall ignore the con-

tinuity correction. If you do wish to implement this correction, you might as well
use small sample or exact methods to obtain power for proportions. The methods for
large sample means (Section 11.1) do not apply directly because π and

√
π(1− π)/n

are dependent, so the standard errors of the sampling densities are different for
π0 6= πA. At any rate, our rv is the sample proportion p = nS / n where n is the total
number of trials and nS is the number of successes in a binomial experiment.

Power

To obtain the power for lower- upper- and two-tailed hypothesis testing, replace the
pairs μ0, SE everywhere in Section 11.1.1 with π0,

√
π0 (1− π0) /n. Similarly, replace
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the pairs μA, SE everywhere in Section 11.1.1 with πA,
√
πA (1− πA) /n. For example,

from (11.2),

pL = Φ
−1
(
α
∣
∣
∣π0,

√
π0 (1− π0) /n

)

= pnorm(alpha, pi.0, sqrt(pi.0 ∗ (1− pi.0)/n))

and from (11.3), the power for lower-tailed hypothesis testing with significance α is

1− β = Φ
(
pL

∣
∣
∣πA,

√
πA (1− πA) /n

)

= pnorm(p.L, pi.A, sqrt(pi.A ∗ (1− pi.A)/n))

where pi.L := πL.

Example 11.6. The data for this example were published by the European Commis-
sion, which is the executive arm of the European Union (Gallup Europe, 2003). It
pertains to a European public opinion survey of attitudes toward peace in the World.
In all, 7 515 people were interviewed. Among the questions was the following:

“Tell me if in your opinion, it presents or not a threat to peace in the
world ...?”

followed by a list of selected countries (arranged randomly). Here is the order of the
data (% responding) in the report:

> load('eu.rda')

> eu

country yes no undecided

1 EU 8 89 3

2 Israel 59 37 5

3 Iran 53 41 5

4 North Korea 53 40 7

5 United States 53 44 5

6 Iraq 52 44 4

7 Afghanistan 50 45 6

8 Pakistan 48 46 6

9 Syria 37 56 7

10 Libya 36 58 7

11 Saudi Arabia 36 68 7

12 China 30 65 5

13 India 22 74 5

14 Russia 21 76 4

15 Somalia 16 75 10

What is the power of distinguishing between π0 = 0.59 and πA between 0 and 1 in
the case of Israel? The hypotheses we test are H0: π = π0 = 0.59 vs. HA: π 6= π0.
We shall treat the power associated with the lower- and upper-tailed hypotheses as
equally important.
To compute the power, we implement the necessary modifications to (11.6) through

(11.8). First, the data:

> alpha <- 0.05 ; n <- 7515

> pi.0 <- 0.59 ; pi.A <- seq(0.55, 0.64, length = 201)
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Next, we use power for two-tailed hypothesis testing and the necessary substitu-
tions in (11.2) through (11.8):

> p.L <- qnorm(alpha / 2, pi.0,

+ sqrt(pi.0 * (1 - pi.0) / n))

> power.L <- pnorm(p.L, pi.A,

+ sqrt(pi.A * (1 - pi.A) / n))

> p.H <- qnorm(1 - alpha / 2, pi.0,

+ sqrt(pi.0 * (1 - pi.0) / n))

> power.H <- 1 - pnorm(p.H, pi.A,

+ sqrt(pi.A * (1 - pi.A) / n))

> power <- power.L + power.H

To see what we got, we do

> plot(pi.A, power,type = 'l',

+ xlab = expression(italic(pi[A])),

+ ylab = 'power')

> polygon(c(0.58, 0.58, 0.60, 0.60, 0.58),

+ c(-1,1.1,1.1,-1,-1), col = 'gray90')

> lines(pi.A, power)

(Figure 11.5). From the figure, the possibility of rejecting a correct π0 is rather small.

Figure 11.5 Power of detecting alternative models for EU public opinion results
about Israel’s threat to world peace.

It grows around a narrow band between about πA = 0.58 and 0.59. You can use
binom.power() in the package binom to obtain results identical to those in
Figure 11.5, e.g.

> library(binom)

> y <- binom.power(pi.A, n = n, p = pi.0, alpha = alpha,

+ alternative='two.sided', method = 'asymp')

> lines(pi.A, y)

The curve we obtain from our computations and those of binom.power() are
indistinguishable. ut
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Sample size

Consider a lower-tailed hypothesis test. For the power, we have

pL = Φ
−1

(

α

∣
∣
∣
∣
∣
π0,

√
π0 (1− π0)

n

)

and

1− β = Φ

(

pL

∣
∣
∣
∣
∣
πA,

√
πA (1− πA)

n

)

.

Therefore,

pL = Φ
−1

(

1− β

∣
∣
∣
∣
∣
πA,

√
πA (1− πA)

n

)

.

Standardizing pL both ways, we obtain

π0 − Φ
−1 (α)

√
π0 (1− π0)

n
= πA + Φ

−1 (1− β)

√
πA (1− πA)

n
.

So

n =

[
Φ−1 (α)

√
π0 (1− π0) + Φ−1 (1− β)

√
πA (1− πA)

π0 − πA

]2

= (qnorm(alpha) ∗ A+ qnorm(1− beta) ∗ B)/ (11.13)

(pi.0− pi.A))
2

where A = sqrt(pi.0 ∗ (1− pi.0)) and B = sqrt(pi.A ∗ (1− pi.A). With the same
approach, we obtain the sample size for upper-tailed hypothesis testing as

n =

[
Φ−1 (1− α)

√
π0 (1− π0) + Φ−1 (β)

√
πA (1− πA)

π0 − πA

]2

. (11.14)

For two-tailed tests, we use (11.13) and (11.14) with (potentially) different values for
α and 1 − β for the lower- and upper-tailed testing:

nL =

[
Φ−1 (αL)

√
π0 (1− π0) + Φ−1 (1− β)

√
πL (1− πL)

π0 − πL

]2

, (11.15)

nH =

[
Φ−1 (1− αH)

√
π0 (1− π0) + Φ−1 (β)

√
πH (1− πH)

π0 − πH

]2

. (11.16)

Here the alternatives are specified as πL < π0 and πH > π0. The sample size is then

n = nL + nH . (11.17)

In all cases of obtaining sample sizes, if you do not know what π0 is, be conservative.
Choose π0 = 0.5. This results in the largest value of

√
π0 (1− π0) and consequently

in the lowest upper bound (infimum) on n.
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Example 11.7. Years after meltdown of a nuclear power plant, area residents claim
that the incidence of cancer among them is higher than the incidence in the popu-
lation of the country. To investigate their claim, we wish to estimate the proportion
of exposed population that suffers from cancer. We want to be able to distinguish
between the true proportion and alternative proportions that are 0.005 larger or
smaller than the true proportion. We desire a sample size for α = 0.01 and power =
0.9. We will not distinguish between the lower and upper tails. First, the data:

> delta <- 0.25 ; pi.0 <- 0.5 # max sample size

> pi.A <- seq(pi.0 - delta, pi.0 + delta, length = 401)

> alpha <- 0.01 ; beta <- 0.1

Next, nL and nH according to (11.15) and (11.16):

> n.L <- (qnorm(alpha / 2) * sqrt(pi.0 * (1 - pi.0))

+ + qnorm(1 - beta) * sqrt(pi.A[pi.A < 0.5] *

+ (1 - pi.A[pi.A < 0.5])) / (pi.0 - pi.A[pi.A < 0.5]))^2

> n.H <- (qnorm(1 - alpha / 2) * sqrt(pi.0 * (1 - pi.0))

+ + qnorm(beta) * sqrt(pi.A[pi.A > 0.5] *

+ (1 - pi.A[pi.A > 0.5])) / (pi.0 - pi.A[pi.A > 0.5]))^2

Let us put the results in a matrix according to (11.17)

> d <- cbind(

+ delta = c(pi.A[pi.A < 0.5], pi.A[pi.A > 0.5]) - 0.5,

+ n = c(n.L + n.H, n.L + n.H))

and plot

> plot(d, type = 'l', ylog = TRUE,

+ ylim = c(0, 50000), xlim = c(-0.02, 0.02),

+ xlab = expression(italic(pi[0]-pi[A])),

+ ylab = expression(italic(n)))

> abline(v = c(-0.005, 0.005), lty = 2) ; abline(h = 16500)

(Figure 11.6; note the use of the named argument ylog—it plots the y-axis on a log
scale). The vertical broken lines show the detectable distance and the horizontal line
the sample size (≈ 16 500). ut

11.1.3 Intensities

In Section 7.8.1, we established that the sampling density of the Poisson parameter is

φ
(
l
∣
∣
∣λ,
√
λ/n

)
. As was the case with the binomial, we cannot translate the equations

in Section 11.1 directly to obtain power and sample size because the mean and the
variance of the Poisson are dependent.

Power

For lower-tailed power we consider only λA < λ0. To obtain the power, we first
compute

lL = Φ
−1
(
α
∣
∣
∣λ0,

√
λ0/n

)
(11.18)

= qnorm(alpha, lambda.0, sqrt(lambda.0/n))
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Figure 11.6 Sample size for α = 0.01, 1 − β = 0.9, π0 = 0.5 and πA between 0.498
and 0.502.

where α is the significance level. The power is then

1− β = Φ
(
lL

∣
∣
∣λA,

√
λA/n

)
(11.19)

= pnorm(l.L, lambda.A, sqrt(lambda.A/n))

where l.L := lL. For upper-tailed power we consider only λA > λ0. We first obtain

lH = Φ
−1
(
1− α

∣
∣
∣λ0,

√
λ0/n

)
(11.20)

= qnorm(1− alpha, lambda.0, sqrt(lambda.0/n))

and then the power

1− β = 1− Φ
(
lH

∣
∣
∣λA,

√
λA/n

)
(11.21)

= 1− pnorm(l.H, lambda.A, sqrt(lambda.A/n)).

To obtain the power for a two-tailed test, we consider λL < λ0 and λH > λ0. We
first compute lL as in (11.18) with αL instead of α and then (1− βL) as in (11.19).
Next, we compute lH as in (11.20) with αH instead of α and then (1− βH) as in
(11.21). The power is then

1− β = (1− βL) + (1− βH) .

Example 11.8. In fisheries, catch per unit effort (CPUE) is defined as the number
of fish caught per unit effort. A unit effort is measured (or should be measured)
as the amount of time a net (for example) is in the water and the volume that
the net covers (this requires knowledge about the swimming behavior of the species
caught). So the units might be fish per m3-hr. Suppose that we submerge nets for
100m3-hr and catch 35 fish. The fish population is large enough to assume sampling
with replacement and fish are supposed to be caught independent of each other. We set
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λ0 = 0.35 and wish to test the power to distinguish between λ0 and λA = 0.4. Then
from (11.20) and (11.21):

> lambda.0 <- 0.35 ; lambda.A <- seq(0.35, 0.85, length = 501)

> alpha <- 0.05 ; n <- 100

> l.H <- qnorm(1 - alpha, lambda.0, sqrt(lambda.0 / n))

> power <- 1 - pnorm(l.H, lambda.A, sqrt(lambda.A/n))

The power profile and specific values are obtained with

> plot(lambda.A, power, type = 'l',

+ xlab = expression(italic(lambda[A])))

> round(c(lambda.0 = lambda.0, n = n,

+ lambda.A = lambda.A[51], alpha = alpha,

+ power = power[51]), 3)

lambda.0 n lambda.A alpha power

0.350 100.000 0.400 0.050 0.227

(Figure 11.7). So if there is some management decision to be made based on 0.35
vs. 0.4, it is not particularly powerful. ut

Figure 11.7 Poisson power profile.

Sample size

For lower-tailed tests, the power is obtained from

lL = Φ
−1
(
α
∣
∣
∣λ0,

√
λ0/n

)

and
1− β = Φ

(
lL

∣
∣
∣λA,

√
λA/n

)
.

Therefore,

lL = Φ
−1
(
1− β

∣
∣
∣λA,

√
λA/n

)
.
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Standardizing lL both ways, we obtain

λ0 − Φ
−1 (α)

√
λ0

n
= λA + Φ

−1 (1− β)

√
λA

n
.

Solving for n, we get

n =

[
Φ−1 (α)

√
λ0 + Φ

−1 (1− β)
√
λA

λ0 − λA

]2
. (11.22)

Sample sizes for upper- and two-tailed hypothesis tests are obtained in much the same
way as for the binomial (with the appropriate substitutions of λ for π).

Example 11.9. Continuing with Example 11.8, we desire the sample size that will
allow us to distinguish between said λ0 and λA with 1 − β = 0.8. Using the parallel
of (11.22) for an upper-tailed test, we obtain:

> round(c(lambda.0 = lambda.0, n = ceiling(n[51]),

+ lambda.A = lambda.A[51], alpha = alpha,

+ power = 1 - beta), 3)

lambda.0 n lambda.A alpha power

0.35 1145.00 0.40 0.05 0.80

So we need a sample from 1 145m3-hr. ut

11.2 Small samples

In this section we address the issue of power for small samples. Here we can no longer
use the normal approximation. Calculating sample sizes for small samples requires
that you first calculate the sample size for large samples. Then if n turns out to be
small (< 30), recalculate n as discussed below.

11.2.1 Means

In Sections 9.2.2 and 10.3.1, we established that the sampling density of the mean of
a small sample (n < 30) from a normal population is t. In the former, we used the
sampling density to construct confidence intervals and in the latter to test hypotheses.
To establish the power for hypothesis tests in this case, we replace, where necessary,
Φ with the t distribution P (Z ≤ z|n− 1), where n is the sample size and n − 1 are
the degrees of freedom.

Power

For a lower-tailed test, to obtain xL, we use

xL = μ0 − P
−1 (α |n− 1)

S
√
n

(11.23)

= mu.0− qt(alpha, n− 1) ∗ SE

where S is the sample’s standard deviation, n is the sample size and P−1 is the inverse
of the t distribution for α and n − 1 given. To determine the power for lower-tailed
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hypothesis tests, we need to find the area to the left of xL under HA, where the
density of the standardized rv under HA is t. So we define

zA :=
xL − μA
SE

= (x.L− mu.A)/(SE)

and the power is

1− β = P (Z ≤ zA |n− 1) (11.24)

= pt(z.A, n− 1)

where z.A := zA.
For an upper-tailed test, we use

xH = μ0 + P
−1 (1− α |n− 1)

S
√
n

= mu.0+ qt(1− alpha, n− 1) ∗ SE ,

zA :=
xH − μA
SE

= (x.H− mu.A)/(SE)

and

1− β = 1− P (Z ≤ zA |n− 1)

= 1− pt(z.A, n− 1) .

For two-tailed power, specify (if you so desire) αL, αH , μL < μ0 and μH > μ0.
Then use 11.23 with αL to obtain xL and the corresponding zL. According to (11.24),

1− βL = P (Z ≤ zL |n− 1)

= pt(z.L, n− 1) .

Similarly,

1− βH = 1− P (Z ≤ zH |n− 1)

= pt(z.H, n− 1) .

The power is then
1− β = (1− βL) + (1− βH) .

Sample size

To obtain the sample size, first use the appropriate equations in Section 11.1.1. Then
if n < 30, recalculate n using the following. For a lower-tailed sample size and from
(11.23),

xL = μ0 − P
−1 (α |n− 1)

S
√
n
.
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Also,

xL = μA + P
−1 (1− β |n− 1)

S
√
n
.

Equating both right hand sides and solving for n we get

n =
S2

(μ0 − μA)
2

[
P−1 (α |n− 1) + P−1 (1− β |n− 1)

]2

= S2/(mu.0− mu.A)
2 ∗ (11.25)

(qt(1− alpha, n− 1) + qt(1− beta, n− 1))
2
.

You can easily verify that for an upper-tailed test

n =
S2

(μ0 − μA)
2

[
P−1 (1− α |n− 1) + P−1 (β |n− 1)

]2

= S2/(mu.0− mu.A)
2 ∗ (11.26)

(qt(1− alpha, n− 1) + qt(beta, n− 1))
2
.

For two-tailed tests, use the appropriate substitutions in (11.25) and (11.26) to obtain
nL and nH and then

n = nL + nH .

You can use power.t.test() to compute power.

11.2.2 Proportions

In Section 9.2.1 we discussed the asymptotic method to compute large sample confi-
dence intervals for proportions. In Section 9.2.2, we discussed the exact and Wilson
methods to compute confidence intervals for small samples from populations with
binomial density. These methods (and others) can also be used to obtain power and
sample size. When we say asymptotic method, we mean the large sample approx-
imation with the normal. This should not be confused with methods to determine
asymptotic power (see the package asypow).

Power

Take for example the exact method. The sampling density of p is F . For lower-tailed
power, we first use F−1(α|ν1, ν2) to obtain pL under π0 and then F (pL|ν1, ν2) under
pA to obtain the power. For π between about 0.2 and 0.8, the various methods to
compute the power give approximately the same results. The package binom contains
several functions that compute power, confidence intervals and so on for the binomial
density. We are interested in binom.power().

Example 11.10. On the average, a pride of lions is successful in catching prey in
π0 = 0.4 of 25 attempts. What is our ability to distinguish between π0 and πA = 0.5
with type I error at α = 0.05? Let us specify the data:

> pi.0 <- 0.4 ; pi.A <- 0.5 ; alpha <- 0.05 ; n <- 25
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and compute the power with each available method:

> library(binom)

> methods <- c("cloglog", "logit", "probit", "asymp",

+ "lrt", "exact")

> results <- matrix(ncol = 1, nrow = length(methods))

> for(i in 1 : length(methods)){

+ results[i, 1] <- binom.power(pi.A, n = n, p = pi.0,

+ alpha = 0.05, alternative = 'greater',

+ method = methods[i])

+ }

> dimnames(results) <- list(methods, 'Power')

> round(results, 3)

Power

cloglog 0.289

logit 0.253

probit 0.257

asymp 0.270

lrt 0.327

exact 0.259

Not very strong. You can observe the differences between the methods to computer
power in action with

> tkbinom.power()

(Figure 11.8). Observe the small differences among the methods. ut

Figure 11.8 Methods to compute power for small sample from the binomial (n =
25, H0: π = π0 = 0.4 and HA: π > π0 with πA varying between 0.4 and 1.0.

cloglog, logit and so on refer to ways to parameterize π (e.g. π = exp[μ]). Which
method should you use? The one that gives you the minimum power for your data.

Sample size

The package binom includes the function cloglog.sample.size(). This function
computes sample size for the complementary log parameterization of π:

π = e−μ , μ = eγ .



Small samples 363

Let us obtain sample size with an example.

Example 11.11. Returning to Example 11.10, we ask: How many trials do we need
to observe to distinguish between π0 = 0.4 and πA = 0.5 with 1 − β = 0.8? First we
specify the data

> pi.0 <- 0.4 ; pi.A <- 0.5 ; alpha <- 0.05 ; beta <- 0.2

and then obtain the number of trials

> library(binom)

> cloglog.sample.size(pi.A, p = pi.0, power = 1 - beta,

+ alpha = alpha, alternative = 'greater',

+ recompute.power = TRUE)

p.null p.alt delta alpha power n phi

1 0.4 0.5 0.1 0.05 0.8010439 150 1

We need to observe 150 trials to distinguish between a hunting success of 0.4 vs. 0.5
at α = 0.05 and 1 − β = 0.8. Note the named argument recompute.power = TRUE.
Because n is rounded up to the nearest integer, we recompute the power for the
integer n. ut

11.2.3 Intensities

In (10.9) through (10.11), we established the critical values of lL and lH that allowed
us to decide about H0 : λ = λ0. The sampling density in these cases was χ

2 with the
appropriate degrees of freedom. We build on these ideas here.

Power

We consider only the so-called exact method. For lower-tailed hypothesis testing
with significance α, we obtain lL from (10.9). Then the power for the alternative
λ = λA is

1− β = P (l ≤ lL |2λA ) /2 (11.27)

= pchisq(l.L, 2 ∗ lambda.A)/2

where P (l ≤ lL |2λA ) is the χ2 distribution with 2λA degrees of freedom. For an
upper-tailed test, we first obtain lH from (10.10) and obtain the power from

1− β = 1− P (l ≤ lH |2 (λA + 1)) /2 (11.28)

= 1− pchisq(1− alpha, 2 ∗ (lambda.A+ 1))/2 .

For a two-tailed test, we calculate the power for the lower-tailed and upper-tailed
hypothesis tests separately (with appropriate substitutions for α and λA) and then add
them together. Because the distributions involved in lower-tailed power are different
from upper-tailed power (they do belong to the same family, though), this is a good
time to look at the meaning of power again.

Example 11.12. The arrival rate to an emergency room is 10 persons per hour. We
assume that people arrive independent of each other and that the events (arrivals) are
uniformly distributed in time. Therefore, the arrivals represent the Poisson density.
We wish to test H0: λ = λ0 = 10 vs. HA: λ < λ0. We are interested in the power to
distinguish between λ0 and λA = 9 at α = 0.05. While at it, we are also interested in
HA: λ > λ0 and in the power of distinguishing between λ0 and λA = 11.
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Using (11.27) and (11.28) we obtain:

> lambda.0 <- 10 ; alpha <- 0.05 ; lambda.A <- c(9, 11)

> l.L <- qchisq(alpha, 2 * lambda.0) / 2

> l.H <- qchisq(1 - alpha, 2 * (lambda.0 + 1)) / 2

> round(c('lower-tailed' =

+ pchisq(l.L, 2 * lambda.A[1]) / 2,

+ 'upper-tailed' =

+ 1 - pchisq(l.H, 2 * (lambda.A[2] + 1)) / 2), 3)

lower-tailed upper-tailed

0.001 0.925

Figure 11.9 illustrates the results. ut

Other approaches to calculate the power use the gamma distribution or the so-called
Byar’s formula (see documentation for pois.exact() in the epitools package).

Sample size

Here we may take advantage of the binomial approximation to the Poisson. Let n
be the number of unit intervals and nS the number of events we count during n.

Figure 11.9 Solid and broken curves show the sampling densities of λ0 and λA,
respectively. A - The power associated with lower-tailed hypothesis testing. B - The
dark polygon shades the power. C - The power associated with upper-tailed hypothesis
testing. D - The dark polygon shades the power.
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We choose the unit intervals to be small enough so that the probability of more than
one event during the unit interval is practically zero. Then

(nS/n)
nS

nS !
exp [−nS/n] ≈

(
n

nS

)

(nS/n)
nS (1− nS/n)

n−nS .

As the next example illustrates, we can now use cloglog.sample.size() in the
package binom to compute the needed number of unit intervals.

Example 11.13. The arrival rate of patients to an emergency room is 10 per day.
Divide the day into small enough time units such that the probability that more than
one patient arrives during the interval is practically zero. Take the interval to be
minutes. We have 24× 60 = 1440 time units. How many time units do we need to
count events to distinguish between arrival rate of 10 and 11 patients per day with
1 − β = 0.8 and α = 0.05? First, the data:

> lambda.0 <- 10 ; lambda.A <- 11 ; alpha <- 0.05

> beta <- 0.2 ; n.units <- 24 * 60

> lambda.0 <- lambda.0 / n.units

> lambda.A <- lambda.A / n.units

Next, the results:

> round((n <- cloglog.sample.size(lambda.A, p = lambda.0,

+ power = 1 - beta,

+ alpha = alpha, alternative = 'greater',

+ recompute.power = TRUE)), 4)

p.null p.alt delta alpha power n phi

1 0.0069 0.0076 7e-04 0.05 0.8 93646 1

> n[6] / n.units

n

1 65.03194

So we need to record arrivals (by the minute) for 65 days and 46 minutes. ut

11.3 Power and sample size for arbitrary densities

So far, we assumed that the probability density of the population from which we drew
a sample was known. Suppose that it is not. Then we need to revert to the bootstrap.
Say we wish to test H0: θ = θ0 vs. one of the three possible HA for some parameter θ
(e.g. median). We draw a sample from the population and obtain the sampling density
of θ with the bootstrap. To compute power and sample size, we need to provide a
sample under θA. This brings us to the topics of two-sample tests, power and sample
size. So we defer the discussion of bootstrap power and sample size to Chapter 13.

11.4 Assignments

Unless otherwise stated, use α = 0.05 and 1 − β = 0.8 where necessary.

Exercise 11.1.

1. We have a model of a normal population with μ0 = 10 and σ = 2. Draw a diagram
that shows the type II error for μA = 10.5, 11 and 11.5. Is the power increasing
or decreasing as μA increases? Explain.
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2. What would be the sample size necessary to distinguish between μ0 and the three
values of μA? Is the sample size increasing or decreasing with increasing μA?
Explain.

Exercise 11.2. Repeat the analysis in Example 11.4 for each species separately.
Specifically, for each species, examine the power of distinguishing between the given
mean mercury and the nearest lower and upper boundaries on mercury concen-
tration with respect to recommended upper limit on fish meals per month. Write
your power results in a table format, displaying the species, its mean concentra-
tion, standard deviation, sample size and power “from below” and power “from
above.”

Exercise 11.3. Determine the sample size necessary to identify the population mean
of mercury concentration for all species in Table 11.2 with confidence levels of
α = 0.01 and 1 − β = 0.8 to within 10 ppm.

Exercise 11.4. Table 28-1 from http://nces.ed.gov/programs/coe/2006/

section3/indicator28.asp compares averaged freshman graduation rate for pub-
lic high school students and number of graduates, by state: 200001, 200102 and
200203. The table is stored in high-school.xls at the book’s site. According to the
table, 83.9% of high school freshman graduated in 2001–02. In 2002–03, 84.8% grad-
uated. Newspapers around the countries came with headlines such as “High school
graduation hits all time high.” Suppose that the percent graduating every year is
independent of another year. Use the table to answer the following questions for
Minnesota:
Suppose that a 1% change in freshmen graduating from one year to the next

represents, for all practical purposes, no change. What should be the sample size
needed to distinguish a significant difference in percent graduation at α = 0.05 and
1 − β = 0.8?

Exercise 11.5. Based on past data, we know that the levels of a certain carcinogen
in water range between 50 to 700 ppm. How many water samples should we analyze
to estimate the true mean concentration of the carcinogen to within 10 ppm of the
true mean with 95% confidence?

Exercise 11.6. Repeat the analysis in Exercise 11.4, except that now treat the grad-
uation as a rate, not as a proportion.

For the next three exercises, do not reinvent the wheel! Hack code as much as
you can. Search for code you need, either at the book’s site or simply look for appro-
priate functions in R and then type the function name in R’s workspace without
parentheses. This will usually print the function’s code. Modify the code to fit the
exercises.

Exercise 11.7.

1. Write a function that computes the power of distinguishing between any pair of
null vs. alternative normal models for any level of significance and any sample
size for upper-, lower- or two-tailed hypotheses.
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2. Write a function that computes the sample size for any level of significance,
any desired power and any detectable difference for upper-, lower- or two-tailed
hypotheses.

Exercise 11.8. Repeat Exercise 11.7 for the binomial.

Exercise 11.9. Repeat Exercise 11.7 for the Poisson.
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Two samples

So far, our interest in hypothesis testing was to make inferences about a population
parameter from a sample. For example, we examined cases where a sample provided
a proportion, p and we wished to infer about the value of the population proportion,
π, of some trait.
Often the question is how trait values from two populations compare. For example,

can we say that the distribution of the concentration of a pollutant in wells in one
region is different from that in another region? Does the distribution of beak length
in one species of bird differ from that of another? Can we assert that the proportion
of the U.S. adult population that supported the death penalty in 1936 is different
from that in 2004? Is the treatment of patients with a particular medicine effective
compared to no treatment?
Our approach should be familiar by now: We wish to estimate the value of a para-

meter in the population. We obtain a sample and compute the sample-based best
estimate of the parameter (the statistic). Next, we develop the sampling density of
the statistic and from it draw conclusions about plausible values of the population
parameter.
As in Chapters 9 and 10, we discuss comparisons of means, proportions and inten-

sities (rates) with small and large samples. We also discuss situations where we do not
know the density of the trait in the population. For the most part, we assume that
samples are independent. A special situation arises when observations are pairwise
dependent, but the observations are independent among themselves. In other words,
if xi and yi are the ith pair, then we do not assume that they are independent. We
do assume that (xi, yi) are independent of (xj , yj) for i 6= j.
Consider two populations, x and y, with the same family of densities, but different

parameter values. To simplify the notation, we address a single parameter family of
densities, P (X = x |θ ). We obtain a sample from each population

X := [X1, . . . , Xn1 ] , Y := [Y1, . . . , Yn2 ] .

From the samples, we estimate θ̂1 and θ̂2. We are interested in the following ques-
tion: Is the difference between θ1 and θ2 large enough so that we can claim that the
densities are significantly different? To stay close to the developments in Chapter 10,
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we construct a test statistic from θ̂ := θ̂1 − θ̂2 and we need the sampling density of
θ̂. Thus, at least in notation, we are back to a single-sample hypothesis test:

H0 : θ = θ0 vs. one of HA : θ






< θ0
6= θ0
> θ0

(12.1)

where now θ0 is a hypothesized difference θ1 − θ2. We will consider situations where
either θ0 is location invariant or devise ways to get around this problem. By location
invariance we mean that the statistical properties (in particular the sampling density)
of θ0 remain unchanged regardless of where the difference between θ1 and θ2 is located.

12.1 Large samples

In this section we address hypothesis testing for large samples. We discuss means,
proportions and rates.

12.1.1 Means

Here we adopt the notation detailed in Table 12.1. We base the inference for means
on the difference between them. According to (12.1), we are interested in

H0 : μ = μ0 vs. one of HA : μ






< μ0
6= μ0 .
> μ0

Because n1 and n2 are large (> 30), the sampling density of X1 and X2 is approx-
imately normal with μ1, σ1/

√
n1 and μ2, σ2/

√
n2. It turns out that the sampling

density of X := X1 − X2 is normal with

μX = μ1 − μ2 , σX =

√
σ21
n1
+
σ22
n2
.

With this in mind and from the central limit theorem, we conclude that the prop-
erties of the sampling density of X := X2 − X1 are:

1. The means of the sampling density of the rv X are centered around μ; i.e. μX =
μ (where μ := μ2 − μ1).

Table 12.1 Population and sample notation for means. Difference
refers to the parameter of the first population (sample) subtracted
from the second population (sample).

Population parameter Sample parameter

Population Mean Variance Mean Variance Sample size

1 μ1 σ21 X1 S21 n1
2 μ2 σ22 X2 S22 n2

Difference μ σ2 X S2



Large samples 371

2. The standard deviation of the sampling density is given by

σX =

√
σ21
n1
+
σ22
n2

(recall that the standard deviation of the sampling density is called the standard
error).

3. When both n1 and n2 are large (> 30), the central limit theorem implies that the
sampling density of X1 and X2 is approximately normal. So is their difference.

The standard error of X is

SE :=

√
S21
n1
+
S22
n2
. (12.2)

When both n1 and n2 are large (> 30), we use S1 ≈ σ1 and S2 ≈ σ2 to estimate the
standard deviation of the sampling density of X; i.e.

σX =

√
σ21
n1
+
σ22
n2
≈ SE . (12.3)

We can now proceed with hypothesis testing as usual.

Hypothesis testing

We set the null hypothesis to H0 : μ = μ0 where μ0 := μ2 − μ1. Our alternative
hypothesis, HA, is one of μ 6= μ0, > μ0 or < μ0 with significance level α. From the
samples we obtain X:= X2 − X1, S21 and S

2
2 and use (12.2) to obtain SE.

For lower-tailed hypothesis testing, we compute xL with (10.2). If X ≤ xL we
reject H0 and conclude that μ2 − μ1 < μ0 with the given significance. We can also
compute the,

p-value = Φ
(
X |μ0, SE

)
(12.4)

= pnorm(X.bar, mu.0, SE) .

If the p-value ≤ α we reject H0.
For an upper-tailed test, we use (10.3) to obtain xH and

p-value = 1− Φ
(
X |μ0, SE

)
(12.5)

= 1− pnorm(X.bar, mu.0, SE)

to calculate the p-value. If X > xH (in which case the p-value < α) we reject H0 and
conclude that μ2 − μ1 > μ0 with the given significance.
For a two-tailed test, the alternative is HA: μ < μ0 or μ > μ0 with significance

levels αL and αH , respectively. To implement the test, we first obtain xL from (10.2)
(using αL instead of α) and the p-value from 12.4. If X≤ XL, or the p-value ≤ αL,
we reject H0 and conclude that μ2 − μ1 is smaller than μ0. The upper-tailed test
is similar; e.g. if p-value < αH we reject H0 and conclude that μ2 − μ1 > μ0. The
p-value is obtained with (12.5). Under this arrangement, it is possible that we reject
H0 on one side but not on the other. In such a case, by our rule, we reject H0.
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Example 12.1.We return to the capital punishment data, first introduced in
Example 9.13 (United States Department of Justice, 2003). Recall that between 1973
and 2000, there were 7 658 cases of capital punishment in the U.S. We wish to test
the hypothesis that the mean age at sentencing to death of whites and blacks do not
differ at αL = 0.025 and αH = 0.025. Because we have the true population values, we
have an opportunity to test how effective a sample is in detecting differences. First,
we load the data set and rename it for ease of reference:

> load('capital.punishment.rda')

> cp <- capital.punishment

Next, we calculate the age at sentencing based on the month and year of birth and
the month and year of sentencing (columns 11, 12, 25 and 26, respectively):

> age <- cp[, 25] + cp[, 26] * 12 - cp[, 11] - cp[, 12] * 12

> age <- age / 12

We must get rid of all the rows in which at least one of the columns 9, 11, 12, 23 or
24 in the data is tagged as NA. These are the columns that give skin color, month of
birth, year of birth, month of conviction and year of conviction:

> na.data <- is.na(cp[, 9]) | is.na(cp[, 11]) |

+ is.na(cp[, 12]) | is.na(cp[, 23]) | is.na(cp[, 24])

> w <- cp$Race == 'White' & !na.data

> b <- cp$Race == 'Black' & !na.data

Now w and b are logical vectors that have TRUE values wherever we need them. So the
population data are

> x.whites <- age[w] ; x.blacks <- age[b]

where x.whites and x.blacks are the age at sentencing of the white and black popu-
lations, respectively. We rid the data of NA this way to illustrate combined conditional
statements. An easier way to keep only those rows in a data frame where there is no
NA in any column is to use complete.cases(). Next, we sample the populations

> set.seed(1)

> n.whites <- 50 ; n.blacks <- 50

> X.whites <- sample(x.whites, n.whites)

> X.blacks <- sample(x.blacks, n.blacks)

and compute the statistics we need

> X.bar.whites <- mean(X.whites)

> X.bar.blacks <- mean(X.blacks)

> var.whites <- var(X.whites) ; var.blacks <- var(X.blacks)

Here is what we have thus far:

> info <- rbind(mean = c(whites = X.bar.whites,

+ blacks = X.bar.blacks),

+ variance = c(var.whites, var.blacks),

+ 'sample size' = c(n.whites, n.blacks))

> round(info, 1)
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whites blacks

mean 30.9 26.5

variance 88.7 40.0

sample size 50.0 50.0

In our notation, n1 = 50, n2 = 50, X1 = 30.9 years old (at the time of sentencing),
X2 = 26.5, S

2
1 = 88.7 and S

2
2 = 40.0. Because the samples are large enough, we use

σ1 ≈ S1 and σ2 ≈ S2. We have μ2 − μ1 = 0 and our hypotheses are:

H0 : μ = 0 vs. HA : μ 6= 0 .

Note that μ2 − μ1 < 0. Therefore, we only need to test the lower tail of the hypotheses.
Using (10.2) we obtain

> X.bar <- X.bar.blacks - X.bar.whites

> SE <- sqrt(var.whites / n.whites + var.blacks / n.blacks)

> alpha.L <- alpha.H <- 0.025

> round(c(x.L = qnorm(alpha.L, 0, SE),

+ X.bar = X.bar,

+ p.value = pnorm(X.bar, 0, SE)), 3)

x.L X.bar p.value

-3.145 -4.423 0.003

and conclude that the age at sentencing of blacks is significantly younger than that
of whites. ut

Confidence intervals

The construction of confidence intervals for two-sample comparisons for large samples
is identical to the single sample (see Chapter 9). To obtain the interval, we estimate
μ := μ2 − μ1 with μ̂ = μ̂2 − μ̂1 and use the SE as defined in (12.3). Accordingly,
(9.6) becomes

I1−α

(
X
∣
∣
∣θ̂
)
=
[
Φ−1 (α/2 |μ̂, SE) , Φ−1 (1− α/2 |μ̂, SE)

]

= c(qnorm(alpha/2, mu.hat, SE), (12.6)

qnorm(1− alpha/2, mu.hat, SE)) .

Example 12.2. Lead is one of the oldest metals used by humans. It is a cumulative
neurotoxin. It impairs brain development in children. In adults, it is associated with
elevated blood pressure (hypertension), heart attacks, and premature death. Emis-
sions from vehicles are the largest source of lead exposure in many urban areas in
countries that do not enforce the use of unleaded gasoline. Lead toxicity is also a
health problem for those involved in its production. Emissions from lead smelters and
refineries expose workers to lead.
Data on the maximum concentration of lead in gasoline (grams per liter) from 1992

to 1996 were reported by The World Bank (1996a) and The World Bank (1996b). Let
us examine the data:

> load('l.rda')

> head(l)

africa a.lead europe e.lead
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1 Algeria 0.63 Austria 0.00

2 Angola 0.77 Belarus Rep 0.82

3 Benin 0.84 Belgium 0.15

4 Botswana 0.44 Bulgaria 0.15

5 Burkina Faso 0.84 Croatia Rep 0.60

6 Burundi 0.84 Czech Rep 0.15

The

> boxplot(l$a.lead, l$e.lead, names = c('Africa', 'Europe'))

reveals one outlier (Figure 12.1). To identify it, we do

> identify(rep(2, length(l$e.lead)), l$e.lead,

+ labels=l$europe)

We use identify() to label the outlier. Note that the x coordinate of points in a
box plot is identified by the group the points belong to (2 in our case). When we call
identify(), we want to obtain both the x and y coordinates of the outlier, hence the
rep(2, length(e.lead)). The corresponding label of the point is obtained from the
vector l$europe. Because Belarus is the only outlier, we trim the mean by a fraction of
1/31 on both sides. We also trim the data before calculating the standard deviations:

> n = c(length(l$a.lead), length(l$e.lead) - 2)

> l.stats <- data.frame(mu.hat, S, n)

> dimnames(l.stats)[[1]] <- c('Africa', 'Europe')

mu.hat S n

Africa 0.6477 0.1892 31

Europe 0.2179 0.1754 29

According to (12.6), the confidence interval is

> SE <- sqrt(sum(S^2 / n)) ; alpha <- 0.05

> c(low = qnorm(alpha / 2, mu.hat[2] - mu.hat[1], SE),

+ high = qnorm(1 - alpha / 2, mu.hat[2] - mu.hat[1], SE))

low high

-0.5221 -0.3375

Figure 12.1 Lead in gasoline by continent.
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The estimated difference in the mean populations (countries) in Africa and Europe
does not cross zero. Therefore, were we to test H0: μ0 = 0 vs. HA: μ0 6= 0 with
α = 0.05, we would have rejected H0. This does not necessarily work the other way:
a rejection via hypothesis testing implies that the difference crosses zero only when
the rejection region (on the lower tail in this case) of hypothesis testing equals half
the value of the confidence coefficient. ut

12.1.2 Proportions

In the case of two samples, to implement the normal approximation to the binomial,
we require that nipi and ni(1− pi) are both ≥ 5 for i = 1, 2.

Hypothesis testing

We have two independent samples and wish to test for π0 := π2 − π1. Our hypothe-
ses are H0: π = π0 vs. one of the three alternatives. The sampling density of pi is

φ
(
pi

∣
∣
∣πi,

√
πi(1− πi)/n

)
. Therefore, the sampling density of p2 − p1 is normal. Its

mean is π0 and its variance is

π0 × (1− π0)
n1

+
π0 × (1− π0)

n2
= π0 × (1− π0)

(
1

n1
+
1

n2

)

.

To estimate the standard error, we use

p :=
n1S + n2S
n1 + n2

and so

SE =

√

π0 × (1− π0)

(
1

n1
+
1

n2

)

≈

√

p (1− p)

(
1

n1
+
1

n2

)

. (12.7)

When n1 = n2, or when both are large, we do not need to use the continuity correc-
tion. If you wish to use the correction, call the appropriate R function (see below).
To test hypotheses, replace μ0 and SE in (10.2) through (10.5) with π0 and SE
from (12.7).

Confidence intervals

We construct the confidence interval for π̂ = π̂2 − π̂1 to estimate the location of π =
π2 − π1. Our rv is p := p2 − p1. From (9.8),

I1−α (p |π̂ ) =
[
Φ−1 (α/2 |π̂, SE) , Φ−1 (1− α/2 |π̂, SE)

]

= c(qnorm(alpha/2, pi.hat, SE), (12.8)

qnorm(1− alpha/2, pi.hat, SE)) .

Example 12.3. In 1936 and in 2004, Gallup Poll published results of a poll concern-
ing the following question, asked of adults in the U.S.: “Are you in favor of the death
penalty for a person convicted of murder?” The results are detailed in Table 12.2.
It is not clear from the article how many participated in each of the surveys, so we
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Table 12.2 Results from Gallup poll.

Proportion

Survey date Favor Opposed Undecided

May 2–4, 2004 0.71 0.26 0.03
December 2–7, 1936 0.59 0.38 0.03

assume 500. Divide the answers into those who were in favor as opposed to those
who were opposed and undecided and ask: Was the proportion of U.S. adults who
supported the death penalty in 2004 larger than in 1936 at α = 0.1? Translated to
our language, we wish to test

H0 : π = 0 vs. HA : π > 0.

To test the hypotheses via the confidence interval, we use 95% confidence coefficient
(α = 0.05). The data are:

> n <- c(500, 500) ; p <- c(0.59, 0.71) ; alpha <- 0.05

> p.bar <- sum(n * p) / sum(n)

> SE <- sqrt(p.bar * (1 - p.bar) * sum(1 / n))

> pi.hat <- p[2] - p[1]

(we could be more terse with the data, but we want to relate to our notation).
From (12.8),

> round(c(low = qnorm(alpha / 2, pi.hat, SE),

+ high = qnorm(1 - alpha / 2, pi.hat, SE)), 2)

low high

0.06 0.18

Because we arranged for the correct α and because the confidence interval does not
cross zero, we conclude that we are 95% confident that the proportion of U.S. adults
that supported the death penalty in 2004 was larger than in 1936. In R, we use (with
and without correction):

> correction <- prop.test(n * p, n)

> no <- prop.test(n * p, n, correct = FALSE)

Both returned data are lists. To extract the confidence interval from the list, we
examine its names:

> names(no)

[1] "statistic" "parameter" "p.value" "estimate"

[5] "null.value" "conf.int" "alternative" "method"

[9] "data.name"

and then produce a report:

> CI <- rbind(correction$conf.int, no$conf.int)

> dimnames(CI) <- list(c('correction', 'no'),

+ c('low', 'high'))

> round(CI, 2)
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low high

correction -0.18 -0.06

no -0.18 -0.06

(the switch in sign compared to our results is because the order of subtraction). We
conclude that the true difference in proportions between 2004 and 1936 is somewhere
between 6 and 18%. ut

Contingency tables

Rather than use the normal approximation to the binomial, we can approach the
analysis of two binomial samples with a contingency table. This approach relies on
obtaining a sampling density from the following considerations. Suppose that we have
two populations, with π1 and π2 reflecting proportions of some trait, e.g. gender, sick
vs. healthy, cross-fertilization vs. self-fertilization. We take samples of sizes n1 and n2
from the populations. We count n1S and n2S successes in each sample. This leads to
the following 2 by 2 table:

success population 1 population 2 total
yes n1S n2S nS
no n1 − n1S n2 − n2S n− nS
total n1 n2 n

Here we use the notation n := n1 + n2 and nS := n1S + n2S . We wish to test

H0 : π = 0 vs. HA : π 6= 0

(where π := π2 − π1) with significance α. We use the data to estimate π1 and π2:

π̂1 =
n1S

n1
, π̂2 =

n2S

n2
.

Under H0, both samples come from the same population, with proportion estimated
by

π̂ =
n1

n1 + n2
π̂1 +

n2

n1 + n2
π̂2 .

We use π̂ to obtain the expected values in each of the table’s cells under H0:

success population 1 population 2 total
expected yes π̂ × n1 π̂ × n2 π̂ × (n1 + n2)
expected no (1− π̂)× n1 (1− π̂)× n2 (1− π̂)× (n1 + n2)
sample size n1 n2 n

Next, we compare the expected values to the observed values. The larger the difference
between the expected and observed values, the more we believe that the proportions
in the populations differ. It turns out that under H0, the statistic

X2 :=
4∑

i=1

(Oi − Ei)2

Ei

(where Ei are the expected values and Oi are the observed values) has a χ
2 density

with 1 degree of freedom. The latter is determined from the number of column cells −1,
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i.e. (2− 1) times the number of row cells −1, i.e. (2− 1). Contingency tables consist
of counts. The χ2 density is continuous. Therefore, we often need to implement the
so-called Yates’ continuity correction. Our statistic is now

X2 =

4∑

i=1

(|Oi − Ei| − 0.5)
2

Ei
.

Example 12.4.We return to the capital punishment data (United States Depart-
ment of Justice, 2003). We have data for the population of inmates sentenced to
death in the US (see Example 9.13 for details). Suppose we have access to inmates’
paper files only. We wish to answer the following question: Is the proportion of mar-
ried black inmates different from the proportion of married white inmates. We have
two “populations” of inmates: married and single. In each of these populations, we
define black as success and not black as failure. Here is how we prepare the data:

> load('capital.punishment.rda')

> attach(capital.punishment)

> color <- ifelse(Race == 'Black', 'Black', 'Other')

> status <- ifelse(MaritalStatus == 'Married',

+ 'Married', 'Single')

> x <- data.frame(color, status)

> head(x, 4)

color status

1 Other Single

2 Black Single

3 Black Single

4 Other Single

We draw 400 random cases from x. Because x is a data frame, we draw the sample
by first creating an index vector and then using it to select our 400 cases:

> set.seed(100)

> idx <- sample(1 : length(color), 400)

> s <- x[idx, ]

To tally the results, we do

> (s <- table(s))

status

color Married Single

Black 40 136

Other 45 179

Now implementing the contingency-table calculations, we do

> n.1S <- 40 ; n.2S <- 45 ; n.1F <- 136 ; n.2F <- 179 ;

> n.1 <- n.1S + n.1F ; n.2 <- n.2S + n.2F ; n <- n.1 + n.2

> pi.1 <- n.1S / n.1 ; pi.2 <- n.2S / n.2

> pi.hat <- n.1 / n * pi.1 + n.2 / n * pi.2

> E <- c(pi.hat * n.1, pi.hat * n.2,

+ (1 - pi.hat)* n.1, (1 - pi.hat) * n.2)



Large samples 379

> O <- c(n.1S, n.2S, n.1F, n.2F)

> (chisq.value <- sum((abs(O - E) - 0.5)^2 / E))

[1] 0.2673797

> (p.value <- 1 - pchisq(chisq.value, 1))

[1] 0.605095

The p-value > α. Therefore, we conclude that the proportion of blacks in the popula-
tion of married inmates does not differ from the proportion of blacks in the population
of single inmates. Here inmates refer to those who were sentenced to death. ut

All of the work we have done on our own can be accomplished in R with chisq.test().

Example 12.5. Continuing with Example 12.4, we obtain

> chisq.test(s)

Pearson's Chi-squared test with Yates'

continuity correction

data: table(s)

X-squared = 0.2674, df = 1, p-value = 0.6051

Note that chisq.test() wants a table (s in our case). ut

The χ2 test works best for large n. As a rule, none of the cells should include expected
counts of less than 5.

12.1.3 Intensities

The development in this section parallels that in Section 12.1.2.

Hypothesis testing

We have two independent samples and wish to test for λ0 := λ2 − λ1. Our hypotheses
are H0: λ = λ0 vs. one of the three alternatives. The sampling densities of li are

φ
(
li

∣
∣
∣λi,

√
λi/ni

)
. Therefore, the sampling density of l2 − l1 is normal. Its mean is

λ0 and its variance is
λ0

n1
+
λ0

n2
= λ0

(
1

n1
+
1

n2

)

.

To estimate the standard error, we use

l :=
n1S + n2S
n1 + n2

where niS are the event counts in ni interval units. So

SE =

√

λ0

(
1

n1
+
1

n2

)

≈

√

l

(
1

n1
+
1

n2

)

. (12.9)

The test is acceptable as long as λi > 2.5 (Thode Jr, 1997; Detre and White, 1970).
When n1 = n2, or when both are large, we do not need to use the continuity correction.
To test hypotheses, replace μ0 and SE in (10.2) through (10.5) with λ0 and SE

from (12.9).
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Confidence intervals

We construct the confidence interval for λ̂ = λ̂2 − λ̂1 to estimate the location of λ
= λ2 − λ1. Our rv is l := l2 − l1. From (9.9) we have

I1−α

(
l
∣
∣
∣λ̂
)
=
[
Φ−1

(
α/2

∣
∣
∣λ̂, SE

)
, Φ−1

(
1− α/2

∣
∣
∣λ̂, SE

)]

= c(qnorm(alpha/2, lambda.hat, SE), (12.10)

qnorm(1− alpha/2, lambda.hat, SE)) .

Example 12.6. In two different areas we count the number of individuals of a species
in 1m2 plots. The data are

> n <- c(150, 200) ; n.S <- c(40, 20) ; alpha <- 0.05

Are the encounter rates significantly different and what is the confidence interval of the
difference between the encounter rates in the two areas at α = 0.05? We obtain λ̂, l and
SE with

> lambda.hat <- (n.S/n)[2] - (n.S/n)[1]

> l.bar <- sum(n.S) / sum(n)

> SE <- sqrt(l.bar * sum(1 / n))

and from (12.10),

> round(c(low = qnorm(alpha / 2, lambda.hat, SE),

+ high = qnorm(1 - alpha / 2, lambda.hat, SE)), 3)

low high

-0.254 -0.079

The answers to the two questions are yes. ut

12.2 Small samples

So far, we examined the cases where the normal density, or its approximation to the
binomial and Poisson hold. When sample sizes are small or a particular density’s
parameters do not conform to the usual requirement (i.e. that np and n(1− p) are
both ≥ 5), then we must rely on a different approach. We tackle these issues in this
section.
Regarding densities, we have a few generic possibilities (Figure 12.2). We discuss

cases (a) and (b) in Section 12.2.3. Cases (c) and (d) are discussed in Section 12.3.1.

12.2.1 Estimating variance and standard error

We wish to estimate σ21 + σ
2
2 from two samples. If the variances are presumed equal,

then to obtain an unbiased estimate of the pooled variances we use

S2 =
n1 − 1

n1 + n2 − 2
S21 +

n2 − 1
n1 + n2 − 2

S22
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Figure 12.2 Generic possibilities of densities of 2 samples: (a) Means differ, vari-
ances equal, both populations are normal. (b) Means differ, variances differ, both
populations are normal. (c) Means differ, variances equal, both populations are not
normal. (d) Means differ, variances differ, both populations are not normal and are
not equal.

where S21 and S
2
2 are the samples variance and S

2 is the pooled variance. The terms

n1 − 1
n1 + n2 − 2

,
n2 − 1

n1 + n2 − 1

weigh the contributions of S21 and S
2
2 to the pooled sample variance. The standard

error of the difference between X1 and X2 is then

SE = S ×

√
1

n1
+
1

n2
. (12.11)

If the variances of the two samples are not presumed equal, then we estimate the
standard errors separately and pool them like this:

SE1 =
S1
√
n1
, SE2 =

S2
√
n2
, SE =

√
SE21 + SE

2
2 . (12.12)
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12.2.2 Hypothesis testing and confidence intervals for variance

To implement any of the approaches to obtaining the pooled variance (Section 12.2.1),
we need a way to test for the equality of variance. Let S21 and S

2
2 be the rv vari-

ances obtained from two samples (of size n1 and n2) taken from normal populations
with μ1, σ1 and μ2, σ2. It turns out that the sampling density of X := S

2
1 / S

2
2 is

F (X |n1 − 1, n2 − 1). So we test for

H0 : ρ = ρ0 vs. HA : ρ 6= ρ0

where ρ := σ22 / σ
2
1 and ρ0 is the variance ratio we wish to test for. The estimated

ratio under H0 is X. For a lower-tailed test

pL-value = F (X |n1 − 1, n2 − 1)

= pf(X, n.1− 1, n.2− 1)

and for an upper-tailed test

pH -value = 1− F (X |n1 − 1, n2 − 1)

= 1− pf(X, n.1− 1, n.2− 1) .

For a two-tailed test

p-value = 2min (pL-value, pH -value) .

The corresponding confidence intervals are:

lower-tailed CI =
[
0, X/F−1 (α |n1 − 1, n2 − 1)

]

= c(0, X/qf(alpha, n.1− 1, n.2− 1)) ,

upper-tailed CI =
[
X/F−1 (1− α |n1 − 1, n2 − 1) ,∞

]

= c(X/qf(1− alpha, n.1− 1, n.2− 1), Inf)

and

two-tailed CI =
[
X/F−1 (1− α/2 |n1 − 1, n2 − 1) , X/F

−1 (α/2 |n1 − 1, n2 − 1)
]

= c(X/qf(1− alpha/2, n.1− 1, n.2− 1),

X/qf(alpha/2, n.1− 1, n.2− 1) .

Example 12.7.We generate two small samples from two normal densities and test
for the equality of variances (ρ0 = 1) for lower-tailed

> set.seed(28) ; n.1 <- 20 ; n.2 <- 25

> X.1 <- rnorm(n.1) ; X.2 = rnorm(n.2, 0, 2)

> alpha <- 0.05 ; X <- var(X.1) / var(X.2)

> p.L <- pf(X, n.1 - 1, n.2 - 1)
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upper-tailed

> p.H <- 1 - pf(X, n.1 - 1, n.2 - 1)

and two-tailed tests

> p <- 2 * min(p.L, p.H)

Note that for convenience we use S21/S
2
2 . Were we to test S

2
2/S

2
1 , the upper- and

lower-tailed tests would have switched significance. To see the results, we do

> p.value <- rbind(p.L, p.H, p)

> dimnames(p.value) <- list(c('lower-tailed', 'upper-tailed',

+ 'two-tailed'), 'p-value') ; round(p.value, 3)

p-value

lower-tailed 0.020

upper-tailed 0.980

two-tailed 0.039

So for upper- and two-tailed tests we reject H0 and conclude that the variances are
different. Because S21 / S

2
2 ≈ 0.39, the upper-tailed test is not significant. Indeed, S

2
1

is not > than S22 and we cannot reject H0.
For confidence intervals we obtain

> CI.L <- c(0, X / qf(alpha, n.1 - 1, n.2 - 1))

> CI.H <- c(X / qf(1 - alpha, n.1 - 1, n.2 - 1), Inf)

> CI <- c(X / qf(1 - alpha / 2, n.1 - 1, n.2 - 1),

+ X / qf(alpha / 2, n.1 - 1, n.2 - 1))

> CI <- rbind(CI.L, CI.H, CI)

> dimnames(CI) <- list(c('lower-tailed', 'upper-tailed',

+ 'two-tailed'), c('low', 'high')) ; round(CI, 3)

low high

lower-tailed 0.000 0.821

upper-tailed 0.190 Inf

two-tailed 0.165 0.952

Because neither lower- nor two-tailed confidence intervals cross 1, we conclude that
the variances are different. The upper-tailed test indicates that they are not. All of
this can be implemented with

> var.test(X.1, X.2)

F test to compare two variances

data: X.1 and X.2

F = 0.3881, num df = 19, denom df = 24, p-value =

0.03905

alternative hypothesis: true ratio of variances is not equal to 1

95 percent confidence interval:

0.1654920 0.9517562

sample estimates:

ratio of variances

0.3881043

which confirms our results. ut
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12.2.3 Means

Here we distinguish between paired and unpaired observations. Recall that we have
two samples, X1 and X2, of size n1 and n2. In the case of unpaired observations,
the value for the ith observation from X1, denoted by X1i, is independent from the
value of the ithe observation from X2, denoted by X2i. In paired observations, we
record two values from a single object. Obviously, in the case of paired observations,
n1 = n2. If you have paired observations, use the paired test for means, otherwise use
the unpaired test.

Unpaired observations

To test lower-, upper- and two-tailed hypotheses, use (10.6), (10.7) and (10.8) where
μ0 := μ2 − μ1 and depending on whether S21 = S

2
2 or not, the SE is calculated

according to (12.11) or (12.12). The p-values are calculated as usual.

Example 12.8. The data for midterm and final scores in a Statistics course are:

> load('scores.rda') ; scores

$midterm

[1] 66 78 62 99 80 63 82 86 84 70 98 81 66 42 92 74 75 89

[19] 87 84 89 87 76 45 84

$final

[1] 79 78 65 75 84 94 79 84 79 66 76 76 79 91 88 78 77 87

[19] 86 73 73 84 88 79

(one student dropped the class). Do the means on the midterm and final differ at α
= 0.05? The (edited) results for the test of equality of variances are

> alpha <- 0.05

> (v.equal <- var.test(scores$midterm, scores$final))

F test to compare two variances

F = 3.9807, num df = 24, denom df = 23, p-value =

0.001486

Based on the p-value, the variances are different. The (edited) results of the two-sided
t-test are

> p.v.equal <- v.equal$p.value

> v.equal <- TRUE

> if(p.v.equal <= alpha) v.equal <- FALSE

> t.test(scores$midterm, scores$final, var.equal = v.equal)

Welch Two Sample t-test

t = -0.7354, df = 35.656, p-value = 0.4669

sample estimates:

mean of x mean of y

77.56000 79.91667
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From the p-value we conclude that the mean score on the finals did not differ from
the mean score on the midterm. ut

In addition to the p-value of the difference in means, t.test() provides confidence
intervals on the difference of means.

Paired observations

In a paired design, we record two values for each object in our sample. Examples
are before and after, two measurements on an object at different times and so on. A
paired design is preferable to a random experiment design because it results in smaller
variance. Here is why. Let X1 andX2 be paired random variables from a paired normal
population of size N . Then there must be some amount of correlation between X1
and X2

ρ =
σX1X2
σX1σX2

or σX1X2 = ρ× σX1 × σX2

where σX1X2 is the covariance between X1 and X2, defined as

σX1X2 :=
1

N

N∑

i=1

(Xi1 − μ1) (Xi2 − μ2) .

For each pair of observations we have

Xi := Xi2 −Xi1 .

Therefore,

μX = μX1−X2

and

σ2X = σ
2
X1
+ σ2X2 − 2σX1X2

= σ2X1 + σ
2
X2
− 2ρσX1σX2 .

Each pair of measurement is independent of other pairs. However, pairs are dependent.
Therefore, if ρ > 0, then

σ2X < σ
2
X1
+ σ2X2 .

This means that we should prefer to test paired comparisons over pooled comparisons
because the variance for the difference in paired comparisons is smaller. The difference
between paired and unpaired designs is in the way we calculate the mean and the
variance. Once these are obtained, the test proceeds as usual.
For a paired sample of size n

X :=
1

n

n∑

i=1

Xi and S
2
X =

1

n− 1

n∑

i=1

(
Xi −X

)2

where again, Xi = Xi2 − Xi1 for i = 1, 2, . . . , n.
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Example 12.9. Continuing with Example 12.8, the first score in the midterm is for
the student who dropped the class. So the data are:

> midterm <- scores$midterm[-1] ; final <- scores$final

and the test (let us indulge and be terse here) is

> t.test(midterm, final, var.equal =

+ (var.test(midterm, final)$p.value <= alpha))

Two Sample t-test

t = -0.5725, df = 46, p-value = 0.5698

sample estimates:

mean of x mean of y

78.04167 79.91667

(the output was edited). As in the unpaired test, we do not reject the null hypothesis
and conclude that the mean scores were not different on the midterm and final. ut

12.2.4 Proportions

Let us go back to go back to contingency tables:

success population 1 population 2 total
yes n1S n2S nS
no n1 − n1S n2 − n2S n− nS
total n1 n2 n

For π := π2 − π1, we wish to test

H0 : π = 0 vs. HA : π 6= 0

with significance level of α. The null hypothesis dictates that π := π1 = π2. Under
the null, we estimate π with

p :=
n1

n1 + n2
×
n1S

n1
+

n2

n1 + n2
×
n2S

n2
.

Also under the null, the expected values in the four cells are

success population 1 population 2
yes p× n1 p× n2
no (1− p)× n1 (1− p)× n2

If any of the four expected values are < 5, then we must use Fisher’s exact test. Let

A := nS ! (n− nS)!n1!n2! ,

B := n!n1S !n2S ! (n1 − n1S)! (n2 − n2S) .

Under the assumption that the margins in the contingency table are fixed, the prob-
ability of obtaining the table is computed according to Fisher’s exact test as

p-value =
A

B
.

If p-value < α, we reject the null hypothesis.
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Example 12.10. After the first examination in a Statistics class, 4 students scored
an A and 5 students a C. The examination took place on the 5th class. The A stu-
dents missed a total of 2 classes among them and the C students missed a total of
14 classes. Did the A and C students differ in the number of classes they missed? We
use a significance level of 0.05.
Assume that students miss classes independent of each other and at random class

sessions. Then we prepare the table

> classes <- rbind(c(3, 8), c(18, 11))

> dimnames(classes) <- list(Classes = c('missed', 'attended'),

+ Grade = c('A', 'C'))

> classes

Grade

Classes A C

missed 3 8

attended 18 11

and run the test

> fisher.test(classes, alternative = 'less')

Fisher's Exact Test for Count Data

data: classes

p-value = 0.05275

alternative hypothesis: true odds ratio is less than 1

95 percent confidence interval:

0.000000 1.018084

sample estimates:

odds ratio

0.2381634

Based on the p-value, we conclude that class attendance did not affect the student
grades. ut

12.2.5 Intensities

We present only one approach (the so-called conditional test or binomial exact test)
to testing hypotheses for two Poisson parameters. Let N1 and N2 be counts from two
independent populations over n1 and n2 interval units with Poisson parameters λ1
and λ2. The best estimates of λ1 and λ2 are λ̂1 := l1 = N1 / n1 and λ̂2 = l2 = N2 / n2.
The uppertailed hypotheses are

H0 : ρ = ρ0 vs. HA : ρ > ρ0

where ρ0 := λ2 / λ1 is given. Here we have E [N1] = n1λ1 and E [N2] = n2λ2. The
estimates of the expectations are X1 = n1l1 and X2 = n2l2 and their corresponding
realizations are x1 and x2. Let X := X1 + X2 with the realization x = x1 + x2.
Then

P (X2 = x2 |ρ0, x ) =

(
x

x2

)

ρx20 (1− ρ0)
x−x2
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where the probability of success is

ρ0 =
n2λ2

n1λ1 + n2λ2
.

So

p-value = P (X2 ≥ x2 |ρ0, x )

= 1− pbinom(x.2− 1, x, rho.0).

For testing λ0 := λ1 = λ2 and

H0 : ρ = ρ0 vs. HA : ρ 6= ρ0 ,

we have
ρ0 =

n2

n1 + n2

and the p-value is given by

p-value = 2min [P (X2 ≥ x2 |ρ0, x ) , P (X2 ≤ x2 |ρ0, x )]

= 2 ∗min (1− pbinom(x.2− 1, x, rho.0),

pbinom(x.2, x, rho.0)) .

There are other ways to test for two samples from Poisson densities (Krishnamoorthy
and Thomson, 2004, and citations therein).

Example 12.11. We wish to determine if the hunting successes of two prides of lions
are different. We follow the first pride for 20 attempts, all of which failed. We follow
the second pride for 20 attempts, three of which succeeded. So

> x.1 <- 0 ; x.2 <- 3 ; x <- x.1 + x.2 ; rho.0 <- 0.5

> (p.value <- 2 * min(1 - pbinom(x.2 - 1, x, rho.0),

+ pbinom(x.2, x, rho.0)))

[1] 0.25

and we conclude that the hunting successes of both prides are equal. ut

12.3 Unknown densities

So far, we examined small samples from known densities. As we saw, the addition of
uncertainty about the variances (compared to large samples) forced us to use the t-test
when the populations were normal. When the populations are binomial or Poisson, we
use Fisher’s exact test or the binomial exact test (Sections 12.2.4 and 12.2.5). What
do we do when the densities are not known and samples sizes are small? Then we use
either the rank sum test or the paired signed rank test. Because the tests do not rely
on known densities, they are called nonparametric tests. We are interested in testing
for differences in means. Therefore, we must assume that the densities are symmetric.
The rank sum and signed rank tests can be used to test for the differences of medians
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of two samples instead of means. For medians, we do not need to assume symmetry
of the population densities.

12.3.1 Rank sum test

This test is often called the Wilcoxon rank sum test or the Mann-Whitney U test.
We shall call it the rank sum test. Here we consider the case where two samples come
from symmetric densities with the same spread (equal variance), but different location
(Figure 12.2c). The assumption of symmetry allows us to test for the equality of
means. Otherwise, the test is applicable for the equality of medians. The assumption
of symmetry is not as restrictive as it might seem. Often the differences between
the means lead to a symmetric sampling density. Also, the test is robust to slight
asymmetries. The rank sum test is the nonparametric counterpart of the t-test.
Consider testing

H0 : μ = 0 vs. HA : μ 6= 0

with samples of size n1 = n2 = n and μ := μ2 − μ1. Under the null hypothesis, both
samples come from the same density. Therefore, if we pool the data and rank the 2n
observations, then we expect the values that come from the first sample to be equally
scattered among the values that come from the second sample. If we sum the ranks of
two samples from the same populations (under H0), then the sum of the ranks should
be about equal. Here is an example.

Example 12.12. Two samples of young walleye were drawn from two different lakes
and the fish were weighed. The data in g are:

> X.1 <-c (253, 218, 292, 280, 276, 275)

> X.2 <- c(216, 291, 256, 270, 277, 285)

> sample <- c(rep(1, 6), rep(2, 6))

> w <- data.frame(c(X.1,X.2), sample)

> names(w)[1] <- 'weight (g)'

> cbind(w[1 : 6, ], w[7 : 12, ])

weight (g) sample weight (g) sample

1 253 1 216 2

2 218 1 291 2

3 292 1 256 2

4 280 1 270 2

5 276 1 277 2

6 275 1 285 2

Next, we sort the data keeping track of the group identity

> idx <- sort(w[, 1] , index.return = TRUE)

> d <- rbind(weight = w[idx$ix, 1], sample = w[idx$ix, 2],

+ rank = 1:12)

> dimnames(d)[[2]] <- rep('', 12) ; d

weight 216 218 253 256 270 275 276 277 280 285 291 292

sample 2 1 1 2 2 1 1 2 1 2 2 1

rank 1 2 3 4 5 6 7 8 9 10 11 12
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Finally, we sum the ranks of the observation in the pooled data:

> rank.sum <- c(sum(d[3, d[2, ] == 1]),

+ sum(d[3, d[2, ] == 2]))

> rank.sum <- rbind(sample = c(1,2),

+ 'rank sum' = rank.sum)

> dimnames(rank.sum)[[2]] <- c('','') ; rank.sum

sample 1 2

rank sum 39 39

In this case, the rank sums are equal. ut

Suppose that all the observation values in the first sample are smaller than all the
observation values in the second sample. Now rank the 2n observations as a single
sample. Then the first n observations belong to the first sample, the rest to the
second. Therefore, in our example, the first sample will have the smallest possible rank
sum of

1 + 2 + 3 + 4 + 5 + 6 = 21

and the second sample will have the largest possible value of rank sum,

7 + 8 + 9 + 10 + 11 = 57.

The rank sum of each sample can range between 21 and 57. We want the probabilities
(density) of all possible values of rank sums. Under H0, the ranks of the first sample
should be equally scattered among the ranks of the two samples pooled. Altogether,
the ranks of the first sample can be scattered in

12!

6!6!
= 924

different ways. The rank sum of 21 is achieved in only one possible way: When all of
the values of one sample are smaller than those of the other. Similarly, the rank sum
of 57 can be achieved in only one possible way. Consequently,

P (W1 = 21 and W2 = 57) =
2

924
= 0.002

where W1 and W2 denote the rank sum of sample 1 and sample 2. If H0 is true and
we get a rank sum of 21 or 57, we will reject H0 for α = 0.05 because p-value = 0.002.
Continuing this way, we determine in how many ways we can produce rank sums
≤ 22, 23 and so on. For example, by enumeration, we can show that

P (W1 ≤ 23 and W2 ≥ 55) =
8

924
= 0.009

The R function wilcox.test() makes the job of computing rank sum easy.

Example 12.13. For the data in Example 12.12, we use the hypotheses that

H0 : μ = 0 vs. HA : μ 6= 0
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with α = 0.05:

> wilcox.test(X.1, X.2)

Wilcoxon rank sum test

data: X.1 and X.2

W = 18, p-value = 1

alternative hypothesis: true location shift is not equal to 0

Here the value of the W statistic is 18 and the p-value is virtually 1. Therefore, we
do not reject H0. ut

So far, we tested for H0 : μ = 0. To test for H0 : μ = μ0 (where μ0 is some constant),
we simply rearrange the null hypothesis to H0 : μ− μ0 = 0.

Example 12.14. Continuing with Example 12.13, we wish to test

H0 : μ = 50 g vs. HA : μ < 50 g

at α = 0.05:

> wilcox.test(X.1, X.2, mu = 50, alternative = 'less')

Wilcoxon rank sum test

data: X.1 and X.2

W = 4, p-value = 0.01299

alternative hypothesis: true location shift is less than 50

Therefore we reject H0 in favor of HA and conclude that the difference between the
mean weight of the two populations of young walleye is less that 50 g. ut

When some of the ranks are equal, we assign each tied rank the average value of
the rank. When the proportion of ties in the two samples is inordinately large, say
over 25%, then a correction factor needs to be applied (Mosteller, 1973; Wayne,
1990).

Example 12.15. Consider two samples, with 6 observations each:

> s1 <- c(3, 4, 5, 7, 3, 8)

> X.1 <- c(3, 4, 5, 7, 3, 8)

> X.2 <- c(10, 6, 9, 1, 2, 7)

> wilcox.test(X.1, X.2)

Wilcoxon rank sum test with continuity correction

data: X.1 and X.2

W = 15.5, p-value = 0.7479

alternative hypothesis: true location shift is not equal to 0

Warning message:

cannot compute exact p-value with ties in:

wilcox.test.default(X.1, X.2)
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The warning message refers to the fact that the exact p-value cannot be computed
with ties. Exact p-value refers to computation based on the densities of various rank
sums computed directly from combinatorial considerations as we did above. ut

12.3.2 t vs. rank sum

Which test should we choose: the t-test or the rank sum test? It turns out that when
both samples come from a normal density, the t-test performs slightly better—it
detects significant differences when they exist—than the rank sum. However, when
departures from normal are marked, the t-test is inferior and the resulting p-values
cannot be trusted. Also, when the samples are very small (say 5–10 observations),
then tests of normality are not reliable and we prefer to use the rank sum test. The
upshot? When in doubt, be conservative and use the rank sum.

12.3.3 Signed rank test

When two independent samples come from normal distributions and the samples are
small, we use the t-test. When observations are paired and independent (but pairs
are dependent), when the samples come from normal populations and when they are
small, we use the paired t-test. When the two samples are independent, but they
come from similar symmetric distributions with equal variance and different location,
we used the rank sum test. We are now ready to discuss the case where the small
samples conform to the assumptions we used for the rank sum test with one additional
condition: observations are paired. In this case we use the signed rank test. It is the
nonparametric counterpart of the paired t-test.
Under the assumption that μ = 0, the test statistic is computed thus:

1. Rank |Xi| and denote the ith rank by Ri.
2. Restore the signs to Ri.
3. Sum the positive ranks and denote it by W+. Sum the negative ranks and denote
it by W−. Do not use ranks for zero difference and reduce the sample size by the
number of zero differences.

4. Denote by WS the smaller sum. The signed rank sum WS is our test statistic.

From this construction, large WS indicates large Xi and we consequently reject H0.
The sampling density of WS is known and thus we can compute p-values and confi-
dence intervals. It should not be confused with the sampling density of the sum rank,
W . Here is an example that details the calculation steps of the sign rank statistic, WS .

Example 12.16. One semester, one of us was particularly interested in comparing
the performance of 12 students in a Statistics class. Here are their test scores on
the midterm and final and the sequence calculations that we need to obtain the WS
statistic:

> load('test.scores.rda')

> (z <- test.scores.rda)

midterm final diff abs.diff rank signed.rank

1 48 44 4 4 2.5 2.5

2 51 62 -11 11 9.0 -9.0
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3 57 64 -7 7 7.5 -7.5

4 67 62 5 5 4.0 4.0

5 46 64 -18 18 11.5 -11.5

6 67 85 -18 18 11.5 -11.5

7 68 62 6 6 5.5 5.5

8 60 75 -15 15 10.0 -10.0

9 91 95 -4 4 2.5 -2.5

10 86 92 -6 6 5.5 -5.5

11 87 94 -7 7 7.5 -7.5

12 87 84 3 3 1.0 1.0

The data do not seem normal

> par(mfrow = c(1, 2))

> qqnorm(midterm, main = 'midterm') ; qqline(midterm)

> qqnorm(final, main = 'final') ; qqline(final)

(Figure 12.3). Yet, the test scores are paired. So we use the signed rank test with

H0 : μ = 0 vs. HA : μ 6= 0

and with α = 0.05. From the last column above,

W.plus <- sum(z$signed.rank[z$signed.rank > 0])

W.minus<- - sum(z$signed.rank[z$signed.r < 0])

c(W.plus, W.minus)

[1] 13 65

or in our notation,
W+ = 13 and W− = 65

Now

> W <- min(W.plus, W.minus)

> round(c('W' = W, 'p.value' = 2 *

+ psignrank(W, length(z[, 1]), length(z[, 1]))), 3)

W p.value

13.000 0.042

Figure 12.3 Test scores.
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The value of the test statistic WS = 13 and its p-value (obtained with psignrank

(13,12)) is 0.042. The mean test scores on the midterm and final for the 12 stu-
dents were different at α = 0.05. So far, we did our own computations. Using R, we
obtain

> wilcox.test(midterm, final, paired = TRUE)

Wilcoxon signed rank test with continuity correction

data: midterm and final

V = 13, p-value = 0.04513

alternative hypothesis: true location shift

is not equal to 0

Warning message:

cannot compute exact p-value with ties in:

wilcox.test.default(midterm, final, paired = TRUE)

Our direct computation and those of R are within roundoff errors. ut

When there are too many ties (say above 20%), you should doubt the legitimacy of
the test results. For n > 10 and for Xi independent and symmetrically distributed
around zero, the statistic

ZWS :=
WS − μWS
σWS

is approximately normal under H0 where

WS = 0 and SWS =

√
n(n+ 1)(2n+ 1)

6
.

With these approximations, we can test hypotheses and obtain confidence intervals.

12.3.4 Bootstrap

In this section, we discuss the case where nothing is known about the distributions of
the samples. In fact the samples may come from populations with any two distribu-
tions. We introduce the topic by way of an example.

Example 12.17. We use the data presented in (Efron and Tibshirani, 1993, Table
2.1, p. 11), where two groups of mice were subjected to treatment and control (n1 = 7
and n2 = 9):

treatment <- c(94, 197, 16, 38, 99, 141, 23)

control <- c(52, 104, 146, 10, 50, 31, 40, 27, 46)

We wish to produce the 95% confidence interval of μ := μ1 − μ2, the difference between
the means of the populations. So we take a sample of size 7 (with replacement) from
the treatment group and compute its mean X1. Similarly, we take a sample of size
9 with replacement from the control group and obtain X2. We now have our first
instance of X. We repeat the process 1 500 times. Thus, we get an approximation
of the sampling density of X. Assuming that this sampling density is approximately
normal, we obtain an estimate of μX and the standard error σX . Using these, the
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confidence interval is

95%CI =
[
X − 1.96× SE , X + 1.96× SE

]
.

Implementing the bootstrap procedure,

> library(simpleboot)

> set.seed(10)

> b <- two.boot(treatment, control, mean,

+ R = 1500, student = TRUE, M = 50)

we read the value of X from

> b$t0[1]

[1] 30.63492

Next, we calculate the normally approximated confidence interval

> bci <- boot.ci(b)

> bci$normal

conf

[1,] 0.95 -22.20960 85.36527

or in our notation
95%CI = [−22.21 , 85.37].

To view the results, we do

> hist(b)

> abline(v = b$t0[1], col = 'red', lwd = 2)

> abline(v = bci$normal[2], lty = 2)

> abline(v = bci$normal[3], lty = 2)

(see Figure 12.4).Because the confidence interval spans zero, the population means
are not judged to be different. ut

Figure 12.4 Bootstrap frequency and 95% confidence interval for the difference
between the means of two populations with unknown distributions.
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12.4 Assignments

Unless otherwise specified, use two-tailed tests with α = 0.05.

Exercise 12.1. Take two independent samples from populations with the following
parameters:

μ1 = 20 , σ1 = 3 , n1 = 45 ,
μ2 = 30 , σ2 = 4 , n2 = 47.

1. What is the sampling distribution of μ2 − μ1?
2. What is the mean of this sampling distribution?
3. What is the variance of this sampling distribution?

Exercise 12.2.Walleye are sampled from two different lakes in southern and north-
ern Minnesota. The data summary on fish lengths (mm) are as follows:

population mean standard deviation sample size
1 110 12 54
2 125 25 52

A fisheries biologist claims that with a significance level of 0.05, these results support
the hypothesis that fish in warmer waters (southern Minnesota) grow to be longer
than fish in colder lakes (northern Minnesota). Do the data support her claim?

Exercise 12.3. Deer feeding in the winter in northern latitudes is a controversial
issue. Some claim it reduces mortality. Others claim it does the opposite—strong deer
get to eat most of the food and thus deny others of the opportunity to eat and larger
winter populations mean larger summer population. Weight serves as an index of
mortality. The larger the weight, the smaller the mortality. A single deer from each
of 11 isolated populations were weighed by the end of five winters. These populations
were not weighed during the winter. A single deer from each of 12 isolated populations
were weighed by the end of six winters. These populations were given supplemental
food during the winter. Assume that weights between years are independent. The
data were as follows:

Supplemental
Feeding

mean standard deviation sample size

Yes 165 25 72
No 160 22 55

1. What is the 95% confidence interval estimate for the population difference in the
mean weight?

2. Use α = 0.1 to determine if supplemental feeding results in different deer weight.

Exercise 12.4. For the following exercise, refer to the data in Table 9.3, on page 302.

1. Based on these data, would you conclude that all possible pairs are sufficiently
different from each other to justify separation of subspecies? Compare males to
males and females to females. Do not compare males to females. Be sure to run
the appropriate test.
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2. Sexual dimorphism refers to the idea that within a species, males and females
may differ in one or more morphological traits. Would you conclude that there is
wing chord sexual dimorphism?

Exercise 12.5. Responses to public opinion surveys often depend on subtle differ-
ences in the wording of questions. In the paper “Attitude measurement and the gun
control paradox” (Public Opinion Quarterly 1977–1978, pp. 427–438), the investiga-
tors were interested in how the wording of a question influences the response. They
worded the question about gun control in two ways:
A. “Would you favor or oppose a law that would require a person to obtain a

police permit before purchasing a gun?”
B. “Would you favor or oppose a law that would require a person to obtain a police

permit before purchasing a gun, or do you think that such a law would interfere too
much with the right of citizens to own guns?”
The second question should elicit a smaller proportion of “yes” than the first. Here

are the data:

n in favor

question A 615 463

question B 585 403

Did the wording have an effect on responses?

Exercise 12.6. The sex ratio of reptiles is determined by temperature during incuba-
tion. Suppose that 150 eggs of alligators were exposed to temperature t1. Of these, 90
eggs hatched into females. Another sample, of 200 eggs were exposed to temperature
t2, and 125 of them hatched into females.

1. Does temperature make a difference in the sex ratio (use α = 0.05)?
2. Compute the 95% confidence interval for the true difference in the the sex ratio
for the “populations” in this experiment.

Exercise 12.7. Kimmo et al. (1998) studied the survival of Willow tits over the win-
ter. They trapped birds in the autumn and then recorded the number of birds resighted
in the following season. They interpreted these data as survival rate. Here is a subset
of their report (see their Table 1):

91-92 92-93 95-96

trapped.adults 49 60 25

resighted.adults 37 36 22

trapped.yearlings 45 19 40

resighted.yearlings 17 2 14

1. For which of these years (if any) can you compare the survival rate of adults and
yearlings with the normal approximation for inference about proportions?

2. Compare the survival of adults to yearlings. Are they significantly different at
α = 0.05 for a two-tailed test?

3. Repeat (2) for α = 0.01.
4. Repeat (1) and (2) for a one-tailed test (set up the test so that it makes biological
sense).
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5. If you find data that you could use, construct the 95% confidence interval for the
survival proportion for adults. Does the survival rate for yearlings fall within this
interval?

6. Repeat (5) for a 99% confidence interval.

Be sure to show your calculations. Write your conclusions formally; i.e. given that...
we reject (or do not reject) the null hypothesis.

Exercise 12.8. The data for this exercise are from Gholz et al. (1991). The authors’
hypothesis was that fertilization with nitrogen increases leaf area. Prior to the exper-
iment, the authors assigned fertilization or control (no fertilization) to randomly
selected plots. They had to make sure that the number of trees per plot (of size
1 ha) were about equal. So they determined the following:

Trees per ha in fertilized plots:

1024, 1216, 1312, 1280, 1216, 1312, 992, 1120

Trees per ha in unfertilized plots:

1104, 1072, 1088, 1328, 1376, 1280, 1120, 1200

Do you believe the authors’ statement that the number of trees per plot were approx-
imately equal before the beginning of the experiment at α = 0.01?

Exercise 12.9. The data for this exercise are from Frelich and Lorimer (1991). The
authors claim that spreading fires do more damage to hardwood than do spot fires.
Damage was measured by the percent of trees scarred by fires. The authors used a
t-test to justify their claim. This means that they assumed that the data came from
a normal distribution. Here are the data:

Spreading fires:

21.0, 26.7, 9.2, 6.7, 29.2, 26.7, 6.7, 8.3, 18.4, 4.9

Spot fires:

1.6, 4.6, 1.1, 1.2, 21.1, 11.9, 1.8, 4.7, 7.4

1. Based on normal probability plots, do you agree with the authors that the data
came from a normal distribution?

2. Do the data conform to the assumptions of the t-test for small samples?
3. Assume that they do. Then set up a null and alternative hypothesis, run the test,
and draw explicit conclusions abut the authors’ claim. Be sure to use the p-value
in drawing conclusions.

4. Compute the confidence interval for α = 0.05 and H0 : μ = 0 What do you
conclude about the true difference between μ1 and μ2?

Exercise 12.10. Species diversity is known to be related to soil nutrients. Twenty-
five plots were divided into two subplots. One subplot was treated with fertilizer, the
other was not. By the end of the experiments, the following number of species were
determined:

> fertilized

[1] 10 12 10 15 12 10 12 13 13 11 15 12 10 7 14 11 11 13

13 13 13 13 12 8 13
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> not.fertilized

[1] 13 13 11 13 14 16 13 14 13 11 13 13 13 16 15 13 13 15

15 12 12 14 15 13 15

Run the appropriate test. Was fertilization associated with change in species number?

Exercise 12.11. Brown-headed cowbirds are known as nest parasites. They leave
their eggs in other species nests, where the eggs are “adapted” by the nest owners.
To determine if nest parasitism by cowbirds is different in a prairie habitat compared
to a forested habitat, 25 nests were selected for observation in a prairie habitat. Of
these, 12 were parasitized. In the forest habitat, of 22 nests, 8 were parasitized. Run
the appropriate test. What is your conclusion?

Exercise 12.12. A biologist is interested in establishing differences in the fitness of
a population of elk in two different habitats, A and B. In one year, in habitat A he
counts 12 births for 25 animals (per 100 Ha). In the same year, he counts 8 births for
25 animals (per 100 Ha). Are the birth rates (a measure of fitness) different?

Exercise 12.13. Answer the following briefly:

1. What are the conditions under which the rank sum test for differences between
two means from two independent samples is performed?

2. What are the conditions under which the rank sum test for differences between
two medians from two independent samples is performed?

3. What are the conditions under which the signed rank test for differences between
two means from paired samples is performed?

4. Given the choice, which test would you prefer for testing the difference of means
from two samples from symmetric population distributions with equal variance:
t-test or rank sum? Why?

5. What are the conditions under which the t-test is performed for the difference
between the means from two samples?

6. What are the conditions under which the paired t-test is performed?
7. Given the choice, which one would you prefer, t-test or paired t-test? Why?

Exercise 12.14. You are given the choice of the following tests of hypotheses about
the difference of two samples means: Z, t, paired t-test, rank sum, signed rank. Rank
the tests from the least to the most specific in terms of the assumptions about the
underlying sampling distributions. Explain your choice of ranking.

Exercise 12.15. Refer to Exercise 12.9.

1. Run a formal test of normality on each vector. What are your conclusions with
regard to normality of the data?

2. Which test would you use to examine the hypothesis that spreading fires do more
damage than spot fires if you doubt the normality of the data? Run it. What are
your conclusions?

Exercise 12.16. Write a function that does a two-sample test of significance for the
difference between proportions. The arguments should be p1, p2, n1, n2, α and one
or two-sided test.
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Power and sample size
for two samples

In this chapter, we are interested in the question of power and sample size for com-
paring two samples. The samples may come from populations with normal, binomial
or Poisson densities and our estimates of power and sample size refer to differences
between means, proportions and rates.
Let us summarize the issues involved with power and sample size. In planning

a two-sample study, we must guard against two types of errors. The first is Type
I error. It refers to declaring the difference in, for example, proportions significant
when in fact it is not. To guard against this error, we set α to be as small as we can
tolerate—usually 0.1, 0.05 or 0.01. By increasing sample size, we can also achieve the
desired significance, no matter how small the difference is between two proportions.
So we need to specify a difference as large as we deem detectable. The second is Type
II error. Here we declare the difference between two population parameters (means,
proportions or intensities) as significant while in fact it is not. So after we specify
the minimum difference that is important to be detected, we need to specify the
probability of detecting this difference. This probability, denoted by 1 − β, determines
the power of the test. Recall that β is the probability of Type II error. To compute
a necessary sample size, we specify the minimum detectable difference between the
parameters of interest, the desired significance and the desired power.

13.1 Two means from normal populations

Here we discuss how to obtain the power to distinguish the difference between the
means of two populations based on two samples. We shall also see how to obtain
sample sizes necessary to distinguish between the means with a given difference, sig-
nificance and power.

13.1.1 Power

The hypotheses to be tested are H0 : μ = 0 vs. one of the usual three alternatives for
a specified α. Here μ := μ2 − μ1. To obtain the power to distinguish between two

Statistics and Data with R:  An applied approach through examples         Y. Cohen and  J.Y.  Cohen
©
2008 John Wiley & Sons, Ltd.  ISBN: 978-0-470-75805



402 Power and sample size for two samples

means from normal populations based on two samples from these populations, we must
specify a value for the alternative difference between the means, denoted by μA. Let

SE :=

√
S21
n1
+
S22
n2

where ni and S
2
i (i = 1, 2) are the respective means and variances of the two samples.

Denote by P (Z < z) the probability that the rv Z takes on values less than z where
Z is from a standard normal distribution. For the hypotheses H0 : μ = 0 vs. HA :
μ 6= 0 and for a given alternative μA, the two-sided power is given by

1− β = P
(
Z <

μA

SE
− z1−α/2

)
+ P

(
Z < −

μA

SE
− zα/2

)

= pnorm(mu.A/SE− qnorm(1− alpha/2))+ (13.1)

pnorm(−mu.A/SE− qnorm(alpha/2)) .

For HA : μ > μ2 − μ1, the power is given by

1− β = P
(
Z <

μA

SE
− z1−α

)
(13.2)

= pnorm(mu.A/SE− qnorm(1− alpha))

and for HA : μ < μ2 − μ1, the power is given by

1− β = P
(
Z < −

μA

SE
− zα

)
(13.3)

= pnorm(mu.A/SE− qnorm(alpha)) .

Example 13.1. Consider the capital punishment data first introduced in Example
2.12. To examine differences of age at sentencing between blacks and whites, we sample
the data with n1 = 35, n2 = 40 and find that X1 = 29.0, X2 = 27.6, σ

2
1 = 64.8 and

σ22 = 61.1 respectively. The p-value for the difference in the means is 0.112 > 0.025
and we do not reject the hypothesis that the mean age at sentencing is equal for whites
and blacks. How powerful is our ability to distinguish between these two means if in
fact the difference between the true (population) means is |μ| = |27.6 − 29| = 1.4?
Before answering this question, let us first examine the power profiles according to
Equations (13.1), (13.2) and (13.3):

1 source('power-normal.R')

2

3 alpha <- 0.05 ; mu.0 <- 0 ; mu.1 <- 29 ; mu.2 <- 27.6

4 mu.A <- seq(-10, 10, length = 201) ; V.1 <- 64.8

5 V.2 <- 61.1 ; n.1 <- 35 ; n.2 <- 40 ; k <- n.2 / n.1

6

7 par(mfrow = c(1, 3))

8 alt <- c('two.sided', 'greater', 'less')

9 for (i in 1 : 3){

10 if(i == 1) ylab = 'power' else ylab = ''

11 p <- power.normal(mu.A = mu.A, mu.0 = mu.0, n.1 = n.1,
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12 n.2 = n.2, S.1 = sqrt(V.1), S.2 = sqrt(V.2),

13 alt = alt[i])

14 plot(p$pwr, xlab = expression(mu[A]),

15 ylab = ylab, type = 'l', main = alt[i])

16 }

Let us explain the code. In line 1, we execute a script in which the function power.
normal() resides. The code for this function resides in power-normal.R at the book
website. In lines 3–5 we specify the data. We set μ0 := μ2 − μ1 = 0. In other words,
we are looking for the power to distinguish between two populations’ means under
the null hypothesis that the means are not different at α = 0.05. In line 4, we set the
alternative difference between the population means as a vector (we wish to examine
the power profile). In lines 4 and 5 we specify the variances, sample sizes and the ratio
of the sample sizes. Because we wish to plot the profiles for the three HA, we open a
window ready to accept a matrix of plots with one row and three columns (line 7).
We store in alt the three power types we wish to examine and plot.
In lines 9–16 we call power.normal() and plot the results. The function can

calculate power for a single or two samples from a normal density. For two samples,
the function requires the arguments as shown. Here S.1 and S.2 denote the standard
deviations of the samples and alt denotes the alternative for which we wish to deter-
mine the power. The resulting power profiles are shown in Figure 13.1. To obtain the
power for |μA| = 1.4 under H0: μ = 0, we simply call

> mu.A <- 1.4

> p <- power.normal(mu.A, mu.0, n.1, n.2, S.1 = sqrt(V.1),

+ S.2 = sqrt(V.2), alt = 'two.sided')

> p$pwr

mu.A power

1 1.4 0.1186401

Figure 13.1 Power profiles for distinguishing between the age of sentencing to death
of blacks and white inmates in the U.S.
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Thus, our ability to distinguish a difference of 1.4 years between the mean ages at
sentencing to death of whites and blacks is negligible; i.e. 1 − β ≈ 0.189. ut

13.1.2 Sample size

To compare two means of two samples from normal populations with

H0 : μ = μ0 vs. HA : μ 6= μ0

with significance level α and power 1 − β we need to specify the smallest detectable
difference. Recall that μ := μ2 − μ1. Also recall that because we are dealing with
large samples, we use σ1 ≈ S1 and σ2 ≈ S2 where S1 and S2 are the sample-based
standard deviations of X1 and X2. If we have no idea about the population standard
deviations, we may use the range of the data divided by 4 to estimate the variance
and then the standard deviations. Let n be the sample size of each of the two samples.
Then, for the two-tailed estimate, the smallest sample size we need is

n =

(
σ21 + σ

2
2

) (
z1−α/2 + z1−β

)2

μ2
.

Often, because of cost or other concerns, we anticipate that n2 will be larger than n1
by a factor k; i.e. n2 = k × n1. In such cases, we estimate the needed sample size with

n1 =

(
σ21 + σ

2
2/k
) (
z1−α/2 + z1−β

)2

μ2
,

n2 =

(
kσ21 + σ

2
2

) (
z1−α/2 + z1−β

)2

μ2
.

For one-tailed estimates, replace z1−α/2 above with z1−α.

Example 13.2.We continue with the capital punishment data (Example 12.1). From
the samples we had, we specify σ21 ≈ 64.8 for whites’ age at sentencing to death and
σ22 ≈ 61.1 for blacks. We wish to calculate the sample sizes that we need to obtain
a significant difference at α = 0.05 with 1 − β between 0.6 and 0.9 for detectable
differences between −5 and 5 years of age. The following script accomplishes the
task.

1 alpha <- 0.05 ; mu.0 <- 0 ; V.1 <- 64.8 ; V.2 <- 61.1

2 mu <- c(seq(-8, 8, length = 161))

3 pwr <- seq(0.6, 0.9, length = 30)

4

5 s <- sample.size.normal(mu, S.1 = sqrt(V.1),

6 S.2 = sqrt(V.2), power = pwr, alt = alt[i])

7

8 s$size[s$size$mu > -2 & s$size$mu < 2, 3 : 4] <- NA

9 sm <- matrix(s$size$n.1, ncol = length(mu),

10 nrow = length(pwr), byrow = TRUE)

11
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12 persp(pwr, mu, sm, theta = 30, phi = 30, expand = 0.5,

13 col = "gray90", ticktype = 'detailed', shade = 0.2,

14 xlab = 'power', ylab = 'difference', zlab = 'sample')

The function that computes sample size for one or two samples is called sample.

size.normal(). It is available from the book website in the link for the file sample-
size-normal.R. In lines 1 to 3 we prepare the data. In lines 5 and 6 we call the function
with both power and μ vectors (their values are set in lines 2 and 3). sample.size.
normal() returns a list with the data and the output. The latter is stored in the list
as a data frame. Here are some of its lines:

> head(s$size)

mu power n.1 n.2

1 -8.0 0.6 8 8

2 -7.9 0.6 8 8

3 -7.8 0.6 8 8

4 -7.7 0.6 8 8

5 -7.6 0.6 8 8

6 -7.5 0.6 9 9

In line 8 we remove values of n1 and n2 from the results for those absolute values
of mu that are too close to zero because the sample sizes for these values are either
too large, or because a detectable difference between ±2 years is not important.
To prepare the function output for a 3D plot, we create a matrix from the values

of n1. This matrix has as many columns as the length of the vector mu and as many
rows as the length of pwr (the former contains the values of the differences between
μ2 and μ1 and the latter the values of the power).
Finally, in lines 12 to 14, we call the R function persp() (see Figure 13.2). To

obtain the sample size for α = 0.05, for a detectable age difference of 2.5 years
between the mean ages of blacks and whites at the time of sentencing and for 1 − β
= 0.8, we first set the condition for extraction of the results from the s$size data
frame:

> condition <- round(s$size$mu,2) == 2.50 &

+ round(s$size$power,2) == 0.80

and then

> s$size[condition, ]

mu power n.1 n.2

3165 2.5 0.7965517 124 124

In other words, to detect the desired difference in age with the desired power, we need
a sample of 124 whites and blacks. Let us see if this indeed is the case. In sampling
the data from the population, we set.seed() to 10 and n1 = n2 = 124. This
gives

whites blacks

mean 32.7 27.9

variance 98.1 51.5

sample size 124.0 124.0
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Figure 13.2 Sample size for combinations of power and μ := μ2 − μ1.

and a p-value of

> 1-pnorm(X.bar.1 - X.bar.2, 0, SE)

[1] 7.488974e-06

We thus conclude that if 2.5 years of age-difference (of blacks and whites at the time
of sentencing to death) indicates, for example, prejudice against blacks (in sentencing
young to death), then a sample of 124 will suffice to detect this difference. ut

Example 13.2 illustrates an extremely important point. One of the most frequent
criticisms of the abuse of statistics is this: You can always establish a significant dif-
ference if you use a large enough sample. We know by now that this criticism is valid
because the standard deviation of the sampling density (the standard error) decreases
as the sample size increases. So if you have a large enough population, you can always
establish a significant difference by increasing your sample size (recall our bigot in
Example 10.14). However, if common sense dictates that the smallest detectable dif-
ference μ := μ2 − μ1 makes sense, then you can calculate the sample size needed to
detect this difference and thus avoid abusing statistics. In the case of our capital pun-
ishment example, we decide (for whatever reason) that a detectable difference in mean
age of sentencing of at least 2.5 years between blacks and white may be practically
important. Thus, any sample larger than 124 will amount to “forcing the issue.”

13.2 Two proportions

Here, we follow the same sequence as we did in Section 13.1. Unlike the power obtained
from comparing two means, we usually do not have repeated experiments. That is, we
must distinguish between ni representing repetitions (as in Section 13.1) and between
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two experiments, one with n1 trials and n1S successes and the other with n2 trials
and n2S success.

13.2.1 Power

We are interested in the power to distinguish between proportions from two popula-
tions. To obtain it, we must specify the level of significance, the difference between
π1 and π2 that is important to detect and whether we are testing for one- as opposed
to two-tailed hypotheses.
The hypotheses to be tested are H0 : π = 0 vs. one of the usual three alternatives

for a specified α. Here π := π2 − π1. As usual, π1 and π2 are the probabilities of success
in the respective populations. These are estimated with πi ≈ pi = niS / ni, i = 1, 2.
Under the assumption that π1 = π2, we have that the mean of π, denoted by π

and its standard error, SE, are

π =
n1π1 + n2π2
n1 + n2

, SE =

√

π (1− π)

(
1

n1
+
1

n2

)

.

We use the samples’ proportions of success, p1 and p2, to estimate π1 and π2. Conse-
quently, the standard error of the sampling distribution of π2 − π1 is given by

SE ≈

√
p1 (1− p1)
n1

+
p2 (1− p2)
n2

.

For the two-sided power (i.e. HA : π 6= π2 − π1), the power is given by

1− β = 1− P

(

Z <
z1−α/2 SE− |π|

SE

)

+ P

(

Z <
−z1−α/2 SE− |π|

SE

)

where P (Z < z) is the probability (area) under the standard normal density that
Z < z. For HA : π2 > π1, the one-sided “greater than” power is given by

1− P

(

Z <
z1−α SE− |π|

SE

)

and for the “less than” HA : π2 < π1, the power is given by

P

(

Z <
−z1−α SE− |π|

SE

)

.

Example 13.3. Two groups of 40 patients each were selected for a study of the
effectiveness of flu shots. Members of the treatment group received a flu shot. Members
of the control group received a saline shot. The medical history of both groups was
followed for the duration of the flu season. Of the control group, 15 suffered from
flu symptoms at least once. Of the treatment group, 10 did. We wish to answer the
following:

1. Was the treatment effective?
2. If not, what is the probability that we accept the hypothesis that the treatment
was not effective in preventing flu while in fact it was (i.e. type II error, β)?
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3. What should have been the number of people in the treatment group that did not
suffer from flu symptoms for a power of 0.8; i.e. for a power that will guarantee a
small (0.2) type II error?

To answer these questions, we first set the notation:

Treatment: n1 = 40 , n1S = 10 , p1 = n1S / n1 = 0.25 .
Control: n2 = 40 , n2S = 15 , p2 = n2S / n2 = 0.375 .
Hypotheses: H0: π1 = π2 , HA: π1 < π2 , k = n2 / n1 = 1 ,

π1 ≈ p1 , π2 ≈ p2 , p =
n1S + n2S
n1 + n2

= 0.3125 ,

π ≈ p .

Regarding the first question, we have

> prop.test(c(10, 15), c(40, 40), alternative = 'g')

2-sample test for equality of proportions

with continuity correction

data: c(10, 15) out of c(40, 40)

X-squared = 0.9309, df = 1, p-value = 0.8327

alternative hypothesis: greater

95 percent confidence interval:

-0.3189231 1.0000000

sample estimates:

prop 1 prop 2

0.250 0.375

and we do not reject the null hypothesis. Therefore, we conclude that flu shots were
not effective.
To answer the second question, we set the data and call bp() (for binomial power),

available in bp.R, at the book’s site, with a one sided test:

> source('bp.R')

> n <- c(40, 40) ; n.S <- c(10, 15) ; p <- n.S / n

> Power <- bp(p[1], p[2], n1 = n[1], n2 = n[2],

+ alt = 'greater')

> print(c(beta = 1 - as.vector(Power)))

beta

0.6710638

Therefore, the type II error is approximately 0.671. In other words, the probability
that we accept the hypothesis that the treatment was not effective in preventing flu
while in fact it was is 0.671—not a good state of affairs because we may deny effective
treatment.
To answer the third question, we do:

> pi.A <- seq(0, p[2], length = 201)

> Power <- bp(pi.A, p[2], n1 = n[1], n2 = n[2],

+ alt = 'greater')

> plot(pi.A, Power, xlab = expression(pi[A]), type = 'l')
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Figure 13.3 One sided power profile for π2 = 0.375 > πA between 0 and π2.

(see Figure 13.3). Thus we find

> c(pi.A = pi.A[72], bp(pi.A[72], p[2], n1 = n[1],

+ n2 = n[2], alt = 'greater'))

pi.A Power

0.1331250 0.8090285

> floor(pi.A[72] * n[1])

[1] 5

In other words, in the current experiment, we needed no more than five people from
the experiment group contracting the flu to obtain a power of approximately 0.8. Such
power presents a balance between the probability of denying effective treatment (0.2)
and the probability of providing flu shots while they are not effective (0.05). Under
such conditions, it might be reasonable to select α = 0.1 for then we will decrease the
probability of denying effective treatment. ut

13.2.2 Sample size

Here we are interested in determining the sample size needed to distinguish between
two proportions with a particular power and level of significance.
Let ρ := n2 / n1. Under the null (π2 = π1) and alternative (π2 6= π1) hypotheses,

we first obtain the pooled proportion

π :=
(π1 + ρπ2)

1 + ρ
.

Next, the standard deviations under the null and under the alternative, where for the
alternative we specify πA := |π2 − π1|, are

σ0 =

√

π (1− π)

(

1 +
1

ρ

)

,

σA =

√

π1 (1− π1) +
π2 (1− π2)

ρ
.
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Then, the two-sided sample size is obtained from

n′ =

[
z1−α/2 × σ0 + z1−β × σA

πA

]2
,

n2 = largest integer closest to ρ× n
′ ,

n1 = largest integer closest to n
′/ρ .

For a one-sided test, use z1−α.
Often, cost and other considerations dictate that the sample sizes should be dif-

ferent. This can be achieved by using appropriate values of ρ.

Example 13.4. Continuing with Example 13.3, we wish to determine the sample
sizes that are necessary to establish a difference of 0.375− 0.25 between the proportion
that got sick in the control and treatment groups. We use the standard values of
α = 0.05 and 1 − β = 0.8 and the same fraction of the total sample allocated to both
groups. Then

> library(Hmisc)

> ceiling(bsamsize(p.1, p.2))

n1 n2

435 435

In other words, we need 870 people to achieve the desired significance. Suppose that
it is twice as expensive to follow members of the treatment group compared to the
control group e.g. following a member of the treatment group costs $100 and following
a member of the control group costs $50. Then, our desired fraction of allocation to
the treatment group is 1/3 and

> ceiling(bsamsize(p.1, p.2, fraction = 1/3))

n1 n2

312 624

The cost for the treatment group is 312 × $100 = $31 200. The cost for the control
group is 624 × $50 = $31 200 for a total cost of $62 400. Here we need more people
(936) compared to equal sample sizes (870). We may wish to investigate the possibility
of allocating the 936 people to both groups in a way that will maximize the power we
can achieve. Then

> ba <- ballocation(p.1, p.2, 936)

> as.vector(c(936 * ba[4], ba[4]))

[1] 442.2857658 0.4725275

Thus, we conclude that instead of allocating 312, we may allocate 443 (of the 936) to
the treatment. This will maximize the power we expect to achieve at a cost of $68 900
(compared to $62 450 when no power-maximizing is considered). ut

13.3 Two rates

Let t′ denote the time from the occurrence of the last event. Denote by P (X < 1|t′)
the probability that no event occurred by t′. As t′ increases, this probability decreases
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because the more time passes since the time of last event, the smaller the probability
that the event does not occur. It can be shown that if X is Poisson with λ, then

P (X < 1|t′) = e−λt
′

.

Therefore,
P (X ≥ 1|t′) = 1− e−λt

′

.

For a sample of size n, the expected number of events is then

m := nP (X ≥ 1|t′) = n
(
1− e−λt

′
)
.

For two Poisson populations we have λ1, λ2, t
′
1, t

′
2, n1, n2, m1 and m2. Denote by π

the probability of an event from n1. Suppose we observe n1 for t1 time units and n2
for t2 time units. Then

T1 = n1t1 , T2 = n2t2 , π =
λ1T1

λ1T1 + λ2T2
. (13.4)

Events are independent. Therefore, the number of events from n1 is binomial with
parameters π and m1 + m2. During the time we follow subjects (t

′
1 and t

′
1), we expect

that
m = m1 +m2 = n1

(
1− e−λ1t

′
1

)
+ n2

(
1− e−λ21t

′
2

)

events will occur.
To proceed, we define ρ := λ1/λ2. Then dividing the numerator and the denomi-

nator of the expression for π in (13.4) by λ2, we obtain

π =
λ1T1

λ1T1 + λ2T2

=
λ1T1/λ2

λ1T1/λ2 + λ2T2/λ2

=
T1ρ

t1ρ+ T2
.

We wish to test the hypothesis that the rates λ1 and λ2 are equal. So we set

H0 : ρ = 1 vs. ρ > 1
which is equivalent to

H0 : π =
T1

T1 + T2
vs. π >

T1

T1 + T2
.

To simplify the notation, we let π0 := T1/ (T1 + T2) and πA > π0, where πA is specified.
So equivalent to H0 : ρ = 1 we have H0 : π = π0, with the alternative specified. Thus,
similar to the development in Section 11.1.2, for πA > π0, we obtain

power = P

(

Z ≤
(πA − π0)

√
m− z1−α

√
V0√

VA

)

(13.5)

where
V0 := π0 (1− π0) and VA := πA (1− πA) .
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For πA < π0, we use

power = P

(

Z ≤
(π0 − πA)

√
m− z1−α

√
V0√

VA

)

. (13.6)

To obtain two-sided power, replace z1−α by z1−α/2 and sum the right hand sides
of equations (13.5) and (13.6). To verify that our computations are correct, we use
Example 14.15 in (Rosner, 2000, page 692).

Example 13.5. The incidence rate of a genetic mutation in population 1 is 375 per
100 000 in one year. In population 2 it is 300 per 100 000 in one year. We take a
sample of 5 000 from each population. What is the power of distinguishing between
λ1 = 375× 10−5 and λ2 = 300× 10−5 at α = 0.05?
The expected number of incidences in t′ = 5 years are

m1 = 5000×
(
1− e−375/100 000×5

)
= 92. 877 ,

m2 = 5000×
(
1− e−300/100 000×5

)
= 74. 44

and m = m1 + m2 = 167.32. Also

T1 = T2 = 5× 5 000 = 25 000 .

Therefore,

π0 =
T1

T1 + T2
= 0.5 ,

πA =
25 000×

375

300

25 000×
375

300
+ 25 000

= 0.556 .

We wish to test
H0 : ρ = 1 vs. HA : ρ 6= 1 .

This is equivalent to testing

H0 : π = π0 vs. π 6= π0 .

To determine the power, we use πA. Here

V0 = 0.5 (1− 0.5) = 0.25 and VA = 0.556 (1− 0.556) = 0.247 .

Therefore,

z1 :=
(πA − π0)

√
m− z1−α/2

√
V0

√
VA

=
(0.556− 0.5)

√
167.32− 1.96

√
0.25

√
0.247

= −0.526
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and

z2 :=
(0.5− 0.556)

√
167.32− 1.96

√
0.25

√
0.247

= −3.418 .

Thus, we obtain
P (Z < z1) + P (Z < z2) = 0.3 .

We will not reject a wrong null hypothesis in about 30% of the cases. Not a very good
power.
Here is the code for a function that computes two-sample power for the

Poisson:

1 Poisson.power <- function(t, n, l, alpha = 0.05){

2 q <- qnorm(1 - alpha / 2)

3 T <- t * n

4 rho <- l[1] / l[2]

5 p0 <- T[1] / sum(T) ; v0 <- p0 * (1 - p0)

6 pa <- T[1] * rho / (T[1] * rho + T[2])

7 va <- pa * (1 - pa)

8 m <- sum(n * (1 - exp(-l * t)))

9 A <- ((pa - p0) * sqrt(m) - q * sqrt(v0)) / sqrt(va)

10 B <- ((p0 - pa) * sqrt(m) - q * sqrt(v0)) / sqrt(va)

11 pnorm(A) + pnorm(B)

12 }

The function takes the following arguments (except for alpha, all vectors are of
size 2):

t Time period for each sample.
n Size of each sample.
l λ1 and λ2.

alpha Significance level α (default value = 0.05).

The function returns the two-sided power (1 − β) for a given α. Let us follow
the code for the function. In line 2 we obtain the quantile for the appropriate
value of α. In line 3, we obtain the values of subject-time for each of the sam-
ple. In our example, we have mutation-years. When the “rate” is not with respect
to time, the latter represents the number of repetitions of counts for each subject.
We then compute the rate ratio in line 4. In lines 5 and 6 we calculate the prob-
ability under the null and the alternative hypotheses, respectively. The variances
of each sample are calculated in lines 5 and 7. The expected number of incidences
(mutations in our example) are calculated in line 8. Lines 9 and 10 calculate the
quantiles given in equations (13.5) and (13.6). We need both quantiles because
Poisson.power() returns a two-sided power. Line 11 returns the power. In Exercise
13.5 you are asked to generalize the function for one-sided power (greater than and less
than). ut
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Let us discuss the sample size m that will give us a desired power. Rearranging
(13.5) and (13.6) for a two-sided test, we obtain

m =

(
z1−α/2

√
V0 + z1−β

√
VA

|π0 − πA|

)2

(13.7)

where m is the expected number of events in both populations. Let k := n2/n1. Then
if we specify k, we get the necessary sample sizes for each population from

n1 =
m

k + 1− e−λ1t
′
1 − ke−λ2t

′
2

, (13.8)

n2 = kn1 .

Example 13.6. Continuing with Example 13.5, we ask: How many subjects do we
need to follow for 5 years to obtain 80% power at significance of 0.05 for a two-tailed
test and equal numbers from both populations?
Using (13.7) we write

m =

(
1.96

√
0.5 (1− 0.5) + 0.84

√
0.556 (1− 0.556)

|0.5− 0.556|

)2

= 633.40 .

So we need to choose n1 and n2 such that we anticipate 634 events to occur. From
(13.8),

n1 = n2 =
634

2− e−375/100 000×5 − e−300/100 000×5
= 18 928.05 .

We therefore need to follow 18 929 subjects from each population for 5 years.
Here is a function that computes Poisson sample size for two samples:

1 Poisson.sample.size <- function(t, n, e,

2 rho = (e[1] / n[1]) / (e[2] / n[2]), alpha = 0.05,

3 power = 0.8, k = 1)

4 {

5 q <- qnorm(1 - alpha / 2)

6 p <- qnorm(power)

7 p0 <- t[1] / sum(t) ; v0 <- p0 * (1 - p0)

8 pa <- t[1] * rho / (t[1] * rho + t[2])

9 va <- pa * (1 - pa)

10 m <- (q * sqrt(v0) + p * sqrt(va)) / (abs(p0 - pa))

11 m <- ceiling(m * m)

12 d <- k + 1 - exp(-e[1] / n[1] * t[1]) -

13 k * exp(-e[2] / n[2] * t[2])

14 n1 <- m / d; n2 <- k * n1

15 ceiling(c(n1, n2))

16 }

The function computes the sizes of two samples from Poission populations that are
necessary to achieve a given power for a given significance level and for a given ratio
of the sample sizes. The function takes the following arguments:
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t Time period for each sample.
n Size of each sample from past data.
e Incidence count for each sample from past data.

rho The desired ratio of λ1 to λ2. If not provided,
the ratio is computed from e and n.

alpha The desired significance level (default value = 0.05).
power The desired power (default value = 0.8).

k The desired ratio n1 / n2.

In lines 5 and 6 we compute the quantiles for α and 1− β. In lines 7 to 9 we compute
π0 and πA under the null and alternative hypotheses and their variances. The required
number of incidences is computed in line 10 (see equation 13.7). To obtain n1, we first
compute the denominator in equation (13.8). In line 14 we compute the necessary n1
and n2. ut

13.4 Assignments

Exercise 13.1. Download the file walleye.rda from the book’s site. It contains the
following list of walleye weights from two lakes:

$sample.1

[1] 0.86 1.38 1.43 1.38 1.58 0.62 1.74 2.04 1.37 1.72 2.62

[12] 1.52 2.13 1.27 0.95 1.54 2.30 1.40 1.31 1.85 1.19 1.96

[23] 1.17 1.00 1.25 1.06 2.65 1.28 1.38 0.49 1.54 1.95 1.78

[34] 0.54 1.64 1.85 1.13 1.60 0.40 1.32

$sample.2

[1] 0.81 2.46 2.05 1.11 1.31 0.97 1.04 1.61 2.09 1.63 1.48

[12] 1.69 1.78 1.89 2.03 1.27 2.34 1.90 2.18 1.59 1.84 1.95

[23] 1.67 1.66 1.78 2.34 1.50 2.02 1.04 1.83 1.14 0.83 1.69

[34] 1.68 2.15 2.40 1.56 1.73 0.65 1.76 2.26 1.23 2.62 1.27

[45] 2.83

1. Create power profiles for the difference between the weights under the assumption
that μ1 − μ2 = 0 for μA < μ0, μA > μ0 and μA 6= μ0. Set the range of μA from
−1 to 1.

2. What is the power of distinguishing between weights of the two samples at α =
0.05 and a minimum detectable difference of 0.2 kg for μA < μ0, μA > μ0 and μA
6= μ0?

Use Example 13.1 as a guide.

Exercise 13.2. Continuing with the walleye.rda (Exercise 13.1), assume that the
samples’ variances approximately equal the population variances. Set α = 0.05, power
between 0.6 and 0.9 and detectable difference between −1 and 1 kg. With these:

1. Draw and interpret a figure for these data similar Figure 13.2.
2. What would be the sample size necessary to detect a difference of 0.2 kg with
power = 0.9?
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Exercise 13.3. Two separate populations of deer were chosen for a study of the
effect of reducing winter mortality due to supplemental feeding. The first population
included 38 deer and the second 42. Habitats in the two areas where the popula-
tions reside were comparable and so was the weather. The averages of the population
weight at the beginning of the winter were not different. The first population received
supplemental feeding, the second did not. By the end of the winter, 9 and 12 deer
died from starvation in the first and second populations, respectively.

1. Was the feeding effective in reducing winter mortality?
2. What is the probability that we accept the hypothesis that the supplemental
feeding was not effective in reducing mortality while in fact it was?

3. What should have been the number of deer in the winter-fed population that
survived for a power of 0.8 (with α = 0.05?

Exercise 13.4. Continuing with Exercise 13.3, determine the population sizes that
are necessary to establish a difference of 0.1 in the winter mortality between the fed
and unfed deer populations. Use α = 0.05 and 1 − β = 0.8. Assign the same fraction
of the total number of deer to the fed and unfed populations.

Exercise 13.5.Write a function that returns the one-sided (less than or greater than)
or two-sided power of a test of the difference between λ1 and λ2. Use the code for
Poisson.power() as a guide.
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Simple linear regression

So far, we were mostly concerned with the following question: What is the density of
some trait in a population from which we have samples? The answer to this question
boils down to estimating and comparing parameters of some density. For example, in
Chapter 9, we learned to estimate the mean of a population from the normal density
and in Chapter 12 we learned how to compare samples from two populations.
Here we are concerned with the following question: Given a sample for which we

have a pair of (random) values obtained for each object, say Xi and Yi, is there a
relationship between these pairs of values? More specifically, we are interested in the
linear relationship

y = β0 + β1x (14.1)

where β0 and β1 are coefficients. For example, we may ask: Are there relationships
between the number of cigarettes people smoke and the incidence of lung cancer?
What can we say about the relations between the age of a tree and its height? Does
infant mortality increase with lower per capita income? Can we say that more years
of education are associated with longer life expectancy?

14.1 Simple linear models

Simple linear models refer to linear functions that describe the relationship between
two variables, y and x. Linear functions are generally defined as

Linear function A function f is linear if and only if

f (αx) = αf (x) , f (x+ y) = f (x) + f (y)

for α constant.

We will use a special case of linear functions, f (x) = β0 + β1 x where β0 and β1 are
constants. We call such functions simple linear.

Statistics and Data with R:  An applied approach through examples         Y. Cohen and  J.Y.  Cohen
©
2008 John Wiley & Sons, Ltd.  ISBN: 978-0-470-75805
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14.1.1 The regression line

Equation (14.1) is deterministic—if we know the value of x, then we know exactly the
value of y. When additive random effects are involved, we have

Yi = β0 + β1Xi + εi (14.2)

where i denotes a specific pair of values (Yi, Xi) for the ith object in the population
and εi is the so-called error term. Now if the density of ε is normal with μ = 0 and
σε, then

E[Yi|Xi] = E[β0 + β1Xi + ε]

= β0 + β1E[Xi] + E[ε] (14.3)

= β0 + β1Xi .

The last equality holds because E[ε] = 0 and E[Xi] = Xi. Equation (14.3) is
referred to as the regression line. The coefficient β0 is its intercept and β1 is its
slope. Y is said to be the dependent variable, (also known as the variate or the
response) and X is the independent variable (also known as the explanatory vari-
able, the covariate, the treatment or the stimulus). These terms should not be
interpreted as necessarily cause and effect. To be consistent with traditional math-
ematical definitions, we shall call Y the dependent variable and X the independent
variable.

Example 14.1. The following data were obtained from http://www.cdc.gov/nchs/

about/major/nhanes/nhanes2005-2006/exam05 06.htm. It gives measurements of
various body parts for 9 950 individuals from a 2005–2006 survey of U.S. adults.
The file is in a SAS export format (xpt). To import both it and the variable des-
criptions, we

> bm <- read.xport('body-measurements.xpt')

> bmv <- read.table('body-measurements-variables.txt',

+ sep = '\t', header = TRUE, skip = 2)

and

save(bm, file = 'bm.rda')

save(bmv, file = 'bmv.rda')

The

> head(bmv)

Item.ID Label

1 SEQN Respondent sequence number

2 BMDSTATS Body Measures Component Status Code

3 BMXWT Weight (kg)

4 BMIWT Weight Comment

5 BMXRECUM Recumbent Length (cm)

6 BMIRECUM Recumbent Length Comment
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reveals space characters at the end of items ID and variable labels. In the spirit of
avoiding for loops like the plague, we get rid of these spaces with:

> trimmed <- apply(as.array(bmv[, 2]), 1, function(x)

+ if (substr(x, nchar(x), nchar(x)) == ' ')

+ strtrim(x, nchar(x) - 1) else strtrim(x, nchar(x)))

> bmv[, 2] <- unlist(trimmed)

> head(bmv, 4)

Item.ID Label

1 SEQN Respondent sequence number

2 BMDSTATS Body Measures Component Status Code

3 BMXWT Weight (kg)

4 BMIWT Weight Comment

Note that: apply() wants an array and returns a list; nchar() returns the number
of characters in a string; strtrim() trims the string to a specified length; unlist()
collapses a list to a vector. In Exercise 14.1, you are asked to clean the potentially
leading and trailing spaces from Item.ID. Let us look at variables 3, 9 and 16 in bm

and label them legibly with bmv:

> pairs(bm[, c(3, 9, 16)],

+ labels = bmv[c(3, 9, 16), 2])

> pairs(bm[, c(3, 9, 16)],

+ labels = bmv[c(3, 9, 16), 2])

(Figure 14.1). The pair height and upper arm length seem to be linearly related in
the sense we use here. The other relationships seem to be polynomial (probably up
to power of 2). ut

14.1.2 Interpretation of simple linear models

Depending on the sign and value of β1 in (14.3), we can interpret the model in three
ways: As the value of X increases, the values of Y may increase, decrease, or remain
unchanged. The next example illustrates these possible relationships.

Example 14.2. The data are about quality of life indicators for various countries for
the years 1999 to 2003.1 We wish to explore the linear relationships (if any) among
various economic indicators for the year 2000. We are interested in CO2 emissions
(metric tons per capita), energy use (kg of oil equivalent per capita), gross domestic
product (GDP) in US$, fertility rate (births per 1000 woman-year), life expectancy at
birth (years), infant mortality rate (mortality per 1000 live births-year) and mortal-
ity of children under the age of 5 (mortality per 1000 children under 5). Figure 14.2
summarizes the data (the script is shown in Exercise 14.9). There is positive relation-
ship between CO2 emission and GDP or energy use. Clearly, life expectancy decreases
as fertility rate increases while children’s mortality increases with increased infant
mortality. In the first case, β1 < 0; in second, β1 > 0. We also observe that at fertil-
ity rate near zero, life expectancy at birth is about 80 years. When infant mortality
is nearly zero, so is children’s mortality. In the former β0 > 0 and in the latter
β0 ≈ 0. ut

1The data were obtained from http://devdata.worldbank.org/data-query/
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Figure 14.1 Relationships among body measurements.

How do we interpret the regression coefficients? Just like algebraic equalities, units
must be identical across equalities. The pair of equalities

E[Y |X] = β0 + β1E[X] ,

units of Y = units of β0 + units of β1 × units of X

must always be satisfied.

Example 14.3.We are interested in the linear relationship between height (cm) and
weight (kg). Then

E[Y |X] = β0 + β1E[X] ,

cm = units of β0 + units of β1 × kg .

To maintain the equality across units, the units of β0 and β1 must be cm and cm/kg
for then we have

cm = cm +
cm

kg
× kg

= cm + cm

and the addition of cm to cm gives cm. ut
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Figure 14.2 Linear relationships between pairs of economic indicators for various
countries. Data are for the year 2000.

The idea of units in modeling is extremely important—it allows for correct inter-
pretation of the model.

Example 14.4. Let us interpret the units of β0 and β1 in the relationships demon-
strated in Figure 14.2. The bottom left shows

life expectancy = β0 + β1 × fertility rate ,

years = units of β0 + units of β1 ×
births

woman-year
. (14.4)

To maintain the equality over units, the units of β0 must be in years and the units of
β1 must be in

units of β1 =
years × woman-year

births
=

years

units of x
=

years

births/woman-year
.

We then say that the units of β1 are years per births per woman-year. ut

Example 14.5. Continuing with Example 14.2, we obtain2 for the line in the bottom
left (of Figure 14.2) that

E[Y |X] = 84.67− 6.00E[X] .

2We shall see later how.
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Based on the interpretation of the units of β0 and β1 in (14.4), we conclude that when
fertility rate is zero (x = 0), the expected life expectancy is E [Y |X = 0] ≈ 85 years.
For each unit of increase in the fertility rate we have

E [Y |X + 1]− E [Y |X] = 84.67− 6.00 (E[X] + 1)− [84.67− 6.00E[X]]

= −6.00E[X]− 6.00 + 6.00E[X]

= −6.00

or approximately 6 years’ decrease in life expectancy for each unit increase in fer-
tility rate. We thus conclude that to increase life expectancy, policy makers should
work to decrease fertility rate. Of course, there are other factors that affect life expec-
tancy. ut

We talked about interpretation of the model coefficients. But how do we obtain values
for these coefficients? We address this issue next.

14.2 Estimating regression coefficients

Based on given sample values of X and Y , we wish to estimate the best values of β0
and β1. Best in what sense? After obtaining the coefficient values for the regression
lines, we usually use it to obtain the expected value of Y given a value of X, sometimes
called the predicted value. Therefore, the best values of the line coefficients will be
those that minimize the error ε in Y = β0 + β1X + ε.

Example 14.6.We go back to the data in Example 14.1. To illustrate the ideas, we
pick 4 subjects from the data and examine the relationship between log(X) (standing
height) and log(Y ) (upper arm length):

> Y <- bm[, 16] ; X <- bm[, 9]

> log.X <- log(X) ; log.Y <- log(Y)

> idx <- c(2174, 3499, 4779, 6309)

> log.X <- log.X[idx] ; log.Y <- log.Y[idx]

We will discuss in a moment how to estimate the coefficients of the regression line.
For now, we need these coefficients. So we do

> model <- lm(log.Y ~ log.X)

The call to the linear model (a function named lm()) returns an object of class lm.
The formula log.Y ~ log.X tells lm() that log.Y is the dependent variable and
log.X the independent. We assign this object to model. The call to coefficients()
with an object of class lm retrieves the coefficient values:

> round(coefficients(model), 3)

(Intercept) log.X

-4.694 1.659

We use round() with the argument 3 to print up to three decimal digits. Now

E[Y |X] = −4.694 + 1.659E[X] . (14.5)
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Table 14.1 log upper arm length (Y ) vs. log height (X) and
the expected values of Y according to (14.5).

i X Y E[Y |X] ε ε2

1 4.742 3.367 3.174 0.193 0.037
2 4.629 2.912 2.986 −0.074 0.005
3 4.964 3.627 3.542 0.085 0.007
4 4.875 3.190 3.395 −0.204 0.042

If we do not have repetitions for specific values of X, then the best estimate of E[Xi]
is Xi. From Table 14.1,

E [Y1|X1] = −4.694 + 1.659X[1]

= −4.694 + 1.659× 4.742

= 3.174 .

Rather than compute the expected (predicted) values of each point by hand, we use
predict(model). Given an object of class lm, predict() returns the expected values
of Y based on the coefficients and data that are stored in the object. The errors are
given by log.Y - predict(log.Y). You can also access the predicted values with
model$fitted.values. To observe the errors, we

> plot(log.X, log.Y, xlim = c(4.6, 5.05),

+ xlab='log(height)', ylab='log(upper arm length)')

draw the regression line

> abline(reg = model)

and connect each expected value with a line to its corresponding log.Y value:

> for(i in 1:length(log.X))

+ lines(c(log.X[i], log.X[i]),

+ c(log.Y[i], model$fitted.values[i]))

In the call to abline(), we specify the named argument reg and assign an object
of class lm to it. abline() extracts the coefficients from model and plots the line
(Figure 14.3). The points and their values are drawn with

> points(log.X, model$fitted.values, pch = 19)

> text(log.X, model$fitted.values,

+ labels = round(model$fitted.values, 3), pos = 4)

> text(log.X, log.Y, labels=round(log.Y, 3),

+ pos = 4)

Finally, we add the error values with

> for(i in 1 : length(log.X)){

+ if(i == 2 | i == 4) pos = 4 else pos = 2

+ text(log.X[i],
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+ (model$fitted.values[i] + log.Y[i]) / 2,

+ labels=bquote(epsilon[.(i)]==.(round(log.Y[i] -

+ model$fitted.values[i], 3))), pos = pos)

+ }

(we discussed bquote() following the script on page 138 and in Example 7.27).
Figure 14.3 illustrates the relationship among the data, the regression line and the
predicted values of Y . ut

Because we wish to minimize the error for the whole data and because we are not
interested in the sign of the error, but rather its magnitude, we can sum the absolute
values of errors ε. However, working with absolute values is mathematically cumber-
some. Instead, we work with the sum of the squares of the errors. Thus, we seek those
values of β0 and β1 that minimize

SSE :=

n∑

i=1

ε2i (14.6)

=

n∑

i=1

[Yi − (β0 + β1Xi)]
2

Figure 14.3 The regression line for upper arm length vs. height where E[Y |X] are
shown as filled circles. Here εi = Yi − E[Yi|Xi]. See Table 14.1.
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where SSE stands for the sum of squares of the errors and Xi and Yi are the data.
We now define the

Estimated regression line is the line defined by the estimated values β0 and β1
such that the SSE is minimized. These estimated values are denoted by β̂0
and β̂1.

Because the minimizing criterion is the SSE, this line is often called the least-squares
regression line. We interpret β0 and β1 as the population coefficients and β̂0 and β̂1
as the sample-derived coefficients. Some authors denote the population coefficients by
α and β and their estimates by a and b. Associated with β̂0 and β̂1 are the estimated
errors, defined as

The estimated ith residual (ε̂i) associated with Xi is

ε̂i := Yi − (β̂0 + β̂1xi) . (14.7)

We are left with the problem of how to obtain β̂0 and β̂1. One possibility is brute
force—simply compute many SSE for many pairs of values for the coefficients and
then choose the pair that give in the smallest SSE. A much better approach is to use
calculus.

Example 14.7. Using the values in Table 14.1 with (14.6), we obtain

SSE = [3.367− (β0 + β1 × 4.742)]
2
+ [2.912− (β0 + β1 × 4.629)]

2

+ [3.627− (β0 + β1 × 4.964)]
2
+ [3.190− (β0 + β1 × 4.875)]

2
.

To minimize SSE, we take the derivative of SSE with respect to β0 and equate it to
zero and with respect to β1 and equate it to zero. These give two equations with two
unknowns whose solutions are the regression coefficients β̂0 = −4.742 and β̂1 = 1.659
(see Exercise 14.2). ut

For didactic reasons, we introduced Example 14.7 with more work than necessary.
Recall that the variance of X is

S2X =

∑n
i=1

(
Xi −X

)2

n− 1

and the covariance of X and Y is

SXY =

∑n
i=1

(
Xi −X

) (
Yi − Y

)

n− 1
.

Then following the procedure in Example 14.7 (this time with symbols instead of
numbers), we obtain

β̂1 =
SXY

S2X
, β̂0 = Y − β̂1X . (14.8)

We now define the

Predicted value of Y is denoted by Ŷ and is given by

Ŷ = β̂0 + β̂1X .

The predicted values are also called the fitted values.
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From this definition, we conclude that the points (Xi, Ŷi) always fall on the regression
line. The least squares estimates of the coefficients result in unbiased estimates, i.e.

E[β̂i] = βi , E[S
2
ε̂ ] = σ

2
ε .

Here, the variance of the estimated errors (residuals), S2ε̂ , is computed as

S2ε̂ :=

∑n
i=1 ε̂

2

n− p

where p is the number of estimated parameters (2 for simple linear regression). To
simplify our notation, we define

σ2 := σ2ε , S
2 := S2ε̂ .

We introduced numerous symbols. For reference, we summarize them in Table 14.2.
We finish this section with an example that explains the impact of the log transfor-
mation on the statistical model.

Table 14.2 Notation for simple linear regression. The estimated error
variance is often called the residual mean square (Residual MS). The
value of p in this chapter is always 2.

Parameter Population Estimated or
or coefficient value predicted value

intercept β0 β̂0
slope β1 β̂1
error ε ε̂

dependent variable Y Ŷ
error variance σ2 := σ2ε S2 := S2ε̂
number of estimated parameters p

Example 14.8. The data for this example are from the New York City (NYC) Open
Accessible Space Information System Cooperative (OASIS); a partnership of more
than 30 federal, state and local agencies, private companies, academic institutions
and nonprofit organizations. The goal of the project is to enhance the stewardship of
open space for the benefit of NYC residents.3 The data refer to information about
322 trees in NYC. We are interested in tree age, defined as X, vs. diameter at breast
height (DBH), defined as Y . We use log transformation on both variables. Figure 14.4
(in Exercise 14.5, you are asked to produce the figure) displays the data (left), the
log transformed data and the estimated regression line (right)

E[Y |X] = −0.210 + 0.696X .

To simplify the notation, let

log(a) := β̂0 , b := β̂1

3See http://www.oasisnyc.net
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Figure 14.4 Tree height vs. age.

and define X := log(age) and Y := log(height). Thus,

log(height) = log(a) + b× log(age) .

Using the log rules, we find

a = exp
[
β̂0

]

= e−0.210

= 0.810

and

height = a× ageb (14.9)

= 0.810× age0.696 .

The units on the left-hand side are m and so must they be on the right-hand side.
Therefore,

m =
m

years0.696
× years0.696 .

The coefficient a describes the growth rate in m per years0.696. The predicted height
of a 10-year-old tree is

ĥeight = 0.810× 100.696

= 4.022m .

The growth rate (in height) of a tree is not constant. Therefore, it makes no sense
to talk about a growth rate in a year. It makes sense to talk about an instantaneous
growth rate. That is, the growth rate at a particular age. The instantaneous growth
rate is obtained from the derivative of (14.9) with respect to age:

growth rate = a× b× ageb−1

= 0.564× age−0.304 .

A 5-year-old tree grows at a rate of 0.564 × 5−0.304 = 0.346m per year while a
10-year-old tree grows at a rate of 0.564 × 10−0.304 = 0.280m per year. ut
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In biology, Equation (14.9), written generally as

Ŷ = a×Xb,

is referred to as an allometric rule. Such equations apply to numerous other biological
measures such as growth of children and metabolic rate as function of weight (see also
Example 9.19).

14.3 The model goodness of fit

We fit the regression line and obtain estimates for the coefficients. Our next task is to
decide how well the model describes the data. Heuristically, in the context of simple
linear regression we say that

Goodness of fit refers to a significance test that compares the linear relationship
between the dependent and independent variable to no relationship at all.

One way to view the idea of goodness of fit is to ask: Do we get better estimates of Ŷ
based on Ŷ = β̂0 + β̂1X compared to Ŷ = β̂0 (where β̂0 = Y )? In other words, does
the model improve the predictability of Y based on the values of X compared to no
model at all? Here “no model” means that Y is not a function of X.
The overall fit of a model is a separate issue from the significance of each model

coefficient. As we shall see, in the case of simple linear regression, the overall model
fit and the conclusion that β1 is different from zero are indistinguishable. This is not
the case when there is more than one independent variable: each coefficient is or is
not significant and the whole model does or does not improve the predictability of Y
compared to no model at all. In the remainder of this section we concentrate on the
whole model goodness of fit. In Section 14.4, we discuss the significance of individual
coefficients.

14.3.1 The F test

Recall that our least squares estimate of β0, which we denote by β̂0, is obtained
from

β̂0 = Y − β̂1X .

Therefore,

Ŷ = β̂0 + β̂1X

= Y − β̂1X + β̂1X .

For X = X, we obtain

Ŷ = Y − β̂1X + β̂1X = Y .

Thus, the predicted value of Y at X is Y . In other words, the regression line always
passes through the point

(
X,Y

)
. Next, consider a typical data point in the context

of the regression line (Figure 14.5). The location of each data point (Xi, Yi), with
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Figure 14.5 The distance of Yi from the mean Y is the sum of the distance of the

predicted value, Ŷi, from the mean and the distance of the point from its predicted
value, all along Xi.

respect to its distance from the sample mean of Y , consists of two components: The
distance of the predicted value of Y at Xi from Y and the distance from the predicted
value to the point. In symbols,

Y − Y = (Ŷ − Y ) + (Y − Ŷ )

(see also Figure 14.3). Because we are interested in the magnitude of these distances,
not in their sign, we square these distances for all points and sum them. So the
sum of squares of distances of all Yi from Y can be partitioned into two sum of
squares: one, the distances from the predicted values to the mean and the other, the
distances of the points to predicted values. With SS denoting sum of squares, we thus
define

Regression SS :=
n∑

i=1

(
Ŷi − Y

)2
,

Residual SS :=

n∑

i=1

ε̂2i

(where ε̂i is defined in (14.7)) and

Total SS :=
n∑

i=1

(
Yi − Y

)2

= (Regression SS) + (Residual SS) .

These sum of squares are illustrated in the next example.

Example 14.9. The first case in Figure 14.6 reflects the strongest argument we can
make that the model fits the data. Here we have large Regression SS and small
Residual SS. The slope is distinct from the horizontal line, which represents Y . The
points are bunched close to the regression line. The fourth case is the weakest. Here
the Regression SS is small, i.e. the slope is not much different from 0, which is the
slope of the mean Y . Worse yet, the Regression SS is large; the points are scattered
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away from the regression line. For the sake of completeness, we include the script that
produces Figure 14.6:

1 rm(list = ls())

2 x <- seq(1, 10, length = 21)

3

4 ss <- function(i){

5 r <- c(0.8, 2.5, 0.8, 2.5)

6 b0 <- 1

7 b1 <- c(1, 1, .5, .5)

8 set.seed(i + 1)

9 Y <- b0 + b1[i] * x + rnorm(length(x), 0, r[i])

10 adj <- mean(Y) - 5

11 model <- lm(Y ~ x)

12 m <- c('large reg SS, small res SS',

13 'large reg SS, large res SS',

14 'small reg SS, small res SS',

15 'small reg SS, large res SS')

16 xlab <- '' ; ylab <- ''

17 if (i == 1 | i == 3) ylab = 'Y'

18 if (i == 3 | i == 4) xlab = 'x'

19 plot(x, Y, ylim = c(0, 12), main = m[i],

20 xlab = xlab, ylab = ylab)

21 abline(reg = model)

22 abline(h = mean(Y))

23 RegSS <- sum((predict(model) - mean(Y))^2)

24 ResSS <- sum((Y - predict(model))^2)

25 cbind('regression SS' = RegSS, 'residual SS' = ResSS,

26 'total SS' = RegSS + ResSS, Y = mean(Y))

27 }

28

29 openg(4.5, 4.5)

30 par(mfrow = c(2, 2))

31 b0 <- 1

32 SS <- matrix(ncol = 4, nrow = 4)

33 for (i in 1 : 4) ss(i)

34 saveg('goodness-of-fit', 4.5, 4.5)

Because we have four plots to produce, we write the function ss() in lines 4–27. In it,
r is the standard deviation of the four residuals (as generated in line 9). The residuals
are generated with rnorm() with mean zero and standard deviation one of the four
elements of r. Once we generate the data for Y in line 9, we fit a linear model to the
data in line 11. Lines 12–26 produce the plots. The plots result from the four calls
to ss(). Recall that openg() and saveg() save the plots in a variety of convenient
formats as discussed in Section 1.11. ut
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Figure 14.6 Qualitative partitioning of the Total SS.

We wish to develop a statistical test that will quantify the argument in Example 14.9.
A good way to do this is to look at the ratio of the Regression SS over the Residual
SS. As Figure 14.6 illustrates, we desire large Regression SS and small Residual SS.
So the larger the ratio, the stronger claim we have that the slope of the regression line
is different from zero. Now that we have a criterion, we look for its sampling density.
It turns our that the slightly adjusted ratio (Regression SS) / (Residual SS) has a
known sampling density. So let us first modify the ratio and then name the density.
With MS denoting mean square, we define

Regression MS is defined as

Regression MS :=
Regression SS

k

where k is the number of covariates in the regression. We refer to k as the number
of degrees of freedom of the Regression SS.

Residual MS Let p = k + 1 be the number of estimated model coefficients. Then
we define the Residual MS as

Residual MS :=

∑n
i=1 ε̂

2
i

n− p
(14.10)

where n is the sample size. We refer to n − p as the number of degrees of freedom
(df) of the residual sum of squares.
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To obtain the df, we subtract from the number of observations the number of estimated
parameters. In simple linear regression, we have a single covariate with one coefficient
(k = 1) and the intercept. Therefore

Regression MS = Regression SS , Residual MS =

∑n
i=1 ε̂

2
i

n− 2
.

We wish to test the hypothesis

H0 : β1 = 0 vs. HA : β1 6= 0 .

Under this hypothesis, the statistic

F =
Regression MS

Residual MS

has an F density with 1 and n− 2 df. With confidence level α, if F1,n−2 > F1,n−2,α
(where F1,n−2,α denotes the critical value), then we reject the null hypothesis in favor
of the alternative. We usually report results of the F -test with the so-called analysis of
variance (ANOVA) table as detailed in Table 14.3 (ANOVA is discussed in Chapter
15). Instead of comparing F values, we can obtain the p-value directly and if the
p-value < α, we reject the null hypothesis:

p-value = F−11,n−2

(
Regression MS

Residual MS

)

= 1− pf(F, 1, n− 2)

where F is defined in Table 14.3.

Table 14.3 Typical ANOVA table. SS denotes sum of squares and df denotes degrees
of freedom.

SS df Mean SS F

Regression SS 1 Regression MS =
Regression SS

1
F =

Regression MS

Residual MS

Residual SS n− 2 Residual MS =
Residual SS

n− 2

Example 14.10. We return to Example 14.8 (see Figure 14.4). The null hypothesis
is that β1 = 0 and the alternative is that β1 6= 0. We select α = 0.05. From Table 14.4
we read that under the null hypothesis, F1,230 = 1967. The critical value of the
statistic is F1,230,.05 = 3.87. Because 1 967 > 3.87, we reject H0 and surmise that
β1 6= 0. From the results, we conclude that β1 > 0. Therefore, the model fits the data
with positive relationship between log(age) and log(height). Given that the p-value =
2.2× 10−16 (Table 14.4), we may skip the third step. Because the p-value < 0.05 we
reject H0. ut
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Table 14.4 ANOVA for the regression of log(height) vs. log(age)
(see Example 14.8 and Figure 14.4).

Source SS df Mean SS F p-value

Regression 150.5 1 150.50 1967 ≈ 0
Residuals 24.5 320 0.08

14.3.2 The correlation coefficient

Recall that

Total SS :=

n∑

i=1

(
Yi − Y

)2

= (Regression SS) + (Residual SS) .

Now if all the data points fall on the regression line, then Residual SS = 0 and Total
SS = Regression SS. In this case, all of the sum of squared deviations of Yi from Y is
accounted for by the sum of squared deviations of Ŷ from Y . If Total SS = Residual
SS, then Regression SS = 0. In this case, the Regression SS accounts for none of the
sum of the squared deviations of Yi from Y . So to measure the goodness of fit, we
define the

Squared correlation coefficient (R2)

R2 :=
Regression SS

(Regression SS) + (Residual SS)
. (14.11)

From its definition, we have the following

Properties of R2

1. 0 ≤ R2 ≤ 1.
2. The larger the value of R2, the better the goodness of fit.
3. The smaller the value of R2, the worse the goodness of fit.

The first property follows because all quantities in (14.11) are nonnegative and because
Residual SS ≥ 0. We discussed the last two properties prior to the definition of R2.

Example 14.11. From Table 14.4,

R2 =
150.5

150.5 + 24.5
= 0.86 .

About 86% of the variation in Y is therefore accounted for by the linear
regression. ut

The variation in Y that is accounted for by R2 is often referred to as the variation
in Y that is explained by the regression. “Explain” should not be construed as cause
and effect.
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14.3.3 The correlation coefficient vs. the slope

We defined Pearson’s sample correlation coefficient (R) in (8.6) and the population
correlation coefficient ρ in (8.7). Writing the expression for Pearson’s sample correla-

tion coefficient as in (8.8), and the expression for β̂1 as in (14.8), side by side,

ρ̂ =
SXY

SXSY
β̂1 =

SXY

S2X
,

we conclude that

β̂1 =
SXY

S2x
=
SXY SY

S2XSY
=
SY

SX

SXY

SXSY
=
SY

SX
ρ̂ .

Therefore, we have the

Interpretation of ρ̂ Because R2 ≤ 1, so is |ρ̂| ≤ 1. Furthermore, if X and Y are
distributed normally, then:

1. If ρ̂ < 0, we say that X and Y are negatively correlated—an increase in X is
generally associated with a decrease in Y .

2. If ρ̂ > 0, we say that X and Y are positively correlated—an increase in X is
generally associated with an increase in Y .

3. If ρ̂ ≈ 0, we say that X and Y are uncorrelated—a change in X is generally
not associated with a change in Y .

This interpretation is often useful in exploring linear relationships between X and Y
without having to get into detailed regression analysis.

Example 14.12. In Example 14.2, we examined visually the paired relationship
between energy use and CO2 emission, CO2 emission and GDP, life expectancy and
fertility rate and child mortality and infant mortality (Figure 14.2). If we are inter-
ested in the qualitative relationships only, then we compute (see Exercise 14.9):

Pair ρ̂

log (energy use) vs. log (CO2 emissions) 0.92 ∗

log (CO2 emissions) vs. log (GDP) 0.50 ∗

life expectancy vs. fertility rate −0.82 ∗

child mortality vs. infant mortality 0.99 ∗

The stars indicate significance (see Section 14.4.5). ut

14.4 Hypothesis testing and confidence intervals

Now that we know how to test the overall fit of the model, we need to address the fol-
lowing questions: Are β̂0 and β̂1 different from zero? What are the confidence intervals
on the coefficients? The tests we discuss here apply to each coefficient independent of
the other. As such, they are not appropriate as tests of the whole model. We are also
interested in the confidence intervals on Ŷ . The larger the intervals, the less confidence
we have about the predictions of the model.
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14.4.1 t-test for model coefficients

For simple linear regression, the F -test (Section 14.3.1) and the t-test are equivalent.
They are not when the regression includes more than one independent variable. In
the latter case, the F -test refers to the model goodness of fit and the t-test refers to
the significance of each coefficient.
We wish to test

H0 : β1 = 0 vs. HA : β1 6= 0 .

Under H0, the sampling density of β̂1 is tn−2 with

E
[
β̂1

]
= 0 , Var

[
β̂1

]
=
σ2β1
nσ2X

where σ2β1 is the variance of the population coefficient β1 and σ
2
X is the population

variance of X. Because both these variations are usually not known, we estimate
Var[β̂1] with

S2
β̂1
=
Residual MS

(n− 1)S2X
or SE

[
β̂1

]
=

√
Residual MS

(n− 1)S2X
. (14.12)

The t statistic is then

T =
β̂1

SE
[
β̂1

] (14.13)

with n− 2 df. Under the null hypothesis H0 : β1 = 0 vs. HA : β1 6= 0 and signifi-
cance level α, we compute the T statistic according to (14.13). If |T | > tn−2,1−α/2,
we reject H0 in favor of HA. Otherwise, do not reject H0. As usual, the shortcut to
this procedure is to use

p-value = t−11,n−2 (T )

= 1− pt(T, n− 2)

where T is calculated according to (14.13). If the p-value < α then we deem β̂1
significant.

Example 14.13. From Table 14.4, we find that Residual MS = 0.08. Therefore

SE
[
β̂1

]
=

√
0.0765

(322− 1)× 0.968
= 1.569× 10−2 .

The p-value of the test statistic is 2.2× 10−16, which is identical to the p-value for
the F statistic in Example 14.10. ut

14.4.2 Confidence intervals for model coefficients

Confidence intervals serve two purposes. First, they give us an idea about the preci-
sion of our estimates of the regression coefficients. Second, we can use them to draw
conclusions about the population values of the coefficients.
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The SE of β̂1 is given in (14.12). The SE of β̂0 is

SE
[
β̂0

]
=

√√
√
√S2

(
1

n
+

X
2

(n− 1)S2X

)

.

Therefore, for significance level α, the confidence intervals are

(1− α)× 100% CI
[
β̂0

]
= β̂0 ± tn−2,1−α/2SE

[
β̂0

]
,

(1− α)× 100% CI
[
β̂1

]
= β̂1 ± tn−2,1−α/2SE

[
β̂1

]

with the appropriate substitutions of qt() for tn−2,1−α/2 in the R vernacular.

Example 14.14. From Table 14.4, S2 = 0.08 and n = 322. Also,X = 3.627 and S2X =
0.968. Therefore

SE
[
β̂0

]
=

√

0.0765×

(
1

322
+

3.6272

321× 0.968

)

= 5.896× 10−2 .

From Example 14.13, SE[β̂1] = 1.569× 10−2. With α = 0.05 we obtain for β0

95% CI[β0] = −0.210± 1.96× 5.896× 10
−2

= [−0.326,−0.094]

and for β1

95%CI[β1] = 0.696± 1.96× 1.569× 10
−2

= [0.665, 0.727] .

From these results we conclude that both βi are most likely different from zero. If it
turns out that another regression, based on much larger sample size results in, say,
β̂1 outside the given confidence interval, then we would conclude that our sample
comes from an unusual population of trees. It would be unusual in the sense that
the relationship between the log of height and the log of age is different from the
population. ut

14.4.3 Confidence intervals for model predictions

From interval estimation on model predictions we draw conclusions about the accuracy
of the predictions. There are two types of predictions we can make and these relate
to two different confidence intervals:

1. For a given value of X not included in the data, we may be interested in the
confidence interval of Ŷ , the so-called regression confidence interval.
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2. For a given X, we may be interested in the confidence interval of the average value

of Ŷ , which we denote by Ŷ . This is called the prediction confidence interval.

In both cases, Ŷ = Ŷ = β̂0 + β̂1X. However, the respective standard errors (and
associated confidence intervals) are different:

SE
[
Ŷ
]
=

√√
√
√S2

(

1 +
1

n
+

(
X −X

)2

(n− 1)S2X

)

, (14.14)

SE
[
Ŷ
]
=

√√
√
√S2

(
1

n
+

(
X −X

)2

(n− 1)S2X

)

. (14.15)

From the equations we conclude that SE
[
Ŷ
]
will always be larger than SE

[
Ŷ
]
.

Furthermore, for large n, the standard errors are approximately equal. The sampling
density of Ŷ is F with k + 1 and n− (k + 1) df (k is the number of covariates).
Therefore, for simple linear regression the df are 2 and n− 2. With confidence level
1− α, the confidence intervals are

(1− α)× 100% CI
[
Ŷ
]
= Ŷ ±

√
2F2,1−α,n−2 × SE

[
Ŷ
]
,

(1− α)× 100% CI
[
Ŷ
]
= Ŷ ±

√
2F2,1−α,n−2 × SE

[
Ŷ
]
.

Example 14.15. Building on Figure 14.4, we compute both confidence intervals: for

SE
[
Ŷ
]
and for SE

[
Ŷ
]
for a sample of five points from the data. This will allow

us to see the difference between the regression and prediction confidence intervals.
So we load the data, attach them and call the library that contains ci.plot()

with

> dbh <- read.table('DBH.txt', header = FALSE, sep = '\t')

> names(dbh) <- c('DBH', 'height', 'age')

> attach(dbh)

> library(RcmdrPlugin.HH)

Next, we assign the data, take a sample of five points, construct the model and plot
the confidence intervals:

> X <- log(age) ; Y <- log(height)

> set.seed(1)

> idx <- sample(1 : length(X), 5)

> X <- X[idx] ; Y <- Y[idx]

> model <- lm(Y ~ X)

> ci.plot(model, main = '')

(Figure 14.7). ut
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Figure 14.7 95% confidence intervals on Ŷ and Ŷ for five random points from the
data.

The confidence intervals in Figure 14.7 curve on both sides of the regression line.
The further X is from X, the wider the confidence interval. These trends can also be
deduced from the terms (X −X)2 in (14.14) and (14.15). Most statistical packages

compute the prediction confidence interval (for Ŷ ) by default and this is what we
shall use from now on.

14.4.4 t-test for the correlation coefficient

We use this test for small sample sizes (say < 30). We are interested in testing

H0 : ρ = 0 vs. HA : ρ
6=
>
<
0 .

Under H0, the test statistic is

T =
ρ̂
√
n− 2

√
1− ρ̂2

(14.16)

(where T ’s density is t with n − 2 df). To implement the t-test for the correlation
coefficient, we compute ρ̂ and the test statistic T according to (14.16). Then for
significance level α:

1. For HA : ρ 6= 0, reject H0 if |T | > tn−2,1−α/2.
2. For HA : ρ > 0, reject H0 if T > tn−2,1−α.
3. For HA : ρ < 0, reject H0 if T < −tn−2,1−α.

Example 14.16. The data are for a family of five:

height weight age

father 5.917 200 58

mother 5.250 110 54

son 6.000 190 24

son 6.167 200 20

daughter 5.500 140 19
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Heights are in fractions of feet and weights in pounds. The regression of weight (Y )
vs. height (X) (Figure 14.8) is significant:

> X <- height ; Y <- weight

> model <- lm(Y ~ X)

> summary(model)

Estimate Std. Error t value Pr(>|t|)

(Intercept) -435.41 86.22 -5.05 0.01498

X 104.64 14.93 7.01 0.00596

Residual standard error: 11.32 on 3 degrees of freedom

R-Squared: 0.9425

Figure 14.8 Weight (Y ) vs. height (X) ±95% confidence lines for a family of five.

Because of the small sample size, it is difficult to judge the model by its residuals.
To implement the t-test for the significance of the correlation coefficient, we find ρ̂ =√
0.9425 = 0.971 and T = 7.010. For α = 0.05, 7.010 > t3,0.975 = qt(0.975, 3) =
3.182. Therefore, we reject the null in favor of ρ 6= 0. The same conclusions can be
reached by observing that

> round(1 - pt(7.010, 3), 3)

[1] 0.003

Given our expectation that ρ > 0, we could choose to test HA : ρ > 0. ut

14.4.5 z tests for the correlation coefficient

This test is used for large sample sizes (> 30). Here we discuss significance tests with
respect to ρ under the hypotheses H0 : ρ = ρ0 vs. HA : ρ 6= ρ0 where ρ0 6= 0. We
present one- and two-sample tests.

One-sample test

We are interested in testing

H0 : ρ = ρ0 vs. HA : ρ
6=
>
<
ρ0 . (14.17)



440 Simple linear regression

For ρ0 6= 0, the density of ρ is skewed. The following transformation, due to Fisher,

z0 =
1

2
log

(
1 + ρ0
1− ρ0

)

, (14.18)

normalizes the density of ρ0. Under H0, the sample-based estimates of the mean and
variance of z0 are

Ẑ =
1

2
log

(
1 + ρ̂

1− ρ̂

)

, S2 =
1

n− 3
(14.19)

and the test statistic

Z :=
(
Ẑ − z0

)√
n− 3 (14.20)

is standard normal. With (14.17) in mind, we compute ρ̂, z0 according to (14.18) and

Ẑ according to (14.19). Next, we compute the test statistic Z according to (14.20).
With significance level α:

1. For HA : ρ 6= ρ0, reject H0 if |Z| > z1−α/2.
2. For HA : ρ > ρ0, reject H0 if Z > z1−α.
3. For HA : ρ < ρ0, reject H0 if Z < −z1−α.

Two-sample test

We have two samples of sizes n1 and n2 from presumably different populations. For
each sample, we calculate ρ̂1 and ρ̂2. Are the correlation coefficients for the two
populations different? Fisher’s transformation provides the necessary machinery. We
wish to test

H0 : ρ1 = ρ2 vs. HA : ρ1






6= ρ2
> ρ2
< ρ2

where ρ1 and ρ2 are the respective population correlation coefficients. The test statis-
tic is

Z =
Ẑ1 − Ẑ2√

1/ (n1 − 3) + 1/ (n2 − 3)
(14.21)

where the density of

Ẑi =
1

2
log

(
1 + ρ̂i
1− ρ̂i

)

for i = 1, 2 (14.22)

is standard normal. To implement the test, we compute ρ̂1 and ρ̂2 and their respective
transformations Ẑ1 and Ẑ2 according to (14.22). Next, we compute the test statistic
Z according to (14.21) and with significance level α:

1. For HA : ρ1 6= ρ2, reject H0 if |Z| > z1−α/2.
2. For HA : ρ1 > ρ2, reject H0 if Z > z1−α.
3. For HA : ρ1 < ρ2, reject H0 if Z < −z1−α.
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14.4.6 Confidence intervals for the correlation coefficient

To obtain confidence limits for ρ, we first compute ρ̂ and the transformation Ẑ accord-
ing to (14.19). Next, let ẐL and ẐH denote the low and high estimated limits of the

confidence interval of Ẑ for a given α. Then

ẐL := Ẑ −
z1−α/2√
n− 3

, ẐH := Ẑ +
z1−α/2√
n− 3

where z is standard normal and n is the sample size. The confidence interval around
Ẑ is then

(1− α)× 100% CI
[
Ẑ
]
=
[
ẐL, ẐH

]
.

Let ρ̂L and ρ̂H be the low and high limits of the confidence interval around ρ̂ for a
given α. Then

ρ̂L =
e2ẐL − 1

e2ẐL + 1
, ρ̂H =

e2ẐH − 1

e2ẐH + 1

and
(1− α)× 100% CI [ρ̂] = [ρ̂L, ρ̂H ] .

Example 14.17. Figure 14.4 details the relationship between the log of age and log
of height for 322 trees in New York (see Example 14.8). The regression results are

Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.21019 0.05895 -3.565 0.000419

x 0.69576 0.01569 44.355 < 2e-16

Residual standard error: 0.2766 on 320 degrees of freedom

Multiple R-Squared: 0.8601

What is the range of correlations values within which we might find similar regression
for all of the trees in New York (assuming that the 322 trees are a random sample of
trees in New York)?

We find ρ̂ = 0.927 and Ẑ = 1.640. For α = 0.05,

ẐL = 1.640−
1.96
√
319
= 1.530 , ẐH = 1.640 +

1.96
√
319
= 1.749 .

Therefore,
95% CI [0.927] = [1.530, 1.749] .

The 95% confidence interval around ρ̂ is then

ρ̂L =
exp [2× 1.530]− 1
exp [2× 1.530] + 1

= 0.910 , ρ̂H =
exp [2× 1.749]− 1
exp [2× 1.749] + 1

= 0.941

or
95% CI [0.927] = [0.910, 0.941] .

This is the range within which we are likely to find the correlation between log age
and log height for all trees in New York city. ut
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14.5 Model assumptions

Our goal at this point is to develop ways to judge the adequacy of the simple linear
model in light of its assumptions. Throughout, we wrote the linear equation as Y =
β0 + β1X + ε. This notation implies that Y is a function of X. When we wish to
emphasize this fact, we write Y (X), instead of Y . With this notation, we have

Assumptions

1. The mean value of Y (X) is Y (X) = β0 + β1X for any X.
2. Y (X) has a normal density with mean Y (X) and standard deviation σY (X) =
σ, where σ is constant for all X.

3. For the data (Xi, Yi), i = 1, . . . , n, the values of εi := Yi − (β0 + β1Xi) are
independent.

From assumption 1 we conclude that εi = 0 for all i. From assumptions 2 and 3 we
conclude that Var[εi] = σ

2 for all i. We summarize these conclusions as a

Corollary The density of the residuals εi is normal with mean 0 and standard devi-
ation σ.

We should emphasize that the assumptions and their corollary all refer to the popula-
tion (true) regression line, not to the estimated regression line. The assumptions and
their corollary are illustrated in Figure 14.9 (in Exercise 14.11 you are asked to write
a script that produces the figure). The next example illustrates situations where the
assumptions are violated.

Figure 14.9 For each X, the mean of Y (X) is on the line β0 + β1X. The density of

Y (X) is normal with mean Y (X) and constant standard deviation. These densities
are superimposed on the line.

Example 14.18. Figure 14.10 (in Exercise 14.12 you are asked to write a script that
produces the figure) illustrates two typical situations in which the assumptions of the
model are violated. In the first case (left panel), the variance of Y (X) is not constant

across all values of X. In the second (right panel), Y (X) 6= β0 + β1X. ut

With our understanding of the assumptions about linear regression, we are ready
to develop the diagnostics that will allow us to judge if the model is adequate.
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Figure 14.10 Left panel: the variance of the residuals increases with X. Right panel:
the mean of the residuals is not zero. This can happen either because the residuals
are not independent or because the relation between Y and X is not linear.

14.6 Model diagnostics

Even if the model fits (Section 14.3) and we reject the hypothesis that the slope is not
different from zero (Section 14.4), we are not done yet. Why? Because the tests we
discussed assume particular sampling densities of the residuals and coefficients under
the null hypothesis. If these assumptions are not met, then the tests are moot.

Example 14.19. The data for this example are from the 1994 March–April issue of
Academe. They refer to the average salary and overall compensation, broken down
by full, associate and assistant professor ranks, for 1161 colleges in the U.S. We wish
to examine the relationship between the number of full professors and their average
salary. We load the data and the sources for two functions that compute and plot
confidence intervals around a lm():

> load('aaup.rda')

> source('confidence-interval.R')

> source('see.R')

> X <- aaup[, 5] ; Y <- aaup[, 13]

> test <- (is.na(X) == FALSE & is.na(Y) == FALSE)

> X <- X[test] ; Y <- Y[test]

> see(X, Y,'AAUP-PROFS-VS-SALARY')

confidence-interval.R and see.R are at the book’s site. A call to see() produces
Figure 14.11 and a report of the lm() (edited):

Estimate Std. Error t value Pr(>|t|)

(Intercept) -264.40622 16.40534 -16.12 <2e-16

x 0.69684 0.03053 22.82 <2e-16

From the data it seems that salary increases with the number of full professors at a
particular university. The results, as reflected by the p-value (Pr(>|t| show that the
parameter values are significant for both the intercept and the slope: As expected,
ANOVA4 (Table 14.5), also produced by see(), indicates that the overall model fit is

4Albeit not necessary, we use the ANOVA table for heuristic reasons.
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Figure 14.11 Left: Average salary (US$×1 000) for 1 161 campuses in the U.S.
The relationship is obviously nonlinear. Also shown are the regression line and its
95% confidence interval. The discrepancy between the number of campuses and
the df in Table 14.5 is due to missing data. Right: the standardized residuals (see
Section 14.6.2).

Table 14.5 ANOVA table for the regression between number of full
professors and their average yearly income on 1 161 U.S. campuses.

Source SS df Mean SS F p-value

Regression 7 422 774 1 7 422 774 520.9 ≈ 0
Residuals 15 546 487 1 091 14 250

significant. Furthermore, the value of R2 = 0.323 is significant. Are we then to con-
clude that the model is adequate—i.e. that we can use the regression line to predict
full professors salary based on the number of full professors? The answer is no and
the reasons are explained next. ut

From the assumptions about the regression line we conclude that residuals are good
candidates to develop diagnostics that tell us how well our model and data conform
to the assumptions. Recall that the unknown population residual for the ith data pair
(Xi, Yi) is

εi := Yi − (β0 + β1Xi)

and the estimated ith residual is

ε̂i := Yi −
(
β̂0 + β̂1Xi

)
.

We will use the residuals to examine the conformance of the model to the assump-
tions. There are many diagnostics to choose from and their nuanced differences are
sometimes difficult to discern. In addition, the diagnostics are interrelated and with
large samples, some diagnostics give nearly identical results. Diagnostics fall under
two broad categories: those that address the effect of observations on specific coef-
ficients and those that address the whole model—all in the context of the current
model coefficients and specific observations.
Diagnostics are not discussed in the literature uniformly. Notation and formulas

often differ among software implementations, journal articles and textbooks. We follow
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the conventions used in R. In fact, most of the formulas concerning specific residuals
were translated directly from R’s code. In this context, the code is the final arbiter.

14.6.1 The hat matrix

As we shall see, the hat matrix is essential in presenting various diagnostics. A detailed
discussion of the hat matrix is beyond our scope. We will introduce the subject mostly
by examples and for simple linear models only. Heuristically, the hat matrix, denoted
byH, is a matrix with n rows and n columns. The ith diagonal element of H reflects
the multidimensional distance of the ith datum from the multidimensional center of
the data. An example of a one-dimensional distance is (Xi −X)2 where X is the
center of the data. The diagonal elements of H are denoted by hi, for i = 1, . . . , n.
As we shall see, H has many uses; one of them is in computing the predicted (hat)
values. The diagonal elements of the hat matrix reflect the corresponding influence of
the ith data point on the model fit.
To explain the hat matrix, we need to develop shorthand notation. For data with

n observations, let

Y :=








Y1
Y2
...
Yn








X :=








1 X1
1 X2
...
...

1 Xn







.

Here (Xi, Yi) are pairs of observations. A column of 1s is added to the vector that
represents the independent variable data. This is used to estimate the intercept; hence
the name of the matrix X, the so-called design matrix. The number of columns of
X is denoted by p. The latter is also the number of coefficients in the model. In our
case, p = 2. We present the data with

Y1 = β0 + β1X1 + ε1 ,
Y2 = β0 + β1X2 + ε2 ,

. . .
Yn = β0 + β1Xn + εn ,

where εi, i = 1, . . . , n are the residuals. Denoting the column of (ε1, . . . , εn) by ε, we
write the above in a shorthand notation:

Y =Xβ + ε

where β := [β1, β2] is the vector of coefficients. Two quantities that appear in many
computations of linear models are

A :=
(
X

′

X
)
, A−1 (14.23)

where X
′
denotes the transpose of X and A−1 is the inverse of A.

Example 14.20. Consider data with n = 4 observations. Then the design matrix
and its transpose are

X =







1 X1
1 X2
1 X3
1 X4





 , X

′

=

[
1 1 1 1
X1 X2 X3 X4

]

.
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Let

SX =

4∑

i=1

Xi , SSX :=

4∑

i=1

X2i .

Then using matrix multiplication rules we get

A =

[
4 SX
SX SSX

]

, A−1 =






SSX

B

−SX
B

−SX
B

4

B




 (14.24)

where
B = 4× SSX− (SX)2

For data with n observations, replace 4 everywhere it appears by n. ut

With this in mind, we define

The hat matrix (H ) is the projection of the data points onto the space spanned
by X,

H :=XA−1X ′

where X ′ is the transposed X and A−1 is defined in (14.24) for simple linear
regression.

Leverage (h) The diagonal elements of H, denoted by hi (i = 1, . . . , n) reflect the
influence of the ith data point on the model fit.

Cutoff criterion for hi If

hi ≥ min

[
3p

n
, 0.99

]

then Xi is judged as having an unusual predictor value.

The predicted mean vector of the n responses is given by

Ŷ =Xβ̂ =HY

This notation is particularly convenient with multiple linear regression. We use specific
numerical results in the next example to clarify some ideas.

Example 14.21. Consider the data with n = 4,

X =







1 1
1 2
1 3
1 4





 , Y =







1.127
1.541
1.846
2.407





 .

Then

β̂ :=

[
β̂0
β̂1

]

= A−1X ′Y =

[
0.694
0.415

]

and

H =







0.7 0.4 0.1 −0.2
0.4 0.3 0.2 0.1
0.1 0.2 0.3 0.4
−0.2 0.1 0.4 0.7





 .
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Also

Ŷ =Xβ̂ =HY =







1.109
1.523
1.938
2.352





 .

The diagonal elements are 0.7, 0.3, 0.3 and 0.7. Here p = 2 and n = 4. Therefore,
3p/n = 1.5. Consequently, the criterion for judging the effect of each observation on
the predicted values is 0.99. None of the 4 values of X have an exceptionally large
effect on the fitted values. ut

14.6.2 Standardized residuals

Two residual-related measures of interest are:

Standard deviation of residuals Let i be the ith data point (i = 1, . . . , n), n the
number of data points, p the number of fitted parameters and S2X the sample-
based variance of X. Then we estimate the standard deviation of the ith residual
with

SD [ε̂i] =
√
Residual MS

√

1−
1

n
−

(
Xi −X

)2

(n− 1)S2X
where Residual MS is defined in (14.10).

Standardized residuals Denote by ε̂′i the standardized residual of the ith data. We
estimate it with

ε̂′i =
ε̂i√

Residual MS
√
1− hi

(14.25)

where hi is the diagonal element of H.

Overall, the value of the standardized residuals should remain constant over the entire
range of X and they should show no trends with increasing values of Ŷ . Otherwise, the
assumptions of constant variance and independent errors are violated and we may have
to reject a model even if its fit and coefficients are significant. Standardized residuals
can be used to check major departures from model assumptions. In particular, we can
verify the assumption that the residuals are normal (with mean zero) with Q-Q plots.
Standardized residuals are not very good at detecting observations that might have
large influence on the model fit and estimates of coefficients.

Example 14.22. In Example 14.19, we established that the model fits the data
(about professor salaries) and that the slope is significant (Figure 14.11). In
Figure 14.11 (right)—also produced by see()—we examine the standardized residuals

against Ŷ . The plot reflects a major departure from model assumptions: the variance
of the studentized residuals is obviously not constant. Can we fix this problem? Yes
(almost) with the log transformation. We define X := log of number of full professors
and Y := log of average salary of professors. The linear model and Figure 14.12 are
produced with

> log.X <- log(X) ; log.Y <- log(Y) ; model<-lm(log.Y ~ log.X)

> see(log.X, log.Y, 'AAUP-PROFS-VS-SALARY-LOG')

Estimate Std. Error t value Pr(>|t|)
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(Intercept) -18.9731 0.7071 -26.83 <2e-16

X 3.6685 0.1133 32.38 <2e-16

Residual standard error: 0.8323 on 1091 degrees of freedom

R-Squared: 0.49, Adjusted R-squared: 0.4895

F-statistic: 1048 on 1 and 1091 DF, p-value: < 2.2e-16

Figure 14.12 Here X := log of number of full professors and Y := log of average
salary of professors in U.S. $100. Left: the data and the fitted line with 95% confidence

interval of Ŷ . Right: A plot of the standardized residuals by predicted values.

Both the F -test and R2 indicate that the model is an improvement over no model in
terms of reducing the variability in Y . From Figure 14.12, we conclude that except for
both extreme values of Ŷ , the residuals meet the assumptions of linear regression: The
trend in the standardized residuals is the result of small variances at both extreme
values of Ŷ . To verify that the density of the residuals is normal we use

> qqnorm(residuals(model))

> qqline(residuals(model))

Figure 14.13 confirms our previous conclusion: except for the tails, the residuals are
normal. ut

From the fact that the tails of the Q-Q plot depart from normality we conclude that
perhaps we should clip the data at both ends of X. Schools with exceptionally low or
high salaries are not typical. Our model is log-linear. This means that extrapolations
(predicting Y for X outside its range of data) are risky at best—large values of X
may lead us to predict astronomical salaries for full professors (wishful thinking).
More generally, one should use caution in extrapolating linear models. They may lead
to silly conclusions.

14.6.3 Studentized residuals

If one ε̂ is very large, then the estimate of the Residual MS will be large. Consequently,
all the residuals will be small. To get around this problem, we studentize the residuals.
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Figure 14.13 Q-Q plot of the standardized residuals of full professor salaries.

Studentized residuals For the ith data point,

ε̂∗i :=
ε̂′i

SD [ε̂i]

where ε̂′i denotes the ith standardized residual (defined in 14.25) and ε̂
∗
i denotes

the ith studentized residual.

The further a data point is from the center of the data (the intersection of the horizon-

tal line y = Y and the vertical line x = X), the larger its influence on the estimate β̂1.
The studentized residuals tend to emphasize this attribute of data points. To enhance
this property, we use the following residuals.

14.6.4 The RSTUDENT residuals

One way to observe the effect of a data point on its fitted value is this: remove the ith
point from the data; compute a new regression line; use the new line to provide a new
prediction based on Xi. We denote the prediction based on a model fitted without
the ith point by Ŷ(i). Similarly, we denote by Residual MS(i) the residual mean square
of the model fitted without the ith observation. Consequently, we have the following
definition:

The ε̂∗(i) residuals (RSTUDENT) Let ε̂
∗
(i) denote the studentized residual based

on a model with the ith point removed. Then

ε̂∗(i) =
ε̂i√

Residual MS(i)
√
1− hi

where ε̂i and hi are the residual and leverage of the ith point and Residual MS(i)
is the Residual MS, calculated with the ith point removed, i.e.

Residual MS(i) :=

∑n
j=1,j 6=i ε̂

2
j

n− p− 1
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Cutoff criterion for ε̂∗(i)] If |ε̂
∗
(i)| ≥ 2 then Xi is judged as having an unusual pre-

dictor value.

The df of ε̂∗(i) are n − p − 1 because we are using n − 1 data points. The residuals
ε̂∗(i) are often called RSTUDENT or jackknifed residuals. The sampling density of ε̂

∗
(i)

is tn−p.
Note the difference between ε̂∗i and ε̂

∗
(i). The former is used to observe overall

departure of residuals from their expected behavior if the model is correct. The latter
is used to identify points with unusually large change in their predicted values (due
to their removal from estimates of the coefficients).

Example 14.23. Here we analyze the normal average January minimum temperature
in ◦F for 56 U.S. cities from 1931 to 1960, compared to latitude. The data appeared in
Peixoto (1990) and in Hand (1994), pp. 208–210. We load the data and the source for
the function that produces confidence intervals on the regression line, fit the model
and obtain its summary:

> load(file = 'temperature.rda')

> source('confidence-interval.R')

>

> X <- temperature$Lat

> Y <- temperature$JanTemp

> n <- length(X) ; p <- 2

> summary(model <- lm(Y ~ X))

Call:

lm(formula = Y ~ X)

Residuals:

Min 1Q Median 3Q Max

-10.6812 -4.5018 -0.2593 2.2489 25.7434

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 108.7277 7.0561 15.41 <2e-16

X -2.1096 0.1794 -11.76 <2e-16

Residual standard error: 7.156 on 54 degrees of freedom

Multiple R-squared: 0.7192, Adjusted R-squared: 0.714

F-statistic: 138.3 on 1 and 54 DF, p-value: < 2.2e-16

(in the interest of saving space and because they duplicate the results of the t-test,
we no longer show the results of the ANOVA). The model obviously fits well. In
Figure 14.14 (left), we plot the model, the data, the confidence intervals (ci.lm()
resides in confidence-interval.R) and the index of data for coastal cities (except
Spokane) that apparently belong to a different model (Table 14.6):

> coast <- c(5, 6, 41, 52)

> par(mfrow = c(1, 2))

> ci.lm(X, model)
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> points(X[coast], Y[coast], pch = 19)

> identify(X, Y)

[1] 5 6 41 52

Figure 14.14 Mean January minimum temperature (Y ) and latitude (x) of 56
U.S. cities (left). Standardized residuals (right). Corresponding points are identified
by numbers. The numbers correspond to the cities in Table 14.6.

Table 14.6 Average January temperature for selected U.S. cities. See Figure 14.14.
Influential residuals are identified with stars. The residual columns refer to (in order):
RSTUDENT, DFBETAS for intercept, DFBETAS for slope, DFFIT, Cook’s distance
and diagonals of the hat matrix.

ID City Temperature Latitude ε̂∗(i) Δβ̂
∗
0(i) Δβ̂

∗
1(i) Δŷ

∗
i Di hi

5 Los Angeles, CA 47 34.3
6 San Francisco, CA 42 38.4 *
12 Key West, FL 65 25 *
13 Miami, FL 58 26.3 *
41 Portland, OR 33 45.6 * *
52 Seattle, WA 33 48.1 * * *
53 Spokane, WA 19 48.1

On the right side, we plot the standardized residuals and indicate the coastal cities
of interest:

> residuals.standardized <- rstandard(model)

> plot(model$fitted.values, residuals.standardized,

+ xlab = 'fitted', ylab = 'residuals')

> abline(h=0)

> points(model$fitted.values[coast],

+ residuals.standardized[coast], pch = 19)

> text(model$fitted.values[coast],

+ residuals.standardized[coast], labels = coast,pos = 4)
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Figure 14.15 Q-Q plot of standardized residuals. Numbered points correspond to
the cities in Table 14.6.

Observe that the points that are visually different (black circles) on the scatter plot
emerge so in the residuals plot. Other points that are not visually different on the
scatter plot emerge as so on the residual plot. For example Spokane (53) does not seem
far out on the scatter plot. It does appear far on the residual plot because of its high
leverage: it is far from the center of the data and thus influences the regression more
than those that are closer to the center of the data. Without the identified points,
the residuals seem to be well behaved. To verify that the standardized residuals are
normal, we use the Q-Q plot

> q <- qqnorm(residuals(model))

> identify(q$x, q$y)

> qqline(residuals(model))

(Figure 14.15). The plot confirms our suspicion that the identified points are different
from the others. Without them, the Q-Q plot shows that the remaining residuals are
normal.
In Figure 14.16 we compare the studentized to the standardized residuals with:

> RSTUDENT<-rstudent(model)

> plot(model$fitted.values, RSTUDENT,

+ xlab = 'fitted', ylab = 'standard residuals')

> abline(h = 0) ; abline(h = 2, lty = 2)

> points(model$fitted.values[coast], RSTUDENT[coast],

+ pch = 19)

> points(model$fitted.values, residuals.standardized, cex = 2)

> identify(model$fitted.values, RSTUDENT)

The values of small residuals are nearly identical. However, the studentized residu-
als (with one point removed) pull the small residuals closer to the horizontal zero
and push the large residuals further apart (compared to the standardized residuals).
The studentized residuals of San Francisco, Portland and Seattle are significantly
large. They may belong to a different model. The results here were produced with
temperature-RSTANDARD-vs-RSTUDENT.R which resides at the book’s site. ut
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Figure 14.16 Large circles show the standardized residuals and small circles the ε̂∗(i).

The black circles corresponding to those in Figure 14.14. The broken line indicates
the cutoff value of influential ε̂∗(i).

14.6.5 The DFFITS residuals

Consider the following. We fit a regression and obtain predictions for each value of
Xi, namely Ŷi. Now remove the ith observation from the data, fit a new model and
obtain a new prediction for the ith observation. Denote this new prediction by Ŷ(i).
By how much did the prediction of Y for the ith observation change? If it changed
substantially, then we know that the ith observation is influential in the model (e.g.

with regard to the values of the coefficients). So we can use Ŷi − Ŷ(i) to evaluate the
amount of change. But we still have a problem. A small change in Ŷi − Ŷ(i) for an
observation that is near the center of the data is not comparable to a small change
in Ŷi − Ŷ(i) for an observation that is far from the center of the data. It is “harder”
for the former to effect change than the latter. So we must scale the difference Ŷi
− Ŷ(i) by how far the point is from the center of the data. The scale of choice is√
Residual MS(i) ×

√
h(i). After some algebraic manipulations, we obtain

Difference in fits (DFFITS) The difference in fits for the ith observation is
defined as

ΔŶ ∗i =
ε̂i
√
hi√

Residual MS(i) (1− hi)
. (14.26)

Cutoff criterion for ΔŶ ∗i If

|ΔŶ ∗i | ≥ 3
√

p

n− p
,

then xi is judged as having large influence on the overall model fit.

The ΔŶ ∗i residuals are often denoted by DFFITS. Large values of ΔŶ
∗
i indicate

influential observations. A large value must be determined by some criterion. For
linear models, the sampling density of ΔŶ ∗i is Fp,n−p−1 (in our case, the number of
coefficients we fit is p = 2).
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Example 14.24. Returning to Example 14.21, we calculate

ΔŶ ∗ =







0.494
0.131
−7.050
3.447







Here p = 2 and n = 4. Therefore, 3
√
2/2 = 3. The last two observations are

influential. ut

Example 14.25. Figure 14.17, obtained with

> load(file = 'temperature.rda')

> source('confidence-interval.R')

> X <- temperature$Lat ; Y <- temperature$JanTemp

> model <- lm(Y ~ X) ; p <- 2 ; n <- length(X)

> coast <- c(5, 6, 12, 13, 41, 52, 53)

> DFFITS <- dffits(model)

> plot(model$fitted.values, DFFITS,

+ xlab = 'fitted', ylab = 'DFFITS')

> abline(h = 0)

> abline(h = 3 * sqrt(p / (n - p)), lty = 2)

> abline(h = -3 * sqrt(p / (n - p)), lty = 2)

> points(model$fitted.values[coast], DFFITS[coast], pch = 19)

> identify(model$fitted.values, DFFITS)

Figure 14.17 The ΔŶ ∗i residuals for the city temperature data.

details the ΔŶ ∗i residuals for the city temperature data. The broken horizontal line

is the cutoff value. Comparing ε̂∗(i) (Figure 14.16) to ΔŶ
∗
i , we see that San Francisco

(6) is no longer above the cutoff level. ut

14.6.6 The DFBETAS residuals

In simple linear regression, we estimate two parameters: β̂0 and β̂1. Remove the ith
observation and recompute the regression coefficients. Denote these two coefficients
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by β̂0(i) and β̂1(i). The influence of removing the ith observation on the estimated

coefficients can be estimated with β̂0i − β̂0(i) and β̂1i − β̂1(i). As was the case for
ΔŶ(i), not all observations are born equal and we must rescale them. The scale of

choice is
√
Residual MS(i) ×

√
(A−1)ii where A is given in (14.23) and (A

−1)ii is the
ith element of the diagonal of A−1. We now have

Difference in coefficients (DFBETAS) Let β̂0(i) and β̂1(i) be the estimated val-
ues of β0 and β1 with the ith observation removed. Then

Δβ̂∗0(i) :=
β̂0 − β̂0(i)

√
Residual MS(i)

√
(A−1)ii

,

Δβ̂∗1(i) :=
β̂1 − β̂1(i)

√
Residual MS(i)

√
(A−1)ii

are the standardized differences of the estimates of β0 and β1 with the ith obser-
vation included and excluded.

Cutoff criterion for Δβ̂∗ If
∣
∣
∣Δβ̂∗0(i)

∣
∣
∣ > 1 or

∣
∣
∣Δβ̂∗1(i)

∣
∣
∣ > 1 then xi is influential in

estimating the respective regression coefficient.

Example 14.26. Continuing with Example 14.24, we have

Δβ̂∗0 =







0.482
0.097
0.000
−1.682





 , Δβ̂

∗
1 =







−0.396
−0.053
−2.878
2.764





 .

The last point has strong influence on the intercept and the two last points have
strong influence on the slope. ut

Example 14.27. Figure 14.18, produced with

> load(file = 'temperature.rda')

> source('confidence-interval.R')

> X <- temperature$Lat ; Y <- temperature$JanTemp

> model <- lm(Y ~ X) ; p <- 2 ; n <- length(X)

> coast <- c(5, 6, 12, 13, 41, 52, 53)

> par(mfrow = c(1, 2))

> DFBETAS <- dfbetas(model)

> DFBETAS.0 <- DFBETAS[,1] ; DFBETAS.1 <- DFBETAS[, 2]

> plot(model$fitted.values, DFBETAS.0,

+ xlab = 'fitted', ylab = 'intercept DFBETA')

> abline(h = 0) ; abline(h = 1, lty = 2)

> abline(h = -1, lty = 2)

> points(model$fitted.values[coast], DFBETAS.0[coast],

+ pch = 19)

> identify(model$fitted.values, DFBETAS.0)

> plot(model$fitted.values, DFBETAS.1,

+ xlab = 'fitted', ylab = 'slope DFBETA')
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> abline(h = 0) ; abline(h = 1, lty = 2)

> abline(h = -1, lty = 2)

> points(model$fitted.values[coast], DFBETAS.1[coast],

+ pch = 19)

> identify(model$fitted.values, DFBETAS.1)

Figure 14.18 The Δβ̂∗ residuals on the intercept and the slop of the regression
between latitude and mean minimum January temperature for 53 U.S. cities.

details the Δβ̂∗ for both regression coefficients. None of the temperatures influences
the intercept. Only Seattle influences the slope. Why? Because it is far enough to the
North to have enough influence on the slope. ut

14.6.7 Cooke’s distance

This measure indicates how large the influence of the ith point is on the combined
values of the model coefficients.

Cook’s distance (D) Let ε̂i be the ith residual, hi the ith diagonal element of H,
p the number of model coefficients and Residual MS as given in (14.10). Then
Cook’s distance is defined as

Di =
hi

p

[
ε̂i√

Residual MS (1− hi)

]2
.

Cutoff criterion for D If Fp,n−p for the ith observation is ≥ 0.5, then the distance
is considered unusually large.

The sampling density of Di is Fp,n−p. Di is related to ΔŶ
∗
i as given in (14.26) thus

ΔŶi =

√
Residual MS

√
Residual MS(i)

√
Dip .

Example 14.28. Figure 14.19, produced with

> load(file = 'temperature.rda')

> source('confidence-interval.R')

> X <- temperature$Lat ; Y <- temperature$JanTemp
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> model <- lm(Y ~ X) ; p <- 2 ; n <- length(X)

> coast <- c(5, 6, 12, 13, 41, 52, 53)

> COOK <- cooks.distance(model)

> plot(COOK, xlab = 'observation number',

+ ylab ="Cook's distance", type = 'h', ylim = c(0, 1))

> cutoff <- qf(0.5, p, n - p, lower.tail = FALSE)

> abline(h = cutoff, lty = 2)

> points(coast, COOK[coast], pch = 19) ; identify(COOK)

Figure 14.19 Cook’s distance for the temperature data. The broken line indicates
the cutoff value for influential residuals.

details Cook’s distances for the temperature data. We find that P (X > 0.702) = 0.5
where X is a random variable from F2,54 density. Therefore, the cutoff value for Di
is 0.702. None of the residuals is significantly influential. ut

14.6.8 Conclusions

The data for cities that we suspected to be influential (as identified in Figure 14.13) are
detailed in Table 14.6. Spokane did not turn out to be influential and the two Florida
cities were influential in the leverages. If we are to adhere to the residual analysis
strictly, then Portland and Seattle emerge as the most influential cities. However,
statistical procedures in general and residual analysis in particular are not straight
jackets. They are used to enhance our understanding of the data.
Both Table 14.6 and Figure 14.12 lend support to the idea that the U.S. coastal

cities (e.g. Los Angeles, San Francisco, Portland and Seattle) belong to a different
model. Why? Because physical geography tells us that Oceans moderate temperatures
along coasts. You might wonder why East Coast cities like New York and Boston do
not distinguish themselves, along with the Florida cities, as well as the West Coast
cities do. Here again, we must rely on our understanding of the underlying processes
in nature. The warm Gulf Stream flows close to Florida and then heads East, leaving
northern East Coast cities out in the cold. So they do not align themselves as clearly
as the West Coast cities.
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The take-home message is this: Statistical analysis enhances our understanding of
the data. It should not replace it.

14.7 Power and sample size for the correlation coefficient

We wish to investigate the power of the test of significance under

H0 : ρ = 0 vs. HA : ρ = ρ0 > 0 (14.27)

for a given α and given alternative model correlation ρ0. We use Fisher’s transforma-
tion (14.19). Under H0, the mean of Ẑ is 0 and the variance is 1/ (n− 3). Therefore,
we reject H0 if

Ẑ
√
n− 3 > z1−α .

Let z0 be given as in (14.18). Then we reject H0 also if

Ẑ
√
n− 3− z0

√
n− 3 > z1−α − z0

√
n− 3

or (
Ẑ − z0

)√
n− 3 > z1−α − z0

√
n− 3 .

Because Ẑ is a rv, so is Z =
(
Ẑ − z0

)√
n− 3. Under H1, the rv Z is standard normal.

Therefore

P
(
Z > z1−α − z0

√
n− 3

)
= 1− P

(
Z ≤ z1−α − z0

√
n− 3

)

= P
(
Z ≤ z0

√
n− 3− z1−α

)
.

To obtain power at 1− β, we set

1− β = z0
√
n− 3− z1−α .

Therefore,

Power for the correlation coefficient For the hypotheses (14.27), for the alter-
native HA := ρ0 with significance level α, the power (1 − β) for sample size n, is
given by

power = P
(
Z ≤ z0

√
n− 3− z1−α

)

where Z is a standard normal rv.

To obtain the corresponding sample size, we solve the power for n:

Sample size for the correlation coefficient For the hypotheses (14.27), for the
alternative HA := ρ0 with significance level α and given power 1 − β, the required
sample size n, is given by

n =

(
z1−α + z1−β

z0

)2
+ 3 .
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14.8 Assignments

Exercise 14.1. Refer to Example 14.1.

1. How would you determine if Item.ID in bmv.rda includes leading or trailing white
spaces?

2. Follow the ideas introduced in the example to rid Item.ID from potential leading
and trailing white spaces.

Exercise 14.2. Use calculus to show that β̂0 = −4.742 and β̂1 = 1.659 in
Example 14.7.

Exercise 14.3. In Example 14.8, we use the square transformation to relate tree
diameter at breast height (DBH) to age. The transformation results in an apparent
linear relationship. Why?

Exercise 14.4.What are the units of the intercept and slope of the following linear
relationships?

1. Y - height (cm), x - weight (kg)
2. Y - basal metabolic rate (Kcal per hour), x - weight (kg)
3. Y - plants per m2, x - m2

Exercise 14.5.Write an R script that produces Figure 14.4 and prints the summary
of the linear model.

Exercise 14.6. Here are data about the number of classes missed and the corre-
sponding score on the final exam for 120 students in a statistics class (see exercise-
skipping-class.txt):

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

81 86 80 95 87 80 88 89 88 83 94 87 81 72 92 85 85 91 90

1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2

89 91 90 85 73 89 85 84 76 74 80 85 76 79 77 69 75 75 77

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

84 82 76 75 81 80 73 73 79 82 76 82 79 73 79 70 86 89 75

2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

71 80 76 84 70 74 70 66 71 59 79 71 83 73 66 74 64 62 72

3 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4

67 70 70 66 67 69 77 61 74 72 71 63 67 67 62 72 72 69 75

4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

68 57 62 58 62 61 65 60 66 61 76 69 70 67 75 61 62 74 61

4 4 4 4 4 4

64 63 63 63 68 64

1. Plot the scatter of the data.
2. Add to the plot points that show the mean score for those who missed one class,
two classes, three and four.

3. Add to the plot the regression line.
4. On the average, how many points can a student expect to lose from the score on
the final exam?
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Exercise 14.7. Using the data in Exercise 14.6, plot the expected values of Y and
Y − predicted Y .

Exercise 14.8. Import basal-metabolic-rate.txt'. The column names identify
the order, family, species, mass (M, in g), body temperature (T, in ◦C), and the basal
metabolic rate (BMR, in kcal/hr). Next:

1. Plot the scatter of the numerical data in pairs and identify a pair of columns that
indicate potential linear relationship.

2. Plot a scatter of the log of this pair.
3. Add the regression line to this scatter.
4. Identify and label by species name extreme points in the scatter plot.
5. Write the formula that relates your two variables.
6. Does the overall model fit the data?

Exercise 14.9. Explain the following script (see Example 14.2):

1 rm(list=ls())

2

3 wb <- read.csv('world-bank.csv', header = TRUE, sep = ',',

4 stringsAsFactors = FALSE)

5 names(wb) <- c('country', 'indicator', '1999', '2000',

6 '2001', '2002', '2003')

7

8 wb.split <- split(wb[,-2],wb$indicator)

9 names(wb.split) <- levels(wb$indicator)

10

11 out <- function(d, x, y, xlab, ylab, trans = FALSE){

12 countries <- intersect(d[[x]][,1], d[[y]][,1])

13 index <- vector()

14 for(i in 1 : length(countries)){

15 index[i] <- which(d[[x]][, 1] == countries[i])

16 }

17 if(trans) xx <- log(d[[x]][index, 3])

18 else xx <- d[[x]][index, 3]

19 index <- vector()

20 for(i in 1 : length(countries)){

21 index[i] <- which(d[[y]][, 1] == countries[i])

22 }

23 if(trans) yy <- log(d[[y]][index, 3])

24 else yy <- d[[y]][index, 3]

25 plot(xx, yy, xlab = xlab, ylab = ylab)

26 model <- lm(yy ~ xx)

27 abline(reg = model)

28 print(summary(model))

29 }

30

31 openg(4,4)
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32 par(mfrow=c(2, 2))

33 # energy use vs CO2 emissions

34 out(wb.split, 4, 2, 'log(CO2 emissions)',

35 'log(energy use)', trans = TRUE)

36 # GDP vs CO2 emissions

37 out(wb.split, 2, 6, 'log(CO2 emissions)', 'log(GDP)',

38 trans = TRUE)

39 # fertility rate vs infant mortality

40 out(wb.split, 5, 8, 'fertility rate', 'life expectancy')

41 # edu vs infant mortality

42 out(wb.split, 11, 12, 'infant mortality',

43 'children mortality')

44 #saveg('world-bank', 4, 4)

45

46 print(c(sqrt(0.8415), sqrt(0.2498), sqrt(0.6801),

47 sqrt(0.9766)))

Exercise 14.10. Write a script to obtain ρ̂ from Example 14.12.

Exercise 14.11. Write an R script that reproduces Figure 14.9.

Exercise 14.12. Write an R script that reproduces Figure 14.10.

Exercise 14.13. Use Examples 14.23 to 14.28 as guidelines.

1. Run all diagnostics as shown in the examples and identify where British Columbia
and Alaska coastal cities fit in the model.

2. Based on the diagnostics, do coastal cities in Alaska and British Columbia stand
out? Explain.
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Analysis of variance

In many ways, analysis of variance (ANOVA) is similar to linear regression. The main
difference is in our treatment of the independent variable. Recall that in linear regres-
sion, we chose both variables to be numeric (decimal). In ANOVA, it is (they are)
factors or occasionally ordered factors. As we shall see in this chapter, in modern
regression, the distinction between linear models and ANOVA blurs. Roughly speak-
ing, ANOVA is simply a different way of summarizing results. This and the nature
of the ANOVA introduce difficulties in applying the analysis and interpreting the
results. We will discuss the major types of ANOVA; however, the topic is large and
often requires careful considerations of experimental design, applying the analysis and
interpretation.
Like the Australian aborigines (who count one, two, many), ANOVA may be

broadly classified as one-way, two-way and many-way. We will not go beyond two-way.
One-way ANOVA may be further classified into fixed- and random-effects ANOVA
and within these categories, we might have balanced and unbalanced designs. Two-
way ANOVA may be classified similarly with the addition of mixed effects (fixed and
random). We shall elaborate upon some of these ideas in this chapter.
To run ANOVA often requires a bit of work in preparing data for analysis. Infor-

mation from different data files need to be coalesced, factors introduced in the right
order and so on. We will use mostly large, publicly available data. This will give us a
chance to do some heavy data manipulations.

15.1 One-way, fixed-effects ANOVA

One-way ANOVA is a method to analyze data where one variable is a factor (cate-
gorical) and the other is numeric. If the levels of the factor variable are fixed, then
we have fixed-effects ANOVA. For example, we may classify people into various eth-
nic groups (the factor) and study the relationship between ethnicity and income (the

Statistics and Data with R:  An applied approach through examples         Y. Cohen and  J.Y.  Cohen
©
2008 John Wiley & Sons, Ltd.  ISBN: 978-0-470-75805
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latter is the dependent variable). Say we have four ethnic groups. For each group we
may have equal number of observations. This is called a balanced design. If the number
of observations per group are not equal, we have unbalanced design. In fixed-effects
ANOVA we are interested in difference among group means.

15.1.1 The model and assumptions

Let us start with an example which, by the way, will tax R’s ability to deal with large
data sets. We also show how to draw maps with R.

Example 15.1. The European Union (EU) maintains large data sets about air
quality. We are interested in comparing the means of the maximum value of atmo-
spheric sulfur dioxide (SO2) for three cities: Berlin, Madrid and Rome for the year
2005. We download the air quality data from http://dataservice.eea.europa.eu/

dataservice/metadetails.asp?id=949. The files are named Airbase_v1_station.
txt and Airbase_v1_statistic. txt. The former provides information about the
data collection stations and the latter contains the 190 million bytes (Mb) of data.
First, we import the data and save it for later use:

> EU.station <- read.table('Airbase_v1_station.txt',

header = TRUE, sep = ',', stringsAsFactors = FALSE)

> save(EU.station, file = 'EU.station.rda')

> EU <- read.table('Airbase_v1_statistic.txt', header = TRUE,

sep = ',', stringsAsFactors = FALSE)

> save(EU, file = 'EU.rda')

An important note about reading text files Occasionally, fields in text files may
contain a single quote, for example a French name, like Count d’Money. This will
confuse read.table() and its allies—they will lose count of the number of fields
in a row!

Importing the statistics data takes a while, but R saves it in a binary file of size 5.9Mb
only. The station information includes

> load('EU.station.rda')

> names(EU.station)

[1] "station_EUropean_code" "country_iso_code"

[3] "country_name" "type_of_station"

[5] "station_type_of_area" "station_longitude_deg"

[7] "station_latitude_deg" "station_altitude"

[9] "sabe_country_code" "station_city"

and the columns of interest in the statistics data are:

> head(EU[c(3, 13, 15)])

component_caption statistic_shortname statistic_value

1 SO2 Days(c > 125) 0.000

2 SO2 Max4 77.083

3 SO2 Max 91.875

4 SO2 Mean 19.135

5 SO2 P50 14.375

6 SO2 P95 45.833
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Next, we want to extract the data for the maximum sulfur dioxide (SO2) for Berlin,
Madrid and Rome for 2005. But first, let us see a map where the measurements had
been collected. We start by loading the necessary data and packages,

> load('EU.station.rda')

> library(maps)

> library(mapdata)

identifying the regions we wish to draw and their colors

> r <- c('Spain', 'Italy', 'Germany')

> col<-colors()[c(360, 365, 370)]

and plotting the map with its coordinates (longitude and latitude):

> map('world', regions = r, fill = TRUE, col = col)

> map.axes()

(Figure 15.1). To name the countries, we use

> text(c(-2, 7, 3), c(36, 43, 51), labels = r)

To isolate the coordinates of the stations in the three countries, we do

> m <- match(EU.station[, 3], c('ITALY', 'SPAIN', 'GERMANY'),

+ nomatch = 0)

match() returns the occurrences of all elements in the right argument (the countries)
in the left argument (the third column in EU.station). The returned values are
integers. We ask that no matching locations in the third column be set to zero. So
now we can extract the desired

> long <- EU.station[m > 0, 6]

> lat <- EU.station[m > 0, 7]

Figure 15.1 Stations (circles) where air quality data had been collected in Spain,
Italy and Germany. Black disks locate Berlin, Madrid and Rome.
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Finally, we draw the station locations:

> points(long, lat, col=c(360))

To add the points for our cities, we do a quick search on the Web and then

> cities.long <- c(13 + 25 / 60, -(3 + 42/60),

+ 12 + 27 / 60)

> cities.lat <- c(52.5, 40 + 26 / 60, 41 + 54 / 60)

> points(cities.long, cities.lat, col = 'black',

+ pch = 19, cex = 1.5)

Now to extract the data, we need both EU.rda and EU.station.rda. The stations
data associate the station codes with their nearby city. So we need to extract these
station codes from the stations data and then use these codes to extract the data
from the statistics file. First, we extract the stations that correspond to the cities of
interest:

> m <- match(toupper(EU.station[, 10]),

+ c('MADRID', 'ROMA', 'BERLIN'), nomatch = 0)

> stations <- EU.station[m > 0, 1]

Note the use of toupper(). The function changes all of a string’s letters to upper
case. We do this because in the data, Berlin is written as BERLIN or Berlin. Next,
let us extract the data for SO2 from the stations in the cities of interest:

> tmp <- EU[EU$statistic_shortname == 'Max' &

+ EU$component_caption == 'SO2', ]

> m <- match(tmp[, 1], stations, nomatch = 0)

> tmp <- tmp[m > 0, c(1, 8, 15)]

(the eighth column includes the year the data were collected). Next, we extract and
tighten up the data for 2005

> tmp <- tmp[tmp[, 2] == 2005, c(1, 3)] ; head(tmp, 3)

station_european_code statistic_value

351946 DE0715A 28.083

351953 DE0715A 38.000

362262 DE0742A 30.217

The first two letters of the station code include the country; the data are for known
cities in each country, for SO2 for 2005. We add a column for city name like this:

> n <- tapply(substr(tmp[, 1], 1, 2), substr(tmp[, 1], 1, 2),

+ length)

> city <- c(rep('Berlin', n[1]), rep('Madrid', n[2]),

+ rep('Roma', n[3]))

> SO2 <- cbind(tmp, city)

> names(SO2)[1:2] <- c('station', 'Max SO2') ; head(SO2, 3)

station Max SO2 city

351946 DE0715A 28.083 Berlin

351953 DE0715A 38.000 Berlin

362262 DE0742A 30.217 Berlin

> save(SO2, file = 'SO2.rda')
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substr() extracts a substring that begins in the second argument (1) and end in the
third (2 in our case). In the next example we shall start with the data analysis. ut

As you can see, extracting desired data is not a trivial task. In Example 15.1 we have
three groups. The number of groups is denoted by k and in R they are represented by
a factor variable with factor levels Berlin, Madrid and Roma. So k (= 3) is the number
of levels of the factor variable city. Let us denote the response variable (Max.SO2 in
our case) by the rv Y . In each group (for each city), we have a value of Yij where i is
the group index (i = 1, 2, 3) and j is the measurement index within a group.

Example 15.2. Continuing with Example 15.1, Table 15.1 illustrates the notation
we use. Here k = 3, i = 1, . . . , k. For i = 1, j goes from 1 to 12 and so on. Figure 15.2
illustrates the notation. To produce the figure, we load and plot the data with no axes
(axes), x-label with a subscript notation (xlab) and letters larger than usual (cex):

> plot(SO2[, 2], SO2[, 3], axes = FALSE,

+ xlab = expression(SO[2]),

+ ylab = 'city', ylim = c(1, 3.2),

+ xlim = c(0, 160), cex = 1.2)

We then draw the default x-axis and the y-axis with tick marks at 1, 2, 3 and the
appropriate tick labels:

> axis(1)

> axis(2, at = c(1, 2, 3),

+ labels = c('Berlin', 'Madrid', 'Roma'))

Table 15.1 ANOVA notation for the EU data
(Example 15.1)

Factor i Measurement Measurement
level index (j) value

Berlin 1 1 28.083
...

...
...

...
Berlin 1 12 34.000
Madrid 2 1 48.800
...

...
...

...
Madrid 2 50 92.890
Roma 3 1 26.909
...

...
...

...
Roma 3 6 27.000

Next, we draw horizontal lines for each city, calculate city means and add the them
with appropriate notation (pch):

> abline(h = c(1, 2, 3))

> means <- tapply(SO2[, 2], SO2[, 3], mean)

> points(means, 1 : 3, pch = '|', cex = 2)
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Figure 15.2 Maximum SO2 air pollution in Berlin, Madrid and Rome.

Here

> Y.bar.bar <- mean(SO2[, 2]) ;

> lines(c(Y.bar.bar, Y.bar.bar), c(0, 3.01))

we add a vertical line for Y (we could do this with abline(v = Y.bar.bar) but
it does not look nice). We use expression() to draw the notation. The tricky
one is

> text(SO2[26, 2], 2,

+ labels = expression(bolditalic(Y[2*j])),

+ pos = 3)

You will not get Yij correctly unless you juxtapose 2 and j with *. ut

Now we assume the model:
yij = μ+ αi + εij . (15.1)

The corresponding sample variables are detailed in Table 15.2. If the k samples
(groups) are taken from a single population, then μ is the mean of the population.
In the model, αi are the differences between the overall population mean (μ) and
the mean of each group (sample). Finally, εij are the random errors about μ + αi,
with density φ(0, σ). We are therefore assuming that the variances within each group
are all equal to σ2. If we want to estimate μ and all αi, we have to estimate k + 1
parameters. This is not possible because we have k observed means and we wish to
estimate k + 1 parameters. So we shall assume that

k∑

i=1

αi = 0 .

We thus have the following definition

One-way ANOVA We say that (15.1) is a one-way ANOVA.
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Table 15.2 Population and sample quantities in
ANOVA.

Population sample

yij Yij Observation j in group i

μ Y total mean

μ + αi Y i mean for group i

Note that if we assign αi in (15.1) to β1Xi in (14.2), then ANOVA is essentially a
linear model. Now if each group’s density is normal with variance σ2, we can obtain
a meaningful statistics with known density that allows us to compare the arbitrary
(k) number of means. The comparison involves the null hypothesis that all k group
means are equal.

Example 15.3. Applying these ideas to our SO2 pollution data (Example 15.2), we
say that each value can be predicted by the overall mean plus the group mean (“city
effect”) plus random-effects within each group (city). ut

In summary, model (15.1) assumes:

1. independent samples
2. equal group variances
3. normal error with mean 0 and variance σ2

The last assumption implies that the data are normal.

Example 15.4. In the case of our SO2 pollution data, we may be violating the
assumption of independent samples. For example, data from nearby monitoring sta-
tions taken during the same time may be dependent. The sampling dates were not
available and so we assume (perhaps erroneously) that the data are independent. The
assumptions of equal variance and normality of errors can be tested (see Sections
12.2.2 and 7.2.4, respectively). ut

15.1.2 The F -test

ANOVA involves the F -test. As opposed to the t-test, which applies to pairs of means,
the F -test applies to overall comparison of all means.

Example 15.5.With the SO2 pollution data, we test the null hypothesis that the
means of maxima of atmospheric SO2 concentrations (the response variable) were
equal in Berlin, Madrid and Rome during 2005. ut

Formally, with one-way, fixed-effects ANOVA, we test the null hypothesis (H0) that
the means of all group are equal, or equivalently, that each αi = 0. The alternative
hypothesis is that at least one αi 6= 0. Under the null hypothesis, we construct the
so-called F -statistic whose sampling density is known to be F (k − 1, n− k). Here F
is the density (detailed in Section 6.8.5) and k − 1 and n − k are the degrees of
freedom. k is the number of groups (sometimes called treatments or effect) and n
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is the total number of observations. To construct the sampling density, consider the

deviation (under the null hypothesis) Yij − Y which may be written as

Yij − Y = Yij − Y i︸ ︷︷ ︸
within group deviation

+ Y i − Y︸ ︷︷ ︸
between group deviation

.

Squaring and summing over the appropriate number of observations we obtain

k∑

i=1

ni∑

j=1

(
Yij − Y

)2

︸ ︷︷ ︸
Total SS

=

k∑

i=1

ni∑

j=1

(
Yij − Y i

)2

︸ ︷︷ ︸
Within SS

+

k∑

i=1

ni∑

j=1

(
Y i − Y

)2

︸ ︷︷ ︸
Between SS

where SS stands for Sum of Squares and ni denotes the number of observations in the
ith group. In our notation, the last equation is written as

Total SS = Within SS + Between SS .

Now the means of Within SS and Between SS, denoted by Within MS and Between
MS are

Within MS =
1

n− k

∑k
i=1

∑nk
j=1

(
Yij − Y i

)2
,

Between MS =
1

k − 1

∑k
i=1

∑nk
j=1

(
Y i − Y

)2
(15.2)

(for computations, more efficient formulas are used).

Example 15.6. Let us implement these computations for the SO2 data (Example
15.1) in R. First, we load the data

> load('SO2.rda')

Next, we determine ni for i = 1, 2, 3 and the total mean (Y ) with

> (n <- tapply(SO2[, 2], SO2[, 3], length))

Berlin Madrid Roma

12 50 6

> (Total.mean <- mean(SO2[, 2]))

[1] 55.68776

The group means are

> (Group.means <- tapply(SO2[, 2], SO2[, 3], mean))

Berlin Madrid Roma

34.86800 63.63320 31.11533

To simplify scripts for later computations, we add the group means to SO2

> (SO2 <- data.frame(SO2, Group.means = c(

+ rep(Group.means[1], n[1]), rep(Group.means[2], n[2]),

+ rep(Group.means[3], n[3]))))

station Max.SO2 city Group.means

351946 DE0715A 28.083 Berlin 34.86800

351953 DE0715A 38.000 Berlin 34.86800

362262 DE0742A 30.217 Berlin 34.86800

...
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The Total SS is

> (Total.SS <- sum((SO2[, 2] - Total.mean)^2))

[1] 79462.8

The Within SS is

> (Within.SS <- sum(tapply((SO2[, 2] - SO2[, 4])^2,

+ SO2[, 3], sum)))

[1] 67481.92

and the Between SS is

> (Between.SS <- sum(tapply((SO2[, 4] - Total.mean)^2,

+ SO2[, 3], sum)))

[1] 11980.87

The mean squares are

> (Within.MS <- Within.SS / (sum(n) - length(n)))

[1] 1038.183

> (Between.MS <- Between.SS / (length(n) - 1))

[1] 5990.437

The computations can be done a bit more efficiently but this way we can see explicitly
what is going on. ut

Now the ratio Between MS / Within MS has a known sampling density; it is F with
k − 1 and n − k degrees of freedom (see Section 6.8.5). Obviously, as Between MS
grows for fixed Within MS, the contribution of the variance between the groups to
the total variance compared to the variance within the groups grows. So when the
F -statistic (= Between MS / Within MS) grows, it will reach a value large enough
for us to reject the hypothesis that all group means are equal (our H0).
The null and alternative hypotheses are

H0 : = all group means are equal to the total mean vs.

HA : = at least one of the means is different from the total mean .

Note that H0 implies that
∑
αi = 0. Next, we calculate the statistic

F =
Between MS

Within MS

where Between MS and Within MS are calculated according to (15.2). Then, if for
significance level α,

p-value = 1− pf(F, k− 1, n− k) < α

(where pf() is the F distribution in R), reject the null hypothesis in favor of the
alternative.
Let us pause for a moment to discuss the difference between balanced and unbal-

anced design by example.

Example 15.7. Let A, B and C be the treatments. The response values for each
treatment were generated from a normal density with means 10, 20 and 30 and
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SD = 15 (see balanced-vs-unbalanced-design.R in the book’s site). Here are the
results for balanced and unbalanced design

> source('balanced-vs-unbalanced-design.R')

Within.MS Between.MS F p.value

SS 199.97 687.8 3.44 0.05

n 10.00 10.0 10.00 NA

Within.MS Between.MS F p.value

SS 200.33 430.73 2.15 0.14

n 5.00 15.00 10.00 NA

Within.MS Between.MS F p.value

SS 195.65 613.65 3.14 0.06

n 15.00 10.00 5.00 NA

In short, for each of the three analyses, 30 samples were drawn from the same popu-
lation but group allocation differed. The balanced design indicates significant F value
and is easiest to interpret. In the other two cases, a firm conclusion is more difficult
because the unclear effect of sample sizes. ut

Let us run ANOVA on the SO2 air pollution.

Example 15.8. Back to Example 15.6. First, we load the data

> load('SO2.rda')

The sample sizes are

> (n <- tapply(SO2$'Max SO2', SO2$city, length))

Berlin Madrid Rome

12 50 6

So we have unbalanced number of observations for each group. We will deal with such
analysis later. For now, let us use a balanced design:

set.seed(101) ; n.c <- cumsum(n)

i.1 <- sample(1 : n.c[1], n[3])

i.2 <- sample((n.c[1] + 1) : n.c[2], n[3])

i.3 <- (n.c[2] + 1) : n.c[3]

d <- SO2[c(i.1, i.2, i.3), ]

To test if the variances are equal, we follow Section 12.2.2:

> (vars <- tapply(d[, 2], d[, 3], var))

Berlin Madrid Roma

221.8475 669.1904 376.5391

Now that we have the variances and sample sizes, we lower-tail test all pairs of ratios:

> (vars.ratio <- c(vars[1]/vars[2],

+ vars[1] / vars[3], vars[3] / vars[2]))

Berlin Berlin Roma

0.3315163 0.5891752 0.5626786

> (p.L <- c(pf(vars.ratio[1], 5, 5),

+ pf(vars.ratio[2], 5, 5),

+ pf(vars.ratio[3], 5, 5)))

Berlin Berlin Roma

0.1254588 0.2878244 0.2716446
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None of the ratios is significant and we conclude that all variances are equal. Thus we
meet one of the ANOVA assumptions. To test for normality of the data we use the
Q-Q plot

> par(mfrow = c(1, 3))

> qqnorm(d[d[, 3] == 'Berlin', 2], main = 'Berlin')

> qqline(d[d[, 3] == 'Berlin', 2])

(similarly for Madrid and Rome) to obtain Figure 15.3 and conclude that the data
for each group are marginally normal. So we proceed with the ANOVA:

> a <- aov(d$'Max SO2' ~ d$city, data = d)

> summary(a)

Df Sum Sq Mean Sq F value Pr(>F)

d$city 2 2035.8 1017.9 2.4091 0.1238

Residuals 15 6337.9 422.5

Figure 15.3 Q-Q plots for SO2 atmospheric pollution.

R uses the column name of the “treatment” to name the row for the Between MS,
hence the row name city. The Within MS are named Residuals. From the p-value
we conclude that the means of SO2 pollution in these three cities were not different for
2005. If you wish, you can produce a nice graphical output of your ANOVA like this:

> library(granova)

> granova.1w(SO2$Max.SO2, SO2$city)

(Figure 15.4). Except for contrasts, the graph is self explanatory (see granova()’s
help). We shall meet contrasts soon. ut

R’s output of aov() is standard. Such output is called ANOVA table and should
always be reported with the analysis. We know how to test for means equality. If we
reject H0, we follow up by more detailed analysis to discover which of the means are
responsible for rejecting H0 (we shall pursue this in the next section).
Next, let us see how to run ANOVA with unbalanced design.
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Figure 15.4 Plot of ANOVA output.

Example 15.9.We repeat the analysis in Example 15.8, but this time, for unbalanced
design:

> load('SO2.rda')

> (n <- tapply(SO2$'Max SO2', SO2$city, length))

Berlin Madrid Roma

12 50 6

> d <- SO2

Repeat of the analysis on the differences of variances among the groups reveals that
they are different. So we log-transform the response variable:

> d[, 2] <- log(d[, 2])

> (vars <- tapply(d[, 2], d[, 3], var))

Berlin Madrid Roma

0.1919883 0.3424642 0.5029848

> (vars.ratio <- c(vars[1]/vars[2],

+ vars[1] / vars[3], vars[3] / vars[2]))

Berlin Berlin Roma

0.5606085 0.3816980 1.4687225

> (p.L <- c(pf(vars.ratio[1], 5, 5),

+ pf(vars.ratio[2], 5, 5), pf(vars.ratio[3], 5, 5)))

Berlin Berlin Roma

0.2703705 0.1570159 0.6582729

Now paired comparisons reveal that the variances are equal. Because the model is
unbalanced, interpreting the sums of squares is difficult. Instead of working with
aov() to obtain the ANOVA table (as in Example 15.8), we go through linear
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regression explicitly and then get the table through ANOVA on the regression
results:

> model <- lm(d$'Max SO2' ~ d$city)

> anova(model)

Analysis of Variance Table

Response: d$"Max SO2"

Df Sum Sq Mean Sq F value Pr(>F)

d$city 2 5.0599 2.5300 7.6818 0.001012

Residuals 65 21.4075 0.3293

The differences are significant with group means

> tapply(SO2[, 2], SO2[, 3], mean)

Berlin Madrid Roma

34.86800 63.63320 31.11533

The means indicate that as far as atmospheric SO2 is concerned, you probably would
not have wanted to live in Madrid in 2005 (Rome is nice). To verify that we conform
to the assumptions of linear models (and therefore ANOVA), we can

> par(mfrow = c(2, 2)

> plot(model)

Figure 15.5 indicates that we meet the usual assumptions of linear models (and there-
fore of the ANOVA). You can obtain the same diagnostics with

> plot(aov(d$'Max SO2' ~ d$city)

Now compare Figure 15.6 obtained with

> library(granova)

> granova.1w(d$'Max SO2', d$city)

to Figure 15.4. ut

The results for anova() in Example 15.9 are identical to those obtained from aov().
This is so because aov() is just a wrapper for lm() and provides for automatic
printing of the ANOVA table. However, as we shall soon see, when dealing with two-
way ANOVA, it is often nice to explicitly run the linear model first and then produce
the ANOVA table with anova().
If we find that the F -test is not significant, we are done. However, if the test is

significant, we may wish to pursue a more detailed analysis.

15.1.3 Paired group comparisons

Suppose we find that the F -test is significant (if it is not, do not pursue the paired
comparisons). We reject H0 in favor of HA. But as HA states, at least one group is
different. We wish to investigate which one or ones. But there is a potential problem.
If, once we see the ANOVA results we decide to search for significant group mean
differences (this is called post-hoc analysis), then for many comparisons, some might
be significant by chance alone. To guard against this possibility, we choose to use the
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Figure 15.5 ANOVA diagnostics.

Figure 15.6 Plot of ANOVA output.
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Bonferroni test (there are others), which amounts to adjusting α downward as the
number of comparisons increases. Paired comparisons and their adjustments are the
topics of this section.

Comparing pairs of groups–the least significant (LSD) method

We wish to compare group i to group j for i 6= j and i, j = 1, . . . , k. Based on the
ANOVA assumptions (of groups normality) we are after the sampling density of Y i
− Y j . Under the null hypothesis that two group means are equal, the appropriate
sampling density is

φ(0,

√

σ2
(
1

ni
+
1

nj

)

where ni and nj are the respective group sample sizes and σ
2 is the assumed equal

variance of the groups. Because σ2 is not known, in the usual t-test we estimate it
with the pooled variance

S2P =
(ni − 1)S2i + (nj − 1)S

2
j

ni + nj − 2

which, under the null hypothesis of equal variance is our Within MS in (15.2). When
we have only two samples, the df are ni + nj − 2. However, we estimate the pooled
variance from k samples and therefore must revise the df to n1 − 1 + ∙ ∙ ∙ + nk − 1
= n − k. Because we are estimating S2, our test statistic is

Tij =
Yi − Yj√

S2
(
1

ni
+
1

nj

)

where S2 is the total variance (not the pooled variance S2P ) and the sampling density
of Tij is tn−k. In summary, for each pairs of groups among the k group we have

H0 : αi = αj vs. HA : αi 6= αj

with α level of significance. As usual, we reject H0 if the p-value = 1 − pt(abs(Tij),
n− k) < α/2. This test is often referred to as the least significant difference (LSD).
The next example demonstrates how to apply the LSD test, how to deal with infinity
(Inf) in R and how to interpret bar plots.

Example 15.10. The data are from a 2004–2005 survey by the US Center for Dis-
ease Control (CDC). It was obtained from http://www.cdc.gov/nchs/about/major/

nhanes/nhanes2005-2006We are interested in the demographics survey; a file named
demo d. It is available for download in SAS format and can be imported with read.

xport() in the package foreign (we shall skip this step). The file demo d.short.rda,
available from the book’s site, includes a subset of the variables in demo d.rda. The
latter contains the full data set, as imported from the CDC site. So, we load:

> load('demo_d.short.rda')
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We wish to run ANOVA on mean yearly household income by ethnicity1 groups:

> names(demo_d.short[, c(4, 10, 11)])

[1] "Race/Ethnicity" "Household Income from"

[3] "Household Income to"

The second and third variables include yearly household income categories from zero
to $24 999 in increments of $5 000, then from $25 000 to $74 999 in increments of
$10 000. All incomes are pooled for $75 000 and above. Thus, the corresponding last
column includes Inf—an infinitely large number that R knows how to deal with
arithmetically. We want to remove cases with NA with complete.cases(), to save on
typing rename the data frame to i (for income) and rescale:

> i <- demo_d.short[, c(4, 10, 11)]

> i <- i[complete.cases(i), ]

> i[, 2] <- i[, 2] / 1000

> i[, 3] <- i[, 3] / 1000 + 0.001

Next, we extract ethnicity and the mean of the income categories with units of $1 000
and reassign the data to i:

> i <- data.frame(i[, 1], i[, 2] + (i[, 3] - i[, 2])/2)

Before going on, we want to examine what we have:

> par(mfrow = c(1, 2))

> barplot(table(i$income), las = 2,

+ xlab = 'mean yearly household income category (in $1,000)',

+ ylab = 'count')

(Figure 15.7, left). Note that R deals with Inf correctly with no extra effort. To
remove the “infinite” income (effectively so in some cases), we do

> i <- i[i$income <= 75, ]

and repeat the barplot() (Figure 15.7, right). Now the bar-plot is a count in cat-
egories and the data represent a random sample from the U.S. population. So we
see that as far as the lower household income “brackets” are concerned, the infinite
income category is the largest. For the ANOVA and LSD test, we use the data without
the Inf income. This will give us an idea about the distribution of income between 0
and $75 000 and help us analyze the data without having to resort to medians.
Let us see what we have:

> attach(i)

> par(mar = c(15, 4, 1, 2))

> plot(i, las = 2, ylim = c(0, 80), xlab = '',

+ ylab = 'household yearly income, from (in $1,000)')

(Figure 15.8). The mar parameter sets the distance of the plotting region (in lines)
from the bottom, left, top and right margins of the drawing region. We set it so that
we can see the full ethnicity names.

1Adhering to the biological definition of race, we do not subscribe to the CDC’s classifica-
tion of people of different skin color as being of different races, but we use their terminology
to avoid confusion.
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Figure 15.7 Mean yearly household income category with $75 000 and above cate-
gory assigned infinite income (left) and with it removed (right).

Figure 15.8 Ethnicity and household income (in $1 000).
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It is worthwhile to keep in mind the figure when observing the results of the LSD
test. Before diving into the ANOVA, we usually need to verify that the data conform
to the ANOVA assumptions. The assumption of normality is no problem, for we have
large samples. We shall skip the test for equality of variances. The ANOVA

> model <- aov(income ~ ethnicity, data = i)

> summary(model)

Df Sum Sq Mean Sq F value Pr(>F)

ethnicity 4 56192 14048 40.3 <2e-16

Residuals 7524 2620386 348

tells us that the mean incomes by ethnicity are significantly different. But from
Figure 15.8, perhaps not all of them. At this point, we run diagnostics on the ANOVA
with

> par(mfrow = c(2,2))

> plot(model)

(output not shown) which leads us to conclude that the data meet the ANOVA
assumptions.
To run the LSD test, we load

> library(agricolae)

obtain the degrees of freedom and the Within MS

> df<-df.residual(model)

> MS.error<-deviance(model)/df

and run the test for α = 0.05 (output edited):

> MS.error<-deviance(model)/df

> LSD.test(income, ethnicity, df, MS.error, group = FALSE,

+ main = 'household income\nvs. skin color/ethnicity')

Study: household income

vs. skin color/ethnicity

LSD t Test for income

......

Alpha 0.050

Error Degrees of Freedom 7524.000

Error Mean Square 348.270

Critical Value of t 1.960

Treatment Means

ethnicity income std.err

1 Mexican American 30.85 0.3648

2 Non-Hispanic Black 30.93 0.4168

3 Non-Hispanic White 36.56 0.3806

4 Other Hispanic 30.01 1.1182

5 Other Race - Including Multi-Racial 35.62 1.0881
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Comparison between treatments means

tr.i tr.j diff pvalue

1 1 2 0.08106 0.8855

2 1 3 5.70735 0.0000

3 1 4 0.84168 0.4909

4 1 5 4.77370 0.0000

5 2 3 5.62629 0.0000

6 2 4 0.92275 0.4517

7 2 5 4.69264 0.0000

8 3 4 6.54903 0.0000

9 3 5 0.93365 0.3794

10 4 5 5.61538 0.0002

From the results, we observe that the difference between 1 and 2 (Mexican American
and Non-Hispanic Black) is not significant. The difference (of yearly mean income)
between 1 and 4 (Mexican American and Other Hispanic) is not significant either as
is the difference between 2 and 4 and 3 and 5. In short two sets of income groups
emerge: Mexican American, Non-Hispanic Black and Other Hispanic seem to have
significantly lower income (according to our definition) than Non-Hispanic White
and Other Race –Including Multi-Racial. In retrospect, we can see these results by
observing Figure 15.8. ut

The Bonferroni test

If, after we analyze the data, we repeat the tests enough times, some of them may be
significant by chance alone. For example, with 5 groups and the LSD tests, there are

(
5

2

)

= 10

possible t-tests. With a significance level α = 0.1, if we repeat the tests many times,
one of them will be falsely significant and we must guard against this possibility.
The Bonferroni test, one of many multiple comparisons tests, addresses this issue by
keeping α at a fixed level.
Our null hypothesis is

H0 : αi = αj vs. HA : αi 6= αj

where i 6= j refer to two among k groups. To apply the test, we obtain the Within
MS (or residual MS as it is called in R) from the ANOVA results and compute the
test statistics

Tij =
Y i − Y j
SE

where

SE =

√

Within MS×

(
1

ni
+
1

nj

)

.



482 Analysis of variance

Next, we adjust α thus:

α′ :=
α
(
k
2

) .

Now for a two-tailed test, if p-value = 1 − pt(abs(Tij), n− k) < α′/2 we reject H0.
The application of one-tailed test is done similarly, but with α′, instead of α′/2. The
Bonferroni test assumes that the

(
k
2

)
comparisons are independent. Often they are

dependent and the test is therefore conservative.

Example 15.11. Let us use the data frame i as obtained in Example 15.10. Here
are a few random records:

> set.seed(56) ; idx <- sample(1 : length(i[, 1]), 5)

> i[idx, ]

ethnicity income

3915 Non-Hispanic Black 50.0

7039 Other Race - Including Multi-Racial 22.5

2997 Mexican American 70.0

7128 Non-Hispanic Black 2.5

3370 Non-Hispanic White 17.5

We wish to compare all possible pairs and thus need to adjust the value of α accord-
ingly. Along the way, let us familiarize ourselves a little more with the output of
aov(). After this:

> n <- tapply(income, ethnicity, length)

> k <- length(n)

> df <- sum(n) - k

> means <- tapply(income, ethnicity, mean)

we have a vector of ni (corresponding to the number of records for each of the five
levels of the factor ethnicity), the number of degrees of freedom and the group means.
From the ANOVA

> (a <- aov(income ~ ethnicity))

Call:

aov(formula = income ~ ethnicity, contrasts = con)

Terms:

ethnicity Residuals

Sum of Squares 56191.7 2620385.8

Deg. of Freedom 4 7524

Residual standard error: 18.662

Estimated effects may be unbalanced

we obtain that Within MS = 18.6622. To verify this, we can use the output a:

> Within.MS <- sum(a$residuals^2) / a$df.residual

> sqrt(Within.MS)

[1] 18.662
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We want to test the significance of all paired comparisons. Specifically, for Mexican
American vs. Non-Hispanic white (first and third levels of ethnicity) we get:

> SE <- sqrt(Within.MS * (1 / n[1] + 1 / n[3]))

> T.1.3 <- as.numeric((means[1] - means[3]) / SE)

> alpha <- 0.05

> adjust <- choose(5, 2)

> alpha <- alpha / adjust

> c(T = T.1.3, df = df, p.value = 1 - pt(abs(T.1.3), df),

+ alpha = alpha)

T df p.value alpha

-10.56739 7524.00000 0.00000 0.00500

Even after adjusting α to 0.005, the mean yearly household income for these ethnic
groups are significantly different (recall that the data do exclude those with “infinite”
income). ut

The Bonferroni adjustment to α applies when we resort to multiple pairs of tests,
but only (if at all) if we use a “shot gun” approach; that is, we decide to apply the
tests in search for significance. If you establish mull hypotheses before running the
(multiple) tests, then LSD suffices. Otherwise and if you do wish to be conservative,
then you should apply the Bonferroni test. The function Bonferroni() (available
from the book’s site) implements the paired tests.

Example 15.12. Continuing with i in Example 15.11, we obtain

> source('Bonferroni.R')

> (b <- Bonferroni(i))

i j T df p-value alpha

1 1 2 -0.1440 7524 0.4427 0.005

2 1 3 -10.5674 7524 0.0000 0.005

3 1 4 0.6889 7524 0.2455 0.005

4 1 5 -4.4658 7524 0.0000 0.005

5 2 3 -10.2370 7524 0.0000 0.005

6 2 4 0.7526 7524 0.2258 0.005

7 2 5 -4.3702 7524 0.0000 0.005

8 3 4 5.3870 7524 0.0000 0.005

9 3 5 0.8791 7524 0.1897 0.005

10 4 5 -3.6796 7524 0.0001 0.005

where i, j refer to the levels of ethnicity

> levels(i[, 1])

[1] "Mexican American"

[2] "Non-Hispanic Black"

[3] "Non-Hispanic White"

[4] "Other Hispanic"

[5] "Other Race - Including Multi-Racial" ut

Another popular multiple comparisons test is the so-called Tukey honest significant
differences (HSD).
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Example 15.13. With the same data as in Example 15.12 and the same linear model

> a <- aov(income ~ ethnicity, data = i)

> hsd <- TukeyHSD(a)

> par(mar = c(5, 20, 3, 2), cex.main = 1)

> plot(hsd, las = 2)

(Figure 15.9). With the figure, you can quickly determine paired significances. Those
intervals that cross zero indicate that the differences between the means of i and j
are not significant. ut

Figure 15.9 Tukey’s HSD test. Paired confidence intervals that do not cross the zero
line indicate significant differences of the relevant means.

As we have just seen, after comparing groups, the next logical step is to pool groups
into sets and examine the significance of differences (in means) between pairs of sets.

15.1.4 Comparing sets of groups

As in section 15.1.3, we first discuss how to construct a statistic for comparing the
means of sets of groups and then discuss the adjustments that need to be made for mul-
tiple comparisons. The adjustments need to be performed because some comparisons
may be significant by chance alone and we must guard against that.

Linear contrasts

To facilitate the construction of sets of groups (e.g. as suggested in Example 15.10),
we use the following definition:

Linear contrast (L) We say that any linear combination of group means where the
coefficients add to zero is a linear contrast.
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In notation, this

L =

k∑

i=1

ciY i such that

k∑

i=1

ci = 0 (15.3)

is a linear contrast.

Example 15.14. We continue where we left off in Example 15.10 (i is the data frame
that is ready for us to use). Here is one way to construct a linear contrast. We obtain
the number of observations for various ethnicities with

> (n <- tapply(income, ethnicity, length))

Mexican American

2273

Non-Hispanic Black

2129

Non-Hispanic White

2515

Other Hispanic

260

Other Race - Including Multi-Racial

352

Next, we find the proportions in the two sets (let us call them White and Nonwhite)
as detailed by the indices of n; first for White

> w <- n[c(3, 5)]

> (L.1 <- w / sum(w))

Non-Hispanic White

0.8772236

Other Race - Including Multi-Racial

0.1227764

and then for Nonwhite

> nw <- n[c(1, 2, 4)]

> (L.2 <- nw / sum(nw))

Mexican American Non-Hispanic Black Other Hispanic

0.48755899 0.45667096 0.05577006

So if we take our linear contrasts as L.1 and −L.2, we obtain

> round(sum(c(L.1, -L.2)), 3)

[1] 0

which is, by definition, a linear contrast with ci (i = 1, . . . , 5). Let us arrange the
contrasts according to the factor levels as they appear in i:

> contr <- c(L.1, -L.2)

> (contrasts <- contr[c(3, 4, 1, 5, 2)])

Mexican American

-0.48755899

Non-Hispanic Black

-0.45667096
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Non-Hispanic White

0.87722358

Other Hispanic

-0.05577006

Other Race - Including Multi-Racial

0.12277642 ut

We denote by μL and σ
2
L the population mean and variance of the linear contrast.

We assume that μL = 0 and wish to estimate it from the sample. We use the total
variance, S2, ci and ni to estimate σ

2
L and thus obtain the contrasted

SE =

√√
√
√S2

k∑

i=1

c2i
ni

(15.4)

(recall that for a constant, Var(aX) = a2 Var(X)). Intuitively speaking, the linear
contrast we just constructed is a way to rearrange the ANOVA into sets of groups
where in each set, we weigh the within group variance by the relative sample size of
each group within its set of groups. The arrangement ensures that we conform to the
ANOVA assumption that the sum of these “within set” variances is zero. You are free
to construct any linear contrast you please. However, at some point, you will need to
interpret the result after applying the contrast. In our case, the contrast allows us to
interpret the ANOVA results as if the design is balanced.
The sampling density of the linear contrast is t and the test goes like this: For

significance level α, we wish to test

H0 : μL = 0 vs. μL 6= 0 (15.5)

(the application to one sided tests should be clear by now). Then the statistic is

TL =
L

√
S2
∑k
i=1 c

2
i /ni

. (15.6)

The density of the statistic is tn−k. Therefore, if the

p-value = 1− pt(abs(T.L), n− k) < α/2 ,

we reject H0 in favor of HA.

Example 15.15. In Example 15.14, we obtained the contrast vector. To implement
TL, we need the SE according to (15.4):

> (v <- var(income))

[1] 355.5496

> (SE <- sqrt(v * sum(contrasts^2 / n)))

[1] 0.4475265
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and L according to (15.3):

> cbind(group.means = means, contrast = contrasts)

group.means contrast

Mexican American 30.85130 -0.48755899

Non-Hispanic Black 30.93236 -0.45667096

Non-Hispanic White 36.55865 0.87722358

Other Hispanic 30.00962 -0.05577006

Other Race - Including Multi-Racial 35.62500 0.12277642

> (L <- sum(contrasts * means))

[1] 5.602641

The statistic and its corresponding p-value are:

> T.L <- L / SE ; df <- sum(n) - length(n)

> p.value <- 1 - pt(abs(T.L), df)

> c(T.L = T.L, df = df, p.value = p.value)

T.L df p.value

12.51913 7524.00000 0.00000

and we conclude that the mean income (as we define in Example 15.10) between the
sets White and Nonwhite is different. ut

Another way to construct contrasts is to weigh the deviation of the group means from
the total mean by the groups’ sample size (see Figures 15.4 and 15.6).
There is a subtle point in constructing linear contrasts: do we do it before analyzing

the data or after. If we do it after analyzing the data, we can construct (depending on
the value of k) a very large number of contrasts and by chance alone, some of them
may turn out to be significant. This problem is addressed next.

Multiple comparisons for linear contrasts

After running ANOVA, the results may suggest several paired comparisons of sets of
groups (we do not need to run the test here if we are testing for hypothesis that were
set up during the design of the study). In this case, we need to penalize ourselves
with regard to the significance test because some comparisons may be significant by
chance alone.
The notation and hypotheses are as in (15.3), (15.4) and (15.5). Because of the

multiple comparisons, the sampling density of the test statistic (15.6) changes to√
(k − 1)Fk−1,n−k. Consequently, if

|TL| >
√
(k − 1)Fk−1,n−k,1−α

we reject the null hypothesis. This is the so-called Scheffé’s test.

Example 15.16. In Example 15.15 we compared only two sets of ethnic groups
(White vs. Nonwhite). Suppose that these two sets are part of all possible sets of
ethnicities. We found that

T.L df

12.51913 7524
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with df = n - k and k = 5. For α = 0.05 we have

> (critical.values <- sqrt((k - 1) *

+ qf(1 - alpha, k - 1, sum(n) - k)))

[1] 3.1

and we reject the null hypothesis. ut

There are many other multiple comparison tests. The differences among them boil
down to how conservative and how general they are. The Scheffé’s test is general and
applies to unbalanced ANOVA. A quick Web search for “multiple comparison tests”
will introduce you to the sometimes confusing plethora of multiple comparison tests.

15.2 Non-parametric one-way ANOVA

If the assumptions of the data for the continuous variable in one-way ANOVA fail, or if
the response is ordinal (as opposed to decimal), then we must rely on non-parametric
ANOVA. Non-parametric in the sense that we do not need to make assumptions about
the underlying density of the observations and consequently, we do not need to rely
on some density parameters to obtain the sampling density of the statistic of interest
(differences in means in the case of fixed-effects ANOVA).

15.2.1 The Kruskal-Wallis test

Just as one-way ANOVA generalizes the t-test to multiple comparison, the Kruskal-
Wallis test generalizes the paired Wilcoxon rank-sum test (Section 12.3.1).

Example 15.17. In Example 15.10, we treated the yearly household income (vs.
ethnicity) as a continuous variable. We want to use the original income categories, as
reported by the CDC as a rank, so that the Kruskal-Wallis test applies. As discussed
in Example 15.10, the CDC data categorize income thus:

> (income <- read.table(

+ 'CDC-demographics-income-categories.txt',

+ header = TRUE, sep = '\t'))

code income

1 1 $ 0 to $ 4,999

2 2 $ 5,000 to $ 9,999

3 3 $10,000 to $14,999

4 4 $15,000 to $19,999

5 5 $20,000 to $24,999

6 6 $25,000 to $34,999

7 7 $35,000 to $44,999

8 8 $45,000 to $54,999

9 9 $55,000 to $64,999

10 10 $65,000 to $74,999

11 11 $75,000 and Over

12 12 Over $20,000

13 13 Under $20,000
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14 77 Refused

15 99 Don not know

16 . Missing

We load the data, extract the ethnicity and income categories into d, assign NA to the
records with income category larger than ''11'' and remove all NA from the data:

> load('demo_d.short.rda')

> d <- demo_d.short[, c(4, 9)]

> idx <- which(as.numeric(d[, 2]) > 11) ; d[idx, 2] <- NA

> d <- d[complete.cases(d), ]

The data

> head(d)

Race/Ethnicity Annual Household Income

1 Non-Hispanic White 4

2 Non-Hispanic Black 8

3 Non-Hispanic Black 10

4 Non-Hispanic White 4

5 Non-Hispanic Black 11

6 Non-Hispanic White 11

are now ready for the Kruskal-Wallis test. ut

The Kruskal-Wallis test works like this: We compute the average rank to each treat-
ment (e.g. average rank of each ethnic group in Example 15.17) and compare them
with the null hypothesis that all average ranks are equal. To obtain the test statistic,
let Ri denote the sum of the ranks for each of the treatments (i = 1, . . . , k) and n :=∑
ni be the total number of observations (ni is the number of observations for each

group). If none of the Ri are equal (no ties), then the test statistic is

χ′ =
12

n (n+ 1)

k∑

i=1

R2i
ni
− 3 (n+ 1) . (15.7)

If there are j = 1 . . . g tied groups, denote by mj the number of observations in the
jth set of tied treatments and adjust χ′ thus:

χ =
χ′

1−

∑g
j=1

(
m3j −mj

)

n3 − n

.

The density of the statistics χ is χ2(k − 1) where k − 1 are the degrees of freedom.
Now with ties, if p-value = 1 − pchisq(chi, k− 1) < α, reject the null hypothesis—at
least one of the mean ranks is significantly different from the rest. If there were
noties, use χ′ instead of χ. The procedure applies to groups with more than five
observations.
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Example 15.18. Using d in Example 15.17, we first examine the counts with

> par(mfrow = c(1, 2), mar = c(15, 4, 1, 2))

> barplot(table(d$'Race/Ethnicity'), las = 2, ylim = c(0, 4000))

> barplot(table(d$'Annual Household Income'), las = 2,

+ names.arg = income$income[as.numeric(income$code) <= 11],

+ ylim = c(0, 2500))

(Figure 15.10). Note how we pluck the category names for the income based on

d$'Annual Household Income'

from income with

income$income[as.numeric(income$code) <= 11]

To run the analysis, we simply say

> kruskal.test(as.integer(d[, 2]) ~ as.factor(d[, 1]))

Kruskal-Wallis rank sum test

data: as.integer(d[, 2]) by as.factor(d[, 1])

Kruskal-Wallis chi-squared = 551.4508, df = 4,

p-value < 2.2e-16

Figure 15.10 U.S. income and ethnicity in the 2004–2005 CDC survey.
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and conclude that there is significant overall difference in the mean of the incomes
rank among ethnic groups. ut

The advantage of the Kruskal-Wallis test compared to the F -test in one-way ANOVA
is that we make no normality assumption.
As we said, the Kruskal-Wallis test applies when the minimum number of repe-

titions is five. Otherwise, use the exact test; i.e. calculate quantiles (from the den-
sity) or probabilities (from the distribution). Here is an example of how to use the
exact test.

Example 15.19. Suppose that we have a sample with 3 groups with 4, 4 and 5
repetitions for each group, respectively. From the data, we calculate χ′ = 4.668 with
no ties, using (15.7). Then

> library(SuppDists)

> (p.value <- 1 - round(pKruskalWallis(4.668, 3, 13,

+ sum(c(1/4, 1/4, 1/5))),2))

[1] 0.09

(see help for pKruskalWallis()). For α = 0.05 we do not reject the null hypothesis
and conclude that there is no significant difference among the mean ranks of the three
groups. ut

15.2.2 Multiple comparisons

As was the case for one-way ANOVA (Section 15.1.3), we may be interested in paired
comparisons. To implement the so-called Kruskal-Wallis multiple comparisons, for a
significance level α, we adjust α to

α′ =
α

k (k − 1)
(15.8)

where k is the number of groups. To compare the mean rank of group i to group j,
we compute the statistic

Z =
Ri −Rj√

n (n+ 1)

12

(
1

ni
+
1

nj

)

where n is the total number of observations and ni and nj are the number of observa-
tions for groups i and j, respectively. The sampling density of this statistic is standard
normal. So for two sided test, if p-value = 1− pnorm(abs(z))< α′, where α′ is obtained
from (15.8), then we reject the null hypothesis and conclude that the mean rank for
group i and group j are significantly different.

Example 15.20. Continuing with Example 15.18,

> library(pgirmess)

> kruskalmc(as.integer(d[, 2]), as.factor(d[, 1]))

Multiple comparison test after Kruskal-Wallis

p.value: 0.05

Comparisons
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difference

Mexican American-Non-Hispanic Black TRUE

Mexican American-Non-Hispanic White TRUE

Mexican American-Other Hispanic FALSE

Mexican American-Other Race - Including Multi-Racial TRUE

Non-Hispanic Black-Non-Hispanic White TRUE

Non-Hispanic Black-Other Hispanic FALSE

Non-Hispanic Black-Other Race - Including Multi-Racial TRUE

Non-Hispanic White-Other Hispanic TRUE

Non-Hispanic White-Other Race - Including Multi-Racial FALSE

Other Hispanic-Other Race - Including Multi-Racial TRUE

(output edited). From the output, we identify for which pairs the mean ranks of
the income categories are different. For those incomes that are significantly different,
the full output of kruskalmc() allows you to determine which groups’ mean rank in
the i, j pair was lower. ut

15.3 One-way, random-effects ANOVA

In the fixed-effects ANOVA, we were interested in differences in means among groups.
Occasionally, we are interested in the proportion that the variation in each group
contributes to the total variation in the sample (and by inference, in the population).

Example 15.21. To study changes in ecosystems due to, say, the effect of herbivores
on plant communities, ecologists often set up exclosures. These are fenced areas that
herbivores cannot enter. Then over a period of years, the plant communities within
and outside the exclosures are studied. Say we set up five exclosures in a mixed
hardwood forest2 and after ten years, sample the biomass of birch in and outside the
exclosures. Then there will be a variation of biomass within the exclosures, outside
the exclosures and between the exclosures and outside of them.
In medical studies, researches often repeat measurements on a single subject (e.g.

blood pressure). If the study classifies subjects, then it becomes important to compare
the variation among the classification to the variation within subjects. ut

The one-way random-effects ANOVA model is

yij = μ+ αi + εij (15.9)

where: yij is the population value of the ith replicate for the jth individual; αi is
a rv that accounts for the between-subject variability (assumed to be normal with
mean 0 and variance σ2α); εij is a rv which accounts for within-subject variability
(assumed to be normal with mean 0 and variance σ2). εij are often referred to as
noise; they are independent and identically distributed rv. In other words, repeated
measure on the jth individual are φ(0, σ). What makes the model random-effects is
the fact that αi is a rv, so that the mean for the jth individual will differ from other
individuals.

2These are northern latitude forests that include a mix of deciduous and pine trees.
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In the ANOVA, we are interested to test the hypothesis that there is no between
individual variation. In other words, we wish to test

H0 : σ
2
α = 0 vs. HA : σ

2
α > 0 .

To test the hypothesis, we need a sampling density of some statistic of S2α (the sample
approximation of σ2α). It turns out that

E[Within MS] = σ2α , E[Between MS] = σ
2 + nσ2α

where

for unbalanced design: n =

(
∑k
i=1 ni −

∑k
i=1 n

2
i∑k

i=1 ni

)/

(k − 1) ,

for balanced design: n = ni .

(15.10)

Here ni is the number of replications for individual i. In the balanced design all ni are
equal. As was the case for fixed-effects ANOVA, the sampling density of the statistic

F =
Between MS

Within MS
(15.11)

is F with k − 1 and n − k degrees of freedom, where n depends on the design as
detailed in (15.10). Here Within MS and Between MS are unbiased estimators of
σ2 + nσ2α, computed according to:

Between MS =

∑k
i=1

(
Y i − Y

)2

k − 1
,

Within MS =

∑k
i=1

∑ni
j=1

(
Yij − Y i

)2

n− k
, (15.12)

where

Y i =

k∑

i=1

ni∑

j=1

Yij

ni
, Y =

∑k
i=1

∑ni
j=1 Yij

n′
, n′ =

k∑

i=1

ni .

The estimator, σ̂2, of σ2 (the within group variance) is given by (15.12). The estimator,
σ̂2α, of σ

2
α (the between group variance) is given by

σ̂2α = max

(
Between MS - Within MS

n
, 0

)

where, depending on the design (balanced or unbalanced), n is calculated according
to (15.10).
Once we compute F according to (15.11) and subsequent formulas, we obtain

the p-value with 1 − pf(F, k− 1, n− k). As usual, if p-value < α (where α is the
significance level), then we reject H0 and conclude that σ

2
α > 0. In other words, we

have sufficient evidence to claim that between variance is larger than zero. Putting
the conclusion differently, we say that in spite of within individual (measurement,
noise) variance, we still detect a significant difference among individuals.
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The fundamental difference between random and fixed effects ANOVA is this. In
the case of fixed-effects, each measurement is independent of the other. For example,
for each group, we might have a number of repetitions, but the repetitions are
independent of each other. In random-effects, the repeated measures are not inde-
pendent. If a person has high blood pressure and we measure the person’s blood
pressure twice, the first and second measurements are going to be related by the
fact that the person suffers from high blood pressure. The question we are asking
in random-effects ANOVA is: “Is the measurement error of the same object (the
individual) is so large that we cannot distinguish among individual differences?” If
the answer is yes, the within variance may be due to, for example, measurement
error. However, it simply may be the case that the blood pressure of a person
with high blood pressure fluctuates so much, that we cannot distinguish it from
say a person with normal blood pressure, which raises an important question: In
repeated measurements, should high blood pressure be defined by mean, variance
or both?
Here is another example that illustrates the difference between fixed and random-

effects ANOVA.

Example 15.22. In Example 15.21, we discussed a typical exclosure study in ecology.
Suppose we have n exclosures, equally divided among wetlands, uplands and riverine
habitats. We take a single sample from inside the exclosures, where the response is
biomass density of some species. The samples are independent and a test on the
difference in mean biomass in this case will be a fixed-effects ANOVA. If we take
multiple samples within each exclosure, then within an exclosure the samples are
dependent and we need to implement random-effects ANOVA. If we are interested in
differences in both habitat type and within exclosure repetitions, then we have what
is called mixed-effects ANOVA. ut

Here is an example that implements the computations for random-effects ANOVA.

Example 15.23. To verify that all works well, we use the blood pressure data from
Rosner (2000), p. 556. Five subjects make the groups and there are two repetitions
of blood pressure measures for each subject. We use the log of the response. The
balanced random-effects formulas are implemented in re.1w() where the data must
be presented exactly as shown:

> source('random-effect-ANOVA.R')

> group <- rep(1 : 5, 2)

> repl <- c(rep(1, 5), rep(2, 5))

> response <- log(c(25.5, 11.1, 8, 20.7, 5.8, 30.4, 15, 8.1,

+ 16.9, 8.4))

> cbind(group, repl, response)

group repl response

[1,] 1 1 3.238678

[2,] 2 1 2.406945

[3,] 3 1 2.079442

[4,] 4 1 3.030134

[5,] 5 1 1.757858

[6,] 1 2 3.414443

[7,] 2 2 2.708050
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[8,] 3 2 2.091864

[9,] 4 2 2.827314

[10,] 5 2 2.128232

To visually examine the data, we do

> library(lattice)

> trellis.device(color = FALSE, width = 4, height = 4)

> xyplot(response ~ replication | group, type = 'b', cex = 0.8)

(Figure 15.11). Thus we conclude that there is no definitive trend in the first vs. the
second measure of individual blood pressure. The random-effect ANOVA is imple-
mented with

> re.1w(group, repl, response)

source df Mean.SS F p.value

1 Between.MS (model) 4 0.664 22.146 0.002

2 Within.MS (error) 5 0.030

Figure 15.11 Repeated measures by group.

The script for re.1w() resides in random-effect-ANOA.r in the book’s site. The
Between MS is large enough (compared to the Within MS) and the subject effect
overwhelms the fluctuations in blood pressure for two separate measurements within
subjects. ut

15.4 Two-way ANOVA

So far, we discussed a single factor variable. Often, we may have two or more. In the
former, we have the so-called two-way ANOVA; in the latter multi variable ANOVA,
the so-called MANOVA. We shall discuss two-way, fixed-effects mixed-effects and
nested ANOVA.
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15.4.1 Two-way, fixed-effects ANOVA

We start with an example.

Example 15.24. In Example 15.1, the fixed-effect was a city and the numeric variable
was atmospheric concentration of SO2 in those cities. We may add another factor, say
country. So for each country there may be a number of cities and for each city, there
would be a number of measurements. If we view the data as two-effect, city and
country, then it is two-way fixed-effects ANOVA. However, we may view the data as
countries and cities within countries. This leads to nested ANOVA.
In Example 15.10, the fixed-effect was ethnicity and the numeric variable was the

average of a yearly household income category. With another factor in the data is,
for example, marital status allows us to investigate the effect of the gender of the
head of the household and ethnicity on income. For each ethnic group, the head of
the household may be married or not and for each ethnic-marital status combination
we have income. This will constitute nested ANOVA. ut

One the central goals in two-way ANOVA is to examine if there exist significant
differences in means for one factor, controlling for the effect of the other.

Example 15.25. For the atmospheric concentration of SO2, we may ask: Are there
significant differences in the means among cities after accounting for potential differ-
ences (in means) due to country? For example, different countries may have different
regulations and after accounting for these, do we still have different means among
the cities? ut

If the effect of one factor on the numeric value depends on the level of the other factor,
then we say that there is an interaction effect. The effect of each factor, separate from
the other is called the main effect of the factor. One of the major tasks in two-way
ANOVA is to explore the main and interaction effects.

15.4.2 The model and assumptions

To introduce the notation, let us begin with an example.

Example 15.26. We go back to the EU air pollution data introduced in Example
15.1. We want to compare the means of yearly mean concentration of atmospheric
CO (in mg/m3) by six EU countries, each by three area types where the collecting
station is located (rural, suburban and urban). Isolating the data with the desired
variables is tricky and we must strive to make the script run fast because the data
file is large with

> load('EU.rda')

> length(EU[, 1]) * length(EU[1, ])

[1] 21293352

data items. The problem is that EU contains station codes and pollutant related data
while

> load('EU.station.rda')
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contains the station codes, its country and the area in which the stations are located.
Extracting the data is further complicated by the fact that some station codes appear
in EU but not in EU.station (apparently an error in the data) and some codes are in
EU.station but not in EU (not necessarily an error). First, we want to remove all the
NA from EU.station:

> stations <- EU.station[complete.cases(EU.station), ]

Next, we need to turn factor variables into character variables. This is necessary
because if we do comparisons of factor values from two different data frames (by say
the index of the values), we are not sure we get what we want—recall that factor
levels are really numeric (more specifically integers), but they are represented by
legible levels—it will be worth your while to remember this point. So we do

> stations$country_name <- as.character(stations$country_name)

> stations$station_type_of_area <-

+ as.character(stations$station_type_of_area)

From stations, we want data about:

> a <- c('BELGIUM', 'FRANCE', 'GERMANY', 'ITALY', 'SPAIN',

+ 'UNITED KINGDOM')

> b <- c('rural', 'suburban', 'urban')

We want to extract from stations all the record that correspond to a and b. We do
this with:

> length(stations[, 1])

[1] 5988

> stations <- stations[is.element(stations[, 3], a), ]

> length(stations[, 1])

[1] 4456

> stations <- stations[is.element(stations[, 5], b), ]

> length(stations[, 1])

[1] 4364

Of the original number of records, we end up with 4 364 stations that conform to our
country and area criteria. To verify that we got what we want, we do:

> unique(stations[, 3])

[1] "BELGIUM" "GERMANY" "SPAIN"

[4] "FRANCE" "UNITED KINGDOM" "ITALY"

> unique(stations[, 5])

[1] "suburban" "rural" "urban"

So now we have in stations only the data that we need, e.g.

> set.seed(2)

> stations[sample(1 : length(stations[, 1]), 5), c(1, 3, 5)]

station_european_code country_name station_type_of_area

1327 DE0999A GERMANY rural

3783 GB0219A UNITED KINGDOM suburban

3170 FR0945A FRANCE urban

1253 DE0905A GERMANY urban

5015 IT1204A ITALY urban
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Our next task is to subset EU, the data frame that holds the pollutants data and add
to it columns that include the country and area in which the sampling station resides.
This is done through a series of steps (see Exercise 15.3) like this: First,

> # isolate CO data

> EU.CO <- EU[EU[, 3] == 'CO' & EU[, 14] == 'annual mean',

+ c(1, 15)]

Next,

> country <- area <- vector(length = length(EU.CO[, 1]))

> for(i in 1 : length(a)){

+ s <- stations[stations[, 3] == a[i], 1]

+ idx <- is.element(EU.CO[, 1], s)

+ country[idx] <- a[i]

+ }

We create the area, long and lat vectors similarly to obtain:

> set.seed(4)

> EU.CO[sample(1 : length(EU.CO[, 1]), 5), ]

station CO country area long lat

720373 FR0586A 0.098 FRANCE rural 6.05 49.25

143151 BE0235A 0.409 BELGIUM urban 4.45 50.41

476317 DE1142A 0.640 GERMANY urban 11.32 50.98

459921 DE1087A 0.568 GERMANY urban 11.97 51.20

977127 IT0187A 1.395 ITALY urban 11.61 44.84

To see a map of the distribution of the stations (Figure 15.12), we load

> library(maps)

> library(mapdata)

set the regions and colors to be plotted:

> r <- c('Belgium', 'France', 'Germany', 'Italy', 'Spain', 'UK')

> col<-c('grey95', 'grey90')

draw the map, its axes and the station locations

> m<-map('world', regions = r, fill = TRUE, col = col,

+ xlim = c(-15, 20), ylim = c(35,62))

> map.axes()

> points(EU.CO$long,EU.CO$lat, col = 'grey60')

and add the countries capitals

> for(i in 1 : 6) map.cities(country = r[i], capitals = 1,

+ cex = 1.25)

(for unclear reasons, London has to be added with text()). ut

In general, in two-way ANOVA we have two sets of groups, one with r groups and the
other with c groups. Then there are observation values, indexed by k for the ith and
jth groups. In terms of population vs. sample quantities, we shall stick to the lower
case and Greek notation vs. upper case notation.
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Figure 15.12 Rural, suburban and urban stations by country for which CO mea-
surements were obtained.

Example 15.27. Let us identify the general notation for the CO data frame we
obtained in Example 15.26.

> (tb <- table(EU.CO[, c(3, 4)]))

area

country rural suburban urban

BELGIUM 0 141 216

FRANCE 174 747 1239

GERMANY 351 1668 4086

ITALY 86 631 2629

SPAIN 230 1041 2320

UNITED KINGDOM 21 126 2172

So for country we have r = 6 groups, for area we have c = 3 groups. The value of
Y3,2,1 can be extracted from

> length(Y.3.2 <- EU.CO[EU.CO[, 3] == 'GERMANY' &

+ EU.CO[, 4] == 'suburban', 2])

[1] 1668

with

> Y.3.2[1]

[1] 0.555
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where i = 3, j = 2 and k = 1. Note that one of the entry cells (Belgium, rural) has no
data. This needs special handling in ANOVA. To stay on course, we will drop Belgium
from further considerations. ut

Given the general notation, we can now write the two-way, fixed-effects ANOVA
model as

yijk = μ+ αi + βj + γij + εijk (15.13)

Example 15.28. Continuing with Example 15.27, for the “population” of CO mea-
surements, we have

yijk the kth CO value for the ith country and jth area
μ the overall population mean
αi the effect of country
βj the effect of area
γij interaction effect between country and area
εijk error term from a normal density with mean zero and variance σ

2 ut

In addition to the assumption that ε is normal with mean zero and variance σ2, we
assume that

r∑

i=1

αi =

c∑

j=1

βj = 0 ,

c∑

j=1

γij = 0 for all i ,

r∑

i=1

γij = 0 for all j .

The assumptions imply that the density of yijk is normal with mean μ + αi + βj +
γij and variance σ

2. Consequently, we can derive the sampling densities of the various
statistics of Yijk.

15.4.3 Hypothesis testing and the F -test

A two-way ANOVA with two effects may be represented in a table with i representing
row entries and j column entries.

Example 15.29. In the case of the CO data (Example 15.27), the ith entry refers to
one of the countries and the jth to one of the area types in which the CO had been
measured. If so desired, the table may be rotated and the role of i and j switched.
However, as we shall sea, this will lead to different ANOVA results. We can easily find
the number of replication for each cell in the table, including the marginals with

> replications(CO ~ country + area + country : area,

+ data = EU.CO)

$country

country

BELGIUM FRANCE GERMANY ITALY

357 2160 6105 3346

SPAIN UNITED KINGDOM

3591 2319

$area

area

rural suburban urban

862 4354 12662
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$'country:area'

area

country rural suburban urban

BELGIUM 0 141 216

FRANCE 174 747 1239

GERMANY 351 1668 4086

ITALY 86 631 2629

SPAIN 230 1041 2320

UNITED KINGDOM 21 126 2172

Note that in replications(), the formula CO ~ country + area + country : area

produces the marginal counts for country and area, and the counts for each country
and for each area type. Thus, country : area represents the effect of a specific
combination of country : area on the mean CO. This is why we call the term country

: area the interaction effect. ut

It is customary to denote the mean of the interaction by yij and the mean for the
ith row by yi∙. Here, ∙ indicates “over all j”. Similarly, we denote the mean for the
jth column by y∙j where here, ∙ indicates “over all i”. To indicate the overall mean,
we write y∙∙. We can now write the deviation of each individual observation from the
total mean thus:

yijk − y∙∙ = yijk − y∙∙
− yij + yij − yi∙ + yi∙ − y∙j + y∙j − y∙∙ + y∙∙ .

Rearranging, we obtain

yijk − y∙∙ =
(
yijk − yij

)

︸ ︷︷ ︸
within group

+ (yi∙ − y∙∙)︸ ︷︷ ︸
row effect

+
(
y∙j − y∙∙

)

︸ ︷︷ ︸
column effect

+






(
yij − yi∙

)

︸ ︷︷ ︸
column effect in ith row

−
(
y∙j + y∙∙

)

︸ ︷︷ ︸
overall column effect






︸ ︷︷ ︸
interaction effect

.

Each term represents a difference that is interpretable. The within group difference
is often called the error term. Now we can sum the square of the differences over
appropriate indices, divide by the degrees of freedom and thus obtain mean sum of
squares. The ratios of the mean sum of squares for a sample are known to have the F
sampling density with the appropriate degrees of freedom and we are ready to test the
hypotheses detailed in Table 15.3. The hypotheses in the table (see also (15.13) and
Example 15.28) are hierarchical in the following sense: Row effects are tested first.
The test gives the same result as one-way ANOVA with a single (row variable). Next,
the column effect is tested after the row effect is removed. Third, the interaction effect
is tested after accounting for both row and column effects. Removing, or accounting
for an effect means that the variability due to the effect (row, column) is removed
before moving on to compute the next effect. In the next example, we examine how
R implements these ideas.
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Table 15.3 Hypothesis testing in two-way ANOVA accord-
ing to (15.13).

Test H0 HA

row effect all αi = 0 at least one αi 6= 0
column effect all βj = 0 at least one βj 6= 0
interaction effect all γij = 0 at least one γij 6= 0

Example 15.30. Returning to the EU CO data, recall that one cell in the factor table
(county : area) for Belgium is empty and that the data are unbalanced. (Example
15.26). So, we

> load('EU.CO.rda')

> EU.CO <- EU.CO[EU.CO$country != 'BELGIUM', ]

> attach(EU.CO)

country still include an unwanted level (BELGIUM). To remove it we

> country <- as.character(country[country != 'BELGIUM'])

> country <- as.factor(country) ; levels(country)

[1] "FRANCE" "GERMANY" "ITALY"

[4] "SPAIN" "UNITED KINGDOM"

We wish to explore the effect of interaction between country and area:

> interaction.plot(area, country, CO, type = 'b')

(Figure 15.13). Of all the countries, Italy stands out: CO increases as one moves
from rural to urban areas. Because of the scale of the y-axis, there seem to be no
interactions for the remaining countries. A preliminary run revealed, through diag-
nostics (similar to Figure 15.14), that the ANOVA assumptions are grossly violated

Figure 15.13 Interaction (in atmospheric CO concentration) between the station
area and some EU countries.
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Figure 15.14 Diagnostics of the log transformed atmospheric CO data.

(see Exercise 15.6). So we log transformed CO (we need to add a trace amount to get
rid of zeros):

> lCO <- log(CO + 0.01)

> full.model <- lm(lCO ~ country + area + country : area)

> anova(full.model)

Analysis of Variance Table

Response: lCO

Df Sum Sq Mean Sq F value Pr(>F)

country 4 1904.2 476.1 552.375 < 2.2e-16

area 2 750.0 375.0 435.141 < 2.2e-16

country:area 8 178.7 22.3 25.914 < 2.2e-16

Residuals 17506 15087.1 0.9

>

> par(mfrow = c(2, 2))

> plot(full.model)

(Figure 15.14). The residuals fit the ANOVA assumptions, but the Q-Q plot is suspect.
Data are plenty, so we shall continue anyway (you can run nonparametric ANOVA if
you wish; see Exercise 15.5).
To explore how R proceeds, let us compare one to two-way ANOVA, without

interaction. First, one-way:

> summary(aov(CO ~ country))

Df Sum Sq Mean Sq F value Pr(>F)

country 4 14195554 3548889 118.94 < 2.2e-16
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Residuals 17516 522624090 29837

> summary(aov(CO ~ area))

Df Sum Sq Mean Sq F value Pr(>F)

area 2 841728 420864 13.756 1.073e-06

Residuals 17518 535977917 30596

and then two-way:

> summary(aov(CO ~ country + area))

Df Sum Sq Mean Sq F value Pr(>F)

country 4 14195554 3548889 119.0198 < 2.2e-16

area 2 397983 198991 6.6736 0.001267

Residuals 17514 522226108 29818

Note that the Mean SS for country is the same in the two-way ANOVA as it is for
the one-way ANOVA on country. For area, the one-way SS is larger than for two-
way. The corresponding p-values behave accordingly (in opposite directions). This
is so because in the two-way ANOVA, when the row effect is country, the remain-
ing variability in the model due to area is computed after removing the row effect.
In Exercise 15.5, you are asked to verify these results with the area acting as row
effect.
Once we obtain the ANOVA model (e.g. full.model), we can further investigate

the model with (output edited):

> full.model <- aov(CO ~ country + area + country : area)

> model.tables(full.model, type = 'means')

Tables of means

Grand mean

14.81267

country

FRANCE GERMANY ITALY SPAIN UNITED KINGDOM

0.8619 0.851 73.4 1.431 0.7554

rep 2160.0000 6105.000 3346.0 3591.000 2319.0000

area

rural suburban urban

8.164 7.442 17.77

rep 862.000 4213.000 12446.00

country:area

area

country rural suburban urban

FRANCE 1 1 1

rep 174 747 1239

GERMANY 0 1 1

rep 351 1668 4086

ITALY 12 26 87

rep 86 631 2629
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SPAIN 0 1 2

rep 230 1041 2320

UNITED KINGDOM 0 1 1

rep 21 126 2172

(we run aov() before model.tables() because the latter wants the former’s output).
Observe:

• Of the six countries, Italy is by far the most polluted (by two orders of magnitudes)
while the U.K. is the least.

• After accounting for the country effect, suburban areas are the cleanest, followed
by rural and then by urban. The latter is polluted more than twice over the rural
and suburban areas.

Even without much further analysis it becomes quite obvious who is “responsible” for
the significant results. ut

Keep in mind that interpreting the sum of squares in unbalanced ANOVA is difficult
at best. If you wish to fully interpret ANOVA output—including significance and
magnitudes of Mean SS—use contrasts to account for the differences in mean values
and in the number of cases per factor level. All this, with the assumption that the
error variances (residual error) are equal. A quick way to check the validity of this
assumption is to obtain a linear model with lm(), run the diagnostics (plot()) on the
model and verify that the residuals behave themselves (equal spread). You can run
plot() on a model obtained from aov() directly because the latter is just a wrapper
to lm() that produces the ANOVA table.

15.5 Two-way linear mixed effects models

It turns out that it is easier to discuss and apply two-way mixed-effects ANOVA
through mixed linear models than directly through ANOVA. Recall that in the two
way ANOVA model (15.13), μ is the overall mean, αi and βj are the two effects means,
γij is the interaction effect and εijk is the error term. In the random-effects one way
ANOVA model (15.9), we drop βj and αi is a rv. In two-way mixed-effects ANOVA
the model is

yij = μ+ αi + βij + εij

where yij is the value of the response for the jth of ni observations in the ith group
with i = 1, . . . , M ; αi represent the fixed-effect means which, under the null hypoth-
esis, are equal for all groups; βij , j = 1, . . ., R are the random effect means for group
i (β are rv); and εij are the error for observation j in group i. βik are assumed normal
with mean zero and variance σ2k and covariance σkk′ . Hence, the random effects are
not assumed independent; in fact, in most cases they will be dependent. Although
not necessary, we will use the restrictive assumption that εij are independent with
variance σ2.

Example 15.31. We

> load('EU.CO.rda')

remove Belgium and attach the data frame

> EU.CO <- EU.CO[EU.CO$country != 'BELGIUM', ]

> attach(EU.CO)
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To get rid of the BELGIUM factor level, we do

> country <- as.character(country[country != 'BELGIUM'])

> country <- as.factor(country)

and log-transform the response

> logCO <- log(CO + 0.001)

To examine interactions, we do

> par(mar = c(4, 4, 1, 2))

> interaction.plot(area, country, logCO, type = 'b')

to obtain Figure 15.15 (compare to Figure 15.13). From the figure we see clear inter-
action effects. Mixed-effects linear models are implemented in the package nlme. So
we

> library(nlme)

Figure 15.15 Interactions between countries and areas for log(CO).

To use the library effectively, we create a grouped data frame. This is a usual data
frame that also specifies how the data are grouped:

> grouped <- groupedData(formula = logCO ~ area | country)

> grouped$country <- factor(grouped$country)

> grouped$area <- factor(grouped$area)

> head(grouped)

Grouped Data: logCO ~ area | country

logCO area country

1 -1.0328245 rural GERMANY

2 -1.0188773 rural GERMANY

3 -1.0328245 rural GERMANY

4 -1.0133524 rural GERMANY

5 -0.9808293 rural GERMANY

6 -1.0133524 rural GERMANY
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The grouping formula says “logCo is the response variable, area is one effect and
it is conditioned on (or grouped by) country.” After grouping, we have to explicitly
make country and area factors again. The data frame displays information about the
grouping model and it therefore can be used directly in calls to the linear model by sim-
ply specifying the grouped data frame. A nicer way (than with interaction.plot())
to examine interactions is with

> library(lattice)

which allows us to open a graphics window with

> trellis.device(color = FALSE, width = 4.5, height = 4)

and use

> xyplot(logCO ~ area | country,

+ panel = function(x, y){

+ panel.xyplot(x, y)

+ panel.lmline(x, y, lty = 2)

+ }

+ )

Within the xyplot() function, we can draw into each panel by making use of the
named argument panel. Here, we insert into each panel a linear fit to the data with
a call to panel.lmline(). As it is, the plot is unsatisfactory. We need to adjust the
size of the strip titles and the x-axis ticks’ text. This we do with

> update(trellis.last.object(),

+ par.strip.text = list(cex = 0.75),

scales = list(cex = 0.6))

Thus, we obtain Figure 15.16.
Notice that except for France, all countries exhibit a positive trend as one moves

from rural to suburban to urban areas. This trend is most pronounced in Italy. Next,
we want to compare the confidence intervals of mean log(CO) by country, for each
area. The function lmList() fits a linear mixed-effects model for each group (levels
in country). It wants a data frame, not a grouped data frame. So we do

> country.list <- lmList(logCO ~ -1 + area | country, data =

+ as.data.frame(grouped))

(-1 removes the intercept, which we do not want here) and then plot the intervals

> i <- intervals(country.list)

To modify the axes and strip labels, we

> dimnames(i)[[3]] <- c('rural', 'suburban', 'urban')

> p <- plot(i) ; p$ylab <- 'log(CO)' ; p

(Figure 15.17). We now see that the means in urban areas in Germany, France and
the UK are perhaps not that different whereas Spain and Italy stand on their own,
each. The distinctions are not as clear in rural areas, but again, Italy and France are
the “leaders”. Finally, if you want to live in the suburbia, go to Germany. ut
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Figure 15.16 Random-effects (area) within fixed-effects (country).

Figure 15.17 Mean log(CO) by area for each country.
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15.6 Assignments

Exercise 15.1. Verify with direct calculations that the Within MS in example 15.11
is 18.662.

Exercise 15.2. Interpret the results of the Bonferroni test in Example 15.12 with
respect to ethnicity.

Exercise 15.3. Use some of the steps shown in Example 15.26 to produce the data
frame EU.CO as shown in the example.

Exercise 15.4. Use EU.CO.rda to show with R that when running two-way ANOVA,
column effect is smaller compared to a one-way ANOVA on the column variable only
(see Example 15.30).

Exercise 15.5. Run nonparametric ANOVA on the data in Example 15.30. Com-
pare the conclusions of the ANOVA in the example to those you obtain from the
nonparametric analysis.

Exercise 15.6. In Example 15.30 we claim that the diagnostics of the original data
(before the log transformation) violate the assumptions of two-way ANOVA. Verify
this claim by running the diagnostics.

Exercise 15.7. Use Example 15.30.

1. Produce an interaction effect plot.
2. Run ANOVA with interaction effects.
3. Which country is most “responsible” for the interaction effect?
4. Remove Italy from the data and run ANOVA with interaction effect only and a
full model. Is the interaction significant without Italy for both models?
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Simple logistic regression

Here we introduce logistic regression models. We discuss the reasons for using such
models. We shall then see how to fit such models to data. Finally, we discuss model
diagnostics. In a nutshell, logistic models are used when the response variable is binary
(presence absence, yes no and so on). The independent variables (covariates) maybe
decimal, integers, factored or ordered factors. In multiple logistic regression, any mix
of covariate type is acceptable. We discuss only two-variable logistic regression.
Data that are appropriate for analysis with logistic regression are quite common.

For example, you may measure an important habitat variable, say the extent of canopy
shading on a forest floor and a response variable which records the absence or presence
of a certain plant species. The logistic regression then provides answer to the following:
Given a particular amount of solar radiation that reaches the soil surface, what is the
probability that we may detect the presence of a particular plant species? In exposure
studies, one may be interested in the probability of getting sick given different levels
of exposure to a toxic (or sickening) agent.

16.1 Simple binomial logistic regression

Often, response (dependent) variables are categorical while the covariates (indepen-
dent) variables may be categorical, discrete or continuous.

Example 16.1. Consider a sample of 10 random rows from a data set about fish in
two Minnesota rivers:

> load('fish.rda')

> idx <- sample(dimnames(fish$adults)[[1]], 10)

> fish$adults[idx, c(1, 4 : 6, 8 : 10)]

Statistics and Data with R:  An applied approach through examples         Y. Cohen and  J.Y.  Cohen
©
2008 John Wiley & Sons, Ltd.  ISBN: 978-0-470-75805
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river water.temp air.temp habitat depth velocity BCS

2027 YM 21.5 23.5 shoreline 21 3 0

451 OT 13.0 22.0 raceway 49 95 0

1735 YM 10.0 7.0 riffle 69 51 0

1046 OT 21.5 13.5 backwater 74 30 0

596 OT 2.0 -3.0 pool 99 30 0

1765 YM 27.0 31.5 shoreline 37 8 0

57 OT 21.0 20.0 raceway 65 24 0

1829 YM 26.0 25.5 riffle 58 74 0

912 OT 20.0 22.0 deep pool 146 8 0

1875 YM 22.0 23.0 pool 53 4 0

Here we take a random sample of 10 rows from the data frame fish$adults. We
assign the row numbers (in dimension 1 of the data frame) to an index idx. We
then pick those sampled lines and a subset of the columns. The last column indicates
the presence (1) or absence (0) of a fish species, coded as BCS (Blackchin shiner,
Notropis heterodon). The presence of individuals of this species may depend on a host
of covariates—air-temperature, water temperature, water depth and velocity. These
are variables of continuous type. But there are other variables that might determine
the presence of individuals—the river (OT for Otter Tail or YM for Yellow Medicine)
and habitat type. These are categorical variables. We are interested in establishing
relationship between the probability of detecting individuals of the species and the
covariates. ut

The data in Example 16.1 are not all continuous and we cannot use classical linear
regression to establish relationship between where we find individuals of the species (a
binomial random variable) and habitat and environmental variables. We can, however,
recast the dependent variable in a probability framework. Probability is a real number,
in a closed interval between zero and one. We can transform the probability such that
the transformed values may take any real number. Let us pursue this idea.
Consider the binomial rv Y = 0 or 1. The latter denotes (by definition) success

and the former failure. Denote the probability of success by π and the number of trials
by n. Suppose that nS of these were success. Then the best estimate π is

π̂ = p =
nS

n
.

Example 16.2. In Example 16.1, Y takes on the value of 0 when no individuals
of the species were recorded and 1 when they were. There are 2 152 records in
the data and in two of them individuals of Blackchin shiner were found. Therefore,
p = 2/2 152. ut

We now define

Odds ratio The ratio of successes to failure, i.e.

Odds ratio =
π

1− π
.

To estimate the population odds ratio, we use the ratio p/(1− p). The following
transformation maps the range of the odds ratio from [0,∞] to [−∞,∞]:
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Logit transformation of π is defined as

λ(π) = log

(
π

1− π

)

.

Here log is for the basis of e.1 The logit transformation is 1 to 1, i.e. for each unique
value of π there is a unique value of λ. The opposite is also true. We can therefore
talk about the inverse logit, defined next.

Logistic transformation is inverse of the logit transformation, i.e.

λ−1(π) := π(λ) :=
eλ

1 + eλ
=

1

1 + e−λ
.

The logit transformation is useful because it maps π, which takes on values between
0 and 1, to λ(π) which takes on any real value. This fact is illustrated in Figure 16.1
which may be reproduced with

> logit <- function(p){log(p / (1 - p))}

> p <- seq(.01, .99, length = 101)

> plot(logit(p), p, type = 'l', xlim = c(-4, 4))

> x <- seq(-6, 6, length = 101)

> lines(x, pnorm(x), lwd = 3)

Figure 16.1 The logit transformation (thin curve) compared to the normal distri-
bution (thick curve).

The logit transformation is particularly useful when used in likelihood functions (see
Section 5.8).
Consider the rv Y to have a binary outcome with 1 denoting success and 0 failure.

In Example 16.1, success is recording individuals of a species in a location in a river

1Some use ln to distinguish between logarithm with respect to base e and log—the loga-
rithm with respect to base 10. We shall use log to denote logarithm with respect to the basis
e = 2.718282 . . . .
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and failure is not recording any individuals of the species. Suppose that the outcome
depends on the value of some explanatory (covariate) rv X. Now because the odds
ratio depends on the value of X, we define

Log odds ratio (λ(x)) The function

λ (X) = log

(
P (Y = 1|X)
P (Y = 0|X)

)

= log

(
P (Y = 1|X)
1− P (Y = 1|X)

)

.

Here, P (Y = 1|X) expresses the fact that the probability that Y = 1 depends on the
value of X. λ is a function of X because Y is a constant whereas X on the right hand
side is a variable. Now assume that X and Y are related via the linear model

λ (X) = β0 + β1X

where β0 is the intercept and β1 is the slope of the regression. When X = 0, we obtain

log

(
P (Y = 1|X = 0)
1− P (Y = 1|X)

)

= β0 .

Therefore,
P (Y = 1|X = 0)
1− P (Y = 1|X = 0)

= eβ0 .

In other words, eβ0 is the odds ratio of obtaining Y = 1 for X = 0. Often, we scale
the data such that X = 0 is a reference point. Then we say that β0 is the baseline log
odds or the reference log odds. From this we get that the probability of Y = 1 for the
reference group is

P (Y = 1|X = 0) =
eβ0

1 + eβ0
=

1

1 + e−β0
.

When X increases by one unit, we have

λ (X + 1)− λ (X) = β0 + β1 (X + 1)− (β0 + β1X)

= β1 .

Therefore, we interpret β1 as the log odds ratio per unit increase in X.

Example 16.3. The data relate to death sentences in the U.S. from 1973 on (United
States Department of Justice, 2003); see Example 9.13. It include 7 568 cases of con-
victs sentenced to death. Two variables of interest are years of education and skin
color. We wish to answer the following question: What is the proportion of blacks in
the population of convicts sentenced to death as a function of the years of education?
Is it true that blacks constitute the same proportion among those with 7 or less years
as they are among those with say 12 years?
We load the data and remove the cases for which either Race or Education are

missing:

> load('capital.punishment.rda')

> length(capital.punishment[, 1])

[1] 7658
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> idx <- complete.cases(capital.punishment[,

+ c('Race', 'Education')])

> cp <- capital.punishment[idx, ]

> length(cp[, 1])

[1] 6495

Over 1000 records are missing, so we treat the clean data as a sample. Next, we
observe the levels of skin:

> skin <- cp$Race

> education <- cp$Education

> levels(skin)

[1] "Asian" "Black" "Native"

[4] "Other" "Pacific Islander" "White"

and change the level Black to TRUE and all other levels to FALSE:

> levels(skin)[-2] <- FALSE

> levels(skin)[2] <- TRUE

> levels(skin)

[1] "FALSE" "TRUE"

To run the logistic regression on the data, we use

> library(Design)

and prepare the data for the logistic regression model lrm():

> ddist <- datadist(skin, education)

> options(datadist = 'ddist')

datadist() lets lrm() know about the data through setting options(). Thus

> (blacks <- lrm(skin ~ education, x = TRUE, y = TRUE))

Frequencies of Responses

FALSE TRUE

3740 2755

Obs Max Deriv Model L.R. d.f. P

6495 8e-11 24.48 1 0

Coef S.E. Wald Z P

Intercept 0.34261 0.13351 2.57 0.0103

education -0.06123 0.01241 -4.94 0.0000

(output edited). You can achieve the same results by running the generalized linear
model glm() directly. Design, however, includes several utility functions that assist
in obtaining results specific to logistic regression. For example,

> plot(blacks, xlab = 'education',

+ ylab = 'log odds of skin color')
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Figure 16.2 Log odds ratio (of being back) vs. years of education ±95% confidence
intervals.

produces Figure 16.2. We will discuss the details of the model output soon. For now,
we observe that there were 3 740 observations labeled as FALSE (other) and 2 755
labeled as TRUE (blacks). The generalized likelihood ratio (denoted as Model L.R.)
tests for the overall significance of the model. We will discuss this statistic soon. For
now, we note that it has a χ2 density with 1 degrees of freedom and that its value is
24.48. The p-value of Model L.R. is virtually zero and we conclude that the model
fit is significant. The logistic model is

λ̂(X) = 0.343− 0.061X

with both coefficients significant (p-values of 0.01 and 0.00). When years of education
are seven or less (recorded as 7 in the data),

P̂ (Y = 1|X = 7) =
1

1 + e0.343−0.061×7
= 0.479 .

Blacks with seven or less years of education constitute almost half of the population
of inmates sentenced to death.2 The log odds of this probability (i.e. of the probability
of being black in the population of inmates who were convicted to death) decreases by

λ̂(X) = 0.343− 0.061× 8− (0.343− 0.061× 7) = 0.061

per additional year of education. More explicitly, for each additional year of education,

P̂ (Y = 1|X)

1− P̂ (Y = 1|X)
= e−0.061 = 0.94 ;

the odds of blacks in the population “increases” by a factor of 0.94 (or decreases by
6%) per additional year of education. ut

2Strictly speaking, one needs to keep in mind that the population is pooled over all years
of data.
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The next example illustrates the idea of using a reference value for a variable in
the regression. It also illustrates how to implement logistic regression for data that
are presented in a summary table only—a common practice in publications. We also
discuss how to interpret the results.

Example 16.4. The data were reported in Kline et al. (1995). A subset of it was
analyzed in Fleiss et al. (2003), p. 293 and Table 11.1. The data are about risk factors
that affect miscarriage of dead fetuses. One of the reasons for miscarriage is a condition
called trisomy, where one of the 23 pairs of chromosomes gains an extra chromosome.
For example, trisomy of the 21st chromosome leads to Down’s syndrome. We are
interested in the relationship between trisomy and maternal age. First, the data as
presented in Fleiss et al. (2003):

> trisomy.table <- read.table('trisomy-and-maternal-age.txt',

+ header = TRUE, sep = '\t')

> dimnames(trisomy.table)[[1]] <- trisomy.table$age

> trisomy.table <-

+ trisomy.table[, 2 : length(trisomy.table[1, ])]

> save(trisomy.table, file = 'trisomy.table.rda')

> trisomy.table

coded trisomic normal total proportion fitted

15-19 -2.5 9 70 79 0.114 0.107

20-24 -1.5 26 157 183 0.142 0.145

25-29 -0.5 42 163 205 0.205 0.194

30-34 0.5 37 130 167 0.222 0.254

35-39 1.5 33 59 92 0.359 0.325

40-44 2.5 12 18 30 0.400 0.405

The columns are: first–age class (in years), coded–coded age class, trisomic–incidence
of trisomic fetuses among the miscarriages that were studied, normal–incidence of
non-trisomic fetuses among the premature miscarriages. We discuss the last column
in a moment. The coded age gives the midpoint of age intervals, divided by 5 where
30 is the reference age. As Fleiss et al. (2003) pointed out, this is a good way to
summarize the data because the intercept of the regression refers to age 30.
Next, we create the data as it might look in a case by case.

> trisome <- vector(); age <- vector()

> for(i in 1 : length(trisomy.table[, 1])){

+ trisome <- c(trisome, rep(TRUE, trisomy.table[i, 2]),

+ rep(FALSE, trisomy.table[i, 3]))

+ age <- c(age, rep(trisomy.table[i, 1],

+ trisomy.table[i, 4]))

+ }

> trisomy <- data.frame(age, trisome)

> save(trisomy, file = 'trisomy.rda')

> head(trisomy, 4)

age trisome

1 -2.5 TRUE

2 -2.5 TRUE

3 -2.5 TRUE

4 -2.5 TRUE
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Figure 16.3 FALSE refers to non-trisomic fetuses, TRUE to trisomic fetuses.

These are the data we use for fitting a logistic regression. As mothers’ age increases,
so does the incidence of trisomy (Figure 16.3), which was produced with

> load('trisomy.rda')

> x <- trisomy$age

> y <- as.factor(trisomy$trisome)

> plot(y, x, xlab = 'trisomy', ylab = 'standardized age')

Logistic regression provides much more information than an analysis that might rely
on the results in Figure 16.3. Fitting the model we get (some output was deleted):

> library(Design)

> ddist <- datadist(x, y)

> options(datadist = 'ddist')

> (model <- lrm(y ~ x, x = TRUE, y = TRUE, se.fit = TRUE))

Frequencies of Responses

FALSE TRUE

597 159

Coef S.E. Wald Z P

Intercept -1.254 0.09086 -13.80 0

x 0.347 0.06993 4.96 0

The model is then
λ̂(X) = −1.254 + 0.347X . (16.1)

Both coefficients are significant (P=0). At the reference age of X = 30, the probability
of trisomy among miscarriaged fetuses is

P̂ (Y = 1|X = 30) =
1

1 + e−(−1.254)
= 0.222 .

Recall that

λ (X) = log

(
P (Y = 1|X)
1− P (Y = 1|X)

)

.

Therefore
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P̂ (Y = 1|X)

1− P̂ (Y = 1|X)
= eλ̂(X)

= e−1.254+0.347X .

So for increase in 1 unit of coded age, we have

P̂ (Y = 1|X + 1)

1− P̂ (Y = 1|X + 1)
−
P̂ (Y = 1|X)

1− P̂ (Y = 1|X)
= e−1.254+0.347(X+1)−(−1.254+0.347X)

= e0.347 = 1.41 .

In other words, the odds of experiencing a miscarriage of a trisomic fetus increase by
a factor of 1.41 for every 5 years of the mother’s age. For one year the change in this
odds is e0.347/5 = 1.072. Figure 16.4, produced with

> plot(model, xlab = 'standardized age',

+ ylab = 'log odds of trisomy')

illustrates the results. ut

Figure 16.4 log odds ratio of having a miscarriage of a trisomic fetus vs. mother’s
standardized age (each unit repents 5 years and 0 is at age 30) ±95% confidence
interval.

16.2 Fitting and selecting models

In this section we discuss how we compute the regression coefficients and the criteria
by which we decide that the model fits the data. We will examine the significance
of the model’s coefficients. Finally, we will answer the question: Does a model with
intercept only suffice or do we need to add a slope?

16.2.1 The log likelihood function

We discussed likelihood, log likelihood and maximum likelihood estimators (MLE) in
Sections 5.8 and 9.1.1. Here we apply the ideas to estimating the parameters of the
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logistic regression. To simplify the discussion, suppose we wish to fit a model to data
and consider only two observations: (X1, Y1) and (X2, Y2) where Y is binomial and
X is continuous. Recall that our model is

P (Y = 1|X) =
1

1 + e−(β0+β1X)
,

P (Y = 0|X) = 1− P (Y = 1|X) .

Take the first pair of data values (X1, Y1) and substitute them in the pair of equations
above to get

P (Y1|X1) =
1

1 + e−(β0+β1X1)
,

P (1− Y1|X1) = 1− P (Y1|X1) .

Here X1 and Y1 are known; β0 and β1 are not. Substitutions for the second obser-
vation lead to similar expressions. Our task is to come up with a likelihood function
that reflects the contribution of (X1, Y1) and (X2, Y2) to the likelihood that both
observations occur. We define the contribution of each observation to the likelihood
function as3

[
1

1 + e−(β0+β1Xi)

]Yi [

1−
1

1 + e−(β0+β1Xi)

]1−Yi

for i = 1, 2. Because the observations are presumed independent, their combined
contribution to the likelihood function is their product, which we write as

L (β0, β1|X) =
2∏

i=1

[
1

1 + e−(β0+β1Xi)

]Yi [

1−
1

1 + e−(β0+β1Xi)

]1−Yi
.

Note that L is a function of the coefficients, not the data because the data are known.
In the general case

L (β0, β1|X) =
n∏

i=1

[P (Yi|Xi)]
Yi [1− P (Yi|Xi)]

1−Yi .

We are free to choose any values for β0 and β1. Because L (β0, β1|X) expresses the like-
lihood that the observation values occur, we choose the values of β0 and β1 such that
this likelihood is maximized. The values of coefficients that maximize L (β0, β1|X) also
maximize log [L (β0, β1|X)]. Therefore, we will work with the log likelihood function—
this turns products into sums. To simplify the notation, we write

L (β0, β1|X) := log [L (β0, β1)] .

Using log rules, we obtain

L (β0, β1|X) =
n∑

i=1

[

Yi log

(
1

1 + e−(β0+beta1Xi)

)]

+

n∑

i=1

[

(1− Yi) log

(

1−
1

1 + e−(β0+beta1Xi)

)]

. (16.2)

3The definition of a likelihood function is not unique.
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We denote the values of β0 and β1 that maximize L (β0, β1|X) (the MLE) by β̂0 and
β̂1. In terms of probabilities, we write equation (16.2) (after some algebraic manipu-
lations) as

L (β0, β1|X) =
n∑

i=1

[

Yi log

(
P (Yi|Xi)
1− P (Yi|Xi)

)

+ log (1− P (Yi|Xi))

]

. (16.3)

To find the maximum of L (β0, β1) with respect to the coefficients, we must use numer-
ical techniques (see Section 9.1.5). To maintain meaningful notation, we denote any
value that is derived from the MLE with .̂ For example, when P (Y = 1|X) is com-
puted from the MLE β̂0 and β̂1, we acknowledge this fact with P̂ (Y = 1|X). Once
we determine the MLE of the coefficients, we are left with the tasks of implementing
statistical inference—we need to test the significance of the coefficients and the sig-
nificance of the overall model—and model diagnostics. For example, it is conceivable
that we do find MLE for β̂0 and β̂1 and yet, the model does not improve significantly
our prediction of P (Y |X) compared to no model at all.

16.2.2 Standard errors of coefficients and predictions

To fix ideas, let us recall and introduce the following notation and definitions:

(Yi, Xi) i = 1, . . . , n denote the data.

β̂0 and β̂1 The maximum likelihood estimates (MLE) of β0 and β1.

P̂ (X) The MLE estimate of model probability for a given X,

P̂ (X) =
1

1 + e−(β̂0+β̂1X)
.

P̂i The estimated model probability for a particular Xi, defined as P̂i := P̂ (Xi).

wi Weights, defined as wi := P̂i

(
1− P̂i

)
.

Xw The weighted average of Xi,

Xw =

∑n
i=1 wiXi∑n
i=1 wi

.

SSw The weighted sum of squares,

SSw :=

n∑

i=1

wi
(
Xi −Xw

)2
.

We compute the standard errors for β̂0 and β̂1 (see Fleiss et al. 2003) with

SE
(
β̂0

)
=

√
1

∑w
i=1 wi

+
X
2

w

SSw
, SE

(
β̂1

)
=

1
√
SSw

.

The covariance between the parameter estimates is given by

Cov
(
β̂0, β̂1

)
=
Xw

SSw
.



522 Simple logistic regression

With these expressions, we obtain estimates of the log odds for particular values of
X with

λ
(
P̂ (X)

)
= β̂0 + β̂1X

with standard errors

SE
(
λ
(
P̂ (X)

))
=

√

SE
(
β̂0

)2
+ 2XCov

(
β̂0, β̂1

)
+X2 SE

(
β̂1

)2
.

The standard error of P̂ (X) is then

SE
(
P̂ (X)

)
= P̂ (X)

[
1− P̂ (X)

]
SE
(
λ
(
P̂ (X)

))
. (16.4)

These equations provide confidence intervals for P (X).

Example 16.5.We continue with Example 16.4, where we named the logistic regres-
sion output model. There, we examined the log odds ratio vs. age. Here, we use model
to produce the probability of miscarriage vs. age. We also wish to plot the probabili-
ties with their 95% confidence interval. This allows us to compare predictions to data
and verify (if at all) that the data are limited by the 95% confidence interval.
In Figure 16.4, we see the predicted values with 95% confidence intervals. These

are plotted for the log odds ratios on the y-axis. To produce the probabilities and
their 95% confidence interval, we apply the logistic transformation to the model, i.e.

P̂ (Y = 1|X) =
1

1 + e−(−1.254+0.347X)

for X between −2.5 and 2.5. First, a sample of the data:

> load('trisomy.rda')

> X <- trisomy$age

> Y <- as.factor(trisomy$trisome)

> set.seed(22) ; idx <- sample(1 : length(X), 5)

> cbind(X = X[idx], Y = Y[idx])

X Y

[1,] -1.5 1

[2,] -0.5 1

[3,] 2.5 1

[4,] -0.5 1

[5,] 1.5 2

Here is the regression curve on a probability scale:

> plot(model$x, 1 / (1 + exp(-model$linear.predictors)),

+ type = 'l', ylim = c(0, 1),

+ xlab = 'maternal standardized age',

+ ylab = 'probability of trisomy')

(Figure 16.5) and the 1.96 SE from (16.4) on both sides:

> se <- 1.96 * model$se.fit

> lines(model$x, 1 / (1 + exp(-(model$linear.predictors +

+ se ))), lty = 2)

> lines(model$x, 1 / (1 + exp(-(model$linear.predictors -

+ se))), lty = 2)
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Figure 16.5 Regression curve (predicted values) and the 95% confidence interval on
the predictions (broken curves). The y-axis corresponds to probability of trisomy in
miscarriaged fetuses (black disks) and 1 − this probability (circles).

To obtain empirical probabilities, we need to count the number of TRUE, number of
FALSE and divide each by the number of observations. So we split the data into a list
(and observe some of the TRUE records):

> tri <- split(X, Y)

> head(tri$'TRUE')

[1] -2.5 -2.5 -2.5 -2.5 -2.5 -2.5

(recall that the TRUE records indicated the cases of trisomy in miscarriaged fetuses).
Next, we count the number of TRUE and FALSE for each center of standardized mother’s
age,

> n.true <- tapply(tri$'TRUE', as.factor(tri$'TRUE'),

+ length)

> n.false <- tapply(tri$'FALSE', as.factor(tri$'FALSE'),

+ length)

Thus we obtain the empirical probabilities:

> n <- n.true + n.false

> true <- n.true / n

> false <- n.false / n

and add them to the plot:

> points(unique(model$x), true, pch = 19)

> points(unique(model$x), false) ut

To test the significance of the model coefficients, we use the Wald-Z statistic. The
statistic is computed for each model coefficient (β̂i, i = 0, 1 in our case):

Wald-Z =
β̂i

SE(β̂i)
.

It has a normal density.
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Example 16.6. From Example 16.4 we obtain

β̂0 = −1.254 SE(β̂0) = 0.091 .

Therefore, Wald-Z = −13.80, with a p-value = 0. Similarly, for β̂1 we obtain Wald-Z
= 4.96 with p-value = 0. ut

16.2.3 Nested models

So far, we assessed the univariate (individual) significance of the model coefficients β0
and β1. We now address the issue of the general model adequacy. The central issue
here has to do with the choice of a model. What criteria should we use in choosing one
model as opposed to another. Because we are dealing with simple logistic regression,
we need to distinguish between two models: One with the intercept only and one
with intercept and slope. The ideas here extend directly to multivariate models. To
proceed, we cast the model adequacy assessment in terms of hypothesis testing. The
null hypothesis is that fitting the model with β0 only suffices—we do not need β1.
Formally, we test

H0 : λ (P (X)) = β0 vs. HA : λ (P (X)) = β0 + β1X .

The model under H0 is obtained by setting β1 = 0. Therefore, we say that the model
under H0 is nested in the model under HA. For this reason, H0 is said to be a nested
hypothesis of HA. Implementing the log likelihood (16.3), we obtain L(β0) under H0
and L(β0, β1) under HA.

4 Maximizing L(β0), we get the MLE for β0 and P (Y ), which

we denote by β̂00 and P̂
0(Y ). Similarly, maximizing L(β0, β1), we get MLE for β0, β1

and P (Y ). We denote these MLE by β̂A0 , β̂
A
1 and P̂

A(Y ).
To compare the models, it makes sense to look at the ratio of the maximum

likelihood values, L(β̂A0 , β̂
A
1 )/L(β̂

0
0). The larger the ratio, the more likely the model

under HA is relative to H0. To obtain inference about this ratio, we need the sampling
density of this ratio. It turns out that for a large sample size, the sampling density of
twice the log of the ratio, which we denote by

G (HA : H0) := 2× log

[
L(β̂A0 , β̂

A
1 )

L(β̂00)

]

(16.5)

is χ2 with degrees of freedom equal the number of degrees of freedom of the nesting
model less the number of degrees of freedom of the nested model. For HA we fit two
coefficients and therefore we have two degrees of freedom. The model under H0 has
one degree of freedom. Therefore, G (HA : H0) has one degree of freedom. G in (16.5)
is one example of the generalized likelihood ratio. It is conveniently written as

G (HA : H0) = 2
[
L
(
β̂0, β̂1

)
− L

(
β̂0

)]
.

Example 16.7. For the trisomy model introduced in Example 16.4, we find

L
(
β̂0

)
= 1.307 197× 10−169 , L

(
β̂0, β̂1

)
= 4.425 755× 10−164 .

4From here on we drop from the notation the dependency on X.
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Therefore,

L
(
β̂0, β̂1

)

L
(
β̂0

) = 338 568.3 , 2× log (338 568.3) = 25.46 .

The p-value of χ21,.05 is 4.516 505× 10
−07. Therefore, the probability that we get such

a large generalized likelihood ratio by chance alone is so small (smaller than for α =
0.05), that we are compelled to reject H0 in favor of HA. We thus conclude that the
model (16.1) is a significant improvement over the model with intercept only. In other
words, age is associated with increased incidence of trisomy among miscarriages. ut

16.3 Assessing goodness of fit

In the previous section, we learned how to assess the overall adequacy of the model.
Here we are interested in

Goodness of fit Comparing observed outcomes to predicted outcomes based on the
logistic model.

We say that a model fits if:

• the distance between observed outcomes and predicted outcomes is small and
• the contribution of each pair of observed outcome and fitted outcome to the sum-
mary measure is asymmetric and small relative to the error structure of the model.

The fitted (also called predicted) values are calculated from the model. To proceed, we
introduce the concept of subsets of equal Xi values. Such subsets are called covariate
patterns. We need such subsets because they allow us to compare empirical probabili-
ties to predicted probabilities. Empirical probabilities are derived from the proportions
of 1 (or whatever signifies a response) to the total number of observations in the subset.

Example 16.8. In a study of habitat relationship between Nashville warbler and
canopy cover in a forest, we have 200 observations. Each observation consists of the
pair (Xi, Yi) where Yi is 0 (absent) or 1 (present) and Xi is the percentage cover. For
50 observations, Xi = 65%; for 60, Xi = 72%; the remaining 90 values are unique.
Therefore, we have a total of 92 covariate patterns ut

To fix ideas, we denote the number of patterns by J . Each pattern includes mj obser-
vations, for j = 1, . . . , J . We let Xj be a vector of covariate observations that belong
to the jth pattern. Xj has mj elements, all have a single value, Xj . In Example 16.8,
m1 = 50 observations with X1 = 65% cover; m2 = 60 observations with X2 = 72%;
and m3 = ∙ ∙ ∙ = m92 = 1. In all, we have J = 92 covariate patterns. To each covariate
pattern there correspond mj values of Y , some of which are 1 others are 0. From the
definition of covariate patterns, we conclude that J can have a minimum value of 1
and a maximum value of n. In the former, all values of X are equal, in the latter they
are all different. Based on how the covariate patterns distribute themselves between
these two extremes, there are different statistics that are appropriate for evaluation
of the goodness of fit.
Numerous approaches to assessing the fit have been proposed (see Hosmer et al.,

1997; Hosmer and Lemeshow, 2000). Here, we consider only the Pearson χ2 statistic,
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the deviance statistic and the area under the so-called Receiver Operator Charac-
teristic (ROC) curve. For the jth covariate pattern, we have mj observations with

P̂ (Y = 1|Xj). Let nj be the number of observations in the jth covariate pattern for
which Y = 1 and n̂j be its estimated value. Similarly, let Pj := P (Y = 1|Xj). Then
the best estimate of nj is

n̂j = mjP̂j = mj
1

1 + e−(β̂0+β̂1Xj)
.

16.3.1 The Pearson χ2 statistic

We begin with a couple of definitions.

The Pearson residual The jth Pearson residual is defined as

rj =
nj −mjP̂j√

mjP̂j

(
1− P̂j

) (16.6)

=
nj − n̂j√

n̂j

(

1−
n̂j

mj

) .

The Pearson χ2 statistic is defined as

C =

J∑

j=1

r2j .

C is χ2 distributed with J − 2 degrees of freedom. Here J − 2 corresponds to J
patterns fit over 2 coefficients (β0 and β1).

Example 16.9. In Example 16.4, the data, as reported by Fleiss et al. (2003) are
already broken into patterns by pooling mothers’ ages into 5-year intervals. In the
example we obtained β̂0 = −1.254 and β̂1 = 0.347. The results in our notation are
detailed in Table 16.1, which was produced from the following script:

1 load('trisomy.table.rda')

2 m.j <- trisomy.table$total

3 x.j <- trisomy.table$coded

4 n.j <- trisomy.table$trisomic

5 beta.0 <- -1.254 ; beta.1 <- 0.347

6 coef <- c(beta.0, beta.1)

7 n.hat.j <- m.j * (1 / (1 + exp(-(beta.0 + beta.1 * x.j))))

8 r.j <- (n.j - n.hat.j) /

9 (sqrt(n.hat.j * (m.j - n.hat.j) / m.j))

10 pearson.chi.sq <- sum(r.j^2)

11 d.j <- sqrt(2 * (n.j * log(n.j / n.hat.j) +

12 (m.j - n.j) * log((m.j - n.j) / (m.j - n.hat.j))))
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13 deviance.chi.sq <- sum(d.j^2)

14 df <- length(m.j) - length(coef)

15 pearson.p.value <- 1 - pchisq(pearson.chi.sq, df)

16 deviance.p.value <- 1 - pchisq(deviance.chi.sq, df)

The script is a straightforward application of the relevant equations and therefore
does not need elaboration.
We find that C = 1.613. With 6 patterns and 2 coefficients to fit, we have 4 degrees
of freedom and we obtain a large p-value. Consequently, the Pearson residuals, taken
as a whole, do not violate the assumption of the model. ut

Table 16.1 Pearson and deviance χ2 residuals.

xj mj nj n̂j Pearson Deviance

−2.5 79 9 8.455 0.198 0.197
−1.5 183 26 26.532 −0.112 0.112
−0.5 205 42 39.665 0.413 0.410
0.5 167 37 42.320 −0.946 0.960
1.5 92 33 29.847 0.702 0.696
2.5 30 12 12.137 −0.051 0.051
χ24 1.613 1.629
p-value 0.806 0.804

16.3.2 The deviance χ2 statistic

Another residual is defined thus:

Deviance residual For the jth covariate pattern and for nj − n̂j ≥ 0, the deviance
residual is defined as

dj =

√√
√
√
√2



nj log
nj

mjP̂j
+ (mj − nj) log

mj − nj

mj

(
1− P̂j

)



 (16.7)

=

√

2

[

nj log
nj

n̂j
+ (mj − nj) log

mj − nj
mj − n̂j

]

.

For nj − n̂j < 0, the deviance residual is −dj . For nj = 0,

dj = −

√

2mj

∣
∣
∣
∣log

mj

mj − n̂j

∣
∣
∣
∣

and for nj = mj ,

dj =

√

2mj

∣
∣
∣
∣log
mj

n̂j

∣
∣
∣
∣ .

The deviance χ2 statistic is defined as

D =

J∑

j=1

d2j .
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D has χ2 density with J − 2 degrees of freedom. Here J − 2 corresponds to J patterns
fit over 2 coefficients (β0 and β1).

Example 16.10. Returning to Table 16.1, we find that D = 1.629 with 4 degrees
of freedom. The corresponding p-value is large. Consequently, the deviance residuals,
taken as a whole, do not violate the assumption of the model. ut

Both the Pearson and the deviance χ2 statistics cannot be applied when mj is small.
The denominator of the Pearson residual is the standard deviation of the residual in
the numerator. It can be shown that the deviance residual is also the result of division
by the approximate standard error of the residual. Thus, we expect the mean of these
residuals to be 0 and their standard deviation to be 1. This allows us to compare and
interpret their magnitudes.

16.3.3 The group adjusted χ2 statistic

The results in this section fall under the name the Hosmer-Lemeshow tests. When J
≈ n, we have mj ≈ 1. In some cases, there may be too few data in a particular pattern
to obtain a reasonable estimate of n̂j . In such cases, neither the C nor the D statistics
provide a correct p-value. A way around this problem is to break the data into fewer
groups. This may result in more than one pattern in a group. What criteria should
we choose to group the covariate patterns? Hosmer and Lemeshow (2000) suggested
a probability criterion. The idea is to compute all of

P̂ (Y = 1|Xi) :=
1

1 + e−(β̂0+β̂1Xi)

and then sort them. We can then group the observations based on the probability
quantiles. More than one covariate pattern or a fraction of a covariate pattern may be
included in a group. This needs to be taken into account in computing the statistic
C. To distinguish between this refinement and the statistic C, we denote the residuals
based on grouped patterns by C ′. Let n′k be the number of observations in the kth
group. Also, denote by Jk the number of patterns in the kth group. The average value
of P̂ (Y = 1|X) for X in the kth group is

P (Y = 1|Xk) :=
Jk∑

j=1

mj

n′k
P̂ (Y = 1|Xj) .

Then the observed and estimated number of Y = 1 in the kth group are

Ok :=

Jk∑

j=1

nj , Ôk = n
′
kP (Y = 1|Xk) .

Let g be the number of groups. Then the statistic C ′ is computed as follows:

C ′ =

g∑

k=1

(
Ok − Ôk

)2

n′kP (Y = 1|Xk)
(
1− P (Y = 1|Xk)

) .

As long as J ≈ n and the number of observations in each group is > 5, C ′ has a χ2

density with g − 2 degrees of freedom.
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16.3.4 The ROC curve

The ROC curve refers to Receiver Operator Characteristic. The idea is borrowed from
signal processing, where one is interested in identifying a signal with background noise.
To introduce the concept we define:

Sensitivity The proportion of Y = 1 correctly identified by a test.
Specificity The proportion of Y = 0 correctly identified by a test.

In the context of a logistic regression model, we compute P̂i := P̂ (Y = 1|Xi) for
all of our observations. We then use P̂i to predict Yi based on a cut-off probability.
We wish to choose a cut-off probability such that both sensitivity and specificity are
maximized. However, if we choose the cut-off probability to increase sensitivity, we
sacrifice in specificity. The point is then to choose an optimal cut-off probability. ROC
curves facilitate finding this probability. We plot changes in sensitivity and specificity
for a sequence of cut-off probabilities and then choose the probability where both are
at their joint possible maximum. Note that 1− specificity is the proportion of Y = 0
that are identified as 1. The ability of the test to classify Y = 0 or Y = 1 correctly is
measured by the area under the ROC curve. Area of 1 reflects a perfect test; area of
0.5 reflects a worthless test. We have

Rule of thumb regarding ROC If
ROC ≈ 0.5 - no discrimination is possible;
0.7 ≤ ROC < 0.8 - discrimination is acceptable;
ROC ≥ 0.8 - discrimination is excellent.

Note that even a model that fits the data poorly might have good ROC-based dis-
crimination.

Example 16.11. We use the data introduced in Example 16.1, but for a different
fish species: the Spotfin shiner (Notropis spilopterus), abbreviated to SFS. Here is a
random sample of 10 records from the desired columns of the data frame:

> load('fish.rda')

> idx<-sample(dimnames(fish$adults)[[1]], 10)

> col<-c(1, 4, 6, 8, 9, 66)

> fish$adults[idx, col]

river water.temp habitat depth velocity SFS

1323 YM 25 shoreline 13.2 18.930 6

1711 YM 10 shoreline 11.0 36.000 0

1694 YM 13 riffle 40.0 93.000 0

793 OT 22 pool 78.0 22.000 1

678 OT 1 side channel 22.0 16.000 0

1559 YM 17 raceway 46.0 47.000 0

226 OT 21 shoreline 60.0 28.000 0

2002 YM 21 riffle 28.0 15.000 4

15 OT 26 pool 101.0 46.000 0

1187 YM 10 riffle 25.4 71.299 0

We are interested in the relationship between SFS and water depth. In 2 152 samples
from both the Yellow Medicine and Otter Tail rivers (YM and OT) in northwestern
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Figure 16.6 Top left: measured depths. Top right: depths in which SFS was detected
and measured depths (thick curve). Bottom left: depths in which SFS was not detected
and measured depths (thick curve). Bottom right: logistic regression between SFS’s
presence/absence and water depth.

Minnesota, SFS was present in 665. Let us start with exploring some interesting
features in the data. We produce the first three panels in Figure 16.6 thus. First,
assignments:

> X <- fish$adults$depth

> Y <- ifelse(fish$adults$SFS > 0, 1, 0)

Next, the top left histogram:

> par(mfrow = c(2, 2))

> hist(X, main = 'available', xlab = 'depth (cm)',

+ ylab = 'density', freq = FALSE,

+ xlim = xlim, ylim = ylim)

(we set the limits on the x- and y-axes so that all histograms will be on the same
scale). The function density() fits an empirical density to the histogram. It takes a
smoothing argument, bw (for band-width). With little experimenting, we set BW to 5
and plot the thick line that shows the density of the measured depths:

> BW <- 5 ; ylim <- c(0, 0.02) ; xlim <- c(0, 200)

> lines(density(X, bw = BW), lwd = 3)
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In the top-right panel we plot the histogram of the depths in which SFS was present
and superimpose on it the smoothed density of all sampled depths:

> hist(X[Y == TRUE], main = 'SFS present',

+ xlab = 'depth (cm)', ylab = 'density', freq = FALSE,

+ xlim = xlim, ylim = ylim)

> lines(density(X, bw = BW), lwd = 3)

> lines(density(X[Y == TRUE]))

Thus we can compare the density of the sampled depths to that of the depths in which
we found SFS. The bottom left panel was produced similarly with

> hist(X[Y == FALSE], main = 'SFS absent',

+ xlab = 'depth (cm)', ylab = '', freq = FALSE,

+ xlim = xlim, ylim = ylim)

> lines(density(X, bw = BW), lwd = 3)

> lines(density(X[Y == FALSE]))

It compares the density of depths where SFS was not found to that of the sampled
depths. From this exploratory analysis we conclude that individuals of SFS tend to
be found in shallow waters.
Next, using the R package Design, we fit a logistic regression model and plot it

into the bottom right panel of Figure 16.6.

> library(Design)

> ddist <- datadist(X, Y)

> options(datadist = 'ddist')

> model <- lrm(Y ~ X, x = TRUE, y = TRUE, se.fit = TRUE)

> plot(model, xlab = 'water depth (cm)',

+ ylab = 'log odds of SFS present')

Here is an edited summary of the model:

> model

Model L.R. d.f. P

91.83 1 0

Coef S.E. Wald Z P

Intercept -0.04712 0.092949 -0.51 0.6122

x -0.01470 0.001655 -8.88 0.0000

The generalized likelihood ratio (16.5) is G(HA : H0) = 91.83. It is distributed accord-
ing to χ2 with one degree of freedom and therefore is significant (p-value is practically
zero). So we reject the null hypothesis that the model with the intercept only suf-
fices in favor of the alternative hypothesis that the model includes both the intercept
and the slope. From the coefficients, their standard error and Wald-Z statistics we
conclude that the intercept, β̂0 = −0.047 is not different from zero. The slope, β̂0 =
−0.015 is.
Next,we examine the plot of sensitivity and specificity (left panel, Figure 16.7)

which is produced as follows. We start with P̂ :

> p.hat <- 1 / (1 + exp(-model$linear.predictors))
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Figure 16.7 Left panel: the vertical line is at the optimal cut-off probability; i.e. the
best compromise between sensitivity and specificity. Right panel: the ROC curve.

Next, we compute the sensitivity and specificity vectors. First, we create 200 prob-
ability cut values:

> BY <- (max(p.hat) - min(p.hat)) / 200

> p.cuts <- seq(min(p.hat), max(p.hat), by = BY)[-1]

For each of these values, we create a table and use the table counts to compute the
sensitivity and specificity verctors:

> sen <- spe <- vector(length = length(p.cuts))

> for(i in 1 : length(p.cuts)){

+ tb <- table(Y, p.hat >= p.cuts[i])

+ sen[i] <- tb[2,2] / (tb[2, 1] + tb[2, 2])

+ spe[i] <- tb[1, 1] / (tb[1, 1] + tb[1, 2])

+ }

The calculation requires that we count the zeros and ones above each cut and we
accomplish this with table(). Here is one example of the table:

> tb

y FALSE TRUE

0 1486 1

1 664 1

We use the for loop above for heuristic purposes. We are now ready to plot the
sensitivity and specificity vectors, along with the vertical line that indicates where
they are approximately equal. We also label the vectors:

> par(mfrow=c(1, 2))

> plot(p.cuts, sen, type = 'l', xlab='cut-off probabilities',

+ ylab = 'sensitivity or specificity')

> lines(p.cuts, spe)

> abline(v = p.cuts[(spe > sen) & (sen > (spe - 0.01))])

> text(locator(), label = c('sensitivity', 'specificity'),

+ pos=c(2, 2))
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The ROC curve is shown in the right panel of Figure 16.7, which was produced
with

> library(verification)

> roc.plot(Y, p.hat, main = '', xlab = 'specificity = 1',

+ ylab = 'sensitivity', cex = 2)

> (area<- roc.area(Y, p.hat))

The area under the curve is area$A = 0.671. This indicates marginal discrimina-
tion. ut

There are numerous other goodness of fit measures (see Hosmer and Lemeshow, 2000).

16.4 Diagnostics

Once we fit the model, we need to examine whether the fit conforms to the model
assumptions. Good fit does not mean that the model is “correct”. Residuals may reveal
observations that are too far from the model’s predictions. Validation—the process
by which we test the model on data that were not used in fitting the model—might
reveal further shortcomings of the model.

16.4.1 Analysis of residuals

Our outlook so far had been the whole model. Here we are interested in examining
particular observations. Are some of them unique with respect to the value of their
residual? If so, how much do they influence the MLE of the regression coefficients?
Which ones are they? After looking for exceptional residuals, can we still assert that
the model fits our assumptions? Albeit not comprehensive, our treatment of analysis
of residuals is enough to get you started. For details, consult the documentation for
the function residuals.lrm() in the R package Design and Hosmer et al. (1997).
Recall our discussion of covariate pattern in Section 16.3. There, we introduced the
Pearson residual, rj and the deviance residual, dj (see equations (16.6) and (16.7)
and the latter’s details). In analyzing residuals, we are interested in two important
indicators of a residual: its influence on the values of the regression coefficients and
the change in the coefficients when the model is refit without the observation that
belongs the residual.
In linear regression, the influence of an observation on the MLE of the regression

coefficients is expressed through leverage values. These values are proportional to the
distance of a point, xj , from the mean of the data. In logistic regression, there is a com-
parable approximation to the idea of leverage in linear regression. The approximation
is given by

nj − n̂j ≈ (1− hj)nj or n̂j ≈ hjnj . (16.8)

Here hj is the leverage of the residual of the jth pattern. It is a function of the
model’s coefficients. Because we are using n̂j to estimate the unknown population nj ,
a large value of hj indicates that the particular covariate pattern has a large influence
on the MLE of the coefficients. Ideally, we wish to have a model where all residuals
contribute equally to the coefficient values of the model. To incorporate the potential
effect of each residual on the coefficient values, we standardize the residuals. Thus we
have the following definition.
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Standardized Pearson residual The standardized Pearson residual for the jth
covariate pattern is

rSj :=
rj√
1− hj

. (16.9)

A large value of rSj indicates that observations in the particular pattern have high
leverage.
To examine the effect of observations in a particular covariate pattern, we remove

them and refit the model. An approximation of the standardized change in the coef-
ficients due to removal of the jth pattern is given by

Δβ̂ j :=
r2Sjhj

1− hj
. (16.10)

Skipping the proof, it turns out that the corresponding change in the Pearson χ2

statistic and in the deviance statistic due to the jth covariate pattern are

ΔCj = r
2
Sj , ΔDj = d

2
j +

r2jhj

1− hj
. (16.11)

Large values of one or both of these statistics (ΔCj and ΔDj) with respect to a
covariate pattern j indicate that the jth pattern fits poorly and has large influence on
the MLE of the coefficients. Table 16.2 summarizes the diagnostic measures that we
discussed thus far. Because not much is known about the sampling densities of the
statistics in Table 16.2, we rely on graphical techniques for diagnostics. In running
residual analysis, you should, as a rule, plot each of the diagnostics in the second
group in Table 16.2 against P̂j . If possible, you may be able to identify leverage and
influence by plotting each of these against hj .

Example 16.12. We continue with Example 16.11, where we examined the relation-
ship between a fish species and its affinity to habitats with a specific water depth.
Figure 16.8 illustrates some of the diagnostics we discussed thus far. For ΔC and
ΔD, the residuals that correspond to Y = 1 decrease and for Y = 0 increase with P̂ .
Poorly fit points for Y = 1 appear at the top left of the figure, with distinct distances
from the remaining points. Poorly fit points for Y = 0 appear at the top right with
distinct distances from the remaining points.
From the standardized Pearson residuals (top left panel in Figure 16.8), we see that

for Y = 1, there seem to be about 5 points that fit the data poorly. All observations
that correspond to Y = 0 fit the data. Note that here mj = 1, so J = n, where n is the
number of observations. The ΔD residuals show results similar to the ΔC residuals.
As stated, the density of both statistics is χ2. Since the number of covariate patterns
is the number of points, we have mj = 1 and therefore 1 degree of freedom. At 95%
confidence, observations that poorly fit would have values > than 4. There are 2 152
observations, 59 of the standardized Pearson residuals are above 4.
For the standardized deviance residuals (top right panel of Figure 16.8), 41 points

are above 4. We do not expect such a small number of misbehaving residuals to
invalidate the model. A plot of Δβ illustrates the mirror image of the influence of the
points that correspond to Y = 1 vis a vis Y = 0 on the MLE of the model coefficients.
Because of the large number of observations, we do not expect any one point (covariate
pattern) to have large enough leverage and large enough Pearson residual to noticeably
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Table 16.2 Summary of diagnostics. The first group represents basic diag-
nostics. The second group represents derived diagnostics (from the first
group).

Diagnostic Notation Equation Interpretation

Pearson residual rj 16.6 Used in computing the
Spearman’s χ2 statistic
for overall model fit.

Deviance residual dj 16.7 Used in computing the
deviance statistic for
overall model fit.

Leverage value hj 16.8 Large value indicates jth
pattern strong influence
on the MLE of the
regression coefficients.

Standardized Pearson
residual

rSj 16.9 Large value indicates
that the jth pattern fits
poorly.

Change in Pearson χ2

statistic
ΔCj 16.11 Indicates the decrease in

C due to removal of
the jth pattern from the
fit. Large value indicates
that the jth pattern fits
poorly.

Change in deviance
statistic

ΔDj 16.11 Indicates the decrease in
D due to removal of
the jth pattern from the
fit. Large value indicates
that the jth pattern fits
poorly.

Influence on MLE of
coefficient values

Δβ̂ j 16.10 Indicates the influence of
removing the jth pat-
tern from the fit on
the MLE model coeffi-
cients. Large value indi-
cates strong influence.

influence the MLE of the coefficients. Indeed, the range of values in both bottom panels
in Figure 16.8 are small. Yet, good practice requires examination of these diagnostics.
Figure 16.8 was produced as follows. First, we load the data and assign the

variables:

> rm(list = ls())

> load('fish.rda')

> x <- fish$adults$depth

> y <- ifelse(fish$adults$SFS > 0, 1, 0)
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Next, we fit the model and calculate P̂ :

> library(Design)

> ddist <- datadist(x, y)

> options(datadist = 'ddist')

> model <- lrm(y ~ x, x = TRUE, y = TRUE, se.fit = TRUE)

> p <- 1 / (1 + exp(-model$linear.predictors))

We continue with the residuals analysis thus:

> hat <- residuals.lrm(model, type = 'hat')

> pearson <- residuals.lrm(model, type = 'pearson')

> deviance <- residuals.lrm(model, type = 'deviance')

> standard.pearson <- pearson / (sqrt(1 - hat))

> delta.C <- standard.pearson^2

> delta.D <- deviance^2 / (1 - hat)

> delta.beta <- residuals.lrm(model, type = 'dfbeta')

> delta.beta.0 <- delta.beta[, 1]

> delta.beta.1 <- delta.beta[, 2]

> delta.C.lim <- c(min(delta.C), max(delta.C))

> delta.D.lim <- c(min(delta.D), max(delta.D))

> delta.beta.0.lim <- c(min(delta.beta.0), max(delta.beta.0))

> delta.beta.1.lim <- c(min(delta.beta.1), max(delta.beta.1))

Finally, we plot the top left panel of Figure 16.8:

> par(mfrow=c(2, 2))

> plot(p[y == 1], delta.C[y == 1],

+ xlab = expression(italic(hat('P'))),

+ ylab = expression(paste(Delta,italic('C'))),

+ ylim = delta.C.lim, cex = 2)

> points(p[y == 0], delta.C[y == 0])

The remaining plots were produced similarly. Note the use of expression() to anno-
tate the axes. ut

16.4.2 Validation

Validation refers to the process of applying the model to data for which the model had
not been fitted. Ideally, one would like to fit the regression to data from a population
and then validate it for data from another population. Short of this, we can simply
exclude part of the data, fit the model and then validate it on the excluded data.
There are numerous variations on this theme. When data are scant, we could exclude
small part of the data and use bootstrap methods to build the model and test it.
The main method for validating is simply following the residual analysis outlined

in the previous section. If the model is valid, then residuals should reflect a fit that
are no worse than the data on which the model fit was based. For furhter details, see
validate.lrm(Design), Miller et al. (1991) and Hosmer and Lemeshow (2000).

16.4.3 Applications of simple logistic regression to 2 × 2 tables

Analysis of 2× 2 tables is quite common.
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Figure 16.8 The axes notations refer to the diagnostics in (16.11) and (16.10). The
Δβ are shown for β0 and β1. Large circles identify points for which Y = 1 and small
circles identify points for which Y = 0.

Example 16.13. We are interested in the cross classification between low birth
weight (Y = 0 or 1) and the mother’s smoking status (X = 0 or 1). The data,
introduced in Hosmer and Lemeshow (2000), are summarized in the following 2 × 2
table:5

> load('bwt.rda') ; attach(bwt)

> table(low, smoke)

smoke

low FALSE TRUE

0 86 44

1 29 30

or

smoke
low birth weight 1 0 total

1 30 29 59
0 44 86 130
total 74 115 189

5bwt.rda was imported from the original data file—see bwt.R at the book’s site.
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Smoke represents the number of women who smoke (1 yes, 0 no) and low birth weight
represents the number of low birth weight babies. ut

The odds ratio is used as a measure of association in contingency tables.

Odds ratio (ρ) Let X = 0 or 1 be an independent dichotomous variable and Y = 0
or 1 a dependent dichotomous variable. The ratio of the odds for X = 1 to X =
0, called the odds ratio, is

ρ :=
π(1)/(1− π(1))
π(0)/(1− π(0))

.

Example 16.14. Continuing with Example 16.13, we have

ρ̂ =
(30/74)/(44/74)

(29/115)/(86/115)
= 2.02 .

In this case, the odds ratio represents the risk of low birth weight for a baby born
to a smoking mother compared to a mother who does not. In other words, smoking
mothers are over twice as likely to give birth to low weight babies compared to non
smoking mothers. ut

Next, we wish to cast the odds ratio in a logistic regression framework. For X = 1 and
Y = 1, we have

λ(X) = β0 + β1X or π(1) =
1

1 + e−(β0+β1)
.

For X = 0 and Y = 1 we have

λ(X) = β0 + β1 × 0 or π(1) =
1

1 + e−β0
.

Thus we obtain Table 16.3. Implementing the definition of ρ to the results in
Table 16.3 and with a little bit of algebra, we have

ρ̂ = eβ1 .

Table 16.3 2× 2 contingency table in terms of logistic
regression.

Dependent Independent variable (X)

variable (Y ) X = 1 X = 0

1 π(1) =
1

1 + e−(β0+β1)
π(0) =

1

1 + e−β0

0 1− π(1) =
1

1 + eβ0+β1
1− π(0) =

1

1 + eβ0

Total 1.0 1.0

Example 16.15. We implement the logistic regression to the data summarized in
Example 16.13:

> X <- smoke

> Y <- low

> library(Design)

> ddist <- datadist(X, Y)
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> options(datadist = 'ddist')

> (model <- lrm(Y ~ X, x = TRUE, y = TRUE))

Logistic Regression Model

lrm(formula = Y ~ X, x = TRUE, y = TRUE)

Frequencies of Responses

0 1

130 59

Obs Max Deriv Model L.R. d.f. P

189 4e-08 4.87 1 0.0274

C Dxy Gamma Tau-a R2

0.585 0.17 0.338 0.073 0.036

Brier

0.209

Coef S.E. Wald Z P

Intercept -1.087 0.2147 -5.06 0.0000

X 0.704 0.3196 2.20 0.0276

The p-value for the likelihood ratio is 0.03, so we deem the model significant. Recall
that the test statistic here G (HA : H0) = 4.87 where H0 is the model with the inter-
cept only and HA is the model with the intercept and slope. This test statistic has a
χ2 density with 1 degree of freedom. The value of β̂1 = 0.704 is significant (p = 0.03).
Therefore, the odds ratio is

ρ̂ = e0.704 = 2.02 ,

as required. ut

16.5 Assignments
Exercise 16.1. Confirm the statement in Example 16.2: “There are 2 152 records in
the data and in two of them individuals of Blackchin shiner were found. Therefore, p
= 2/2 152.”

Exercise 16.2.

1. What is the domain and range of the odds ratio?
2. What is the domain and range of the logit transformation?

Exercise 16.3. Suppose that the probability of finding a plant species in a particular
plot is π.

1. What are the values of the logit transformation for π = 0, 0.25, 0.5, 0.75, 1?
2. What are the values of the logistic transformation for π = 0, 0.25, 0.5, 0.75, 1?

Exercise 16.4. In an exposure study, we find that when people are exposed to Radon
levels of 0, 10, 20 and 30Bq (e.g. Example 9.5), the probabilities of developing lung
cancer are 0.0001, 0.0002, 0.0003 and 0.0004 (numbers represent fictitious data). Com-
pute and interpret the log odds ratio for these data.
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Exercise 16.5. Use Example 16.3 as a guideline.

1. What is the proportion of blacks in the population of inmates sentenced to death
in the U.S. that have ten years of education?

2. Twelve years of education?

Exercise 16.6.We discussed the CDC demographics data in Example 15.10. The
data are in demo d.short.rda, at the book’s site.

1. Load the data and clean it from all NA. Keep the columns Gender, Household
Income from and Household Income to only.

2. Let Y = 0 for males and 1 for females.
3. Assign to X the mean of Household Income from and Household Income to

and $75 000 to Inf and rescale the data to $1 000 (divide income by $1 000).
4. Fit a logistic model to gender vs. mean income and print the results.
5. Plot the model with confidence intervals.
6. Interpret the results.
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Application: the shape
of wars to come

In this chapter, we present a complete analysis of two recent wars, the Iraq war,
between the U.S. and Iraqi (government at first and militant organizations later) and
the so-called Second Intifada between Israel and militant Palestinian organizations.
Our purpose is to illustrate how various ideas presented in the book may be applied
to real and current problems to produce publishable manuscripts. The focus here is
the data and its interpretation; not as much R and statistics. So we shall not discuss
scripts and neither shall we explain the code that produced the analysis and figures.
However, Examples 2.16, 8.1, 7.24 and 8.22 refer to the war in Iraq. Examples 5.2,
5.17, 6.9 and 9.8 refer to the Second Intifada. All of these, including the data are
available from the book’s site.

17.1 A statistical profile of the war in Iraq

We define the War in Iraq (WI) as the period between 03/21/2003 and 10/10/2007—a
total of 1 665 days. We obtained data about the date, location and cause of death of
every single soldier belonging to the Coalition forces. We also obtained a summary,
by month, of the number injured Coalition soldiers. Both the empirical Probability
Density (PD) of injuries per month and deaths per week followed the negative bino-
mial PD, indicating that injury and death rates varied over time. Their occurrence
remained random (following the negative binomial PD) in spite of a variety of mili-
tary strategies and social and political policies. Further analysis confirmed this. Our
results refute the often made claim that increased activity by the Coalition forces in
one place had been compensated by increased activity by Iraqi militant organizations
in other places. We found no temporal dependence among the number of deaths in
various location across Iraq.
With the significant fit of the negative binomial PD to the data about injuries and

deaths we conclude that: (1) One could expect that 95% of the deaths per week would
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be ≤37. (2) One could expect that 95% of the injuries per month would be ≤974. Both
values may serve as guidelines for organizations responsible for planning of trauma-
treatment. We conclude that unless one is willing to use extremely excessive force—as
the Russians did during the Second Chechen War (1999–2000)—no realistically large
military force can win a war against committed small militant organizations.

17.1.1 Introduction

The War in Iraq (WI), between the U.S. and some militant organizations (MO) in
Iraq have exhibited common characteristics with other recent armed conflicts—a small
number of individuals clash with large invading armies. Such wars may indicate a
change in future warfare from large wars between armies to what some call “the war
on terrorism”. Similar recent conflicts had been: (i) the First Intifada (1987–1993);
(ii) the Second Intifada (2000–2003) –two periods of heightened belligerence between
Israel and some Palestinian MO; (iii) the war in Afghanistan between NATO forces
and Afghani MO (2001–present); (iv) the First Chechen War (1994–1996); and (v) the
Second Chechen War (1999–2000) – both between the Russian military and Chechen
MO. Wars between invading or occupying armies and local populations are not new.
However, technological advances and instant communication make, on the one hand,
such conflicts ever more deadly and on the other, open to global public opinion and
scrutiny. See also Geller and Singer (1998); Gelpi et al. (2005/6); Scotbennett and
Stam (2006); Alvarez-Ramirez (2006).
These wars exhibit statistical properties that are worthwhile investigating. For

example, if we can characterize some of their aspects with well-known probability
densities (PD), then emergency service providers may plan for expected magnitudes
of disasters (such as the number of deaths and injuries). Also, some PD arise from
well known underlying mechanisms. We can then draw conclusions about the ran-
dom (statistical) processes that underlie such wars and thereby judge the efficacy of
diplomatic and military efforts to change the outcome of such conflicts (in particular
with respect to the cost in human lives, injuries and suffering). Of the wars listed
above, the WI is one of the few where detailed data are available. Thus, we pursue its
statistical profile. Detailed data about the Second Intifada are also readily available
(Section 17.2). We shall analyze and compare its statistical profile to that of the WI.

17.1.2 The data

The data about deaths begin on 03/21/2003. We stopped updating it on 10/10/2007,
1 665 days since the beginning of the WI. Data were obtained from http://

icasualties.org/oif, last visited on 10/10/2007. A list of the countries partici-
pating in the Coalition forces may be found at http://www.globalsecurity.org/
military/ops, last visited on 10/28/2007. Both sources are often cited in the press.
See for example The Economist, October 27th–November 2nd, 2007, p. 34; G. Kut-
ler, Orbis, 2005, 49: 529–544; 2006, 50: 559–572 and 2007, 51: 511–527. To facilitate
date-arithmetic, we added to the raw data a column that lists the Julian day that
corresponds to the date of death. The Julian count starts on 1/1/1960. We also clas-
sified the reported cause of death to major (Hostile and Non-hostile) and minor. Here
are the first three records of the data about deaths:
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ID Date Rank Age Srv.Branch

1 1 2003-03-21 2nd Lieutenant 30 U.S. Marine

2 14 2003-03-21 Lance Corporal 22 U.S. Marine

3 13 2003-03-21 Major 34 Royal Navy

Major.Cause.of.Death Minor.Cause.of.Death Where

1 Hostile hostile fire Southern Iraq

2 Hostile friendly fire Um Qasr

3 Hostile helicopter crash Um Qasr

Hometown State Country Julian

1 Harrison Co. Mississippi U.S.~ 15785

2 Guatemala City Guatemala U.S.~ 15785

3 Plymouth England UK 15785

and here are the first three records of the data about injuries:

Date Injured Julian

1 2003-03-03 202 15767

2 2003-04-03 340 15798

3 2003-05-03 55 15828

Regrading deaths, we include only those where the cause, as reported by the U.S.
Department of Defense, was due to hostile activities. We shall not report summary
statistics such as deaths and injuries by nations, causes and so on. These are readily
available elsewhere. From here on and unless otherwise specified, deaths refer to those
(of soldiers that belonged to the Coalition forces) caused by hostile activities, catego-
rized as Hostile in the data. Injuries refer to those soldiers belonging to the Coalition
forces.

17.1.3 Results

The run sequences of deaths and injuries (Figure 17.1) may reflect periodicities. Yet,
the autocorrelation function did not reveal any significant lags. We shall address this
point in a moment. In all, 3 353 soldiers were reported dead because of hostile activi-
ties. The deadliest places are identified in Figure 17.2 and their geographic locations
in Figure 17.3. We shall isolate the deadliest locations for further analysis soon.

Death, injury rates and their PD

The cumulative sum of injuries and deaths (Figure 17.4) are quite instructive. During
the period discussed and based on the slopes of the regression lines in Figure 17.4,
the average death rate was 2.02 per day and the average injury rate was 17.80 per
day. In both cases, the linear model fit produced R2 ≈ 0.99. Of course both R2 for
deaths and injuries are meaningless unless the residuals are sequentially independent.
The autocorrelation functions of the residuals (Brockwell and Davis, 1991) of both
rates revealed significant autocorrelations among the residuals. In fact, the residuals
exhibit four distinct periods of consistent alternating decline and increase in both
injury and death rates when compared to the overall average rates (Figure 17.5).
From the beginning of the WI (3/21/2003) and for about a year (until 3/29/2004),
both death and injury rates steadily declined. Next, for about eight months (until
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Figure 17.1 Monthly injuries and daily deaths among the Coalition forces. Horizon-
tal lines indicate means.

12/09/2004), both rates increased. For the next 20 months (until 8/26/2006), there
was steady decline in both rates. Finally, we see a period of a year of increase in the
rates. The last month of the period indicates that perhaps the war was entering its
next phase of decline in these rates. Both the monthly injury rate and the weekly death
rate seem to be in perfect synchrony—more deaths per week had been associated with
more injuries per month and fewer deaths had been associated with fewer injuries.
The analysis of the residuals leads to two conclusions. First, any claim of success

or failure in the WI that is based on short-term observations of increase or decrease
in the death or injury rates is likely to be premature. Second, the fluctuations in the
rates may have been produced by the warring factions adapting their strategies to
each other’s with time-delays, which are not necessarily constant.
Do deaths and injuries follow some well known PD? To pursue the answer, we first

constructed the empirical PD from the data (monthly injuries and weekly deaths).
Next, using the total injuries (27 753) and deaths (3 355), we used the empirical density
to obtain the expected monthly injuries and expected weekly deaths. These are the
points in Figure 17.6. These points were obtained by constructing a density histogram
of the injury (death) data and then multiplying the total injuries (deaths) by each
density value. The sticks were obtained by calculating the mean, X and size, S, of
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Figure 17.2 Deaths by location (as of 10/10/2007).

the injury (death) data. These are the parameters of the negative binomial PD. The
S parameter is given by

S :=
X
2

V −X

where V is the variance of the data. See for example Evans et al. 2000. Statistical
Distributions. Wiley, 3rd edition. Albeit counting processes, both empirical densities
were over dispersed compared to the Poisson; the mean of injury per month was
smaller than its variance (514 vs. 60 577). Such was the case for deaths per week
(16 vs. 114). Over dispersion in counting processes arise from two main sources: the
Poisson intensity parameter varies over time or there are several Poisson PD with
different intensity values underlying the counts.
The Poisson PD process arises when events are scattered uniformly over time—

their timing is unpredictable—with some frequency. The negative binomial arises
under conditions similar to the Poisson, except that the variance of the former is
larger than its mean. For both injuries and deaths, the fit of the theoretical PD
(sticks in Figure 17.6) to the empirical PD (points in Figure 17.6) was such that we
could not reject the hypotheses that the counts were drawn from count rates that
obey the negative binomial PD.1 As the residuals disclose (Figure 17.5), part of the
over dispersion resulted from the time-varying intensity parameter of the Poisson.

1For the injuries, the results from the Pearsons’s Chi-squared test with simulated p -values
(based on 2 000 replicates) were χ2 = 19.41, p -value = 0.10. For deaths they were χ2 = 3.87,
p -value = 1.000 (degrees of freedom are not needed).
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Figure 17.3 The 11 deadliest locations (as of 10/10/2007) and their provinces;
compare with Figure 17.2.

Figure 17.4 Cumulative sum of injuries (upper sequence of points) and deaths (lower
sequence of points) with best fit linear models.
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Figure 17.5 Residuals of the linear regressions of cumulative injury and death rates
(see also Figure 17.4).

There is also a spatial contribution to the over dispersion—different locations may
have had different rates (see next section).
In short, the count of deaths per week and injuries per month remained random

(with the negative binomial PD) in the face of various efforts by the U.S. and its
allies to try a variety of military strategies and political and social policies. With the
given theoretical negative binomial PD, we can answer useful questions. For example,
in planning emergency services, one may ask: Let X be the weekly death (or injury)
rate in all of Iraq. What is the value of X such that 95% of the weekly deaths or injuries
will be expected to be ≤X? With the negative binomial, the answer is 37 deaths per
week. It was 974 injuries per month.2 Breaking down this analysis by locations (such
as provinces), one can achieve a refined planning of trauma treatment policies that
meet future needs. Similar results can be achieved with bootstrap methods. (Efron
and Tibshirani, 1993). However, it is nice to obtain significant fits to theoretical PD
for then comparisons with other wars are simplified.

2In R, the result is achieved with the statement qnbinom(.95, size, , mu) where size
= 2.63 and mu = 14.12.
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Figure 17.6 Empirical expected values (dots) and theoretical (sticks) for the negative
binomial PD.

Chronology by location

News media suggested that Iraqi MO adapt to Coalition military strategy. Wherever
Coalition forces concentrate, the MO shift their activities to other places. Let us see if
there is credence to this claim. We start by observing the cumulative deaths by the 11
deadliest locations (Figure 17.7). The bottom panel shows the full scale on the Dead-
axis. From it, three distinct groups of locations emerge (the top panel identifies them
by name). Baghdad stands on its own—a high death rate with some short periods of
lull here and there. Then come Fallujah, Ramadi and Al Anbar province. There, death
rates were constant for the first few months and then increased sharply, particularly
in Fallujah. In between these three and the lower bunch of six locations (Ba qubah,
Samarra, An Nasiriyah, Basra, Balad and Taji) stands Mosul. In the latter, the death
rate increased sharply, but then as the Kurds established their semi-autonomy, the
death rate slowed. The zoomed in view in the top panel allows us to identify in detail
periods of sharp increases in death rates by location. The fact that no clear overlaps
of these sharp increases emerge, leads us to conclude that various locations ebbed and
swelled in death and injury rates at different times. The question of how to quantify
potential synchronizations in the increase and decrease of death rates among locations
is addressed next.
Let S be the set of all daily dates, between 03/21/2003 and 10/10/2007. We denote

by # the cardinality (number of elements) in a set. So #S = 1665. Now denote by Ai,
i = 1, . . . , 11, the set of dates in which at least one death was reported from location
i (the locations are identified by name in Figures 17.2, 17.3 and 17.7 and for the
time being, their corresponding index is not important). These sets represent the
dates on which at least one death occurred. Data from dates in which Iraqi MO
attempted attacks and no deaths (but possibly injuries) occurred were not available
to us. The proportion of death-dates over the whole period for location i is given by
P (Ai) := #Ai/#S (here := denotes equality by definition). Similarly, P (Ai ∪Aj) :=
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Figure 17.7 Cumulative deaths in the 11 deadliest locations. Bottom - full scale;
top - zoomed on the Dead scale.

#(Ai ∪Aj)/#S and P (Ai ∩Aj) := #(Ai ∩Aj)/#S. The proportion of deaths at i,
conditioned on deaths at j is given by:

P (Ai|Aj) =
P (Ai ∩Aj)
P (Aj)

.

Large P indicate large proportions of events co-occurrence at locations i and j.
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We are not done yet for we need to integrate results from all locations and derive
some statistics that indicate whether the chronology of deaths in locations had been
different from random. We pursue this issue next. All of the P (Ai|Aj) can be presented
in an 11× 11 matrix where rows are indexed by i and columns by j. The matrix need
not be symmetric. The relative magnitude of the sum of row i (denoted by P (Ai|A∙)),
compared to all other rows, is interpreted as the amount of co-occurrence of deaths at
i given deaths in all other locations. Note that P (Ai|A∙) is not a proper marginal sum
because we have chosen a subset of locations (as shown in Figures 17.2 and 17.3).
The relative magnitude of the sum of say, column j (compared to all other columns),
reflects the “dependence” (co-occurrence) of deaths in all other locations on deaths
at location j. So constructing such a matrix might shed light on synchronizations
with respect to dates of deaths at locations. However, we must have some yardstick
of “randomness” to compare the results to—a null model so to speak.
To achieve such a yardstick, consider the set Aj fixed with respect to both its

cardinality and dates, for each #Ai fixed. If the events at location i are unrelated to
those at location j, then we can compute P (Ai|Aj) for fixed Aj , fixed #Ai (for i =
1, . . . , 11), but random dates for location i within the range of S. Repeating such a
simulation, say 1 000 times, for each pair Ai, Aj , we obtain the probability density of
a process that allows us to answer the following question:

A fixed number of events occur at location j on fixed dates. If a fixed number
of events occurred at i, but on random dates, what would be the probability
density of P (Ai|Aj)?

All dates are within the range of S. We can now compare our empirical P (Ai|Aj)
to the randomly generated PD of P (Ai|Aj) and determine if the former had been
random. A value significantly lower than expected indicates that events at i had been
negatively associated with events at j. A value significantly higher than expected
indicates positive association. Insignificant values indicate dissociation. Figure 17.8
illustrates the fact that none of the conditional proportions were significant. In other
words, deaths in any location had been independent of deaths paired with any other
location. Thus, we find no evidence for the claim that increased activity by the Coali-
tion forces in one location resulted in compensated increased activity somewhere else.
Because all paired conditional proportions were insignificant, it makes no sense to
pursue analysis of the marginal proportions.

17.1.4 Conclusions

In this section, we allow ourselves a few speculations. We are not military experts
and our conclusions should be taken with a grain of salt. Our results may be useful to
planners of medical (in particular trauma) treatment facilities. It seems that in spite
of various policies, both civilian and military, the underlying random processes of
death and injuries in time (for deaths and injuries) and place (for deaths) remained
unchanged. The belligerents adapted to each other’s military strategies with time-
delays. This may have produced alternating periods of increase and decrease (above
overall averages) in death and injury rates among the Coalition forces. Such periods
may result in false beliefs in military successes (or failures).
Given the ineffectiveness of various efforts by the Coalition forces to control the

magnitude of death and injury rates, it seems that no amount of realistic force can win
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Figure 17.8 Probability density of 1000 repetitions of P (Ai|Aj) (points) with 95%
confidence intervals.
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a war such as the WI unless... One is willing to brutally obliterate the infrastructure
upon which MO rely and in the process cause tremendous strife to the population at
large. Such was the case in the Second Chechen War.
This, along with our analysis of the Second Intifada, lead us to the following con-

clusions. To maintain activities, MO need resources. Explosives are expensive, people
need to be trained, transported, paid and so on. Perhaps an economic confrontation
might be more effective in resolving such wars (where by effectiveness we mean fewer
deaths and injuries); more so than military force. Regardless of military efforts, the
fact that small groups of MO can garner such power against large military forces
means that the grievances of MO (right or otherwise) should be addressed in ways
other than brute force.

17.2 A statistical profile of the second Intifada

We analyze the statistical properties of the so-called Second Intifada (SI). We call an
explosion triggered by a member (or members) of a Palestinian Militant Organization
(PMO) an event. Data about the number of deaths and injuries due to events between
9/27/2000 and 10/4/2003 (1 102 days), the period of the SI, are analyzed. During this
period, 278 events had occurred, 763 people died and 3 647 were injured. Of the PMO
that claimed responsibility for events, Hammas was the deadliest and Al Aqsa Martyrs
Brigades executed more events than any other PMO.
The fortnight death and injury rates fit the negative binomial probability density

(PD). Residual analysis revealed cycles in the swell and ebb of the rates of death,
injury and event. Because of adjustments by Israelis, the ratio of injuries to death per
event increased over time. The barrier that Israel constructed between the Palestinian
population in the West Bank and the Israeli population in Israel proper was associated
with a decrease in injury and death per event. Using the negative binomial, we find
that 95% of the events were expected to result in ≤28 deaths per fortnight and ≤157
injuries per fortnight. Knowledge of such values should be used in planning medical
facilities and treatment.
The statistical properties of the SI resembled those of the war in Iraq (WI), where

the negative binomial PD fit the death and injury rates and cycles of increase and
decrease in the death and injury rates were identified. In both the SI and the WI, the
cycles indicate adjustments of each side to the other’s strategy. The analysis cast doubt
on the ability of large armies to win such wars unless they are ready to implement
extreme violence, as the Russian did in the Second Chechen War (1999–2000).

17.2.1 Introduction

Two recent wars, the so-called Second Intifada (SI), 2000–2003, between Israel and
some Palestinian Militant Organizations (PMO) in the West Bank and the Gaza Strip
and the War in Iraq (WI), 2003-present, between the U.S. and its allies (called the
Coalition) and Iraqi Militant Organizations (IMO) have common characteristics: A
small number of individuals clash with large armies. Such wars may portend future
warfare and their statistical properties are worthwhile investigating. For example,
death and injury rates of members of the Coalition forces in the WI—due to hostile
activities—followed the negative binomial PD (see Section 17.1.3). Using this fact,
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we established that in the WI, one may expect that 95% of the deaths per week
would be ≤32 and 95% of the injuries per month would be ≤974. Such information
may be useful in planning emergency services. Also, some PD arise from well known
mechanisms. We can then draw conclusions about the random (statistical) processes
that underly such wars. Here we pursue a statistical profile of the SI. In Section 17.1,
we investigated the statistical profile of the WI. To many, the topic is emotional. To
avoid semantics from interfering with the analysis, we shall stick to neutral definitions.
At the core of our analysis are random events over time. An event is defined as an
explosion which in some cases kills its initiator or initiators. The explosion occurs at
a particular time and may cause any number of injuries or deaths (including none).
Thus, with these random events we associate a count (of deaths or injuries). We use
the word death to indicate fatalities, casualties and other such synonyms. Injuries are
defined as those people who were injured during an event, regardless of whether they
did or did not die later. Deaths and injuries are event related and they include both
Israelis and Palestinians. We define the barrier as the fence (wall) that was built by
Israel and physically separate the Palestinians in the West Bank from Israelis. We are
referring to neither its legality nor its location.

17.2.2 The data

Beginning on 9/27/2000, the Israeli Foreign Ministry has posted event related data:
dates, the number injured, the number dead and a short description of the event.3

The description included the PMO that claimed responsibility for the event. Occa-
sionally, the description detailed the number of dead or injured children and women.
Using these postings as a starting point, we cross checked the data with archives of
the New York Times, Washington Post, Lost Angeles Times and the London Times.
By 10/4/2003 (1 102 days later), a total of 278 events had been reported. Here are
the first three and last three records of the data:

Date Dead Injured Organization.1

1 9/27/2000 1 0 None

2 9/29/2000 1 0 None

3 10/1/2000 1 0 None

276 9/25/2003 1 6 None

277 9/26/2003 2 0 IJ

278 10/4/2003 19 60 IJ

Organization.1 refers to one (of potentially up to three) organizations that claimed
responsibility for a single event.

17.2.3 Results

The Second Intifada marked a period of high frequency of events. For our purpose, it
lasted between 9/27/2000 and 10/4/2003 (a total of 1102 days).

Overview

Of the 278 events, two organizations claimed responsibility for 19 identical events and
three organizations claimed responsibility for one identical event. Therefore, it seems

3http://www.israel-mfa.gov.il/mfa, last visited on 10/10/2003.
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Table 17.1 Acronyms and frequency of events by organi-
zation. The frequency is based on claimed responsibility.

Acronym Events Organization

None 145 None
AAMB 57 Al Aqsa Martyr Brigades
Hammas 43 Hammas
IJ 30 Islamic Jihad
PFLP 13 Popular Front for the Liberation

of Palestine
Tanzim 8 Tanzim
AQ 1 Al Quida
Hezbollah 1 Hezbollah
Total 298

that there was little confusion about “who did what”. Table 17.1 lists the organi-
zations (and their acronyms to be used). Claims were counted each time an organiza-
tion announced responsibility for an event. Therefore, the number of claims exceeds
the number of events by 20 (9% of all events). Except for the event by Al Quida (in
Kenya) and Hezbollah (from Lebanon), all of the events occurred either within Israel
proper or in the occupied territories (West Bank and the Gaza Strip). Also, all of
the events in Israel and the occupied territories ended with the initiator or initiators
dead.

Figure 17.9 Injured (thin) and dead (thick) run sequence during the Second Intifada.

The chronology of the events reveal potential cycles (Figure 17.9). However, nei-
ther death nor injury rates showed significant autocorrelations for various time-lags.
We shall return to this point soon. During the period reported, 763 people died and
3 647 were injured. Because published reports rarely include those who later died
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Table 17.2 Summary statistics for the number
of deaths per event by organization that claimed
responsibility. SE denotes standard error (standard
deviation/

√
n) and N denotes the number of events.

Claimed by Total dead Mean SE N

None 220 1.52 0.20 145
AAMB 169 2.96 0.47 57
Hammas 288 6.70 0.95 43
IJ 128 4.27 1.03 30
PFLP 25 1.92 0.40 13
Tanzim 10 1.25 0.16 8

from injuries, these numbers represent the minimum death toll. From Table 17.2
we learn that Hammas topped the list in the total number deaths for the events it
claimed responsibility for and the mean number of deaths per event, followed by IJ
and AAMB. The total deaths in Table 17.2 exceeds 763 because of the 19 events
where two organizations claimed responsibility and a single event where three did.
From Table 17.3 we learn that Hammas topped the list in the number of injuries per
event it claimed responsibility for, followed by IJ and AAMB. For the same reason as
above, the sum of the total number of injuries exceeded 3 647. For the reasons detailed,
the sum of the totals in Tables 17.2 and 17.3 should not be used to report the total
number of deaths and injuries. The question whether the differences in deaths per
event—among the organizations that claimed responsibility—are significant will be
addressed after we examine the PD of deaths and injuries per event.

Table 17.3 Summary statistics for the number injuries
per event, by organization that claimed responsibility.
SE denotes standard error and N denotes the number
of events.

Claimed by Total injured Mean SE N

None 724 4.99 1.57 145
AAMB 856 15.02 3.13 57
Hammas 1 688 39.26 6.67 43
IJ 707 23.57 5.13 30
PFLP 100 7.69 3.73 13
Tanzim 11 1.370 0.63 8

Event, death and injury rates

The cumulative sums of the number injured and dead diverged over the entire period
(Figure 17.10, left panel): the ratio of injured over dead increased. This may be
attributed to a more alert population and extra security measures. For example,
security guards at entrances to public places may prevent an event from occurring in
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Figure 17.10 Cumulative sums of dead and injured and events. A linear fitted line
is drawn to emphasize the changing trends in the rates.

a densely occupied area, where people close to the detonation point are likely to die,
but others, behind walls, counters and other barriers are not likely to be injured. For
the same reason, detonation outdoors is likely to kill fewer people because they are
scattered, but injure more because there are no barriers.
As the best fit linear models illustrate (the straight lines in Figure 17.10), the

averages of the death, injury and event rates were 0.748, 3.590 and 0.203 per day,
respectively (all with R2 > 0.97). Of course the high R2 are meaningless unless the
residuals are random, which is not the case (Figure 17.11). For both the death and
injury rates we can clearly identify three periods: Initial decline (until the beginning of
2002), a surge (until June 2002) and a final decline. Associated with the final decline
(but not necessarily its cause) is the beginning of the construction (in August 2002)
of the barrier. As was the case of the WI, the analysis of the residuals leads to two
conclusions. First, short-term observations of increase or decrease in death, injury or
event rates should not lead to long-term predictions. Second, the fluctuations in the
rates might have been produced by the warring factions adapting their strategies to
each other’s with time-delays. Unlike the WI, the alternating periods of increase and
decrease in death and injury rates can be associated with changes in strategies, such
as increasing the number of guards in public places and physical separation between
the populations. Regarding events (Figure 17.10, right panel), there had been short
periods of lulls in the rate of events. These are identified in Figure 17.12.
Do deaths and injuries follow some well known PD? To pursue the answer, we first

constructed the empirical PD from the data (all rates are on fortnight basis). Next,
using the total injuries (3 397), deaths (713) and events (225), we used the empirical
densities to obtain the expected fortnight rates. These are the points in Figure 17.13.
In R, the points in Figure 17.13 were obtained by constructing a density histogram
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Figure 17.11 Residuals of the linear regressions of cumulative injury and death rates
(see Figure 17.10).
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Figure 17.12 Frequency of events.

of the injuries (death) data and then multiplying the total injuries (death) by each
density value. The sticks were obtained by calculating the mean, X and size, S, of the
injuries and death bi-weekly rates. These are the parameters of the negative binomial
PD. The S parameter is given by

S :=
X
2

V −X

where V is the variance of the data. For events, we use the Poisson PD with mean
events per two-weeks was the intensity parameter (Evans et al., 2000). Albeit counting
processes, the empirical densities of injuries and deaths were over dispersed compared
to the Poisson. Results for the fortnight rates were:

Mean Variance

Injuries 45.712 3 075.013
Dead 9.507 86.559
Events 3.068 3.398

Over dispersion in counting processes arise from two main sources: the Poisson
intensity parameter varies over time or there are several Poisson PD with different
intensities underlying the counts. The Poisson PD process arises when events are
scattered uniformly over time—their timing is unpredictable—with some constant
rate.
Although the mean and variance of events were roughly equal, as we have seen

(Figures 17.10 and 17.12), one cannot expect the events to behave according to the
Poisson process. The negative binomial arises under conditions similar to the Poisson,
except that the variance of the former is larger than its mean. For both injuries and
deaths, the fit of the theoretical PD (sticks in Figure 17.13) to the empirical PD
(points in Figure 17.13) was such that we could not reject that hypotheses that the
counts were drawn from count rates that obey the negative binomial PD.4 As the

4χ2 = 1.854 and p-value = 1 for injuries; χ2 = 7.505 and p-value = 0.943 for deaths; and
χ2 = 46.593 and p-value = 0.000 for events. The p-values for the results from the Pearsons’s
Chi-squared were simulated (degrees of freedom are not needed).
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Figure 17.13 Empirical expected values (dots) and theoretical (sticks) for the neg-
ative binomial PD for injuries and deaths and Poisson for events.

residuals disclose (Figure 17.11), part of the overdispersion resulted from time-varying
rates.
In short, injury, death and event rates seemed to have surged and subside as

the warring sides were adjusting to each other’s strategies. The SI effectively ended
when Hammas declared a cease fire. Israeli daily newspapers5 consistently attributed
the decline in these rates in the last phase of the SI to the barrier. This is in sharp
contrast to the WI, where no single factor (except perhaps for the delays in adjustment
to each other’s strategies) could be associated with temporal changes in death and
injury rates.

Chronology by organization

During the period summarized, different organizations became active at different
times. Figures 17.14 and 17.15 lead to the following conclusions regarding unclaimed
events:

• Between 9/27/2000 and 3/1/2001, except for IJ on two occasions, organizations
did not claim responsibility for events. During this period, 43 events occurred.

• During this period, all of the events ended with mostly one death.
• In April 2002, the frequency of unclaimed events went down dramatically (but as
the right panel of Figure 17.10 illustrates, not the frequency of events).

5e.g. Ma’ariv, Ha’aretz, Yediot Aharonot and the Jerusalem Post kept reporting about
sharp decreases in the frequency of attacks in locations in Israel proper next to where the
barrier had been erected.
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Figure 17.14 Cumulative sum (by date) of the number of dead per event by orga-
nizations that claimed responsibility for the events.

Figure 17.15 Cumulative sum (by date) of the number of injuries per event by
organizations that claimed responsibility for the events.

In short, the organizations tended to claim responsibility for events that ended
with more than one or two dead. This indicates that events with multiple deaths were
regarded as a success by the claiming organization.
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Regarding the claimed events, we conclude from Figures 17.14 and 17.15:

• Of the organizations that claimed responsibility, AAMB claimed more events than
any other organization (see also Table 17.2).

• The events claimed by Hammas caused more deaths and injuries than any other
organization.

• Other than the events claimed by Hammas, the events claimed by AAMB and IJ
resulted in most deaths.

• The number of events claimed by PFLP and Tanzim were marginal.

Most events were claimed and except for three, a single organization claimed an
event. We can therefore assume that the claims were true. Obviously, executing an
event requires both people and resources. Therefore, we conclude that AAMB invested
the most during the Second Intifada, followed by Hammas. This conclusion does not
allow us to reject the hypothesis that AAMB, an organization associated with the
Palestinian Liberation Organization and therefore with the Palestinian Authority, was
the most funded compared to other organizations that regularly claimed responsibility
for events.
Also, IJ was the first organization to claim responsibility for an event (on

11/2/2000). The first event claimed by Hammas occurred 122 days later, on 3/4/2001.
The first event claimed by AAMB occurred 313 days after the first claimed event,
on 9/11/2001. This emphasizes the fact that in addition to executing more events
than any other organizations, AAMB also executed them at the highest frequency
compared to all other organizations.

17.2.4 Conclusions

The similarities between the WI and the SI are striking and the differences are instruc-
tive. In both wars we identify alternating periods of ebb and swell in the death and
injury rates (and events in the case of SI). These periods may have been related to
delays in the warring sides adjusting to each other’s change of strategy. However,
unlike the WI, we can identify particular strategies (e.g. the barrier) that the other
side needed to adapt to. In both cases, the fluctuations indicate long-term changes
(lasting on the order of months). Reliance on short terms changes to predict the tide
of these wars is therefore not warranted.
An interesting difference in the fluctuations of death and injury rates between the

SI and the WI is the synchrony in fluctuations in the latter. In the case of the SI,
the synchrony is not complete (see Figure 17.10). This reflects the fact that chang-
ing strategies by Israel and the PMO resulted in ever increasing ratio of injury to
death rates. In the case of the SI, the barrier is clearly associated with a decline in
death, injury and event rates. However, without the Hammas declaring cease fire that
effectively ended the SI, it is possible that the MPO would have adapted and the
cycle would have started again. This emphasizes the clichés that “wars do not solve
anything.”
Death and injury rates in both wars fit the negative binomial PD. In the case

of the WI, this leads one to expect 95% of deaths to be ≤37 per week and 974 per
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month respectively. In the case of the SI, the corresponding values are ≤28/2 = 14
deaths per week and 157 × 2 = 314 injuries per month. These results are important
for organizations that are in charge of planning emergency services, for they allow
response to anticipated rates of deaths and injuries.
We close with a personal opinion: Both wars indicate that even mighty military

forces cannot overcome small groups of local MO that are ready to use any means
to cause deaths and injuries. The exception is the Second Chechen War (1999–2000)
in which force used without restrain to achieve a goal (it remains to be seen for how
long) and which had been conducted without public scrutiny.
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map()

col, 465
fill, 465
regions, 465
world, 465

map.axes(), 465, 498
mapdata, 465, 498
mapply(), 76, 226, 230, 261
maps

map(), 498
maps, 465, 498
mar, 275, 287, 478
match(), 465
matrix()

byrow, 52, 123
dim(), 51
dimnames, 52
ncol, 52, 123, 305, 329
nrow, 52, 305, 329

matrix(), 51, 123, 305, 329, 343
max, 7
max(), 159, 269
mean()

na.rm, 19, 86, 264, 268, 319
trim, 260, 290

mean(), 8, 19, 86, 168, 201, 212, 213, 224,
260, 264, 268, 290, 319, 329, 372

median(), 259
merge(), 68
method, 275, 300, 354
mfrow, 79, 82, 139, 168, 179, 194, 215, 393,

403
mids, 84
midterm, 224
min, 7
min(), 394
MLE

fitdistr(), 162
optim(), 162

mle()
mle-class, 294

mle(), 293
mle-class, 294
mode

character, 27
function, 27
logical, 27
numeric, 27

mode, 13, 27
mode()

numeric, 13
mode(), 26, 27
Model L.R., 516
model.tables()

type, 505
model.tables(), 505

n, 354



576 R index

NA, 18, 22, 86, 264
na.rm, 19, 86, 264, 268, 319
names, 374
names(), 20, 66, 76, 86, 268, 272, 376, 389
names.arg, 80
NaN, 23
nCm(), 124
ncol, 123, 305, 329
nlme, 506
no.dimnames(), 33, 107, 123
noquote(), 54, 107, 123
normOrder(), 220
nortest, 225
nqd(), 40, 123
nrow, 305, 329
numeric, 27
numeric(), 13, 27

odbcClose(), 61, 62, 264
odbcConnect(), 61, 264
openg()

height, 39
pointsize, 39
width, 39

openg(), 39
optim(), 162
options

stringsAsFactors, 268
options()

continue, 37
datadist, 515
digits, 16, 37
prompt, 37
show.signif.stars, 37

options(), 16, 37, 39, 268, 515

p, 354, 363
package

agricolae, 480
base, 9, 10
binom, 354, 361
boot, 242
combinat, 123, 124
Design, 515, 531
detach(), 34
epitools, 63, 301, 304, 364
foreign, 60, 212
foreign(), 212
geoR, 103
gpclib, 103
granova, 473
gstat, 103
gtools, 125

Hmisc, 264, 300, 303, 327, 410
lattice, 89, 495
lmomco, 242, 284, 293
load(), 34
mapdata, 465, 498
maps, 465, 498
nlme, 506
nortest, 225
pgirmess, 492
RODBC, 60, 61, 264
simpleboot, 395
splancs, 33, 103
stats4, 293
SuppDists, 220, 491
survival, 33
UsingR, 239
verification, 533
xgobi, 36
xtable, 33

package, 9
packages, 33
paired, 394
pairs(), 35, 88, 272, 281
pairwise.complete.obs, 273
panel, 507
par()

mar, 275
mfrow, 79, 82, 139, 168, 179, 194, 215,

393, 403
par(), 79, 82, 139, 168, 179, 194, 215, 233,

269, 275, 393, 403
par.strip.text, 90
parpe3(), 242
paste()

sep, 18
paste(), 18, 40, 72, 80, 207, 238
pbeta(), 203
pbinom(), 150, 152, 218, 388
pch, 86, 160, 165, 191, 467
pchisq(), 194, 333, 363, 379
pdf, 40
pdouble.exp(), 190
permn(), 123
permutations()

repeats.allowed, 125
v, 125

permutations(), 125
persp()

col, 405
detailed, 405
expand, 405
gray90, 405
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phi, 405
shade, 405
theta, 405
ticktype, 405
xlab, 405
ylab, 405
zlab, 405

persp(), 405
perspective(), 35
pexp(), 187, 189
pf(), 382, 471
pgamma(), 201
pgeom(), 143
pgirmess

kruskalmc(), 492
pgirmess, 492
phi, 405
pKruskalWallis(), 491
PlantGrowth, 84
plnorm(), 199
plot functions

abline(), 109, 140, 186, 215, 254, 270,
306, 352, 356, 395

acf(), 277
arrows(), 189, 206, 297
axes, 467
axis(), 186, 238, 287, 297, 467
barplot(), 78, 478
boxplot(), 275, 374
coplot(), 35
density(), 530
dotchart(), 86
expression(), 139, 168, 179, 215, 238,

297, 467
h(), 168, 184, 191, 194, 201, 213, 233,

289, 306
hist(), 35, 82, 395
identify(), 36, 86, 256, 275, 290, 374
interaction.plot(), 502
italic(), 215, 238, 297
legend(), 36
lines(), 36, 141, 160, 168, 184, 191,

194, 234, 240, 289, 352
locator(), 36, 194, 533
map(), 465
map.axes(), 465
pairs(), 35, 88, 272
persp(), 405
perspective(), 35
plot(), 35, 88, 109, 139, 160, 179, 186,

191, 194, 206, 259, 356
plotmath(), 88, 139

points(), 36, 86, 165
polygon(), 36, 186, 297, 354
qqline(), 289, 393
qqnorm(), 289, 393
roc.area(), 533
roc.plot(), 533
text(), 194, 297
update(), 507
xyplot(), 89, 507

plot()
aov(), 475
axes, 186, 206, 238, 287, 297
box, 275
cex, 160, 467
cex.main, 297
col, 191
expression(), 88, 109
h, 140, 216
italic, 109
l, 109, 179, 186
lty, 194
lwd, 140, 179, 260
main, 160, 186
mar, 287, 478
pch, 160, 191, 467
run-sequence, 289
s, 150, 168, 292
stick, 140
type, 109, 140, 150, 168, 179, 186, 216,

259, 292
xlab, 109, 160, 179, 467
xlim, 179
ylab, 109, 160, 179
ylim, 109, 160, 179, 259
ylog, 356

plot(), 7, 35, 88, 109, 139, 160, 179, 186,
191, 194, 206, 259, 356

plotmath(), 88, 139
pnbinom(), 168
pnorm, 224
pnorm(), 209, 215, 218, 235, 266, 269, 331,

342, 345, 371
points()

cex, 165
pch, 86, 165

points(), 36, 86, 165, 269
pointsize, 39, 40
pois.approx

pt, 301
pois.approx(), 301
pois.byar(), 301
pois.daly(), 301
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pois.exact(), 301, 304, 364
Poisson.power(), 413
Poisson.sample.size()

alpha, 414
k, 414
power, 414
rho, 414

Poisson.sample.size(), 414
polygon()

col, 186, 209, 297, 354
gray90, 354
grey90, 186

polygon(), 36, 186, 209, 297, 354
pop.var.names, 78
pos, 55, 194
postscript, 40
power

bp(), 408
large sample, 341
Poisson.power(), 413
power.normal(), 403

power, 363, 414
power.normal()

alt, 403
power.normal(), 403
power.t.test(), 361
print(), 6
probs, 266, 306, 330
prompt, 37, 39
prop.test()

correct, 376
prop.test(), 376, 408
psignrank(), 394
pt, 301
pt(), 197
punif(), 179, 187

q(), 4
qbinom(), 163
qchisq(), 303, 328, 333, 364
qexp(), 188, 189
qf(), 382
qnorm(), 221, 295, 297, 300, 320, 321, 329,

342, 345, 373
qqline(), 222, 225, 289, 393
qqnorm()

main, 393
qqnorm(), 222, 225, 289, 393
qt(), 197, 327
quantile

probs, 266, 306, 330
qbinom(), 163

qchisq(), 328, 333, 364
qexp(), 188, 189
qf(), 382
qnorm, 221
qnorm(), 300, 320, 321, 329, 373
qt(), 197, 327
qunif(), 188

quantile(), 266, 269, 276, 306, 330
quape3(), 242
qunif(), 188

R, 395
random

choose(), 171
rbeta(), 223
rbinom(), 163, 238, 303
rchisq(), 194
rdouble.exp(), 190
rexp(), 188, 225, 229
rgamma(), 201
rmultinom(), 165
rnbinom(), 168
rnorm(), 213, 214, 254, 270, 382
rpois(), 240, 300
rt(), 197
runif(), 7, 19, 202, 329
sample(), 228, 234, 255, 257, 298, 306,

321, 329, 378, 472, 511, 512
set.seed(), 165, 168, 189, 201, 213,

225, 240, 257, 274, 293, 298,
321, 329, 372, 378, 382, 395, 405,
472

Random.user(), 10
range(), 261
rbeta(), 223
rbind(), 52, 160, 215, 219, 226, 269, 295,

373, 377
rbinom(), 163, 238, 303
rchisq(), 194
rdouble.exp(), 190
re.1w(), 495
read.csv()

sep, 86
read.csv(), 47, 85
read.dta(), 60, 212
read.ftable(), 63
read.table(), 464
read.table()

header, 48, 59, 76
sep, 47, 59, 76

read.table(), 47, 54, 59, 76, 268
read.xport(), 477
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recompute.power, 363
red, 168, 191, 254, 306
reg, 220, 221
regions, 465
rep(), 160, 389
repeat, 29
repeats.allowed, 125
replace, 304, 306, 329
replications()

data, 501
replications(), 501
reshape(), 65
residuals.lrm(), 533
rexp(), 188, 225, 229
rgamma()

scale, 201
rgamma(), 201
rho, 414
rm(), 38
rmultinom(), 165
rnbinom(), 168
rnorm(), 213, 214, 222, 254, 270, 382
roc.area(), 533
roc.plot(), 533
RODBC

odbcClose(), 61, 62, 264
odbcConnect(), 61, 264
sqlFetch(), 61, 264
sqlQuery(), 62
sqlTables(), 61, 62, 264

RODBC, 60, 61, 264
round(), 19, 145, 152, 160, 224, 266, 268,

269, 295, 321, 342, 373, 394
rpois(), 240, 300
Rprofile, 37
rt(), 197
rtest, 61
runif()

max, 7
min, 7

runif(), 7, 19, 109, 202, 329

s, 150, 168, 292
sample

Poisson.sample.size(), 414
sample.size.normal(), 405

sample()
replace, 304, 306, 329
size, 304, 329

sample(), 228, 234, 255, 257, 298, 304, 306,
321, 329, 378, 472, 511, 512

sample.size.normal(), 405

sapply(), 47, 76

save()

file, 256, 264

save(), 86, 256, 264, 268

saveg()

height, 40

pointsize, 40

width, 40

saveg(), 40

scale, 201

scan(), 59, 87

score, 47

sd()

na.rm, 264, 268

sd(), 213, 224, 234, 264, 268, 319, 329

sep, 18, 47, 76, 86

seq()

length, 179, 186, 189, 206, 345, 405

seq(), 179, 186, 189, 194, 201, 206, 216, 222,
238, 240, 254, 266, 269, 287, 345,
405

serif, 186

set.seed(), 109, 165, 168, 189, 191, 194,
201, 213, 214, 222, 225, 240, 257,
274, 293, 298, 321, 329, 372, 378,
382, 395, 405, 472, 498

shade, 405

shapiro.test(), 225, 226

show.signif.stars, 37

signed rank test, 393

simpleboot

boot.ci(), 395

two.boot(), 395

simpleboot, 395

sink(), 12, 13

size, 304, 329

sort()

decreasing, 202, 256

index.return, 256, 389

sort(), 67, 202, 256, 280, 389

source(), 11, 12, 472

south, 239

spearman, 275

special values

F, 22
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special values (continued)
FALSE, 22
Inf, 23
NA, 22
NaN, 23
T, 22
TRUE, 22

splancs, 33, 103
split(), 66, 77, 230, 272, 523
sqlFetch(), 61, 264
sqlQuery(), 62
sqlTables(), 61, 62, 264
sqrt(), 17, 212, 219, 225, 234, 319, 342, 373
stack(), 64, 71
start, 195
state.region, 76
stats4

mle(), 293
stats4, 293
stick plot, 140
stringsAsFactors, 50, 268
strsplit(), 72
student, 395
substr(), 72, 467
sum(), 15, 18, 47, 145, 146, 152, 160, 191,

300, 390
summary(), 242, 266
SuppDists

normOrder(), 220
pKruskalWallis(), 491

SuppDists, 220, 491
survival, 33
Sys.Date(), 50
Sys.time(), 50
system.time(), 231

T, 22
t(), 80, 107
t.test()

var.equal, 384
t.test(), 302, 384
table(), 48, 67, 159, 378, 499
tablename, 63
tail(), 47
tapply(), 76, 86, 467, 482, 523

levels(), 71
terror, 159
terror.by.Hamas, 141, 184
test

ad.test(), 225
Bonferroni(), 483
chisq.test(), 379

cor.test(), 274, 275
exact, 491
fisher.test(), 387
ks.test(), 224
LSD, 481
null, 484
pnorm, 224
prop.test(), 408
shapiro.test(), 225, 226
signed rank, 393
t.test(), 302, 384
var.test(), 383, 384
wilcox.test(), 390, 394

test.scores.rda, 393
text()

expression(), 206
labels, 194
pos, 194

text(), 194, 206, 297
theta, 405
ticktype, 405
tkbinom.power(), 362
tolower(), 72
toupper(), 72, 466
trellis.device()

color, 495
height, 495
width, 495

trellis.device(), 495, 507
trim, 260, 290
trisomy.rda, 518
TRUE, 13, 22, 78
ts(), 33, 88
TukeyHSD(), 484
two.boot()

M, 395
R, 395
student, 395

two.boot(), 395
two.sided, 354
type, 109, 140, 150, 168, 179, 186, 191, 216,

259, 292, 505
typeof(), 15, 26

union(), 69
unique(), 64, 497, 523
unlist(), 66, 123, 226
unsplit(), 66
unstack(), 64
update()

par.strip.text, 507
scales, 507
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update(), 507
us.income.rda, 259
use, 273
UsingR, 239
utf8ToInt, 68

v, 125, 254, 270, 297, 306, 356, 395
var

na.rm, 264
var(), 8, 201, 229, 230, 261, 264, 372
var.equal, 384
var.test(), 383, 384
vector()

is.na(), 18
length, 13
mode, 13

vector(), 13, 109, 202, 229, 233, 240
verification, 533

roc.area(), 533
roc.plot(), 533

vfont, 186
vfont(), 186

Warning message, 150
wells.info.rda, 272
wells.nucleotides.rda, 272
while, 29
who.by.continents.and.regions, 86
who.ccodes, 57, 78
who.pop.2000, 57, 78
who.pop.var.names, 57

who.fertility.mortality.rda, 264
width, 39, 40, 495
wilcox.test()

alternative, 391
paired, 394

wilcox.test(), 390, 394
Wilson, 300
win.metafile, 40
windows(), 34
world, 465
write.ftable(), 63

x11(), 34
XGobi, 36
xlab, 40, 84, 109, 139, 141, 160, 179, 306,

405, 467
xlim, 84, 179, 306
xname, 84
xtable, 33
xyplot()

cex, 90
panel, 507
par.strip.text, 90

xyplot(), 89, 495, 507

ylab, 40, 47, 82, 84, 109, 141, 160, 179,
405

ylim, 84, 109, 160, 179, 259, 306
ylog, 356

zlab, 405
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2× 2 tables, 536
Cn,k, 124
F , 197, 302

definition, 197
F distribution, 197
F -statistic, 469
F -test, 469
N , 270, 299
NS , 299
P (Z < z), 402
P−1 (p, bmθ)188
Pn,k, 122
R, 271
RS , 275
S, 262, 318
S[X], 212
S2, 262, 285
V (X), 228, 262
W , 392
W statistic, 391
WS , 392
Z, 192, 195, 207
Δ, 347
Γ , 197, 200
Φ(x), 207
α, 200, 296, 317, 328
β, 317, 343, 401
θ, 284

L, 161
χ2, 164, 303, 328, 363, 377

applications, 195
expectation, 194
variance, 194

δ(x), 143
∈, 137, 161, 314
λ, 141, 154, 184, 188, 189, 205, 225, 239, 291,

300
log, 161
R, 137, 284
R2, 271
Z+, 137, 163, 227
Z0+, 137, 143, 161
μ, 12, 192, 199, 205, 206, 468
μl, 241
μp, 238
/∈, 143, 314, 322
ν, 193
A, 314
X, 205, 228
φ(x), 207
π, 139, 205, 236, 290, 323
ρ, 272, 385
σ, 12, 200, 206
σ2, 192, 199, 262, 468
∼, 221
θ, 161

Statistics and Data with R:  An applied approach through examples         Y. Cohen and  J.Y.  Cohen
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εij , 468
∅, 98
P̂ (Y = 1, |X)521
α̂, 200
γ̂1, 192
γ̂2, 192

λ̂, 252, 328
μ̂, 192, 199, 212
π̂, 303, 377
σ̂, 200, 212
σ̂2, 192, 199, 262
,̂ 161, 521
222Rn, 290
eβ0 , 514
l, 205, 239
nS , 299
p, 205
p-value, 224, 330, 371, 379, 384, 516
p-values, 226, 331
t, 195, 301, 326, 332

applications, 197
expectation, 197
variance, 197

t-test, 469
xH , 320, 322, 329, 330
xL, 322, 329, 330
*, 20
*, 468
+, 20
-, 20
., 56
/, 20
H0, 314
LATEX table, 264
ˆ, 20
3D, 405

A, 125
aborigines, 463
accused, 316
action, 314
action level, 290
adenine, 125
adjust, 323
Afghanistan, 542
Africa, 276, 374
age, 81, 298
age at sentencing, 319, 402
age class, 517
age-adjusted rate, 291
AIDS, 316
air quality, 464

Al Anbar province, 548
Al Aqsa Martyrs Brigades, 552
alleles, 164
alternative hypothesis, 314, 320
amino acids, 125
An Nasiriyah, 548
Analysis of residuals, 533
Anderson-Darling, test, 223
anesthetics, 315
animals, 214
ANOVA, 463

F -statistic, 469
F -test, 469
αi, 469
μ, 468
assumption, 464, 468, 469
balanced design, 464, 471
between-subject, 492
Bonferroni, 477
contrasts, 487
df, 477
diagnostics, 480
fixed-effect, 463
fixed-effects, 488
group, 469
group mean, 469
LSD, 477
main effect, 496
nested, 496
non-parametric, 488
notation, 467
null hypothesis, 469
one-way, 463
one-way random-effects, 492
Paired comparisons, 477
post-hoc, 475
random-effects, 469
response variable, 469
Sum of Squares, 470
table, 473
two-way, 463, 495
ubalanced design, 471
unbalanced design, 464
Within MS, 470
Within SS, 470
within-subject, 492

Anscombe, 1948, 167
approximation, 239
arbitrary densities, 304
arbitrary density, 313, 329
arbitrary parameter, 329
arbitrary parameters, 304
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area, density, 185
argument, 4, 7, 31
arithmetic operators, 20
armed conflicts, 542
Armenia, 78
armies, 542
array()

attribute, 51
construction, 52
dimension, 51

arrays, 51
arrival rate, 239
assumption, 313, 464
astronomy, 153
asymptotic, 286, 301
asymptotic properties, 286
Atlantic sharpnose, 350
Australian, 463
Austria, 78
autocorrelation, 543, 554
autocorrelation function, 277

Ba qubah, 548
Baghdad, 177, 548
Balad, 548
balanced design, 464, 471
bar plot, 77
bar plots, 477
barrier, 553
basal metabolic rate, 304
Basra, 548
Bayes estimators, 284
Bayesian, 111
beak length, 369
Becker et al, 1988, 3
Becquerel, 290
Belarus, 374
Belgium, 500
bell curve, 12
Bell Laboratories, 3
belligerents, 550
Berger, 85, 202
Berlin, 464
Bernoulli, 138

distribution, 142
experiment, 147
trial, 106, 142

Bernoulli experiment, 108, 299
best, 286
best estimate, 369
best fit, 556
best-fit line, 220

beta, 201
applications, 202
function, 196, 198, 202
function, incomplete, 198
function, regularized, 202
gamma, 200
mean, 202
ratios, 202
regularized function, 198
variance, 202

between-subject, 492
bias, 284
bias-correct, 243
bigot, 325
bill lengths, 220
binary outcome, 513
binomial, 205, 236, 288, 290, 299–302, 313,

323, 327, 380
coefficient, 148, 171
density, 149
distribution, 149
expected value, 151
mean, 163
MLE, 163
Poisson approximation, 155
variance, 151, 163

biology, 153
birch, 492
bird tagging, 317
birds, 111
birth, 167, 372
birth rate, 86, 239
birth weight, 537
bivariate, 55
Blackchin shiner, 512
blacks, 321, 372, 402
Bliss and Fisher, 1953, 167
blond, 299
blood pressure, 373, 495
BMR, 304
body mass, 304
Bonferroni, 477, 482
bootstrap, 235, 242, 304, 313, 326, 329,

365, 394
confidence interval, 304
confidence intervals, 329
implementation, 304
repetitions, 305

Box and Jenkins, 76, 276
box plot, 275
box plots, 251, 275
braces, 39
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brute force, 552
Buckland et al. (2001), 81
burden of proof, 314
Bush, 46
Byar’s formula, 364

C, 125
Calliope, 120
calories, 265
cancer, 356
cancer rate, 239
cancer, crude rate, 292
canopy shading, 511
capital punishment, 63, 298, 321, 322, 372,

378, 402
cardinality, 548
casualties, 233, 252, 277
catch, 328
catch rate, 332
categorical, 77, 195
categorical data, 45
cautious action, 316
CDC, 477, 488
central limit theorem, 232, 241, 283, 290,

295, 299, 326, 342, 370
central moment, 241
central processing unit, 231
Chakravarti, 67, 223
Chambers and Hastie, 1992, 3
Chambers, 1983, 251
Chambers, 1992, 56
Chambers, 1998, 3
chance experiment, 106
character, 15
characters, 17
Chebyshev’s rule, 251, 267
Chechen, 542
chi-square, 193
children, 553
children mortality, 262
chromosomes, 517
chronology of deaths, 550
chronology of the events, 554
Cleveland 1985, 85
climate change, 87
clumps, 167
clutch size, 327
CO, 502
CO2, 87
Coalition forces, 541, 543
Cod, 278
codons, 125

coefficient of variation, 265
coercion, 27
color, 80
column bind, 52
column effect, 501
combination, 124
combinations, 123
comment, 11
complement, 314
compound event, 177
conditional probability, 115, 116
conditional proportions, 550
confidence coefficient, 294, 296, 323, 328, 376
confidence interval, 243, 294, 296, 300, 395

t, 301
arbitrary densities, 304
arbitrary parameters, 304
asymptotic, 301
binconf(), 327
bootstrap, 304
exact, 302
large sample, 295
normal, 296
Poisson, 300
proportions, 299
ratio, 298
small sample, 301
two samples, 373
two samples, intensities, 380
two samples, proportions, 375
variance, 382
Wilson method, 302

confidence intervals, 242, 326, 329, 507, 522
consistency, 286
construct, 229
contingency tables, 195, 386, 538

two samples, intensities, 379
two samples, proportions, 377

continuation line, 11
continuity correction, 323, 352, 375
continuous, 49
contradictory hypotheses, 314
control, 394, 410
convicts, 319
Cornwall, 291
correlation, 251
correlation coefficient, 269
correlation coefficient, properties, 273
count, 161
countable, 137
counting, 153
counting process, 545
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counts, 239, 300, 378
court, 314
court of law, 316
covariance, 521
covariate patterns, 525
covariates, 511
coverage probability, 294
CPU, 231
CPUE, 357
crime, 288
critical value, 320, 322
cross classification, 537
crude rate, 291
cumsum(), 472
customize, 36
cut-off probability, 529
CV, 265
cycles, 552, 554
cytosine, 125

daily maximum temperature, 277
daily visits, 314
Dalgaard, 2002, 3
darts, 315
data

bivariate, 55
categorical, 45, 77
CDC, 477
factor, 47
multivariate, 55
numerical, 49, 77
ordinal, 48
SO2, 469
tables, 55
univariate, 55
WHO, 57

data frame, 54, 264
data frames, 26
data import, 85
data subset, 18
database, 55, 264
date of birth, 298
date-arithmetic, 542
dates, 50
DBF, 60
DBMS, 58
death, 155, 167, 372
death penalty, 319, 369, 375
death rate, 86, 541
death sentence, 514
deaths, 304
deaths per week, 547

decay, 290
decision making, 151, 352
deduction, 251
default values, 10
definition

F , 197
χ2, 193
p-values, 331
H0, 314
age-adjusted rate, 291
beta density, 201
beta distribution, 202
binomial density, 149
binomial distribution, 149
continuous density, 180
continuous distribution, 177
crude rate, 291
discrete density, 138
discrete distribution, 141
double exponential density, 189
double exponential distribution, 190
Euclidean product, 271
exponential density, 181
exponential distribution, 180
gamma, 200
geometric density, 140
hypergeometric, 169
independent sample, 227
kurtosis, 192
likelihood function, 161
logistic transformation, 513
logit transformation, 513
lognormal, 198
mean squared error, 285
MLE, 162, 284
mode, 260
multinomial, 164
negative binomial, 166
normal density, 191, 205
normal distribution, 206
null hypothesis, 314
odds ratio, 512
One-way ANOVA, 468
Pearson’s population ρ, 272
Pearson’s sample R, 271
Poisson, 154
power, 341, 344
probability, 111
quantiles, 221
random variable, 128
range, 261
sample, 227
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definition (continued)
sample variance, 261
sampling density, 228
skewness, 192
standard error, 233
standard normal, 192
Standardized Pearson residual, 534
statistic, 228
Type I error, 316
Type II error, 316
uniform density, 180
uniform distribution, 179
variance, 146

degrees of freedom, 164, 193, 301, 302, 326,
328

delays, 561
demographics, 477
Dennett, 95, 97
densities, 283
density, 138, 283

area, 185
continuous, 180
discrete, 138
empirical, 160
family, 284
sampling, 283

density, continuous
F , 197, 302
χ2, 164, 303, 328, 363, 377
t, 195, 301, 326
beta, 201
chi-square, 193
double exponential, 189
expected value, 183
exponential, 141, 181, 225, 229, 260, 292
gamma, 200
Laplace, 189
lognormal, 198
normal, 12, 186, 191, 205
Pearson type III, 242
properties, 182
standard deviation, 185
uniform, 180
variance, 185

density, discrete
binomial, 149, 205, 288, 290, 300, 327
empirical, 140
expected value, 145
geometric, 138, 140
histogram, 140
hypergeometric, 169
multinomial, 163

negative binomial, 166, 252, 541
Poisson, 154, 205, 218, 239, 240, 252,

288, 291, 328
properties, 144
standard deviation, 147
variance, 146

density, sampling
t, 332
construct, 229
intensities, 239
intensity, 239
mean, 232, 234, 301
proportion, 235
statistic, 229
variance, 229, 241, 242, 292

Department of Defense, 233, 252, 543
Department of Justice, 63
depth, 531
detectable difference, 341, 342, 349, 404
detectable distance, 356
deviance χ2 statistic, 527
Deviance residual, 527
deviance residual, 533
df, 194, 477
diagnostics, 480, 511, 534
dimension, 51
dimension names, 160
dimension vector, 51
diploid, 164
Dirac delta, 143
disasters, 542
discrete, 49

density, 138
discrimination, 324
disjoint, 112, 113
disjoint events, 105
distance, 81
distribution, 188

continuous, 177
discrete, 141
empirical, 191
estimated, 191
inverse, 187, 188
properties, 144

distribution, continuous
F , 197
t, 195
beta, 201
chi-square, 193
double exponential, 189
exponential, 180
gamma, 200, 364
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lognormal, 198
normal, 191, 266
pf(), 471
properties, 181
uniform, 179

distribution, discrete
Bernoulli, 142
binomial, 149
construction, 142
Poisson, 154

DNA, 125
DOB, 298
domain, 128
dot charts, 275
dot-product, 145
double exponential, 189

application, 190
definition, 189
parameter estimation, 190
standard, 189

Down’s syndrome, 517
drinking water, 272
drug, 316
dry weight, 275
DSN, 61
duality, 323

EDA, 251, 272, 275
box plots, 251
Chebyshev’s rule, 251
correlation, 251
empirical rule, 251
graphical methods, 252
histograms, 251
lattice plots, 252
mean, 253
Q-Q plots, 251
run-sequence plots, 252
scatter plots, 252

education, 242, 514
efficiency, 286
Efron and Tibshirani, 93, 235
elections, 46
element, 14, 18
elementary event, 105
elementary events, 112
elements, 98
elk, 190
emergency room, 239, 314, 363
emergency service, 542
emergency services, 547
emission, 154

empirical density, 140, 160, 239, 266, 544
empirical distribution, 191
empirical probabilities, 523
empirical rule, 251, 268
empirical sampling density, 304
empty set, 98
encounter rate, 380
engineering, 153
England, 121
enrollment, 288
enumerated types, 45
EPA, 347
epidemiology, 304
equidistant, 84
erectile dysfunction, 342
error

Type I, 316
Type II, 316

error term, 501
escape characters, 84
escape key, 258
estimate, 283

interval, 294
estimated distribution, 191
estimator

asymptotic properties, 286
best, 286
consistency, 286
efficiency, 286
precision, 285
unbiased, 285, 293
variance, 286

ethnicity, 463, 478, 482
EU, 464, 496
Euclidean plane, 271
Euclidean product, 271
Europe, 275, 374
European Commission, 353
evaluate, 88
Evans et al., 2000, 137
Evans, 2000, 104
event, 104, 140

compound, 177
dependent, 116
elementary, 105, 107
independent, 116
simple, 138
space, 138

event space, 104
events, 227

dependent, 120
independent, 120, 154
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events (continued)
rare, 154

evidence, 324
evolution, 97
exact, 302
exact method, 327, 363
exact methods, 242
Excel, 85
exceptional residuals, 533
excessive force, 542
exclosures, 492
execution time, 230
exhaustive hypotheses, 314
expected value, 183

binomial, 151
continuous density, 183
discrete rv, 145
exponential, 183
geometric, 146
Poisson, 156
uniform, 183

experiment, 140
Exploratory Data Analysis, 251
explosion, 553
exponential, 200, 225, 229, 260, 292

expected value, 183
gamma, 200
random, 188
variance, 185

exponential density, 141, 181
histogram, 184

exponential distribution, 180
exposure studies, 511
expression, 11
expression(), 467
extended real line, 128
extract elements, 20
extreme values, 257

factor, 45, 47, 89, 159, 230, 272
ordered, 463

factorial, 122
factors, 463

ordered, 48
faculty, 255, 260, 288
Fallujah, 548
false positive, 114
family, 284
feeding, 182, 186
females, 313
fetus, 517
finite variance, 232

First Chechen War, 542
First Intifada, 542
fish, 235, 328, 347, 511
fish meals, 348
Fisher’s exact test, 386
fisheries, 357
fit, 161
fixed-effects, 463, 488
floor, 143
Florida, 46, 347
flu, 407
fluctuations, 556
formula, 89, 275
formula, ∼, 221
Fox, 2002, 3
France, 121, 507
frequentist, 111
function, 4, 30

argument, 7
argument order, 32
code, 39
optional argument, 31
required argument, 31

G, 125
galaxies, 153
Gallup Poll, 375
gamma, 200, 364

α, 200
σ, 200
α̂, 200
σ̂, 200
applications, 200
beta density, 200
expectation, 200
exponential, 200
lifetime, 200
scale parameter, 200
shape parameter, 200
variance, 200

gamma density, 193
gamma function, 167, 193, 200
Gelman, 95, 202
gender, 81, 496
generalized likelihood ratio, 516, 524, 531
generate levels, 230
genes, 123
Genmany, 465
genome, 125
genotypes, 164
geographic location, 543
geometric
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density, 138
expected value, 146
variance, 147

geometric density, 138, 140
Germany, 507
Gini Coefficient, 260
global minimum, 293
goodness of fit, 525
goodness-of-fit, 195
Gore, 46
graduation, 76
grand jury, 324
graphical methods, 252
graphics device, 34, 139
graphics driver, 34
grasses, 313
Green Bay Packers, 119
ground water, 272
group, 469
group adjusted, 528
growth rate, 267, 276
guanine, 125
guilty, 314

Ha’aretz, 559
habitat, 164, 511
habitat type, 512
half-life, 290
Hamas, 183, 292, 552, 561
Hardy-Weinberg, 164
heart attack, 373
heavy tails, 289
height, 255
Help, Console, 8
herbivores, 492
hierarchical, 501
hinge, 276
histogram, 240

exponential density, 184
histogram density, 140
histograms, 81, 251
homeless, 259
hospital, 314
household income, 478, 483
HSD, 483
Html help, 5
hummingbirds, 120
hypergeometric, 169

applications, 170
mean, 170
variance, 170

hypertension, 373

hypothesis, 313
hypothesis testing, 314

arbitrary density, small sample, 329
arbitrary parameter, small sample, 329
binomial, small sample, 327
critical value, 322
intensities, 313, 324
intensities, small sample, 328
large sample, 313, 318
lower-tailed, 326, 328
mean, 318
mean, small sample, 326
means, 313
means two small samples, 384
Poisson, 332
Poisson, small sample, 328
proportions, large sample, 323
proportions, small sample, 327
ratios, 313
small sample, 313, 326
two samples, 371
two samples, intensities, 379
two samples, mean, 370
two samples, proportions, 375
two-tailed, 326, 328
upper-tailed, 326
variance, 382

identically distributed, 232
IIEF, 342
immigration, 167
implementation, 304
import, 212, 264
income, 463, 482
incomplete beta, 202
incomplete beta function, 198
incomplete gamma function, 193
independent events, 116
independent sample, 227
independent variable, 463
index vector, 18, 51, 160, 264
induction, 251
inference, 521
inferential statistics, 313
infimum, 355
infinity, 23
influence, 533
infrastructure, 552
initial guess, 293
initial guesse, 293
injuries, 541
injuries per month, 547
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inmates, 321, 378
innocent, 314, 316
insect-eating, 304
Insectivora, 304
installation directory, 37
integers, 137
integration, 185
intensities, 239, 240, 313, 324, 328
intensity, 153, 239, 291, 303, 318, 356
interaction effect, 501
interquartile range, 221, 265
interval, 159
interval estimate, 283, 294
introduction to R, 5
inverse distribution, 187
inverse logit, 513
invest, 314
Iowa, 327
IQ, 325
IQR, 265, 267
Iraq, 233, 252, 541
Irish Sea, 278
Israel, 353, 541, 554
Israelis, 140, 552
italic, 139
Italy, 465, 502

Jaynes, 2003, 111
Jerusalem Post, 559
Johnson et al., 1995, 137
Johnson, 94, 192
joint probability, 164
judge, 324
Julian, 233
Julian day, 67, 141, 542
jurors, 112

K-S test, 223
Keeling 2003, 87
Kolmogoroff, 1956, 111
Kolmogorov-Smirnov, 223
Kotz et al., 2000, 137
Krebs, 1989, 167
Kruger, 214
Kruskal-Wallis, 488
Kruskal-Wallis multiple comparisons, 491
Kurds, 548
kurtosis, 192

L-moments, 284
Lader and Meltzer, 2002, 151, 217
lag, 277
lag plots, 275, 276

lags, 543
Lake of the Woods, 328, 332
Laplace, 189
large sample, 295, 313, 318, 324
large samples, 234
Latitude, 465
lattice plots, 88, 252
law of large numbers, 111
lead, 373
lead in gasoline, 373
level, 89
levels, 47
leverage, 533
lifetime, 200
light gray, 80
likelihood, 519
likelihood function, 161, 285, 513, 520
limiting density, 232
line, best-fit, 220
linear contrasts, 484
linear model, 221, 514
linear regression, 463
lion, 388
lions, 163
list, 52, 226, 376

length, 53
lists, 26
litter size, 313
Liverpool Bay, 278
lm(), 475
location, 192, 206, 252
location invariance, 370
log likelihood, 285, 520
log odds, 516, 522
log-likelihood, 293
logical, 13
logical value, 22
logical vector, 78, 372
logistic regression, 522
logistic transformation, 513, 522
logit transformation, 513
lognormal, 198

μ, 199
σ2, 199
μ̂, 199
σ̂2, 199
applications, 199
standard, 199

London, 291
London Times, 553
longitude, 465
loop, 240
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Lost Angeles Times, 553
lower quartile, 265
lower-tailed, 318, 326, 328, 346, 359, 371
LSD, 477
lung cancer, 290
lung damage, 290

Ma’ariv, 559
Madrid, 464
main effect, 496
male, 236
mammalian, 306
management, 314
Mann-Whitney U, 389
MANOVA, 495
mapping, 128
maps, 464
marital status, 496
mark recapture, 235
maternal age, 517
matrices, 51
matrix construction, 52
maximize, 520
maximum likelihood, 162, 284
McLaughlin99, 1999, 137
mean, 232, 234, 253, 254, 301, 318, 326
Mean squared error, 285
mean

income, 259
MLE, 254
population, 254
sample, 254
trimmed, 260

means, 313
median, 221, 258, 276, 365, 388

income, 259
U.S. income, 259

medical facilities, 552
mercury, 347
metabolic rate, 304
Mexican American, 481, 483
MFA, 2004, 140
mice, 394
militant organizations, 542
military, 233
military successes, 550
minimize, 293
minimum detectable difference, 401
Minitab, 60
Minneapolis, 327
Minnesota, 328, 511
Minnesota Vikings, 119

miscarriage, 517
miscarriages, 517
missing values, 264
mist nets, 107
mixed-effects, 507
MLE, 161, 162, 195, 284, 293, 519, 524

binomial, 163
multinomial, 164
numerical estimate, 293
Poisson, 163

MLE estimator, 162
MLE Poisson, 162
MO, 542
mode, 15, 260

character, 15
numeric, 15

moments, 242, 284
monotonic, 161
Monte Carlo simulation, 188
mortality, 262, 264
Mosul, 548
Mozart, 147
MSE, 285
Multi-Racial, 481
multinomial, 163

applications, 164
MLE, 164

multiplicative rule, 117
multivariate, 55, 163
murder, 375
murder rate, 240
murder rates, 239
mutation, 412
mutations, 154, 156
mutually exclusive, 314
MySQL, 61

NA, 372
named arguments, 10
Nashville warbler, 81
NATO, 542
negative binomial, 166, 252, 541, 545,

552
applications, 167
mean, 166
variance, 166

negative relationship, 271
nested, 496
nested hypothesis, 524
Nested models, 524
neuron, 202
neurons, 154
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neuroscience, 154
neurotoxin, 373
New York, 56
New York Times, 553
News media, 548
no relationship, 271
Non-Hispanic Black, 481
Non-Hispanic white, 483
noncountable, 137
nonparametric, 388, 392, 488
nonparametric statistics, 195
normal, 205, 266, 296, 301, 313

μ, 192
σ2, 192
γ̂1, 192
γ̂2, 192
μ̂, 192
σ̂2, 192
approximation, 239
approximation to the binomial, 299
approximation, binomial, 215
approximation, discrete, 214
approximation, Poisson, 218
area, 186
confidence interval, 296
density, 191
distribution, 191
fit, 214
kurtosis, 192
location, 206
Poisson, approximation, 300
scale, 206
scores, 220
skewness, 192
standard, 206, 207, 220, 301
testing, 220

normal approximation, 359
normal curve, 12
normalization, 58
North Sea, 278
Northern Europe, 264
Not a Number, 23
Not Available, 22
nuclear power, 356
nucleotide, 125
null hypothesis, 314
null set, 98
numeric, 15
numerical, 49, 77
numerical optimization, 162
numerical techniques, 521

object, 37

Octave, 60
ODBC, 60
ODBC driver, 61
odds ratio, 512
one-way, 463
One-way ANOVA, 468
one-way random-effects, 492
operator

*, 20
+, 20
-, 20
/, 20
ˆ, 20

order, 306
ordered, 48, 463
ordinal, 48
ornithology, 117
Other Hispanic, 481
Otter Tail, 512, 529
outcome, 104
outlier, 374
outliers, 257, 274, 284
over dispersion, 545, 558
overdispersion, 167
ozone, 56

packages, 33
paired, 384, 393
paired comparison, 385
Paired comparisons, 477
paired design, 385
paired interactions, 88
paired signed rank, 388
pairwise, 369
Palestinian, 541, 552
Palestinian Liberation Organization, 561
Palestinians, 236
Papoulis, 1965, 104
parameter, 283

population, 283
parameter space, 293
parameters, 161
Park, 324
particles, 154
patients, 239, 316
PD, 542
peace, 353
Pearson χ2 statistic, 526
Pearson residual, 526, 533
Pearson type III, 242
Pearson’s population ρ, 272
Pearson’s sample R, 271
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periodicities, 543
permutation, 122
permutations, 124
physics, 153
Plaice, 278
plaintiff, 324
plant communities, 492
plant growth, 83
plants, 300
plausible, 313
plot margins, 275
plots, 300
plotting

tick labels, 467
tick marks, 467

PMO, 552
point estimate, 325
Poisson, 154, 205, 218, 239, 240, 252, 288,

291, 300, 301, 303, 313, 324, 328,
332, 363, 380, 411, 545, 558

confidence interval, 300
expected value, 156
mean, 163
MLE, 162, 163
mutations, 156
normal approximation, 324
power, 356
sample size, 358
variance, 157, 163

Poisson, two samples, 411
pollutant, 369
pollution, 469, 496
polygon, 186, 297
polygon

vertex, 186
pooled comparison, 385
pooled variance, 380, 477
poor, 259
population, 155, 205, 283

parameter, 283
population covariance, 271
population mean, 254, 318
population variance, 212, 261
positive relationship, 271
possibility space, 104
post-hoc, 475
postgresql, 61
power, 341, 344, 359, 401

detectable difference, 342
lower-tailed, 346, 359
mean, for, 342
Poisson, 356

Poisson, two samples, 411
profile, 402
proportions, 352, 407
small sample, intensities, 363
small sample, mean, 359
small sample, proportions, 361
two means, 401
two-tailed, 346, 360
upper-tailed, 346, 360

power profile, 344
power set, 98
precision, 285
predictions, 522, 556
premature death, 373
presence, 511
prey, 163
probability, 97, 111, 217

addition rule, 119
axioms, 111
Bayesian, 113
conditional, 113, 115, 120
coverage, 294
definition, 108
joint, 115
left-tail, 217
multiplication rule, 120
properties, 111
rejection, 320
right-tail, 217

probability densities, 542
probability plots, 221
profile, 402
projects, 37
properties

continuous densities, 182
continuous distributions, 181

proportion, 235, 318
proportions, 299, 323, 327, 352, 407
prosecutor, 314
prostate cancer, 342
prostatectomy, 342
protein, 125
pseudo-random, 109
public opinion, 318, 353

Q-Q plot, 221, 503
Q-Q plots, 251
quantile, 187, 189
quantile-quantile plot, 221
quantiles, 221, 242, 297, 329
quartile, 276

Ra224, 272



596 General index

Ra226, 272
Ra228, 272
race, 321
radioactive, 290
radionucleotides, 272
Radon-222, 290
Ramadi, 548
random

exponential, 188
random errors, 468
random events, 553
random mating, 122, 124
random numbers, 7, 109
random sample, 257
random variables, 127
random-effects, 469
range, 128, 261, 404
rank, 274
rank sum, 388
rank-sum, 488
rate, 154
rates, 239
ratio, 236, 298, 382
ratios, 202, 313
real line, 127
real number, 128
real numbers, 137
reasonable doubt, 314
recycle, 82
reelection, 318
region, 264
regions, 465
rejection probability, 320
relationship

negative, 271
no, 271
positive, 271

relative frequency, 111
repeat measurements, 492
repetitions, 305
Residual analysis, 552
residuals, 543, 545
response variable, 469, 511
reward, 317
rich, 259
risk, 538
RNA, 125
RNA Codon Table, 125
robust, 284
ROC curve, 529
Rodentia, 304
rodents, 304

Roma, 464
Ross, 1993, 137
row bind, 52
run sequences, 543
run-sequence, 289
run-sequence plots, 252
rural, 505
Russia, 542
rv, 127

S, 60
sage sparrow, 301
Samarra, 548
sample, 205, 227, 283

bias, 284
covariance, 271
density, 229
independent, 227
intensity, 205
large, 318
mean, 192, 205
proportion, 205
size, 341, 349, 401
size profile, 352
size, intensity, 356
size, lower-tailed, 349
size, Poisson, 358
size, proportion, 409
size, proportions, 355
size, two means, 404
size, two samples Poisson, 414
size, two-tailed, 350
size, upper-tailed, 349
small, 301, 326, 359
small binomial, 301, 302
small normal, 301
small Poisson, 301, 303
small size for intensities, 364
small size for proportions, 362
small unknown density, 301
small, power, 359
small, size, 360
space, 104
standard, 212
standard deviation, 318
statistic, 313
two small, intensities, 387
two small, proportions, 386
two small, unknown density, 388
two, bootstrap, 394
two, small, 380
two, variance estimate, 380
variance, 212, 261, 285
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sample size, 360
mean, 342

sampling, 118, 283
densities, 205, 283
density, 197, 228, 234, 283
rule of thumb, 119
space, 205
with replacement, 118, 121, 304
without replacement, 118

sampling density, 301, 318, 329, 345, 375
sampling space, 314
SAS, 60, 477
Saudi Arabia, 121
scale, 192, 206, 252
scale parameter, 200
scatter plot, 35, 86
scatter plots, 252
Scheffé, 487
scores, 220
script, 11, 231
SE, 318, 373
Second Chechen War, 542, 552
Second Intifada, 140, 541, 552
security guards, 555
seed bank, 115
semi-autonomy, 548
semicolon, 11
sensitivity, 529
sentencing, 298, 372
sequence, 6, 160
set, 98

countable, 137
noncountable, 137

sets
associativity, 99
commutativity, 99
complements, 102
difference, 102
disjoint, 101
distribution, 101
equality, 99
intersection, 100
mutually exclusive, 101
sum, 103
transitivity, 98
union, 99

shape parameter, 200
Shapiro, 65, 223
Shapiro-Wilk, 225
Shapiro-Wilk test, 223
sharks, 347
sheep, 167

SI, 552
side effects, 316
signal processing, 529
signed rank, 392
significance, 323
significance level, 317, 328, 341
significance, common sense, 325
Sildenafil citrate, 342
simple events, 138
simple random sample, 228
simulated annealing, 293
simulation, 188

Monte Carlo, 188
size, 341, 349, 401
skewness, 192
skin color, 372, 514
small, 301, 326
small sample, 301, 313, 326
small samples, 359
smoking, 151, 217
smoking mother, 538
smoothing argument, 530
SO2, 465, 466, 469, 496
song birds, 120, 182, 186
sort, 389
South Africa, 214
Southern Blight, 277
Southern US, 239
space, 98
Spain, 465
sparrows, 120
spatial, 153, 547
Spearman’s rank correlation coefficient, 275
special values, 20, 22
species, 380
specificity, 529
Spotfin shiner, 529
SPSS, 60
SQL, 62
standard deviation, 147, 185, 208, 272, 318
standard deviations, 262
standard error, 233, 235, 241, 286, 321, 342,

371, 375, 521
standard lognormal, 199
standard normal, 12, 206, 207, 220, 301, 402
standard population, 291
standard uniform, 179
standardized deviance residuals, 534
Standardized Pearson residual, 534
stars, 154
Stata, 60, 212
state of nature, 316
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station code, 497
Statistic, 284
statistic, 228, 229, 242, 304, 329, 369
Stephens, 74, 223
strategy, 561
Student t, 195
students, 299
subset, 98
subset, data, 18
subset, extraction, 18
subspecies, 301
suburban, 505
suicide bomber, 177
Sum of Squares, 470
summary(), 480
surge, 556
survey, 318, 353
Swain v. Alabama, 324
Swiss, 242
symmetric, 323
synchronization, 550
synchronizations, 548
synchrony, 561
Systat, 60

tables, 55
tag return, 236
Taji, 548
tall, 227
tapply(), 470
temporal, 541
terrorists, 121
test

F -test, 469
t vs. rank sum, 392
t-test, 469
Anderson-Darling, 223
arbitrary parameter, small sample, 329
binomial exact, 388
Bonferroni, 477, 482
conservative, 482
exact method, 327
Fisher’s exact, 386, 388
generalized likelihood ratio, 516
HSD, 483
intensities, large sample, 324
intensities, small sample, 328
K-S, 223
Kruskal-Wallis, 488
lower-tailed, 318, 326
lower-tailed, two samples, 371
LSD, 477, 481
Mann-Whitney U, 389

multiple pairs, 483
nonparametric, 388, 392
paired signed rank, 388
paired, for means, 384
paired, signed rank, 392
proportions, large sample, 324
proportions, small sample, 327
rank-sum, 388, 488
Scheffé, 487
Shapiro-Wilk, 223, 225
two samples, two-tailed, 371
two samples, upper-tailed, 371
two-tailed, 321, 326
upper-tailed, 320, 326
Wilcoxon rank sum, 389
Wilson method, 327

test statistic, 370
tests of normality, 223
The R team, 3
theoretical density, 239
tick labels, 467
tick marks, 467
ticks, 167
time between attacks, 184
Time Series, 543
time series, 88, 252, 276
time-lags, 554
toxic, 511
toxicity, 373
transformations, 226
transpose, 80
trauma-treatment, 542
treatment, 394
tree diagram, 106
trial, 105
trim, 374
trimmed mean, 260, 289
trisomic fetuses, 517
trisomy, 517
Tukey, 77, 242, 251
tumor, 329
two samples, 371, 373
two-tailed, 321, 326, 328, 346, 360, 371
two-way, 463, 495
Type I, 316
Type I error, 401
type I error, 323, 341
Type II , 316
Type II error, 401
type II error, 341, 408

U, 125
U.S., 541
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ubalanced design, 471
UK, 151, 217, 290
unbalanced design, 464
Unbiased, 285
unbiased, 293
uncertainty, 316
unform, standard, 179
uniform

density, 180
distribution, 179
expected value, 183
variance, 185

union, 314
unit effort, 357
units, 147, 262
univariate, 55
Universe, 154
universe, 98
unleaded gasoline, 373
unnamed argument, 9, 297
unpaired, 384
upper case, 466
upper hinge, 276
upper quartile, 265
upper whisker, 276
upper-tailed, 320, 326, 346, 360,

371
uracil, 125
uranium-238, 290
urban, 505
urologist, 342
UTF-8, 68

Validation, 533, 536
variance, 146, 185, 229, 241, 242, 285,

286, 292
binomial, 151
discrete rv, 146
geometric, 147
Poisson, 157
pooled, 477
population, 261
ratio, 382
sample, 261
uniform, 185

vector, 6, 233
element, 18
index, 18

vector index, 252
Velleman and Hoaglin, 1981, 251
Venables and Ripley, 2003, 3
Venables et al, 2003, 4
Venables, 1994, 3
Venn diagram, 115
Venn diagrams, 98
Viagra, 342
visitors, 324
volume, 239
vote, 235

Wald-Z, 523
wall, 553
walleye, 389
war, 318
war on terrorism, 542
warning message, 294
Washington Post, 553
water hole, 214
waterfowl, 317
weighted average, 348, 521
West Bank, 236
Western Africa, 264
whisker, 276
whites, 372, 402
Whiting, 278
WHO, 57, 262
WI, 542
Wilcoxon rank sum, 389
Wildlife, 154
Wilson method, 302, 327
wing-chord, 301
with replacement, 304
Within MS, 470
Within SS, 470
within-subject, 492
wolves, 313
women, 553
workspace, 38
World Bank, 373
wrapper, 475

Yates’ continuity correction, 378
Yediot Aharonot, 559
Yellow Medicine, 512, 529
yellow-headed blackbird, 327
Yellowstone, 146




